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PREFACE 

This manual describes the 80286, the most powerful 16-bit microprocessor in the 8086 family, and the 
80287 Numeric Processor Extension (NPX). 

ORGANIZATION OF THIS MANUAL 

This manual is, essentially, two books in one. The first book describes the 80286, the second the 80287 
NPX. 

80286 

The 80286 contains a table of contents, eleven chapters, four appendices, and an index. For more 
information on the 80286 book's organization, see its first chapter, Chapter 1, "Introduction to the 
80286." Section 1.4 in that chapter explains the organization in detail. 

80287 NPX 

The 80287 NPX contains a preface, table of contents, four chapters, three appendices, and a glossary. 
For more information on the 80287 NPX book's organization, see its preface. 
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CUSTOMER SUPPORT 

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software 
support, customer training, and consulting services. For more information contact your local sales offices. 

After a customer purchases any system hardware or software product, service and support become major factors in 
determining whether that product will continue to meet a customer's expectations. Such support requires an interna­
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect, 
Intel's customer support is quite extensive. It includes factory repair services and worldwide field service offices 
providing hardware repair services, software support services, customer training classes, and consulting services. 

HARDWARE SUPPORT SERVICES 

Intel is committed to providing an international service support package through a wide variety of service offerings 
available from Intel Hardware Support. 

SOFrWARE SUPPORT SERVICES 

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information 
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga­
zine). Basic support includes updates and the sUbscription service. Contracts are sold in environments which repre­
sent product groupings (i.e., iRMX environment). 

CONSULTING SERVICES 

Intel provides field systems engineering services for any phase of your development or support effort. You can use 
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an application, 
personalizing training, and customizing or tailoring an Intel product to providing technical and management con­
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications, 
embedded microcontrollers, and network services. You know your application needs; we know our products. Work­
ing together we can help you get a successful product to market in the least possible time. 

CUSTOMER TRAINING 

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In 
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study. 
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our 
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include: 
architecture and aSsembly language, programming and operating systems, bitbus and LAN applications. 
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CHAPTER 1 
INTRODUCTION TO THE 80286 

The 80286 is the most powerful 16-bit processor in the 8086 series of microprocessors, which includes 
the 8086, the 8088, the 80186, the 80188, and the 80286. It is designed for applications that require 
very high performance. It is also an excellent choice for sophisticated "high end" applications that will 
benefit from its advanced architectural features: memory management, protection mechanisms, task 
management, and virtual memory support. The 80286 provides, on a single VLSI chip, computational 
and architectural characteristics normally associated with much larger minicomputers. 

Sections 1.1, 1.2, and 1.3 of this chapter provide an overview of the 80286 architecture. Because the 
80286 represents an extension of the 8086 architecture, some of this overview material may be new 
and unfamiliar to previous users of the 8086 and similar microprocessors. But the 80286 is also an 
evolutionary development, with the new architecture superimposed upon the industry standard 8086 in 
such a way as to affect only the design and programming of operating systems and other such system 
software. Section 1.4 of this chapter provides a guide to the organization of this manual, suggesting 
which chapters are relevant to the needs of particular readers. 

1.1 GENERAL ATTRIBUTES 

The 80286 base architecture has many features in common with the architecture of other members of 
the 8086 family, such as byte addressable memory, I/O interfacing hardware, interrupt vectoring, and 
support for both multiprocessing and processor extensions. The entire family has a common set of 
addressing modes and basic instructions. The 80286 base architecture also includes a number of exten­
sions which add to the versatility of the computer. 

The 80286 processor can function in two modes of operation (see section 1.2 of this chapter, Modes of 
Operation). In one of these modes only the base architecture is available to programmers, whereas in 
the other mode a number of very powerful advanced features have been added, including support for 
virtual memory, multitasking, and a sophisticated protection mechanism. These advanced features are 
described in section 1.3 of this chapter. 

The 80286 base architecture was designed to support programming in high-level languages, such as 
Pascal, C or PL/M. The register set and instructions are well suited to compiler-generated code. The 
addressing modes (see section 2.6.3 in Chapter 2) allow efficient addressing of complex data structures, 
such as static and dynamic arrays, records, and arrays within records, which are commonly supported 
by high-level languages. The data types supported by the architecture include, along with bytes and 
words, high level language constructs such as strings, BCD, and floating point. 

The memory architecture of the 80286 was designed to support modular programming techniques. 
Memory is divided into segments, which may be of arbitrary size, that can be used to contain proce­
dures and data structures. Segmentation has several advantages over more conventional linear memory 
architectures. It supports structured software, since segments can contain meaningful program units 
and data, and more compact code, since references within a segment can be shorter (and locality of 
reference usually insures that the next few references will be within the same segment). Segmentation 
also lends itself to efficient implementation of sophisticated memory management, virtual memory, 
and memory protection. 

In addition, new instructions have been added to the base architecture to give hardware support for 
procedure invocations, parameter passing, and array bounds checking. 
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1.2 MODES OF OPERATION 
\ 

The 80286 can be operated in either of two different modes: Real Address Mode or Protected Virtual 
Address Mode (also referred to as Protected Mode). In either mode of operation, the 80286 represents 
an upwardly compatible addition to the 8086 family of processors. 

In Real Address Mode, the 80286 operates essentially as a very high-performance 8086. Programs 
written for the 8086 or the 80186 can be executed in this mode without any modification (the few 
exceptions are described in Appendix C, "Compatibility Considerations"). Such upward compatibility 
extends even to the object code level; for example, an 8086 program stored in read-only memory will 
execute successfully in 80286 Real Address Mode. An 80286 operating in Real Address Mode provides 
a number of instructions not found on the 8086. These additional instructions, also present with the 
80186, allow for efficient subroutine linkage, parameter validation, index calculations, and block I/O 
transfers. 

The advanced architectural features and full capabilities of the 80286 are realized in its native Protected 
Mode. Among these features are sophisticated mechanisms to support data protection, system integ­
rity, task concurrency, and memory management, including virtual storage. Nevertheless, even in 
Protected Mode, the 80286 remains upwardly compatible with most 8086 and 80186 application 
programs. Most 8086 applications programs can be re-compiled or re-assembled and executed on the 
80286 in Protected Mode. 

1.3 ADVANCED FEATURES 

The architectural features described in section 1.1 of this chaper are common to both operating modes 
of the processor. In addition to these common features, Protected Mode provides a number of advanced 
features, including a greatly extended physical and logical address space, new instructions, and support 
for additional hardware-recognized data structures. The Protected Mode 80286 includes a sophisti­
cated memory management and multilevel protection mechanism. Full hardware support is included 
for multitasking and task switching operations. 

1.3.1 Memory Management 

The memory architecture of the Protected Mode 80286 represents a significant advance over that of 
the 8086. The physical address space has been increased froml megabyte to 16 megabytes (224 bytes), 
while the virtual address space (Le., the address space visible to a program) has been increased from 
1 megabyte to 1 gigabyte (230 bytes). Moreover, separate virtual address spaces are provided for each 
task in a multi-tasking system (see the next section, 1.3.2, "Task Management"). 

The 80286 supports on-chip memory management instead of relying on an external memory manage­
ment unit. The one-chip solution is preferable because no software is required to manage an external 
memory management unit, performance is much better, and hardware designs are significantly simpler. 

Mechanisms have been included in the 80286 architecture to allow the efficient implementation of 
virtual memory systems. (In virtual memory systems, the user regards the combination of main and 
external storage as a single large memory. The user can write large programs without worrying about 
the physical memory limitations of the system. To accomplish this, the operating system places some 
of the user programs and data in external storage and brings them into main memory only as they are 
needed.) All instructions that can cause a segment-riot-present fault are fully restartable. Thus, a not­
present segment can be loaded from external storage, and the task can be restarted at the point where 
the fault occurred. 
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The 80286, like all members of the 8086 series, supports a segmented memory architecture. The 80286 
also fully integrates memory segmentation into a comprehensive protection scheme. This protection 
scheme includes hardware-enforced length and type checking to protect segments from inadvertent 
misuse. 

1.3.2 Task Management 

The 80286 is designed to support multi-tasking systems. The architecture provides direct support for 
the concept of a task. For example, task state segments (see section 8.2 in Chapter 8) are hardware­
recognized and hardware-manipulated structures that contain information on the current state of all 
tasks in the system. 

Very efficient context-switching (task-switching) can be invoked with a single instruction. Separate 
logical address spaces are provided for each task in the system. Finally, mechanisms exist to support 
intertask communication, synchronization, memory sharing, and task scheduling. Task Management is 
described in Chapter 8. 

1.3.3 Protection Mechanisms 

The 80286 allows the system designer to define a comprehensive protection policy to be applied, 
uniformly and continuously, to all ongoing operations of the system. Such a policy may be desirable to 
ensure system reliability, privacy of data, rapid error recovery, and separation of multiple users. 

The 80286 protection mechanisms are based on the notion of a "hierarchy of trust." Four privilege 
levels are distinguished, ranging from Level 0 (most trusted) to Level 3 (least trusted). Level 0 is 
usually reserved for the operating system kernel. The four levels may be visualized as concentric rings, 
with the most privileged level in the center (see figure 1-1). 

This four-level scheme offers system reliability, flexibility, and design options not possible with the 
typical two-level (supervisor/user) separation provided by other processors. A four-level division is 
capable of separating kernel, executive, system services, and application software, each with different 
privileges. 

At anyone time, a task executes at one of the four levels. Moreover, all data segments and code 
segments are also assigned to privilege levels. A task executing at one level cannot access data at a 
more privileged level, nor can it call a procedure at a less privileged level (i.e., trust a less privileged 
procedure to do work for it). Thus, both access to data and transfer of control are restricted in appro­
priate ways. 

A complete separation can exist between the logical address spaces local to different tasks, providing 
users with automatic protection against accidental or malicious interference by other users. The hardware 
also provides immediate detection of a number of fault and error conditions, a feature that can be 
useful in the development and maintenance of software. 

Finally, these protection mechanisms require relatively little system overhead because they are integrated 
into the memory management and protection hardware of the processor itself. 
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LEAST TRUSTED 

MOST TRUSTED 

G3010B 

Figure 1-1. Four Privilege Levels 

1.3.4 Support for Operating Systems 

Most operating systems involve some degree of concurrency, with multiple tasks vying for system 
resources. The task management mechanisms described above provide the 80286 with inherent support 
for such multi-tasking systems. Moreover, the advanced memory management features of the 80286 
allow the implementation of sophisticated virtual memory systems. 

Operating system implementors have found that a multi-level approach to system services provides 
better security and more reliable systems. For example, a very secure kernel might implement critical 
functions such as task scheduling and resource allocation, while less fundamental functions (such as 
I/O) are built around the kernel. This layered approach also makes program development and 
enhancement simpler and facilitates error detection and debugging. The 80286 supports the layered 
approach through its four-level privilege scheme. 

1.4 ORGANIZATION OF THIS BOOK 

To facilitate the use of this book both as an introduction to the 80286 architecture and as a reference 
guide, the remaining chapters ~re divided into three major parts. 

Part I, comprising chapters 2 through 4, should be read by all those who wish to acquire a basic 
familiarity with the 80286 architecture. These chapters provide detailed information on memory 
segmentation, registers, addressing modes and the general (application level) 80286 instruction set. In 
conjunction with the 80286 Assembly Language Reference Manual, these chapters provide sufficient 
information for an assembly language programmer to design and write application programs. 
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The chapters in Part I are: 

Chapter 2, "Architectural Features." This chapter discusses those features of the 80286 architecture 
that are significant for application programmers. The information presented can also function as an 
introduction to the machine for system programmers. Memory organization and segmentation, proces­
sor registers, addressing modes, and instruction formats are all discussed. 

Chapter 3, "Basic Instruction Set." This chapter presents the core instructions of the 8086 family. 

Chapter 4, "Extended Instruction Set." This chapter presents the extended instructions shared by the 
80186 and 80286 processors. 

Part II of the book consists of a single chapter: 

Chapter 5, "Real Address Mode." This chapter presents the system programmer's view of the 80286 
when the processor is operated in Real Address Mode. 

Part III of the book comprises chapters 6 through 11. Aimed primarily at system programmers, these 
chapters discuss the more advanced architectural features of the 80286, which are available when the 
processor is in Protected Mode. Details on memory management, protection mechanisms, and task 
switching are provided. 

The chapters in Part III are: 

Chapter 6, "Virtual Memory." This chapter describes the 80286 address translation mechanisms that 
support virtual memory. Segment descriptors, global and local descriptor tables, and descriptor caches 
are discussed. 

Chapter 7, "Protection." This chapter describes the protection features of the 80286. Privilege levels, 
segment attributes, access restrictions, and call gates are discussed. 

Chapter 8, "Tasks and State Transitions." This chapter describes the 80286 mechanisms that support 
concurrent tasks. Context-switching, task state segments, task gates, and interrupt tasks are discussed. 

Chapter 9, "Interrupts, Traps and Faults." This chapter describes interrupt and trap handling. Special 
attention is paid to the exception traps, or faults, which may occur in Protected Mode. Interrupt gates, 
trap gates, and the interrupt descriptor table are discussed. 

Chapter 10, "System Control and Initialization." This chapter describes the actual instructions used 
to implement the memory management, protection, and task support features of the 80286. System 
registers, privileged instructions, and the initial machine state are discussed. ' 

Chapter 11, "Advanced Topics." This chapter completes Part III with a description of several advanced 
topics, including special segment attributes and pointer validation. 

1.5 RELATED PUBLICATIONS 

The following manuals also contain information of interest to programmers of 80287 systems: 

Introduction to the 80286, order number 210308 

• ASM286 Assembly Language Reference Manual, order number 121924 

80286 Operating System Writer's Guide, order number 121960 
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80286 Hardware Reference Manual, order number 210760 

• Microprocessor and Peripheral Handbook, order number 230843 

PL/M-286 User's Guide, order number 121945 

80287 Support Library Reference Manual, order number 122129 

8086 Software Toolbox Manual, order number 122203 (includes information about 80287 
Emulator Software) 
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CHAPTER 2 
80286 BASE ARCHITECTURE 

This chapter describes the 80286 application programming environment as seen by assembly language 
programmers. It is intended to introduce the programmer to those features of the 80286 architecture 
that directly affect the design and implementation of 80286 application programs. 

2.1 MEMORY ORGANIZATION AND SEGMENTATION 

The main memory of an 80286 system makes up its physical address space. This address space is 
organized as a sequence of 8-bit quantities, called bytes. Each byte is assigned a unique address ranging 
from 0 up to a maximum of 220 (1 megabyte) in Real Address Mode, and up to 224 (16 megabytes) in 
Protected Mode. 

A virtual address space is the organization of memory as viewed by a program. Virtual address space 
is also organized in units of bytes. (Other addressable units such as words, strings, and BCD digits are 
described below in section 2.2, "Data Types.") In Real Address Mode, as with the 8086 itself, programs 
view physical memory directly, inasmuch as they manipulate pure physical addresses. Thus, the virtual 
address space is identical to the physical address space (1 megabyte). 

In Protected Mode, however, programs have no direct access to physical addresses. Instead, memory 
is viewed as a much larger virtual address space of 230 bytes (1 gigabyte). This 1 gigabyte virtual 
address is mapped onto the Protected Mode's 16-megabyte physical address space by the address trans­
lation mechanisms described in Chapter 6. 

The programmer views the virtual address space on the 80286 as a collection of up to sixteen thousand 
linear subspaces, each with a specified size or length. Each of these linear address spaces is called a 
segment. A segment is a logical unit of contiguous memory. Segment sizes may range from one byte 
up to 64K (65,536) bytes. 

80286 memory segmentation supports the logical structure of programs and data in memory. Programs 
are not written as single linear sequences of instructions and data, but rather as modules of code and 
data. For example, program code may include a main routine and several separate procedures. Data 
may also be organized into various data structures, some private and some shared with other programs 
in the system. Run-time stacks constitute yet another data requirement. Each of these several modules 
of code and data, moreover, may be very different in size or vary dynamically with program execution. 

Segmentation supports this logical structure (see figure 2-1). Each meaningful module of a program 
may be separately contained in individual segments. The degree of modularization, of course, depends 
on the requirements of a particular application. Use of segmentation benefits almost all applications. 
Programs execute faster and require less space. Segmentation also simplifies the design of structured 
software. 

2.2 DATA TYPES 

Bytes and words are the fundamental units in which the 80286 manipulates data, Le., the fundamental 
data types. 
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A byte is 8 contiguous bits starting OIl. an addressable byte boundary. The bits are numbered 0 through 
7, starting from the right. Bit 7 is the most significant bit: 

7 0 

I: : :+< : : I 

A word is defined as two contiguous bytes starting on an arbitrary byte boundary; a word thus contains 
16 bits. The bits are numbered 0 through 15, starting from the right. Bit 15 is the most significant bit. 
The byte containing bit 0 of the word is called the low byte; the byte containing bit 15 is called the 
high byte. 

LOCATIONN+l LOCATION N 
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Each byte within a word has its own particular address, and the smaller of the two addresses is used 
as the address of the word. The byte at this lower address contains the eight least significant bits of 
the word, while the byte at the higher address contains the eight most significant bits. The arrangement 
of bytes within words is illustrated in figure 2-2. 

Note that a word need not be aligned at an even-numbered byte address. This allows maximum flexi­
bility in data structures (e.g., records containing mixed byte and word entries) and efficiency in memory 
utilization. Although actual transfers of data between the processor and memory take place at physi­
cally aligned word boundaries, the 80286 converts requests for unaligned words into the appropriate 
sequences of requests acceptable to the memory interface. Such odd aligned word transfers, however, 
may impact performance by requiring t~o memory cycles to transfer the word rather than one. Data 
structures (e.g., stacks) should therefore be designed in such a way that word operands are aligned on 
word boundaries whenever possible for maximum system performance. Due to instruction prefetching 
and queueing within the CPU, there is no requirement for instructions to be aligned on word bounda­
ries and no performance loss if they are not. 

Although bytes and words are the fundamental data types of operands, the processor also supports 
additional interpretations on these bytes or words. Depending on the instruction referencing the operand, 
the following additional data types can be recognized: 

Integer: 

A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All operations assume a 
2's complement representation. (Signed 32- and 64-bit integers are supported using the 80287 
Numeric Data Processor.) 

BYTE 
ADDRESS· 
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A 

9 

8 

7 
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3 

2 

o 

MEMORY 
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06 
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CB 
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, 

I WORD AT ADDRESS B 
CONTAINS FE06 . 
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I WORD AT ADDRESS 6 
CONTAINS 230B 

I WORD AT ADDRESS 2 
CONTAINS 74CB I WORD AT ADDRESS 1 
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·NOTE: 
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Figure 2-2. Bytes and Words in Memory 
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Ordinal: 

An unsigned binary numeric value contained in an8-bit byte or 16-bit word. 

Pointer: 

A 32-bit address quantity composed of a segment selector component and an offset' component. 
Each component is a 16-bit word. 

String: 

A contiguous sequence of bytes or words. A string may contain from 1 byte to 64K bytes. 

ASCII: 

A byte representation of alphanumeric and control characters using the ASCII standard of 
character representation. 

BCD: 

A byte (unpacked) representation of the decimal digits (0-9). 

Packed BCD: 

A byte (packed) representation of two decimal digits (0-9). One digit is stored in each nibble of the 
byte. 

Floating Point: 

A signed 32-, 64-, or 80-bit real number representation. (Floating operands are supported using the 
80287 Numeric Processor Configuration.) 

Figure 2-3 graphically represents the data types supported by the 80286. 80286 arithmetic operations 
may be performed on five types of numbers: unsigned binary, signed binary (integers), unsigned packed 
decimal, unsigned unpacked decimal, and floating point. Binary numbers may be 8 or 16 bits long. 
Decimal numbers are stored in bytes; two digits per byte for packed decimal, one digit per byte for 
unpacked decimal. The processor always assumes that the operands specified in arithmetic instructions 
contain data that represent valid numbers for the type of instruction being performed. Invalid data 
may produce unpredictable results. 

Unsigned binary numbers may be either 8 or 16 bits long; all bits are considered in determining a 
number's magnitude. The value range of an 8-bit unsigned binary number is 0-255; 16 bits can repre­
sent values from 0 through 65,535. Addition, subtraction, multiplication and division operations are 
available for unsigned binary numbers: 

Signed binary numbers (integers) may be either 8 or 16 bits long. The high-order (leftmost) bit is 
interpreted as the number's sign: O=positive and 1 = negative. Negative numbers are represented in 
standard two's complement notation. Since the high-order bit is used for a sign, the range of an 8-bit 
integer is -128.through + 127; 16-bit integers may range from - 32,768 through + 32,767. The value 
zero has a positive sign. 
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Separate multiplication and division operations are provided for both signed and unsigned binary 
numbers. The same addition and subtraction instructions are used with signed or unsigned binary values. 
Conditional jump instructions, as well as an "interrupt on overflow" instruction, can be used following 
an unsigned operation on an integer to detect overflow into the sign bit. . 

Unpacked decimal numbers are stored as unsigned byte quantities. One digit is stored in each byte. 
The magnitude of the number is determined from the low-order half-byte; hexadecimal values 0-9 are 
valid and are interpreted as decimal numbers. The high-order half-byte must be zero for multiplication 
and division; it may contain any value for addition and subtraction. 

Arithmetic on unpacked decimal numbers is performed in two steps. The unsigned binary addition, 
subtraction and multiplication operations are used to produce an intermediate result. An adjustment 
instruction then changes the value to a final correct unpacked decimal number. Division is performed 
similarly, except that the adjustment is carried out on the two digit numerator operand in register AX 
first, followed by an unsigned binary division instruction that produces a correct result. 

Unpacked decimal numbers are shnilar to the ASCII character representations of the digits 0-9. Note, 
however, that the high-order half-byte of an ASCII numeral is always 3. Unpacked decimal arithmetic 
may be performed on ASCII numeric characters under the following conditions: 

• the high-order half-byte of an ASCII numeral must be set to OR prior to multiplication or division. 

• unpacked decimal arithmetic leaves the high-order half-byte set to OR; it must be set to 3 to 
produce a valid ASCII numeral. 

Packed decimal numbers are stored as unsigned byte quantities. The byte is treated as having one 
decimal digit in each half-byte (nibble); the digit in the high-order half-byte is the most significant. 
Values 0-9 are valid in each half-byte, and the range of a packed decimal number is 0-99. Additions 
and subtractions are performed in two steps. First, an addition or subtraction instruction is used to 
produce an intermediate result. Then, an adjustment operation is performed which changes the inter­
mediate value to a final correct packed decimal result. Multiplication and division adjustments are 
only available for unpacked decimal numbers. 

Pointers and addresses are described below in section 2.3.3, "Index, Pointer, and Base Registers," and 
in section 3.8, "Address Manipulation Instructions." 

Strings are contiguous bytes or words from 1 to 64K bytes in length. They generally contain ASCII or 
other character data representations. The 80286 provides string manipulation instructions to move, 
examine, or modify a string (see section 3.7, "Character Translation and String Instructions"). 

If the 80287 numeric processor extension (NPX) is present in the system - see the 80287 NPX 
book-the 80286 architecture also supports floating point numbers, 32- and 64-bit integers, and 
18-digit BCD data types. 

The 80287 Numeric Data Processor supports and stores real numbers in a three-field binary format as 
required by IEEE standard 754 for floating point numerics (see figure 2-3). The number's significant 
digits are held in the significand field, the exponent field locates the binary point within the significant 
digits (and therefore determines the number's magnitude), and the sign field indicates whether the 
number is positive or negative. (The exponent and significand are analogous to the terms "character­
istic" and "mantissa," typically used to describe floating point numbers on some computers.) This 
format is used by the 80287 with various length significands and exponents to support single precision, 
double precision and extended (80-bit) precision floating point data types. Negative numbers differ 
from positive numbers only in their sign bits. 
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2.3 REGISTERS 

The 80286 contains a total of fourteen registers that are of interest to the application programmer. 
(Five additional registers used by system programmers are covered in section 10.1.) As shown in 
figure 2-4, these registers may be grouped into four basic categories: 

• General registers. These eight 16-bit general-purpose registers are used primarily to contain operands 
for arithmetic and logical operations. 

Segment registers. These four special-purpose registers determine, at any given time, which 
segments of memory are currently addressable. 

Status and Control registers. These three special-purpose registers are used to record and alter 
certain aspects of the 80286 processor state. 

2.3.1 General Registers 

The general registers of the 80286 are the 16-bit registers AX, BX, CX, DX, SP, BP, SI, and DI. 
These registers are used interchangeably to contain the operands of logical and arithmetic operations. 

Some instructions and addressing modes (see section 2.4), however, dedicate certain general registers 
to specific uses. BX and BP are often used to contain the base address of data structures in memory 
(for example, the starting address of an array); for this reason, they are often referred to as the base 
registers. Similarly, SI and DI are often used to contain an index value that will be incremented to 
step through a data structure; these two registers are called the index registers. Finally, SP and BP are 
used for stack manipulation. Both SP and BP normally contain offsets into the current stack. SP gener­
ally contains the offset of the top of the stack and BP contains the offset or base address of the current 
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Figure 2-4. 80286 Base Architecture Register Set 
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stack frame. The use of these' general-purpose registers for operand addressing is discussed in section 
2.3.3, "Index, Pointer, and Base Registers." Register usage for individual instructions is discussed in 
chapters 3 and 4. 

As shown in figure 2-4, eight byte registers overlap four of the 16-bit general registers. These registers 
are named AH, BH, CH, and DH (high bytes); and AL, BL, CL, and DL (low bytes); they overlap 
AX, BX, CX, and DX. These registers can be used either in their entirety or as individual 8-bit regis­
ters. This dual interpretation simplifies the handling of both 8- and 16-bit data elements. 

2.3.2 Memory Segmentation and Segment Registers 

Complete programs generally consist of many different code modules (or segments), and different 
types of data segments. However, at any given time during program execution, only a small subset of 
a program's segments are actually in use. Generally, this subset will include code, data, and possibly a 
stack. The 80286 architecture takes advantage of this by providing mechanisms to support direct access 
to the working set of a program's execution environment and access to additional segments on demand. 

At any given instant, four segments of memory are immediately accessible to an executing 80286 
program. The segment registers DS, ES, SS, and CS are used to identify these four current segments. 
Each of these registers specifies a particular kind of segment, as characterized by the associated 
mnemonics ("code," "stack," "data," or "extra") shown in figure 2-4. 

An executing program is provided with concurrent access to the four individual segments of memory­
a code segment, a stack segment, and two data segments-by means of the four segment registers. 
Each may be said to select a segment, since it uniquely determines the one particular segment from 
among the numerous segments in memory, which is to be immediately accessible at highest speed. 
Thus, the 16·bit contents of a segment register is called a segment selector. 

Once a segment is selected, a base address is associated with it. To address an element within a segment, 
a 16·bit offset from the segment's base address must be supplied. The 16-bit segment selector and the 
16-bit offset taken together form the high and low order halves, respectively, of a 32·bit virtual address 
pointer. Once a segment is selected, only the lower 16-bits of the pointer, called the offset, generally 
need to be specified by an instruction. Simple rules define which segment register is used to form an 
address when only a 16-bit offset is specified. 

An executing program requires, first of all, that its instructions reside somewhere in memory. The 
segment of memory containing the currently executing sequence of instructions is known as the current 
code segment; it is specified by means of the CS register. All instructions are fetched from this code 
segment, using as an offset the contents of the instruction pointer (IP). The CS:IP register combination 
therefore forms the full 32-bit pointer for the next sequential program instruction. The CS register is 
manipulated indirectly. Transitions from one code segment to another (e.g., a procedure call) are effected 
implicitly as the result of control-transfer instructions, interrupts, and trap operations. 

Stacks play a fundamental role in the 80286 architecture; subroutine calls, for example, involve a 
number of implicit stack operations. Thus, an executing program will generally require a region of 
memory for its stack. The segment containing this region is known as the current stack segment, and 
it is specified by means of the SS register. All stack operations are performed within this segment, 
usually in terms of address offsets contained in the stack pointer (SP) and stack frame base (BP) 
registers. Unlike CS, the SS register can be loaded explicitly for dynamic stack 'definition. 
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Beyond their code and stack requirements, most programs must also fetch and store data in memory. 
The DS and ES registers allow the specification of two data segments, each addressable by the currently 
executing program. Accessibility to two separate data areas supports differentiation and access require­
ments like local procedure data and global process data. An operand within a data segment is addressed 
by specifying its offset either directly in an instruction or indirectly via index and/or base registers 
(described in the next subsection). 

Depending on the data structure (e.g., the way data is parceled into one or more segments), a program 
may require access to multiple data segments. To access additional segments, the DS and ES registers 
can be loaded under program control during the course of a program's execution. This simply requires 
loading the appropriate data pointer prior to accessing the data. 

The interpretation of segment selector values depends on the operating mode of the processor. In Real 
Address Mode, a segment selector is a physical address (figure 2-5). In Protected Mode, a segment 
selector selects a segment of the user's virtual address space (figure 2-6). An intervening level of logical­
to-physical address translation converts the logical address to a physical memory address. Chapter 6, 
"Memory Management," provides a detailed discussion of Protected Mode addressing. In general, 
considerations of selector formats and the details of memory mapping need not concern the application 
programmer. . 

2.3.3 Index, POinter, and Baae Reglaters 

Five of the general-purpose registers are available for offset address calculations. These five registers, 
shown in figure 2-4, are SP, BP, BX, SI, and DI. SP is called a pointer register; BP and BX are called 
base registers; SI and DI are called index registers. 

SEG 1 1 MEGABYTE PHYSICAL 
ADDRESS SPACE 

NOTES: 1. THE SELECTOR IDENTIFIES A SEGMENT IN PHYSICAL MEMORY. 
2. A SELECTOR SPECIFIES THE SEGMENTS BASE ADDRESS, MODULO 16, WITHIN 

THE 1 MEGABYTE ADDRESS SPACE. 
3. THE SELECTOR IS THE 18 MOST SIGNIFICANT BITS OF A SEGMENTS PHYSICAL 

BASE ADDRESS. 
4. THE VALUES OF SELECTORS DETERMINES THE AMOUNT THEY OVERLAP IN REAL 

MEMORY. 
5. SEGMENTS MAY OVERLAP BY INCREMENTS OF 18 BYTES. OVERLAP RANGES FROM 

COM'pLETE (SEG 1 = SEG 1) TO NONE (SEG 1 * SEG 2 ± 64K) 

Figure 2-5. Real Address Mode Segment Selector Interpretation 

2-9 

G30108 



l SELECTOR 

80286 BASE ARCHITECTURE 

.... 

'r 

J 

1 TO 64K BYTES { 

SEG 3FFF 

SEG 3FFE 

SEG3FFD 

SEG 3FFC 

SEG3FFB 

SEG4 

SEG3 

SEG 2 

SEG 1 

SEGO 

~~ 
1 GIGABYTE 
VIRTUAL ADDRESS 
SPACE 

NOTES: 1. A SELECTOR UNIQUELY IDENTIFIES (NAMES) ONE OF 16K POSSIBLE SEGMENTS IN THE 
TASK'S VIRTUAL ADDRESS SPACE. 

2. THE SELECTOR VALUE DOES NOT SPECIFY THE SEGMENT'S LOCATION IN PHYSICAL 
MEMORY. 

3. THE SELECTOR DOES NOT IMPLY ANY OVERLAP WITH OTHER SEGMENTS (THIS 
DEPENDS ON THE BASE ADDRESS OF THE SEGMENT AS SPECIFIED VIA THE MEMORY 
MANAGEMENT AND PROTECTION INFORMATION). 

Figure 2-6. Protected Mode Segment Selector Interpretation 

G30108 

As described in the previous section, segment registers define the set of four segments currently 
addressable by a program. A pointer, base, or index register may contain an offset value relative to the 
start of one of these segments; it thereby points to a particular operand's location within that segment. 
To allow for efficient computations of effective address offsets, all base and index registers may partic­
ipate interchangeably as operands in most arithmetical operations. 

Stack operations are facilitated by the stack pointer (SP) and stack frame base (BP) registers. By 
specifying offsets into the current stack segment, each of these registers provides access to data on the 
stack. The SP register is the customary top·of-stack pointer, addressing the uppermost datum on a 
push-down stack. It is referenced implicitly by PUSH and POP operations, subroutine calls, and inter­
rupt operations. The BP register provides yet another offset into the stack segment. The existence of 
this stack relative base register, in conjunction with certain addressing modes described in section 
2.6.3, is particularly useful for accessing data structures, variables and dynamically allocated work 
space within the stack. 

Stacks in the 80286 are implemented in memory and are located by the stack segment register (SS) 
and the stack pointer register (SP). A system may have an unlimited number of stacks, and a stack 
may be up to 64K bytes long, the maximum length of a segment. 

One stack is directly addressable at a time; this is the current stack, often referred to simply as "the" 
stack. SP contains the current top of the stack (TOS). In other words, SP contains the offset to the top 
of the push down stack from the stack segment's base address. Note, however, that the stack's base 
address (contained in SS) is not the "bottom:' of the stack (figure 2-7). 
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80286 stack entries are 16 bits wide. Instructions operate on the stack by adding and removing stack 
items one word at a time. An item is pushed onto the stack (see figure 2-8) by decrementing SP by 2 
and writing the item at the new TOS. An item is popped off the stack by copying it from TOS and 
then incrementing SP by 2. In other words, the stack grows down in memory toward its base address. 
Stack operations never move items on the stack; nor do they erase them. The top of the stack changes 
only as a result of updating the stack pointer. 

The stack frame base pointer (BP) is often used to access elements on the stack relative to a fixed 
point on the stack rather than relative to the current TOS. It typically identifies the base address of 
the current stack frame established for the current procedure (figure 2-9). If an index register is used 
relative to BP (e.g., base + index addressing mode using BP as the base), the offset will be calculated 
automatically in the current stack segment. 

Accessing data structures in data segments is facilitated by the BX register, which has the same function 
in addressing operands within data segments that BP does for stack segments. They are called base 
registers because they may contain an offset to the base of a data structure. The similar usage of these 
two registers is especially important when discussing addressing modes (see section 2.4, "Addressing 
Modes"). 

Operations on data are also facilitated by the SI and DI registers. By specifying an offset relative to 
the start of the currently addressable data segment, an index register can be used to address an operand 
in the segment. If an index register is used in conjunction with the BX base register (i.e., base + index 
addressing) to form an offset address, the data is also assumed to reside in the current data segment. 
As a rule, data referenced through an index register or BX is presumed to reside in the current data 
segment. That is, if an instruction invokes addressing for one of its operands using either BX, DI, SI, 
or BX with SI or DI, the contents of the register(s) (BX, DI, or SI) implicitly specify an offset in the 
current data segment. As previously mentioned, data referenced via SP, BP or BP with SI or DI implic­
itly specify an operand in the current stack segment (refer to table 2-1). 
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BP IS A CONSTANT POINTER TO STACK BASED VARIABLES AND WORK SPACE. ALL REFERENCES 
USE BPAND ARE INDEPENDENT OF SP, WHICH MAY VARY DURING A ROUTINE EXECUTION. 

PROCN 
PUSH AX 
PUSH ARRA LSIZE 
CALL PROC_N+ 1 ------I.~ PROC_N+ 1: 

, 

t BOTTOM OF 
STACK 

r--" 
I BP I .. 
1..--..1 

BP 

---
----. 

SP 

PUSH BP 
PUSH ClC. 
MOVBP, SP 
SUB SP, WORK_SPACE 

"PROCEDURE BODY" 

MOV SP, BP 
POPCX 
POP BP 
RET 

PARAMETERS 

RETURN ADDR 

REGISTERS 

WORK_SPACE 

PARAMETERS 

RETURN ADDR 

REGISTERS 

WORK_SPACE 

PROCEDURE N STACK FRAME 

PROCEDURE N+ 1 STACK FRAME 

} 
DYNAMICALLY ALLOCATED ON 
DEMAND RATHER THAN STATICALLY 

TOP OF STACK 

STACK SEGMENT BASE 

Figure 2-9. BP Usage as a Stack Frame Base Pointer 

2-13 

G30108 



80286 BASE ARCHITECTURE 

Table 2·1. Implied Segment Usage by Index, Pointer, and Base Registers 

Register Implied Segment 

SP SS 
BP SS 
BX OS 
SI OS 
01 OS, ES for String Operations 
BP + SI, 01 SS 
BX + SI, 01 OS 

NOTE: 
All implied Segment usage, except SP to SS and 01 to ES for String Operations, may be explicitly specified 
with a segment override prefix for any of the four segments. The prefix precedes the instruction for which 
explicit reference is desired. 

There are two exceptions to the rules listed above. The first concerns the operation of certain 80286 
string instructions. For the most flexibility, these instructions assume that the DI register addresses 
destination strings not in the data segment, but rather in the extra segment (ES register). This allows 
movement of strings between different segments. This has led to the descriptive names "source index" 
and "destination index." In all cases other than string instructions, however, the SI and DI registers 
may be used interchangeably to reference either source or destination operands. 

A second more general override capability allows the programmer complete control of which segment 
is used for a specific operation. Segment-override prefixes, discussed in section 2.4.3, allow the index 
and base registers to address data in any of the four currently addressable segments. 

2.3.4 Status and Control Registers 

Two status and control registers are of immediate concern to applications programmers: the instruction 
pointer and the FLAGS registers. 

The instruction pointer register (IP) contains the offset address, relative to the start of the current code 
segment, of the next sequential instruction to be executed. Together, the CS:IP registers thus define a 
32-bit program-counter. The instruction pointer is not directly visible to the programmer; it is controlled 
implicitly, by interrupts, traps, and control-transfer operations. 

The FLAGS register encompasses eleven flag fields, mostly one-bit wide, as shown in figure 2-10. Six 
of the flags are status flags that record processor status information. The status flags are affected by 
the execution of arithmetic and logical instructions. The carry flag is also modifiable with instructions 
that will clear, set or complement this flag bit. See Chapters 3 and 4. 

The carry flag (CF) generally indicates a carry or borrow out of the most significant bit of an 8- or 
16-bit operand after performing an arithmetic operation; this flag is also useful for bit manipUlation 
operations involving the shift and rotate instructions. The effect on the remaining status flags, when 
defined for a particular instruction, is generally as follows: the zero flag (ZF) indicates a zero result 
when set; the sign flag (SF) indicates whether the result was negative (SF= 1) or positive (SF=O); 
when set, the overflow flag (OF) indicates whether an operation results in a carry into the high order 
bit of the result but not a carry out of the high-order bit, or vice versa; the parity flag (PF) indicates 
whether the modulo 2 sum of the low-order eight bits of the operation is even (PF=O) or odd (PF= 1) 
parity. The auxiliary carry flag (AF) represents a carry out of or borrow into the least significant 4-bit 
digit when performing binary coded decimal (BCD) arithmetic. 
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The FLAGS register also contains three control flags that are used, under program control, to direct 
certain processor operations. The interrupt-enable flag (IF), if set, enables external interrupts; other­
wise, interrupts are disabled. The trap flag (TF), if set, puts the processor into a single-step mode for 
debugging purposes where the target program is automatically interrupted to a user supplied debug 
routine after the execution of each target program instruction. The direction flag (DF) controls the 
forward or backward direction of string operations: 0 = forward or auto increment the address regis­
teres) (SI, Dl or SI and 01), I = backward or auto-decrement the address register(s) (SI, Ol or SI 
and DI). 

In general, the interrupt enable flag may be set or reset with special instructions (ST! = set, 
CLI = clear) or by placing the flags on the stack, modifying the stack, and returning the flag image 
from the stack to the flag register. If operating in Protected Mode, the ability to alter the IF bit is 
subject to protection checks to prevent non-privileged programs from effecting the interrupt state of 
the CPU. This applies to both instruction and stack options for modifying the IF bit. 

The TF flag may only be modified by copying the flag register to the stack, setting the TF bit in the 
stack image, and returning the modified stack image to the flag register. The trap interrupt occurs on 
completion of the next instruction. Entry to the single step routine saves the flag register on the stack 
with the TF bit set, and resets the TF bit in the register. After completion of the single step routine, 
the TF bit is automatically set on return to the program being single stepped to interrupt the program 
again after completion of the next instruction. Use of TF is not inhibited by the protection mechanism 
in Protected Mode. 
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The DF flag, like the IF flag, is controlled by instructions (CLD = clear, STD = set) or flag register 
modification through the stack. Typically, routines that use string instructions will save the flags on 
the stack, modify DF as necessary via the instructions provided, and restore DF to its original state by 
restoring the Flag register from the stack before returning. Access or control of the DF flag is not 
inhibited by the protection mechanism in Protected Mode. 

The Special Fields bits are only relevant in Protected Mode. Real Address Mode programs should treat 
these bits as don't-care's, making no assumption about their status. Attempts to modify the 10PL and 
NT fields are subject to protection checking in Protected Mode. In general, the application's program­
mer will not be able to and should not attempt to modify these bits. (See section 10.3, "Privileged and 
Trusted Instructions" for more details.) 

2.4 ADDRESSING MODES 

The information encoded in an 80286 instruction includes a specification of the operation to be 
performed, the type of the operands to be manipulated, and the location of these operands. If an operand 
is located in memory, the instruction must also select, explicitly or implicitly, which of the currently 
addressable segments contains the operand. This section covers the operand addressing mechanisms; 
80286 operators are discussed in Chapter 3. 

The five elements of a general instruction are briefly described below. The exact format of 80286 
instructions is specified in Appendix B. 

The opcode is present in all instructions; in fact, it is the only required element. Its principal 
function is the specification of the operation performed by the instruction. 

A register specifier. 

The addressing mode specifier, when present, is used to specify the addressing mode of an operand 
for referencing data or performing indirect calls or jumps. 

The displacement, when present, is used to compute the effective address of an operand in memory. 

The immediate operand, when present, directly specifies one operand of the instruction. 

Of the four elements, only one, the opcode, is always present. The other elements mayor may not be 
present, depending on the particular operation involved and on the location and type of the operands. 

2.4.1 Operands 

Generally speaking, an instruction is an operation performed on zero, one, or two operands, which are 
the data manipulated by the instruction. An operand can be located either in a register (AX, BX, CX, 
DX, SI, DI, SP, or BP in the case of 16-bit operands; AH, AL, BH, BL, CH, CL, DH, or DL in the 
case of 8-bit operands; the FLAG register for flag operations in the instruction itself (as an immediate 
operand», or in memory or an I/O port. Immediate operands and operands in registers can be accessed 
more rapidly than operands in memory since memory operands must be fetched from memory while 
immediate and register operands are available in the processor. 

An 80286 instruction can reference zero, one, or two operands. The three forms are as follows: 

• Zero-operand instructions, such as RET, NOP, and HLT. Consult Appendix B. 
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One-operand instructions, such as INC or DEC. The location of the single operand can be speci­
fied implicitly, as in AAM (where the register AX contains the operand), or explicitly, as in INC 
(where the operand can be in any register or memory location). Explicitly specified operands are 
accessed via one of the addressing modes described in section 2.4.2. 

Two operand instructions such as MOV, ADD, XOR, etc., generally overwrite one of the two 
participating operands with the result. A distinction can thus be made between the source operand 
(the one left unaffected by the operation) and the destination operand (the one overwritten by the 
result). Like one-operand instructions, two-operand instructions can specify the location of operands 
either explicitly or implicitly. If an instruction contains two explicitly specified operands, only one 
of them-either the source or the destination-can be in a register or memory location. The other 
operand must be in a register or be an immediate source operand. Special cases of two-operand 
instructions are the string instructions and stack manipulation. Both operands of some string 
instructions are in memory and are explicitly specified. Push and pop stack operations allow trans­
fer between memory operands and the memory based stack. 

Thus, the two-operand instructions of the 80286 permit operations of the following sort: 

• Register-to-register 

• Register-to-memory 

• Memory-to-register 

Immediate-to-register 

Immediate-to-memory 

Memory-to-memory 

Instructions can specify the location of their operands by means of eight addressing modes, which are 
described in sections 2.4.2 and 2.4.3. 

2.4.2 Register and Immediate Modes 

Two addressing modes are used to reference operands contained in registers and instructions: 

• Register Operand Mode. The operand is located in one of the 16-bit registers (AX, BX, CX, DX, 
SI, DI, SP, or BP) or in one of the 8-bit general registers (AR, BR, CR, DR, AL, BL, CL, or 
DL). 

Special instructions are also included for referencing the CS, DS, ES, SS, and Flag registers as 
operands also. 

• Immediate Operand Mode. The operand is part of the instruction itself (the immediate operand 
element). 

2.4.3 Memory Addressing Modes 

Six modes are used to access operands in memory. Memory operands are accessed by means of a 
pointer consisting of a segment selector (see section 2.3.2) and an offset, which specifies the operand's 
displacement in bytes from the beginning of the segment in which it resides. Both the segment selector 
component and the offset component are 16-bit values. (See section 2.1 for a discussion of segmenta­
tion.) Only some instructions use a full 32-bit address. 
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Most memory references do not require the instruction to specify a full 32-bit pointer address. Operands 
that are located within one of the currently addressable segments, as determined by the four segment 
registers (see section 2.3.2, "Segment Registers"), can be referenced very efficiently simply by means 
of the 16-bit offset. This form of address is called by short address. The choice of segment (CS, DS, 
ES, or SS) is either implicit within the instruction itself or explicitly specified by means of a segment 
override prefix (see below). 

See figure 2-11 for a diagram of the addressing process. 

2.4.3.1 SEGMENT SELECTION 

All instructions that address operands in memory must specify the segment and the offset. For speed 
and compact instruction encoding, segment selectors are usually stored in the high speed segment 
registers. An instruction need specify only the desired segment register and an offset in order to address 
a memory operand. 

Most instructions need not explicitly specify which segment register is used. The correct segment regis­
ter is automatically chosen according to the rules of table 2-1 and table 2-2. These rules follow the way 
programs are written (see figure 2-12) as independent modules that require areas for code and data, a 
stack, and access to external data areas. ' 

There is a close connection between the type of memory reference and the segment in which that 
operand resides (see the next section for a discussion of how memory addressing mode calculations are 
performed). As a rule, a memory reference implies the current data segment (i.e., the implicit segment 
selector is in DS) unless the BP register is involved in the address specification, in which case the 
current stack segment is implied (i.e, SS contains the selector). 
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Figure 2-11. Two-Component Address 
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Table 2-2. Segment Register Selection Rules 

Memory Segment Register Implicit Segment 
Reference Needed Used Selection Rule 

Instructions Code (CS) Automatic with instruction prefetch. 

Stack Stack (55) All stack pushes and pops. Any memory refer-
ence which uses BP as a base register. 

Local Data Data (OS) All data references except when relative to stack 
or string destination. 

External (Global) Data Extra (ES) Alternate data segment and destination of string 
operation. 

The 80286 instruction set defines special instruction prefix elements (see Appendix B). One of these is 
SEG, the segment-override prefix. Segment-override prefixes allow an explicit segment selection. Only 
in two special cases-namely, the use of DI to reference destination strings in the ES segment, and the 
use of SP to reference stack locations in the SS segment-is there an implied segment selection which 
cannot be overridden. The format of segment override prefixes is shown in Appendix B. 

2.4.3.2 OFFSET COMPUTATION 

The offset within the desired segment is calculated in accordance with the desired addressing mode. 
The offset is calculated by taking the sum of up to three components: 

the displacement element in the instruction 

the base (contents of BX or BP-a base register) 

the index (contents of SI or DI-an index register) 

Each of the three components of an offset may be either a positive or negative value. Offsets are 
calculated modulo 2[6. 

The six memory addressing modes are generated using various combinations of these three compo­
nents. The six modes are used for accessing different types of data stored in memory: 

addressing mode 

direct address 
register indirect 
based 
indexed 
based indexed 
based indexed with 

displacement 

offset calculation 

displacement alone 
base or index alone 
base + displacement 
index + displacement 
base + index 
base + index + disp 

In all six modes, the operand is located at the specified offset within the selected segment. All displace­
ments, except direct address mode, are optionally 8- or 16-bit values. 8-bit displacements are automat­
ically sign-extended to 16 bits. The six addressing modes are described and demonstrated in the following 
section on memory addressing modes. 
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Figure 2-12. Use of Memory Segmentation 

Two modes are used for simple scalar operands located in memory: 

G30108 

Direct Address Mode. The offset of the operand is contained in the instruction as the displacement 
element. The offset is a 16-bit quantity. 

• Register Indirect Mode. The offset of the operand is in one of the registers SI, DI, or BX. (BP is 
excluded; if BP is used as a stack frame base, it requires an index or displacement component to 
reference either parameters passed on the stack or temporary variables allocated on the stack. The 
instruction level bit encoding for the BP only address mode is used to specify Direct Address 
mode. See Chapter 12 for more details.) 
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The following four modes are used for accessing complex data structures in memory (see 
figure 2-13): 

Based Mode. The operand is located within the selected segment at an offset computed as the 
sum of the displacement and the contents of a base register (BX or BP). Based mode is often used 
to access the same field in different copies of a structure (often called a record). The base register 
points to the base of the structure (hence the term "base" register), and the displacement selects 
a particular field. Corresponding fields within a collection of structures can be accessed simply by 
changing the base register. (See figure 2-13, example l.) 

Indexed Mode. The operand is located within the selected segment at an offset computed as the 
sum of the displacement and the contents of an index register (SI or DI). Indexed mode is often 
used to access elements in a static array (e.g., an array whose starting location is fixed at transla­
tion time). The displacement locates the beginning of the array, and the value of the index register 
selects one element. Since all array elements are the same length, simple arithmetic on the index 
register will select any element. (See figure 2-13, example 2.) 

• Based Indexed Mode. The operand is located within the selected segment at an offset computed 
as the sum of the base register's contents and an index register's contents. Based Indexed mode is 
often used to access elements of a dynamic array (i.e., an array whose base address can change 
during execution). The base register points to the base of the array, and the value of the index 
register is used to select one element. (See figure 2-13, example 3.) 

• Based Indexed Mode with Displacement. The operand is located with the selected segment at an 
offset computed as the sum of a base register's contents, an index register's contents, and the 
displacement. This mode is often used to access elements of an array within a structure. For 
example, the structure could be an activation record (Le., a region of the stack containing the 
register contents, parameters, and variables associated with one instance of a procedure); and one 
variable could be an array. The base register points to the start of the activation record, the 
displacement expresses the distance from the start of the record to the beginning of the array 
variable, and the index register selects a particular element of the array. (See figure 2-13, 
example 4.) 

Table 2-3 gives a summary of all memory operand addressing options. 

2.5 INPUT/OUTPUT 

The 80286 allows input/output to be performed in either of two ways: by means of a separate I/O 
address space (using specific I/O instructions) or by means of memory-mapped I/O (using general­
purpose operand manipulation instructions). 

Table 2-3. Memory Operand Addressing Modes 

Addressing Mode Offset Calculation 

Direct 16-bit Displacement in the instruction 
Register Indirect BX,SI,DI 
Based (BX or BP) + Displacement' 
Indexed (SI or 01) + Displacement' 
Based Indexed (BX or BP) + (SI or 01) 
Based Indexed + Displacement (BX or BP) + (SI or 01) + Displacement' 

• The displacement can be a 0, 8 or 16-bit value, 
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1. BASED MODE 

MOY AX, [BP + DATE_CODE] 
ADD[BX + BALANCE], CX 

2. INDEXED MODE 

MOY ID [sO, DX 
SUB BX, DATA-TBL[SI] 

3. BASED INDEXED 

MOY DX, [SFo][i>I] 
AND [BX + S~, 3FFH 

MOY CX, [BP][SI + CNT] 
SHR [BX + DI + MASK] 

I 
l 
I 

I 
I 

I 

80286 BASE ARCHITECTURE 

OPERAND } 

'f' I' 

~ 
OPERAND 

INDEX 

} 
FIXED 
ARRAY 

+ 
DISPL 

+ 
SEGMENT I 

J 

'I' , 

~ 
OPERAND 

INDEX 

) 
BASED 
ARRAY 

+ 

BASE 

+ 
SEGMENT I 

I 

Figure 2-13. Complex Addressing Modes 

2-22 

BASED 
STRUCTURE 
CONTAINING 
ARRAY 

G301DB 



80286 BASE ARCHITECTURE 

2.5.1 1/0 Address Space 

The 80286 provides a separate I/0 address space, distinct from physical memory, to address the input/ 
output ports that are used for external devices. The I/0 address space consists of 216 (64K) individually 
addressable 8-bit ports. Any two consecutive 8-bit ports can be treated as a 16-bit port. Thus, the I/0 
address space can accommodate up to 64K 8-bit ports or up to 32K 16-bit ports. I/O port addresses 
00F8H to OOFFH are reserved by Intel. 

The 80286 can transfer either 8 or 16 bits at a time to a device located in the I/0 space. Like words 
in memory, 16-bit ports should be aligned at even-numbered addresses so that the 16 bits will be 
transferred in a single access. An 8-bit port may be located at either an even or odd address. The 
internal registers in a given peripheral controller device should be assigned addresses as shown below. 

Port Register Port Addresses Example 

16-bit even word addresses OUT FE,AX 

8-bit; device on lower half even byte addresses IN AL,FE 
of 16-bit data bus 

8-bit; device on upper half odd byte addresses OUT FF,AL 
of 16-bit data bus 

The I/O instructions IN and OUT (described in section 3.1l.3) are provided to move data between 
I/O ports and the AX (l6-bit I/0) or AL (8-bit I/O) general registers. The block I/0 instructions 
INS and OUTS (described in section 4.1) move blocks of data between I/O ports and memory space 
(as shown below). In Protected Mode, an operating system may prevent a program from executing 
these I/0 instructions. Otherwise, the function of the I/0 instructions and the structure of the I/0 
space are identical for both modes of operation. 

IHS e5:byte ptr [diJ, DX 
OUTS DX, byte ptr [5iJ 

IN and OUT instructions address I/O with either a direct address to one of up to 256 port addresses, 
or indirectly via the DX register to one of up to 64K port addresses. Block I/O uses the DX register 
to specify the I/O address and either SI or DI to designate the source or destination memory address. 
For each transfer, SI or DI are either incremented or decremented as specified by the direction bit in 
the flag word while DX is constant to select the I/O device. 

2.5.2 Memory-Mapped 1/0 

I/0 devices also may be placed in the 80286 memory address space. So long as the devices respond 
like memory components, they are indistinguishable to the processor. 

Memory-mapped I/O provides additional programming flexibility. Any instruction that references 
memory may be used to access an I/O port located in the memory space. For example, the MOV 
instruction can transfer data between any register and a port; and the AND, OR, and TEST instruc­
tions may be used to manipulate bits in the internal registers of a device (see figure 2-14). Memory­
mapped I/0 performed via the full instruction set maintains the full complement of addressing modes 
for selecting the desired I/0 device. 

Memory-mapped I/O, like any other memory reference, is subject to access protection and control 
when executing in protected mode. 
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Figure 2-14. Memory-Mapped 1/0 

2.6 INTERRUPTS AND EXCEPTIONS 

G30108 

The 80286 architecture supports several mechanisms for interrupting program execution. Internal 
interrupts are synchronous events that are the responses of the CPU to certain events detected during 
the execution of an instruction. External interrupts are asynchronous events typically triggered by 
external devices needing attention. The 80286 supports both maskable (controlled by the IF flag) and 
non-maskable interrupts. They cause the processor to temporarily suspend its present program execu­
tion in order to service the requesting device. The major distinction between these two kinds of inter­
rupts is their origin: an internal interrupt is always reproducible by re-executing with the program and 
data that caused the interrupt, whereas an external interrupt is generally independent of the currently 
executing task. 

Interrupts 0-31 are reserved by Intel. 

Application programmers will normally not be concerned with servicing external interrupts. More 
information on external interrupts for system programmers may be found in Chapter 5, section 5.2, 
"Interrupt Handling for Real Address Mode," and in Chapter 9, "Interrupts, Traps and Faults for 
Protected Virtual Address Mode." 

In Real Address Mode, the application programmer is affected by two kinds of internal interrupts. 
(Internal interrupts are the result of executing an instruction which causes the interrupt.) One type of 
interrupt is called an exception because the interrupt only occurs if a particular fault condition exists. 
The other type of interrupt generates the interrupt every time the instruction is executed. 
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The exceptions are: divide error, INTO detected overflow, bounds check, segment overrun, invalid 
operation code, and processor extension error (see table 2-4). A divide error exception results when 
the instructions DIV or IDIV are executed with a zero denominator; otherwise, the quotient will be too 
large for the destination operand (see section 3.3.4 for a discussion of DIV and IDIV). An overflow 
exception results when the INTO instruction is executed and the OF flag is set (after an arithmetic 
operation that set the overflow (OF) flag). (See section 3.6.3, "Software Generated Interrupts," for a 
discussion of INTO.) A bounds check exception results when the BOUND instruction is executed and 
the array index it checks falls outside the bounds of the array. (See section 4.2 for a discussion of the 
BOUND instruction.) The segment overrun exception occurs when a word memory reference is 
attempted which extends beyond the end of a segment. An invalid operation code exception occurs if 
an attempt is made to execute an undefined instruction operation code. A processor extension error is 
generated when a processor extension detects an illegal operation. Refer to Chapter 5 for a more complete 
description of these exception conditions. 

The instruction INT generates an internal interrupt whenever it is executed. The effects of this inter­
rupt (and the effects of all interrupts) is determined by the interrupt handler routines provided by the 
application program or as part of the system software (provided by system programmers). See 
Chapter 5 for more on this topic. The INT instruction itself is discussed in section 3.6.3. 

In Protected Mode, many more fault conditions are detected and result in internal interrupts. Protected 
Mode interrupts and faults are discussed in Chapter 9. 

2.7 HIERARCHY OF INSTRUCTION SETS 

For descriptive purposes, the 80286 instruction set is partitioned into three distinct subsets: the Basic 
Instruction Set, the Extended Instruction Set, and the System Control Instruction Set. The "hierar­
chy" of instruction sets defined by this partitioning helps to clarify the relationships between the various 
processors in the 8086 family (see figure 2-15). 

The Basic Instruction Set, presented in Chapter 3, comprises the common subset of instructions found 
on all processors of the 8086 family. Included are instructions for logical and arithmetic operations, 
data movement, input/output, string manipulation, and transfer of control. 

The Extended Instruction Set, presented in Chapter 4, consists of those instructions found only on the 
80186, 80188, and 80286 processors. Included are instructions for block structured procedure entry 
and exit, parameter validation, and block I/O transfers. 

The System Control Instruction Set, presented in Chapter 10, consists of those instructions unique to 
the 80286. These instructions control the memory management and protection mechanisms of the 80286. 
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Table 2-4. 80286 Interrupt Vector Assignments (Real Address Mode) 

Interupt Related 
Return Address 

Function Before Instruction 
Number Instructions 

Causing Exception? 

Divide error exception 0 DIV,IDIV Yes 

Single step interrupt 1 All 

NMI interrupt 2 All 

Breakpoint interrupt 3 INT 

INTO detected overflow exception 4 INTO No 

BOUND range exceeded exception 5 BOUND Yes 

Invalid opcode exception 6 Any undefined Yes 
opcode 

Processor extension not available exception 7 ESC or WAIT Yes 

Interrupt table limit too small exception 8 INT vector is not Yes 
within table limit 

Processor extension segment overrun 9 ESC with memory No 
interrupt operand extending 

beyond offset 
FFFF(H) 

Reserved 10-12 

Segment overrun exception 13 Word memory Yes 
reference with 
offset = FFFF(H) or 
an attempt to 
execute past the 
end of a segment 

Reserved 14, 15 

Processor extension error interrupt 16 ESC or WAIT 

Reserved 17-31 

User defined 32-255 
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Figure 2-15. Hierarchy of Instructions 
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CHAPTER 3 
BASIC INSTRUCTION SET 

The base architecture of the 80286 is identical to the complete instruction set of the 8086, 8088, 
80188, and 80186 processors. The 80286 instruction set includes new forms of some instructions. These 
new forms reduce program size and improve the performance and ease of implementation of source 
code. 

This chapter describes the instructions which programmers can use to write application software for 
the 80286. The following chapters describe the operation of more complicated I/O and system control 
instructions. 

All instructions described in this chapter are available for both Real Address Mode and Protected 
Virtual Address Mode operation. The instruction descriptions note any differences that exist between 
the operation of an instruction in these two modes. 

This chapter also describes the operation of each application program-relative instruction and includes 
an example of using the instruction. The Instruction Dictionary in Appendix B contains formal descrip­
tions of all instructions. Any opcode pattern that is not described in the Instruction Dictionary is 
undefined and results in an opcode violation trap (interrupt 6). 

3.1 DATA MOVEMENT INSTRUCTIONS 

These instructions provide convenient methods for moving bytes or words of data between memory and 
the registers of the base architecture. 

3.1.1 General-Purpose Data Movement Instructions 

MOV (Move) transfers a byte or a word from the source operand to the destination operand. The MOV 
instruction is useful for transferring data to a register from memory, to memory from a register, between 
registers, immediate-to-register, or immediate-to-memory. Memory-to-memory or segment register-to­
segment register moves are not allowed. 

Example: MOV DS,AX. Replaces the contents of register DS with the contents of register AX. 

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of three MOV 
instructions. It does not require a temporary memory location to save the contents of one operand while 
you load the other. 

The XCHG instruction can swap two byte operands or two word operands, but not a byte for a word 
or a word for a byte. The operands for the XCHG instruction may be two register operands, or a 
register operand with a memory operand. When used with a memory operand, XCHG automatically 
activates the LOCK signal. 

Example: XCHG BX,WORDOPRND. Swaps the contents of register BX with the contents of the 
memory word identified by the label WORDOPRND after asserting bus lock. 
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3.1.2 Stack Manipulation Instructions 

PUSH (Push) decrements the stack pointer (SP) by two and then transfers a word from the source 
operand to the top of stack indicated by SP. See figure 3-1. PUSH is often used to place parameters 
on the stack before calling a procedure; it is also the basic means of storing temporary variables on the 
stack. The PUSH instruction operates on memory operands, immediate operands (new with the 80286), 
and register operands (including segment registers). 

Example: PUSH WORDOPRND. Transfers a 16-bit value from the memory word identified by the 
label WORDOPRND to the memory location which represents the current top of stack 
(byte transfers are not allowed). 

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack. See 
figure 3-2. This instruction simplifies procedure calls by reducing the number of instructions required 
to retain the contents of the general registers for use in a procedure. PUSHA is complemented by 
POPA (see below). 

The processor pushes the general registers on the stack in the following order: AX, ex, DX, BX, the 
initial value of SP before AX was pushed, BP, SI, and DI. 

Example: PUSHA. Pushes onto the stack the contents of the eight general registers. 
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Figure 3-1_ PUSH 

3-2 



HIGHADDRES S 

OM 
H 

S 

OPERANDSFR 
PREVIOUS PUS 
INSTRUCTION 

SP 

LOW ADDRESS 

, 

BASIC INSTRUCTION SET 

,m~: 

BEFORE 
PUSHA 

,,,: ~,~ 

-r 

~~ 

,~ 

AFTER 
PUSHA 

SS LIMIT 

SP 

SS 

PUSHA caple. the content. 01 the eight general regllter. to the atack In tha above ordar. Tha In.tructlon decramanta SP by 1«1 byt.a 
(B warda) to point to the I .. t word puahed on the Itack. 

G3010B 

Figure 3-2. PUSHA 

POP (Pop) transfers the word at the current top of stack (indicated by SP) to the destination operand, 
and then increments SP by two to point to the new top of stack. See figure 3-3. POP moves information 
from the stack to either a register or memory. The only restriction on POP is that it cannot place a 
value in register CS. 

Example: POP BX. Replaces the contents of register BX with the contents of the memory location 
at the top of stack. 

POP A (Pop All Registers) restores the registers saved on the stack by PUSHA, except that it ignores 
the value of SP. See figure 3-4. 

Example: POPA. Pops from the stack the saved contents of the general registers, and restores the 
registers (except SP) to their original state. 
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POP copies the contents of the stack location before SP to the operand In the Instruction. POP then Increments SP by 2 bytes 
(1 word). 
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Figure 3-3. POP 

3.2 FLAG OPERATION WITH THE BASIC INSTRUCTION SET 

3.2.1 Status Flags 

The status flags of the FLAGS register reflect conditions that result from a previous instruction or 
instructions. The arithmetic instructions use OF, SF, ZF, AF, PF, and CF. 

The SCAS (Scan String), CMPS (Compare String), and LOOP instructions use ZF to signal that their 
operations are complete. The base architecture includes instructions to set, clear, and complement CF 
before execution of an arithmetic instruction. See figure 3-5 and tables 3-1 and 3-2. 

3.2.2 Control Flags 

The control flags of the FLAGS register determine processor operations for string instructions, maska­
ble interrupts, and debugging. 

3-4 



OPERANDS FROM 
PREVIOUS PUSH 
INSTRUCTIONS 

BASIC INSTRUCTION SET 

AX 

CX 

OX 

BX 

SP 

BP 

SI 

SP_ 01 

LOW ADDRESS 

BEFORE 
POPA 

AFTER 
POPA 

SS 

POPA copies the contents of seven stack locations to the corresponding general registers. POPA discards the stored value of SP. 

G30108 

Figure 3-4. POPA 

Setting DF (direction flag) causes string instructions to auto-decrement; that is, to process strings from 
high addresses to low addresses, or from "right-to-Ieft." Clearing DF causes string instructions to auto­
increment, or to process strings from "left-to-right." 

Setting IF (interrupt flag) allows the CPU to recognize external (maskable) interrupt requests. Clear­
ing IF disables these interrupts. IF has no effect on either internally generated interrupts, nonmaskable 
external interrupts, or processor extension segment overrun interrupts. 

Setting TF (trap flag) puts the processor into single-step mode for debugging. In this mode, the CPU 
automatically generates an internal interrupt after each instruction, allowing a program to be inspected 
as it executes each instruction, instruction by instruction. 

3.3 ARITHMETIC INSTRUCTIONS 

The arithmetic instructions of the 8086-family processors simplify the manipulation of numerical data. 
Multiplication and division instructions ease the handling of signed and unsigned binary integers as 
well as unpacked decimal integers. 
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Figure 3-5. Flag Word Contents 

Table 3-1. Status Flags' Functions 

Bit Position Name Function 

0 CF Carry Flag-Set on high-order bit carry or borrow; cleared 
otherwise. 

2 PF Parity Flag-Set if low-order eight bits of result contain an 
even number of 1 bits; cleared otherwise. 

4 AF Set on carry from or borrow to the low order four bits of 
AL; cleared otherwise. 

6 IF Zero Flag-Set if result is zero; cleared otherwise. 

7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 
1 if negative). 

11 OF Overflow Flag-Set if result is too-large a positive number 
or too-small a negative number (excluding sign-bit) to fit in 
destination operand; cleared otherwise. 
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Table 3-2. Control Flags' Functions 

Bit Position Name Function 

8 TF Trap (Single Step) Flag-Once set, a single step interrupt 
occurs after the next instruction executes. TF is cleared by 
the single step interrupt. 

9 IF Interrupt-enable Flag-When set, maskable interrupts will 
cause the CPU to transfer control to an interrupt vector-
specified location. 

10 OF Direction Flag-Causes string instructions to auto decre-
ment the appropriate index registers when set. Clearing OF 
causes auto increment. 

An arithmetic operation may consist of two register operands, a general register source operand with a 
memory destination operand, a memory source operand with a register destination operand, or an 
immediate field with either a register or memory destination operand, but not two memory operands. 
Arithmetic instructions can operate on either byte or word operands. 

3.3.1 Addition Instructions 

ADD (Add Integers) replaces the destination operand with the sum of the source and destination 
operands. ADD affects OF, SF, AF, PF, CF, and ZF. 

Example: ADD BL, BYTEOPRND. Adds the contents of the memory byte labeled BYTEOPRND 
to the contents of BL, and replaces BL with the resulting sum. 

ADC (Add Integers with Carry) sums the operands, adds one if CF is set, and replaces the destination 
operand with the result. ADC can be used to add numbers longer than 16 bits. ADC affects OF, SF, 
AF, PF, CF, and ZF. 

Example: ADC BX, cx. Replaces the contents of the destination operand BX with the sum of BX, 
CS, and 1 (if CF is set). If CF is cleared, ADC performs the same operation as the ADD 
instruction. 

INC (Increment) adds one to the destination operand. The processor treats the operand as an unsigned 
binary number. INC updates AF, OF, PF, SF, and ZF, but it does not affect CF. Use ADD with an 
immediate value of 1 if an increment that updates carry (CF) is needed. 

Example: INC BL. Adds 1 to the contents of BL. 

3.3.2 Subtraction Instructions 

SUB (Subtract Integers) subtracts the source operand from the destination operand and replaces the 
destination operand with the result. If a borrow is required, carry flag is set. The operands may be 
signed or unsigned bytes or words. SUB affects OF, SF, ZF, AF, PF, and CF. 
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Example: SUB WORDOPRND, AX. Replaces the contents of the destination operand 
WORDOPRND with the result obtained by subtracting the contents of AX from the 
contents of the memory word labeled WORDOPRND. 

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination operand, 
subtracts 1 if CF is set, and returns the result to the destination operand. The operands may be signed 
or unsigned bytes or words. SBB may be used to subtract numbers longer than 16 bits. This instruction 
affects OF, SF, ZF, AF, PF, and CF. The carry flag is set if a borrow is required. 

Example: SBB BL, 32. Subtracts 32 from the contents of BL and then decrements the result of this 
subtraction by one if CF is set. If CF is cleared, SBB performs the same operation as SUB. 

DEC (Decrement) subtracts 1 from the destination operand. DEC updates AF, OF, PF, SF, and ZF, 
but it does not affect CF. Use SUB with an immediate value of 1 to perform a decrement that affects 
carry. 

Example: DEC BX. Subtracts 1 from the contents of BX and places the result back in BX. 

3.3.3 Multiplication Instructions 

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source operand and the 
accumulator. If the source is a byte, the processor multiplies it by the contents of AL and returns the 
double-length result to AH and AL. 

If the source operand is a word, the processor multiplies it by the contents of AX and returns the 
double-length result to DX and AX. MUL sets CF and OF to indicate that the upper half of the result 
is nonzero; otherwise, they are cleared. This instruction leaves SF, ZF, AF, and PF undefined. 

Example: MUL BX. Replaces the contents of DX and AX with the product of BX and AX. The low­
order 16 bits of the result replace the contents of AX; the high-order word goes to DX. The 
processor sets CF and OF if the unsigned result is greater than 16 bits. 

IMUL (Signed Integer Multiply) performs a signed multiplication operation. IMUL uses AX and DX 
in the same way as the MUL instruction, except when used in the immediate form. 

The immediate form of IMUL allows the specification of a destination register other than the combi­
nation of DX and AX. In this case, the result cannot exceed 16 bits without causing an overflow. If 
the immediate operand is a byte, the processor automatically extends it to 16 bits before performing 
the multiplication. 

The immediate form of IMUL may also be used with unsigned operands because the low 16 bits of a 
signed or unsigned multiplication of two 16-bit values will always be the same. 

IMUL clears CF and OF to indicate that the upper half of the result is the sign of the lower half. This 
instruction leaves SF, ZF, AF, and PF undefined. 

Example: IMUL BL. Replaces the contents of AX with the product of BL and AL. The processor 
sets CF and OF if the result is more than 8 bits long. 

Example: IMUL BX, SI, 5. Replaces the contents of BX with the product of the contents of SI and 
an immediate value of 5. The processor sets CF and OF if the signed result is longer than 
16 bits. 
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3.3.4 Division Instructions 

DIV (Unsigned Integer Divide) performs an unsigned division of the accumulator by the source operand. 
If the source operand is a byte, it is divided into the double-length dividend assumed to be in registers 
AL and AH (AH = most significant byte; AL = least significant byte). The single-length quotient is 
returned in AL, and the single-length remainder is returned in AH. 

If the source operand is a word, it is divided into the double-length dividend in registers AX and DX. 
The single-length quotient is returned in AX, and the single-length remainder is returned in DX. Non­
integral quotients are truncated to integers toward O. The remainder is always less than the quotient. 

For unsigned byte division, the largest quotient is 255. For unsigned word division, the largest quotient 
is 65,535. DIY leaves OF, SF, ZF, AF, PF, and CF undefined. Interrupt (INT 0) occurs if the divisor 
is zero or if the quotient is too large for AL or AX. 

Example: DIY BX. Replaces the contents of AX with the unsigned quotient of the doubleword value 
contained in DX and AX, divided by BX. The unsigned modulo replaces the contents of 
DX. 

Example: DIY BL. Replaces the contents of AL with the unsigned quotient of the word value in AX, 
divided by BL. The unsigned modulo replaces the contents of AH. 

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the source operand. 
IDlY uses the same registers as the DIY instruction. 

For signed byte division, the maximum positive quotient is + 127 and the minimum negative quotient 
is -128. For signed word division, the maximum positive quotient is + 32,767 and the minimum negative 
quotient is - 32,768. Non-integral results are truncated towards O. The remainder will always have the 
same sign as the dividend and will be less than the divisor in magnitude. IDlY leaves OF, SF, ZF, AF, 
PF, and CF undefined. A division by zero causes an interrupt (INT 0) to occur if the divisor is 0 or if 
the quotient is too large for AL or AX. 

Example: IDlY WORDOPRND. Replaces the contents of AX with the signed quotient of the double­
word value contained in DX and AX, divided by the value contained in the memory word 
labeled WORDOPRND. The signed modulo replaces the contents of DX. 

3.4 LOGICAL INSTRUCTIONS 

The group of logical instructions includes the Boolean operation instructions, rotate and shift instruc­
tions, type conversion instructions, and the no-operation (NOP)instruction. 

3.4.1 Boolean Operation Instructions 

Except for the NOT and NEG instructions, the Boolean operation instructions can use two register 
operands, a general purpose register operand with a memory operand, an immediate operand with a 
general purpose register operand, or a memory operand. The NOT and NEG instructions are unary 
operations that use a single operand in a register or memory. 

AND (And) performs the logical "and" of the operands (byte or word) and returns the result to the 
destination operand. AND clears OF and DF, leaves AF undefined, and updates SF, ZF, and PF. 
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Example: AND WORDOPRND, BX. Replaces the contents of WORDOPRND with the logical 
"and" of the contents of the memory word labeled WORDOPRND and the contents of 
BX. 

NOT (Not) inverts the bits in the specified operand to form a one's complement of the operand. NOT 
has no effect on the flags. 

Example: NOT BYTEOPRND. Replaces the original contents of BYTEOPRND with the one's 
complement of the contents of the memory word labeled BYTEOPRND. 

OR (Or) performs the logical "inclusive or" of the two operands and returns the result to the destina­
tion operand. OR clears OF and DF, leaves AF undefined, and updates SF, ZF, and PF. 

Example: OR AL,5. Replaces the original contents of AL with the logical "inclusive or" of the contents 
of AL and the immediate value 5. 

XOR (Exclusive OR) performs the logical "exclusive or" of the two operands and returns the result to 
the destination operand. XOR clears OF and DF, leaves AF undefined, and updates SF, ZF, and PF. 

Example: XOR DX, WORDOPRND. Replaces the original contents of DX with the logical "exclu­
sive or" or the contents of DX and the contents of the memory word labeled 
WORDOPRND. 

NEG (Negate) forms a two's complement of a signed byte or word operand. The effect of NEG is to 
reverse the sign of the operand from positive to negative or from negative to positive. NEG updates 
OF, SF, ZF, AF, PF,and CF. 

Example: NEG AX. Replaces the original contents of AX with the two's complement of the contents 
of AX. 

3.4.2 Shift and Rotate Instructions 

The shift and rotate instructions reposition the bits within the specified operand. The shift instructions 
provide a convenient way to accomplish division or multiplication by binary power. The rotate instruc­
tions are useful for bit testing. 

3.4.2.1 SHIFT INSTRUCTIONS 

The bits in bytes and words may be shifted arithmetically or logically. Depending on the value of a 
specified count, up to 31 shifts may be performed. 

A shift instruction can specify the count in one of three ways. One form of shift instruction implicitly 
specifies the count as a single shift. The second form specifies the count as an immediate value. The 
third form specifies the count as the value contained in CL. This last form allows the shift count to be 
a variable that the program supplies during execution. Only the low order 5 bits of CL are used. 

Shift instructions affect the flags as follows. AF is always undefined following a shift operation. PF, 
SF, and ZF are updated normally as in the logical instructions. 

CF always contains the value of the last bit shifted out of the destination operand. In a single-bit shift, 
OF is set if the value of the high-order (sign) bit was changed by the operation. Otherwise, OF is 
cleared. Following a multibit shift, however, the content of OF is always undefined. , 
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SAL (Shift Arithmetic Left) shifts the destination byte or word operand left by one or by the number 
of bits specified in the count operand (an immediate value or the value contained in CL). The processor 
shifts zeros in from the right side of the operand as bits exit from the left side. See figure 3-6. 

Example: SAL BL,2. Shifts the contents of BL left by 2 bits and replaces the two low-order bits with 
zeros. 

Example: SAL BL,l. Shifts the contents of BL left by 1 bit and replaces the low-order bit with a 
zero. Because the processor does not have to decode the immediate count operand to obtain 
the shift count, this form of the instruction takes 2 clock cycles rather than the 6 clock 
cycles (5 cycles + 1 cycle for each bit shifted) required by the previous example. 

SHL (Shift Logical Left) is physically the same instruction as SAL (see SAL above). 

SHR (Shift Logical Right) shifts the destination byte or word operand right by one or by the number 
of bits specified in the count operand (an immediate value or the value contained in CL). The processor 
shifts zeros in from the left side of the operand as bits exit from the right side. See figure 3-7. 

Example: SHR BYTEOPRND, CL. Shifts the contents of the memory byte labeled BYTEOPRND 
right by the number of bits specified in CL, and pads the left side of BYTEOPRND with 
an equal number of zeros. 

SAR (Shift Arithmetic Right) shifts the destination byte or word operand to the right by one or by the 
number of bits specified in the count operand (an immediate value or the value contained in CL). The 
processor preserves the sign of the operand by shifting in zeros on the left side if the value is positive 
or by shifting by ones if the value is negative. See figure 3-8. 

Example: SAR WORDPRND,l. Shifts the contents of the memory byte labeled WORDPRND right 
by one, and replaces the high-order sign bit with a value equal to the original sign of 
WORDPRND. 

L-' ...11_' ...LI_'--I..I_'-L.._' ...L1_°--l..I_°....L..1 _0 ...I1_'-J.I_'--I..1 _' ...11_, ...L1_°--l..1 _°...111--' ...L-, ..... I i~tOti 

[!] ~~r-,~I~,~I-,~I-,-TI-o-rl-o-rl-o-I~,~1-,~,-TI-,-rI-o-r-o~I~,~I-,-TI-o-,1 i~!~ 
1 BIT 

OF CF OPERAND 

Both SAL and SHL shift the bits In the register Dr memory operand to the lelt by the specilled number 01 bit positions. CF receives the 
last bit shifted out 01 the left 01 the operand. SAL and SHL shllt in zeros to Iill the vacated bit locations. These Instructions operate on 
byte operands as wen a. word operand •. 

G30108 

Figure 3·6. SAL and SHL 
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01, I, 1010 1,1,1,1,1 0 I, \' \' \ 0 \ 01 0 I, I 

OF OPERAND CF 

BEFORE 
SHR 

AFTER 
SHR BY 
10 BITS 

SHR shifts the bltl In the register or memory operand to the right by the specified number of bit pOlltlons. CF receives the last bit 
shifted out of the right of the operand. SHR shifts In .eros to fill the vacated bit locations. This Instruction operates on byte operands 
as well a8 word operands. 

Figure 3-7. SHR 

01010101010101010101010101010101,1 

~ I 0 1 0 1 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ~ 

01,1 01010 I, I, I, I, 101010 I, I, 1 0 1,1 0 r-c:J 

o 1 0 1 ' 1 ' 1 ' 1 ' 1 0 1 0 rGJ 
OF OPERAND CF 

BEFORE 
SAR 
WITH A 
posmVE 
OPERAND 

AFTER 
SAR 
WITH A 
POSmVE 
OPERAND 
SHIFTED 
'BIT 

BEFORE 
SARWITH 
A NEGATIVE 
OPERAND 

AFTER 
SAR 
W1THA 
NEGATIVE 
OPERAND 
SHIFTED 
6 BITS 

G30108 

SAR preserves the 81gn of the reg later or memory operand as it shifts the operand to the right the specified number of bit pOSitions. 
CF receives the last bH shifted out of the right of the operand. This Instruction also operates on byte operands. 

G30108 

Figure 3-8. SAR 
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3.4.2.2 ROTATE INSTRUCTIONS 

Rotate instructions allow bits in bytes and words to be rotated. Bits rotated out of an operand are not 
lost as in a shift, but are "circled" back into the other "end" of the operand. 

Rotates affect only the carry and overflow flags. CF may act as an extension of the operand in two of 
the rotate instructions, allowing a bit to be isolated and then tested by a conditional jump instruction 
(JC or JNC). CF always contains the value of the last bit rotated out, even if the instruction does not 
use this bit as an extension of the rotated operand. 

In single-bit rotates, OF is set if the operation changes the high-order (sign) bit of the destination 
operand. If the sign bit retains its original value, OF is cleared. On multibit rotates, the value of OF is 
always undefined. 

ROL (Rotate Left) rotates the byte or word destination operand left by one or by the number of bits 
specified in the count operand (an immediate value or the value contained in CL). For each rotation 
specified, the high-order bit that exists from the left of the operand returns at the right to become the 
new low-order bit of the operand. See figure 3-9. 

Example: ROL AL, 8. Rotates the contents of AL left by 8 bits. This rotate instruction returns AL 
to its original state but isolates the low-order bit in CF for testing by a JC or JNC 
instruction. 

ROR (Rotate Right) rotates the byte or word destination operand right by one or by the number of 
bits specified in the count operand (an immediate value or the value contained in CL). For each rotation 
specified, the low-order bit that exits from the right of the operand returns at the left to become the 
new high-order bit of the operand. See figure 3-10. 

1 ,0 10 01,1,1,101, 0101,1, 01 010 1 
BEFORE ROL 

ROL shifts the bits in the memory or register operand to the left by the specified number of bit positions. It copl.s the bit shifted out 
of the left of the operand Into the right of the operand. The last bit shifted Into the least significant bit of the operand also appears In 
CF. This instruction also operates on byte operands. 

G3010a 

Figure 3-9. ROL 
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rl 0 I, I, 1 0 I, I, I, 1 0 1 0 I, 1 0 I, I, I, 1 0 1 0 rrG 
_ AFTER ROR BY 1 BIT I 

'1'lolo~c:J 
AFTER ROR BY 8 BITS 

OPERAND CF 

ROR shills the bits In the memory or register operand to the right by the specilled number 01 bit positions. It copies each bit shilled 
out 01 the right 01 the operand into the lell 01 the operand. The laat bit shilled Into the moat algnilicant bit 01 the operand alao appears 
In CF. This Instruction also operates on byte operanda. 

G30108 

Figure 3-10. ROR 

Example: ROR WORDOPRND, CL. Rotates the contents of the memory word labeled 
WORDOPRND by the number of bits specified by the value contained in CL. CF reflects 
the value of the last bit rotated from the right to the left side of the operand. 

RCL (Rotate Through Carry Left) rotates bits in the byte or word destination operand left by one or 
by the number of bits specified in the count operand (an immediate value or the value contained in 
CL). 

This instruction differs from ROL in that it treats CF as a high-order I-bit extension of the destination 
operand. Each high-order bit that exits from the left side of the operand moves to CF before it returns 
to the operand as the low-order bit on the next rotation cycle. See figure 3-11. 

Example: RCL BX,1. Rotates the contents of BX left by one bit. The high-order bit of the operand 
moves to CF, the remaining 15 bits move left one position, and the original value of CF 
becomes the new low-order bit. 

RCR (Rotate Through Carry Right) rotates bits in the byte or word destination operand right by one 
or by the number of bits specified in the count operand (an immediate value or the value contained in 
CL). 

This instruction differs from ROR in that it treats CF as a low-order I-bit extension of the destination 
operand. Each low-order bit that exits from the right side of the operand moves to CF before it returns 
to the operand as the high-order bit on the next rotation cycle. See figure 3-12. 

Example: RCR BYTEOPRND,3. Rotates the contents of the memory byte labeled BYTEOPRND 
to the right by 3 bits. Following the execution of this instruction, CF reflects the original 
value of bit number 5 of BYTEOPRND, and the original value of CF becomes bit 2. 
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0 I' 1 
, 1 , o 1 0 o 1 , I' o 1 o 1 , I' 1 0 o 1 o 1 0 

BEFORE RCL 

r8~ 01 0 1 0 I'll , 1 , 1 0 1 0 o 1 , 1 
, 1 0 1 0 , I' 1 0 

AFTER RCL BY 1 BIT 

1 
, I' I' 1 0 o 1 0 I, I, 1 0 1 0 I' , 1 0 1 0 1 0 

AFTER RCL BY 16 BITS 
OPERAND 

RCL rotates the bits In the memory or reglater operand to the left In the same way as ROL except that RCL treats CF as a l-blt 
extension of the operand. Note that a l6-blt RCL produces the aame result aa a l-blt RCR (though It takea much longer to execute). 
This Instruction al80 operates on byte operands. 

G30108 

Figure 3-11. RCL 

I, , I, o 1 0 1 0 I, 1 , 1 0 1 0 , 
I' o 1 0 o 1 o 1 [2J 

BEFORE RCR 

r' I, 1 1 0 o 1 o 1 , , , I' 1 0 o I' 1 , lololor-~ 
AFTER RCA BV 1 SIT ___ 

o 1 o 1 , 1 , I' I' o 1 o 1 o I' I' 1 0 o 1 , I' 1 0 r-
AFTER RCR BY 3 BITS 

OPERAND CF 

RCR rotates the bits In the memory or register operand to the right In the same way as ROR except that RCR treats CF as a l·blt 
extension of the operand. This instruction also operates on byte operands. 

G30108 

Figure 3-12. RCR 
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3.4.3 Type Conversion and No-Operation Instructions 

The type conversion instructions prepare operands for division. The NOP instruction is a I-byte filler 
instruction with no effect on registers or flags. 

CWl) (Convert Word to Double-Word) extends the sign of the word in register AX throughout register 
DX. CWD does not affect any flags. CWD can be used to produce a double-length (double-word) 
dividend from a word before a word division. 

CBW (Convert Byte to Word) extends the sign of the byte in register AL throughout AX. CBW does 
not affect any flags. 

Example: CWD. Sign-extends the 16-bit value in AX to a 32-bit value in DX and AX with the high­
order 16-bits occupying DX. 

NOP (No Operation) occupies a byte of storage but affects nothing but the instruction pointer, IP. The 
amount of time that a NOP instruction requires for execution varies in proportion to the CPU clocking 
rate. This variation makes it inadvisable to use NOP instructions in the construction of timing loops 
because the operation of such a program will not be independent of the system hardware configuration. 

Example: NOP. The processor performs no operation for 2 clock cycles. 

3.5 TEST AND COMPARE INSTRUCTIONS 

The test and compare instructions are similar in that they do not alter their operands. Instead, these 
instructions perform operations that only set the appropriate flags to indicate the relationship between 
the two operands. 

TEST (Test) performs the logical "and" of the two operands, clears OF and DF, leaves AF undefined, 
and updates SF, ZF, and PF. The difference between TEST and AND is that TEST does not alter the 
destination operand. 

Example: TEST BL,32. Performs a logical "and" and sets SF, ZF, and PF according to the results 
of this operation. The contents of BL remain unchanged. 

CMP (Compare) subtracts the source operand from the destination operand. It updates OF, SF, ZF, 
AF, PF, and CF but does not alter the source and destination operands. A subsequent signed or unsigned 
conditional transfer instruction can test the result using the appropriate flag result. 

CMP can compare two register operands, a register operand and a memory operand, a register operand 
and an immediate operand, or an immediate operand and a memory operand. The operands may be 
words or bytes, but CMP cannot compare a byte with a word. 

Example: CMP BX,32. Subtracts the immediate operand, 32, from the contents of BX and sets OF, 
SF, ZF, AF, PF, and CF to reflect the result. The contents of BX remain unchanged. 

3.6 CONTROL TRANSFER INSTRUCTIONS 

The 80286 provides both conditional and unconditional program transfer instructions to direct the flow 
of execution. Conditional program transfers depend on the results of operations that affect the flag 
register. Unconditional program transfers are always executed. 
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3.6.1 Unconditional Transfer Instructions 

JMP, CALL, RET, INT and IRET instructions transfer control from one code segment location to 
another. These locations can be within the same code segment or in different code segments. 

3.6.1.1 JUMP INSTRUCTION 

JMP (Jump) unconditionally transfers control to the target location. JMP is a one-way transfer of 
execution; it does not save a return address on the stack. 

The JMP instruction always performs the same basic function of transferring control from the current 
location to a new location. Its implementation varies depending on the following factors: 

Is the address specified directly within the instruction or indirectly through a register or memory? 

Is the target location inside or outside the current code segment selected in CS? 

A direct JMP instruction includes the destination address as part of the instruction. An indirect JMP 
instruction obtains the destination address indirectly through a register or a pointer variable. 

Control transfers through a gate or to a task state segment are available only in Protected Mode opera­
tion of the 80286. The formats of the instructions that transfer control through a call gate, a task gate, 
or to a task state segment are the same. The label included in the instruction selects one of these three 
paths to a new code segment. 

Direct JMP within the current code segment. A direct JMP that transfers control to a target location 
within the current code segment uses a relative displacement value contained in the instruction. This 
can be either a 16-bit value or an 8-bit value sign extended to 16 bits. The processor forms an effective 
address by adding this relative displacement to the address contained in IP. IP refers to the next 
instruction when the additions are performed. 

Example: JMP NEAR....NEWCOOE. Transfers control to the target location labeled NEAR.... 
NEW CODE, which is within the code segment currently selected in CS. 

Indirect JMP within the current code segment. Indirect JMP instructions that transfer control to a 
location within the current code segment specify an absolute address in one of several ways. First, the 
program can JMP to a location specified by a 16-bit register (any of AX, OX, CX, BX, BP, SI, or DI). 
The processor moves this 16-bit value into IP and resumes execution. 

Example: JMP SI. Transfers control to the target address formed by adding the 16-bit value contained 
in SI to the base address contained in CS. 

The processor can also obtain the destination address within a current segment from a memory word 
operand specified in the instruction. 

Example: JMP PTR....X. Transfers control to the target address formed by adding the 16-bit value 
contained in the memory word labeled PTR X to the base address contained in CS. 

A register can modify the address of the memory word pointer to select a destination address. 

Example: JMP CASE_TABLE [BX]. CASE_TABLE is the first word in an array of word pointers. 
The value of BX determines which pointer the program selects from the array. The JMP 
instruction then transfers control to the location specified by the selected pointer. 
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Direct JMP outside of the current code segment. Direct JMP instructions that specify a target location 
outside the current code segment contain a full 32-bit pointer. This pointer consists of a selector for 
the new code segment and an offset within the new segment. 

Example: JMP FAJLNEWCODE_FOO. Places the selector contained in the instruction into CS and 
the offset into IP. The program resumes execution at this location in the new code segment. 

Indirect JMP outside of the current code segment. Indirect JMP instructions that specify a target 
location outside the current code segment use a double-word variable to specify the pointer. 

Example: JMP NEWCODE. NEWCODE the first word of two consecutive words in memory which 
represent the new pointer. NEWCODE contains the new offset for IP and the word follow­
ing NEWCODE contains the selector for CS. The program resumes execution at this 
location in the new code segment. (Protected mode programs treat this differently. See 

, Chapters 6 and 7). 

Direct JMP outside of the current code segment to a call gate. If the selector included with the instruc­
tion refers to a call gate, then the processor ignores the offset in the instruction and takes the pointer 
of the routine being entered from the call gate. 

JMP outside oCcurrent code segment may only go to the same level. 

Example: JMP CALL_GATE_FOO. The selector in the instruction refers to the call gate 
CALL_GATE_FOO, and the call gate actually provides the new contents of CS and IP to 
specify the address of the next instructions. 

Indirect JMP outside the current code segment to a call gate. If the selector specified by the instruc­
tion refers to a call gate, the processor ignores the offset in the double-word and takes the address of 
the routine being entered from the call gate. The JMP instruction uses the same format to indirectly 
specify a task gate or a task state segment. 

Example: JMP CASE_TABLE [BXJ. The instruction refers to the double-word in the array of point­
ers called CASE_TABLE. The specific double-word chosen depends on the value in BX 
when the instruction executes. The selector portion of this double-word selects a call gate, 
and the processor takes the address of the routine being entered from the call gate. 

3.6.1.2 CALL INSTRUCTION 

CALL (Call Procedure) activates an out-of-line procedure, saving on the stack the address of the 
instruction following the CALL for later use by a RET (Return) instruction. An intrasegment CALL 
places the current value of IP on the stack. An intersegment CALL places both the value of IP and 
CS on the stack. The RET instruction in the called procedure uses this address to transfer control back 
to the calling program. 

A long CALL instruction that invokes a task-switch stores the outgoing task's task state segment selec­
tor in the incoming task state segment's link field and sets the nested task flag in the new task. In this 
case, the IRET instruction takes the place of the RET instruction to return control to the nested task. 
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CALL NEAR-NEWCODE 
• CALL SI 

CALL PTR-X 
CALL CASE_TABLE [BP] 
CALL FAR-NEWCODE]OO 
CALL NEWCODE 
CALL CALLGATE]OO 
CALL CASE_TABLE [BX] 

BASIC INSTRUCTION SET 

See the previous treatment of JMP for a discussion of the operations of these instructions. 

3.6.1.3 RETURN AND RETURN FROM INTERRUPT INSTRUCTION 

RET (Return From Procedure) terminates the execution of a procedure and transfers control through 
a back-link on the stack to the program that originally invoked the procedure. 

An intra segment RET restores the value of IP that was saved on the stack by the previous intrasegment 
CALL instruction. An intersegment RET restores the values of both CS and IP which were saved on 
the stack by the previous intersegment CALL instruction. 

RET instructions may optionally specify a constant to the stack pointer. This constant specifies the 
new top of stack to effectively remove any arguments that the calling program pushed on the stack 
before the execution of the CALL instruction. 

Example: RET. If the previous CALL instruction did not transfer control to a new code segment, 
RET restores the value of IP pushed by the CALL instruction. If the previous CALL 
instruction transferred control to a new segment, RET restores the values of both IP and 
CS which were pushed on the stack by the CALL instruction. 

Example: RET n. This form of the RET instruction performs identically to the above example except 
that it adds n (which must be an even value) to the value of SP to eliminate n bytes of 
parameter information previously pushed by the calling program. 

IRET (Return From Interrupt or Nested Task) returns control to an interrupted routine or, optionally, 
reverses the action of a CALL or INT instruction that caused a task switch. See Chapter 8 for further 
information on task switching. 

Example: IRET. Returns from an interrupt with or without a task switch based on the value of the 
NT bit. 

3.6.2 Conditional Transfer Instructions 

The conditional transfer instructions are jumps that mayor may not transfer control, depending on the 
state of the CPU flags when the instruction executes. Instruction encoding is most efficient when the 
target for the conditional jumps is in the current code segment and within -128 to + 127 bytes of the 
first byte of the next instruction. Alternatively, the opposite sense of the conditional jump can skip 
around an unconditional jump to the destination. 
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3.6.2.1 CONDITIONAL JUMP INSTRUCTIONS 

Table 3-3 shows the conditional transfer mnemonics and their interpretations. The conditional jumps 
that are listed as pairs are actually the same instruction. The assembler provides the alternate mnemon­
ics for greater clarity within a program listing. 

3.6.2.2 LOOP INSTRUCTIONS 

The loop instructions are conditional jumps that use a value placed in ex to specify the number of 
repetitions of a software loop. All loop instructions automatically decrement ex and terminate the 
loop when ex=o. Four of the five loop instructions specify a condition of ZF that terminates the loop 
before ex decrements to zero. 

LOOP (Loop While ex Not Zero) is a conditional transfer that auto-decrements the ex register before 
testing ex for the branch condition. If ex is non-zero, the program branches to the target label speci­
fied in the instruction. The LOOP instruction causes the repetition of a code section until the operation 
of the LOOP instruction decrements ex to a value of zero. If LOOP finds ex=o, control transfers 
to the instruction immediately following the LOOP instruction. If the value of ex is initially zero, then 
the LOOP executes 65,536 times. 

Example: LOOP START_LOOP. Each time the program encounters this instruction, it decrements 
ex and then tests it. If the value of ex is non-zero, then the program branches to the 
instruction labeled START_LOOP. If the value in ex is zero, then the program continues 
with the instruction that follows the LOOP instruction. 

Table 3-3. Interpretation of Conditional Transfers 

Unsigned Conditional Transfers 

Mnemonic Condition Tested "Jump If ••• " 

JAfJNBE (CF or ZF) = 0 above/not below nor equal 
JAE/JNB CF = 0 above or equal/not below 
JB/JNAE CF = 1 below/not above nor equal 
JBE/JNA (CF or ZF) = 1 below or equal/not above 
JC CF = 1 carry 
JE/JZ ZF = 1 equal/zero 
JNC CF = 0 not carry 
JNE/JNZ ZF = 0 not equal/not zero 
JNP/JPO PF = 0 not parity/parity odd 
JP/JPE PF = 1 parity/parity even 

Signed Conditional Transfers 

Mnemonic Condition Tested "Jump If ••• " 

JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal 
JGE/JNL (SF xor OF) = 0 greater or equal/not less 
JL/JNGE (SF xor OF) = 0 less/not greater nor equal 
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater 
JNO OF = 0 not overflow 
JNS SF = 0 not sign (positive, including 0) 
JO OF = 1 overflow 
JS SF = 1 sign (negative) 
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LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are physically the same instruction. 
These instructions auto-decrement the ex register before testing ex and ZF for the branch conditions. 
If ex is non-zero and ZF= 1, the program branches to the target label specified in the instruction. If 
LOOPE or LOOPZ finds that ex=o or ZF=O, control transfers to the instruction immediately 
succeeding the LOOPE or LOOPZ instruction. 

Example: LOOPE START_LOOP (or LOOPZ START_LOOP). Each time the program encounters 
this instruction, it decrements ex and tests ex and ZF. If the value in ex is non-zero and 
the value of ZF is I, the program branches to the instruction labeled START_LOOP. If 
ex=o or ZF=O, the program continues with the instruction that follows the LOOPE (or 
LOOPZ) instruction. 

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are physically the same 
instruction. These instructions auto-decrement the ex register before testing ex and ZF for the branch 
conditions. If ex is non-zero and ZF=O, the program branches to the target label specified in the 
instruction. If LOOPNE or LOOPNZ finds that eX=Q or ZF= I, control transfers to the instruction 
immediately succeeding the LOOPNE or LOOPNZ instruction. 

Example: LOOPNE START_LOOP (or LOOPNZ START_LOOP). Each time the program 
encounters this instruction, it decrements ex and tests ex and ZF. If the value of ex is 
non-zero and the value of ZF is 0, the program branches to the instruction labeled 
START_LOOP. If ex =0 or ZF= I, the program continues with the instruction that 
follows the LOOPNE (or LOOPNZ) instruction. 

3.6.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES 

JCXZ (Jump if CX Zero) branches to the label specified in the instruction if it finds a value of zero 
in ex. Sometimes, it is desirable to design a loop that executes zero times if the count variable in ex 
is initialized to zero. Because the LOOP instructions (and repeat prefixes) decrement ex before they 
test it, a loop will execute 65,536 times if the program enters the loop with a zero value in ex. A 
programmer may conveniently overcome this problem with JeXZ, which enables the program to branch 
around the code within the loop if ex is zero when JeXZ executes. 

Example: JeXZ TARGETLABEL. Causes the program to branch to the instruction labeled 
TARGETLABEL if ex=o when the instruction executes. 

3.6.3 Software-Generated Interrupts 

The INT n and INTO instructions allow the programmer to specify a transfer to an interrupt service 
routine from within a program. Interrupts 0-31 are reserved by Intel. 

3.6.3.1 SOFTWARE INTERRUPT INSTRUCTION 

INT n (Software Interrupt) activates the interrupt service routine that corresponds to the number 
coded within the instruction. Interrupt type 3 is reserved for internal software-generated interrupts. 
However, the INT instruction may specify any interrupt type to allow multiple types of internal inter­
rupts or to test the operation of a service routine. The interrupt service routine terminates with an 
IRET instruction that returns control to the instruction that follows INT. 

Example: INT 3. Transfers control to the interrupt service routine specified by a type 3 interrupt. 
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Example: INT O. Transfers control to the interrupt service routine specified by a type 0 interrupt, 
which is reserved for a divide error. 

INTO (Interrupt on Overflow) invokes a type 4 interrupt if OF is set when the INTO instruction 
executes. The type 4 interrupt is reserved for this purpose. 

Example: INTO. If the result of a previous operation has set OF and no intervening operation has 
reset OF, then INTO invokes a type 4 interrupt. The interrupt service routine terminates 
with an IRET instruction, which returns control to the instruction following INTO. 

3.7 CHARACTER TRANSLATION AND STRING INSTRUCTIONS 

The instructions in this category operate on characters or string elements rather than on logical or 
numeric values. 

3.7.1 Translate Instruction 

XLAT (Translate) replaces a byte in the AL register with a byte from a user-coded translation table. 
When XLAT is executed, AL should have the unsigned index to the table addressed by BX. XLAT 
changes the contents of AL from table index to table entry. BX is unchanged. The XLAT instruction 
is useful for translating from one coding system to another, such as from ASCII to EBCDIC. The 
translate table may be up to 256 bytes long. The value placed in the AL register serves as an index to 
the location of the corresponding translation value. Used with a LOOP instruction, the XLAT instruc­
tion can translate a block of codes up to 64K bytes long. 

Example: XLAT. Replaces the byte in AL with the byte from the translate table that is selected by 
the value in AL. 

3.7.2 String Manipulation Instructions and Repeat Prefixes 

The string instructions (also called primitives) operate on string elements to move, compare, and scan 
byte or word strings. One-byte repeat prefixes can cause the operation of a string primitive to be repeated 
to process strings as long as 64K bytes. 

The repeated string primitives use the direction flag, DF, to specify left-to-right or right-to-left string 
processing, and use a count in CX to limit the processing operation. These instructions use the register 
pair DS:SI to point to the source string element and the register pair ES:DI to point to the destination. 

One of two possible opcodes represent each string primitive, depending on whether it is operating on 
byte strings or word strings. The string primitives are generic and require one or more operands along 
with the primitive to determine the size of the string elements being processed. These operands do not 
determine the addresses of the strings; the addresses must already be present in the appropriate 
registers. 

Each repetition of a string operation using the Repeat prefixes includes the following steps: 

l. Acknowledge pending interrupts. 

