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CUSTOMER SUPPORT

Customer Support is Intel’s complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer’s expectations. Such support requires an interna-
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel’s customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga-
zine). Basic support includes updates and the subscription service. Contracts are sold in environments which repre-
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CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
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personalizing training, and customizing or tailoring an Intel product to providing technical and management con-
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work-
ing together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.
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PREFACE

This manual describes the 80286, the most powerful 16-bit microprocessor in the 8086 family, and the
80287 Numeric Processor Extension (NPX).

ORGANIZATION OF THIS MANUAL

This manual is, essentially, two books in one. The first book describes the 80286, the second the 80287
NPX.

80286

The 80286 contains a table of contents, eleven chapters, four appendices, and an index. For more
information on the 80286 book’s organization, see its first chapter, Chapter 1, “Introduction to the
80286.” Section 1.4 in that chapter explains the organization in detail.

80287 NPX

The 80287 NPX contains a preface, table of contents, four chapters, three appendices, and a glossary.
For more information on the 80287 NPX book’s organization, see its preface.

iii






TABLE OF CONTENTS

CHAPTER 1 Page
INTRODUCTION TO THE 80286
General ARINDULES  ......eoiiii e 1-1
Modes Of OPEIAtION ...c.cceeeiiiie ettt s e e s sne e sennes 1-2
Advanced FEALUIES ... s 1-2
Memory Management ... 1-2
Task ManaQEMENT .......c.ociiiiiieieriee et e r e e et sas sae s e e eesnenas 1-3
Protection MeChaniSMS .......c.ccooiiiiiiiiiiiii e e e 1-3
Support for Operating SyStEMS ......coiciiiiiiiie e 1-4
Organization of ThisS BOOK .....cccovcuiriiriiieri et e s ene s 1-4
Related PUbDliCAtioNS ........coociiiiiiiii s 1-6
CHAPTER 2
80286 BASE ARCHITECTURE
Memory Organization and Segmentation ... 2-1
DA TYPES  oereiiieiii ettt e et ae e e s e e e e nnee 2-1
REGISIEIS ..t e e 2-7
GENEral REJISTEIS ...oiiiiiiiiici ettt st 2-7
Memory Segmentation and Segment Registers ..o, 2-8
Index, Pointer, and Base Registers ..... e e 2-9
Status and Control REQISIEIS ........cccveiriiiii et e 2-14
AdAressing MOAES ........cooviiiiiiic e 2-16
(0] o= -1 To [ PSSP PSPTURURRRP 2-16
Register and Immediate MOdeS ........cccocovmieciiii 2-17
Memory Addressing MOdEs ... 2-17
Segment SEIECHION ......coiii e e 2-18
Offset COMPULALION ...t e 2-19
MemOry MOGE ......coiiiiii 2-20
INPUL/OUIPUL e e 2-21
1/O ADAreSS SPACE  .....covieimiiriiciiece et s e 2-23
Memory-Mapped 1/O .....cooiiireeee et e e 2-23
Interrupts and EXCEPLIONS .....ooceiiiiiiiiiitn e 2-24
Hierarchy of InStruction Sets ..o e 2-25
CHAPTER 3
BASIC INSTRUCTION SET
Data Movement INStIUCHIONS .....c.cciiiiiiiiecii it e e 3-1
General-Purpose Data Movement InStructions ........cccocevviviieninecicns e 3-1
Stack Manipulation INStrUCHIONS .....oooiii e e 3-2
Flag Operation with the Basic Instruction Set .........cccoo i 3-4
SAUS FIAGS  .eeerreeiiiiiie ittt st s et s 3-4
(7] a1 ( (oI oI T- Vo L= TSR 3-4
Arithmetic INSTrUCHIONS  ..oeeii 3-5
Addition INSTFUCIONS  ....ooiiiiiiiii e 3-7
Subtraction INSIUCHONS  .....oovieiirr s 3-7
Multiplication INSTrUCHIONS ......cceiiiiiciicccere s 3-8
DiviSion INSTIUCLIONS  ..co.veeiiiierc e e e 3-9
Logical INStruCtionS .........cooiiiiic 3-9
Boolean Operation INSIruCtioNS .........ccccieeiiiiiciicrccecec e 3-9
Shift and Rotate INStruCtions ..........ccoociiiiiiiiciicc s 3-10
Shift INSIFUCIONS ... s 3-10



Intel TABLE OF CONTENTS

Page
Rotate INStrUCIONS .......coiieiii e e 3-13
Type Conversion and No-Operation Instructions ........c..cceeeeueee e 3-16
Test and Compare INSIFUCHONS  .....eeiiieeiee e 3-16
Control Transfer INSITUCHIONS ........ocevceeiiiieer e 3-16
Unconditional Transfer INStructions ........c.cccciiiiiiiiiii e 3-17
JUMP INSTIUCHION e e 3-17
Call INSTFUCHION ... e s e 3-18
Return and Return from Interrupt Instruction .........c.ceeevevininnnciccceeenen, 3-19
Conditional Transfer INStructions ... 3-19
Conditional Jump INSrUCHIONS ....cccvvviiiiiiriii e 3-20
LOOP INSTrUCIONS  ..coviiiiiiiiitccri e 3-20
Executing a Loop or Repeat Zero TiMeS ........ccccviiiiinninnninniiniine e, 3-21
Software-Generated INterrupts ....cococccriiii i 3-21
Software Interrupt INStrUCtIoON ......ccccciiiiiiice e 3-21
Character Translation and String Instructions ..., 3-22
Translate INSrUCHION ......ccvoveiirericrn e e sr e s e 3-22
String Manipulation Instructions and Repeat Prefixes .......c..cocvnininvvicnnninnsnnnnn, 3-22
String Movement INStruCtioNS ..o 3-23
Other String Operations ...t 3-23
Address Manipulation INSTrUCtiONS ......cccccviiiniviiin e 3-24
Flag Control INSrUCHIONS ..o s 3-25
Carry Flag Control INStructions ... s s 3-25
Direction Flag Control INStruCtionS ... snnseresessssssensees 3-25
Flag Transfer INStructions ... e, 3-26
Binary-Coded Decimal Arithmetic INStructions ..., 3-27
Packed BCD Adjustment InStructions ..., 3-27
Unpacked BCD Adjustment INStructions ..., 3-27
Trusted INSIFUCHIONS ..o s 3-28
Trusted and Privileged Restrictions on POPF and IRET ........ccconiininnininnnnnnnn. 3-28
Machine State INSIruCtIONS ... 3-28
Input and Output INSLIUCIONS ..o 3-29
Processor Extension INStructions .......c..cccmiimi e, 3-29
Processor Extension Synchronization Instructions ..., 3-30
Numeric Data Processor INStructions ..., 3-30
Arithmetic INStruCtions ... 3-30
Comparison INSTFUCHIONS ... s 3-30
Transcendental INStructions ..o s 3-30
Data Transfer InStructions ..o, 3-31
Constant INSLrUCHONS ..o 3-31
CHAPTER 4
EXTENDED INSTRUCTION SET
BIOCK 1/O INSITUCHIONS  ..ooevesiecriressre et sre e s n e s nnr e resanassn s s e e s 4-1
High-Level INStruCtioNS .........coiiiiiiicinin et 4-2
CHAPTER 5
REAL ADDRESS MODE
Addressing and SegmMeNntation ... 5-1
Interrupt Handling ..o 5-3
Interrupt VECtOor Table ...ttt 5-3
INterrupt Priorities ......ccooivieieei s 5-4
INtErrupt ProCeAUIeS ........covieviiiiiiiiiin sttt 5-5

vi



Intel TABLE OF CONTENTS

Page
Reserved and Dedicated Interrupt VECtors ..o 5-5
System INItialization ... 5-7
CHAPTER 6
MEMORY MANAGEMENT AND VIRTUAL ADDRESSING
Memory Management OVEIVIEW ..........ccovveeirirnin st s 6-1
Virtual ADArESSES  ....eivviiiiiiiiiie i 6-2
Descriptor Tables ..o 6-4
Virtual-to-Physical Address Translation ..., 6-6
Segments and Segment DeSCrPLOrs ..., 6-7
Memory Management RegiSters ... 6-9
Segment Address Translation Registers ..........cc.ouiiiin e, 6-9
System Address RegiSters ..o 6-12
CHAPTER 7
PROTECTION
INtrOAUCHION .ot 7-1
Types Of ProteCtion ........cccceiiiiiiniiiiiirren e 7-1
Protection Implementation ...........ccccoiriiii 7-2
Memory Management and Protection ..., 7-4
Separation of ADAress SPaceS ... 7-5
LDT and GDT AcCCeSS CheCKS .....cccvieriiiiiiiiircienni e 7-5
Type Validation ... 7-6
Privilege Levels and Protection ... 7-8
Example of Using Four Privilege Levels .........ccccciviniiinnie e 7-8
Privilege USAge ..o 7-9
Segment DesCriptor ... 7-10
Dat@ ACCESSES oottt e e s e 7-12
COde SEUMENT ACCESS ..crvverueeiereriririeesessresetssesesssssesnesssesaeesaesasseessssn e sennsnsssassenns 7-13
Data Access Restriction by Privilege Level ... 7-13
Pointer Privilege Stamping via ARPL ...t 7-14
Control TranSfers ..o 7-15
GALES  .eiveeiitciit et e bR e bt 7-16
Call GAES ...ccveiiiiiiii 717
Intra-Level Transfers via Call Gate ..........ccovveiiriininnin e 7-18
Inter-Level Control Transfer via Call Gates ........ccccvevvrrceriiincnn e 7-19
Stack Changes Caused by Call Gates ........c..ccecniminiinni e, 7-20
INter-Level REEUINS .....cociiiiiicie et 7-20
CHAPTER 8
TASKS AND STATE TRANSITIONS
INEFOAUCHION vt 8-1
Task State Segments and DeSCrPIOrS .....cciivevievirirrerne et s 8-1
Task State Segment DeSCHPOrs ... 8-3
Task SWItChING ...ocoviii 8-4
BLIE= T IR 124 o ST 8-7
LI C1 Q-1 T PR 8-8
CHAPTER 9
INTERRUPTS AND EXCEPTIONS
Interrupt Descriptor Table ... 9-1
Hardware Initiated INterrupts ........oooviiiiiiiiiiececeee et e 9-2

vii



Intel TABLE OF CONTENTS

Software Initiated INtErrupts ...
Interrupt Gates and Trap GAteS ........cccccvveciiiiiieciiiee et e e e s e sanees
Task Gates and INterrupt TASKS .....cccecireiinieere it
Scheduling Considerations ............ccccevivenininiennns
Deciding Between Task, Trap, and Interrupt Gates .
Protection Exceptions and Reserved VECIOrS ........ccccceiiciiiiiiccieieree e
Invalid OP-Code (INterrupt 6) .......cccceviriiiriiiiinii e
Double Fault (INTErrupt 8) .........cociiiiiieeeerecer ettt s
Processor Extension Segment Overrun (Interrupt 9) .......ccceeviieiiiiiivesenieenceee 9-10
Invalid Task State Segment (Interrupt 10) .....oooviiiiiiieiii e, 9-11
Not Present (INterrupt 11) ..o e
Stack Fault (INterrupt 12) ......ooocciiiie s
General Protection Fault (Interrupt 13)
Additional Exceptions and Interrupts .........cccco i,
Single Step Interrupt (Interrupt 1) ..o

CHAPTER 10
SYSTEM CONTROL AND INITIALIZATION

System Flags and ReGISIErs .......cccoceceiririeiiiininr et
Descriptor Table RegiSters ...t

System Control INSrUCHONS  ........oiiiiiee e
Machine Status WOrd ... e
Other INStIUCHIONS  ....eceiiiee e e

Privileged and Trusted Instructions ..

Initialization ......ccccoevveeiiiciieiieces
Real Address MOde ...t e
Protected MOE ........ceiiiiiiiii

CHAPTER 11
ADVANCED TOPICS

Virtual Memory Management ..o s

Special Segment AHINDULES ........cocvriiiiiiiie s
Conforming Code SEgMENTS .........ccceieirieirianirie st
Expand-Down Data Segments ..

Pointer Validation ..............ccc..... .
Descriptor Validation ...
Pointer Integrity: RPL and the *“Trojan Horse Problem” ..........cccivviiniineinniinnnnne 11-4

NPX Context SWItChing ... s 11-5

Multiprocessor Considerations ..........cccceeceriee i 11-5

SRULAOWN ..o b e s 11-7

APPENDIX A
80286 SYSTEM INITIALIZATION

APPENDIX B
THE 80286 INSTRUCTION SET

APPENDIX C
8086/8088 COMPATIBILITY CONSIDERATIONS

APPENDIX D
80286/80386 SOFTWARE COMPATIBILITY CONSIDERATIONS

INDEX

viii



&

TABLE OF CONTENTS

I SRRSO S OS]
AbWON—=O

WWWWWWWWNNPNPNNPNPNONDNPPNDPOPNODNODNDN =

Lpprproroa LWLl '(’D&\l@(.ﬂ-h&)l\)—*—l—l—‘—*—l—‘(Dm\la)(h.hwl\)—l—‘
OO

TOOO0UT®

T3 o do o o3 oa
S RARON==2TONMNNN = = o d

(o)X >Ne > NeNo>Ne > RerNe ) Ne o No e 6 Né NN

OCOONOODPWN

Figures

Title Page
Four Privilege Levels ... 1-4
Segmented Virtual MEMOTY ........ccoiiciiii ettt ee s n e s 2-2
Bytes and Words in MemMOIY ...t 2-3
80286/80287 Supported Data TYPES .......ccevererrerrieirereerreeseeeeseeeesseeesseesreseesees 2-5
80286 Base Architecture Register Set ... 2-7
Real Address Mode Segment Selector Interpretation .............ccoccniiecnincnnecne. 2-9
Protected Mode Segment Selector Interpretation ...........cccccvvvevcvninenecienscnnen. 2-10
80286 STACK ...ceeeeiieieieeiie ettt sae e n e n e be e 2-11
StAaCK OPEration ......c.ccoiiiiiiiiiiiic e st e e e se s s 2-12
BP Usage as a Stack Frame Base Pointer .........ccccoiviniiecirennienenicseenneeceeseeaes 2-13
FIags ReQISter ......cicviiiiiiiiiiic s 2-15
Two-Component AdAreSS ......cccooceiiiiiiiiiiiiiert e e 2-18
Use of Memory Segmentation .........cccciiiiiniiiiiiii e 2-20
Complex AJdressing MOGES .......cocvrevriririiniircerrr s sr e e sae s 2-22
Memory-Mapped /O ... et eeeeeee e et et e aea e et e e e e e reearnres 2-24
Hierarchy of INSTrUCIONS .......coiuiiiiieiri e s 2-27
PUSH e et r e st s s e s 3-2
PUSHA ettt 3-3
PO e s b sne s 3-4
POPA e et 3-5
Flag Word CONtENS ......ccocveriiiienie ettt e e s s er e sae s nae s 3-6
SAL @NA SHL ..ttt e r e 3-11
SHR et e et e s b e e et e er e e saeear e e enes 3-12
S A R e e e At e e e nee st aa e s et e e aeeerenenn 3-12
ROL ettt ettt et e e ae e n e sre et e e e nnenesreeeenne 3-13
ROR e e et e et e e et e e e e neer e e e e 3-14
{10 PSP S RPN 3-15
RO R e et e et e e R et e re s aeen e e e eennnans 3-15
LAHF @nd SAHF oot 3-26
PUSHF @Nd POPF ...ttt sttt st sas s e 3-27
Formal Definition of the ENTER Instruction .........ccccooiiiiiinciicienccccee 4-3
Variable Access in Nested ProCedures .........cccovicieininienenncinnensninsnsescessnsennne 4-4
Stack Frame for MAIN at Level 1 ... 4-4
Stack Frame for Procedure A ..........ccoo it 4-5
Stack Frame for Procedure B at Level 3 Called from A ......cccoeiriieiinieiiieneeen 4-5
Stack Frame for Procedure C at Level 3 Called from B .........cccccevviiienieninccieennn. 4-6
Forming the Segment Base AdAress ... 5-2
Forming the 20-Bit Physical Address in the Real Address Mode .........ccccvvieneene 5-2
Overlapping Segments to Save Physical MemOory ........cccvvniiininiicciiiennns 5-3
Interrupt Vector Table for Real Address Mode ........cccoccivviiiniininiennniiencininnn, 5-4
Stack Structure after Interrupt (Real Address Mode) .......ccccceeveviiinnicncsienicniinns 5-5
Format of the Segment Selector Component ...........cccceveiiininncnnnci e, 6-2
Address Spaces and Task IS0Olation ... 6-3
Segment DescCriptor (S=1) ....ccccciriiimri e 6-5
Special Purpose Descriptors or System Segment Descriptors (S=0) ................. 6-6
[ 8 B T= =T 4 o) o P 6-7
Virtual-to-Physical Address Translation ..o 6-8
Segment Descriptor ACCess Bytes ..., 6-9
Memory Management REgISters ..o 6-10
[DT=T=Te7 o) (o] gl oY Vo 1 Vo N 6-11



&

TABLE OF CONTENTS

1 1 1 ] g [] 1 ] 1 1 1 1 1 1 1 ] 1 1
N—=+O

ONLRARONAL L2 OONOOPROON=

COOOEPPEONNNNVNNNNNNYN
»H

-
[+
-4
(]

NNNOOUWWWNNNDN

WON—-2ON—=WON=HRON=

PN
BN

Title Page
Addressing Segments of a Module within @ Task .........ccccviiininiinnniiees 7-3
Descriptor Cache Registers
80286 Virtual Address Space
Local and Global Descriptor Table Definitions ......c..cccccvvevceniirsencsnnresscsee e 7-7
Error Code Format (on the stack) ... e 7-7
Code and Data Segments Assigned to a Privilege Level ..........cccooceieiicienncnnen, 7-9
SeleCtOr FIeldS .....ooveiiirciiieee e e 7-11
Access Byte EXamPIes......cccoeeiiiiiiicecr e e 7-12
Pointer Privilege Stamping ...ttt 7-15
Gate DeSCriptor FOIMALt ......ccvcieiieiiiiicierinsre s s snn e s 7-17
Call GAte oo e 7-19
Stack Contents after an Inter-Level Call ... 7-21
Task State Segment and TSS Registers ... 8-2
LIRS TS0 L= T T o o PP USROS 8-4
Task Gate DESCHPIOr ......ccccccirimiiiriie et et 8-8
Task Switch Through a Task Gate ..., 8-9
Interrupt Descriptor Table Definition .........ccccvcvvviiniiniiiee, 9-1
IDT Selector Error Coae ........coimiriniiireniii i s sesneass 9-2
Trap/Interrupt Gate DESCHPLOIS .....ccovvireiiiie e 9-4
Stack Layout after an Exception with an Error Code ......c...ccccviiiiiieinicniinieenneen. 9-5
Local and Global Descriptor Table Definition .........ccccivveininiiiiiinenncnceee, 10-2
Interrupt Descriptor Table Definition ... 10-2
Data Type for Global Descriptor Table and Interrupt Descriptor Table ................ 10-3
Expand-Down SegmMENt ........c.oociiiiiiiiici e 11-2
Dynamic Segment Relocation and Expansion of Segment Limit ..........c.cccoceene. 11-3
Example of NPX Context SWItChiNG ........ccceovieiiininimininnecc s 11-6
/n Instruction Byte FOrmat ... B-2
[r Instruction Byte Format .........cccccovvvniiininic B-4

Tables

Title - Page
Implied Segment Usage by Index, Pointer, and Base Registers ..........c.cceeereeens 2-14
Segment Register Selection RUIES ......cccciiicieiiiiinrcinr e 2-19
Memory Operand Addressing MOdes .......ccccceviiiiiiiiinsiicncne e 2-21
80286 Interrupt Vector Assignments (Real Address Mode) .........cccceeviiviiiicnnnenne 2-26
Status Flags’ Functions ........ S ettt ettt 3-6
Control Flags’ FUNCHONS .......ccioveiiiiiiniiis it 3-7
Interpretation of Conditional Transfers .......ccccccvivrsreesre e e nns 3-20
Interrupt Processing Order ... 5-4
Dedicated and Reserved Interrupt Vectors in Real Address Mode ..........cceuunee. 5-6
Processor State after RESET ........cooocviiiiiiii e 5-7
Segment Access Rights Byte FOrmat ..........cccceiivineiinnnnnicccciieeseieseens 7-11
Allowed Segment Types in Segment RegiSters .........cccvvnininiinecnnennnneans 7-12
Call Gate CheCKS ...t e 7-18
Inter-Level RetUrn CHECKS ......coccvviiiiiiniiin e st 7-22
Checks Made during a Task SWitCh ..., 8-6
Effect of a Task Switch on BUSY and NT Bits and the Link Word ....................... 8-7
Trap and Interrupt Gate ChecKS .......cocccicciiimiiirr e 9-6
Interrupt and Gate INteractions ..........ccccevviiiiinnn s 9-7

X



TABLE OF CONTENTS

Table

9-3
9-4

10-1
10-2
11-1
B-1
B-2
B-3
C-1

Title Page
Reserved Exceptions and INterrupts ... 9-9
Interrupt Processing OFAer ........ocooceiceeeeieinten et ste et s ae s ese e 9-9
Conditions That Invalidate the TSS ... e 9-12
MSW Bit FUNCHONS ....coomiiiiiiiiiiin et 10-4
Recommended MSW Encodings for Processor Extension Control ..........cccoce... 10-5
NPX Context SWItChiNg ......ccccoviiiiiiiiiii e 11-7
MOARM VAIUES .....eeeeiiriiiiintc s B-3
Protection Exceptions of the 80286 ..........c.coccoviiriivniinriieieteeceren e ssnees B-8
Hexadecimal Values for the Access Rights Byte ........ccccccvviiniiininnnncceenee, . B-14
NeW 80286 INtEITUPES ......ccceeeiiriiecieeterie ettt esae e st s C-1

xi



intel

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel’s complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer’s expectations. Such support requires an interna-
tional support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel’s customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, customer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings '
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS Maga-
zine). Basic support includes updates and the subscription service. Contracts are sold in environments which repre-
sent product groupings (i.e., iRMX environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an application,
personalizing training, and customizing or tailoring an Intel product to providing technical and management con-
sulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applications,
embedded microcontrollers, and network services. You know your application needs; we know our products. Work-
ing together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation. In
just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course categories include:
architecture and assembly language, programming and operating systems, bitbus and LAN applications.
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CHAPTER 1
INTRODUCTION TO THE 80286

The 80286 is the most powerful 16-bit processor in the 8086 series of microprocessors, which includes
the 8086, the 8088, the 80186, the 80188, and the 80286. It is designed for applications that require
very high performance. It is also an excellent choice for sophisticated “high end” applications that will
benefit from its advanced architectural features: memory management, protection mechanisms, task
management, and virtual memory support. The 80286 provides, on a single VLSI chip, computational
and architectural characteristics normally associated with much larger minicomputers.

Sections 1.1, 1.2, and 1.3 of this chapter provide an overview of the 80286 architecture. Because the
80286 represents an extension of the 8086 architecture, some of this overview material may be new
and unfamiliar to previous users of the 8086 and similar microprocessors. But the 80286 is also an
evolutionary development, with the new architecture superimposed upon the industry standard 8086 in
such a way as to affect only the design and programming of operating systems and other such system
software. Section 1.4 of this chapter provides a guide to the organization of this manual, suggesting
which chapters are relevant to the needs of particular readers.

1.1 GENERAL ATTRIBUTES

The 80286 base architecture has many features in common with the architecture of other members of
. the 8086 family, such as byte addressable memory, I/O interfacing hardware, interrupt vectoring, and
support for both multiprocessing and processor extensions. The entire family has a common set of
addressing modes and basic instructions. The 80286 base architecture also includes a number of exten-
sions which add to the versatility of the computer.

The 80286 processor can function in two modes of operation (see section 1.2 of this chapter, Modes of
Operation). In one of these modes only the base architecture is available to programmers, whereas in
the other mode a number of very powerful advanced features have been added, including support for
virtual memory, multitasking, and a sophisticated protection mechanism. These advanced features are
described in section 1.3 of this chapter.

The 80286 base architecture was designed to support programming in high-level languages, such as
Pascal, C or PL/M. The register set and instructions are well suited to compiler-generated code. The
addressing modes (see section 2.6.3 in Chapter 2) allow efficient addressing of complex data structures,
such as static and dynamic arrays, records, and arrays within records, which are commonly supported
by high-level languages. The data types supported by the architecture include, along with bytes and
words, high level language constructs such as strings, BCD, and floating point.

The memory architecture of the 80286 was designed to support modular programming techniques.
Memory is divided into segments, which may be of arbitrary size, that can be used to contain proce-
dures and data structures. Segmentation has several advantages over more conventional linear memory
architectures. It supports structured software, since segments can contain meaningful program units
and data, and more compact code, since references within a segment can be shorter (and locality of
reference usually insures that the next few references will be within the same segment). Segmentation
also lends itself to efficient implementation of sophisticated memory management, virtual memory,
and memory protection.

In addition, new instructions have been added to the base architecture to give hardware support for
procedure invocations, parameter passing, and array bounds checking.

1-1
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1.2 MODES OF OPERATION

The 80286 can be operated in either of two different modes: Real Address Mode or Protected Virtual
Address Mode (also referred to as Protected Mode). In either mode of operation, the 80286 represents
an upwardly compatible addition to the 8086 family of processors.

In Real Address Mode, the 80286 operates essentially as a very high-performance 8086. Programs
written for the 8086 or the 80186 can be executed in this mode without any modification (the few
exceptions are described in Appendix C, “Compatibility Considerations”). Such upward compatibility
extends even to the object code level; for example, an 8086 program stored in read-only memory will
execute successfully in 80286 Real Address Mode. An 80286 operating in Real Address Mode provides
a number of instructions not found on the 8086. These additional instructions, also present with the
80186, allow for efficient subroutine linkage, parameter validation, index calculations, and block I/O
transfers.

The advanced architectural features and full capabilities of the 80286 are realized in its native Protected
Mode. Among these features are sophisticated mechanisms to support data protection, system integ-
rity, task concurrency, and memory management, including virtual storage. Nevertheless, even in
Protected Mode, the 80286 remains upwardly compatible with most 8086 and 80186 application
programs. Most 8086 applications programs can be re-compiled or re-assembled and executed on the
80286 in Protected Mode.

1.3 ADVANCED FEATURES

The architectural features described in section 1.1 of this chaper are common to both operating modes
‘of the processor. In addition to these common features, Protected Mode provides a number of advanced
features, including a greatly extended physical and logical address space, new instructions, and support
for additional hardware-recognized data structures. The Protected Mode 80286 includes a sophisti-
cated memory management and multilevel protection mechanism. Full hardware support is included
for multitasking and task switching operations. ,

1.3.1 Memory Management

The memory architecture of the Protected Mode 80286 represents a significant advance over that of
the 8086. The physical address space has been increased from1 megabyte to 16 megabytes (22 bytes),
while the virtual address space (i.e., the address space visible to a program) has been increased from
1 megabyte to 1 gigabyte (2%° bytes). Moreover, separate virtual address spaces are provided for each
task in a multi-tasking system (see the next section, 1.3.2, “Task Management”).

The 80286 supports on-chip memory management instead of relying on an external memory manage-
ment unit. The one-chip solution is preferable because no software is required to manage an external
memory management unit, performance is much better, and hardware designs are significantly simpler.

Mechanisms have been included in the 80286 architecture to allow the efficient implementation of
virtual memory systems. (In virtual memory systems, the user regards the combination of main and
external storage as a single large memory. The user can write large programs without worrying about
the physical memory limitations of the system. To accomplish this, the operating system places some
of the user programs and data in external storage and brings them into main memory only as they are
needed.) All instructions that can cause a segment-niot-present fault are fully restartable. Thus, a not-
present segment can be loaded from external storage, and the task can be restarted at the point where
the fault occurred.
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The 80286, like all members of the 8086 series, supports a segmented memory architecture. The 80286
also fully integrates memory segmentation into a comprehensive protection scheme. This protection
scheme includes hardware-enforced length and type checking to protect segments from inadvertent
misuse.

1.3.2 Task Management

The 80286 is designed to support multi-tasking systems. The architecture provides direct support for
the concept of a task. For example, task state segments (see section 8.2 in Chapter 8) are hardware-
recognized and hardware-manipulated structures that contain information on the current state of all
tasks in the system.

Very efficient context-switching (task-switching) can be invoked with a single instruction. Separate
logical address spaces are provided for each task in the system. Finally, mechanisms exist to support
intertask communication, synchronization, memory sharing, and task scheduling. Task Management is
described in Chapter 8.

1.3.3 Protection Mechanisms

The 80286 allows the system designer to define a comprehensive protection policy to be applied,
uniformly and continuously, to all ongoing operations of the system. Such a policy may be desirable to
ensure system reliability, privacy of data, rapid error recovery, and separation of multiple users.

The 80286 protection mechanisms are based on the notion of a ‘““hierarchy of trust.” Four privilege
levels are distinguished, ranging from Level 0 (most trusted) to Level 3 (least trusted). Level 0 is
usually reserved for the operating system kernel. The four levels may be visualized as concentric rings,
with the most privileged level in the center (see figure 1-1).

This four-level scheme offers system reliability, flexibility, and design options not possible with the
typical two-level (supervisor/user) separation provided by other processors. A four-level division is
capable of separating kernel, executive, system services, and application software, each with different
privileges.

At any one time, a task executes at one of the four levels. Moreover, all data segments and code
segments are also assigned to privilege levels. A task executing at one level cannot access data at a
more privileged level, nor can it call a procedure at a less privileged level (i.e., trust a less privileged
procedure to do work for it). Thus, both access to data and transfer of control are restricted in appro-
priate ways.

A complete separation can exist between the logical address spaces local to different tasks, providing
users with automatic protection against accidental or malicious interference by other users. The hardware
also provides immediate detection of a number of fault and error conditions, a feature that can be
useful in the development and maintenance of software.

Finally, these protection mechanisms require relatively little system overhead because they are integrated
into the memory management and protection hardware of the processor itself.
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Figure 1-1. Four Privilege Levels

1.3.4 Support for Operating Systems

Most operating systems involve some degree of concurrency, with multiple tasks vying for system
resources. The task management mechanisms described above provide the 80286 with inherent support
for such multi-tasking systems. Moreover, the advanced memory management features of the 80286
allow the implementation of sophisticated virtual memory systems.

Operating system implementors have found that a multi-level approach to system services provides
better security and more reliable systems. For example, a very secure kernel might implement critical
functions such as task scheduling and resource allocation, while less fundamental functions (such as
I/O) are built around the kernel. This layered approach also makes program development and
enhancement simpler and facilitates error detection and debugging. The 80286 supports the layered
approach through its four-level privilege scheme.

1.4 ORGANIZATION OF THIS BOOK

To facilitate the use of this book both as an introduction to the 80286 architecture and as a reference
guide, the remaining chapters are divided into three major parts.

Part I, comprising chapters 2 through 4, should be read by all those who wish to acquire a basic
familiarity with the 80286 architecture. These chapters provide detailed information on memory
segmentation, registers, addressing modes and the general (application level) 80286 instruction set. In
conjunction with the 80286 Assembly Language Reference Manual, these chapters provide sufficient
information for an assembly language programmer to design and write application programs.

1-4
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The chapters in Part I are:

Chapter 2, “Architectural Features.” This chapter discusses those features of the 80286 architecture
that are significant for application programmers. The information presented can also function as an
introduction to the machine for system programmers. Memory organization and segmentation, proces-
sor registers, addressing modes, and instruction formats are all discussed.

Chapter 3, “Basic Instruction Set.” This chapter presents the core instructions of the 8086 family.

Chapter 4, “Extended Instruction Set.” This chapter presents the extended instructions shared by the
80186 and 80286 processors.

Part II of the book consists of a single chapter:

Chapter 5, “Real Address Mode.” This chapter presents the system programmer’s view of the 80286
when the processor is operated in Real Address Mode.

Part IIT of the book comprises chapters 6 through 11. Aimed primarily at system programmers, these
chapters discuss the more advanced architectural features of the 80286, which are available when the
processor is in Protected Mode. Details on memory management, protection mechanisms, and task
switching are provided.

The chapters in Part III are:
Chapter 6, “Virtual Memory.” This chapter describes the 80286 address translation mechanisms that
support virtual memory. Segment descriptors, global and local descriptor tables, and descriptor caches

are discussed.

Chapter 7, “Protection.” This chapter describes the protection features of the 80286. Privilege levels,
segment attributes, access restrictions, and call gates are discussed.

Chapter 8, “Tasks and State Transitions.” This chapter describes the 80286 mechanisms that support
concurrent tasks. Context-switching, task state segments, task gates, and interrupt tasks are discussed.

Chapter 9, “Interrupts, Traps and Faults.” This chapter describes interrupt and trap handling. Special
attention is paid to the exception traps, or faults, which may occur in Protected Mode. Interrupt gates,
trap gates, and the interrupt descriptor table are discussed.

Chapter 10, “System Control and Initialization.” This chapter describes the actual instructions used
to implement the memory management, protection, and task support features of the 80286. System
registers, privileged instructions, and the initial machine state are discussed.

Chapter 11, “Advanced Topics.” This chapter completes Part IIT with a description of several advanced
topics, including special segment attributes and pointer validation.

1.5 RELATED PUBLICATIONS

The following manuals also contain information of interest to programmers of 80287 systems:

e Introduction to the 80286, order number 210308
e ASM286 Assembly Language Reference Manual, order number 121924
e 80286 Operating System Writer’s Guide, order number 121960
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o 80286 Hardware Reference Manual, order number 210760

e Microprocessor and Peripheral Handbook, order number 230843
e PL/M-286 User’s Guide, order number 121945

e 80287 Support Library Reference Manual, order number 122129

e 8086 Software Toolbox Manual, order number 122203 (includes information about 80287
Emulator Software)
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CHAPTER 2
80286 BASE ARCHITECTURE

This chapter describes the 80286 application programming environment as seen by assembly language
programmers. It is intended to introduce the programmer to those features of the 80286 architecture
that directly affect the design and implementation of 80286 application programs.

2.1 MEMORY ORGANIZATION AND SEGMENTATION

The main memory of an 80286 system makes up its physical address space. This address space is
organized as a sequence of 8-bit quantities, called bytes. Each byte is assigned a unique address ranging
from O up to a maximum of 22° (1 megabyte) in Real Address Mode, and up to 2% (16 megabytes) in
Protected Mode. '

A virtual address space is the organization of memory as viewed by a program. Virtual address space
is also organized in units of bytes. (Other addressable units such as words, strings, and BCD digits are
described below in section 2.2, “Data Types.”) In Real Address Mode, as with the 8086 itself, programs
view physical memory directly, inasmuch as they manipulate pure physical addresses. Thus, the virtual
address space is identical to the physical address space (1 megabyte).

In Protected Mode, however, programs have no direct access to physical addresses. Instead, memory
is viewed as a much larger virtual address space of 23° bytes (1 gigabyte). This 1 gigabyte virtual
address is mapped onto the Protected Mode’s 16-megabyte physical address space by the address trans-
lation mechanisms described in Chapter 6.

The programmer views the virtual address space on the 80286 as a collection of up to sixteen thousand
linear subspaces, each with a specified size or length. Each of these linear address spaces is called a
segment. A segment is a logical unit of contiguous memory. Segment sizes may range from one byte
up to 64K (65,536) bytes.

80286 memory segmentation supports the logical structure of programs and data in memory. Programs
are not written as single linear sequences of instructions and data, but rather as modules of code and
data. For example, program code may include a main routine and several separate procedures. Data
may also be organized into various data structures, some private and some shared with other programs
in the system. Run-time stacks constitute yet another data requirement. Each of these several modules
of code and data, moreover, may be very different in size or vary dynamically with program execution.

Segmentation supports this logical structure (see figure 2-1). Each meaningful module of a program
may be separately contained in individual segments. The degree of modularization, of course, depends
on the requirements of a particular application. Use of segmentation benefits almost all applications.
Programs execute faster and require less space. Segmentation also simplifies the design of structured
software.

2.2 DATA TYPES

Bytes and words are the fundamental units in which the 80286 manipulates data, i.e., the fundamental
data types.
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Figure 2-1. Segmented Virtual Memory

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are numbered 0 through
7, starting from the right. Bit 7 is the most significant bit:

A word is defined as two contiguous bytes starting on an arbitrary byte boundary; a word thus contains
16 bits. The bits are numbered 0 through 15, starting from the right. Bit 15 is the most significant bit.
The byte containing bit 0 of the word is called the low byte; the byte containing bit 15 is called the

high byte.

15
L L L 1 L L L L L
HIGH BYTE LOW BYTE
| N O T T N | I U T I
LOCATION N+ 1 LOCATION N
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Each byte within a word has its own particular address, and the smaller of the two addresses is used
as the address of the word. The byte at this lower address contains the eight least significant bits of
the word, while the byte at the higher address contains the eight most significant bits. The arrangement
of bytes within words is illustrated in figure 2-2.

Note that a word need not be aligned at an even-numbered byte address. This allows maximum flexi-
bility in data structures (e.g., records containing mixed byte and word entries) and efficiency in memory
utilization. Although actual transfers of data between the processor and memory take place at physi-
cally aligned word boundaries, the 80286 converts requests for unaligned words into the appropriate
sequences of requests acceptable to the memory interface. Such odd aligned word transfers, however,
may impact performance by requiring two memory cycles to transfer the word rather than one. Data
structures (e.g., stacks) should therefore be designed in such a way that word operands are aligned on
word boundaries whenever possible for maximum system performance. Due to instruction prefetching
and queueing within the CPU, there is no requirement for instructions to be aligned on word bounda-
ries and no performance loss if they are not.

Although bytes and words are the fundamental data types of operands, the processor also supports
additional interpretations on these bytes or words. Depending on the instruction referencing the operand,
the following additional data types can be recognized:

Integer:

A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All operations assume a
2’s complement representation. (Signed 32- and 64-bit integers are supported using the 80287
Numeric Data Processor.)

BYTE MEMORY
ADDRESS' VALUES
« ‘<%

E
D)
c FE

WORD AT ADDRESS B
. - CONTAINS FEQG
A
9 1E BYTE AT ADDRESS 9

CONTAINS 1F
8
7 23 WORD AT ADDRESS 6
. p CONTAINS 230B
5
4
3 4 WORD AT ADDRESS 2
. p CONTAINS 74CB

WORD AT ADDRESS 1
CONTAINS CB31
1 31
0 ‘NOTE:
ALL VALUES IN HEXADECIMAL
630108

Figure 2-2. Bytes and Words in Memory
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Ordinal:
An unsigned binary numeric value contained in an 8-bit byte or 16-bit word.-
Pointer:

A 32-bit address quantity composed of a segment selector component and an offset component.
Each component is a 16-bit word.

String:
A contiguous sequence of bytes or words. A string may contain from 1 byte to 64K bytes.
ASCII:

A byte representation of alphanumeric and control characters using the ASCII standard of
character representation.

BCD:
A byte (unpacked) repfesentation of the decimal digits (0-9).
Packed BCD:

A byte (packed) representation of two decimal digits (0-9). One digit is stored in each nibble of the
byte.

Floating Point:

A signed 32-, 64-, or 80-bit real number representation. (Floating operands are supported using the
80287 Numeric Processor Configuration.)

Figure 2-3 graphically represents the data types supported by the 80286. 80286 arithmetic operations
may be performed on five types of numbers: unsigned binary, signed binary (integers), unsigned packed
decimal, unsigned unpacked decimal, and floating point. Binary numbers may be 8 or 16 bits long.
Decimal numbers are stored in bytes; two digits per byte for packed decimal, one digit per byte for
unpacked decimal. The processor always assumes that the operands specified in arithmetic instructions
contain data that represent valid numbers for the type of instruction being performed. Invalid data
may produce unpredictable results.

Unsigned binary numbers may be either 8 or 16 bits long; all bits are considered in determining a
number’s magnitude. The value range of an 8-bit unsigned binary number is 0-255; 16 bits can repre-
sent values from O through 65,535. Addition, subtraction, multiplication and division operations are
available for unsigned binary numbers.

Signed binary numbers (integers) may be either 8 or 16 bits long. The high-order (leftmost) bit is
interpreted as the number’s sign: 0=positive and 1=negative. Negative numbers are represented in
standard two’s complement notation. Since the high-order bit is used for a sign, the range of an 8-bit
integer is —128 through +127; 16-bit integers may range from — 32,768 through +32,767. The value
zero has a positive sign.
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Figure 2-3. 80286/80287 Supported Data Types
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Separate multiplication and division operations are provided for both signed and unsigned binary
numbers. The same addition and subtraction instructions are used with signed or unsigned binary values.
Conditional jump instructions, as well as an “interrupt on overflow” instruction, can be used following
an unsigned operation on an integer to detect overflow into the sign bit. '

Unpacked decimal numbers are stored as unsigned byte quantities. One digit is stored in each byte.
The magnitude of the number is determined from the low-order half-byte; hexadecimal values 0-9 are
valid and are interpreted as decimal numbers. The high-order half-byte must be zero for multiplication
and division; it may contain any value for addition and subtraction.

Arithmetic on unpacked decimal numbers is performed in two steps. The unsigned binary addition,
subtraction and multiplication operations are used to produce an intermediate result. An adjustment
instruction then changes the value to a final correct unpacked decimal number. Division is performed
similarly, except that the adjustment is carried out on the two digit numerator operand in register AX
first, followed by an unsigned binary division instruction that produces a correct result.

Unpacked decimal numbers are simiiar to the ASCII character representations of the digits 0-9. Note,
however, that the high-order half-byte of an ASCII numeral is always 3. Unpacked decimal arithmetic
may be performed on ASCII numeric characters under the following conditions:

e the high-order half-byte of an ASCII numeral must be set to OH prior to multiplication or division.

¢ unpacked decimal arithmetic leaves the high-order half-byte set to OH; it must be set to 3 to
produce a valid ASCII numeral.

Packed decimal numbers are stored as unsigned byte quantities. The byte is treated as having one
decimal digit in each half-byte (nibble); the digit in the high-order half-byte is the most significant.
Values 0-9 are valid in each half-byte, and the range of a packed decimal number is 0-99. Additions
and subtractions are performed in two steps. First, an addition or subtraction instruction is used to
produce an intermediate result. Then, an adjustment operation is performed which changes the inter-
mediate value to a final correct packed decimal result. Multiplication and division adjustments are
only available for unpacked decimal numbers.

Pointers and addresses are described below in section 2.3.3, “Index, Pointer, and Base Registers,” and
in section 3.8, “Address Manipulation Instructions.”

Strings are contiguous bytes or words from 1 to 64K bytes in length. They generally contain ASCII or
other character data representations. The 80286 provides string manipulation instructions to move,
examine, or modify a string (see section 3.7, “Character Translation and String Instructions”).

If the 80287 numeric processor extension (NPX) is present in the system — see the 80287 NPX
book—the 80286 architecture also supports floating point numbers, 32- and 64-bit integers, and
18-digit BCD data types.

The 80287 Numeric Data Processor supports and stores real numbers in a three-field binary format as
required by IEEE standard 754 for floating point numerics (see figure 2-3). The number’s significant
digits are held in the significand field, the exponent field locates the binary point within the significant
digits (and therefore determines the number’s magnitude), and the sign field indicates whether the
number is positive or negative. (The exponent and significand are analogous to the terms “character-
istic” and “mantissa,” typically used to describe floating point numbers on some computers.) This
format is used by the 80287 with various length significands and exponents to support single precision,
double precision and extended (80-bit) precision floating point data types. Negative numbers differ
from positive numbers only in their sign bits.
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2.3 REGISTERS

The 80286 contains a total of fourteen registers that are of interest to the application programmer.
(Five additional registers used by system programmers are covered in section 10.1.) As shown in
figure 2-4, these registers may be grouped into four basic categories:

¢ General registers. These eight 16-bit general-purpose registers are used primarily to contain operands
for arithmetic and logical operations.

¢ Segment registers. These four special-purpose registers determine, at any given time, which
segments of memory are currently addressable.

e Status and Control registers. These three special-purpose registers are used to record and alter
certain aspects of the 80286 processor state.

2.3.1 General Registers

The general registers of the 80286 are the 16-bit registers AX, BX, CX, DX, SP, BP, SI, and DI.
These registers are used interchangeably to contain the operands of logical and arithmetic operations.

Some instructions and addressing modes (see section 2.4), however, dedicate certain general registers
to specific uses. BX and BP are often used to contain the base address of data structures in memory
(for example, the starting address of an array); for this reason, they are often referred to as the base
registers. Similarly, SI and DI are often used to contain an index value that will be incremented to
step through a data structure; these two registers are called the index registers. Finally, SP and BP are
used for stack manipulation. Both SP and BP normally contain offsets into the current stack. SP gener-
ally contains the offset of the top of the stack and BP contains the offset or base address of the current

16-BIT SPECIAL
REGISTER REGISTER
NAME FUNCTIONS
7 07 0 15 0
AX AH AL cs
BYTE } MULTIPLY, DIVIDE CODE SEGMENT SELECTOR
ADDRESSABLE 1/0 INSTRUCTIONS
oo | PX DH DL P DS DATA SEGMENT SELECTOR
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NAMES CX CH CL } REPEAT COUNT Sss STACK SEGMENT SELECTOR
SHOWN
2 BH BL ES EXTRA SEGMENT SELECTOR
BASE REGISTERS
BP SEGMENT REGISTERS
sl 15 0
INDEX REGISTERS
DI F FLAGS
sP } STACK POINTER IP INSTRUCTION POINTER
15 Y MSW MACHINE STATUS WORD
GENERAL
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Figure 2-4. 80286 Base Architecture Register Set
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stack frame. The use of these general-purpose registers for operand addressing is discussed in section
2.3.3, “Index, Pointer, and Base Registers.” Register usage for individual instructions is discussed in
chapters 3 and 4.

As shown in figure 2-4, eight byte registers overlap four of the 16-bit general registers. These registers
are named AH, BH, CH, and DH (high bytes); and AL, BL, CL, and DL (low bytes); they overlap
AX, BX, CX, and DX. These registers can be used either in their entirety or as individual 8-bit regis-
ters. This dual interpretation simplifies the handling of both 8- and 16-bit data elements.

2.3.2 Memory Segmentation and Segment Registers

Complete programs generally consist of many different code modules (or segments), and different
types of data segments. However, at any given time during program execution, only a small subset of
a program’s segments are actually in use. Generally, this subset will include code, data, and possibly a
stack. The 80286 architecture takes advantage of this by providing mechanisms to support direct access
to the working set of a program’s execution environment and access to additional segments on demand.

At any given instant, four segments of memory are immediately accessible to an executing 80286
program. The segment registers DS, ES, SS, and CS are used to identify these four current segments.
Each of these registers specifies a particular kind of segment, as characterized by the associated
mnemonics (‘“code,” “stack,” “data,” or “extra”) shown in figure 2-4.

An executing program is provided with concurrent access to the four individual segments of memory—
a code segment, a stack segment, and two data segments—by means of the four segment registers.
Each may be said to select a segment, since it uniquely determines the one particular segment from
among the numerous segments in memory, which is to be immediately accessible at highest speed.
Thus, the 16-bit contents of a segment register is called a segment selector.

Once a segment is selected, a base address is associated with it. To address an element within a segment,
a 16-bit offset from the segment’s base address must be supplied. The 16-bit segment selector and the
16-bit offset taken together form the high and low order halves, respectively, of a 32-bit virtual address
pointer. Once a segment is selected, only the lower 16-bits of the pointer, called the offset, generally
need to be specified by an instruction. Simple rules define which segment register is used to form an
address when only a 16-bit offset is specified.

An executing program requires, first of all, that its instructions reside somewhere in memory. The
segment of memory containing the currently executing sequence of instructions is known as the current
code segment; it is specified by means of the CS register. All instructions are fetched from this code
segment, using as an offset the contents of the instruction pointer (IP). The CS:IP register combination
therefore forms the full 32-bit pointer for the next sequential program instruction. The CS register is
manipulated indirectly. Transitions from one code segment to another (e.g., a procedure call) are effected
implicitly as the result of control-transfer instructions, interrupts, and trap operations.

Stacks play a fundamental role in the 80286 architecture; subroutine calls, for example, involve a
number of implicit stack operations. Thus, an executing program will generally require a region of
memory for its stack. The segment containing this region is known as the current stack segment, and
it is specified by means of the SS register. All stack operations are performed within this segment,
usually in terms of address offsets contained in the stack pointer (SP) and stack frame base (BP)
registers. Unlike CS, the SS register can be loaded explicitly for dynamic stack definition.

2-8



Intel 80286 BASE ARCHITECTURE

Beyond their code and stack requirements, most programs must also fetch and store data in memory.
The DS and ES registers allow the specification of two data segments, each addressable by the currently
executing program. Accessibility to two separate data areas supports differentiation and access require-
ments like local procedure data and global process data. An operand within a data segment is addressed
by specifying its offset either directly in an instruction or indirectly via index and/or base registers
(described in the next subsection).

Depending on the data structure (e.g., the way data is parceled into one or more segments), a program
may require access to multiple data segments. To access additional segments, the DS and ES registers
can be loaded under program control during the course of a program’s execution. This simply requires
loading the appropriate data pointer prior to accessing the data.

The interpretation of segment selector values depends on the operating mode of the processor. In Real
Address Mode, a segment selector is a physical address (figure 2-5). In Protected Mode, a segment
selector selects a segment of the user’s virtual address space (figure 2-6). An intervening level of logical-
to-physical address translation converts the logical address to a physical memory address. Chapter 6,
“Memory Management,” provides a detailed discussion of Protected Mode addressing. In general,
considerations of selector formats and the details of memory mapping need not concern the application
programmer. '

2.3.3 Index, Pointer, and Base Registers

Five of the general-purpose registers are available for offset address calculations. These five registers,
shown in figure 2-4, are SP, BP, BX, SI, and DI. SP is called a pointer register; BP and BX are called
base registers; SI and DI are called index registers.

1 MEGABYTE PHYSICAL

64K
[ SEG 1 ADDRESS SPACE

SEGMENT BYTES
BASE ADDRESS

SELECTOR

NOTES:

. THE SELECTOR IDENTIFIES A SEGMENT IN PHYSICAL MEMORY.

. A SELECTOR SPECIFIES THE SEGMENTS BASE ADDRESS, MODULO 16, WITHIN
THE 1 MEGABYTE ADDRESS SPACE.

. THE SELECTOR IS THE 16 MOST SIGNIFICANT BITS OF A SEGMENTS PHYSICAL
BASE ADDRESS.

. L:EA;:I;UES OF SELECTORS DETERMINES THE AMOUNT THEY OVERLAP IN REAL

. SEGMENTS MAY OVERLAP BY INCREMENTS OF 16 BYTES. OVERLAP RANGES FROM
COMPLETE (SEG 1 = SEG 1) TO NONE (SEG 1 $ SEG 2 + 64K)

0o @ N

G30108

Figure 2-5. Real Address Mode Segment Selector Interpretation
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DEPENDS ON THE BASE ADDRESS OF THE SEGMENT AS SPECIFIED VIA THE MEMORY
MANAGEMENT AND PROTECTION INFORMATION).

G30108

Figure 2-6. Protected Mode Segment Selector Interpretation

As described in the previous section, segment registers define the set of four segments currently
addressable by a program. A pointer, base, or index register may contain an offset value relative to the
start of one of these segments; it thereby points to a particular operand’s location within that segment.
To allow for efficient computations of effective address offsets, all base and index registers may partic-
ipate interchangeably as operands in most arithmetical operations.

Stack operations are facilitated by the stack pointer (SP) and stack frame base (BP) registers. By
specifying offsets into the current stack segment, each of these registers provides access to data on the
stack. The SP register is the customary top-of-stack pointer, addressing the uppermost datum on a
push-down stack. It is referenced implicitly by PUSH and POP operations, subroutine calls, and inter-
rupt operations. The BP register provides yet another offset into the stack segment. The existence of
this stack relative base register, in conjunction with certain addressing modes described in section
2.6.3, is particularly useful for accessing data structures, variables and dynamically allocated work
space within the stack.

Stacks in the 80286 are implemented in memory and are located by the stack segment register (SS)
and the stack pointer register (SP). A system may have an unlimited numbcr of stacks, and a stack
may be up to 64K bytes long, the maximum length of a segment.

One stack is directly addressable at a time; this is the current stack, often referred to simply as “the”
stack. SP contains the current top of the stack (TOS). In other words, SP contains the offset to the top
of the push down stack from the stack segment’s base address. Note, however, that the stack’s base
address (contained in SS) is not the “bottom” of the stack (figure 2-7).
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Figure 2-7. 80286 Stack

80286 stack entries are 16 bits wide. Instructions operate on the stack by adding and removing stack
items one word at a time. An item is pushed onto the stack (see figure 2-8) by decrementing SP by 2
and writing the item at the new TOS. An item is popped off the stack by copying it from TOS and
then incrementing SP by 2. In other words, the stack grows down in memory toward its base address.
Stack operations never move items on the stack; nor do they erase them. The top of the stack changes
only as a result of updating the stack pointer.

The stack frame base pointer (BP) is often used to access elements on the stack relative to a fixed
point on the stack rather than relative to the current TOS. It typically identifies the base address of
the current stack frame established for the current procedure (figure 2-9). If an index register is used
relative to BP (e.g., base + index addressing mode using BP as the base), the offset will be calculated
automatically in the current stack segment.

Accessing data structures in data segments is facilitated by the BX register, which has the same function
in addressing operands within data segments that BP does for stack segments. They are called base
registers because they may contain an offset to the base of a data structure. The similar usage of these
two registers is especially important when discussing addressing modes (see section 2.4, “Addressing
Modes”).

Operations on data are also facilitated by the SI and DI registers. By specifying an offset relative to
the start of the currently addressable data segment, an index register can be used to address an operand
in the segment. If an index register is used in conjunction with the BX base register (i.e., base + index
addressing) to form an offset address, the data is also assumed to reside in the current data segment.
As a rule, data referenced through an index register or BX is presumed to reside in the current data
segment. That is, if an instruction invokes addressing for one of its operands using either BX, DI, SI,
or BX with SI or DI, the contents of the register(s) (BX, DI, or SI) implicitly specify an offset in the
current data segment. As previously mentioned, data referenced via SP, BP or BP with SI or DI implic-
itly specify an operand in the current stack segment (refer to table 2-1).
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Figure 2-8. Stack Operation
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BP IS A CONSTANT POINTER TO STACK BASED VARIABLES AND WORK SPACE. ALL REFERENCES
USE BP AND ARE INDEPENDENT OF SP, WHICH MAY VARY DURING A ROUTINE EXECUTION.

PROC N
PUSH AX
PUSH ARRAY_SIZE

CALL PROC_N+1 —————————3 PROC_N+1:
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< | PUSH CX
MOV BP, SP
SUB SP, WORK_SPACE
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POP CX
POP BP
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Figure 2-9. BP Usage as a Stack Frame Base Pointer
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Table 2-1. Implied Segment Usage by Index, Pointer, and Base Registers

Register Implied Segment
SP SS
BP SS
BX DS
SI DS
DI DS, ES for String Operations
BP + SI, DI SS
BX + SI, DI DS

NOTE:

All implied Segment usage, except SP to SS and DI to ES for String Operations, may be explicitly specified
with a segment override prefix for any of the four segments. The prefix precedes the instruction for which
explicit reference is desired.

There are two exceptions to the rules listed above. The first concerns the operation of certain 80286
string instructions. For the most flexibility, these instructions assume that the DI register addresses
destination strings not in the data segment, but rather in the extra segment (ES register). This allows
movement of strings between different segments. This has led to the descriptive names “source index”
and “destination index.” In all cases other than string instructions, however, the SI and DI registers
may be used interchangeably to reference either source or destination operands.

A second more general override capability allows the programmer complete control of which segment
is used for a specific operation. Segment-override prefixes, discussed in section 2.4.3, allow the index
and base registers to address data in any of the four currently addressable segments.

2.3.4 Status and Control Registers

Two status and control registers are of immediate concern to applications programmers: the instruction
pointer and the FLAGS registers.

The instruction pointer register (IP) contains the offset address, relative to the start of the current code
segment, of the next sequential instruction to be executed. Together, the CS:IP registers thus define a
32-bit program-counter. The instruction pointer is not directly visible to the programmer; it is controlled
implicitly, by interrupts, traps, and control-transfer operations.

The FLAGS register encompasses eleven flag fields, mostly one-bit wide, as shown in figure 2-10. Six
of the flags are status flags that record processor status information. The status flags are affected by
the execution of arithmetic and logical instructions. The carry flag is also modifiable with instructions
that will clear, set or complement this flag bit. See Chapters 3 and 4.

The carry flag (CF) generally indicates a carry or borrow out of the most significant bit of an 8- or
16-bit operand after performing an arithmetic operation; this flag is also useful for bit manipulation
operations involving the shift and rotate instructions. The effect on the remaining status flags, when
defined for a particular instruction, is generally as follows: the zero flag (ZF) indicates a zero result
when set; the sign flag (SF) indicates whether the result was negative (SF=1) or positive (SF=0);
when set, the overflow flag (OF) indicates whether an operation results in a carry into the high order
bit of the result but not a carry out of the high-order bit, or vice versa; the parity flag (PF) indicates
whether the modulo 2 sum of the low-order eight bits of the operation is even (PF=0) or odd (PF=1)
parity. The auxiliary carry flag (AF) represents a carry out of or borrow into the least significant 4-bit
digit when performing binary coded decimal (BCD) arithmetic.

2-14



Intel 80286 BASE ARCHITECTURE

STATUS FLAGS:
CARRY
PARITY
AUXILIARY CARRY
ZERO
SIGN
OVEHFLOW———T
15 14 13 12 Y11 10 9 g8 Y7 | 6 5 y 4 3 Vo2 1 J 0
FLAGS: W% NT | |o;>|_ | OF I DF | IF | TF I SF I zF % AF W% PF WA CFJ
1 4 4
CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE
DIRECTION FLAG
SPECIAL FIELDS:
1/0 PRIVILEGE LEVEL
NESTED TASK FLAG
V//// INTEL RESERVED
%
G30108

Figure 2-10. Flags Register

The FLAGS register also contains three control flags that are used, under program control, to direct
certain processor operations. The interrupt-enable flag (IF), if set, enables external interrupts; other-
wise, interrupts are disabled. The trap flag (TF), if set, puts the processor into a single-step mode for
debugging purposes where the target program is automatically interrupted to a user supplied debug
routine after the execution of each target program instruction. The direction flag (DF) controls the
forward or backward direction of string operations: 0 = forward or auto increment the address regis-
ter(s) (SI, DI or SI and DI), 1 = backward or auto-decrement the address register(s) (SI, DI or SI
and DI).

In general, the interrupt enable flag may be set or reset with special instructions (STI = set,
CLI = clear) or by placing the flags on the stack, modifying the stack, and returning the flag image
from the stack to the flag register. If operating in Protected Mode, the ability to alter the IF bit is
subject to protection checks to prevent non-privileged programs from effecting the interrupt state of
the CPU. This applies to both instruction and stack options for modifying the IF bit.

The TF flag may only be modified by copying the flag register to the stack, setting the TF bit in the
stack image, and returning the modified stack image to the flag register. The trap interrupt occurs on
completion of the next instruction. Entry to the single step routine saves the flag register on the stack
with the TF bit set, and resets the TF bit in the register. After completion of the single step routine,
the TF bit is automatically set on return to the program being single stepped to interrupt the program
again after completion of the next instruction. Use of TF is not inhibited by the protection mechanism
in Protected Mode.
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The DF flag, like the IF flag, is controlled by instructions (CLD = clear, STD = set) or flag register
modification through the stack. Typically, routines that use string instructions will save the flags on
the stack, modify DF as necessary via the instructions provided, and restore DF to its original state by
restoring the Flag register from the stack before returning. Access or control of the DF flag is not
inhibited by the protection mechanism in Protected Mode.

The Special Fields bits are only relevant in Protected Mode. Real Address Mode programs should treat
these bits as don’t-care’s, making no assumption about their status. Attempts to modify the IOPL and
NT fields are subject to protection checking in Protected Mode. In general, the application’s program-
mer will not be able to and should not attempt to modify these bits. (See section 10.3, “Privileged and
Trusted Instructions” for more details.)

2.4 ADDRESSING MODES

The information encoded in an 80286 instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these operands. If an operand
is located in memory, the instruction must also select, explicitly or implicitly, which of the currently
addressable segments contains the operand. This section covers the operand addressing mechanisms;
80286 operators are discussed in Chapter 3.

The five elements of a general instruction are briefly described below. The exact format of 80286
instructions is specified in Appendix B.

¢ The opcode is present in all instructions; in fact, it is the only required element. Its principal
function is the specification of the operation performed by the instruction.

e A register specifier.

¢ The addressing mode specifier, when present, is used to specify the addressing mode of an operand
for referencing data or performing indirect calls or jumps.

¢ The displacement, when present, is used to compute the effective address of an operand in memory.
e The immediate operand, when present, directly specifies one operand of the instruction.