2. Check CX for zero and stop repeating if CX is zero. 

3. Perform the string operation once. 
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4. Adjust the memory pointers in DS:SI and ES:DI by incrementing SI and DI if DF is 0 or by 
decrementing SI and DI if DF is 1. 

5. Decrement CX (this step does not affect the flags). 

6. For SCAS (Scan String) and CMPS (Compare String), check ZF for a match with the repeat 
condition and stop repeating if the ZF fails to match. 

The Load String and Store String instructions allow a program to perform arithmetic or logical opera­
tions on string characters (using AX for word strings and AL for byte strings). Repeated operations 
that include instructions other than string primitives must use the loop instructions rather than a repeat 
prefix. 

3.7.2.1 STRING MOVEMENT INSTRUCTIONS 

REP (Repeat While CX Not Zero) specifies a repeated operation of a string primitive. The REP prefix 
causes the hardware to automatically repeat the associated string primitive until CX = O. This form of 
iteration allows the CPU to process strings much faster than would be possible with a regular software 
loop. 

When the REP prefix accompanies a MOVS instruction, it operates as a memory-to-memory block 
transfer. To set up for this operation, the program must initialize CX and the register pairs DS:SI and 
ES:DI. CX specifies the number of bytes or words in the block. 

If DF=O, the program must point DS:SI to the first element of the source string and point ES:DI to 
the destination address for the first element. If DF= 1, the program must point these two register pairs 
to the last element of the source string and to the destination address for the last element, respectively. 

Example: REP MOVSW. The processor checks the value in CX for zero. If this value is not zero, 
the processor moves a word from the location pointed to by DS:SI to the location pointed 
to by ES:DI and increments SI and DI by two (if DF=O). Next, the processor decrements 
CX by one and returns to the beginning of the repeat cycle to check CX again. After CX 
decrements to zero, the processor executes the instruction that follows. 

MOVS (Move String) moves the string character pointed to by the combination of DS and SI to the 
location pointed to by the combination of ES and DI. This is the only memory-to-memory transfer 
supported by the instruction set of the base architecture. MOVSB operates on byte elements. The 
destination segment register cannot be overridden by a segment override prefix while the source segment 
register can be overridden. 

Example: MOVSW. Moves the contents of the memory byte pointed to by DS:SI to the location 
pointed to by ES:DI. 

3.7.2.2 OTHER STRING OPERATIONS 

CMPS (Compare Strings) subtracts the destination string element (ES:DI) from the source string 
element (DS:SI) and updates the flags AF, SF, PF, CF and OF. If the string elements are equal, 
ZF= 1; otherwise, ZF=O. If DF=O, the processor increments the memory pointers (SI and DI) for 
the two strings. The segment register used for the source address can be changed with a segment 
override prefix, while the destination segment register cannot be overridden. 

Example: CMPSB. Compares the source and destination string elements with each other and returns 
the result of the comparison to ZF. 
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seAS (Scan String) subtracts the destination string element at ES:DI from AX or AL and updates 
the flags AF, SF, ZF, PF, CF and OF. If the,values are equal, ZF= 1; otherwise, ZF=O. If DF=O, 
the processor increments the memory pointer (DI) for the string. The segment register used for the 
source address can be changed with a segment override prefix while the destination segment register 
cannot be overridden. . 

Example: SCASW. Compares the value in AX with the destination string element. 

REPE/REPZ (Repeat While ex Equal/Zero) and REPNE/REPNZ (Repeat While ex Not Equal/ 
Not Zero) are the prefixes that are used exclusively with the SCAS (ScanString) and CMPS (Compare 
String) primitives. 

The difference between these two types of prefix bytes is that REPE/REPZ terminates when ZF=O 
and REPNE/REPNZ terminates when ZF= 1. ZF does not require initialization before execution of 
a repeated string instruction. 

When these prefixes modify either the SCAS or CMPS primitives, the processor compares the value 
of the current string element with the value in AX for word elements or with the value in AL for byte 
elements. The resulting state of ZF can then limit the operation of the repeated operation as well as a 
zero value in CX. 

Example: REPE SCASB. Causes the processor to scan the string pointed to by ES:DI until it encoun­
ters a match with the byte value in AL or until CX decrements to zero. 

LODS (Load String) places the source string element at DS:SI into AX for word strings or into AL 
for byte strings. 

Example: LODSW. Loads AX with the value pointed to by DS:SI. 

3.8 ADDRESS MANIPULATION INSTRUCTIONS 

The set of address manipulation instructions provide a way to perform address calculations or to move 
to a new data segment or extra segment. 

LEA (Load Effective Address) transfers the offset of the source operand (rather than its value) to the 
destination operand. The source operand must be a memory operand, and the destination operand must 
be a 16-bit general register (AX, DX, BX, CX, BP, SP, SI, or DI). 

LEA does not affect any flags. This instruction is useful for initializing the registers before the execu­
tion of the string primitives or the XLAT instruction. 

Example: LEA BX EBCDIC_TABLE. Causes the processor to place the address of the starting location 
of the table labeled EBCDIC_TABLE into BX. 

LDS (Load Pointer Using DS) transfers a 32-bit pointer variable from the source operand to DS and 
the destination register. The source operand must be a memory operand, and the destination operand 
must be a 16-bit general register (AX, DX, BX, CX, BP, SP, SI or DI). DS receives the high-order 
segment word of the pointer. The destination register receives the low-order word, which points to a 
specific location within the segment. 
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Example: LDS SI, STRING_X. Loads DS with the word identifying the segment pointed to by 
STRING_X, and loads the offset of STRING_X into SI. Specifying SI as the destination 
operand is a convenient way to prepare for a string operation on a source string that is not 
in the current data segment. 

LES (Load Pointer Using ES) operates identically to LDS except that ES receives the offset word 
rather than DS. 

Example: LES DJ, DESTINATION_X. Loads ES with the word identifying the segment pointed to 
by DESTINATION_X, and loads the offset of DESTINATION_X into OI. This instruc­
tion provides a convenient way to select a destination for a string operation if the desired 
location is not in the current extra segment. 

3.9 FLAG CONTROL INSTRUCTIONS 

The flag control instructions provide a method of changing the state of bits in the flag register. 

3.9.1 Carry Flag Control Instructions 

The carry flag instructions are useful in conjunction with rotate-with-carry instructions RCL and RCR. 
They can initialize the carry flag, CF, to a known state before execution of a rotate that moves the 
carry bit into one end of the rotated operand. 

STC (Set Carry Flag) sets the carry flag (CF) to 1. 

Example: STC 

CLC (Clear Carry Flag) zeros the carry flag (CF). 

Example: CLC 

CMC (Complement Carry Flag) reverses the current status of the carry flag (CF). 

Example: CMC 

3.9.2 Direction Flag Control Instructions 

The direction flag control instructions are specifically included to set or clear the direction flag, OF, 
which controls the left-to-right or right-to-left direction of string processing. IF OF=O, the processor 
automatically increments the string memory pointers, SI and 01, after each execution of a string primi­
tive. If OF= 1, the processor decrements these pointer values. The initial state of OF is O. 

CLD (Clear Direction Flag) zeros OF, causing the string instructions to auto-increment SI and/or OI. 
CLO does not affect any other flags. 

Example: CLD 

STD (Set Direction Flag) sets DF to 1, causing the string instructions to auto-decrement SI and/or 
DI. STD does not affect any other flags. 

Example: STO 
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3.9.3 Flag Transfer Instructions 

Though specific instructions exist to alter CF and DF, there is no direct method of altering the other 
flags. The flag transfer instructions allow a program to alter the other flag bits with the bit manipula­
tion instructions after transferring these flags to the stack or the AH register. 

The PUSHF and POPF instructions are also useful for preserving the state of the flag register before 
executing a procedure. 

LAHF (Load AH from Flags) copies SF, ZF, AF, PF, and CF to AH bits 7, 6, 4,2, and 0, respectively 
(see figure 3-13). The contents of the remaining bits (5, 3, and 1) are undefined. The flags remain 
unaffected. This instruction can assist in converting 8080/8085 assembly language programs to run on 
the base architecture of the 8086, 8088, 80186, 80188, and 80286. 

Example: LAHF 

SAHF (Store AH into Flags) transfers bits 7, 6, 4, 2, and 0 from AH into SF, ZF, AF, PF, and CF, 
respectively (see figure 3-13). This instruction also provides 8080/8085 compatibility with the 8086, 
8088,80186,80188,and8028~ 

Example: SAHF 

PUSHF (Push Flags) decrements SP by two and then transfers all flags to the word at the top of stack 
pointed to by SP (see figure 3-14). The flags remain unaffected. This instruction enables a procedure 
to save the state of the flag register for later use. 

Example: PUSHF 

POPF (Pop Flags) transfers specific bits from the word at the top of stack into the low-order byte of 
the flag register (see figure 3-14). The processor then increments SP by two. 

Note that an application program in the protected virtual address mode may not alter 10PL (the I/O 
privilege level flag) unless the program is executing at privilege level O. A program may alter IF (the 
interrupt flag) only when executing at a level that is at least as privileged as 10PL. 

76543210 

ISFlzF8AF.PF.CFI 

REGISTER AH 

LAHF loada live Ilaga Irom the Ilag reglater Into reglater AH. SAHF ator .. th ... aam. live Ilaga Irom AH Into the Ilag reglat.r. The bit 
poailion 01 each Ilag la the aam. In AH aa It la In the Ilag reglater. The remalnlnll bite are Indeterminate. 

G30108 

Figure 3-13. LAHF and SAHF 
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STACK WORD 

PUSHF decrementl SP by 2 by tel (1 word) and coplel the contentl of the flag regllter to the top of Itack. POPF loadl the flag regllter 
with the contentl of the lalt word puahed onto the Itack. The bit pOlltlon of each flag II the lame In the Itack word al It II In the flag 
ragllter. Only programl executing at the hlghelt privilege level (level 0) may alter the 2-blt 10PL flag. Only programl executing at a 
level at lealt aa privileged aa that Indicated by 10PL may alter IF. 

G30108 

Figure 3·14. PUSHF and POPF 

Procedures may use this instruction to restore the flag status from a previous value. 

Example: POPF 

3.10 BINARY-CODED DECIMAL ARITHMETIC INSTRUCTIONS 

These instructions adjust the results of a previous arithmetic operation to produce a valid packed or 
unpacked decimal result. These instructions operate only on AL or AH registers. 

3.10.1 Packed BCD Adjustment Instructions 

DAA (Decimal Adjust) corrects the result of adding two valid packed decimal operands in AL. DAA 
must always follow the addition of two pairs of packed decimal numbers (one digit in each nibble) to 
obtain a pair of valid packed decimal digits as results. The carry flag will be set if carry was needed. 

Example: DAA 

DAS (Decimal Adjust for Subtraction) corrects the result of subtracting two valid packed decimal 
operands in AL. DAS must always follow the subtraction of one pair of packed decimal numbers (one 
digit in each nibble) from another to obtain a pair of valid packed decimal digits as results. The carry 
flag will be set if a borrow was needed. 

Example: DAS 

3.10.2 Unpacked BCD Adjustment Instructions 

AAA (ASCII Adjust for Addition) changes the contents of register AL to a valid unpacked decimal 
number, and zeros the top 4 bits. AAA must always follow the addition of two unpacked decimal 
operands in AL. The carry flag will be set and AH will be incremented if a carry was necessary. 

Example: AAA 
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AAS (ASCII Adjust for Subtraction) changes the contents of register AL to a valid unpacked decimal 
number, and zeros the top 4 bits. AAS must always follow the subtraction of one unpacked decimal 
operand from another in AL. The carry flag will be set and AH decremented if a borrow was necessary. 

Example: AAS 

AAM (ASCII Adjust for Multiplication) corrects the result of a multiplication of two valid unpacked 
decimal numbers. AAM must always follow the multiplication of two decimal numbers to produce a 
valid decimal result. The high order digit will be left in AH, the low order digit in AL. 

Example: AAM 

AAD (ASCII Adjust for Division) modifies the numerator in AH and AL to prepare for the division 
of two valid unpacked decimal operands so that the quotient produced by the division will be a valid 
unpacked decimal number. AH should contain the high-order digit and AL the low-order digit. This 
instruction will adjust the value and leave it in AL. AH will contain O. 

Example: AAD 

3.11 TRUSTED INSTRUCTIONS 

When operating in Protected Mode (Chapter 6 and following), the 80286 processor restricts the execu­
tion of trusted instructions according to the Current Privilege Level (CPL) and the current value of 
IOPL, the 2-bit I/O privilege flag. Only a program operating at the highest privilege level (level 0) 
may alter the value of 10PL. A program may execute trusted instructions only when executing at a 
level that is at least as privileged as that specified by 10PL. 

Trusted instructions control I/O operations, interprocessor communications in a multiprocessor system, 
interrupt enabling, and the HL T instruction. 

These protection considerations do not apply in the real address mode. 

3.11.1 Trusted and Privileged Restrictions on POPF and IRET 

POPF (POP Flags) and IRET (Interrupt Return) are not affected by 10PL unless they attempt to 
alter IF (flag register bit 9). To change IF, POPF must be part of a program that is executing at a 
privilege level greater than or equal to that specified by 10PL. Any attempt to change IF when CPL 
;::: 0 will be ignored (Le., the IF flag will be ignored). To change the 10PL field, CPL must be zero. 

3.11.2 Machine State Instructions 

These trusted instructions affect the machine state control interrupt response, the processor halt state, 
and the bus LOCK signal that regulates memory access in multiprocessor systems. 

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) alter bit 9 in the flag register. 
When IF=O, the processor responds only to internal interrupts and to non-maskable external inter­
rupts. When IF= 1, the processor responds to all interrupts. An interrupt service routine might use 
these instructions to avoid further interruption while it processes a previous interrupt request. As with 
the other flag bits, the processor clears IF during initialization. These instructions may be executed 
only if CPL ~ 10PL. A protection exception will occur if they are executed when CPL > 10PL. 

3-28 



BASIC INSTRUCTION SET 

Example: STI. Sets IF= I, which enables the processing of maskable external interrupts. 

Example: CLI. Sets IF=O to disable maskable interrupt processing. 

HLT (Halt) causes the processor to suspend processing operations pending an interrupt or a system 
reset. This trusted instruction provides an alternative to an endless software loop in situations where a 
program must wait for an interrupt. The return address saved after the interrupt will point to the 
instruction immediately following HLT. This instruction may be executed only when CPL = O. 

Example: HL T 

LOCK (Assert Bus Lock) is a i-byte prefix code that causes the processor to assert the bus LOCK 
signal during execution of the instruction that follows. LOCK does not affect any flags. LOCK may 
be used only when CPL :::; 10PL. A protection exception will occur if LOCK is used when CPL > 
10PL. 

3.11.3 Input and Output Instructions 

These trusted instructions provide access to the processor's I/O ports to transfer data to and from 
peripheral devices. In Protected Mode, these instructions may be executed only when CPL :::; 10PL. 

IN (Input from Port) transfers a byte or a word from an input port to AL or AX, If a program specifies 
AL with the IN instruction, the processor transfers 8 bits from the selected port to AL. Alternately, if 
a program specifies AX with the IN instruction, the processor transfers 16 bits from the port to AX. 

The program can specify the number of the port in two ways. Using an immediate byte constant, the 
program can specify 256 8-bit ports numbered 0 through 255 or 128 16-bit ports numbered 
0,2,4, ... ,252,254. Using the current value contained in DX, the program can specify 8-bit ports numbered 
o through 65,535, or 16-bit ports using even-numbered ports in the same range. 

Example: IN AL, 
BYTE_PORT_NUMBER. Transfers 8 bits to AL from the port identified by the immediate 
constant BYTE_PORT_NUMBER. 

OUT (Output to Port) transfers a byte or a word to an output port from AL or AX. The program can 
specify the number of the port using the same methods of the IN instruction. 

Example: OUT AX, DX. Transfers 16 bits from AX to the port identified by the Hi-bit number 
contained in DX, 

INS and OUTS (Input String and Output String) cause block input or output operations using a Repeat 
prefix. See Chapter 4 for more information on INS and OUTS. 

3.12 PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension provides an extension to the instruction set of the base architecture (e.g., 80287). 
The NPX extends the instruction set of the CPU-based architecture to support high-precision integer 
and floating-point calculations. This extended instruction set includes arithmetic, comparison, transcen­
dental, and data transfer instructions. The NPX also contains a set of useful constants to enhance the 
speed of numeric calculations. 
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A program contains instructions for the NPX in line with the instructions for the CPU. The system 
executes these instructions in the same order as they appear in the instruction stream. The NPX operates 
concurrently with the CPU to provide maximum throughput for numeric calculations. 

The software emulation of the NPX is transparent to application software but requires more time for 
execution. 

3.12.1 Processor Extension Synchronization Instructions 

Escape and wait instructions allow a processor extension such as the 80287 NPX to obtain instructions 
and data from the system bus and to wait for the NPX to return a result. 

ESC (Escape) identifies floating point numeric instructions and allows the 80286 to send the opcode 
to the NPX or to transfer a memory operand to the NPX. The 80287 NPX uses the Escape instructions 
to perform high-performance, high-precision floating point arithmetic that conforms to the IEEE float­
ing point standard 754. 

Example: ESC 6, ARRAY [SI]. The CPU sends the escape opcode 6 and the location of the array 
pointed to by SI to the NPX. 

WAIT (Wait) suspends program execution until the 80286 CPU detects a signal on the BUSY pin. In 
a configuration that includes a numeric processor extension, the NPX activates the BUSY pin to signal 
that it has completed its processing task and that the CPU may obtain the results. 

Example: WAIT 

3.12.2 Numeric Data Processor Instructions 

This section describes the categories of instructions available with Numeric Data Processor systems 
that include a Numeric Processor Extension or a software emulation of this processor extension. 

3.12.2.1 ARITHMETIC INSTRUCTIONS 

The extended instruction set includes not only the four arithmetic operations (add, subtract, multiply, 
and divide), but also subtract-reversed and divide-reversed instructions. The arithmetic functions include 
square root, modulus, absolute value, integer part, change sign, scale exponent, and extract exponent 
instructions. 

3.12.2.2 COMPARISON INSTRUCTIONS 

The comparison operations are the compare, examine, and test instructions. Special forms of the compare 
instruction can optimize algorithms by allowing comparisons of binary integers with real numbers in 
memory. 

3.12.2.3 TRANSCENDENTAL INSTRUCTIONS 

The instructions in this group perform the otherwise time-consuming calculations for all common 
trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, logarithmic, and exponential 
functions. The transcendental instructions include tangent, arctangent, 2 x-I, Y . 10gaX, and Y. loga 
(X + 1). 
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3.12.2.4 DATA TRANSFER INSTRUCTIONS 

The data transfer instructions move operands among the registers and between a register and memory. 
This group includes the load, store, and exchange instructions. 

3.12.2.5 CONSTANT INSTRUCTIONS 

Each of the constant instructions loads a commonly used constant into an NPX register. The values 
have a real precision of 64 bits and are accurate to approximately 19 decimal places. The constants 
loaded by these instructions include 0, I, Pi, log. 10, IOg2 e, loglo 2, and log 2 •. 
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CHAPTER 4 
EXTENDED INSTRUCTION SET 

The instructions described in this chapter extend the capabilities of the base architecture instruction 
set described in Chapter 3. These extensions consist of new instructions and variations of some instruc­
tions that are not strictly part of the base architecture (in other words, not included on the 8086 and 
8088). These instructions are also available on the 80186 and 80188. The instruction variations, described 
in Chapter 3, include the immediate forms of the PUSH and MUL instructions, PUSHA, POPA, and 
the privilege level restrictions on POPF. 

New instructions described in this chapter include the string input and output instructions (INS and 
OUTS), the ENTER procedure and LEAVE procedure instructions, and the check index BOUND 
instruction. 

4.1 BLOCK 1/0 INSTRUCTIONS 

REP, the Repeat prefix, modifies INS and OUTS (the string I/O instructions) to provide a means of 
transferring blocks of data between an I/O port and Memory. These block I/O instructions are string 
primitives. They simplify programming and increase the speed of data transfer by eliminating the need 
to use a separate LOOP instruction or an intermediate register to hold the data. 

INS and OUTS are trusted instructions. To use trusted instructions, a program must execute at a 
privilege level at least as privileged as that specified by the 2-bit IOPL flag (CPL ::::S IOPL). Any 
attempt by a less-privileged program to use a trusted instruction results in a protection exception. See 
Chapter 7 for information on protection concepts. 

One of two possible opcodes represents each string primitive depending on whether it operates on byte 
strings or word strings. After each transfer, the memory address in SI or DI is updated by 1 for byte 
values and by 2 for word values. The value in the DF field determines if SI or DI is to be auto incre­
mented (DF=O) or auto decremented (DF= 1). 

INS and OUTS use DX to specify I/O ports numbered 0 through 65,535 or 16-bit ports using only 
even port addresses in the same range. 

INS (Input String from Port) transfers a byte or a word string element from an input port to memory. 
If a program specifies INSB, the processor transfers 8 bits from the selected port to the memory 
location indicated by ES:DI. Alternately, if a program specifies INSW, the processor transfers 16 bits 
from the port to the memory location indicated by ES:DI. The destination segment register choice 
(ES) cannot be changed for the INS instruction. 

Combined with the REP prefix, INS moves a block of information from an input port to a series of 
consecutive memory locations. 

Example: REP INSB. The processor repeatedly transfers 8 bits to the memory location indicated by 
ES:DI from the port selected by the 16-bit port number contained in DX. Following each 
byte transfer, the CPU decrements CX. The instruction terminates the block transfer when 
CX=O. After decrementing CX, the processor increments DI by one if DF=O. It decre­
ments DI by one if DF= 1. 
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OUTS (Output String to Port) transfers a byte or a word string element to an output port from memory. 
Combined with the REP prefix, OUTS moves a block of information from a series of consecutive 
memory locations indicated by DS:SI to an output port. 

Example: REP OUTS WSTRING. Assuming that the program declares WSTRING to be a word­
length string element, the assembler uses the 16-bit form of the OUTS instruction to create 
the object code for the program. The processor repeatedly transfers words from the memory 
locations indicated by DI to the output port selected by the 16-bit port number in DX. 

Following each word transfer, the CPU decrements CX. The instruction terminates the block transfer 
when CX=O. After decrementing CX, the processor increments SI by two to point to the next word in 
memory if DF=O; it decrements SI by two if DF= 1. 

4.2 HIGH-LEVEL INSTRUCTIONS 

The instructions in this section provide machine-language functions normally found only in high-level 
languages. These instructions include ENTER and LEA VE, which simplify the programming of proce­
dures, and BOUND, which provides a simple method of testing an index against its predefined range. 

ENTER (Enter Procedure) creates the stack frame required by most block-structured high-level 
languages. A LEAVE instruction at the end of a procedure complements an ENTER at the beginning 
of the procedure to simplify stack management and to control access to variables for nested procedures. 

Example: ENTER 2048,3. Allocates 2048 bytes of dynamic storage on the stack and sets up pointers 
to two previous stack frames in the stack frame that ENTER creates for this procedure. 

The ENTER instruction includes two parameters. The first parameter specifies the number of bytes 
of dynamic storage to be allocated on the stack for the routine being entered. The second parameter 
corresponds to the lexical nesting level (0-31) of the routine. (Note that the lexical level has no relation­
ship to either the protection privilege levels or to the I/O privilege level.) 

The specified lexical level determines how many sets of stack frame pointers the CPU copies into the 
new stack frame from the preceding frame. This list of stack frame pointers is sometimes called the 
"display." The first word of the display is a pointer to the last stack frame. This pointer enables a 
LEAVE instruction to reverse the action of the previous ENTER instruction by effectively discarding 
the last stack frame. 

After ENTER creates the new display for a procedure, it allocates the dynamic storage space for that 
procedure by decrementing SP by the number of bytes specified in the first parameter. This new value 
of SP serves as a base for all PUSH and POP operations within that procedure. 

To enable a procedure to address its display, ENTER leaves BP pointing to the beginning of the new 
stack frame. Data manipulation instructions that specify BP as a base register implicitly address locations 
within the stack segment instead of the data segment. Two forms of the ENTER instruction exist: 
nested and non-nested. If the lexical level is 0, the non-nested form is used. Since the second operand 
is 0, ENTER pushes BP, copies SP to BP and then subtracts the first operand from SP. The nested 
form of ENTER occurs when the second parameter (lexical level) is not O. Figure 4-1 gives the formal 
definition of ENTER. 
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The Formal DefinItIon Of The ENTER InstructIon For All Cases Is GIven By The FollowIng LIstIng. LEVEL Denote. The Value Of The 
Second Operand. 

Pu.h BP 
Set a temporary value FRAME....PTR : ~ SP 
If LEVEL> 0 then 

Repeat (LEVEL - 1) tImes: 
BP:~ BP-2 
Push the word poInted to by BP 

End repeat 
Push FRAME_PTR 

End If 
BP:~ FRAME....PTR 
SP : ~ SP - first operand. 

Figure 4-1. Formal Definition of the ENTER Instruction 

The main procedure (with other procedures nested within) operates at the highest lexical level, level 1. 
The first procedure it calls operates at the next deeper lexical level, level 2. A level 2 procedure can 
access the variables of the main program which are at fixed locations specified by the compiler. In the 
case of levell, ENTER allocates only the requested dynamic storage on the stack because there is no 
previous display to copy. 

A program operating at a higher lexical level calling a program at a lower lexical level requires that 
the called procedure should have access to the variables of the calling program. ENTER provides this 
access through a display that provides addressability to the calling program's stack frame. 

A procedure calling another procedure at the same lexical level implies that they are parallel proce­
dures and that the called procedure should not have access to the variables of the calling procedure. 
In this case, ENTER copies only that portion of the display from the calling procedure which refers to 
previously nested procedures operating at higher lexical levels. The new stack frame does not include 
the pointer for addressing the calling procedure's stack frame. 

ENTER treats a reentrant procedure as a procedure calling another procedure at the same lexical 
level. In this case, each succeeding iteration of the reentrant procedure can address only its own varia­
bles and the variables of the calling procedures at higher lexical levels. A reentrant procedure can 
always address its own variables; it does not require pointers to the stack frames of previous iterations. 

By copying only the stack frame pointers of procedures at higher lexical levels, ENTER makes sure 
that procedures access only those variables of higher lexical levels, not those at parallel lexical levels 
(see figure 4-2). Figures 4-2a through 4-2d demonstrate the actions of the ENTER instruction if the 
modules shown in figure 4-1 were to call one another in alphabetic order. 

Block-structured high-level languages can use the lexical levels defined by ENTER to control access 
to the variables of previously nested procedures. For example, if PROCEDURE A calls 
PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C will have access to 
the variables of MAIN and PROCEDURE A, but not PROCEDURE B because they operate at the 
same lexical level. Following is the complete definition of the variable access for figure 4-2. 

1. MAIN PROGRAM has variables at fixed locations. 

2. PROCEDURE A can access only the fixed variables of MAIN. 

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN. PROCEDURE 
B cannot access the variables of PROCEDURE C or PROCEDURE D. 
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MAIN PROGRAM (LEXICAL LEVEL 1) 

PROCEDURE A (LEXICAL LEVEL 2) 

PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

I PROCEDURE D (LEXICAL LEVEL 4) I 

Figure 4-2. Variable Access in Nested Procedures 
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Figure 4-2a. Stack Frame for MAIN at Level 1 
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4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN. PROCEDURE 
C cannot access the variables of PROCEDURE B or PROCEDURE D. 

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, and MAIN. 
PROCEDURE D cannot access the variables of PROCEDURE B. 

ENTER at the beginning of the MAIN PROGRAM creates dynamic storage space for MAIN but 
copies no pointers. The first and only word in the display points to itself because there is no previous 
value for LEAVE to return to BP. See figure 4-2a. 

After MAIN calls PROCEDURE A, ENTER creates a new display for PROCEDURE A with the 
first word pointing to the previous value of BP (BPM for LEAVE to return to the MAIN stack frame) 
and the second word pointing to the current value of BP. Procedure A can access variables in MAIN 
since MAIN is at level 1. Therefore the base for the dynamic storage for MAIN is at [BP-2]. All 
dynamic variables for MAIN will be at a fixed offset from this value. See figure 4-2b. 
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BOUND (Detect Value Out of Range) verifies that the signed value contained in the specified register 
lies within specified limits. An interrupt (INT 5) occurs if the value contained in the register is less 
than the lower bound or greater than the upper bound. 

The BOUND instruction includes two operands. The first operand specifies the register being tested. 
The second operand contains the effective relative address of the two signed BOUND limit values. The 
BOUND instruction assumes that it can obtain the upper limit from the memory word that immedi­
ately follows the lower limit. These limit values cannot be register operands; if they are, an invalid 
opcode exception occurs. 

BOUND is useful for checking array bounds before using a new index value to access an element 
within the array. BOUND provides a simple way to check the value of an index register before the 
program overwrites information in a location beyond the limit of the array. 

The two-word block of memory that specifies the lower and upper limits of an array might typically 
reside just before the array itself. This makes the array bounds accessible at a constant offset of - 4 
from the beginning of the array. Because the address of the array will already be present in a register, 
this practice avoids extra calculations to obtain the effective address of the array bounds. 

Example: BOUND BX,ARRA Y -4. Compares the value in BX with the lower limit at address 
ARRAY-4 and the upper limit at address ARRAY-2. If the signed value in BX is less 
than the lower bound or greater than the upper bound, the interrupt for this instruction 
(INT 5) occurs. Otherwise, this instruction has no effect. 
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Figure 4-2b. Stack Frame for Procedure A 
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Figure 4-2d. Stack Frame for Procedure C at Level 3 Called from B 

After PROCEDURE A calls PROCEDURE B, ENTER creates a new display for PROCEDURE B 
with the first word pointing to the previous value of BP, the second word pointing to the value of BP 
for MAIN, and the third word pointing to the value of BP for A and the last word pointing to the 
current BP. B can access variables in A and MAIN by fetching from the display the base addresses of 
the respective dynamic storage areas. See figure 4-2c. 

After PROCEDURE B calls PROCEDURE C, ENTER creates a new display for PROCEDURE C 
with the first word pointing to the previous value of BP, the second word pointing to the value of BP 
for MAIN, and the third word pointing to the BP value for A and the third word pointing to the current 
value of BP. Because PROCEDURE B and PROCEDURE C have the same lexical level, PROCE­
DURE C is not allowed access to variables in B and therefore does not receive a pointer to the begin­
ning of PROCEDURE B's stack frame. See figure 4-2d. 

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The LEAVE 
instruction does not include any operands. 

Example: LEAVE. First, LEAVE copies BP to SP to release all stack space allocated to the proce­
dure by the most recent ENTER instruction. Next, LEAVE pops the old value of BP from 
the stack. A subsequent RET instruction can then remove any arguments that were pushed 
on the stack by the calling program for use by the called procedure. 
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CHAPTER 5 
REAL ADDRESS MODE 

The 80286 can be operated in either of two modes according to the status of the Protection Enabled 
bit of the MSW status register. In contrast to the "modes" and "mode bits" of some processors, however, 
the 80286 modes do not represent a radical transition between conflicting architectures. Instead, the 
setting of the Protection Enabled bit simply determines whether certain advanced features, in addition 
to the baseline architecture of the 80286, are to be made available to system designers and 
programmers. 

If the Protection Enabled (PE) bit is set by the programmer, the processor changes into Protected 
Virtual Address Mode. In this mode of operation, memory addressing is performed in terms of virtual 
addresses, with on-chip mapping mechanisms performing the virtual-ta-physical translation. Only in 
this mode can the system designer make use of the advanced architectural features of the 80286: 
virtual memory support, system-wide protection, and built-in multitasking mechanisms are among the 
new features provided in this mode of operation. Refer to Part II of this book (Chapters 6 through II) 
for details on Protected Mode operation. 

Initially, upon system reset, the processor starts up in Real Address Mode. In this mode of operation, 
all memory addressing is performed in terms of real physical addresses. In effect, the architecture of 
the 80286 in this mode is identical to that of the 8086 and other processors in the 8086 family. The 
principal features of this baseline architecture have already been discussed throughout Part I (Chapters 
2 through 4) of this book. This chapter discusses certain additional topics-addressing, interrupt 
handling, and system initialization-that complete the system programmer's view of the 80286 in Real 
Address Mode. 

5.1 ADDRESSING AND SEGMENTATION 

Like other processors in the 8086 family, the 80286 provides a one-megabyte memory space (220 bytes) 
when operated in Real Address Mode. Physical addresses are the 20-bit values that uniquely identify 
each byte location in this address space. Physical addresses, therefore, may range from 0 through 
FFFFFH. Address bits A20-A23 may not always be zero in Real Address Mode. A20-A23 should not 
be used by the system while the 80286 is operating in Real Address Mode. 

An address is specified by a 32-bit pointer containing two components: (1) a 16-bit effective address 
offset that determines the displacement, in bytes, of a particular location within a segment; and (2) a 
16-bit segment selector component that determines the starting address of the segment. Both compa­
nents of an address may be referenced explicitly by an instruction (such as JMP, LES, LDS, or CALL); 
more often, however, the segment selector is simply the contents of a segment register. 

The interpretation of the first component, the effective address offset, is straight-forward. Segments 
are at most 64K (216) bytes in length, so an unsigned 16-bit quantity is sufficient to address any arbitrary 
byte location with a segment. The lowest-addressed byte within a segment has an offset of 0, and the 
highest-addressed byte has an offset of FFFFH. Data operands must be completely contained within a 
segment and must be contiguous. (These rules apply in both modes.) 

A segment selector is the second component of a logical address. This 16-bit quantity specifies the 
starting address of a segment within a physical address space of 220 bytes. 
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Whenever the 80286 accesses memory in Real Address Mode, it generates a 20-bit physical address 
from a segment selector and offset value. The segment selector value is left-shifted four bit positions 
to form the segment base address. The offset is extended with 4 high order zeroes and added to the 
base to form the physical address (see figure 5-1). 

Therefore, every segment is required to start at a byte address that is evenly divisible by 16; thus, each 
segment is positioned at a 20-bit physical address whose least significant four bits are zeroes. This 
arrangement allows the 80286 to interpret a segment selector as the high-order 16 bits of a 20-bit 
segment base address. 

No limit or access checks are performed by the 80286 in the Real Address Mode. All segments are 
readable, writable, executable, and have a limit of OFFFFH (65,535 bytes). To save physical memory, 
you can use unused portions of a segment as another segment by overlapping the two (see figure 5-2). 
The Intel 8086 software development tools support this feature via the segment override and group 
operators. However, programs that access segment B from segment A become incompatible in the 
protected virtual address mode. 

16 BIT SEGMENT SELECTOR 

15 o 

G30108 

Figure 5-1a. Forming the Segment Base Address 

SEGMENT BASE 

+ 

OFFSET 

19 15 o 

PHYSICAL ADDRESS 

19 o 

G30108 

Figure 5-1b. Forming the 2o-bit Physical Address in the Real Address Mode 
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Figure 5-2. Overlapping Segments to Save Physical Memory 

5.2 INTERRUPT HANDLING 

G30108 

Program interrupts may be generated in either of two distinct ways. An internal interrupt is caused 
directly by the currently executing program. The execution of a particular instruction results in the 
occurrence of an interrupt, whether intentionally (e.g., an INT n instruction) or as an unanticipated 
exception (e.g., invalid opcode). On the other hand, an external interrupt occurs asynchronously as the 
result of an event external to the processor, and bears no necessary relationship with the currently 
executing program. The INTR and NMI pins of the 80286 provide the means by which external 
hardware signals the occurrence of such events. 

5.2.1 Interrupt Vector Table 

Whatever its origin, whether internal or external, an interrupt demands immediate attention from an 
associated service routine. Control must be transferred, at least for the moment, from the currently 
executing program to the appropriate interrupt service routine. By means of interrupt vectors, the 
80286 handles such control transfers uniformly for both kinds of interrupts. 

An interrupt vector is an unsigned integer in the range of 0-255; every interrupt is assigned such a 
vector. In some cases, the assignment is predetermined and fixed: for example, an external NMI inter­
rupt is invariably associated with vector 2, while an internal divide exception is always associated with 
vector O. In most cases, however, the association of an interrupt and a vector is established dynami­
cally. An external INTR interrupt, for example, supplies a vector in response to an interrupt acknowl­
edge bus cycle, while the INT n instruction supplies a vector incorporated within the instruction itself. 
The vector is shifted two places left to form a byte address into the table (see figure 5-3). 

In any case, the 80286 uses the interrupt vector as an index into a table in order to determine the 
address of the corresponding interrupt service routine. For Real Address Mode, this table is known as 
the Interrupt Vector Table. Its format is illustrated in figure 5-3. 
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Figure 5-3. Interrupt Vector Table for Real Address Mode 

Table 5-1. Interrupt Processing Order 

Order Interrupt 

1. Instruction exception 
2. Single step 
3. NMI 
4. Processor extension segment overrun 
5. INTR 

The Interrupt Vector Table consists of as many as 256 consecutive entries, each four bytes long. Each 
entry defines the address of a service routine to be associated with the correspondingly numbered 
interrupt vector code. Within each entry, an address is specified by a full 32-bit pointer that consists 
of a 16-bit offset and a l6-bit segment selector. Interrupts 0-31 are reserved by Intel. 

In Real Address Mode, the interrupt table can be accessed directly at physical memory location 
o through 1023. In the protected virtual address mode, however, the interrupt vector table has no fixed 
physical address and cannot be directly accessed. Therefore, Real Address mode programs that directly 
manipulate the interrupt vector table will not work in the protected virtual address mode. 

5.2.1.1 INTERRUPT PRIORITIES 

When simultaneous interrupt requests occur, they are processed in a fixed order as shown in table 5-1. 
Interrupt processing involves saving the flags, the return address, and setting CS:IP to point at the first 
instruction of the interrupt handler. If other interrupts remain enabled, they are processed before the 
first instruction of the current interrupt handler is executed. The last interrupt processed is therefore 
the first one serviced. 
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5.2.2 Interrupt Procedures 

When an interrupt occurs in Real Address Mode, the 8086 performs the following sequence of steps. 
First, the FLAGS register, as well as the old values of CS and IP, are pushed onto the stack (see 
figure 5-4). The IF and TF flag bits are cleared. The vector number is then used to read the address 
of the interrupt service routine from the interrupt table. Execution begins at this address. 

Thus, when control is passed to an interrupt service routine, the return linkage is placed on the stack, 
interrupts are disabled, and single-step trace (if in effect) is turned off. The IRET instruction at the 
end of the interrupt service routine will reverse these steps before transferring control to the program 
that was interrupted. 

An interrupt service routine may affect registers other than other IP, CS, and FLAGS. It is the respon­
sibility of an interrupt routine to save additional context information before proceeding so that the 
state of the machine can be restored upon completion of the interrupt service routine (PUSHA and 
POPA instructions are intended for these operations). Finally, execution of the IRET instruction pops 
the old IP, CS, and FLAGS from the stack and resumes the execution of the interrupted program. 

5.2.3 Reserved and Dedicated Interrupt Vectors 

In general, the system designer is free to use almost any interrupt vectors for any given purpose. Some 
of the lowest-numbered vectors, however, are reserved by Intel for dedicated functions; their use is 
specifically implied by certain types of exceptions. None of the first 32 vectors should be defined by 
the user; these vectors are either invoked by pre-defined exceptions or reserved by Intel for future 
expansion. Table 5-2 shows the dedicated and reserved vectors of the 80286 in Real Address Mode. 

The purpose and function of the dedicated interrupt vectors may be summarized as follows (the saved 
value of CS:IP will include aI/leading prefixes): 

Divide error (Interrupt 0). This exception will occur if the quotient is too large or an attempt is 
made to divide by zero using either the DIV or IDIV instruction. The saved CS:IP points at the 
first byte of the failing instruction. DX and AX are unchanged. 

INCREASING 1 ADDRESSES 

I' -I' 

OLD FLAGS 

OlDCS 

OLDIP ~ . 
<SS:SP) 

, -

G30108 

Figure 5-4. Stack Structure after Interrupt (Real Address Mode) 
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Table 5-2. Dedicated and Reserved Interrupt Vectors in Real Address Mode 

Interrupt Related Return Address 
Function Before Instruction Number Instructions 

Causing Exception? 

Divide error exception 0 DIV,IDIV Yes 

Single step interrupt 1 All N/A 

NMI interrupt 2 All N/A 

Breakpoint interrupt 3 INT N/A 

INTO detected overflow exception 4 INTO No 

BOUND range exceeded exception 5 BOUND Yes 

Invalid opcode exception 6 Any undefined opcode Yes 

Processor extension not available 7 ESC or WAIT Yes 
exception 

Interrupt table limit too small 8 LlDT Yes 

Processor extension segment overrun 9 ESC Yes 
interrupt 

Segment overrun exception 13 Any memory reference Yes 
instruction that attempts 
to reference 16-bit word 
at offset OFFFFH. 

Reserved 10-12,14,15 

Processor extension error Interrupt 16 ESC or WAIT N/A 

Reserved 17-31 

User defined 32-255 

N/A == Not Applicable 

Single-Step (Interrupt 1). This interrupt will occur after each instruction if the Trap Flag (TF) 
bit of the FLAGS register is set. Of course, TF is cleared upon entry to this or any other interrupt 
to prevent infinite recursion. The saved value of CS:IP will point to the next instruction. 

Nonmaskable (Interrupt 2). This interrupt will occur upon receipt of an external signal on the 
NMI pin. Typically, the nonmaskable interrupt is used to implement power-fail/auto-restart 
procedures. The saved value of CS:IP will point to the first byte of the interrupted instruction. 

Breakpoint (Interrupt 3). Execution of the one-byte breakpoint instruction causes this interrupt to 
occur. This instruction is useful for the implementation of software debuggers since it requires 
only one code byte and can be substituted for any instruction opcode byte. The saved value of 
CS:IP will point to the next instruction. 
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INTO Detected Overflow (Interrupt 4). Execution of the INTO conditional software interrupt 
instruction will cause this interrupt to occur if the overflow bit (OF) of the FLAGS register is set. 
The saved value of CS:IP will point to the next instruction. 

BOUND Range Exceeded (Interrupt 5). Execution of the BOUND instruction will cause this 
interrupt to occur if the specified array index is found to be invalid with respect to the given array 
bounds. The saved value of CS:IP will point to the first byte of the BOUND instruction. 

Invalid Opcode (Interrupt 6). This exception will occur if execution of an invalid opcode is 
attempted. (In Real Address Mode, most of the Protected Virtual Address Mode instructions are 
classified as invalid and should not be used). This interrupt can also occur if the effective address 
given by certain instructions, notably BOUND, LDS, LES, and LIDT, specifies a register rather 
than a memory location. The saved value of CS:IP will point to the first byte of the invalid 
instruction or opcode. 

• Processor Extension Not Available (Interrupt 7). Execution of the ESC instruction will cause this 
interrupt to occur if the status bits of the MSW indicate that processor extension functions are to 
be emulated in software. Refer to section 10.2.2 for more details. The saved value of CS:IP will 
point to the first byte of the ESC or the WAIT instruction. 

Interrupt Table Limit Too Small (Interrupt 8). This interrupt will occur if the limit of the inter­
rupt vector table was changed from 3FFH by the LIDT instruction and an interrupt whose vector 
is outside the limit occurs. The saved value of CS:IP will point to the first byte of the instruction 
that caused the interrupt or that was ready to execute before an external interrupt occurred. No 
error code is pushed. 

Processor Extension Segment Overrun Interrupt (Interrupt 9). The interrupt will occur if a 
processor extension memory operand does not fit in a segment. The saved CS:IP will point at the 
first byte of the instruction that caused the interrupt. 

Segment Overrun Exception (Interrupt 13). This interrupt will occur if a memory operand does 
not fit in a segment. In Real Mode this will occur only when a word operand begins at segment 
offset OFFFFH. The saved CS:IP will point at the first byte of the instruction that caused the 
interrupt. No error code is pushed. 

Processor Extension Error (Interrupt 16). This interrupt occurs after the numeric instruction that 
caused the error. It can only occur while executing a subsequent WAIT or ESC. The saved value 
of CS:IP will point to the first byte of the ESC or the WAIT instruction. The address of the failed 
numeric instruction is saved in the NPX. 

5.3 SYSTEM INITIALIZATION 

The 80286 provides an orderly way to start or restart an executing system. Upon receipt of the RESET 
signal, certain processor registers go into the determinate state shown in table 5-3. 

Table 5-3. Processor State after RESET 

Register Contents 

FLAGS 0002 (H) 
MSW FFFO (H) 
IP FFFO (H) 
CS FOOO (H) 
OS 0000 (H) 
SS 0000 (H) 
ES 0000 (H) 
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Since the CS register contains FOOO (thus specifying a code segment starting at physical address FOOOO) 
and the instruction pointer contains FFFO, the processor will execute its first instruction at physical 
address FFFFOH. The uppermost 16 bytes of physical memory are therefore reserved for initial startup 
logic. Ordinarily, this location contains an intersegment direct JMP instruction whose target is the 
actual beginning of a system initialization or restart program. 

Some of the steps normally performed by a system initialization routine are as follows: 

Allocate a stack. 

Load programs and data from secondary storage into memory. 

• Initialize external devices. 

• Enable interrupts (Le., set the IF bit of the FLAGS register). Set any other desired FLAGS bit 
as well. 

Set the appropriate MSW flags if a processor extension is present, or if processor extension functions 
are to be emulated by software. 

Set other registers, as appropriate, to the desired initial values. 

• Execute. (Ordinarily, this last step is performed as an intersegment JMP to the main system 
program.) 
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CHAPTER 6 
MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

In Protected Virtual Address Mode, the 80286 provides an advanced architecture that retains substan­
tial compatibility with the 8086 and other processors in the 8086 family. In many respects, the baseline 
architecture of the processor remains constant regardless of the mode of operation. Application 
programmers continue to use the same set of instructions, addressing modes, and data types in Protected 
Mode as in Real Address Mode. 

The major difference between the two modes of operation is thatthe Protected Mode provides system 
programmers with additional architectural features, supplementary to the baseline architecture, that 
can be used to good advantage in the design and implementation of advanced systems. Especially 
noteworthy are the mechanisms provided for memory management, protection, and multitasking. 

This chapter focuses on the memory management mechanisms of Protected Mode; the concept of a 
virtual address and the process of virtual-to-physical address translation are described in detail in this 
chapter. Subsequent chapters deal with other key aspects of Protected Mode operation. Chapter 7 
discusses the issue of protection and the integrated mechanisms that support a system-wide protection 
policy. Chapter 8 discusses the notion of a task and its central role in the 80286 architecture. Chapters 
9 through 11 discuss certain additional topics-interrupt handling, special instructions, system initial­
ization, etc.-that complete the system programmer's view of 80286 Protected Mode. 

6.1 MEMORY MANAGEMENT OVERVIEW 

A memory management scheme interposes a mapping operation between logical addresses (Le., addresses 
as they are viewed by programs) and physical addresses (Le., actual addresses in real memory). Since 
the logical address spaces are independent of physical memory (dynamically relocatable), the mapping 
(the assignment of real address space to virtual address space) is transparent to software. This allows 
the program development tools (for static systems) or the system software (for reprogrammable systems) 
to control the allocation of space in real memory without regard to the specifics of individual programs. 

Application programs may be translated and loaded independently since they deal strictly with virtual 
addresses. Any program can be relocated to use any available segments of physical memory. 

The 80286, when operated in Protected Mode, provides an efficient on-chip memory management 
architecture. Moreover, as described in Chapter 11, the 80286 also supports the implementation of 
virtual memory systems-that is, systems that dynamically swap chunks of code and data between real 
memory and secondary storage devices (e.g., a disk) independent of and transparent to the executing 
application programs. Thus, a program-visible address is more aptly termed a virtual address rather 
than a logical address since it may actually refer to a location not currently present in real memory. 

Memory management, then, consists of a mechanism for mapping the virtual addresses that are visible 
to the program onto the physical addresses of real memory. With the 80286, segmentation is the key 
to virtual memory addressing. Virtual memory is partitioned into a number of individual segments, 
which are the units of memory that are mapped into physical memory and swapped to and from 
secondary storage devices. Most of this chapter is devoted to a detailed discussion of the mapping and 
virtual memory mechanisms of the 80286. 

The concept of a task also plays a significant role in memory management since distinct memory 
mappings may be assigned to the different tasks in a multitask or multi-user environment. A complete 
discussion of tasks is deferred until Chapter 8, "Tasks and State Transition." For present purposes, it 
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is sufficient to think of a task as an ongoing process, or execution path, that is dedicated to a particular 
function. In a multi-user time-sharing environment, for example, the processing required to interact 
with a particular user may be considered as a single task, functionally independent of the other tasks 
(Le., users) in the system. 

6.2 VIRTUAL ADDRESSES 

In Protected Mode, application programs deal exclusively with virtual addresses; programs have no 
access whatsoever to the actual physical addresses generated by the processor. As discussed in Chapter 
2, an address is specified by a program in terms of two components: (1) a 16-bit effective address offset 
that determines the displacement, in bytes, of a location within a segment; and (2) a 16-bit segment 
selector that uniquely references a particular segment. Jointly, these two components constitute a 
complete 32-bit address (pointer data type), as shown in figure 6-1. 

These 32-bit virtual addresses are manipulated by programs in exactly the same way as the two­
component addresses of Real Address Mode. After a program loads the segment selector component 
of an address into a segment register, each subsequent reference to locations within the selected segment 
requires only a 16-bit offset be specified. Locality of reference will ordinarily insure that addresses can 
be specified very efficiently using only 16-bit offsets. 

An important difference between Real Address Mode and Protected Mode, however, concerns the 
actual format and information content of segment selectors. In Real Address Mode, as with the 8086 
and other processors in the 8086 family, a 16-bit selector is merely the upper bits of a segment's 
physical base address. By contrast, segment selectors in Protected Mode follow an entirely different 
format, as illustrated by figure 6-1. 

Two of the selector bits, designated as the RPL field in figure 6-1, are not actually involved in the 
selection and specification of segments; their use is discussed in Chapter 7. 

32·81T POINTER 

SEGMENT SELECTOR 

INDEX 

SELECTOR 

030108 

Figure 6-1. Format of the Segment Selector Component 
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Segments are the basic units of 80286 memory management. In contrast to schemes based on fixed­
size pages, segmentation allows for a very efficient implementation of software: variable-length segments 
can be tailored to the exact requirements of an application. Segmentation, moreover, is consistent with 
the way a programmer naturally deals with his virtual address space: programmers are encouraged to 
divide code and data into clearly defined modules and structures which are manipulated as consistent 
entities. This reduces (minimizes) the potential for virtual memory thrashing. Segmentation also elimi­
nates the restrictions on data structures that span a page (e.g., a word that crosses page boundaries). 

Each segment within an 80286 system is defined by an associated segment descriptor, which may 
appear in one or more descriptor tables. Its inclusion within a descriptor table represents the presence 
of its associated segment within the virtual address space defined by that table. Conversely, its ommis­
sion from a descriptor table means that the segment is absent from the corresponding address space. 
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Figure 6-6. Virtual-to-Physical Address Translation 

As shown previously in figure 6-3, an 8-byte segment descriptor encodes the following information 
about a particular segment: 

Size. This 16-bit field, comprising bytes 0 and 1 of a segment descriptor, specifies an unsigned 
integer as the size, in bytes (from 1 byte to 64K bytes), of the segment. 

Unlike segments in the 8086 (or the 80286 in Real Address Mode)-which are never explicitly 
limited to less than a full 64K bytes-Protected Mode segments are always assigned a specific 
size value. In conjunction with the protection features described in Chapter 7, this assigned size 
allows the enforcement of a very desirable and natural rule: inadvertent accesses to locations beyond 
a segment's actual boundaries are prohibited. 

Base. This 24-bit field, comprising bytes 2 through 4 of a segment descriptor, specifies the physi­
cal base address of the segment; it thus defines the actual location of the segment within the 16-
megabyte real memory space. The base may be any byte address within the 16-megabyte real 
memory space. 

Access. This 8-bit field comprises byte 5 of a segment descriptor. This access byte specifies a 
variety of additional information about a segment, particularly in regard to the protection features 
of the 80286. For example, code segments are distinguished from data segments; and certain special 
access restrictions (such as Execute-Only or Read-Only) may be defined for segments of each 
type. Access byte values of OOH or 80H will always denote "invalid." 

Figure 6-7 shows the access byte format for both code and data segment descriptors. Detailed discus­
sion of the protection related fields within an access byte (Conforming, Execute-Only, Descriptor Privi­
lege Level, Expand Down, and Write-Permitted), and their use in implementing protection policies, is 
deferred to Chapter 7. The .two fields Accessed and Present are used for virtual memory 
implementations. 
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Figure 6-3. Code or Data Segment Descriptor (S = 1) 
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are segment descriptors for all of the segments that comprise a system's global address space. Similarly, 
within a task's LOT, there must be a descriptor for each of the segments that are to be included in 
that task's local address space. 

Each local descriptor table is itself a special system segment, recognizable as such by the 80286 archi­
tecture and described by a specifi<; type of segment descriptor (see figure 6-4). Because there is only a 
single GOT segment, it is not defined by a segment descriptor. Its base and size information is maintained 
in a dedicated register, GOTR, as described below (section 6.6.2). 

Similarly, there is another dedicated register within the 80286, LOTR, that records the base and size 
of the current LOT segment (Le., the LOT associated with the currently executing task). The LOTR 
register state, however, is volatile: its contents are automatically altered whenever a task switch is made 
from one task to another. An alternate specification independent of changeable register contents must 
therefore exist for each LOT in the system. This independent specification is accomplished by means 
of special system segment descriptors known as descriptor table descriptors or LOT descriptors. 

Figure 6-4 shows the format of a descriptor' table descriptor. (Note that it is distinguished from an 
ordinary segment descriptor by the contents of certain bits in the access byte.) This special type of 
descriptor is used to specify the physical base address and size of a local descriptor table that defines 
the virtual address space and address mapping for an individual user or task (figure 6-5). 

Each LOT segment in a system must lie within that system's global address space. Thus, all of the 
descriptor table descriptors must be included among the entries in the global descriptor table (the 
GOT) of a system. In fact, these special descriptors may appear only in the GOT. Reference to an 
LOT descriptor within an LOT will cause a protection violation. Even though they are in the global 
address space available to all tasks, the descriptor table descriptors are protected from corruption within 
the GOT since they are special system segments and can only be accessed for loading into the LOTR 
register. 
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Figure 6-4. System Segment Descriptor or Gate Descriptor (S = 0) 
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The translation of a full 32-bit virtual address pointer into a real 24-bit physical address is shown by 
figure 6-6. When the segment's base address is determined as a result of the mapping process, the 
offset value is added to the result to obtain the physical address. 

The actual mapping is performed on the selector component of the virtual address. The l6-bit segment 
selector is mapped to a 24-bit segment base address via a segment descriptor maintained in one of the 
descriptor tables. 

The TI bit in the segment selector (see figure 6-1) determines which of two descriptor tables, either 
the GDT or the current LDT, is to be chosen for memory mapping. In either case, using the GDTR or 
LDTR register, the processor can readily determine the physical base address of the memory-resident 
table. 

The INDEX field in the segment selector specifies a particular descriptor entry within the chosen 
table. The processor simply multiplies this index value by 8 (the length of a descriptor), and adds the 
result to the base address of the descriptor table in order to access the appropriate segment descriptor 
in the table. 

Finally, the segment descriptor contains the physical base address of the target segment, as well as size 
(limit) and access information. The processor sums the 24-bit segment base and the specified 16-bit 
offset to generate the resulting 24-bit physical address. 
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The remaining 14 bits of the selector component uniquely designate a particular segment. The virtual 
address space of a program, therefore, may encompass as many as 16,384 (214) distinct segments. 
Segments themselves are of variable size, ranging from as small as a single byte to as large as 64K 
(216) bytes. Thus, a program's virtual address space may contain, altogether, up to a full gigabyte (230 
= 214 X 216) of individually addressable byte locations. 

The entirety of a program's virtual address space is further subdivided into two separate halves, as 
distinguished by the TI ("table indicator") bit in the virtual address. These two halves are the global 
address space and the local address space. 

The global address space is used for system-wide data and procedures including operating system 
software, library routines, runt~me language support and other commonly shared system services. (To 
application programs, the operating system appears to be a set of service routines that are accessible 
to all tasks.) Global space is shared by all tasks to avoid unnecessary replication of system service 
routines and to facilitate shared data and interrupt handling. Global address space is defined by addresses 
with a zero in the TI bit position; it is identically mapped for all tasks in the system. 

The other half of the virtual address space--<:omprising those addresses with the TI bit set-is separately 
mapped for each task in the system. Because such an address space is local to the task for which it is 
defined, it is referred to as a local address space. In general, code and data segments within a task's 
local address space are private to that particular task or user. Figure 6-2 illustrates the task isolation 
made possible by partitioning the virtual address spaces into local and global regions. 

TASK 1 VIRTUAL ADDRESS SPACE 

TASK 3 VIRTUAL ADDRESS SPACE TASK 2 VIRTUAL ADDRESS SPACE 

630108 

Figure 6-2. Address Spaces and Task Isolation 
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Within each of the two regions addressable by a program-either the global address space or a partic­
ular local address space-as many as 8,192 (213) distinct segments may be defined. The INDEX field 
of the segment selector allows for a unique specification of each of these segments. This 13-bit quantity 
acts. as an index into a memory-resident table, called a descriptor table, that records the mapping 
between segment address and the physical locations allocated to each distinct segment. (These descrip­
tor tables, and their role in virtual-to-physical address translation, are described in the sections that 
follow.) 

In summary, a Protected Mode virtual address is a 32-bit pointer to a particular byte location within a 
one-gigabyte virtual address space. Each such pointer consists of a 16-bit selector component and a 
16-bit offset component. The selector component, in turn, comprises a 13-bit table index, a I-bit table 
indicator (local versus global), and a 2-bit RPL field; all but this last field serve to select a particular 
segment from among the 16K segments in a task's virtual address space. The offset component of a 
full pointer is an unsigned 16-bit integer that specifies the desired byte location within the selected 
segment. 

6.3 DESCRIPTOR TABLES 

A descriptor table is a memory-resident table either defined by program development tools in a static 
system or controlled by operating system software in systems that are reprogrammable. The descriptor 
table contents govern the interpretation of virtual addresses. Whenever the 80286 decodes a virtual 
address, translating a full 32-bit pointer into a corresponding 24-bit physical address, it implicitly refer­
ences one of these tables. 

Within a Protected Mode system, there are ordinarily several descriptor tables resident in memory. 
One of these is the global descriptor table (GDT); this table provides a complete description of the 
global address space. In addition, there may be one or more local descriptor tables (LDTs), each 
describing the local address space of one or more tasks. 

For each task in the system, a pair of descriptor tables-consisting of the GDT (shared by all tasks) 
and a particular LDT (private to the task or to a group of closely related tasks)-provides a complete 
description of that task's virtual address space. The protection mechanism described in Chapter 7, 
"Protection," ensures that a task is granted access only to its own virtual address space. In the simplest 
of system configurations, tasks can reside entirely within the GDT without the use of local descriptor 
tables. This will simplify system software by only requiring maintenance of one table (the GDT) at the 
expense of no isolation between tasks. The point is: the 80286 memory management scheme is flexible 
enough to accommodate a variety of implementations and does not require use of all possible facilities 
when implementing a system. 

The descriptor tables consist of a sequence of 8-byte entries called descriptors. A descriptor table may 
contain from 1 to 8192 entries. 

Within a descriptor table, two main classes of descriptors are recognized by the 80286 architecture. 
The most important of these, from the standpoint of memory management, are called segment descrip­
tors; these determine the set of segments that are included within a given address space. The other 
class are special-purpose control descriptors-such as call gates and task descriptors-to implement 
protection (described in succeeding chapters) and special system data segments. 

Figure 6-3 shows the format of a segment descriptor. Note that it provides information about the 
physical-memory base address and size of a segment, as well as certain access information. If a partic­
ular segment is to be included within a virtual address space, then a segment descriptor that describes 
that segment must be included within the appropriate descriptor table. Thus, within the GDT, there 
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1.-_________ PRESENT (l=ye8) 

DATA OR STACK SEGMENT 
MSB LSB 

ACCESSED (1 = yes) 

WRITEABLE (1 =yes) 

'----- EXPAND DOWN (1 = down) 

'------ EXECUTABLE (O=no lor data) 

'------- (indicates segment descriptor) 

1.-_______ DESCRIPTOR PRIVILEGE LEVEL 

'--_________ PRESENT (l=yes) 

Figure 6-7. Segment Descriptor Access Bytes 

6.6 MEMORY MANAGEMENT REGISTERS 

G30108 

The Protected Virtual Address Mode features of the 80286 operate at high performance due to exten­
sions to the basic 8086 register set. Figure 6-8 illustrates that portion of the extended register structure 
that pertains to memory management. (For a complete summary of all Protected Mode registers, refer 
to section 10.1). 

6.6.1 Segment Address Translation Registers 

Figure 6-8 shows the segment registers CS,DS,ES, and SS. In contrast to their usual representation, 
however, these registers are now depicted as 64-bit registers, each with "visible" and "hidden" 
components. 

The visible portions of these segment address translation registers are manipulated by programs exactly 
as if they were simply the 16-bit segment registers of Real Address Mode. By loading a segment selec­
tor into one of these registers, the program makes the associated segment one of its four currently 
addressable segments. 
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Figure 6·8_ Memory Management Registers 

The operations that load these registers-or, more exactly, those that load the visible portion of these 
registers-are normal program instructions. These instructions may be divided into two categories: 

1. Direct segment-register load instructions. These instructions (such as LDS, LES, MOV, POP, 
etc.) can explicitly reference the SS, DS, or ES segment registers as the destination operand. 

2. Implied segment-register load instructions. These instructions (such as intersegment CALL and 
JMP) implicitly reference the CS code segment register; as a result of these operations, the contents 
of CS are altered_ 

Using these instructions, a program loads the visible part of the segment register with a16-bit selector 
(i.e., the high-order word of a virtual address pointer). Whenever this is done, the processor automati­
cally uses the s!!lector to reference the appropriate descriptor and loads the 48·bit hidden descriptor 
cache for that segment register. 

The correspondence between selectors and descriptors has already been described. Remember that the 
selector's TI bit indicates one of the two descriptor tables, either the LDT or the GDT. Within the 
indicated table, a particular entry is chosen by the selector's 13-bit INDEX field. This index, scaled 
by a factor of 8, represents the relative displacement of the chosen table entry (a descriptor). 
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Thus, so long as a particular selector value is valid (Le., it points to a valid segment descriptor within 
the bounds of the descriptor table), it can be readily associated with an 8-byte descriptor. When a 
selector value is loaded into the visible part of a segment register, the 80286 automatically loads 6 
bytes of the associated descriptor into the hidden part of the register. These 6 bytes, therefore, contain 
the size, base, and access type of the selected segment. Figure 6-9 illustrates this transparent process 
of descriptor loading. 

In effect, the hidden descriptor fields of the segment registers function as the memory management 
cache of the 80286. All the information required to address the current working set of segments-that 
is, the base address, size, and access rights of the currently addressable segments-is stored in this 
memory cache. Unlike the probabilistic caches of other architectures, however, the 80286 cache is 
completely deterministic: the caching of descriptors is explicitly controlled by the program. 

Most memory references do not require the translation of a full 32-bit virtual address, or long pointer. 
Operands that are located within one of the currently addressable segments, as determined by the four 
segment registers, can be referenced very efficiently by means of a short pointer, which is simply a 
16-bit offset. 

In fact, most 80286 instructions reference memory locations in precisely this way, specifying only a 
l6-bit offset with respect to one of the currently addressable segments. The choice of segments (CS, 
DS, ES, or SS) is either implicit within the instruction itself, or explicitly specified by means of a 
segment-override prefix (as described in Chapter 2). 
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Figure 6-9. Descriptor Loading 
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Thus, in most cases, virtual-to-physical address translation is actually performed in two separate steps. 
First, when a program loads a new value into a segment register, the processor immediately performs 
a mapping operation; the physical base address of the selected segment (as well as certain additional 
information) is automatically loaded into the hidden portion of the register. The internal cache registers 
(virtual address translation hardware) are therefore dynamically shared among the 16K different 
segments potentially addressable within the user's virtual address space. No software overhead (either 
system or application) is required to perform this operation. 

Subsequently, as the program utilizes a short pointer to reference a location within a segment, the 
processor generates a 24-bit physical address simply by adding the specified offset value to the previ­
ously cached segment base address. By encouraging the use of short pointers in this way, rather than 
requiring a full 32-bit virtual address for every memory reference, the 80286 provides a very efficient 
on-chip mechanism for address translation, with minimum overhead for references to memory-based 
tables or the need for external address-translation devices. 

6.6.2 System Address Registers 

The Global Descriptor Table Register (GDTR) is a dedicated 40·bit (5 byte) register used to record 
the base and size of a system's global descriptor table (GDT). Thus, two of these bytes define the size 
of the GDT, and three bytes define its base address. 

In figure 6·8, the contents of the GDTR are referred to as a "hidden descriptor." The term "descrip· 
tor" here emphasizes the analogy with the segment descriptors ordinarily found in descriptor tables. 
Just as these descriptors specify the base and size (limit) of ordinary segments, the GDTR register 
specifies these same parameters for that segment of memory serving as the system GDT. The limit 
prevents accesses to descriptors in the GDT from accessing beyond the end of the GDT and thus 
provides address space isolation at the system level as well as at the task level. 

The register contents are "hidden" only in the sense that they are not accessible by means of ordinary 
instructions. Instead, the dedicated protected instructions LGDT and SGDT are reserved for loading 
and storing, respectively, the contents of the GDTR at Protected Mode initialization (refer to section 
10.2 for details). Subsequent alteration of the GDT base and size values is not recommended but is a 
system option at the most privileged level of software (see section 7.3 for a discussion of privilege 
levels). 

The Local Descriptor Table Register (LDTR) is a dedicated 40-bit register that contains, at any given 
moment, the base and size of the local descriptor table (LDT) associated with the currently executing 
task. Unlike GDTR, the LDTR register contains both a "visible" and a "hidden" component. Only the 
visible component is accessible, while the hidden component remains truly inaccessible even to dedicated 
instructions. 

The visible component of the LDTR is a 16·bit "selector" field. The format of these 16 bits corresponds 
exactly to that of a segment selector in a virtual address pointer. Thus, it contains a 13·bit INDEX 
field, a l·bit TI field, and a 2·bit RPL field. The TI "table indicator" bit must be zero, indicating a 
reference to the GDT (i.e., to global address space). The INDEX field consequently provides an index 
to a particular entry within the GDT. This entry, in,turn, must be an LDT descriptor (or descriptor 
table descriptor), as defined in the previous section. In this way, the visible "selector" field of the 
LDTR, by selecting an LDT descriptor, uniquely designates a particular LDT in the system. 

The dedicated, protected instructions LLDT and SLDT are reserved for loading and storing, respec· 
tively, the visible selector component of the LDTR register (refer to section 10.2 for details). Whenever 
a new value is loaded into the visible "selector" portion of LDTR, an LDT descriptor will have been 
uniquely chosen (assuming, of course, that the "selector" value is valid). In this case, the 80286 
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automatically loads the hidden "descriptor" portion of LDTR with five bytes from the chosen LDT 
descriptor. Thus, size and base information about a particular LDT, as recorded in a memory-resident 
global descriptor table entry, is cached in the LDTR register. 

New values may be loaded into the visible portion of the LDTR (and, thus, into the hidden portion as 
well) in either of two ways. The LLDT instruction, during system initialization, is used explicitly to set 
an initial value for the LDTR register; in this way, a local address space is provided for the first task 
in a multitasking environment. After system startup, explicit changes are not required since operations 
that automatically invoke a task switch (described in section 8.4) appropriately manage the LDTR. 

At all times, the LDTR register thus records the physical base address (and size) of the current task's 
LDT; the descriptor table required for mapping the current local address space, therefore, is immedi­
ately accessible to the processor. Moreover, since GDTR always maintains the base address of the 
GDT, the table that maps the global address space is similarly accessible. The two system address 
registers, GDTR and LDTR, act as a special processor cache, maintaining current information about 
the two descriptor tables required, at any given time, for addressing the entire current virtual address 
space. 
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7.1 INTRODUCTION 

CHAPTER 7 
PROTECTION 

In most microprocessor based products, the product's availability, quality, and reliability are deter­
mined by the software it contains. Software is often the key to a product's success. Protection is a tool 
used to shorten software development time, and improve software quality and reliability. 

Program testing is an important step in developing software. A system with protection will detect software 
errors more quickly and accurately than a system without protection. Eliminating errors via protection 
reduces the development time for a product. 

Testing software is difficult. Many errors occur only under complex circumstances which are difficult 
to anticipate. The result is that products are shipped with undetected errors. When such errors occur, 
products appear unreliable. The impact of a software error is multiplied if it introduces errors in other 
bug-free programs. Thus, the total system reliability reduces to that of the least reliable program running 
at any given time. 

Protection improves the reliability of an entire system by preventing software errors in one program 
from affecting other programs. Protection can keep the system running even when some user program 
attempts an invalid or prohibited operation. 

Hardware protection performs run-time checks in parallel with the execution of the program. But, 
hardware protection has traditionally resulted in a design that is more expensive and slower than a 
system without protection. However, the 80286 provides hardware-enforced protection without the 
performance or cost penalties normally associated with protection. 

The protected mode 80286 implements extensive protection by integrating these functions on-chip. The 
80286 protection is more comprehensive and flexible than comparable solutions. It can locate and 
isolate a large number of program errors and prevent the propagation of such errors to other tasks or 
programs. The protection of the total system detects and isolates bugs both during development and 
installed usage. Chapter 9 discusses exceptions in more detail. 

The remaining sections of this chapter explain the protection model implemented in the 80286. 

7.1.1 Types of Protection 

Protection in the 80286 has three basic aspects: 

1. Isolation of system software from user applications. 

2. Isolation of users from each other (Inter-task protection). 

3. Data-type checking. 

The 80286 provides a four-level, ringed-type, increasingly-privileged protection mechanism to isolate 
applications software from various layers of system software. This is a major improvement and exten­
sion over the simpler two-level user/supervisor mechanism found in many systems. Software modules 
in a supervisor level are protected from modules in the application level and from software in less 
privileged supervisor levels. 

7-1 



PROTECTION 

Restricting the addressability of a software module enables an operating system to control system 
resources and priorities. This is especially important in an environment that supports multiple concur­
rent users. Multi-user, multi-tasking, and distributed processing systems require this complete control 
of system resources for efficient, reliable operation. 

The second aspect of protection is isolating users from each other. Without such isolation an error in 
one user program could affect the operation of another error-free user program. Such subtle interac­
tions are difficult to diagnose and repair. The reliability of applications programs is greatly enhanced 
by such isolation of users. 

Within a system or application level program, the 80286 will ensure that all code and data segments 
are properly used (e.g., data cannot be executed, programs cannot be modified, and offset must be 
within defined limits, etc.). Such checks are performed on every memory access to provide full run­
time error checking. 

7.1.2 Protection Implementation 

The protection hardware of the 80286 establishes constraints on memory and instruction usage. The 
number of possible interactions between instructions, memory, and I/O devices is practically unlim­
ited. Out of this very large field the protection mechanism limits interactions to a controlled, under­
standable subset. Within this subset fall the list of "correct" operations. Any operation that does not 
fall into this subset is not allowed by the protection mechanism and is signalled as a protection 
violation. 

To understand protection on the 80286, you must begin with its basic parts: segments and tasks. 80286 
segments are the smallest region of memory which have unique protection attributes. Modular 
programming automatically produces separate regions of memory (segments) whose contents are treated 
as a whole. Segments reflect the natural construction of a program, e.g., code for module A, data for 
module A, stack for the task, etc. All parts of the segment are treated in the same way by the 80286. 
Logically separate regions of memory should be in separate segments. 

The memory segmentation model (see figure 7-1) of the 80286 was designed to optimally execute code 
for software composed of independent modules. Modular programs are easier to construct and maintain. 
Compared to monolithic software systems, modular software systems have enhanced capabilities, and 
are typically easier to develop and test for proper operation. 

Each segment in the system is defined by a memory-resident descriptor. The protection hardware 
prevents accesses outside the data areas and attempts to modify instructions, etc., as defined by the 
descriptors. Segmentation on the 80286 allows protection hardware to be integrated into the CPU for 
full data access control without any performance impact. 

The segmented memory architecture of the 80286 provides unique capabilities for regulating the trans­
fer of control between programs. 

Programs are given direct but controlled access to other procedures and modules. This capability is the 
heart of isolating application and system programs. Since this access is provided and controlled directly 
by the 80286 hardware, there is no performance penalty. A system designer can take advantage of the 
80286 access control to design high-performance modular systems with a high degree of confidence in 
the integrity of the system. 
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Access control between programs and the operating system is implemented via address space separa­
tion and a privilege mechanism. The address space control separates applications programs from each 
other while the privilege mechanism isolates system software from applications software. The privilege 
mechanism grants different capabilities to programs to access code, data, and I/O resources based on 
the associated protection level. Trusted software that controls the whole system is typically placed at 
the most privileged level. Ordinary application software does not have to deal with these control mecha­
nisms. They come into play only when there is a transfer of control between tasks, or if the Operating 
System routines have to be invoked. 

The protection features of multiple privilege levels extend to ensuring reliable I/0 control. However, 
for a system designer to enable only one specific level to do I/0 would excessively constrain subsequent 
extensions or application development. Instead, the 80286 permits each task to be assigned a separate 
minimum level where I/O is allowed. I/O privilege is discussed in section 10.3. 
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An important distinction exists between tasks and programs. Programs (e.g., instructions in code 
segments) are static and consist of a fixed set of code and data segments each with an associated 
privilege level. The privilege assigned to a program determines what the program may do when executed 
by a task. Privilege is assigned to a program w~en the system is built or when the program is loaded. 

Tasks are dynamic; they execute one or more programs. Task privilege changes with time according to 
the privilege level of the program being executed. Each task has a unique set of attributes that define 
it, e.g., address space, register values, stack, data, etc. A task may execute a program if that program 
appears in the task's address space. The rules of protection control determine when a program may be 
executed by a task, and once executed, determine what the program may do. 

7.2 MEMORY MANAGEMENT AND PROTECTION 

The protection hardware of the 80286 is related to the memory management hardware. Since protec­
tion attributes are assigned to segments, they are stored along with the memory management infor­
mation in the segment descriptor. The protection information is specified when the segment is created. 
In addition to privilege levels, the descriptor defines the segment type (e.g., Code segment, Data segment, 
etc.). Descriptors may be created either by program development tools or by a loader in a dynamically 
loaded reprogrammable environment. 

The protection control information consists of a segment type, its privilege level, and size. These are 
fields in the access byte of the segment descriptor (see figure 7-2). This information is saved on-chip 
in the programmer invisible section of the segment register for fast access during execution. These 
entries are changed only when a segment register is loaded. The protection data is used at two times: 
upon loading a segment register and upon each reference to the selected segment. 

The hardware performs several checks while loading a segment register. These checks enforce the 
protection rules before any memory reference is generated. The hardware verifies that the selected 
segment is valid (is identified by a descriptor, is in memory, and is accessible from the privilege level 
in which the program is executing) and that the type is consistent with the target segment register. For 
example, you cannot load a read-only segment descriptor into SS because the stack must always be 
writable. 

PROGRAM VISIBLE r----------p~~;~U----------1 

SEGMENT SELECTORS 
I 'ACCESS I 
I RIGHTS SEGMENT BASE ADORESS SEGMENT SIZE I 

CS 

'OS 

SS 

15 0 
! I I I ! 
I 47 4038 18 15 0 I 

SEGMENT REGISTERS 
(loaded by program) 

I SEGMENT DESCRIPTOR CACHE REGISTERS I 
L ________ (~T~:Tl~':Y ~~~B': ~~ ____ .:.. __ J 

(330108 

Figure 7-2. Descriptor Cache Registers 
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Each reference into the segment defined by a segment register is checked by the hardware to verify 
that it is within the defined limits of the segment and is of the proper type. For example, a code 
segment or read-only data segment cannot be written. All these checks are made before the memory 
cycle is started; any violation will prevent that cycle from starting and cause an exception to occur. 
Since the checks are performed concurrently with address formation, there is no performance penalty. 

By controlling the access rights and privilege attributes of segments, the system designer can assure a 
program will not change its code or overwrite data belonging to another task. Such assurances are vital 
to maintaining system integrity in the face of error-prone programs. 

7.2.1 Separation of Address Spaces 

As described in Chapter 6, each task can address up to a gigabyte (214-2 segments of up to 65,536 
bytes each) of virtual memory defined by the task's LDT (Local Descriptor Table) and the system 
GDT. Up to one-half gigabyte (213 segments of up to 65,536 bytes each) of the task's address space is 
defined by the LDT and represents the task's private address space. The remaining virtual address 
space is defined by the GDT and is common to all tasks in the system. 

Each descriptor table is itself a special kind of segment recognized by the 80286 architecture. These 
tables are defined by descriptors in the GDT (Global Descriptor Table). The CPU has a set of base 
and limit registers that point to the GDT and the LDT of the currently running task. The local descrip­
tor table register is loaded by a task switch operation. 

An active task can only load selectors that reference segments defined by descriptors in either the 
GDT or its private LDT. Since a task cannot reference descriptors in other LDTs, and no descriptors 
in its LDT refer to data or code belonging to other tasks, it cannot gain access to another tasks' private 
code and data (see figure 7-3). 

Since the GDT contains information that is accessible by all users (e.g., library routines, common data, 
Operating System services, etc.), the 80286 uses privilege levels and special descriptor types to control 
access (see section 7.2.2). Privilege levels protect more trusted data and code (in GDT and LDT) from 
less trusted access (WITHIN a task), while the private virtual address spaces defined by unique LDTs 
provide protection BETWEEN tasks (see figure 7-4). 

7.2.2 LOT and GOT Access Checks 

All descriptor tables have a limit used by the protection hardware to ensure address space separation 
of tasks. Each task's LDT can be a different size as defined by its descriptor in the GDT. The GDT 
may also contain less than 8191 descriptors as defined by the GDT limit value. The descriptor table 
limit identifies the last valid byte of the last descriptor in that table. Since each descriptor is eight 
bytes long, the limit value is N X 8 -1 for N descriptors. 

Any attempt by a program to load a segment register, local descriptor table register (LDTR), or task 
register (TR) with a selector that refers to a descriptor outside the corresponding limit causes an excep­
tion with an error code identifying the invalid selector used (see figure 7-5). 

Not all descriptor entries in the GDT or LDT need contain a valid descriptor. There can be holes, or 
"empty" descriptors, in the LDT and GDT. "Empty" descriptors allow dynamic allocation and deletion 
of segments or other system objects without changing the size of the GDT or LDT. Any descriptor 
with an access byte equal to zero is considered empty. Any attempt to load a segment register with a 
selector that refers to an empty descriptor will cause an exception with an error code identifying the 
invalid selection. 
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7.2.3 Type Validation 
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After checking that a selector reference is within the bounds of a descriptor table and refers to a non­
empty descriptor, the type of segment defined by the descriptor is checked against the destination 
register. Since each segment register has predefined functions, each must refer to certain types of 
segments (see section 7.4.1). An attempt to load a segment register in violation of the protection rules 
causes an exception. 

The "null" selector is a special type of segment selector. It has an index field of all zeros and a table 
indicator of O. The null selector appears to refer to GDT descriptor entry #0 (see GDT in figure 7-3). 
This selector value may be used as a place holder in the DS or ES segment registers; it may be loaded 
into them without causing an exception. However, any attempt to use the null segment registers to 
reference memory will cause an exception and prevent any memory cycle from occurring. 
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7.3 PRIVILEGE LEVELS AND PROTECTION 

As explained in section 6.2, each task has its own separate virtual address space defined by its LDT. 
All tasks share a common address space defined by the GDT. The system software then has direct 
access to task data and can treat all pointers in the same way. 

Protection is required to prevent programs from improperly using code or data that belongs to the 
operating system. The four privilege levels of the 80286 provide the isolation needed between the various 
layers of the system. The 80286 privilege levels are numbered from 0 to 3, where 0 is the most trusted 
level, 3 the least. 

Privilege level is a protection attribute assigned to all segments. It determines which procedures can 
access the segment. Like access rights and limit checks, privilege checks are automatically performed 
by the hardware, and thus protect both data and code segments. 

Privilege on the 80286 is hierarchical. Operating system code and data segments placed at the most 
privileged level (0) cannot be accessed directly by programs at other privilege levels. Programs at 
privilege level 0 may access data at all other levels. Programs at privilege levels 1-3 may only access 
data at the same or less trusted (numerically greater) privilege levels. Figure 7-6 illustrates the privi­
lege level protection of code or data within tasks. 

In figure 7-6, programs can access data at the same or outer level, but not at inner levels. Code and 
data segments placed at level 1 cannot be accessed by programs executing at levels 2 or 3. Programs 
at privilege level 0 can access data at level 1 in the course of providing service to that level. 80286 
provides mechanisms for inter-level transfer of control when needed (see section 7.5). 

The four privilege levels of the 80286 are an extension of the typical two-level user/supervisor privilege 
mechanism. Like user mode, application programs in the outer level are not permitted direct access to 
data belonging to more privileged system services (supervisor mode). The 80286 adds two more 
privilege levels to provide protection for different layers of system software (system services, I/O drivers, 
etc.). 

7.3.1 Example of Using Four Privilege Levels 

Two extra privilege levels allow development of more reliable, and flexible system software. This is 
achieved by dividing the system into small, independent units. Figure 7-6 shows an example of the 
usage of different protection levels. Here, the most privileged level is called the kernel. This software 
would provide basic, application-independent, CPU-oriented services to all tasks. Such services include 
memory management, task isolation, multitasking, inter-task communication, and I/O resource control. 
Since the kernel is only concerned with simple functions and cannot be affected by software at other 
privilege levels, it can be kept small, safe, and understandable. 

Privilege level one is designated system services. This software provides high-level functions like file 
access scheduling, character I/O, data communcations, and resource allocation policy which are 
commonly expected in all systems. Such software remains isolated from applications programs and 
relies on the services of the kernel, yet cannot affect the integrity of level O. 

Privilege level 2 is the custom operating system extensions level. It allows standard system software to 
be customized. Such customizing can be kept isolated from errors in applications programs, yet cannot 
affect the basic integrity of the system software. Examples of customized software are the data base 
manager, logical file access services, etc. 
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Figure 7-6. Code and Data Segments Assigned to a Privilege Level 

This is just one example of protection mechanism usage. Levels 1 and 2 may be used in many different 
ways. The usage (or non-usage) is up to the system designer. 

Programs at each privilege level are isolated from programs at outer layers, yet cannot affect programs 
in inner layers. Programs written for each privilege level can be smaller, easier to develop, and easier 
to maintain than a monolithic system where all system software can affect all other system software. 

7.3.2 Privilege Usage 

Privilege applies to tasks and three types of descriptors: 

1. Main memory segments 

2. Gates (control descriptors for state or task transitions, discussed in sections 7.5.1, 7.5.3, 8.3, 8.4 
and 9.2) 

3. Task state segments (discussed in Chapter 8). 
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Task privilege is a dynamic value. It is derived from the code segment currently being executed. Task 
privilege can change only when a control transfers to a different code segment. 

Descriptor privilege, including code segment privilege, is assigned when the descriptor (and any associ­
ated segment) is created. The system designer assigns privilege directly when the system is constructed 
with the system builder (see the 80286 Builder User's GUide) or indirectly via a loader. 

Each task operates at only one privilege level at any given moment: namely that of the code segment 
being executed. (The conforming segments discussed in section 11.2 permit some flexibility in this 
regard.) However, as figure 7-6 indicates, the task may contain segments at one, two, three, or four 
levels, all of which are to be used at appropriate times. The privilege level of the task, then, changes 
under the carefully enforced rules for transfer of control from one code segment to another. 

The descriptor privilege attribute is stored in the access byte of a descriptor and is called the Descrip­
tor Privilege Level (DPL). Task privilege is called the Current Privilege Level (CPL). The least signif­
icant two bits of the CS register specify the CPL. 

A few general rules of privilege can be stated before the detailed discussions of later sections. Data 
access is restricted to those data segments whose privilege level is the same as or less privileged (numer­
ically greater) than the current privilege level (CPL). Direct code access, e.g., via call or jump, is 
restricted to code segments of equal privilege. A gate (section 7.5.1) is required for access to code at 
more privileged levels. 

7.4 SEGMENT DESCRIPTOR 

Although the format of access control information, discussed below, is similar for both data 'and code 
segment descriptors, the rules for accessing data segments differ from those for transferring control to 
code segments. Data segments are meant to be accessible from many privilege levels, e.g., from other 
programs at the same level or from deep within the operating system. The main restriction is that they 
cannot be accessed by less privileged code. 

Code segments, on the other hand, are meant to be executed at a single privilege level. Transfers of 
control that cross privilege boundaries are tightly restricted, requiring the use of gates. Control trans­
fers within a privilege level can also use gates, but they are not required. Control transfers are discussed 
in section 7.5. 

Protection checks are automatically invoked at several points in selecting and using new segments. The 
process of addressing memory begins when the currently executing program attempts to load a selector 
into one of the segment registers. As discussed in Chapter 6, the selector has the form shown in 
figure 7-7. 

When a new selector is loaded into a segment register, the processor accesses the associated descriptor 
to perform the necessary loading and privilege checks. 

The protection mechanism verifies that the selector points to a valid descriptor type for the segment 
register (see section 7.4.1). After verifying the descriptor type, the CPU compares the privilege level 
of the task (CPL) to the privilege level in the descriptor (DPL) before loading the descriptor's infor­
mation into the cache. 

The general format of the eight bits in the segment descriptor's access rights byte is shown in 
table 7-1. 
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Figure 7·7. Selecto'r Fields 

Table 7-1. Segment Access Rights Byte Format 

Bit Name Description 

7 Present 1 means Present and addressable in real memory; 0 means not 
present. See section 11 ,3. 

6,5 DPL 2·bit Descriptor Privilege Level, 0 to 3. 

4 Segment 1 means Segment descriptor; 0 means control descriptor. 

For Segment = 1, the remaining bits have the following meanings: 

3 Executable 1 means code, 0 means data. 

2 Cor ED If code, Conforming: 1 means yes, 0 no. 
If data, Expand Down: 1 yes, 0 no-normal case. 

1 RorW If code, Readable: 1 means readable, 0 not. 
If data, Writable: 1 means writable, 0 not. 

0 Accessed 1 if segment descriptor has been Accessed, 0 if not. 

NOTE: When the Segment bit (bit 4) is 0, the descriptor is for a gate, a task state segment, or a Local 
Descriptor Table, and the meanings of bits 0 through 3 change. Control transfers and descriptors 
are discussed in section 7.5. 

For example, the access rights byte for a data and code segment present in real memory but not yet 
accessed (at the same privilege level) is shown in figure 7-8. 

Whenever a segment descriptor is loaded into a segment register, the accessed bit in the descriptor 
table is set to 1. This bit is useful for determining the usage profile of the segment. 
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Figure 7-8. Access Byte Examples 

Table 7-2. Allowed Segment Types in Segment Registers 

Allowed Segment Types 

Segment Register 
Read Only Read-Write Execute Only Execute-Read 

Data Segment Data Segment Code Segment Code Segment 

OS Yes Yes No Yes 
ES Yes Yes No Yes 
SS No Yes No No 
CS No No Yes Yes 

NOTE 

The Intel reserved bytes in the segment descriptor must be set to 0 for compatibility with 
the 80386. 

7.4. 1 Dat~ Accesses 

Data may be accessed in data segments or readable code segments. When DS or ES is loaded with a 
new selector, e.g., by an LDS, LES, or MOV to ES, SS, or DS instruction, the bits in the access byte 
are checked to verify legitimate descriptor type and access (see table 7-2). If any test fails, an error 
code is pushed onto the stack identifying the selector involved (see figure 7-5 for the error code format). 

A privilege check is made when the segment register is loaded. In general, a data segment's DPL must 
be numerically greater than or equal to the CPL. The DPL of a descriptor loaded into the SS must 
equal the CPL. Conforming code segments are an exception to . privilege checking rules (see 
section 11.2). 

Once the segment descriptor and selector are loaded, the offset of subsequent accesses within the 
segment are checked against the limit given in the segment descriptor. Violating the segment size limit 
causes a General Protection exception with an error code of O. 

A normal data segment is addressed with offset values ranging from 0 to the size of the segment. When 
the ED bit of the access rights byte in the segment descriptor is 0, the allowed range of offsets is 
OOOOH to the limit. If limit is OFFFFH, the data segment contains 65,536 bytes. 
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Since stacks normally occupy different offset ranges (lower limit to OFFFFH) than data segments, the 
limit field of a segment descriptor can be interpreted in two ways. The Expand Down (ED) bit in the 
access byte allows offsets for stack segments to be greater than the limit field. When ED is 1, the 
allowed range of offsets within the segment is limit + 1 to OFFFFH. To allow a full stack segment, set 
ED to 1 and the limit to OFFFFH. The ED bit of a data segment descriptor does not have to be set for 
use in SS (i.e., it will not cause an exception). Section 7.5.4 discusses stack segment usage in greater 
detail. An expand down (ED= 1) segment can also be loaded into ES or DS. 

Limit and access checks are performed before any memory reference is started. For stack push instruc­
tions (PUSH, PUSHA, ENTER, CALL, INT), a possible limit violation is identified before any inter­
nal registers are updated. Therefore, these instructions are fully restartable after a stack size violation. 

7.4.2 Code Segment Access 

Code segments are accessed via CS for execution. Segments that are execute-only can ONLY be 
executed; they cannot be accessed via DS or ES, nor read via CS with a CS override prefix. If a 
segment is executable (bit 3 = 1 in the access byte), access via DS or ES is possible only if it is also 
readable. Thus, any code segment that also contains data must be readable. (Refer to Chapter 2 for a 
discussion of segment override prefixes.) 

An execute-only segment preserves the privacy of the code against any attempt to read it; such an 
attempt causes a general protection fault with an error code of O. A code segment cannot be loaded 
into SS and is never writable. Any attempted write will cause a general protection fault with an error 
code of o. 

The limit field of a code segment descriptor identifies the last byte in the segment. Any offset greater 
than the limit value will cause a general protection fault. The prefetcher of the 80286 can never cause 
a code segment limit violation with an error code of O. The program must actually attempt to execute 
an instruction beyond the end of the code segment to cause an exception. 

If a readable non-conforming code segment is to be loaded into DS or ES, the privilege level require­
ments are the same as those stated for data segments in 7.4.1. 

Code segments are subject to different privilege checks when executed. The normal privilege require­
ment for a jump or call to another code segment is that the current privilege level equal the descriptor 
privilege level of the new code segment. Jumps and calls within the current code segment automatically 
obey this rule. 

Return instructions may pass control to code segments at the same or less (numerically greater) privi­
leged level. Code segments at more privileged levels may only be reached via a cal{ through a call gate 
as described in section 7.5. 

An exception to this, previously stated, is the conforming code segment that allows the DPL of the 
requested code segment to be numerically less than (of greater privilege than) the CPL. Conforming 
code segments are discussed in section 11.2. 

7.4.3 Data Access Restriction by Privilege Level 

This section describes privilege verification when accessing either data segments (loading segment 
selectors into DS, ES, or SS) or readable code segments. Privilege verification when loading CS for 
transfer of control across privilege levels is described in the next section. , 
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Three basic kinds of privilege level indicators are used when determining accessibility to a segment for 
reading and writing. They are termed Current Privilege Level (CPL), Oescriptor Privilege Level (OPL), 
and Requested Privilege Level (RPL). The CPL is simply the privilege level of the code segment that 
is executing (except if the current code segment is conforming). The CPL is stored as bits 0 and I of 
the CS and SS registers. Bits 0 and lof OS and ES are not related to CPL. 

OPL is the privilege level of the segment; it is stored in bits 5 and 6 of the access byte of a descriptor. 
For data access to data segments and non-conforming code segments, CPL must be numerically less 
than or equal to DPL (the task must be of equal or greater privilege) for access to be granted. Violation 
of this rule during segment load instruction causes a general protection exception with an error code 
identifying the selector. 

While the enforcement of OPL protection rules provides the mechanism for the isolation of code and 
data at different privilege levels, it is conceivable that an erroneous pointer passed onto a more trusted 
program might result in the illegal modification of data with a higher privilege level. This possibility is 
prevented by the enforcement of effective privilege level protection rules and correct usage of the RPL 
value. 

The RPL (requested privilege level) is used for pointer validation. It is the least significant two bits in 
the selector value loaded into any segment register. RPL is intended to indicate the privilege level of 
the originator of that selector. A selector may be passed down through several procedures at different 
levels. The RPL reflects the privilege level of the original supplier of the selector, not the privilege 
level of the intermediate supplier. The RPL must be numerically less than or equal to the OPL of the 
descriptor selected, thereby indicating greater or equal privilege of the supplier; otherwise, access is 
denied and a general protection violation occurs. 

Pointer validity testing is required in any system concerned with preventing program errors from 
destroying system integrity. The 80286 provides hardware support for pointer validity testing. The 
RPL field indicates the privilege level of the originator of the pointer to the hardware. Access will be 
denied if the originator of the pointer did not have access to the selected segment even if the CPL is 
numerically less than or equal to the OPL. RPL can reduce the effective privilege of a task when using 
a particular selector. RPL never allows access to more privileged segments (CPL must always be 
numerically less than or equal to OPL). 

A fourth term is sometimes used: the Effective Privilege Level (EPL). It is defined as the numeric 
maximum of the CPL and the RPL-meaning the one of lesser privilege. Access to a protected entity 
is granted only when the EPL is numerically less than or equal to the OPL of that entity. This is simply 
another way of saying that both CPL and RPL must be numerically less than or equal to OPL for 
access to be granted. 

7.4.4 Pointer Privilege Stamping via ARPL 

The ARPL instruction is provided in the 80286 to fill the RPL field of a selector with the minimum 
privilege (maximum numeric value) of the selector's current RPL and the caller's CPL (given in an 
instruction-specified register). A straight insertion of the caller's CPL would stamp the pointer with 
the privilege level of the caller, but not necessarily the ultimate originator of the selector (e.g., Level 3 
supplies a selector to a level 2 routine that calls a level 0 routine with the same selector). 

Figure 7-9 shows a program with an example of such a situation. The program at privilege level 3 calls 
a routine at level 2 via a gate. The routine at level 2 use~ the ARPL instruction to assure that the 
selector's RPL is 3. When the level 2 routine calls a routine at level 0 and passes the selector, the 
ARPL instruction at level 0 leaves the RPL field unchanged. 
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Level 3 PUSH 

Leve I 2 

CALL 

Level 2: 
-E N TE R 

MOV 
ARPL 

SELECTOR 
LEVEL 2 

4 , 0 
AX, [BPI+4 
[BPI+S, AX 

RPL value doesn't matter at level 3 

GET CS of return address, RPL=3 
Put 3 in RPL field 

PUSH WORD PTR [BPI+S; Pas! selector 
CALL Level 0 

Level 0: 
-E N TE R 

Level 0 MOV 
ARPL 

S,O 
AX, [BPI+4 
[BPI+S, AX 

Get CS of return address, RPL=2 
Leave! RPL unchanged 

Figure 7-9. Pointer Privilege Stamping 

Stamping a pointer with the originator's privilege eliminates the complex and time-consuming software 
typically associated with pointer validation in less comprehensive architectures. The 80286 hardware 
performs the pointer test automatically while loading the selector. 

Privilege errors are trapped at the time the selector is loaded because pointers are commonly passed to 
other routines, and it may not be possible to identify a pointer's originator. To verify the access capabil­
ities of a pointer, it should be tested when the pointer is first received from an untrusted source. The 
VERR (Verify Read), VERW (Verify Write), and LAR (Load Access Rights) instructions are provided 
for this purpose. ' 

Although pointer validation is fully supported in the 80286, its use is an option of the system designer. 
To accommodate systems that do not require it, RPL can be ignored by setting selector RPLs to zero 
(except stack segment selectors) and not adjusting them with the ARPL instruction. 

7.5 CONTROL TRANSFERS 

Three kinds of control transfers can occur within a task: 

1. Within a segment, causing no change of privilege level (a short jump, call, or return). 

2. Between segments at the same privilege level (a long jump, call, or return). 

3. Between segments at different privilege levels (a long call, or return). (NOTE: A JUMP to a 
different privilege level is not allowed.) 

The first two types of control transfers need no special controls (with respect to privilege protection) 
beyond those discussed in section 7.4. 

Inter-level transfers require special consideration to maintain system integrity. The protection hardware 
must check that: 

The task is currently allowed to access the destination address. 

• The correct entry address is used. 
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To achieve control transfers, a special descriptor type called a gate is provided to mediate the change 
in privilege level. Control transfer instructions call the gate rather than transfer directly to a code 
segment. From the viewpoint of the program, a control transfer to a gate is the same as to another code 
segment. 

Gates allow programs to use other programs at more privileged levels in the same manner as a program 
at the same privilege level. Programmers need never distinguish between programs or subroutines that 
are more privileged than the current program and those that are not. The system designer may, however, 
elect to use gates only for control transfers that cross privilege levels. 

7.5.1 Gates 

A gate is a four-word control descriptor used to redirect a control transfer to a different code segment 
in the same or more privileged level or to a different task. There are four types of gates: call, trap, 
interrupt, and task gates. The access rights byte distinguishes a gate from a segment descriptor, and 
determines which type of gate is involved. Figure 7-10 shows the format of a gate descriptor. 

A key feature of a gate is the re-direction it provides. All four gate types define a new address which 
transfers control when invoked. This destination address normally cannot be accessed by a program. 
Loading the selector to a call gate into SS, DS, or ES will cause a general protection fault with an 
error code identifying the invalid selector. 

Only the selector portion of an address is used to invoke a gate. The offset is ignored. All that a 
program need know about the desired function is the selector required to invoke the gate. The 80286 
will automatically start the execution at the correct address stored within the gate. 

A further advantage of a gate is that it provides a fixed address for any program to invoke another 
program. The calling program's address remains unaltered even if the entry address of the destination 
program changes. Thus, gates provide a fixed set of entry points that allow a task to access Operating 
System functions such as simple subroutines, yet the task is prohibited from simply jumping into the 
middle of the Operating System. 

Call gates, as described in the next section, are used for control transfers within a task which must 
either be transparently redirected or which require an increase in privilege level. A call gate normally 
specifies a subroutine at a greater privilege level, and the called routine returns via a return instruction. 
Call gates also support delayed binding (resolution of target routine addresses at run-time rather than 
program-generation-time ). 

Trap and interrupt gates handle interrupt operations that are to be serviced within the current task. 
Interrupt gates cause interrupts to be disabled; trap gates do not. Trap and interrupt gates both require 
a return via the interrupt return instruction. 

Task gates are used to control transfers between tasks and to make use of task state segments for task 
control and status information. Tasks are discussed in Chapter 8, interrupts in Chapter 9. 

In the 80286 protection model, each privilege level has its own stack. Therefore, a control transfer (call 
or return) that changes the privilege level causes a new stack to be invoked. 
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Gate Descriptor Fields 
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WORD 
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16-bit 

TION 
selector 
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DESTlNA- 16-bit 
TION offset 

OFFSET 

Figure 7-10. Gate Descriptor Format 

7.5.1.1 CALL GATES 

Description 

Call Gate. 
Task Gate. 
Interrupt Gate. 
Trap Gate. 

Descriptor Contents are 
not valid. 
Descriptor Contents are 
valid. 

Descriptor Privilege Level. 

Number of words to copy 
from caller's stack to 
called procedure's stack. 
Only used with call. gate. 

Selector to the target code 
segment (Call, Interrupt or 
Trap Gate). 
Selector to the target task 
state segment (Task Gate). 

Entry point within the 
target code segment: 

G3010B 

Call gate descriptors are used by call and jump instructions in the same manner as a code segment 
descriptor. The hardware automatically recognizes that the destination selector refers to a gate descrip­
tor. Then, the operation of the instruction is expanded as determined by the contents of the call gate. 
A jump instruction can access a call gate only if the target code segment is at the same privilege level. 
A call instruction uses a call gate for the same or more privileged access. 

A call gate descriptor may reside in either the GDT or the LDT, but not in the IDT. Figure 7-10 gives 
the complete layout of a call gate descriptor. 

A call gate can be referred to by either the long JMP or CALL instructions. From the viewpoint of 
the program executing a JMP or CALL instruction, the fact that the destination was reached via a 
call gate and not directly from the destination address of the instruction is not apparent. 
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The following is a description of the protection checks performed while transferring control (with the 
CALL instruction) through a call gate: 

• Verifying that access to the call gate is allowed. One of the protection features provided by call 
gates is the access checks made to determine if the call gate may be used (i.e., checking if the 
privilege level of the caIIingprogram is adequate). 

• Determining the destination address and whether a privilege transition is required. This feature 
makes privilege transitions transparent to the caller. 

Performing the privilege transition, if required. 

Verifying access to a call gate is the same for any call gate and is independent of whether a JMP or 
CALL instruction was used. The rules of privilege used to determine whether a data segment may be 
accessed are employed to check if a call gate may be jumped-to or called. Thus, privileged subroutines 
can be hidden from untrusted programs by the absence of a call gate. 

When an inter-segment CALL or JMP instruction selects a call gate, the gate's privilege and presence 
will be checked. The gate's DPL (in the access byte) is checked against the EPL (MAX (task CPL, 
selector RPL)). If EPL > CPL, the program is less privileged than the gate and therefore it may not 
make a transition. In this case, a general protection fault occurs with an error code identifying the 
gate. Otherwise, the gate is accessible from the program executing the call, and the control transfer is 
allowed to continue. After the privilege checks, the descriptor presence is checked. If the present bit 
of the gate access rights byte is 0 (Le., the target code segment is not present), not present fault occurs 
with an error code identifying the gate. 

The checks indicated in table 7-3 are applied to the contents of the call gate. Violating any of them 
causes the exception shown. The low order two bits of the error code are zero for these exceptions. 

7.5.1.2 INTRA-LEVEL TRANSFERS VIA CALL GATE 

The transfer is Intra-level if the destination code segment is at the same privilege level as CPL. Either 
the code segment is non-conforming with DPL = CPL, or it is conforming, with DPL ::s CPL (see 
section 11.2 for this case). The 32-bit destination address in the gate is loaded into CS:IP. 

Table 7-3. Call Gate Checks 

Type of Check Fault(1) Error Code 

Selector is not Null GP 0 
Selector is within Descriptor Table Limit GP Selector id 
Descriptor is a Code Segment GP Code Segment id 
Code Segment is Present NP Code Segment id 
Nonconforming Code Segment DPL > CPL GP Code Segment id 

NOTES: 

(1) GP = General Protection, NP = Not-Present Exception. 

The offset portion of the JMP or CALL destination address which refers to a call gate is always ignored. 
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If the IP value is not within the limit of the code segment, a general protection fault occurs with an 
error code of O. If a CALL instruction is used, the return address is saved in the normal manner. The 
only effect of the call gate is to place a different address into CS:IP than that specified in the desti­
nation address of the JMP or CALL instruction. This feature is useful for systems which require that 
a fixed address be provided to programs, even though the entry address for the routine may change 
due to different functions, software changes, or segment relocation. 

7.5.1.3 INTER-LEVEL CONTROL TRANSFER VIA CALL GATES 

If the destination code segment of the call gate is at a different privilege level than the CPL, an inter­
level transfer is being requested. However, if the destination code segment DPL > CPL, then a general 
protection fault occurs with an error code identifying the destination code segment. 

The gate guarantees that all transitions to a more privileged level will go to a valid entry point rather 
than possibly into the middle of a procedure (or worse, into the middle of an instruction). See 
figure 7 -11. 

Calls to more privileged levels may be performed only through call gates. A JMP instruction can never 
cause a privilege change. Any attempt to use a call gate in this manner will cause a general protection 
fault with an error code identifying the gate. Returns to more privileged levels are also prohibited. 
Inter-level transitions due to interrupts use a different gate, as discussed in Chapter 9. 

The RPL field of the CS selector saved as part of the return address will always identify the caller's 
CPL. This information is necessary to correctly return to the caller's privilege level during the return 
instruction. Since the CALL instruction places the CS value on the more privileged stack, and JMP 
instructions cannot change privilege levels, it is not possible for a program to maliciously place an 
invalid return address on the caller's stack. 
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Figure 7-11. Call Gate 
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7.5.1.4 STACK CHANGES CAUSED BY CALL GATES 

To maintain system integrity, each privilege level has a separate stack. Furthermore, each task normally 
uses separate stacks from other tasks for each privilege level. These stacks assure sufficient stack space 
to process calls from less privileged levels. Without them, trusted programs may not work correctly, 
especially if the calling program does not provide sufficient space on the caller's stack. 

When a call gate is used to change privilege levels, a new stack is selected as determined by the new 
CPL. The new stack pointer value is loaded from the Task State Segment (TSS). The privilege level 
of the new stack data segment must equal the new CPL; if it does not, a task stack fault occurs with 
the saved machine state pointing at the CALL instruction and the error code identifying the invalid 
stack selector. 

The new stack should contain enough space to hold the old SS:SP, the return address, and all param­
eters and local variables required to process the call. The initial stack pointers for privilege levels 0-2 
in the TSS are strictly read only values. They are never changed during the course of execution. 

The normal technique for passing parameters to a subroutine is to place them onto the stack. To make 
privilege transitions transparent to the called program, a call gate specifies that parameters are to be 
copied from the old stack to the new stack. The word count field in a call gate (see figure 7-10) 
specifies how many words (up to 31) are to be copied from the caller's stack to the new stack. If the 
word count is zero, no parameters are copied. 

Before copying the parameters, the new stack is checked to assure that it is large enough to hold the 
parameters; if it is not, a stack fault occurs with an error code of O. After the parameters are copied, 
the return link is on the new stack (i.e., a pointer to the old stack is placed in the new stack). In 
particular, the return address is pointed at by SS:SP. The call and return example of figure 7-12 
illustrate the stack contents after a successful inter-level call. 

The stack pointer of the caller is saved above the caller's return address as the first two words pushed 
onto the new stack. The caller's stack can only be saved for calls to procedures at privilege levels 2, 1, 
and O. Since level 3 cannot be called by any procedure at any other privilege level, the level 3 stack 
will never contain links to other stacks. 

Procedures requiring more than the 31 words for parameters that may be called from another privilege 
level must use the saved SS:SP link to access all parameters beyond the last word copied. 

The call gate does not check the values of the words copied onto the new stack. The called procedure 
should check each parameter for validity. Section 11.3 discusses how the ARPL, VERR, VERW, LSL, 
and LAR instructions can be used to check pointer values. 

7.5.2 Inter-Level Returns 

An inter-segment return instruction can also change levels, but only toward programs of equal or lesser 
privilege (when code segment DPL is numerically greater or equal than the CPL). The RPL of the 
selector popped off the stack by the return instruction identifies the privilege level to resume execution 
of the calling program. 

When the RET instruction encounters a saved CS value whose RPL > CPL, an inter-level return 
occurs. Checks shown in table 7-4 are made during such a return. 
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The old SS:SP value is then adjusted by the number of bytes indicated in the RET instruction and 
loaded into SS:SP. The new SP value is not checked for validity. If SP is invalid it is not recognized 
until the first stack operation. The SS:SP value of the returning program is not saved. (Note: this value 
normally is the same as that saved in the TSS.) 

The last step in the return is checking the contents of the OS and ES descriptor register. If OS or ES 
refer to segments whose OPL is greater than the new CPL (excluding conforming code segments), the 
segment registers are loaded with the null selector. Any subsequent memory reference that attempts 
to use the segment register containing the null selector will cause a general protection fault. This prevents 
less privileged code from accessing more privileged data previously accessed by the more privileged 
program. 
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Table 7-4. Inter-Level Return Checks 

Type of Check Exception· Error Code 

SP is not within Segment Limit SF 0 
sP + N + 7 is not in Segment Limit SF 0 
RPL of Return CS is Greater than CPL GP Return CS id 
Return CS Selector is not null GP Return CS id 
Return CS segment is within Descriptor Table Limit GP Return CS id 
Return Cs Descriptor is a Code Segment GP Return CS id 
Return CS Segment is Present NP Return CS id 
DPL of Return Non-Conforming Code Segment = RPL of CS GP Return CS id 
55 Selector at SP + N + 6 is not Null SF Return 55 id 
55 Selector at sP + N + 6 is within Descriptor Table Limit SF Return SS id 
55 Descriptor is Writable Data Segment SF Return 55 id 
55 Segment is Present SF Return 55 id 
55 Segment DPL = RPL of CS SF Return SS id 

-SF = Stack Fault, GP = General Protection Exception, NP = Not-Present Exception 
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CHAPTER 8 
TASKS AND STATE TRANSITIONS 

8.1 INTRODUCTION 

An 80286 task is a single, sequential thread of execution. Each task can be isolated from all other 
tasks. There may be many tasks associated with an 80286 CPU, but only one task executes at any 
time. Switching the CPU from executing one task to executing another can occur as the result of either 
an interrupt or an inter-task CALL, JMP or IRET. A hardware-recognized data structure defines each 
task. 

The 80286 provides a high performance task switch operation with complete isolation between tasks. 
A full task-switch operation takes only 22 microseconds at 8 MHz (i 8 microseconds at 10 MHz). High­
performance, interrupt-driven, multi-application systems that need the benefits of protection are feasi­
ble with the 80286. 

A performance advantage and system design advantage arise from the 80286 task switch: 

Faster task switch: A task switch is a single instruction performed by microcode. Such a scheme 
is 2-3 times faster than an explicit task switch instruction. A fast task switch translates to a signif­
icant performance boost for heavily multi-tas1ced systems over conventional methods. 

More reliable, flexible systems: The isolation between tasks and the high speed task switch allows 
interrupts to be handled by separate tasks rather than within the currently interrupted task. This 
isolation of interrupt handling code from normal programs prevents undesirable interactions between 
them. The interrupt system can become more flexible since adding an interrupt handler is as safe 
and easy as adding a new task. 

Every task is protected from all others via the separation of address spaces described in 
Chapter 7, including allocation of unique stacks to each active privilege level in each task (unless 
explicit sharing is planned in advance). If the address spaces of two tasks include no shared data, 
one task cannot affect the data of another task. Code sharing is always safe since code segments 
may never be written into. 

8.2 TASK STATE SEGMENTS AND DESCRIPTORS 

Tasks are defined by a special control segment called a Task State Segment (TSS). For each task, 
there must be an unique TSS. The definition of a task includes its address space and execution state. 
A task is invoked (made active) by inter-segment jump or call instructions whose destination address 
refers to a task state segment or a task gate. 

The Task State Segment (TSS) has a special descriptor. The Task Register within the CPU contains 
a selector to that descriptor. Each TSS selector value is unique, providing an unambiguous "identifier" 
for each task. Thus, an operating system can use the value of the TSS selector to uniquely identify the 
task. 

A TSS contains 22 words that define the contents of all registers and flags, the initial stacks for privi­
lege levels 0-2, the LDT selector, and a link to the TSS of the previously executing task. Figure 8-\ 
shows the layout of the TSS. The TSS can not be written into like an ordinary data segment. 
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Figure 8-1. Task State Segment and TSS Registers 
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Each TSS consists of two parts, a static portion and a dynamic portion. The static entries are never 
changed by the 80286, while the dynamic entries are changed by each task switch out of this task. The 
static portions of this segment are the task LDT selector and the initial SS:SP stack pointer addresses 
for levels 0-2. 

The modifiable or dynamic portion of the task state segment consists of all dynamically-variable and 
programmer-visible processor registers, including flags, segment registers, and the instruction pointer. 
It also includes the linkage word used to chain nested invocations of different tasks. 

The link word provides a history of which tasks invoked others. The link word is important for restart­
ing an interrupted task when the interrupt has been serviced. Placing the back link in the TSS protects 
the identity of the interrupted task from changes by the interrupt task, since the TSS is not writable 
by the interrupt task. (In most systems only the operating system has sufficient privilege to create or 
use a writable data segment "alias" descriptor for the TSS.) 

The stack pointer entries in the TSS for privilege levels 0-2 are static (i.e., never written during a 
privilege or task switch). They define the stack to use upon entry to that privilege level. These stack 
entries are initialized by the operating system when the task is created. If a privilege level is never 
used, no stack need be allocated for it. 

When entering a more privileged level, the caller's stack pointer is saved on the stack of the new 
privilege level, not in the TSS. Leaving the privilege level requires popping the caller's return address 
and stack pointer off the current stack. The stack pointer at that time will be the same as the initial 
value loaded from the TSS upon entry to the privilege level. 

There is only one stack active at any time, the one defined by the SS and SP registers. The only other 
stacks that may be non-empty are those at outer (less privileged) levels that called the current level. 
Stacks for inner levels must be empty, since outward (to numerically larger privilege levels) calls from 
inner levels are not allowed. 

The location of the stack pointer for an outer privilege level will always be found at the start of the 
stack of the inner privilege level called by that level. That stack may be the initial stack for this 
privilege level or an outer level. Look at the start of the stack for this privilege level. The TSS contains 
the starting stack address for levels 0-2. If the RPL of the saved SS selector is the privilege level 
required, then the stack pointer has been found. Otherwise, go to the beginning of the stack defined 
by that value and look at the saved SS:SP value there. 

8.2.1 Task State Segment Descriptors 

A special descriptor is used for task state segments. This descriptor must be accessible at all times; 
therefore, it can appear only in the GDT. The access byte distinguishes TSS descriptors from data or 
code segment descriptors. When bits 0 through 4 of the access byte are 00001 or 00011, the descriptor 
is for a TSS. 

The complete layout of a task state segment descriptor is shown in figure 8-2. 

Like a data segment, the descriptor contains a base address and limit field. The limit must be at least 
002BH (43) to contain the minimum amount of information required for a TSS. An invalid task excep­
tion will occur if an attempt is made to switch to a task whose TSS descriptor limit is less than 43. The 
error code will identify the bad TSS. 
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The P-bit (Present) flag indicates whether this descriptor contains currently valid information: 1 means 
yes, 0 no. A task switch that attempts to reference a not-present TSS causes a not-present exception 
code identifying the task state segment selector. 

The descriptor privilege level (DPL) controls use of the TSS by JMP or CALL instructions. By the 
same reasoning as that for call gates, DPL can prevent a program from calling the TSS and thereby 
cause a task switch. Section 8.3 discusses privilege considerations during a task switch in greater detail. 

Bit 4 is always 0 since TSS is a control segment descriptor. Control segments cannot be accessed by 
SS, DS, or ES. Any attempt to load those segment registers with a selector that refers to a control 
segment causes general protection trap. This rule prevents the program from improperly changing the 
contents of a control segment. 

TSS descriptors can have two states: idle and busy. Bit 1 of the access byte distinguishes them. The 
distinction is necessary since tasks are not re-entrant; a busy TSS may not be invoked. 

8.3 TASK SWITCHING 

A task switch may occur in one of four ways: 

1. The destination selector of a long JMP or CALL instruction refers to a TSS descriptor. The offset 
portion of the destination address is ignored. 

2. An IRET instruction is executed when the NT bit in the flag word = 1. The new task TSS 
selector is in the back link field of the current TSS. 

3. The destination selector of a long JMP or CALL instruction refers to a task gate. The offset 
portion of the destination address is ignored. The new task TSS selector is in the gate. (See section 
8.5 for more information on task gates.) 

4. An interrupt occurs. This interrupt's vector refers to a task gate in the interrupt descriptor table. 
The new task TSS selector is in the gate. See section 9.4 for more information on interrupt tasks. 
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No new instructions are required for a task switch operation. The standard 8086 JMP, CALL, IRET, 
or interrupt operations perform this function. The distinction between the standard instruction and a 
task switch is made either by the type of descriptor referenced (for CALL, JMP, or INT) or by the 
NT bit (for IRET) in flag word. 

Using the CALL or INT instruction to switch tasks implies a return is expected from the called task. 
The JMP and IRET instructions imply no return is expected from the new task. 

When NT= 1, the IRET instruction causes a return to the task that called the current one via CALL 
or INT instruction. 

Access to TSS and task gate descriptors is restricted by the rules of privilege level. The data access 
rules are used, thereby allowing task switches to be restricted to programs of sufficient privilege. Address 
space separation does not apply to TSS descriptors since they must be in the GDT. The access rules 
for interrupts are discussed in section 9.4. 

The task switch operation consists of the following eight steps: 

1. Validate the requested task switch. For a task switch requested via a JMP, CALL, or an INT 
instruction, check that the current task is allowed to switch to the requested task. The DPL of the 
gate or the TSS descriptor for the requested task must be greater than or equal to both the CPL 
and the RPL of the requesting task. If it is not, the General Protection fault (#13) will occur with 
an error code identifying the descriptor (i.e., the gate selector if the task switch is requested via a 
task gate, or the selector for the TSS if the task switch is requested via a TSS descriptor). 

These checks are not performed if a task switch occurs due to an IRET instruction. 

2. Check that the new TSS is present and that the new task is available (i.e. not Busy). A Not 
Present exception (#11) is signaled if the new TSS descriptor is marked 'Not Present' (P = 0). 
The General Protection exception (#13) is raised if the new TSS is marked 'Busy'. 

The task switch operation actually begins now and a detailed verification of the new TSS is carried 
out. Conditions which may disqualify the new TSS are listed in table 8-1 along with the exception 
raised and the error code pushed on the stack for each case. These tests are performed at different 
points during the course of the following remaining steps of the task switch operation. 

3. Mark the new task to be BUSY by setting the 'BUSY' bit in the new TSS descriptor to 1. 

4. Save the dynamic portion of the old TSS and load TR with the selector, base and limit for the 
new TSS. Set all CPU registers to corresponding values from the new TSS except DS, ES, CS, 
SS, and LDT. 

5. If nesting tasks, set the Nested Task (NT) flag in the new TSS to 1. Also set the Task Switched 
flag (TS) of the CPU flag register to 1. 

6. Validate the LDT selector and the LDT descriptor of the new TSS. Load the LDT cache (LDTR) 
with the LDT descriptor. 

7. Validate the SS, CS, DS, and ES fields of the new TSS and load these values in their respective 
caches (i.e., SS, CS, DS, and ES registers). 

8. Validate the IP field of the new TSS and then start executing the new task from CS:IP. 

A more detailed explanation of steps 3-5 is given in Appendix B (80286 Instruction Set) under a pseudo 
procedure 'SWITCH_TASKS'. Notice how the exceptions described in table 8-1 may actually occur 
during a task switch. Similarly the exceptions that may occur during steps 1-2, and step 8 are explained 
in greater detail in the pseudo code description of the 286 instructions CALL, JMP, INT, and IRET 
in Appendix B. This information can be very helpful when debugging any protected mode code. 
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Note that the state of the outgoing task is always saved. If execution of that taskis resumed, it will 
start after the instruction that caused the task switch. The values of the registers will be the same as 
that when the task stopped running. 

Any task switch sets the Task Switched (TS) bit in the Machine Status Word (MSW). This flag is 
used when processor extensions such as the 80287 Numeric Processor Extension are present. The TS 
bit signals that the context of the processor extension may not belong to the current 80286 task. 
Chapter 11 discusses the TS bit and processor extensions in more detail. 

Validity tests on a selector ensure that the selector is in the proper table (Le., the LDT selector refers 
to GDT), lies within the bounds of the table, and refers to the proper type of descriptor (i.e., the LDT 
selector refers to the LDT descriptor). 

Note that between steps 3 and 4 in table 8-1, all the registers of the new task are loaded. Several 
protection rule violations may exist in the new segment register contents. If an exception occurs in the 
context of the new task due to checks performed on the newly loaded descriptors, the DS and ES 
segments may not be accessible even though the segment registers contain non-zero values. These selec­
tor values must be saved for later reuse. When the exception handler reloads these segment registers, 
another protection exception may occur unless the exception handler pre-examines them and fixes any 
potential problems. 

A task switch allows flexibility in the privilege level of the outgoing and incoming tasks. The privilege 
level at which execution resumes in the incoming task is not restricted by the privilege level of the 
outgoing task. This is reasonable, since both tasks are isolated from each other with separate address 
spaces and machine states. The privilege rules prevent improper access to a TSS. The only interaction 
between the tasks is to the extent that one started the other and the incoming task may restart the 
outgoing task by executing an IRET instruction. 

Table 8-1. Checks Made during a Task Switch 

Test 

1 Incoming TSS descriptor is present 
2 Incoming TSS is idle 
3 Limit of incoming TSS greater than 43 
4 LOT selector of incoming TSS is valid 
5 LOT of incoming TSS is present 
6 CS selector is valid 
7 Code segment is present 
8 Code segment OPL matches CS RPL 
9 Stack segment is valid 
10 Stack segment is writable data segment 
11 Stack segment is present 
12 Stack segment OPL = CPL 
13 OS/ES selectors are valid 
14 OS/ES segments are readable 
15 OS/ES segments are present 
16 OS/ES segment OPL ~ CPL if not conform 

*NP = Not-Present Exception 
GP = General Protection Fault 
SF = Stack Fault 
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Exception· Error Code 

NP Incoming TSS "selector 
GP Incoming TSS selector 

Invalid TSS Incoming TSS selector 
Invalid TSS LOT selector 
Invalid TSS LOT selector 
Invalid TSS Code segment selector 

NP Code segment selector 
Invalid TSS Code segment selector 

SF Stack segment selector 
GP . Stack segment selector 
SF Stack segment selector 
SF Stack segment selector 
GP Segment selector 
GP Segment selector 
NP Segment selector 
GP Segment selector 
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8.4 TASK LINKING 

The TSS has a field called "back link" which contains the selector of the TSS of a task that should be 
restarted when the current task completes. The back link field of an interrupt-initiated task is automat­
ically written with the TSS selector of the interrupted task. 

A task switch initiated by a CALL instruction also points the back link at the outgoing task's TSS. 
Such task nesting is indicated to programs via the Nested Task (NT) bit in the flag word of the 
incoming task. 

Task nesting is necessary for interrupt functions to be processed as separate tasks. The interrupt function 
is thereby isolated from all other tasks in the system. To restart the interrupted task, the interrupt 
handler executes an IRET instruction much in the same manner as an 8086 interrupt handler. The 
IRET instruction will then cause a task switch to the interrupted task. 

Completion of a task occurs when the IRET instruction is executed with the NT bit in the flag word 
set. The NT bit is automatically set/reset by task switch operations as appropriate. Executing an IRET 
instruction with NT cleared causes the normal 8086 interrupt return function to be performed, and no 
task switch occurs. 

Executing IRET with NT set causes a task switch to the task defined by the back link field of the 
current TSS. The selector value is fetched and verified as pointing to a valid, accessible TSS. The 
normal task switch operation described in section 8.3 then occurs. After the task switch is complete, 
the outgoing task is now idle and considered ready to process another interrupt. 

Table 8-2 shows how the busy bit, NT bit, and link word of the incoming and outgoing task are affected 
by task switch operations caused by JMP, CALL, or IRETinstructions. 

Violation of any of the busy bit requirements shown in table 8-2 causes a general protection fault with 
the saved machine state appearing as if the instruction had not executed. The error code identifies the 
selector of the TSS with the busy bit. 

A bus lock is applied during the testing and setting of the TSS descriptor busy bit to ensure that two 
processors do not invoke the same task at the same time. See also section 11.4 for other multi-processor 
considerations. 

Table 8·2. Effect of a Task Switch on BUSY and NT Bits and the Link Word 

JMP CALL/INT IRET 
Affected Field Instruction Instruction Instruction 

Effect Effect Effect 

Busy bit of incoming task TSS descriptor Set, must be Set, must be 0 Unchanged, 
o before before must be set 

Busy bit of outgoing task TSS descriptor Cleared Unchanged (will Cleared 
already be 1) 

NT bit in incoming task flag word Cleared Set Unchanged 

NT bit in outgoing task flag word Unchanged Unchanged Cleared 

Back link in incoming task TSS Unchanged Set to outgoing Unchanged 
task TSS selector 

Back link of outgoing task TSS Unchanged Unchanged Unchanged 
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The linking order of tasks may need to be changed to restart an interrupted task before the task'that 
interrupted it completes. To remove a task from the list, trusted operating system software must change 
the backlink field in the TSS of the interrupting task first, then clear the busy bit in the TSS descriptor 
of the task removed from the list. 

When trusted software deletes the link from one task to another, it should place a value in the backlink 
field, which will pass control to that trusted software when the task attempts to resume execution of 
another task via IRET. 

8.5 TASK GATES 

A task may be invoked by several different events. Task gates are provided to support this need. Task 
gates are used in the same way as call and interrupt gates. The ultimate effect of jumping to or calling 
a task gate is the same as jumping to or calling directly to the TSS in the task gate. 

Figure 8-3 depicts the layout of a task gate. 

A task gate is identified by the access byte field in bits 0 through 4 being 00101. The gate provides an 
extra level of indirection between the destination address and the TSS selector value. The offset portion 
of the JMP or CALL destination address is ignored. 

Gate use provides flexibility in controlling access to tasks. Task gates can appear in the GDT, IDT, or 
LDT. The TSS descriptors for all tasks must be kept in the GDT. They are normally placed at level 0 
to prevent any task from improperly invoking another task. Task gates placed in the LDT allow private 
access to selected tasks with full privilege control. 

The data segment access rules apply to accessing a task gate via JMP, CALL, or INT instructions. 
The effective privilege level (EPL) of the destination selector must be numerically less than or equal 
to the DPL of the task gate descriptor. Any violation of this requirement causes a general protection 
fault with an error code identifying the task gate involved. 
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Figure 8-3. Task Gate Descriptor 
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Once access to the task gate has been verified, the TSS selector from the gate is read. The RPL of the 
TSS selector is ignored. From this point, all the checks and actions performed for a JMP or CALL to 
a TSS after access has been verified are performed (see section 8.4). Figure 8-4 illustrates an example 
of a task switch through a task gate. 
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LOT SELECTOR 

'r t 
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Figure 8-4. Task Switch Through a Task Gate 
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CHAPTER 9 
INTERRUPTS AND EXCEPTIONS 

Interrupts and exceptions are special cases of control transfer within a program. An interrupt occurs 
as a result of an event that is independent of the currently executing program, while exceptions are a 
direct result of the program currently being executed. Interrupts may be external or internal. External 
interrupts are generated by either the INTR or NMI input pins. Internal interrupts are caused by the 
INT instruction. Exceptions occur when an instruction cannot be completed normally. Although their 
causes differ, interrupts and exceptions use the same control transfer techniques and privilege rules; 
therefore, in the following discussions the term interrupt will also apply to exceptions. 

The program used to service an interrupt may execute in the context of the task that caused the 
interrupt (i.e., used the same TSS, LDT, stacks, etc.) or may be a separate task. The choice depends 
on the function to be performed and the level of isolation required. 

9.1 INTERRUPT DESCRIPTOR TABLE 

Many different events may cause an interrupt. To allow the reason for an interrupt to be easily identi­
fied, each interrupt source is given a number called the interrupt vector. Up to 256 different interrupt 
vectors (numbers) are possible. See figure 9-1. 

A table is used to define the handler for each interrupt vector. The Interrupt Descriptor Table (IDT) 
defines the interrupt handlers for up to 256 different interrupts. The IDT is in physical memory, pointed 
to by the contents of the on-chip IDT register that contains a 24-bit base and a 16-bit limit. The IDTR 
is normally loaded with the LIDT instruction by code that executes at privilege level 0 during system 
initialization. The IDT may be located anywhere in the physical address space of the 80286. 
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Figure 9-1. Interrupt Descriptor Table Definition 
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Each IDT entry is a 4-word gate descrip,tor that contains a pointer to the handler. The three types of 
gates permitted in the Ii)T are interrupt gates, trap gates (discussed in se~tion 9.3), and task gates 
(discussed in section 9.5). Interrupt and task gates process interrupts in the same task, while task gates 
cause a task switch. Any other descriptor type in the IDT will cause an exception if it is referenced by 
an interrupt. 

The IDT need not contain all 256 entries. A 16-bit limit register allows less than the full number of 
entries. Unused entries may be signaled by placing a zero in the access rights byte. If an attempt is 
made to access an entry outside the table limit, or if the wrong descriptor type is found; a general 
protection fault occurs with an error code pushed on the stack identifying the invalid interrupt vector 
(see figure 9-2). 

Exception error codes that refer to an IDT entry Can be identified by bit 1 of the error code that will 
be set. Bit 0 of the error code is 1 if the interrupt was caused by an event external to the program 
(Le., an external interrupt, a single step, a processor extension error, or a processor extension not present). 

Interrupts 0-31 are reserved for use by Intel. Some of the interrupts are used for instruction exceptions. 
The IDT limit must be at least 255 (32X8-1) to accommodate the minimum number of interrupts. 
The remaining 224 interrupts are available to the user. 

9.2 HARDWARE INITIATED INTERRUPTS 
, , 

Hardware-initiated interrupts are caused by some external eVent that activates either the INTR or 
NMI input pins of the processor. Events that use the INTR input are classified as maskable interrupts. 
Events that use the NMI input are classified as non-maskable interrupts. 

All 224 user-defined interrupt sources share the INTR input, but each has the ability to use a separate 
interrupt handler. An 8-bit vector supplied by the interrupt controller identifies which interrupt is 
being signaled. To read the interrupt id, the processor performs the interrupt acknowledge bus sequence. 

Maskable interrupts (from the INTR input) can be inhibited by software by setting the interrupt flag 
bit (IF) to 0 in the flag word. The IF bit does not inhibit exceptions or interrupts caused by the INT 
instruction. The IF bit also does not inhibit processor extension interrupts. 
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1 An event external to the program 
caused the exception (I .•. , external 
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o An exception occurred while 
processing an Instruction at CS:IP 
saved on stack 

'Figure 9·2~ lOT Selector Error Code 

G30108 



INTERRUPTS AND EXCEPTIONS 

The type of gate placed into the IDT for the interrupt vector will control whether other maskable 
interrupts remain enabled or not during the servicing of that interrupt. The flag word that was saved 
on the stack reflects the maskable interrupt enable status of the processor prior to the interrupt. The 
procedure servicing a maskable interrupt can also prevent further maskable interrupts during its work 
by resetting the IF flag. 

Non-maskable interrupts are caused by the NMI input. They have a higher priority than the maskable 
interrupts (meaning that in case of simultaneous requests, the non-maskable interrupt will be serviced 
first). A non-maskable interrupt has a fixed vector (#2) and therefore does not require an interrupt 
acknowledge sequence on the bus. A typical use of an NMI is to invoke a procedure to handle a power 
failure or some other critical hardware exception. 

A procedure servicing an NMI will not be further interrupted by other non-maskable interrupt requests 
until an IRET instruction is executed. A further NMI request is remembered by the hardware and will 
be serviced after the first IRET instruction. Only one NMI request can be remembered. To prevent a 
maskable interrupt from interrupting the NMI interrupt handler, the IF flag should be cleared either 
by using an interrupt gate in the IDT or by setting IF = 0 in the flag word of the task involved. 

9.3 SOFTWARE INITIATED INTERRUPTS 

Software initiated interrupts occur explicitly as interrupt instructions or may arise as the result of an 
exceptional condition that prevents the continuation of program execution. Software interrupts are not 
maskable. Two interrupt instructions exist which explicitly cause an interrupt: INT nand INT 3. The 
first allows specification of any interrupt vector; the second implies interrupt vector 3 (Breakpoint). 

Other instructions like INTO, BOUND, DIY, and IDlY may cause an interrupt, depending on the 
overflow flag or values of the operands. These instructions have predefined vectors associated with 
them in the first 32 interrupts reserved by Intel. 

A whole class of interrupts called exceptions are intended to detect faults or programming errors (in 
the use of operands or privilege levels). Exceptions cannot be masked. They also have fixed vectors 
within the first 32 interrupts. Many of these exceptions pass an error code on the stack, which is not 
the case with the other interrupt types discussed in section 9.2. Section 9.5 discusses these error codes 
as well as the priority among interrupts that can occur simultaneously. 

9.4 INTERRUPT GATES AND TRAP GATES 

Interrupt gates and trap gates are special types of descriptors that may only appear in the interrupt 
descriptor table. The difference between a trap and an interrupt gate is whether the interrupt enable 
flag is to be cleared or not. An interrupt gate specifies a procedure that enters with interrupts disabled 
(i.e., with the interrupt enable flag cleared); entry via a trap gate leaves the interrupt enable status 
unchanged. The NT flag is always cleared (after the old NT state is saved on the stack) when an 
interrupt uses these gates. Interrupts that have either gate in the associated IDT entry will be processed 
in the current task. 

Interrupts and trap gates have the same structure as the call gates discussed in section 7.5.1. The 
selector and entry point for a code segment to handle the interrupt or exception is contained in the 
gate. See figure 9-3. 
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Figure 9-3. Trap/Interrupt Gate Descriptors 

The access byte contains the Present bit, the descriptor privilege level, and the type identifier. Bits 
0-4 of the access byte have a value of 00110 for interrupt gates, 00111 for trap gates. Byte 5 of the 
descriptor is not used by either of these gates; it is used only by the call gate, which uses it as the 
parameter ward-count. 

Trap and interrupt gates allow a privilege level transition to occur when passing control to a non­
conforming code segment. Like a call gate, the DPL of the target code segment selected determines 
the new CPL. The DPL of the new non-conforming code segment must be numerically less than or 
equal to CPL. 

No privilege transition occurs if the new code segment is conforming. If the DPL of the conforming 
code segment is greater than the CPL, a general protection exception will occur. 

As with all descriptors, these gates in the IDT carry a pdvilege level. The DPL controls access to 
interrupts with the INT nand INT 3 instructions. For access, the CPL of the program must be less 
than or equal to the gate DPL. If the CPL is not, a general protection exception will result with an 
error code identifying the selected IDT gate. For exceptions and external interrupts, the CPL of the 
program is ignored while accessing the IDT. 

Interrupts using a trap or an interrupt gate are handled in the same manner as an 8()86 interrupt. The 
flags and return address of the interrupted program are saved on the stack of the interrupt handler. To 
return to the interrupted program, the interrupt handler executes an IRET instruction. 

If.an increase in privilege is required for handling the interrupt, a ~ew stack will be loaded from the 
TSS. The stack pointer of the old privilege l~vel will also be saved on the new stack in the same manner 
as a call gate. Figure 9-4 shows the stack contents after an exception with an error code (with and 
without a privilege level charige). 

If an interrupt or trap gate is used to handle an exception that passes an error code, the error code will 
be pushed onto the new stack after the return address (as shown in figure 9-4). If a task gate is used, 
the error code is pushed onto the stack of the new task. The return address is saved in the ol<.~ TSS. 
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Figure 9-4. Stack Layout after an Exception with an Error Code 

If an interrupt gate is used to handle an interrupt, it is assumed that the selected code segment has 
sufficient privilege to re-enable interrupts. The IRET instruction will not re-enable interrupts if CPL 
is numerically greater than IOPL. 

Table 9-1 shows the checks performed during an interrupt operation that uses an interrupt or trap gate. 
EXT equals 1 when an event external to the program is involved; 0 otherwise. EJ\ternal events are 
maskable or non-maskable interrupts, single step interrupt, processor extension segment overrun inter­
rupt, numeric processor not-present exception or numeric processor error. The EXT bit signals that the 
interrupt or exception is not related to the instruction at CS:IP. Each error code has bit 1 set to indicate 
an IDT entry is involved. 

When the interrupt has been serviced, the service routine returns control via an IRET instruction to 
the routine that was interrupted. If an error code was passed, the exception handler must remove the 
error code from the stack before executing IRET. 

The NT flag is cleared when an interrupt occurs which uses an interrupt or trap gate. Executing IRET 
with NT=O causes the normal interrupt return function. Executing IRET with NT= 1 causes a task 
switch (see section 8.4 for more details). 
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Table 9-1_ Trap and Interrupt Gate Checks 

Check 

; Interrupt vector is in IDT limit 
.. 

Trap. Interrupt. or Task Gate in IDT Entry 

If INT instruction. gate DPL 2: CPL 

P bit of gate is set 

Code segment selector is in descriptor table limit 

CS selector refers to a code segment 

If code segment is non-conforming. Code Segment 
DPL:5 CPL 

If code segment is non-conforming. and DPL < CPL and if 
SS selector in TSS is in descriptor table limit 

If code segment is non-conforming. and DPL < CPL and if 
SS is a writable data segment 

If code segment is non-conforming. and DPL < CPL and 
code segment DPL = stack segment DPL 

If code segment is non-conforming. and DPL < CPL and if 
SS is present 

If code segment is non-conforming. and DPL < CPL and if 
there is enough space for 5 words on the stack (or 6 if error 
code is required) 

If code segment is conforming. then DPL :5CPL 

If code segment is not present 

If IP is not within the limit of code segment 

• GP = General Protection Exception 
NP = Not Present Exception 
SF = Stack Fault 

.' 

Exception- Error Code 

GP IDTentry X 8 + 2 + EXT 

GP IDTentry X 8 + 2 + EXT 

GP IDTentry X 8 + 2 + EXT 

NP IDTentry X 8 + 2 + EXT 

GP CS selector X 8 + EXT 

GP CS selector X 8 + EXT 

GP CS selector X 8 + EXT 

TS SS selector X 8 + EXT 

TS SS selector X 8 + EXT 

TS Stack segment selector + EXT 

SF Stack segment selector + EXT 

SF SS selector + EXT 

GP Code segment selector + EXT 

NP Code segment selector + EXT 

GP 0+ EXT 

, 

Like the RET instruction, IRET is restricted to return to a level of equal or lesser privilege unless a 
task switch occurs. The IRET instruction works like the inter-segment RET instruction except that the 
flag word is popped and no stack pointer update for parameters is performed since no parameters are 
on the stack. See section 7.5.2 for information on inter-level returns. 

To distinguish an inter-level IRET, the new CPL (which is the RPL of the return address CS selector) 
is compared with the current CPL. If they are the same, the IP and flags are popped and execution 
continues. 

An inter-level return via IRET has all the same checks as shown in table 7-4. The only difference is 
the extra word on tile stack for the old flag word. 

Interrupt gates are typically associated with high-priority hardware interrupts for automatically disabling 
interrupts upon their invocation. Trap gates are typically software-invoked since they do not disable 
the maskable hardware interrupts. However, low-priority interrupts (e.g., a timer) are often invoked 
via a trap gate to allow other devices of higher priority to interrupt the handler of that lower priority 
interrupt. 
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Table 9-2 illustrates how the interrupt enable flag and interrupt type interact with the type of gate 
used. 

9.5 TASK GATES AND INTERRUPT TASKS 

The 80286 allows interrupts to directly cause a task switch. When an interrupt vector selects an entry 
in the IDT which is a task gate, a task switch occurs. The format of a task gate is described in section 
8.5. If a task gate is used to handle an exception that passes an error code, the error code will be 
pushed onto the new task's stack. 

A task gate offers two advantages over interrupt gates: 

1. It automatically saves all of the processor registers as part of the task-switch operation, whereas 
an interrupt gate saves only the flag register and CS:IP. 

2. The new task is completely isolated from the task that was interrupted. Address spaces are isolated 
and the interrupt-handling task is unaffected by the privilege level of the interrupted task. 

An interrupt task switch works like any other task switch once the TSS selector is fetched from the 
task gate. Like a trap or an interrupt gate, privilege and presence rules are applied to accessing a task 
gate during an interrupt. 

Interrupts that cause a task switch set the NT bit in the flags of the new task. The TSS selector of the 
interrupted task is saved in the back link field of the new TSS. The interrupting task executes IRET 
to perform a task switch to return to the interrupted task because NT was previously set, The interrupt 
task state is saved in its TSS before returning control to the task that was interrupted; NT is restored 
to its original value in the interrupted task. 

Since the interrupt handler state after executing IRET is saved, a re-entry of the interrupt service task 
will result in the execution of the instruction that follows IRET. Therefore, when the next interrupt 
occurs, the machine state will be the same as that when the IRET instruction was executed. 

Note that an interrupt task resumes execution each time it is re-invoked, whereas an interrupt proce­
dure starts executing at the beginning of the procedure each time. The interrupted task restarts execu­
tion at the point of interruption because interrupts occur before the execution of an instruction. 

Table 9-2. Interrupt and Gate Interactions 

Type of Type of Further Further Further Further software 
Interrupt Gate NMls? INTRs? Exceptions? Interrupts? 

NMI Trap No Yes Yes Yes 
NMI Interrupt No No Yes Yes 
INTR Trap Yes Yes Yes Yes 
INTR Interrupt Yes No Yes Yes 
Software Trap Yes Yes Yes Yes 
Software Interrupt Yes No Yes Yes 
Exception Trap Yes Yes Yes Yes 
Exception Interrupt Yes No Yes Yes 
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When an interrupt task is used, the task must be concerned with avoiding further interrupts while it is 
operating. A general protection exception will occur if a task gate referring to a busy TSS is used while 
processing an interrupt. If subsequent interrupts can occur while the task is executing, the IF bit in 
the flag word (saved in the TSS) must be zero. 

9.5.1 Scheduling Considerations 

A software-scheduled operating system must be designed to handle the fact that interrupts can come 
along in the middle of scheduled tasks and cause a task switch to other tasks. The interrupt-scheduled 
tasks may can the operating system and eventually the scheduler, which needs to recognize that the 
task that just called it is not the one the operating system last scheduled. 

If the Task Register (TR) does not contain the TSS selector of the last scheduled task, an interrupt 
initiated task switch has occurred. More than one task may have been interrupt-scheduled since the 
scheduler last ran. The scheduler must find via the backlink fields in each TSS all tasks that have been 
interrupted. The scheduler can clear those links and reset the busy bit in the TSS descriptors, putting 
them back in the scheduling queue for a new analysis of execution priorities. Unless the interrupted 
tasks are placed back in the scheduling queue, they would have to await a later restart via the task 
that interrupted them. 

To locate tasks that have been interrupt-scheduled, the scheduler looks into the current task's TSS 
backlink (word one of the TSS), which points at the interrupted task. If that task was not the last task 
scheduled, then it's backlink field in the TSS also points to an interrupted task. 

The backlink field of each interrupt-scheduled task should be set by the scheduler to point to a sched­
uling task that will reschedule the highest priority task when the interrupt-scheduled task executes 
IRET. 

9.5.2 Deciding Between Task, Trap, and Interrupt Gates 

Interrupts and exceptions can be handled with either a trap/interrupt gate or a task gate. The advan­
tages of a task gate are all the registers are saved and a new set is loaded with full isolation between 
the interrupted task and the interrupt handler. The advantages of a trap/interrupt gate are faster 
response to an interrupt for simple operations and easy access to pointers in the context of the inter­
rupted task. All interrupt handlers use IRET to resume the interrupted program. 

Trap/interrupt gates require that the interrupt handler be able to execute at the same or greater privi­
lege level than the interrupted program. If any program executing at level 0 can be interrupted through 
a trap/task gate, the interrupt handler must also execute at level 0 to avoid general protection excep­
tion. All code, data, and stack segment descriptors must be in the GDT to allow access from any task. 
But, placing all system interrupt handlers at privilege level 0 may be in consistent with maintaining 
the integrity of level o programs. 

Some exceptions require the use of a task gate. The invalid task state segment exception (#10) can 
arise from errors in the original TSS as well as in the target TSS. Handling the exception within the 
same task could lead to recursive interrupts or other undesirable effects that are difficult to trace. The 
double fault exception (#8) should also use a task gate to prevent shutdown from another protection 
violation occurring during the servicing of the exception. 

9-8 



INTERRUPTS AND EXCEPTIONS 

9.6 PROTECTION EXCEPTIONS AND RESERVED VECTORS 

A protection violation will cause an exception, i.e., a non-maskable interrupt. Such a fault can be 
handled by the task that caused it if an interrupt or trap gate is used, or by a different task if a task 
gate is used (in the IDT). 

Protection exceptions can be classified into program errors or implicit requests for service. The latter 
include stack overflow and not-present faults. Examples of program errors include attempting to write 
into a read-only segment, or violating segment limits. 

Requests for service may use different interrupt vectors, but many diverse types of protection violation 
use the same general protection fault vector. Table 9-3 shows the reserved exceptions and interrupts. 
Interrupts 0-31 are reserved by Intel. 

When simultaneous external interrupt requests occur, they are processed in the fixed order shown in 
table 9-4. For each interrupt serviced, the machine state is saved. The new CS:IP is loaded from the 
gate or TSS. If other interrupts remain enabled, they are processed before the first instruction of the 
current interrupt handler, i.e., the last interrupt processed is serviced first. 

Table 9-3. Reserved Exceptions and Interrupts 

Vector Description Restartable Error Code 
Number on Stack 

0 Divide Error Exception Yes No 
1 Single Step Interrupt Yes No 
2 NMllnterrupt Yes No 
3 Breakpoint Interrupt Yes No 
4 INTO Detected Overflow Exception Yes No 
5 BOUND Range Exceeded Exception Yes No 
6 Invalid Opcode Exception Yes No 
7 Processor Extension Not Available Exception Yes No 
8 Double Exception Detected No Yes (Always 0) 
9 Processor ExtenSion Segment Overrun Interrupt No No 

10 Invalid Task State Segment Yes Yes 
11 Segment Not Present Yes Yes 
12 Stack Segment Overrun or Not Present Yes Yes 
13 General Protection Yes' Yes 

• Except for writes into read-only segments (see section 9.6) 

Table 9-4. Interrupt Processing Order 

Order Interrupt 

1 Instruction exception 
2 Single step 
3 NMI 
4 Processor extension segment overrun 
5 INTR 
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All but two exceptions are restartable after·theexceptional condition is rerrlOved. The' two non­
restartable exceptions are the processor extension segment overrun and writing into read only segments 
with XCHG, ADC, SBB, RCL, and RCR instructions. The return address normally points to the 
failing instruction; including all leading prefixes. 

The instruction and data addresses for the processor extension segment overrun are contained in the 
processor extension status registers. 

Interrupt handlers for most exceptions receive an ertor code that identifies the selector involved, or a 
o in bits 15-3 of the error code field if there is no selector involved. The error code is pushed last, after 
the return address, on the stack that will be active when the trap handler begins execution. This ensures 
that the h!lndler will not have to access another stack segment to find the error code. 

The following sections describe the exceptions in greater detail. 

9.6.1 Invalid OP-Code (Interrupt 6) 

When an invalid opcode is detected by the execution unit, interrupt 6 is invoked. (It is not detected 
until ali attempt is made to execute it, i.e., prefetching an invalid opcode does not cause this exception.) 
The saved CS:IP will point to the invalid opcode or any leading prefixes; no error code is pushed on 
the stack. The exception can be handled within the same task, and is restartable. 

This exception will occur for all cases of an invalid operand. Examples include an inter-segment jump 
referencing a register operand, or an LES instruction with a register source operand. 

9.6.2 Double Fault (Interrupt 8) 

If two separate faults occur during a single instruction, end if the first fault is any of #0, #10, #11, #12, 
and #13, exception 8 (Double Fault) occurs (e.g., a general protection fault in level 3 is followed by a 
not-present fault due to a segment not-present). If another protection violation occurs during the 
processing of exception 8, the 80286 enters shutdown,' during which time no further instructions or 
exceptions are processed. 

Either NMI or RESET can force the CPU out of shutdown. An NMI input can bring the CPU out of 
shutdown if no errors occur while processing the NMI interrupt; otherwise,. shutdown can only be 
exited via the RESET input. NMI causes the CPU to remain in protected mode, and RESET causes 
it to exit protected mode. Shutdown is signaled externally via a HALT bus operation with Al LOW. 

A task gate must be used for the double fault handler to assure a proper task state to respond to the 
exception. The back link field in the current TSS will identify the TSS of the task causing the excep­
tion. The saved address will point at the instruction that was being executed (or was ready to execute) 
when the error was detected. The error code will be null. 

The "double fault" exception does not occur when detecting it new exception while trying to invoke 
handlers for the following exceptions: 1,2,3,4,5,6;7,9, and 16. 

9.6.3 Processor Extension Segment Overrun (Interrupt 9) 

Interrupt 9 signals that the processor extension (such as the 80287 numerics processor) has overrun 
the limit of a segment while attempting to read/write the second or subsequent words of an operand. 
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The interrupt is generated by the processor extension data channel within the 80286 during the limit 
test performed on each transfer of data between memory and the processor extension. This interrupt 
can be handled in the same task but is not restartable. 

As with all external interrupts, Interrupt 9 is an asynchronous demand caused by the processor exten­
sion referencing something outside a segment boundary. Since Interrupt 9 can occur any time after 
the processor extension is started, the 80286 does not save any information that identifies what partic­
ular operation had been initiated in the processor extension. The processor extension maintains special 
registers that identify the last instruction it executed and the address of the desired operand. 

After this interrupt occurs, no WAIT or escape instruction, except FNINIT, can be executed until the 
interrupt condition is cleared or the processor extension is reset. The interrupt signals that the processor 
extension is requesting an invalid data transfer. The processor extension will always be busy when 
waiting on data. Deadlock results if the CPU executes an instruction that causes it to wait for the 
processor extension before resetting the processor extension. Deadlock means the CPU is waiting for 
the processor extension to become idle while the processor extension waits for the CPU to service its 
data request. 

The FNINIT instruction is guaranteed to reset the processor extension without causing deadlock. After 
the interrupt is cleared, this restriction is lifted. It is then possible to read the instruction and operand 
address via FSTENV or FSA VE, causing the segment overrun in the processor extension's special 
registers. 

The task interrupted by interrupt 9 is not necessarily the task that executed the ESC instruction that 
caused the interrupt. The operating system should keep track of which task last used the NPX (see 
section 11.4). If the interrupted task did not execute the ESC instruction, it can be restarted. The task 
that executed the ESC instruction cannot. 

9.6.4 Invalid Task State Segment (Interrupt 10) 

Interrupt 10 is invoked if during a task switch the new TSS pointed to by the task gate is invalid. The 
EXT bit indicates whether the exception was caused by an event outside the control of the program. 

A TSS is considered invalid in the cases shown in table 9-5. 

Once the existence of the new TSS is verified, the task switch is considered complete, with the backlink 
set to the old task if necessary. All errors are handled in the context of the new task. 

Exception 10 must be handled through a task gate to insure a proper TSS to process it. The handler 
must reset the busy bit in the new TSS. 

9.6.5 Not Present (Interrupt 11) 

Exception 11 occurs when an attempt is made to load a not-present segment or to use a control descrip­
tor that is marked not-present. (If, however, the missing segment is an LDT that is needed in a task 
switch, exception 10 occurs.) This exception is fully restartable. 

Any segment load instruction can cause this exception. Interrupt 11 is always processed in the context 
of the task in which it occurs. 
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Table 9-5. Conditions That Invalidate the TSS 

Reason Error Code 

The limit in the TSS descriptor is less than 43 TSS id + EXT 

Invalid LOT selector or LOT not present LOTid+ EXT 

Stack segment selector is null SS id + EXT 

Stack segment selector is outside table limit SS id + EXT 

Stack segment is not a writable segment SS id + EXT 

Stack segment OPL does not match new CPL SS id + EXT 

Stack segment selector RPL;=CPL SS id + EXT 

Code segment selector is outside table limit CS id + EXT 

Code segment selector does not refer to code segment CS id + EXT 

Non-conforming code segment OPL;=CPL CS id + EXT 

Conforming code segment OPL>CPL CS id + EXT 

OS or ES segment selector is outside table limits ES/OS id + EXT 

OS or ES are not readable segments ES/OS id + EXT 

The error code has the form shown in Table 9-5. The EXT bit will be set if an event external to the 
program caused an interrupt that subsequently referenced a not-present segment. Bit 1 will be set if 
the error code refers to an IDT entry, e.g., an INT instruction referencing a not-present gate. The 
upper 14 bits are the upper 14 bits of the segment selector involved. 

During a task switch, when a not-present exception occurs, the ES and DS segment registers may not 
be usable for referencing memory (the selector values are loaded before the descriptors are checked). 
The not-present handler should not rely on being able to use the values found in ES, SS, and DS 
without causing another exception. This is because the task switch itself may have changed the values 
in the registers. The exception occurs in the new task and the return pointer points to the first instruc­
tion of the new task. Caution: the loading of the DS or ES descriptors may not have been completed. 
The exception II handler should ensure that the DS and ES descriptors have been properly loaded 
before the execution of the first instruction of the new task. 

9.6.6 Stack Fault (Interrupt 12) 

Stack underflow or overflow causes exception 12, as does a not-present stack segment referenced during 
an inter-task or inter-level transition. This exception is fully restartable. A limit violation of the current 
stack results in an error code of o. The EXT bit of the error code tells whether an interrupt external to 
the program caused the exception. 

Any instruction that loads a selector to SS (e.g., POP SS, task switch) can cause this exception. This 
exception must use a task gate if there is a possibility that any level 0 stack may not be present. 

When a stack fault occurs, the ES and DS segment registers may not be usable for referencing memory. 
During a task switch, the selector values are loaded before the descriptors are checked. The stack fault 
handler should check the saved values of SS, CS, DS, and, ES to be sure that they refer to present 
segments before restoring them. 
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9.6.7 General Protection Fault (Interrupt 13) 

If a protection violation occurs which is not covered in the preceding paragraphs, it is classed as 
Interrupt 13, a general protection fault. The error code is zero for limit violations, write to read-only 
segment violations, and accesses relative to DS or ES when they are zero or refer to a segment at a 
greater privilege level than CPL. Other access violations (e.g., a wrong descriptor type) push a non­
zero error code that identifies the selector used on the stack. Error codes with bit 0 cleared and bits 
15-2non-zero indicate a restartable condition. 

Bit 1 of the error code identifies whether the selector is in the IDT or LDT /GDT. If bit 1 =0 then bit 
2 separates LDT from GDT. Bit 0 (EXT) indicates whether the exception was caused by the program 
or an event external to it (i.e., single stepping, an external interrupt, a processor extension not-present 
or a segment overrun). If bit 0 is set, the selector typically has nothing to do with the instruction that 
was interrupted. The selector refers instead to some step of servicing an interrupt that failed. 

When bit 0 of the error code is set, the interrupted program can be restarted, except for processor 
extension segment overrun exceptions (see section 9.6.3). The exception with the bit 0 of the error 
code = 1 indicates some interrupt has been lost due to a fault in the descriptor pointed to by the 
error code. 

A non-zero error code with bit 0 cleared may be an operand of the interrupted instruction, an operand 
from a gate referenced by the instruction, or a field from the invalid TSS. 

During a task switch, when a general protection exception occurs, the ES and DS segment registers 
may not be usable for referencing memory (the selector vaues are loaded before the descriptors are 
checked). The general protection handler should not rely on being able to use the values found in ES, 
SS, and DS without causing another exception. This is because the task switch itself may have changed 
the values in the registers. The exception occurs in the new task and the return pointer points to the 
first instruction of the new task. Caution: the loading of the DS or ES descriptors may not have been 
completed. The exception 13 handler should ensure that the DS and ES descriptors have been properly 
loaded before the execution of the first instruction of the new task. 

In Real Address Mode, Interrupt 13 will occur if software attempts to read or write a 16-bit word at 
segment offset OFFFFH. 

9.7 ADDITIONAL EXCEPTIONS AND INTERRUPTS 

Interrupts 0, 5, and 1 have not yet been discussed. Interrupt 0 is the divide-error exception, Interrupt 
5 the bound-range exceeded exceptions, and Interrupt 1 the single step interrupt. The divide-error or 
bound-range exceptions make it appear as if that instruction had never executed: the registers are 
restored and the instruction can be restarted. The divide-error exception occurs during a DIV or an 
IDIV instruction when the quotient will be too large to be representable, or when the divisor is zero. 

Interrupt 5 occurs when a value exceeds the limit set for it. A program can use the BOUND instruction 
to check a signed array index against signed limits defined in a two-word block of memory. The block 
can be located just before the array to simplify addressing. The block's first word specifies the array's 
lower limit, the second word specifies the array's up,per limit, and a register specifies the array index 
to be tested. 
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9.7.1 Single Step Interrupt (Interrupt 1) 

Interrupt 1 allows programs to execute one instruction at a time. This single-stepping is controlled by 
the TF bit in the flag word. On'ce this bit is set, an internal single step interrupt will occur after the 
next instruction has been executed. The interrupt saves the flags and return address on the stack, clears 
the TF bit, and uses an internaIly supplied vector of 1 to transfer control to the service routine via the 
IDT. ' 

The IRET instruction or a task switch must be used to set the TF bit and to transfer control to the 
next instruction to be single stepped. If TF= 1 in a TSS and that task is invoked, it will execute the 
first instruction and then be interrupted. 

The single-step flag is normally not cleared by privilege changes inside a task. INT instructions, however, 
do clear TF. Therefore, software debuggers that single-step code must recognize and emulate INT n 
or INT 0 rather than executing them directly. System software should check the current execution 
privilege level after any single step interrupt to see whether single stepping should continue. 

The interrupt priorities in hardware guarantee that if an external interrupt occurs, single stepping 
stops. When both an external interrupt and a single step interrupt occur together, the single step inter­
rupt is processed first. This clears the TF bit. After saving the return address or switching tasks, the 
external interrupt input is examined before the first instruction of the single step handler executeS. If 
the external interrupt is still pending, it is then serviced. The external interrupt handler is not single­
stepped. Therefore, to single step an interrupt handler, just single step an interrupt instruction that 
refers to the interrupt handler. 
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CHAPTER 10 
SYSTEM CONTROL AND INITIALIZATION 

Special flags, registers, and instructions provide contol of the critical processes and interaction in 80286 
operations. The flag register includes 3 bits that represent the current I/O privilege level (IOPL: 2 
bits) and the nested task bit (NT). Four additional registers support the virtual addressing and memory 
protection features, one points to the current Task State Segment and the other three point to the 
memory-based descriptor tables: GOT, LOT, and lOT. These flags and registers are discussed in the 
next section. The machine status word, (which indicates processor configuration and status) and the 
instructions that load and store it are discussed in section 10.2.2. 

Similar instructions pertaining to the other registers are the subject of sections 10.2 and 10.3. A detailed 
description of initialization states and processes, which appears in section IDA, is supplemented by the 
extensive example in Appendix A. Instructions that validate descriptors and pointers are covered in 
section 11. 3. 

10.1 SYSTEM FLAGS AND REGISTERS 

The IOPL flag (bits 12 and 13 of the flags word) controls access to I/O operations and interrupt 
control instructions. These two bits represent the maximum privilege level (highest numerical CPL) at 
which the task is permitted to perform I/O instructions. Alteration of the 10PL flags is restricted to 
programs at level 0 or to a task switch. 

IRET uses the NT flag to select the proper return: if NT=O, the normal return within a task is 
performed. As discussed in Chapter 8, the nested task flag (bit 14 of flags) is set when a task initiates 
a task switch via a CALL or INT instruction. The old and new task state segments are marked busy 
and the backlink field of the new TSS is set to the old TSS selector. An interrupt that does not cause 
a task switch will clear NT after the old NT state is saved. To prevent a program from causing an 
illegal task switch by setting NT and then executing IRET, a zero selector should be placed in the 
backlink field of the TSS. An illegal task switch using IRET will then cause exception 13. The instruc­
tions POPF and IRET can also set or clear NT when flags are restored from the stack. POPF and 
IRET can also change the interrupt enable flag. If CPL S 10PL, then the Interrupt Flag (IF) can be 
changed by POPF and IRET. Otherwise, the state of the IF bit in the new flag word is ignored by 
these instructions. Note that the CLI and STI instructions are valid only when CPL S IOPL; other­
wise exception 13 occurs. 

10.1.1 Descriptor Table Registers 

The three descriptor tables used for all memory accesses are based at addresses supplied by (stored in) 
three registers: the global descriptor table register (GOTR), the interrupt descriptor table register 
(IOTR), and the local descriptor table register (LOTR). Each register contains a 24-bit base field and 
a 16-bit limit field. The base field gives the real memory address of the beginning of the table; the 
limit field tells the maximum offset permitted in accessing table entries. See figures 10-1 thru 10-3. 

The LOTR also contains a selector field that identifies the descriptor for that table. LDT descriptors 
must reside in the GOT. 
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The task register (TR) points to the task state segment for the currently active task. It is similar to a 
segment register, with selector, base, and limit fields, of which only the selector field is readable under 
normal circumstances. Each such selector serves as a unique identifier for its task. The uses of the TR 
are described in Chapter 8. 

The instructions controlling these special registers are described in the next section. 

10.2 SYSTEM CONTROL INSTRUCTIONS 

The instructions that load the GDTR and IDTR from memory can only be executed in real address 
mode or at privilege level 0; otherwise exception 13 occurs. The store instructions for GDTR and IDTR 
may be executed at any privilege level. The four instructions are LIDT, LGDT, SIDT, and SGDT. 
The instructions move 3 words between the indicated descriptor table register and the effective real 
memory address supplied (see figure 10-3). The format of the 3 words is: a 2-byte limit, a 3-byte real 
base address, followed by an unused byte. These instructions are normally used during system 
initialization. 

The LLDT instruction loads the LDT registers from a descriptor in the GDT. LLDT uses a selector 
operand to that descriptor rather than referencing the descriptor directly. LLDT is only executable at 
privilege level 0; otherwise exception 13 occurs. LLDT is normally required only during system initial­
ization because the processor automatically exchanges the LDTR contents as part of the task-switch 
operation. 

Executing an LLDT instruction does not automatically update the TSS or the register caches. To 
properly change the LDT of the currently running task so that the change holds across task switches, 
you must perform, in order, the following three steps: 

1. Store the new LDT selector into the appropriate word of TSS. 

2. Load the new LDT selector into LDTR. 

3. Reload the DS and ES registers if they refer to LDT-based descriptors. 

Note that the current code segment and stack segment descriptors should reside in the GDT or be 
copied to the same location in the new LDT. 
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SLDT (store LDT) can be executed at any privilege level. SLDT stores the local descriptor table 
selector from the program visible portion of the LDTR register. 

Task Register loading or storing is again similar to that of the LDT. The LTR instruction, operating 
only at level 0, loads the L TR at initialization time with a selector for the initial TSS. L TR does NOT 
cause a task switch; it just changes the current TSS. Note that the busy bit of the old TSS descriptor 
is not changed while the busy bit of the new TSS selector must be zero and will be set by L TR. The, 
LDT and any segment registers referring to the oldLDT should be reloaded. STR, which permits the 
storing of TR contents into memory, can be executed at any privilege level. LTR is not usually needed 
after initialization because the TR is managed by the task-switch operation. 

10.2.2 Machine Status Word 

The Machine Status Word (MSW) indicates the 80286 configuration and status. It is not part of a 
task's state. The MSW word is loaded by the LMSW instruction executed in real address mode or at 
privilege level 0 only, or is stored by the SMSW instruction executing at any privilege level. MSW is 
a 16-bit register, the lower four bits of which are used by the 80286. These bits have the meanings 
shown in table 10-1. Bits 15-4 of the MSW will be used by the 80386. 80286 software should not 
change these bits. If the bits are changed by the 286 software, compatibility with the 80386 will be 
destroyed. 

The TS flag is set under hardware control and reset under software control. Once the TS flag is set, 
the next instruction using a processor extension causes a processor extension not-present exception (#7). 
This feature allows software to test whether the current processor extension state belongs to the current 
task as discussed in section 11.4. If the current processor extension state belongs to a different task, 
the software can save the state of any processor extension with the state of the task that uses it; Thus, 
the TS bit protects a task from processor extension errors that result from the actions of a previous 
task. 

The CL TS instruction is used to reset the TS flag after the exception handler has set up the proper 
processor extension state. The CL TS instruction can be executed at privilege level 0 only. 

\ 

Table 10-1. MSW Bit Functions 

Bit Name Function 
Position 

0 PE Erotected mode enable places the 80286 into protected mode and cannot be 
cleared except by RESET. 

" 

1 MP Monitor processor extension allows WAIT instructions to cause a processor 
extension not-present exception (number 7) if TS is also set. 

2 EM Emulate processor extension causes a processor extension not-present excep-
tion (number 7) on ESC instructions to allow a processor extension to be emulated. 

3 TS Iask s.witched indicates the next instruction using a processor extension will cause 
exception 7, allowing software to test whether the current processor extension 
context belongs to the current task. 
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The EM flag indicates a processor extension function is to be emulated by software. If EM = 1 and 
MP=O, all ESCAPE instructions will be trapped via the processor extension not-present exception 
(#7). 

MP flag tells whether a processor extension is present. If MP= 1 and TS = I, escape and wait instruc­
tions will cause exception 7. 

If ESC instructions are to be used, either the MP or the EM bit must be set, but not both. 

The PE flag indicates that the 80236 is in the protected virtual address mode. Once the PE flag is set, 
it can be cleared only by a reset, which then puts the system in real address mode emulating the 8086. 

Table 10-2 shows the recommended usage of the MSW. Other encodings of these bits are not 
recommended. 

10.2.3 Other Instructions 

Instructions that verify or adjust access rights, segment limits, or privilege levels can be used to avoid 
exceptions or faults that are correctable. Section 10.3 describes such instructions. 

10.3 PRIVILEGED AND TRUSTED INSTRUCTIONS 

Instructions that execute only at CPL=O are called "privileged." An attempt to execute the privileged 
instructions at any other privilege level causes a general protection exception (#13) with an error code 
of zero. The privileged instructions manipulate descriptor tables or system registers. Incorrect use of 
these instructions can produce unrecoverable conditions. Some of these instructions (LOOT, LLOT, 
and LTR) are discussed in section 10.2. 

Table 10-2_ Recommended MSW Encodings for Processor Extension Control 

Instructions 
TS MP EM Recommended Use Causing 

Exception 7 

0 0 0 Initial encoding after RESET. 80286 operation is identical to 8086, None 
8088. Use this encoding only if no ESC instructions are to be 
executed. 

0 0 1 No processor extension is available. Software will. emulate its ESC 
function. Wait instructions do not cause exception 7. 

1 0 1 No processor extension is available. Software will emulate its ESC 
function. The current processor extension context may belong to 
another task. 

0 1 0 A processor extension exists. WAIT 
(if TS=1) 

1 1 0 A processor extension exists. The current processor extension ESC or 
context may belong to another task. The exception 7 on WAIT WAIT 
allows software to test for an error pending from a previous (if TS=1) 
processor extension operation. 
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Other privileged instructions are: 

LIDT-Load interrupt descriptor table register 

LMSW-Load machine status word 

CL TS-Clear task switch flag 

HALT-Halt processor execution 

POPF (POP flags) or IRET can change the IF value only if the user is operating at a trusted 
privilege level.POPF does not change 10PL except at Level O. 

"Trusted" instructions are restricted to execution at a privilege level of CPL ~ 10PL. For each task, 
the operating system defines a privilege level below which these instructions cannot be used. Most of 
these instructions deal with input/output or interrupt management. The 10PL field in the flag word 
that holds the privilege level limit can be changed only when CPL=O. The trusted instructions are: 

Input/Output-Block I/O, Input, and Output: IN, INW, OUT, OUTW, INSB, INSW, OUTSB, 
OUTSW 

Interrupts-Enable Interrupts, Disable Interrupts: STI, CLI 

Other-Lock Prefix 

10.4 INITIALIZATION 

Whenever the 80286 is initialized or reset, certain registers are set to predefined values. All additional 
desired initialization must be performed by user software. (See Appendix A for an example of a 286 
initialization routine.) RESET forces the 80286 to terminate all execution and local bus activity; no 
instruction or bus action will occur as long as RESET is active. Execution in real address mode begins 
after RESET becomes inactive and an internal processing interval (3-4 clocks) occurs. The initial state 
at reset is: 

FLAGS = 0002H 
MSW = FFFOH 
IP = FFFOH 
CS Selector = FOOOH 
DS Selector = OOOOH 
ES Selector = OOOOH 
IDT base = OOOOOOH 

CS.base = FFOOOOH 
DS.ba:se = OOOOOOH 
ES.base = OOOOOOH 
IDT.limit = 03FFH 

CS.limit = FFFFH 
DS.limit = FFFFH 
ES.limit = FFFFH 

Two fixed areas of memory are reserved: the system -initialization area and the interrupt table area. 
The system initialization area begins at FFFFFOH (through FFFFFFH) and the interrupt table area 
begins at OOOOOOH (through 0003FFH). The interrupt table area is not reserved. 

At this point, segment registers are valid and protection bits are set to O. The 80286 begins operation 
in real address mode, with PE=O. Maskable interrupts are disabled, and no processor extension is 
assumed.or emulated (EM=MP=O). 

DS, ES, and SS are initialized at reset to allow access to the first 64K of memory (exactly as in the 
8086). The CS:IP cOIl?-bination specifies a starting address of FFFFOH. For real address mode, the four 
most significant bits are not used, providing the same FFFOH address as the 8086 reset .location. Use 
of (or upgrade to) the protected mode can be supported by a bootstrap loader at the high end of the 
address space. As mentioned in Chapter 5, location FFFOH Qrdinarily contains a JMP instruction whose 
target is the actual beginning of a system initialization or restart program. 
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After RESET, CS points to the top 64K bytes in the 16-Mbyte physical address space. Reloading CS 
register by a control transfer to a different code segment in real address mode will put zeros in the 
upper 4 bits. Since the initial IP is FFFOH, all of the upper 64K bytes of address space may be used 
for initialization. 

Sections 10.4.1 and 10.4.2 describe the steps needed to initialize the 80286 in the real address mode 
and the protected mode, respectively. 

10.4.1 Real Address Mode 

1. Allocate a stack. 

2. Load programs and data into memory from secondary storage. 

3. Initialize external devices and the Interrupt Vector Table. 

4. Set registers and MSW bits to desired values. 

5. Set FLAG bits to desired values-including the IF bit to enable interrupts-after insuring that a 
valid interrupt handler exists for each possible interrupt. 

6. Execute (usually via an inter-segment JMP to the main system program). 

10.4.2 Protected Mode 

The full 80286 virtual address mode initialization procedure requires additional steps to operate correctly: 

1. Load programs and associated descriptor tables. 

2. Load valid GDT and IDT descriptor tables, setting the GDTR and IDTR to their correct value. 

3. Set the PE bit to enter protected mode. 

4. Execute an intra-segment JMP to clear the processor queues. 

5. Load or construct a valid task state segment for the initial task to be executed in protected mode. 

6. Load the LDTR selector from the task's GDT or OOOOH (null) if an LDT is not needed. 

7. Set the stack pointer (SS, SP) to a valid location in a valid stack segment. 

8. Mark all items not in memory as not-present. 

9. Set FLAGS and MSW bits to correct values for the desired system configuation. 

10. Initialize external devices. 

11. Ensure that a valid interrupt handler exists for each possible interrupt. 

12. Enable interrupts. 

13. Execute. 

The example in Appendix A shows the steps necessary to load all the required tables and registers that 
permit execution of the first task of a protected mode system. The program in Appendix A assumes 
that Intel development tools have been used to construct a prototype GDT, IDT, LDT, TSS, and all 
the data segments necessary to start up that first task. Typically, these items are stored on EPROM; 
on most systems it is necessary to copy them all into RAM to get going. Otherwise, the 80286 will 
attempt to write into the EPROM to set the accessed or busy bits. 
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The example in Appendix A also illustrates the ability to allocate unused entries in descriptor tables to 
grow the tables dynamically during execution. Using suitablt; naming conventions, the builder can 
allocate alias data segments that are larger than the prototype EPROM version. The code in the example 
will zero out the extra entries to permit later dynamic usage. 
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CHAPTER 11 
ADVANCED TOPICS 

This chapter describes some of the advanced topics as virtual memory management, restartable 
instructions, special segment attributes, and the validation of descriptors and pointers. 

11.1 VIRTUAL MEMORY MANAGEMENT 

When access to a segment is requested and the access byte in its descriptor indicates the segment is 
not present in real memory, the not-present fault occurs (exception 11, or 12 for stacks). The handler 
for this fault can be set up to bring the absent segment into real memory (swapping or overwriting 
another segment if necessary), or to terminate execution of the requesting program if this is not 
possible. 

The accessed bit (bit 0) of the access byte is provided in both executable and data segment descriptors 
to support segment usage profiling. Whenever the descriptor is accessed by the 80286 hardware, the 
A-bit will be set in memory. This applies to selector test instructions (described below) as well as to 
the loading of a segment register. The reading of the access byte and the restoration of it with the 
A-bit set is an indivisible operation, i.e., it is performed as a read-modify-write with bus lock. If an 
operating system develops a profile of segment usage over time, it can recognize segments of low or 
zero access and choose among these candidates for replacement. 

When a not-present segment is brought into real memory, the task that requested access to it can 
continue its execution because all instructions that load a segment register are restartable. 

Not-present exceptions occur only on segment register load operations, gate accesses, and task switches. 
The saved instruction pointer refers to the first byte of the violating instruction. All other aspects of 
the saved machine state are exactly as they were before execution of the violating instruction began. 
After the fault handler clears up the fault condition and performs an IRET, the program continues to 
execute. The only external indication of a segment swap is the additional execution time. 

11.2 SPECIAL SEGMENT ATTRIBUTES 

11.2.1 Conforming Code Segments 

Code segments intended for use at potentially different privilege levels need an attribute that permits 
them to emulate the privilege level of the calling task. Such segments are termed "conforming" segments. 
Conforming segments are also useful for interrupt-driven error routines that need only be as privileged 
as the routine that caused the error. 

A conforming code segment has bit 2 of its access byte set to 1. This means it can be referenced by a 
CALL or JMP instruction in a task of equal or lesser privilege, i.e., CPL of the task is numerically 
greater than or equal to DPL of this segment. CPL does not change when executing the conforming 
code segment. A conforming segment continues to use the stack from the CPL. This is the only case 
in which the DPL of a code segment can be numerically less than the CPL. If bit 2 is a 0, the segment 
is not conforming and can be referenced only by a task of CPL=DPL. 
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Inter-segment Returns that refer to conforming code segments use the RPL field of the code selector 
of the return address to determine the new CPL. The RPL becomes the new CPL if the conforming 
code segment DPL::5RPL. 

If a conforming segment is readable, it can be read from any privilege level without restriction. This is 
the only exception to the protection rules., This allows constants to be stored with conforming code. For 
example, a read-only look-up table can be embedded in a conforming code segment that can be used 
to convert system-wide logical ID's into character strings that represent those logical entities. 

11.2.2 Expand-Down Data Segments 

If bit 2 in the access byte of a data segment is 1, the segment is an expand-down segment. All the 
offsets that reference such a segment must be strictly greater than the segment limit, as opposed to 
normal data segments (bit 2=0) where all offsets must be less than or equal to the segment limit. 
Figure 11-1 shows an expand-down segment. 

The size of the expand down segment can be changed by changing either the base or the limit. An 
expand down segment with Limit=O will have a size of 216 -1 bytes. With a limit value of FFFFH, 
the expand down segment will have a size of 0 bytes. In an expand down segment, the base + offset 
value should always be greater than the base + limit value. Therefore, a full size segment (216 bytes) 
can only be obtained by using an expand up segment. 

The operating system should check the Expand-Down bit when a protection fault indicates that the 
limit of a data segment has been reached. If the Expand-Down bit is not set, the operating system 
should increase the segment limit; if it is set, the limit should be lowered. This supplies more room in 
either case (assuming the segment is not write-protected, i.e., that bit 1 is not 0). In some cases, if the 
operating system can ascertain that there is not enough room to expand the data segment to meet the 
need that caused the fault, it can move the data segment to a region of memory where there is enough 
room. See figure 11-2. 

BASE + FFFEH - ... ="""' ....... 

BASE + OFFSET _~","'~"" > BASE + LIMIT 

BASE + LIMIT -.,*==~ 

EXPAND DOWN 
SEGMENT 

Figure 11-1. Expand-Down Segment 

.11-2 

G301Q8 



ADVANCED TOPICS 

BASE + 10000H -"'==='1 
STACK 

SEG.B 

BASE + 10000H -..-----1 
STACK SEG.B 

+ gt~ ~:~ - ... ----1 
NEW BASE --.t"""""""""'" 

OLD BASE 

G30108 

Figure 11-2. Dynamic Segment Relocation and Expansion of Segment Limit 

11.3 POINTER VALIDATION 

Pointer validation is an important part of locating programming errors. Pointer validation is necessary 
for maintaining isolation between the privilege levels. Pointer validation consists of the following steps: 

1. Check if the supplier of the pointer is entitled to access the segment. 

2. Check if the segment type is appropriate to its intended use. 

3. Check if the pointer violates the segment limit. 

The 80286 hardware automatically performs checks 2 and 3 during instruction execution, while software 
must assist in performing the first check. This point is discussed in section 11.3.2. Software can explic· 
itly perform steps 2 and 3 to check for potential violations (rather than causing an exception). The 
unprivileged instructions LSL, LAR, VERR, and VERW are provided for this purpose. 

The load access rights (LAR) instruction obtains the access rights byte of a descriptor pointed to by 
the selector used in the instruction. If that selector is visible at the CPL, the instruction loads the 
access byte into the specified destination register as the higher byte (the low byte is zero) and the zero 
flag is set. Once loaded, the access bits can be tested. System segments such as a task state segment 
or a descriptor table cannot be read or modified~ This instruction is used to verify that a pointer refers 
to a segment of the proper privilege level and type. If the RPL or CPL is greater than DPL, or the 
selector is outside the table limit, no access value is returned and the zero flag is cleared. Conforming 
code segments may be accessed from any RPL or CPL. 

Additional parameter checking can be performed via the load segment limit (LSL) instruction. If the 
descriptor denoted by the given selector (in memory or a register) is visible at the CPL, LSL loads the 
specified register with a word that consists of the limit field of that descriptor. This can only be done 
for segments, task state segments, and local descriptor tables (Le., words from control descriptors are 
inaccessible). Interpreting the limit is a function of the segment type. For example, downward expand­
able data segments treat the limit differently than code segments do. 
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For both LAR and LSL, the zero flag (ZF) is set if the loading was performed; otherwise, the zero flag 
is cleared. Both instructions are undefined in real address mode, causing an invalid opcode exception 
(interrupt #6). 

11.3.1 Descriptor Validation 

The 80286 has two instructions, VERR and VERW, which determine whether a selector points to a 
segment that can be read or written at the current privilege, level. Neither instruction causes a protec­
tion fault if the result is negative. 

VERR verifies a segment for reading and loads ZF with 1 if that segment is readable from the current 
privilege level. The validation process checks that: 1) the selector points to a descriptor within the 
bounds of the GpT or LDT, 2) it denotes a segment descriptor (as opposed to a control descriptor), 
and 3) the segment is readable and of appropriate privilege level. The privilege check for data segments 
and non-conforming code segments is that the DPL must be numerically greater than or equal to both 
the CPL and the selector's RPL. Conforming segments are not checked for privilege level. 

VERW provides the same capability as VERR for verifying writability. Like the VERR instruction, 
VERW loads ZF if the result of the writability check is positive. The instruction checks that the 
descriptor is within bounds, is a segment descriptor, is writable, and that its DPL is numerically greater 
than or equal to both the CPL and the selector's RPL. Code segments are never writable, conforming 
or not. 

11.3.2 Pointer Integrity: RPL and the "Trojan Horse Problem" 

The Requested Privilege Level (RPL) feature can prevent inappropriate use of pointers that could 
corrupt the operation of more privileged code or data from a less privileged level. 

A common example is a file system procedure, FREAD (fiIejd, nybytes, buffer-ptr). This hypothetical 
procedure reads data from a file into a buffer, overwriting whatever is there. Normally, FREAD would 
be available at the user level, supplying only pointers to the file system procedures and data located 
and operating at a privileged level. Normally, such a procedure prevents user-level procedures from 
directly changing the file tables. However, in the absence of a standard protocol for checking pointer 
validity, a user-level procedure could supply a pointer into the file tables in place of its buffer pointer, 
causing the FREAD procedure to corrupt them unwittingly. 

By using the RPL, you can avoid such problems. The RPL field allows a privilege attribute to be 
assigned to a selector. This privilege attribute would normally indicate the privilege level of the code 
which generated the selector. The 80286 hardware will automatically check the RPL of any selector 
loaded into a segment register or a control register to see if the RPL allows access. 

To guard against invalid pointers, the called procedure need only ensure that all selectors passed to it 
have an RPL at least as high (numerically) as the original caller's cpL This indicates that the selec­
tors were not more trusted than their supplier. If one of the selectors is used to access a segment that 
the caller would not be able to access directly, i.e., the RPL is numerically greater than the DPL, then 
a protection fault will result when loaded into a segment or control register. 

The caller's CPL is available in the CS selector that was pushed on the stack as the return address. A 
special instruction, ARPL, can be used to appropriately adjust the RPL field of the pointer. ARPL 
(Adjust RPL field of selector instruction) adjusts the RPL field of a selector to become the larger of 
its original value and the value of the RPL field in a specified register. The latter is normally loaded 
frorn the caller's CS register which can be found on the stack. If the adjustment changes the selector's 
RPL, ZF is set; otherwise, the zero flag is c1eared~ 
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11.4 NPX CONTEXT SWITCHING 

The context of a processor extension (such as the 80287 numerics processor) is not changed by the task 
switch operation. A processor extension context need only be changed when a different task attempts 
to use the processor extension (which still contains the context of a previous task). The 80286 detects 
the first use of a processor extension after a task switch by causing the processor extension not-present 
exception (#7) if the TS bit is set. The interrupt handler may then decide whether a context change is 
necessary. 

The 286 services numeric errors only when it executes wait or escape instructions because the processor 
extension is running independently. Therefore, the numerics error from one task may not be recorded 
until the 286 is running a different task. If the 286 task has changed, it makes sense to defer handling 
that error until the original task is restored. For example, interrupt handlers that use the NPX should 
not have their timing upset by a numeric error interrupt that pertains to some earlier process. It is of 
little value to service someone else's error. 

If the task switch bit is set (bit 3 of MSW) when the CPU begins to execute a wait or escape instruc­
tion, the processor-extension not-present exception results (#7). The handler for this interrupt must 
know who currently "owns" the NPX, i.e., the handler must know the last task to issue a command to 
the NPX. If the owner is the same as the current task, then it was merely interrupted and the interrupt 
handler has since returned; the handler for interrupt 7 simply clears the TS bit, restores the working 
registers, and returns (restoring interrupts if enabled). 

If the recorded owner is different from the current task, the handler must first save the existing NPX 
context in the save area of the old task. It can then re-establish the correct NPX context from the 
current task's save area. 

The code example in figure 11-3 relies on the convention that each TSS entry in the GDT is followed 
by an alias entry for a data segment that points to the same physical region of memory that contains 
the TSS. The alias segment also contains an area for saving the NPX context, the kernel stack, and 
certain kernel data. That is, the first 44 bytes in that segment are the 286 context, followed by 94 bytes 
for the processor extension context, followed in some cases by the kernel stack and kernel private 
data areas. 

The implied convention is that the stack segment selector points to this data segment alias so that 
whenever there is an interrupt at level zero and SS is automatically loaded, all of the above information 
is immediately addressable. 

It is assumed that the program example knows about only one data segment that points to a global 
data area in which it can find the one word NPX owner to begin the processing described. The specific 
operations needed, and shown in the figure, are listed in table 11-1. 

11.5 MULTIPROCESSOR CONSIDERATIONS 

As mentioned in Chapter 8, a bus lock is applied during the testing and setting of the task busy bit to 
ensure that two processors do not invoke the same task at the same time. However, protection traps 
and conflicting use of dynamically varying segments or descriptors must be addressed by an inter­
processor synchronization protocol. The protocol can use the indivisible semaphore operation of the 
base instruction set. Coordination of interrupt and trap vectoring must also be addressed when multiple 
concurrent processors are operating. 

The interrupt bus cycles are locked so no interleaving occurs on those cycles. Descriptor caching is 
locked so that a descriptor reference cannot be altered while it is being fetched. 
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Figure 11-3. Example of NPX Context Switching 

When a program changes a descriptor that is shared with other processors, it should broadcast this fact 
to the other processors. This broadcasting can be done with an inter-processor interrupt. The handler 
for this interrupt must ensure that the segment registers, the LDTR and the TR, are re-Ioaded. This 
happens automatically if the interrupt is serviced by a task switch. 

Modification of descriptors of shared segments in multi-processor systems may require that the on-chip 
descriptors also be updated. For example, one processor may attempt to mark the descriptor of a shared 
segment as not-present while another is using it. Software has to ensure that the descriptors in the 
segment register caches are updated with the new information. The segment register caches can be 
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Table 11-1. NPX Context Switching 

Step Operation Lines 
(Figure 11-3) 

1. Save the working registers 28,29 
2. Set up address for kernel work area 30,31 
3. Get current task 10 from Task Register 32 
4. Clear Task Switch flag to allow NPX work 34 
5. Inhibit interrupts 35 
6. Compare owner with current task 10 37 

If same owner: 
7a. Restore working registers 48,49 
7b. and return 50 

If owner is not 
current task: 

8a. Use owner 10 to save old context in its TSS 42,43,44 
8b. Restore context of current task; 45 

restore working registers; 46 
and return 52 

updated by a re-entrant procedure that is invoked by an inter-processor interrupt. The handler must 
ensure that the segment registers, the LDTR and the TR, are re-loaded. This happens automatically if 
the interrupt is serviced by a task switch. 

11.6 SHUTDOWN 

Shutdown occurs when a severe error condition prevents further processing. Shutdown is very similar 
to HL T in that the 80286 stops executing instructions. The 80286 externally signals shutdown as a 
Halt bus cycle with Al =0. The NMI or RESET input will force the 80286 out of shutdown. The 
INTR input is ignored during shutdown. 
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APPENDIX A 
80286 SYSTEM INITIALIZATION 

Slllle('Swllch Ihe 80286 from Real Addre •• Mode 10 Prolecled Mode') 
name 

public 
.wllch 80286_mode. 
Idl_de.c,gdl_de.c 

SWllch Ihe 80286 from real addre •• mode Inlo prolecled mode. 
The Inilial EPROM GDT, IDT, TSS, and LDT (If any) con.lrucled by BLD286 
will b. copl.d from EPROM Inlo RAM. Th. RAM ar.a. are d.fln.d by data 
.egm.nl. allocat.d a. flx.d .nlrl •• In Ih. GDT. Th. CPU r.gl.t.r. for 
Ih. GDT, IDT, TSS, and LDT will be .el 10 polnl al the RAM-ba.ed 
•• gm.nt •• Th. ba •• fl.ld. In the RAM-ba •• d GDT will al.o b. updated to 
point at the RAM-ba •• d •• gm.nt •. 

Thl. cod. I. u •• d by adding It to the II.t of obl.ct modul •• glv.n 
to BLD286. BLD286 mu.t then b. told to plac. the •• gm.nt 
Inlt_code at addr ••• FFFE10H. Execution of the mode .wltch code begin. 
after RESET. Thl. happen. becau •• the mode .wltch code will .tart at 
phy.lcal addr ••• FFFFFOH, which I. the pow.r up addr •••. Thl. cod. th.n 
•• t. up RAM copl •• of the EPROM-ba •• d •• gm.nt. b.for. lumping to the 
Initial ta.k plac.d at a flx.d GDT .ntry. Aft.r the lump, the CPU 
.x.cut •• In the .tat. of the flr.t ta.k d.fln.d by BLD286. 

Thl. cod. will not u.e any of the EPROM-ba •• d tab I •• dlr.ctly. 
Such u.e would r •• ult In the 80286 writing Into EPROM to •• t 
the A bit. Any u •• of a GDT or TSS will alway. b. In the RAM copy. 
Th. limit and .Iz. of the EPROM-ba •• d GDT and IDT mu.t b •• tor.d at 
the publiC 'ymbol. Idt_de.c and gdt_d •• c. Th. location command. of BLD286 
provld. thl. function 

Int.rrupt. are dl.abl.d during thl. mod •• wltchlng code. Full error 
ch.cklng I. made of the EPROM-ba •• d GDT, IDT, TSS, and LDT to a •• ur. 
th.y are valid b.for. copying th.m to RAM. If any of the RAM-ba •• d 
alia ••• gm.nt. are .maller than the EPROM •• gm.nt. th.y are to hold, 
halt or .hutdown will occur. In g.n.ral, anyexc.ptlon or NMI will 
cau ••• hutdown to occur until the flr.t ta.k I. Invok.d. 

If the RAM •• gment I. larg.r than the EPROM •• gm.nt, the RAM .egm.nt 
will b •• xpand.d with z.ro •. If the Initial TSS 'p.clfl •• an LDT, 
the LDT will al.o b. copl.d Into Idt_alla. with zero fill If n •• d.d. 
Th. EPROM-ba •• d or RAM-ba •• d GDT, IDT, TSS, and LDT •• gm.nt. may b. located 
anywh.r. In phy.lcal m.mory. 
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de.c 
II mit 
ba.e_low 
ba.e_hlgh 
ecc!:!! 
r e • 
de.c 

80286 SYSTEM INITIALIZATION 

Define layout of a de.crlptor. 

!!I t rue 
dw 
dw 
db 
db 
dw 
end. 

Off.et of la.t byte In .egment 
Low 16 bit. of 24-blt addre •• 
High 8 bit. of 24-blt addre •• 
Acce •• right. byte 
Re.erved word 

Define the fixed GDT .'eloctor valuo. for tho de.crlptor. that 
define the EPROM-ba.ed table •. BLD286 mu.t be In.tructed to place the 
appropriate de.crlptor. Into the GDT. 

gdt_alla. equ ,.. I z e de.c GDT<l) I • data .egment In RAM for GDT 
I d t_a I I a • equ 2 • • I z e de.c GDT(2) I • data .egment In RAM for I DT 
.tart_TSS_alla. equ 3· • I z e do.c GDT(3) I • data .egment In RAM for TSS 
.tart_ta.k equ 4 •• I z e do.o" GDT< 4) I • TSS for .tartlng t a • k 
.tart_LDT_alla. equ 5 • • I z e de.c GDT<S) I • data .egment In RAM for LDT 

Define machine • tat u • word bit po.ltlon •. 

PE equ Protection enable 
MP equ Monitor proc!:!!I!lor exten!!lion 
EM equ Emulate proce!!l!!lor exten!lion 

Define particular val u e • of de.crlptor acc!:!! right. byte. 

DT_ACCESS equ 82H Acce •• byte value for an LDT 
DS_ACCESS equ S2H Acce •• byte value for data .egment 

which I • grow up, at 10 vel o , wrltoable 
TS S_A C C E S S equ 81 H Acce •• byte value for an I die TSS 
DPL equ 60H Privilege I eve I fie I d of ace!:!! rig h t • 
ACCESSED equ 1 Define accessed bit 
T ( equ 4 Po.ltlon of T ( bit 
TS LS I ZE equ 44 5 I z e of a TSS 
LDLOFFSET equ 42 Po.ltlon of LDT In TSS 
T I R P L_M ASK equ !I i z e de. c - 1 T ( and RPL fie I d m a. k 

Pa •• control from the power-up addre •• to the mode .wltch codo. 
The .egment containing thl. code mu.t be at phy.lcal addre •• FFFE10H 
to place the JMP In.tructlon at phy.lcal addre •• FFFFFOH. The ba.e 
addre •• I. cho.en according to the .Ize of thl •• egment. 

c._off.et 

segment er 

equ 
or g 
jmp 

OFE10H Low 16 bit. of .tartlng addre .. 
OFFFOH-c._off.et; Start at addre •• FFFFFOH 
re.et_.tartup Do not change CS! 
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Define the template for a temporary GOT used to locate the Initial 
GOT and stock. This dato will be copied to locotlon O. 
This space Is als. used for 0 temporary stack and flnolly serves 
as the TSS written into when entering the Inltlol TSS. 

org Place remaining code below power_up 

I nit I a I_g d t desc , ) Fill e r ond null IDT descriptor 
gdt_desc desc , ) Descriptor for EPROM GOT 
Idt_desc desc , ) Descriptor for EPROM lOT 
temp_desc desc , ) Temporary descriptor 

Define 0 descriptor that will point the GDT at location O. 
This descriptor will olso be looded Into SS to define the Initial 
protected mode stock segment. 

temp_stock desc 

Define the TSS descriptor used to allow the task switch to the 
first task to overwrite this region of memory. The TSS will overlay 
the Inltlol GOT and stack at location O. 

sove_tss desc 

Oeflne the Initial stack space and filler for the end of the TSS. 

start_pointer 

dw 
I abe I 

lobe I 
dw 

8 dup (0) 
word 

dword 
o , s tor t_ t ask ; Pointer to Initial task 

Define template for the task definition list. 

tosk_entry 
TSS_5e I 
TSS_allas 
LOT_aliOS 
tosk_entry 

reset_startup, 
C II 
cld 
xor 
mov 

struc 
dw 
dw 
dw 
ends 

d I, d I 
d s , d I 

Define layout of task description 
Selector for TSS 
Data segment alios for TSS 
Data segment alias for LDT If any 

'stort_task,stort_TSS_olla.,start_LDT_allas) 
; Terminate list 

No Interrupts allowed! 
Use autolncrement mode 
Point ES,DI at physical address OOOOOOH 

mov es,dl 
mov 
mov 

s s , d I 
sp,end_gdt-Inltlal_gdt 

Set stack at end of reserved area 
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Ita rI 

Ita r t 1 : 

rep 

80286 SYSTEM INITIALizATION 

Form an adjultmlnt factor from thl rial CS ball of FFOOOOH to thl 
IlgmlnJ ball addrlll allumld by ASM286. Any data rlflrinci madl 
Into CS ~ult add an Indlxing tlrm IBP] to complnlatl for thl dlfflrinci 
bltwlen the offllt'generalld by ASM286 and thl offllt requlrld from 
thl ball of FFOOOOH. 

proc 

c a II Itart1 

pop bp 
lub bp .. offlet It ar 11 

II d t Inltlal_gdtlbp] 

Thl value of IP at run tlml will not be 
Ihl laml al Ihl ani uled by ASM286! 

Gil trul Offllt of Itart1 

Subtract ASM286 off let of Itart1 
leaving adjultmlnt factor In BP 

SltUP null IDT to forci Ihut_own 
on any protection Irror or Interrupt 

Copy the EPROM-balld tlmporary GDT Into RAM. 

Iia II,lnltlal_gdtlbp] ; Setup polntlr to tlmporary GDT 
template In EPROM 

c x , ( en d_g d t - I nit I a I_g d t ) I 2 Sit len 9 t h 
I I : word p t rid I I , c.: I II I; Put I n tor I I e r v I d RAM area 

Look for 80287 procel.or I~tlnllon. A,lume all onll will bl read 
If an 80287 II not prelent. 

f n I nit 
mov 
fI t I W 

or 
j n z 

fllipm 
mov 

bx,EM 
ax 
a I, a I 
let_mode 

bx,MP 

Initialize 80287 If prlllnt 
Allume no 80287 
Look at Itatul of 80287 
Ho error I Ihould be pre.ent 
Jump If no 80287 

Put 80287 Into protected mode 

Swllch to prolected mode and ,etup a Ilack, GDT, and LDT. 

lei_mode: 
Imlw 
or 
or 
Imlw 
jmp 

a x 
ax,PE 
ax,bx 
ax 
• + 2 

A-4 

Gel currenl MSW 
Sel PE bll 
Sel NPX llalul flagl 
Enter prolecled mode! 
Clear queue of Inslructlons decoded 

while In Real Addrlll Modi 
CPL Is now 0, CS slill polntl al 
FFFE10 In phYIlcal memory 



I 9 d I 
mov 
mov 
xor 
I I d I 

mov 
I I r 

80286 SYSTEM INITIALIZATION 

lemp_!leckIbpl U!e Iniliel GDT In RAM orea 
ex,lemp_!lack-lnlllel_gdl ; Selup 55 wllh valid protecled mode 
!!,ax !eleclor 10 Ihe RAM GDT and !Iack 
aX,ex Sel Ihe current LDT 10 null 
ex Any reference! 10 II will cause 

an excepllon cau!lng !hutdown 
ax,nve_I!!-lnlllal_gdl Sel Inilial TSS Inlo Ihe low RAM 
ax The le!k !wllch need! a valid TSS 

Copy Ihe EPROM-ba!ed GDT Inlo Ihe RAM dala !egmenl alia!. 
flr!1 Ihe de!crlplor for Ihe RAM dela !egmenl mu!1 be copied Inlo 
the lemporary GDT. 

mov 
cmp 

l b 

mov 
mov 
call 
mov 
mov 
call 
mov 
mov 
mov 
I 9 d I 

a x , 9 d I_d e ! c I bpi. I I m I I 
ax,S'!I.e de!c-1 

bad_gdl 

bx, gdl_de! c -I nit lal_gdl 
!I,gdl_alla! 
copy_EPROM_dl 
! I , I d I _a I I a ! 
bx, I dt_de!c -I n I Ilal_gdl 
copy_EPROM_dl 
a x, 9 d I_d e! c - I n I I I e I_g d I 
d!l , I!I X 

b x , 9 d I_a II a ! 
I b x I 

Get !I.e of GDT 
Be .ure Ihe la!1 entry expecled by 

Ihl! code I! In!lde Ihe GDT 
Jump If GDT I! not big enough 

form !eleclor 10 EPROM GDT 
Gel !eleclor of GDT alia! 
Copy Inlo EPROM 
Gel uleclor of IDT allB! 
Indlcale EPROM IDT 

Selup addre!!lng Inlo EPROM GDT 

Gel GDT aile! dela !egment !eleclor 
Sel GDT to RAM GDT 
55 and TR remain In low RAM 

Copy all la!k'! TSS and LDT. !egmenl! Inlo RAM 

I e a 
copy_le!k_loop: 

cell 
add 
mov 

b x, I a! k_11 ! I I bpi 

copy_luk! 
bx,!I.e la!k_enlry 
a x , c ! : I b x I . I ! !_! e I 

or aX,lIx 
In. copy_la!k_loop 

Define II!I of Ie!k! 10 !elup 

Copy Ihem Inlo RAM 
Go 10 nexl entry 
See If Ihere I! anolher enlry 

Wllh TSS, GDT, and LDT !el, !Ierlup Ihe Initial Ie!k! 

mov 
mov 
mov 
II d t 
lmp 

b x , 9 d I_a II a ! 
d! , b x 
b x , I d I_a II a ! 
[ b x I 
! I a r I_p 0 I n I e rIb pi 

A-S 

Polnl DS al GDT 

Gel IDT alia. dala !egment !elector 
Sot [DT for error! and Interrupt! 
Sler! the flnt ta!k! 
The low RAM area I! overwritten with 

the current CPU context 

Halt here If GDT I! not big enough 
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I tar t endp 

Copy the TSS and LDT for the talk pointed at by CS:BX. 
If the talk hal .n LDT It will allo be copl.d down. 
ax .nd BP are tranlparent. 

bad_tIl: 
hit 

copy_t.lkl 

mov 
mov 
mov 
mov 
I I I 
mov 
I. r 
j n z 

mov 
.nd 
cmp 
j n z 

I • I 
cmp 
j b 

proc 

• I , g d t_. II a I 
d I , I I 
I I, c I: [b x) . t. 1_.11 a. 
e!l I 5 1 
ex J 5 1 
II,CI: lb.). tl._ •• 1 
d x , I I 
b.d_tsl 

d I , d h 
dh, not DPL 
dh,TSS_ACCESS 
b a d_ t •• 

ex, !I 1 
c • , T 5 5_5 I Z E - 1 
b.d_t.1 

Halt here If TSS I. Invalid 

G.t .ddr •••• bliity to GDT 

G.t .elector for TSS alia. 
Point ES at .Iia. data legment 
G.t length of TSS alia. 
G.t TSS •• I.clor 
Get .lla •• cce •• rlghtl 
Jump If Invalid r.f.renc. 

S.v. TSS de.criptor BCC ••• byte 
Ignor. privilege 
See if TSS 
Jump If not 

G.t I.ngth of EPROM ba •• d TSS 
Verify It I. of prop.r .ize 
Jump If it I. not big .nough 

Setup for moving the EPROM-ba •• d TSS to RAM 
DS pOlntl .t GDT 

mov 
mov 
c .11 

I .il. acce •• , DS_ACCESS 
d. , • i 
copy_wi th_f ill 

Make TSS into dol •• egment 
Point DS at EPROM TSS 
Copy DS •• gment to ES with zero fill 

CX has copy count, AX-CX fill count 

S.t the GDT TSS limit Bnd b ••• addre •• to the RAM value •. 

mov 
mov 
mov 
mov 
mov 
mov!lw 
mOV!5W 

lod.w 
mov 
• to. w 
mav,'" 

a.,gdt_Bli •• 
d !I. J is x 
e!l , I!I X 

d i , c. : I b x) . t •• _ •• I 
• i , c • : I b x I • t •• _a I i a • 

• h , d I 

; Re.tore GDT addre •• ing 
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Get TSS .elector 
Get RAM alia •• elector 
Copy limit 
Copy low 16 bit. of oddre •• 
G.t high 8 bit. of oddr ••• 
Mark •• TSS d •• criptor 
Fill in high oddre •• and Bcce •• byt •• 
Copy r ••• rv.d word 
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See If a valid LDT Is specified for the startup task 
[f so then copy the EPROM version Into the RAM alias. 

1II0V 

1II0V 

and 
jZ 

push 
I. r 
j n z 

mov 
and 
cmp 
j n e 

IIOV 

mov 
I s I 
call 
mov 

d s , c s : I b x I • t s s_a I I as 
sl,ds:word ptr LDT_OFFSET 
sl,not T[RPL_MASK 
n 0_1 d t 

d I, dh 
dh,not DPL 
dh, DT_ACCESS 
b a d_1 d t 

Address TSS to get LDT 

Ignore TI and RPL 
Skip this If no LDT used 

Save LDT selector 
Test descriptor 
Jump If Invalid selector 

Save LDT descriptor access byte 
Ignore privilege 
Be sure It Is an LDT descriptor 
Jump If Invalid 

es:lsII.access,DS_ACCESS; Mark LDT as data segment 
ds,sl Point DS at EPROM LDT 
II x, ! 1 
tIS t_d t_11 mit 
ex,' x 

Get LDT 1IIIIIt 
Verify It Is valid 
Save for later 

E.amlne the LDT alias segment and, If good, copy to RAM 

1II0V 

mov 
I s I 
call 
call 

s I , c s : lb. I • I d t _a I I a s 
e!l, !Ii 
IlX t 51 

tIS t_d t_11 mit 
cop y_w I t h_ f I I I 

Get Idt alias selector 
POint ES at alias segment 
Get length of alias seg"ent 
Verify It Is valid 
Copy LDT Into RAM alias segment 

Set the LDT limit and base address to the RAM copy of the LDT. 

mov 
pop 
mov 
mov 
1110 V 

movlw 
mav.w 
lodsw 
mov 
stosw 
mavlw 

s I , c s : lb. I • I d t_a II a s 
d I 
a. , g d t_a I I as 
d s ,a. 
e!l I II X 

ah, d I 

endp 
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Restore LDT alias selector 
Restore LDT selector 
Restore GDT addressing 

Move the RAM LDT limit 
Move the low 16 bits acrosS 
Get the high 8 bits 
Mark as LDT descriptor 
Set high addrels and accell rlghtl 
Copy reserved word 

A 11 done 

Halt here If LDT II Invalid 
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Test the descriptor table size In AX to verify that It Is an 
even number of descriptors In length. 

push 
and 
em p 
pop 
j n e 

ret 
b a d_d t_11 mit: 

hit 

proc 

ax 
a 1',7 
a I , 7 
a x 
bod_dt_llmlt 

endp 

Save length 
Look at low order bit. 
Must be all one. 
Re.tore length 

A I 10K 

Ole! 

Copy the EPROM OT at .elector EX in the temporary GOT to the alios 
data .egment at .elector 51. Any Improper de.crlptor. or limit. 
will cou.e .hutdown! 

mov 
mov 
mov 
mov 
I • I 
mov 
c a I I 
mov 
mov 
mov 
push 
10 d • w 
col I 

• to. w 
mov!lw 
mov5w 
mov!lw 
pop 
mov 

proc 

e x I , !! 

I! !S I i!I X 

e • : ( b x I . ace e •• , 0 S_A C C E 5 5 ; 
e,,(bxl.re.,O 
a x t b x 
ex, a x 
te.t_dt_limlt 
d I , 9 d t_d e • c - I nit I a I_g d t 
d. , d I 
d I , t em p_d e. c - I nit i a l_g d t ; 
d I 

endp 

A-a 

Point ES:OI at temporary de.crlptor 

Mark de.crlptor a. a data .egment 
Clear re.erved word 
Get limit of EPROM OT 
Save for later 
Verify It i5 a proper limit 
Addre •• EPROM GOT In OS 

Get .elector for temporary de.crlptor 
Save off5et for later u.e a •• elector 
Get alia •• egment .Ite 
Verify it I. an even multiple of 
de.crlptor. in length 

Put length Into temporory 
Copy remaining entrle. Into temporary 

ES now point. at the GOT alia. area 
OS now point. at EPROM DT a5 doto 
Copy .egment to alia. with zero fill 
CX i. copy count, AX-CX i. fill count 
Fall In toe 0 p y_w It h_ fill 
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Copy the .egment at DS to the .egment at ES for length CX. 
fill the end with AX-CX zero •• U.e word operation. for .peed but 
allow odd byte operation •• 

CD py_w It h_ fill 

xor 
x 0 r 

• u b 
add 
r c r 

rep mov!w 
xchg 
J n c 

mov.b 
Dr 
J z 

• to. b 
dec 

even_copy: 

• h r 
rep stO!lW 

J n C 

• to. b 
ex It_copy: 

ret 

cop y _w I t h_ f I I I 

Inl t_code 

$8 

proc 

• I •• I 
d I • d I 
• x • ex 
eXt 1 
eXt 1 

I x t ex 
even_copy 

C x J ex 
exit_copy 

cx 

ex J 1 

exit_copy 

endp 

end. 
end 
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Start at beginning of .egment • 

form fill count 
Convert limit to count 
Allow full 64K move 
Copy DT Into alia. area 
Get fill count and zero AX 
Jump If even byte count on copy 

Copy odd byte 

Exit If no fill 

Even out the .egment off.et 
AdJu.t remaining fill count 

form word count on fill 
Clear unu.ed word. at end 
Exit If no odd byte remain. 