Of the four elements, only one, the opcode, is always present. The other elements may or may not be
present, depending on the particular operation involved and on the location and type of the operands.

2.4.1 Operands

Generally speaking, an instruction is an operation performed on zero, one, or two operands, which are
the data manipulated by the instruction. An operand can be located either in a register (AX, BX, CX,
DX, SI, DI, SP, or BP in the case of 16-bit operands; AH, AL, BH, BL, CH, CL, DH, or DL in the
case of 8-bit operands; the FLAG register for flag operations in the instruction itself (as an immediate
operand)), or in memory or an I/O port. Immediate operands and operands in registers can be accessed
more rapidly than operands in memory since memory operands must be fetched from memory while
immediate and register operands are available in the processor.

An 80286 instruction can reference zero, one, or two operands. The three forms are as follows:

e Zero-operand instructions, such as RET, NOP, and HLT. Consult Appendix B.
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One-operand instructions, such as INC or DEC. The location of the single operand can be speci-
fied implicitly, as in AAM (where the register AX contains the operand), or explicitly, as in INC
(where the operand can be in any register or memory location). Explicitly specified operands are
accessed via one of the addressing modes described in section 2.4.2.

Two operand instructions such as MOV, ADD, XOR, etc., generally overwrite one of the two
participating operands with the result. A distinction can thus be made between the source operand
(the one left unaffected by the operation) and the destination operand (the one overwritten by the
result). Like one-operand instructions, two-operand instructions can specify the location of operands
either explicitly or implicitly. If an instruction contains two explicitly specified operands, only one
of them—either the source or the destination—can be in a register or memory location. The other
operand must be in a register or be an immediate source operand. Special cases of two-operand
instructions are the string instructions and stack manipulation. Both operands of some string
instructions are in memory and are explicitly specified. Push and pop stack operations allow trans-
fer between memory operands and the memory based stack.

Thus, the two-operand instructions of the 80286 permit operations of the following sort:

Register-to-register
Register-to-memory
Memory-to-register
Immediate-to-register
Immediate-to-memory

Memory-to-memory

Instructions can specify the location of their operands by means of eight addressing modes, which are
described in sections 2.4.2 and 2.4.3.

2.4.2 Register and Immediate Modes

Two addressing modes are used to reference operands contained in registers and instructions:

Register Operand Mode. The operand is located in one of the 16-bit registers (AX, BX, CX, DX,
SI, DI, SP, or BP) or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, or
DL).

Special instructions are also included for referencing the CS, DS, ES, SS, and Flag registers as
operands also.

Immediate Operand Mode. The operand is part of the instruction itself (the immediate operand
element).

2.4.3 Memory Addressing Modes

Six modes are used to access operands in memory. Memory operands are accessed by means of a
pointer consisting of a segment selector (see section 2.3.2) and an offset, which specifies the operand’s
displacement in bytes from the beginning of the segment in which it resides. Both the segment selector
component and the offset component are 16-bit values. (See section 2.1 for a discussion of segmenta-
tion.) Only some instructions use a full 32-bit address.
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Most memory references do not require the instruction to specify a full 32-bit pointer address. Operands
that are located within one of the currently addressable segments, as determined by the four segment
registers (see section 2.3.2, “Segment Registers”), can be referenced very efficiently simply by means
of the 16-bit offset. This form of address is called by short address. The choice of segment (CS, DS,
ES, or SS) is either implicit within the instruction itself or explicitly specified by means of a segment
override prefix (see below).

See figure 2-11 for a diagram of the addressing process.

2.4.3.1 SEGMENT SELECTION

All instructions that address operands in memory must specify the segment and the offset. For speed
and compact instruction encoding, segment selectors are usually stored in the high speed segment
registers. An instruction need specify only the desired segment register and an offset in order to address
a memory operand.

Most instructions need not explicitly specify which segment register is used. The correct segment regis-
ter is automatically chosen according to the rules of table 2-1 and table 2-2. These rules follow the way
programs are written (see figure 2-12) as independent modules that require areas for code and data, a
stack, and access to external data areas. ‘

There is a close connection between the type of memory reference and the segment in which that
operand resides (see the next section for a discussion of how memory addressing mode calculations are
performed). As a rule, a memory reference implies the current data segment (i.e., the implicit segment
selector is in DS) unless the BP register is involved in the address specification, in which case the
current stack segment is implied (i.e, SS contains the selector).

9 Vo)
POINTER
l, SEGMENT I OFFSET ]
31 16 15 )
' OPERAND
SELECTED SELECTED
SEGMENT

5

MEMORY
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Figure 2-11. Two-Component Address
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Table 2-2. Segment Register Selection Rules

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule
Instructions Code (CS) Automatic with instruction prefetch.
Stack Stack (SS) All stack pushes and pops. Any memory refer-

ence which uses BP as a base register.

Local Data Data (DS) All data references except when relative to stack
or string destination.

External (Global) Data Extra (ES) Alternate data segment and destination of string
operation.

The 80286 instruction set defines special instruction prefix elements (see Appendix B). One of these is
SEG, the segment-override prefix. Segment-override prefixes allow an explicit segment selection. Only
in two special cases—namely, the use of DI to reference destination strings in the ES segment, and the
use of SP to reference stack locations in the SS segment—is there an implied segment selection which
cannot be overridden. The format of segment override prefixes is shown in Appendix B.

2.4.3.2 OFFSET COMPUTATION

The offset within the desired segment is calculated in accordance with the desired addressing mode.
The offset is calculated by taking the sum of up to three components:

¢ the displacement element in the instruction
e the base (contents of BX or BP—a base register)
¢ the index (contents of SI or DI—an index register)

Each of the three components of an offset may be either a positive or negative value. Offsets are
calculated modulo 2'¢.

The six memory addressing modes are generated using various combinations of these three compo-
nents. The six modes are used for accessing different types of data stored in memory:

addressing mode offset calculation
direct address displacement alone
register indirect base or index alone
based base + displacement
indexed index + displacement
based indexed base + index

based indexed with base + index + disp

displacement

In all six modes, the operand is located at the specified offset within the selected segment. All displace-
ments, except direct address mode, are optionally 8- or 16-bit values. 8-bit displacements are automat-
ically sign-extended to 16 bits. The six addressing modes are described and demonstrated in the following
section on memory addressing modes.
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Figure 2-12. Use of Memory Segmentation

2.4.3.3 MEMORY MODE
Two modes are used for simple scalar operands located in memory:

»  Direct Address Mode. The offset of the operand is contained in the instruction as the displacement
element. The offset is a 16-bit quantity.

e  Register Indirect Mode. The offset of the operand is in one of the registers SI, DI, or BX. (BP is
excluded; if BP is used as a stack frame base, it requires an index or displacement component to
reference either parameters passed on the stack or temporary variables allocated on the stack. The
instruction level bit encoding for the BP only address mode is used to specify Direct Address
mode. See Chapter 12 for more details.)
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The following four modes are used for accessing complex data structures in memory (see
figure 2-13):

*  Based Mode. The operand is located within the selected segment at an offset computed as the
sum of the displacement and the contents of a base register (BX or BP). Based mode is often used
to access the same field in different copies of a structure (often called a record). The base register
points to the base of the structure (hence the term ‘““base” register), and the displacement selects
a particular field. Corresponding fields within a collection of structures can be accessed simply by
changing the base register. (See figure 2-13, example 1.)

e  Indexed Mode. The operand is located within the selected segment at an offset computed as the
sum of the displacement and the contents of an index register (SI or DI). Indexed mode is often
used to access elements in a static array (e.g., an array whose starting location is fixed at transla-
tion time). The displacement locates the beginning of the array, and the value of the index register
selects one element. Since all array elements are the same length, simple arithmetic on the index
register will select any element. (See figure 2-13, example 2.)

¢ Based Indexed Mode. The operand is located within the selected segment at an offset computed
as the sum of the base register’s contents and an index register’s contents. Based Indexed mode is
often used to access elements of a dynamic array (i.e., an array whose base address can change
during execution). The base register points to the base of the array, and the value of the index
register is used to select one element. (See figure 2-13, example 3.)

¢ Based Indexed Mode with Displacement. The operand is located with the selected segment at an
offset computed as the sum of a base register’s contents, an index register’s contents, and the
displacement. This mode is often used to access elements of an array within a structure. For
example, the structure could be an activation record (i.e., a region of the stack containing the
register contents, parameters, and variables associated with one instance of a procedure); and one
variable could be an array. The base register points to the start of the activation record, the
displacement expresses the distance from the start of the record to the beginning of the array
variable, and the index register selects a particular element of the array. (See figure 2-13,
example 4.)

Table 2-3 gives a summary of all memory operand addressing options.

2.5 INPUT/OUTPUT

The é0286 allows input/output to be performed in either of two ways: by means of a separate I/O
address space (using specific I1/O instructions) or by means of memory-mapped 1/O (using general-
purpose operand manipulation instructions).

Table 2-3. Memory Operand Addressing Modes

Addressing Mode Offset Calculation
Direct 16-bit Displacement in the instruction
Register Indirect BX, S, DI
Based (BX or BP) + Displacement*
Indexed (S! or DI) + Displacement*
Based Indexed (BX or BP) + (Sl or DI)
Based Indexed + Displacement (BX or BP) + (Sl or DI) + Displacement*

* The displacement can be a 0, 8 or 16-bit value:
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1. BASED MODE

MOV AX, [BP + DATE_CODE]
ADD [BX + BALANCE], CX

DISPL

o

SEGMENT

i

2. INDEXED MODE

MOV ID [SI], DX
SUB BX, DATA_TBL [SI]

INDEX

’—

DISPL

SEGMENT

i

3. BASED INDEXED

MoV DX, (BF][21]
AND (BX + S., 3FFH

g

INDEX

SEGMENT

4. BASED INDEXED MODE WITH DISPLACEMENT

Mov CX, [BPI[SI + CNT]
SHR[BX + DI + MASK]

¥ “n
J OPERAND
«n €
FIXED
j—J-—» OPERAND ARRAY
Y “«
J OPERAND EQEAE\[V)
') “
BASED
-3 STRUCTURE
OPERAND ARRAY CONTAINING
ARRAY

DISPL

i

SEGMENT

]

\
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Figure 2-13. Complex Addressing Modes
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2.5.1 1/0 Address Space

The 80286 provides a separate I/O address space, distinct from physical memory, to address the input/
output ports that are used for external devices. The I/O address space consists of 2'¢ (64K) individually
addressable 8-bit ports. Any two consecutive 8-bit ports can be treated as a 16-bit port. Thus, the I/O
address space can accommodate up to 64K 8-bit ports or up to 32K 16-bit ports. I/O port addresses
00F8H to O0FFH are reserved by Intel.

The 80286 can transfer either 8 or 16 bits at a time to a device located in the I1/O space. Like words
in memory, 16-bit ports should be aligned at even-numbered addresses so that the 16 bits will be
transferred in a single access. An 8-bit port may be located at either an even or odd address. The
internal registers in a given peripheral controller device should be assigned addresses as shown below.

Port Register Port Addresses Example
16-bit even word addresses OUT FE,AX
8-bit; device on lower half even byte addresses IN AL,FE
of 16-bit data bus
8-bit; device on upper half odd byte addresses OUT FF,AL

of 16-bit data bus

The I/O instructions IN and OUT (described in section 3.11.3) are provided to move data between
I/O ports and the AX (16-bit I/O) or AL (8-bit I/O) general registers. The block I/O instructions
INS and OUTS (described in section 4.1) move blocks of data between I/O ports and memory space
(as shown below). In Protected Mode, an operating system may prevent a program from executing
these 1/O instructions. Otherwise, the function of the I/O instructions and the structure of the I/O
space are identical for both modes of operation.

[dil, DX

ptr
ptr [sil

INS es:byte

QUTS DX, byte
IN and OUT instructions address I/O with either a direct address to one of up to 256 port addresses,
or indirectly via the DX register to one of up to 64K port addresses. Block 1/O uses the DX register
to specify the 1/O address and either SI or DI to designate the source or destination memory address.
For each transfer, SI or DI are either incremented or decremented as specified by the direction bit in

the flag word while DX is constant to select the I/O device.

2.5.2 Memory-Mapped 1/0

I/0 devices also may be placed in the 80286 memory address space. So long as the devices respond
like memory components, they are indistinguishable to the processor.

Memory-mapped 1/O provides additional programming flexibility. Any instruction that references
memory may be used to access an I/O port located in the memory space. For example, the MOV
instruction can transfer data between any register and a port; and the AND, OR, and TEST instruc-
tions may be used to manipulate bits in the internal registers of a device (see figure 2-14). Memory-
mapped 1/O performed via the full instruction set maintains the full complement of addressing modes
for selecting the desired I/O device.

Memory-mapped 1/0, like any other memory reference, is subject to access protection and control
when executing in protected mode.
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MEMORY -
ADDRESS SPACE 1/0 DEVICE 1

INTERNAL REGISTER

170 DEVICE 2

INTERNAL REGISTER

G30108

Figure 2-14. Memory-Mapped I/0

2.6 INTERRUPTS AND EXCEPTIONS

The 80286 architecture supports several mechanisms for interrupting program execution. Internal
interrupts are synchronous events that are the responses of the CPU to certain events detected during
the execution of an instruction. External interrupts are asynchronous events typically triggered by
external devices needing attention. The 80286 supports both maskable (controlled by the IF flag) and
non-maskable interrupts. They cause the processor to temporarily suspend its present program execu-
tion in order to service the requesting device. The major distinction between these two kinds of inter-
rupts is their origin: an internal interrupt is always reproducible by re-executing with the program and
data that caused the interrupt, whereas an external interrupt is generally independent of the currently
executing task.

Interrupts 0-31 are reserved by Intel.

Application programmers will normally not be concerned with servicing external interrupts. More
information on external interrupts for system programmers may be found in Chapter S, section 5.2,
“Interrupt Handling for Real Address Mode,” and in Chapter 9, “Interrupts, Traps and Faults for
Protected Virtual Address Mode.”

In Real Address Mode, the application programmer is affected by two kinds of internal interrupts.
(Internal interrupts are the result of executing an instruction which causes the interrupt.) One type of
interrupt is called an exception because the interrupt only occurs if a particular fault condition exists.
The other type of interrupt generates the interrupt every time the instruction is executed.
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The exceptions are: divide error, INTO detected overflow, bounds check, segment overrun, invalid
operation code, and processor extension error (see table 2-4). A divide error exception results when
the instructions DIV or IDIV are executed with a zero denominator; otherwise, the quotient will be too
large for the destination operand (see section 3.3.4 for a discussion of DIV and IDIV). An overflow
exception results when the INTO instruction is executed and the OF flag is set (after an arithmetic
operation that set the overflow (OF) flag). (See section 3.6.3, “Software Generated Interrupts,” for a
discussion of INTO.) A bounds check exception results when the BOUND instruction is executed and
the array index it checks falls outside the bounds of the array. (See section 4.2 for a discussion of the
BOUND instruction.) The segment overrun exception occurs when a word memory reference is
attempted which extends beyond the end of a segment. An invalid operation code exception occurs if
an attempt is made to execute an undefined instruction operation code. A processor extension error is
generated when a processor extension detects an illegal operation. Refer to Chapter 5 for a more complete
description of these exception conditions.

The instruction INT generates an internal interrupt whenever it is executed. The effects of this inter-
rupt (and the effects of all interrupts) is determined by the interrupt handler routines provided by the
application program or as part of the system software (provided by system programmers). See
Chapter 5 for more on this topic. The INT instruction itself is discussed in section 3.6.3.

In Protected Mode, many more fault conditions are detected and result in internal interrupts. Protected
Mode interrupts and faults are discussed in Chapter 9.

2.7 HIERARCHY OF INSTRUCTION SETS

For descriptive purposes, the 80286 instruction set is partitioned into three distinct subsets: the Basic
Instruction Set, the Extended Instruction Set, and the System Control Instruction Set. The “hierar-
chy” of instruction sets defined by this partitioning helps to clarify the relationships between the various
processors in the 8086 family (see figure 2-15).

The Basic Instruction Set, presented in Chapter 3, comprises the common subset of instructions found
on all processors of the 8086 family. Included are instructions for logical and arithmetic operations,
data movement, input/output, string manipulation, and transfer of control.

The Extended Instruction Set, presented in Chapter 4, consists of those instructions found only on the
80186, 80188, and 80286 processors. Included are instructions for block structured procedure entry
and exit, parameter validation, and block I/O transfers.

The System Control Instruction Set, presented in Chapter 10, consists of those instructions unique to
the 80286. These instructions control the memory management and protection mechanisms of the 80286.
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Table 2-4. 80286 Interrupt Vector Assignments (Real Address Mode)

Return Address

Function Interupt Relat?d Before Instruction
Number Instructions .
Causing Exception?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 Al
Breakpoint interrupt 3 INT
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined Yes
opcode
Processor extension not available exception 7 ESC or WAIT Yes
Interrupt table limit too small exception 8 INT vector is not Yes
within table limit
Processor extension segment overrun 9 ESC with memory No
interrupt operand extending
beyond offset
FFFF(H)
Reserved 10-12
Segment overrun exception 13 Word memory Yes
reference with
offset = FFFF(H) or
an attempt to
execute past the
end of a segment
Reserved 14,15
Processor extension error interrupt 16 ESC or WAIT
Reserved 17-31
User defined 32-255
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Figure 2-15. Hierarchy of Instructions
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CHAPTER 3
BASIC INSTRUCTION SET

The base architecture of the 80286 is identical to the complete instruction set of the 8086, 8088,
80188, and 80186 processors. The 80286 instruction set includes new forms of some instructions. These
new forms reduce program size and improve the performance and ease of implementation of source
code.

This chapter describes the instructions which programmers can use to write application software for
the 80286. The following chapters describe the operation of more complicated I/O and system control
instructions. :

All instructions described in this chapter are available for both Real Address Mode and Protected
Virtual Address Mode operation. The instruction descriptions note any differences that exist between
the operation of an instruction in these two modes.

This chapter also describes the operation of each application program-relative instruction and includes
an example of using the instruction. The Instruction Dictionary in Appendix B contains formal descrip-
tions of all instructions. Any opcode pattern that is not described in the Instruction Dictionary is
undefined and results in an opcode violation trap (interrupt 6).

3.1 DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for moving bytes or words of data between memory and
the registers of the base architecture.

3.1.1 General-Purpose Data Movement Instructions

MOV (Move) transfers a byte or a word from the source operand to the destination operand. The MOV
instruction is useful for transferring data to a register from memory, to memory from a register, between
registers, immediate-to-register, or immediate-to-memory. Memory-to-memory or segment register-to-
segment register moves are not allowed.

Example: MOV DS,AX. Replaces the contents of register DS with the contents of register AX.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of three MOV
instructions. It does not require a temporary memory location to save the contents of one operand while
you load the other.

The XCHG instruction can swap two byte operands or two word operands, but not a byte for a word
or a word for a byte. The operands for the XCHG instruction may be two register operands, or a
register operand with a memory operand. When used with a memory operand, XCHG automatically
activates the LOCK signal.

Example: XCHG BX,WORDOPRND. Swaps the contents of register BX with the contents of the
memory word identified by the label WORDOPRND after asserting bus lock.
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3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (SP) by two and then transfers a word from the source
operand to the top of stack indicated by SP. See figure 3-1. PUSH is often used to place parameters
on the stack before calling a procedure; it is also the basic means of storing temporary variables on the
stack. The PUSH instruction operates on memory operands, immediate operands (new with the 80286),
and register operands (including segment registers).

Example: PUSH WORDOPRND. Transfers a 16-bit value from the memory word identified by the
label WORDOPRND to the memory location which represents the current top of stack
(byte transfers are not allowed).

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack. See
figure 3-2. This instruction simplifies procedure calls by reducing the number of instructions required
to retain the contents of the general registers for use in a procedure. PUSHA is complemented by
POPA (see below).

The processor pushes the general registers on the stack in the following order: AX, CX, DX, BX, the
initial value of SP before AX was pushed, BP, SI, and DI.

Example: PUSHA. Pushes onto the stack the contents of the eight general registers.

HIGH ADDRESS ¢ ¥ N
i i tii‘\{t‘\\\:it\\ti&‘1::1‘0&? ssumiT
OPERANDS FROM AT RN Y
PREVIOUS PUSH :::::::::::1:::“\\“wj Y
INSTRUCTIONS sp — RHTTNER ST
SEINNETNENNNNRNNNNR Y AURNRISISRNNNNY %I: EALXISAVS POINTS TO
OPERAND LAST WORD PUSHED
ONTO THE STACK (TOS)
A AR A A
SS ALWAYS POINTS TO
LOWEST ADDRESS USED BY
THE STACK
LOW ADDRESS K5 5 Kk S
BEFORE AFTER
PUSH OPERAND PUSH OPERAND
PUSH decrements SP by 2 bytes and places the operand in the stack at the location to which SP points. G30108

Figure 3-1. PUSH
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HIGH ADDRESS 9 v vl v
T I i SS LIMIT
OPERANDS FROM IR
PREVIOUS PUSH SRt N
INSTRUCTIONS XN AT _SN
| AX
SP
CcX
DX
BX
OLD SP
BP
Sl
DI ~-— SP
A 9 o) n Q)
€ o o
Ss
LOW ADDRESS | N SN N
BEFORE AFTER
PUSHA PUSHA
PUSHA copies the contents of the elght general registers to the stack In the above order. The instruction decrements SP by 16 bytes
(8 words) to point to the last word pushed on the stack. 630108

Figure 3-2. PUSHA

POP (Pop) transfers the word at the current top of stack (indicated by SP) to the destination operand,
and then increments SP by two to point to the new top of stack. See figure 3-3. POP moves information
from the stack to either a register or memory. The only restriction on POP is that it cannot place a
value in register CS.

Example: POP BX. Replaces the contents of register BX with the contents of the memory location
at the top of stack.

POPA (Pop All Registers) restores the registers saved on the stack by PUSHA, except that it ignores
the value of SP. See figure 3-4.

Example: POPA. Pops from the stack the saved contents of the general registers, and restores the
registers (except SP) to their original state.
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HIGH ADDRESS N 'l ) o
SS LIMIT
OPERANDS FROM
PREVIOUS PUSH
INSTRUCTIONS |¢— SP
SP ——] OPERAND
A Vo) D N
(a2l ) o o
SS
LOW ADDRESS J N2 N N
BEFORE AFTER
POP OPERAND POP OPERAND
POP copies the contents of the stack location before SP to the operand in the instruction. POP then increments SP by 2 bytes
(1 word).
G30108

Figure 3-3. POP

3.2 FLAG OPERATION WITH THE BASIC INSTRUCTION SET

3.2.1 Status Flags

The status flags of the FLAGS register reflect conditions that result from a previous instruction or
instructions. The arithmetic instructions use OF, SF, ZF, AF, PF, and CF.

The SCAS (Scan String), CMPS (Compare String), and LOOP instructions use ZF to signal that their

operations are complete. The base architecture includes instructions to set, clear, and complement CF
before execution of an arithmetic instruction. See figure 3-5 and tables 3-1 and 3-2.

3.2.2 Control Flags

The control flags of the FLAGS register determine processor operations for string instructions, maska-
ble interrupts, and debugging.
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HIGH ADDRESS P v
SS LIMIT
OPERANDS FROM
PREVIOUS PUSH
INSTRUCTIONS
CX
DX
BX
SP
BP
Si
SP ——p»| DI
9 ) N o) N 2 N
(Val o« oD V)
SS
LOW ADDRESS N S § s
BEFORE AFTER
POPA POPA
POPA coples the contents of seven stack | i to the corresponding general regi s. POPA discards the stored value of SP.
G30108

Figure 3-4. POPA

Setting DF (direction flag) causes string instructions to auto-decrement; that is, to process strings from
high addresses to low addresses, or from “right-to-left.” Clearing DF causes string instructions to auto-
increment, or to process strings from “left-to-right.”

Setting IF (interrupt flag) allows the CPU to recognize external (maskable) interrupt requests. Clear-
ing IF disables these interrupts. IF has no effect on either internally generated interrupts, nonmaskable
external interrupts, or processor extension segment overrun interrupts.

Setting TF (trap flag) puts the processor into single-step mode for debugging. In this mode, the CPU
automatically generates an internal interrupt after each instruction, allowing a program to be inspected
as it executes each instruction, instruction by instruction.

3.3 ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the 8086-family processors simplify the manipulation of numerical data.
Multiplication and division instructions ease the handling of signed and unsigned binary integers as
well as unpacked decimal integers.
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STATUS FLAGS:
CARRY

PARITY
AUXILIARY CARRY
ZERO

SIGN

OVERFLOW ————————— A

15 14 13 12 Y1 10 9 8 Y7 Ys

FLAGS: NT J IOIPL I OF I DF | IF I TF I SF l ZF
' ) ) ) 1\ ?

0
ENEIN K3

CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE
DIRECTION FLAG

SPECIAL FIELDS:
1/0 PRIVILEGE LEVEL
NESTED TASK FLAG

% INTEL RESERVED ) | G30108

Figure 3-5. Flag Word Contents

Table 3-1. Status Flags’ Functions

Bit Position Name Function
0 CF Carry Flag—Set on high-order bit carry or borrow; cleared
otherwise.
2 PF Parity Flag—Set if low-order eight bits of result contain an

even number of 1 bits; cleared otherwise.

4 AF Set on carry from or borrow to the low order four bits of
AL; cleared otherwise.

6 ZF Zero Flag—Set if result is zero; cleared otherwise.

7 SF Sign Flag—Set equal to high-order bit of result (0 if positive,
1 if negative).

11 OF Overflow Flag—Set if result is too-large a positive number
or too-small a negative number (excluding sign-bit) to fit in
destination operand; cleared otherwise.
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Table 3-2. Control Flags’ Functions

Bit Position Name Function

8 TF Trap (Single Step) Flag—Once set, a single step interrupt
occurs after the next instruction executes. TF is cleared by
the single step interrupt.

9 IF Interrupt-enable Flag—When set, maskable interrupts will
cause the CPU to transfer control to an interrupt vector-
specified location.

10 DF Direction Flag—Causes string instructions to auto decre-
ment the appropriate index registers when set. Clearing DF
causes auto increment.

An arithmetic operation may consist of two register operands, a general register source operand with a
memory destination operand, a memory source operand with a register destination operand, or an
immediate field with either a register or memory destination operand, but not two memory operands.
Arithmetic instructions can operate on either byte or word operands.

3.3.1 Addition Instructions

ADD (Add Integers) replaces the destination operand with the sum of the source and destination
operands. ADD affects OF, SF, AF, PF, CF, and ZF.

Example: ADD BL, BYTEOPRND. Adds the contents of the memory byte labeled BYTEOPRND
to the contents of BL, and replaces BL with the resulting sum.

ADC (Add Integers with Carry) sums the operands, adds one if CF is set, and replaces the destination
operand with the result. ADC can be used to add numbers longer than 16 bits. ADC affects OF, SF,
AF, PF, CF, and ZF.

Example: ADC BX, CX. Replaces the contents of the destination operand BX with the sum of BX,
CS, and 1 (if CF is set). If CF is cleared, ADC performs the same operation as the ADD
instruction.

INC (Increment) adds one to the destination operand. The processor treats the operand as an unsigned

binary number. INC updates AF, OF, PF, SF, and ZF, but it does not affect CF. Use ADD with an

immediate value of 1 if an increment that updates carry (CF) is needed.

Example: INC BL. Adds 1 to the contents of BL.

3.3.2 Subtraction Instructions

SUB (Subtract Integers) subtracts the source operand from the destination opyerand and replaces the
destination operand with the result. If a borrow is required, carry flag is set. The operands may be
signed or unsigned bytes or words. SUB affects OF, SF, ZF, AF, PF, and CF.
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Example: SUB WORDOPRND, AX. Replaces the contents of the destination operand
WORDOPRND with the result obtained by subtracting the contents of AX from the
contents of the memory word labeled WORDOPRND.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination operand,
subtracts 1 if CF is set, and returns the result to the destination operand. The operands may be signed
or unsigned bytes or words. SBB may be used to subtract numbers longer than 16 bits. This instruction
affects OF, SF, ZF, AF, PF, and CF. The carry flag is set if a borrow is required.

Example: SBB BL, 32. Subtracts 32 from the contents of BL and then decrements the result of this
subtraction by one if CF is set. If CF is cleared, SBB performs the same operation as SUB.

DEC (Decrement) subtracts 1 from the destination operand. DEC updates AF, OF, PF, SF, and ZF,
but it does not affect CF. Use SUB with an immediate value of 1 to perform a decrement that affects
carry.

Example: DEC BX. Subtracts 1 from the contents of BX and places the result back in BX.

3.3.3 Multiplication Instructions

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source operand and the
accumulator. If the source is a byte, the processor multiplies it by the contents of AL and returns the
double-length result to AH and AL.

If the source operand is a word, the processor multiplies it by the contents of AX and returns the
double-length result to DX and AX. MUL sets CF and OF to indicate that the upper half of the result
is nonzero; otherwise, they are cleared. This instruction leaves SF, ZF, AF, and PF undefined.

Example: MUL BX. Replaces the contents of DX and AX with the product of BX and AX. The low-
order 16 bits of the result replace the contents of AX; the high-order word goes to DX. The
processor sets CF and OF if the unsigned result is greater than 16 bits.

IMUL (Signed Integer Multiply) performs a signed multiplication operation. IMUL uses AX and DX
in the same way as the MUL instruction, except when used in the immediate form.

The immediate form of IMUL allows the specification of a destination register other than the combi-
nation of DX and AX. In this case, the result cannot exceed 16 bits without causing an overflow. If
the immediate operand is a byte, the processor automatically extends it to 16 bits before performing
the multiplication.

The immediate form of IMUL may also be used with unsigned operands because the low 16 bits of a
signed or unsigned multiplication of two 16-bit values will always be the same.

IMUL clears CF and OF to indicate that the upper half of the result is the sign of the lower half. This
instruction leaves SF, ZF, AF, and PF undefined.

Example: IMUL BL. Replaces the contents of AX with the product of BL and AL. The processor
sets CF and OF if the result is more than 8 bits long.

Example: IMUL BX, SI, 5. Replaces the contents of BX with the product of the contents of SI and

an immediate value of 5. The processor sets CF and OF if the signed result is longer than
16 bits.
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3.3.4 Division Instructions

DIV (Unsigned Integer Divide) performs an unsigned division of the accumulator by the source operand.
If the source operand is a byte, it is divided into the double-length dividend assumed to be in registers
AL and AH (AH = most significant byte; AL = least significant byte). The single-length quotient is
returned in AL, and the single-length remainder is returned in AH.