Clear la.t odd byte 
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APPENDIX B 
THE 80286 INSTRUCTION SET 

This section presents the 80286 instruction set using Intel's ASM286 notation. All possible operand 
types are shown. Instructions are organized alphabetically according to generic operations. Within each 
operation, many different instructions are possible depending on the operand. The pages are presented 
in a standardized format, the elements of which are described in the following paragraphs. 

Opcode 

This column gives the complete object code produced for each form of the instruction. Where possible, 
the codes are given as hexadecimal bytes, presented in the order in which they will appear in memory. 
Several shorthand conventions are used for the parts of instructions which specify operands. These 
conventions are as follows: 

/ n: (n is a digit from 0 through 7) A ModRM byte, plus a possible immediate and displacement field 
follow the opcode. See figure B-1 for the encoding .of the fields. The digit n is the value of the REG 
field of the ModRM byte. To obtain the possible hexadecimal values for / n, refer to column n of 
table B-1. Each row gives a possible value for the effective address operand to the instruction. The 
entry at the end of the row indicates whether the effective address operand is a register or memory; if 
memory, the entry indicates what kind of indexing and/or displacement is used. Entries with D8 or 
D 16 signify that a one-byte or two-byte displacement quantity immediately follows the ModRM and 
optional immediate field bytes. The signed displacement is added to the effective address offset. 

/ r: A ModRM byte that contains both a register operand and an effective address operand, followed 
by a possible immediate and displacement field. See figure B-2 for the encoding of the fields. The 
ModRM byte could be any value appearing in table B-1. The column determines which register operand 
was selected; the row determines the form of effective address. If the row entry mentions D8 or D 16, 
then a one-byte or two-byte displacement follows, as described in the previous paragraph. 

cb: A one-byte signed displacement in the range of -128 to + 127 follows the opcode. The displace­
ment is sign-extended to 16 bits, and added modulo 65536 to the offset of the instruction FOLLOW­
ING this instruction to obtain the new IP value. 

CW: A two-byte displacement is added modulo 65536 to the offset of the instruction FOLLOWING 
this instruction to obtain the new IP value. 

cd: A two-word pointer which will be the new CS:IP value. The offset is given first, followed by the 
selector. 

db: An immediate byte operand to the instruction which follows the opcode and ModRM bytes. The 
opcode determines if it is a signed value. 

dw: An immediate word operand to the instruction which follows the opcode and ModRM bytes. All 
words are given in the 80286 with the low-order byte first. 

+ rb: A register code from 0 through 7 which is added to the hexadecimal byte given at the left of 
the plus sign to form a single opcode byte. The codes are: AL=O, CL=I, DL=2, BL=3, AH=4, 
CH=5, DH=6, and BH=7. 

8-1 



THE 80286 INSTRUCTION SET 

pp/n Instruction Byte Format 

"mod" Field Bit Assignments 

mod Displacement 

00 OISP = 0(2), disp-Iow and disp-high are absent 
01 OISp = disp-Iow sign-extended to 16-bits, disp-hlgh is absent 
10 OISP = disp-high: disp-Iow 
11 rIm is treated as a "reg" field \ 

"rim" Field Bit Assignments 

rim Operand Addre •• 

000 (BX) + (SI) + OISP 
001 (BX) + (01) + OISP 
010 (BP) + (SI) + OISP 
011 (BP) + (01) + OISp 
100 (SI) -I- OISp 
101 (01) + OISp 
110 (Bp) + 0ISP(2) 
111 (BX) + OISp 

OISp follows 2nd byte of instruction (before data if required). 

NOTES: 

1. Opcode indicates presence and size of immediate value. 

2. Except if mod =00 and r/m=110 then EA=disp-high: disp-Iow. 

Figure B-1_ In Instruction Byte Format 
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Table B-1. ModRM Values 

Rb = AL CL OL BL AH CH OH BH 
Rw = AX CX OX BX SP BP SI 01 
REG = 0 1 2 3 4 5 6 7 

ModRM values Effective address 

00 08 10 18 20 28 30 38 [BX + SI] 
01 09 11 19 21 29 31 39 [BX + 01] 
02 OA 12 1A 22 2A 32 3A [BP + SI] 

mod=OO 03 OB 13 1B 23 2B 33 3B [BP + 01] 
04 OC 14 1C 24 2C 34 3C [SI] 
05 00 15 10 25 20 35 3D [01] 
06 OE 16 1E 26 2E 36 3E 016 (simple var) 
07 OF 17 1F 27 2F 37 3F [BX] 

40 48 50 58 60 68 70 78 [BX + SI] + 08(1) 
41 49 51 59 61 69 71 79 [BX + 01] + 08 
42 4A 52 5A 62 6A 72 7A [BP + SI] + 08 

mod=01 43 4B 53 5B 63 6B 73 7B [BP + 01] + 08 
44 4C 54 5C 64 6C 74 7C [SI] + 08 
45 40 55 50 65 60 75 70 [01] + 08 
46 4E 56 5E 66 6E 76 7E [BP] + 08(2) 
47 4F 57 5F 67 6F 77 7F [BX] + 08 

80 88 90 98 AO A8 BO B8 [BX + SI] + 016(3) 
81 89 91 99 A1 A9 B1 B9 [BX + 01] + 016 
82 8A 92 9A A2 AA B2 BA [BP +SI] + 016 

mod=10 83 8B 93 9B A3 AB B3 BB . [BP + 01] + 016 
84 8C 94 9C A4 AC B4 BC [SI] + 016 
85 80 95 90 A5 AD B5 BO [01] + 016 
86 8E 96 9E A6 AE B6 BE [BP] + 016(2) 
87 8F 97 9F A7 AF B7 BF [BX] + 016 

CO C8 DO 08 EO E8 FO F8 Ew=AX Eb=AL 
C1 C9 01 09 E1 E9 F1 F9 Ew=CX Eb=CL 
C2 CA 02 OA E2 EA F2 FA Ew=OX Eb=OL 

mod=11 C3 CB 03 DB E3 EB F3 FB Ew=BX Eb=BL 
C4 CC 04 DC E4 EC F4 FC Ew=SP Eb=AH 
C5 CD 05 DO E5 ED F5 FO Ew=BP Eb=CH 
C6 CE 06 DE E6 EE F6 FE Ew=SI Eb=OH 
C7 CF 07 OF E7 EF F7 FF Ew=OI Eb=BH 

NOTES: 

1. 08 denotes an 8-bit displacement following the ModRM byte that is sign-extended and added to the 
index. 

2. Default segment register is SS for effective addresses containing a BP index; OS is for other memory 
effective addresses. 

3. 016 denotes the 16-bit displacement following the ModRM byte that is added to the index. 
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Ir Instruction Byte Format 

"mod" Field Bit Assignments 
, 

mod Displacement 

00 DISP - 0(2), disp-Iow and disp-high are absent 
01 DISP - disp-Iow sign-extended to 16-bits, disp-high is absent 
10 DISP = disp-high; disp-Iow 
11 rIm is treated as a "reg" field 

"r" Field Bit Assignments 

16-Blt (w - 1) 8-Blt(w = 0) Segment 

000 AX 000 AL 
001 CX 001 CL 
010 DX 010 DL 
011 BX 011 BL 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 DH 
111 DI 111 BH 

"rIm" Field Bit Assignments 

rim 

000 
001 
010 
011 
100 
101 
110 
111 

DISP follows 2nd byte of instruction (before data if required). 

NOTES: 

1. Opcode indicates presence and size of immediate field. 

Operand Address 

(BX) + (SI) + DISP 
(BX) + (DI) + DISP 
(BP) + (SI) + DISP 
(BP) + (DI) + DISP 
(51) + DISP 
(DI) + DISP 
(BP) + DISP(2) 
(BX) + DISP 

2. Except if mod =00 and r/m=110 then EA=disp-high: disp-Iow. 

Figure B·2. Ir Instruction Byte Format 
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+ rw: A register code from 0 through 7 which is added to the hexadecimal byte given at the left of 
the plus sign to form a single opcode byte. The codes are: AX=O, CX=I, DX=2, BX=3, SP=4, 
BP=5, SI=6, and DI=7. 

Instruction 

This column gives the instruction mnemonic and possible operands. The type of operand used will 
determine the opcode and operand encodings. The following entries list the type of operand which can 
be encoded in the format shown in the instruction column. The Intel convention is to place the desti­
nation operand as the left hand operand. Source-only operands follow the destination operand. 

In many cases, the same instruction can be encoded several ways. It is recommended that you use the 
shortest encoding. The short encodings are provided to save memory space. 

cb: a destination instruction offset in the range of 128 bytes before the end of this instruction to 127 
bytes after the end of this instruction. 

cw: a destination offset within the same code segment as this instruction. Some instructions allow a 
short form of destination offset. See cb type for more information. 

cd: a destination address, typically in a different code segment from this instruction. Using the cd: 
address form with call instructions saves the code segment selector. 

db: a signed value between -128 and + 127 inclusive which is an operand of the instruction. For 
instructions in which the db is to be combined in some way with a word operand, the immediate value 
is sign-extended to form a word. The upper byte of the word is filled with the topmost bit of the 
immediate value. 

dw: an immediate word value which is an operand of the instruction. 

eb: a byte-sized operand. This is either a byte register or a (possibly indexed) byte memory variable. 
Either operand location may be encoded in the ModRM field. Any memory addressing mode may be 
used. 

ed: a memory-based pointer operand. Any memory addressing mode may be used. Use of a register 
addressing mode will cause exception 6. 

ew: a word-sized operand. This is either a word register or a (possibly indexed) word memory variable. 
Either operand location may be encoded in the ModRM field. Any memory addressing mode may be 
used. 

m: a memory location. Operands in registers do not have a memory address. Any memory addressing 
mode may be used. Use of a register addressing mode will cause exception 6. 

mb: a memory-based byte-sized operand. Any memory addressing mode may be used. 

mw: a memory-based word operand. Any memory addressing mode may be used. 

rb: one of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH; rb has the value 0,1,2,3,4,5,6, 
and 7, respectively. 

rw: one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI; rw has the value 0,1,2,3,4,5,6, and 
7, respectively. 
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xb: a simple byte memory variable without a base or index register. MOV instructions between AL 
and memory have this optimized form if no indexing is required. 

xw: a simple word memory variable without a base or index register. MOV instructions between AX 
and memory have this optimized form if no indexing is required. ' 

Clocks 

This column gives the number of clock cycles that this form of the instruction takes to execute. The 
amount of time for each clock cycle is computed by dividing one microsecond by the number of MHz 
at which the 80286 is running. For example, aVO-MHz 80286 (with the eLK pin connected to a 
20-MHz crystal) takes 100 nanoseconds for each clock cycle. 

Add one clock to instructions tfiat use the base plus index plus displacement form of addressing. Add 
two clocks for each 16-bit memory based operand reference located on an odd physical address. Add 
one clock for each wait state added to each memory read. Wait states inserted in memory writes or 
instruction fetches do not necessarily increase execution time. 

The clock counts establish the maximum execution rate of the 80286. With no delays in bus cycles, 
the actual clock count of an 80286 program will average 5-10% more than the calculated clock count 
due to instruction sequences that execute faster than they can be fetched from memory. 

Some instruction forms give two clock counts, one unlabelled and one labelled. These counts indicate 
that the instruction has two different clock times for two different circumstances. Following are the 
circumstances for each possible label: 

mem: The instruction has an operand that can either be a register or a memory variable. The unlabelled 
time is for the register; the mem time is for the memory variable. Also, one additional clock cycle is 
taken for indexed memory variables for which all three possible indices (base register, index register, 
and displacement) must be added. 

noJ: The instruction involves a conditional jump or interrupt. The unlabelled time holds when the 
jump is made; the noj time holds when the jump is not made. 

pm: If the instruction takes more time to execute when the 80286 is in Protected Mode. The unlabelled 
time is for Real Address Mode; the pm time is for Protected Mode. 

Description 

This is a concise description of the operation performed for this form .of the instruction. More details 
are given in the "Operation" section that appears later in this chapter. 

Flags Modified 

This is a list of the flags that are set to a meaningful value by the instruction. If a flag is always set to 
the same value by the instruction, the value is given ("=0" or "= 1") after the flag name. 
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Flags Undefined 

This is a list of the flags that have an undefined (meaningless) setting after the instruction is executed. 

All flags not mentioned under "Flags Modified" or "Flags Undefined" are unchanged by the 
instruction. 

Operation 

This section fully describes the operation performed by the instruction. For some of the more compli­
cated instructions, suggested usage is also indicated. 

Protected Mode Exceptions 

The possible exceptions involved with this instruction when running under the 80286 Protected Mode 
are listed below. These exceptions are abbreviated with a pound sign (#) followed by two capital letters 
and an optional error code in parenthesis. For example, #GP(O) denotes the general protection excep­
tion with an error code of zero. The next section describes all of the 80286 exceptions and the machine 
state upon entry to the exception. 

If you are an applications programmer, consult the documentation provided with your operating system 
to determine what actions are taken by the system when exceptions occur. 

Real Address Mode Exceptions 

Since less error checking is performed by the 80286 when it is in Real Address Mode, there are fewer 
exceptions in this mode. One exception that is possible in many instructions is #GP(O). Exception 13 is 
generated whenever a word operand is accessed from effective address OFFFFH in a segment. This 
happens because the second byte of the word is considered located at location 10000H, not at location 
0, and thus exceeds the segment's address ability limit. 

Protection Exceptions 

In parallel with the execution of instructions, the protected-mode 80286 checks all memory references 
for validity of addressing and type of access. Violation of the memory protection rules built into the 
processor will cause a transfer of program control to one of the interrupt procedures described in this 
section. The interrupts have dedicated positions within the Interrupt Descriptor Table, which is shown 
in table B-2. The interrupts are referenced within the instruction set pages by a pound sign (#) followed 
by a two-letter mnemonic and the optional error code in parenthesis. 

Error Codes 

Some exceptions cause the 80286 to pass a 16-bit error code to the interrupt procedure. When this 
happens, the error code is the last item pushed onto the stack before control is tranferred to the inter­
rupt procedure. If stacks were switched as a result of the interrupt (causing a privilege change or task 
switch), the error code appears on the interrupt procedure's stack, not on the stack of the task that was 
interrupted. 
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Table 8-2. Protection Exceptions of the 80286 

Abbreviation Interrupt Number Description 

#UD 6 i Undefined Opcode 
#NM 7 No Math Unit Available 
#DF 8 Double Fault 
#MP 9 Math Unit Protection Fault 
#TS 10 Invalid Task State Segment 
#NP 11 I Not Present 
#SS 12 Stack Fault 
#GP 13 General Protection 
#MF 16 Math Fault 

The error code generally contains the selector of the segment that caused the protection violation. The 
RPL field (bottom two bits) of the error code does not, however, contain the privilege level. Instead, it 
contains the following information: 

• Bit 0 contains the value 1 if the exception was detected during an interrupt caused by an event 
external to the program (i.e., an external interrupt, a single step, a processor extension not-present 
exception, or a processor extension segment overrun). Bit 0 is 0 if the exception was detected while 
processing the regular instruction stream, even if the instruction stream is part of an external 
interrupt handling procedure or task. If bit 0 is set, the instruction pointed to by the saved CS:IP 
address is not responsible for the error. The current task can be restarted unless this is 
exception 9. 

Bit 1 is 1 if the selector points to the Interrupt Descriptor Table. In this case, bit 2 can be ignored, 
and bits 3-10 contain the index into the lOT. ' 

• Bit 1 is 0 if the selector points to the Global or Local Descriptor Tables. In this case, bits 2-15 
have their usual selector interpretation: bit 2 selects the table (1 = Local, O=Giobal), and bits 
3-15 are the index into the table. 

In some cases the 80286 chooses to pass an error code with no information in it. In these cases, all 16 
bits of the error code are zero. 

The existence and type of error codes are described under each of the following individual exceptions. 

#DF 8 Double Fault (Zero Error Code) 

This exception is generated when a second exception is detected while the processor is attempting to 
transfer control to the handler for an exception. For instance, it is generated if the code segment 
containing the exception handler is marked not present. It is also generated if invoking the exception 
handler causes a stack overflow. 

This exception is not generated during the execution of an exeception handler. Faults detected within 
the instruction stream are handled by regular exceptions. 

The error code is normally zero. The saved CS:IP will point at the instruction that was attempting to 
execute when the double fault occurred. Since the error code is normally zero, no information on the 
source of the exception is available. Restart is not possible. 

The "double fault" exception does not occur when detecting a new exception while trying to invoke 
handlers for the following exceptions: 1,2,3,4,5,6,7,9, and 16. 
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If another exception is detected while attempting to perform the double fault exception, the 80286 will 
enter shutdown (see section 11.5). 

#GP 13 General Protection (Selector or Zero Error Code) 

This exception is generated for all protection violations not covered by the other exceptions in this 
section. Examples of this include: 

1. An attempt to address a memory location by using an offset that exceeds the limit for the segment 
involved. 

2. An attempt to jump to a data segment. 

3. An attempt to load SS with a selector for a read-only segment. 

4. An attempt to write to a read-only segment. 

5. Exceeding the maximum instruction length of 10 bytes. 

If #GP occurred while loading a descriptor, the error code passed contains the selector involved. Other­
wise, the error code is zero. 

If the error code is not zero, the instruction can be restarted if the erroneous condition is rectified. If 
the error code is zero either a limit violation, a write protect violation, or an illegal use of invalid 
segment register occurred. An invalid segment register contains the values 0-3. A write protect fault 
on ADC, SBB, RCL, RCR, or XCHG is not restartable. 

#MF 16 Math Fault (No Error Code) 

This exception is generated when the numeric processor extension (the 80287) detects an error signalled 
by the ERROR input pin leading from the 80287 to the 80286. The ERROR pin is tested at the 
beginning of most floating point instructions, and when aWAIT instruction is executed with the EM 
bit of the Machine Status Word set to 0 (Le., no emulation of the math unit). The floating point 
instructions that do not cause the ERROR pin to be tested are FNCLEX, FNINIT, FSETPM, 
FNSTCW, FNSTSW, FNSA VE, and FNSTENV. 

If the handler corrects the error condition causing the exception, the floating point instruction that 
caused #MF can be restarted. This is not accomplished by IRET, however, since the fault occurs at 
the floating point instruction that follows the offending instruction. Before restarting the numeric 
instruction, the handler must obtain from the 80287 the address of the offending instruction and the 
address of the optional numeric operand. 

#MP 9 Math Unit Protection Fault (No Error Code) 

This exception is generated if the numeric operand is larger than one word and has the second or 
subsequent words outside the segment's limit. Not all math addressing errors cause exception 9. If the 
effective address of an ESCAPE instruction is not in the segment's limit, or if a write is attempted on 
a read-only segment, or if a one-word operand violates a segment limit, exception 13 will occur. 

The #MP exception occurs during the execution of the numeric instruction by the 80287. Thus, the 
80286 may be in an unrelated instruction stream at the time. Exception 9 may occur in a task unrelated 
to the task that executed the ESC instruction. The operating system should keep track of which task 
last used the NPX (see section 11.4). 
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The offending floating point instruction cannot be restarted; the task which attempted to execute the 
offending numeric instruction must be aborted. However, if exception 9 interrupted another task, the 
interrupted task may be restarted. 

The exception 9 handler must execute FNINIT before executing any ESCAPE or WAIT instruction. 

#NM 7 No Math Unit Available (No Error Code) 

This exception occurs when any floating point instruction is executed while the EM bit or the TS bit 
of the Machine Status Word is 1. It also occurs when a WAIT instruction is encountered and both the 
MP and TS bits of the Machine Status Word are 1. 

Depending on the setting of the MSW bits that caused this exception, the exception handler could 
provide emulation of the 80287, or it could perform a context switch of the math processor to prepare 
it for use by another task. 

The instruction causing #NM can be restarted if the handler performs a numeric context switch. If the 
handler provided emulation of the math unit, it should advance the return pointer beyond the floating 
point instruction that caused NM. 

#NP 11 Not Present (Selector Error Code) 

This exception occurs when CS, DS, ES, or the Task Register is loaded with a descriptor that is 
marked not present but is otherwise valid. It can occur in an LLDT instruction, but the #NP exception 
will not occur if the processor attempts to load the LDT register during a task switch. A not-present 
LDT encountered during a task switch causes the #TS exception. 

The error code passed is the selector of the descriptor that is marked not present. 

Typically, the Not Present exception handler is used to implement a virtual memory system. The 
operating system can swap inactive memory segments to a mass-storage device such as a disk. Appli­
cations programs need not be told about this; the next time they attempt to access the swapped-out 
memory segment, the Not Present handler will be invoked, the segment will be brought back into 
memory, and the offending instruction within the applications program will be restarted. 

If #NP is detected on loading CS, DS, or ES in a task switch, the exception occurs in the new task, 
and the IRET from the exception handler jumps directly to the next instruction in the new task. 

The Not Present exception handler must contain special code to complete the loading of segment 
registers when #NP is detected in loading the CS or DS registers in a task switch and a trap or inter­
rupt gate was used. The DS and ES registers have been loaded but their descriptors have not been 
loaded. Any memory reference using the segment register may cause exception 13. The #NP exception 
handler should execute code such as the following to ensure full loading of the segment registers: 

MOV AX,DS 
MOVDS,AX 
MOV AX,ES 
MOVES,AX 
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#SS 12 Stack Fault (Selector or Zero Error Code) 

This exception is generated when a limit violation is detected in addressing through the SS register. It 
can occur on stack-oriented instructions such as PUSH or POP, as well as other types of memory 
references using SS such as MOV AX,[BP+28j. It also can occur on an ENTER instruction when 
there is not enough space on the stack for the indicated local variable space, even if the stack exception 
is not triggered by pushing BP or copying the display stack. A stack exception can therefore indicate 
a stack overflow, a stack underflow or a wild offset. The error code will- be zero. 

#SS is also generated on an attempt to load SS with a descriptor that is marked not present but is 
otherwise valid. This can occur in a task switch, an inter-level call, an inter-level return, a move to the 
SS instruction or a pop to the SS instruction. The error code will be non-zero. 

#SS is never generated when addressing through the DS or ES registers even if the offending register 
points to the same segment as the SS register. 

The #SS exception handler must contain special code to complete the loading of segment registers. 
The DS and ES registers will not be fully loaded if a not-present condition is detected while loading 
the SS register. Therefore, the #SS exception handler should execute code such as the following to 
insure full loading of the segment registers: 

MOV AX,DS 
MOVDS,AX 
MOV AX,ES 
MOVES,AX 

Generally, the instruction causing #SS can be restarted, but there is one special case when it cannot: 
when a PUSHA or POPA instruction attempts to wrap around the 64K boundary of a stack segment. 
This condition is identified by the value of the saved SP, which can be either OOOOH, OOOlH, OFFFEH, 
or OFFFFH. 

#TS 10 Invalid Task State Segment (Selector Error Code) 

This exception is generated during a task switch when the new task state segment is invalid, that is, 
when a task state segment is too small; when the LDT indicated in a TSS is invalid or not present; 
when the SS, CS, DS, or ES indicated in a TSS are invalid (task switch); when the back link in a TSS 
is invalid (inter-task IRET). 

#TS is not generated when the SS, CS, DS, or ES back link or privileged stack selectors point to a 
descriptor that is not present but otherwise is valid. #NP is generated in these cases. 

The error code passed to the exception handler contains the selector of the offending segment, which 
can either be the Task State Segment itself, or a selector found within the Task State Segment. 

The instruction causing #TS can be restarted. 

#TS must be handled through a task gate. 

The exception handler must reset the busy bit in the new TSS. 
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#UD 6 Undefined Opcode (No Error Code) 

This exception is generated when an invalid operation code is detected in the instruction stream. 
Following are the cases in which #UD can occur: 

1. The first byte of an instruction is completely invalid (e.g., 64H). 

2. The first byte indicates a 2-byte opcode and the second byte is invalid (e.g., OFH followed by 
OFFH). 

3. An invalid register is used with an otherwise valid opcode (e.g., MOY CS,AX). 

4. An invalid opc9de extension is given in the REG field of the ModRM byte (e.g., OF6H /1). 

5. A register operand is given in an instruction that requires a memory operand (e.g., LGDT AX). 

Since the offending opcode will always be invalid, it cannot be restarted. However, the #UD handler 
might be coded to implement an extension of the 80286 instruction set. In that case, the handler could 
advance the return pointer beyond the extended instruction and return control to the program after the 
extended instruction is emulated. Any such extensions may be incompatible with the 80386. 

Privilege Level and Task Switching on the 80286 

The 80286 supports many of the functions necessary to implement a protected, multi-tasking operating 
system in hardware. This support is provided not by additional instructions, but by extension of the 
semantics of 8086/8088 instructions that change the value of CS:IP. 

Whenever the 80286 performs an inter-segment jump, call, interrupt, or return, it consults the Access 
Rights (AR) byte found in the descriptor table entry of the selector associated with the new CS value. 
The AR byte determines whether the long jump being made is through a gate, or is a task switch, or 
is a simple long jump to the same privilege level. Table B-3 lists the possible values of the AR byte. 
The "privilege" headings at the top of the table give the Descriptor Privilege Level, which is referred 
to as the DPL within the instruction descriptions. 

Each of the CALL, INT, IRET, JMP, and RET instructions contains on its instruction set pages a 
listing of the access rights checking and actions taken to implement the instruction. Instructions involv­
ing task switches contain the symbol SWITCH_TASKS, which is an abbreviation for the following list 
of checks and actions: 

SWITCH_TASKS: 
Locked set AR byte of new TSS descriptor to Busy TSS (Bit 1 = 1) 
Current TSS cache must be valid with limit 2: 41 else #TS (error code will be new TSS, but back link 
pOints at old TSS) 
Save machine state in current TSS 
If nesting tasks, set the new TSS link to the current TSS selector 
Any exception will be in new context Else set the AR byte of current TSS 
descriptor to Available TSS (Bit 1 = 0) 
Set the current TR to selector, base, and limit of new TSS 
New TSS limit 2: 43 else #TS (new TSS) 
Set all machine registers to values from new TSS without loading descriptors for OS, ES, CS, SS, LOT 
Clear valid flags for LOT,SS,CS,OS,ES (not valid yet) 
If nesting tasks, set the Nested Task flag to 1 
Set the Task Switched flag to 1 
LOT from the new TSS must be within GOT table limits else #TS(LOT) 
AR byte from LOT descriptor must specify LOT segment else #TS(LOT) 
AR byte from LOT descriptor must indicate PRESENT else #TS(LOT) 
Load LOT cache with new LOT descriptor and set valid bit 
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Set CPL to the RPL of the CS selector in the new TSS 
If new stack selector is null #TS(SS) 
SS selector must be within its descriptor table limits else #TS(SS) 
SS selector RPL must be equal to CPL else #TS(SS) 
DPL of SS descriptor must equal CPL else #TS(SS) 
SS descriptor AR byte must indicate writable data segment else #TS(SS) 
SS descriptor AR byte must indicate PRESENT else #SS(SS) 
Load SS cache with new stack segment and set valid bit 
New CS selector must not be null else #TS(CS) 
CS selector must be within its descriptor table limits else #TS(CS) 
CS descriptor AR byte must indicate code segment else #TS(CS) 
If non-conforming then DPL must equal CPL else #TS(CS) 
If conforming then DPL must be :::; CPL else #TS(CS) 
CS descriptor AR byte must indicate PRESENT else #NP(CS) 
Load CS cache with new code segment descriptor and set valid bit 
For OS and ES: 
If new selector is not null then perform following checks: 

Index must be within its descriptor table limits else #TS(segment selector) 
AR byte must indicate data or readable code else #TS(segment selector) 
If data or non-conforming code then: 

OPL must be ;::: CPL else #TS(segment selector) 
OPL must be ;::: RPL else #TS(segment selector) 

AR byte must indicate PRESENT else #NP(segment selector) 
Load cache with new segment descriptor and set valid bit 
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Table 8-3. Hexadecimal Values for the Access Rights 8yte 

Not present, Present, 
privilege = privilege = Descriptor Type 

0 1 2 3 0 1 2 3 

00 20 40 60 80 AO CO EO Illegal 
01 21 41 61 81 A1 C1 E1 Available Task State Segment 
02 22 42 62 82 A2 C2 E2 Local Descriptor Table Segment 
03 23 43 63 83 A3 C3 E3 Busy Task State Segment 
04 24 44 64 84 A4 C4 E4 Call Gate 
05 25 45 65 85 A5 C5 E5 Task Gate 
06 26 46 66 86 A6 C6 E6 Interrupt Gate 
07 27 47 67 87 A7 C7 E7 Trap Gate 
08 28 48 68 88 A8 C8 E8 Illegal 
09 29 49 69 89 A9 C9 E9 Illegal 
OA 2A 4A 6A 8A AA CA EA Illegal 
OB 2B 4B 6B 8B AB CB EB Illegal 
OC 2C 4C 6C 8C AC CC EC Illegal 
00 20 40 60 80 AD CD ED Illegal 
OE 2E 4E 6E 8E AE CE EE Illegal 
OF 2F 4F 6F 8F AF CF EF Illegal 
10 30 50 70 90 BO DO FO Expand-up, read only, ignored Data Segment 
11 31 51 71 91 B1 01 F1 Expand~up, read only, accessed Data Segment 
12 32 52 72 92 B2 02 F2 Expand-up, writable, ignored Data Segment 
13 33 53 73 93 B3 03 F3 Expand-up, writable, accessed Data Segment 
14 34 54 74 94 B4 04 F4 Expand-down, read only, ignored Data Segment 
15 35 55 75 95 B5 05 F5 Expand-down, read only, accessed Data Segment 
16 36 56 76 96 B6 06 F6 Expand-down, writable, ignored Data Segment 
17 37 57 77 97 B7 07 F7 Expand-down, writable, accessed Data Segment 
18 38 58 78 98 B8 08 F8 Non-conform, no read, ignored Code Segment 
19 39 59 79 99 B9 09 F9 Non-conform, no read, accessed Code Segment 
1A 3A 5A 7A 9A BA DA FA Non-conform, readable, ignored Code Segment 
1B 3B 5B 7B 9B BB DB FB Non-conform, readable, accessed Code Segment 
1C 3C 5C 7C 9C BC DC FC Conforming, no read, ignored Code Segment 
10 3D 50 70 90 BD DO FD Conforming, no read, accessed Code Segment 
1E 3E 5E 7E 9E BE DE FE Conforming, readable, ignored Code Segment 
1F 3F 5F 7F 9F BF OF FF Conforming, readable, accessed Code Segment 
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AAA - ASCII Adjust AL After Addition 

Opcode Instruction Clocks Description 

37 AAA 3 ASCII adjust AL after addition 

FLAGS MODIFIED 

Auxiliary carry, carry 

FLAGS UNDEFINED 

Overflow, sign, zero, parity 

OPERATION 

AAA should be executed only after an ADD instruction which leaves a byte result in the AL register. 
The lower nibbles of the operands to the ADD instruction should be in the range 0 through 9 (BCD 
digits). In this case, the AAA instruction will adjust AL to contain the correct decimal digit result. If 
the addition produced a decimal carry, the AH register is incremented, and the carry and auxiliary 
carry flags are set to 1. If there was no decimal carry, the carry and auxiliary carry flags are set to 0, 
and AH is unchanged. In any case, AL is left with its top nibble set to O. To convert AL to an ASCII 
result, you can follow the AAA instruction with OR AL,30H. 

The precise definition of AAA is as follows: if the lower 4 bits of AL are greater than nine, or if the 
auxiliary carry flag is 1, then increment AL by 6, AH by 1, and set the carry and auxiliary carry flags. 
Otherwise, reset the carry and auxiliary carry flags. In any case, conclude the AAA operation by 
setting the upper four bits of AL to zero. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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AAD-ASCII Adjust AX 'Before'Division 

Opcode Instruction Clocks' Description 

05 OA AAO 14 ASCII adjust AX before division 

FLAGS MODIFIED 

Sign, zero, parity 

FLAGS UNDEFINED 

Overflow, auxiliary carry, carry 

OPERATION 

AAD is used to prepare two unpacked BCD digits (iea!itsignificant in AL, most significant in AH) for 
a division operation which will yield an unpacked result. This is accomplished by setting AL to AL + 
(10 X AH), and then setting AH to O. This leaves AX equal to the binary equivalent of the original 
unpacked 2~digit number. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE ,EXCEPTIONS , 

None 
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AAM - ASCII Adjust AX After Multiply 

Opcode Instruction Clocks Description 

04 OA AAM 16 ASCII adjust AX after multiply 

FLAGS MODIFIED 

Sign, zero, parity 

FLAGS UNDEFINED 

Overflow, auxiliary carry, carry 

OPERATION 

AAM should be used only after executing a MUL instruction between two unpacked BCD digits, 
leaving the result in the AX register. Since the result is less than one hundred, it is contained entirely 
in the AL register. AAM unpacks the AL result by dividing AL by ten, leaving the quotient (most 
significant digit) in AH, and the remainder (least significant digit) in AL. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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AAS-ASCII Adjust AL After Subtraction 

Opcode Instruction Clocks Description 

3F AAS 3 ASCII adjust AL after subtraction 

FLAGS MODIFIED 

Auxiliary carry, carry 

FLAGS UNDEFINED 

Overflow, sign, zero, parity 

OPERATION 

AAS should be executed only after a subtraction instruction which left the byte result in the AL 
( register. The lower nibbles of the operands to the SUB instruction should have been in the range 0 

through 9 (BCD digits). In this case, the AAS instruction will adjust AL to contain the correct decimal 
digit result. If the subtraction produced a decimal carry, the AH register is decremented, and the carry 
and auxiliary carry flags are set to 1. If there was no decimal carry, the carry and auxiliary carry flags 
are set to 0, and AH is unchanged. In any case, AL is left with its top nibble set to O. To convert AL 
to an ASCII result, you can follow the AAS instruction with OR AL,30H. 

The precise definition of AAS is as follows: if the lower four bits of AL' are greater than 9, or if the 
auxiliary carry flag is 1, then decrement AL by 6, AH by 1, and set the carry and auxiliary carry flags. 
Otherwise, reset the carry and auxiliary carry flags. In any case, conclude the AAS operation by setting 
the upper four bits of AL to zero. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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ADC/ ADD-Integer Addition 

Opcode Instruction Clocks Description 

10 If ADC eb,fb 2,mem=7 Add with carry byte register into EA byte 
11 If ADC ew,rw 2,mem=7 Add with carry word register into EA word 
12 If ADC fb,eb 2,mem=7 Add with carry EA byte into byte register 
13 If ADC rw,ew 2,mem=7 Add with carry EA word into word register 
14 db ADC AL,db 3 Add with carry immediate byte into AL 
15 dw ADC AX,dw 3 Add with carry immediate word into AX 
80 12 db ADC eb,db 3,mem=7 Add with carry immediate byte into EA byte 
81 12 dw ADC eW,dw 3,mem=7 Add with carry immediate word into EA word 
83 12 db ADC eW,db 3,mem=7 Add with carry immediate byte into EA word 
00 If ADD eb,fb 2,mem=7 Add byte register into EA byte 
01 If ADD eW,fw 2,mem=7 Add word register into EA word 
02 If ADD fb,eb 2,mem=7 Add EA byte into byte register 
03 If ADD fW,ew 2,mem=7 Add EA word into word register 
04 db ADD AL,db 3 Add immediate byte into AL 
05 dw ADD AX,dw 3 Add immediate word into AX 
80 10 db ADD eb,db 3,mem=7 Add immediate byte into EA byte. 
81 10 dw ADD eW,dw 3,mem=7 Add immediate word into EA word 
83 10 db ADD eW,db 3,mem=7 Add immediate byte into EA word 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

ADD and ADC perform an integer addition on the two operands. The ADC instruction also adds in 
the initial state of the carry flag. The result of the addition goes to the first operand. ADC is usually 
executed as part of a multi-byte or multi-word addition operation. 

When a byte immediate value is added to a word operand, the immediate value is first sign-extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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AND-Logical AND 

Opcode Instruction Clocks 

20 Ir AND eb,rb 2,mem=7 
21 Ir AND eW,rw 2,mem=7 
22 Ir AND rb,eb 2,mem=7 
23 Ir AND rw,ew 2,mem=7 
24 db AND AL,db 3 
25 dw AND AX,dw 3 
80 14 db AND eb,db 3,mem=7 
81 14 dw AND eW,dw 3,mem=7 

FLAGS MODIFIED 

Overfiow=O, sign, zero, parity, carry=O 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

Description 

Logical-AND byte register into EA byte 
Logical-AND word register into EA word 
Logical-AND EA byte into byte register 
Logical-AND EA word into word register 
Logical-AND immediate byte into AL 
Logical-AND immediate word into AX 
Logical-AND immediate byte into EA byte 
Logical-AND immediate word into EA word 

Each bit of the result is a 1 if both corresponding bits of the operands were 1; it is 0 otherwise. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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ARPL - Adjust RPL Field of Selector 

Opcode Instruction 

63 Ir ARPL eW,rw 

FLAGS MODIFIED 

Zero 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

10,mem=11 

Description 

Adjust RPL of EA word not less than RPL of 
rw 

The ARPL instruction has two operands. The first operand is a 16-bit memory variable or word register 
that contains the value of a selector. The second operand is a word register. If the RPL field (bottom 
two bits) of the first operand is less than the RPL field of the second operand, then the zero flag is set 
to 1 and the RPL field of the first operand is increased to match the second RPL. Otherwise, the zero 
flag is set to 0 and no change is made to the first operand. 

ARPL appears in operating systems software, not in applications programs. It is used to guarantee that 
a selector parameter to a subroutine does not request more privilege than the caller was entitled to. 
The second operand used by ARPL would normally be a register that contains the CS selector value 
of the caller. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6. ARPL is not recognized in Real Address mode. 
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BOUND-Check Array Index Against Bounds 

Opcode Instruction Clocks Description 

62 /r BOUND rw,md noj=13 INT 5 if rw not within bounds 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

BOUND is used to ensure that a signed array index is within the limits defined by a two-word block 
of memory. The first operand (a register) must be greater than or equal to the first word in memory, 
and less than or equal to the second word in memory. If the'register is not within the bounds, an 
INTERRUPT 5 occurs. 

The two-word block might typically be found just before the array itself and therefore would· be acces­
sible at a constant offset of -4 from th~ array, simplifying the addressing. 

PROTECTED MODE EXCEPTIONS 

INTERRUPT 5 if the bounds test fails, as described above. #GP(O) for an illegal memory operand 
effective address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

The second operand must be a memory operand, not a register. If the BOUND instruction is executed 
with a ModRM byte representing a register second operand, then fault #UD will occur. 

REAL ADDRESS MODE EXCEPTIONS 

INTERRUPT 5 if the bounds test fails, as described above. Interrupt 13 for a second operand at offset 
OFFFDH or higher. Interrupt 6 if the second operand is!!. re~ister, as described in the paragraph above. 
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CALL-Call Procedure 

Opcode Instruction Clocks' Description 

E8 cw CALL cw 7 Call near, offset relative to next instruction 
FF /2 CALL ew 7,mem=11 Call near, offset absolute at EA word 
9A cd CALL cd 13,pm=26 Call inter-segment, immediate 4-byte address 
9A cd CALL cd 41 Call gate, same privilege 
9A cd CALL cd 82 Call gate, more privilege, no parameters 
9A cd CALL cd 86+4X Call gate, more privilege, X parameters 
9A cd CALL cd 177 Call via Task State Segment 
9A cd CALL cd 182 Call via task gate 
FF /3 CALL ed 16,mem=29 Call inter-segment, address at EA doubleword 
FF /3 CALL ed 44 Call gate, same privilege 
FF /3 CALL ed 83 Call gate, more privilege, no parameters 
FF /3 CALL ed 90+4X Call gate, more privilege, X parameters 
FF /3 CALL ed 180 Call via Task State Segment 
FF /3 CALL ed 185 Call via task gate 

"Add one clock for each byte in the next instruction executed. 

FLAGS MODIFIED 

None, except when a task switch occurs 

FLAGS UNDEFINED 

None 

OPERATION 

The CALL instruction causes the procedure named in the operand to be executed. When the procedure 
is complete (a return instruction is executed within the procedure), execution continues at the instruc­
tion that follows the CALL instruction. 

The CALL cw form of the instruction adds modulo 65536 (the 2-byte operand) to the offset of the 
instruction following the CALL and sets IP to the resulting offset. The 2-byte offset of the instruction 
that follows the CALL is pushed onto the stack. It will be popped by a near RET instruction within 
the procedure. The CS register is not changed by this form. 

The CALL ew form of the instruction is the same as CALL cw except that the operand specifies a 
memory location from which the absolute 2-byte offset for the procedure is fetched. 

The CALL cd form of the instruction uses the 4-byte operand as a pointer to the procedure called. 
The CALL ed form fetches the long pointer from the memory location specified. Both long pointer 
forms consult the AR byte in the descriptor indexed by the selector part of the long pointer. The AR 
byte can indicate one of the following descriptor types: 

1. Code Segment-The access rights are checked, the return pointer is pushed onto the stack, and 
the procedure is jumped to. 
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2. Call Gate-The offset part of the pointer is ignored. Instead, the entire address of the procedure 
is taken from the call gate descriptor entry. If the routirie being entered is more privileged, then 
a new stack (both SS and SP) is loaded frorn the task state segment for the new privilege level, 
and parameters determined by the wordcount field of the call gate are copied from the old stack 
to the new stack. 

3. Task Gate-The current task's context is saved in its Task State Segment (TSS), and the TSS 
named in the task-gate is used to load the new context. The selector for the outgoing task (from 
TR) is stored into the new TSS's link field, and the new task's Nested Task flag is set. The outgo­
ing task is left marked busy, the new TSS is marked busy, and execution resumes at the point at 
which the new task was last suspended. 

4. Task State Segment-The current task is suspended and the new task· initiated as in 3 above 
except that there is no intervening gate. 

For long calls involving no task switch, the return link is the pointer of the instruction that follows the 
CALL, i.e., the caller's CS and updated IP. Task switches invoked by CALLs are linked by storing 
the outgoing task's TSS selector in the incoming TSS's link field and setting the Nested Task flag in 
the new task. Nested tasks must be terminated by an IRET. IRET releases the nested task and follows 
the back link to the calling task if the NT flag is set. 

A precise list of the protection checks made and the actions taken is given by the following list: 

CALL FAR: 
( 

If indirect then check access of EA doubleword #GP(O) if limit violation 
New CS selector must not be null else #GP(O) 
Check that new CS selector index is within its descriptor table limits; else #GP (new CS selector) 
Examine AR byte of selected descriptor for various legal values: 

CALL CONFORMING CODE SEGMENT: 
DPL must be :5 CPL else #GP (code segment selector) 
Segment must be PRESENT else #NP (code segment selector) 
Stack must be big enough for return address else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load code segment descriptor into CS cache 
Load CS with new code segment selector 
Load IP with new offset 

CALL NONCONFORMING CODE SEGMENT: 
RPL must be :5 CPL else #GP (code segment selector) 
DPL must be = CPL else #GP (code segment selector) 
Segment must be PRESENT else #NP (code segment selector) 
Stack must be big enough for return address else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load code segment descriptor into CS cache 
Load CS with new code segment selector 
Set RPL of CS to CPL 
Load IP with new offset 

CALL TO CALL GATE: 
Call gate DPL must be ;:: CPL else #GP (call gate selector) 
Call gate DPL must be ;:: RPL else #GP (call gate selector) 
Call gate must be PRESENT else #NP (call gate selector) 
Examine code segment selector in call gate descriptor: 

Selector must not be null else #GP(O) 
Selector must be within its descriptor table limits else #GP (code segment selector) 
AR byte of selected descriptor must indicate code segment else #GP (code segment selector) 
DPL of selected descriptor must be :5 CPL else #GP( code segment selector) 
If non-conforming code segment and DPL < CPL then 
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CALL GATE TO MORE PRIVILEGE: 
Get new SS selector for new privilege level from TSS 
Check selector and descriptor for new SS: 

Selector must not be null else #TS(O) 
Selector index must be within its descriptor table limits else #TS (SS selector) 
Selector's RPL must equal DPL of code segment else #TS (SS selector) 
Stack segment DPL must equal DPL of code segment else #TS (SS selector) 
Descriptor must indicate writable data segment else #TS (SS selector) 
Segment PRESENT else #SS (SS selector) 

New stack must have room for parameters plus 8 bytes else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load new SS:SP value from TSS 
Load new CS:IP value from gate 
Load CS descriptor 
Load SS descriptor 
Push long pointer of old stack onto new stack 
Get word count from call gate, mask to 5 bits 
Copy parameters from old stack onto new stack 
Push return address onto new stack 
Set CPL to stack segment DPL 
Set RPL of CS to CPL 

Else 
CALL GATE TO SAME PRIVILEGE: 
Stack must have room for 4-byte return address else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from gate 
Push return address onto stack 
Load code segment descriptor into CS-cache 
Set RPL of CS to CPL 

CALL TASK GATE: 
Task gate DPL must be ~ CPL else #GP (gate selector) 
Task gate DPL must be ~ RPL else #GP (gate selector) 
Task Gate must be PRESENT else #NP (gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit else #GP (TSS selector) 
Index must be within GOT limits else #GP (TSS selector) 
TSS descriptor AR byte must specify available TSS (bottom bits 00001) else #GP (TSS 
selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 

SWITCH_TASKS with nesting to TSS 
IP must be in code segment limit else #GP(O) 

TASK STATE SEGMENT: 
TSS DPL must be ~ CPL else #GP (TSS selector) 
TSS DPL must be ~ RPL else #GP (TSS selector) 
TSS descriptor AR byt~ must specify available TSS else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 
SWITCH_TASKS with nesting to TSS 
IP must be in code segment limit else #GP(O) 

ELSE #GP (code segment selector) 

PROTECTED MODE EXCEPTIONS 

FAR calls: #GP, #NP, #SS, and #TS, as indicated in the list above. 

NEAR direct calls: #GP(O) if procedure location is beyond the code segment limits. 
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NEAR indirect CALL: #GP(O) for an illegal memory operand effective address in the CS, DS, or ES 
segments; #SS(O) for an illegal address in the SS segment. #GP if the indirect offset obtained is beyond 
the code segment limits:' 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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CBW-Convert Byte into Word 

Opcode Instruction Clocks Description 

98 C8W 2 Convert byte into word (AH = top bit of AL) 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

CBW converts the signed byte in AL to a signed word in AX. It does so by extending the top bit of 
AL into all of the bits of AH. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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CLC-Clear Carry Flag 

Opcode 

F8 

FLAGS MODIFIED 

Carry = 0 

Instruction 

CLC 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

2 

Description 

Clear carry flag 

CLC sets the carry flag to zero. No other flags or registers are affected. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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CLD-Clear Direction Flag 

Opcode Instruction Clocks Description 

FC CLO 2 Clear direction flag, 51 and 01 will increment 

FLAGS MODIFIED 

Direction = 0 

FLAGS UNDEFINED 

None 

OPERATION 

CLD clears the direction flag. No other flags or registers are affected. After CLD is executed, string 
operations will increment the index registers (SI and/or DI) that they use. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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ell-Clear Interrupt Flag 

Opcode Instruction Clocks Description 

FA CLI 3 Clear interrupt flag; interrupts disabled 

FLAGS MODIFIED 

Interrupt=O 

FLAGS UNDEFINED 

None 

OPERATION 

CLI clears the interrupt enable flag if the current privilege level is at least as privileged as 10PL. No 
other flags are affected. External interrupts will not be recognized at the end of the CLI instruction or 
thereafter until the interrupt flag is set. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger (has less privilege) than the 10PL in the flags register. 
10PL specifies the least privileged level at which I/O may be performed. 

REAL ADDRESS MODE EXCEPTIONS 
! 

None 

\ 
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CL TS-Clear Task Switched Flag 

Opcode Instruction Clocks Description 

OF 06 CLTS 2 Clear task switched flag 

FLAGS MODIFIED 

Task switched = 0 

FLAGS UNDEFINED 

None 

OPERATION 

CLTS clears the task switched flag in the Machine Status Word. This flag is set by the 80286 every 
time a task switch occurs. The TS flag is used to manage processor extensions as follows: every execu­
tion of a WAIT or an ESC instruction will be trapped if the MP flag of MSW is set and the task 
switched flag is set. Thus, if a processor extension is present and a task switch has been made since the 
last ESC instruction was begun, the processor extension's context must be saved before a new instruc­
tion can be issued. The fault routine will save the context and reset the task switched flag or place the 
task requesting the processor extension into a queue until the current processor extension instruction is 
completed. 

CL TS appears in operating systems software, not in applications programs. It is a privileged instruction 
that can only be executed at level o. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if CL TS is executed with a current privilege level other than o. 

REAL ADDRESS MODE EXCEPTIONS 

None (valid in REAL ADDRESS MODE to allow power-up initialization for Protected Mode) 
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CMC-Complement Carry Flag 

Opcode 

F5 

FLAGS MODIFIED 

Carry 

Instruction 

CMC 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

2 

Description 

Complement carry flag 

CMC reverses the setting of the carry flag. No other flags are affected. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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CMP-Compare Two Operands 

Opcode Instruction Clocks 

3C db CMP AL,db 3 
3D dw CMP AX,dw 3 
80 17 db CMP eb,db 3,mem=6 
38 Ir CMP eb,rb 2,mem=7 
83 17 db CMP eW,db 3,mem=6 
81 17 dw CMP eW,dw 3,mem=6 
39 Ir CMP ew,rw 2,mem=7 
3A Ir CMP rb,eb 2,mem=6 
38 Ir CMP rw,ew 2,mem=6 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

Description 

Compare immediate byte from AL 
Compare immediate word from AX 
Compare immediate byte from EA byte 
Compare byte register from EA byte 
Compare immediate byte from EA word 
Compare immediate word from EA word 
Compare word register from EA word 
Compare EA byte from byte register 
Compare EA word from word register 

eMP subtracts the second operand from the first operand, but it does not place the result anywhere. 
Only the flags are changed by this instruction. eMP is usually followed by a conditional jump instruc­
tion. See the "Jcond" instructions in this chapter for the list of signed and unsigned flag tests provided 
by the 80286. 

If a word operand is compared to an immediate byte value, the byte value is first sign-extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the es, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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CMPS/CMPSB/CMPSW-Compare string operands. 

Opcode 

A6 
A6 
A7 

FLAGS MODIFIED 

Instruction Clocks 

CMPS mb,mb .8 
CMPS8 8 
CMPSW 8 

Overflow, sign, zero, auxiliary carry, parity,carry 

FLAG5 UNDEFINED 

None 

OPERATION 

\ 

Description 

Compare bytes ES:[OI] from [SI] 
Compare bytes ES:[OI] from 05:[SI] 
Compare words E5:[0I] from OS:[5I] 

CMPS compares the byte or word pointed to by SI with the byte or word pointed to by DI by perform­
ing the subtraction [SI] - [DI]. The result is not placed anywhere; only the flags reflect the result of 
the subtraction. The types of the operands to CMPS determine whether bytes or words are compared. 
The segment addressability of the first (SI) operand determines whether a segment override byte will 
be produced or whether the default segment register DS is used. The second (DI) operand must be 
addressible from the ES register; no segment override is possible. 

After the comparison is made, both· SI and DI are automatically advanced. If the direction flag is 0 
(CLD was executed), the registers increment; if the direction flag is 1 (STD was executed), the regis­
ters decrement. The registers increment or decrement by 1 if a byte was moved; by 2 if a word was 
moved. 

CMPS can be preceded by the REPE or REPNE prefix for block comparison of CX bytes or words. 
Refer to the REP instruction for details of this operation. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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CWD-Convert Word to Doubleword 

Opcode Instruction Clocks Description 

99 cwo 2 Convert word to doubleword (OX:AX = AX) 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

CWD converts the signed word in AX to a signed doubleword in DX:AX. It does so by extending the 
top bit of AX into all the bits of DX. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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DAA-Decimal Adjust AL After Addition 

Opcode Instruction Clocks Description 

27 DAA 3 Decimal adjust AL after addition 

FLAGS MODIFIED 

Sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

Overflow 

OPERATION 

DAA should be executed only after an ADD instruction which leaves a t~o-BCD-digit byte result in 
the AL register. The ADD operands should consist of two packed BCD digits. In this case, the DAA 
instruction will adjust AL to contain the correct two-digit packed decimal result. 

The precise definition of DAA is as follows: 

1. If the lower 4 bits of 'L are greater than nine, or if the auxiliary carry flag is 1, then increment 
AL by 6, and set the ~~xiliary carry flag. Otherwise, reset the auxiliary carry flag. 

2. If AL is now greater than 9FH, or if the carry flag is set, then increment AL by 60H, and set the 
carry flag. Otherwise, clear the carry flag. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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DAS-Decimal Adjust AL After Subtraction 

Opcode Instruction Clocks Description 

2F DAS 3 Decimal adjust AL after subtraction 

FLAGS MODIFIED 

Sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

Overflow 

OPERATION 

DAS should be executed only after a subtraction instruction which leaves a two-BCD-digit byte result 
in the AL register. The operands should consist of two packed BCD digits. In this case, the DAS 
instruction will adjust AL to contain the correct packed two-digit qecimal result. 

The precise definition of DAS is as follows: 

1. If the lower four bits of AL are greater than 9, or if the auxiliary carry flag is 1, then decrement 
AL by 6, and set the auxiliary carry flag. Otherwise, reset the auxiliary carry flag. 

2. If AL is now greater than 9FH, or if the carry flag is set, then decrement AL by 60H, and set the 
carry flag. Otherwise, clear the carry flag. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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DEC-Decrement by 1 

Opcode 

FE /1 
FF /1 
48+ rw 

FLAGS MODIFIED 

Instruction 

DEC eb 
DEC ew 
DEC rw 

Clocks 

2,mem=7 
2,mem=7 
2 

Overflow, sign, zero, auxiliary carry, parity 

FLAGS UNDEFINED 

None 

OPERATION 

Description 

Decrement EA byte by 1 
Decrement EA word by 1 
Decrement word register by 1 

1 is subtracted from the operand. Note that the carry flag is not changed by this instruction. If you 
want the carry flag set, use the SUB instruction with a second operand of 1. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the operand is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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DIV -Unsigned Divide 

Opcode 

F6 /6 
F7 /6 

FLAGS MODIFIED 

None 

Instruction 

DIVeb 
DIVew 

FLAGS UNDEFINED 

Clocks 

14,mem=17 
22,mem=25 

Overflow, sign, zero, auxiliary carry, parity, carry 

OPERATION 

Description 

Unsigned divide AX by EA byte 
Unsigned divide DX:AX by EA word 

DIY performs an unsigned divide. The dividend is implicit; only the divisor is given as an operand. If 
the source operand is a BYTE operand, divide AX by the byte. The quotient is stored in AL, and the 
remainder is stored in AH. If the source operand is a WORD operand, divide DX:AX by the word. 
The high-order 16 bits of the dividend are kept in DX. The quotient is stored in AX, and the remainder 
is stored in DX. Non-integral quotients are truncated towards O. The remainder is always less than the 
dividend. 

PROTECTED MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in the designated register (AL or AX), or if the divisor is 
zero. #GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) 
for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in the designated register (AL or AX), or if the divisor is 
zero. Interrupt 13 for a word operand at offset OFFFFH. 
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ENTER-Make Stack Frame for Procedure Parameters 

Opcode 

C8 dw 00 
C8 dw 01 
C8 dw db 

FLAGS MODIFIED 

None 

Instruction 

ENTER dw,O 
ENTER dW,1 
ENTER dW,db 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

11 
15 
12+4db 

Description 

Make stack frame for procedure parameters 
Make stack frame for procedure parameters 
Make stack frame for procedure parameters 

ENTER is used to create the stack frame required by most block-structured high-level languages. the 
first operand specifies how many bytes of dynamic storage are to be allocated on the stack for the 
routine being entered. The second operand gives the lexical nesting level of the routine within the high­
level-language source code. It determines how many stack frame pointers are copied into the new stack 
frame from the preceding frame. BP is used as the current stack frame pointer. 

If the second operand is 0, ENTER pushes BP, sets BP to SP, and subtracts the first operand from 
SP. 

For example, a procedure with 12 bytes of local variables would have an ENTER 12,0 instruction at 
its entry point and a LEAVE instruction before every RET. The 12 local bytes would be addressed as 
negative offsets from [BPj. See also section 4.2. 

The formal definition of the ENTER instruction for all cases is given by the following listing. LEVEL 
denotes the value of the second operand. 

LEVEL: = LEVEL MOD 32 
Push BP 
Set a temporary value FRAME_PTR : = SP 
If LEVEL> 0 then 

Repeat (LEVEL -1) times: 
BP:= BP - 2 
Push the word pOinted to by BP 

End repeat 
Push FRAM~PTR 

End if 
BP:= FRAM~PTR 
SP := SP - first operand. 
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PROTECTED MODE EXCEPTIONS 

#SS(O) if SP were to go outside of the stack limit within any part of the instruction execution. 

REAL ADDRESS MODE EXCEPTIONS 

None 
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HLT-Halt 

Opcode Instruction Clocks Description 

F4 HLT 2 Halt 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Successful execution of HLT causes the 80286 to cease executing instructions and to enter a HALT 
state. Execution resumes only upon receipt of an enabled interrupt or a reset. If an interrupt is used to 
resume program execution after HLT, the saved CS:IP value will point to the instruction that follows 
HLT. 

PROTECTED MODE EXCEPTIONS 

HLT is a privileged instruction. #GP(O) if the current privilege level is not o. 

REAL ADDRESS MODE EXCEPTIONS 

None 
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IDIV-Signed Divide 

Opcode Instruction Clocks Description 

F6 /7 IDIVeb 17,mem=20 Signed divide AX by EA byte (AL=Quo, 
AH=Rem) 

F7 /7 IDIVew 25,mem=28 Signed divide DX:AX by EA word (AX = Quo, 
DX=Rem) 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

Overflow, sign, zero, auxiliary carry, parity, carry 

OPERATION 

IDlY performs a signed divide. The dividend is implicit; only the divisor is given as an operand. If the 
source operand is a BYTE operand, divide AX by the byte. The quotient is stored in AL, and the 
remainder is stored in AH. If the source operand is a WORD operand, divide DX:AX by the word. 
The high-order 16 bits of the dividend are in DX. The quotient is stored in AX, and the remainder is 
stored in DX. Non-integral quotients are truncated towards o. The remainder has the same sign as the 
dividend and always has less magnitude than the dividend. 

PROTECTED MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in the designated register (AL or AX), or if the divisor is O. 
#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in the designated register (AL or AX), or if the divisor is o. 
Interrupt 13 for a word operand at offset OFFFFH. 
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IMUL-Signed Multiply 

Opcode Instruction . Clocks 

F6 /5 IMUL eb 13,mem=16 
F7 /5 IMUL ew 21,mem=24 
68 /f db IM,lJL rw,db 21,mem=24 
69 /f dw IMUL rw,ew,dw 2t,mem=24 
68 /f db IMUL rw,ew,db 21,mem=24 

FLAGS MODIFIED 

Overflow, carry 

FLAGS UNDEFINED 

Sign, zero, auxiliary carry, parity 

OPERATION 

Description 

Signed multiply (AX = AL X EA byte) 
Signed multiply (DXAX = AX X EA word) 
Signed multiply imm. byte into word reg. 
Signed multiply (rw = EA word X imm. word) 
Signed multiply (rw = EA word X imm. byte) 

IMUL performs signed multiplication. If IMUL has a single byte source operand, then the source is 
multiplied by AL and the 16-bit signed result is left in AX. Carry and overflow are set to Oif AH is a 
sign extension of AL; they are set to 1 otherwise. 

If IMUL has a single word source operand, then the source operand is multiplied by AX and the 
32-bit signed result is left in DX:AX. DX contains the high-order 16 bits of the product. Carry and 
overflow are set to 0 if DX is a sign extension of AX; they are set to 1 otherwise. 

If IMUL has three operands, then the second operand (an effective address word) is multiplied by the 
third operand (an immediate word), and the 16 bits of the result are placed in the first operand (a 
word register). Carry and overflow are set to 0 if the result fits in a signed word (between - 32768 and 
+32767, inclusive); they are set to 1 otherwise. 

NOTE 

The low 16 bits of the product of a 16-bit signed multiply are the same as those of an unsigned 
multiply. The three operand IMUL instruction can be used for unsigned operands as well. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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IN-Input from Port 

Opcode Instruction 

E4 db IN AL,db 
EC IN AL,DX 
E5 db IN AX,db 
ED IN AX,DX 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

5 
5 
5 
5 

Description 

Input byte from immediate port into AL 
Input byte from port DX into AL 
Input word from immediate port into AX 
Input word from port DX into AX 

IN transfers a data byte or data word from the port numbered by the second operand into the register 
(AL or AX) given as the first operand. You can access any port from 0 to 65535 by placing the port 
number in the DX register then using an IN instruction with DX as the second parameter. These I/O 
instructions can be shortened by using an 8-bit port I/O in the instruction. The upper 8 bits of the port 
address will be zero when an 8-bit port I/0 is used. 

Intel has reserved I/0 port addresses OOF8H through OOFFH; they should not be used. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger (has less privilege) than IOPL, which is the privilege 
level found in the flags register. 

REAL ADDRESS MODE EXCEPTIONS 

None 
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INC-Increment by 1 

Opcode 

FE 10 
FF 10 
40+rw. 

FLAGS MODIFIED 

Instruction 

INC eb 
INC.ew 
INCrw 

Clocks 

2,mem=7 
2,mem=7 
2 

Overflow, sign, zero, auxiliary carry, parity 

FLAGS UNDEFINED 

None 

OPERATION 

Description 

Increment EA byte by 1 
Increment EA word by 1 
Increment word register by 1 

1 is added to the operand. Note that the carry flag is not changed by this instruction. If you want the 
carry flag set, use the ADD instruction with a second operand of 1. 

PROTECTED MODe EXCEPTIONS 

#GP(O) if the operand is in 'a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the es, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt ,13 for a word operand at offset OFFFFH. 
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INS/INSB/INSW-Input from Port to String 

Opcode 

6C 
60 
6C 
60 

FLAGS MOOIFIED 

None 

Instruction 

INS eb,OX 
INS ew,OX 
INS8 
INSW 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

5 
5 
5 
5 

Description 

Input byte from port OX into ES:[OI] 
Input word from port OX into ES:[OI] 
Input byte from port OX into ES:[OI] 
Input word from port OX into ES:[OI] 

INS transfers data from the input port numbered by the DX register to the memory byte or word at 
ES:DI. The memory operand must be addressable from the ES register; no segment override is 
possible. 

INS does not allow the specification of the port number as an immediate value. The port must be 
addressed through the DX register. 

After the transfer is made, DI is automatically advanced. If the direction flag is 0 (CLD was executed), 
DI increments; if the direction flag is 1 (STD was executed), DI decrements. DI increments or decre­
ments by 1 jf a byte was moved; by 2 if a word was moved. 

INS can be preceded by the REP prefix for block input of CX bytes or words. Refer to the REP 
instruction for details of this operation. 

Intel has reserved I/O port addresses 00F8H through OOFFH; they should not be used. 

NOTE 

Not all input port devices can handle the rate at which this instruction transfers input data 
to memory. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if CPL > IOPL. #GP(O) if the destination is in a non-writable segment. #GP(O) for an illegal 
memory operand effective address in the CS, DS, or ES segments; #SS(O) for an illegal address in the 
SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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INT IINTO-Callto Interrupt Procedure·' 

Opcode Instruction Clocks(1) Description 

CC INT 3 23(2) Interrupt 3 (trap to debugger) 
CC INT3 .40 Interrupt 3, protected mode, same privilege 
CC INT3 78 Interrupt 3, protected mode, more privilege 
CC INT 3 167 Interrupt 3, protected mode, via task gate 
CD db INT db 23(2) Interrupt numbered by immediate byte 
CD db INT db 40 Interrupt, protected mode, same privilege 
CD db INT db 78 Interrupt, protected mode, ITIpre privilege 
CD db INT db 167 Interrupt, protected mode, via 'task gate 
CE INTO 24,noj=3(2) Interrupt 4 if overflow flag is 1 

(1) = Add one clock for each byte of the next instruction executed. 
(2) = (real mode) 

FLAGS MODIFIED 

All if a task switch takes place; Trap Flag reset if no task switch takes place. Interrupt Flag is always 
reset in Real Mode, and reset in Protected Mode when INT references an interrupt gate. 

FLAGS UNDfFINED 

None 

OPERATION 

The INT instruction generates via software a .call to ,an interrupt procedure~ The immediate operand, 
from 0 to 255, gives the index number into the Interrupt Descriptor Table of the interrupt routine to 
be called. In protected mode, the lOT consists of 8-byte descriptors; . .the descriptor for the interrupt 
invoked must indicate an interrupt gate, a trap gate, or a task gate. In real address mode, the lOT ,is 
an array of 4-byte long pointers at the fixed location OOOOOH. ' 

The INTO instruction is identical to the INT instruction except that the interrupt number is implicitly 
4, and the interrupt is made only if the overflow flag of the 80286 is on. The clock counts for the four 
forms of INT db are valid for INTO, with the number of clocks increased by 1 for the overflow flag 
test. ' 

The first 32 interrupts are reserved by Intel for systems use. Some of these interrupts are exception 
handlers for internally-generated faults. Most of these exception handlers should not be invoked with 
the INT instruction. 

Generally, interrupts behave like far CALLs except that the flags register is pushed~nto the stack 
before the return address. Interrupt procedures return via the IRET instruction, which pops the flags 
from the stack. 

In Real Address mode, INT pushes the flags, CS and the return IP onto the stack in that order, then 
resets the Trap Flag, then jumps to the long pointer indexed by the'interrupt number, in the interrupt 
vector table. 
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In Protected mode, INT also resets the Trap Flag. In Protected mode, the precise semantics of the 
INT instruction are given by the following: 

INTERRUPT 
Interrupt vector must be within IDT table limits else #GP (vector number X 8+2+EXT) 
Descriptor AR byte must indicate interrupt gate, trap gate, or task gate else #GP (vector number X 
8+2+EXT) 
If INT instruction then gate descriptor DPL must be 2: CPL else #GP (vector number X 8+2+EXT) 
Gate must be PRESENT else #NP (vector number X 8+2+EXT) 
If TRAP GATE or INTERRUPT GATE: 
Examine CS selector and descriptor given in the gate descriptor: 

Selector must be non-null else #GP (EXT) 
Selector must be within its descriptor table limits else #GP (selector + EXT) 
Descriptor AR byte must indicate code segment else #GP (selector + EXT) 
Segment must be PRESENT else #NP (selector + EXT) 

If code segment is non-conforming and DPL < CPL then 
INTERRUPT TO INNER PRIVILEGE: 

Check selector and descriptor for new stack in current Task State Segment: 
Selector must be non-null else #TS(EXT) 
Selector index must be within its descriptor table limits else #TS (SS selector+EXT) 
Selector's RPL must equal DPL of code segment else #TS (SS selector + EXT) 
Stack segment DPL must equal DPL of code segment else #TS (SS selector+ EXT) 
Descriptor must indicate writable data segment else #TS (SS selector+ EXT) 
Segment must be PRESENT else #SS (SS selector + EXT) 

New stack must have room for 10 bytes else #SS(O) 
IP must be in CS limit else #GP(O) 
Load new SS and SP value from TSS 
Load new CS and IP value from gate 
Load CS descriptor 
Load SS descriptor 
Push long pOinter to old stack onto new stack 
Push return address onto new stack 
Set CPL to new code segment DPL 
Set RPL of CS to CPL 
If INTERRUPT GATE then set the Interrupts Enabled Flag to 0 (disabled) 
Set the Trap Flag to 0 
Set the Nested Task Flag to 0 

If code segment is conforming or code segment DPL = CPL then 
INTERRUPT TO SAME PRIVILEGE LEVEL: 

Current stack limits must allow pushing 6 bytes else #SS(O) 
If interrupt was caused by fault with error code then 

Stack limits must allow push of two more bytes else #SS(O) 
IP must be in CS limit else #GP(O) 
Push flags onto stack 
Push current CSselector onto stack 
Push return offset onto stack 
Load CS:IP from gate 
Load CS descriptor 
Set the RPL field of CS to CPL 
Push error code (if any) onto stack 
If INTERRUPT GATE then set the Interrupts Enabled Flag to 0 (disabled) 
Set the Trap Flag to 0 
Set the Nested Task Flag to 0 

Else #GP (CS selector + EXT) 

If TASK GATE: 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit else #GP (TSS selector) 
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Index must be within GOT limits else #GP (TSS selector) 
AR byte must specify availab!e TSS (bottom bits 00001) else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 

SWITCH_ TASK~ with nesting to TSS .. . 
If interrupt was caused by fault with error code then 

Stack limit~ rTllJst .allow push of two more bytes else #SS(O) 
PU!~h error code onto stack 

IP must be in CS limit else #GP(O) 

NOTE 

EXT is 1 if an external event (i.e., a single step, an external interrupt, an MFexception, or 
an MP exception) caused the interrupt; 0 if not (i.e., an INT instruction or other exceptions). 

PROTECTED MODE EXCEPTIONS 

#GP, #NP, #88, and #T8, as indicated in the list above. 

REAL ADDRESS MODE EXCEPTIONS 

None; the 80286 will shut down if the 8P = 1,3, or 5 before executing the INT or INTO instruction­
due to lack of stack space. 
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IRET -Interrupt Return 

Opcode 

CF 
CF 
CF 

Instruction 

IRET 
IRET 
IRET 

Clocks 

17,pm=31 
55 
169 

Description 

Interrupt return (far return and pop flags) 
Interrupt return, lesser privilege 
Interrupt return, different task (NT = 1) 

"Add one clock for each byte in the next instruction executed. 

FLAGS MODIFIED 

Entire flags register popped from stack 

FLAGS UNDEFINED 

None 

OPERATION 

In real address mode, IRET pops IP, CS, and FLAGS from the stack in that order, and resumes the 
interrupted routine. 

In protected mode, the action of IRET depends on the setting of the Nested Task Flag (NT) bit in the 
flag register. When popping the new flag image from the stack, note that the IOPL bits in the flag 
register are changed only when CPL=O. 

If NT=O, IRET returns from an interrupt procedure without a task switch. The code returned to must 
be equally or less privileged than the interrupt routine as indicated by the RPL bits of the CS selector 
popped from the stack. If the destination code is of less privilege, IRET then also pops SP and SS 
from the stack. 

If NT= 1, IRET reverses the operation of a CALL or INT that caused a task switch. The task execut­
ing IRET has its updated state saved in its Task State Segment. This means that if the task is re­
entered, the code that follows IRET will be executed. 

The exact checks and actions performed by IRET in protected mode are given on the following page. 

INTERRUPT RETURN: 
If Nested Task Flag=1 then 

RETURN FROM NESTED TASK: 
Examine Back Link Selector in TSS addressed by the current Task Register: 

Must specify global in the local/global bit else #TS (new TSS selector) 
Index must be within GDT limits else #TS (new TSS selector) 
AR byte must specify TSS else #TS (new TSS selector) 
New TSS must be busy else #TS (new TSS selector) 
Task State Segment must be PRESENT else #NP (new TSS selector) 

SWITCH3 ASKS without nesting to TSS specified by back link selector 
Mark the task just abandoned as NOT BUSY 
IP must be in code segment limit else #GP(O) 

B-51 



THE 80286 INSTRUCTION SET 

If Nested Task Flag=O then 
INTERRUPT RETURN ON STACK: 

Second word on stack must be within stack limits else #SS(O) 
Returi1 CS selector RPL must be ~ CPL el.se #GP (Return selector) 
If return selector RPL = CPL then 

Else 

INTERRUPT RETURN TO SAME LEVEL: 
Top 6 bytes on stack must be within limits else #SS(O) 
Return CS selector (at SP+2) must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP( Return selector) 
AR byte must)ndicate code segment else #GP (Return selector) 
If non-conforming then code segment DPL must = CPL else #GP (Return selector) 
If conforming then code segment DPL must be s CPL else #GP (Return selector) 
Segment must be PRESENT else #NP (Return selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from stack 
Load CS-cache with new code segment descriptor 
Load flags with third word on stack 
Increment SP by 6 

INTERRUPT RETURN TO OUTER PRIVILEGE LEVEL: 
Top 10 bytes on stack must be within limits else #SS(O) 
Examine return CS selector (at SP+2) and associated descriptor: 

Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (Return selector) 
AR byte must indicate code segment else #GP (Return selector) 
If non-conforming then code segment DPL must = CS selector RPL else #GP (Return 
selector) 
If conforming then code segment DPL must be > CPL else #GP (Return selector) 
Segment must be PRESENT else #NP (Return selector) 

Examine return SS selector (at SP+8) and associated descriptor: 
Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (SS selector) 
Selector RPL must equal the RPL of the return CS selector else #GP (SS selector) 
AR byte must indicate a writable data segment else #GP (SS selector) 
Stack segment DPL must equal the RPL of the return CS selector else #GP (SS selector) 

. SS must be PRESENT else #SS (SS selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from stack 
Load flags with values at (SP+4) 
Load SS:SP from stack 
Set CPL to the RPL of the return CS selector 
Load the CS-cache with the CS descriptor 
Load the SS-cache with the SS descriptor 
For each of ES and DS: 

If the current register setting is not valid for the outer level, then zero the register and 
clear the valid flag 

To be valid, the register setting must satisfy the following properties: 
Selector index must be within descriptor table limits 
AR byte must indicate data or readable code segment 
If segment is data or non-conforming code, then: 
DPL must be ~ CPL, or 
DPL must be ~ RPL. 
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PROTECTED MODE EXCEPTIONS 

#GP, #NP, or #SS, as indicated in the above listing. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 if the stack is popped when it has offset OFFFFH. 
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Jcond-Jump Short If Condition Met 

Opcode Instruction Clocks Description 

77 cb JA cb 7,noj=3 Jump short if above (CF=O and ZF=O) 
73 cb JAE cb 7,noj=3 Jump short if above or equal (CF=O) 
72 cb JB cb 7,noj=3 Jump short if below (CF=1) 
76 cb JBE cb 7,noj=3 Jump short if below or equal (CF = 1 or ZF = 1) 
72 cb JC cb 7,noj=3 Jump short if carry (CF=1) 
E3 cb JCXZ cb 8,noj=4 Jump short if CX register is zero 
74 cb JE cb 7,noj=3 Jump short if equal (ZF=1) 
7F cb JG cb 7,noj=3 Jump short if greater (ZF=O and SF=OF) 
7D cb JGE cb 7,noj=3 Jump short if greater or equal (SF=OF) 
7C cb JL cb 7,noj=3 Jump short if less (SF/=OF) 
7E cb JLE cb 7,noj=3 Jump short if less or equal (ZF=1 or SF/=OF) 
76 cb JNA cb 7,noj=3 Jump short if not above (CF=1 or ZF=1) 
72 cb JNAE cb 7,noj=3 Jump short If not above/equal (CF=1) 
73 cb JNB cb 7,noj=3 Jump short if not below (CF=O) 
77 cb JNBE cb 7,noj=3 Jump short if not below/equal (CF=O and 

ZF=O) 
73 cb JNC cb 7,noj=3 Jump short if not carry (CF=O) 
75 cb JNE cb 7,noj=3 Jump short if not equal (ZF=O) 
7E cb JNG cb 7,not=3 Jump short if not greater (ZF=1 or SF/=OF) 
7C cb JNGE cb 7,noj=3 Jump short if not greater/equal (SF/=OF) 
7D cb JNL cb 7,noj=3 Jump short if not less (SF=OF) 
7F cb JNLE cb 7,noj=3 Jump short if not less/equal (ZF=O and 

SF=OF) 
71 cb JNO cb 7,noj=3 Jump short if not overflow (OF=O) 
7B cb JNP cb 7,noj=3 Jump short if not parity (PF=O) 
79 cb JNS cb 7,noj=3 Jump short if not sign (SF=O) 
75 cb JNZ cb 7,noj=3 Jump short if not zero (ZF=O) 
70 cb JO cb 7,noj=3 Jump short if overflow (OF=1) 
7A cb JP cb 7,noj=3 Jump short if parity (PF=1) 
7A cb JPE cb 7,noj=3 Jump short if parity even (PF=1) 
7B cb JPO cb 7,noj=3 Jump short if parity odd (PF=O) 
78 cb JS cb 7,noj=3 Jump short if sign (SF=1) 
74 cb JZ cb 7,noj=3 Jump short if zero (ZF=1) 

·When a jump is taken, add one clock for every byte of the next instruction executed. 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Conditional jumps (except for JCXZ, explained below) test the flags, which presumably have been set 
in some meaningful way by a previous instruction. The conditions for each mnemonic are given in 
parentheses after each description above. The terms "less" and "greater" are used for comparing signed 
integers; "above" and "below" are used for unsigned integers. 
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If the given condition is true, then a short jump is made to the label provided as the operand. Instruc­
tion encoding is most efficient when the target for the conditional jump is in the current code segment 
and within -128 to + 127 bytes of the first byte of the next instruction. Alternatively, the opposite 
sense (e.g., JNZ has opposite sense to that of JZ) of the conditional jump can skip around an uncon­
ditional jump to the destination. 

This range is necessary for the assembler to construct a one-byte signed displacement from the end of 
the current instruction. If the label is out-of-range, or if the label is a FAR label, then you must perform 
a jump with the opposite condition around an unconditional jump to the non-short label. 

Because there are, in many instances, several ways to interpret a particular state of the flags, ASM286 
provides more than one mnemonic for most of the conditional jump opcodes. For example, consider 
that a programmer who has just compared a character to another in AL might wish to jump if the two 
were equal (JE), while another programmer who had just ANDed AX with a bit field mask would 
prefer to consider only whether the result was zero or not (he would use JZ, a synonym for JE). 

JCXZ differs from the other conditional jumps in that it actually tests the contents of the CX register 
for zero, rather than interrogating the flags. This instruction is useful following a conditionally repeated 
string operation (REPE SCASB, for example) or a conditional loop instruction (such as LOOPNE 
TARGETLABEL). These instructions implicitly use a limiting count in the CX register. Looping 
(repeating) ends when either the CX register goes to zero or the condition specified in the instruction 
(flags indicating equals in both of the above cases) occurs. JCXZ is useful when the terminations must 
be handled differently. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the offset jumped to is beyond the limits of the code segment. 

REAL ADDRESS MODE EXCEPTIONS 

None 
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JMP-Jump 

Opcode Instruction Clocks" Description 

E8 cb JMP cb 7 Jump short 
EA cd JMP cd 180 Jump to task gate 
E9 cw JMP cw 7 Jump near 
EA cd JMP cd 11,pm=23 Jump far (4-byte immediate address) 
EA cd, JMP cd 38 Jump to call gate, same privilege 
EA cd JMP cd 175 Jump via Task State Segment 
FF /4 JMP ew 7,mem=11, Jump ne,ar to EA word (absolute offset) 
FF /5 JMP ad 15,pm=26 . Jump far (4-byte effective address in memory 

doubleword) 
FF /5 JMP ad 41 Jump to call gate, same privilege 
FF /5 JMP ad 178 Jump via Task State Segment 
FF /5 JMP ad 183 Jump to task gate 

"Add one clock for every byte of the next instruction executed. 

FLAGS MODIFIED 

All if a task switch takes place; none if no task switch occurs. 

FLAGS UNDEFINED 

None 

OPERATIOPjl 

The JMP instruction transfers program control to a different instruction stream without recording any 
return information. 

For inter-segment jumps, the destination can be a code segment, a call gate, a task gate, or a Task 
State Segment. The latter two destinations cause a complete task switch to take place. 

Control transfers within a segment use the JMP Cwor JMP cb forms. The operand is a relative offset 
added modulo 65536 to the offset of the instruction that follows the JMP. The result is the new value 
of IP; the value of CS is unchanged. The byte operand is sign-extended before it is added; it can 
therefore be used to address labels within 128 bytes in either direction from the next instruction. 

Indirect jumps within a segment use the JMP ew form. The contents of the register or memory operand 
is an absolute offset, which becomes the new value of IP. Again, CS is unchanged. 

Inter-segment jumps in real address mode simply set IP to the offset part of the long pointer and set 
CS to the selector part of the pointer. 

In protected mode, inter-segment jumps cause the 80286 to consult the descriptor addressed by the 
selector part of the long pointer. The AR byte of the descriptor determines the type of the destination. 
(See table B-3 for possible values of the AR byte.) Following are the possible destinations: 

1. Code segment-The addressability and visibility of the destination are verified, and CS and IP 
are loaded with the destination pointer values. 
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2. Call gate-The offset part of the destination pointer is ignored. After checking for validity, the 
processor jumps to the location stored in the call gate descriptor. 

3. Task gate-The current task's state is saved in its Task State Segment (TSS), and the TSS named 
in the task gate is used to load a new context. The outgoing task is marked not busy, the new TSS 
is marked busy, and execution resumes at the point at which the new task was last suspended. 

4. TSS-The current task is suspended and the new task is initiated as in 3 above except that there 
is no intervening gate. 

Following is the list of checks and actions taken for long jumps in protected mode: 

JUMP FAR: 
If indirect then check access of EA doubleword #GP(O) or #55(0) if limit violation 
Destination selector is not null else #GP(O) 
Destination selector index is within its descriptor table limits else #GP (selector) 
Examine AR byte of destination selector for legal values: 

JUMP CONFORMING CODE SEGMENT: 
Descriptor DPL must be !5 CPL else #GP (selector) 
Segment must be PRESENT else #NP (selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from destination pOinter 
Load CS-cache with new segment descriptor 

JUMP NONCONFORMING CODE SEGMENT: 
RPL of destination selector must be !5 CPL else #GP (selector) 
Descriptor DPL must = CPL else #GP (selector) 
Segment must be PRESENT else #NP (selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from destination pOinter 
Load CS-cache with new segment descriptor 
Set RPL field of CS register to CPL 

JUMP TO CALL GATE: 
Descriptor DPL must be ~ CPL else #GP (gate selector) 
Descriptor DPL must be ~ gate selector RPL else #GP (gate selector) 
Gate must be PRESENT else #NP (gate selector) 
Examine selector to code segment given in call gate descriptor: 
Selector must not be null else #GP(O) 
Selector must be within its descriptor table limits else #GP (CS selector) 
Descriptor AR byte must indicate code segment else #GP (CS selector) 
If non-conforming, code segment descriptor DPL must = CPL else #GP (CS selector) 
If conforming, then code segment descriptor DPL must be !5 CPL else #GP (CS selector) 
Code Segment must be PRESENT else #NP (CS selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from call gate 
Load CS-cache with new code segment 
Set RPL of CS to CPL 

JUMP TASK GATE: 
Gate descriptor DPL must be ~ CPL else #GP (gate selector) 
Gate descriptor DPL must be ~ gate selector RPL else #GP (gate selector) 
Task Gate must be PRESENT else #NP (gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 
Must specify global in the local/global bit else #GP (TSS selector) 
Index must be within GOT limits else #GP (TSS selector) 
Descriptor AR byte must specify available TSS (bottom bits 00001) else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 
SWITCH_TASKS without nesting to TSS 
IP must be in code segment limit else #GP(O) 
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JUMP TASK STAT~ SEGMENT: 
TSS DPL must be 2: CPL else #GP (TSS selector) 
TSS DPL mus~ Ile 2: TSS selector RPL else #GP (TSS selector) 
Descriptor AR byte must specify available TSS (bottom bits 00001) else #GP (TSS selector) 
Task State SE!Qn:'snt must be PRESENT else #NP (TSS selector) 
SWITCH_TASKS with nesting to TS. 
IP must be in code segment limit else #GP(O) 

Else GP (selector) 

PROTECTED MODE EXCEPTIONS 

For NEAR jumps, #GP(O) if the destination offset is beyond the limits of the current code segment. 
For FAR jumps, #GP, #NP, #SS, and #TS, as indicated above. #UD if indirect inter-segment jump 
operand is a register. 

REAL ADDRESS MODE EXCEPTIONS 

#UD if indirect inter-segment jump operand is a register. 
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LAHF -Load Flags into AH Register 

Opcode Instruction Clocks Description 

9F LAHF 2 Load: AH = flags SF ZF xx AF xx PF xx CF 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The low byte of the flags word is transferred to AH. The bits, from MSB to LSB, are as follows: sign, 
zero, indeterminate, auxiliary carry, indeterminate, parity, indeterminate, and carry. See figure 3-5. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 

8-59 



THE 80286 INSTRUCTION SET 

LAR-Load Access Rights Byte 

Opcode 

OF 02 /r 

FLAGS MODIFIED 
Zero 

Instruction 

LAR rw,ew 

FLAGS UNDEFINED 
None 

OPERATION 

Clocks Description 

14,mem=16 Load: high(rw)= Access Rights byte, selector ew 

LAR expects the second operand (memory or register word) to contain a selector. If the associated 
descriptor is visible at the current privilege level and at the selector RPL, then the access rights byte 
of the descriptor is loaded into the high byte of the first (register) operand, and the low byte is set to 
zero. The zero flag is set if the loading was performed (Le., the selector index is within the table limit, 
descriptor DPL ~ CPL, and descriptor DPL ~ selector RPL); the zero flag is cleared otherwise. 

Selector operands cannot cause protection exceptions. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTION 

INTERRUPT 6; LAR is unrecognized in Real Address mode. 
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LDS/LES-Load Doubleword Pointer 

Opcode 

C5 /r 
C4 /r 

FLAGS MODIFIED 

None 

Instruction 

LDS rW,ed 
LES rW,ed 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

7,pm=21 
7,pm=21 

Description 

Load EA doubleword into DS and word register 
Load EA doubleword into ES and word register 

The four-byte pointer at the memory location indicated by the second operand is loaded into a segment 
register and a word register. The first word of the pointer (the offset) is loaded into the register indicated 
by the first operand. The last word of the pointer (the selector) is loaded into the segment register (DS 
or ES) given by the instruction opcode. 

When the segment register is loaded, its associated cache is also loaded. The data for the cache is 
obtained from the descriptor table entry for the selector given. 

A null selector (values 0000-0003) can be loaded into DS or ES without a protection exception. Any 
memory reference using such a segment register value will cause a #GP(O) exception but will not result 
in a memory reference. The saved segment register value will be null. 

Following is a list of checks and actions taken when loading the DS or ES registers: 

If selector is non-null then: 
Selector index must be within its descriptor table limits else #GP (selector) 
Examine descriptor AR byte: 

Data segment or readable non-conforming code segment 
Descriptor DPL 2:: CPL else #GP (selector) 
Descriptor DPL 2:: selector RPL else #GP (selector) 

Readable conforming code segment 
No DPL, RPL, or CPL checks 

Else #GP (selector) 

Segment must be present else #NP (selector) 
Load registers from operand 
Load segment register descriptor cache 

If selector is null then: 
Load registers from operand 
Mark segment register cache as invalid 
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PROTECTED MODE EXCEPTIONS 

#GP or #NP, as indicated in the list above. #GP(O) or #SS(O) if operand lies outside segment limit. 
#UD if the source operand is a register. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for operand at offset OFFFFH or OFFFDH. #UD if the source operand is a register. 
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LEA -Load Effective Address Offset 

Opcode 

80 /r 

FLAGS MODIFIED 

None 

Instruction 

LEA rw,m 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

3 

Description 

Calculate EA offset given by m, place in rw 

The effective address (offset part) of the second operand is placed in the first (register) operand. 

PROTECTED MODE EXCEPTIONS 

#UD if second operand is a register. 

REAL ADDRESS MODE EXCEPTIONS 

#UD if second operand is a register. 
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LEAVE - High Level Procedure Exit·· 

Opcode Instruction Clocks Description 

C9 LEAVE 5 Set SP to BP, then POP BP 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

LEAVE is the complementary operation to ENTER; it reverses the effects of that instruction. By 
copying BP to SP, LEAVE releases the stack space used by a procedure for its dynamics and display. 
The old frame pointer is now popped into BP, restoring the caller's frame, and a subsequent RET nn 
instruction will follow the back-link and remove any arguments pushed on the stack for the exiting 
procedure. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if BP does not point to a location within the current stack segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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LGDT ILIDT -Load Global/Interrupt 
Descriptor Table Register 

Opcode 

OF 01 /2 
OF 01 /3 

FLAGS MODIFIED 

None 

Instruction 

LGDT m 
LlDT m 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

11 
12 

Description 

Load m into Global Descriptor Table reg 
Load m into Interrupt Descriptor Table reg 

The Global or the Interrupt Descriptor Table Register is loaded from the six bytes of memory pointed 
to by the effective address operand (see figure 10.3). The LIMIT field of the descriptor table register 
loads from the first word; the next three bytes go to the BASE field of the register; the last byte is 
ignored. 

LGDT and LIDT appear in operating systems software; they are not used in application programs. 
These are the only instructions that directly load a physical memory address in 80286 protected mode. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is not O. 

#UD if source operand is a register. 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

These instructions are valid in Real Address mode to allow the power-up initialization for Protected 
mode. 

Interrupt 13 for a word operand at offset OFFFFH. #UD if source operand is a register. 
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LLDT -Load Local Descriptor Table Register 

Opcode Instruction 

OF 00 /2 LLDT ew 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

17,mem=19 

Description 

Load selector ew into Local Descriptor Table 
register 

The word operand (memory or register) to LLDT should contain a selector pointing to the Global 
Descriptor Table. The GDT entry should be a Local Descriptor Table Descriptor. If so, then the Local 
Descriptor Table Register is loaded from the entry. The descriptor cache entries for DS, ES, SS, and 
CS are not affected. The LDT field in the TSS is not changed. 

The selector operand.is allowed to be zero. In that case, the Local Descriptor Table Register is marked 
invalid. All descriptor references (except by LAR, VERR, VERW or LSL instructions) will cause a 
#GP fault. 

LLDT appears in operating systems software; it does not appear in applications programs. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is not O. #GP (selector) if the selector operand does not point into 
the Global Descriptor Table, or if the entry in the GDT is not a Local Descriptor Table. #NP (selector) 
if LDT descriptor is not present. #GP(O) for an illegal memory operand effective address in the CS, 
DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; LLDT is not recognized in Real Address Mode. 
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LMSW-Load Machine Status Word 

Opcode Instruction Clocks Description 

OF 01 /6 LMSWew 3,mem=6 Load EA word into Machine Status Word 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The Machine Status Word is loaded from the source operand. This instruction may be used to switch 
to protected mode. If so, then it must be followed by an intra-segment jump to flush the instruction 
queue. LMSW will not switch back to Real Address Mode. 

LMSW appears only in operating systems software. It does not appear in applications programs. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is not O. #GP(O) for an illegal memory operand effective address 
in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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LOCK - Assert BUS LOCK Signal 

Opcode Instruction .Clocks Description 

FO LOCK o Assert 8USLOCK signal for the next instruction 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

LOCK is a prefix that will cause the BUS LOCK signal of the 80286 to be asserted for the duration 
of the instruction that it prefixes. In a multiprocessor environment, this signal should be used to ensure 
that the 80286 has exclusive use of any shared memory while BUS LOCK is asserted. The read­
modify-write sequence typically used to implement TEST-AND-SET in the 80286 is the XCHG 
instruction. 

The 80286 LOCK prefix activates the lock signal for the following instructions: MOVS, INS, and 
OUTS. XCHG always asserts BUS LOCK regardless of the presence or absence of the LOCK prefix. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger (less privileged) than the I/O privilege level. 

Other exceptions may be generated by the subsequent (loci<:ed) instruction. 

REAL ADDRESS MODE EXCEPTIONS 

None. Exceptions may still be generated by the subsequent (locked) instruction. 

8-68 



THE 80286 INSTRUCTION SET 

LODS/LODSB/LODSW-Load String Operand 

Opcode 

AC 
AD 
AC 
AD 

FLAGS MODIFIED 

None 

Instruction 

LODS mb 
LODS mw 
LODS8 
LODSW 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

5 
5 
5 
5 

Description 

Load byte [SI] into AL 
Load word [SI] into AX 
Load byte DS:[SI] into AL 
Load word DS:[SI] into AX 

LODS loads the AL or AX register with the memory byte or word at SI. After the transfer is made, 
SI is automatically advanced. If the direction flag is 0 (CLD was executed), SI increments; if the 
direction flag is 1 (STD was executed), SI decrements. SI increments or decrements by 1 if a byte was 
moved; by 2 if a word was moved. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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LOOP/LOOPcond-Loop Control with CX Counter. 

Opcode In8tructlon 

E2 cb LOOP cb 
E1 cb LOOPE cb 
EO cb LOOPNE cb 

EO cb LOOPNZ cb 
E1 cb LOOPZ cb 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Clock8 

8,noj=4 
8,noj=4 
8,noj=4 

8,noj=4 
8,noj=4 

De8crlptlon 

DEC CX; jump short if cx #' 0 
DEC CX; jump short if CX#'O and equal (ZF=1) 
DEC CX; jump short if cx #' 0 and not equal 
(ZF=O) 
DEC CX; jump short if CX#'O and ZF=O 
DEC CX; jump short if CX#'O and zero (ZF=1) 

LOOP first decrements the ex register without changing any of the flags. Then, conditions are checked 
as given in the description above for the form of LOOP being used. If the conditions are met, then an 
intra-segment jump is made. The destination to LOOP is in the range from 126 (decimal) bytes before 
the instruction to 127 bytes beyond the instruction. 

The LOOP instructions are intended to provide iteration control and to combine loop index manage­
ment with conditional branching. To use the LOOP instruction you load an unsigned iteration count 
into ex, then code the LOOP at the end of a series of instructions to be iterated. The destination of 
LOOP is a label that points to the beginning of the iteration. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the offset jumped to is beyond the limits of the current code segment. 

REAL ADDRESS MODE EXCEPTIONS 

None 
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LSL-Load Segment Limit 

Opcode Instruction Clocks Description 

OF 03 Ir LSL rW,ew 14,mem=16 Load: rw = Segment Limit, selector ew 

FLAGS MODIFIED 

Zero 

FLAGS UNDEFINED 

None 

OPERATION 

If the descriptor denoted by the selector in the second (memory or register) operand is visible at the 
CPL, a word that consists of the limit field of the descriptor is loaded into the left operand, which 
must be a register. The value is the limit field for that segment. The zero flag is set if the loading was 
performed (that is, if the selector is non-null, the selector index is within the descriptor table limits, 
the descriptor is a non-conforming segment descriptor with DPL 2: CPL, and the descriptor DPL 2: 
selector RPL); the zero flag is cleared otherwise. 

The LSL instruction returns only the limit field of segments, task state segments, and local descriptor 
tables. The interpretation of the limit value depends on the type of segment. 

The selector operand's value cannot result in a protection exception. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; LSL is not recognized in Real Address mode. 
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L TR-Load Task Register 

Opcode Instruction . Clocks Description 

OF 00 /3 LTR ew 17,mem=19 Load EA word into Task Register 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The Task Register is loaded from the source register or memory location given by the operand. The 
loaded TSS is marked busy. A task switch operation does not occur. 

L TR appears only in operating systems software. It is not used in applications programs. 

PROTECTED MODE EXCEPTIONS 

#GP for an illegal memory operand effective address in the CS, DS, or ES segments; #SS for an illegal 
address in the SS segment. 

#GP(O) if the current privilege level is not O. #GP (selector) if the object named by the source selector 
is not a TSS or is already busy. #NP (selector) if the TSS is marked not present. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; L TR is not recognized in Real Address mode. 
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MOV-Move Data 

Opcode Instruction Clocks Description 

BB /r MOVeb,rb 2,mem=3 Move byte register into EA byte 
B9 /r MOVew,rw 2,mem=3 Move word register into EA word 
BA /r MOV rb,eb 2,mem=5 Move EA byte into byte register 
B8 /r MOV rW,ew 2,mem=5 Move EA word into word register 
BC /0 MOVew,ES 2,mem=3 Move ES into EA word 
BC /1 MOVew,CS 2,mem=3 Move CS into EA word 
BC /2 MOVew,SS 2,mem=3 Move SS into EA word 
BC /3 MOVew,OS 2,mem=3 Move OS into EA word 
BE /0 MOV ES,mw 5,pm=19 Move memory word into ES 
BE /0 MOV ES,rw 2,pm=17 Move word register into ES 
BE /2 MOV SS,mw 5,pm=19 Move memory word into SS 
BE /2 MOV SS,rw 2,pm=17 Move word register into SS 
BE /3 MOV OS,mw 5,pm=19 Move memory word into OS 
BE /3 MOV OS,rw 2,pm=17 Move word register into OS 
AO dw MOV AL,xb 5 Move byte variable (offset dw) into AL 
A1 dw MOV AX,xw 5 Move word variable (offset dw) into AX 
A2 dw MOV xb,AL 3 Move AL into byte variable (offset dw) 
A3 dw MOV xW,AX 3 Move AX into word register (offset dw) 
80+ rb db MOV rb,db 2 Move immediate byte into byte register 
8B+ rw dw MOV rw,dw 2 Move immediate word into word register 
C6 /0 db MOVeb,db 2,mem=3 Move immediate byte into EA byte 
C7 /0 dw MOVew,dw 2,mem=3 Move immediate word into EA word 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The second operand is copied to the first operand. 

If the destination operand is a segment register (DS, ES, or SS), then the associated segment register 
cache is also loaded. The data for the cache is obtained from the descriptor table entry for the selector 
given. 

A nun selector (values 0000-0003) can be loaded into DS and ES registers without causing a protection 
exception. Any use of a segment register with a null selector to address memory will cause #GP(O) 
exception. No memory reference will occur. 

Any move into SS will inhibit all interrupts until after the execution of the next instruction. 
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Following is a listing of the protected-mode checks and actions taken in the loading of a segment 
register: 

If SS is loaded: 
If selector is null then #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Selector's RPL must equal CPL else #GP (selector) 
AR byte must indicate a writable data segment else #GP (selector) 
OPL in the AR byte must equal CPL else #GP (selector) 
Segment must be marked PRESENT else #SS (selector) 
Load SS with selector 
Load SS cache with descriptor 

If ES or OS is loaded with non-null selector 
Selector index must be within its descriptor table limits else #GP (selector) 
AR byte must indicate data or readable code segment else #GP (selector) 
If data or non-conforming code, then both the RPL and the 

CPL must be less than or equal to OPL in AR byte else #GP (selector) 
Segment must be marked PRESENT else #NP (selector) 

Load segment register with selector 
Load segment register cache with descriptor 
If ES or OS is loaded with a null selector: 

Load segment register with selector 
Clear descriptor valid bit 

PROTECTED MODE EXCEPTIONS 

If a segment register is being loaded, #GP, #88, and #NP, as described in the listing above. 

Otherwise, #GP(O) if the destination is in a non-writable segment. #GP(O)for an illegal memory operand 
effective address in the C8, DS, or E8 segments; #S8(0) for an illegal address in the 88 segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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MOVS/MOVSB/MOVSW-Move Data from String 
to String 

Opcode 

A4 
A5 
A4 
A5 

FLAGS MODIFIED 

None 

Instruction Clocks 

MOVS mb,mb 5 
MOVS mW,mw 5 
MOVS8 5 
MOVSW 5 

FLAGS UNDEFINED 

None 

OPERATION 

Description 

Move byte [SI] to ES:[DI] 
Move word [SI] to ES:[DI] 
Move byte DS:[SI] to ES:[DI] 
Move word DS:[SI] to ES:[DI] 

MOYS copies the byte or word at [SI] to the byte or word at ES: [01]. The destination operand must 
be addressable from the ES register; no segment override is possible. A segment override may be used 
for the source operand. 

After the data movement is made, both SI and DI are automatically advanced. If the direction flag is 
o (CLD was executed), the registers increment; if the direction flag is 1 (STD was executed), the 
registers decrement. The registers increment or decrement by 1 if a byte was moved; by 2 if a word 
was moved. 

MOYS can be preceded by the REP prefix for block movement of CX bytes or words. Refer to the 
REP instruction for details of this operation. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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MUL - Unsigned Multiplication of ALor AX 

Opcode 

F6 /4 
F7 /4 

FLAGS MODIFIED 

Overflow, carry 

Instruction 

MUL eb 
MUL ew 

FLAGS UNDEFINED 

Sign, zero, auxiliary carry, parity 

OPERATION 

Clocks 

13,mem=16 
21,mem=24 

Description 

Unsigned multiply (AX = AL X EA byte) 
Unsigned multiply (DXAX = AX X EA word) 

If MUL has a byte operand, then the byte is multiplied by AL, and the result is left in AX. Carry and 
overflow are set to 0 if AH is 0; they are set to 1 otherwise. 

If MUL has a word operand, then the word is multiplied by AX, and the result is left in OX:AX. OX 
contains the high order 16 bits of the product. Carry and overflow are set to 0 if OX is 0; they are set 
to 1 otherwise. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, OS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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NEG-Two's Complement Negation 

Opcode 

F6 /3 
F7 /3 

FLAGS MODIFIED 

Instruction 

NEG eb 
NEG ew 

Clocks 

2,mem·;"'7 
2,mem=7 

Overflow, sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

Description 

Two's complement negate EA byte 
Two's complement negate EA word 

The two's complement of the register or memory operand replaces the old operand value. Likewise, 
the operand is subtracted from zero, and the result is placed in the operand. 