If the source operand is a word, it is divided into the double-length dividend in registers AX and DX.
The single-length quotient is returned in AX, and the single-length remainder is returned in DX. Non-
integral quotients are truncated to integers toward 0. The remainder is always less than the quotient.

For unsigned byte division, the largest quotient is 255. For unsigned word division, the largest quotient
is 65,535. DIV leaves OF, SF, ZF, AF, PF, and CF undefined. Interrupt (INT 0) occurs if the divisor
is zero or if the quotient is too large for AL or AX.

Example: DIV BX. Replaces the contents of AX with the unsigned quotient of the doubleword value
contained in DX and AX, divided by BX. The unsigned modulo replaces the contents of
DX.

Example: DIV BL. Replaces the contents of AL with the unsigned quotient of the word value in AX,
divided by BL. The unsigned modulo replaces the contents of AH.

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the source operand.
IDIV uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is +127 and the minimum negative quotient
is —128. For signed word division, the maximum positive quotient is + 32,767 and the minimum negative
quotient is —32,768. Non-integral results are truncated towards 0. The remainder will always have the
same sign as the dividend and will be less than the divisor in magnitude. IDIV leaves OF, SF, ZF, AF,
PF, and CF undefined. A division by zero causes an interrupt (INT 0) to occur if the divisor is O or if
the quotient is too large for AL or AX.

Example: IDIV WORDOPRND. Replaces the contents of AX with the signed quotient of the double-

word value contained in DX and AX, divided by the value contained in the memory word
labeled WORDOPRND. The signed modulo replaces the contents of DX.

3.4 LOGICAL INSTRUCTIONS

The group of logical instructions includes the Boolean operation instructions, rotate and shift instruc-
tions, type conversion instructions, and the no-operation (NOP)instruction.

3.4.1 Boolean Operation Instructions

Except for the NOT and NEG instructions, the Boolean operation instructions can use two register
operands, a general purpose register operand with a memory operand, an immediate operand with a
general purpose register operand, or a memory operand. The NOT and NEG instructions are unary
operations that use a single operand in a register or memory.

AND (And) performs the logical “and” of the operands (byte or word) and returns the result to the
destination operand. AND clears OF and DF, leaves AF undefined, and updates SF, ZF, and PF.
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Example: AND WORDOPRND, BX. Replaces the contents of WORDOPRND with the logical
“and” of the contents of the memory word labeled WORDOPRND and the contents of
BX.

NOT (Not) inverts the bits in the specified operand to form a one’s complement of the operand. NOT
has no effect on the flags.

Example: NOT BYTEOPRND. Replaces the original contents of BYTEOPRND with the one’s
complement of the contents of the memory word labeled BYTEOPRND.

OR (Or) performs the logical “inclusive or” of the two operands and returns the result to the destina-
tion operand. OR clears OF and DF, leaves AF undefined, and updates SF, ZF, and PF.

Example: OR AL,5. Replaces the original contents of AL with the logical “inclusive or” of the contents
of AL and the immediate value 5.

XOR (Exclusive OR) performs the logical “exclusive or” of the two operands and returns the result to
the destination operand. XOR clears OF and DF, leaves AF undefined, and updates SF, ZF, and PF.

Example: XOR DX, WORDOPRND. Replaces the original contents of DX with the logical “exclu-
sive or” or the contents of DX and the contents of the memory word labeled
WORDOPRND.

NEG (Negate) forms a two’s complement of a signed byte or word operand. The effect of NEG is to
reverse the sign of the operand from positive to negative or from negative to positive. NEG updates
OF, SF, ZF, AF, PF, and CF.

Example: NEG AX. Replaces the original contents of AX with the two’s complement of the contents
of AX.

3.4.2 Shift and Rotate Instructions

The shift and rotate instructions reposition the bits within the specified operand. The shift instructions
provide a convenient way to accomplish division or multiplication by binary power. The rotate instruc-
tions are useful for bit testing.

3.4.2.1 SHIFT INSTRUCTIONS

The bits in bytes and words may be shifted arithmetically or logically. Depending on the value of a
specified count, up to 31 shifts may be performed.

A shift instruction can specify the count in one of three ways. One form of shift instruction implicitly
specifies the count as a single shift. The second form specifies the count as an immediate value. The
third form specifies the count as the value contained in CL. This last form allows the shift count to be
a variable that the program supplies during execution. Only the low order 5 bits of CL are used.

Shift instructions affect the flags as follows. AF is always undefined following a shift operation. PF,
SF, and ZF are updated normally as in the logical instructions.

CF always contains the value of the last bit shifted out of the destination operand. In a single-bit shift,

OF is set if the value of the high-order (sign) bit was changed by the operation. Otherwise, OF is
cleared. Following a multibit shift, however, the content of OF is always undefined.
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SAL (Shift Arithmetic Left) shifts the destination byte or word operand left by one or by the number
of bits specified in the count operand (an immediate value or the value contained in CL). The processor
shifts zeros in from the right side of the operand as bits exit from the left side. See figure 3-6.

Example: SAL BL,2. Shifts the contents of BL left by 2 bits and replaces the two low-order bits with
ZEeros.

Example: SAL BL,1. Shifts the contents of BL left by 1 bit and replaces the low-order bit with a
zero. Because the processor does not have to decode the immediate count operand to obtain
the shift count, this form of the instruction takes 2 clock cycles rather than the 6 clock
cycles (5 cycles + 1 cycle for each bit shifted) required by the previous example.

SHL (Shift Logical Left) is physically the same instruction as SAL (see SAL above).

SHR (Shift Logical Right) shifts the destination byte or word operand right by one or by the number
of bits specified in the count operand (an immediate value or the value contained in CL). The processor
shifts zeros in from the left side of the operand as bits exit from the right side. See figure 3-7.

Example: SHR BYTEOPRND, CL. Shifts the contents of the memory byte labeled BYTEOPRND
right by the number of bits specified in CL, and pads the left side of BYTEOPRND with
an equal number of zeros.

SAR (Shift Arithmetic Right) shifts the destination byte or word operand to the right by one or by the
number of bits specified in the count operand (an immediate value or the value contained in CL). The
processor preserves the sign of the operand by shifting in zeros on the left side if the value is positive
or by shifting by ones if the value is negative. See figure 3-8.

Example: SAR WORDPRND,1. Shifts the contents of the memory byte labeled WORDPRND right
by one, and replaces the high-order sign bit with a value equal to the original sign of
WORDPRND.

O L e s

AFTER

IEN | N o KN KN K KN K N KR KR RN KN KR RN KN RN -

1BIT

AFTER

O T T T e e e e e o o e ] s

8BITS
OPERAND

Both SAL and SHL shift the bits in the register or memory operand to the left by the specified number of bit positions. CF receives the
last bit shifted out of the left of the operand. SAL and SHL shift in zeros to fill the vacated bit locations. These instructions operate on
byte operands as well as word operands.

G30108

Figure 3-6. SAL and SHL
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COCC T T e el e

OO L T O L L L - 4

AFTER
x o]lo]o ololo|1|1[o|o‘1|——> SHR BY
CAlTeToTefoTo o o] e
OF CF

OPERAND

SHR shifts the bits in the regist d to the right by the specified number of bit positions. CF receives the last bit
shifted out of the right of the oporand SHR shiﬂs in zeros to fill the vacated bit locations. This instruction operates on byte operands
as well as word operands.

G30108
Figure 3-7. SHR
i
O oo oo e e o] [
OPERAND
| hy
O oo e e e o [o Lo L] e
' BEFORE
OO L L D L T o ] d
grrsn
CICCTL T L e o o]
OF OPERAND CF grgr;;sn
SAR preserves the sign of the regi: d as it shifts the operand to the right the specified number of bit positions.
CF receives the last bit shifted out of lhe right of the operand. This instruction also operates on byte operands
G30108

Figure 3-8. SAR
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3.4.2.2 ROTATE INSTRUCTIONS

Rotate instructions allow bits in bytes and words to be rotated. Bits rotated out of an operand are not
lost as in a shift, but are “circled” back into the other “end” of the operand.

Rotates affect only the carry and overflow flags. CF may act as an extension of the operand in two of
the rotate instructions, allowing a bit to be isolated and then tested by a conditional jump instruction
(JC or INC). CF always contains the value of the last bit rotated out, even if the instruction does not
use this bit as an extension of the rotated operand.

In single-bit rotates, OF is set if the operation changes the high-order (sign) bit of the destination
operand. If the sign bit retains its original value, OF is cleared. On multibit rotates, the value of OF is
always undefined.

ROL (Rotate Left) rotates the byte or word destination operand left by one or by the number of bits
specified in the count operand (an immediate value or the value contained in CL). For each rotation
specified, the high-order bit that exists from the left of the operand returns at the right to become the
new low-order bit of the operand. See figure 3-9.

Example: ROL AL, 8. Rotates the contents of AL left by 8 bits. This rotate instruction returns AL
to its original state but isolates the low-order bit in CF for testing by a JC or JNC
instruction.

ROR (Rotate Right) rotates the byte or word destination operand right by one or by the number of
bits specified in the count operand (an immediate value or the value contained in CL). For each rotation
specified, the low-order bit that exits from the right of the operand returns at the left to become the
new high-order bit of the operand. See figure 3-10.

LI CLllT Tl T T 1]

BEFORE ROL

LI T T T e e e e To [y

AFTER ROL BY 1BIT

OO0+ e L L o e e e T ]

AFTER ROL BY 12 BITS

OF CF OPERAND

ROL shifts the bits in the memory or register operand to the left by the specified number of bit positions. It copies the bit shifted out
of the left of the operand into the right of the operand. The last bit shifted into the least significant bit of the operand also appears in
CF. This instruction also operates on byte operands. G30108

Figure 3-9. ROL
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CLT- T e o] ]

BEFORE ROR

AFTER ROR BY 1 BIT

To [ [ [ {olele] [l [ ] ']°]° |I|
AFTER ROR BY 8 BITS |
CF

OPERAND

CCC T T T T e (o]

ROR shifts the bits in the memory or register operand to the right by the specified number of bit positions. It copies each bit shifted
out of the right of the operand into the left of the operand. The last bit shifted into the most significant bit of the operand also appears
in CF. This instruction also operates on byte operands. G30108

Figure 3-10. ROR

Example: ROR WORDOPRND, CL. Rotates the contents of the memory word labeled
WORDOPRND by the number of bits specified by the value contained in CL. CF reflects
the value of the last bit rotated from the right to the left side of the operand.

RCL (Rotate Through Carry Left) rotates bits in the byte or word destination operand left by one or
by the number of bits specified in the count operand (an immediate value or the value contained in
CL).

This instruction differs from ROL in that it treats CF as a high-order 1-bit extension of the destination
operand. Each high-order bit that exits from the left side of the operand moves to CF before it returns
to the operand as the low-order bit on the next rotation cycle. See figure 3-11.

Example: RCL BX,1. Rotates the contents of BX left by one bit. The high-order bit of the operand
moves to CF, the remaining 15 bits move left one position, and the original value of CF
becomes the new low-order bit.

RCR (Rotate Through Carry Right) rotates bits in the byte or word destination operand right by one
or by the number of bits specified in the count operand (an immediate value or the value contained in
CL).

This instruction differs from ROR in that it treats CF as a low-order 1-bit extension of the destination
operand. Each low-order bit that exits from the right side of the operand moves to CF before it returns
to the operand as the high-order bit on the next rotation cycle. See figure 3-12.

Example: RCR BYTEOPRND,3. Rotates the contents of the memory byte labeled BYTEOPRND
to the right by 3 bits. Following the execution of this instruction, CF reflects the original
value of bit number 5 of BYTEOPRND, and the original value of CF becomes bit 2.
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L] O Telele " Telo" " TofeleT0]

BEFORE RCL

«—41I*l°|°|°l'l'l°l°l‘l1l°|°l°l°|‘l-|
AFTER RCL BY 1 BIT
Ll [ fofefoe]rfrfofofe]rfole]e]
AFTER RCL BY 16 BITS
cF OPERAND

RCL votates the bits in the d to the left in the same way as ROL except that RCL treats CF-as a 1-bit
oxt of the op d. Note that a 16 bit RCL producas the same result as a 1-bit RCR (though it takes much longer to execute).
This instruction also operates on byte operands.

G30108

Figure 3-11. RCL

I K N K K KR KR R

BEFORE RCR

S I A I K N N

AFTER RCR BY 1BIT

rlelef Jefefrfofofe[ s oo T o}
AFTER RCR BY 3 BITS
OPERAND cF

RCR rotates the bits in the memory or register operand to the right in the same way as ROR except that RCR treats CF as a 1-bit
extension of the operand. This instruction also operates on byte operands.
G30108

Figure 3-12. RCR
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3.4.3 Type Conversion and No-Operation Instructions

The type conversion instructions prepare operands for division. The NOP instruction is a 1-byte filler
instruction with no effect on registers or flags.

CWD (Convert Word to Double-Word) extends the sign of the word in register AX throughout register
DX. CWD does not affect any flags. CWD can be used to produce a double-length (double-word)
dividend from a word before a word division.

CBW (Convert Byte to Word) extends the sign of the byte in register AL throughout AX. CBW does
not affect any flags.

Example: CWD. Sign-extends the 16-bit value in AX to a 32-bit value in DX and AX with the high-
order 16-bits occupying DX.

NOP (No Operation) occupies a byte of storage but affects nothing but the instruction pointer, IP. The
amount of time that a NOP instruction requires for execution varies in proportion to the CPU clocking
rate. This variation makes it inadvisable to use NOP instructions in the construction of timing loops
because the operation of such a program will not be independent of the system hardware configuration.

Example: NOP. The processor performs no operation for 2 clock cycles.

3.5 TEST AND COMPARE INSTRUCTIONS

The test and compare instructions are similar in that they do not alter their operands. Instead, these
instructions perform operations that only set the appropriate flags to indicate the relationship between
the two operands.

TEST (Test) performs the logical “and” of the two operands, clears OF and DF, leaves AF undefined,
and updates SF, ZF, and PF. The difference between TEST and AND is that TEST does not alter the
destination operand.

Example: TEST BL,32. Performs a logical “and” and sets SF, ZF, and PF according to the results
of this operation. The contents of BL remain unchanged.

CMP (Compare) subtracts the source operand from the destination operand. It updates OF, SF, ZF,
AF, PF, and CF but does not alter the source and destination operands. A subsequent signed or unsigned
conditional transfer instruction can test the result using the appropriate flag result.

CMP can compare two register operands, a register operand and a memory operand, a register operand
and an immediate operand, or an immediate operand and a memory operand. The operands may be
words or bytes, but CMP cannot compare a byte with a word.

Example: CMP BX,32. Subtracts the immediate operand, 32, from the contents of BX and sets OF,
SF, ZF, AF, PF, and CF to reflect the result. The contents of BX remain unchanged.

3.6 CONTROL TRANSFER INSTRUCTIONS

The 80286 provides both conditional and unconditional program transfer instructions to direct the flow
of execution. Conditional program transfers depend on the results of operations that affect the flag
register. Unconditional program transfers are always executed.
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3.6.1 Unconditional Transfer Instructions

JMP, CALL, RET, INT and IRET instructions transfer control from one code segment location to
another. These locations can be within the same code segment or in different code segments.

3.6.1.1 JUMP INSTRUCTION

JMP (Jump) unconditionally transfers control to the target location. JMP is a one-way transfer of
execution; it does not save a return address on the stack.

The JMP instruction always performs the same basic function of transferring control from the current
location to a new location. Its implementation varies depending on the following factors:

e Is the address specified directly within the instruction or indirectly through a register or memory?

e Is the target location inside or outside the current code segment selected in CS?

A direct JMP instruction includes the destination address as part of the instruction. An indirect JMP
instruction obtains the destination address indirectly through a register or a pointer variable.

Control transfers through a gate or to a task state segment are available only in Protected Mode opera-
tion of the 80286. The formats of the instructions that transfer control through a call gate, a task gate,
or to a task state segment are the same. The label included in the instruction selects one of these three
paths to a new code segment.

Direct JMP within the current code segment. A direct JMP that transfers control to a target location
within the current code segment uses a relative displacement value contained in the instruction. This
can be either a 16-bit value or an 8-bit value sign extended to 16 bits. The processor forms an effective
address by adding this relative displacement to the address contained in IP. IP refers to the next
instruction when the additions are performed.

Example: JMP NEAR_NEWCODE. Transfers control to the target location labeled NEAR_
NEWCODE, which is within the code segment currently selected in CS.

Indirect JMP within the current code segment. Indirect JMP instructions that transfer control to a
location within the current code segment specify an absolute address in one of several ways. First, the
program can JMP to a location specified by a 16-bit register (any of AX, DX, CX, BX, BP, SI, or DI).
The processor moves this 16-bit value into IP and resumes execution.

Example: JMP SI. Transfers control to the target address formed by adding the 16-bit value contained
in SI to the base address contained in CS.

The processor can also obtain the destination address within a current segment from a memory word
operand specified in the instruction.

Example: JMP PTR_X. Transfers control to the target address formed by adding the 16-bit value
contained in the memory word labeled PTR X to the base address contained in CS.

A register can modify the address of the memory word pointer to select a destination address.
Example: JMP CASE_TABLE [BX]. CASE_TABLE is the first word in an array of word pointers.

The value of BX determines which pointer the program selects from the array. The JMP
instruction then transfers control to the location specified by the selected pointer.
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Direct JMP outside of the current code segment. Direct JMP instructions that specify a target location
outside the current code segment contain a full 32-bit pointer. This pointer consists of a selector for
the new code segment and an offset within the new segment.

Example: JMP FAR_NEWCODE_FOO. Places the selector contained in the instruction into CS and
the offset into IP. The program resumes execution at this location in the new code segment.

Indirect JMP outside of the current code segment. Indirect JMP instructions that specify a target
location outside the current code segment use a double-word variable to specify the pointer.

Example: JMP NEWCODE. NEWCODE the first word of two consecutive words in memory which
represent the new pointer. NEWCODE contains the new offset for IP and the word follow-
ing NEWCODE contains the selector for CS. The program resumes execution at this
location in the new code segment. (Protected mode programs treat this differently. See

" Chapters 6 and 7).

Direct JMP outside of the current code segment to a call gate. If the selector included with the instruc-
tion refers to a call gate, then the processor ignores the offset in the instruction and takes the pointer
of the routine being entered from the call gate.

JMP outside of current code segment may only go to the same level.

Example: JMP CALL_GATE_FOO. The selector in the instruction refers to the call gate
CALL_GATE_FOO, and the call gate actually provides the new contents of CS and IP to
specify the address of the next instructions.

Indirect JMP outside the current code segment to a call gate. If the selector specified by the instruc-
tion refers to a call gate, the processor ignores the offset in the double-word and takes the address of
the routine being entered from the call gate. The JMP instruction uses the same format to indirectly
specify a task gate or a task state segment.

Example: JMP CASE_TABLE [BX]. The instruction refers to the double-word in the array of point-
ers called CASE_TABLE. The specific double-word chosen depends on the value in BX
when the instruction executes. The selector portion of this double-word selects a call gate,
and the processor takes the address of the routine being entered from the call gate.

3.6.1.2 CALL INSTRUCTION

CALL (Call Procedure) activates an out-of-line procedure, saving on the stack the address of the
instruction following the CALL for later use by a RET (Return) instruction. An intrasegment CALL
places the current value of IP on the stack. An intersegment CALL places both the value of IP and
CS on the stack. The RET instruction in the called procedure uses this address to transfer control back
to the calling program.

A long CALL instruction that invokes a task-switch stores the outgoing task’s task state segment selec-
tor in the incoming task state segment’s link field and sets the nested task flag in the new task. In this
case, the IRET instruction takes the place of the RET instruction to return control to the nested task.
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Examples:

CALL NEAR_NEWCODE
CALL SI

CALL PTR_X

CALL CASE_TABLE [BP]
CALL FAR_NEWCODE_FOO
CALL NEWCODE

CALL CALL_GATE_FOO
CALL CASE_TABLE [BX]

See the previous treatment of JMP for a discussion of the operations of these instructions.

3.6.1.3 RETURN AND RETURN FROM INTERRUPT INSTRUCTION

RET (Return From Procedure) terminates the execution of a procedure and transfers control through
a back-link on the stack to the program that originally invoked the procedure.

An intrasegment RET restores the value of IP that was saved on the stack by the previous intrasegment
CALL instruction. An intersegment RET restores the values of both CS and IP which were saved on
the stack by the previous intersegment CALL instruction.

RET instructions may optionally specify a constant to the stack pointer. This constant specifies the
new top of stack to effectively remove any arguments that the calling program pushed on the stack
before the execution of the CALL instruction.

Example: RET. If the previous CALL instruction did not transfer control to a new code segment,
RET restores the value of IP pushed by the CALL instruction. If the previous CALL
instruction transferred control to a new segment, RET restores the values of both IP and
CS which were pushed on the stack by the CALL instruction.

Example: RET n. This form of the RET instruction performs identically to the above example except
that it adds n (which must be an even value) to the value of SP to eliminate n bytes of
parameter information previously pushed by the calling program.

IRET (Return From Interrupt or Nested Task) returns control to an interrupted routine or, optionally,
reverses the action of a CALL or INT instruction that caused a task switch. See Chapter 8 for further
information on task switching.

Example: IRET. Returns from an interrupt with or without a task switch based on the value of the
NT bit.

3.6.2 Conditional Transfer Instructions

The conditional transfer instructions are jumps that may or may not transfer control, depending on the
state of the CPU flags when the instruction executes. Instruction encoding is most efficient when the
target for the conditional jumps is in the current code segment and within —128 to + 127 bytes of the
first byte of the next instruction. Alternatively, the opposite sense of the conditional jump can skip
around an unconditional jump to the destination.
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3.6.2.1 CONDITIONAL JUMP INSTRUCTIONS

Table 3-3 shows the conditional transfer mnemonics and their interpretations. The conditional jumps
that are listed as pairs are actually the same instruction. The assembler provides the alternate mnemon-
ics for greater clarity within a program listing.

3.6.2.2 LOOP INSTRUCTIONS

The loop instructions are conditional jumps that use a value placed in CX to specify the number of
repetitions of a software loop. All loop instructions automatically decrement CX and terminate the
loop when CX=0. Four of the five loop instructions specify a condition of ZF that terminates the loop
before CX decrements to zero.

LOOP (Loop While CX Not Zero) is a conditional transfer that auto-decrements the CX register before
testing CX for the branch condition. If CX is non-zero, the program branches to the target label speci-
fied in the instruction. The LOOP instruction causes the repetition of a code section until the operation
of the LOOP instruction decrements CX to a value of zero. If LOOP finds CX=0, control transfers
to the instruction immediately following the LOOP instruction. If the value of CX is initially zero, then
the LOOP executes 65,536 times.

Example: LOOP START_LOOP. Each time the program encounters this instruction, it decrements
CX and then tests it. If the value of CX is non-zero, then the program branches to the
instruction labeled START_LOOP. If the value in CX is zero, then the program continues
with the instruction that follows the LOOP instruction.

Table 3-3. Interpretation of Conditional Transfers

Unsigned Conditional Transfers

Mnemonic Condition Tested “Jump If. . .7
JA/INBE (CForzZF)=10 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/JNAE CF =1 below/not above nor equal
JBE/JNA (CForZF) =1 below or equal/not above
JC CF =1 carry

JE/JZ ZF =1 equal/zero

JNC CF=0 not carry

JNE/INZ ZF =0 not equal/not zero
JNP/JPO PF =0 not parity/parity odd
JP/JPE PF =1 parity/parity even

Signed Conditional Transfers

Mnemonic Condition Tested “Jump If. . .7
JG/INLE ((SF xor OF) or ZF) = 0 greater/not less nor equal
JGE/JNL (SF xor OF) = 0 greater or equal/not less
JL/INGE (SF xor OF) = 0 less/not greater nor equal
JLE/ING ((SF xor OF) or ZF) = 1 less or equal/not greater
JNO OF = not overflow

JNS SF = not sign (positive, including 0)
JO OF =1 overflow

JS SF =1 sign (negative)
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LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are physically the same instruction.
These instructions auto-decrement the CX register before testing CX and ZF for the branch conditions.
If CX is non-zero and ZF=1, the program branches to the target label specified in the instruction. If
LOOPE or LOOPZ finds that CX=0 or ZF=0, control transfers to the instruction immediately
succeeding the LOOPE or LOOPZ instruction.

Example: LOOPE START_LOOP (or LOOPZ START_LOOP). Each time the program encounters
this instruction, it decrements CX and tests CX and ZF. If the value in CX is non-zero and
the value of ZF is 1, the program branches to the instruction labeled START_LOOP. If
CX=0 or ZF=0, the program continues with the instruction that follows the LOOPE (or
LOOPZ) instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are physically the same
instruction. These instructions auto-decrement the CX register before testing CX and ZF for the branch
conditions. If CX is non-zero and ZF=0, the program branches to the target label specified in the
instruction. If LOOPNE or LOOPNZ finds that CX=0 or ZF=1, control transfers to the instruction
immediately succeeding the LOOPNE or LOOPNZ instruction.

Example: LOOPNE START_LOOP (or LOOPNZ START_LOOP). Each time the program
encounters this instruction, it decrements CX and tests CX and ZF. If the value of CX is
non-zero and the value of ZF is 0, the program branches to the instruction labeled
START_LOOP. If CX=0 or ZF=1, the program continues with the instruction that
follows the LOOPNE (or LOOPNZ) instruction.

3.6.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES

JCXZ (Jump if CX Zero) branches to the label specified in the instruction if it finds a value of zero
in CX. Sometimes, it is desirable to design a loop that executes zero times if the count variable in CX
is initialized to zero. Because the LOOP instructions (and repeat prefixes) decrement CX before they
test it, a loop will execute 65,536 times if the program enters the loop with a zero value in CX. A
programmer may conveniently overcome this problem with JCXZ, which enables the program to branch
around the code within the loop if CX is zero when JCXZ executes.

Example: JCXZ TARGETLABEL. Causes the program to branch to the instruction iabeled
TARGETLABEL if CX=0 when the instruction executes.
3.6.3 Software-Generated Interrupts

The INT n and INTO instructions allow the programmer to specify a transfer to an interrupt service
routine from within a program. Interrupts 0-31 are reserved by Intel.

3.6.3.1 SOFTWARE INTERRUPT INSTRUCTION

INT n (Software Interrupt) activates the interrupt service routine that corresponds to the number
coded within the instruction. Interrupt type 3 is reserved for internal software-generated interrupts.
However, the INT instruction may specify any interrupt type to allow multiple types of internal inter-
rupts or to test the operation of a service routine. The interrupt service routine terminates with an
IRET instruction that returns control to the instruction that follows INT.

Example: INT 3. Transfers control to the interrupt service routine specified by a type 3 interrupt.
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Example: INT 0. Transfers control to the interrupt service routine specified by a type O interrupt,
which is reserved for a divide error.

INTO (Interrupt on Overflow) invokes a type 4 interrupt if OF is set when the INTO instruction
executes. The type 4 interrupt is reserved for this purpose.

Example: INTO. If the result of a previous operation has set OF and no intervening operation has
reset OF, then INTO invokes a type 4 interrupt. The interrupt service routine terminates
with an IRET instruction, which returns control to the instruction following INTO.

3.7 CHARACTER TRANSLATION AND STRING INSTRUCTIONS

The instructions in this category operate on characters or string elements rather than on logical or
numeric values.

3.7.1 Translate Instruction

XLAT (Translate) replaces a byte in the AL register with a byte from a user-coded translation table.
When XLAT is executed, AL should have the unsigned index to the table addressed by BX. XLAT
changes the contents of AL from table index to table entry. BX is unchanged. The XLAT instruction
is useful for translating from one coding system to another, such as from ASCII to EBCDIC. The
translate table may be up to 256 bytes long. The value placed in the AL register serves as an index to
the location of the corresponding translation value. Used with a LOOP instruction, the XL AT instruc-
tion can translate a block of codes up to 64K bytes long.

Example: XLAT. Replaces the byte in AL with the byte from the translate table that is selected by
the value in AL.

3.7.2 String Manipulation Instructions and Repeat Prefixes

The string instructions (also called primitives) operate on string elements to move, compare, and scan
byte or word strings. One-byte repeat prefixes can cause the operation of a string primitive to be repeated
to process strings as long as 64K bytes.

The repeated string primitives use the direction flag, DF, to specify left-to-right or right-to-left string
processing, and use a count in CX to limit the processing operation. These instructions use the register
pair DS:SI to point to the source string element and the register pair ES:DI to point to the destination.

One of two possible opcodes represent each string primitive, depending on whether it is operating on
byte strings or word strings. The string primitives are generic and require one or more operands along
with the primitive to determine the size of the string elements being processed. These operands do not
determine the addresses of the strings; the addresses must already be present in the appropriate
registers.

Each repetition of a string operation using the Repeat prefixes includes the following steps:

1. Acknowledge pending interrupts.
2. Check CX for zero and stop repeating if CX is zero.
3. Perform the string operation once.
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4. Adjust the memory pointers in DS:SI and ES:DI by incrementing SI and DI if DF is 0 or by
decrementing SI and DI if DF is 1.

Decrement CX (this step does not affect the flags).

6. For SCAS (Scan String) and CMPS (Compare String), check ZF for a match with the repeat
condition and stop repeating if the ZF fails to match.

The Load String and Store String instructions allow a program to perform arithmetic or logical opera-
tions on string characters (using AX for word strings and AL for byte strings). Repeated operations
that include instructions other than string primitives must use the loop instructions rather than a repeat
prefix.

3.7.2.1 STRING MOVEMENT INSTRUCTIONS

REP (Repeat While CX Not Zero) specifies a repeated operation of a string primitive. The REP prefix
causes the hardware to automatically repeat the associated string primitive until CX=0. This form of
iteration allows the CPU to process strings much faster than would be possible with a regular software
loop.

When the REP prefix accompanies a MOVS instruction, it operates as a memory-to-memory block
transfer. To set up for this operation, the program must initialize CX and the register pairs DS:SI and
ES:DI. CX specifies the number of bytes or words in the block.

If DF=0, the program must point DS:SI to the first element of the source string and point ES:DI to
the destination address for the first element. If DF=1, the program must point these two register pairs
to the last element of the source string and to the destination address for the last element, respectively.

Example: REP MOVSW. The processor checks the value in CX for zero. If this value is not zero,
the processor moves a word from the location pointed to by DS:SI to the location pointed
to by ES:DI and increments SI and DI by two (if DF=0). Next, the processor decrements
CX by one and returns to the beginning of the repeat cycle to check CX again. After CX
decrements to zero, the processor executes the instruction that follows.

MOVS (Move String) moves the string character pointed to by the combination of DS and SI to the
location pointed to by the combination of ES and DI. This is the only memory-to-memory transfer
supported by the instruction set of the base architecture. MOVSB operates on byte elements. The
destination segment register cannot be overridden by a segment override prefix while the source segment
register can be overridden.

Example: MOVSW. Moves the contents of the memory byte pointed to by DS:SI to the location
pointed to by ES:DI.

3.7.2.2 OTHER STRING OPERATIONS

CMPS (Compare Strings) subtracts the destination string element (ES:DI) from the source string
element (DS:SI) and updates the flags AF, SF, PF, CF and OF. If the string elements are equal,
ZF=1; otherwise, ZF=0. If DF=0, the processor increments the memory pointers (SI and DI) for
the two strings. The segment register used for the source address can be changed with a segment
override prefix, while the destination segment register cannot be overridden.

Example: CMPSB. Compares the source and destination string elements with each other and returns
the result of the comparison to ZF.
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SCAS' (Scan String) subtracts the destination string element at ES:DI from AX or AL and updates
the flags AF, SF, ZF, PF, CF and OF. If the values are equal, ZF=1; otherwise, ZF=0. If DF=0,
the processor increments the memory pointer (DI) for the string. The segment register used for the
source address can be changed with a segment override prefix while the destination segment register
cannot be overridden. )

Example: SCASW. Compares the value in AX with the destination string element.

REPE/REPZ (Repeat While CX Equal/Zero) and REPNE/REPNZ (Repeat While CX Not Equal/
Not Zero) are the prefixes that are used exclusively with the SCAS (ScanString) and CMPS (Compare
String) primitives.

The difference between these two types of prefix bytes is that REPE/REPZ terminates when ZF=0
and REPNE/REPNZ terminates when ZF=1. ZF does not require initialization before execution of
a repeated string instruction.

When these prefixes modify either the SCAS or CMPS primitives, the processor compares the value
of the current string element with the value in AX for word elements or with the value in AL for byte
elements. The resulting state of ZF can then limit the operation of the repeated operation as well as a
zero value in CX.

Example: REPE SCASB. Causes the processor to scan the string pointed to by ES:DI until it encoun-
ters a match with the byte value in AL or until CX decrements to zero.

LODS (Load String) places the source string element at DS:SI into AX for word strings or into AL
for byte strings.

Example: LODSW. Loads AX with the value pointed to by DS:SI.

3.8 ADDRESS MANIPULATION INSTRUCTIONS

The set of address manipulation instructions provide a way to perform address calculations or to move
to a new data segment or extra segment.

LEA (Load Effective Address) transfers the offset of the source operand (rather than its value) to the
destination operand. The source operand must be a memory operand, and the destination operand must
be a 16-bit general register (AX, DX, BX, CX, BP, SP, SI, or DI).

LEA does not affect any flags. This instruction is useful for initializing the registers before the execu-
tion of the string primitives or the XLAT instruction.

Example: LEA BX EBCDIC_TABLE. Causes the processor to place the address of the starting location
of the table labeled EBCDIC_TABLE into BX.

LDS (Load Pointer Using DS) transfers a 32-bit pointer variable from the source operand to DS and
the destination register. The source operand must be a memory operand, and the destination operand
must be a 16-bit general register (AX, DX, BX, CX, BP, SP, SI or DI). DS receives the high-order
segment word of the pointer. The destination register receives the low-order word, which points to a
specific location within the segment.
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Example: LDS SI, STRING_X. Loads DS with the word identifying the segment pointed to by
STRING_X, and loads the offset of STRING_X into SI. Specifying SI as the destination
operand is a convenient way to prepare for a string operation on a source string that is not
in the current data segment.

LES (Load Pointer Using ES) operates identically to LDS except that ES receives the offset word
rather than DS.

Example: LES DI, DESTINATION_X. Loads ES with the word identifying the segment pointed to
by DESTINATION_X, and loads the offset of DESTINATION_X into DI. This instruc-

tion provides a convenient way to select a destination for a string operation if the desired
location is not in the current extra segment.

3.9 FLAG CONTROL INSTRUCTIONS

The flag control instructions provide a method of changing the state of bits in the flag register.

3.9.1 Carry Flag Control Instructions

The carry flag instructions are useful in conjunction with rotate-with-carry instructions RCL and RCR.
They can initialize the carry flag, CF, to a known state before execution of a rotate that moves the
carry bit into one end of the rotated operand.

STC (Set Carry Flag) sets the carry flag (CF) to 1.

Example: STC

CLC (Clear Carry Flag) zeros the carry flag (CF).

Example: CLC

CMC (Complement Carry Flag) reverses the current status of the carry flag (CF).

Example: CMC

3.9.2 Direction Flag Control Instructions

The direction flag control instructions are specifically included to set or clear the direction flag, DF,
which controls the left-to-right or right-to-left direction of string processing. IF DF=0, the processor
automatically increments the string memory pointers, SI and DI, after each execution of a string primi-
tive. If DF=1, the processor decrements these pointer values. The initial state of DF is 0.

CLD (Clear Direction Flag) zeros DF, causing the string instructions to auto-increment SI and/or DI.
CLD does not affect any other flags.

Example: CLD

STD (Set Direction Flag) sets DF to 1, causing the string instructions to auto-decrement SI and/or
DI. STD does not affect any other flags.

Example: STD
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3.9.3 Flag Transfer Instructions

Though specific instructions exist to alter CF and DF, there is no direct method of altering the other
flags. The flag transfer instructions allow a program to alter the other flag bits with the bit manipula-
tion instructions after transferring these flags to the stack or the AH register.

The PUSHF and POPF instructions are also useful for preserving the state of the flag register before
executing a procedure.

LAHF (Load AH from Flags) copies SF, ZF, AF, PF, and CF to AH bits 7, 6, 4, 2, and 0, respectively
(see figure 3-13). The contents of the remaining bits (5, 3, and 1) are undefined. The flags remain
unaffected. This instruction can assist in converting 8080/8085 assembly language programs to run on
the base architecture of the 8086, 8088, 80186, 80188, and 80286.

Example: LAHF

SAHF (Store AH into Flags) transfers bits 7, 6, 4, 2, and 0 from AH into SF, ZF, AF, PF, and CF,
respectively (see figure 3-13). This instruction also provides 8080/8085 compatibility with the 8086,
8088, 80186, 80188, and 80286.

Example: SAHF

PUSHF (Push Flags) decrements SP by two and then transfers all flags to the word at the top of stack
pointed to by SP (see figure 3-14). The flags remain unaffected. This instruction enables a procedure
to save the state of the flag register for later use.

Example: PUSHF

POPF (Pop Flags) transfers specific bits from the word at the top of stack into the low-order byte of
the flag register (see figure 3-14). The processor then increments SP by two.

Note that an application program in the protected virtual address mode may not alter IOPL (the I/O
privilege level flag) unless the program is executing at privilege level 0. A program may alter IF (the
interrupt flag) only when executing at a level that is at least as privileged as IOPL.

7 2

EEY//k//k

REGISTER AH

LAHF loads flve flags from the flag register Into register AH. SAHF stores these same five flags from AH into the flag register. The bit
position of each flag Is the same In AH as It is In the flag register. The remaining bits are Indeterminate.
G30108

Figure 3-13. LAHF and SAHF
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STACK WORD

PUSHF decrements SP by 2 bytes (1 word) and coples the contents of the flag register to the top of stack. POPF loads the flag register
with the contents of the last word pushed onto the stack. The bit position of each flag is the same In the stack word as it is in the flag
register. Only programs executing at the highest privilege level (level 0) may alter the 2-bit IOPL flag. Only programs executing at a
level at least as privileged as that indicated by IOPL may alter IF. 30108

Figure 3-14. PUSHF and POPF

Procedures may use this instruction to restore the flag status from a previous value.

Example: POPF

3.10 BINARY-CODED DECIMAL ARITHMETIC INSTRUCTIONS

These instructions adjust the results of a previous arithmetic operation to produce a valid packed or
unpacked decimal result. These instructions operate only on AL or AH registers.

3.10.1 Packed BCD Adjustment Instructions

DAA (Decimal Adjust) corrects the result of adding two valid packed decimal operands in AL. DAA
must always follow the addition of two pairs of packed decimal numbers (one digit in each nibble) to
obtain a pair of valid packed decimal digits as results. The carry flag will be set if carry was needed.

Example: DAA

DAS (Decimal Adjust for Subtraction) corrects the result of subtracting two valid packed decimal
operands in AL. DAS must always follow the subtraction of one pair of packed decimal numbers (one
digit in each nibble) from another to obtain a pair of valid packed decimal digits as results. The carry
flag will be set if a borrow was needed.

Example: DAS

3.10.2 Unpacked BCD Adjustment Instructions

AAA (ASCII Adjust for Addition) changes the contents of register AL to a valid unpacked decimal
number, and zeros the top 4 bits. AAA must always follow the addition of two unpacked decimal
operands in AL. The carry flag will be set and AH will be incremented if a carry was necessary.

Example: AAA
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AAS (ASCII Adjust for Subtraction) changes the contents of register AL to a valid unpacked decimal
number, and zeros the top 4 bits. AAS must always follow the subtraction of one unpacked decimal
operand from another in AL. The carry flag will be set and AH decremented if a borrow was necessary.

Example: AAS

AAM (ASCII Adjust for Multiplication) corrects the result of a multiplication of two valid unpacked
decimal numbers. AAM must always follow the multiplication of two decimal numbers to produce a
valid decimal result. The high order digit will be left in AH, the low order digit in AL.

Example: AAM

AAD (ASCII Adjust for Division) modifies the numerator in AH and AL to prepare for the division
of two valid unpacked decimal operands so that the quotient produced by the division will be a valid
unpacked decimal number. AH should contain the high-order digit and AL the low-order digit. This
instruction will adjust the value and leave it in AL. AH will contain 0.

Example: AAD

3.11 TRUSTED INSTRUCTIONS

When operating in Protected Mode (Chapter 6 and following), the 80286 processor restricts the execu-
tion of trusted instructions according to the Current Privilege Level (CPL) and the current value of
IOPL, the 2-bit I/O privilege flag. Only a program operating at the highest privilege level (level 0)
may alter the value of IOPL. A program may execute trusted instructions only when executing at a
level that is at least as privileged as that specified by IOPL.

Trusted instructions control I/O operations, mterprocessor communications in a multiprocessor system,
interrupt enabling, and the HLT instruction.

These protection considerations do not apply in the real address mode.

3.11.1 Trusted and Privileged Restrictions on POPF and IRET

POPF (POP Flags) and IRET (Interrupt Return) are not affected by IOPL unless they attempt to
alter IF (flag register bit 9). To change IF, POPF must be part of a program that is executing at a
privilege level greater than or equal to that specified by IOPL. Any attempt to change IF when CPL
= 0 will be ignored (i.e., the IF flag will be ignored). To change the IOPL field, CPL must be zero.

3.11.2 Machine State Instructions

These trusted instructions affect the machine state control interrupt response, the processor halt state,
and the bus LOCK signal that regulates memory access in multiprocessor systems.

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) alter bit 9 in the flag register.
When IF=0, the processor responds only to internal interrupts and to non-maskable external inter-
rupts. When IF=1, the processor responds to all interrupts. An interrupt service routine might use
these instructions to avoid further interruption while it processes a previous interrupt request. As with
the other flag bits, the processor clears IF during initialization. These instructions may be executed
only if CPL =< IOPL. A protection exception will occur if they are executed when CPL > [OPL.
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Example: STI. Sets IF=1, which enables the processing of maskable external interrupts.
Example: CLI. Sets IF=0 to disable maskable interrupt processing.

HLT (Halt) causes the processor to suspend processing operations pending an interrupt or a system
reset. This trusted instruction provides an alternative to an endless software loop in situations where a
program must wait for an interrupt. The return address saved after the interrupt will point to the
instruction immediately following HLT. This instruction may be executed only when CPL = 0.

Example: HLT

LOCK (Assert Bus Lock) is a I-byte prefix code that causes the processor to assert the bus LOCK
signal during execution of the instruction that follows. LOCK does not affect any flags. LOCK may
be used only when CPL =< IOPL. A protection exception will occur if LOCK is used when CPL >
IOPL. :

3.11.3 Input and Output Instructions

These trusted instructions provide access to the processor’s I/O ports to transfer data to and from
peripheral devices. In Protected Mode, these instructions may be executed only when CPL < IOPL.

IN (Input from Port) transfers a byte or a word from an input port to AL or AX. If a program specifies
AL with the IN instruction, the processor transfers 8 bits from the selected port to AL. Alternately, if
a program specifies AX with the IN instruction, the processor transfers 16 bits from the port to AX.

The program can specify the number of the port in two ways. Using an immediate byte constant, the
program can specify 256 8-bit ports numbered O through 255 or 128 16-bit ports numbered
0,2,4,...,252,254. Using the current value contained in DX, the program can specify 8-bit ports numbered
0 through 65,535, or 16-bit ports using even-numbered ports in the same range.

Example: IN AL,
BYTE_PORT_NUMBER. Transfers 8 bits to AL from the port identified by the immediate
constant BYTE_PORT_NUMBER.

OUT (Output to Port) transfers a byte or a word to an output port from AL or AX. The program can
specify the number of the port using the same methods of the IN instruction.

Example: OUT AX, DX. Transfers 16 bits from AX to the port identified by the 16-bit number
contained in DX.

INS and OUTS (Input String and Output String) cause block input or output operations using a Repeat
prefix. See Chapter 4 for more information on INS and OUTS.

3.12 PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension provides an extension to the instruction set of the base architecture (e.g., 80287).
The NPX extends the instruction set of the CPU-based architecture to support high-precision integer
and floating-point calculations. This extended instruction set includes arithmetic, comparison, transcen-
dental, and data transfer instructions. The NPX also contains a set of useful constants to enhance the
speed of numeric calculations.
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A program contains instructions for the NPX in line with the instructions for the CPU. The system
executes these instructions in the same order as they appear in the instruction stream. The NPX operates
concurrently with the CPU to provide maximum throughput for numeric calculations.

The software emulation of the NPX is transparent to application software but requires more time for
execution.

3.12.1 Processor Extension Synchronization Instructions

Escape and wait instructions allow a processor extension such as the 80287 NPX to obtain instructions
and data from the system bus and to wait for the NPX to return a result.

ESC (Escape) identifies floating point numeric instructions and allows the 80286 to send the opcode
to the NPX or to transfer a memory operand to the NPX. The 80287 NPX uses the Escape instructions
to perform high-performance, high-precision floating point arithmetic that conforms to the IEEE float-
ing point standard 754.

Example: ESC 6, ARRAY [SI]. The CPU sends the escape opcode 6 and the location of the array
pointed to by SI to the NPX.

WAIT (Wait) suspends program execution until the 80286 CPU detects a signal on the BUSY pin. In
a configuration that includes a numeric processor extension, the NPX activates the BUSY pin to signal
that it has completed its processing task and that the CPU may obtain the results.

Example: WAIT

3.12.2 Numeric Data Processor Instructions

This section describes the categories of instructions available with Numeric Data Processor systems
that include a Numeric Processor Extension or a software emulation of this processor extension.

3.12.2.1 ARITHMETIC INSTRUCTIONS

The extended instruction set includes not only the four arithmetic operations (add, subtract, multiply,
and divide), but also subtract-reversed and divide-reversed instructions. The arithmetic functions include
square root, modulus, absolute value, integer part, change sign, scale exponent, and extract exponent
instructions.

3.12.2.2 COMPARISON INSTRUCTIONS

The comparison operations are the compare, examine, and test instructions. Special forms of the compare
instruction can optimize algorithms by allowing comparisons of binary integers with real numbers in
memory.

3.12.2.3 TRANSCENDENTAL INSTRUCTIONS

The instructions in this group perform the otherwise time-consuming calculations for all common
trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, logarithmic, and exponential
functions. The transcendental instructions include tangent, arctangent, 2 x —1, Y . log,X, and Y. log,
X+1).
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3.12.2.4 DATA TRANSFER INSTRUCTIONS

The data transfer instructions move operands among the registers and between a register and memory.
This group includes the load, store, and exchange instructions.

3.12.2.5 CONSTANT INSTRUCTIONS
Each of the constant instructions loads a commonly used constant into an NPX register. The values

have a real precision of 64 bits and are accurate to approximately 19 decimal places. The constants
loaded by these instructions include 0, 1, Pi, log, 10, log, e, log,, 2, and log 2..
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CHAPTER 4
EXTENDED INSTRUCTION SET

The instructions described in this chapter extend the capabilities of the base architecture instruction
set described in Chapter 3. These extensions consist of new instructions and variations of some instruc-
tions that are not strictly part of the base architecture (in other words, not included on the 8086 and
8088). These instructions are also available on the 80186 and 80188. The instruction variations, described
in Chapter 3, include the immediate forms of the PUSH and MUL instructions, PUSHA, POPA, and
the privilege level restrictions on POPF.

New instructions described in this chapter include the string input and output instructions (INS and
OUTS), the ENTER procedure and LEAVE procedure instructions, and the check index BOUND
instruction.

4.1 BLOCK I/0 INSTRUCTIONS

REP, the Repeat prefix, modifies INS and OUTS (the string 1/O instructions) to provide a means of
transferring blocks of data between an I/O port and Memory. These block I/O instructions are string
primitives. They simplify programming and increase the speed of data transfer by eliminating the need
to use a separate LOOP instruction or an intermediate register to hold the data.

INS and OUTS are trusted instructions. To use trusted instructions, a program must execute at a
privilege level at least as privileged as that specified by the 2-bit IOPL flag (CPL =< IOPL). Any
attempt by a less-privileged program to use a trusted instruction results in a protection exception. See
Chapter 7 for information on protection concepts.

One of two possible opcodes represents each string primitive depending on whether it operates on byte
strings or word strings. After each transfer, the memory address in SI or DI is updated by 1 for byte
values and by 2 for word values. The value in the DF field determines if SI or DI is to be auto incre-
mented (DF=0) or auto decremented (DF=1).

INS and OUTS use DX to specify I/O ports numbered O through 65,535 or 16-bit ports using only
even port addresses in the same range.

INS (Input String from Port) transfers a byte or a word string element from an input port to memory.
If a program specifies INSB, the processor transfers 8 bits from the selected port to the memory
location indicated by ES:DI. Alternately, if a program specifies INSW, the processor transfers 16 bits
from the port to the memory location indicated by ES:DI. The destination segment register choice
(ES) cannot be changed for the INS instruction.

Combined with the REP prefix, INS moves a block of information from an input port to a series of
consecutive memory locations.

Example: REP INSB. The processor repeatedly transfers 8 bits to the memory location indicated by
ES:DI from the port selected by the 16-bit port number contained in DX. Following each
byte transfer, the CPU decrements CX. The instruction terminates the block transfer when
CX=0. After decrementing CX, the processor increments DI by one if DF=0. It decre-
ments DI by one if DF=1.
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OUTS (Output String to Port) transfers a byte or a word string element to an output port from memory.
Combined with the REP prefix, OUTS moves a block of information from a series of consecutive
memory locations indicated by DS:SI to an output port.

Example: REP OUTS WSTRING. Assuming that the program declares WSTRING to be a word-
length string element, the assembler uses the 16-bit form of the OUTS instruction to create
the object code for the program. The processor repeatedly transfers words from the memory
locations indicated by DI to the output port selected by the 16-bit port number in DX.

Following each word transfer, the CPU decrements CX. The instruction terminates the block transfer
when CX=0. After decrementing CX, the processor increments SI by two to point to the next word in
memory if DF=0; it decrements SI by two if DF=1.

4.2 HIGH-LEVEL INSTRUCTIONS

The instructions in this section provide machine-language functions normally found only in high-level
languages. These instructions include ENTER and LEAVE, which simplify the programming of proce-
dures, and BOUND, which provides a simple method of testing an index against its predefined range.

ENTER (Enter Procedure) creates the stack frame required by most block-structured high-level
languages. A LEAVE instruction at the end of a procedure complements an ENTER at the beginning
of the procedure to simplify stack management and to control access to variables for nested procedures.

Example: ENTER 2048,3. Allocates 2048 bytes of dynamic storage on the stack and sets up pointers
to two previous stack frames in the stack frame that ENTER creates for this procedure.

The ENTER instruction includes two parameters. The first parameter specifies the number of bytes
of dynamic storage to be allocated on the stack for the routine being entered. The second parameter
corresponds to the lexical nesting level (0-31) of the routine. (Note that the lexical level has no relation-
ship to either the protection privilege levels or to the I/O privilege level.)

The specified lexical level determines how many sets of stack frame pointers the CPU copies into the
new stack frame from the preceding frame. This list of stack frame pointers is sometimes called the
“display.” The first word of the display is a pointer to the last stack frame. This pointer enables a
LEAVE instruction to reverse the action of the previous ENTER instruction by effectively discarding
the last stack frame.

After ENTER creates the new display for a procedure, it allocates the dynamic storage space for that
procedure by decrementing SP by the number of bytes specified in the first parameter. This new value
of SP serves as a base for all PUSH and POP operations within that procedure.

To enable a procedure to address its display, ENTER leaves BP pointing to the beginning of the new
stack frame. Data manipulation instructions that specify BP as a base register implicitly address locations
within the stack segment instead of the data segment. Two forms of the ENTER instruction exist:
nested and non-nested. If the lexical level is 0, the non-nested form is used. Since the second operand
is 0, ENTER pushes BP, copies SP to BP and then subtracts the first operand from SP. The nested
form of ENTER occurs when the second parameter (lexical level) is not 0. Figure 4-1 gives the formal
definition of ENTER.

4-2



Intd EXTENDED INSTRUCTION SET

The Formal Definition Of The ENTER Instruction For All Cases Is Given By The Following Listing. LEVEL Denotes The Value Of The
Second Operand.

Push BP
Set a temporary value FRAME_PTR := SP
if LEVEL > O then
Repeat (LEVEL — 1) times:
BP :=BP —2

Push the word pointed to by BP
End repeat
Push FRAME_PTR
End if
BP := FRAME_PTR
SP := SP — first operand.

Figure 4-1. Formal Definition of the ENTER Instruction

The main procedure (with other procedures nested within) operates at the highest lexical level, level 1.
The first procedure it calls operates at the next deeper lexical level, level 2. A level 2 procedure can
access the variables of the main program which are at fixed locations specified by the compiler. In the
case of level 1, ENTER allocates only the requested dynamic storage on the stack because there is no
previous display to copy.

A program operating at a higher lexical level calling a program at a lower lexical level requires that
the called procedure should have access to the variables of the calling program. ENTER provides this
access through a display that provides addressability to the calling program’s stack frame.

A procedure calling another procedure at the same lexical level implies that they are parallel proce-
dures and that the called procedure should not have access to the variables of the calling procedure.
In this case, ENTER copies only that portion of the display from the calling procedure which refers to
previously nested procedures operating at higher lexical levels. The new stack frame does not include
the pointer for addressing the calling procedure’s stack frame.

ENTER treats a reentrant procedure as a procedure calling another procedure at the same lexical
level. In this case, each succeeding iteration of the reentrant procedure can address only its own varia-
bles and the variables of the calling procedures at higher lexical levels. A reentrant procedure can
always address its own variables; it does not require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, ENTER makes sure
that procedures access only those variables of higher lexical levels, not those at parallel lexical levels
(see figure 4-2). Figures 4-2a through 4-2d demonstrate the actions of the ENTER instruction if the
modules shown in figure 4-1 were to call one another in alphabetic order.

Block-structured high-level languages can use the lexical levels defined by ENTER to control access
to the variables of previously nested procedures. For example, if PROCEDURE A calls
PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C will have access to
the variables of MAIN and PROCEDURE A, but not PROCEDURE B because they operate at the
same lexical level. Following is the complete definition of the variable access for figure 4-2.

1. MAIN PROGRAM has variables at fixed locations.
2. PROCEDURE A can access only the fixed variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN. PROCEDURE
B cannot access the variables of PROCEDURE C or PROCEDURE D.
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MAIN PROGRAM (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

I PROCEDURE B (LEXICAL LEVEL 3) J

PROCEDURE C (LEXICAL LEVEL 3)

I PROCEDURE D (LEXICAL LEVEL 4) I

G30108
Figure 4-2. Variable Access in Nested Procedures
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‘BPM = BP VALUE FOR MAIN
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Figure 4-2a. Stack Frame for MAIN at Level 1

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN. PROCEDURE
C cannot access the variables of PROCEDURE B or PROCEDURE D.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, and MAIN.
PROCEDURE D cannot access the variables of PROCEDURE B.

ENTER at the beginning of the MAIN PROGRAM creates dynamic storage space for MAIN but
copies no pointers. The first and only word in the display points to itself because there is no previous

value for LEAVE to return to BP.

See figure 4-2a.

After MAIN calls PROCEDURE A, ENTER creates a new display for PROCEDURE A with the
first word pointing to the previous value of BP (BPM for LEAVE to return to the MAIN stack frame)
and the second word pointing to the current value of BP. Procedure A can access variables in MAIN
since MAIN is at level 1. Therefore the base for the dynamic storage for MAIN is at [BP—2]. All

dynamic variables for MAIN will be at a fixed offset from this value. See figure 4-2b.
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BOUND (Detect Value Out of Range) verifies that the signed value contained in the specified register
lies within specified limits. An interrupt (INT 5) occurs if the value contained in the register is less
than the lower bound or greater than the upper bound.

The BOUND instruction includes two operands. The first operand specifies the register being tested.
The second operand contains the effective relative address of the two signed BOUND limit values. The
BOUND instruction assumes that it can obtain the upper limit from the memory word that immedi-
ately follows the lower limit. These limit values cannot be register operands; if they are, an invalid
opcode exception occurs.

BOUND is useful for checking array bounds before using a new index value to access an element
within the array. BOUND provides a simple way to check the value of an index register before the
program overwrites information in a location beyond the limit of the array.

The two-word block of memory that specifies the lower and upper limits of an array might typically
reside just before the array itself. This makes the array bounds accessible at a constant offset of —4
from the beginning of the array. Because the address of the array will already be present in a register,
this practice avoids extra calculations to obtain the effective address of the array bounds.

Example: BOUND BX,ARRAY —4. Compares the value in BX with the lower limit at address
ARRAY —4 and the upper limit at address ARRAY —2. If the signed value in BX is less
than the lower bound or greater than the upper bound, the interrupt for this instruction
(INT 5) occurs. Otherwise, this instruction has no effect.
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Figure 4-2b. Stack Frame for Procedure A
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Figure 4-2c. Stack Frame for Procedure B at Level 3 Called from A
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Figure 4-2d. Stack Frame for Procedure C at Level 3 Called from B

After PROCEDURE A calls PROCEDURE B, ENTER creates a new display for PROCEDURE B
with the first word pointing to the previous value of BP, the second word pointing to the value of BP
for MAIN, and the third word pointing to the value of BP for A and the last word pointing to the
current BP. B can access variables in A and MAIN by fetching from the display the base addresses of
the respective dynamic storage areas. See figure 4-2c.

After PROCEDURE B calls PROCEDURE C, ENTER creates a new display for PROCEDURE C
with the first word pointing to the previous value of BP, the second word pointing to the value of BP
for MAIN, and the third word pointing to the BP value for A and the third word pointing to the current
value of BP. Because PROCEDURE B and PROCEDURE C have the same lexical level, PROCE-
DURE C is not allowed access to variables in B and therefore does not receive a pointer to the begin-
ning of PROCEDURE B’s stack frame. See figure 4-2d.

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The LEAVE
instruction does not include any operands.

Example: LEAVE. First, LEAVE copies BP to SP to release all stack space allocated to the proce-
dure by the most recent ENTER instruction. Next, LEAVE pops the old value of BP from
the stack. A subsequent RET instruction can then remove any arguments that were pushed
on the stack by the calling program for use by the called procedure.

4-6



Real Address Mode







CHAPTER 5
REAL ADDRESS MODE

The 80286 can be operated in either of two modes according to the status of the Protection Enabled
bit of the MSW status register. In contrast to the “modes” and “mode bits” of some processors, however,
the 80286 modes do not represent a radical transition between conflicting architectures. Instead, the
setting of the Protection Enabled bit simply determines whether certain advanced features, in addition
to the baseline architecture of the 80286, are to be made available to system designers and
programmers.

If the Protection Enabled (PE) bit is set by the programmer, the processor changes into Protected
Virtual Address Mode. In this mode of operation, memory addressing is performed in terms of virtual
addresses, with on-chip mapping mechanisms performing the virtual-to-physical translation. Only in
this mode can the system designer make use of the advanced architectural features of the 80286:
virtual memory support, system-wide protection, and built-in multitasking mechanisms are among the
new features provided in this mode of operation. Refer to Part II of this book (Chapters 6 through 11)
for details on Protected Mode operation.

Initially, upon system reset, the processor starts up in Real Address Mode. In this mode of operation,
all memory addressing is performed in terms of real physical addresses. In effect, the architecture of
the 80286 in this mode is identical to that of the 8086 and other processors in the 8086 family. The
principal features of this baseline architecture have already been discussed throughout Part I (Chapters
2 through 4) of this book. This chapter discusses certain additional topics—addressing, interrupt
handling, and system initialization—that complete the system programmer’s view of the 80286 in Real
Address Mode.

5.1 ADDRESSING AND SEGMENTATION

Like other processors in the 8086 family, the 80286 provides a one-megabyte memory space (2% bytes)
when operated in Real Address Mode. Physical addresses are the 20-bit values that uniquely identify
each byte location in this address space. Physical addresses, therefore, may range from O through
FFFFFH. Address bits A20-A23 may not always be zero in Real Address Mode. A20-A23 should not
be used by the system while the 80286 is operating in Real Address Mode.

An address is specified by a 32-bit pointer containing two components: (1) a 16-bit effective address
offset that determines the displacement, in bytes, of a particular location within a segment; and (2) a
16-bit segment selector component that determines the starting address of the segment. Both compo-
nents of an address may be referenced explicitly by an instruction (such as JMP, LES, LDS, or CALL);
more often, however, the segment selector is simply the contents of a segment register.

The interpretation of the first component, the effective address offset, is straight-forward. Segments
are at most 64K (2') bytes in length, so an unsigned 16-bit quantity is sufficient to address any arbitrary
byte location with a segment. The lowest-addressed byte within a segment has an offset of 0, and the
highest-addressed byte has an offset of FFFFH. Data operands must be completely contained within a
segment and must be contiguous. (These rules apply in both modes.)

A segment selector is the second component of a logical address. This 16-bit quantity specifies the
starting address of a segment within a physical address space of 2% bytes.
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Whenever the 80286 accesses memory in Real Address Mode, it generates a 20-bit physical address
from a segment selector and offset value. The segment selector value is left-shifted four bit positions
to form the segment base address. The offset is extended with 4 high order zeroes and added to the
base to form the physical address (see figure 5-1).