The carry flag is set to 1 except when the input operand is zero, in which case the carry flag is cleared 
to O. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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NOP-No OPERATION 

Opcode Instruction . Clocks Description 

90 NOP 3 No.OPERATION 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Performs no operation. NOP is a one-byte filler instruction that takes up space but affects none of the 
machine context except IP. . 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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NOT -One's Complement Negation 

Opcode 

F6 /2 
F7 /2 

FLAGS MODIFIED 

None 

Instruction 

NOT eb 
NOT ew 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

2,mem=7 
2,mem=7 

Description 

Reverse each bit of EA byte 
Reverse each bit of EA word 

The operand is inverted; that is, every 1 becomes a 0 and vice versa. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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OR-Logical Inclusive OR 

Opcode Instruction Clocks 

08 Ir OR eb,rb 2,mem=7 
09 Ir OR ew,rw 2,mem=7 
OA Ir OR rb,eb 2,mem=7 
08 Ir OR rw,ew 2,mem=7 
OC db OR AL,db 3 
00 dw OR AX,dw 3 
80 11 db OR eb,db 3,mem=7 
81 11 dw OR eW,dw 3,mem=7 

FLAGS MODIFIED 

Overfiow=O, sign, zero, parity, carry=O 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

Description 

Logical-OR byte register into EA byte 
Logical-OR word register into EA word 
Logical-OR EA byte into byte register 
Logical-OR EA word into word register 
Logical-OR immediate byte into AL 
Logical-OR immediate word into AX 
Logical-OR immediate byte into EA byte 
Logical-OR immediate word into EA word 

This instruction computes the inclusive OR of the two operands. Each bit of the result is 0 if both 
corresponding bits of the operands are 0; each bit is 1 otherwise. The result is placed in the; first 
operand. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the e8, D8, or E8 segments; #88(0) for an illegal address in the 88 segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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OUT-Output to Port 

Opcode 

E6 db 
E7 db 
EE 
EF 

FLAGS MODIFIED 

None 

InstructIon 

OUT db,AL 
OUT db,AX 
OUT OX,AL 
OUT OX,AX 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

3 
3 
3 
3 

DescrIptIon 

Output byte AL to immediate port number db 
Output word AX to Immediate port number db 
Output byte AL to port number OX 
Output word AX to port number OX 

OUT transfers a data byte or data word from the register (AL or AX) given as the second operand to 
the output port numbered by the first operand. You can output to any port from 0-65535 by placing 
the port number in the OX register then using an OUT instruction with OX as the first operand. If the 
instruction contains an 8-bit port 10, that value is zero-extended to 16 bits. 

Intel reserves I/O port addresses 00F8H through OOFFH; these addresses should not be used. 

PROTECTED MODE EXCEPTIONS 

~GP(O) if the current privilege level is bigger (has less privilege) than IOPL, which is the privilege 
level found in the flags register. 

REAL ADDRESS MODE EXCEPTIONS 

None 
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OUTS/OUTSB/OUTSW-Output String to Port 

Opcode. Instruction 

6E OUTS OX,eb 
6F OUTS OX,ew 
6E OUTS8 
6F OUTSW 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

5 
5 
5 
5 

Description 

Output byte [SI] to port number OX 
Output word [SI] to port number OX 
Output byte OS:[SI] to port number OX 
Output word OS:[SI] to port number OX 

OUTS transfers data from the memory byte or word at SI to the output port numbered by the DX 
register. 

OUTS does not allow the specification of the port number as an immediate value. The port must be 
addressed through the DX register. 

After the transfer is made, SI is automatically advanced. If the direction nag is 0 (CLD was executed), 
SI increments; if the direction flag is 1 (STD was executed), SI decrements. SI increments or decre­
ments by 1 if a byte was moved; by 2 if a word was moved. 

OUTS can be preceded by the REP prefix for block output of CX bytes or words. Refer to the REP 
instruction for details of this operation. 

Intel reserves I/O port addresses OOF8H through OOFFH; these addresses should not be used. 

NOTE 

Not all output devices can handle the rate at which this instruction transfers data. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if CPL > IOPL. #GP(O) for an illegal memory operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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POP-Pop a Word from the Stack 

Opcode Instruction Clocks Description 

1F POP OS 5,pm=20 Pop top of stack into OS 
07 POP ES 5,pm=20 Pop top of stack into ES 
17 POP SS 5,pm=20 Pop top of stack into SS 
SF /0 POP mw 5 Pop top of stack into memory word 
5S+rw POP rw 5 Pop top of stack into word register 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The word on the top of the 80286 stack, addressed by SS:SP, replaces the previous contents of the 
memory, register, or segment register operand. The stack pointer SP is incremented by 2 to point to 
the new top of stack. 

If the destination operand is another segment register (DS, ES, or SS), the value popped must be a 
selector. In protected mode, loading the selector initiates automatic loading of the descriptor informa­
tion associated with that selector into the hidden part of the segment register; loading also initiates 
validation of both the selector and the descriptor information. 

A null value (0000-0003) may be loaded into the DS or ES register without causing a protection excep­
tion. Attempts to reference memory using a segment register with a null value will cause #GP(O) 
exception. No memory reference will occur. The saved value of the segment register will be null. 

A POP SS instruction will inhibit all interrupts, including NMI, until after the execution of the next 
instruction. This permits a POP SP instruction to be performed first. 

Following is a listing of the protected-mode checks and actions taken in the loading of a segment 
register: 

If SS is loaded: 
If selector is null then #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Selector's RPL must equal CPL else #GP (selector) 
AR byte must indicate a writable data segment else #GP (selector) 
OPL in the AR byte must equal CPL else #GP (selector) 
Segment must be marked PRESENT else #SS (selector) 
Load SS register with selector 
Load SS cache with descriptor 
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If ES or DS is loaded with non-null selector: 
AR byte must indicate data or readable code segment else#GP (selector) 
If data or non-conforming code. then both the RPL and the 

CPL must be less than or equal to DPL in AR byte else #GP (selector) 
Segment must be marked PRESENT else #NP (selector) '. 
Load segment register with selector 
Load segment register cache with descriptor 

If ES or DS is loaded with a null selector: 
Load segment register with selector 
Clear valid bit in cache 

PROTECTED MODE EXCEPTIONS 

If a segment register is being loaded, #GP, #88, and #NP, as described in the listing above. 

Otherwise, #88(0) if the current top of stack is not within the stack segment. 

#GP(O) if the destination is in a non-writable segment. #GP(O) for an illegal memory operand effective 
addre~s in the e8, D8, or E8 segments; #88(0) for an illegal address in the 88 segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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POPA-Pop All General Registers 

Opcode Instruction Clocks Description 

61 POPA 19 Pop in order: DI,SI,BP,SP,BX,DX,CX,AX 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

POPA pops the eight general registers given in the description above, except that the SP value is 
discarded instead of loaded into SP.POPA reverses a previous PUSHA, restoring the general registers 
to their values before PUSHA was executed. The first register popped is DI. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if the starting or ending stack address is not within the stack segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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POPF-Pop from Stack into the Flags Register 

Opcode Instruction Clocks Description 

90 POPF 5 Pop top of stack into flags register 

FLAGS MODIFIED 

Entire flags register is popped from stack 

FLAGS UNDEFINED 

None 

OPERATION 

The top of the 80286 stack, pointed to by SS:SP, is copied into the 80286 flags register. The stack 
pointer SP is incremented by 2 to point to the new top of stack. The flags, from the top bit (bit 15) to 
the bottom (bit 0), are as follows: undefined, nested task, I/O privilege level (2 bits), overflow, direc­
tion, interrupts enabled, trap, sign, zero, undefined, auxiliary carry, undefined, parity, undefined, and 
carry. 

The I/O privilege level will be altered only when executing at privilege level O. The interrupt enable 
flag will be altered only when executing at a level at least as privileged as the I/O privilege level. If 
you execute a POPF instruction with insufficient privilege, there will be no exception nor will the 
privileged bits be changed. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if the top of stack is not within the stack segment. 

REAL ADD~ESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at OFFFFH. 

In real mode the NT and 10PL bits will not be modified. 
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PUSH-Push a Word onto the Stack 

Opcode Instruction 

06 PUSH ES 
OE PUSH CS 
16 PUSH SS 
1E PUSH OS 
50+ rw PUSH rw 
FF /6 PUSH mw 
68 dw PUSH dw 
6A db PUSH db 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

3 
3 
3 
3 
3 
5 
3 
3 

Description 

Push ES 
Push CS 
Push SS 
Push OS 
Push word register 
Push memory word 
Push immediate word 
Push immediate sign-extended byte 

The stack pointer SP is decremented by 2, and the operand is placed on the new top of stack, which is 
pointed to by SS:SP. 

The 80286 PUSH SP instruction pushes the value of SP as it existed before the instruction. This differs 
from the 8086, which pushes the new (decremented by 2) value. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if the new value of SP is outside the stack segment limit. 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

None; the 80286 will shut down if SP = I-due to lack of stack space. 
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PUSHA'-Push All General Registers 

Opcode Instruction 

60 PUSHA 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

17 

Description 

Push in order: AX,CX,DX,8X,originai 
SP,8P,SI,DI 

PUSHA saves the registers noted aQove on the 80286 stack. The stack pointer SP is-decremented by 
16 to hold the 8 word values. Since the registers are pushed onto the stack in the order in which they 
were given, they will appear in the 16 new stack bytes in the reverse order. The last register pushed is -
DI. 

PROTECTED MODE EXCEPTIONS 

~SS(O) if the starting or ending address is outside the stack segment limit. 

REAL ADDRESS MODE EXCEPTIONS 

The 80286 will shut down if SP = I, 3, or 5 before executing PUSHA. If SP = 7,9, II, 13, or IS, 
exception 13 will occur. 
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PUSHF - Push Flags Register onto the Stack 

Opcode Instruction Clocks Description 

9C PUSHF 3 Push flag~ register 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The stack pointer SP is decremented by 2, and the 80286 flags register is copied to the new top of 
stack, which is pointed to by SS:SP. The flags, from the top bit (15) to the bottom bit (0), are as 
follows: undefined, nested task, I/O privilege level (2 bits), overflow, direction, interrupts enabled, 
trap, sign, zero, undefined, auxiliary carry, undefined, parity, undefined, and carry. 

PROTECTED MODE EXCEPTIONS 
I 

#SS(O) if the new value of SP is outside the stack segment limit. 

REAL ADDRESS MODE EXCEPTIONS 

None; the 80286 will shut down if SP= 1 due-to lack of stack space. 
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RCLI RCR I ROLl ROR-Rotate Instructions 

Opcode Instruction Clocks-N° Description 

DO /2 RCL eb,1 2,mem=7 Rotate 9-bits (CF, EA byte) left once 
02 /2 RCL eb,CL* 5,mem=8 Rotate.9-bits (CF, EA byte) left CL times 
CO /2 db RCL eb,db* 5,mem=8 Rotate 9-bits (CF, EA byte) left db times 
D1 /2 RCL ew,1 2,mem=7 Rotate 17-bits (CF, EA word) left once 
03 /2 RCL ew,CL* 5,mem=8 Rotate 17-bits (CF, EA word) left CL times 
C1 /2 db RCL ew,db* 5,mem=8 Rotate 17-bits (CF, EA word) left db times 
DO /3 RCR eb,1 2,mem=7 Rotate 9-bits (CF, EA byte) right once 
02 /3 RCR eb,CL* 5,mem=8 Rotate 9-bits (CF, EA byte) right CL times 
CO /3 db RCR eb,db* 5,mem=8 Rotate 9-bits (CF, EA byte) right db times 
01 /3 RCR ew,1 2,mem=7 Rotate 17-bits (CF, EA word) right once 
03 /3 RCR ew,CL* 5,mem=8 Rotate 17-bits (CF, EA word) right CL times 
C1 /3 db RCR ew,db* 5,mem=8 Rotate 17 -bits (CF, EA word) right db times 
DO /0 ROL eb,1 2,mem=7 Rotate 8-bit EA byte left once 
02 /0 ROL eb,CL* 5,mem=8 Rotate 8-bit EA byte left CL times 
CO /0 db ROL eb,db* 5,mem=8 Rotate 8-bit EA byte left db times 
01 /0 ROL ew,1 2,mem=7 Rotate 16-bit EA word left once 
03 /0 ROL ew,CL* 5,mem=8 Rotate 16-bit EA word left CL times 
C1 /0 db ROL eW,db* 5,mem=8 Rotate 16-bit EA word left db times 
DO /1 ROR eb,1 2,mem=7 Rotate 8-bit EA byte right once 
02 /1 ROR eb,CL* 5,mem=8 Rotate 8-bit EA byte right CL times 
CO /1 db ROR eb,db* 5,mem=8 Rotate 8-bit EA byte right db times 
01 /1 ROR ew,1 2,mem=7 Rotate 16-bit EA word right once 
03 /1 ROR ew,CL* 5,mem=8 Rotate 16-bit EA word right CL times 
C1 /1 db ROR eW,db* 5,mem=8 Rotate 16-bit EA word right db times 

* Add 1 clock to the times shown for each rotate made 

FLAGS MODIFIED 

Overflow (only for single rotates), carry 

FLAGS UNDEFINED 

Overflow for multi-bit rotates 

OPERATION 

Each rotate instruction shifts the bits of the register or memory operand given. The left rotate instruc­
tions shift all of the bits upward, except for the top bit, which comes back around to the bottom. The 
right rotate instructions do the reverse: the bits shift downward, with the bottom bit coming around to 
the top. 

For the RCL and RCR instructions, the carry flag is part of the rotated quantity. RCL shifts the carry 
flag into the bottom bit and shifts the top bit into the carry flag; RCR shifts the carry flag into the top 
bit and shifts the bottom bit into the carry flag. For the ROL and ROR instructions, the original value 
of the carry flag is not a part of the result; nonetheless, the carry flag receives a copy of the bit that 
was shifted from one end to the other. 
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The rotate is repeated the number of times indicated by the second operand, which is either an immedi­
ate number or the contents of the CL register. To reduce the maximum execution time, the 80286 does 
not allow rotation counts greater than 31. If a rotation count greater than 31 is attempted, only the 
bottom five bits of the rotation are used. The 8086 does not mask rotate counts. 

The overflow flag is set only for the single-rotate (second operand = 1) forms of the instructions. The 
OF bit is set to be accurate if a shift of length 1 is done. Since it is undefined for all other values, 
including a zero shift, it can always be set for the count-of-l case regardless of the actual count. For 
left shifts/rotates, the CF bit after the shift is XORed with the high-order result bit. For right shifts/ 
rotates, the high-order two bits of the result are XORed to get OF. Neither flag bit is modified when 
the count value is zero. . 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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REP / REPE / REPNE - Repeat Following String Operation 

Opcode Instruction Clocks· Description 

F3 6C REP INS eb,OX S+4*CX Input CX bytes from port OX into ES:[OI] 
F3 60 REP INS ew,OX S+4*CX Input CX words from port OX into ES:[OI] 
F3 6C REP INSB S+4*CX Input CX bytes from port OX into ES:[OI] 
F3 60 REP INSW S+4*CX Input CX words from port OX into ES:[OI] 
F3 A4 REP MOVS mb,mb S+4*CX Move CX bytes from [SI] to ES:[OI] 
F3 AS REP MOVS mW,mw S+4*CX Move CX words from [SI] to ES:[OI] 
F3 A4 REP MOVSB S+4*CX Move CX bytes from OS:[SI] to ES:[OI] 
F3 AS REP MOVSW S+4*CX Move CX words from OS:[SI] to ES:[OI] 
F3 6E REP OUTS OX,eb S+4*CX Output CX bytes from [SI] to port OX 
F3 6F REP OUTS OX,ew S+4*CX Output CX words from [SI] to port OX 
F3 6E REP OUTSB S+4*CX Output CX bytes from OS:[SI] to port OX 
F3 6F REP OUTSW S+4*CX Output CX words from OS:[SI] to port OX 
F3 AA REP STOS mb 4+3*CX Fill CX bytes at ES:[OI] with AL 
F3 AB REP STOS mw 4+3*CX Fill CX words at ES:[OI] with AX 
F3 AA REP STOSB 4+3*CX Fill CX bytes at ES:[OI] with AL 
F3 AB REP STOSW 4+3*CX Fill CX words at ES:[OI] with AX 
F3 A6 REPE CMPS mb,mb S+9*N Find non matching bytes in ES:[OI] and [SI] 
F3 A7 REPE CMPS mW,mw S+9*N Find non matching words in ES:[OI] and [SI] 
F3 A6 REPE CMPSB S+9*N Find non matching bytes in ES:[OI] and OS:[SI] 
F3 A7 REPE CMPSW S+9*N Find nonmatching words in ES:[OI] and OS:[SI] 
F3 AE REPE SCAS mb S+S*N Find non-AL byte starting at ES:[OI] 
F3 AF REPE SCAS mw S+S*N Find non-AX word starting at ES:[OI] 
F3 AE REPE SCASB S+S*N Find non-AL byte starting at ES:[OI] 
F3 AF REPE SCASW S+S*N Find non-AX word starting at ES:[OI] 
F2 A6 REPNE CMPS mb,mb S+9*N Find matching bytes in ES:[OI] and [SI] 
F2 A7 REPNE CMPS mW,mw S+9*N Find matching words in ES:[OI] and [SI] 
F2 A6 REPNE CMPSB S+9*N Find matching bytes in ES:[OI] and OS:[SI] 
F2 A7 REPNE CMPSW S+9*N Find matching words in ES:[OI] and OS:[SI] 
F2 AE REPNE SCAS mb S+S*N Find AL, starting at ES:[OI] 
F2 AF REPNE SCAS mw S+S*N Find AX, starting at ES:[OI] 
F2 AE REPNE SCASB S+S*N Find AL, starting at ES:[OI] 
F2 AF REPNE SCASW S+S*N Find AX, starting at ES:[OI] 

* N denotes the number of iterations actually executed. 

FLAGS MODIFIED 

By CMPS and SCAS, none by REP 

FLAGS UNDEFINED 

None 

OPERATION 

REP, REPE, and REPNE are prefix operations. These prefixes cause the string instruction that follows 
to be repeated CX times or (for REPE and REPNE) until the indicated condition in the zero flag is 
no longer met. Thus, REPE stands for "Repeat while equal," REPNE for "Repeat while not equal." 
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The REP prefixes make sense only in the contexts listed above. They cannot be applied to anything 
other than string operations. 

Synonymous forms of REPE and REPNE are REPZ and REPNZ, respectively. 

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, use 
a LOOP construct. 

The precise action for each iteration is as follows: 

I. Check the CX register. If it is zero, exit the iteration and move to the next instruction. 

2. Acknowledge any pending interrupts. 

3. Perform the string operation once. 

4. Decrement CX by I; no flags are modified. 

5. If the string operation is SCAS or CMPS, check the zero flag. If the repeat condition does not 
hold, then exit the iteration and move to the next instruction. Exit if the prefix is REPE and 
ZF=O (the last comparison was not equal), or if the prefix is REPNE and ZF= 1 (the last 
comparison was equal). 

6. Go to step 1 for the next iteration. 

As defined by the individual string-ops, the direction of movement through the block is determined by 
the direction flag. If the direction flag is 1 (STD was executed), SI and/or DI start at the end of the 
block and move backward; if the direction flag is 0 (CLD was executed), SI and/or DI start at the 
beginning of the block and move forward. 

For repeated SCAS and CMPS operations the repeat can be exited for one of two different reasons: 
the CX count can be exhausted or the zero flag can fail the repeat condition. Your code will probably 
want to distinguish between the two cases. It can do so via either the JCXZ instruction or the condi­
tional jumps that test the zero flag (JZ, JNZ, JE, and JNE). 

NOTE 

Not all input/output ports can handle the rate at which the repeated I/0 instructions execute. 

PROTECTED MODE EXCEPTIONS 

None by REP; exceptions can be generated when the string-op is executed. 

REAL ADDRESS MODE EXCEPTIONS 

None by REP; exceptions can be generated when the string-op is executed. 
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RET-Return from Procedure 

Opcode 

CB 
CB 
C3 
CA dw 
CA dw 
C2 dw 

Instruction 

RET 
RET 
RET 
RET dw 
RET dw 
RET dw 

Clocks· 

15,pm=25 
55 
11 
15,pm=25 
55 
11 

Description 

Return to far caller, same privilege 
Return, lesser privilege, switch stacks 
Return to near caller, same privilege 
RET (far), same privilege, pop dw bytes 
RET (far), lesser privilege, pop dw bytes 
RET (near), same privilege, pop dw bytes 
pushed before Call 

'Add 1 clock for each byte in the next instruction executed. 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

RET transfers control to a return address located on the stack. The address is usually placed on the 
stack by a CALL instruction; in that case, the return is made to the instruction that follows the CALL. 

There is an optional numeric parameter to RET. It gives the number of stack bytes to be released after 
the return address is popped. These bytes are typically used as input parameters to the procedure 
called. 

For the intra-segment return, the address on the stack is a 2-byte quantity popped into IP. The CS 
register is unchanged. 

For the inter-segment return, the address on the stack is a 4-byte-long pointer. The offset is popped 
first, followed by the selector. In real address mode, CS and IP are directly loaded. 

In protected mode, an inter-segment return causes the processor to consult the descriptor addressed by 
the return selector. The AR byte of the descriptor must indicate a code segment of equal or less privi­
lege (of greater or equal numeric value) than the current privilege level. Returns to a lesser privilege 
level cause the stack to be reloaded from the value saved beyond the parameter block. 

The DS and ES segment registers may be set to zero by the inter-segment RET instruction. If these 
registers refer to segments which cannot be used by the new privilege level, they are set to zero to 
prevent unauthorized access. 

The following list of checks and actions describes the protected-mode inter-segment return in detail. 

Inter-segment RET: 
Second word on stack must be within stack limits else #SS(O) 
Return selector RPL must be ;::: CPL else #GP (return selector) 
If return selector RPL = CPL then 
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RETURN TO SAME LEVEL: 
Return selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Descriptor AR byte must indicate code segment else #GP (selector) 
If non-conforming then code segment DPL must equal CPL else #GP (selector) 
If conforming then code segment DPL must be :::; CPL else #GP (selector) 
Code segment must be PRESENT else #NP (selector) 
Top word on stack must be within stack limits else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from stack 
Load CS-cache with descriptor 
Increment SP by 4 plus the immediate offset if it exists 

Else 
RETURN TO OUTER PRIVILEGE LEVEL: 
Top (8+ immediate) bytes on stack must be within stack limits else #SS(O) 
Examine return CS selector (at SP+2) and associated descriptor: 

Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Descriptor AR byte must indicate code segment else #GP (selector) 
If non-conforming then code segment DPL must equal return selector RPL else #GP (selector) 
If conforming then code segment DPL must be :::; return selector RPL else #GP (selector) 
Segment must be PRESENT else #NP (selector) 

Examine return SS selector (at SP+6+imm) and associated descriptor: 
Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Selector RPL must equal the RPL of the return CS selector else #GP (selector) 
Descriptor AR byte must indicate a writable data segment else #GP (selector) 
Descriptor DPL must equal the RPL of the return CS selector else #GP (selector) 
Segment must be PRESENT else #SS (selector) 

IP must be in code segment limit else # GP(O) 
Set CPL to the RPL of the return CS selector 
Load CS:IP from stack 
Set CS RPL to CPL 
Increment SP by 4 plus the immediate offset if it exists 
Load SS:SP from stack 
Load the CS-cache with the return CS descriptor 
Load the SS-cache with the return SS descriptor 
For each of ES and OS: 

If the current register setting is not valid for the outer level, set the 
register to null (selector = AR = 0) 

To be valid, the register setting must satisfy the following properties: 
Selector index must be within descriptor table limits 
Descriptor AR byte must indicate data or readable code segment 
If segment is data or non-conforming code, then: 

DPL must be ;::: CPL, or 
DPL must be ;::: RPL 

PROTECTED MODE EXCEPTIONS 

#GP, #NP, or #SS, as described in the above listing. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 if the stack pop wraps around from OFFFFH to O. 
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SAHF-Store AH into Flags 

Opcode Instruction Clocks Description 

9E SAHF 2 Store AH into flags SF ZF xx AF xx PF xx CF 

FLAGS MODIFIED 

Sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

The flags listed above are loaded with values from the AH register, from bits 7, 6, 4, 2, and 0, 
respectively. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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SALI SAR I SHLI SHR-Shift Instructions 

Opcode Instruction Clocks-N· Description 

00 /4 SAL eb,1 2,mem=7 Multiply EA byte by 2, once 
02 /4 SAL eb,CL 5,mem=8 Multiply EA byte by 2, CL times 
CO /4 db SAL eb,db 5,mem=8 Multiply EA byte by 2, db times 
01 /4 SAL eW,1 2,mem=7 Multiply EA word by 2, once 
03 /4 SAL eW,CL 5,mem=8 Multiply EA word by 2, CL times 
C1 /4 db SAL eW,db 5,mem=8 Multiply EA word by 2, db times 
00 /7 SAR eb,1 2,mem=7 Signed divide EA byte by 2, once 
02 /7 SAR eb,CL 5,mem=8 Signed divide EA byte by 2, CL times 
CO /7 db SAR eb,db 5,mem=8 Signed divide EA byte by 2, db times 
01 /7 SAR eW,1 2,mem=7 Signed divide EA word by 2, once 
03 /7 SAR eW,CL 5,mem=8 Signed divide EA word by 2, CL times 
C1 /7 db SAR eW,db 5,mem=8 Signed divide EA word by 2, db times 
00 /5 SHR eb,1 2,mem=7 Unsigned divide EA byte by 2, once 
02 /5 SHR eb,CL 5,mem=8 Unsigned divide EA byte by 2, CL times 
CO /5 db SHR eb,db 5,mem=8 Unsigned divide EA byte by 2, db times 
01 /5 SHR eW,1 2,mem=7 Unsigned divide EA word by 2, once 
03 /5 SHR eW,CL 5,mem=8 Unsigned divide EA word by 2, CL times 
C1 /5 db SHR eW,db 5,mem=8 Unsigned divide EA word by 2, db times 

• Add 1 clock to the times shown for each shift performed 

FLAGS MODIFIED 

Overflow (only for single-shift form), carry, zero, parity, sign 

FLAGS UNDEFINED 

Auxiliary carry; also overflow for multibit shifts (only). 

OPERATION 

SAL (or its synonym SHL) shifts the bits of the operand upward. The high-order bit is shifted into the 
carry flag, and the low-order bit is set to o. 

SAR and SHR shift the bits of the operand downward. The low-order bit is shifted into the carry flag. 
, The effect is to divide the operand by 2. SAR performs a signed divide: the high-order bit remains the 
same. SHR performs an unsigned divide: the high-order bit is set to o. 

The shift is repeated the number of times indicated by the second operand, which is either an immedi­
ate number or the contents of the CL register. To reduce the maximum execution time, the 80286 does 
not allow shift counts greater than 31. If a shift count greater than 31 is attempted, only the bottom 
five bits of the shift count are used. The 8086 uses all 8 bits of the shift count. 

The overflow flag is set only if the single-shift forms of the instructions are used. For left shifts, it is 
set to 0 if the high bit of the answer is the same as the result carry flag (i.e., the top two bits of the 
original operand were the same); it is set to 1 if they are different. For SAR it is set to 0 for all single 
shifts. For SHR, it is set to the high-order bit of the original operand. Neither flag bit is modified when 
the count value is zero. 
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PROTECTED MODE EXCEPTIONS 

#GP(O) if the operand is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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SBB-Integer Subtraction With Borrow 

Opcode Instruction Clocks 

18 /r see eb,rb 2,mem=7 

19 /r see ew,rw 2,mem=7 

1A /r see rb,eb 2,mem=7 

1e /r see rw,ew 2,mem=7 

1C db see AL,db 3 
1D dw see AX,dw 3 
80 /3 db see eb,db 3,mem=7 
81 /3 dw see eW,dw 3,mem=7 
83 /3 db see eW,db 3,mem=7 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

Description 

Subtract with borrow byte register from EA 
byte 
Subtract with borrow word register from EA 
word 
Subtract with borrow EA byte from byte 
register 
Subtract with borrow EA word from word 
register 
Subtract with borrow imm. byte from AL 
Subtract with borrow imm. word from AX 
Subtract with borrow imm. byte from EA byte 
Subtract with borrow imm. word from EA word 
Subtract with borrow imm. byte from EA word 

The second operand is added to the carry flag and the result is subtracted from the first operand. The 
first operand is replaced with the result of the subtraction, and the flags are set accordingly. 

When a byte-immediate value is subtracted from a word operand, the immediate value is first 
sign-extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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SCAS / SCASB / SCASW -Compare String Data 

Opcode 

AE 
AF 
AE 
AF 

FLAGS MODIFIED 

Instruction 

SCAS mb 
SCAS mw 
SCASB 
SCASW 

Clocks 

7 
7 
7 
7 

Overflow, sign. zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

Descrip,tlon 

Compare bytes AL - ES:[DI]. advance DI 
Compare words AX - ES:[DI]. advance DI 
Compare bytes AL - ES:[DI]. advance DI 
Compare words AX - ES:[DI). advance DI 

SCAS subtracts the memory byte or word at ES:DI from the AL or AX register. The result is discarded; 
only the flags are set. The operand must be addressable from the ES register; no segment override is 
possible. 

After the comparison is made, DI is automatically advanced. If the direction flag is 0 (CLD was 
executed), DI increments; if the direction flag is 1 (STD was executed), DI decrements. DI increments 
or decrements by 1 if bytes were compared; by 2 if words were compared. 

SCAS can be preceded by the REPE or REPNE prefix for a block search of CX bytes or words. Refer 
to the REP instruction for details of this operation. . 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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SGDT /SIDT -Store Global/Interrupt Descriptor Table 
Register 

Opcode 

OF 01 /0 
OF 01 /1 

FLAGS MODIFIED 

None 

Instruction 

SGDT m 
SlOT m 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

11 
12 

Description 

Store Global Descriptor Table register to m 
Store Interrupt Descriptor Table register to m 

The contents of the descriptor table register are copied to six bytes of memory indicated by the operand. 
The LIMIT field of the register goes to the first word at the effective address; the next three bytes get 
the BASE field of the register; and the last byte is undefined. 

SGDT and SIDT appear only in operating systems software; they are not used in applications programs. 

PROTECTED MODE EXCEPTIONS 

#UD if the destination operand is a register. #GP(O) if the destination is in a non-writable segment. 
#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

These instructions are valid in Real Address mode to facilitate power-up or to reset initialization prior 
to entering Protected mode. 

#UD if the destination operand is a register. Interrupt 13 for a word operand at offset OFFFFH. 
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SLDT-Store Local Descriptor Table Register 

Opcode Instruction 

OF 00 /0 SLDT ew 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

2,mem=3 

Description 

Store Local Descriptor Table register to EA 
word 

The Local Descriptor Table register is stored in the 2-byte register or memory location indicated by 
the effective address operand. This register is a selector that points into the Global Descriptor Table. 

SLDT appears only in operating systems software. It is not used in applications programs. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; SLDT is not recognized in Real Address mode. 
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SMSW -Store Machine Status Word 

Opcode Instruction Clocks Description 

OF 01 /4 SMSWew 2,mem=3 Store Machine Status Word to EA word 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The Machine Status Word is stored in the 2-byte register or memory location indicated by the effective 
address operand. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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STe-Set Carry Flag 

Opcode 

F9 

FLAGS MODIFIED 

Carry = 1 

Instruction 

STC 

FLAGS UNDEFINED 

None 

OPERATION 

The carry flag is set to 1. 

PROTECTED MODE EXCEPTIONS 

None 

Clocks' 

2 

REAL ADDRESS MODE EXCEPTIONS 

None 
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STD-Set Direction Flag 

Opcode Instruction Clocks Description 

FD STD 2 Set direction flag so SI and DI will decrement 

FLAGS MODIFIED 

Direction = 1 

FLAGS UNDEFINED 

None 

OPERATION 

The direction flag is set to 1. This causes all subsequent string operations to decrement the index 
registers (SI and/or DI) on which they operate. 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 
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STI-Set Interrupt Enable Flag 

Opcode Instruction Clocks Description 

FB . STI 2 Set interrupt enable flag, interrupts enabled 

FLAGS MODIFIED 

Interrupt = 1 (enabled) 

FLAGS UNDEFINED 

None 

OPERATION 

The interrupts-enabled flag is set to 1. The. 80286 will now respond to external interrupts after execut­
ing the STI instruction. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger (has less privilege) than the I/0 privilege level. 

REAL ADDRESS MODE EXCEPTIONS 

None 
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STOS/STOSB/STOSW-Store String Data 

Opcode 

AA 
AB 
AA 
AB 

FLAGS MODIFIED 

None 

Instruction 

STOS mb 
STOS mw 
STOSB 
STOSW 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

3 
3 
3 
3 

Description 

Store AL to byte ES:[Olj, advance 01 
Store AX to word ES:[Olj, advance 01 
Store AL to byte ES:[Olj, advance 01 
Store AX to word ES:[Olj, advance 01 

STOS transfers the contents the AL or AX register to the memory byte or word at ES:DI. The operand 
_~ •• ..,,,- "-_ ~,...l....J_~~~~t....l"" t'_".....~ .o-1-~ DC _"...."'; ............ _ ........................... __ "" .... + ,.... ... ,.. __ :....1"'; ....................... :\...1 ..... 
~.lJ.u.;:,'" VV uU ...... J.V.::h)UV.l ..... .l.lVJ..LJ. ,,1. ........ .&.....1 ....... ........ 0 ... ., ...... 0'.1_, .l.LV ..., ..... 0 ... .1..1 .............. vy ........... .l .......... .l.:J pv..;..;; .... v ......... 

After the transfer is made, DI is automatically advanced. If the direction flag is 0 (CLD was executed), 
DI increments; if the direction flag is 1 (STD was executed), DI decrements. DI increments or decre­
ments by 1 if a byte was moved; by 2 if a word was moved. 

STOS can be preceded by the REP prefix for a block fill of CX bytes or words. Refer to the REP 
instruction for details of this operation. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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STR-Store Task Register 

Opcode Instruction Clocks Description 

OF 00 /1 STR ew 2,mem=3 Store Task Register to EA word 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The contents of the Task Register are copied to the 2-byte register or memory location indicated by 
the effective address operand. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; STR is not recognized in Real Address mode. 
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SUB-Integer Subtraction 

Opcode Instruction Clocks Description 

28 Ir SUB eb,rb 2,mem=7 Subtract byte register from EA byte 
29 Ir SUB ew,rw 2,mem=7 Subtract word register from EA word 
2A Ir SUB rb,eb 2,mem=7 Subtract EA byte from byte register 
2B Ir SUB rW,ew 2,mem=7 Subtract EA word from word register 
2C db SUB AL,db 3 Subtract immediate byte from AL 
20 dw SUB AX,dw 3 Subtract immediate" word from AX 
80 15 db SUB eb,db 3,mem=7 Subtract immediate byte from EA byte 
81 15 dw SUB ew,dw 3,mem=7 Subtract immediate word from EA word 
83 15 db SUB ew,db 3,mem=7 Subtract immediate byte from EA word 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

The second operand is subtracted from the first operand, and the first operand is replaced with the 
result. 

When a byte-immediate value is subtracted from a word operand, the immediate value is first 
sign-extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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TEST -Logical Compare 

Opcode 

84 Ir 
84 Ir 
85 Ir 
85 Ir 
A8 db 
A9 dw 
F6 10 db 
F7 10 dw 

FLAGS MODIFIED 

Instruction 

TEST eb,rb 
TEST rb,eb 
TEST eW,rw 
TEST rw,ew 
TEST AL.,db 
TEST AX,dw 
TEST eb,db 
TEST eW,dw 

Clocks 

2,mem=6 
2,mem=6 
2,mem=6 
2,mem=6 
3 
3 
3,mem=6 
3,mem=6 

Overflow=O, sign, zero, parity, carry=O 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

Description 

AND byte register into EA byte for flags only 
AND EA byte into byte register for flags only 
AND word register into EA word for flags only 
AND EA word into word register for flags only 
AND immediate byte into AL for flags only 
AND immediate word into AX for flags only 
AND immediate byte into EA byte for flags only 
AND immediate word into EA word for flags 
only 

TEST computes the bit-wise logical AND of the two operands given. Each bit of the result is 1 if both 
of the corresponding bits of the operands are 1; each bit is 0 otherwise. The result of the operatioIJ. is 
discarded; only the flags are modified. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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VERR,VERW-Verifya Segment for Reading or Writing 

Opcode 

OF 00 /4 
OF 00 /5 

FLAGS MODIFIED 

Zero 

Instruction 

VERR ew 
VERWew 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

14,mem=16 
14,mem=16 

Description 

Set ZF=1 if seg. can be read, selector ew 
Set ZF=1 if seg. can be written, selector ew 

VERR and VERW expect the 2-byte register or memory operand to contain the value of a selector. 
The instructions aetermine whether the segment uenuieu oy ihe sde\;iur is re"d,,,;";e r,·u, •• il." Cu,",",,"i 
privilege level; the instructions also determine whether it is readable or writable. If the segment is 
determined to be accessible, the zero flag is set to 1; if the segment is not accessible, it is set to O. To 
set ZF, the following conditions must be met: 

1. The selector must denote a descriptor within the bounds of the table (GDT or LDT); that is, the 
selector must be "defined." 

2. The selector must denote the descriptor of a code or data segment. 

3. If the instruction is VERR, the segment must be readable. If the instruction is VERW, the segment 
must be a writable data segment. 

4. If the code segment is readable and conforming, the descriptor privilege level (DPL) can be any 
value for VERR. Otherwise, the DPL must be greater than or equal to (have less or the same 
privilege as) both the current privilege level and the selector's RPL. 

The validation performed is the same as if the segment were loaded into DS or ES and the indicated 
access (read or write) were performed. The zero flag receives the result of the validation. The selector's 
value cannot result in a protection exception. This enables the software to anticipate possible segment 
access problems. 

PROTECTED MODE EXCEPTIONS 

The only faults that can occur are those generated by illegally addressing the memory operand which 
contains the selector. The selector is not loaded into any segment register, and no faults attributable to 
the selector operand are generated. 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 
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REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; VERR and VERW are not recognized in Real Address Mode. 
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WAIT -Wait Until BUSY Pin Is Inactive (HIGH) 

Opcode Instruction Clocks Description 

9B WAIT 3 Wait until BUSY pin is inactive (HIGH) 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

WAIT suspends execution of 80286 instructions until the BUSY pin is inactive (high). The BUSY pin 
is driven by the 80287 numeric processor extension. WAIT is issued to ensure that the numeric instruc­
tion being executed is complete. and to check for a possible numeric fault (see below). 

PROTECTED MODE EXCEPTIONS 

#NM if task switch flag in MSW is set. #MF if 80287 has detected an unmasked numeric error. 

REAL ADDRESS MODE EXCEPTIONS 

Same as Protected mode. 

B-113 



THE 80286 INSTRUCTION SET 

XCHG-Exchange Memory/Register with Register 

Opcode Instruction Clocks Description 

86 /r XCHG eb,rb 3,mem=5 Exchange byte register with EA byte 
86 /r XCHG rb,eb 3,mem=5 Exchange EA byte with byte register 
87 /r XCHG ew,rw 3,mem=5 Exchange word register with EA word 
87 /r XCHG rW,ew 3,mem=5 Exchange EA word with word register 
90+ rw XCHG AX,rw 3 Exchange word register with AX 
90+ rw XCHG rw,AX 3 Exchange with word register 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The two operands are exchanged. The order of the operands is immaterial. BUS LOCK is asserted for 
the duration of the exchange, regardless of the presence or absence of the LOCK prefix or IOPL. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if either operand is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal addres~ in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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XLAT -Table Look-up Translation 

Opcode Instruction Clocks Description 

07 XLAT mb 5 Set AL to memory byte DS:[BX + unsigned 
AL] 

07 XLATB 5 Set AL to memory byte DS:[BX + unsigned 
AL] 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

When XLAT is executed, AL should be the unsigned index into a table addressed by DS:BX. XLAT 
!::h~!!ge~ the A!.. !eg!~te! f!0!!l th'C" t",I)'" i"rI"_,, into th" t~ hi" "ntry RX i~ llnch:lnged. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effective address in the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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X OR - Logical Exclusive OR 

Opcode Instruction Clocks 

30 /r XOR eb,rb 2,mem=7 
31 /r XOR ew,rw 2,mem=7 
32 /r XOR rb,eb 2,mem=7 
33 /r XOR rw,ew 2,mem=7 
34 db XOR AL,db 3 
35 dw XOR AX,dw 3 
80 /6 db XOR eb,db 3,mem=7 
81 /6 dw XOR eW,dw 3,mem=7 

FLAGS MODIFIED 

Overflow=O, sign, zero, parity, carry=O 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

Description 

Exclusive-OR byte register into EA byte 
Exclusive-OR word register into EA word 
Exclusive-OR EA byte into byte register 
Exclusive-OR EA word into word register 
Exclusive-OR immediate byte into AL 
Exclusive-OR immediate word into AX 
Exclusive-OR immediate byte into EA byte 
Exclusive-OR immediate word into EA word 

XOR computes the exclusive OR of the two operands. Each bit of the result is 1 if the corresponding 
bits of the operands are different; each bit is 0 if the corresponding bits are the same. The answer 
replaces the first operand. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable segment. #GP(O) for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS(O) for an illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset OFFFFH. 
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APPENDIX C 
8086/8088 COMPATIBILITY CONSIDERATIONS 

SOFTWARE COMPATIBILITY CONSIDERATIONS 

In general, the real address mode 80286 will correctly execute ROM-based 8086/8088 software. The 
following is a list of the minor differences between 8086 and 80286 (Real mode). 

1. Add Six Interrupt Vectors. 

The 80286 adds six interrupts which arise only if the 8086 program has a hidden bug. These 
interrupts occur only for instructions which were undefined on the 8086/8088 or if a segment 
wraparound is attempted. It is recommended that you add an interrupt handler to the 8086 software 
that is to be run on the 80286, which will treat these interrupts as invalid operations. 

This additional software does not significantly effect the existing 8086 software because the inter­
rupts do not normally occur and should not already have been used since they are in the interrupt 
group reserved by Intel. Table C-l describes the new 80286 interrupts. 

2. Do not Rely on 8086/8088 Instruction Clock Counts. 

The 80286 takes fewer clocks for most instructions than the 8086/8088. The areas to look into are 
delays between I/O operations, and assumed delays in 8086/8088 operating in parallel with an 
8087. 

3. Divide Exceptions Point at the DIV Instruction. 

Any interrupt on the 80286 will always leave the saved CS:IP value pointing at the beginning of 
the instruction that failed (including prefixes). On the 8086, the CS:IP value saved for a divide 
exception points at the next instruction. 

Table C-1. New 80286 Interrupts 

Interrupt 
Function Number 

5 A BOUND instruction was executed with a register value outside the two limit values. 

6 An undefined opcode was encountered. 

7 The EM bit in the MSW has been set and an ESC instruction was executed. This 
interrupt will also occur on WAIT instructions if TS is set. 

8 The interrupt table limit was changed by the LlDT instruction to a value between 
20H and 43H. The default limit after reset is 3FFH, enough for all 256 interrupts. 

9 A processor extension data transfer exceeded offset OFFFFH in a segment. This 
interrupt handler must execute FNINIT before any ESC or WAIT instruction is 
executed. 

13 Segment wraparound was attempted by a word operation at offset OFFFFH. 

16 When 80286 attempted to execute a coprocessor instruction ERROR pin indicated 
an unmasked exception from previous coprocessor instruction. 
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4. Use Interrupt 16 for Numeric Exceptions. 

Any 80287 system must use interrupt vector 16 for the numeric error interrupt. If an 8086/8087 
or 8088/8087 system uses another vector for the 8087 interrupt, both vectors should point at the 
numeric error interrupt handler. 

5. Numeric Exception Handlers Should allow Prefixes. 

The saved CS:IP value in the NPX environment save area will point at any leading prefixes before 
an ESC instruction. On 8086/8088 systems, this value points only at the ESC instruction. 

6. Do Not Attempt Undefined 8086/8088 Operations. 

Instructions like POP CS or MOV CS,op will either cause exception 6 (undefined opcode) or 
perform a protection setup operation like LIDT on the 80286. Undefined bit encodings for bits 
5-3 of the second byte of POP MEM or PUSH MEM will cause exception 13 on the 80286. 

7. Place a Far JMP Instruction at FFFFOH. 

After reset, CS:IP = FOOO:FFFO on the 80286 (versus FFFF:OOOO on the 8086/8088). This change 
was made to allow sufficient code space to enter protected mode without reloading CS. Placing a 
far JMPinstruction at FFFFOH will avoid this difference. Note that the BOOTSTRAP option of 
LOC86 will automatically generate this jump instruction. 

8. Do not Rely on the Value Written by PUSH SP. 

The 80286 will push a different value on the stack for PUSH SP than the 8086/8088. If the value 
pushed is important, replace PUSH SP instructions with the following three instructions: 

PUSH BP 
MOV BP,SP 
XCHG BP,[BP] 

This code functions as the 8086/8088 PUSH SP instruction on the 80286. 

9. Do not Shift or Rotate by More than 31 Bits. 

The 80286 masks all shift/rotate counts to the low 5 bits. This MOD 32 operation limits the count 
to a maximum of 31 bits. With this change, the longest shift/rotate instruction is 39 clocks. Without 
this change, the longest shift/rotate instruction would be 264 clocks, which delays interrupt response 
until the instruction completes execution. 

10. Do not Duplicate Prefixes. 

The 80286 sets an instruction length limit of 10 bytes. The only way to violate this limit is by 
duplicating a prefix two or more times before an instruction. Exception 6 occurs if the instruction 
length limit is violated. The 8086/8088 has no instruction length limit. 

11. Do not Rely on Odd 8086/8088 LOCK Characteristics. 

The LOCK prefix and its corresponding output signal should only be used to prevent other bus 
masters from interrupting a data movement operation. The 80286 will always assert LOCK during 
an XCHG instruction with memory (even if the LOCK prefix was not used). LOCK should only 
be used with the XCHG, MOV, MOVS, INS, and OUTS instructions. 

The 80286 LOCK signal will not go active during an instruction prefetch. 

12. Do not Single Step External Interrupt Handlers. 

The priority of the 80286 single step interrupt is different from that of the 8086/8088. This change 
was made to prevent an external interrupt from being single-stepped if it occurs while single stepping 
through a program. The 80286 single step interrupt has higher priority than any external 
interrupt. 

The 80286 will still single step through an interrupt handler invoked by INT instructions or an 
instruction exception. 
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13. Do not Rely on IDlY Exceptions for Quotients of 80H or 8000H. 

The 80286 can generate the largest negative number as a quotient for IDlY instructions. The 8086 
will instead cause exception O. 

14. Do not Rely on NMI Interrupting NMI Handlers. 

After an NMI is recognized, the NMI input and processor extension limit error interrupt is masked 
until the first IRET instruction is executed. 

15. The NPX error signal does not pass through an interrupt controller (an 8087 INT signal does). 
Any interrupt controller-oriented instructions for the 8087 may have to be deleted. 

16. If any real-mode program relies on address space wrap-around (e.g., FFFO:0400=0000:0300), 
then external hardware should be used to force the upper 4 addresses to zero during real mode. 

17. Do not use I/O ports 00F8-00FFH. These are reserved for controlling 80287 and future processor 
extensions. 

HARDWARE COMPATIBILITY CONSIDERATIONS 

1. Address after Reset 

8086 has CS:IP = ffff:OOOO and physical address ffffO. 
80286 has CS:IP = fOOO:fffO and physical address fffffO. 

Note: After 80286 reset, until the first 80286 far JMP or far CALL, the code segment base is 
ffOOOO. This means A20-A23 will be high for CS-relative bus cycles (code fetch or use of CS 
......... ~ ........ ~..:a"" _ ... "".f~ ... ' ~.r+,.,. ... ... ""' ...... + n .. +:l +h"" 1': ....... + 1' ....... ''''-A'"D ,... .... 1' ...... r- A T T ~ ...... + ... 'U .... +; ..... ":oco _Dl .... rn .... .,....,..",~ 
v., .... .1. ...... _ ..... .t' ........... .I.n../ ~.& .......... ,. .......................................................... ..,. ....... tWo ... .., ............... v.o. ......... _ ......................................... - .................. .,. 1" ........... .., ..................... . 

2. Physical Address Formation 

In real mode or protected mode, the 80286 always forms a physical address by adding a 16-bit 
offset with a 24-bit segment base value (8086 has 20-bit base value). Therefore, if the 80286 in 
real mode has a segment base within 64K of the top of the IMbyte address space, and the program 
adds an offset of ffffh to the segment base, the physical address will be slightly above 1 Mbyte. 
Thus, to fully duplicate 1 Mbyte wraparound that the 8086 has, it is always necessary to force A20 
low externally when the 80286 is in real mode, but system hardware uses all 24 address lines. 

3. LOCK signal 

On the 8086, LOCK asserted means this bus cycle is within a group of two or more locked bus 
cycles. On the 80286, the LOCK signal means lock this bus cycle to the NEXT bus cycle. There­
fore, on the 80286, the LOCK signal is not asserted on the last locked bus cycle of the group of 
locked bus cycles. 

4. Coprocessor Interface 

8086, synchronous to 8086, can become a bus master. 
80287, asynchronous to 80286 and 80287, cannot become a bus master. 

8087 pulls opcode and pointer information directly from data bus. 
80286 passes opcode and pointer information to 80287. 

8087 uses interrupt path to signal errors to 8086. 
80287 uses dedicated ERROR signal. 

8086 requires explicit WAIT opcode preceding all ESC instructions to synchronize with 8087. 
80286 has automatic instruction synchronization with 80287. 

5. Bus Cycles 

8086 has four-clock minimum bus cycle, with a time-multiplexed address/data bus. 
80286 has two-clock minimum bus cycle, with separate buses for address and data. 
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APPENDIX D 
80286/80386 SOFTVVARE 

COMPATIBILITY CONSIDERATIONS 

This appendix describes the considerations required in designing an Operating System for the protected 
mode 80286 so that it will operate on an 80386. An 80286 Operating System running on the 80386 
would not use any of the advanced features of the 80386 (Le., paging or segments larger than 64K), 
but would run 80286 code faster. Use of the new 80386 features requires changes in the 80286 
Operating System. 

The 80386 is no different than any other software compatible processor in terms of requiring the same 
system environment to run the same software; the 80386 must have the same amount of physical 
memory and I/O devices in the system as the 80286 system to run the same software. Note that an 
80386 system requires a different memory system to achieve the higher performance. 

The 80286 design considerations can be generally characterized as avoiding use of functions or memory 
that the 80386 will use. The exception to this rule is initialization code executed after power up. Such 
code must be changed to configure the 80386 system to match that of the 80286 system. 

The following are 80286/80386 software compatibility design considerations: 

1. Isolate the protected mode initialization code. 

System initialization code will be required on the 80386 to program operating parameters before 
executing any significant amount of 80286 software. The 80286 initialization sotlware should be 
isolated from the rest of the Operating System. 

The initialization code in Appendix A is an example of isolated initialization code. Such code can 
be extended to include programming of operating parameters before executing the initial protected 
mode task. 

2. Avoid wraparound of 80286 24-bit physical address space. 

Since the 80386 has a larger physical address space, any segment whose base address is greater 
than FFOOOO and whose limit is beyond FFFFFF will address the seventeenth megabyte of memory 
in the 80386 32-bit physical address space instead of the first megabyte on an 80286. 

No expand-down segments shouldhave a base address in the range FFOOOOI-FFFFFF. No expand­
up segments should wrap around the 80286 address space (the sum of their base and limit is in 
the range OOOOOO-OOFFFE). 

3. Zero the last word of every 80286 descriptor. 

The 80386 uses the last word of each descriptor to expand the base address and limit fields of 
segments. Placing zeros in the descriptor will cause the 80386 to treat the segments the same way 
as an 80286 (except for address space wraparound as mentioned above). 

4. Use only 80H or OOH for invalid descriptors. 

The 80386 uses more descriptor types than the 80286. Numeric values of 8-15 in bits 3-0 of the 
access byte for control descriptors will cause a protection exception on the 80286, but may be 
defined for other segment types on the 80386. Access byte values of 80H and OOH will remain 
undefined descriptors on both the 80286 and the 80386. 

5. Put error interrupt handlers in reserved interrupts 14, 15, 17-31. 

Some of the unused, Intel-reserved interrupts of the 80286 will be used by the 80386 (Le., page 
fault or bus error). These interrupts should not occur while executing an 80286 operating system 
on an 80386. However, it is safest to place an interrupt handler in these interrupts to print an error 
message and stop the system if they do occur. 

0-1 



80286/80386 SOFTWARE COMPATIBILITY CONSIDERATIONS 

6. Do not change bits 15-4 of MSW. 

The 80386 uses some of the undefined bits in the machine status word. 80286 software should 
ignore bits 15-4 of the MSW. To change the MSW on an 80286, read the old value first with 
LMSW, change bits 3-0 only, then write the new value with SMSW. 

7. Use a restricted LOCK protocol for multiprocessor systems. 

The 80386 supports the 8086/80286 LOCK functions for simple instructions, but not the string 
move instructions. Any need for locked string moves can be satisfied by gaining control of a status 
semaphore before using the string move instruction. Any attempt to execute a locked string move 
will cause a protection exception on the 80386. 

The general 80286 LOCK protocol does not efficiently extend to large multiprocessor systems. If 
all the processors in the system frequently use the 8086/80286 LOCK, they will prevent other 
processors from accessing memory and thereby impact system performance. 

Access to semaphores in the future, including current 80286 Operating Systems, should use a protocol 
with the following restrictions: 

Be sure the semaphore starts at a physical memory address that is a multiple of 4. 

Do not use string moves to access the variable. 

All accesses by any instruction or I/O device (even simple reads or writes) must use the LOCK 
prefix or system LOCK signal. 
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AAA, 3-27, B-15 
AAD, 3-28, B-16 
AAM, 3-28, B-17 
AAS, 3-28, B-18 
ADC, 3-7, B-19 
ADD, 3-7, B-19 
Addressing Modes, 2-16 

Based Indexed Mode, 2-21 
Based Indexed Mode with Displacement, 

2-20 
Based Mode (on BX or BP 

Registers), 2-20 
Direct Address Mode, 2-20 
Displacement, 2-16, B-1, B-2 
Immediate Operand, 2-16, B-1, B-2, B-4, 

B-5 
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Opcode, 2-16 
Register Indirect Mode, 2-20 
Summary, 2-21 

AF Flag, 
(see Flags) 

AH Register, 2-7, 2-8, 2-17, 3-9, 3-25, 3-27, 
3-28, B-56 

AL Register, 2-7, 2-8, 2-17, 3-9, 3-25, 3-27, 
3-28, 3-30, B-73 

AND Instruction, 2-23, 3-10, B-20 
Arithmetic Instructions, 3-15 
ASCII 

(see Data Types), 
AX Register, 2-7, 2-8, 2-12, 2-13, 2-16, 

2-17,3-8,3-9,3-17,3-24,3-30, B-73 

Based Index Mode 
(see Addressing Modes), 

Based Index Mode with Displacement 
(see Addressing Modes), 

Based Mode 
(see Addressing Modes), 

BCD Arithmetic 
(see Data Management Instructions), 

BH Register, 2-7, 2-8, 2-17, 3-9 
BL Register, 2-7, 2-8, 2-17 
BOUND Instruction 

(see Extended Instruction Set), 
Bound Range Exceeded (Interrupt 5), 

(see Interrupt Handling), 
BP Register, 2-7 - 2-14,2-17,2-19, 

3-8 - 3-10,3-15,3-17,3-19,3-25, 
3-26 

Breakpoint Interrupt 3, 
(see Interrupt Handling), 

BUSY, 3-31 
BX Register, 2-7 - 2-14,2-17,2-19, 

3-8 - 3-10,3-15,3-17,3-19,3-25, 
3-26 

Byte 
(See Data Types), 

CALL Instructions, 3-18 - 3-20, 7-17, 
B-23 - B-26 

Call Gates, 7-16 - 7-20, B-24, B-25 
CBW Instructions, 3-16, B-27 
CF (Carry Flag) 

(see Flags), 
CH Register, 2-7, 2-8, 2-17 
CL Register, 2-7, 2-8, 2-17, 3-10 - 3-15 
CLC Instruction, 3-25, B-28 
CLD Instruction, 2-16, B-29 
CLI Instruction, 2-15, 3-28, B-30 
CLTS Instruction, 10-4, B-31 
CMP Instruction, 3-16, B-33 
Code Segment Access, 7-13, 11-1, 11-2 
Comparison Instructions, 3-30 
Conforming Code Segments, 7-12, 11-1, 

11-2 
Constant Instructions, 3-31 
Control Transfers, 7-15, 7-16 
CPL (Current Privilege Level), 7-10, 7-14 
CS Register, 2-7, 2-8, 2-17, 2-18, 

3-17 - 3-19,5-5 
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CWD Instruction, 3-16, B-35 
CX Register, 2-7, 2-8, 2-17, 3-20, 

3-22 - 3-24 

DAA, 3-27, B-36 
DAS, 3-27, B-37 
Data Management Instructions, 4-1, 4-2, 

5-5 
Address Manipulation, 3-24 
Arithmetic Instructions, 3-5 

Addition Instructions, 3-7 
Division Instructions, 3-9 
Multiplication Instructions, 3-8 
Subtraction Instructions, 3-7 

BCD Arithmetic, 2-4, 2-5 
Character Transfer and String 

Instructions, 3-22 
Repeat Prefixes, 3-22, 3-23 
String Move, 3-23 - 3-25 
String Translate, 3-22 

Control Transfer Instructions, 3-16 
Conditional Transfer, 3-19, 3-20 
Software Generated Interrupts, 3-21 

Interrupt Instructions, 3-21 
Unconditional Transfer, 3-17 - 3-19 

Flag Control, 3-25, 3-26 
Logical Instructions, 3-9 

Shift and Rotate Instructions, 
3-10 - 3-15 

Type Conversion Instructions, 3-16 
Processor Extension Intructions, 3-29, 

3-30 
Test and Compare Instructions, 3-16 
Trusted Instructions, 3-28 

Input/Output Instructions, 3-29 
Stack Manipulation, 3-2 - 3-4 

Data Transfer Instructions, 3-31 
Data Types, 2-1 - 2-6 

ASCII, 2-4 - 2-6, B-15 - B-18 
BCD,2-4 
Byte, 2-2 - 2-4 
Floating Point, 2-4 
Integer, 2-4 
Packed BCD, 2-4 
Pointer, 2-4 

INDEX 

Strings, 2-4 
Word, 2-2, 2-3 

DEC Instruction, 2-17, 3-8, B-38 
Dedicated Interrupt Vector, 5-5 
Descriptor Table, 6-4 - 6-6 
Descriptor Table Register, 6-6, 6-9, 7-6, 

10-1 - 10-3 
DF Flag, 

(see Flags), 
DH Register, 2-7, 2-8, 2-17 
DI Instruction, 2-7, 2-9, 2-14, 2-15 - 2-17, 

2-19 - 2-21,3-17,3-23 - 3-25, 4-1 
Direct Address Mode 

(see Addressing Modes), 
Divide Error (Interrupt 0) 

(see Interrupt Handling), 
DIV Instruction, 2-25, 3-9, B-37 
DL Register, 2-8, 2-17 
DPL (Descriptor Privilege Level), 6-8, 

7-10 - 7-14,7-18 - 7-22,8-4,9-4, 
11-1 - 11-3 

DS Register, 2-7, 2-8, 2-17, 2-18, 3-24, 
B-60 

DX Register, 2-7, 2-8, 2-17, 3-8, 3-9, 
3-16, 3-17, 3-24, 3-29, 4-1 

EM (Bit in MSW), 10-4, 10-5 
ENTER Instruction, 4-2 - 4-7, B-40 
ES Register, 2-7, 2-8, 2-17 - 2-19, 

3-22 - 3-25, 4-1 
ESC (Instructions for Coprocessor), 3-30 
Extended Instruction Set (Chapter 4), 

4-1 - 4-7 
ENTER Build Stackframe, 4-2 - 4-6, 

B-40 
LEAVE Remove Stackframe, 4-2, 4-6, 

B-64 
Repeated IN and OUT String Instructions, 

4-1,4-2, B-92 

Flag Register, 2-14 - 2-16, 3-4 - 3-7, 
B-86, B-89 

Flags, 2-14, 2-15, 3-4 - 3-7,3-25, B-56 
see also Use of Flags with Basic 
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INDEX 

Instructions, 2-14, 2-15, 3-4 - 3-7, 
3-25, B-56 

AF (Auxilliary Carry Flag), 2-14, 2-15, 
3-6 - 3-10, 3-16, 3-23, 3-26, 3-27 

CF (Carry Flag), 2-14, 3-4 - 3-16, 3-20, 
3-23 - 3-27, B-28, B-32, B-90, 
B-104 

DF (Direction Flag), 2-15, 3-6, 3-7, 3-22, 
3-23, 3-25 - 3-27, 4-1, B-29 

IF (Interrupt Flag), 2-15, 3-5, 3-7, 3-28, 
5-5, 5-6, 9-2, 9-3, B-30, B-106 

IOPL (Privilege Level), 2-15, 3-6, 3-28, 
3-29, B-30 

NT (Nested Task Flag), 2-15, 3-6, 8-7, 
9-3,9-5,9-7, 10-1 

OF (Overflow Flag), 2-15, 2-25, 
3-6 - 3-13, 3-16, 3-20, 3-23, 3-24, 
3-26,3-27 

PF (Parity Flag), 2-14, 2-15, 3-6 - 3-10, 
3-16, 3-20, 3-23, 3-24, 3-26, 3-27 
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3-16, 3-20, 3-23, 3-24 
TF (Trap Flag), 2-15, 3-5 - 3-7, 

9-14 
TS (Task Switch), 10-4, 10-5, B-31 
ZF (Zero Flag), 2-14, 2-15, 3-4, 

3-6 - 3-10, 3-20, 3-21, 3-23, 3-24, 
3-26, 11-4 

Floating Point 
(see Data Types), 

Gates, 7-16 
GDT, 6-4 - 6-7,6-10,6-12,6-13, 

7-5 - 7-8, 7-17 
GDTR (Global Descriptor Register), 

6-5,6-10,6-12,6-13, 10-1 - 10-3, 
B-101 

General Protection Fault (Interrupt 3), 
(see Interrupt Handling) 

General Registers, 2-7 

HLT Instruction, 2-16, 3-29, 10-6, B-42 
Hierarchy of 86, 186, 286 Instruction Sets, 

2-25,2-27 
Basic Instruction Set, 2-25, 2-27, 

3-1-3-31 
Extended Instruction Set, Chapter 4 
Instruction Set Overview, 2-25, 2-27 
System Control Register Set, 

Chapter 4 - Chapter 10 

1/0,2-23 
IDIV Instruction, 2-25, 3-9, 9-3, B-43 
IDT (Interrupt Descriptor Table), 

9-1 - 9-9, 10-2, B-65 
IDTR (Interrupt Descriptor Table 

Register), 9-1, 10-1 - 10-3 
IF (Interrupt Flag), 

(see Flags) 
IMUL Instruction, 3-8, B-44 
IN Instruction, 2-23, 3-29, B-45 
INC Instruction, 2-17, 3-7, B-46 
INDEX Field, 6-4, 6-6, 6-10 - 6-12 
Indexed Mode, 2-21, 2-22 
Index, Pointer and Base Register, 

'LO 

Input/Output, 2-21, 2-22 
Instructions, 3-29 
Memory Mapped I/O, 2-23 
Restrictions in Protected Mode, 3-28 
Separate I/O Space, 2-21 

INS/INSB/INSW Instruction, 3-29, 4-1 
INT Instruction, 

(see Interrupt Handling) 
Integer, 

(see Data Types) 
Interrupt Handling, 2-24, 2-25, 5-3 - 5-7, 

9-2 - 9-13 
Interrupt Priorities, 5-4 

Interrupt ° Divide Error, 2-24, 3-9, 5-5, 
5-6, 9-8, 9-9, 9-13 

Interrupt 1 Single-Step, 5-6,9-9,9-13 
Interrupt 2 Nonmaskable, 5-6, 9-9, 9-13 
Interrupt 3 Breakpoint, 2-26, 5-6, 9-9 
Interrupt 4 INTO Detected Overflow, 

2-26, 5-6, 9-9 
Interrupt 5 BOUND Range Exceeded, 

2-26,4-7,5-6,5-7,9-9,9-13, B-22 
Interrupt 6 Invalid Opcode, 2-26, 5-6, 

9-9,9-10 
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Interrupt 7 Processor Extension Not 
Available, 5-6, 5-7, 9-9 

Interrupt 8, Interrupt Table Limit 
Too Small, 5-6, 5-7, 9-9, 9-10 

Interrupt Vectors, 5-3 - 5-7 
Reserved Vectors, 5-5, 5-7 

Interrupt Vector Table, 5-3 
Interrupts and Exceptions, 

(see Interrupt Handling and Interrupt 
Priorities) 

INTO Detected Overflow (Interrupt 4), 
(see Interrupt Handling and Interrupt 

Priorities) 
INTO Instruction, 2-25, 3-22, B-48 
INTR, 5-3, 5-4, 9-1, 9-2, 9-7, 11-7 
Invalid opcode (Interrupt 6), 

(see Interrupt Handling and Interrupt 
Priorities) 

IOPL (I/O Privilege Level), 
(see Flags) 

IP Register, 2-8, 3-18, 3-19, 5-4 
IRET Instruction, 3-17, 3-19, 3-21, 5-5, 

8-5 - 8-8, 9-5 - 9-8,9-14, B-51 

JCXZ Instruction, 3-21, B-54, B-55 
JMP Instruction, 3-17, 3-18, B-56 - B-58 

LAHF Instruction, 3-26, B-59 
LAR Instruction, 11-3, B-60 
LDS Instruction, 3-25, 5-1, B-61 
LDT (Local Descriptor Table), 6-5 - 6-7, 

6-10,6-12,7-5 -7-8, 7-17, 8-5, 8-6, 
8-8, 8-9, 9-11 - 9-13, 10-1 - 10-4 

LEA Instruction, 3-24, B-63 
LEAVE Instruction, 4-2, 4-6, B-64 
LES Instruction, 3-25, 5-1, B-61 
LGDT Instruction, 6-12, 10-3, 10-5, B-65 
LIDT Instruction, 5-6, 5-7, 10-3, 10-6, B-65 
LLDT Instruction, 6-12, 10-3, 10-5, B-66 
LMSW Instruction, 10-4, 10-6, B-67 
LOCK Prefix, 3-29, B-68 
LODS/LODSB/LODSW, 3-24, B-69 
LOOP Instruction, 3-4, 3-20, 3-21, B-70 
LOOPE Instruction, 3-21, B-70 
LOOPNE, 3-21, B-70 

LOOPNZ, 3-21, B-70 
LSL Instruction, 11-3, B-71 

Memory, 
Physical Size, 2-1 
Segmentation, 2-1 

Implied Usage, 2-14 
Interpretation in Protected Mode, 2-9, 

2-10 
Interpretation in Real Mode, 2-9, 

5-1 - 5-5 
Modularity, 2-1 

Virtual Size, 2-1 
Memory Addressing Modes, 2-17 - 2-21 
Memory Management, 6-1, 7-4 

Task Managment, 6-1, 6-2, Chapter 8 
Context Switching (Task Switching), 

8-5,8-6 
Overview, 6-1 

Memory Management Registers, 
Chapter 6 

Memory Mapped I/O, 
(see Input/Output) 

Memory Mode, 2-20 
Memory Segmentation and Segment 

Registers, 2-8 - 2-9 
MOV Instructions, 2-17, 2-23, 3-1, B-73 
MOVS Instructions, 3-23, B-75 
MOVSB Instructions, 3-23, B-75 
MOVSW Instruction, 3-23, B-75 
MSW Register, 5-7, 8-6, 10-4 - 10-7, 

B-67 
MUL Instruction, 3-8, B-76 

NEG Instruction, 3-9, B-77 
NMI (Non maskable Interrupt), 5-6, 

9-1 - 9-3, 9-9, 9-10 
Nonmaskable (Interrupt 2), 

(see Interrupt Priorities) 
NOP Instruction, 2-16, B-78 
NOT Instruction, 3-9, 3-10, B-78 
Not Present (Interrupt 11) 

(see Interrupt Priorities) 
NPX Processor Extension, 3-29 - 3-31 
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NT (Nested Task Flag), 
(see Flags) 

Numeric Data Processor Instructions, 3-30 

OF (Overflow Flag), 
(see Flags) 

Offset Computation, 2-19 
Operands, 2-16, 2-17 
OR Instruction, 2-23, 3-10, B-80 
OUTjOUTW, 2-23, 3-29, 10-6, B-81 
OUTSjOUTSBjOUTSW Instruction, 3-29, 

4-1, B-82 

PF (Parity Flag), 
(see Flags) 

Pointer, 
(see Data Types) 

POP Instruction, 3-3, B-83 
POPA Instruction, 3-2, 3-5, B-85 
POPF Instruction, 3-26, 3-28, B-86 

(see Interrupt Handling and Interrupt 
Priorities) 

Processor Extension Not Available, 
(Interrupt 7), 

(see Interrupt and Interrupt Priorities) 
Processor Extension Segment Overrun 

Interrupt (Interrupt 9), 
(see Interrupt and Interrupt Priorities) 

Protected Mode, 1-2, 1-3, 6-1 
Protected Virtual Address Mode, 1-2, 

Protection Implementation, 7-2 - 7-4 
Protection Mechanisms, 1-2, 1-3 
PUSH, 2-12, 3-2, B-87 
PUSHA, 3-2, 3-3, B-85 
PUSHF, B-89 

Real Address Mode, 6-1, 6-2 
Register, 

Base Architecture Diagram, 2-7 
Base Register BX, 2-9, 2-17, 2-19, 2-20, 

3-1, 3-7, 3-8 - 3-10, 3-14, 3-16, 
3-17,3-22,4-7 

Flags Register, 2-14, 2-15 
General Registers, 2-7 

Index Registers 01, SI, 2-9 
Overview, 2-7 
Pointer Registers BP and SP, 2-9 
Segment Registers, 2-8 
Status and Control, 2-14 

Register Direct Mode, 2-20 
Register and Immediate Modes, 2-17 
Register Indirect Mode, 2-20 

(see Addressing Modes) 
Reserved Interrupt Vectors, 

(see Interrupt Handling and Interrupt 
Priorities) 

RESET,1O-7 
RCL Instruction, 3-14, 3-15,9-10, B-90 
RCR Instruction, 3-15, B-90 
REP Prefix, 3-23,4-1,4-2, B-92 
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PREFACE 

AN INTRODUCTION TO THE 80286 

This supplement describes the 80287 Numeric Processor Extension (NPX) for the 80286 microproces­
sor. Below is a brief overview of 80286 concepts, along with some of the nomenclature used throughout 
this and other Intel publications. 

The 80286 Microsystem 

The 80286 is a new VLSI microprocessor system with exceptional capabilities for supporting large­
system applications. Based on a new-generation CPU (the Intel 80286), this powerful microsystem is 
designed to support multiuser reprogrammable and real-time multitasking applications. Its dedicated 
system support circuits simplify system hardware; sophisticated hardware and software tools reduce 
both the time and the cost of product development. 

The 80286 is a virtual-memory microprocessor with on-chip memory management and protection. The 
80286 microsystem offers a total-solution approach, enabling you to develop high-speed, interactive, 
multiuser, multitasking-and multiprocessor-systems more rapidly and at higher performance than 
ever before. 

• Reliability and system up-time are becoming increasingly important in all applications. Information 
must be protected from misuse or accidental loss. The 80286 includes a sophisticated and flexible 
four-level protection mechanism that isolates layers of operating system programs from application 
programs to maintain a high degree of system integrity. 

• The 80286 provides 16 megabytes of physical address space to support today's application require­
ments. This large physical memory enables the 80286 to keep many large programs and data struc­
tures simultaneously in memory for high-speed access. 

• For applications with dynamically changing memory requirements, such as multiuser business 
systems, the 80286 CPU provides on-chip memory management and virtual memory support. On 
an 80286-based system, each user can have up to a gigabyte (230 bytes) of virtual-address space. 
This large address space virtually eliminates restrictions on the number or size of programs that 
may be part of the system. 

• Large multiuser or real-time multitasking systems are easily supported by the 80286. High-perform­
ance features, such as a very high-speed task switch, fast interrupt-response time, inter-task protec­
tion, and a quick and direct operating system interface, make the 80286 highly suited to multiuser/ 
multitasking applications. 

• The 80286 has two operating modes: Real-Address mode and Protected-Address mode. In Real­
Address mode, the 80286 is fully compatible with the 8086, 8088, 80186, and 80188 microproces­
sors; all of the extensive libraries of 8086 and 8088 software execute four to six times faster on the 
80286, without any modification. 

• In Protected-Address mode, the advanced memory management and protection features of the 80286 
become available, without any reduction in performance. Upgrading 8086 and 8088 application 
programs to use these new memory management and protection features usually requires only 
reassembly or recompilation (some programs may require minor modification). This compatibility 
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between 80286 and 8086 processor families reduces both the time and the cost of software 
development. 

The Organization of This Manual 

This manual describes the 80287 Numeric Processor Extension (NPX) for the 80286 microprocessor. 
The material in this manual is presented from the perspective of software designers, both at an appli­
cations and at a systems software level. 

• Chapter One, "Overview of Numeric Processing," gives an overview of the 80287 NPX and reviews 
the concepts of numeric computation using the 80287. 

• Chapter Two, "Programming Numeric Applications," provides detailed information for software 
designers generating applications for systems containing an 80286 CPU with an 80287 NPX. The 
80286/80287 instruction set mnemonics are explained in detail, along with a description of 
programming facilities for these systems. A comparative 80287 programming example is given. 

• Chapter Three, "System-Level Numeric Programming," provides information of interest to systems 
software writers, including details of the 80287 architecture and operational characteristics. 

• Chapter Four, "Numeric Programming Examples," provides several detailed programm\ng examples 
for the 80287, including conditional branching, the conversion between floating-point values and 
their ASCII representations, and the calculation of several trigonometric functions. These examples 
illustrate assembly-language programming on the 80287 NPX. 

• Appendix A, "Machine Instruction Encoding and Decoding," gives reference information on the 
encoding of NPX instructions. 

• Appendix B, "Compatability between the 80287 NPX and the 8087," describes the differences 
between the 80287 and the 8087. 

• Appendix C, "Implementing the IEEE P754 Standard," gives details of the IEEE P754 Standard. 

• The Glossary defines 80287 and floating-point terminology. Refer to it as needed. 

Related Publications 

To best use the material in this manual, readers should be familiar with the operation and architecture 
of 80286 systems. The following manuals contain information related to the content of this supplement 
and of interest to programmers of 80287 systems: 

• Introduction to the 80286, order number 210308 

• ASM286 Assembly Language Reference Manual, order number 121924 

• 80286 Operating System Writer's Guide, order number 121960 

• 80286 Hardware Reference Manual, order number 210760 

• Microprocessor and Peripheral Handbook, order number 210844 

• PL/M-286 User's Guide, order number 121945 

• 80287 Support Library Reference Manual, order number 122129 

• 8086 Software Toolbox Manual, order number 122203 (includes information about 80287 Emulator 
Software) 
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CHAPTER 1 
OVERVIEW OF NUMERIC PROCESSING 

The 80287 NPX is a high-performance numerics processing element that extends the 80286 architec­
ture by adding significant numeric capabilities and direct support for floating-point, extended-integer, 
and BCD data types. The 80286 CPU with 80287 NPX easily supports powerful and accurate numeric 
applications through its implementation of the proposed IEEE 754 Standard for Binary Floating-Point 
Arithmetic. 

INTRODUCTION TO THE 80287 NUMERIC PROCESSOR EXTENSION 

The 80287 Numeric Processor Extension (NPX) is highly compatible with its predecessor, the earlier 
Intel 8087 NPX. 

The 8087 NPX was designed for use in 8086-family systems. The 8086 was the first microprocessor 
family to partition the processing unit to permit high-performance numeric capabilities. The 8087 NPX 
for this processor family implemented a complete numeric processing environment in compliance with 
the proposed IEEE 754 Floating-Point Standard. 

With the 80287 Numeric Processor Extension, high-speed numeric computations have been extended 
to 80286 high-performance multi-tasking and multi-user systems. Multiple tasks using the numeric 
processor extension are afforded the full protection of the 80286 memory management and protection 
features. 

Figure 1-1 illustrates the relative performance of 8-MHz 8086/8087 and 80286/80287 systems in 
executing numerics-oriented applications. 

Performance 

Table 1-1 compares the execution times of several 80287 instructions with the equivalent operations 
executed in software on an 8-MHz 80286. The software equivalents are highly-optimized assembly­
language procedures from the 80287 emulator. As indicated in the table, the 80287 NPX provides 
about 50 to 100 times the performance of software numeric routines on the 80286 CPU. An 8-MHz 
80287 multiplies 32-bit and 64-bit real numbers in about 11.9 and 16.9 microseconds, respectively. Of 
course, the actual performance of the NPX in a given system depends on the characteristics of the 
individual application. 

Although the performance figures shown in table 1-1 refer to operations on real (floating-point) numbers, 
the 80287 also manipulates fixed-point binary and decimal integers of up to 64 bits or 18 digits, respec­
tively. The 80287 can improve the speed of multiple-precision software algorithms for integer opera­
tions by 10 to 100 times. 

Because the 80287 NPX is an extension of the 80286 CPU, no software overhead is incurred in setting 
up the NPX for computation. The 80287 and 80286 processors coordinate their activities in a manner 
transparent to software. Moreover, built-in coordination facilities allow the 80286 CPU to proceed with 
other instructions while the 80287 NPX is si~IlUltaneously executing numeric instructions. Programs 
can exploit this concurrency of execution to further increase system performance and throughput. 
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Figure 1·1. Evolution and Performance of Numeric Processors 

Table 1·1. Numeric Processing Speed Comparisons 

Approximate Performance Ratios: 
Floating-Point Instruction 8 MHz 80287 to 

G30108 

8 MHz Protected Mode IAPX using E80287 

FADD ST,ST (Temp Real) Addition 1: 42 
FDIV DWORD PTR (Single-Precision) Division 1:266 
FXAM (Stack(O) assumed) Examine 1 :139 
FYL2X (Stack(O),(1) assumed) Logarithm 1: 99 
FPATAN (Stack(O) assumed) Arctangent 1:153 
F2XM1 (Stack(O) assumed) Exponentiation 1: 41 

Ease of Use 

The 80287 NPX offers more than raw execution speed for computation-intensive tasks. The 80287 
brings the functionality and power of accurate numeric computation into the hands of the general user. 

Like the 8087 NPX that preceded it, the 80287 is explicitly designed to deliver stable, accurate results 
when programmed using straightforward "pencil and paper" algorithms. The IEEE 754 standard 
specifically addresses this issue, recognizing the fundamental importance of making numeric compu­
tations both easy and safe to use. 

For example, most computers can overflow when two single-precision floating-point numbers are multi­
plied together and then divided by a third, even if the final result is a perfectly valid 32-bit number. 
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The 80287 delivers the correctly rounded result. Other typical examples of undesirable machine behav­
ior in straightforward calculations occur when solving for the roots of a quadratic equation: 

-b ± V b2 4ac 
2a 

or computing financial rate of return, which involves the expression: (1 +i)n. On most machines, 
straightforward algorithms will not deliver consistently correct results (and will not indicate when they 
are incorrect). To obtain correct results on traditional machines under all conditions usually requires 
sophisticated numerical techniques that are foreign to most programmers. General application 
programmers using straightforward algorithms will produce much more reliable programs using the 
80287. This simple fact greatly reduces the software investment required to develop safe, accurate 
computation-based products. 

Beyond traditional numerics support for scientific applications, the 80287 has built-in facilities for 
commercial computing. It can process decimal numbers of up to 18 digits without round-off errors, 
performing exact arithmetic on integers as large as 264 or 1018• Exact arithmetic is vital in accounting 
applications where rounding errors may introduce monetary losses that cannot be reconciled. 

The NPX contains a number of optional facilities that can be invoked by sophisticated users. These 
advanced features include two models of infinity, directed rounding, gradual underflow, and either 
automatic or programmed exception-handling facilities. 

These automatic exception-handling facilities permit a high degree of flexibility in numeric processing 
software, without burdening the programmer. While performing numeric calculations, the NPX 
automatically detects exception conditions that can potentially damage a calculation. By default, on­
chip exception handlers may be invoked to field these exceptions so that a reasonable result is produced, 
and execution may proceed without program interruption. Alternatively, the NPX can signal the CPU, 
invoking a software exception handler whenever various types of exceptions are detected. 

Applications 

The NPX's versatility and performance make it appropriate to a broad array of numeric applications. 
In general, applications that exhibit any of the following characteristics can benefit by implementing 
numeric processing on the 80287: 

• Numeric data vary over a wide range of values, or include nonintegral values. 

• Algorithms produce very large or very small intermediate results. 

• Computations must be very precise; i.e., a large number of significant digits must be maintained. 

• Performance requirements exceed the capacity of traditional microprocessors. 

• Consistently safe, reliable results must be delivered using a programming staff that is not expert in 
numerical techniques. 

Note also that the 80287 can reduce software development costs and improve the performance of 
systems that use not only real numbers, but operate on multi precision binary or decimal integer values 
as well. 
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A few examples, which show how the 80287 might be used in specific numerics applications, are 
described below. In many cases, these types of systems have been implemented in the past with 
minicomputers. The advent of the 80287 brings the size and cost savings of microprocessor technology 
to these applications for the first time. 

• Business data processing-The NPX's ability to accept decimal operands and produce exact decimal 
results of up to 18 digits greatly simplifies accounting programming. Financial calculations that use 
power functions can take advantage of the 80287's exponentiation and logarithmic instructions. 

• Process control-The 80287 solves dynamic range problems automatically, and its extended preci­
sion allows control functions to be fine-tuned for more accurate and efficient performance. Control 
algorithms implemented with the NPX also contribute to improved reliability and safety, while the 
80287's speed can be exploited in real-time operations. 

• Computer numerical control (CNC)-The 80287 can move and position machine tool heads with 
accuracy in real-time. Axis positioning also benefits from the hardware trigonometric support provided 
by the 80287. 

• Robotics-Coupling small size and modest power requirements with powerful computational abili­
ties, the NPX is ideal for on-board six-axis positioning. 

• Navigation-Very small, lightweight, and accurate inertial guidance systems can be implemented 
with the 80287. Its built-in trigonometric functions can speed and simplify the calculation of position 
from bearing data. 

• Graphics terminals-The 80287 can be used in graphics terminals to locally perform many functions 
that normally demand the attention of a main computer; these include rotation, scaling, and inter­
polation. By also using an 82720 Graphics Display Controller to perform high speed data transfers, 
very powerful and highly self-sufficient terminals can be built from a relatively small number of 
80286 family parts. 

• Data acquisition-The 80287 can be used to scan, scale, and reduce large quantities of data as it is 
collected, thereby lowering storage requirements and time required to process the data for analysis. 

The preceding examples are oriented toward traditional numerics applications. There are, in addition, 
many other types of systems that do not appear to the end user as computational, but can employ the 
80287 to advantage. Indeed, the 80287 presents the imaginative system designer with an opportunity 
similar to that created by the introduction of the microprocessor itself. Many applications can be viewed 
as numerically-based if sufficient computational power is available to support this view. This is analo­
gous to the thousands of successful products that have been built around "buried" microprocessors, 
even though the products themselves bear little resemblance to computers. 

Upgradability 

The architecture of the 80286 CPU is specifically adapted to allow easy upgradability to use an 80287, 
simply by plugging in the 80287 NPX. For this reason, designers of 80286 systems may wish to incor­
porate the 80287 NPX into their designs in order to offer two levels of price and performance at little 
additional cost. 

Two features of the 80286 CPU make the design and support of upgradable 80286 systems particularly 
simple: 

• The 80286 can be programmed to recognize the presence of an 80287 NPX; that is, software can 
recognize whether it is running on an 80286 or an 80287 system. 

• After determining whether the 80287 NPX is availabh;, the 80286 CPU can be instructed to let the 
NPX execute all numeric instructions. If an 80287 NPX is not available, the 80286 CPU can emulate 
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all 80287 numeric instructions in software. This emulation is completely transparent to the appli­
cation software-the same object code may be used by both 80286 and 80287 systems. No relinking 
or recompiling of application software is necessary; the same code will simply execute faster on the 
80287 than on the 80286 system. 

To facilitate this design of upgradable 80286 systems, Intel provides a software emulator for the 80287 
that provides the functional equivalent of the 80287 hardware, implemented in software on the 80286. 
Except for timing, the operation of this 80287 emulator (E80287) is the same as 
for the 80287 NPX hardware. When the emulator is combined as part of the systems software, the 
80286 system with 80287 emulation and the 80286 with 80287 hardware are virtually indistinguishable 
to an application program. This capability makes it easy for software developers to maintain a single 
set of programs for both systems. System manufacturers can offer the NPX as a simple plug-in 
performance option without necessitating any changes in the user's software. 

Programming Interface 

The 80286/80287 pair is programmed as a single processor; all of the 80287 registers appear to a 
programmer as extensions of the basic 80286 register set. The 80286 has a class of instructions known 
as ESCAPE instructions, all having a common format. These ESC instructions are numeric instruc­
tions for the 80287 NPX. These numeric instructions for the 80287 are simply encoded into the instruc­
tion stream along with 80286 instructions. 

All of the CPU memory-addressing modes may be used in programming the NPX, allowing convenient 
access to record structures, numeric arrays, and other memory-based data structures. All of the memory 
management and protection features of the CPU are extended to the NPX as well. 

Numeric processing in the 80287 centers around the NPX register stack. Programmers can treat these 
eight 80-bit registers as either a fixed register set, with instructions operating on explicitly-designated 
registers, or a classical stack, with instructions operating on the top one or two stack elements. 

Internally, the 80287 holds all numbers in a uniform 80-bit temporary-real format. Operands that may 
be represented in memory as 16-, 32-, or 64-bit integers, 32-, 64-, or 80-bit floating-point numbers, or 
18-digit packed BCD numbers, are automatically converted into temporary-real format as they are 
loaded into the NPX registers. Computation results are subsequently converted back into one of these 
destination data formats when they are stored into memory from the NPX registers. 

Table 1-2 lists each of the seven data types supported by the 80287, showing the data format for each 
type. All operands are stored in memory with the least significant digits starting at the initial (lowest) 
memory address. Numeric instructions access and store memory operands using only this initial address. 
For maximum system performance, all operands should start at even memory addresses. 

Table 1-3 lists the 80287 instructions by class. No special programming tools are necessary to use the 
80287, because all of the NPX instructions and data types are directly supported by the ASM286 
Assembler and Intel's appropriate high-level languages. 

Software routines for the 80287 may be written in ASM286 Assembler or any of the following higher­
level languages: 

PL/M-286 
PASCAL-286 
FORTRAN-286 
C-286 
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Table 1-2. Numeric Data Types· 

Data Type Bits Significant Approximate Range (Decimal) Digits (Decimal) 

Word integer 16 4 -32,768:5 X :5 +32,767 

Short integer 32 9 -2X109 :5 X :5+2X109 

Long integer 64 18 -9X10'8 :5 X :5 +9X10'8 

Packed decimal 80 18 -99 ... 99:5 X :5 +99 ... 99 (18 digits) 

Short real" 32 6-7 8.43X 10-37 :5 I X 1:5 3.37X103B 

Long real" 64 15-16 4.19X 1 (r107 ::5 I X I :5 1.67X 1 ()3OB 

Temporary real 80 19 3.4 X 1 ()-4932 :5 I X I :5 1.2 X 1 ()4932 

Table 1-3. Principal NPX Instructions 

Class Instruction Types 

Data Transfer Load (all data types), Store (all data types), Exchange 

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide 
Reversed, Square Root, Scale, Remainder, Integer Part, Change 
Sign, Absolute Value, Extract 

Comparison Compare, Examine, Test 

Transcendental Tangent, Arctangent, 2x -1, Y·Log.(X + 1), Y·Log.(X) 

Constants 0, 1, 11", Log,02, Log.2, Log.10, Log.e 

Processor Control Load Control Word, Store Control Word, Store Status Word, 
Load Environment, Store Environment, Save, Restore, Clear 
Exceptions, Initialize, Set Protected Mode 

In addition, all of the development tools supporting the 8086 and 8087 can also be used to develop 
software for the 80286 and 80287 operating in Real-Address mode. 

All of these high-level languages provide programmers with access to the computational power and 
speed of the 80287 without requiring an understanding of the architecture of the 802~6 and 80287 
chips. Such architectural considerations as concurrency and data synchronization are handled automat­
ically by these high-level languages. For the ASM286 programmer, speCific rules for handling these 
issues are discussed in a later section of this supplement. 

Hardware Interface 

As an extension of the 80286 processor, the 80287 is wired very much in parallel with the 80286 CPU. 
Four special status signals, PEREQ, PEACK, BUSY, and ERROR, permit the two processors to 
coordinate their activities. The 80287 NPX also monitors the 80286 SI, SO, COD/INTA, READY, 
HLDA, and CLK pins to monitor the execution of ESC instructions (numeric instructions) by the 
80286. 
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As shown in figure 1-2, the 80287 NPX is divided internally into two processing elements; the Bus 
Interface Unit (BIU) and the Numeric Execution Unit (NEU). The two units operate independently 
of one another: the BIU receives and decodes instructions, requests operand transfers with memory, 
and executes processor control instructions, whereas the NEU processes individual numeric 
instructions. 

The BIU handles all of the status and signal lines between the 80287 and the 80286. The NEU executes 
all instructions that involve the register stack. These instructions include arithmetic, logical, transcen­
dental, constant, and data transfer instructions. The data path in the NEU is 84 bits wide (68 fraction 
bits, 15 exponent bits, and a sign bit), allowing internal operand transfers to be performed at very high 
speeds. 

The 80287 executes a single numeric instruction at a time. Before executing most ESC instructions, 
the 80286 tests the BUSY pin and, before initiating the command, waits until the 80287 indicates that 
it is not busy. Once initiated, the 80286 continues program execution, while the 80287 executes the 
numeric instruction. Unlike the 8087, which required a WAIT instruction to test the BUSY signal 
before each ESC opcode, these WAIT instructions are permissible, but not necessary, in 80287 programs. 

In all cases, a WAIT or ESC instruction should be inserted after any 80287 store to memory (except 
FSTSW or FSTCW) or load from memory (except FLDENV, FLDCW, or FRSTOR) before the 80286 
reads or changes the memory value. 

When needed, all data transfers between memory and the 80287 NPX are performed by the 80286 
CPU, using its Processor Extension Data Channel. Numeric data transfers performed by the 80286 
use the same timing as any other bus cycle, and all such transfers come under the supervision of the 
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Figure 1-2. 80287 NPX Block Diagram 
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80286 memory management and protection mechanisms. The 80286 Processor Extension Data Channel 
and the hardware interface between the 80286 and 80287 processors are described in Chapter Six of 
the 80286 Hardware Reference Manual. 

, From the programmer's perspective, the 80287 can be considered just an extension of the 80286 
processor. All interaction between the 80286 and the 80287 processors on the hardware level is handled 
automatically by the 80286 and is transparent to the software. 

To communicate with the 80287, the 80286 uses the reserved I/O port addresses 00F8H, OOFAH, and 
OOFCH (I/O ports numbered 00F8H through OOFFH are reserved for the 80286/80287 interface). 
These I/O operations are performed automatically by the 80286 and are distinct from I/O operations 
that result from program I/O instructions. I/O operations resulting from the execution of ESC instruc­
tions are completely transparent to software. Any program may execute ESCAPE (numeric) instruc­
tions, without regard to its current I/O Privilege Level (IOPL): 

To guarantee correct operation of the 80287, programs must not perform any explicit I/O operations 
to any of the eight, ports reserved for the 80287. The 10PL of the 80286 can be used to protect the 
integrity of 80287 computations in multiuser reprogrammable applications, preventing any accidental 
or other tampering with the 80287 (see Chapter Eight of the 80286 Operating System Writer's Guide). 

80287 NUMERIC PROCESSOR ARCHITECTURE 

To the programmer, the 80287 NPX appears as a set of additional registers complementing those of 
the 80286. These additional registers consist of 

• Eight individually-addressable 80-bit numeric registers, organized as a register stack 

• Three sixteen-bit registers containing: 
an NPX status word 
an NPX control word 
a tag word 

• Four 16-bit registers containing the NPX instruction and data pointers 

All of the NPX numeric instructions focus on the contents of these NPX registers. 

The NPX Register Stack 

The 80287 register stack is shown in figure 1-3. Each of the eight numeric registers in the 80287's 
register stack is 80 bits wide and is divided into fields corresponding to the NPX's temporary-real data 
type. 

Numeric instructions address the data registers relative to the register on the top of the stack. At any 
point in time, this top-of-stack register is indicated by the ST (Stack Top) field in the NPX status 
word. Load or push operations decrement ST by one and load a value into the new top register. A store­
and-pop operation stores the value from the current ST register and then increments ST by one. Like 
80286 stacks in memory, the 80287 register stack grows down toward lower-addressed registers. 
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Figure 1-3. 80287 Register Set 

Many numeric instructions have several addressing modes that permit the programmer to implicitly 
operate on the top of the stack, or to explicitly operate on specific registers relative to the ST. The 
ASM286 Assembler supports these register addressing modes, using the expression ST(O), or simply 
ST, to represent the current Stack Top and ST(i) to specify the ith register from ST in the stack (0 :5 
i :5 7). For example, if ST contains 011B (register 3 is the top of the stack), the following statement 
would add the contents of the top two registers on the stack (registers 3 and 5): 

FADD ST,ST(2) 

The stack organization and top-relative addressing of the numeric registers simplify subroutine 
programming by allowing routines to pass parameters on the register stack. By using the stack to pass 
parameters rather than using "dedicated" registers, calling routines gain more flexibility in how they 
use the stack. As long as the stack is not full, each routine simply loads the parameters onto the stack 
before calling a particular subroutine to perform a numeric calculation. The subroutine then addresses 
its parameters as ST, ST(1), etc., even though ST may, for example, refer to physical register 3 in one 
invocation and physical register 5 in another. 

The NPX Status Word 

The l6-bit status word shown in figure 1-4 reflects the overall state of the 80287. This status word may 
be stored into memory using the FSTSW /FNSTSW, FSTENV /FNSTENV, and FSA VE/FNSAVE 
instructions, and can be transferred into the 80286 AX register with the FSTSW AX/FNSTSW AX 
instructions, allowing the NPX status to be inspected by the CPU. 
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Figure 1-4. 80287 Status Word 
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The Busy bit (bit 15) and the BUSY pin indicate whether the 80287's execution unit is idle (B=O) or 
is executing a numeric instruction or signalling an exception (B= 1). (The instructions FNSTSW, 
FNSTSW AX, FNSTENV, and FNSAVE do not set the Busy bit themselves, nor do they require the 
Busy bit to be clear in order to execute.) 

The four NPX condition code bits (CO·C3) are similar to the flags in a CPU: the 80287 updates these 
bits to reflect the outcome of arithmetic operations. The effect of these instructions on the condition 
code bits is summarized in table 1-4. These condition code bits are used principally for conditional 
branching. The FSTWAX instruction stores the NPX status word directly into the CPU AX register, 
allowing these condition codes to be inspected efficiently by 80286 code. 

Bits 12-14 of the status word point to the 80287 register that is the current Stack Top (ST). The 
significance of the stack top has been described in the section on the Register Stack. 

Figure 1-4 shows the six error flags in bits 0-5 of the status word. Bit 7 is the error summary status 
(ES) bit. ES is set if any unmasked exception bits are set, and is cleared otherwise. If this bit is set, 
the ERROR signal is asserted. Bits 0-5 indicate whether the NPX has detected one of six possible 
exception conditions since these status bits were last cleared or reset. 

Control Word 

The NPX provides the programmer with several processing options, which are selected by loading a 
word from memory into the control word. Figure 1-5 shows the format and encoding of the fields in 
the control word. 
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Table 1-4. Interpreting the NPX Condition Codes 

Instruction 
C. C. C, Co Interpretation Type 

Compare, Test 0 0 X 0 ST > Source or 0 (FTST) 
0 0 X 1 ST < Source or 0 (FTST) 
1 0 X 0 ST = Source or 0 (FTST) 
1 1 X 1 ST is not comparable 

Remainder Q, 0 Qo Q. Complete reduction with three 
low bits of quotient in Co, C., 
and C, 

U 1 U U Incomplete Reduction 

Examine 0 0 0 0 Valid, positive unnormalized 
0 0 0 1 Invalid, positive, exponent = 0 
0 0 1 0 Valid, negative, unnormalized 
0 0 1 1 Invalid, negative, exponent = 0 
0 1 0 0 Valid, positive, normalized 
0 1 0 1 Infinity, positive 
0 1 1 0 Valid, negative, normalized 
0 1 1 1 Infinity, negative 
1 0 0 0 Zero, positive 
1 0 0 1 Empty Register 
1 0 1 0 Zero, negative 
1 0 1 1 Empty Register 
1 1 0 0 Invalid, positive, exponent = 0 
1 1 0 1 Empty Register 
1 1 1 0 Invalid, negative, exponent = 0 
1 1 1 1 Empty Register 

NOTES: 
1. ST = Top of stack 
2. X = value is not affected by instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n following complete reduction (C.=O) 

The low-order byte of this control word configures the 80287 error and exception masking. Bits 0-5 of 
the control word contain individual masks for each of the six exception conditions recognized by the 
80287. The high-order byte of the control word configures the 80287 processing options, including 

• Precision control 

• Rounding control 

• Infinity control 

The Precision control bits (bits 8-9) can be used to set the 80287 internal operating precision at less 
than the default precision (64-bit significand). These control bits can be used to provide compatibility 
with the earlier-generation arithmetic processors having less precision than the 80287, as required by 
the IEEE 754 standard. Setting a lower precision, however, will not affect the execution time of numeric 
calculations. 

The rounding control bits (bits 10-11) provide for directed rounding and true chop as well as the unbiased 
round-to-nearest-even mode specified in the IEEE 754 standard. 
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Figure 1-5_ 80287 Control Word Format 

The infinity control bit (bit 12) determines the manner in which the 80287 treats the special values of 
infinity. Either affine closure (where positive infinity is distinct from negative infinity) or projective 
closure (infinity is treated as a single unsigned quantity) may be specified. These two alternative views 
of infinity are discussed in the section on Computation Fundamentals. 

The NPX Tag Word 

The tag word indicates the contents of each register in the register stack, as shown in figure 1-6. The 
tag word is used by the NPX itself in order to track its numeric registers and optimize performance. 
Programmers may use this tag information to interpret the contents of the numeric registers. The tag 
values are stored in the tag word corresponding to the physical registers 0-7. Programmers must use 
the current Stack Top (ST) pointer stored in the NPX status word to associate these tag values with 
the relative stack registers ST(O) through ST(7). 

The NPX Instruction and Data Pointers 

The NPX instruction and data registers provide support for programmed exception-handlers. Whenever 
the 80287 executes a math instruction, the NPX internally saves the instruction address, the operand 
address (if present), and the instruction opcode. The 80287 FSTENV and FSA VE instructions store 
this data into memory, allowing exception handlers to determine the precise nature of any numeric 
exceptions that may be encountered. 
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TAG VALUES: 
00 ~ VALID 
01 ~ ZERO 
10 ~ INVALID OR INFINITY 
11 ~ EMPTY 

Figure 1-6. 80287 Tag Word Format 
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Figure 1-7. 80287 Instruction and Data Pointer Image in Memory 

When stored in memory, the instruction and data pointers appear in one of two formats, depending on 
the operating mode of the 80287. Figure 1-7 shows these pointers as they are stored following an 
FSTENV instruction. In Real-Address mode, these values are the 20-bit physical address and ll-bit 
opcode formatted like the 8087. In Protected mode, these values are the 32-bit virtual addresses used 
by the program that executed the ESC instruction. 
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The instruction address saved in the 80287 will point to any prefixes that preceded the instruction. 
This is different from the 8087, for which the instruction address pointed only to the ESC instruction 
opcode. 

COMPUTATION FUNDAMENTALS 

This section covers 80287 programming concepts that are common to all applications. It describes the 
80287's internal number system and the various types of numbers that can be employed in NPX 
programs. The most commonly used options for rounding, precision, and infinity (selected by fields in 
the control word) are described, with exhaustive coverage of less frequently used facilities deferred to 
later sections. Exception conditions that may arise during execution of NPX instructions are also 
described along with the options that are available for responding to these exceptions. 

Number System 

The system of real numbers that people use for pencil and paper calculations is conceptually infinite 
and continuous. There is no upper or lower limit to the magnitude of the numbers one can employ in a 
calculation, or to the precision (number of significant digits) that the numbers can represent. When 
considering any real number, there is always an infinity of numbers both larger and smaller. There is 
also an infinity of numbers between (Le., with more significant digits than) any two real numbers. For 
example, between 2.5 and 2.6 are 2.51,2.5897,2.500001, etc. 

While ideally it would be desirable for a computer to be able to operate on the entire real number 
system, in practice this is not possible. Computers, no matter how large, ultimately have fixed-size, 
registers and memories that limit the system of numbers that can be accommodated. These limitations 
determine both the range and the precision of numbers. The result is a set of numbers that is finite 
and discrete, rather than infinite and continuous. This sequence is a subset of the real numbers that is 
designed to form a useful approximation of the real number system. 

Figure 1-8 superimposes the basic 80287 real number system on a real number line (decimal numbers 
are shown for clarity, although the 80287 actually represents numbers in binary). The dots in<;licate the 
subset of real numbers the 80287 can represent as data and final results of calculations. The 80287's 
range is approximately ± 4.19 Xl 0.307 to ± 1.67 X 10308• Applications that are required to deal with 
data and final results outside this range are rare. For reference, the range of the IBM 370 is about 
±O.54X 10-78 to ±O.72X 1076• 

The finite spacing in figure 1-8 illustrates that the NPX can represent a great many, but not all, of the 
real numbers in its range. There is always a gap between two adjacent 80287 numbers, and it is possible 
for the result of a calculation to fall in this space. When this occurs, the NPX rounds the true result 
to a number that it can represent. Thus, a real number that requires more digits than the 80287 can 
accommodate (e.g., a 20-digit number) is represented with some loss of accuracy. Notice also that the 
80287's representable numbers are not distributed evenly along the real number line. In fact, an equal 
number of representable numbers exists between successive powers of 2 (Le., as many representable 
numbers exist between 2 and 4 as between 65,536 and 131,072). Therefore, the gaps between repre­
sentable numbers are larger as the numbers increase in magnitude. All integers in the range ± 264 

(approximately ± 1018), however, are exactly representable. 

In its internal operations, the 80287 actually employs a number system that is a substantial superset of 
that shown in figure 1-8. The internal format (called temporary real) extends the 80287's range to 
about ± 3.4X 1 ()-4932 to ± 1.2X 104932, and its precision to about 19 (equivalent decimal) digits. This 
format is designed to provide extra range and precision for constants and intermediate results, and is 
not normally intended for data or final results. 
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From a practical standpoint, the 80287's set of real numbers is sufficiently large and dense so as not 
to limit the vast majority of microprocessor applications. Compared to most computers, including 
mainframes, the NPX provides a very good approximation of the real number system. It is important 
to remember, however, that it is not an exact representation, and that arithmetic on real numbers is 
inherently approximate. 

Conversely, and equally important, the 80287 does perform exact arithmetic on integer operands. That 
is, an operation on two integers returns an exact integral result, provided that the true result is an 
integer and is in range. For example, 4-;- 2 yields an exact integer, 1-;- 3 does not, and 240 X 230 + 1 
does not, because the result requires greater than 64 bits of precision. 