Therefore, every segment is required to start at a byte address that is evenly divisible by 16; thus, each
segment is positioned at a 20-bit physical address whose least significant four bits are zeroes. This
arrangement allows the 80286 to interpret a segment selector as the high-order 16 bits of a 20-bit
segment base address.

No limit or access checks are performed by the 80286 in the Real Address Mode. All segments are
readable, writable, executable, and have a limit of OFFFFH (65,535 bytes). To save physical memory,
you can use unused portions of a segment as another segment by overlapping the two (see figure 5-2).
The Intel 8086 software development tools support this feature via the segment override and group
operators. However, programs that access segment B from segment A become incompatible in the
protected virtual address mode.

16 BIT SEGMENT SELECTOR
A

r IR}

15 1]
CI T T T T T T T T T T T T T T TetToteren
19 0
G30108

Figure 5-1a. Forming the Segment Base Address
™1
SEGMENT BASE I N N I B I RS
+ 19 0
OFFSET todeto e T TT T TTTTTTTTTITTTI
19 15 )]
|puvscacaooress | [ | | | | [ | [ [ [ I [T 1T P P I 1 [1

19 ' 1]
G30108

Figure 5-1b. Forming the 20-bit Physical Address in the Real Address Mode
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Figure 5-2. Overlapping Segments to Save Physical Memory

5.2 INTERRUPT HANDLING

Program interrupts may be generated in either of two distinct ways. An internal interrupt is caused
directly by the currently executing program. The execution of a particular instruction results in the
occurrence of an interrupt, whether intentionally (e.g., an INT n instruction) or as an unanticipated
exception (e.g., invalid opcode). On the other hand, an external interrupt occurs asynchronously as the
result of an event external to the processor, and bears no necessary relationship with the currently
executing program. The INTR and NMI pins of the 80286 provide the means by which external
hardware signals the occurrence of such events.

5.2.1 Interrupt Vector Table

Whatever its origin, whether internal or external, an interrupt demands immediate attention from an
associated service routine. Control must be transferred, at least for the moment, from the currently
executing program to the appropriate interrupt service routine. By means of interrupt vectors, the
80286 handles such control transfers uniformly for both kinds of interrupts.

An interrupt vector is an unsigned integer in the range of 0-255; every interrupt is assigned such a
vector. In some cases, the assignment is predetermined and fixed: for example, an external NMI inter-
rupt is invariably associated with vector 2, while an internal divide exception is always associated with
vector 0. In most cases, however, the association of an interrupt and a vector is established dynami-
cally. An external INTR interrupt, for example, supplies a vector in response to an interrupt acknowl-
edge bus cycle, while the INT n instruction supplies a vector incorporated within the instruction itself.
The vector is shifted two places left to form a byte address into the table (see figure 5-3).

In any case, the 80286 uses the interrupt vector as an index into a table in order to determine the
address of the corresponding interrupt service routine. For Real Address Mode, this table is known as
the Interrupt Vector Table. Its format is illustrated in figure 5-3.
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Figure 5-3. Interrupt Vector Table for Real Address Mode

Table 5-1. Interrupt Processing Order

Order Interrupt
1. Instruction exception
2. Single step
3. NMI .
4. Processor extension segment overrun
5. INTR

The Interrupt Vector Table consists of as many as 256 consecutive entries, each four bytes long. Each
entry defines the address of a service routine to be associated with the correspondingly numbered
interrupt vector code. Within each entry, an address is specified by a full 32-bit pointer that consists
of a 16-bit offset and a 16-bit segment selector. Interrupts 0-31 are reserved by Intel.

In Real Address Mode, the interrupt table can be accessed directly at physical memory location
0 through 1023. In the protected virtual address mode, however, the interrupt vector table has no fixed
physical address and cannot be directly accessed. Therefore, Real Address mode programs that directly
manipulate the interrupt vector table will not work in the protected virtual address mode.

5.2.1.1 INTERRUPT PRIORITIES

When simultaneous interrupt requests occur, they are processed in a fixed order as shown in table 5-1.
Interrupt processing involves saving the flags, the return address, and setting CS:IP to point at the first
instruction of the interrupt handler. If other interrupts remain enabled, they are processed before the
first instruction of the current interrupt handler is executed. The last interrupt processed is therefore
the first one serviced.
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5.2.2 Interrupt Procedures

When an interrupt occurs in Real Address Mode, the 8086 performs the following sequence of steps.
First, the FLAGS register, as well as the old values of CS and IP, are pushed onto the stack (see
figure 5-4). The IF and TF flag bits are cleared. The vector number is then used to read the address
of the interrupt service routine from the interrupt table. Execution begins at this address.

Thus, when control is passed to an interrupt service routine, the return linkage is placed on the stack,
interrupts are disabled, and single-step trace (if in effect) is turned off. The IRET instruction at the
end of the interrupt service routine will reverse these steps before transferring control to the program
that was interrupted.

An interrupt service routine may affect registers other than other IP, CS, and FLAGS. It is the respon-
sibility of an interrupt routine to save additional context information before proceeding so that the
state of the machine can be restored upon completion of the interrupt service routine (PUSHA and
POPA instructions are intended for these operations). Finally, execution of the IRET instruction pops
the old IP, CS, and FLAGS from the stack and resumes the execution of the interrupted program.

5.2.3 Reserved and Dedicated Interrupt Vectors

In general, the system designer is free to use almost any interrupt vectors for any given purpose. Some
of the lowest-numbered vectors, however, are reserved by Intel for dedicated functions; their use is
specifically implied by certain types of exceptions. None of the first 32 vectors should be defined by
the user; these vectors are either invoked by pre-defined exceptions or reserved by Intel for future
expansion. Table 5-2 shows the dedicated and reserved vectors of the 80286 in Real Address Mode.

The purpose and function of the dedicated interrupt vectors may be summarized as follows (the saved
value of CS:IP will include all leading prefixes):

e Divide error (Interrupt 0). This exception will occur if the quotient is too large or an attempt is
made to divide by zero using either the DIV or IDIV instruction. The saved CS:IP points at the
first byte of the failing instruction. DX and AX are unchanged.

J. J.
;

v
OLD FLAGS
INCREASING
ADDRESSES oLD CS
oLD IP l«— <ss:SP>
Jh . J L

G30108

Figure 5-4. Stack Structure after Interrupt (Real Address Mode)
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Table 5-2. Dedicated and Reserved Interrupt Vectors in Real Address Mode

Return Address

Function ‘Number insiructions | Betore instruction.

Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All N/A
NMI interrupt 2 All N/A
Breakpoint interrupt 3 INT N/A
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available|7 ESC or WAIT Yes
exception
Interrupt table limit too small 8 LIDT Yes
Processor extension segment overrun | 9 ESC Yes
interrupt
Segment overrun exception 13 Any memory reference Yes

instruction that attempts

to reference 16-bit word

at offset OFFFFH.
Reserved 10-12, 14, 15
Processor extension error interrupt 16 ESC or WAIT N/A
Reserved 17-31
User defined 32-255

N/A = Not Applicable

Single-Step (Interrupt 1). This interrupt will occur after each instruction if the Trap Flag (TF)

bit of the FLAGS register is set. Of course, TF is cleared upon entry to this or any other interrupt
to prevent infinite recursion. The saved value of CS:IP will point to the next instruction.

*  Nonmaskable (Interrupt 2). This interrupt will occur upon receipt of an external signal on the
NMI pin. Typically, the nonmaskable interrupt is used to implement power-fail/auto-restart
procedures. The saved value of CS:IP will point to the first byte of the interrupted instruction.

Breakpoint (Interrupt 3). Execution of the one-byte breakpoint instruction causes this interrupt to

occur. This instruction is useful for the implementation of software debuggers since it requires
only one code byte and can be substituted for any instruction opcode byte. The saved value of
CS:IP will point to the next instruction.
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e INTO Detected Overflow (Interrupt 4). Execution of the INTO conditional software interrupt
instruction will cause this interrupt to occur if the overflow bit (OF) of the FLAGS register is set.
The saved value of CS:IP will point to the next instruction.

»  BOUND Range Exceeded (Interrupt 5). Execution of the BOUND instruction will cause this
interrupt to occur if the specified array index is found to be invalid with respect to the given array
bounds. The saved value of CS:IP will point to the first byte of the BOUND instruction.

e Invalid Opcode (Interrupt 6). This exception will occur if execution of an invalid opcode is
attempted. (In Real Address Mode, most of the Protected Virtual Address Mode instructions are
classified as invalid and should not be used). This interrupt can also occur if the effective address
given by certain instructions, notably BOUND, LDS, LES, and LIDT, specifies a register rather
than a memory location. The saved value of CS:IP will point to the first byte of the invalid
instruction or opcode.

¢ Processor Extension Not Available (Interrupt 7). Execution of the ESC instruction will cause this
interrupt to occur if the status bits of the MSW indicate that processor extension functions are to
be emulated in software. Refer to section 10.2.2 for more details. The saved value of CS:IP will
point to the first byte of the ESC or the WAIT instruction.

e Interrupt Table Limit Too Small (Interrupt 8). This interrupt will occur if the limit of the inter-
rupt vector table was changed from 3FFH by the LIDT instruction and an interrupt whose vector
is outside the limit occurs. The saved value of CS:IP will point to the first byte of the instruction
that caused the interrupt or that was ready to execute before an external interrupt occurred. No
error code is pushed.

e Processor Extension Segment Overrun Interrupt (Interrupt 9). The interrupt will occur if a
processor extension memory operand does not fit in a segment. The saved CS:IP will point at the
first byte of the instruction that caused the interrupt.

e Segment Overrun Exception (Interrupt 13). This interrupt will occur if a memory operand does
not fit in a segment. In Real Mode this will occur only when a word operand begins at segment
offset OFFFFH. The saved CS:IP will point at the first byte of the instruction that caused the
interrupt. No error code is pushed.

e Processor Extension Error (Interrupt 16). This interrupt occurs after the numeric instruction that
caused the error. It can only occur while executing a subsequent WAIT or ESC. The saved value
of CS:IP will point to the first byte of the ESC or the WAIT instruction. The address of the failed
numeric instruction is saved in the NPX.

5.3 SYSTEM INITIALIZATION

The 80286 provides an orderly way to start or restart an executing system. Upon receipt of the RESET
signal, certain processor registers go into the determinate state shown in table 5-3.

Table 5-3. Processor State after RESET

Register Contents
FLAGS 0002 (H)
MSW FFFO (H)
P FFFO (H)
cs F000 (H)
DS 0000 (H)
SS 0000 (H)
ES 0000 (H)
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Since the CS register contains FOOO (thus specifying a code segment starting at physical address FO000)
and the instruction pointer contains FFFO, the processor will execute its first instruction at physical
address FFFFOH. The uppermost 16 bytes of physical memory are therefore reserved for initial startup
logic. Ordinarily, this location contains an intersegment direct JMP instruction whose target is the
actual beginning of a system initialization or restart program.

Some of the steps normally performed by a system initialization routine are as follows:

s Allocate a stack.
e Load programs and data from secondary storage into memory.
¢ Initialize external devices.

« Enable interrupts (i.e., set the IF bit of the FLAGS register). Set any other desired FLAGS bit
as well.

*  Set the appropriate MSW flags if a processor extension is present, or if processor extension functions
are to be emulated by software.

e Set other registers, as appropriate, to the desired initial values.

e  Execute. (Ordinarily, this last step is performed as an intersegment JMP to the main system
program.)
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CHAPTER 6
MEMORY MANAGEMENT AND VIRTUAL ADDRESSING

In Protected Virtual Address Mode, the 80286 provides an advanced architecture that retains substan-
tial compatibility with the 8086 and other processors in the 8086 family. In many respects, the baseline
architecture of the processor remains constant regardless of the mode of operation. Application
programmers continue to use the same set of instructions, addressing modes, and data types in Protected
Mode as in Real Address Mode.

The major difference between the two modes of operation is that the Protected Mode provides system
programmers with additional architectural features, supplementary to the baseline architecture, that
can be used to good advantage in the design and implementation of advanced systems. Especially
noteworthy are the mechanisms provided for memory management, protection, and multitasking.

This chapter focuses on the memory management mechanisms of Protected Mode; the concept of a
virtual address and the process of virtual-to-physical address translation are described in detail in this
chapter. Subsequent chapters deal with other key aspects of Protected Mode operation. Chapter 7
discusses the issue of protection and the integrated mechanisms that support a system-wide protection
policy. Chapter 8 discusses the notion of a task and its central role in the 80286 architecture. Chapters
9 through 11 discuss certain additional topics—interrupt handling, special instructions, system initial-
ization, etc.—that complete the system programmer’s view of 80286 Protected Mode.

6.1 MEMORY MANAGEMENT OVERVIEW

A memory management scheme interposes a mapping operation between logical addresses (i.e., addresses
as they are viewed by programs) and physical addresses (i.e., actual addresses in real memory). Since
the logical address spaces are independent of physical memory (dynamically relocatable), the mapping
(the assignment of real address space to virtual address space) is transparent to software. This allows
the program development tools (for static systems) or the system software (for reprogrammable systems)
to control the allocation of space in real memory without regard to the specifics of individual programs.

Application programs may be translated and loaded independently since they deal strictly with virtual
addresses. Any program can be relocated to use any available segments of physical memory.

The 80286, when operated in Protected Mode, provides an efficient on-chip memory management
architecture. Moreover, as described in Chapter 11, the 80286 also supports the implementation of
virtual memory systems—that is, systems that dynamically swap chunks of code and data between real
memory and secondary storage devices (e.g., a disk) independent of and transparent to the executing
application programs. Thus, a program-visible address is more aptly termed a virtual address rather
than a logical address since it may actually refer to a location not currently present in real memory.

Memory management, then, consists of a mechanism for mapping the virtual addresses that are visible
to the program onto the physical addresses of real memory. With the 80286, segmentation is the key
to virtual memory addressing. Virtual memory is partitioned into a number of individual segments,
which are the units of memory that are mapped into physical memory and swapped to and from
secondary storage devices. Most of this chapter is devoted to a detailed discussion of the mapping and
virtual memory mechanisms of the 80286.

The concept of a task also plays a significant role in memory management since distinct memory

mappings may be assigned to the different tasks in a multitask or multi-user environment. A complete
discussion of tasks is deferred until Chapter 8, “Tasks and State Transition.” For present purposes, it
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is sufficient to think of a task as an ongoing process, or execution path, that is dedicated to a particular
function. In a multi-user time-sharing environment, for example, the processing required to interact
with a particular user may be considered as a single task, functionally independent of the other tasks
(i.e., users) in the system.

6.2 VIRTUAL ADDRESSES

In Protected Mode, application programs deal exclusively with virtual addresses; programs have no
access whatsoever to the actual physical addresses generated by the processor. As discussed in Chapter
2, an address is specified by a program in terms of two components: (1) a 16-bit effective address offset
that determines the displacement, in bytes, of a location within a segment; and (2) a 16-bit segment
selector that uniquely references a particular segment. Jointly, these two components constitute a
complete 32-bit address (pointer data type), as shown in figure 6-1.

These 32-bit virtual addresses are manipulated by programs in exactly the same way as the two-
component addresses of Real Address Mode. After a program loads the segment selector component
of an address into a segment register, each subsequent reference to locations within the selected segment
requires only a 16-bit offset be specified. Locality of reference will ordinarily insure that addresses can
be specified very efficiently using only 16-bit offsets.

An important difference between Real Address Mode and Protected Mode, however, concerns the
actual format and information content of segment selectors. In Real Address Mode, as with the 8086
and other processors in the 8086 family, a 16-bit selector is merely the upper bits of a segment’s
physical base address. By contrast, segment selectors in Protected Mode follow an entirely different
format, as illustrated by figure 6-1.

Two of the selector bits, designated as the RPL field in figure 6-1, are not actually involved in the
selection and specification of segments; their use is discussed in Chapter 7.

32-BIT POINTER

31 16 15 [

SEGMENT SELECTOR l SEGMENT OFFSET l

15 3 2 170
T T
INDEX ]TI] RPL
TRD TR M NN W WO W W 1

SELECTOR

G30108

Figure 6-1. Format of the Segment Selector Component

6-2



ln@ MEMORY MANAGEMENT AND VIRTUAL ADDRESSING

v «
¢ € >
L ~E
Y
ONE
SEGMENT SEGMENT
'OF THE LmIT
A €T TASKS
RESERVED-ZERO LOCAL
(private)
IBASE 2516 ADDRESS
RESERVED-ZERO —_ SPACE
BASE 150
I BASE);3.1¢
— LIMIT 150
BASE 5.0
LIMIT 5.9 > SEGMENT
BASE
LOT
DESCRIPTOR
IN THE
GoT
IN MEMORY
J o) N
A b
DESCRIPTOR SEGMENT
s TABLES J. N
© IN RAM RAM
¥ o} rn
G30108

Figure 6-5. LDT Descriptor

6.5 SEGMENTS AND SEGMENT DESCRIPTORS

Segments are the basic units of 80286 memory management. In contrast to schemes based on fixed-
size pages, segmentation allows for a very efficient implementation of software: variable-length segments
can be tailored to the exact requirements of an application. Segmentation, moreover, is consistent with
the way a programmer naturally deals with his virtual address space: programmers are encouraged to
divide code and data into clearly defined modules and structures which are manipulated as consistent
entities. This reduces (minimizes) the potential for virtual memory thrashing. Segmentation also elimi-
nates the restrictions on data structures that span a page (e.g., a word that crosses page boundaries).

Each segment within an 80286 system is defined by an associated segment descriptor, which may
appear in one or more descriptor tables. Its inclusion within a descriptor table represents the presence
of its associated segment within the virtual address space defined by that table. Conversely, its ommis-
sion from a descriptor table means that the segment is absent from the corresponding address space.
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Figure 6-6. Virtual-to-Physical Address Translation

As shown previously in figure 6-3, an 8-byte segment descriptor encodes the following information
about a particular segment:

*  Size. This 16-bit field, comprising bytes 0 and 1 of a segment descriptor, specifies an unsigned
integer as the size, in bytes (from 1 byte to 64K bytes), of the segment.

Unlike segments in the 8086 (or the 80286 in Real Address Mode)—which are never explicitly
limited to less than a full 64K bytes—Protected Mode segments are always assigned a specific
size value. In conjunction with the protection features described in Chapter 7, this assigned size
allows the enforcement of a very desirable and natural rule: inadvertent accesses to locations beyond
a segment’s actual boundaries are prohibited.

¢ Base. This 24-bit field, comprising bytes 2 through 4 of a segment descriptor, specifies the physi-
cal base address of the segment; it thus defines the actual location of the segment within the 16-
megabyte real memory space. The base may be any byte address within the 16-megabyte real
memory space. :

e Access. This 8-bit field comprises byte 5 of a segment descriptor. This access byte specifies a
variety of additional information about a segment, particularly in regard to the protection features
of the 80286. For example, code segments are distinguished from data segments; and certain special
access restrictions (such as Execute-Only or Read-Only) may be defined for segments of each
type. Access byte values of 00H or 80H will always denote “invalid.”

Figure 6-7 shows the access byte format for both code and data segment descriptors. Detailed discus-
sion of the protection related fields within an access byte (Conforming, Execute-Only, Descriptor Privi-
lege Level, Expand Down, and Write-Permitted), and their use in implementing protection policies, is
deferred - to Chapter 7. The .two fields Accessed and Present are used for virtual memory
implementations.
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Figure 6-3. Code or Data Segment Descriptor (S = 1)

are segment descriptors for all of the segments that comprise a system’s global address space. Similarly,
within a task’s LDT, there must be a descriptor for each of the segments that are to be included in
that task’s local address space.

Each local descriptor table is itself a special system segment, recognizable as such by the 80286 archi-
tecture and described by a specific type of segment descriptor (see figure 6-4). Because there is only a
single GDT segment, it is not defined by a segment descriptor. Its base and size information is maintained
in a dedicated register, GDTR, as described below (section 6.6.2).

Similarly, there is another dedicated register within the 80286, LDTR, that records the base and size
of the current LDT segment (i.e., the LDT associated with the currently executing task). The LDTR
register state, however, is volatile: its contents are automatically altered whenever a task switch is made
from one task to another. An alternate specification independent of changeable register contents must
therefore exist for each LDT in the system. This independent specification is accomplished by means
of special system segment descriptors known as descriptor table descriptors or LDT descriptors.

Figure 6-4 shows the format of a descriptor table descriptor. (Note that it is distinguished from an
ordinary segment descriptor by the contents of certain bits in the access byte.) This special type of
descriptor is used to specify the physical base address and size of a local descriptor table that defines
the virtual address space and address mapping for an individual user or task (figure 6-5).

Each LDT segment in a system must lie within that system’s global address space. Thus, all of the
descriptor table descriptors must be included among the entries in the global descriptor table (the
GDT) of a system. In fact, these special descriptors may appear only in the GDT. Reference to an
LDT descriptor within an LDT will cause a protection violation. Even though they are in the global
address space available to all tasks, the descriptor table descriptors are protected from corruption within
the GDT since they are special system segments and can only be accessed for loading into the LDTR
register.
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Figure 6-4. System Segment Descriptor or Gate Descriptor (S = 0)

6.4 VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION

The translation of a full 32-bit virtual address pointer into a real 24-bit physical address is shown by
figure 6-6. When the segment’s base address is determined as a result of the mapping process, the
offset value is added to the result to obtain the physical address.

The actual mapping is performed on the selector component of the virtual address. The 16-bit segment
selector is mapped to a 24-bit segment base address via a segment descriptor maintained in one of the
descriptor tables.

The TI bit in the segment selector (see figure 6-1) determines which of two descriptor tables, either
the GDT or the current LDT, is to be chosen for memory mapping. In either case, using the GDTR or
LDTR register, the processor can readily determine the physical base address of the memory-resident
table.

The INDEX field in the segment selector specifies a particular descriptor entry within the chosen
table. The processor simply multiplies this index value by 8 (the length of a descriptor), and adds the
result to the base address of the descriptor table in order to access the appropriate segment descriptor
in the table.

Finally, the segment descriptor contains the physical base address of the target segment, as well as size
(limit) and access information. The processor sums the 24-bit segment base and the specified 16-bit
offset to generate the resulting 24-bit physical address.
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The remaining 14 bits of the selector component uniquely designate a particular segment. The virtual
address space of a program, therefore, may encompass as many as 16,384 (2'4) distinct segments.
Segments themselves are of variable size, ranging from as small as a single byte to as large as 64K
(2'%) bytes. Thus, a program’s virtual address space may contain, altogether, up to a full gigabyte (2*°
= 214 X 219 of individually addressable byte locations.

The entirety of a program’s virtual address space is further subdivided into two separate halves, as
distinguished by the TI (“table indicator™) bit in the virtual address. These two halves are the global
address space and the local address space.

The global address space is used for system-wide data and procedures including operating system
software, library routines, runtime language support and other commonly shared system services. (To
application programs, the operating system appears to be a set of service routines that are accessible
to all tasks.) Global space is shared by all tasks to avoid unnecessary replication of system service
routines and to facilitate shared data and interrupt handling. Global address space is defined by addresses
with a zero in the TI bit position; it is identically mapped for all tasks in the system.

The other half of the virtual address space—comprising those addresses with the TI bit set—is separately
mapped for each task in the system. Because such an address space is local to the task for which it is
defined, it is referred to as a local address space. In general, code and data segments within a task’s
local address space are private to that particular task or user. Figure 6-2 illustrates the task isolation
made possible by partitioning the virtual address spaces into local and global regions.

TASK 1
LOCAL ADDRESS
SPACE

/—-TASK 1 VIRTUAL ADDRESS SPACE

TASK 2 VIRTUAL ADDRESS SPACE

TASK 3 VIRTUAL ADDRESS SPACE

TASK 3 TASK 2
LOCAL ADDRESS LOCAL ADDRESS
SPACE SPACE

G30108

Figure 6-2. Address Spaces and Task Isolation
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Within each of the two regions addressable by a program—either the global address space or a partic-
ular local address space—as many as 8,192 (2%) distinct segments may be defined. The INDEX field
of the segment selector allows for a unique specification of each of these segments. This 13-bit quantity
acts as an index into a memory-resident table, called a descriptor table, that records the mapping
between segment address and the physical locations allocated to each distinct segment. (These descrip-
tor tables, and their role in virtual-to-physical address translation, are described in the sections that
follow.)

In summary, a Protected Mode virtual address is a 32-bit pointer to a particular byte location within a
one-gigabyte virtual address space. Each such pointer consists of a 16-bit selector component and a
16-bit offset component. The selector component, in turn, comprises a 13-bit table index, a 1-bit table
indicator (local versus global), and a 2-bit RPL field; all but this last field serve to select a particular
segment from among the 16K segments in a task’s virtual address space. The offset component of a
full pointer is an unsigned 16-bit integer that specifies the desired byte location within the selected
segment.

6.3 DESCRIPTOR TABLES

A descriptor table is a memory-resident table either defined by program development tools in a static
system or controlled by operating system software in systems that are reprogrammable. The descriptor
table contents govern the interpretation of virtual addresses. Whenever the 80286 decodes a virtual
address, translating a full 32-bit pointer into a corresponding 24-bit physical address, it implicitly refer-
ences one of these tables.

Within a Protected Mode system, there are ordinarily several descriptor tables resident in memory.
One of these is the global descriptor table (GDT); this table provides a complete description of the
global address space. In addition, there may be one or more local descriptor tables (LDTs), each
describing the local address space of one or more tasks.

For each task in the system, a pair of descriptor tables—consisting of the GDT (shared by all tasks)
and a particular LDT (private to the task or to a group of closely related tasks)—provides a complete
description of that task’s virtual address space. The protection mechanism described in Chapter 7,
“Protection,” ensures that a task is granted access only to its own virtual address space. In the simplest
of system configurations, tasks can reside entirely within the GDT without the use of local descriptor
tables. This will simplify system software by only requiring maintenance of one table (the GDT) at the
expense of no isolation between tasks. The point is: the 80286 memory management scheme is flexible
enough to accommodate a variety of implementations and does not require use of all possible facilities
when implementing a system.

The descriptor tables consist of a sequence of 8-byte entries called descriptors. A descriptor table may
contain from 1 to 8192 entries.

Within a descriptor table, two main classes of descriptors are recognized by the 80286 architecture.
The most important of these, from the standpoint of memory management, are called segment descrip-
tors; these determine the set of segments that are included within a given address space. The other
class are special-purpose control descriptors—such as call gates and task descriptors—to implement
protection (described in succeeding chapters) and special system data segments.

Figure 6-3 shows the format of a segment descriptor. Note that it provides information about the
physical-memory base address and size of a segment, as well as certain access information. If a partic-
ular segment is to be included within a virtual address space, then a segment descriptor that describes
that segment must be included within the appropriate descriptor table. Thus, within the GDT, there
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Figure 6-7. Segment Descriptor Access Bytes

6.6 MEMORY MANAGEMENT REGISTERS

The Protected Virtual Address Mode features of the 80286 operate at high performance due to exten-
sions to the basic 8086 register set. Figure 6-8 illustrates that portion of the extended register structure
that pertains to memory management. (For a complete summary of all Protected Mode registers, refer
to section 10.1).

6.6.1 Segment Address Translation Registers

Figure 6-8 shows the segment registers CS,DS,ES, and SS. In contrast to their usual representation,
however, these registers are now depicted as 64-bit registers, each with “visible” and “hidden”
components.

The visible portions of these segment address translation registers are manipulated by programs exactly
as if they were simply the 16-bit segment registers of Real Address Mode. By loading a segment selec-
tor into one of these registers, the program makes the associated segment one of its four currently
addressable segments.
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Figure 6-8. Memory Management Registers

The operations that load these registers—or, more exactly, those that load the visible portion of these
registers—are normal program instructions. These instructions may be divided into two categories:

1. Direct segment-register load instructions. These instructions (such as LDS, LES, MOV, POP,
etc.) can explicitly reference the SS, DS, or ES segment registers as the destination operand.

2.  Implied segment-register load instructions. These instructions (such as intersegment CALL and
JMP) implicitly reference the CS code segment register; as a result of these operations, the contents
of CS are altered.

Using these instructions, a program loads the visible part of the segment register with al6-bit selector
(i.e., the high-order word of a virtual address pointer). Whenever this is done, the processor automati-
cally uses the selector to reference the appropriate descriptor and loads the 48-bit hidden descriptor
cache for that segment register.

The correspondence between selectors and descriptors has already been described. Remember that the
selector’s T1 bit indicates one of the two descriptor tables, either the LDT or the GDT. Within the
indicated table, a particular entry is chosen by the selector’s 13-bit INDEX field. This index, scaled
by a factor of 8, represents the relative displacement of the chosen table entry (a descriptor).
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Thus, so long as a particular selector value is valid (i.e., it points to a valid segment descriptor within
the bounds of the descriptor table), it can be readily associated with an 8-byte descriptor. When a
selector value is loaded into the visible part of a segment register, the 80286 automatically loads 6
bytes of the associated descriptor into the hidden part of the register. These 6 bytes, therefore, contain
the size, base, and access type of the selected segment. Figure 6-9 illustrates this transparent process
of descriptor loading.

In effect, the hidden descriptor fields of the segment registers function as the memory management
cache of the 80286. All the information required to address the current working set of segments—that
is, the base address, size, and access rights of the currently addressable segments—is stored in this
memory cache. Unlike the probabilistic caches of other architectures, however, the 80286 cache is
completely deterministic: the caching of descriptors is explicitly controlled by the program.

Most memory references do not require the translation of a full 32-bit virtual address, or long pointer.
Operands that are located within one of the currently addressable segments, as determined by the four
segment registers, can be referenced very efficiently by means of a short pointer, which is simply a
16-bit offset.

In fact, most 80286 instructions reference memory locations in precisely this way, specifying only a
16-bit offset with respect to one of the currently addressable segments. The choice of segments (CS,
DS, ES, or SS) is either implicit within the instruction itself, or explicitly specified by means of a
segment-override prefix (as described in Chapter 2).
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Figure 6-9. Descriptor Loading
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Thus, in most cases, virtual-to-physical address translation is actually performed in two separate steps.
First, when a program loads a new value into a segment register, the processor immediately performs
a mapping operation; the physical base address of the selected segment (as well as certain additional
information) is automatically loaded into the hidden portion of the register. The internal cache registers
(virtual address translation hardware) are therefore dynamically shared among the 16K different
segments potentially addressable within the user’s virtual address space. No software overhead (either
system or application) is required to perform this operation.

Subsequently, as the program utilizes a short pointer to reference a location within a segment, the
processor generates a 24-bit physical address simply by adding the specified offset value to the previ-
ously cached segment base address. By encouraging the use of short pointers in this way, rather than
requiring a full 32-bit virtual address for every memory reference, the 80286 provides a very efficient
on-chip mechanism for address translation, with minimum overhead for references to memory-based
tables or the need for external address-translation devices.