Data Types and Formats 

The 80287 recognizes seven numeric data types, divided into three classes: binary integers, packed 
decimal integers, and binary reals. A later section describes how these formats are stored in memory 
(the sign is always located in the highest-addressed byte). Figure 1-9 summarizes the format of each 
data type. In the figure, the most significant digits of all numbers (and fields within numbers) are the 
leftmost digits. Table 1-5 provides the range and number of signficant (decimal) digits that each format 
can accommodate. 
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... Position of implicit binary point 
1 Integer bit of slgniflcand: stored In temporary real, Implicit (always 1) In short and long real 
Exponent Bias (normalized values): 

Short Real: 127 (7FH) 
Long Real: 1023 (3FFH) 
Temporary Real: 16383 (3FFFH) 
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Figure 1-9. Data Formats 
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Table 1-5. Real Number Notation 

Notation Value 

Ordinary Decimal 178.125 

Scientific Decimal 1~78125E2 

Scientific Binary 1~0110010001E111 

Scientific Binary 
1~0110010001E10000110 (Biased Exponent) 

Sign Biased Exponent Significand 
80287 Short Real 
(Normalized) 

0 10000110 ~100100010000000000000 
1 ~ (implicit) 

BINARY INTEGERS 

The three binary integer formats are identical except for length, which governs the range that can be 
accommodated in each format. The leftmost bit is interpreted as the number's sign: O=positive and 
1 = negative. Negative numbers are represented in standard two's complement notation (the binary 
integers are the only 80287 format to use two's complement). The quantity zero is represented with a 
positive sign (all bits are 0). The 80287 word integer format is identical to the 16-bit signed integer 
data type of the 80286. 

DECIMAL INTEGERS 

Decimal integers are stored in packed decimal notation, with two decimal digits "packed" into each 
byte, except the leftmost byte, which carries the sign bit (0 = positive, 1 = negative). Negative numbers 
are not stored in two's complement form and are distinguished from positive numbers only by the 
sign bit. The most significant digit of the number is the leftmost digit. All digits must be in the range 
OH-9H. 

REAL NUMBERS 

The 80287 stores real numbers in a three-field binary format that resembles scientific, or exponential, 
notation. The number's significant digits are held in the significand field, the exponent field locates 
the binary point within the significant digits (and therefore determines the number's magnitude), and 
the sign field indicates whether the number is positive or negative. (The exponent and significand are 
analogous to the terms "characteristic" and "mantissa" used to describe floating point numbers on 
some computers.) Negative numbers differ from positive numbers only in the sign bits of their 
significands. 

Table 1-5 shows how the real number 178.125 (decimal) is stored in the 80287 short real format. The 
table lists a progression of equivalent notations that express the same value to show how a number can 
be converted from one form to another. The ASM286 and PL/M-286 language translators perform a 
similar process when they encounter programmer-defined real number constants. Note that not every 
decimal fraction has an exact binary equivalent. The decimal number 1/10, for example, cannot be 
expressed exactly in binary (just as the number 1/3 cannot be expressed exactly in decimal). When a 
translator encounters such a value, it produces a rounded binary approximation of the decimal value. 
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The NPX usually carries the digits of the significand in normalized form. This means that, except for 
the value zero, the significand is an integer and a fraction as follows: 

l~fff ... ff 

where ~ indicates an assumed binary point. The number of fraction bits varies according to the real 
format: 23 for short, 52 for long, and 63 for temporary real. By normalizing real numbers so that their 
integer bit is always a 1, the 80287 eliminates leading zeros in small values (Ix! < 1). This technique 
maximizes the number of significant digits that can be accommodated in a significand of a given width. 
Note that, in the short and long real formats, the integer bit is implicit and is not actually,stored; the 
integer bit is physically present in the temporary real format only. 

If one were to examine only the signficand with its assumed binary point, all normalized real numbers 
would have values between 1 and 2. The exponent field locates the actual binary point in the significant 
digits. Just as in decimal scientific notation, a positive exponent has the effect of moving the binary 
point to the right, and a negative exponent effectively moves the binary point to the left, inserting 
leading zeros as necessary. An unbiased exponent of zero indicates that the position of the assumed 
binary point is also the position of the actual binary point. The exponent field, then, determines a real 
number's magnitude. 

In order to simplify comparing real numbers (e.g., for sorting), the 80287 stores exponents in a biased 
form. This means that a constant is added to the true exponent described above. The value of this bias 
is different for each real format (see figure 1-9). It has been chosen so as to force the biased exponent 
to be a positive value. This allows two real numbers (of the same format and sign) to be compared as 
if they are unsigned binary integers. That is, when comparing them bitwise from left to right (begin­
ning with the leftmost exponent bit), the first bit position that differs orders the numbers; there is no 
need to proceed further with the comparison. A number's true exponent can be determined simply by 
subtracting the bias value of its format. 

The short and long real formats exist in memory only. If a number in one of these formats is loaded 
into an 80287 register, it is automatically converted to temporary real, the format used for all internal 
operations. Likewise, data in registers can be converted to short or long real for storage in memory. 
The temporary real format may be used in memory also, typically to store intermediate results that 
cannot be held in registers. 

Most applications should use the long real form to store real number data and results; it provides 
sufficient range and precision to return correct results with a minimum of programmer attention. The 
short real format is appropriate for applications that are constrained by memory, but it should be 
recognized that this format provides a smaller margin of safety. It is also useful for debugging algorithms, 
because roundoff problems will manifest themselves more quickly in this format. The temporary real 
format should normally be reserved for holding intermediate results, loop accumulations, and constants. 
Its extra length is designed to shield final results from the effects of rounding and overflow/underflow 
in intermediate calculations. However, the range and precision of the long real form are adequate for 
most microcomputer applications. 

Rounding Control 

Internally, the 80287 employ~ three extra bits (guard, round, and sticky bits) that enable it to represent 
the infinitely precise true result of a computation; these bits are not accessible to programmers. Whenever 
the destination can represent the infinitely precise true result, the 80287 delivers it. Rounding occurs 
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in arithmetic and store operations when the format of the destination cannot exactly represent the 
infinitely precise true result. For example, a real number may be rounded if it is stored in a shorter 
real format, or in an integer format. Or, the infinitely precise true result may be rounded when it is 
returned to a register. 

The NPX has four rounding modes, selectable by the RC field in the control word (see figure 1-5). 
Given a true result b that cannot be represented by the target data type, the 80287 determines the two 
representable numbers a and c that most closely bracket b in value (a < b < c). The processor then 
rounds (changes) b to a or to c according to the mode selected by the RC field as shown in table 1-6. 
Round introduces an error in a result that is less than one unit in the last place to which the result is 
rounded. "Round to nearest" is the default mode and is suitable for most applications; it provides the 
most accurate and statistically unbiased estimate of the true result. The chop mode is provided for 
integer arithmetic applications. 

"Round up" and "round down" are termed directed rounding and can be used to implement interval 
arithmetic. Interval arithmetic generates a certifiable result independent of the occurrence of rounding 
and other errors. The upper and lower bounds of an interval may be computed by executing an algorithm 
twice, rounding up in one pass and down in the other. 

Precision Control 

The 80287 allows results to be calculated with either 64, 53, or 24 bits of precision in the significand 
as selected by the precision control (PC) field of the control word. The default setting, and the one 
that is best suited for most applications, is the full 64. bits of significance provided by the temporary­
real format. The other settings are required by the proposed IEEE standard, and are provided to obtain 
compatibility with the specifications of certain existing programming languages. Specifying less preci­
sion nullifies the advantages of the temporary real format's extended fraction length, and does not 
increase execution speed. When reduced precision is specified, the rounding of the fractional value 
clears the unused bits on the right to zeros. 

Infinity Control 

The 80287's system of real numbers may be closed by either of two models of infinity. These two means 
of closing the number system, projective and affine closure, are illustrated schematically in 
figure 1-10. The setting of the IC field in the control word selects one model or the other. The default 

Table 1-6. Rounding Modes 

RC Field Rounding Mode Rounding Action 

00 Round to nearest Closer to b of a or C;if equally close, 
select even number (the one whose 
least significant bit is zero). 

01 Round down (toward -00) a 

10 Round up (toward +00) c 
11 Chop (toward 0) Smaller in magnitude of a or c 

NOTE: a < b < c; a and c are representable, b is not. 
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o 
PROJECTIVE CLOSURE 

-00 + +00 

.~~~----~----~.~. 
o 

AFFINE CLOSURE 

Figure 1-10. Projective versus Affine Closure 

G3010B 

means of closure is projective, and this is recommended for most computations. When projective closure 
is selected, the NPX treats the special values +00 and -00 as a single unsigned infinity (similar to its 
treatment of signed zeros). In the affine mode the NPX respects the signs of +00 and -00. 

While affine mode may provide more information than projective, there are occasions when the sign 
may in fact represent misinformation. For example, consider an algorithm that yields an intermediate 
result x of +0 and -0 (the same numeric value) in different executions. If llx were then computed 
in affine mode, two entirely different values (+ 00 and - 00) would result from numerically identical 
values of x. Projective mode, on the other hand, provides less information but never returns misinfor­
mation. In general, then, projective mode should be used globally, with affine mode reserved for local 
computations where the programmer can take advantage of the sign and knows for certain that the 
nature of the computations will not produce a misleading result. 

SPECIAL COMPUTATIONAL SITUATIONS 

Besides being able to represent positive and negative numbers, the 80287 data formats may be used to 
describe other entities. These special values provide extra flexibility, but most users will not need to 
understand them in order to use the 80287 successfully. This section describes the special values that 
may occur in certain cases and the significance of each. The 80286 exceptions are also described, for 
writers of exception handlers and for those interested in probing the limits of computation using the 
80287. 

The material presented in this section is mainly of interest to programmers concerned with writing 
exception handlers. For many readers, this section can be browsed lightly. 

Special Numeric Values 

The 80287 data formats encompass encodings for a variety of special values in addition to the typical 
real or integer data values that result from normal calculations. These special values have significance 
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and can express relevant information about the computations or operations that produced them. The 
various types of special values are 

• Non-normal real numbers, including 
denormals 
unnormals 

• Zeros and pseudo zeros 

• Positive and negative infinity 

• NaN (Not-a-Number) 

• Indefinite 

The following description explains the OrIgms and significance of each of these special values. 
Tables 1-12 through 1-15 at the end of this section show how each of these special values is encoded 
for each of the numeric data types. 

NONNORMAL REAL NUMBERS 

As described previously, the 80287 generally stores nonzero real numbers in normalized floating-point 
form; that is, the integer (leading) bit of the significand is always a 1. This bit is explicitly stored in 
the temporary real format, and is implicitly assumed to be a one (lA) in the short- and long-real formats. 
Since leading zeros are eliminated, normalized storage allows the maximum number of significant 
digits to be held in a significand of a given width. 

When a floating-point numeric value becomes very close to zero, normalized storage cannot be used to 
express the value accurately. To accommodate these instances, the 80287 can store and operate on 
reals that are not normalized, i.e., whose significands contain one or more leading zeros. Nonnormals 
typically arise when the result of a calculation yields a value that is VJO small to be represented in 
normal form. 

Nonnormal values can exist in one of two forms: 

• The floating-point exponent may be stored at its most negative value (a Denormal), 

• The integer bit (and perhaps other leading bits) of the significand may be zero (an Unnormal). 

The leading zeros of nonnormals permit smaller numbers to be represented, at the cost of some lost 
precision (the number of significant bits is reduced by the leading zeros). In typical algorithms, extremely 
small values are most likely to be generated as intermediate, rather than final results. By using the 
NPX's temporary real format for holding intermediate, values as small as ± 3.4X 10.4932 can be repre­
sented; this makes the occurrence of nonnormal numbers a rare phenomenon in 80287 applications. 
Nevertheless, the NPX can load, store, and operate on nonnormalized real numbers when they do 
occur. 

Denormals and Gradual Underflow 

A denormal is the result of the NPX's response to an underflow exception when that exception has 
been masked by the programmer (see the 80287 control word, figure 1-5). Underflow occurs when the 
absolute value of a real number becomes too small to be represented in the destination format, that is, 
when the exponent of the true result is too negative to be represented in the destination format. For 
example, a true exponent of -130 will cause underflow if the destination is short real, because -126 
is the smallest exponent this format can accommodate. No underflow would occur if the destination 
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were long real or temporary real, since these formats can handle exponents down to -1023 and -16,383, 
respectively. 

Most computers underflow "abruptly:" they simply return a zero result, which is likely to produce an 
unacceptable final result if computatioll continues. The 80287, on the other hand, underflows "gradu­
ally" when the underflow exception is masked. Gradual underflow is accomplished by denormalizing 
the result until it is just within the exponent range of the destination format. Denormalizing means 
incrementing the true result's exponent and inserting a corresponding leading zero in the significand, 
shifting the rest of the significand one place to the right. Denormal values may occur in any of the 
short-real, long-real, or temporary-real formats. Table 1-7 illustrates how a result might be denormal­
ized to fit a short-real destination. 

The intent of the 80287's masked response to underflow is to allow computation to continue without 
program intervention, while introducing an error that carries about the same risk of contaminating the 
final result as roundoff error. Roundoff (precision) errors occur frequently in real nu'mber calculations; 
sometimes they spoil the result of computation, but often they do not. Recognizing that roundoff errors 
are often nonfatal, computation usually proceeds, and the programmer inspects the final results to see 
if these errors have had a significant effect. The 80287's masked underflow response allows program­
mers to treat underflows in a similar manner; the computation continues and the programmer can 
examine the final result to determine if an underflow has had important consequences. (If the 
underflow has had a significant effect, an invalid operation will probably be signalled later in the 
computation.) 

Denormalization produces a denormal or a zero. Denormals are readily identified by their exponents, 
which are always the minimum for their formats; in biased form, this is always the bit string: 00 ... 00. 
This same exponent value is also assigned to the zeros, but a denormal has a nonzero significand. A 
denormal in a register is tagged special. Tables 1-14 arid 1-15 later in this chapter show how denormal 
values are encoded in each of the real data formats. 

The denormalization process may cause the loss of low-order significand bits as they are shifted off the 
right. In a severe case, all the significand bits of the true result are shifted out and replaced by the 
leading zeros. In this case, the result of denormalization is a true zero, and if the value is in a register, 
it is tagged as such. However, this is a comparatively rare occurrence and, in any case, is no worse .than 
"abrupt" underflow. 

Table 1-7. Denormalization Process 

Operation Sign Exponent(1) Significand 

True Result 0 -129 1d 01 0111 00 ... 00 

Denormalize 0 -128 Od101011100 ... 00 

Denormalize 0 -127 Od01 01 0111 00 ... 00 

Denormalize 0 -126 Od00101011100 ... 00 

Denormal Result(2) 0 -126 Od00101011100 ... 00 

NOTES: 

(1) Expressed as unbiased, decimal number. 

(2) Before storing, signlficand is rounded to 24 bits, integer bit is dropped, and exponent is biased by adding 
126. . 
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Denormals are rarely encountered in most applications. Typical debugged algorithms generate extremely 
small results during the evaluation of intermediate subexpressions; the final result is usually of an 
appropriate magnitude for its short or long real destination. If intermediate results are held in tempo­
rary real, as is recommended, the great range of this format makes underflow very unlikely. Denormals 
are likely to arise only when an application generates a great many intermediates, so many that they 
cannot be held on the register stack or in temporary real memory variables. If storage limitations force 
the use of short or long reals for intermediates, and small values are produced, underflow may occur, 
and, if masked, may generate denormals. 

Accessing a denormal may produce an exception as shown in table 1-8. (The denormalized exception 
signals that a denormal has been fetched.) Denorrrials may have reduced significance due to lost low­
order bits, and an option of the proposed IEEE standard precludes operations on nonnormalized 
operands. This option may be implemented in the form of an exception handler that responds to 
unmasked denormalized exceptions. Most users will mask this exception so that computation may 
proceed; any loss of accuracy will be analyzed by the user when the final result is delivered. 

As table 1-8 shows, the division and remainder operations do not accept denormal divisors and raise 
the invalid operation exception. Recall also that the transcendental instructions require normalized 
operands and do not check for exceptions. In all other cases, the NPX converts denormals to unnor­
mals, and the rules governing un normal arithmetic then apply (unnormals are described in the follow­
ing section). 

Unnormals-Descendents of Denormal Operands 

An unnormal is the result of a computation using denormal operands and is therefore the descendent 
of the 80287's masked underflow response. An unnormal may exist only in the temporary real format; 
it may have any exponent that a normal value may have (that is, in biased form any nonzero value), 
but it is distinguished from a normal by the integer bit of its significand, which is always O. An unnor­
mal in a register is tagged valid. Unnormals are distinct from denormals, which have an exponent of 
00 ... 00 in biased form. 

Unnormals allows arithmetic to continue following an underflow while still retaining their identity as 
numbers that may have reduced significance. That is, unnormal operands generate unnormal results, 
so long as their unnormality has a significant effect on the result. Unnormals are thus prevented from 
"masquerading" as normals, numbers that have full significance. On the other hand, if an unnormal 
has an insignificant effect on a calculation with a normal, the result will be normal. For example, 
adding a small unnormal to a large normal yields a normal result. The converse situation yields an 
unnormal. 

Table 1-8. Exceptions Due to Denormal Operands 

Operation Exceptiori Masked Response 

FLD (short/long real) D Load as equivalent unnormal 

Arithmetic (except following) D Convert (in a work area) denormal to equivalent 
un normal and proceed 

Compare and test D Convert (in a work area) denormal to equivalent 
unnormal and proceed 

Division or FPREM with I Return real indefinite 
denormal divisor 
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Table 1-9 shows how the instruction set deals with unnormaIoperands. Note that the unnormal may 
be the original operand or a temporary created by the 80287 from a denormal. 

ZEROS AND PSEUDO ZEROS 

The value zero in the real and decimal integer formats may be signed either positive or negative, 
although the sign of a binary integer zero is always positive. For computational purposes, the value of 
zero always behaves identically, regardless of sign, and typically the fact that a zero may be signed is 
transparent to the programmer. If necessary, the FXAM instruction may be used to determine a zero's 
sign. 

The zeros discussed above are called true zeros; if one of them is loaded or generated in a register, the 
register is tagged zero. Table 1-10 lists the results of instructions executed with zero operands and also 
shows how a true zero may be created from nonzero operands. 

Only the temporary real format may contain a special class of values called pseudo zeros. A pseudo 
zero is an unnormal whose significand is all zeros, but whose (biased) exponent is nonzero (true zeros 
have a zero exponent). Neither is a pseudo zero's exponent all ones, since this encoding is reserved for 
infinities and NANs. A pseudo zero result will be produced if two unnormals; containing a total of 
more than 64 leading zero bits in their significands, are multiplied together. This is a remote possibility 
in most applications, but it can happen. 

Table 1-9. Un normal Operands and Results 

Operation Result 

Addition/subtraction Normalization of operand with larger ab~solute 
value determines normalization of result. 

Multiplication If either operand is unnormal, result is unnormal. 

Oivision (unnormal dividend only) ·Result is un normal. 

FPREM (unnormal dividend only) Result if normalized. 

Olvision/FPREM (unnormal Signal invalid operation. 
divisor) 

Compare/FTST Normalize as much as possible before making 
comparison. 

FRNOINT Normalize as much as possible before rounding. 

FSQRT Signal invalid operation. 

FST, FSTP(short/longreal If value is above destination's underflow bound-
destination) ary, then signal invalid operation; else signal 

underflow. 

FSTP (temporary real destination) Store as usual. 

FIST, FISTP, FBSTP Signal invalid operation. 

FLO Load as usual. 

FXCH Exchange as usual. 

Transcendental instructions Undefined; operands must be normal and are not 
checked. 

, 
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Pseudo zero operands behave like un normals, except in the following cases where they produce the 
same results as true zeros: 

• Compare and test instructions 

• FRNDINT (round to integer) 

• Division, where the dividend is either a true zero or a pseudo zero (the divisor is a pseudo zero) 

In addition and subtraction of a pseudo zero and a true zero or another pseudo zero, the pseudo zeroes) 
behaves like un normals, except for the determination of the result's sign. The sign is determined as 
shown in table 1-10 for two true zero operands. 

INFINITY 

The real formats support signed representations of infinities. These values are encoded with a biased 
exponent of all ones and a significand of I~OO ... OO; if the infinity is in a register, it is tagged special. 
The significand distinguishes infinities from NANs, including real indefinite. 

A programmer may code an infinity, or it may be created by the NPX as its masked response to an 
overflow or a zero divide exception. Note that when rounding is up or down, the masked response may 
create the largest valid value representable in the destination rather than infinity. See table 1-11 for 
details. As operands, infinities behave somewhat differently depending on how the infinity control field 
in the control word is set (see table 1-12). When the projective model of infinity is selected, the infini­
ties behave as a single unsigned representation; because of this, infinity cannot be compared with any 
value except infinity. In affine mode, the signs of the infinities are observed, and comparisons are 
possible. 

NaN (NOT A NUMBER) 

A NaN (Not a Number) is a member of a class of special values that exist in the real formats only. A 
NaN has an exponent of 11..11B, may have either sign, and may have any significand except lLlOO .. OOB, 
which is assigned to the infinities. A NaN in a register is tagged special. 

The 80287 will generate the special NaN, real indefinite, as its masked response to an invalid operation 
exception. This NaN is signed negative; its significand is encoded 1~1 00 .. 00. All other NaNs represent 
programmer-created values. 

Whenever the NPX uses an operand that is a NaN, it signals an invalid operation exception in its 
status word. If this exception is masked in the 80287 control word, the 80287's masked exception 
response is to return the NaN as the operation result. If both operands of an instruction are NaNs, the 
result is the NaN with the larger absolute value. In this way, a NaN that enters a computation propa­
gates through the computation and will eventually be delivered as the final result. Note, however, that 
the transcendental instructions do not check their operands, and a NaN will produce an undefined 
result. 

By unmasking the invalid operation exception, the programmer can use NaNs to trap to the exception 
handler. The generality of this approach and the large number of NaN values that are available provide 
the sophisticated programmer with a tool that can be applied to a variety of special situations. 

For example, a compiler could use NaNs as references to uninitialized (real) array elements. The 
compiler could preinitialize each array element with a NaN whose significand contained the index 
(relative position) of the element. If an application program attempted to access an element that it had 
not initialized, it would use the NaN placed there by the compiler. If the invalid operation exception 
were unmasked, an interrupt would occur, and the exception handler would be invoked. The exception 
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handler could determine which element had been accessed, since the operand address field of the 
exception pointers would point to the NaN, and the NaN would contain the index number of the array 
element. 

Table 1-10. Zero Operands and Results 

Operation / Operands Result Operation / Operands Result 

FLD, FBLD(l) Division 
+0 +0 ±o + ±o Invalid operation 
-0 -0 ±X + ±o Zerodivide 

FILD(2) +0 + +X, -0 + -X +0 
+0 +0 +0 + -X, -0 + +X -0 

FST,FSTP -X + -Y, +X + +Y +0, underflowS) 
+0 +0 -x + +Y, +X + -Y -0, underflow(8) 
-0 -0 
+X(3) +0 FPREM 
-X(3) -0 ±O rem ±O Invalid operation 

FBSTP ±X rem ±O Invalid operation 
+0 +0 +0 rem +X, +0 rem -X +0 
-0 -0 -0 rem +X, -0 rem -X -0 

FIST, FISTP +X rem +Y, +X rem -Y +0(9) 
+0 +0 -X rem -Y, -X rem +Y -Q(8) 

-0 +0 
+X(4) +0 FSQRT 
-X(4) +0 -0 -0 

+0 +0 
Addition 

+0 plus +0 +0 Compare 
-0 plus -0 -0 ±O: +X A<B 
+0 plus -0, -0 plus +0 ·0(6) ±O: ±O A=B 
-X plus +X, +X plus -X ·0(6) ±O: -X A>B 
±O plus ±X, ±X plus ±O tX(6) 

FTST 
Subtraction ±O Zero 

+0 minus-O +0 FCHS 
-0 minus +0 -0 +0 -0 
+0 minus +0, -0 minus -0 ·0(6) -0 +0 
+X minus +X, -X minus -X ·0(5) FABS 
±O minus ±X, ±X minus ±O tX(6) ±O +0 

F2XM1 
Multiplication +0 +0 

+0· +0, -0·-0 +0 -0 -0 
+0· -0, -0· +0 -0 FRNDINT 
+0· +X, +X· +0 +0 +0 +0 
+0. -X, -X· +0 -0 -0 -0 
-0· +X, +X·-O -0 FXTRACT 
-0. -X, -x·-o +0 +0 Both +0 
+X· +Y, -X·-Y +0, underflow(7) -0 Both -0 
+X. -Y, -X· +Y -0, underflow(7) 

NOTES: 

(1) Arithmetic and compare operations with real memory operands interpret the memory operand signs in 
the same way. . 

(2) Arithmetic and compare operations with binary integers interpret the integer sign in the same manner. 
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(3) Severe underflows in storing to short or long real may generate zeros. 

(4) Small values ( Ix! < 1) stored into integers may round to zero. 

(5) Sign is determined by round mode: 
• = + for nearest, up, or chop 
• = - for down 

(8) t = sign of X. 

(7) Very small values of X and Y may yield zeros, after rounding of true result. NPX signals underflow to 
warn that zero has been yielded by nonzero operands. 

(8) Very small X and very large Y may yield zero, after rounding of true result. NPX signals underflow to 
warn that zero has been yielded from nonzero operands. 

(9) When Y divides into X exactly. 

NaNs could also be used to speed up debugging. In its early testing phase, a program often contains 
multiple errors. An exception handler could be written to save diagnostic information in memory 
whenever it was invoked. After storing the diagnostic data, it could supply a NaN as the result of the 
erroneous instruction, and that NaN could point to its associated diagnostic area in memory. The 
program would then continue, creating a different NaN for each error. When the program ended, the 
NaN results could be used to access the diagnostic data saved at the time the errors occurred. Many 
errors could thus be diagnosed and corrected in one test run. 

Table 1-11. Masked Overflow Response with Directed Rounding 

True Result 
Rounding 

Normalization Sign 
Mode 

Normal + Up 

Normal + Down 

Normal - Up 

Normal - Down 

Unnormal + Up 

Unnormal - Down 

Unnormal + Up 

Unnormal - Down 

NOTES: 

(') The largest valid representable reals are encoded: 
exponent: 11...10B 
significand: (1)~ 11...1 OB 

Result Delivered 

+00 
Largest finite positive number(') 

Largest finite negative number(') 

-00 
+00 
Largest exponent, result's significand(2) 

Largellt exponent, result's significand(2) 

-00 

(2) The significand retains its identity as an unnormal; the true result is rounded as usual (effectively chopped 
toward a in this case). The exponent is encoded 11...1 OB. 
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Table 1-12. Infinity Operands and Results 

Operation Projective Result Affine Result 

Addition 
+00 plus +00 Invalid operation +00 

-00 plus -00 Invalid operation -00 

+00 plus -00 Invalid operation Invalid operation 
-00 plus +00 Invalid operation Invalid operation 
±oo plus ±X '00 '00 

±X plus ±oo '00 '00 

Subtraction 
+00 minus -00 Invalid operation +00 

-00 minus +00 Invalid operation -00 

+00 minus +00 Invalid operation Invalid operation 
-00 minus -00 Invalid operation Invalid operation 
±oo minus ±X '00 '00 

±X minus ±oo too too 

Multiplication 
±oo· ±oo E!) E!) 

±oo· ±y E!) E!) 

±O· ±oo, ±oo' ±O Invalid operation Invalid operation 

Division 
±oo -;- ±oo Invalid operation Invalid operation 
±oo -;- ±X E!) E!) 

±X -;- ±oo E!) e 
FSQRT 

-00 Invalid operation Invalid operation 
+00 Invalid operation +00 

FPREM 
±oo rem ±oo Ihvalid operation Invalid operation 
±oo rem ±X Invalid operation Invalid operation 
±Y rem ±oo 'Y 'Y 
±O rem ±oo '0 '0 

FRNDINT 
±oo '00 '00 

FSCALE 
± 00 scaled by ± 00 Invalid operation Invalid operation 
± 00 scaled by ± X '00 '00 

± 0 scaled by ± 00 '0 ) '0 
± Y scaled by ± 00 Invalid operation Invalid operation 

FXTRACT 
±oo Invalid operation Invalid operation 

Compare 
±oo: ±oo A=B -00 < +00 

±oo: ±Y A ? B (and) invalid operation -00 <Y < +00 

±oo: ±O A ? B (and) invalid operation -00 < 0 < +00 

FTST 
±oo , A ? B (and) invalid operation '00 

NOTES: 

X zero or nonzero operand 

Y nonzero operand 

sign of original operand 
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t = sign is complement of original operand's sign 

e = sign is "exclusive or" original operand signs (+ if operands had same sign, - if operands had 
different signs) 

INDEFINITE 

For every 80287 numeric data type, one unique encoding is reserved for representing the special value 
indefinite. The 80287 produces this encoding as its response to a masked invalid-operation exception. 
In the case of reals, the indefinite value can be stored and loaded like any NaN, and it always retains 
its special identity; programmers are advised not to use this encoding for any other purpose. Packed 
decimal indefinite may be stored by the NPX in a FBSTP instruction; attempting to use this encoding 
in a FBLD instruction, however, will have an undefined result. In the binary integers, the same encod­
ing may represent either indefinite or the largest negative number supported by the format (- 2'S, 
- 23', or - 263). The 80287 will store this encoding as its masked response to an invalid operation, or 
when the value in a source register represents or rounds to the largest negative integer representable 
by the destination. In situations where its origin may be ambiguous, the invalid operation exception 
flag can be examined to see if the value was produced by an exception response. When this encoding 
is loaded, or used by an integer arithmetic or compare operation, it is always interpreted as a negative 
number; thus indefinite cannot be loaded from a packed decimal or binary integer. 

ENCODING OF DATA TYPES 

Tables 1-13 through 1-16 show how each of the special values just described is encoded for each of the 
numeric data types. In these tables, the least-significant bits are shown to the right and are stored in 
the lowest memory addresses. The sign bit is always the left-most bit of the highest-addressed byte. 

Table 1-13. Binary Integer Encodings 

Class Sign Magnitude 

III (Largest) 0 11 ... 11 
CD · · > :e · · III 
0 · · a. 

(Smallest) 0 00 ... 01 

Zero 0 00 ... 00 

III (Smallest) 1 11 ... 11 
CD · · > ;:; 
III · · CII · · CD z (Largest/ Indefinite") 1 00 ... 00 

Word: 
Short: 

1 ..... 1----15 bits ----I.~ 1 
1 .... 1---- 31 bits -----1.~ 1 

Long: 1 .... 1---- 63 bits -----1.~ 1 

NOTES: 

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the 
80287 interprets it as the largest negative number representable in the format: -2'5, -23" or -263. The 
80287 will deliver this encoding to an integer destination in two cases: 

1) If the result is the largest negative number 

2) As the response to a masked invalid operation exception, in which case it represents the special value 
integer indefinite. 
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Table 1-14. Packed Decimal Encodings 

Magnitude 
Class Sign 

J I I I ... I digit digit digit digit digit 

(Largest) 0 0000000 1 0 0 1 1 0 0 1 1 0 0 1 1 o 0 1 · .. 1 0 0 1 

· · · III 
GI · · · > 
i · · · 
0 (Smallest) 0 0000000 o 0 0 0 o 0 0 0 o 0 0 0 o 0 0 0 · .. 00 0 1 
Q. 

Zero 0 0000000 o 0 0 0 o 0 0 0 000 0 o 0 0 0 ... o 0 0 0 

Zero 1 0000000 o 0 0 0 o 0 0 0 000 0 o 0 0 0 ... o 0 0 0 
III 
GI 

(Smallest) 1 0000000 o 0 0 0 o 0 0 0 o 0 0 0 o 0 0 0 000 1 ~ · .. 
III · · · 01 
GI · · · Z · · · (Largest) 1 0000000 1 o 0 1 1 0 0 1 1 0 0 1 1 o 0 1 · . 1 0 0 1 

Indefinite' 1 1111111 1 1 1 1 1 1 1 1 U U U U2 U U U U · . U U U U 

1 ....... 1 byte___...� ..... t---------9 bytes----------I.~I 
NOTES: 

1. The packed decimal indefinite encoding is stored by FBSTP in response to a masked invalid operation 
exception. Attempting to load this value via FBLD produces an undefined result. 

2. UUUU means bit values are undefined and may contain any value. 
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Class 

II) 
CD 
> :;:; 
Ul 
0 a.. 

II) 

r--- iii 
QI 
II: 

II) 
GI 
> :;:; 
ca 
01 
CD z 

II) 

z 
ca z 
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Table 1-15. Real and Long Real Encodings 

Sign 

0 

· NaNs · · 0 

00 0 

0 

· Normals · · 0 

0 

· Denormals · · 0 

Zero 0 

Zero 1 

1 

· Denormals · · 1 

1 

· Normals · · 1 

00 1 

1 

· · · 
Indefinite 1 

· · · 1 

Short: 
Long: 

Biased Significand· 
Exponent ~ff .. .ff 

11...11 11...11 

· · · · · · 11...11 00 ... 01 

11...11 00 ... 00 

11...10 11...11 

· · · · · · 00 ... 01 00 ... 00 

00 ... 00 11...11 

· · · · · · 00 ... 00 00 ... 01 

00 ... 00 00 ... 00 

00 ... 00 00 ... 00 

00 ... 00 00 ... 01 

· · · · · · 00 ... 00 11...11 

00 ... 01 00 ... 00 

· · · · · · 11...10 11...11 

11...11 00 ... 00 

11...11 00 ... 01 

· · · · · · 
11...11 10 ... 00 

· · · · · · 11...11 11...11 

1..--8 bits --.1 .. 23 bits ---I.~I 
1...-11 bits~l...-. 52 bits---J.~I 

-Integer bit is implied and not stored. 
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Table 1-16. Temporary Real Encodlngs 

Class Sign Biased Significand· 
Exponent I~ff •.. ff 

0 11...11 111...11 · · · NaNs · · · · · · 0 11...11 100 ... 01 

00 0 11 ... 11 100 ... 00 

0 11...10 Normals 
• · 111...11 · · · · · · · · · · · · II) · G) · 100 ... 00 

> · · :;::; 
'iii · 0 · Unnormals 
0- · · · · 011...11 · · · · · · · · · 0 00 ... 01 000 ... 00 

Denormals 
0 00 ... 00 011...11 · · · · · · · · · 0 00 ... 00 000 ... 01 

II) Zero 0 00 ... 00 000 ... 00 
- "iii 

G) 
II: Zero 1 00 ... 00 000 ... 00 

Denormals 
1 00 ... 00 000 ... 01 · · • · · · · · · 1 00 ... 00 011...11 

II) 
III 1 00 ... 01 Unnormals > :;::; · · 000 ... 00 I'll 
CI · · · III z · · · · · · · · 011...11 

· · · · Normals · · · · 100 ... 00 
" · · · · · · · · 1 11...10 111...11. 
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Table 1-16. Temporary Real Encodings (Cont'd.) 

Class Sign Biased Significand' 
Exponent l/lff...ff 

00 1 11...11 100 ... 00 

1 11...11 100 ... 00 

· · · · · · en 
CD · · · .:: 
'lii 

jl Cl Indefinite 1 11...11 110 ... 00 CD z 

· · · · · · · · · 1 11...11 111...11 

1..--15 bits--.. ... � .. .._--64 bits---I~~I 

Numeric Exceptions 

Whenever the 80287 NPX attempts a numeric operation with invalid operands or produces a result 
that cannot be represented, the 80287 recognizes a numeric exception condition. Altogether, the 80287 
checks for the following six classes of exceptions while executing numeric instructions: 

1. Invalid operation 

2. Divide-by-zero 

3. Denormalized operand 

4. Numeric overflow 

5. Numeric underflow 

6. Inexact result (precision) 

INVALID OPERATION 

The 80287 reports an invalid operation if any of the following occurs: 

• An attempt to load a register that is not empty (stack overflow). 

• An attempt to pop an operand from an empty register (stack underflow). 

• An operand is a NaN. 

• The operands cause the operation to be indeterminate (square root of a negative number, 0/0). 

An invalid operation generally indicates a program error. 

ZERO DIVISOR 

If an instruction attempts to divide a finite nonzero operand by zero, the 80287 will report a zero divide 
exception. 
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DENORMALIZED OPERAND 

If an instruction attempts to operate on a denormltl, the NPX reports the denormalized operand excep­
tion. This exception allows users to implement in software an option of the proposed IEEE standard 
specifying that operands must be prenormalized before they are used. 

NUMERIC OVERFLOW AND UNDERFLOW 

If the exponent of a numeric result is too large for the destination real format, the 80287 signals a 
numeric overflow. Conversely, if the exponent of a result is too small to be represented in the destina­
tion format, a numeric underflow is signaled. If either of these exceptions occur, the result of the 
operation is outside the range of the destination real format. 

Typical algorithms are most likely to produce extremely large and small numbers in the calculation of 
intermediate, rather than final, results. Because of the great range of the temporary real format 
(recommended as the destination format for intermediates), overflow and underflow are relatively rare 
events in most 80287 applications. 

INEXACT RESULT 

If the result of an operation is not exactly representable in the destination format, the 80287 rounds 
the number and reports the precision exception. For example, the fraction 113 cannot be precisely repre­
sented in binary form. This exception occurs frequently and indicates that some (generally acceptable) 
accuracy has been lost; it is provided for applications that need to perform exact arithmetic only. 

HANDLING NUMERIC ERRORS 

When numeric errors occur, the NPX takes one of two possible courses of action: 

• The NPX can itself handle the error, proCiucihg the most reasonable result and allowing numeric 
program execution to continue undisturbed. 

• A software exception handler can be invoked by; the CPU to handle the error. 

Each of the six exception conditions described above has a corresponding flag bit in the 80287 status 
word and a mask bit in the 80287 control word. If an exception is masked (the corresponding mask bit 
in the control word = 1), the 80287 takes an appropriate default action and continues with the compu­
tation. If the exception is unmasked (mask=O), the 80287 asserts the ERROR output to the 80286 to 
signal the exception and invoke a software exception handler. 

The NPX reports ari exception by setting the corresponding flag in the NPX status word to 1. The 
NPX then checks the corresponding exception mask in the control word to determine if it should 
"field" the exception (mask= 1), or if it should signal the exception to the CPU to invoke a software 
exception handler (mask=O). 

If the mask is set, the exception is said to be masked (from user software), and the NPX executes its 
on-chip masked response for that exception. If the mask is not set (mask = 0), the exception is unmasked, 
and the NPX performs its unmasked response. The masked response always produces a standard res~lt, 
then proceeds with the instruction. The unmasked response always traps to a software exception handler, 
allowing the CPU to recognize and take action on the exception. Table 1-17 gives a complete descrip­
tion of all exception conditions and the NPX's masked response. 
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Table 1-17. Exception Conditions and Masked Responses 

Condition Masked Response 

Invalid Operation 

Source register is tagged empty (usually due 
to stack underflow). 

Destination register is not tagged empty 
(usually due to stack overflow). 

One or both operands is a NaN. 

(Compare and test operations only): one or 
both operands is a NaN. 

(Addition operations only): closure is affine and 
operands are opposite-signed infinities; or 
closure is projective and both operands are 00 

(signs immaterial). 

(Subtraction operations only): closure is affine 
and operands are like-signed infinities; or 
closure is projective and both operands are 00 

(signs immaterial). 

(Multiplication operations only): 00 • 0; or 0 • 
00. 

(Division operations only): 00 + 00; or 0 + 0; 
or 0 + pseudo zero; or divisor is denormal or 
unnormal. 

(FPREM Instruction only): modulus (divisor) is 
unnormal or denormal; or dividend is 00. 

(FSQRT instruction only): operand is nonzero 
and negative; or operand is denormal or 
unnormal; or closure is affine and operand is 
-00; or closure is projective and operand is 
00. 

(Compare operations only): closure is projec­
tive and 00 is being compared with 0, a normal, 
or 00. 

(FTST instruction only): closure is projective 
and operand is 00. 

(FIST, FISTP instructions only): source regis­
ter is empty, a NaN, denormal, un normal, 00, 

or exceeds representable range of destina­
tion. 

(FBSTP instruction only): source register is 
empty, a NaN, denormal, unnormal, 00, or 
exceeds 18 decimal digits. 

(FST, F'STP instructions only): destination is 
short or long. real and source register is an 
unnormal with exponent in range. 

(FXCH instruction only): one or both registers 
is tagged empty. 
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Return real indefinite. 

Return real indefinite (overwrite destination 
value). 

Return NaN with larger absolute value (ignore 
signs). 

Set condition codes "not comparable." 

Return real indefinite. 

Return real indefinite. 

Return real indefinite. 

Return real indefinite. 

Return real indefinite, set condition code = 
"complete remainder." 

Return real indefinite. 

Set condition code = "not comparable." 

Set condition code = "not comparable." 

Store integer indefinite. 

Stored packed decimal indefinite. 

Store real Indefinite. 

Change empty register(s) to real indefinite and 
then· perform exchange. 
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Table 1-17. Exception Conditions and Masked Responses (Cont'd.) 

Condition Masked Response 

Denormalized Operand 

(FLO instruction only): source operand is No special action; load as usual. 
denormal. 

(Arithmetic operations only): one or both Convert (in a work area) the operand to the 
operands is denormal. equivalent unnormal and proceed. 

(Compare and test operations only): one or Convert (In a work area) any denormal to the 
both operands is denormal or unnormal (other equivalent unnormal; normalize as much as 
than pseudo zero). possible, and proceed with operation. 

Zero Divide 

(Division operations only): divisor = O. Return 00 signed with "exclusive or" of 
operand signs. 

Overflow 

(Arithmetic operations only): rounding is Return properly signed 00 and signal precision 
nearest or chop, and exponent of true result exception. 
> 16,383. 

(FST, FSTP instructions only): rounding is Return properly signed 00 and signal precision 
nearest or chop, and exponent of true result exception. 
> +127 (short real destination) or > +1023 
(long real destination). 

Underflow 

(Arithmetic operations only): exponent of true Denormalize until exponent rises to -16,382 
result < -16,382 (true). (true), round significand to 64 bits. If denor-

malized rounded significand = 0, then return 
true 0; else, return denormal (tag = special, 
biased exponent = 0). 

(FST, FSTP instructions only): destination is Denormalize until exponent rises to -126 
short real and exponent of true result < -126 (true), round significand to 24 bits, store true 0 
(true). if denormalized rounded significand = 0; else, 

store denormal (biased exponent = 0). 

(FST, FSTP instructions only): destination is Denormalize until exponent rises to -1022 
long real and exponent of true result < -1022 (true), round significand to 53 bits, store true 0 
(true). if rounded denormalized significand = 0; else, 

store denormal (biased exponent = 0). 

Precision 

True rounding error occurs. No special action. 

Masked response to overflow exception earlier No special action. 
in instruction. 

Note that when exceptions are masked, the NPX may detect multiple exceptions in a single instruction, 
because it continues executing the instruction after performing its masked response. For example, the 
80287 could detect a denormalized operand, perform its masked response to this exception, and then 
detect an underflow. 
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Automatic Exception Handling 

As described in the previous section, when the 80287 NPX encounters an exception condition whbse 
corresponding mask bit in the NPX control word is set, the NPX automatically performs an internal 
fix-up (masked-exception) response. The 80287 NPX has a default fix-up activity for every possible 
exception condition it may encounter. These masked-exception responses are designed to be safe and 
are generally acceptable for most numeric applications. 

As an example of how even severe exceptions can be handled safely and automatically using the NPX's 
default exception responses, consider a calculation of the parallel resistance of several values using 
only the standard formula (figure 1-11). If RI becomes zero, the circuit resistance becomes zero. With 
the divide-by-zero and precision exceptions masked, the 80287 NPX will produce the correct result. 

By masking or unmasking specific numeric exceptions in the NPX control word, NPX programmers 
can delegate responsibility for most exceptions to the NPX, reserving the most severe exceptions for 
programmed exception handlers. Exception-handling software is often difficult to write, and the NPX's 
masked responses have been tailored to deliver the most reasonable result for each condition. For the 
majority of applications, programmers will find that masking all exceptions other than Invalid Opera­
tion will yield satisfactory results with the least programming effort. An Invalid Operation exception 
normally indicates a fatal error in a program that must be corrected; this exception should not normally 
be masked. 

The exception flags in the NPX status word provide a cumulative record of exceptions that have occurred 
since these flags were last cleared. Once set, these flags can be cleared only by executing the FCLEX 
(clear exceptions) instruction, by reinitializing the NPX, or by overwriting the flags with an FRSTOR 
or FLDENV instruction. This allows a programmer to mask all exceptions (except invalid operation), 
run a calculation, and then inspect the status word to see if any exceptions were detected at any point 
in the calculation. 

R3 

1 
EQUIVALENT RESISTANCE ~ 

G30108 

Figure 1-11. Arithmetic Example Using Infinity 
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Software Exception Handling 

If the NPX encounters an unmasked exception condition, it signals the exception to the 80286 CPU 
using the ERROR status line between the two processors. 

The next time the 80286 CPU encounters a WAIT or ESC instruction in its instruction stream, the 
80286 will detect the active condition of the ERROR status line and automatically trap to an exception 
response routine using interrupt #16-the Processor Extension Error exception. 

This exception response routine is typically a part of the systems software. Typical exception responses 
may include: 

• Incrementing an exception counter for later display or printing 

• Printing or displaying diagnostic information (e.g., the 80287 environment and registers) 

• Aborting further execution 

• Using the exception pointers to build an instruction that will run without exception and 
executing it 

Application programmers on 80286 systems having systems software support for the 80287 NPX should 
consult their references for the appropriate system response to NPX exceptions. For systems program­
mers, specific details on writing software exception handlers are included in the section "System-Level 
Numeric Programming" later in this manual. 

The 80287 NPX differs from the 8087 NPX in the manner in which numeric exceptions are signalled 
to the CPU; the 8087 requires an interrupt controller (8259A) to interrupt the CPU, while the 80287 
does not. Programmers upgrading 8087 software to operate on an 80287 should be aware of these 
differences and any implications they might have on numeric exception-handling software. 
Appendix B explains the differences between the 80287 and the 8087 NPX in greater detail. 
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CHAPTER 2 
PROGRAMMING NUMERIC APPLICATIONS 

Programmers developing applications for the 80287 have a wide range of instructions and program­
ming alternatives from which to choose. 

The following sections describe the 80287 instruction set in detail, and follow up with a discussion of 
several of the programming facilities that are available to programmers of 80287. 

THE 80287 NPX INSTRUCTION SET 

This section describes the operation of all 80287 instructions. Within this section, the instructions are 
divided into six functional classes: 

Data Transfer instructions 

• Arithmetic instructions 

• Comparison instructions 

• Transcendental instructions 

• Constant instructions 

• Processor Control instructions 

At the end of this section, each of the instructions is described in terms of its execution speed, bus 
transfers, and exceptions, as well as a coding example for each combination of operands accepted by 
the instruction. For easy reference, this information is concentrated into a table, organized alphabeti­
cally by instruction mnemonic. 

Throughout this section, the instruction set is described as it appears to the ASM286 programmer who 
is coding a program. Appendix A covers the actual machine instruction encodings, which are princi­
pally of use to those reading unformatted memory dumps, monitoring instruction fetches on the bus, 
or writing exception handlers. 

Compatibility with the 8087 NPX 

The instruction set for the 80287 NPX is largely the same as that for the 8087 NPX used with 8086 
and 8088 systems. Most object programs generated for the 8087 will execute without change on the 
80287. Several instructions are new to the 80287, and several 8087 instructions perform no useful 
function on the 80287. Appendix B at the back of this manual gives details of these instruction set 
differences and of the differences in the ASM86 and ASM286 assemblers. 

Numeric Operands 

The typical NPX instruction accepts one or two operands as inputs, operates on these, and produces a 
result as an output. Operands are most often (the contents of) register or memory locations. The operands 
of some instructions are predefined; for example, FSQRT always takes the square root of the number 
in the top stack element. Others allow, or require, the programmer to explicitly code the operand(s) 
along with the instruction mnemonic. Still others accept one explicit operand and one implicit operand, 
which is usually the top stack element. 
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Whether supplied by the programmer or utilized automatically, the two basic types of operands are 
sources and destinations. A source operand simply supplies one of the inputs to an instruction; it is not 
altered by the instruction. Even when an instruction converts the source operand from one format to 
another (e.g., real to integer), the conversion is actually performed in an internal work area to avoid 
altering the source operand. A destination operand may also provide an input to an instruction. It is 
distinguished from a source operand, however, because its content may be altered when it receives,the 
result produced by the operation; that is, the destination i& replaced by the result. 

Many instructions allow their operands to be coded in more than one way. For example, FADD (add 
real) may be written without operands, with only a source or with a destination and a source. The 
instruction descriptions in this section employ the simple convention of separating alternative operand 
forms with slashes; the slashes, however, are not coded. Consecutive slashes indicate an option of no 
explicit operands. The operands for FADD are thus described as 

/ /source/destination, source 

This means that FADD may be written in any of three ways: 

FADD 
FAD D source 
FAD D destination, source 

When reading this section, it is important to bear in mind that memory operands may be coded with 
any of the CPU's memory addressing modes. To review these modes-direct, register indirect, based, 
indexed, based indexed-refer to the 80286 Programmer's Reference Manual. Table 2-17 later in this 
chapter also provides several addressing mode examples. 

Data Transfer Instructions 

i These instructions (summarized in table 2-1) move operands among elements of the register stack, and 
between the stack top and memory. Any of the seven data types can be converted to temporary real 
and loaded (pushed) onto the stack in a single operation; they can be stored to memory in the same 
manner. The data transfer instructions automatically update the 80287 tag word to reflect the register 
contents following the instruction. 

FLO source 

FLD (load real) loads (pushes) the source operand onto the top of the register stack. This is done by 
decrementing the stack pointer by one and then copying the content of the source to the new stack top. 
The source may be a register on the stack (ST(i» or any of the real data types in memory. Short and 
long real source operands are converted to temporary real automatically. Coding FLD ST(O) duplicates 
the stack top. 

FST destination 

\ 

FST (store real) transfers the stack top to the destination, which may be another register on the stack 
or a short or long real memory operand. If the destination is short or long real, the significand is 
rounded to the width of the destination according 'to the RC field of the control word, and the exponent 
is converted to the width and bias of the destination format. 
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Table 2-1. Data Transfer Instructions 

Real Transfers 

FLO Load real 
FST Store real 
FSTP Store real and pop 
FXCH Exchange registers 

Integer Transfers 

FILD Integer load 
FIST Integer store 
FISTP Integer store and pop 

Packed Decimal Transfers 

FBLD Packed decimal (BCD) load 
FBSTP Packed decimal (BCD) store and pop 

If, however, the stack top is tagged special (it contains 00, a NaN, or a denormal) then the stack top's 
significand is not rounded but is chopped (on the right) to fit the destination. Neither is the exponent 
converted, but it also is chopped on the right and transferred "as is." This preserves the value's identi­
fication as 00 or a NaN (exponent all ones) or a denormal (exponent all zeros) so that it can be properly 
loaded and tagged later in the program if desired. 

FSTP destination 

FSTP (store real and pop) operates identically to FST except that the stack is popped following the 
transfer. This is done by tagging the top stack element empty and then incrementing ST. FSTP permits 
storing to a temporary real memory variable, whereas FST does not. Coding FSTP ST(O) is equivalent 
to popping the stack with no data transfer. 

FXCHlldestination 

FXCH (exchange registers) swaps the contents of the destination and the stack top registers. If the 
destination is not coded explicitly, ST(J) is used. Many 80287 instructions operate only on the stack 
top; FXCH provides a simple means of effectively using these instructions on lower stack elements. 
For example, the following sequence takes the square root of the third register from the top: 

FXCH ST(3) 
FSQRT 
FXCH ST(3) 

FILD source 

FILD (integer load) converts the source memory operand from its binary integer format (word, short, 
or long) to temporary real and loads (pushes) the result onto the stack. The (new) stack top is tagged 
zero if all bits in the source were zero, and is tagged valid otherwise. 
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FIST destination 

FIST (integer store) rounds the content of the stack top to an integer according to the RC field of the 
control word and transfers the result to the destination. The destination may define a word or short 
integer variable. Negative zero is stored in the same encoding as positive zero: 0000 ... 00. 

FISTP destination 

FISTP (integer and pop) operates like FIST and also pops the stack following the transfer. The desti­
nation may be any of the binary integer data types. 

FBLD source 

FBLD (packed decimal (BCD) load) converts the content of the source operand from packed decimal 
to temporary real and loads (pushes) the result onto the stack. The sign of the source is preserved, 
including the case where the value is negative zero. FBLD is an exact operation; the source is loaded 
with no rounding error. 

The packed decimal digits of the source are assumed to be in the range 0-9H. The instruction does not 
check for invalid digits (A-FH) and the result of attempting to load an invalid encoding is undefined. 

FBSTP destination 

FBSTP (packed decimal (BCD) store and pop) converts the content of the stack top to a packed 
decimal integer, stores the result at the destination in memory, and pops the stack. FBSTP produces a 
rounded integer from a nonintegral value by adding 0.5 to the value and then chopping. Users who are 
concerned about rounding may precede FBSTP with FRNDINT. 

Arithmetic Instructions 

The 80287's arithmetic instruction set (table 2-2) provides a wealth of variations on the basic add, 
subtract, multiply, and divide operations, and a number of other useful functions. These range from a 
simple absolute value to a square root instruction that executes faster than ordinary division; 80287 
programmers no longer need to spend valuable time eliminating square roots from algorithms because 
they run too slowly. Other arithmetic instructions perform exact modulo division, round real numbers 
to integers, and scale values by powers of two. 

The 80287's basic arithmetic instructions (addition, subtraction, multiplication, and division) are 
designed to encourage the development of very efficient algorithms. In particular, they allow the 
programmer to minimize memory references and to make optimum use of the NPX register stack. 

Table 2-3 summarizes the available operation/operand forms that are provided for basic arithmetic. In 
addition to the four normal operations, two "reversed" instructions make subtraction and division 
"symmetrical" like addition and multiplication. The variety of instruction and operand forms give the 
programmer unusual flexibility: 

• Operands may be located in registers or memory. 

• Results may be deposited in a choice of registers. 

• Operands may be a variety of NPX data types: temporary real, long real, short real, short integer 
or word integer, with automatic conversion to temporary real performed by the 80287. 
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Table 2-2. Arithmetic Instructions 

Addition 

FADD Add real 
FADDP Add real and pop 
FIADD Integer add 

Subtraction 

FSUB Subtract real 
FSUBP Subtract real and pop 
FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and pop 
FISUBR Integer subtract reversed 

Multiplication 

FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

Division 

FDIV Divide real 
FDIVP Divide real and pop 
FIDIV Integer divide 
FDIVR Divide real reversed 
FDIVRP Divide real reversed and pop 
FIDIVR Integer divide reversed 

Other Operations 

FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 
FRNDINT Round to integer 
FXTRACT Extract exponent and significand 
FABS Absolute value 
FCHS Change sign 

Five basic instruction forms may be used across all six operations, as shown in table 2-3. The classicial 
stack form may be used to make the 80287 operate like a classical stack machine. No operands are 
coded in this form, only the instruction mnemonic. The NPX picks the source operand from the stack 
top and the destination from the next stack element. It then pops the stack, performs the operation, 
and returns the result to the new stack top, effectively replacing the operands by the result. 

The register form is a generalization of the classical stack form; the programmer specifies the stack 
top as one operand and any register on the stack as the other operand. Coding the stack top as the 
destination provides a convenient way to access a constant, held elsewhere in the stack, from the stack 
top. The converse coding (ST is the source operand) allows, for example, adding the top into a register 
used as an accumulator. 
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Table 2-3. Basic Arithmetic Instructions and Operands 

Instruction Form Mnemonic Operand Forms ASM286 Example Form destination, source 

Classical stack Fop { ST(1),ST} FADD 

Register Fop ST(i),ST or ST,ST(i) FSUB ST,ST(3) 

Register pop FopP ST(i),ST FMULP ST(2),ST 

Real memory Fop { ST,} short-real/long-real . FDIV AZIMUTH 

Integer memory Flop {ST,} word-integer/short-integer FIDIV N_PULSES 

NOTES: 

Braces ({ }) surround implicit operands; these are not coded, and are shown here for information only. 

op = ADD destination +- destination + source 
SUB destination +- destination - source 
SUBR destination +- source - destination 
MUL destination +- destination· source 
DIV destination +- destination -:- source 
DIVR destination +- source -:- destination 

Often the operand in the stack top is needed for one operation but then is of no further use in the 
computation. The register pop form can be used to pick up the stack top as the source operand, and 
then discard it by popping the stack. Coding operands of ST(l),ST with a register pop mnemonic is 
equivalent to a classical stack operation: the top is popped and the result is left at the new top. 

The two memory forms increase the flexibility of the 80287's arithmetic instructions. They permit a 
real number or a binary integer in memory to be used directly as a source operand. This is a very useful 
facility in situations where operands are not used frequently enough to justify holding them in registers. 
Note that any memory addressing mode may be used to define these operands, so they may be elements 
in arrays, structures, or other data organizations, as well as simple scalars. 

The six basic operations are discussed further in the next paragraphs, and descriptions of the remaining 
seven arithmetic operations follow. 

ADDITION 
FADD 
FADDP 
FIADD 

Iisourceidestination,source 
Iidestinatlonisource 
source 

The addition instructions (add real, add real and pop, integer add) add the source and destination 
operands and return the sum to the destination. The operand at the stack top may be doubled by 
coding: 

FADD ST,SHO) 

NORMAL SUBTRACTION 
FSUB Iisourceidestination,soufce 
FSUBP Iidestinationisource 
FISUB source 
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The normal subtraction instructions (subtract real, subtract real and pop, integer subtract) subtract 
the source operand from the destination and return the difference to the destination. 

REVERSED SUBTRACTION 
FSUBR / /source/destination, source 
FSUBRP / /destination/source 
FISUBR source 

The reversed subtraction instructions (subtract real reversed, subtract real reversed and pop, integer 
subtract reversed) subtract the destination from the source and return the difference to the destination. 

MULTIPLICATION 
FMUL / /source/destination,source 
FMULP destination, source 
FIMUL source 

The multiplication instructions (multiply real, multiply real and pop, integer multiply) multiply the 
source and destination operands and return the product to the destination. Coding FMUL ST,ST(O) 
squares the content of the stack top. 

NORMAL DIVISION 
FDIV / /sourceldestination, source 
FDIVP destination, source 
FIDIV source 

The normal division instructions (divide real, divide real and pop, integer divide) divide the destination 
by the source and return the quotient to the destination. 

REVERSED DIVISION 
FDIVR / /source/destination,source 
FDIVRP destination, source 
FIDIVR source 

The reversed division instructions (divide real reversed, divide real reversed and pop, integer divide 
reversed) divide the source operand by the destination and return the quotient to the destination. 

FSQRT 

FSQRT (square root) replaces the content of the top stack element with its square root. (Note: The 
square root of -0 is defined to be -0.) 

FSCALE 

FSCALE (scale) interprets the value contained in ST(1) as an integer and adds this value to the exponent 
of the number in ST. This is equivalent to 

ST +- ST. 2ST(1) 

Thus, FSCALE provides rapid multiplication or division by integral powers of 2. It is particularly 
useful for scaling the elements of a vector. 
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Note'that FSCALE assumes the scale factor in ST(I) is an integral value in the range -2lS:::5X<21S• 

If the value is not integral, but is in-range and is greater in magnitude than 1, FSCALE uses the 
nearest integer smaller in magnitude; i.e., it chops the value toward O. If the value is out of range, or 0 
< I X I < 1, the instruction will produce an undefined result and will not signal an exception. The 
recommended practice is to load the scale factor from a word integer to ensure correct operation. 

FPREM 

FPREM (partial remainder) performs modulo division of the top stack element by the next stack 
element, i.e., ST(I) is the modulus. FPREM produces an exact result; the precision exception does not 
occur. The sign of the remainder is the same as the sign of the original dividend. 

FPREM operates by performing successive scaled subtractions; obtaining the exact remainder when 
the operands differ greatly in magnitude can consume large amounts of execution time. Because the 
80287 can only be preempted between instructions, the remainder function could seriously increase 
interrupt latency in these cases. Accordingly, the instruction is designed to be executed iteratively in a 
software-controlled loop. 

FPREM can reduce a magnitude difference of up to 264 in one execution. If FPREM produces a 
remainder that is less than the modulus, the function is complete and bit C2 of the status word condi­
tion code is cleared. If the function is incomplete, C2 is set to 1; the result in ST is then called the 
partial remainder. Software can inspect C2 by storing the status word following execution of FPREM 
and re-execute the instruction (using the partial remainder in ST as the dividend), until C2 is cleared. 
Alternatively, a program can determine when the function is complete by comparing ST to ST{l). If 
ST> ST( 1), then FPREM must be executed again; if ST = ST( 1), then the remainder is 0; if ST <ST( 1), 
then the remainder is ST. A higher priority interrupting routine that needs the 80287 can force a 
context switch between the instructions in the remainder loop. 

An important use for FPREM is to reduce arguments (operands) of periodic transcendental functions 
to the range permitted by these instructions. For example, the FPTAN (tangent) instruction requires 
its argument to be less than 7r/4. Using 7r/4 as a modulus, FPREM will reduce an argument so that it 
is in range of FPTAN. Because FPREM produces an exact result, the argument reduction does not 
introduce roundoff error into the calculation, even if several iterations are required to bring the argument 
into range. (The rounding of 7r does not create the effect of a rounded argument, but of a rounded 
period.) 

FPREM also provides the least-significant three bits of the quotient generated by FPREM (in C3, Ch 

Co). This is also important for transcendental argument reduction, because it locates the original angle 
in the correct one of eight 7r /4 segments of the unit circle (see table 2-4). If the quotient is less than 4, 
then CO will be the value of C3 before FPREM was executed. If the quotient is less than 2, then C3 
will be the value of Cl before FPREM was executed. 

FRNDINT 

FRNDINT (round to integer) rounds the top stack element to an integer. For example, assume that 
ST contains the 80287 real number encoding of the decimal value 155.625. FRNDINT will change 
the value to 155 if the RC field.of the control word is set to down or chop, or to 156 if it is set to up 
or nearest. 
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Table 2-4. Condition Code Interpretation after FPREM 

Condition Code 
Interpretation after FPREM 

C3 C2 C1 CO 

X 1 X X Incomplete Reduction; 
further iteration is required for complete 
reduction. 

Complete Reduction; 
C1, C3, and CO contain the three least-
significant bits of quotient: 

0 0 0 0 (Quotient) MOD 8 = 0 

0 0 0 1 (Quotient) MOD 8 = 4 

0 0 1 0 (Quotient) MOD 8 = 1 

0 0 1 1 (Quotient) MOD 8 = 5 

1 0 0 0 (Quotient) MOD 8 = 2 

1 0 0 1 (Quotient) MOD 8 = 6 

1 0 1 0 (Quotient) MOD 8 = 3 

1 0 1 1 (Quotient) MOD 8 = 7 

FXTRACT 

FXTRACT (extract exponent and significand) "decomposes" the number in the stack top into two 
numbers that represent the actual value of the operand's exponent and significand fields. The "exponent" 
replaces the original operand on the stack and the "significand" is pushed onto the stack. Following 
execution of FXTRACT, ST (the new stack top) contains the value of the original significand expressed 
as a real number: its sign is the same as the operand's, its exponent is 0 true (16,383 or 3FFFH biased), 
and its significant is identical to the original operand's. ST(I) contains the value of the original operand's 
true (unbiased) exponent expressed as a real number. If the original operand is zero, FXTRACT 
produces zeros in ST and ST(1) and both are signed as the original operand. 

To clarify the operation of FXTRACT, assume ST contains a number of whose true exponent is +4 
(i.e., its exponent field contains 4003H). After executing FXTRACT, ST(l) will contain the real number 
+4.0; its sign will be positive, its exponent field will contain 4001H (+ 2 true) and its significand field 
will contain I~OO ... OOB. In other words, the value in ST(1) will be 1.0 X 22 = 4. If ST contains an 
operand whose true exponent is -7 (i.e., its exponent field contains 3FF8H), then FXTRACT will 
return an "exponent" of -7.0; after the instruction executes, ST(1)'s sign and exponent fields will 
contain COOIH (negative sign, true exponent of 2), and its significand will be 1~1100 ... 00B. In other 
words, the value in ST(1) will be -1.11 X 22 = -7.0. In both cases, following FXTRACT, ST's sign 
and significand fields will be the same as the original operand's, and its exponent field will contain 
3FFFH (0 true). 

FXTRACT is useful in conjunction with FBSTP for converting numbers in 80287 temporary real format 
to decimal representations (e.g., for printing or displaying). It can also be useful for debugging, because 
it allows the exponent and significant parts of a real number to be examined separately. 
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FABS 

FABS (absolute value) changes the top stack element to its absolute value by making its sign positive. 

FCHS 

FCHS (change sign) complements (reverses) the sign of the top stack element. 

Comparison Instructions 

Each of these instructions (table 2-5) analyzes the top stack element, often in relationship to another 
operand, and reports the result in the status word condition code. The basic operations are compare, 
test (compare with zero), and examine (report tag, sign, and normalization). Special forms of the compare 
operation are provided to optimize algorithms by allowing direct comparisons with binary integers and 
real numbers in memory, as well as popping the stack after a comparison. 

The FSTSW (store status word) instruction may be used following a comparison to transfer the condi­
tion code to memory for inspection. 

Note that instructions other than those in the comparison group may update the condition code. To 
ensure that the status word is not altered inadvertently, store it immediately following a comparison 
operation. 

FCOM Iisource 

FCOM (compare real) compares the stack top to the source operand. The source operand may be a 
register on the stack, or a short or long real memory operand. If an operand is not coded, ST is compared 
to ST(1). Positive and negative forms of zero compare identically as if they were unsigned. Following 
the instruction, the condition codes reflect the order of the operands as shown in table 2-6. 

C3 

0 
0 
1 
1 

Table 2·5. Comparison Instructions 

FCOM 
FCOMP 
FCOMPP 
FICOM 
FICOMP 
FTST 
FXAM 

Compare real 
Compare real and pop 
Compare real and pop twice 
Integer compare 
Integer compare and pop 
Test 
Examine 

Table 2·6. Condition Code Interpretation after FCOM 

Condition Code 
Interpretation after FCOM 

C2 C1 CO 

0 X 0 ST> source 
0 X 1 ST < source 
0 X 0 ST = source 
1 X 1 ST is not comparable 
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NaNs and CX) (projective) cannot be compared and return C3=CO=1 as shown in the table. 

FCOMP / /source 

FCOMP (compare real and pop) operates like FCOM, and in addition pops the stack. 

FCOMPP 

FCOMPP (compare real and pop twice) operates like FCOM and additionally pops the stack twice, 
discarding both operands. The comparison is of the stack top to ST(l); no operands may be explicitly 
coded. 

FICOM source 

FICOM (integer compare) converts the source operand, which may reference a word or short binary 
integer variable, to temporary real and compares the stack top to it. 

FICOMP source 

FICOMP (integer compare and pop) operates identically to FICOM and additionally discards the 
value in ST by popping the stack. 

FTST 

FTST (test) tests the top stack element by comparing it to zero. The result lis posted to the condition 
codes as shown in table 2-7. 

FXAM 

FXAM (examine) reports the content of the top stack element as positive/negative and NaN/unnor­
mal/denormal/normal/zero, or empty. Table 2-8 lists and interprets all the condition code values that 
FXAM generates. Although four different encodings may be returned for an empty register, bits C3 
and CO of the condition code are both I in all encodings. Bits C2 and CI should be ignored when 
examining for empty. 

Table 2-7. Condition Code Interpretation after FTST 

Condition Code 
Interpretation after FTST 

C3 C2 C1 CO 

0 0 X 0 ST> 0 
0 0 X 1 ST < 0 
1 0 X 0 ST = 0 
1 1 X 1 ST is not comparable; (I.e., it is a NaN or projective infinity) 
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Table 2-8. FXAM Condition Code Settings 

Condition Code 
Interpretation 

C3 C2 C1 CO 

0 0 0 0 + Unnormal 
0 0 0 1 + NaN 
0 0 1 0 - Unnormal 
0 0 1 1 - NaN 
0 1 0 0 + Normal 
0 1 0 1 +00 
0 1 1 0 - Normal 
0 1 1 1 - 00 
1 0 0 0 +0 
1 0 0 1 Empty 
1 0 1 0 -0 
1 0 1 1 Empty 
1 1 0 0 + Denormal 
1 1 0 1 Empty 
1 1 1 0 - Denormal 
1 1 1 1 Empty 

Transcendental Instructions 

The instructions in this group (table 2-9) perform the time-consuming core calculations for all common 
trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, logarithmic, and exponential 
functions. Prologue and epilogue software may be used to reduce arguments to the range accepted by 
the instructions and to adjust the result to correspond to the original arguments if necessary. The 
transcendentals operate on the top one or two stack elements, and they return their results to the stack, 
also. 

NOTE 

The transcendental instructions assume that their operands are valid and in-range. The 
instruction descriptions in this section provide the allowed operand range of each instruction. 

All operands to a transcendental must be normalized; denormals, unnormals, infinities, and NaNs are 
considered invalid. (Zero operands are accepted by some functions and are considered out-of-range by 
others). If a transcendental operand is invalid or out-of-range, the instruction will produce an undefined 
result without signalling an exception. It is the programmer's responsibility to ensure that operands are 
valid and in-range before executing a transcendental. For periodic functions, FPREM may be used to 
bring a valid operand into range. 

FPTAN 
o :s ST(O) :s 11"/4 

FPTAN (partial tangent) computes the function Y IX = TAN (0). 0 is taken from the top stack 
element; it must lie in the range 0 :s 0 :s 11"/4. The result of the operation is a ratio; Y replaces 0 in 
the stack and X is pushed, becoming the new stack top. 
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Table 2-9. Transcendental Instructions 

Partial tangent 
Partial arctangent 
2x-1 
Y.log2X 
Y .log2(X + 1) 

The ratio result of FPTAN and the ratio argument of FPATAN are designed to optimize the calcula­
tion of the other trigonometric functions, including SIN, COS, ARCSIN, and ARCCOS. These can 
be derived from TAN and ARCTAN via standard trigonometric identities. 

FPATAN 
0:5 ST(1) < ST(O) < 00 

FPATAN (partial arctangent) computes the function e = ARCTAN (Y IX). X is taken from the top 
stack element and Y from ST(l). Y and X must observe the inequality 0 :5 Y < X < 00. The 
instruction pops the stack and returns e to the (new) stack top, overwriting the Y operand. 

F2XM1 
o :5 ST(O) :5 0.5 

F2XMl (2 to the X minus 1) calculates the function Y = 2X -1. X is taken from the stack top and 
must be in the range 0 :5 X :5 0.5. The result Y replaces X at the stack top. 

This instruction is designed to produce a very accurate result even when X is close to O. To obtain 
Y=2x, add 1 to the result delivered by F2XM1. 

The following formulas show how values other than 2 may be raised to a power of X: 

10' = 2xoLOG210 

e' = 2,·LOG •• 

Y' = 2 xoLOG•y 

As shown in the next section, the 80287 has built-in instructions for loading the constants LOG2 1O and 
LOG2e, and the FYL2X instruction may be used to calculate X.LOG2Y. 

FYL2X 
0< ST(O) < 00-00 < ST(1) < 00 

FYL2X (Y log base 2 of X) calculates the function Z = Y.LOG2X. X is taken from the stack top and 
Y from ST(l). The operands must be in the ranges 0 < X < 00 and - 00 < Y < + 00. The 
instruction pops the stack and returns Z at the (new) stack top, replacing the Y operand. 

This function optimizes the calculations of log to any base other than two, because a multiplication is 
always required: 
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FYL2XP1 
0:::; I ST(O) 1< (1-(yi212» 
- 00 < ST(1) < 00 

) 

FYL2XPI (Y log base 2 of (X + 1» calculates the function Z = Y-LOG2 (X + 1). X is taken from 
the stack top and must be in the range 0 :::; I X I < (1-( yi2/2». Y is taken from ST(1) and must 
be in the range - 00 < Y < 00. FYL2XPI pops the stack and returns Z at the (new) stack top, 
replacing Y. . 

The instruction provides improved accuracy over FYL2X when computing the log of a number very 
close to 1, for example 1 + E where E < < 1. Providing E rather than 1 + E as the input to the function 
allows more significant digits to be retained. 

Constant Instructions 

Each of these instructions (table 2-10) loads (pUshes) a commonly-used constant onto the stack. The 
values have full temporary real precision (64 bits) and are accurate to approximately 19 decimal digits. 
Because a temporary real constant occupies 10 memory bytes, the constant instructions, which are only 
two bytes long, save storage and improve execution speed, in addition to simplifying programming. 

FLOZ 

FLDZ (load zero) loads (pushes) +0.0 onto the stack. 

FL01 

FLDl (load one) loads (pushes) + 1.0 onto the stack. 

FLOPI 

FLDPI (load 71") loads (pushes) 71" onto the stack. 

FLOL2T 

FLDL2T (load log base 2 of 10) loads (pushes) the value LOG2 1O onto the stack. 
( 

FLOL2E 

FLDL2E (load log base 2 of e) loads (pushes) the value LOG2e onto the stack. 

FLOZ 
FL01 
FLOPI 
FLOL2T 
FLOL2E 
FLOLG2 
FLOLN2 

Table 2-10. Constant Instructions 
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Load + 0.0 
Load + 1.0 
Load 7r 

Load 109210 
Load 10928 
Load 109,02 
Load 109.2 
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FLDLG2 

FLDLG2 (load log base 10 of 2) loads (pushes) the value LOG!02 onto the stack. 

FLDLN2 

FLDLN2 (load log base e of 2) loads (pushes) the value LOGe2 onto the stack. 

Processor Control Instructions 

The processor control instructions shown in table 2-11 are not typically used in calculations; they provide 
control over the 80287 NPX for system-level activities. These activities include initialization, exception 
handling, and task switching. 

As shown in table 2-11, many of the NPX processor control instructions have two forms of assembler 
mnemonic: 

• A wait form, where the mnemonic is prefixed only with an F, such as FSTSW. This form checks 
for unmasked numeric errors. 

• A no-wait form, where the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores 
unmasked numeric errors. 

When the control instruction is coded using the no-wait form of the mnemonic, the ASM286 assembler 
does not precede the ESC instruction with a wait instruction, and the CPU does not test the ERROR 
status line from the NPX before executing the processor control instruction. 

Only the processor control class of instructions have this alternate no-wait form. All numeric instruc­
tions are automatically synchronized by the 80286, with the CPU testing the BUSY status line and 
only executing the numeric instruction when this line is inactive. Because of this automatic synchroni­
zation by the 80286, numeric instructions for the 80287 need not be preceded by a CPU wait instruc­
tion in order to execute correctly. 

Table 2-11. Processor Control Instructions 

FINIT/FNINIT 
FSETPM 
FLDCW 
FSTCW/FNSTCW 
FSTSW/FNSTSW 
FSTSW AX/FNSTSW AX 
FCLEX/FNCLEX 
FSTENV /FNSTENV 
FLDENV 
FSAVE/FNSAVE 
FRSTOR 
FINCSTP 
FDECSTP 
FFREE 
FNOP 
FWAIT 
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Initialize processor 
Set Protected Mode 
Load control word 
Store control word 
Store status word 
Store status word to AX 
Clear exceptions 
Store Environment 
Load environment 
Save state 
Restore state 
Increment stack pointer 
Decrement stack pOinter 
Free register 
No operation 
CPU Wait 
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It should also be noted that the 8087 instructions FENI and FDISI perform no function in the 80287, 
If these opcodes are detected in an 80286/80287 instruction stream, the 80287 will perform no specific 
operation and no internal states will be affected, For programmers interested in porting numeric software 
from 8087 environments to the 80286, however, it should be noted that program sections containing 
these exception-handling instructions are not likely to be completely portable to the 80287, Appendix 
B contains a more complete description of the differences between the 80287 and the 8087 NPX. 

FINIT IFNINIT 

FIN IT /FNINIT (initialize processor) sets the 80287 NPX into a known state, unaffected by any 
previous activity. The no-wait form of this instruction will cause the 80287 to abort any previous numeric 
operations currently executing in the NEU. This instruction performs the functional equivalent of a 
hardware RESET, with one exception; FIN IT /FNINIT does not affect the current 80287 operating 
mode (either Real-Address mode or Protected mode). FINIT checks for unmasked numeric exceptions, 
FNINIT does not. 

Note that if FNINIT is executed while a previous 80287 memory-referencing instruction is running, 
80287 bus cycles in progress will be aborted. This instruction may be necessary to clear the 80287 if a 
Processor Extension Segment Overrun Exception (Interrupt 9) is detected by the CPU. 

FSETPM 

FSETPM (set Protected mode) sets the operating mode of the 80287 to Protected Virtual-Address 
mode. When the 80287 is first initialized following hardware RESET, it operates in Real-Address 
mode, just as does the 80286 CPU. Once the 80287 NPX has been set into Protected mode, only a 
hardware RESET can return the NPX to operation in Real-Address mode. 

When the 80287 operates in Protected mode, the NPXexception pointers are represented differently 
than they are in Real-Address mode (see the FSA VE and FSTENV instructions that follow). This 
distinction is evident primarily to writers of numeric exception handlers, however. For general appli­
cation programmers, the operating mode of the 80287 need not be a concern. 

FLDCW source 

FLDCW (load control word) replaces the current processor control word with the word defined by the 
source operand. This instruction is typically used to establish or change the 80287's mode of operation. 
Note that if an exception bit in the status word is set, loading a new control word that unmasks that 
exception and clears the interrupt enable mask will generate an immediate interrupt request before the 
next instruction is executed. When changing modes, the recommended procedure is to first clear any 
exceptions and then load the new control word. 

FSTCW IFNSTCW destination 

FSTCW /FNSTCW (store control word) writes the current processor control word to the memory 
location defined by the destination. FSTCW checks for unmasked numeric exceptions, FNSTCW 
does not. 
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FSTSW I FNSTSW destination 

FSTSW /FNSTCW (store status word) writes the current value of the 80287 status word to the desti­
nation operand in memory. The instruction is used to 

• Implement conditional branching following a comparison or FPREM instruction (FSTSW) 

• Poll the 80287 to determine if it is busy (FNSTSW) 

• Invoke exception handlers in environments that do not use interrupts (FSTSW). 

FSTSW checks for unmasked numeric exceptions, FNSTSW does not. 

FSTSW AX/FNSTSW AX 

FSTSW AX/FNSTSW AX (store status word to AX) is a special 80287 instruction that writes the 
current value of the 80287 status word directly into the 80286 AX register. This instruction optimizes 
conditional branching in numeric programs, where the 80286 CPU must test the condition of various 
NPX status bits. The waited form checks for unmasked numeric exceptions, the non-waited for 
does not. 

When this instruction is executed, the 80286 AX register is updated with the NPX status word before 
the CPU executes any further instructions. In this way, the 80286 can immediately test the NPX status 
word without any WAIT or other synchronization instructions required. 

FCLEX/FNCLEX 

FCLEX/FNCLEX (clear exceptions) clears all exception flags, the error status flag and the busy flag 
in the status word. As a consequence, the 80287's ERROR line goes inactive. FCLEX checks for 
unmasked numeric exceptions, FNCLEX does not. 

FSAVE/FNSAVE destination 

FSAVE/FNSAVE (save state) writes the full 80287 state-environment plus register stack-to the 
memory location defined by the destination operand. Figure 2-1 shows the layout of the 94-byte save 
area; typically the instruction will be coded to save this image on the CPU stack. FNSA VE delays its 
execution until all NPX activity completes normally. Thus, the save image reflects the state of the 
NPX following the completion of any running instruction. After writing the state image to memory, 
FSA VE/FNSAVE initializes the 80287 as if FINIT /FNINIT had been executed. 

FSAVE/FNSAVE is useful whenever a program wants to save the current state of the NPX and 
initialize it for a new routine. Three examples are 

• An operating system needs to perform a context switch (suspend the task that had been running 
and give control to a new task). 

• An exception handler needs to use the 80287. 

• An application task wants to pass a "clean" 80287 to a subroutine. 

FSA VE checks for unmasked numeric errors before executing, FNSA VE does not. An FW AIT should 
be executed before CPU interrupts are enabled or any subsequent 80287 instruction is executed. Other 
CPU instructions may be executed between the FNSA VE/FSA VE and the FWAIT. 
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FRSTOR source 

FRSTOR (restore state) reloads the 80287 from the 94-byte memory area defined by the source operand. 
This information should have been written by a previous FSAVE/FNSAVE instruction and not altered 
by any other instruction. An FW AIT is not required after FRSTOR. FRSTOR will automatically wait 
and check for interrupts until all data transfers are completed before continuing to the next instruction. 

Note that the 80287 "reacts" to its new state at the conclusion of the FRSTOR; it will, for example, 
generate an exception request if the exception and mask bits in the memory image so indicate when 
the next WAIT or error-checking-ESC instruction is executed. 

FSTENV IFNSTENV destination 

FSTENV /FNSTENV (store environment) writes the 80287's basic status-control, status, and tag 
words, and exception pointers-to the memory location defined by the destination operand. Typically, 
the environment is saved on the CPU stack. FSTENV /FNSTENV is often used by exception handlers 
because it provides access to the exception pointers that identify the offending instruction and operand. 
After saving the environment, FSTENV /FNSTENV sets all exception masks in the processor. FSTENV 
checks for pending errors before executing, FNSTENV does not. 

Figure 2-2 shows the format of the environment data in memory. FNSTENV does not store the 
environment until all NPX activity has completed. Thus, the data saved by the instruction reflects the 
80287 after any previously decoded instruction has been executed. After writing the environment image 
to memory, FNSTENV /FSTENV initializes the 80287 state as if FNINIT /FINIT had been executed. 
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FSTENV /FNSTENV must be allowed to complete before any other 80287 instruction is decoded. 
When FSTENV is coded, an explicit FWAIT, or assembler-generated WAIT, should precede any 
subsequent 80287 instruction. 

FLDENV source 

FLDENV (load environment) reloads the environment from the memory area defined by the source 
operand. This data should have been written by a previous FSTENV /FNSTENV instruction. CPU 
instructions (that do not reference the environment image) may immediately follow FLDENV. An 
FW AIT is not required after FLDENV. FLDENV will automatically wait for all data transfers to 
complete before executing the next instruction. 

Note that loading an environment image that contains an unmasked exception will cause a numeric 
exception when the next WAIT or error-checking-ESC instruction is executed. 

FINCSTP 

FINCSTP (increment stack pointer) adds 1 to the stack top pointer (ST) in the status word. It does 
not alter tags or register contents, nor does it transfer data. It is not equivalent to popping the stack, 
because it does not set the tag of the previous stack top to empty. Incrementing the stack pointer when 
ST=7 produces ST=O. 

FDECSTP 

FDECSTP (decrement stack pointer) subtracts 1 from ST, the stack top pointer in the status word. 
No tags or registers are altered, nor is any data transferred. Executing FDECSTP when ST=O produces 
ST=7. 

FFREE destination 

FFREE (free register) changes the destination register's tag to empty; the content of the register is 
unaffected. 

FNOP 

FNOP (no operation) stores the stack top to the stack top (FST ST,ST(O)) and thus effectively performs 
no operation. 

FWAIT (CPU INSTRUCTION) 

FW AIT is not actually an 80287 instruction, but an alternate mnemonic for the CPU WAIT instruc­
tion. The FW AIT or WAIT mnemonic should be coded whenever the programmer wants to synchro­
nize the CPU to the NPX, that is, to suspend further instruction decoding until the NPX has completed 
the current instruction. FW AIT will check for unmasked numeric exceptions. 
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NOTE 

A CPU instruction should not attempt to access a memory operand until the 80287 instruc­
tion has completed. For example, the following coding shows how FW AIT can be used to 
force the CPU instruction to wait for the 80287: 

F 1ST 
FWAIT 
MOV 

VALUE 
i Walt for FIST to complete 
AX,VALUE 

More information on when to code an FW AIT instruction is given in a following section of this chapter, 
"Concurrent Processing with the 80287." 

Instruction Set Reference Information 

Table 2-14 later in this chapter lists the operating characteristics of all the 80287 instructions. There 
is one table entry for each instruction mnemonic; the entries are in alphabetical order for quick lookup. 
Each entry provides the general operand forms accepted by the instruction as well as a list of all 
exceptions that may be detected during the operation. 

One entry exists for each combination of operand types that can be coded with the mnemonic. 
Table 2-12 explains the operand identifiers allowed in table 2-14. Following this entry are columns that 
provide execution time in clocks, the number of bus transfers run during the operation, the length of 
the instruction in bytes, and an ASM286 coding sample. 

INSTRUCTION EXECUTION TIME 

The execution of an 80287 instruction involves three principal activities, each of which may contribute 
to the overall execution time of the instruction: 

• 80286 CPU overhead involved in handling the ESC instruction opcode and setting up the 80287 
NPX 

Table 2-12. Key to Operand Types 

Identifier Explanation 

ST Stack top; the register currently at the top of the stack. 

ST(i) A register in the stack i (0:5i:57) stack elements from the 
top. ST(1) is the next-on-stack register, ST(2) is below 
ST(1), etc. 

Short-real A short real (32 bits) number in memory. 

Long-real A long real (64 bits) number in memory. 

Temp-real A temporary real (80 bits) number in memory. 

Packed-decimal A packed decimal integer (18 digits, 10 bytes) in memory. 

Word-integer A word binary integer (16 bits) in memory. 

Short-integer A short binary integer (32 bits) in memory. 

Long-integer A long binary integer (64 bits) in memory. 

nn-bytes A memory area nn bytes long. 
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• Instruction execution by the 80287 NPX 

• Operand transfers between the 80287 NPX and memory or a CPU register 

The timing of these various activities is affected by the individual clock frequencies of the 80286 CPU 
and the 80287 NPX. In addition, slow memories requiring the insertion of wait states in bus cycles, 
and bus contention due to other processors in the system, may lengthen operand transfer times. 

In calculating an overall execution time for an individual numeric instruction, analysts must take each 
of these activities into account. In most cases, it can be assumed that the numeric instructions have 
already been prefetched by the 80286 and are awaiting execution. 

• The CPU overhead in handling the ESC instruction opcode takes only a single CPU bus cycle 
before the 80287 begins its execution of the numeric instruction. The timing of this bus cycle is 
determined by the CPU clock. Additional CPU activity is required to set up the 80287's instruction 
and data pointer registers, but this activity occurs after the 80287 has begun executing its instruc­
tion, and so this parallel activity does not affect total execution time. 

• The duration of individual numeric instructions executing on the 80287 varies for each instruction. 
Table 2-14 quotes a typical execution clock count and a range for each 80287 instruction. Dividing 
the figures in the table by 10 (for a 10-MHz 80287 NPX clock) produces an execution time in 
microseconds. The typical case is an estimate for operand values that normally characterize most 
applications. The range encompasses best- and worst-case operand values that may be found in 
extreme circumstances. 

• The operand transfer time required to transfer operands between the 80287 and memory or a CPU 
register depends on the number of words to be transferred, the frequency of the CPU clock control­
ling bus timing, the number of wait states added to accommodate slower memories, and whether 
operands are based at even or odd memory addresses. Some (small) additional number of bus cycles 
may also be lost due to the asynchronous nature of the PEREQ/PEACK handshaking between the 
80286 and 80287, and this interaction varies with relative frequencies of the CPU and NPX clocks. 

The execution clock counts for the NPX execution of instructions shown in table 2-14 assume that no 
exceptions are detected during execution. Invalid operation, denormalized operand (unmasked), and 
zero divide exceptions usually decrease execution time from the typical figure, but execution still falls 
within the indicated range. The precision exception has no effect on execution time. Unmasked overflow 
and underflow, and masked denormalized exceptions impose additional execution penalties as shown 
in table 2-13. Absolute worst-case execution times are therefore the high range figure plus the largest 
penalty that may be encountered. 

BUS TRANSFERS 

NPX instructions that reference memory require bus cycles to transfer operands between the NPX and 
memory. The actual number of transfers depends on the length of the operand and the alignment of 

Table 2-13_ Execution Penalties 

Exception Additional Clocks 

Overflow (unmasked) 14 

Underflow (unmasked) 16 

Denormalized (masked) 33 
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the operand in memory. In table 2-14, the first figure gives execution clocks for even-addressed operands, 
while the second gives the clock count for odd-addressed operands. 

For operands aligned at word boundaries, that is, based at even memory addresses, each word to be 
transferred requires one bus cycle between the 80286 data channel and memory, and one bus cycle to 
the NPX. For operands based at odd memory addresses, each word transfer requires two bus cycles to 
transfer individual bytes between the 80286 data channel and memory, and one bus cycle to the NPX. 

NOTE 

For best performance, operands for the 80287 should be aligned along word boundaries; that 
is, based at even memory addresses. Operands based at odd memory addresses are transferred 
to memory essentially· byte-at-a-time and may take half again as long to transfer as word­
aligned operands. 

Additional transfer time is required if slow memories are being used, requiring the insertion of wait 
states into the CPU bus cycle. In multiprocessor environments, the bus may not be available immedi­
ately; this overhead can also increase effective transfer time. 

INSTRUCTION LENGTH 

80287 instructions that do not reference memory are two bytes long. Memory reference instructions 
vary between two and four bytes. The third and fourth bytes are for the 8- or 16-bit displacement 
values used in conjunction with the standard 80286 memory-addressing modes. 

Note that the lengths quoted in table 2-14 for the processor control instructions (FNINIT, FNSTCW, 
FNSTSW, FNSTSW AX, FNCLEX, FNSTENV, and FNSA VE) do not include the one-byte CPU 
wait instruction inserted by the ASM286 assembler if the control instruction is coded using the wait 
form of the mnemonic (e.g. FINIT, FSTCW, FSTSW, FSTSW AX, FCLEX, FSTENV, and FSAVE). 
wait and no-wait forms of the processor control instructions have been described in the preceding section 
titled "Processor Control Instructions." 
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Table 2-14. Instruction Set Reference Data 

FABS FABS (no 0PElrands) Exceptions: I Absolute value 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 14 10-17 0 2 FABS 

FADD FADD //source/destination,source Exceptions: I, D, 0, U, P Add real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

liST ,ST(i)/ST(i),ST 85 70-100 0 2 FADD ST,ST(4) 
short-real 105 90-120 2 2-4 FADD AIR_TEMP [SI] 
long-real 110 95-125 4 2-4 FADD [BX].MEAN 

FADDP FADDP destination, source 
Exceptions: I, D, 0, U, P Add real and pop 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

ST(i),ST 90 75-105 0 2 FADDP ST(2),ST 

FBLD FBLD source 
Exceptions: I Packed decimal (BCD) load 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

packed-decimal 300 290-310 5 2-4 FBLD YTD_SALES 

FBSTP FBSTP destination 
Exceptions: I Packed decimal (BCD) store and pop 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

packed-decimal 530 520-540 5 2-4 FBSTP [BX].FORECAST 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FCHS FCHS (no operands) 
Exceptions: I Change sign 

Execution Clocks 

Operands Operand Word Code 
Coding Example 

Typical Range Transfers Bytes 

(no operands) 15 10-17 0 2 FCHS 

FCLEX/FNCLEX FCLEX/FNCLEX(no operands) 
Exceptions: None Clear exceptions 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 5 2-8 0 2 FNCLEX 

FCOM FCOM / /source 
Exceptions: I,D Compare real 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

//ST(i) 45 40-50 0 2 FCOM ST(1) 
short-real 65 60-70 2 2-4 FCOM [BP].UPPER_LlMIT 
long-real 70 65-75 4 2-4 FCOM WAVELENGTH 

FCOMP FCOMP //source 
Exceptions: I, 0 Compare real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

//ST(i) 47 42-52 0 2 FCOMP ST(2) 
short-real 68 63-73 2 2-4 FCOMP [BP + 2].N_READINGS 
long-real 72 67-77 4 2-4 FCOMP DENSITY 

FCOMPP FCOMPP (no operands) 
Exceptions: I, D Compare real and pop twice 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 50 45-55 0 2 FCOMPP 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FDECSTP FDECSTP (no operands) Exceptions: None Decrement stack painter 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 9 6-12 0 2 FDECSTP 

FDIV FDIV //source/destination,source Exceptions: I,D, Z, 0, U, P Divide real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

I/ST(i),ST 198 193-203 0 2 FDIV 
short-real 220 215-225 2 2-4 FDIV DISTANCE 
long-real 225 220-230 4 2-4 FDIV ARC [DI] 

FDIVP FDIVP destination, source 
Exceptions: I, D, Z, 0, U, P Divide real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),ST 202 197-207 0 2 FDIVP ST(4),ST 

FDIVR FDIVR I/source/destination, source 
ExcepUon~ I,D,Z,O,U,P Divide real reversed 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

/ /ST,ST(i)/ST(i),ST 199 194-204 0 2 FDIVR ST(2),ST 
short-real 221 216-226 2 2-4 FDIVR [BX1.PULS~RATE 
long-real 226 221-231 4 2-4 FDIVR RECORDER.FREQUENCY 

FDIVRP FDIVRP destination, source 
Exceptions: I, D, Z, 0, U, P Divide real reversed and pop 

Execution Clocks 

Operands Operand. Word Code Coding Example 
Typical Range Transfers Bytes 

ST(I),ST 203 198-208 0 2 FDIVRP ST(1 ),ST 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FFREE FFREE destination 
Exceptions: None Free register 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i) 11 9-16 0 2 FFREE ST(1) 

FIADD FIADD source 
Exceptions: 1,0,0, P Integer add 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 120 102-137 1 2-4 FIADD DISTANCE-TRAVELLED 
short-integer 125 108-143 2 2-4 FIADD PULSE-COUNT [51] 

FICOM FICOM source 
ExceptIons: I,D Integer compare 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 80 72-86 1 2-4 FICOM TOOL.N_PASSES 
short-integer 85 78-91 2 2-4 FICOM [BP+4].PARM_COUNT 

FICOMP FICOMP source 
Exceptions: I,D Integer compare and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 82 74-88 1 2-4 FICOMP [BP].LIMIT [51] 
short-integer 87 80-93 2 2-4 FICOMP N_SAMPLES 

FIDIV FIDIV source 
Exceptions: I,D, Z, 0, U, P Integer divide 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 230 224-238 1 2-4 FIDIV SURVEY.OBSERVATIONS 
short-integer 236 230-243 2 2-4 FIDIV RELATIVE-ANGLE [01] 
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Table 2-14. Instruction 'Set Reference Data (Cont'd.) 

FIDIVR FIDIVR source 
Exceptions: I, 0, Z, 0, U, P Integer divide reversed 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 230 225-239 1 2-4 FIDIVR [BP],)LCOORD 
short-integer 237 231-245 2 2-4 FIDIVR FREQUENCY 

FILD FILD source 
Exceptions: I Integer load 

Execution Clocks 

Op~rands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 50 46-54 1 2-4 FILD [BX].SEQUENCE 
short-integer 56 52-60 2 2-4 FILD STANDOFF [01] 
long-integer 64 60-68 4 2-4 FILD RESPONSE.COUNT 

FIMUL FIMUL source 
Exceptions: I, D, 0, P Integer multiply 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 130 124-138 1 2-4 FIMUL BEARING 
short-integer 136 130-144 2 2-4 FIMUL POSITION.Z_AXIS 

FINCSTP FINCSTP (no operands) 
Exceptions: None Increment stack pointer 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 9 6-12 0 2 FINCSTP 

FINIT IFNINIT FINIT IFNINIT (no operands) 
Exceptions: None Initialize processor 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 5 2-8 0 2 FINIT 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FIST FIST destination 
Exceptions: I, P Integer store 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 86 80-90 1 2-4 FIST OBS.COUNT[SI) 
short-integer 88 82-92 2 2-4 FIST [BP;).FACTORED_PULSES 

FISTP FISTP destination 
Exceptions: I, P Integer store and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 88 82-92 1 2-4 FISTP [BX).ALPH~COUNT [SI) 
short-integer 90 84-94 2 2-4 FISTP CORRECTED_TIME 
long-integer 100 94-105 4 2-4 FISTP PANEL.N_READINGS 

FISUB FISUB source 
Exceptions: I, D, 0, P Integer subtract 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 120 102-137 1 2-4 FISUB BASE_FREQUENCY 
short-integer 125 108-143 2 2-4 FISUB TRAIN_SIZE [DI) 

FISUBR FISUBR source 
Exceptions: I, D, 0, P Integer subtract reversed 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 120 103-139 1 2-4 FISUBR FLOOR [BX) [SI) 
short-integer 125 109-144 2 2-4 FISUBR BALANCE 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FLD FLO source 
Exceptions: I, D Load real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

STeil 20 17-22 0 2 FLD ST(O) 
short-real 43 38-56 2 2-4 FLD READING [SI].PRESSURE 
long-real 46 40-60 4 2-4 FLD [BP].TEMPERATURE 
temp-real 57 53-65 5 2-4 FLD SAVEREADING 

FLDCW FLOCW source 
Exceptions: None Load control word 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

2-bytes 10 7-14 1 2-4 FLDCW CONTROLWORD 

FLDENV FLOENV source 
Exceptions: None Load environment 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes. 

14-bytes 40 35"45 7 2-4 FLDENV [BP + 6] 

FLDLG2 FLOLG2 (no operands) 
Exceptions: I Load IOg102 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 21 18-24 0 2 FLDLG2 

FLDLN2 FLOLN2 (no operands) 
Exceptions: I Load loge2 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 20 17-23 0 2 FLDLN2 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FLOL2E FLOL2E (no operands) 
Exceptions; I 

Loadl092e 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 18 15-21 0 2 FLOL2E 

FLOL2T FLOL2T (no operands) 
Exceptions; I Load 109210 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 19 16-22 0 2 FLOL2T 

FLOPI FLOPI (no operands) 
Exceptions; I Load 11' 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 19 16-22 0 2 FLOPI 

FLOZ FLOZ (no operands) 
Exceptions: I Load +0.0 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 14 11-17 0 2 FLDZ 

FL01 FL01 (no operands) 
Exceptions: I Load +1.0 

Execution Clocks 

Operands 
Operand Word Code .Codlng Example 

Typical Range Transfers Bytes 

(no operands) 18 15-21 0 2 FL01 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FMUL FMUL //source/destination,source Exceptions: I, D, 0, U, P Multiply real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

/ /ST(i),ST /ST,ST(ij1 97 90-105 0 2 FMUL ST,ST(3) 
//ST(i),ST /ST ,ST(i) 138 130-145 0 2 FMUL ST,ST(3) 
short-real 118 110-125 2 2-4 FMUL SPEED_FACTOR 
long-reaP 120 112-126 4 2-4 FMUL [BP].HEIGHT 
long-real 161 154-168 4 2-4 FMUL [BP].HEIGHT 

FMULP FMULP destination, source 
Exceptions: I, D, 0, U, P Multiply real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),STl 100 94-108 0 2 FMULP ST(1),ST 
ST(i),ST 142 134-148 0 2 FMULP ST(1),ST 

FNOP FNOP (no operands) 
Exceptions: None No operation 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 13 10-16 0 2 FNOP 

FPATAN FPATAN (no operands) 
Exceptions: U, P (operands not checked) Partial arctangent 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 650 250-800 0 2 FPATAN 

FPREM FPREM (no operands) 
Exceptions: I, D, U Partial remainder 

Execution Clocks 
, Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 125 15-190 0 2 FPREM 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FPTAN FPTAN (no operands) 
Exceptions: I, P (operands not checked) Partial tangent 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 450 30-540 0 2 FPTAN 

FRNDINT FRNDINT (no operands) 
Exceptions: I, P Round to integer 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 45 16-50 0 2 FRNDINT 

FRSTOR FRSTOR source 
Exceptions: None Restore saved state 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

94-bytes 2 47 2-4 FRSTOR [SP] 

FSAVE/FNSAVE FSAVE/FNSAVE destination 
Exceptions: None Save state 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

94-bytes 3 47 2-4 FSAVE [SP] 

FSCALE FSCALE (no operands) 
Exceptions: 1,0, U Scale 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 35 32-38 0 2 FSCALE 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FSETPM FSETPM (no operands) 
Exceptions: None Set protected mode 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 2-8 0 2 FSETPM 

FSQRT FSQRT (no operands) 
Exceptions: I, 0, P Square root 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 183 180-186 0 2 FSQRT 

FST FST destination 
Exceptions: 1,0, U, P Store real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(I) 18 15-22 0 2 FST ST(3) 
short-real 87 84-90 2 2-4 FST CORRELATION [01] 
long-real 100 96-104 4 2-4 FST MEAN_READING 

FSTCW/ FSTCW destination 
Exceptions: None FNSTCW Store control word 

Execution Clocks 

Operands Opersnd Word Code Coding Example 
Typical Range Transfers Bytes 

2-bytes 15 12-18 1 2-4 FSTCW SAVE_CONTROL 

FSTENV/ FSTENV destination 
Exceptions: None FNSTENV Store environment 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

14-bytes 45 40-50 7 2-4 FSTENV [BP] 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FSTP FSTP destination 
Exceptions: I, 0, U, P Store real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i) 20 17-24 0 2 FSTP ST(2) 
short-real 89 86-92 2 2-4 FSTP [BXj.ADJUSTED_RPM 
long-real 102 98-106 4 2-4 FSTP TOTALDOSAGE 
temp-real 55 52-58 5 2-4 FSTP REG_SAVE [SI] 

FSTSW/ FSTSW destination 
Exceptions: None FNSTSW Store status word 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

2-bytes 15 12-18 1 2-4 FSTSW SAVE_STATUS 

FSTSW AX/ FSTSWAX 
Exceptions: None FNSTSWAX Store status word to AX 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

AX 10-16 1 2 FSTSW AX 

FSUB FSUB I/source/destination,source Exceptions: I, D, 0, U, P Subtract real 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

/ /ST ,ST(i)/ST(i),ST 85 70-100 0 2 FSUB ST,ST(2) 
short-real 105 90-120 2 2-4 FSUB BASE_VALUE 
long-real 110 95-125 4 2-4 FSUB COORDINATE.X 

FSUBP FSUBP destination, source 
Exceptions: I, D, 0, U, P Subtract real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),ST 90 75-105 0 2 FSUBP ST(2),ST 
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Table 2-14. Instruction Set Reference Data (Cont'd.) 

FSUBR FSUBR /lsource/destination, source 
Exceptions: I, D, 0, U, P Subtract real reversed 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

/ /ST ,ST(i)/ST(i),ST 87 70-100 0 2 FSUBR ST,ST(1) 
short-real 105 90-120 2 2-4 FSUBR VECTOR[SI] 
long-real 110 95-125 4 2-4 FSUBR [BX].INDEX 

FSUBRP FSUBRP destination, source 
Exceptions: I, D, 0, U, P Subtract real reversed and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),ST 90 75-105 0 2 FSUBRP ST(1),ST 

FTST FTST (no operands) 
Exceptions: I, D Test stack top against +0.0 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 42 38-48 0 2 FTST 

FWAIT FWAIT (no operands) 
Exceptions: None (CPU instruction) (CPU) Wait while 80287 is busy 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 3+5n' 3+5n4 0 1 FWAIT 

FXAM FXAM (no operands) 
Exceptions: None Examine stack top 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 17 12-23 0 2 FXAM 
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Table 2·14. Instruction Set Reference Data (Cont'd.) 