6.6.2 System Address Registers

The Global Descriptor Table Register (GDTR) is a dedicated 40-bit (5 byte) register used to record
the base and size of a system’s global descriptor table (GDT). Thus, two of these bytes define the size
of the GDT, and three bytes define its base address.

In figure 6-8, the contents of the GDTR are referred to as a “hidden descriptor.” The term “descrip-
tor” here emphasizes the analogy with the segment descriptors ordinarily found in descriptor tables.
Just as these descriptors specify the base and size (limit) of ordinary segments, the GDTR register
specifies these same parameters for that segment of memory serving as the system GDT. The limit
prevents accesses to descriptors in the GDT from accessing beyond the end of the GDT and thus
provides address space isolation at the system level as well as at the task level.

The register contents are “hidden” only in the sense that they are not accessible by means of ordinary
instructions. Instead, the dedicated protected instructions LGDT and SGDT are reserved for loading
and storing, respectively, the contents of the GDTR at Protected Mode initialization (refer to section
10.2 for details). Subsequent alteration of the GDT base and size values is not recommended but is a
system option at the most privileged level of software (see section 7.3 for a discussion of privilege
levels).

The Local Descriptor Table Register (LDTR) is a dedicated 40-bit register that contains, at any given
moment, the base and size of the local descriptor table (LDT) associated with the currently executing
task. Unlike GDTR, the LDTR register contains both a “visible” and a “hidden” component. Only the
visible component is accessible, while the hidden component remains truly inaccessible even to dedicated
instructions.

The visible component of the LDTR is a 16-bit “selector” field. The format of these 16 bits corresponds
exactly to that of a segment selector in a virtual address pointer. Thus, it contains a 13-bit INDEX
field, a 1-bit TI field, and a 2-bit RPL field. The TI “table indicator” bit must be zero, indicating a
reference to the GDT (i.e., to global address space). The INDEX field consequently provides an index
to a particular entry within the GDT. This entry, in turn, must be an LDT descriptor (or descriptor
table descriptor), as defined in the previous section. In this way, the visible “selector” field of the
LDTR, by selecting an LDT descriptor, uniquely designates a particular LDT in the system.

The dedicated, protected instructions LLDT and SLDT are reserved for loading and storing, respec-
tively, the visible selector component of the LDTR register (refer to section 10.2 for details). Whenever
a new value is loaded into the visible “selector” portion of LDTR, an LDT descriptor will have been
uniquely chosen (assuming, of course, that the “selector” value is valid). In this case, the 80286
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automatically loads the hidden “descriptor” portion of LDTR with five bytes from the chosen LDT
descriptor. Thus, size and base information about a particular LDT, as recorded in a memory-resident
global descriptor table entry, is cached in the LDTR register.

New values may be loaded into the visible portion of the LDTR (and, thus, into the hidden portion as
well) in either of two ways. The LLDT instruction, during system initialization, is used explicitly to set
an initial value for the LDTR register; in this way, a local address space is provided for the first task
in a multitasking environment. After system startup, explicit changes are not required since operations
that automatically invoke a task switch (described in section 8.4) appropriately manage the LDTR.

At all times, the LDTR register thus records the physical base address (and size) of the current task’s
LDT; the descriptor table required for mapping the current local address space, therefore, is immedi-
ately accessible to the processor. Moreover, since GDTR always maintains the base address of the
GDT, the table that maps the global address space is similarly accessible. The two system address
registers, GDTR and LDTR, act as a special processor cache, maintaining current information about
the two descriptor tables required, at any given time, for addressing the entire current virtual address
space.
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CHAPTER 7
PROTECTION

7.1 INTRODUCTION

In most microprocessor based products, the product’s availability, quality, and reliability are deter-
mined by the software it contains. Software is often the key to a product’s success. Protection is a tool
used to shorten software development time, and improve software quality and reliability.

Program testing is an important step in developing software. A system with protection will detect software
errors more quickly and accurately than a system without protection. Eliminating errors via protection
reduces the development time for a product.

Testing software is difficult. Many errors occur only under complex circumstances which are difficult
to anticipate. The result is that products are shipped with undetected errors. When such errors occur,
products appear unreliable. The impact of a software error is multiplied if it introduces errors in other
bug-free programs. Thus, the total system reliability reduces to that of the least reliable program running
at any given time.

Protection improves the reliability of an entire system by preventing software errors in one program
from affecting other programs. Protection can keep the system running even when some user program
attempts an invalid or prohibited operation.

Hardware protection performs run-time checks in parallel with the execution of the program. But,
hardware protection has traditionally resulted in a design that is more expensive and slower than a
system without protection. However, the 80286 provides hardware-enforced protection without the
performance or cost penalties normally associated with protection.

The protected mode 80286 implements extensive protection by integrating these functions on-chip. The
80286 protection is more comprehensive and flexible than comparable solutions. It can locate and
isolate a large number of program errors and prevent the propagation of such errors to other tasks or
programs. The protection of the total system detects and isolates bugs both during development and
installed usage. Chapter 9 discusses exceptions in more detail.

The remaining sections of this chapter explain the protection model implemented in the 80286.

7.1.1 Types of Protection
Protection in the 80286 has three basic aspects:

1. Isolation of system software from user applications.
2. Isolation of users from each other (Inter-task protection).
3. Data-type checking.

The 80286 provides a four-level, ringed-type, increasingly-privileged protection mechanism to isolate
applications software from various layers of system software. This is a major improvement and exten-
sion over the simpler two-level user/supervisor mechanism found in many systems. Software modules
in a supervisor level are protected from modules in the application level and from software in less
privileged supervisor levels.
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Restricting the addressability of a software module enables an operating system to control system
resources and priorities. This is especially important in an environment that supports multiple concur-
rent users. Multi-user, multi-tasking, and distributed processing systems require this complete control
of system resources for efficient, reliable operation.

The second aspect of protection is isolating users from each other. Without such isolation an error in
one user program could affect the operation of another error-free user program. Such subtle interac-
tions are difficult to diagnose and repair. The reliability of applications programs is greatly enhanced
by such isolation of users. ;

Within a system or application level program, the 80286 will ensure that all code and data segments
are properly used (e.g., data cannot be executed, programs cannot be modified, and offset must be
within defined limits, etc.). Such checks are performed on every memory access to provide full run-
time error checking.

7.1.2 Protection Implementation

The protection hardware of the 80286 establishes constraints on memory and instruction usage. The
number of possible interactions between instructions, memory, and I/O devices is practically unlim-
ited. Out of this very large field the protection mechanism limits interactions to a controlled, under-
standable subset. Within this subset fall the list of “correct” operations. Any operation that does not
fall into this subset is not allowed by the protection mechanism and is signalled as a protection
violation.

To understand protection on the 80286, you must begin with its basic parts: segments and tasks. 80286
segments are the smallest region of memory which have unique protection attributes. Modular
programming automatically produces separate regions of memory (segments) whose contents are treated
as a whole. Segments reflect the natural construction of a program, e.g., code for module A, data for
module A, stack for the task, etc. All parts of the segment are treated in the same way by the 80286.
Logically separate regions of memory should be in separate segments.

The memory segmentation model (see figure 7-1) of the 80286 was designed to optimally execute code
for software composed of independent modules. Modular programs are easier to construct and maintain.
Compared to monolithic software systems, modular software systems have enhanced capabilities, and
are typically easier to develop and test for proper operation.

Each segment in the system is defined by a memory-resident descriptor. The protection hardware
prevents accesses outside the data areas and attempts to modify instructions, etc., as defined by the
descriptors. Segmentation on the 80286 allows protection hardware to be integrated into the CPU for
full data access control without any performance impact.

The segmented memory architecture of the 80286 provides unique capabilities for regulating the trans-
fer of control between programs.

Programs are given direct but controlled access to other procedures and modules. This capability is the
heart of isolating application and system programs. Since this access is provided and controlled directly
by the 80286 hardware, there is no performance penalty. A system designer can take advantage of the
80286 access control to design high-performance modular systems with a high degree of confidence in
the integrity of the system.
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Figure 7-1. Addressing Segments of a Module within a Task

Access control between programs and the operating system is implemented via address space separa-
tion and a privilege mechanism. The address space control separates applications programs from each
other while the privilege mechanism isolates system software from applications software. The privilege
mechanism grants different capabilities to programs to access code, data, and I/O resources based on
the associated protection level. Trusted software that controls the whole system is typically placed at
the most privileged level. Ordinary application software does not have to deal with these control mecha-
nisms. They come into play only when there is a transfer of control between tasks, or if the Operating
System routines have to be invoked.

The protection features of multiple privilege levels extend to ensuring reliable I/O control. However,
for a system designer to enable only one specific level to do I/O would excessively constrain subsequent
extensions or application development. Instead, the 80286 permits each task to be assigned a separate
minimum level where 1/0 is allowed. I/O privilege is discussed in section 10.3.
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An important distinction exists between tasks and programs. Programs (e.g., instructions in code
segments) are static and consist of a fixed set of code and data segments each with an associated
privilege level. The privilege assigned to a program determines what the program may do when executed
by a task. Privilege is assigned to a program when the system is built or when the program is loaded.

Tasks are dynamic; they execute one or more programs. Task privilege changes with time according to
the privilege level of the program being executed. Each task has a unique set of attributes that define
it, e.g., address space, register values, stack, data, etc. A task may execute a program if that program
appears in the task’s address space. The rules of protection control determine when a program may be
executed by a task, and once executed, determine what the program may do.

7.2 MEMORY MANAGEMENT AND PROTECTION

The protection hardware of the 80286 is related to the memory management hardware. Since protec-
tion attributes are assigned to segments, they are stored along with the memory management infor-
mation in the segment descriptor. The protection information is specified when the segment is created.
In addition to privilege levels, the descriptor defines the segment type (e.g., Code segment, Data segment,
etc.). Descriptors may be created either by program development tools or by a loader in a dynamically
loaded reprogrammable environment.

The protection control information consists of a segment type, its privilege level, and size. These are
fields in the access byte of the segment descriptor (see figure 7-2). This information is saved on-chip
in the programmer invisible section of the segment register for fast access during execution. These
entries are changed only when a segment register is loaded. The protection data is used at two times:
upon loading a segment register and upon each reference to the selected segment.

The hardware performs several checks while loading a segment register. These checks enforce the
protection rules before any memory reference is generated. The hardware verifies that the selected
segment is valid (is identified by a descriptor, is in memory, and is accessible from the privilege level
in which the program is executing) and that the type is consistent with the target segment register. For
example, you cannot load a read-only segment descriptor into SS because the stack must always be
writable.

PROGRAM VISIBLE |— PROGRAM |ersuafs —————————— 1
: ‘ACCESS l
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cs

| |
‘DS | |
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Figure 7-2. Descriptor Cache Registers
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Each reference into the segment defined by a segment register is checked by the hardware to verify
that it is within the defined limits of the segment and is of the proper type. For example, a code
segment or read-only data segment cannot be written. All these checks are made before the memory
cycle is started; any violation will prevent that cycle from starting and cause an exception to occur.
Since the checks are performed concurrently with address formation, there is no performance penalty.

By controlling the access rights and privilege attributes of segments, the system designer can assure a
program will not change its code or overwrite data belonging to another task. Such assurances are vital
to maintaining system integrity in the face of error-prone programs.

7.2.1 Separation of Address Spaces

As described in Chapter 6, each task can address up to a gigabyte (2!4—2 segments of up to 65,536
bytes each) of virtual memory defined by the task’s LDT (Local Descriptor Table) and the system
GDT. Up to one-half gigabyte (2! segments of up to 65,536 bytes each) of the task’s address space is
defined by the LDT and represents the task’s private address space. The remaining virtual address
space is defined by the GDT and is common to all tasks in the system.

Each descriptor table is itself a special kind of segment recognized by the 80286 architecture. These
tables are defined by descriptors in the GDT (Global Descriptor Table). The CPU has a set of base
and limit registers that point to the GDT and the LDT of the currently running task. The local descrip-
tor table register is loaded by a task switch operation.

An active task can only load selectors that reference segments defined by descriptors in either the
GDT or its private LDT. Since a task cannot reference descriptors in other LDTs, and no descriptors
in its LDT refer to data or code belonging to other tasks, it cannot gain access to another tasks’ private
code and data (see figure 7-3).

Since the GDT contains information that is accessible by all users (e.g., library routines, common data,
Operating System services, etc.), the 80286 uses privilege levels and special descriptor types to control
access (see section 7.2.2). Privilege levels protect more trusted data and code (in GDT and LDT) from
less trusted access (WITHIN a task), while the private virtual address spaces defined by unique LDTs
provide protection BETWEEN tasks (see figure 7-4).

7.2.2 LDT and GDT Access Checks

All descriptor tables have a limit used by the protection hardware to ensure address space separation
of tasks. Each task’s LDT can be a different size as defined by its descriptor in the GDT. The GDT
may also contain less than 8191 descriptors as defined by the GDT limit value. The descriptor table
limit identifies the last valid byte of the last descriptor in that table. Since each descriptor is eight
bytes long, the limit value is NX8—1 for N descriptors.

Any attempt by a program to load a segment register, local descriptor table register (LDTR), or task
register (TR) with a selector that refers to a descriptor outside the corresponding limit causes an excep-
tion with an error code identifying the invalid selector used (see figure 7-5).

Not all descriptor entries in the GDT or LDT need contain a valid descriptor. There can be holes, or
“empty” descriptors, in the LDT and GDT. “Empty” descriptors allow dynamic allocation and deletion
of segments or other system objects without changing the size of the GDT or LDT. Any descriptor
with an access byte equal to zero is considered empty. Any attempt to load a segment register with a
selector that refers to an empty descriptor will cause an exception with an error code identifying the
invalid selection.
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Figure 7-3. 80286 Virtual Address Space

7.2.3 Type Validation

After checking that a selector reference is within the bounds of a descriptor table and refers to a non-
empty descriptor, the type of segment defined by the descriptor is checked against the destination
register. Since each segment register has predefined functions, each must refer to certain types of
segments (see section 7.4.1). An attempt to load a segment register in violation of the protection rules

causes an exccption.

The “null” selector is a special type of segment selector. It has an index field of all zeros and a table
indicator of 0. The null selector appears to refer to GDT descriptor entry #0 (see GDT in figure 7-3).
This selector value may be used as a place holder in the DS or ES segment registers; it may be loaded
into them without causing an exception. However, any attempt to use the null segment registers to "
reference memory will cause an exception and prevent any memory cycle from occurring.
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Figure 7-4. Local and Global Descriptor Table Definitions
15 3 2 1 0
I
T 1 means that an event external to
INDEX 1B X the program caused the exception
T (i.e., external interrupt, single step,
processor extension error)
0 means that an exception occurred
while processing the instruction at
|—> CS:IP saved on stack.
> 1 means use IDT and ignore bit 2.
0 means bit 2 indicates table usage
| > 1 means use LDT
0 means use GDT
—3 Entry in IDT, GDT, or LDT
G30108

Figure 7-5. Error Code Format (on the stack)
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7.3 PRIVILEGE LEVELS AND PROTECTION

As explained in section 6.2, each task has its own separate virtual address space defined by its LDT.
All tasks share a common address space defined by the GDT. The system software then has direct
access to task data and can treat all pointers in the same way.

Protection is required to prevent programs from improperly using code or data that belongs to the
operating system. The four privilege levels of the 80286 provide the isolation needed between the various
layers of the system. The 80286 privilege levels are numbered from O to 3, where 0 is the most trusted
level, 3 the least.

Privilege level is a protection attribute assigned to all segments. It determines which procedures can
access the segment. Like access rights and limit checks, privilege checks are automatically performed
by the hardware, and thus protect both data and code segments.

Privilege on the 80286 is hierarchical. Operating system code and data segments placed at the most
privileged level (0) cannot be accessed directly by programs at other privilege levels. Programs at
privilege level 0 may access data at all other levels. Programs at privilege levels 1-3 may only access
data at the same or less trusted (numerically greater) privilege levels. Figure 7-6 illustrates the privi-
lege level protection of code or data within tasks.

In figure 7-6, programs can access data at the same or outer level, but not at inner levels. Code and
data segments placed at level 1 cannot be accessed by programs executing at levels 2 or 3. Programs
at privilege level O can access data at level 1 in the course of providing service to that level. 80286
provides mechanisms for inter-level transfer of control when needed (see section 7.5).

The four privilege levels of the 80286 are an extension of the typical two-level user/supervisor privilege
mechanism. Like user mode, application programs in the outer level are not permitted direct access to
data belonging to more privileged system services (supervisor mode). The 80286 adds two more
privilege levels to provide protection for different layers of system software (system services, I/O drivers,
etc.).

7.3.1 Example of Using Four Privilege Levels

Two extra privilege levels allow development of more reliable, and flexible system software. This is
achieved by dividing the system into small, independent units. Figure 7-6 shows an example of the
usage of different protection levels. Here, the most privileged level is called the kernel. This software
would provide basic, application-independent, CPU-oriented services to all tasks. Such services include
memory management, task isolation, multitasking, inter-task communication, and I/O resource control.
Since the kernel is only concerned with simple functions and cannot be affected by software at other
privilege levels, it can be kept small, safe, and understandable.

Privilege level one is designated system services. This software provides high-level functions like file
access scheduling, character I/O, data communcations, and resource allocation policy which are
commonly expected in all systems. Such software remains isolated from applications programs and
relies on the services of the kernel, yet cannot affect the integrity of level 0.

Privilege level 2 is the custom operating system extensions level. It allows standard system software to
be customized. Such customizing can be kept isolated from errors in applications programs, yet cannot
affect the basic integrity of the system software. Examples of customized software are the data base
manager, logical file access services, etc.
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Figure 7-6. Code and Data Segments Assigned to a Privilege Level

This is just one example of protection mechanism usage. Levels 1 and 2 may be used in many different
ways. The usage (or non-usage) is up to the system designer.

Programs at each privilege level are isolated from programs at outer layers, yet cannot affect programs
in inner layers. Programs written for each privilege level can be smaller, easier to develop, and easier
to maintain than a monolithic system where all system software can affect all other system software.

7.3.2 Privilege Usage
Privilege applies to tasks and three types of descriptors:
1. Main memory segments

2. Gates (control descriptors for state or task transitions, discussed in sections 7.5.1, 7.5.3, 8.3, 8.4
and 9.2)

3. Task state segments (discussed in Chapter 8).
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Task privilege is a dynamic value. It is derived from the code segment currently being executed. Task
privilege can change only when a control transfers to a different code segment.

Descriptor privilege, including code segment privilege, is assigned when the descriptor (and any associ-
ated segment) is created. The system designer assigns privilege directly when the system is constructed
with the system builder (see the 80286 Builder User’s Guide) or indirectly via a loader.

Each task operates at only one privilege level at any given moment: namely that of the code segment
being executed. (The conforming segments discussed in section 11.2 permit some flexibility in this
regard.) However, as figure 7-6 indicates, the task may contain segments at one, two, three, or four
levels, all of which are to be used at appropriate times. The privilege level of the task, then, changes
under the carefully enforced rules for transfer of control from one code segment to another.

The descriptor privilege attribute is stored in the access byte of a descriptor and is called the Descrip-
tor Privilege Level (DPL). Task privilege is called the Current Privilege Level (CPL). The least signif-
icant two bits of the CS register specify the CPL.

A few general rules of privilege can be stated before the detailed discussions of later sections. Data
access is restricted to those data segments whose privilege level is the same as or less privileged (numer-
ically greater) than the current privilege level (CPL). Direct code access, e.g., via call or jump, is
restricted to code segments of equal privilege. A gate (section 7.5.1) is required for access to code at
more privileged levels.

7.4 SEGMENT DESCRIPTOR

Although the format of access control information, discussed below, is similar for both data and code
segment descriptors, the rules for accessing data segments differ from those for transferring control to
code segments. Data segments are meant to be accessible from many privilege levels, e.g., from other
programs at the same level or from deep within the operating system. The main restriction is that they
cannot be accessed by less privileged code.

Code segments, on the other hand, are meant to be executed at a single privilege level. Transfers of
control that cross privilege boundaries are tightly restricted, requiring the use of gates. Control trans-
fers within a privilege level can also use gates, but they are not required. Control transfers are discussed
in section 7.5.

Protection checks are automatically invoked at several points in selecting and using new segments. The
process of addressing memory begins when the currently executing program attempts to load a selector
into one of the segment registers. As discussed in Chapter 6, the selector has the form shown in
figure 7-7.

When a new selector is loaded into a segment register, the processor accesses the associated descriptor
to perform the necessary loading and privilege checks.

The protection mechanism verifies that the selector points to a valid descriptor type for the segment
register (see section 7.4.1). After verifying the descriptor type, the CPU compares the privilege level
of the task (CPL) to the privilege level in the descriptor (DPL) before loading the descriptor’s infor-
mation into the cache.

The general format of the eight bits in the segment descriptor’s access rights byte is shown in
table 7-1.



lntel PROTECTION

SELECTOR

INDEX RPL
I TN NN WO N O U T U T A | ],
15 8 7 2 10

-

BITS NAME FUNCTION

1-0 REQUESTED INDICATES SELECTOR PRIVILEGE
PRIVILEGE LEVEL DESIRED
LEVEL (RPL)

2 TABLE Tl = 0 USE GLOBAL DESCRIPTOR TABLE

INDICATOR (GDT)

T

m Ti = 1USE LOCAL DESCRIPTOR TABLE
(LDT)

15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE

G30108

Figure 7-7. Selector Fields

Table 7-1. Segment Access Rights Byte Format

Bit Name Description

7 Present 1 means Present and addressable in real memory; 0 means not
present. See section 11.3.

6,5 DPL 2-bit Descriptor Privilege Level, 0 to 3.
Segment 1 means Segment descriptor; 0 means control descriptor.

For Segment=1, the remaining bits have the following meanings:

3 Executable 1 means code, 0 means data.

CorED If code, Conforming: 1 means yes, 0 no.
If data, Expand Down: 1 yes, 0 no—normal case.

1 RorWwW If code, Readable: 1 means readable, 0 not.
If data, Writable: 1 means writable, 0 not.

0 Accessed 1 if segment descriptor has been Accessed, 0 if not.

NOTE: When the Segment bit (bit 4) is 0, the descriptor is for a gate, a task state segment, or a Local
Descriptor Table, and the meanings of bits 0 through 3 change. Control transfers and descriptors
are discussed in section 7.5.

For example, the access rights byte for a data and code segment present in real memory but not yet
accessed (at the same privilege level) is shown in figure 7-8.

Whenever a segment descriptor is loaded into a segment register, the accessed bit in the descriptor
table is set to 1. This bit is useful for determining the usage profile of the segment.
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G30108
Figure 7-8. Access Byte Examples
Table 7-2. Allowed Segment Types in Segment Registers
Allowed Segment Types
Segment Register Read Only Read-Write Execute Only Execute-Read
Data Segment Data Segment Code Segment Code Segment
DS ) Yes Yes No Yes
ES Yes Yes No Yes
SS No Yes No No
CcS No No Yes Yes

NOTE

The Intel reserved bytes in the segment descriptor must be set to 0 for compatibility with
the 80386.

7.4.1 Data Accesses

Data may be accessed in data segments or readable code segments. When DS or ES is loaded with a
new selector, e.g., by an LDS, LES, or MOV to ES, SS, or DS instruction, the bits in the access byte
are checked to verify legitimate descriptor type and access (see table 7-2). If any test fails, an error
code is pushed onto the stack identifying the selector involved (see figure 7-5 for the error code format).

A privilege check is made when the segment register is loaded. In general, a data segment’s DPL must
be numerically greater than or equal to the CPL. The DPL of a descriptor loaded into the SS must
equal the CPL. Conforming code segments are an exception to privilege checking rules (see
section 11.2).

Once the segment descriptor and selector are loaded, the offset of subsequent accesses within the
segment are checked against the limit given in the segment descriptor. Violating the segment size limit
causes a General Protection exception with an error code of 0.

A normal data segment is addressed with offset values ranging from O to the size of the segment. When
the ED bit of the access rights byte in the segment descriptor is O, the allowed range of offsets is
0000H to the limit. If limit is OFFFFH, the data segment contains 65,536 bytes.
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Since stacks normally occupy different offset ranges (lower limit to OFFFFH) than data segments, the
limit field of a segment descriptor can be interpreted in two ways. The Expand Down (ED) bit in the
access byte allows offsets for stack segments to be greater than the limit field. When ED is 1, the
allowed range of offsets within the segment is limit+ 1 to OFFFFH. To allow a full stack segment, set
ED to 1 and the limit to OFFFFH. The ED bit of a data segment descriptor does not have to be set for
use in SS (i.e., it will not cause an exception). Section 7.5.4 discusses stack segment usage in greater
detail. An expand down (ED=1) segment can also be loaded into ES or DS.

Limit and access checks are performed before any memory reference is started. For stack push instruc-
tions (PUSH, PUSHA, ENTER, CALL, INT), a possible limit violation is identified before any inter-
nal registers are updated. Therefore, these instructions are fully restartable after a stack size violation.

7.4.2 Code Segment Access

Code segments are accessed via CS for execution. Segments that are execute-only can ONLY be
executed; they cannot be accessed via DS or ES, nor read via CS with a CS override prefix. If a
segment is executable (bit 3=1 in the access byte), access via DS or ES is possible only if it is also
readable. Thus, any code segment that also contains data must be readable. (Refer to Chapter 2 for a
discussion of segment override prefixes.)

An execute-only segment preserves the privacy of the code against any attempt to read it; such an
attempt causes a general protection fault with an error code of 0. A code segment cannot be loaded
into SS and is never writable. Any attempted write will cause a general protection fault with an error
code of 0.

The limit field of a code segment descriptor identifies the last byte in the segment. Any offset greater
than the limit value will cause a general protection fault. The prefetcher of the 80286 can never cause
a code segment limit violation with an error code of 0. The program must actually attempt to execute
an instruction beyond the end of the code segment to cause an exception.

If a readable non-conforming code segment is to be loaded into DS or ES, the privilege level require-
ments are the same as those stated for data segments in 7.4.1.

Code segments are subject to different privilege checks when executed. The normal privilege require-
ment for a jump or call to another code segment is that the current privilege level equal the descriptor
privilege level of the new code segment. Jumps and calls within the current code segment automatically
obey this rule.

Return instructions may pass control to code segments at the same or less (numerically greater) privi-
leged level. Code segments at more privileged levels may only be reached via a call through a call gate
as described in section 7.5.

An exception to this, previously stated, is the conforming code segment that allows the DPL of the

requested code segment to be numerically less than (of greater privilege than) the CPL. Conforming
code segments are discussed in section 11.2.

7.4.3 Data Access Restriction by Privilege Level
This section describes privilege verification when accessing either data segments (loading segment

selectors into DS, ES, or SS) or readable code segments. Privilege verification when loading CS for
transfer of control across privilege levels is described in the next section.
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Three basic kinds of privilege level indicators are used when determining accessibility to a segment for
reading and writing. They are termed Current Privilege Level (CPL), Descriptor Privilege Level (DPL),
and Requested Privilege Level (RPL). The CPL is simply the privilege level of the code segment that
is executing (except if the current code segment is conforming). The CPL is stored as bits 0 and 1 of
the CS and SS registers. Bits 0 and 1 of DS and ES are not related to CPL.

DPL is the privilege level of the segment; it is stored in bits 5 and 6 of the access byte of a descriptor.
For data access to data segments and non-conforming code segments, CPL must be numerically less
than or equal to DPL (the task must be of equal or greater privilege) for access to be granted. Violation
of this rule during segment load instruction causes a general protection exception with an error code
identifying the selector.

While the enforcement of DPL protection rules provides the mechanism for the isolation of code and
data at different privilege levels, it is conceivable that an erroneous pointer passed onto a more trusted
program might result in the illegal modification of data with a higher privilege level. This possibility is
prevented by the enforcement of effective privilege level protection rules and correct usage of the RPL
value.

The RPL (requested privilege level) is used for pointer validation. It is the least significant two bits in
the selector value loaded into any segment register. RPL is intended to indicate the privilege level of
the originator of that selector. A selector may be passed down through several procedures at different
levels. The RPL reflects the privilege level of the original supplier of the selector, not the privilege
level of the intermediate supplier. The RPL must be numerically less than or equal to the DPL of the
descriptor selected, thereby indicating greater or equal privilege of the supplier; otherwise, access is
denied and a general protection violation occurs.

Pointer validity testing is required in any system concerned with preventing program errors from
destroying system integrity. The 80286 provides hardware support for pointer validity testing. The
RPL field indicates the privilege level of the originator of the pointer to the hardware. Access will be
denied if the originator of the pointer did not have access to the selected segment even if the CPL is
numerically less than or equal to the DPL. RPL can reduce the effective privilege of a task when using
a particular selector. RPL never allows access to more privileged segments (CPL must always be
numerically less than or equal to DPL).

A fourth term is sometimes used: the Effective Privilege Level (EPL). It is defined as the numeric
maximum of the CPL and the RPL—meaning the one of lesser privilege. Access to a protected entity
is granted only when the EPL is numerically less than or equal to the DPL of that entity. This is simply
another way of saying that both CPL and RPL must be numerically less than or equal to DPL for
access to be granted.

7.4.4 Pointer Privilege Stamping via ARPL

The ARPL instruction is provided in the 80286 to fill the RPL field of a selector with the minimum
privilege (maximum numeric value) of the selector’s current RPL and the caller’s CPL (given in an
instruction-specified register). A straight insertion of the caller’s CPL would stamp the pointer with
the privilege level of the caller, but not necessarily the ultimate originator of the selector (e.g., Level 3
supplies a selector to a level 2 routine that calls a level 0 routine with the same selector).

Figure 7-9 shows a program with an example of such a situation. The program at privilege level 3 calls
a routine at level 2 via a gate. The routine at level 2 uses the ARPL instruction to assure that the
selector’s RPL is 3. When the level 2 routine calls a routine at level 0 and passes the selector, the
ARPL instruction at level 0 leaves the RPL field unchanged.
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Level 3 PUSH SELECTOR i RPL value doesn’t matter at level 3
CALL LEVEL_2
Level 2:
TENTER 4,0
MOV AX, [BP1+4 + GET CS of return address, RPL=3
ARPL [BP1+6, AX 3 Put 3 in RPL field
Level 2
PﬁSH WORD PTR [BP1+6; Pass selector
CALL Level 0
Level 0:
TENTER 6,0
Level 0 MoV AX, [BP1+4 ;s Get CS of return address, RPL=2
ARPL [BP1+6, AX ; Leaves RPL unchanged

Figure 7-9. Pointer Privilege Stamping

Stamping a pointer with the originator’s privilege eliminates the complex and time-consuming software
typically associated with pointer validation in less comprehensive architectures. The 80286 hardware
performs the pointer test automatically while loading the selector.