FXCH FXCH / /destination 
Exceptions: I Exchange registers 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

//ST(i) 12 10·15 0 2 FXCH ST(2) 

FXTRACT FXTRACT (no operands) 
Exceptions: I Extract exponent and significant 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 50 27-55 0 2 FXTRACT 

FYL2X FYL2X (no operands) 
Exceptions: P (operands not checked) y. Log2X 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 950 900-1100 0 2 FYL2X 

FYL2XP1 FYL2XP1 (no operands) 
Exceptions: P (operands not checked) Y.log2(X + 1) 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 850 700-1000 0 2 FYL2XP1 

F2XM1 F2XM1 (no operands) 
Exceptions: U, P (operands not checked) 2x-l 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 500 310-630 0 2 F2XMl 
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10ccurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g., it was loaded 
from a short-real memory operand . 

. 2The 80287 execution clock count for this instruction is not meaningful in determining overall instruction 
execution time. For typical frequency ratios of the 80286 and 80287 clocks, 80287 execution occurs in 
parallel with the operand transfers, with the operand transfers determining the overall execution time of 
the instruction. For 80286:80287 clock frequency ratios of 4:8, 1:1, and 8:5, the overall execution clock 
count for this instruction is estimated at 490,302, and 227 80287 clocks, respectively. 

3The 80287 execution clock count for this instruction is not meaningful in determining overall instruction 
execution time. For typical frequency rations of the 80286 and 80287 clocks, 80287 execution occurs in 
parallel with the operand transfers, with the operand transfers determining the overall execution time of 
the instruction. For 80286:80287 clock frequency ratios of 4:8, 1:1, and 8:5, the overall execution clock 
count for this instruction is estimated at 376,233, and 17480287 clocks, respectively. 

4n = number of times CPU examines BUSY line before 80287 completes execution of previous instruction. 

PROGRAMMING FACILITIES 

As described previously, the 80287 NPX is programmed simply as an extension of the 80286 CPU. 
This section describes how programmers in ASM286 and in a variety of higher-level languages can 
work with the 80287. 

The level of detail in this section is intended to give programmers a basic understanding of the software 
tools that can be used with the 80287, but this information does not document the full capabilities of 
these facilities. For a complete list of documentation on all the languages available for 80286 systems, 
readers should consult Intel's Literature Guide. 

High-Level Languages 

For programmers using high-level languages, the programming and operation of the NPX is handled 
automatically by the compiler. A variety of Intel high-level languages are available that automatically 
make use of the 80287 NPX when appropriate. These languages include 

PL/M-286 
FORTRAN-286 
PASCAL-286 
C-286 

Each of these high-level languages has special numeric libraries allowing programs to take advantage 
of the capabilities of the 80287 NPX. No special programming conventions are necessary to make use 
of the 80287 NPX when programming numeric applications in any of these languages. 

Programmers in PL/M-286 and ASM286 can also make use of many of these library routines by using 
routines contained in the 80287 Support Library, described in the 80287 Support Library Reference 
Manual, Order Number 122129. These library routines provide many of the functions provided by 
higher-level languages, including exception handlers, ASCII-to-floating-point conversions, and a more 
complete set of transcendental functions than that provided by the 80287 instruction set. 
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PL/M·286 

Programmers in PL/M-286 can access a very useful subset of the 80287's numeric capabilities. The 
PL/M-286 REAL data type corresponds to the NPX's short real (32-bit) format. This data type provides 
a range of about 8.43* 10-37 .:5 ABS{X) .:5 3.38* 1038, with about seven significant decimal digits. This 
representation is adequate for the data manipulated by many microcomputer applications. 

The utility of the REAL data type is extended by the PL/M-286 compiler's practice of holding inter­
mediate results in the 80287's temporary real format. This means that the full range and precision of 
the processor are utilized for intermediate results. Underflow, overflow, and rounding errors are most 
likely to occur during intermediate computations rather than during calculation of an expression's final 
result. Holding intermediate results in temporary real format greatly reduces the likelihood of overflow 
and underflow and eliminates roundoff as a serious source of error until the final assignment of the 
result is performed. 

The compiler generates 80287 code to evaluate expressions that contain REAL data types, whether 
variables or constants or both. This means that addition, subtraction, multiplication, division, compar­
ison, and assignment of REALs will be performed by the NPX. INTEGER expressions, on the other 
hand, are evaluated on the CPU. 

Five built-in procedures (table 2-15) give the PL/M-286 programmer access to 80287 functions manip­
ulated by the processor control instructions. Prior to any arithmetic operations, a typical PL/M-286 
program will set up the NPX after power up using the INIT$REAL$MATH$UNIT procedure and 
then issue SET$REAL$MODE to configure the NPX. SET$REAL$MODE loads the 80287 control 
word, and its 16-bit parameter has the format shown in figure 1-5. The recommended value of this 
parameter is 033EH (projective closure, round to nearest, 64-bit precision, all exceptions masked except 
invalid operation). Other settings may be used at the programmer's discretion. 

If any exceptions are unmasked, an exception handler must be provided in the form of an interrupt 
procedure that is designated to be invoked by CPU interrupt pointer (vector) number 16. The excep­
tion handler can use the GET$REAL$ERROR procedure to obtain the low-order byte of the 80287 
status word and to then clear the exception flags. The byte returned by GET$REAL$ERROR contains 
the exception flags; these can be examined to determine the source of the exception. 

The SAVE$REAL$STATUS and RESTORE$REAL$STATUS procedures are provided for multi­
tasking environments where a running task that uses the 80287 may be preempted by another task that 
also uses the 80287. It is the responsibility of the preempting task to issue SAVE$REAL$STATUS 
before it executes any statements that affect the 80287; these include the INIT$REAL$MATH$UNIT 

Table 2-15. PLlM-286 Built-In Procedures 

Procedure 80287 Instruction 

INIT$REAL$MATH$UNIT(1) FINIT 

SET$REAL$MODE FLDCW 

GET$REAL$ERROR(2) FNSTSW & FNCLEX 

SAVE$REAL$STATUS FNSAVE 

RESTORE$REAL$STATUS FRSTOR 

(l)Also initializes interrupt pointers for emulation. 
(2)Returns low-order byte of status word. 
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Description 

Initialize processor. 

Set exception masks, rounding 
precision, and infinity controls. 

Store, then clear, exception flags. 

Save processor state. 

Restore processor state. 
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and SET$REAL$MODE procedures as well as arithmetic expressions. SAVE$REAL$STATUS saves 
, the 80287 state (registers, status, and control words, etc.) on the CPU's stack. 

RESTORE$REAL$ST ATUS reloads the state information; the preempting task must invoke this 
procedure before terminating in order to restore the 80287 to its state at the time the running task was 
preempted. This enables the preempted task to resume execution from the point of its preemption. 

ASM286 

The ASM286 assembly language provides programmmers with complete access to all of the facilities 
of the 80286 and 80287 processors. 

The programmer's view of the 80286/80287 hardware is a single machine with these resources: 

• 160 instructions 

• 12 data types 

• 8 general registers 

• 4 segment registers 

• 8 floating-point registers, organized as a stack 
( 

DEFINING DATA 

The ASM286 directives shown in table 2-16 allocate storage for 80287 variables and constants. As 
with other storage allocation directives, the assembler associates a type with any variable defined with 
these directives. The type value is equal to the length of the storage unit in bytes (10 for DT, 8 for 
DQ, etc.). The assembler checks the type of any variable coded in an instruction to be certain that it 
is compatible with the instruction. For example, the coding FIADD ALPHA will be flagged as an 
error if ALPHA's type is not 2 or 4, because integer addition is only available for word and short 
integer data types. The operand's type also tells the assembler which machine instruction to produce; 
although to the programmer there is only an FIADD instruction, a different machine instruction is 
required for each operand type. 

On occasion it is desirable to use an instruction with an operand that has no declared type. For example, 
if register BX points to a short integer variable, a programmer may want to code FIADD [BX]. This 
can be done by informing the assembler of the operand's type in the instruction, coding FIADD DWORD 
PTR [BX]. The corresponding overrides for the other storage allocations are WORD PTR, QWORD 
PTR, and TBYTE PTR. 

Table 2-16. 80287 Storage Allocation Directives 

Directive Interpretation Data Types 

DW Define Word Wo'rd integer 

DD Defirie Doubleword Short integer, short real 

DQ Define Quadword Long integer, long real 

DT Define Tenbyte Packed decimal, temporary real 
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The assembler does not, however, check the types of operands used in processor control instructions. 
Coding FRSTOR [BP] implies that the programmer has set up register BP to point to the stack location 
where the processor's 94-byte state record has been previously saved. 

The initial values for 80287 constants may be coded in several different ways. Binary integer constants 
may be specified as bit strings, decimal integers, octal integers, or hexadecimal strings. Packed decimal 
values are normally written as decimal integers, although the assembler will accept and convert other 
representations of integers. Real values may be written as ordinary decimal real numbers (decimal 
point required), as decimal numbers in scientific notation, or as hexadecimal strings. Using hexadeci­
mal strings is primarily intended for defining special values such as infinities, NaNs, and nonnormal­
ized numbers. Most programmers will find that ordinary decimal and scientific decimal provide the 
simplest way to initialize 80287 constants. Figure 2-3 compares several ways of setting the various 
80287 data types to the same initial value. 

Note that preceding 80287 variables and constants with the ASM286 EVEN directive ensures that the 
operands will be word-aligned in memory. This will produce the best system performance. All 80287 
data types occupy integral numbers of words so that no storage is "wasted" if blocks of variables are 
defined together and preceded by a single EVEN declarative. 

RECORDS AND STRUCTURES 

The ASM286 RECORD and STRUC (structure) declaratives can be very useful in NPX program­
ming. The record facility can be used to define the bit fields of the control, status, and tag words. 
Figure 2-4 shows one definition of the status word and how it might be used in a routine that polls the 
80287 until it has completed an instruction. 

Because STRUCtures allow different but related data types to be grouped together, they often provide 
a natural way to represent "real world" data organizations. The fact that the structure template may 
be "moved" about in memory adds to its flexibility. Figure 2-5 shows a simple structure that might be 
used to represent data consisting of a series of test score samples. A structure could also be used to 
define the organization of the information stored and loaded by the FSTENV and FLDENV instructions. 

THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126 
NOTE TWO'S COMPLETE STORAGE OF NEGATIVE BINARY INTEGERS. 

EVEN 
WORD INTEGER 
SHORT INTEGER 

DW 
DD 

111111111000010B 
OFFFFFF82H 

FORCE WORD ALIGNMENT 
BIT STRING 
HEX STRING MUST START 
WITH DIGIT 

LONG INTEGER DQ -126 ORDINARY DECIMAL 
SHORT_REAL DD -126.0 NOTE PRESENCE OF ' , 
LONG REAL DD -1.26E2 "SCIENTIFIC" 
PACKED_DECIMAL DT -126 ORDINARY DECIMAL INTEGER 

IN THE FOLLOWING, SIGN AND EXPONEN IS 'COOS' 
SIGNIFICAND IS '7E00 ... 00', 'R' INFORMS ASSEMBLER THAT 
THE STRING REPRESENTS A REAL DATA TYPE. 

DT OCOOS7EOOOOOOOOOOOOOOR HEX STRING 

Figure 2-3. Sample 80287 Constants 
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; RESERVE SPACE FOR STATUS WORD 
STATUS_WORD 
; LAY OUT STATUS WORD FIELDS 
STATUS RECORD 

BUS Y : 1 , 
COND_CODE3: 1, 
STACK_TOP: 3, 
COND_CODE2: 1, 

,COND_CODE1: 1, 
& COND_CODEO: 1, 

INT_REG: 1, 
RESERVED: 1, 
P_FLAG: 1, 
U_FLAG: 1, 
O_FLAG: 1, 
Z_F LAG: 1 , 
D_F LAG: 1 , 
LFLAG: 1 

POLL STATUS WORD UNTIL 80287 IS NOT BUSY 
POLL: FNSTSW STATUS_WORD 

TEST STATUS_WORD, MASK_BUSY 
JNZ POLL 

,Figure 2·4. Status Word RECORD Definition 

SAMPLE STR U C 

LOBS 
MEAN 
MODE 
STD_DEV 
; ARRAY OF 
TEST_SCORES 

SAMPLE ENDS 

ADDRESSING MODES 

DD SHORT INTEGER 
DG LONG REAL 
DW WORD INTEGER 
DG ?; LONG REAL 

OBSERVATIONS -- WORD INTEGER 
DW 1000 DUP (1) 

Figure 2-5. Structure Definition 

80287 memory data can be accessed with any of the CPU's five memory addressing modes. This means 
that 80287 data types can be incorporated in data aggregates ranging from simple to complex accord­
ing to the needs of the application. The addressing modes, and the ASM286 notation used to specify 
them in instructions, make the accessing of structures, arrays, arrays of structures, and other organi­
zations direct and straightforward. Table 2-17 gives several examples of 80287 instructions coded with 
operands that illustrate different addressing modes. 
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Table 2-17. Addressing Mode Examples 

Coding Interpretation 

FIADD ALPHA ALPHA is a simple scalar (mode is direct). 

FDIVR ALPHA.BETA BETA is a field in a structure that is 
"overlaid" on ALPHA (mode is direct). 

FMUL aWORD PTR [BX] BX contains the address of a long real 
variable (mode is register indirect). 

FSUB ALPHA [SI] ALPHA is an array and SI contains the 
offset of an array element from the start of 
the array (mode is indexed). 

FILD [BP].BETA BP contains the address of a structure on 
the CPU stack and BETA is a field in the 
structure (mode is based). 

FBLD TBYTE PTR [BX] [DI] BX contains the address of a packed 
decimal array and DI contains the offset of 
an array element (mode is based indexed). 

Comparative Programming Example 

Figures 2-6 and 2-7 show the PL/M-286 and ASM286 code for a simple 80287 program, called 
ARRSUM. The program references an array (X$ARRA V), which contains 0-100 short real values; 
the integer variable N$OF$X indicates the number of array elements the program is to consider. 
ARRSUM steps through X$ARRA Y accumulating three sums: 

• SUM$X, the sum of the array values 

• SUM$INDEXES, the sum of each array value times its index, where the index of the first element 
is 1, the second is 2, etc. 

• SUM$SQUARES, the sum of each array element squared 

(A true program, of course, would go beyond these steps to store and use the results of these calcula­
tions.) The control word is set with the recommended values: projective closure, round to nearest, 
64-bit precision, interrupts enabled, and all exceptions masked invalid operation. It is assumed that an 
exception handler has been written to field the invalid operation, if it occurs, and that it is invoked by 
interrupt pointer 16. Either version of the program will run on an actual or an emulated 80287 without 
altering the code shown. 

The PL/M-286 version of ARRSUM (figure 2-6) is very straightforward and illustrates how easily the 
80287 can be used in this language. After declaring variables the program calls built-in procedures to 
initialize the processor (or its emulator) and to load to the control word. The program clears the sum 
variables and then steps through X$ARRA Y with a DO-loop. The loop control takes into account 
PL/M-286's practice of considering the index of the first element of an array to be O. In the compu­
tation of SUM$INDEXES, the built-in procedure FLOAT converts I + 1 from integer to real because 
the language does not support "mixed mode" arithmetic. One of the strengths of the NPX, of course, 
is that it does support arithmetic on mixed data types (because all values are converted internally to 
the 80-bit temporary real format). 
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PL/M-286 COMPILER ARRAYSU'1 

SERIES--lII PL/M-286 VI. 0 CDt1PILATION OF MODULE ARRAYSVM 
OBJECT MODULE PLACED IN : Fb: D. OBJ 
COMPIl.ER INVOKED BY: PLM286 86 F6: D. SRC XREP 

1*************************************"",************* • 

2 
3 
4 
5 

b 
7 

8 

9 I 
10 ::! 
11 2 

* A R RAY SUM MOD * 
* ********************-11-******************************1 

aT'T'ay$sum: do; 

declare (sum.x, sum$indexes. $um'squares) real; 
declare x$o91"1'ay(100) "T'eaI; 
decI.T'e (n$of.x. i) integer; 
declaT'e control$287 literally '033eh'j 

1* Assume x$array and n$of$x are initialized *1 

1* Prepare the 80297 of it~ emulator *1 
call initSreal$math$uniti 
call set.rea 1 .mode (contro 1$287); 

1* Clear sums *1 
sumSx, sum.indexes. sum.sQ.uares = 0.0; 

1* Loop through array. accumulating sums *1 
do i = 0 to n.of$x-1; 

sum$x = 5um$x + x.a~~ay(i); 

sum$indexes = sum$indexes + 
(x$array(i) * float(i+l»; 

12 2 
13 2 

sum$squares = sum$sQ,uares + (x$a~T'ay (i )*x$aT'T'ay (i»; 
end; 

1* etc. *1 

14 end array$sum; 

PL/M-2Bb COMPILER ARRAYSUM 
CROSS-REFERENCE LISTING 

DEFN ADDR SIZE NAME. ATTRIBUTES. AND REFERENCES 

I OOObH 117 ARRAYSUM 
5 CONTROL287 

FLOAT. 
4 Ol9EH 2 1. 

INITREALMATHUNIT 
4 019CH 2 NOFX 

SETREALMODE. 
2 0004H 4 SUM INDEXES 
2 0008H 4 SUMS(lUARES 
2 OOOOH 4 SUMX 
3 OOOCH 400 XARRAY 

MODULE INFORMATION: 

CODE AREA SI ZE 
CONSTANT AREA SIZE 
VAR I ABLE AREA SIZE 
MAXIMUM STACK SIZE 
33 LI NES READ 

= 0077H 
= 0004H 
= OIAOH 
= 0002H 

o PROGRAM WARNINGS 
o PROGRAM ERRORS 

DICTIONARY SUMMARY: 

9bKB MEMORY AVAILABLE 
3KB t1EMORY USED (310 
OKB DISK SPACE VSED 

END OF PLIt1-2Bb COMPILATION 

119D 
4D 

4160 
20 

PROCEDURE STACK=0002H 
LITERALLY I033eh I 

BUlL TIN 11 
INTEGER 9* 
BUlL TIN b 
INTEGER 9 
BUlL TIN 7 
REAL B* II 
REAL 8* 12 
REAL 8* 10 
REAL ARRAY( 100) 

7 

9 

11* 
12* 
10* 

10 

Figure 2-6. Sample PL/M-286 Program 
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The ASM286 version (figure 2-7) defines the external procedure INIT287, which makes the different 
initialization requirements of the processor and its emulator transparent to the source code. After defining 
the data and setting up the segment registers and stack pointer, the program calls INIT287 and loads 
the control word. The computation begins with the next three instructions, which clear three registers 
by loading (pushing) zeros onto the stack. As shown in figure 2-8, these registers remain at the bottom 
of the stack throughout the computation while temporary values are pushed on and popped off the 
stack above them. 

The program uses the CPU LOOP instruction to control its iteration through }CARRAY; register CX, 
which LOOP automatically decrements, is loaded with N_OF.-X, the number of array elements to be 
summed. Register SI is used to select (index) the array elements. The program steps through }CARRA Y 
from back to front, so SI is initialized to point at the element just beyond the first element to be 
processed. The ASM286 TYPE operator is used to determine the number of bytes in each array element. 
This permits changing X_ARRAY to a long real array by simply changing its definition (DD to DQ) 
and reassembling. 

Figure 2-8 shows the effect of the instructions in the program loop on the NPX register stack. The 
figure assumes that the program is in its first iteration, that N_OF _X is 20, and that }CARRA Y(19) 
(the 20th element) contains the value 2.5. When the loop terminates, the three sums are left as the top 
stack elements so that the program ends by simply popping them into memory variables. 

80287 Emulation 

The programming of applications to execute on both 80286 and 80287 is made much easier by the 
existence of an 80287 emulator for 80286 systems. The Intel E80287 emulator offers a complete software 
counterpart to the 80287 hardware; NPX instructions can be simply emulated in software rather than 
being executed in hardware. With software emulation, the distinction between 80286 and 80287 systems 
is reduced to a simple performance differential (see Table 1-2 for a performance comparison between 
an actual 80287 and an emulator 80287). Identical numeric programs will simply execute more slowly 
on 80286 systems (using software emulation of NPX instructions) than on executing NPX instructions 
directly. 

When incorporated into the systems software, the emulation of NPX instructions on the 80286 systems 
is completely transparent to the programmer. Applications software needs no special libraries, linking, 
or other activity to allow it to run on an 80286 with 80287 emulation. 

To the applications programmer, the development of programs for 80286 systems is the same whether 
the 80287 NPX hardware is available or not. The full 80287 instruction set is available for use, with 
NPX instructions being either emulated or executed directly. Applications programmers need not be 
concerned with the hardware configuration of the computer systems on which their applications will 
eventually run. 

For systems programmers, details relating to 80287 emulators are described in a later section of this 
supplement. An E80287 software emulator for 80286 systems is contained in the iMDX 364 8086 
Software Toolbox, available from Intel and described in the 8086 Software Toolbox Manual. 

CONCURRENT PROCESSING WITH THE 80287 

Because the 80286 CPU and the 80287 NPX have separate execution units, it is possible for the NPX 
to execute numeric instructions in parallel with instructions executed by the CPU. This simultaneous 
execution of different instructions is called concurrency. 
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'iAPX286 MACRO ASSEMBLER EXAMPLE_ASM286_PR.oGRAM 

SERIES-III iAPX286 MACR.o ASSEMBLER XI08 ASSEMBLY .oF MPDULE EXAMPLE_ASM286_PR.oGRAM 
OBJECT MODULE PLACED IN :F6:287EXP.OBJ 
ASSEMBLER INV.oKED BY:. ASM286. 86 : F6: 2B7EXP. SRC XREF 

L.oC .oBJ 

0.0.0.0 3EC3 
.0.0.02 ???? 
.0.0.04 (ICC 

1'1111717 
) 

.0 1 '14 ???????? 
0198 '1111?111 
Cl'1C ???????? 

.0.0.0.0 

.0.0.0.0 B8----

.0.0.03 .SEDS 

.0.0.05 88----

.0.0.08 8EDC 
CCCA 8CFEFF 

CCCD '1AOCCC----
.0.012 D92ECCCC 

.0.016 D9EE 

.0.018 D9EE 
CCIA D9EE 

CCIC 89CEC2CC 
.0.02.0 F7E9 
.0.022 8BFC 

.0.024 

.0.024 83EEC4 

.0.027 D984C4CC 

.0.028 DCC3 

.0.020 D9CC 
CC2F DCCS 
.0.031 DEC2 

.0.033 FFCEC2CC 

.0.037 E2EB 

0.039 
.0.039 D91E94Cl 
CC3D D91 E98C 1 
.0.041 D91E9CCI 
.0.045 9B 

R 

R 

R 

E 
R 

R 

R 

R 
R 
R 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
'1 

1.0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2.0 
21 
22 
23 
24 
25 
26 
V 
28 
29 
3.0 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4.0 
41 
42 
43 
44 
45 
46 
47 
48 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62' 
63 
64 
65 
66 
67 
68 
69 
70 

S.oURCE 

name exampl._ASM2B6-p~agr.m 

Define initialization routine 
extrn init287: far 

Allocate space foT' dolt. 
data segment 1'\&1 public 
control_2B7 dw 033.h 
"_of _I dw '7' 
x_aT'T'a~ dd 100 dup (1) 

sum_sq,us,.. •• 
sum_indexes 
sum_x 
data ends 

dd 
dd 
dd 

? 
? 
? 

I Allocate CPU stack space 
'Stack stack •• g 400 

; Begln code 
code segment aY'" public 

assume ds: data. 5S: stack, es: nothing 
start: 

mav ax, data 
mav dSI ax 
mav ax,stack 
mav •• , ax 
mav sp, !ita.ckstart stack 

Assume x_a1'1'a" and "_of_x .1'. initialized 
, this pprogram Jeroe. "_Of_X 

Prepare the 80287 DT' its emulatoT'. 
call init287 
fldcw control_2B7 

CleaT' three registers to ,h~ld running sums 
fld, 
fldz 
fld, 

Setup CX as loop counter ~nd 
SI as index to x_arra" 

mov ex, n_ of -' imul 
mov si, ax 

; 9I now contains index of last element + 1 
i Loo.p th"u x_8r".y, accumulating sums 
sum,,:,next: 

sub 
fld 
fadd 
fld 
fmul 
faddp 

dec 
loop 

si, type x_arra\,l 
x_array[siJ 
st(3), at 
st 
st, st 
st(2),st 

; Pop running sums into memory 
pop_"esults: 

Etc. 

code 

fstp s4m_sltua-nes 
fstp sum_indexes 
fs'tp sum_x 
fwait 

ends 
end staT't 

ibackup one element 
ipush it on the .tack 
iadd into sum of x 
iduplicate x on top 
J square it 
;add into sum of (index+x) 

and discard 
; reduce index faT' next iteT'ation 

; continue 

Figure 2·7. Sample ASM286 Program 
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IAPXOIS6 MACRO ASSEMBLER 

XREF SYMBOL TABLE LIST I NO 

EXAMPLE.J\SMOIS6_PROQRAM 

NAME TYPE VALUE ATTRIBUTES. XREFS 

CODE. SEGMENT SIZE=0046H ER PUBLIC 
CONTROL 287 V WORD - OOOOH DATA 7* 33 
DATA. SEGMENT SIZE=OIAOH RW PUBLIC 
INIT287 L FAR OOOOH EXTRN 3# 32 
N_OF _X. V WORD 0002H DATA 8# 42 56 
POP _RESULTS L NEAR 0039H CODE 60. 
Sl·ACK STACK 51ZE=0190H Rt" PUBLIC 
START. L NEAR OOOOH CODE 21# 70 
SUM_INDEXES V DWORD Ol98H DATA Iii 62 
SUM_NEXT. L NEAR 0024H CODE 48# 57 
SUM_SQUARES V DWORD 0194H DATA 10# 61 
SUM_X V DWORD 019CH DATA 12# 63 
X_ARRAY V DWORD 0004H (100) DATA 9# 49 50 

END OF SYMBOL TABLE LISTING 

ASSEMBLY COMPLETE. NO ERRORS 

19# 69 

6* 13 20 22 

16# 20 24 26 

Figure 2-7. Sample ASM28S Program (Cont'd.) 

ST(O) 

ST(l) 

ST(2) 

ST(O) 

ST(l) 

ST(2) 

ST(3) 

ST(O) 

ST(l) 

ST(2) 

ST(3) 

ST(4) 

ST(O) 

ST(l) 

S1(2) 

ST(3) 

FLOZ,FLOZ,FlOZ 

0.0 

0.0 

0.0 

FAOO 5TO) 5T 

2.5 

0.0 

0.0 

2.5 

FMUL 5T,5T 

6.25 

2.5 

0.0 

0.0 

2.5 

F I MU L N OF X 

50.0 

6.25 

0.0 

2.5 

SU 

SU 

M_SQUARES 

M_INDEXES 

SU 

---
X_A RRAY (19) 

_SQUARES SUM 

SUM _INDEXES 

SUM 

----- -
X_ARRAY(19)2 

X_ARRAY(19) 

SUM_SQUARES 

SUM_INDEXES 

SUM_X 

....... 
....... 

X_A RRAY(19)"20 

_SQUARES 

_INDEXES 

SUM 

SUM 

SUM 

FLO x ARRAy[511 

ST(O) 

S T(l) 

ST(2) 

ST(3) 

--ST (0) 

ST (1) 

ST (2) 

ST (3) 

ST (4) -
ST(O) 

ST(l) 

ST(2) 

ST(3) 

-
2.5 

0.0 

0.0 

FLO 5 T 

2.5 

2.5 

0.0 

0.0 

2.5 

FAOOP 5T(2),5T 

2.5 

6.25 

0.0 

2.5 

X_ARRAY (19) 

SUM_SQUARES 

SUM_INDEXES 

SUM_X 

X_ARRAY (19) 

X_ARRAY (19) 

SUM_SQUARES 

SUM_INDEXES 

SUM_X 

X_ARRAY(19) 

SUM_SQUARES 

SUM_INDEXES 

SUMJ 

FAOOP 5T(2),5T 

;;;ffi.25 SUM_SQUARES 

ST(l) 50.0 SUM_INDEXES 

ST(2) 2.5 SUM_X 

Figure 2-8. Instructions and Register Stack 
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No special programming techniques are required to gain the advantages of concurrent execution; numeric 
instructions for the NPX are simply placed in line with the instructions for the CPU. CPU and numeric 
instructions are initiated in the same order as they are encountered by the CPU in its instruction 
stream. However, because numeric operations performed by the. NPX generally require more time than 
operations performed by the CPU, the CPU can often execute several of its instructions before the 
NPX completes a numeric instruction previously initiated. 

This concurrency offers obvious advantages in terms of execution performance, but concurrency also 
imposes several rules that must be observed in order to assure proper synchronization of the 80286 
CPU and 80287 NPX. 

All Intel high-level languages automatically provide for and manage concurrency in the NPX. 
Assembly-language programmers, however, must understand and manage some areas of concurrency 
in exchange for the flexibility and performance of programming in assembly language. This section is 
for the assembly-language programmer or well-informed high-level-language programmer. 

Managing Concurrency 

Concurrent execution of the host and 80287 is easy to establish and maintain. The activities of numeric 
programs can be split into two major areas: program control and arithmetic. The program control part 
performs activities such as deciding what functions to perform, calculating addresses of numeric 
operands, and loop control. The arithmetic part simply adds, subtracts, multiplies, and performs other 
operations on the numeric operands. The NPX and host are designed to handle these two parts separately 
and efficiently. 

Managing concurrency is necessary because both the arithmetic and control areas must converge to a 
well-defined state before starting another numeric operation. A well-defined state means all previous 
arithmetic and control operations are complete and valid. 

Normally, the host waits for the 80287 to finish the current numeric operation before starting another. 
This waiting is called synchronization. 

Managing concurrent execution of the 80287 involves .::tree types of synchronization: 

1. Instruction synchronization 

2. Data synchronization 

3. Error synchronization 

For programmers in higher-level languages, all three types of synchronization are automatically provided 
by the appropriate compiler. For assembly-language programmers, instruction synchronization is 
guaranteed by the NPX interface, but data and error synchronization are the responsibility of the 
assembly-language programmer. 

Instruction Synchronization 

Instruction synchronization is required because the 80287 can perform only one numeric operation at 
a time. Before any numeric operation is started, the 80287 must have completed all activity from its 
previous instruction. 
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Instruction synchronization is guaranteed for most ESC instructions because the 80286 automatically 
checks the BUSY status line from the 80287 before commencing execution of most ESC instructions. 
No explicit WAIT instructions are necessary to ensure proper instruction synchronization. 

Data Synchronization 

Data synchronization addresses the issue of both the CPU and the NPX referencing the same memory 
values within a given block of code. Synchronization ensures that these two processors access the memory 
operands in the proper sequence, just as they would be accessed by a single processor with no concur­
rency. Data synchronization is not a concern when the CPU and NPX are using different memory 
operands during the course of one numeric instruction. 

The two cases where data synchronization might be a concern are 

1. The 80286 CPU reads or alters a memory operand first, then invokes the 80287 to load or alter 
the same operand. 

2. The 80287 is invoked to load or alter a memory operand, after which the 80286 CPU reads or 
alters the same location. 

Due to the instruction synchronization of the NPX interface, data synchronization is automatically 
provided for the first case~the 80286 will always complete its operation before invoking the 80287. 

For the second case, data synchronization is not always automatic. In general, there is no guarantee 
that the 80287 will have finished its processing and accessed the memory operand before the 80286 
accesses the same location. 

Figure 2-9 shows examples of the two possible cases of the CPU and NPX sharing a memory value. In 
the examples of the first case, the CPU will finish with the operand before the 80287 can reference it. 
The NPX interface guarantees this. In the examples of the second case, the CPU must wait for the 
80287 to finish with the memory operand before proceeding to reuse it. The FWAIT instructions shown 
in these examples are required in order to ensure this data synchronization. 

There are several NPX control instructions where automatic data synchronization is provided; however, 
the FSTSW /FNSTSW, FSTCW /FNSTCW, FLDCW, FRSTOR, and FLDENV instructions are all 
guaranteed to finish their execution before the CPU can read or alter the referenced memory locations. 

The 80287 provides data synchronization for these instructions by making a request on the Processor 
Extension Data Channel before the CPU executes its next instruction. Since the NPX data transfers 
occur before the CPU regains control of the local bus, the CPU cannot change a memory value before 
the NPX has had a chance to reference it. In the case of the FSTSW AX instruction, the 80286 AX 
register is explicitly updated before the CPU continues execution of the next instruction. 

For the numeric instructions not listed above, the assembly-language programmer must remain aware 
of synchronization and recognize cases requiring explicit data synchronization. Data synchronization 
can be provided either by programming an explicit FW AIT instruction, or by initiating a subsequent 
numeric instruction before accessing the operands or results of a previous instruction. After the subse­
quent numeric instruction has started execution, all memory references in earlier numeric instructions 
are complete. Reaching the next host instruction after the synchronizing numeric instruction indicates 
that previous numeric operands in memory are available. 
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Case 1: 
M 0 V I , 
f I L D I 

MOV AX,I 
f I S TP I 

Case 2: 
f IL D 
fWAIT 
M 0 V 1.,5 

f 1ST P 
fWAIT 
MOV AX,I 

Figure 2-9. Synchronizing References to Shared Data 

The data-synchronization function of any FW AIT or numeric instruction must be well-documented, as 
shown in figure 2-10. Otherwise, a change to the program at a later time may remove the synchronizing 
numeric instruction and cause program failure. 

High-level languages automatically establish data synchronization and manage it, but there may be 
applications where a high-level language may not be appropriate. 

For assembly-language programmers, automatic data synchronization can be obtained using the assem­
bler, although concurrency of execution is lost as a result. To perform automatic data synchronization, 
the assembler can be changed to always place a WAIT instruction after the ESCAPE instruction. 
Figure 2-11 shows an example of how to change the ASM286 Code Macro for the FIST instruction to 
automatically place aWAIT instruction after the ESCAPE instruction. This Code Macro is included 
in the ASM286 source module. The price paid for this automatic data synchronization is the lack of 
any possible concurrency between the CPU and NPX. 

Error Synchronization 

Almost any numeric instruction can, under the wrong circumstances, produce a numeric error. Concur­
rent execution of the CPU and NPX requires synchronization for these errors just as it does for data 
references and numeric instructions. In fact, the synchronization required for data and instructions 
automatically provides error synchronization. 

However, incorrect data or instruction synchronization may not be discovered until a numeric error 
occurs. A further complication is that a programmer may not expect his numeric program to cause 
numeric errors, but in some systems, they may regularly happen. To better understand these points, 
let's look at what can happen when the NPX detects an error. 

The NPX can perform one of two things when a numeric exception occurs: 

• The NPX can provide a default fix-up for selected numeric errors. Programs can mask individual 
error types to indicate that the NPX should generate a safe, reasonable result whenever that error 
occurs. The default error fix-up activity is treated by the NPX as part of the instruction causing 
the error; no external indication of the error is given. When errors are detected, a flag is set in the 
numeric status register, but no information regarding where or when is available. If the NPX performs 
its default action for all errors, then error synchronization is never exercised. This is no reason to 
ignore error synchronization, however. 

2-50 



F 1ST P 
FMUL 
MOV AX,I 
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i~ updated before FMUL i~ executed 
is now !elfe to use 

Figure 2·10. Documenting Data Synchronization 

This is an ASM286 code macro to redefine the FIST 
instruction to prevent any concurrency 
while the instruction run!. A wait 
instruction is placed immediately after the 
escape to ensure the store is done 
before the program may continue. 

CodeMacro FIST memop: Mw 
RfixM 1118, memop 
ModRM 0108, memop 
RWfix 
End M 

Figure 2·11. Nonconcurrent FIST Instruction Code Macro 

• As an alternative to the NPX default fix-up of numeric errors, the 80286 CPU can be notified 
whenever an exception occurs. The CPU can then implement any sort of recovery procedures desired, 
for any numeric error detectable by the NPX. When a numeric error is unmasked and the error 
occurs, the NPX stops further execution of the numeric instruction and signals this event to the 
CPU. On the next occurrence of an ESC or WAIT instruction, the CPU traps to a software excep­
tion handler. Some ESC instructions do not check for errors. These are the nonwaited forms FNINIT, 
FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX. 

When the NPX signals an unmasked exception condition, it is requesting help. The fact that the error 
was unmasked indicates that further numeric program execution under the arithmetic and program­
ming rules of the NPX is unreasonable. 

If concurrent execution is allowed, the state of the CPU when it recognizes the exception is undefined. 
The CPU may have changed many of its internal registers and be executing a totally different program 
by the time the exception occurs. To handle this situation, the NPX has special registers updated at 
the start of each numeric instruction to describe the state of the numeric program when the failed 
instruction was attempted. 

Error synchronization ensures that the NPX is in a well-defined state after an unmasked numeric error 
occurs. Without a well-defined state, it would be impossible for exception recovery routines to figure 
out why the numeric error occurred, or to recover successfully from the error. 
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INCORRECT ERROR SYNCHRONIZATION 

An example of how some instructions written without error synchronization will work initially, but fail 
when moved into a new environment is shown in figure 2-12. 

In figure 2-12, three instructions are shown to load an integer, calculate its square root, then increment 
the integer. The NPX interface and synchronous execution of the NPX emulator will allow this program 
to execute correctly when no errors occur on the FILD instruction. 

This situation changes if the 80287 numeric register stack is extended to memory. To extend the NPX 
stack to memory, the invalid error is unmasked. A push to a full register or pop from an empty register 
will cause an invalid error. The recovery routine for the error must recognize this situation, fix up the 
stack, then perform the original operation. 

The recovery routine will not work correctly in the first example shown in the figure. The problem is 
that the value of COUNT is incremented before the NPX can signal the exception to the CPU. Because 
COUNT is incremented before the exception handler is invoked, the recovery routine will load an 
incorrect value of COUNT, causing the program to fail or behave unreliably 

PROPER ERROR SYNCHRONIZATION 

Error Synchronization relies on the WArT instructions required by instruction and data synchroniza­
tion and the BUSY and ERROR signals of the 80287. When an unmasked error occurs in the 80287, 
it asserts the ERROR signal, signalling to the CPU that a numeric error has occurred. The next time 
the CPU encounters an error-checking ESC or WArT instruction, the CPU acknowledges the ERROR 
signal by trapping automatically to Interrupt #16, the Processor Extension Error vector. If the follow­
ing ESC or WAIT instruction is properly placed, the CPU will not yet have disturbed any information 
vital to recovery from the error. 

F I L D 
I H C 
F 5 Q R T 

CO U H T 
COUNT 
COUNT 

FILD COUNT 
FSQRT 

IHC COUNT 

INCORRECT ERROR SYNCHRONIZATION 
NPX instruction 
CPU instruction alters operand 
subseguent NPX instruction "- error from 

previous NPX instruction detected here 

PROPER ERROR SYNCHRONIZATION 
NPX instruction 
subseguent NPX instruction -- error from 

previous NPX instruction detected here 
CPU instruction alters operand 

Figure 2-12. Error Synchronization Examples 
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CHAPTER 3 
SYSTEM-LEVEL NUMERIC PROGRAMMING 

System programming for 80287 systems requires a more detailed understanding of the 80287 NPX 
than does application programming. Such things as emulation, initialization, exception handling, and 
data and error synchronization are all the responsibility of the systems programmer. These topics are 
covered in detail in the sections that follow. 

80287 ARCHITECTURE 

On a software level, the 80287 NPX appears as an extension of the 80286 CPU. On the hardware 
level, however, the mechanisms by which the 80286 and 80287 interact are a bit more complex. This 
section describes how the 80287 NPX and 80286 CPU interact and points out features of this inter­
action that are of interest to systems programmers. 

Processor Extension Data Channel 

All transfers of operands between the 80287 and system memory are performed by the 80286's internal 
Processor Extension Data Channel. This independent, DMA-like data channel permits all operand 
transfers of the 80287 to come under the supervision of the 80286 memory-management and protection 
mechanisms. The operation of this data channel is completely transparent to software. 

Because the 80286 actually performs all transfers between the 80287 and memory, no additional bus 
drivers, controllers, or other components are necessary to interface the 80287 NPX to the local bus. 
Any memory accessible to the 80286 CPU is accessible by the 80287. The Processor Extension Data 
Channel is described in more detail in Chapter Six of the 80286 Hardware Reference Manual. 

Real-Address Mode and Protected Virtual-Address Mode 

Like the 80286 CPU, the 80287 NPX can operate in both Real-Address mode and in Protected mode. 
Following a hardware RESET, the 80287 is initially activated in Real-Address mode. A single, privi­
leged instruction (FSETPM) is necessary to set the 80287 into Protected mode. 

As an extension to the 80286 CPU, the 80287 can access any memory location accessible by the task 
currently executing on the 80286. When operating in Protected mode, all memory references by the 
80287 are automatically verified by the 80286's memory management and protection mechanisms as 
for any other memory references by the currently-executing task. Protection violations associated with 
NPX instructions automatically cause the 80286 to trap to an appropriate exception handler. 

To the programmer, these two 80287 operating modes differ only in the manner in which the NPX 
instruction and data pointers are represented in memory following an FSA VE or FSTENV instruction. 
When the 80287 operates in Protected mode, its NPX instruction and data pointers are each repre­
sented in memory as a 16-bit segment selector and a 16-bit offset. When the 80287 operates in Real­
Add' <!ss mode, these same instruction and data pointers are represented simply as the 20-bit physical 
adr ,'esses of the operands in question (see figure 1-7 in Chapter One). 
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Dedicated and Reserved I/O Locations 

The 80287 NPX does not require that any memory addresses be set aside for special purposes. The 
80287 does make use of I/O port addresses in the range 00F8H through OOFFH, although these I/O 
operations are completely transparent to the 80286 software. 80286 programs must not reference these 
reserved I/O addresses directly. 

To prevent any accidental misuse or other tampering with numeric instructions in the 80287, the 80286~s 
I/O Privilege Level (IOPL) should be used in multiuser reprogrammable environments to restrict 
application program access to the I/O address space and so guarantee the integrity of 80287 compu­
tations. Chapter Eight of the 80286 Operating System Writer's Guide contains more details regarding 
the use of the I/O Privilege Level. 

PROCESSOR INITIALIZATION AND CONTROL 

One of the principal responsibilities of systems software is the initialization, monitoring, and controlof 
the hardware and software resources of the system, including the 80287 NPX. In this section, issues 
related to system initialization and control are described, including recognition of the NPX, emulation 
of the 80287 NPX in software if the hardware is not available, and the handling of exceptions that 
may occur during the execution of the 80287. 

System Initialization 

During initialization of an 80286 system, systems software must 

• Recognize the presence or absence of the NPX 

• Set flags in the 80286 MSW to reflect the state of the numeric environment 

If an 80287 NPX is present in the system, the NPX must be 

• Initialized 

• Switched into Protected mode (if desired) 

All of these activities can be quickly and easily performed as part of the overall system initialization. 

Recognizing the 80287 NPX 

Figure 3-1 shows an example of a recognition routine that determines whether an NPX is present, and 
distinguishes between the 80387 and the 8087/80287. This routine can be executed on any 80386, 
80286, or 8086 hardware configuration that has an NPX socket. 

The example gua~ds against the possibility of accidentally reading an expected value from a floating 
data bus when no NPX is present. Data read from a floating bus is undefined. By expecting to read a 
specific bit pattern from the NPX, the routine protects itself from the indeterminate state of the bus. 
The example also avoids depending on any values in reserved bits, thereby maintaining compatibility 
with future numerics coprocessors. 

3-2 



SYSTEM-LEVEL NUMERIC PROGRAMMING 

8086/87/88/186 MACRO ASSEMBLER Test for presence of a Nuneries Chip, Revision 1.0 PAGE 

DOS 3.20 (033·N) 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE TEST_NPX 
OBJECT MODULE PLACED IN FINONPX.OBJ 

LaC OBJ 

0000 (100 

??11 

oocs 1111 

0000 0000 

0000 

0000 
0000 900BE3 
0003 BEOOOO 
0006 C7045A5A 
OOOA 90003C 

0000 803COO 
0010 752A 

0012 90093C 

0015 8B04 
0017 253Fl0 
001A 303FOO 
0010 7510 

001F 9B09E8 
0022 9B09EE 
0025 9BDEF9 
0028 9B09C0 
002B 9B09EO 
002E 9BOE09 
0031 9BOD3C 
0034 8804 
0036 9E 
0037 7406 

LINE 

1 +1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

SOURCE 

$title( ITest for presence of • Nunerics Chip, Revision 1.0') 

stack segment stack . stack I 
dw 100 dup (7) 

sst dw 
stack ends 

data segment publ i c ldata l 
t...., dw Oh 
data encls 

dgroup group data. stack 
cgroup group code 

code segment publ ic Icode' 
assune cs:cgroup. ds:dgroup 

start: 

Look for an 8087, 80287, or 80387 NPX. 
Note that we cannot execute WAIT on 8086/88 if no 8087 is present. 

test npJt;! 
- fnlnft ; Must use non-wait form 

mov si ,offset dgroup:terrp 
mov word ptr [si] ,5A5AH ; Initial fze teq> to non-zero value 
fnstsw [si] ; Must use non-wait form of fstSN 

It is not necessary to -use a WAIT instruction 
after fnstsw or fnstew. 00 not use one here. 

cnp byte ptr [si] ,0 ; See if correct status with zeroes was read 
jne no_"px JlJJ1l if not 8 val id status word, meaning no NPX 

Now see if ones can be correctly written from the control word. 

fnstcw [si] 

IfIOY ax, [sil 
and ax,103fh 
crJ1) ax,3fh 
jne no_npx 

Look at the control word; do not use \JAIT form 
Do not use a WAIT instruction here! 
See if ones can be written by NPX 
See 11 selected parts of control word look OK 

; Check that ones and zeroes were correct l y read 
; J~ if no NPX is installed 

Some nunerics chip is installed. NPX instructions and WAlT are now safe. 
See if the NPX is an 8087. 80287. or 80387. 
This code is necessary if a denormal exception handler is used or the 
new 80387 instructions wi l L be used. 

fLdl 
fld. 
fdiv 
fLd 
fchs 
fc""",, 
fstsw 
mov 
sahf 
je 

st 

lsi] 
ax, lsi] 

found_87 _287 

; Must use dehul t control word from FNINIT 
; Form fnfinity 
; 8087/287 says +;nf = -inf 
; Form negative infinHy 
; 80387 says +inf <> • inf 
; See ; f they are the same and remove them 

Look at status fram FCOMPP 

See if the infinities .tched 
J_ if 8087/287 is present 

Figure 3-1. Software Routine to Recognize the 80287 
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8086/87/88/186 MACRO ASSEMBLER Te.t for pre.ence of a N"""rlc. Chip. Revi.ion 1.0 PAGE 

LOC OBJ 

0039 EB0790 
003C 

003C EB0490 
003F 

003F EB0190 
0042 

0042 

LINE 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
n 
78 
79 
80 
81 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

SOURCE 

no_npx: 

An 80387 I. present. If denormel e.ceptions are used for on 8087/287, 
they .... at be ... ked. The 80387 will out_tlcllly normalize denormal 
operands faster than In exception handler can. 

J~ found_387 

, let up for no NPX 

j~ •• tt 
found_87 _287, 

•• t up for 87/287 

j~ •• tt 
found 387, 

- •• t up for 387 

•• It, 
cod. ends 

end atart,da:dgroup, •• :dgroup: •• t 

Figure 3-1. Software Routine to Recognize the 80287 (Cont'd.) 

Configuring the Numerics Environment 

Once the 80286 CPU has determined the presence or absence of the 80287 NPX, the 80286 must set 
either the MP or the EM bit in its own machine status word accordingly. The initialization routine can 
either 

• Set the MP bit in the 80286 MSW to allow numeric instructions to be executed directly by the 
80287 NPX component 

• Set the EM bit in the 80286 MSW to permit software emulation of the 80287 numeric instructions 

The Math Present (MP) flag of the 80286 machine status word indicates to the CPU whether an 80287 
NPX is physically available in the system. The MP flag controls the function of the WAIT instruction. 
When executing aWAIT instruction, the 80286 tests only the Task Switched (TS) bit if MP is set; if 
it finds TS set under these conditions, the 'CPU traps to exception #7. 

The Emulation Mode (EM) bit of the 80286 machine status word indicates to the CPU whether NPX 
functions are to be emulated. If the CPU finds EM set when it executes an ESC instruction, program 
control is automatically trapped to exception #7, giving the exception handler the opportunity to emulate 
the functions of an 80287. The 80286 EM flag can be changed only by using the LMSW (load machine 
status word) instruction (legal only at privilege level 0) and examined with the aid of the SMSW (store 
machine status word) instruction (legal at any privilege level). 

The EM bit also controls the function of the WAIT instruction. If the CPU finds EM set while execut­
ing a WAIT, the CPU does not check the ERROR pin for an error indication. 

For correct 80286 operation, the EM bit must never be set concurrently with MP. The EM and MP 
bits of the 80286 are described in more detail in the 80286) Operating System Writer's Guide. More 
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information on software emulation for the 80287 NPX is described in the "80287 Emulation" section 
later in this chapter. 

In any case, if ESC instructions are to be executed, either the MP or EM bit must be set, but not both. 

Initializing the 80287 

Initializing the 80287 NPX simply means placing the NPX in a known state unaffected by any activity 
performed earlier. The example software routine to recognize the 80287 (table 3-1) performed this 
initialization using a single FNINIT instruction. This instruction causes the NPX to be initialized in 
the same way as that caused by the hardware RESET signal to the 80287. All the error masks are set, 
all registers are tagged empty, the ST is set to zero, and default rounding, precision, and infinity 
controls are set. Table 3-1 shows the state of the 80287 NPX following initialization. 

Following a hardware RESET signal, such as after initial power-up, the 80287 is initialized in Real­
Address mode. Once the 80287 has been switched to Protected mode (using the FSETPM instruction), 
only another hardware RESET can switch the 80287 back to Real-Address mode. The FNINIT 
instruction does not switch the operating state of the 80287. 

80287 Emulation 

If it is determined that no 80287 NPX is available in the system, systems software may decide to 
emulate ESC instructions in software. This emulation is easily supported by the 80286 hardware, because 
the 80286 can be configured to trap to a software emulation routine whenever it encounters an ESC 
instruction in its instruction stream. 

Table 3-1. NPX Processor State Following Initialization 

Field Value Interpretation 

Control Word 
Infinity Control 0 Projective 
Rounding Control 00 Round to nearest 
Precision Control 11 64 bits 
Interrupt-Enable Mask ,1 Interrupts disabled 
Exception Masks 111111 All exceptions masked 

Status Word 
Busy 0 Not busy 
Condition Code ???? (Indeterminate) 
Stack Top 000 Empty stack 
Interrupt Request 0 No interrupt 
Exception Flags 000000 No exceptions 

Tag Word 
Tags 11 Empty 

Registers N.C. Not changed 

Exception Pointers 
Instruction Code N.C. Not changed 
Instruction Address N.C. Not changed 
Operand Address N.C. Not changed 
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As described previously, whenever the 80286 CPU encounters an ESC instruction, and its hlP and 
EM status bits are set appropriately (MP=O, EM = 1), the 80286 will automatically trap to interrupt 
#7, the Processor Extension Not Available exception. The return link stored on the stack points to the 
first byte of the ESC instruction, including the prefix byte(s}, if any. The exception handler can use 
this return link to examine the ESC instruction and proceed to emulate the numeric instruction in 
software. 

The emulator must step the return pointer so that, upon return from the exception handler, execution 
can resume at the first instruction following the ESC instruction. 

To an application program, execution on an 80286 system with 80287 emulation is almost indistin­
guishable from execution on an 80287 system, except for the difference in execution speeds. 

There are several important considerations when using emulation on an 80286 system: 

• When operating in Protected-Address mode, numeric applications using the emulator must be 
executed in execute-readable code segments. Numeric software cannot be emulated if it is executed 
in execute-only code segments. This is because the emulator must be able to examine the particular 
numeric instruction that caused the Emulation trap. 

• Only privileged tasks can place the 80286 in emulation mode. The instructions necessary to place 
the 80286 in Emulation mode are privileged instructions, and are not typically accessible to an 
application. 

An emulator package (E80287) that runs on 80286 systems is available from Intel in the 8086 Software 
Toolbox, Order Number 122203. This emulation package operates in both Real and Protected mode, 
providing a complete functional equivalent for the 80287 emulated in software. 

When using the E80287 emulator, writers of numeric exception handlers should be aware of one slight 
difference between the emulated 80287 and the 80287 hardware: 

• On the 80287 hardware, exception handlers are invoked by the 80286 at the first WAIT or ESC 
instruction following the instruction causing the exception. The return link, stored on the 80286 
stack, points to this second WAIT or ESC instruction where execution will resume following a 
return from the exception handler. 

• Using the E80287 emulator, numeric exception handlers are invoked from within the emulator itself. 
The return link stored on the stack when the exception handler is invoked will therefore point back 
to the E80287 emulator, rather than to the program code actually being executed (emulated). An 
IRET return from the exception handler returns to the emulator, which then returns immediately 
to the emulated program. This added layer of indirection should not cause confusion, however, 
because the instruction causing the exception can always be identified from the 80287's instruction 
and data pointers. 

Handling Numeric Processing Exceptions 

Once the 80287 has been initialized and normal execution of applications has been commenced, the 
80287 NPX may occasionally require attention in order to recover from numeric processing errors. 
This section provides details for writing software exception handlers for numeric exceptions. Numeric 
processing exceptions have already been introduced in previous sections of this manual. 
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As discussed previously, the 80287 NPX can take one of two actions when it recognizes a numeric 
exception: 

• If the exception is masked, the NPX will automatically perform its own masked exception response, 
correcting the exception condition according to fixed rules, and then continuing with its instruction 
execution. 

• If the exception is unmasked, the NPX signals the exception to the 80286 CPU using the ERROR 
status line between the two processors. Each time the 80286 encounters an ESC or WAIT instruc­
tion in its instruction stream, the CPU checks the condition of this ERROR status line. If ERROR 
is active, the CPU automatically traps to Interrupt vector #16, the Processor Extension Error trap. 

Interrupt vector #16 typically points to a software exception handler, which mayor may not be a part 
of systems software. This exception handler takes the form of an 80286 interrupt procedure. 

When handling numeric errors, the CPU has two responsibilities: 

• The CPU must not disturb the numeric context when an error is detected. 

• The CPU must clear the error and attempt recovery from the error. 

Although the manner in which programmers may treat these responsibilities varies from one imple­
mentation to the next, most exception handlers will include these basic steps: 

• Store the NPX environment (control, status, and tag words, operand and instruction pointers) as it 
existed at the time of the exception. 

• Clear the exception bits in the status word. 

• Enable interrupts on the CPU. 

• Identify the exception by examining the status and control words in the save environment. 

• Take some system-dependent action to rectify the exception. 

• Return to the interrupted program and resume normal execution. 

It should be noted that the NPX exception pointers contained in the stored NPX environment will take 
different forms, depending on whether the NPX is operating in Real-Address mode or in Protected 
mode. The earlier discussion of Real versus Protected mode details how this information is presented 
in each of the two operating modes. 

Simultaneous Exception Response 

In cases where multiple exceptions arise simultaneously, the 80287 signals one exception according to 
the precedence sequence shown in table 3-2. This means, for example, that zero divided by zero will 
result in an invalid operation, and not a zero divide exception. 

Exception Recovery Examples 

Recovery routines for NPX exceptions can take a variety of forms. They can change the arithmetic 
and programming rules of the NPX. These changes may redefine the default fix-up for an error, change 
the appearance of the NPX to the programmer, or change how arithmetic is defined on the NPX. 

A change to an error response might be to automatically normalize all denormals loaded from memory. 
A change in appearance might be extending the register stack into memory to provide an "infinite" 
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Table 3-2. Precedence of NPX Exceptions 

Denormalized operand (if unmasked) 
Invalid operation 
Zero divide 
Denormalized (if masked) 
Over /U nderflow 
Precision 

number of numeric registers. The arithmetic of the NPX can be changed to automatically extend the 
precision and range of variables when exceeded. All these functions can be implemented on the NPX 
via numeric errors and associated. recovery routines in a manner transparent to the application 
programmer. 

Some other possible system-dependent actions, mentioned previously, may include: 

• Incrementing an exception counter for later display or printing 

• Printing or displaying diagnostic information (e.g., the 80287 environment and registers) 

• Aborting further execution 

• Storing a diagnostic value (a NaN) in the result and continuing with the computation 

Notice that an exception mayor may not constitute an error, depending on the implementation. Once 
the exception handler corrects the error condition causing the exception, the floating-point instruction 
that caused the exception can be restarted, if appropriate. This cannot be accomplished using the 
IRET instruction, however, because the trap occurs at the ESC or WAIT instruction following the 
offending ESC instruction. The exception handler must obtain from the NPX. the address of the 
offending instruction in the task that initiated it, make a copy of it, execute the copy in the context of 
the offending task, and then return via IRET to the current CPU instruction stream. 

In order to correct the condition causing the numeric exception, exception handlers must recognize the 
precise state of the NPX at the time the exception handler was invoked, and be able to reconstruct the 
state of the NPX when the exception initially occurred. To reconstruct the state of the NPX, program­
mers must understand when, during the execution of an NPX instruction, exceptions are actually 
recognized. .. 

Invalid operation, zero divide, and denormalized exceptions are detected before an operation begins, 
whereas overflow, underflow, and precision exceptions are not raised until a true result has been 
computed. When a before exception is detected, the NPX register stack and memory have not yet been 
updated, and appear as if the offending instructions has not been executed. 

When an after exception is detected, the register stack and memory appear as if the instruction has 
run to completion; i.e., they may be updated. (However, in a store or store-and-pop operation, unmasked 
over/underflow is handled like a before exception; memory is not updated and the stack is not popped.) 
The programming examples contained in Chapter Four include an outline of several exception handlers 
to process numeric exceptions for the 80287. 
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CHAPTER 4 
NUMERIC PROGRAMMING EXAMPLES 

The following sections contain examples of numeric programs for the 80287 NPX written in ASM286. 
These examples are intended to illustrate some of the techniques for programming the 80287 comput­
ing system for numeric applications. 

CONDITIONAL BRANCHING EXAMPLES 

As discussed in Chapter Two, several numeric instructions post their results to the condition code bits 
of the 80287 status word. Although there are many ways to implement conditional branching following 
a comparison, the basic approach is as follows: 

• Execute the comparison. 

• Store the status word. (80287 allows storing status directly into AX register.) 

• Inspect the condition code bits. 

• Jump on the result. 

Figure 4-1 is a code fragment that illustrates how two memory-resident long real numbers might be 
compared (similar code could be used with the FTST instruction). The numbers are called A and B, 
and the comparison is A to B. 

The comparison itself requires loading A onto the top of the 80287 register stack and then comparing 
it to B, while popping the stack with the same instruction. The status word is then written into the 
80286 AX register. 

A and B have four possible orderings, and bits C3, C2, and CO of the condition code indicate which 
ordering holds. These bits are positioned in the upper byte of the NPX status word so as to correspond 
to the CPU's zero, parity, and carry flags (ZF, PF, and CF), when the byte is written into the flags. 
The code fragment sets ZF, PF, and CF of the CPU status word to the values of C3, C2, and CO of 
the NPX status word, and then uses the CPU conditional jump instructions to test the flags. The 
resulting code is extremely compact, requiring only seven instructions. 

The FXAM instruction updates all four condition code bits. Figure 4-2 shows how a jump table can be 
used to determine the characteristics of the value examined. The jump table (FXAM_TBL) is initial­
ized to contain the l6-bit displacement of 16 labels, one for each possible condition code setting. Note 
that four of the table entries contain the same value, because four condition code settings correspond 
to "empty." 

The program fragment performs the FXAM and stores the status word. It then manipulates the condi­
tion code bits to finally produce a number in register BX that equals the condition code times 2. This 
involves zeroing the unused bits in the byte that contains the code, shifting C3 to the right so that it is 
adjacent to C2, and then shifting the code to multiply it by 2. The resulting value is used as an index 
that selects one of the displacements from FXAM_TBL (the multiplication of the condition code is 
required because of the 2-byte length of each value in FXAM_TBL). The unconditional JMP instruc­
tion effectively vectors through the jump table to the labelled routine that contains code (not shown in 
the example) to process each possible result of the FXAM instruction. 
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A 
B 

DQ 
DQ 

FLD 
FCOMP 
FSTSW . , 

? 

A 
B 
A X 

NUMERIC PROGRAMMING EXAMPLES 

LOAD A ONTO TOP OF 287 STACK 
COMPARE A:B, POP A 
STORE RESULT TO CPU AX REGISTER 

; CPU AX REGISTER CONTAINS CONDITION CODES (RESULTS OF 
; COMPARE) 
; LOAD CONDITION CODES INTO CPU FLAGS 
SAHF 
; 
; USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO 
; B 
; 
JP 
JB 
JE 

LLUNORDERED 
LLESS 
LEQUAL ; 

TE S T C2 (P F') 

TEST CO ( C F') 

TE S T C3 (Z F') 

LGREATER: CO ( C F) · o , C3 (Z F') · 
LE QUAL: 

LLESS: 

CO ( C F') · o , C3 ( Z F') · 
CO ( C F') · , , C3 ( Z F') · 0 

C2 ( P F') · , 

Figure 4-1. Conditional Branching for Comparee 

JUMP TABLE FOR EXAMINE ROUTINE 

DW POS_UNNORM, POS_NAN, NEG_UNNORM, NEG_NAN, 
POS_NORM, POS_INFINITY, NEG_NORM, 
~EG_INFINITY, POS_ZERO, EMPTY, NEG_ZERO, 
EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY 

; EXAMINE ST AND STORE RESULT (CONDITION CODES) 
FXAM 
FSTSW AX 

Figure 4-2. Conditional Branching for FXAM 
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; CALCULATE OFFSET INTO JUMP TABLE 
MoV BH,O ; CLEAR UPPER HALF OF BX, 
MoV BL,AH ; LOAD CONDITION CODE INTO BL 
AND BL,00000111B ; CLEA.R ALL BITS EXCEPT C2-CO 
AND AH,01000000B ; CLEAR ALL BITS EXCEPT C3 
SHR AH,2 SHIFT C3 TWO PLACES RIGHT 
SAL BX,I SHIFT C2-CO 1 PLACE LEFT (MULTIPLY 

BY 2) 
DR BL,AH DROP C3 BACK IN ADJACENT TO C2 

(OOOXXXXO) 

; JUMP TO THE ROUTINE 'ADDRESSED' BY CONDITION CODE 
JMP FXAM_TBLIBXl 

HERE ARE THE JUMP TARGETS, ONE TO HANDLE 
; EACH POSSIBLE RESULT OF FXAM 

PoS_UNNoRM: 

EMPTY: 

PO LD E NORM: 

Figure 4-2. Conditional Branching for FXAM (Cont'd.) 

EXCEPTION HANDLING EXAMPLES 

There are many approaches to writing exception handlers. One useful technique is to consider the 
exception handler procedure as consisting of "prologue," "body," and "epilogue" sections of code. (For 
compatibility with the 80287 emulators, this procedure should be invoked by interrupt pointer (vector) 
number 16.) 
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At the beginning of the prologue, CPU interrupts have been disabled. The prologue performs all 
functions that must be protected from possible interruption by higher-priority sources. Typically, this 
will involve saving CPU registers and transferring diagnostic information from the 80287 to memory. 
When the critical processing has been completed, the prologue may enable CPU interrupts to allow 
higher-priority interrupt handlers to preempt the exception handler. 

The exception handler body examines the diagnostic information and makes a response that is neces­
sarily application-dependent. This response may range from halting execution, to displaying a message, 
to attempting to repair the problem and proceed with normal execution. 

The epilogue essentially reverses the actions of the prologue, restoring the CPU and the NPX so that 
normal execution can be resumed. The epilogue must not load an unmasked exception flag into the 
80287 or another exception will be requested immediately. 

Figure 4-3 through 4-5 show the ASM286 coding of three skeleton exception handlers. They show how 
prologues and epilogues can be written for various situations, but provide comments indicating only 
where the application-dependent exception handling body should be placed. 

Figure 4-3 and 4-4 are very similar; their only substantial difference is their choice of instructions to 
save and restore the 80287. The tradeoff here is between the increased diagnostic information provided 
by FNSAVE and the faster execution of FNSTENV. For applications that are sensitive to interrupt 
latency or that do not need to examine register contents, FNSTENV reduces the duration of the "criti­
cal region," during which the CPU will not recognize another interrupt request (unless it is a nonmask­
able interrupt). 

After the exception handler body, the epilogues prepare the CPU and the NPX to resume execution 
from the point of interruption (i.e., the instruction following the one that generated the unmasked 
exception). Notice that the exception flags in the memory image that is loaded into the 80287 are 
cleared to zero prior to reloading (in fact, in these examples, the entire status word image is cleared). 

The examples in figures 4-3 and 4-4 assume that the exception handler itself will not cause an unmasked 
exception. Where this is a possibility, the general approach shown in figure 4-5 can be employed. The 
basic technique is to save the full 80287 state and then to load a new control word in the prologue. 
Note that considerable care should be taken when designing an exception handler of this type to prevent 
the handler from being reentered endlessly. 

PROC 

SAVE CPU REGISTERS, ALLOCATE STACK SPACE 
FOR 80287 STATE IMAGE 

PUSH BP 
MOV BP,SP 
SUB SP,94 

SAVE FULL 80287 STATE, WAIT FOR COMPLETION, 
ENABLE CPU INTERRUPTS 

FNSAVE IBP-941 
F WA I T 
S T I 

APPLICATION-DEPENDENT EXCEPTION HANDLING 
CODE GOES HERE 

Figure 4-3. Full-State Exception Handler 
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CLEAR EXCEPTION FLAGS IN STATUS WORD 
RESTORE MODIFIED STATE 
IMAGE 

MOV 
FRSTOR 

DE-ALLOCATE 
MOV 

BYTE PTR IBP-921, OH 
IBP-941 
STACK SPACE, RESTORE 
SP,BP 

PDP BP 

RETURN TO INTERRUPTED CALCULATION 
IRET 

SAVE_ALL ENDP 

CPU REGISTERS 

Figure 4-3. Full-State Exception Handler (Cont'd.) 

SAVE_ENVIRONMENT PROC 

SAVE CPU REGISTERS, ALLOCATE STACK SPACE 
FOR 80287 ENVIRONMENT 

PUSH BP 

MOV BP,SP 
SUB SP,14 

SAVE ENVIRONMENT, WAIT FOR COMPLETION, 
ENABLE CPU INTERRUPTS 

FNSTENV IBP-141 
FWAIT 
S T I 

APPLICATION EXCEPTION-HANDLING CODE GOES HERE 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
RESTORE MODIFIED 
ENVIRONMENT IMAGE 

MOV BYTE PH IBP-121, OH 
FLDENV IBP-141 

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP 
PDP BP 

RETURN TO INTERRUPTED CALCULATION 
IRE T 

SAVE_ENVIRONMENT ENDP 

Figure 4-4. Reduced-Latency Exception Handler 
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LOCAL_CONTROL DW ASSUME INITIALIZED 

REENTRANT PROC 

SAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR 
80287 STATE IMAGE 

PUSH BP 

MOV BP,SP 
SUB SP,94 

SAVE STATE, LOAD NEW CONTROL WORD, 
FOR COMPLETION, ENABLE CPU INTERRUPTS 

FNSAVE IBP-94] 
FLDCW LOCAL_CONTROL 
S T I 

APPLICATION EXCEPTION HANDLING CODE GOES HERE. 
AN UNMASKED EXCEPTION GENERATED HERE WILL 
CAUSE THE EXCEPTION HANDLER TO BE REENTERED. 
IF LOCAL STORAGE IS NEEDED, IT MUST BE 
ALLOCATED ON THE CPU STACK. 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
RESTORE MODIFIED STATE IMAGE 

MOV BYTE PTR IBP-92], OH 
FRSTOR IBP-94] 

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP 

POP BP 
RETURN TO POINT OF INTERRUPTION 

IRE T 
REENTRANT ENDP 

Figure 4·5. Reentrant Exception Handler 
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FLOATING-POINT TO ASCII CONVERSION EXAMPLES 

Numeric programs must typically format their results at some point for presentation and inspection by 
the program user. In many cases, numeric results are formatted as ASCII strings for printing or display. 
This example shows how fioating,point values can be converted to decimal ASCII character strings. 
The function shown in figure 4-6 can be invoked from PL/M-286, Pascal-286, FORTRAN-286, or 
ASM28"6 routines. 

Shortness, speed, and accuracy were chosen rather than providing the maximum number of significant 
digits possible. An attempt is made to keep integers in their own domain to avoid unnecessary conver­
sion errors. 

Using the extended precision real number format, this routine achieves a worst case accuracy of three 
units in the 16th decimal position for a noninteger value or integers greater than 10'8• This is double 
precision accuracy. With values having decimal exponents less than 100 in magnitude, the accuracy is 
one unit in the 17th decimal position. 

Higher precision can be achieved with greater care in programming, larger program size, and lower 
performance. 

iAP)(286 MACRO ASSEMBLER 80287 Floating-Point to is-Digit ASCII Conversion 10: 12: 38 09/25/83 PAGE 

SERIES-III 1AP)(286 MACRO ASSEMBLER XICB ASSEMBLV OF MODULE FLOATING TO ASCII 
ODJECT MODULE PLACED IN : F3: FPASC. DB,} - -
ASSEMBLER INVOKED BY: ASM286.86: F3: FPASC. AP2 

Loe OB,; LINE 

1 +1 
2 
3 
4 
5 

• 7 
8 
9 

10 
11 
12 
13 
14 
15 
I. 
17 
18 
19 
20 
21 
22 
23 
24 
2. 2. 
27 
28 
29 
30 
31 
32 
33 
34 
3. 
3. 
37 
38 
30 
40 
41 
42 
43 
44 
45 
4. 
47 
48 
49 
50 

SOURCE 

$title("B0287 Floating-Point to IS-Digit ASCII Convllrsion") 

public floating_to_ascii 
extrn getJolIJer _10: near, tos_status: nesr 

This subroutine will convert the floating point number in tne 
top of the 80287 .tack to an ASCII stT'ing and s.epilratil power of 10 
scaling value (in binary>. The marimum lIIidth of the ASCII string 
formed is controlled by a parameter which must be > 1. Unnormal values. 
denormal values. and psuedo zeroes lIIill be correctll,l converted. 
A returned value will indicate hOIll many bin.frv bits of 
precision were lost in an unnormal or denormal value. The magnitude 
(in tltrms of binar\l power) of a psuedo zero lIIill also be indicated. 
IntegeT"s less than 10**18 in magnitude are accurately converted if the 
destination ASCII string field is lIIide enough to hold all the 
digits. Otherlllislt the value is converted to scientific notation. 

The status of the conversion iii identified bq the return value. 
it can be: 

conversion complete. string_size is defined 
invlilliid arguments 
exact integ&r conversion. 5tring_&iz& is defined 
indefinite 
+ NAN (Not A Number) 
- NAN 
+ Infinity 
- Inflinit\l 
psuedo zero found. string_size is defined 

The PLM/286 calling convention is: 

floating_to_asci i: 
procedure (number. d enormlilll-p tr, s tr ing-p tr. 5i ze_ptr, fi el d_s i l e. 

pOlller-ptr) word external, 
declare (denormal-ptr. 5trin9_ptr. pO\ll&r _pt,.. size-ptT') pointer; 
declare field_size lIIord. string_size based size-ptr lIIord! 
declare number reall 
declare denormal integlE'l' based denormal_ptl"l 
dec lare pOlller integer based pOlller _ptr! 
end floating_to_ascii! 

The floating point value is expected to be on the top of the NPX 
stack. This subroutine expects :3 fr.e entries on the NPX stack ilnd 
\IIill pop the passed value off IIIhen done. The generated ASCll string 
will have a leilding character either ,_, or ,+, indicilting the sign 
of the value. The ASCII decimal digits will imml!'diatl!'ly follolll. 
Thl!' nUmeric value of the ASCII string is (ASCII STRINQ. )*10**POWER. 

Figure 4-6. Floating-Point to ASCII Conversion Routine 
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iAPX286 MACRO ASSE'ttBLER 

LOC DBJ 

oooot] 
0002[] 
0004t] 
0006[] 
OOOSt] 
OOOA[] 
OOOCt] 
OOOE[] 

OOOA 

0012 
0002 
OOOA 
0001 
0000 
0006 
0003 
OOOS 

-0002 
-0000 
-000. 
-oooB 
0000 
0002 

-ocoan 
-OO04[l 
-OO06n 
-OOlOt] 
-OOIOe] 
-OOIDC] 

0010 

0000 DADO 

0002 Fa 
0003 04 
0004 F9 
0005 05 
0006 00 
0007 06 
0008 01 
0009 07 
000110 Fe 
0008 FE 
Dooe FD 
oooD FE 
OooE FA 
OOOF FE 
0010 FB 
0011 FE 

NUMERIC PROGRAMMING EXAMPLES 
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~INE 

51 

•• 53 

'0 •• 5' ., 
58 
59 
.0 
61 

•• .3 
.0 
•• .. 
67 
6B 
.9 
70 
71 
12 +1 
73 
70 
75 
76 
77 
7B 
79 
eo 
Bl 
eo 
B3 
BO 
B. 
B6 
B7 
BB 
B9 
90 
91 
92 
93 
9. 
•• 9. 
97 
9B 
99 

100 
101 
102 
103 
100 
10. 
106 
107 
lOS 
109 
110 
111 
112 
113 
11. 
11. 
11. 
117 
118 +1 
11. 
120 
1.1 
122 
123 
120 
12' 
1 •• 
1.7 
12B 
I •• 
130 

131 

13. 

133 

SOURCE 

If th~ given nUlabe" w.. zeT'o. the ASCII .t,.ing will contain ... ign 
end II .ingh UT'O chatteT'. Th .. value st"ing_siu indicat.~ the total 
hnllth of tha A~CII strinll including the sign character. String(O) will 
alwaVs hold the sign. It is possibh for str1ng_size to.be less than 
fi.ld_.he. Thi. occur. for :':""oes 0" intege" values. A p.u.do z."o 
will "atu"n a spacial ".tu"n code. Th. d.no"III.l count "Ul indicate 
the 'ow." of two o"iginall" a •• ociated .... ith the value. The POIU" of 
tan .nd ASCII st"ing will be as if the value lIIas an O1'dina"\1 z.ro. 

Thi •• ub"outine i. accurate up to a maximum of 1S decimal digits fo1' 
int ••• ,... Intega" value ..... ill have a ded, ... l po ... a" 0' z."o a •• oci.ted 
....ith them. Fo" non integ." •• the "e.ult .... ill be accu"at. to within 2 
d.cimal digits of the 16th decimal place (double ,,,echionL The 
e.ponantiate inst"uction is .1.0 used for scalinll the value into the 
"ange acceptable fa" the BCD d.ta tupa, The rounding mod. in effect 
on antr", to the subroutine i. used fa" the conversion. 

The following "egiste" •• "e not t"anspa"ent: 

ax bx cx dx si di flags 

Oefine the .tack la .. out. , 
bp_.av. 
•• _s.ve 
,..tuT'nJt,. 
pOIll • .,....P t " 
fhld_siU 
sizeowPt,. 
stT' inIJt1' 
dena,. •• l-pt1' 

perms_,ize 

• 
, 
BCDJ)lQITS 
WORD_SIZE 
BCD_SIZE 
MINUS 
NAN 
UFINITV 
INDEFINITE 
PSUEDO_ZERO 
INVALID 
ZERO 
DENORHAL 
UNNDRt'lAL 
NDRMAL 
EXACT 

i 
.t.tu. 
po ... " _tlllO 
pow.,. _t.n 
bcd_value 
bcd_b~h 
fI1ollction 

.,. 
equ I .,. .,. .,. .,. .,. .,. .,. 
.,. .,. .,. .,. .,. .,. .,. .,. . ,. .,. .,. .,. .,. .,. 
.,. .,. .,. .,. .,. . ,. .,. 

wo"d pt" tbpJ 
bp_save + size bp_sav. 
es_.ava + size .s_sava 
".turnJlt" + si ze r.tu"n.,..Ptr 
po",a,,-,t" + size PO\ll."-,t,, 
field_dIe + size field_siLe 
she_,t" + .iz. size-,t" 
.t"inIlJ'" + size strinIlJ'" 

size pO".'I'-,t1' + size flield_siz. + size siza.JIt" + 
siu string....pt1' + she deno'l'malJlt" 

IB 

• 10 
1 

• • 3 
B -. -, ... 
-B 
o 
2 

,> 
i Numbe,. of dillits in lu:d_valu. 

I Defina ".tu'l'n valu.s 
I Tha ex .. et valua. cho.en ha,. •• ". 
I impo ... t.nt. The" .u.t cot'1' •• pond to 
I the po •• Utle 1'etu"n valu ••• nd ba in 

the same nufll .... ic o"de" a. te.t.d b\l 
I the P"OIl1' ••. 

....01'd pt" Cbp-WORD_SIZEJ 
st.tu. - WORD_SIZE 
po .. e" _two - WORD_SIZE 
tb\lte pt1' power_ten - BCDJUZE 
b\lte pt" bcd_value 
bcd_v.lu • 

.he .t.tu. + size pow.,,_t .... o + .iz. powe'l'_t.n 
+ sizl! bcd_value 

.tack •• g (local_sh.+o) ; Allocat •• tad .pac. fo" local. 

..gment ." public 

.xt"n po ........ _t.bl.: q .... o1'd 

ev.n 
d. 10 

; Optimize fo1' It:. bU. 
I Ad Justlll.nt value h1' too big BCD 

Conv.1't the C3. C2. Ct. CO encoding f1'olft tos_statu. into meaningful bit 
flag. and valu ••. 

db UNNDRMAL. NAN. UNNDRMAL + MINUS. NAN + MINUS. 

NORMAL. INFINITY. NORMAL + MINUS. INFINITY + MINUS. 

ZERO. I NYALID. ZERO + MINUS. INYALID. 

DENDRI1AL. INVALID. DENDRMAL + MINUS. INYALID 

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.) 
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iAPX'28b MACRO ASSEMBLER 

LOC DB'" 

0012 

0012 EaoaDe 
0015 8808 
0017 2EBA870200 
001C 3CFE 
DOtE 7528 

0020 C20AOO 

0023 

0023 ODDS 
0025 EDD2 

0027 

0027 BOFE 

0029 

0029 e9 
002A 07 
002B C20AOO 

002E 

002E DB7EFO 
0031 ABOt 
0033 98 
0034 74F3 

0036 Boooeo 
0039 2B5Ef'6 
003C OB5EF4 
D03F OB5EF2 
0042 OB5EFO 
0045 7SE:! 

0047 D003 
0049 EDDE 

0048 

0049 06 
004C CSt 00000 

0050 BD4EOB 
0053 83F902 
0056 7CCF 

0058 49 
0059 B3F912 
OO5C 7603 

DOSE 891200 

0061 

0061 3C06 
0063 7DDE 

0065 3C04 
0067 7De5 

0069 D9El 

0068 BBDO 
006D 33CO 
006F SB7EOE 
0072 9905 
0074 8BSED6 
0077 8907 
0079 SOFAFC 
007C 7328 

D07E SOFAFA 
OOBI 132C 
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LINE 

134 
13. 
13. 
137 
138 
139 
140 
141 
14. 
143 
144 
145 
146 
IV 
148 
149 
150 
151 
IS. 
153 
154 
155 
156 
157 
158 
159 
160 
161 
16. 
163 
164 
165 
166 
167 
168 
169 
170 
171 
17' 
173 
174 
175 
176 
177 
178 
179 
180 
181 
18. 
183 
184 
185 
186 
187 
188 
18. 
190 
191 
19. 
19, 
194 
19. 
196 
197 
198 
19. 
.00 
• 01 
20. 
203 
.04 
20. 
.06 
207 
.08 
20' 
210 
211 
212 .,3 
214 
215 
216 
.17 
218 
'19 
220 
'21 
22' 
223 
224 
2'5 
226 
•• 7 

SOURCE 

call 

,m, 
Jno 

tos_status 
bl. ax 
a1. status tabll'Cbx] 
aI, INVALID 
not_empty 

Look at status of 5T(0) 
Get descriptor from table 

Look for empty SnO) 

ST(O) is empty! Return the status valu~ 

ret parms_size 

Remove infinity from stack and exit. 

f-stp 
Jmp 

st<O) 
short ell" i t""proc 

; OK. to leave fstp running 

String space is too small! Return invalid code. 

aI, INVALID 

leave I Restore stack 
pop Ii!S 

ret parms_sizl' 

STCO) is NAN 01' indefinite. Store thli! valul' in mli!mory and look 
at the fraction field to sepilrate indefinite from an ordinilry NAN. 

fstp 
h'st 
fllfilit 
J' 

mov 
sub 

J"' 
mov 
Jm, 

fraction 
.1, MINUS 

ell"i t ....p1'oc 

bl.OCOOOH 
bll".word ptr fraction+b 
bK.llford ptr f1'iilction+4 
b •• WOT'd ptT' fl'action+2 
bX,lIIIol'd ptr f1'action 
Il'litJ1'oC 

ill. INDEFINITE 
exitJl'oc 

Remove value from stack fol' elliamination 
I Look at sign bit 

In!!ul'e store is donl' 
I Can't be indefinite if positive 

I Match against uppe.,. 16 bits· 0-41 fraction 
Compiilre bits 63-48 

I Bit!! 32-47 must be zero 
Bits,'''31-1b must be zero 

I Bits 15-0 must be UPl'O 

I Set return v.lue for indefinite value 

Allocate stack space fa.,. local variilbllil. and li!st.blish pariilmeteT' 
addres'4ibility. 

no. _emptv: 

sizli! _ok: 

push 
enter 

mov ,m, 
Jl 

d., 
,m, 
Jb • 

,m, 
JOe 

,m, 

". 

.. 
local _siz •• O 

cx, fili!ld_size 
clI",2 
Iim.ll_stl'ing 

" cx, DCD_DIGITS 
size_ok 

CIf, BCD_DIgITS 

ill, INFINITY 
found_infinity 

ill.NAN 
NAN_Dr _indef-ini te 

Save working ,.liIgister 
Format stac k 

Check for enough string space 

AdJust for sign chOll'actel' 
Slile if string is too liill'gli! for BCD 

I Look fo1' infinity 
Return stiiltus value for + or - info 

Loo If '01' NAN Or INDEFINITE 

Set dl'fault 1'etul'n values and check that the nUlllber is normalized. 

mov 
mov 

mov ,m, 
J.' 
,m, 
J •• 

dl, iilX 
ax. Oil 

di. dli!normal.J1tr 
word ptr [diJ, ax 
bx. powl'r .JItr 
word ptl' [bx], iilK 
dl, ZERO 
l'eal_zero 

d 1. DENORMAL 
found_denormal 

j Use positive valu. anI" 
sign bit in al has true sign of' value 
S .. ve return viillue faT' lateT' 
Form 0 constant 
Zero d.noT'mal count 

Zero power of ten villu8 

Test for zel'O 
Skip power code if value is 

I Look faT' a d.normal value 
Handle it specially 

Figure 4-6_ Floating-Point to ASCII Conversion Routine (Cont'd.) 
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iAPX2B6 KACRO ASSEMBLER 

LOC OBJ 

0013 D9F4 
OOBS BOFAF8 
OOBB 7240 

008A BOEAFB 

OOBD DCjlEB 

OOBF 

OOBF DCC1 
0091 DEE' 
0093 DCilF4 

009& D9C9 
0097 DF15 
0099 DEC2 

0098 F71D 
0090 7528 

009F Dge9 
OOAI DF1D 

00A3 BOEAF8 
00A6 E9A400 

OOA9 

aCA9 BOEAFC 
OOAC E99£00 

OOAF 

OOAF D9ES 
0011 D.C. 
0083 D9FB 

00B5 D9F4 

0087 o.E' 
00 •• crBDFEO 
OOlC D9C9 
008E D.CA 
OOCO eOEAFA 
OOC3 ,.90044 
OOC. 74C7 

ooca DDDS 

OOCA 
OOCA 

COCA DD7EFO 
OOCD DF56FC 
OODO DIPEC 

ooD2 DEC. 
00D4 DFKFA 
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L.INE 

22a 
22' 
230 
• 31 
232 
233 
234 
.33 
23. 
237 
23a 
239 
240 2., 
2'. 
243 
244 
2.5 
2 •• 
247 
.4a 
2 •• 
•• 0 
251 
25. 
253 
254 
25. 
25. 
2.7 
•• a 
••• 2.0 2., 
2'2 .63 
2 •• 
2.5 
26' 
267 
268 
26. 
270 
;:171 

272 
27. 
274 
270 
27. 
277 
278 
27' 
280 
281 
282 
2.3 
28. 
2.5 
2 •• 
287 
288 
2 •• 
2'0 
291 
2.2 
2.3 
2 •• 
295 
2 •• 
2.7 
2.8 
2 •• 
300 
301 
302 
303 
30. 
305 
30. 
307 
308 
30' 
310 
311 
312 
313 
31' 
315 
31. 
317 
318 
319 
320 
321 

SOURCE 

fIlttT'act 
cmp 01. UNNDRMAL 
Jb normal_va1u • 

tlub d I. UNNDRMAL-NORMAL 

, Saparat ••• pon.nt fT'om ligniHcilncl 
, T.st fDT' unno,.mal valu. 

Return normal status with correct sign 

Normalize the fraction. adjust the pOliler of tlllO in ST(l) and set 
the denormal count value. 

Assert: 0 (= STlO) < 1. 0 

fld1 

hdd st(l), st 
hub 
fxtract 

hch 
fist word ptr tdiJ 
faddp st(2). st 

neg WOT'd ph tdiJ 
Jnz notJsuado_zeT'o 

; Load constant to normaUze fra!;;tion 

J Set integer bit in fraction 
j Form normalized fraction in ST(O) 

POlller of two held lIIill ba negative 
J of denormal count 
J Put denormal count in SnO) 

Put negative of denormal count in memor\! 
I Form correct pOliler Of tlilO in r.t(l) 

OK to US" word pt.,. rdiJ now 
I Form positivI! denoT'mal count 

A psuedo ze"o will appea" .s an unno"mal number. When attempting 
to normalize it. the resultant fraction field will be Iltro. Performing 
an fxtract on zero will \!ield iii zero exponent value. 

flKCh J Put power of two v.lue in st(O) 
fistp word ptr (diJ J Set denormiill count to power of two value 

J Word ptr tdiJ is not used by convert 
I integer. OK to lao!:lve l'unning 

sub dL NORMAL-PSU£DO_ZERO Sat return value saving the sign bit 
JInP convert_integer J Put z.ro value into memo1'1,1 

The number is a 1'8al zeT'o. set the retu1'n value and setup for 
t:onve1'sion to BCD 

.ub 
Jmp 

d I. ZERO-NORMAL 
C onvli:!rt_.t nte 9 £or 

j Convert !!tiltU'i to normal valuf' 
j Treat the z,n'o as an integer 

The numbar :1,. a d.normal. FXTRACT lIIill not lIIork correctl", in this 
c.... To corractl .... p.r.ta the .xponant .nd flraction, add lIS find 

J conlt.nt to the .xponent to 9u.,..nta. the result i.. not a d.norlll.l. , 
found_d.nor",a I: 

fldl 
filch 
fprem 

fxtr.ct 

I Prepar. to; bump exponent 

J Force d.normal to .mall •• t repre.ent.ble 
utendad re.l fo"mat exponent 
This will lIIork corr.ctl.., nOIll 

Tha power of the origin.l denorm.l v.lue ha. been •• fel.., i.olat.d, 
Check if the fracUon value , •• n unnormal. 

fxam 
f.t.1II 
filch 
fxch 
sub 
t .. t 
J' 

htp 

.t(2) 
d 1. DEN OR MAL-NORMAL 
a., 4400H 
nor",.l i.zl_fl",.ction 

.tCO) 

s •• if the f,..ction i •• n unnar",al 
S.ve BO;S7 .t.tu. in CPU AX reg flo" ht.,. 
Put expon.nt i.n BTeo) 
Put 1. ~ into STeO)' exponent in ST(2) 
Return normll st.tu. with correct .'ign 
Saa if C3-C2-0 impUng unnor",.1 or NAN 

J Jump if flr,ction is In unno",m.1 

CIlculate th crlcim.l m.gnitude I .. oci.ted with 'bhi. numblr to 
lIIithin one o"'cfu. Thh e",ro,. wUI 11I11a". h in.vUlbIa due to 
",ounding and lost pneilton. A •• result. we w'ill dIUb..,...tal" f.il 
to eon.ider thl LOGUO of the fr.cUon vllu. in calculating the o,.d8T' , 
Sinu the frIction will Illlll..,. be 1 <_ F < 2. it. LOOIO wUl not chIng. 
the b •• ic .ccu,..c .. of the function. To get the dlcimal orde" of mlgnitudl, 
.impl.., mulUpl" the powe,. of two Il.., LOOI0UU Ind t,.unclte the .,. .. ulil to 

I an intlg'''', , 
normal_v.lua: 
notJ.uldo_.aro: 

htp fraction 
filt POWI"_tIllO 
fldlg2 

flnul 
fhtp power_ten 

I Save thl f,..cUon fhld -Pc" later 
I SIlo" powar of two 
I Olt LOOIQ(2) 

Power _two is now S.f. to u •• 
Form LOQIOeof exponent of nUlllber) 

I An", roundi.ng lIod. will work h,,., 

Check if the ",agn:ltud. Of the number ruIa. out t" •• ting it I' 
.n intege". 

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.) 
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iAPX2S6 MACRO ASSEMBLER 

LOC CD"" 

0007 ipl 
OODe BS46FA 
0008 :28Cl 
DODD 7722 

OOOF OF46FC 
00E2 elF; 
00E4 80EAFE 
D0E7 D86EFO 
OOEA 09FD 
OOEC DDD1 
OOEE 09FC 
DOFO DBD' 
OOF2 9BDD7EFE 
OOF6 F746FE0040 
OOFS 7850 

OOFD ODDS 
DOFF BDDO 

0101 

0101 e907 
0103 F7DB 

0105 E90000 

010B DB6EFO 
0100 DEC' 
0100 88F! 
010F 01E6 
0111 01E6 
0113 01E6 
0115 DF46FC 
DllB DEC; 
011A D9FD 
011e DOD. 

011E 

011 E 2EOC"40800 

0123 'BDFEO 
0126 A90041 
0129 "DC 

0128 2EOE360000 
0130 eOE2FD 
0133 FF07 
0138 ED14 

0137 

0137 2EOC940000 
013C 'DDFEO 
D13F A90Dol 
0142 7407 

0144 2EDEOEOOOO 
014' FFOF 

0148 

0148 09FC 

0140 

0140 DF76FO 

0150 BEoaoo 
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LINE 

3" 
3.3 
3'4 
3 •• 
3 •• 
321 
3.S 
3'9 
330 
331 
33. 
333 
33. 
33. 
33. 
337 
33S 
339 
340 
341 
34. 
343 
34' 
34' .4. 
347 
34S 
'49 
3.0 
351 
35. 
353 
354 
355 
356 
357 
35B 
3.9 
3.0 
361 ... 
36. 
3.' 
3 •• 
3 •• 
367 
368 
3.9 
370 
.71 
372 
373 
374 
370 
376 
377 
37B 
379 
3.0 
381 
3B. 
383 
384 
38. 
38. 
387 
388 
• 89 
390 
391 
39' 
.93 
3.4 

••• 396 
3.7 
3.8 
399 
400 
401 
40. 
403 
404 
40. 
406 
407 
408 
40. 
410 
411 
41. 
413 
414 
4,. 

SOURCE 

"",.u 
""0" ax.pow.,,_t.n 
sub ••• c. 
J. .dJust_".sult 

Th. numb • .,. is b.tw •• n 1 .nd 
Tnt If it is .n int.g .... 

flUd pow." _two 
mov li.d. 
au. dl. NORMAL-EXACT ... '''.ction 
'sc.l. 
h. st(l) 
'''ndint 
'comp 
fish ... Itatu. 
hit IhtUI.400OH 
In' conv."t_int.g.r 

fIItp st(O) 
d •• si 

W.it 'or power_ten to be v.lid 
Q.t pow." of t.n of value 

I Fo,.m Icaling facto,. n.c •••• ,.u in a. 
Jump if numb.,. ... ill not fit 

J Re.to,.. original numb.,. 
I Save ,..tu,.n valu. 
I Conv.,.t to e.act r.turn value 

I Farm full valu •• this is 'afe h.re 
, CoPu value for campa,.. 
I T.st if its an int.g.,. 
I COlllpa,.e val ue •. 
, Save statu. 
I C3-1 impli.s it "'a •• n integer 

I R.mov. nan int.g.,. v.lue 
I R.ltor. original ratu"n v,du. 

Scale the nu.b.,. to lIIithin the r.nge .11o ... ed bV the BCD flo,.m.t. 
Th •• c.ling ope,.ation .hould produc. a numb.,. within one decimal o,.d.r 
of magnitude of the la,.g.st d.cim.l numb.r r.p,. ••• nt.bh within the 
g iv.n .t,.ing width. 

, 
adJult_r.lult: 

mov n., 

.td 
'mul 
mov 
ahl 
ahl 
ahl 
fild 
hddp 
fscal. 
fIItp 

wo,.d pt,. tb.l ••• 

.i. c. 

.i. 1 
,i.l 
.i. 1 
pow.r _two 
.t(~) •• t 

.t(1 ) 

I S.t initiill pOlll • .,. of t.n ,..tu"n value 
I Subtract on. fo,. •• ch en"d.,. of 

magnitude the value h sc.l.d bU 
9c.Ung fI.cto,. i, "eturned •• e.pon.nt 

, ilnd fr.ction 
g.t f,..ction 
Comb in. frilctions 
Form powe,. of ten of the m.ximum 
BCD v.lu. to flit in the .tring 

lInd .. in .i 

, Combine pow.rs of twa 

I FOT'm full value ••• panent wea .e4'. 
I R.IllOv ••• pon.nt 

T.st the adJust.d valu •• gainst a table of ... ct power' of t.n. 
Th. combinlld IIrror. of the m.gnitud •• stimilt. ilnd pow.r function cen 
rllsult in a value one ord.r of magnitude too small 0,. too I.,.g. to fit 
corr.cUu in thll OeD field, To hilndle this proble .. " prlltest the 
adJu.ted value. if it it too ,mall or larg •• th.n ildJust it by t.n and 
adJult the pow." a. ten valulI, 

fcom power_t.bletsil+tup. power_t.ble, Camp.". agilin.t ... ct pow.T' 

'sts... •• 
te.t ••• 410OH 
Jnl t •• t_for _Ifll.ll 

fidiv conlUO 
'.nd dl. not EXACT 
inc wo"d ptT' tb.J 
Jmp .hOT't in_,..ng • 

t.lt_fo,. _Idlilll: 

'com 
hhw 
t .. t 
J' 

pow." _tilb1.t.:I. J 
ox 
,...IOOH 
:l.n_".nll. 

Umul COntttO 
d.c wo"d ptT' tbltJ 

'T'ndint; 

lent",:! U •• thll nut .nt'ru sinell 
I has be.n del:Y"emented by one 
, No wait is n.c •••• ,,\! 
J If C3 - CO - 0 then too big 

Ell. ad Just value 
R.mov. exact fIlilll 

I AdJult pow.,. of t.n v.lu. 
I Conv."t the .... lu. to • BCD integ.,. 

I Te.t ".laUv. l.tn 
I ND wait is n.c •••• T'\! 

If CO - 0 th.n .tfO) )- low.,. bound 
Con".,.t the .... lu. to • BCD inbg." 

J AdJust .... lu. :l.nto T'ang. 
I AdJult pOIII.T' of ten .... lul 

Au.,.t: 0 (- TOB (. 999,999.9".999. "9, 9" 
Th. TOS nUMb.,. • .111 b. e •• ctlll T'.p"e .. ntabh in IS digit BCD ,o,.m.t. , 

con".T't_int.g.T': 

While the .tOT'. BCD "uns ••• tup ,..gilt.,.. 'OT' the l:onv.,..1on to 
ASCU. 

Ii. BCDJlIZE-i2 

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.) 
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iAPX2B6 MACRO ASSEMBLER 

LOC DB,,} 

0153 89040F 
0156 8BOI00 
0159 887EOC 
DISC BeDe 
QUE BEeD 
0160 Fe 
0161 8028 
0163 F6C201 
0166 7402 

0168 B02D 

016A 

016A AA 
016B SOE2FE 
016E 98 

Ol6F 

Ol6F BA62FO 
0172 BAC4 
0174 D2E8 
0176 22C5 
0178 7516 

017A BAC4 
017e 22C5 
017E 7518 

0190 4E 
0181 19EC 

0183 B030 
0185 A/It 
0186 43 
0187 E816 

0189 

0189 BA62FO 
018C BAC4 
018E D2E8 

0190 

0190 0430 
0192 AA 
0193 BAC4 
0195 22C5 
0197 43 

0198 

0198 0430 
019A AA 
0199 43 
019C 4E 
019D 79EA 

019F 

019F BB7EOA 
01A2 891D 
01A4 BBC:;! 
01A6 E9BOFE 

NUMERIC PROGRAMMING EXAMPLES 

80287 Floating-Point to IS-Digit ASCII ConvRT'sion 10: 12: 38 09/2'5/83 PACE 

LINE 

416 
417 
41B 
41. 
'20 
421 
4'2 
4'3 
4.4 
42' 
426 
427 
42. 
429 
430 
431 
432 
433 
434 
43. 
430 
437 
438 
43. 
440 
441 
44. 
443 
444 
44. 
440 
447 
44B 
4 •• 
450 
4:n 
•• 2 
453 

••• 
.55 
4.0 
.57 
.5B 
45. 
'00 
'01 
'02 
.03 
.04 
.05 
.00 
'07 
.OB .0. 
470 
471 
472 
.73 

'7' 
'7S 
470 
477 
.7B 
47. 
4BO 
4Bl 
4B' 
'B3 
4B4 
4B5 
4BO 
4B7 
4BB 
4B, 
4.0 
491 
• 92 
4.3 

••• 
4.5 
•• 0 
•• 7 
4.B 

••• 
500 
501 
.02 
503 
50' 

SOURCE 

, 

mov 
mov 

mov 
dd 
mov 
tnt 
J' 

sto.1t 

CII.Of04h 
bll.l 
di. st,.ingJt" 
a •• ds 

oil. '+' 
dl,KINUS 
positive_result 

oil. '-' 

.. nd dl. not MINUS 
flllait 

Remove leading 

sk ip_h.ding_u"oes: 

mov 
.hr 
ond 
JU 

mov 
ond 
JU 

ah. bcd_b",tetsil 
al, ah 
al. cl 
al, ch 
"nt"l' _add 

al, ah 
0111. ch 
ente,. _even .. 

J S.t .hift count and ••• k 
, S.t initlal .ize of ASCII fi.ld for slgn 
; g.t ad dr ••• of .t.rt of ASCII .tring 
J Cop II ds to es 

S.t .utoincw· ••• nt lItode 
J Char sign fhld 

Look for ne •• tive value 

Bump string pointer p.st sign 
Turn off .ign bit 

J Wait for fbstp to finish 

ah: BCD bute value in use 
al: ASCII Ch.Nlct"r value 
dx: Retu,.n value 
ch: BCD lItiisk .. Ofh 
cl: BCD shift count - 4 
bI: ASCII .hing field lIIidth 
si: BCD field index 
di: ASCII .hihg field point.r 
ds. IiIS: ASCII .t,.ing .egment bau' 

get BCD byte 
Copy value 
g"t high order digit 
Set zero fleg 
Exit loop if hading 

J get BCD byte again 
Q"t 10111 order digit 

zero found 

J Exit loop if non 181'0 digit found 

Decrement BCD index d., 
In. sk ip_l ead i ng_z eroes 

The signiflicand lIIali all 

mov al, '0' Set initial 
stosb 
inc bx 
Jmp short exit_lilith_value 

Now expand the BCD &tT'ing into digit peT' byte values 0-9. , 
digit_loop: 

mov 
shr 

enteT' _odd: 

odd 
stosb 
mov 
ond 
inc 

enteT' _ ...... n: 

odd 
stosb 
inc 
de, 
In • 

ilh. bcd_blltetsil 
al, ah 
al, cl 

0111. '0' 

al, ah 
0111. ch 
b. 

ill. '0' 

b. .. 
digit_loop 

J ConveT'sion complete. , 
.x it_lilith_value: 

di •• iuJtT' 
1II0T'd pt,. tdi]. bx 

mo.... ax. dx 
JIRP exitJY"oc 

floiltinll_to_a.cii endp 
code ends 

.nd 

Qet BCD byte 

Qet high oT'deT' digit 

J Con .... ert to ASCI I 
Put digit into ASCII string 
Oet 10111 order digit 

Bump field size countlu' 

Con .... eT't to ASCI I 
J Put digit into ASCII aT'ea 

Bump field size counter 
Go to nut BCD byte 

Set the string size and T'emaind.Y". 

I Set T"etuY"n value 

·A9SEMILY'··COMPLETE. NO ·WARNINOS. NO ERRORS 

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.) 
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inter NUMERIC PROGRAMMING EXAMPLES 

lAP l2116 MACRO ASSEI1ILER 12: 11: OS 09/25/83 PAGE 

SERIES-III IAPl2116 MACRO loS_LEA uoa loS_LV OF MODULE GETJ'OWER_IO 
DB"'ECT f«JDULE PLACED IN : F3: PDW10. DB" 
ASSEMBLER INVOKED BY: ASIG86.86: F3: PONlO. Aft2 

&.DC 01.1 

0000 OOOOOOOOOOOOFO 
OF 

0001 00000000000024 
40 

0010 00000000000059 
40 

0018 0OOOOOOOO0408F 
40 

0020 0OOOO0000088C3 
40 

0028 00000000006"8 
40 

0030 OOOOOOOoa0842E 
41 

0038 OOOOOOOOD01263 
41 

0040 0OO0000084D797 
41 

0048 000000006\5CDCD 
41 

0050 000000205F ... 002 
42 

0058 000000E8764837 
42 

0060 OOOOOOA2941A4tD 
42 

0068 00OO4QES9C30A2 
4. 

0070 OOO()IP01EC4ICD6 4. 
0078 00OO3426FS680C 

43 
0080 OOSOE03779C341 

43 
ooee OOAODBB5573476 

43 
0090 OOCS4E676DC lAB 

43 

009a 

009.3D12OO 
0091 770F 

009D 53 
OO'lE aaDa 
OOAO C1E303 
00A3 2ED0870ooo 
00108 51 
O0A9D9F4 
OOAII C3 

OOAC 

OOAC 09E' 
OOAE C8040000 
0012 S946F£ 
OOB5 DE4EFE 
OOBa .. 097EFC 
OOBC .846FC 
OOIF 25FFF3 
DOC; 000004 
OOC5 .746FC 

ooe8 D9U 

LINE 

1+1 
2 
3 
4 
5 

• 7 
a 
9 

10 
II 
12 
13 
14 
15 
I. 
17 
IS 
19 
20 
21 

.3 

24 

2. 

2. 
27 
2a 
29 
30 
31 
32 
33 
34 
3. 
~ 
37 
3B 
39 
40 
41 
42 
43 
44 

4' 4. 
47 
4a 
49 
50 
OJ 
02 
53 
54 
55 

•• 57 
.a 

SOURCE 

This sull1"outin. will c.leu"'. the v.he of 10 ...... 
F01" v.lu •• of 0 <- •• ( 19. 'h. " •• ult _ill .lI.ct. 
All 80286 ,..gis' ...... ,.. ,,..n.p.,,."t .nll the v.lu. i. ".flu"n.d on 
_h. TOS •• t .. o nUllb." •••• ,on.nt In STU) and '"action in ST'O) . 
Th. e.,on.nt va1u. c.n b. 1." •• " th.n the 1." •• at e.,on.nt 0' .n 
•• t.nd.d " •• 1 'o".at nUll".". Thr ••• 'h.cll ent"i.s are us.lI. 

•• 'JO •• " _10 

,utlllc •• tJolII.r_10. ,olll.,,_tabh 

.tacka •• S 

• •••• nt ." ,ublic 

u •••• act yalu ••• "0111 1. 0 to letS, 

,., 
J. 

a •• IS 
out_a' _,..n •• 

pua" til 
IIIOY b •• a. 
.h1 b •• 3 
'U powe1'_tatlh[h] 
,op til 
fI'".ct ... 

J D,tilliu 10 bit .cc ... 

J T,;.t '01' 0 (- .. ( 19 

J 8.t lIto,.Un. ind •• " •• ist.,. 
J Fa". table ind •• 

I O.t ••• ct Ya1u. 
I R.ato,.. " •• ist." Yalu. 
I a.,."at. ,0 •• " and ,,,.ction 
I OK to l •• v. '.',..ct ,.unnln. 

C.1culat. the yalu. u.in. the •• ,onenUat. in.t"uction. 
Th. 'oUo",,'n. ".laUona a". u •• d: 

10** •• a**, lo.a, 10)+.» 

'Ul::lt 
.nt." 
•• v 
U.ul 
'.tCIil 
•• v 

••• .. 
.ch. 

:2 •• ' I+F) • 2.*1 • 2 •• F 
if .tCS) • 1 anti .teO) • a**F th.n fac.le ,,,oduc •• a**fI+F) 

4.0 
[b,-21 ••• 
lIfo,.d ,t,. [II,-:U 
UfO'" ,t1" [11,-4] 
••• ilia'" ,tT' [b,-..l 
••• not OCOOH 
••• D40OH 
••• IItO'" ph [bp-41 

TDS • LOO2Cl0» 
Fo" ... t at.d 

I a.",. 'ow.,. of 10 ",.lu. 
I TOB. X • LODaCl0)'" • LOQ;!UO."') 

O.t cu,.,..nt cont,.01 110,,11 
g.t cont1"ol 1110" •• no .. It n.c •••• T" 

I ".all of' cU'f'1".nt "oun'"n. fi.ld 
I S.t "ound to n ••• Uye infinit" 
J Put n ... cont"ol "0'" "" 1II.lIIorv 
; old cont,.ol 1110'" is in •• 
I S.t TDS • -1. 0 

Figure 4-6. Floating-Point to ASCII Converaion Routine (Cont'd.) 
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NUMERIC PROGRAMMING EXAMPLES 

jAPX2Bb MACRO ASSEMBLER COIIlc:ulat. the v .. lue of! 10**ax "12: 11: O.S 09/25/83 PAgE 

LOC ODJ 

COCA DIPEO 
ooce D9Cl 
OOCE D9bEFC 
0001 D9FC 
00D3 S946FC 
0006 D96EFC 
00[)9 D9CA 
OODB D8E:ii! 
OODD SB46FE 
OOEO D9FD 
OOE2 D9FO 
00E4 C9 
00E5 DEE1 
00E7 DCCS 
00E9 C3 

ASSEMBL V COMPLETE. 

LINE _. 
• 0 
.1 

•• .3 

•• •• •• .7 
.8 

•• 70 
71 
7. 

73 
7. 
7. 
7. 
77 
78 

NO WARNINGS. 

SOURCE 

fchs 
f .. 
I1de ... 
frndint 
mov 
'ldC:1If 
fxch 
fsu,b 
may 
'scale 
f2xm1 
l.ave 
faub" 
fmul 

TOt 

g"t-llollle" _10 

code 

NO ERRORS 

_1;<1 ) 
ward ptr Cltp-4J 

word ptr [bp-41.ak 
word ptr [bp-41 
steiB 
st •• t(2) 
ax. [bp-21 

st. steO) 

.ndp 

ends 
.nd 

I COP\! paw.", value in b ••• two 
I Set n .... cont1'ol word value 

TDS • I: -inf < J <- X, I is an intege" 
R.s.tore original rounding control 

TOS .. X. &T(l) - -1. O. ST(~ii!) .. I 
TDS,F" X-I: 0 <= TOS < 1. a 
Re.toT'e pOllle,. of ten 

,TDS-F/2: o <""T08 <0.5 
I TDS "" 2**(F/2) - 1. 0 

Restore stae k 
Fo,.m a**eFt:!:) 
Fo,,"m 2*.F 

OK to have fmul running 

iAPX28b MACRO ASSEMBLER Dete"mine TOS "egiste" conhnts 12: 12: 13 09/25/83 PAGE 

SERIES-III iAPX286 MACRO ASSEMBLER X108 ASSEMBLY OF MODULE TCS~TATUS 
OBJECT MODULE PL.ACED IN : F3: TOSST. OBJ 
ASSEMBL.ER INVOKED BY: ASM286.86: F3: TOSST. AP2 

L.OC OBJ 

0000 

0000 D9E5 
0002 9BDFEO 
0005 BAC4 
0007 250740 
DaDA COEC03 
0000 OAC4 
OOOF 8400 
0011 C3 

ASSEMBLY COMPLETE. 

LINE 

I +1 
2 
3 

• 5 

• 
7 
8 

• 10 
II 
12 
13 
I' I­I. 
17 
18 
I. 
20 
21 
2. 
23 
2' 
25 
2. 
27 
28 
2. 
30 

NO WARNINGS. 

SOURCE 

$tith("Determine TOS "egiste" contents") 

code 

Thh sub".outine will retu"n a value flrom O-US .in AX co""esponding 
to the contents of! 80287 TOS. All regitlte"s a"e t"ansparent .and no 
."rors a"e possible. The "etu"n value cor"esponds to c3. c2. cl. cO 
of FXAM instruction. 

J Allocate space on the stilck 

segment er public 

proc 

fix.", 
fstsw a. 
"'ov .al.;ah 
and ax.4007h 
sh" .h.3 

al. ah 
mov .h.O 
rot 

I Get "egist." contents st.tu. 
get status 

I Put bit 10-8 into bih 2-0 
Mask out bits c3. c2. cl. cO 

I Put bit c3 into bit 11 
Put c3 into bit 3 

I Clea" "etu"n valul! 

,"ode ends 
ond 

NO ERRORS 

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.) 

Function Partitioning 

Three separate modules implement the conversion. Most of the work of the conversion is done in the 
module FLOATING_TO.-ASCII. The other modules are provided separately, because they have a 
more general use. One of them, GET_POWER-IO, is also used by the ASCII to floating-point conver­
sion routine. The other small module, TOS_STATUS, will identify what, if anything, is in the top of 
the numeric register stack. 
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NUMERIC PROGRAMMING EXAMPLES 

Exception Considerations 

Care is taken inside the function to avoid generating exceptions. Any possible numeric value will be 
accepted. The only exceptions possible would occur if insufficient space exists on the numeric register 
stack. 

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and status 
(unnormal, denormal, zero, sign). The string size is tested for a minimum and maximum value. If the 
top of the register stack is empty, or the string size is too small, the function will return with an error 
code. 

Overflow and underflow is avoided inside the function for very large or very small numbers. 

Special Instructions 

The functions demonstrate the operation of several numeric instructions, different data types, and 
precision control. Shown are instructions for automatic conversion to BCD, calculating the value of 10 
raised to an integer value, establishing and maintaining concurrency, data synchronization, and use of 
directed rounding on the NPX. 

Without the extended precision data type and built-in exponential function, the double precision accuracy 
of this function could not be attained with the size and speed of the shown example. 

The function relies on the numeric BCD data type for conversion from binary floating-point to decimal. 
It is not difficult to unpack the BCD digits into separate ASCII decimal digits. The major work involves 
scaling the floating-point value to the comparatively limited range of BCD values. To print a 9-digit 
result requires accurately scaling the given value to an integer between 108 and 109• For example, the 
number +0.123456789 requires a scaling factor of 109 to produce the value +123456789.0, which 
can be stored in 9 BCD digits. The scale factor must be an exact power of 10 to avoid to changing any 
of the printed digit values. 

These routines should exactly convert all values exactly representable in decimal in the field size given. 
Integer values that fit in the given string size will not be scaled, but directly stored into the BCD form. 
Noninteger values exactly representable in decimal within the string size limits will also be exactly 
converted. For example, 0.125 is exactly representable in binary or decimal. To convert this floating­
point value to decimal, the scaling factor wiII be 1000, resulting in 125. When scaling a value, the 
function must keep track of where the decimal point lies in the final decimal value. 

Description of Operation 

Converting a floating-point number to decimal ASCII takes three major steps: identifying the magni­
tude of the number, scaling it for the BCD data type, and converting the BCD data type to a decimal 
ASCII string. 

Identifying the magnitude of the result requires finding the value X such that the number is repre­
sented by 1*10x , where 1.0 < = I < 10.0. Scaling the number requires multiplying it by a scaling 
factor lOS, so that the result is an integer requiring no more decimal digits than provided for in the 
ASCII string. 

Once scaled, the numeric rounding modes and BCD conversion put the number in a form easy to 
convert to decimal ASCII by host software. 
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\ 
Implementing each of these three steps requires attention to detail. To begin with, not all floating-point 
values have a numeric meaning. Values such as infinity, indefinite, or Not a Number (NaN) may be 
encountered by the conversion routine. The conversion routine should recognize these values and identify 
them uniquely. 

Special cases of numeric values also exist. Denormals, unnormals, and pseudo zero all have a numeric 
value but should be recognized, because all of them indicate that precision was lost during some earlier 
calculations. 

Once it has been determined that the number has a numeric value, and it is normalized setting appro­
priate unnormal flags, the value must be scaled to the BCD range. 

Scaling the Value 

To scale the number, its magnitude must be determined. It is sufficient to calculate the magnitude to 
an accuracy of 1 unit, or within a factor of 10 of the given 'Ialue. After scaling the number, a check 
will be made to see if the result falls in the range expected. If not, the result can be adjusted one 
decimal order of magnitude up or down. The adjustment test after the scaling is necessary due to 
inevitable inaccuracies in the scaling value. 

Because the magnitude estimate need only be close, a fast technique is used. The magnitude is estimated 
by multiplying the power of 2, the unbiased floating-point exponent, associated with the number by 
log102. Rounding the result to an integer will produce an estimate of sufficient accuracy. Ignoring the 
fraction value can introduce a maximum error of 0.32 in the result. 

Using the magnitude of the value and size of the number string, the scaling factor can be calculated. 
Calculating the scaling factor is the most inaccurate operation of the conversion process. The relation 
lOX = 2**(X*log2 1O) is used for this function. The exponentiate instruction (F2XM1) will be used. 

Due to restrictions on the range of values allowed by the F2XMl instruction, the power of 2 value will 
be split into integer and fraction components. The relation 2**(1 + F) = 2*"'1 * 2**F allows using 
the FSCALE instruction to recombine the 2**F value, calculated through F2XM1, and the 2**1 part. 

INACCURACY IN SCALING 

The inaccuracy of these operations arises because of the trailing zeros placed into the fraction value 
when stripping off the integer valued bits. For each integer valued bit in the power of 2 value separated 
from the fraction bits, one bit of precision is lost in the fraction field due to the zero fill occurring in 
the least significant bits. 

Up to 14 bits may be lost in the fraction because the largest allowed floating point exponent value is 
214-1. 

AVOIDING UNDERFLOW AND OVERFLOW 

The fraction and exponent fields of the number are separated to avoid underflow and overflow in 
calculating the scaling values. For example, to scale 10-4932 to 108 requires a scaling factor of 10495°, 
which cannot be represented by the NPX. 

By separating the exponent and fraction, the scaling operation involves adding the exponents separate 
from multiplying the fractions. The exponent arithmetic will involve small integers, all easily repre­
sented by the NPX. 
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FINAL ADJUSTMENTS 

It is possible that the power function (GeLPoweLI0) could produce a scaling value such that it forms 
a scaled result larger than the ASCII field could allow. For example, scaling 9.9999999999999999 X 
104900 by 1.00000000000000010 X 10-4883 would produce 1.00000000000000009 X 1018• The scale 
factor is within the accuracy of the NPX and the result is within the conversion accuracy, but it cannot 
be represented in BCD format. This is why there is a post-scaling test on the magnitude of the result. 
The result can be multiplied or divided by 10, depending on whether the result was too small or too 
large, respectively. 

Output Format 

For maximum flexibility in output formats, the position of the decimal point is indicated by a binary 
integer called the power value. If the power value is zero, then the decimal point is assumed to be at 
the right of the rightmost digit. Power values greater than zero indicate how many trailing zeros are 
not shown. For each unit below zero, move the decimal point to the left in the string. 

The last step of the conversion is storing the result in BCD and indicating where the decimal point lies. 
The BCD string is then unpacked into ASCII decimal characters. The ASCII sign is set corresponding 
to the sign of the original value. 

TRIGONOMETRIC CALCULATION EXAMPLES 

The 80287 instruction set does not provide a complete set of trigonometric functions that can be used 
directly in calculations. Rather, the basic building blocks for implementing trigonometric functions are 
provided by the FPT AN and FPREM instructions. The example in figure 4-7 shows how three trigon­
ometric functions (sine, cosine, and tangent) can be implementing using the 80287. All three functions 
accept a valid angle argument between -262 and +262. These functions may be called from 
PL/M-286, Pascal-286, FORTRAN-286, or ASM286 routines. 

These trigonometric functions use the partial tangent instruction together with trigonometric identities 
to calculate the result. They are accurate to within 16 units of the low 4 bits of an extended precision 
value. The functions are coded for speed and small size, with tradeoffs available for greater accuracy. 

FPTAN and FPREM 

These trigonometric functions use the FPTAN instruction of the NPX. FPTAN requires that the angle 
argument be between 0 and 7r /4 radians, 0 to 45 degrees. The FPREM instruction is used to reduce 
the argument down to this range. The low three quotient bits set by FPREM identify which octant the 
original angle was in. 

One FPREM instruction iteration can reduce angles of 1018 radians or less in magnitude to 7r / 4! Larger 
values can be reduced, but the meaning of the result is questionable, because any errors in the least 
significant bits of that value represent changes of 45 degrees or more in the reduced angle. 
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Cosine Uses Sine Code 

To save code space, the cosine function uses most of the sine function code. The relation sin ( I A I + 
11"/2) = cos(A) is used to convert the cosine argument into a sine argument. Adding 11"/2 to the angle 
is performed by adding 0102 to the FPREM quotient bits identifying the argument's octant. 

It would be very inaccurate to add 11"/2 to the cosine argument if it was very much different 
from 11"/2. 

Depending on which octant the argument falls in, a different relation will be used in the sine and 
tangent functions. The program listings show which relations are used. 

For the tangent function, the ratio produced by FPTAN will be directly evaluated. The sine function 
will use either a sine or cosine relation depending on which octant the angle fell into. On exit, these 
functions will normally leave a divide instruction in progress to maintain concurrency. 

If the input angles are of a restricted range, such as from 0 to 45 degrees, then considerable optimiza­
tion is possible since full angle reduction and octant identification is not necessary. 

All three functions begin by looking at the value given to them. Not a Number (NaN), infinity, or 
empty registers must be specially treated. Unnormals need to be converted to normal values before the 
FPTAN instruction will work correctly. Denormals will be converted to very small unnormals that do 
work correctly for the FPTAN instruction. The sign of the angle is saved to control the sign of the 
result. 

Within the functions, close attention was paid to maintain concurrent execution of the 80287 and host. 
The concurrent execution will effectively hide the execution time of the decision logic used in the 
program. 

iAP)(:2S6 MACRO ASSEMBLER 80287 Trig:nom.tric Functions 

SERIES-III iAPX2B6 MACRO ASSEMBLER X10B ASSEMBLV OF MODULE TRIQ-YUNCTIONB 
OBJECT MCDULE PLACED IN : F3: TRIQ, OS') 
ASSEMBLER INVOKED BV: A8Mii!86.86: F3: TRIO, API; 

Loe CD,) LINE 

1 +1 

• 3 

• • • 7 

SOURCE 

.tithC "80;87 Trignomat,.:!., Function.") 

name t"ill_functionl 
public ,:Lna. codn •• 'hngant 

10: 13: 51 OQ/21!1/a3 PAGE 

a IIIIJ!B7 record ""I: ,. cond3: 1. top: 3, cand';!: 1, tond1: 1, condO: 1. 

0000 3'C26B21A2DAOF 
C9FE3F 

OOOA OOOOCOFF 

9 
10 
11 ,. 
13 ,. ,. ,. 
17 
IS +1 

" ,. .. 2:8 

cad. .."mant .,. public 

pi_Clu."hr 

.ind.Un.it. 
• 8J8Ct 

Defina local con.hnh. 

Ivan 
dt 3FFEC90FDAA22168C23!5R J PI/4 

dd OFFCOOOOOR J lnd.finih .p.cial valu • 

Figure 4-7. Calculating Trigonometric Functions 
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iAPX2B6 MACRO ASSEMBLER 

L.OC DB'; 

OOOE 

OOOE DOD' 
0010 71501 

001. C3 

0013 

0013 Ea0901 
0016 Ee.F 

001a 

001S D'E' 
OOIA 98DFEO 
0010 2EDI2EOOOO 
0022 1101 
0024 .E 
0025 7263 

0027 D9C. 
00;9 ?Ate 

0028 DDD' 
0020 "E4 

NUMERIC PROGRAMMING EXAMPLES 

B02B7 Tr:Lgnom.tric: Function. 10: 13: 51 09/25/83 PAQE 

LINE 

I~ 
20 
.1 
•• .3 
.4 

•• ... 
.7 
•• .~ 
30 
31 
32 
33 
34 
3. 
3 .. 
37 
3. 
3~ 
40 
41 
4. 
43 
44 
4' +1 
46 
47 
4B 
4~ 
.0 
.1 
•• .3 •• •• o. 
07 
.a 
.~ 
60 
.. I 
6. 
.. 3 
64 ... 
66 
67 
6B .. 
70 
71 
72 +1 
73 
7. 
70 
76 
77 
7B 
79 
ao 
BI 
a. 
a3 
e4 
a. ... 
e7 
aa 
a~ 
~O 
~I 
~. 

'3 
~4 ,. 
~6 
07 
~e 
~, 

100 
101 
10. 
103 
104 
10. 
10. 
107 
IDe 
10~ 
110 
III 
II. 

SOURCE 

, , 
: ... 

Thil subroutine calculat •• the line aT' COline of the angle, given in 
"adianl. Th •• ngh is in ST(O), the ,.etu'J'ned value lIIill b. in enD)' 
The ,. .. ult is eccu"ate to within 7 unit. of the h.lt lillnU:Lcant ttl,. .. 
bits of the NPX uhnded ,. .. 1 fIoT'mat. The PLM/B6 hfinition h: 

lin.: pracadu". (angle) r •• l .. t."nel • 
dec I.,.. angh r •• l1 
and sinai 

COline: procedu"a 'IIn,la) "'11.11 .. ta"na1, 
dacla.,.a ang1. " •• 11 
and cadn •• 

Th,. •• staclt "a"ilh"a .,.. "aq,ui"'-.d. The ruult ofl the fluncUon il 
dlfl:l.ned el fIollowl fIoT' thl flollowing 'T'gulllintl: 

Ingh 

v.1:I.d unnoT'mel 1"1 th.n 2 •• 62 in megn:Ltudl 
IIT'O 
dlno"mel 
velid OT' unnoT'mel gT'letlT' then 2**62 
infl:l.n:Ltu 
NAN 
.mptu 

T'nult 

COT'T'lct v.lul 
o aT' 1 
COT'T'ICt dlnoT',"el 
indlfl:l.n:Lh 
:Lndlfl:l.nitl 
NAN 
Imptu 

Thh funcUon is be .. d on thl NPX flpt.n inltT'ucUon. Thl fpten 
inltT'ucUon lIIill onlu 1II0T'k with en engh of 'T'om 0 to P1I4. With this 
.:LnltT'ucUon. thl iii'll 0" COlinI' 0' enghl fT'om 0 to PI/4 cln bl IccuT'etllu 
ce1cul.hd. Thl tlchniCLul ulld bU this ,.ou'llinl cen celcul.h e gln'T'el 
Iii'll 0,. cOI:l.nl bU using one of' flouT' pOlsibll 0pIT'eUonl: 

Lit R • lengll mod PI/41 
8 • -loT' 1. ecco"ding to the lign of thl engll 

11 l:l.nCR) 3) linCPII4-R) 4) caICPJl4-R) 

Ttli choici of thl n1eUon end the lign of thl ,,"ult fIoUOlil1 thl 
dlcision hbh Ihollin bllolll ie .. d on thl ochnt thl engll filll in: 

octent Iii'll cOlinl 

0 e.1 • I a.4 3 

• e •• -1*1 
3 e.3 -1*4 

• -8*1 -1*1iil 

• -8*4 -1*3 

• -8*1iil I 
7 -8*3 4 

, 
linl_II"O_UnnoT'm.l: 

fltp ItCl ) 
In. Inti" _linl_"OT'me1 ill 

Angll Is • 11,.0, ... 
Angle is '1'1 unno""'el . , 

IntlT'_linl-"o"m.l i II: 

tIll no,.mel ill_VI lUI 
J,mp Iho,.t l"teT'_linl 

COlii'll PT'OC 

fllem 
f,tllll .. 
fl. pi_CLue"h" ... cl.l 
I.hf 
J' funnu-pe,.emltl,. 

Angh il unno,.",eI. nOT'",el. 

filch 
J •• Inti" _1:1.1'11 

Angll il en unnoT'm.l 

fltp ItC 1) 
In. IntlT' _linl_nO,.me1 ill 

Angll Is • 11,.0, COI(O) -1.0 

j R.movi PI/4 
J .Jump if .ngh il unnoT'mel 

I EntT'U point to calin. 

I Look et the velul 
StaT' I It.tUI v.lul 
S.tup fiaT" engll f'.duc. 

I Bign.l COlii'll funcUon 
J ZF • C3. PF • C2. CF • CO 

.Jump if p."emltlf' il 
Imptu. NAN. 0,. inf:LnU\j 

d.na,.m.l. 

I ItCO) • enllh. Itel) • PI!4 
I .Jump if! no,.ml1 01' d.no,.mel 

Figure 4-7. Calculating Trigonometric Functions (Cont'd.) 
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iAPX2B6 MACRO ASSEMBLER 

LOC DB,) 

002F DDDS 
0031 D9ES 
0033 C3 

0034 

0034 D9£5 
0036 .DDFEO 
0039 2ED82EOOOO 
003E 9E 

003F 7249 

0041 D9C9 
0043 Bl00 
0045 7BC? 

0047 
0047 D9FB 

0049 93 
004A 9BDFEO 

004D 93 
004E F6C704 
0051 7544 

0053 D9El 

0055 OAe'?' 
0057 740F 

0059 BOE4FD 
Dose BoeFBO 

005F eOC740 
0062 3000 
0064 DODO 
0066 32FB 

0068 

0068 F6C702 
006B 7404 

0060 DEE' 
006F EDOE 

0071 

0071 D9E4 
0073 91 
0074 9BDFEO 
0077 91 
0078 DDD9 
007A F6C540 
0070 7514 

NUMERIC PROGRAMMING EXAMPLES 

80287 r1'ignolllet"ic Functions 10: 13: S"l 09/25/93 PAGE 

LINE 

113 
114 
115 
116 
117 
118 
11~ 
120 
121 
12. 
123 
'.4 
12. 
126 
127 
128 
12~ 

130 
131 
132 
133 
134 
13. 
136 
137 
138 
13. 
140 
141 
142 
143 
144 
14. 
146 
147 
148 
14~ 
150 
151 
152 
153 
154 
155 
156 
157 
158 
15~ 
160 
161 
162 
163 
16. 
16. 
166 
167 
168 
16. 
170 
171 
17. 
173 
17. 
pS 
176 
177 
178 
179 
180 
181 
18. 

183 
18. 
18. 
186 
187 
188 
18~ 
1~0 
191 
192 
1~3 
1~4 

1~' 
196 
1~7 
1~8 , .. 
200 
201 
20. 
203 
20. 
205 
206 

SOURCE 

. 
sine: 

, 

fstp 
fldl 
ret 

st(O) I Remove 0 
Return 1 

All work is done as iii sine f:unction. By adding PII2 to the angle 
II cosine i. c:onv.,.ted to II sine. Of COUT'se the angle addition is not 
done to the argument but rather to the pr09rOllm logic control values. 

fxam 
f'1ItSIil ax 
fld pi_quarter 
uhf' 

J' funny-paraml'ter 

Angle is unnorm.l. normal. 

fxch 
cl.O 

JPo sine_z ero_unnorlllal 

, Entry point for sine function 

Look at thl' parameter 
, Look at fxam status 

get PII4 value 
, CF ,. CO. PF ,. C2. ZF '" C3 

~ump if emptU' NAN. or infinitu 

denormal. 

; STU) .. PI/4. st(O) angle 
; Signal sine 
, ~ump if' zero or unnormal 

ST(O) is Itither a normal or denormal value. Both will work. 
Use the fprem instruction to accurately reduce the range of the given 
angle to within 0 and PI/4 in magnitudl'. If' fprem cannot reduce the 
angle in one shot. the .ngle is too big to be meaningful, > 2**62 
radians. Any "oundoff I'rroT' in the calculation of' the angle given 
could completelu change the T'esult of thiti function. It is a.fest to 
call this very rare case lin 

enter_sine: 
f'prem Reduce angle 

xchg ax. ttx 
f'StSIll all 

xchg ax. bx 
test tth. high (mask cond2) 
Jnz angle_tao_big 

Note that fprem wi 11 force a 
denormal to a veru small unnol'mal 

I Fptan of a vel'\! small unnormal 
will be the same vE!"ry small 
unnormal. which is correct. 
Save old status in BX 
Check if t'eduction was""""'Eomplete 

, Quotient in CO. C3. Cl 
Put new status in bx 
sinI2*N*PI+x) '" sinlx) 

Set sign flag .. and test for which eighth of the revolution the 
angle fell into. 

Assert; -PI/4 < stlO) ( PI/4 

fabs 

or 
J' 

cl.cl 
sine_select 

Force the aT'gument positive 
eond1 bit in bx holds the sign 

I Test faT' sine or cosine function 
~ump if sine function 

This is II cosine function. Ignore the original sign of the angle 
and add a quarter revolution to the octant id from the fprem intitruction. 
cos (A) "" sinCA+PI/2) and cos( tAt) '" coslA) 

and 

add 
mov 
rd 

ah. not high(mask cond!) 
bh.80H 

bh. high (mask cond3> 
al.O 
al.l 
bh. al 

I Turn off sign of argument 
Prepare to add 010 to CO, C3. Cl 
status value in ax 
Set bus\! bit so carr\! out from 
C3 lIIill go into the carry flag 
Extract carr\! flag 
Put carru flag in low bit 
Add carl'\! to CO not changing 
C1 flag 

See if the argument should be reversed. depending on the octant in 
IIIhich the argument fell during fprem. 

test 
J' 

bh. high(mask cond1) 
no_sine_r.verse 

Angle lIIas in octants 1,3.5.7. 

fsub 
Jmp 

Angle lIIa!S in octants 0.2.4. b. 

; Reverse angle if Cl "" 1 

Invert sense of rotation 
o < arg <= PI/4 

Test for a zero argument since fptan lIIill not work if st<O) .. 0 

fltst 
xchg ax. ex 
flst.1II ax 
xchg 
fstp st(1) 
test ch, high(maslr eond3> 
Jnz sine_.rgument_zltro 

rest foT' zero angle 

c?ond3 - 1 if stCO) - 0 

Remove PI/4 
If' C3=1. argument is zero 

Figure 4-7. Calculating Trigonometric Functions (Cont'd.) 
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iAPX28b MACRO ASSEMBLER 

L..OC DB,,} 

oo7F 

001F D9F2 

OOSl 

0091 F6C142 
0084 7B1A 

OOB6 D9Cl 
OOS8 EItA 

OOBA 

OOSA ODDS 
Doee 7404 

OOSE 780:2 

0090 D9FB 

0092 
0092 

O(KI2 C3 

OOljl3 

0093 D9ES 
OCK" EBEA 

0097 

0097 OED' 
ooep. 2ED'060AOO 
aO.,E 90 
009F C3 

ODAO 

OOAO D9CO 
00A2 D9CA 

OOA4 

ooA4 necs 
OOA6 D9C9 
00A8 Deea 
OOAA DEct 
COAC D9FA 

DOAE aOE701 
00B1 BOE402 
0084 CAFe 
00B6 7A02 

00B8 D9EO 

OOBA 

OOBA DEF9 

DOBC C3 

NUMERIC PROGRAMMING EXAMPLES 

80287 T'I'ignometl'ic Functions 10: 13: 51 09/25/83 PAGE 

LINE 

207 
20B 
209 
210 
21\ 
212 
213 
214 
21. 
216 
217 
21B 
219 
220 
221 
222 
223 
22. 
22. 
226 
227 
22B 
229 
230 
231 
232 
233 
234 
235 
236 
237 
23B 
239 
240 
241 
242 
243 
244 
2 .. 
246 
2.7 
24B 
2.9 
250 
201 
2.2 
2'3 
2.4 ... 
256 
2'7 
25a 
2.9 
260 
261 
262 
263 
264 
26. 
266 
267 
26B 
26. 
270 
271 
272 
273 
27. 
275 
276 
277 
27a 
.79 
2BO 
2BI 
2B2 
2B3 
2B' 

'B' 2B. 
2B7 
2Ba 
2B9 
2'0 
2.1 
292 

293 
2'4 
29. 
296 +1 
297 
29. 
299 
300 

SOURCE 

A ••• rt: 0 < steO) <- PI/4 , 
do_sine_flpt.n: 

I TAN 5r(O) .. ST(U/SHO) = V/X 

after _sine_fptan: 

t •• t bh, highCm.sk cond3 + mask condl), Look at octant angle fell into 
Jpo )C_"u",e,..toT' C.lcul.t. cosine floT' octants 

Calculate the sin. of the argum.nt. 
.in(A) • hnCA)/sttrt (1+tan(A)**2) 
sin (A) • VI'llrt(X*X + V*V) 

It( 1) 
.hort finish_sin. 

I 1,2. S. 6 

itt taneA) = V/X then 

I Cap \I V value 
; Put V value in numerator 

The tap of the stack i. either NAN. infinity. 01' emptll· , 
funn\l-param.t.r: 

fstp 
J' 

JPo 

st(O) 
return_.mptq 

R.move PI/4 
I Return .mptll if no parm 

.Jump if steO) is NAN 

st(O) is infinity. RetUrn an indefinite value. 

fprem j ST( 1) can bt' anything 

r.turn_NAN: 
retuT'n_empty: 

rot 

Simulate fptliln with st(O) = 0 

fldl 
Jmp 

l Ok to leilve fprem running 

j Simullilte tanCO) 
, Return the zero v.alue 

The .. ngle was tao large. Remove the modulus and dividend from the 
stack .and return an indefinite result. , 

angle_tao_big: 

fcompp 
fld indefinite 
fwait 
rot 

Calculate the cosine 0' the argument. 

I Pop twa values 'ram the stack 
RetuT'n indefinite 
Wait for load to finhh 

cosCA) .. I/sCl.rt(1+t.an(A)**2) if taneA) = V/X then 
cos (A) "" X/sllrteX*X + v*V) 

fld 
fxch 

st(O) 
5t(2) 

fmul st. !it (0) 

filch 
fmul st. st(O) 
fadd 
fsttT't 

Copy X value 
Put X in numeratoT' 

steo) '" X*X + V*V 
st(O) "" sqrtex*x + V*V) 

Form the sign of the result. The two conditions are the C1 flag from 
FXAM in bh and the CO flag from fprem in ah. 

and 
on' 
or 
JPe 

.pchs 

.pdiv 
rot 

co.in. andp 
'eject 

bh. highCmask condO) 
ah,high(mask cond1) 
bh. ah 
positive_sine 

Look at the fprem CO flag 
Look at thl! ham Cl flag 

, Even numbeT' of flags cancel 
Two negatives make oil positive 

I Force result negative 

FOT'm final result 
Ok to leave I'd i v runn i ng 

This function will calculate the tangent of an ,angle. 
The angh. in r.dians i. p ..... d in SnO), the tangent i. returned 
in ST(OL The tangent i. calculated to .an accur.acy of 4 unit. in the 

Figure 4-7. Calculating Trigonometric Functions (Cont'd.) 
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iAPXeB6 MACRO ASSEMBLER 

LOC DBJ 

OOBO 

OOBD 09E5 
OOBF 9BDFEO 
aOC2 2EDB2ECOOO 
OOC? 9£ 
ooce ?:;zeD 

. aOCA D9C9 
coce 7A1? 

OOCE 

OOCE D'FB 

0000 93 
0001 'SDFEa 

00D4 93 
0005 F6C704 
0008 7580 

CODA D9£1 

aODC FbC702 
aODF 740£ 

OOEl DEE' 
00E3 EDlS 

OOE' 

00E5 0009 
00E7 7405 

NUMERIC PROGRAMMING EXAMPLES 

soes? Trignometr1c Functi·ons 10: 13: 51 09/25/83 PAGE 

LINE 

301 
30' 
303 
30' 
30. 
30b 
307 
30B 
309 
310 
311 
31' 
313 
31' 
313 
31b 
317 
31B 
319 

"0 
"1 
322 
323 
304 ". "b 
327 
3'B 
329 
330 
331 
332 
333 
334 
33. 
33b 
337 
33B 
339 
340 
341 
34' 
343 
34' 
345 
346 
347 
3.B 
349 
350 
301 
33' 
353 
35. 
305 
"b 
357 
35B 
359· 
360 
3bl 
3b2 
363 
3b. 
3b. 
3bb 
367 
3bB 
3b. 
370 
371 
37> 
373 
37. 
370 
37b 
377 
37B 
379 
3BO 
3BI 
3B, 
3B3 
3B, 
3B, 
3B. 
3B7 
3Ba 
309 
390 
391 
392 
3.3 
39. 
395 

, 

SOURCE 

l.ast th"e. significant bits of an extended real fOl'mat number. The 
Pt..I'I/B6 calling flormiilt i5: 

tangent: proceduT'e (anglel 1'eal external; 
dec I .. ,.. anglll realJ 
end tangentl 

Two .tack ,.egist.,-s e,,8 used. The result of the tangent 'unction is 
defined flor the following cases: 

ang Ie resul t 

valid or unnormel <: 2**62 in magnitude 
o 
denormal 
valid ot' unnoT'mal ,. 2**62 in magnitude 
NAN 
infinitlJ 
emptlJ 

cot't'ect value 
o 
cot't'ect denol'"mill 
indefinite 
NAN 
indefinite 
emptlJ 

The tangent instt'uctJ,on use. tha fptan instt'uction. Foul' po!uible 
t'elations at'e u.ed: 

Let R = langle MOD PI/41 
S - -1 OT' 1 depending the sign 0' the angle 

1) tan(R) 2) ten(PII4-R) 3) 1/tan(R) 4) 1/ten<PI/4-R) 

The follollling table is used to dacide IIIhich t'elation to use depending 
on in IIIhich octant the angle fell. 

octant t'alation 

0 •• 1 
I • •• 
2 -S*3 
3 -S*2 

• .'1 
5 S •• 
b -B*3 
7 -B*2 

tangent pt'oc 

fla .. 
flstslII .. 
fl. P i_lluat't.T' 
sahfl 
J' flunn'll-pat'ametet' 

AnDl .. is unnol'mal, not'mal. 

flxch 
JPo tan_zet'D_unnormal 

Angle is eitheT' an normal or denoT'mal. 

I Loole at tlie pat'ameteT' 
Qet fJ.am status 
Get P1I4 
CF = CO. PF = C2. IF "" C3 

; st(O) = angle. st(l) - PI/4 

Reduce the .ngle to the T'ange -PI/4 < T'flSult < PI/4. 
If' flpT'em cannot peT'foT'm this operation 1n one tT'lJ, the magnitude of the 
angle must be ,. 2**62. Such an angle itl so larga that any T'ounding 
erroT'S could malee a veT'", laT'ga diffel'ance in the reduced angle. 
It is saflest to call t"'is vaT'1I T'aT'e cas. an erT'OT'. 

Ichg al. bx 
fstsw .x 

ax, bx 
bh, high(mask cond2) 
ang 1 e_toO_b i g 

See if the angle must be rliveT'sed. 

Assnt: -PI/4 < lOttO) < PI/4 

flabs 

test 
J' 

bh. high(mask condl) 
no_tan_T'eveT'se 

Quotient in CO. C3, C1 
J Convet't denoT'mals into unnoT'mals 

Guotient identiflies octant 
, 0T'i9inlll angle fell into 

J Test floT' complete T'eduction 
, Exit ifl angle lIIas tao big 

a <= st(O) < PI/4 
C3 in bx has the sign flag 

I must be raveT'sed 

Angle fell in octants 1,3,5,7. Reve.,.se it, subtract it fT'om P1/4. 

fsub ; ReveT'se angle 
Jmp shoT't do_tangent 

Angle is either zeT'O OT' an unnoT'mal. , 
tan_zeT'o_unnoT'mal: 

htp 

J' 

st(1) 
tan_angle_zeT'o 

Angle is an unnormlill. 

I Remove PI/4 

Figure 4-7. Calculating Trigonometric Functions (Cont'd.) 
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NUMERIC PROGRAMMING EXAMPLES 

lAPX286 MACRO ASSEMBLER 80287 TT'ignometric Functions 10: 13: 51 09/25/83 PAGE 

LOC DB') 

00E9 E83300 
OOEe ED ED 

OOEE 

OOEE C3 

DOEF 

OOEF 09E4 
OOFl 91 
OOF2 'BOFEO 
OOFS 91 
OOF6 DDD9 
oaFS F6C540 
OOFB 7515 

oaFD 

OOFO D9F2 

DOFF 

DOFF BAC? 
0101 254002 

0104 F6C742 

0107 7BOD 

0109 OAe4 
010D 7A02 

0100 D9EO 

OlaF 

OlaF DEF9 
0111 C3 

0112 

0112 D9EB 
0114 EBE' 

0116 

0116 OAe4 
011B 1A02 

OtlA 09EO 

011e 

OtiC DEFt 
011E C3 

aUF 

011F 09El 
0121 D9F4 
0123 09E8 
0125 DCC! 
0127 DEE9 
0129 D'lFD 
0128 DOD' 
0120 2EDB2EOooO 
0132 D9C9 
0134 C3 

ASSEMBL V COMPLETE, 

LINE 

3'6 
3.7 
3.8 
3" 
400 
401 
40. 
403 
• 04 
405 
406 
407 
408 
40. 
410 
411 
41. 
413 
41' 
415 
416 
417 
418 
41. 
420 
421 
422 
• 23 
'24 
425 
426 
427 
428 
42. 
430 
431 
432 
43' 
434 
435 
436 
437 
438 
43. 
440 
441 
442 
443 
44' 
445 
446 
447 
448 
44. 
450 
451 
45. 
453 
4.4 
455 
456 
457 
458 
45' 
460 
461 

462 
463 
464 
465 
466 
467 
468 

'6' 470 
471 
472 
47. 
474 
475 
476" 
477 
478 
47. 
.80 
481 
482 
483 
484 
485 

NO WARNINOS. 

SOURCE 

call normalize_value 
Jmp tan_normal 

ret 

Angle fell in octants 0.2.4.6 . 

fltst 
xchg 
"'stsw 
xchg 
htp 
test 
In. 

flptan 

ax. ex 
n 
ax. ex 
st(!) 
ch, high(mask cond3) 
tan_zero 

Test rOT' stCO) '" 0, fptan won't UloTk. 

Test for zero angle 

C3 '" 1 if st (0) = 0 

J Remove PI/4 

; tan ST(O) ... ST(!)/ST(O) 

aft.r _tangent: 

Decide on the ordar of the operands and thair sign for the divide 
operation IIIhih the fptan instruction is 1II0rking . 

mov al, bh i Get a COPIJ 0' flprem C3 fIlag 
and ax. mask condl + high(mask cond3)i E.allline fprltm C3 nag and 

; FXAM Cl fllag 
test bh. high(mask condl + mask cond3)i Use ravltrsa divida if in 

JPO 

Ang la lIIas in octants 0.3.4.7. 

J octants 1.2.5.6 
Note! parit" lIIorks on low 

B bits on1,,! 

Test for the sign of the result. TIIIO negatives cancel. 

or al, ah 
Jpe positive_divide 

fchs J Forca result negative 

P osi t ive _d i vi de: 

fldiv 
rot 

J For .. rasult 
Ok to leave fdiv running 

fld1 J Force 1/0 - tan(PII2) 
Jmp after _tangltnt 

Angle lIIas in octants 1.2.5.6. 
Set the correct sign of the result. , 

reverse_divide: 

al. ah 
Jpe positive_r_divide 

fldivr 
ret 

tangent endp 

J FOT'm T'eciprocal ofl re.ult 
Ok to leave fldiv Tunning 

This function lIIill nOT'malize the value in st(O)' 
Thlt" P1I4 is placed 1nto st(!). , 

nOT'm.li za_valua: 

fab. 
fxtT'act 
fld1 
fadd st(l)' st 
hub 
fscale 
htp sttl) 
flO p1_lluntn 
filch 
.et 

coda ends .n. 
NO ERRORS 

J FOT'ce value positive 
o <- st(O) < 1 
Qet nOT'maU:n bit 

I NOT'malize fTaction 
I RastoT'a 0T'1;1nal value 
I FO'rm 0'r1g1na1 nOT'nlal1nd value 
I Rltmove scale factoT' 
I get PII4 

Figure 4-7. Calculating Trigonometric Functions (Cont'd.) 
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APPENDIX A 
MACHINE INSTRUCTION ENCODING AND DECODING 

Machine instructions for the 80287 come in one of five different forms as shown in table A-I. In all 
cases, the instructions are at least two bytes long and begin with the bit pattern 11011B, which identi­
fies the ESCAPE class of instructions. Instructions that reference memory operands are encoded much 
like similar CPU instructions, because all of the CPU memory-addressing modes may be used with 
ESCAPE instructions. 

Note that several of the processor control instructions (see table 2-11 in Chapter Two) may be preceded 
by an assembler-generated CPU WAIT instruction (encoding: 10011011 B) if they are programmed 
using the WAIT form of their mnemonics. The ASM286 assembler inserts aWAIT instruction only 
before these specific processor control instructions-all of the numeric instructions are automatically 
synchronized by the 80286 CPU and an explicit WAIT instruction, though allowed, is not necessary. 

Table A-1. 80287 Instruction Encoding 

Lower-Addressed Byte 

(1) 1 1 0 1 1 OP-A 

1 1 0 1 1 FORMAT 

(3) 1 1 0 1 1 R P 

(4) 1 1 0 1 1 0 0 

(5) 1 1 0 1 1 0 1 

7 6 5 4 3 2 
NOTES: 

Higher-Addressed Byte 

1 MOD 1 OP-B R/M 

OP-AMOD OP-B R/M 

OP-A 1 1 OP-B REG 

1 1 1 1 OP 

1 1 1 1 OP 

o 7 654 3 2 

0, 1, or 2 bytes 

DISPLACEMENT 

DISPLACEMENT 

o 

(1)Memory transfers, including applicable processor control instructions; 0, 1, or 2 displacement bytes may 
follow. 

(2)Memory arithmetic and comparison instructions; 0, 1, or 2 displacement bytes may follow. 

(3)Stack arithmetic and comparison instructions. 

(4)Constant, transcendental, some arithmetic instructions. 

(6)Processor control instructions that do not reference memory. 

OP, OP-A, OP-B: Instruction opcode, possibly split into two fields. 

MOD: Same as 80286 CPU mode field. 

R/M: Same as 80286 CPU register/memory field. 

FORMAT: Defines memory operand 
00 = short real 
01 = short integer 
10 = long real 
11 = word integer 

R: 0 = return result to stack top 
1 = return result to other register 
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inter MACHINE INSTRUCTION ENCODING AND DECODING 

P: 0 = do not pop stack 
1 = pop stack after operation 

REG: register stack element 
000 = stack top 
001 = next on stack 
010 = third stack element, etc. 

Table A-2 lists all 80287 machine instructions in binary sequence. This table may be used to "disassem­
ble" instructions in unformatted memory dumps or instructions monitored from the data bus. Users 
writing exception handlers may also find this information useful to identify the offending instruction. 

Table A-2. Machine Instruction Decoding Guide 

1st Byte \ 

2nd Byte Bytes 3, 4 ASM286 Instruction 

Hex Binary Format 

08 1101 1000 MOOOO OR/M (disp-Io),(disp-hi) FAOO short-real 
08 1101 1000 MOOOO lR/M (disp-Io),(disp-hi) FMUL short-real 
08 1101 1000 MOOOl OR/M (disp-Io),(disp-hi) FCOM short-real 
08 1101 1000 MOOOl lR/M (disp-Io),(disp-hi) FCOMP short-real 
08 1101 1000 M0010 OR/M (disp-Io),(disp-hi) FSUB short-real 
08 1101 1000 M0010 lR/M (disp-Io),(disp-hi) FSUBR short-real 
08 1101 1000 MOOll OR/M (disp-Io),(disp-hi) FOIV short-real 
08 1101 1000 M0011 lR/M (disp-Io),(disp-hi) FOIVR short-real 
08 1101 1000 1100 OREG FAOO ST,ST(i) 
08 1101 1000 1100 lREG FMUL ST,ST(i) 
08 1101 1000 1101 OREG FCOM ST(i) 
08 1101 1000 1101 lREG FCOMP ST(i) 
08 1101 1000 1110 OREG FSUB ST,ST(i) 
08 1101 1000 1110 lREG FSUBR ST,ST(i) 
08 1101 1000 1111 OREG FOIV ST,ST(i) 
08 1101 1000 1111 lREG FOIVR ST,ST(i) 
09 1101 1001 MOOOO OR/M (disp-Io),(disp-hi) FLO short-real 
09 1101 1001 MOOOO lR/M reserved 
09 1101 1001 MOOOl OR/M (disp-Io),(disp-hi) FST short-real 
09 1101 1001 MOOOl lR/M (disp-Io),(disp-hi) FSTP short-real 
09 1101 1001 M0010 OR/M (disp-Io),(disp-hi) FLOENV 14-bytes 
09 1101 1001 M0010 lR/M (disp-Io),(disp-hi) FLOCW 2-bytes 
09 1101 1001 M0011 OR/M (disp-Io),(disp-hi) FSTENV 14-bytes 
09 1101 1001 M0011 lR/M (disp-Io),(disp-hi) FSTCW 2-bytes 
09 1101 1001 1100 OREG FLO ST(i) 
09 1101 1001 1100 lREG FXCH ST(i) 
09 1101 1001 1101 0000 FNOP 
09 1101 1001 1101 0001 reserved 
09 1101 1001 1101 001- reserved 
09 1101 1001 1101 01-- reserved 
09 1101 1001 1101 lREG *(1 ) 
09 1101 1001 1110 0000 FCHS 
09 1101 1001 1110 0001 FABS 
09 1101 1001 1110 001- reserved 
09 1101 1001 1110 0100 FTST 
09 1101 1001 1110 0101 FXAM 
09 1101 1001 1110 011- reserved 
09 1101 1001 1110 1000 FLOl 
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Table A-2. Machine Instruction Decoding Guide (Cont'd.) 

1st Byte 

2nd Byte Bytes 3, 4 ASM286 Instruction 

Hex Binary Format 

D9 1101 1001 1110 1001 FLDL2T 
D9 1101 1001 1110 1010 FLDL2E 
D9 1101 1001 1110 1011 FLDPI 
D9 1101 1001 1110 1100 FLDLG2 
09 1101 1001 1110 1101 FLDLN2 
09 1101 1001 1110 1110 FLDZ 
09 1101 1001 1110 1111 reserved 
09 1101 1001 1111 0000 F2XM1 
D9 1101 1001 1111 0001 FYL2X 
D9 1101 1001 1111 0010 FPTAN 
D9 1101 1001 1111 0011 FPATAN 
D9 1101 1001 1111 0100 FXTRACT 
D9 1101 1001 1111 0101 reserved 
09 1101 1001 1111 0110 FDECSTP 
D9 1101 1001 1111 0111 FINCSTP 
D9 1101 1001 1111 1000 FPREM 
D9 1101 1001 1111 1001 FYL2XP1 
D9 1101 1001 1111 1010 FSQRT 
D9 1101 1001 1111 1011 reserved 
D9 1101 1001 1111 1100 FRNDINT 
D9 1101 1001 1111 1101 FSCALE 
D9 1101 1001 1111 111-

, 
reserved 

DA 1101 1010 MODOO OR/M (disp-Io),(disp-hi) FIADD short-integer 
DA 1101 1010 MODOO 1R/M (disp-Io),(disp-hi) FIMUL short-integer 
DA 1101 1010 MOD01 OR/M (disp-Io),(disp-hi) FICOM short-integer 
DA 1101 1010 MOD01 1R/M (disp-Io),(disp-hi) FICOMP short-integer 
DA 1101 1010 MOD10 OR/M (disp-Io),(disp-hi) FISUB short-integer 
DA 1101 1010 MOD10 1R/M (disp-Io),(disp-hi) FISUBR short-integer 
DA 1101 1010 MOD11 OR/M (disp-Io),(disp-hi) FIDIV short-integer 
DA 1101 1010 MOD11 1R/M (disp-Io),(disp-hi) FIDIVR short-integer 
DA 1101 1010 11-- ---- reserved 
DB 1101 1011 MODOO OR/M (disp-Io),(disp-hi) FILD short-integer 
DB 1101 1011 MODOO .1R/M (disp-Io),(disp-hi) reserved 
DB 1101 1011 MOD01 OR/M (disp-Io),(disp-hi) FIST short-integer 
DB 1101 1011 MOD01 1R/M (disp-Io),(disp-hi) FISTP short-integer 
DB 1101 1011 MOD10 OR/M (disp-Io),(disp-hi) reserved 
DB 1101 1011 MOD10·1R/M (disp-Io),(disp-hi) FLO temp-real 
DB 1101 1011 MOD11 OR/M (disp-Io),(disp-hi) reserved 
DB 1101 1011 MOD11 1R/M (disp-Io),(disp-hi) FSTP temp-real 
DB 1101 1011 110- --.. - reserved 
DB 1101 1011 1110 0000 reserved (8087 FENI) 
DB 1101 1011 1110 0001 reserved (8087 FDISI) 
DB 1101 1011 1110 0010 FCLEX 
DB 1101 1011 1110 0011 FINIT 
DB 1101 1011 1110 0100 FSETPM 
DB 1101 1011 1110 1--- reserved 
DB 1101 1011 1111 ---- reserved 
DC 1101 1100 MODOO OR/M (disp-Io),(disp-hi) FADD long-real 
DC 1101 1100 MODOO 1R/M (disp-Io),(disp-hi) FMUL long-real 
DC 1101 1100 MOD01 OR/M (disp-Io),(disp-hi) FCOM long-real 
DC 1101 1100 MOD01 1R/M (disp-Io),(disp-hi) FCOMP long-real 
DC 1101 1100 MOD10 OR/M (disp-Io),(disp-hi) FSUB long-real 
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Table A-2. Machine Instruction Decoding Guide (Cont'd.) 

1st Byte 

2nd Byte Bytes 3, 4 
ASM286 Instruction 

Hex Binary Format 

DC 1101 1100 MOD10 lR/M (disp-Io),(disp-hi) FSUBR long-real 
DC 1101 1100 MOD11 OR/M (disp-Io),(disp-hi) FDIV long-real 
DC 1101 1100 MOD11 1R/M (disp-Io),(disp-hi) FDIVR long-real 
DC 1101 1100 1100 OREG FADD ST(i),ST 
DC 1101 1100 1100 1REG FMUL ST(i),ST 
DC 1101 1100 1101 OREG *(2) 
DC 1101 1100 1101 1 REG *(3) 
DC 1101 1100 1110 OREG FSUB ST(i),ST 
DC 1101 1100 1110 1REG FSUBR ST(i),ST 
DC 1101 1100 1111 OREG FDIV ST(i),ST 
DC 1101 1100 1111 lREG FDIVR ST(i),ST 
DD 1101 1101 MODOO OR/M (disp-Io),(disp-hi) FLD long-real 
DD 1101 1101 MODOO 1R/M reserved 
DD 1101 1101 MOD01 OR/M (disp-Io),(disp-hi) FST long-real 
DD 1101 1101 MOD01 lR/M (disp-Io),(disp-hi) FSTP long-real 
DD 1101 1101 MOD10 OR/M (disp-Io),(disp-hi) FRSTOR 94-bytes 
DD 1101 1101 MOD10 1R/M (disp-Io),(disp-hi) reserved 
DD 1101 1101 MOD11 OR/M (disp-Io),(disp-hi) FSAVE 94-bytes 
DD 1101 1101 MOD11 1R/M (disp-Io),(disp-hi) FSTSW 2-bytes 
DD 1101 1101 1100 OREG FFREE ST(i) 
DD 1101 1101 1100 lREG *(4) 
DD 1101 1101 1101 OREG FST ST(i) 
DD 1101 1101 1101 1REG FSTP ST(i) 
DD 1101 1101 111- --_ .. reserved 
DE 1101 1110 MODOO OR/M (disp-Io),(disp-hi) FIADD word-integer 
DE 1101 1110 MODOO 1R/M (disp-Io),(disp-hi) FIMUL word-integer 
DE 1101 1110 MOD01 OR/M (disp-Io),(disp-hi) FICOM word-integer 
DE 1101 1110 MOD01 1R/M (disp-Io),(disp-hi) FICOMP word-integer 
DE 1101 1110 MOD10 OR/M (disp-Io),(disp-hi) FISUB word-integer 
DE 1101 1110 MOD10 1R/M (disp-Io),(disp-hi) FISUBR word-integer 
DE 1101 1110 MOD11 OR/M (disp-Io),(disp-hi) FIDIV word-integer 
DE 1101 1110 MODll 1R/M (disp-Io),(disp-hi) FIDIVR word-integer 
DE 1101 1110 1100 OREG FADDP ST(i),ST 
DE 1101 1110 1100 lREG FMULP ST(i),ST 
DE 1101 1110 1101 0--- *(5) 
DE 1101 1110 1101 1000 reserved 
DE 1101 1110 1101 1001 FCOMPP 
DE 1101 1110 1101 101- reserved 
DE 1101 1110 1101 11-- reserved 
DE 1101 1110 1110 OREG FSUBP ST(i),ST 
DE 1101 1110 1110 lREG FSUBRP ST(i),ST 
DE 1101 1110 1111 OREG FDIVP ST(i),ST 
DE 1101 1110 1111 1REG FDIVRP ST(i),ST 
DF 1101 1111 MODOO OR/M (disp-Io),(disp-hi) FILD word-integer 
DF 1101 1111 MODOO 1R/M (disp-Io),(disp-hi) reserved 
DF 1101 1111 MOD01 OR/M (disp-Io),(disp-hi) FIST word-integer 
DF 1101 1111 MOD01 1R/M (disp-Io),(disp-hi) FISTP word-integer 
DF 1101 1111 MOD10 OR/M (disp-Io),(disp-hi) FBLD packed-decimal 
DF 1101 1111 MOD10 1R/M (disp-Io),(disp-hi) FILD long-integer 
DF 1101 1111 MOD11 OR/M (disp-Io),(disp-hi) FBSTP packed-decimal 
DF 1101 1111 MOD11 1R/M (disp-Io),(disp-hi) FISTP long-integer 
DF 1101 1111 1100 OREG *(6) 
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Table A-2. Machine Instruction Decoding Guide (Cont'd.) 

1st Byte 

2nd Byte Bytes 3, 4 ASM286 Instruction 

Hex Binary Format 

OF 1101 1111 1100 1REG '(7) 
OF 1101 1111 1101 OREG '(8) 
OF 1101 1111 1101 1REG '(9) 
OF 1101 1111 1110 000 FSTSWAX 
OF 1101 1111 1111 XXX reserved 

NOTE: 

• The marked encodings are not generated by the language translators. If, however, the 80287 encounters 
one of these encodings in the instruction stream, it will execute it as follows: 

(1) FSTP ST(i) 

(2) FCOM ST(i) 

(3) FCOMP ST(i) 

(4) FXCH ST(i) 

(5) FCOMP ST(i) 

(6) FFREE ST(i) and pop stack 

(7) FXCH ST(i) 

(8) FSTP ST(i) 

(9) FSTP ST(i) 
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APPENDIX B 
COMPATIBILITY BETWEEN 

THE 80287 NPX AND THE 8087 

The 80286/80287 operating in Real-Address mode will execute 8087 programs without major modifi­
cation. However, because of differences in the handling of numeric exceptions by the 80287 NPX and 
the 8087 NPX, exception-handling routines may need to be changed. 

This appendix summarizes the differences between the 80287 NPX and the 8087 NPX, and provides 
details showing how 8087 programs can be ported to the 80287. 

1. The 80287 signals exceptions through a dedicated ERROR line to the 80286. The 80287 error 
signal does not pass through an interrupt controller (the 8087 INT signal does). Therefore, any 
interrupt-controller-oriented instructions in numeric exception handlers for the 8087 should be 
deleted. 

2. The 8087 instructions FENI/FNENI and FDlSI/FNDlSI perform no useful function in the 80287. 
If the 80287 encounters one of these opcodes in its instruction stream, the instruction will effec­
tively be ignored-none of the 80287 internal states will be updated. While 8087 code containing 
these instructions may be executed on the 80287, it is unlikely that the exception·handling routines 
containing these instructions will be completely portable to the 80287. 

3. Interrupt vector 16 must point to the numeric exception handling routine. 

4. The ESC instruction address saved in the 80287 includes any leading prefixes before the ESC 
opcode. The corresponding address saved in the 8087 does not include leading prefixes. 

5. In Protected-Address mode, the format of the 80287's saved instruction and address pointers is 
different than for the 8087. The instruction opcode is not saved in Protected mode-exception 
handlers will have to retrieve the opcode from memory if needed. 

6. Interrupt 7 will occur in the 80286 when executing ESC instructions with either TS (task switched) 
or EM (emulation) of the 80286 MSW set (TS= 1 or EM= 1). If TS is set, then a WAIT instruc­
tion will also cause interrupt 7. An exception handler should be included in 80287 code to handle 
these situations. 

7. Interrupt 9 will occur if the second or subsequent words of a floating-point operand fall outs.ide a 
segment's size. Interrupt 13 will occur if the starting address of a numeric operand falls outside a 
segment's size. An exception handler should be included in 80287 code to report these program­
ming errors. 

8. Except for the processor control instructions, all of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286 automatically tests the BUSY line from the 
80287 to ensure that the 80287 has completed its previous instruction before executing the next 
ESC instruction. No explicit WAIT instructions are required to assure this synchronization. For 
the 8087 used with 8086 and 8088 processors, explicit WAITs are required before each numeric 
instruction to ensure synchronization. Although 8087 programs having explicit WAIT instructions 
will execute perfectly on the 80287 without reassembly, these WAIT instructions are unnecessary. 

9. Since the 80287 does not require WAIT instructions before each numeric instruction, the ASM286 
assembler does not automatically generate these WAIT instructions. The ASM86 assembler, 
however, automatically precedes every ESC instruction with a WAIT instruction. Although numeric 
routines generated using the ASM86 assembler will generally execute correctly on the 80286/20, 
reassembly using ASM286 may result in a more compact code image. 
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The processor control instructions for the 80287 may be coded using either a WAIT or No-WAIT 
form of mnemonic. The WAIT forms of these instructions cause ASM286 to precede the ESC 
instruction with a CPU WAIT instruction, in the identical manner as does ASM86. 

10. A recommended way to detect the presence of an 80287 in an 80286 system (or an 8087 in an 
8086 system) is shown below. It assumes that the sytem hardware causes the data bus to be high 
if no 80287 is present to drive the data lines during the FSTSW (Store 80287 Status Word) 
instruction. 

FND_287: FNINIT 
FSTSTW STAT 

MOV AX,STAT 
OR A L, A L 
JZ GOT_287 

No 80287 Present 

SMSW AX 
OR AX,0004H 

LMSW AX 

JMP CONTINUE 

initialize numeric processor. 
store status word into location 
STAT. 

Zero Flag reflects result of OR. 
Zero in AL means 80287 is 
present. 

set EM bit in Machine Statu5 
Word. 
to enable software emulation of 
287. 

80287 i5 present in system 

GOT _287: S M S W 
OR 
LMSW 

Continue 

CONTINUE: 

AX 
AX,0002H 
AX 

set MP bit in Machine Status Word 
to permit normal 80287 operation 

; and off we go 

An 80286/80287 design must place a pullup resistor on one of the low eight data bus bits of the 
80286 to be sure it is read as a high when no 80287 is present. 
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APPENDIX C 
IMPLEMENTING THE IEEE P754 STANDARD 

The 80287 NPX and standard support library software, provides an implementation of the IEEE "A 
Proposed Standard for Binary Floating-Point Arithmetic," Draft 10.0, Task P754, of December 2, 
1982. The 80287 Support Library, described in 80287 Support Library Reference Manual, Order 
Number 122129, is an example of such a support library. 

This appendix describes the relationship between the 80287 NPX and the IEEE Standard. Where the 
Standard has options, Intel's choices in implementing the 80287 are described. Where portions of the 
Standard are implemented through software, this appendix indicates which modules of the 80287 
Support Library implement the Standard. Where special software in addition to the Support Library 
may be required by your application, this appendix indicates how to write this software. 

This appendix contains many terms with precise technical meanings, specified in the 754 Standard. 
Where these terms are used, they have been capitalized to emphasize the precision of their meanings. 
The Glossary provides the definitions for all capitalized phrases in this appendix. 

OPTIONS IMPLEMENTED IN THE 80287 

The 80287 SHORT_REAL and LONG_REAL formats conform precisely to the Standard's Single 
and Double Floating-Point Numbers, respectively. The 80287 TEMP_REAL format is the same as the 
Standard's Double Extended format. The Standard allows a choice of Bias in representing the exponent; 
the 80287 uses the Bias 16383 decimal. 

For the Double Extended format, the Standard contains an option for the meaning of the minimum 
exponent combined with a nonzero significand. The Bias for this special case can be either 16383, as 
in all the other cases, or 16382, making the smallest exponent equivalent to the second-smallest exponent. 
The 80287 uses the Bias 16382 for this case. This allows the 80287 to distinguish between Denormal 
numbers (integer part is zero, fraction is nonzero, Biased exponent is 0) and Unnormal numbers of the 
same value (same as the denormal except the Biased Exponent is I). 

The Standard allows flexibility in specifying which NaNs are trapping and which are nontrapping. The 
EH287.LIB module of the 80287 Support Library provides a software implementation of nontrapping 
NaNs, and defines one distinction between trapping and nontrapping NaNs: If the most significant bit 
of the fractional part of a NaN is 1, the NaN is nontrapping. If it is 0, the NaN is trapping. 

When a masked Invalid Operation error involves two NaN inputs, the Standard allows flexibility in 
choosing which NaN is output. The 80287 selects the NaN whose absolute value is greatest. 

AREAS OF THE STANDARD IMPLEMENTED IN SOFTWARE 

There are five areas of the Standard that are not implemented directly in the 80287 hardware; these 
areas are instead implemented in software as part of the 80287 Support Library. 

C-1 
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1. The Standard requires that a Normalizing Mode be provided, in which any nonnormal operands 
to functions are automatically normalized before the functionJis performed. The NPX provides a 
"Denormal operand" exception for this case, allowing the exception handler the opportunity to 
perform the normalization specified by the Standard. The Denormal operand exception handler 
provided by EH287.LIB implements the Standard's Normalizing Mode completely for Single- and 
Double-precision arguments. Normalizing mode for Double Extended operands is implemented in 
EH287.LIB with one non-Standard feature, discussed in the next section. 

2. The Standard specifies that in comparing two operands whose relationship is "unordered," the 
equality test yield an answer of FALSE, with no errors or exceptions. The 80287 FCOM and 
FTST instructions themselves issue an Invalid Operation exception in this case. The error handler 
EH287.LIB filters out this Invalid Operation error using the following convention: Whenever an 
FCOM or FTST instruction is followed by a MOY AX,AX instruction (8BCO Hex), and neither 
argument is a trapping NaN, the error handler will assume that a Standard equality comparison 
was intended, and return the correct answer with the Invalid Operation exception flag erased. 
Note that the Invalid Operation exception must be unmasked for this action to occur. 

3. The Standard requires that two kinds of NaN's be provided: trapping and nontrapping. Nontrap­
ping NaNs will not cause further Invalid Operation errors when they occur as operands to calcu­
lations. The NPX hardware directly supports only trapping NaN's; the EH287.LIB software 
implements nontrapping NaNs by returning the corre.ct answer with the Invalid Operation excep­
tion flag erased. Note that the Invalid Operation exception must be unmasked for this action to 
occur. 

4. The Standard requires that all functions that convert real numbers to integer formats automati­
cally normalize the inputs if necessary. The integer conversion functions contained in CEL287.LIB 
fully meet the Standard in this respect; the 80287 FIST instruction alone does not perform this 
normalization. 

5. The Standard specifies the remainder function which is provided by mqerRMD in CEL287.LIB. 
The 80287 FPREM instruction returns answers within a different range. 

ADDITIONAL SOFTWARE TO MEET THE STANDARD 

There are two cases in which additional software is required in conjunction with the 80287 Support 
Library in order to meet the standard. The 80287 Support Library does not provide this software in 
the interest of saving space and because the vast majority of applications will never encounter these 
cases. 

1. When the Invalid Operation exception is masked, Nontrapping NaNs are not implemented fully. 
Likewise, the Standard's equality test for "unordered" operands is not implemented wrren the 
Invalid Operation exception is masked. Programmers can simulate the Standard notion of a masked 
Invalid Operation exception by unmasking the 80287 Invalid Operation exception, and providing 
an Invalid Operation exception handler that supports nontrapping NaNs and the equality test, but 
otherwise acts just as if the Invalid Operation exception were masked. The 80287 Support Library 
Reference Manual contains examples for programming this handler in both ASM286 and 
PL/M-286. 

2. In Normalizing Mode, Denormal operands in the TEMP_REAL format are converted to 0 by 
EH287.LIB, giving sharp Underflow to O. The Standard specifies that the operation be performed 
on the real numbers represented by the denormals, giving gradual underflow. To correctly perform 
such arithmetic while in Normalizing Mode, programmers would have to normalize the operands 
into a format identical to TEMP .-REAL except for two extra exponent bits,. then perform the 
operation on those numbers. Thus, software must be written to handle the 17-bit exponent explicitly. 
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In designing the EH287.LlB, it was felt that it would be a disadvantage to most users to increase the 
size of the Normalizing routine by the amount necessary to provide this expanded arithmetic. Because 
the TEMP_REAL exponent field is so much larger than the LONG_REAL exponent field, it is 
extremely unlikely that TEMP_REAL underflow will be encountered in most applications. 

If meeting the Standard is a more important criterion for your application than the choice between 
Normalizing and warning modes, then you can select warning mode (Denormal operand exceptions 
masked), which fully meets the Standard. 

If you do wish to implement the Normalization of denormal operands in TEMP_REAL format using 
extra exponent bits, the list below indicates some useful pointers about handling Denormal operand 
exceptions: 

1. TEMP_REAL numbers are considered Denormal by the NPX whenever the Biased Exponent is 
o (minimum exponent). This is true even if the explicit integer bit of the significand is 1. Such 
numbers can occur as the result of Underflow. 

2. The 80287 FLD instruction can cause a Denormal Operand error if a number is being loaded 
from memory. It will not cause this exception if the number is being loaded from elsewhere in the 
80287 stack. 

3. The 80287 FCOM and FTST instructions will cause a Denormal Operand exception for unnormal 
operands as well as for denormal operands. 

4. In cases where both the Denormal Operand and Invalid Operation exceptions occur, you will want 
to know which is signalled first. When a comparison instruction operates between a nonexistent 
stack element and a denormal number in 80286 memory, the D and I exceptions are issued simul­
taneously In all other situations, a Denormal Operand exception takes precedence over a nonstack 
Invalid operation exception, while a stack Invalid Operation exception takes precedence over a 
Denormal Operand exception. 
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GLOSSARY OF 80287 
AND FLOATING-POINT TERMINOLOGY 

This glossary defines many terms that have precise technical meanings as specified in the IEEE 754 
Standard. Where these terms are used, they have been capitalized to emphasize the precision of their 
meanings. In reading these definitions, you may therefore interpret any capitalized terms or phrases as 
cross-references. 

Affine Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are treated 
as having a sign. Thus, the values + INFINITY and - INFINITY are considered different; they can 
be compared with finite numbers and with each other. 

Base: (I) a term used in logarithms and exponentials. In both contexts, it is a number that is being 
raised to a power. The two equations (y = log base b of x) and (bY = x) are the same. 

Base: (2) a number that defines the representation being used for a string of digits. Base 2 is the binary 
representation; Base 10 is the decimal representation; Base 16 is the hexadecimal representation. In 
each case, the Base is the factor of increased significance for each succeeding digit (working up from 
the bottom). 

Bias: the difference between the unsigned Integer that appears in the Exponent field of a Floating­
Point Number and the true Exponent that it represents. To obtain the true Exponent, you must subtract 
the Bias from the given Exponent. For example, the Short Real format has a Bias of 127 whenever the 
given Exponent is nonzero. If the 8-bit Exponent field contains 10000011, which is 131, the true 
Exponent is 131-127, or +4. 

Biased Exponent: the Exponent as it appears in a Floating-Point Number, interpreted as an unsigned, 
positive number. In the above example, 131 is the Biased Exponent. 

Binary Coded Decimal: a method of storing numbers that retains a base 10 representation. Each decimal 
digit occupies 4 full bits (one hexadecimal digit). The hex values A through F (1010 through 1111) 
are not used. The 80287 supports a Packed Decimal format that consists of 9 bytes of Binary Coded 
Decimal (18 decimal digits) and one sign byte. 

Binary Point: an entity just like a decimal point, except that it exists in binary numbers. Each binary 
digit to the right of the Binary Point is mUltiplied by an increasing negative power of two. 

C3-CO: the four "condition code" bits of the 80287 Status Word. These bits are set to certain values 
by the compare, test, examine, and remainder functions of the 80287. 

Characteristic: a term used for some non-Intel computers, meaning the Exponent field of a Floating­
Point Number. 

Chop: to set the fractional part of a real number to zero, yielding the nearest integer in the direction 
of zero. 

Control Word: a 16-bit 80287 register that the user can set, to determine the modes of computation 
the 80287 will use, and the error interrupts that will be enabled. 
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Denormal: a special form of Floating-Point Number, produced when an Underflow occurs. On the 
80287, a Denormal is defined as a number with a Biased Exponent that is zero. By providing a Signi­
ficand with leading zeros, the range of possible negative Exponents can be extended by the number of 
bits in the Significand. Each leading zero is a bit of lost accuracy, so the extended Exponent range is 
obtained by reducing significance. 

Double Extended: the Standard's term for the 80287 Temporary Real format, with more Exponent 
and Significand bits than the Double (Long Real) format, and an explicit Integer bit in the Significand. 

Double Floating Point Number: the Standard's term for the 80287's 64-bit Long Real format. 

Environment: the 14 bytes of 80287 registers affected by the FSTENV and FLDENV instructions. It 
encompasses the entire state of the 80287, except for the 8 Temporary Real numbers of the 80287 
stack. Included are the Control Word, Status Word, Tag Word, and the instruction, opcode, and operand 
information provided by interrupts. 

Exception: any of the six error conditions (I, D, 0, U, Z, P) signalled by the 80287. 

Exponent: (1) any power that is raised by an exponential function. For example, the operand to the 
function mqerEXP is an Exponent. The Integer operand to mqerYI2 is an Exponent. 

Exponent: (2) the field of a Floating-Point Number that indicates the magnitude of the number. This 
would fall under the above more general definition (1), except that a Bias sometimes needs to be 
subtracted to obtain the correct power. 

Floating-Point Number: a sequence of data bytes that, when interpreted in a standardized way, repre­
sents a Real number. Floating-Point Numbers are more versatile than Integer representations in two 
ways. First, they include fractions. Second, their Exponent parts allow a much wider range of magni­
tude than possible with fixed-length Integer representations. 

Gradual Underflow: a method of handling the Underflow error condition that minimizes the loss of 
accuracy in the result. If there is a Denormal number that represents the correct result, that Denormal 
is returned. Thus, digits are lost only to the extent of denormalization. Most computers return zero 
when Underflow occurs, losing all significant digits. 

Implicit Integer Bit: a part of the Significand in the Short Real and Long Real formats that is not 
explicitly given. In these formats, the entire given Significand is considered to be to the right of the 
Binary Point. A single Implicit Integer Bit to the left of the Binary Point is always 1, except in one 
case. When the Exponent is the minimum (Biased Exponent is 0), the Implicit Integer Bit is O. 

Indefinite: a special value that is returned by functions when the inputs are such that no other sensible 
a~swer is possible. For each Floating-Point format there exists one Nontrapping NaN that is designated 
as the Indefinite value. For binary Integer formats, the negative number furthest from zero is often 
considered the Indefinite value. For the 80287 Packed Decimal format, the Indefinite value contains 
all 1 's in the sign byte and the uppermost digits byte. 

Infinity: a value that has greater magnitude than any Integer or any Real number. The existence of 
Infinity is subject to heated philosophical debate. However, it is often useful to consider Infinity as 
another number, subject to special rules of arithmetic. All three Intel Floating-Point formats provide 
representations for + INFINITY and - INFINITY. They support two ways of dealing with Infinity: 
Projective (unsigned) and Affine (signed). 
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Integer: a number (positive, negative, or zero) that is finite and has no fractional part. Integer can also 
mean the computer representation for such a number: a sequence of data bytes, interpreted in a standard 
way. It is perfectly reasonable for Integers to be represented in a Floating-Point format; this is what 
the 80287 does whenever an Integer is pushed onto the 80287 stack. 

Invalid Operation: the error condition for the 80287 that covers all cases not covered by other errors. 
Included are 80287 stack overflow and underflow, NaN inputs, illegal infinite inputs, out-of-range 
inputs, and illegal unnormal inputs. 

Long Integer: an Integer format supported by the 80287 that consists of a 64-bit Two's Complement 
quantity. 

Long Real: a Floating-Point Format supported by the 80287 that consists of a sign, an II-bit Biased 
Exponent, an Implicit Integer Bit, and a 52-bit Significand-a total of 64 explicit bits. 

Mantissa: a term used for some non-Intel computers, meaning the Significand of a Floating-Point 
Number. 

Masked: a term that applies to each of the six 80287 Exceptions I,D,Z,O,U,P. An exception is Masked 
if a corresponding bit in the 80287 Control Word is set to 1. If an exception is Masked, the 80287 will 
not generate an interrupt when the error condition occurs; it will instead provide its own error recovery. 

NaN: an abbreviation for Not a Number; a Floating-Point quantity that does not represent any numeric 
or infinite quantity. NaNs should be returned by functions that encounter serious errors. If created 
during a sequence of calculations, they are transmitted to the final answer and can contain information 
about where the error occurred. 

Nontrapping NaN: a NaN in which the most significant bit of the fractional part of the Significand is 
1. By convention, these NaNs can undergo certain operations without visible error. Nontrapping NaNs 
are implemented for the 80287 via the software in EH87.LIB. 

Normal: the representation of a number in a Floating-Point format in which the Significand has an 
Integer bit 1 (either explicit or Implicit). 

Normalizing Mode: a state in which non normal inputs are automatically converted to normal inputs 
whenever they are used in arithmetic. Normalizing Mode is implemented for the 80287 via the software 
in EH87.LIB. 

NPX: Numeric Processor Extension. This is the 80287. 

Overflow: an error condition in which the correct answer is finite, but has magnitude too great to be 
represented in the destination format. 

Packed Decimal: an Integer format supported by the 80287. A Packed Decimal number is a to-byte 
quantity, with nine bytes of 18 Binary Coded Decimal digits, and one byte for the sign. 

Pop: to remove from a stack the last item that was placed on the stack. 

Precision Control: an option, programmed through the 80287 Control Word, that allows all 80287 
arithmetic to be performed with reduced precision. Because no speed advantage results from this option, 
its only use is for strict compatibility with the IEEE Standard, and with other computer systems. 
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Precision Exception: an 80287 error condition that results when a calculation does not return an exact 
answer. This exception is usually Masked and ignored; it is used only in extremely critical applications, 
when the user must know if the results are exact. 

Projective Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are 
treated as not having a sign. Thus the values + INFINITY and - INFINITY are considered the same. 
Certain operations, such as comparison to finite numbers, are illegal in Projective Mode but legal in 
Affine Mode. Thus Projective Mode gives you a greater degree of error control over infinite inputs. 

Pseudo Zero: a special value of the Temporary Real format. It is a number with a zero significand 
and an Exponent that is neither all zeros or all ones. Pseudo zeros can come about as the result of 
multiplication of two Unnormal numbers; but they are very rare. 

Real: any finite value (negative, positive, or zero) that can be represented by a decimal expansion. The 
fractional part of the decimal expansion can contain an infinite number of digits. Reals can be repre­
sented as the points of a line marked off like a ruler. The term Real can also refer to a Floating-Point 
Number that represents a Real value. 

Short Integer: an Integer format supported by the 80287 that consists of a 32-bit Two's Complement 
quantity. Short Integer is not the shortest 80287 Integer format-the 16-bit Word Integer is. 

Short Real: a Floating-Point Format supported by the 80287, which consists of a sign, an 8-bit Biased 
Exponent, an Implicit Integer Bit, and a 23-bit Significand-a total of 32 explicit bits. 

Significand: the part of a Floating-Point Number that consists of the most significant nonzero bifs of 
the number, if the number were written out in an unlimited binary format. The Significand alone is 
considered to have a Binary Point after the first (possibly Implicit) bit; the Binary Point is then moved 
according to the value of the Exponent. 

Single Extended: a Floating-Point format, required by the Standard, that provides greater precision 
than Single; it also provides an explicit Integer Significand bit. The 80287's Temporary Real format 
meets the Single Extended requirement as well as the Double Extended requirement. 

Single Floating-Point Number: the Standard's term for the 80287's 32-bit Short Real format. 

Standard: "a Proposed Standard for Binary Floating-Point Arithmetic," Draft 10.0 of IEEE Task P754, 
December 2, 1982. 

Status Word: A 16-bit 80287 register that can be manually set, but which is usually controlled by side 
effects to 80287 instructions. It contains condition codes, the 80287 stack pointer, busy and interrupt 
bits, and error flags. 

Tag Word: a 16-bit 80287 register that is automatically maintained by the 80287. For each space in 
the 80287 stack, it tells if the space is occupied by a number; if so, it gives information about what 
kind of number. 

Temporary Real: the main Floating-Point Format used by the 80287. It consists of a sign, a 15-bit 
Biased Exponent, and a Significand with an explicit Integer bit and 63 fractional-part bits. 

Transcendental: one of a class of functions for which polynomial formulas are always approximate, 
never exact for more than isolated values. The 80287 supports trigonometric, exponential, and logarith­
mic functions; all are Transcendental. 
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Trapping NaN: a NaN that causes an I error whenever it enters into a calculation or comparison, even 
a nonordered comparison. 

Two's Complement: a method of representing Integers. If the uppermost bit is 0, the number is consid­
ered positive, with the value given by the rest of the bits. If the uppermost bit is 1, the number is 
negative, with the value obtained by subtracting (2b;t count) from all the given bits. For example, the 
8-bit number 11111100 is -4, obtained by subtracting 28 from 252. 

Unbiased Exponent: the true value that tells how far and in which direction to move the Binary Point 
of the Significand of a Floating-Point Number. For example, if a Short Real Exponent is 131, we 
subtract the Bias 127 to obtain the Unbiased Exponent +4. Thus, the Real number being represented 
is the Significand with the Binary Point shifted 4 bits to the right. 

Underflow: an error condition in which the correct answer is nonzero, but has a magnitude too small 
to be represented as a Normal number in the destination Floating-Point format. The Standard specifies 
that an attempt be made to represent the number as a Denormal. 

Unmasked: a term that applies to each of the six 80287 Exceptions: I,D,Z,O,U,P. An exception is 
Unmasked if a corresponding bit in the 80287 Control Word is set to O. If an exception is Unmasked, 
the 80287 will generate an interrupt when the error condition occurs. You can provide an interrupt 
routine that customizes your error recovery. 

Unnormal: a Temporary Real representation in which the explicit Integer bit of the Significand is 
zero, and the exponent is nonzero. We consider Unnormal numbers distinct from Denormal numbers. 

Word Integer: an Integer format supported by both the 80286 and the 80287 that consists of a 16-bit 
Two's Complement quantity. 

Zero divide: an error condition in which the inputs are finite, but the correct answer, even with an 
unlimited exponent, has infinite magnitude. 
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Short Real Format, 1-16 
Significand, 1-15 
Software Exception Handling, 1-38 
Source Operands, 2-2 
Status Word, 1-9 - 1-11, 2-42 

Tag Word 1-12, 
Temporary Real Format, 1-16 
Transcendental Instructions, 2-11, 2-12 
Trigonometric Calculation Examples, 

4-17 - 4-23 

Index-3 



inter 
Underflow, 1-20, 1-33,4-16 
Unnormals, 1-23 
Upgradability, 1-4 

WAIT Form, 2-14 

INDEX 

Word Integer Format, 1-16 

Zero Divisor, 1-33, 1-35 

Zeros, 1-24 
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DOMESTIC DISTRIBUTORS 

ALABAMA 

Arrow Electronics, Inc. 
1015 Henderson Road 
Huntsville 35805 
Tel: (205) 837·6955 

tHamUton/Avnet Electronics 
4940 Research Drive 
Huntsville 35805 
Tel: (205) 837·7210 
TWX: 810·726·!162 

ARIZONA 

KlenJIff Electronics, Inc. 
4134 E. Wood Street 
Phoenix 85040 

~~~~n~3~'~75~~ 

flJg5o~.t~~~~~c~~~~~ Highway 
Phoenix 85023 
Tel: (602) 866·2888 

CALIFORNIA 

Arrow Electronics, Inc. 
19748 Dearborn Street 
Chatsworth 91311 

~J~Jfb~~=6 
Arrow EleCtronics, Inc. 
1502 Crocker Avenue 
Hayward 94544 
Tel: {408) 487-4600 

Arrrm Electronics, Inc. 
9511 FUdgehaven Court 
San Oi~O 92123 
t~J\1~~5.4800 

tArrow Electronics, Inc. 
$21 Weddell Drive 
Sunnroale 94086 

~~: ~b!3~~~~07~ 
Arrow Electronics, Inc. 
2961 Dow Avenue 
Tusltn 92680 
Tel: (714) 838·5422 
TWX: 910-595·2860 

Hamtltoo/Avnet Electronics 
1175 Bordeau)( Drive 
sunnxoale 94086 

~: g~b?:9~~2 
tHamlllon/Avnet Electronics 

~~5 Dy!e~r~i?2~venue 
Tel: (61~\71-7500 
TWX: 91b-595-2638 
~~~~iI~~~~~~~ts~:::onics 
Chatsworth 91311 

~~~Jfb?4~l~7 

t~6am~~~h~~~:~~:~~~:5 
Sacramento 95834 
Tel: (916)920-3150 

~~3;g,t~~~::ret Electronics 

Ontarl091311 
Tel: (714) 989-9411 

Hamllton/Avnst Electronics 
19515 So. Vermont Avenue 
Torrance 90S02 
Tel: (213) 615-3909 
1WX: 910-349-6263 

Electro Sales 
Solo Avenue 

91311 
Tel: (81 700-e500 

CALIFORNIA (Cont'd) 

tHamilton Electro Sales 
10950 W. Washington Blvd. 
Culver Ci~ 90230 
Tel: (213b 58-2458 
TWX: 91 -340-6364 

Hamilton Electro Sales 
1361 B West 190th Street 
Gardena 90248 
Tel: (213) 558·2131 

lHamilton Electro Sales 
170 Pullman Street 

Costa Mesa 92626 

~:rJ~b:t~5~~f8 
Kierulff Electronics, Inc 

b~~:s~~:Jreet 
Tel: (714) 220·6300 

tKierulff Electronics, Inc. 

~~~OJ~~~ ~rnue 
~J~~b?j7~~6640fo 
tKlerulff Electronics, Inc. 
14101 Franklin Avenue 
Tustin 92680 

~lJ1b!S~~:l5119 
tKierulff ElectroniCS, Inc. 
5650 Jillson Street 
Commerce 90040 

t:iJ~J~b?5~50~li6 

r~~~~~~~u~~'!e1roup 
f~F(a~£)d~2~~g{& 
TWX: 910-348·7140 or 7111 

rfJ7~ ~~:~~U~~~n~~oup 
Irvine 92714 

~tJ~b~6ts~5~2 
Wyle Distribution Group 
11151 Sun Center Drive 
Rancho Cordova 95670 
Tel: (916) 638-5282 

~~Jec~~!~~~~k~ g:j~~P 
San Die~o 92123 

~~~J'0::a55~,V9~ 
~e Distribution Group 

Bowers A venue 
Santa Clara 95051 
~:t~b?g8~~~6 

~fg10Mi~~re7 Avenue 
Irvine 92750 
Tel: (714) 851-9958 
TWX: 310-371-9127 

f~ Ei~=n Avenue 
Garden Grove 92641 

~r~~b~~9~1'~2 
COLORADO 

Arrow ElectroniCS, Inc. 
1390 S. Potomac Street 
Suite 136 
Aurora 80012 
Tel: (303) 696-1111 

lHamilton/Avnet ElectroniCS 
765 E. Orchard Road 

Suite 708 
E~lewood 80111 

MJ~~b?:a05_'o'P:7 
tWyle Distribution Group 
451 E. 124th Avenue 
thornton 80241 

~J~g~b.~~9~7~~ 

tMicrocomputer System Technical Distributor Centers 

CONNECTICUT ILLINOIS (Cont'd) 

tArrow Electronics, Inc. 
12 Beaumont Road ~1Jo s~~:;nlh~~~~~le 
~~~li2~rg~?~, Itasca 60143 

Tel: (312) 773-2300 
TWX: 710-476-0162 

tPioneer Electronics 
HamiltonjAvnet Electronics 1551 Carmen Drive 
Commerce Industrial Park f~~: 7~~~) 4~~~a38~0007 Commerce Drive 

~~~~~O§JO~i.~800 TWX: 910·222-1834 

TWX: 710·456·9974 INDIANA 

tPioneer Northeast Electronics 
112 Main Street 

tArrow. Electronics, Inc. 
495 Directors Row, Suite H 

Norwalk 06851 ~~~:J~~~)~~:~~~1 ~J~?n~_~j53 TW : 810·341-3119 

FLORIDA ~:f~~~~~~~:lectronICs 
~rrow Electronics, Inc. Carmel 46032 

o Fairway Drive ~:X(~Jn~2~~~339~~ Deerfield Beach 33441 
Tel: (305) 429·8200 
TWX: 510·955·9456 ~:b~nra~~!~!~Oen~~ve 
Arrow Electronics, Inc. ~e~~a~~~)~:_%~ 1001 N.w. 62nd St., Sle. 108 
Ft. lauderdale 33309 TWJ: 810·260·1794 
Tel: (305) 776·7790 
TWX: 511).955-9456 KANSAS 

tArrow Electronics, Inc. ~Ham!lton/Avnet Electronics 
50 Woodlake Drive W .• Bldg. B 219 Quivers Road 
Palm Bat 32905 Overland Park 66215 
Tel:~305 725-1480 Tel: (913) 888-8900 
TW : 51 -959·6337 TWX: 910-743-0005 

tamlltOn/Avnet Electronics Pioneer Electronics 
10551 Lackman Ad. Ft.°~a~d~;d~~!h3~69 Lene)(B 66215 

~J~b~l5~~900907 Tel: (913) 492-0500 

KENTUCKY 
Hamilton/Avnet Electronics 
3197 Tech Drive North ~3~iI~n~::~~ E~:;~onlcs SI. Petersburg 33702 

~~~J~~5:663~9:~4 !r:~i(aJg)2~~n75 
Hamllto~jAvnet Electronics MARYLAND 

~~re~n'~:r:~79~oulevard Arrow Electronics, Inc. 
Tel: (3rs) 628·3888 8300 Gullard Road #H 
TWX: 810·853-0322 Ril/ers Center 

Columbia 21046 

!:~o~~ra~~e~~~~~:C:te. 1000 ~~~~~b~is~5 
~:~ (~g5)t~~0i~ 32701 
TWX; 810·853·0284 

~Hamiltan/Avnet ElectroniCS 
822 Oak Hall Lane 

Columbia 21045 
Pioneer Electronics ~:i:3~~ b~965i~~~ 674 S. Military Trail 
Deerfield Beach 33442 
Tel: (305) 428-6877 
TWX: 510·955·9653 

~Mesa Technology Corp. 
720 PatuKentwoOd Dr. 

Columbia 21046 
GEORGIA Tel: (301) 720·5020 

TWX; 710·628-9702 

!~55o~o~:~:~Sp!~~way 
SUite A 

~Pioneer Electronics 
100 Gaither Aoad 

Norcross 30071 GaithersbU~ 20877 
Tel: (404) 449·8252 ~l~~b~82~~6~5 TWX: 810·766·0439 

~:~il:f.nt~;g~:r:e~:~!~: MASSACHUSETTS 

Norcross 30092 tArrow Electronics, Inc. 

~t~b~~6?054Of2 1 Arrow Drive 
Woburn 01801 

PiOneer ElectronicS ~:~~jn~~~~1.J7~ 
3100 F. Northwoods Place 
Norcross 30071 tHamliton/Avnet Electronics 

~tg1b~6861511'5 100 Centennial Drive 
PeabodJ 01960 

~J~j1b:3a:~fi2 ILLINOIS 

tArrow Electronics, Inc. Klerulff Electronics, Inc. 
13 Fortune Or. S~~u~~~n~~ 9~treet Billerica 01821 

~~J~b~~-~5~ Tel: (617) 667·8331 

MTI Systems Sales 
tHamiitonjAvoet Electronics 13 Fortune Drive 
1130 Thorndale Avenue Billerica 01821 
Bensenville 60106 
Tel: (312) 860-7780 Pioneer Northeast Electronics 
TWX: 910·227·0060 44 Hartwell AI/enue 

~:~I(a~~) 8~~~~~00 Klerulff Electronics, Inc. 
1140 W. Thorndale TWX: 710-326·6617 
Itasca 60143 
Tel: (312) 250-0500 

MICHIGAN 

Arrow ElectronicS, Inc. 
755 Phoenix Drive 
Ann Arbor 48104 

ty'jJ~J~b~l2~~20~00 

t~:82)I}?C~:~~~!~~~::;nics 
Livonia 48150 

~lJ~~~;f2~7~5 

~215111;k'St~:~~~~.ronlcs 
Space A5 
Grand Rapids 49508 

~J~J1b~2j~~8~i1 
Pioneer Electronics 
4505 Broadmoor Ave. S.E. 
Grand Rapids 49508 
Tel: (616) 555·1800 

MINNESOTA 

tArrow Electronics, Inc. 
5230 W. 73rd Street 
Edina 55435 

~:J~~~~~7~.1~~ 

~:~wgw~~nw~f~~6~fv~cs 
Minnetonka 55343 
Tel: (612) 932...0600 
TWX: (910) 576-2720 

tPloneer Electronics 
10203 Bren Road East 
Minnetonka 55343 

ty!;lJ~l:lte~2~~~ 
MISSOURI 

~~800SC~::~onics. Inc. 

St. louis 63141 

~x(~J1b:7s:.t~s:a~ 
tHemUton/Avnet Electronics 
13743 ShoreUne Court 
Earth Ci~ 63045 
Tel: (314 344-1200 
TWX: 91 -762·0684 

Kierulff Electronics, Inc. 
11804 Borman Or. 
S1. luis 63148 
Tel: (314) 997-4956 

NEW HAMPSHIRE 

lA~~~~it~~6~~s, Inc. 
Manchester 03103 

~~~~~s::a~19~ 
HamiltonjAvnet Electronics 
444 E. Industrial Drl'19 
Manchester 03104 
Tel: (803) 624-9400 

NEW JERSEY 

tHamllton/Avnet ElectroniCS 
1 Keystone Avenue 
Bldg. 36 
Cherf?( Hill 08003 

~~: ~~~4~~~~ 

CG-6/28/87 



inter 
DOMESTIC DISTRIBUTORS 

NEW JERSEY (Cont'd) 

t~j~~:(~vnet Electronics 
Fairfield 07006 
Tel: (201) 575-3390 
TWX: 701-734-4388 

~l~~~~e.rsSJales 
Fairfield 07006 
Tel: (201) 227-5552 

NEW MEXICO 

Alliance Electronics Inc. 
11030 Cochiti S.E. 
Albu~Uerque 87123 

~:gfb~9~~~ 
Hamilton/Avnst Electronics 
2524 Baylor Drive S.E. 

~e~~q,U:5~T~gg 
TWX: 910-989-0614 

NEW YORK 

Arrow Electronics, Inc. 
25 Hub Drive 
Melville 11747 

~~~~b~2~~~6 

Arrow Electronics, Inc. 

llv~~ M8:~~8~ive 
Tel, 1m) 652-1000 
TWX: 710-545-0230 

Arrow Electronics, Inc. 
lOOser Avenue 
Haup~uge 11788 

~: Jfb~2~~~O:3 
Hamilton/Avnet Electronics 
333 Metro Park 
Rochester 14823 

~::!itJfb:!J~~~o 

,~~:o"/~:~~:ectronics 
Haupgauge 11788 

~;Jfl2~~~ 
tMTI Systems Salas 
38 Harbor Park Drive 
P.O. Bo)( 271 
Port washin~ton 11050 

~~Jn-~3~6 
tPioneer Northeast Electronics 
1806 Vestal Parkway East 
Vestal 13850 

~J~m1"':2~ 
~gn:~:y~~~!:rnicS 
f:ts~~792~89~land 11797 

TWX: 51b-221·2184 

NEW YOFIK (Cont'd) 

tPloneer Northeast Electronics 
840 Fairport Park 
Fairport 14450 

~J?~~b~5~?70~ 
NORTH CAFIOLINA 

tArrow Electronics, Inc. 
5240 Greendairy Road 
Aalelt 27604 

~jJ: ~~b~;2~~~6 

Pioneer Electronics 
9801 A·Southern Pine Blvd. 
Charlotte 28210 

~J?~b~J;~~s:a 
OHIO 

Arrow Electronics, Inc. 
7620 McEwen Aoad 
Centerville 45459 

~J~Jf~~661~ 
tArrow Electronics, Inc. 
6238 Cochran Road 
Solon 44139 
Tel (216) 248·3990 
TWX: 810-427-9409 

HamiltonjAvnet Electronics 

~:s:~~~~~lvd. 
Tel: (614) 882·7004 

,HamlitonlAvnet Electronics 
54 Senate Drive 
Da~on 45459 
~513~ 433-0610 

: 81 450·2531 

tHamiltonjAvnet Electronics 
4588 Eme~ Industrial Par\(way 
Warrensvll e He~s 44128 
Tel: (216) 831-3 
TWX: 810-427·9452 

tPioneer Electronics 
4433 Interpolnt Blvd. 
oa~n45424 
Te ',i513b 236-9900 
TW : 81 -459·1622 

tPiooeer Electronics 
4800 E. 131st Street 
Cleveland 44105 

~J~J~~12~ 
OKLAHOMA 

Arrow Electronics, Inc. 
4719 S. Memorial Drive 
Tulsa 74145 
Tel: (918) 66S-nOO 

OREGON 

tAlmac Electronics Corpora· 
tion 
1885 N.W. 169th Place 
Beaverton 97006 

~~~~~ 
1t'amllton/AYnet Electronics 

24 S.W. Jean Road 
Bldg. C,Sulte 10 
Lake Os~ 97034 

~~b.4s5?8~~ 

tMlcrocomputer System Technical Distributor Centers 

OFiEGON (Cont'd) UTAH 

~g ~.~~I~I~~;~~~~PParkWay tHamlltonjAvnet Electronics 
1585 West 2100 South 

Suite 600 Salt Lake CI~ 84119 
Hillsboro 97124 ~~g~b~~~~08 Tel: (503) 640·6000 
TWX: 910-460·2203 

Kierulff Electronics, Inc. 
PENNSYLVANIA ~:6t!'k:C~:Il ~~Vd. 
Arrow Electronics, Inc. Tel: (B01) 97 6913 
650 Seco Road 
Monroeville 15146 r':l~~ t?J:~~~~ ~~p Tel: (412)856·7000 

SulteE 
Hamilton/Avnet Electronics ~=~ ~~) ~:L::~J9 ~~~rbe~~8e., Bldg. E 

Tel: (41g 281·4150 WASHINGTON 

Pioneer Electronics tAlmac Electronics Corp. 
259 Kappa Drive 14360 S.E. Eastgate Way 
Pittsbut 15238 Bellevue 98007 
Tel: (41 782·2300 ~J~~~~:~; TWX: 71 ·795-3122 

tPioneer Electronics Arrow Electronics, Inc. 
261 Glbralter Road 14320 N.E. 21st Street 
Horsham 19044 Bellevue 98007 

~J~~~b~~6~~08 ~J~gfb~~80~ 
TEXAS ~:21~~~21~t ~=nics 
,Arrow ElectroniCS, Inc. Bellevue 98005 

220 Commander Drive ~J~gfb~52'fe~ Carrollton 75006 

~i~J~b~~36f, 
TArrow Electronics, Inc. 

0899 Kinghurst 
Suite 100 
Houston n099 WISCONSIN 

~?Jf~~~ tArrow Electronics, Inc. 
430 W. Rausson Avenue 

tArrow Electronics, Inc. Oakcreek.53154 
1 0125 Metropolitan ~~J~b?:i~ Austin 78758 
Tel: (512) 835·4180 
TWX: 910-874·1348 HamiitonjAvnet Electronics 

2975 Moorland Road 
~Hamilton/Avnet ElectroniCS New Ber1in 53151 
401 Rutland ~jtJ~b?2~~ Austin 78758 

~J~J~~14-~'1~ Klerulff Electronics, Inc. 
2238·E W. Bluemound Rd. 

tHamliton/Avnet Electronics Waukeshaw 53186 
2111 W. Walnut Hili Lane Tel: (414) 784-8160 
Irvi175062 

~X: J~b~~5~0~ CANADA 
ALBERTA 

Kieruiff Electronics, Inc. 
9610 Skillman 

Hamlltorl/Avnet Electronics Dallas 75243 
Tel: (214) 343-2400 6845 Rexwood Road Unit 6 

~~~~~6)B~~riO L4V1R2 
tPloneer Electronics 
1826 D. Kramer Lane 

ZentroniCs Austin 78758 

~~J~~S:4~°:S 
68158th Street, N.E., Ste. 100 

~~~(~fM~~8 
tPioneer Electronics 

BRITISH COLUMBIA ti~!~ ?s2~a Road 

~~=d~~~I~~:r ~~J~~?53~ 
Bumaby V5M 3Z3 

!:,oneer Electronics Tel: (604) 437·6667 
53 Point West Drive 

Houston 77036 

~:f:J~~~5:6 

BRtTISH COLUMBIA (Cont'd) 

Zentrooics 

~?:h~~~ :6~~rt Road 

~J~g:~~7~~:5 
MANJTOBA 

Zentronics 
60·1313 Border Street 

~~7~~.r.1~~ 
FAX: (204) 633·9255 

ONTARIO 

Arrow Electronics Inc. 
24 Martin Ross Avenue 
Downsview M3J 2K9 

~~:(~~~f:~;~220 
Arrow Electronics Inc. 
148 Colonnade Road 
Nepean K2E 7J5 
Tel: (613) 226-6903 

~Hamiltcn/Avnet Electronics 
845 Rexwood Road 

UnitSG&H 
MiSSisaau~ L4V 1 R2 

~~t~~~Ji?8~ 

'~~=~urt 
Bram.,r:oo LST 3T4 
Tel:J 16) 451·9600 
TW : 06·976-78 

Zentronlcs 
564/10 Weber Street North 
Waterloo N2L 5C6 
Tel: (519) 884·5700 

tZentronics 
155 Colonnade Road 
Unit 17 

~:M:r3~~5~~ 
TWX: 06·976·78 

SASKATCHEWAN 

Zentrooics 
173·1222 Alberta Avenue 
Saskatoon S7K 1 R4 

~~~~~~t~12207 
QUEBEC 

lArrow Electronics Inc. 
OSO Jean Talon Quest 

Montreal H4P 1 WI 

~~:(~~M:t5511 

Arrow Electronics Inc. 
909 Charest Blvd. 
Quebec 61 N 269 
Tel: (418) 687-4231 
TLX: 05-13388 

Hamilton/Avnel Electronics 

~.~:,r=rrp8 
~~~~b~l·~~ 
Zentronlcs 
505 Locke Street 
Sl Laurent H4T lX7 

+;'ji~J:~::'=1 
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BELGIUM 

W:' ~:~~~ :SA. 
9-1180 Brussels 
Tet: (02) 347-Q666 

DENMARK 

FtNLAND 

Intel Ftnla!'ld OY 
AousUantie 2 
00390 Helsinki 
~~~~)~.844 

FRANCE 

Intel Paris 
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Hllam..,alin 4 

~~~oJl~==n 
TUC: 78018 

SPAIN 

SWEDEN 
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