Privilege errors are trapped at the time the selector is loaded because pointers are commonly passed to
other routines, and it may not be possible to identify a pointer’s originator. To verify the access capabil-
ities of a pointer, it should be tested when the pointer is first received from an untrusted source. The
VERR (Verify Read), VERW (Verify Write), and LAR (Load Access Rights) instructions are provided
for this purpose.

Although pointer validation is fully supported in the 80286, its use is an option of the system designer.
To accommodate systems that do not require it, RPL can be ignored by setting selector RPLs to zero
(except stack segment selectors) and not adjusting them with the ARPL instruction.

7.5 CONTROL TRANSFERS
Three kinds of control transfers can occur within a task:

1. Within a segment, causing no change of privilege level (a short jump, call, or return).

2. Between segments at the same privilege level (a Jong jump, call, or return).

3. Between segments at different privilege levels (a long call, or return). (NOTE: A JUMP to a
different privilege level is not allowed.)

The first two types of control transfers need no special controls (with respect to privilege protection)
beyond those discussed in section 7.4.

Inter-level transfers require special consideration to maintain system integrity. The protection hardware
must check that:

e The task is currently allowed to access the destination address.

e The correct entry address is used.
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To achieve control transfers, a special descriptor type called a gate is provided to mediate the change
in privilege level. Control transfer instructions call the gate rather than transfer directly to a code
segment. From the viewpoint of the program, a control transfer to a gate is the same as to another code
segment.

Gates allow programs to use other programs at more privileged levels in the same manner as a program
at the same privilege level. Programmers need never distinguish between programs or subroutines that
are more privileged than the current program and those that are not. The system designer may, however,
elect to use gates only for control transfers that cross privilege levels.

7.5.1 Gates

A gate is a four-word control descriptor used to redirect a control transfer to a different code segment
in the same or more privileged level or to a different task. There are four types of gates: call, trap,
interrupt, and task gates. The access rights byte distinguishes a gate from a segment descriptor, and
determines which type of gate is involved. Figure 7-10 shows the format of a gate descriptor.

A key feature of a gate is the re-direction it provides. All four gate types define a new address which
transfers control when invoked. This destination address normally cannot be accessed by a program.
Loading the selector to a call gate into SS, DS, or ES will cause a general protection fault with an
error code identifying the invalid selector.

Only the selector portion of an address is used to invoke a gate. The offset is ignored. All that a
program need know about the desired function is the selector required to invoke the gate. The 80286
will automatically start the execution at the correct address stored within the gate.

A further advantage of a gate is that it provides a fixed address for any program to invoke another
program. The calling program’s address remains unaltered even if the entry address of the destination
program changes. Thus, gates provide a fixed set of entry points that allow a task to access Operating
System functions such as simple subroutines, yet the task is prohibited from simply jumping into the
middle of the Operating System.

Call gates, as described in the next section, are used for control transfers within a task which must
either be transparently redirected or which require an increase in privilege level. A call gate normally
specifies a subroutine at a greater privilege level, and the called routine returns via a return instruction.
Call gates also support delayed binding (resolution of target routine addresses at run-time rather than
program-generation-time).

Trap and interrupt gates handle interrupt operations that are to be serviced within the current task.
Interrupt gates cause interrupts to be disabled; trap gates do not. Trap and interrupt gates both require
a return via the interrupt return instruction.

Task gates are used to control transfers between tasks and to make use of task state segments for task
control and status information. Tasks are discussed in Chapter 8, interrupts in Chapter 9.

In the 80286 protection model, each privilege level has its own stack. Therefore, a control transfer (call
or return) that changes the privilege level causes a new stack to be invoked.
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Gate Descriptor Fields
Name Value Description
4 Call Gate.
5 Task Gate.
TYPE 6 Interrupt Gate.
7 Trap Gate.
p 0 Descriptor Contents are
not valid.
, o . 1 Descriptor Contents are
— valid.
+7 INTEL RESERVED" +6
0-3 |Descriptor Privilege Level.
WORD DPL
s|p|loprL]o]| TYPE
* l ] [ Xlxlxl COUNT.p | **
+3 DESTINATION SELECTORy5_» ]x x| +2 WORD Number of words to copy
A L COUNT 0-31 from caller’'s stack to
+1 Dssmunoo: OFFSETy5 o 0 called procedure’s stack.
Py o7 2 Only used with call gate.

. - Selector to the target code
Must be set to 0 for compatibility DESTINA- . |segment (Call, Interrupt or
with 80386 (X is don’t care) TION 16-bit Trap Gate).

SELECTOR | 3% | selector to the target task
state segment (Task Gate).
DESTINA- 16-bit |Entry point within the
TION offset |target code segment.’
OFFSET

G30108

Figure 7-10. Gate Descriptor Format

7.5.1.1 CALL GATES

Call gate descriptors are used by call and jump instructions in the same manner as a code segment
descriptor. The hardware automatically recognizes that the destination selector refers to a gate descrip-
tor. Then, the operation of the instruction is expanded as determined by the contents of the call gate.
A jump instruction can access a call gate only if the target code segment is at the same privilege level.
A call instruction uses a call gate for the same or more privileged access.

A call gate descriptor may reside in either the GDT or the LDT, but not in the IDT. Figure 7-10 gives

the complete layout of a call gate descriptor.

A call gate can be referred to by either the long JMP or CALL instructions. From the viewpoint of
the program executing a JMP or CALL instruction, the fact that the destination was reached via a

call gate and not directly from the destination address of the instruction is not apparent.
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The following is a description of the protection checks performed while transferring control (With the
CALL instruction) through a call gate:

e Verifying that access to the call gate is allowed. One of the protection features provided by call
gates is the access checks made to determine if the call gate may be used (i.e., checking if the
privilege level of the calling program is adequate).

¢  Determining the destination address and whether a privilege transition is required. This feature
makes privilege transitions transparent to the caller.

»  Performing the privilege transition, if required.

Verifying access to a call gate is the same for any call gate and is independent of whether a JMP or
CALL instruction was used. The rules of privilege used to determine whether a data segment may be
accessed are employed to check if a call gate may be jumped-to or called. Thus, privileged subroutines
can be hidden from untrusted programs by the absence of a call gate.

When an inter-segment CALL or JMP instruction selects a call gate, the gate’s privilege and presence
will be checked. The gate’s DPL (in the access byte) is checked against the EPL (MAX (task CPL,
selector RPL)). If EPL > CPL, the program is less privileged than the gate and therefore it may not
make a transition. In this case, a general protection fault occurs with an error code identifying the
gate. Otherwise, the gate is accessible from the program executing the call, and the control transfer is
allowed to continue. After the privilege checks, the descriptor presence is checked. If the present bit
of the gate access rights byte is O (i.e., the target code segment is not present), not present fault occurs
with an error code identifying the gate.

The checks indicated in table 7-3 are applied to the contents of the call gate. Violating any of them
causes the exception shown. The low order two bits of the error code are zero for these exceptions.

7.5.1.2 INTRA-LEVEL TRANSFERS VIA CALL GATE

The transfer is Intra-level if the destination code segment is at the same privilege level as CPL. Either
the code segment is non-conforming with DPL = CPL, or it is conforming, with DPL < CPL (see
section 11.2 for this case). The 32-bit destination address in the gate is loaded into CS:IP.

Table 7-3. Call Gate Checks

Type of Check - Fault® Error Code
Selector is not Null GP 0
Selector is within Descriptor Table Limit GP Selector id
Descriptor is a Code Segment GP Code Segment id
Code Segment is Present NP Code Segment id
Nonconforming Code Segment DPL > CPL GP Code Segment id

NOTES:
™ GP = General Protection, NP = Not-Present Exception.

The offset portion of the JMP or CALL destination address which refers to a call gate is always ignored.
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If the IP value is not within the limit of the code segment, a general protection fault occurs with an
error code of 0. If a CALL instruction is used, the return address is saved in the normal manner. The
only effect of the call gate is to place a different address into CS:IP than that specified in the desti-
nation address of the JMP or CALL instruction. This feature is useful for systems which require that
a fixed address be provided to programs, even though the entry address for the routine may change
due to different functions, software changes, or segment relocation.

7.5.1.3 INTER-LEVEL CONTROL TRANSFER VIA CALL GATES

If the destination code segment of the call gate is at a different privilege level than the CPL, an inter-
level transfer is being requested. However, if the destination code segment DPL > CPL, then a general
protection fault occurs with an error code identifying the destination code segment.

The gate guarantees that all transitions to a more privileged level will go to a valid entry point rather
than possibly into the middle of a procedure (or worse, into the middle of an instruction). See
figure 7-11.

Calls to more privileged levels may be performed only through call gates. A JMP instruction can never
cause a privilege change. Any attempt to use a call gate in this manner will cause a general protection
fault with an error code identifying the gate. Returns to more privileged levels are also prohibited.
Inter-level transitions due to interrupts use a different gate, as discussed in Chapter 9.

The RPL field of the CS selector saved as part of the return address will always identify the caller’s
CPL. This information is necessary to correctly return to the caller’s privilege level during the return
instruction. Since the CALL instruction places the CS value on the more privileged stack, and JMP
instructions cannot change privilege levels, it is not possible for a program to maliciously place an
invalid return address on the caller’s stack.
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Figure 7-11. Call Gate
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7.5.1.4 STACK CHANGES CAUSED BY CALL GATES

To maintain system integrity, each privilege level has a separate stack. Furthermore, each task normally
uses separate stacks from other tasks for each privilege level. These stacks assure sufficient stack space
to process calls from less privileged levels. Without them, trusted programs may not work correctly,
especially if the calling program does not provide sufficient space on the caller’s stack.

When a call gate is used to change privilege levels, a new stack is selected as determined by the new
CPL. The new stack pointer value is loaded from the Task State Segment (TSS). The privilege level
of the new stack data segment must equal the new CPL; if it does not, a task stack fault occurs with
the saved machine state pointing at the CALL instruction and the error code identifying the invalid
stack selector.

The new stack should contain enough space to hold the old SS:SP, the return address, and all param-
eters and local variables required to process the call. The initial stack pointers for privilege levels 0-2
in the TSS are strictly read only values. They are never changed during the course of execution.

The normal technique for passing parameters to a subroutine is to place them onto the stack. To make
privilege transitions transparent to the called program, a call gate specifies that parameters are to be
copied from the old stack to the new stack. The word count field in a call gate (see figure 7-10)
specifies how many words (up to 31) are to be copied from the caller’s stack to the new stack. If the
word count is zero, no parameters are copied.

Before copying the parameters, the new stack is checked to assure that it is large enough to hold the
parameters; if it is not, a stack fault occurs with an error code of 0. After the parameters are copied,
the return link is on the new stack (i.e., a pointer to the old stack is placed in the new stack). In
particular, the return address is pointed at by SS:SP. The call and return example of figure 7-12
illustrate the stack contents after a successful inter-level call.

The stack pointer of the caller is saved above the caller’s return address as the first two words pushed
onto the new stack. The caller’s stack can only be saved for calls to procedures at privilege levels 2, 1,
and 0. Since level 3 cannot be called by any procedure at any other privilege level, the level 3 stack
will never contain links to other stacks.

Procedures requiring more than the 31 words for parameters that may be called from another privilege
level must use the saved SS:SP link to access all parameters beyond the last word copied.

The call gate does not check the values of the words copied onto the new stack. The called procedure
should check each parameter for validity. Section 11.3 discusses how the ARPL, VERR, VERW, LSL,
and LAR instructions can be used to check pointer values.

7.5.2 Inter-Level Returns

An inter-segment return instruction can also change levels, but only toward programs of equal or lesser
privilege (when code segment DPL is numerically greater or equal than the CPL). The RPL of the
selector popped off the stack by the return instruction identifies the privilege level to resume execution
of the calling program.

When the RET instruction encounters a saved CS value whose RPL > CPL, an inter-level return
occurs. Checks shown in table 7-4 are made during such a return.
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Figure 7-12. Stack Contents after an Inter-Level Call

The old SS:SP value is then adjusted by the number of bytes indicated in the RET instruction and
loaded into SS:SP. The new SP value is not checked for validity. If SP is invalid it is not recognized
until the first stack operation. The SS:SP value of the returning program is not saved. (Note: this value
normally is the same as that saved in the TSS.)

The last step in the return is checking the contents of the DS and ES descriptor register. If DS or ES
refer to segments whose DPL is greater than the new CPL (excluding conforming code segments), the
segment registers are loaded with the null selector. Any subsequent memory reference that attempts
to use the segment register containing the null selector will cause a general protection fault. This prevents
less privileged code from accessing more privileged data previously accessed by the more privileged
program.
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Table 7-4. Inter-Level Return Checks

Type of Check Exception® Error Code
SP is not within Segment Limit SF 0
SP + N + 7.is not in Segment Limit SF 0
RPL of Return CS is Greater than CPL GP Return CS id
Return CS Selector is not null GP Return CS id
Return CS segment is within Descriptor Table Limit GP Return CS id
Return CS Descriptor is a Code Segment GP Return CS id
Return CS Segment is Present NP Return CS id
DPL of Return Non-Conforming Code Segment = RPL of CS GP Return CS id
SS Selector at SP + N + 6.is not Null SF Return SS id
SS Selector at SP + N + 6 is within Descriptor Table Limit SF Return SS id
SS Descriptor is Writable Data Segment SF Return SS id
SS Segment is Present SF Return SS id
SS Segment DPL = RPL of CS SF Return SS id

*SF = Stack Fault, GP = General Protection Exception, NP = Not-Present Exception
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CHAPTER 8
TASKS AND STATE TRANSITIONS

8.1 INTRODUCTION

An 80286 task is a single, sequential thread of execution. Each task can be isolated from all other
tasks. There may be many tasks associated with an 80286 CPU, but only one task executes at any
time. Switching the CPU from executing one task to executing another can occur as the result of either
an interrupt or an inter-task CALL, JMP or IRET. A hardware-recognized data structure defines each
task.

The 80286 provides a high performance task switch operation with complete isolation between tasks.
A full task-switch operation takes only 22 microseconds at 8 MHz (18 microseconds at 10 MHz). High-
performance, interrupt-driven, multi-application systems that need the benefits of protection are feasi-
ble with the 80286.

A performance advantage and system design advantage arise from the 80286 task switch:

o  Faster task switch: A task switch is a single instruction performed by microcode. Such a scheme
is 2-3 times faster than an explicit task switch instruction. A fast task switch translates to a signif-
icant performance boost for heavily multi-tasked systems over conventional methods.

e More reliable, flexible systems: The isolation between tasks and the high speed task switch allows
interrupts to be handled by separate tasks rather than within the currently interrupted task. This
isolation of interrupt handling code from normal programs prevents undesirable interactions between
them. The interrupt system can become more flexible since adding an interrupt handler is as safe
and easy as adding a new task.

 Every task is protected from all others via the separation of address spaces described in
Chapter 7, including allocation of unique stacks to each active privilege level in each task (unless
explicit sharing is planned in advance). If the address spaces of two tasks include no shared data,
one task cannot affect the data of another task. Code sharing is always safe since code segments
may never be written into.

8.2 TASK STATE SEGMENTS AND DESCRIPTORS

Tasks are defined by a special control segment called a Task State Segment (TSS). For each task,
there must be an unique TSS. The definition of a task includes its address space and execution state.
A task is invoked (made active) by inter-segment jump or call instructions whose destination address
refers to a task state segment or a task gate.

The Task State Segment (TSS) has a special descriptor. The Task Register within the CPU contains
a selector to that descriptor. Each TSS selector value is unique, providing an unambiguous “identifier”
for each task. Thus, an operating system can use the value of the TSS selector to uniquely identify the
task.

A TSS contains 22 words that define the contents of all registers and flags, the initial stacks for privi-
lege levels 0-2, the LDT selector, and a link to the TSS of the previously executing task. Figure 8-1
shows the layout of the TSS. The TSS can not be written into like an ordinary data segment.
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Figure 8-1. Task State Segment and TSS Registers
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Each TSS consists of two parts, a static portion and a dynamic portion. The static entries are never
changed by the 80286, while the dynamic entries are changed by each task switch out of this task. The
static portions of this segment are the task LDT selector and the initial SS:SP stack pointer addresses
for levels 0-2.

The modifiable or dynamic portion of the task state segment consists of all dynamically-variable and
programmer-visible processor registers, including flags, segment registers, and the instruction pointer.
It also includes the linkage word used to chain nested invocations of different tasks.

The link word provides a history of which tasks invoked others. The link word is important for restart-
ing an interrupted task when the interrupt has been serviced. Placing the back link in the TSS protects
the identity of the interrupted task from changes by the interrupt task, since the TSS is not writable
by the interrupt task. (In most systems only the operating system has sufficient privilege to create or
use a writable data segment “alias” descriptor for the TSS.)

The stack pointer entries in the TSS for privilege levels 0-2 are static (i.e., never written during a
privilege or task switch). They define the stack to use upon entry to that privilege level. These stack
entries are initialized by the operating system when the task is created. If a privilege level is never
used, no stack need be allocated for it.

When entering a more privileged level, the caller’s stack pointer is saved on the stack of the new
privilege level, not in the TSS. Leaving the privilege level requires popping the caller’s return address
and stack pointer off the current stack. The stack pointer at that time will be the same as the initial
value loaded from the TSS upon entry to the privilege level.

There is only one stack active at any time, the one defined by the SS and SP registers. The only other
stacks that may be non-empty are those at outer (less privileged) levels that called the current level.
Stacks for inner levels must be empty, since outward (to numerically larger privilege levels) calls from
inner levels are not allowed.

The location of the stack pointer for an outer privilege level will always be found at the start of the
stack of the inner privilege level called by that level. That stack may be the initial stack for this
privilege level or an outer level. Look at the start of the stack for this privilege level. The TSS contains
the starting stack address for levels 0-2. If the RPL of the saved SS selector is the privilege level
required, then the stack pointer has been found. Otherwise, go to the beginning of the stack defined
by that value and look at the saved SS:SP value there.

8.2.1 Task State Segment Descriptors

A special descriptor is used for task state segments. This descriptor must be accessible at all times;
therefore, it can appear only in the GDT. The access byte distinguishes TSS descriptors from data or
code segment descriptors. When bits 0 through 4 of the access byte are 00001 or 00011, the descriptor
is for a TSS.

The complete layout of a task state segment descriptor is shown in figure 8-2.

Like a data segment, the descriptor contains a base address and limit field. The limit must be at least
002BH (43) to contain the minimum amount of information required for a TSS. An invalid task excep-
tion will occur if an attempt is made to switch to a task whose TSS descriptor limit is less than 43. The
error code will identify the bad TSS.
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Figure 8-2. TSS Descriptor

The P-bit (Present) flag indicates whether this descriptor contains currently valid information: 1 means
yes, 0 no. A task switch that attempts to reference a not-present TSS causes a not-present exception
code identifying the task state segment selector.

The descriptor privilege level (DPL) controls use of the TSS by JMP or CALL instructions. By the
same reasoning as that for call gates, DPL can prevent a program from calling the TSS and thereby
cause a task switch. Section 8.3 discusses privilege considerations during a task switch in greater detail.

Bit 4 is always 0 since TSS is a control segment descriptor. Control segments cannot be accessed by
SS, DS, or ES. Any attempt to load those segment registers with a selector that refers to a control
segment causes general protection trap. This rule prevents the program from improperly changing the
contents of a control segment.

TSS descriptors can have two states: idle and busy. Bit 1 of the access byte distinguishes them. The
distinction is necessary since tasks are not re-entrant; a busy TSS may not be invoked.

8.3 TASK SWITCHING

A task switch may occur in one of four ways:

1. The destination selector of a long JMP or CALL instruction refers to a TSS descriptor. The offset
portion of the destination address is ignored.

2.  An IRET instruction is executed when the NT bit in the flag word = 1. The new task TSS
selector is in the back link field of the current TSS.

3. The destination selector of a long JMP or CALL instruction refers to a task gate. The offset
portion of the destination address is ignored. The new task TSS selector is in the gate. (See section
8.5 for more information on task gates.)

4. An interrupt occurs. This interrupt’s vector refers to a task gate in the interrupt descriptor table.
The new task TSS selector is in the gate. See section 9.4 for more information on interrupt tasks.
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No new instructions are required for a task switch operation. The standard 8086 JMP, CALL, IRET,
or interrupt operations perform this function. The distinction between the standard instruction and a
task switch is made either by the type of descriptor referenced (for CALL, JMP, or INT) or by the
NT bit (for IRET) in flag word.

Using the CALL or INT instruction to switch tasks implies a return is expected from the called task.
The JMP and IRET instructions imply no return is expected from the new task.

When NT=1, the IRET instruction causes a return to the task that called the current one via CALL
or INT instruction.

Access to TSS and task gate descriptors is restricted by the rules of privilege level. The data access
rules are used, thereby allowing task switches to be restricted to programs of sufficient privilege. Address
space separation does not apply to TSS descriptors since they must be in the GDT. The access rules
for interrupts are discussed in section 9.4.

The task switch operation consists of the following eight steps:

1. Validate the requested task switch. For a task switch requested via a JMP, CALL, or an INT
instruction, check that the current task is allowed to switch to the requested task. The DPL of the
gate or the TSS descriptor for the requested task must be greater than or equal to both the CPL
and the RPL of the requesting task. If it is not, the General Protection fault (#13) will occur with
an error code identifying the descriptor (i.e, the gate selector if the task switch is requested via a
task gate, or the selector for the TSS if the task switch is requested via a TSS descriptor).

These checks are not performed if a task switch occurs due to an IRET instruction.

2. Check that the new TSS is present and that the new task is available (i.e. not Busy). A Not
Present exception (#11) is signaled if the new TSS descriptor is marked "Not Present’ (P = 0).
The General Protection exception (#13) is raised if the new TSS is marked 'Busy’.

The task switch operation actually begins now and a detailed verification of the new TSS is carried
out. Conditions which may disqualify the new TSS are listed in table 8-1 along with the exception
raised and the error code pushed on the stack for each case. These tests are performed at different
points during the course of the following remaining steps of the task switch operation.

3. Mark the new task to be BUSY by setting the 'BUSY” bit in the new TSS descriptor to 1.

4, Save the dynamic portion of the old TSS and load TR with the selector, base and limit for the
new TSS. Set all CPU registers to corresponding values from the new TSS except DS, ES, CS,
SS, and LDT.

5. If nesting tasks, set the Nested Task (NT) flag in the new TSS to 1. Also set the Task Switched
flag (TS) of the CPU flag register to 1.

6. Validate the LDT selector and the LDT descriptor of the new TSS. Load the LDT cache (LDTR)
with the LDT descriptor.

7. Validate the SS, CS, DS, and ES fields of the new TSS and load these values in their respective
caches (i.e., SS, CS, DS, and ES registers).

8. Validate the IP field of the new TSS and then start executing the new task from CS:IP.

A more detailed explanation of steps 3-5 is given in Appendix B (80286 Instruction Set) under a pseudo
procedure 'SWITCH_TASKS’. Notice how the exceptions described in table 8-1 may actually occur
during a task switch. Similarly the exceptions that may occur during steps 1-2, and step 8 are explained
in greater detail in the pseudo code description of the 286 instructions CALL, JMP, INT, and IRET
in Appendix B. This information can be very helpful when debugging any protected mode code.
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Note that the state of the outgoing task is always saved. If execution of that task is resumed, it will
start after the instruction that caused the task switch. The values of the registers will be the same as
that when the task stopped running.

Any task switch sets the Task Switched (TS) bit in the Machine Status Word (MSW). This flag is
used when processor extensions such as the 80287 Numeric Processor Extension are present. The TS
bit signals that the context of the processor extension may not belong to the current 80286 task.
Chapter 11 discusses the TS bit and processor extensions in more detail.

Validity tests on a selector ensure that the selector is in the proper table (i.e., the LDT selector refers
to GDT), lies within the bounds of the table, and refers to the proper type of descriptor (i.e., the LDT
selector refers to the LDT descriptor).

Note that between steps 3 and 4 in table 8-1, all the registers of the new task are loaded. Several
protection rule violations may exist in the new segment register contents. If an exception occurs in the
context of the new task due to checks performed on the newly loaded descriptors, the DS and ES
segments may not be accessible even though the segment registers contain non-zero values. These selec-
tor values must be saved for later reuse. When the exception handler reloads these segment registers,
another protection exception may occur unless the exception handler pre-examines them and fixes any
potential problems.

A task switch allows flexibility in the privilege level of the outgoing and incoming tasks. The privilege
level at which execution resumes in the incoming task is not restricted by the privilege level of the
outgoing task. This is reasonable, since both tasks are isolated from each other with separate address
spaces and machine states. The privilege rules prevent improper access to a TSS. The only interaction
between the tasks is to the extent that one started the other and the incoming task may restart the
outgoing task by executing an IRET instruction.

Table 8-1. Checks Made during a Task Switch

Test Exception® Error Code
1 Incoming TSS descriptor is present NP Incoming TSS‘selector
2 Incoming TSS is idle GP Incoming TSS selector
3 Limit of incoming TSS greater than 43 Invalid TSS Incoming TSS selector
4 LDT selector of incoming TSS is valid Invalid TSS LDT selector
5 LDT of incoming TSS is present Invalid TSS LDT selector
6 CS selector is valid Invalid TSS Code segment selector
7 Code segment is present NP Code segment selector
8 Code segment DPL matches CS RPL Invalid TSS Code segment selector
9 Stack segment is valid SF Stack segment selector
10 Stack segment is writable data segment GP ~ Stack segment selector
11 Stack segment is present SF Stack segment selector
12 Stack segment DPL = CPL . SF Stack segment selector
13 DS/ES selectors are valid GP Segment selector
14 DS/ES segments are readable GP Segment selector
15 DS/ES segments are present NP Segment selector
16 DS/ES segment DPL = CPL if not conform GP Segment selector

*NP = Not-Present Exception
GP = General Protection Fault
SF = Stack Fault
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8.4 TASK LINKING

The TSS has a field called “back link” which contains the selector of the TSS of a task that should be
restarted when the current task completes. The back link field of an interrupt-initiated task is automat-
ically written with the TSS selector of the interrupted task.

A task switch initiated by a CALL instruction also points the back link at the outgoing task’s TSS.
Such task nesting is indicated to programs via the Nested Task (NT) bit in the flag word of the
incoming task.

Task nesting is necessary for interrupt functions to be processed as separate tasks. The interrupt function
is thereby isolated from all other tasks in the system. To restart the interrupted task, the interrupt
handler executes an IRET instruction much in the same manner as an 8086 interrupt handler. The
IRET instruction will then cause a task switch to the interrupted task.

Completion of a task occurs when the IRET instruction is executed with the NT bit in the flag word
set. The NT bit is automatically set/reset by task switch operations as appropriate. Executing an IRET
instruction with NT cleared causes the normal 8086 interrupt return function to be performed, and no
task switch occurs.

Executing IRET with NT set causes a task switch to the task defined by the back link field of the
current TSS. The selector value is fetched and verified as pointing to a valid, accessible TSS. The
normal task switch operation described in section 8.3 then occurs. After the task switch is complete,
the outgoing task is now idle and considered ready to process another interrupt.

Table 8-2 shows how the busy bit, NT bit, and link word of the incoming and outgoing task are affected
by task switch operations caused by JMP, CALL, or IRETinstructions.

Violation of any of the busy bit requirements shown in table 8-2 causes a general protection fault with
the saved machine state appearing as if the instruction had not executed. The error code identifies the
selector of the TSS with the busy bit.

A bus lock is applied during the testing and setting of the TSS descriptor busy bit to ensure that two

processors do not invoke the same task at the same time. See also section 11.4 for other multi-processor
considerations.

Table 8-2. Effect of a Task Switch on BUSY and NT Bits and the Link Word

JMP CALL/INT IRET
Affected Field Instruction Instruction Instruction
Effect Effect Effect

Busy bit of incoming task TSS descriptor Set, must be Set, must be 0 Unchanged,

0 before before must be set
Busy bit of outgoing task TSS descriptor Cleared Unchanged (will Cleared
already be 1)
NT bit in incoming task flag word Cleared Set Unchanged
NT bit in outgoing task flag word Unchanged Unchanged Cleared
Back link in incoming task TSS Unchanged Set to outgoing Unchanged

task TSS selector
Back link of outgoing task TSS Unchanged Unchanged Unchanged
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The linking order of tasks may need to be changed to restart an interrupted task before the task that
interrupted it completes. To remove a task from the list, trusted operating system software must change
the backlink field in the TSS of the interrupting task first, then clear the busy bit in the TSS descriptor
of the task removed from the list.

When trusted software deletes the link from one task to another, it should place a value in the backlink
field, which will pass control to that trusted software when the task attempts to resume execution of
another task via IRET.

8.5 TASK GATES

A task may be invoked by several different events. Task gates are provided to support this need. Task
gates are used in the same way as call and interrupt gates. The ultimate effect of jumping to or calling
a task gate is the same as jumping to or calling directly to the TSS in the task gate.

Figure 8-3 depicts the layout of a task gate.

A task gate is identified by the access byte field in bits O through 4 being 00101. The gate provides an
extra level of indirection between the destination address and the TSS selector value. The offset portion
of the JMP or CALL destination address is ignored.

Gate use provides flexibility in controlling access to tasks. Task gates can appear in the GDT, IDT, or
LDT. The TSS descriptors for all tasks must be kept in the GDT. They are normally placed at level 0
to prevent any task from improperly invoking another task. Task gates placed in the LDT allow private
access to selected tasks with full privilege control.

The data segment access rules apply to accessing a task gate via JMP, CALL, or INT instructions.
The effective privilege level (EPL) of the destination selector must be numerically less than or equal
to the DPL of the task gate descriptor. Any violation of this requirement causes a general protection
fault with an error code identifying the task gate involved.

7 o 7 o
+7 INTEL RESERVED" +6
+5] P| DPL O |O 1 Of1 UNUSED +4
|
+3 TSS SELECTOR +2
+1 UNUSED [
15 . (]
‘MUST BE SET TO O FOR
COMPATIBILITY WITH THE 80386
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Figure 8-3. Task Gate Descriptor
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Once access to the task gate has been verified, the TSS selector from the gate is read. The RPL of the
TSS selector is ignored. From this point, all the checks and actions performed for a JMP or CALL to
a TSS after access has been verified are performed (see section 8.4). Figure 8-4 illustrates an example
of a task switch through a task gate.

TASK A TASK B
TASK LDT DESCRIPTOR o
B
TSS DESCRIPTOR
l I SELECTO?I—