

. ® (QOsborne
Intel McGraw-Hill

386™ SX MICROPROCESSOR
PROGRAMMER’S REFERENCE
MANUAL

1989

This book is a reprint of an existing
title by Intel and is also available
from Intel Corporation

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specification at any time, without notice.
The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
BITBUS, COMMputer, CREDIT, Data Pipeline, ETOX, Genius, i, 1, ia86, 860, ICE,
iCEL, ICEVIEW, iCS, iDBP, iDIS, i?ICE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel,
intgl, Intel386, int,IBOS, Intel Certified, Intelevision, intJligent Identifier, intgligent
Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSXM,
Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME, MULTIBUS,
MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming, Rip-
plemode, RMX/80, RUPI, Seamless, SLD, SugarCube, UPI, and VLSIiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical
suffix.

MDS in an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark
of Mohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.
CHMOS and MHOS are patented processes of Intel Corp.

Intel Corporation and Intel’s FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

0S/2 is a trademark of International Business Machines Corporation.
UNIX is a registered trademark of AT&T.

Windows is a trademark of Microsoft Corporation.

©INTEL CORPORATION 1989

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION TO THE 386™ SX MICROPROCESSOR Page
1.1 ORGANIZATION OF THIS MANUALcoctiiitiiintiniinieiretcere sttt e 1-1
1.1.1 Part | —Application Programmingcccccceeereiinienieneneneneieeeeeeeeeeseiresveseennes 1-2
1.1.2 Part Il —System Programmingccceceeierieniineeieenieeieneesee s see e sseesseeresaeseee e 1-3
1.1.3 Part ll—Compatibilityccccoererierieieieieiee e 1-4
1.1.4 Part IV—INSIrUCHION SEtcccoeuciireieiiiiete ettt 1-4
1.1.5 APPENAICES ..ottt ettt st sae e ens 1-4
1.2 RELATED LITERATUREootiiiiiniieiecee ettt st sbe sttt 1-5
1.3 NOTATIONAL CONVENTIONSccoiiiiiiiiiiiiieiie ettt 1-5
1.3.1 Bit @Nd BYIE OFUENcvecviieieieeiiieeeee ettt ettt et sr e sb et e teebenn 1-6
1.3.2 Undefined Bits and Software Compatibilitycccocovvniniiiiniiiice 1-6
1.3.3 INStrUCHON OPEIANGSocvevieriecriereeetetee et ettt et e e e eresestesessesensesessesesesteseneas 1-7
1.3.4 Hexadecimal NUMDEIScoouiiiiiiiiiiiecee et 1-7
1.3.5 Segmented AAAreSSINGccciuiiierierierierieere sttt e e e e s s e e seesaesssesaesanenns 1-8
1.3.6 EXCEPUONS ..ottt st sh e sa e n e n e s r e nabeen 1-8

PART | -APPLICATIONS PROGRAMMING

CHAPTER 2

BASIC PROGRAMMING MODEL

2.1 MEMORY ORGANIZATIONoiiiiiiietirieniieieseete ettt sie et e s sse e s s e s sae s eseeneesaeas 21
2.1.1 Unsegmented or “Flat” MOdelcccoriieriiiiiiiiniieieeeee e 2-3
2.1.2 Segmented MOdEIcooiiiiiiirieiee et 2-3
2.2 DATATYPES ...ttt sttt sae s et e s et besaennnenean 2-3
2.3 REGISTERS ...ttt sttt e et be e ennas 2-7
2.3.1 General REGISIErSccciiiiiiiiiieseee e st 2-7
2.3.2 Segment REGISErScccooiiiiiiiiieiecrte et et 29
2.3.3 Stack IMpIementationc.cccociiieriiinieie e 2-11
2.3.4 FIags REGISIErccoiviiiiiiiicieeee e s 2-13
2.3.4.1 STATUS FLAGScotiiiiiiiiieeeeeetet ettt ettt sn et aesae ettt e e bbb e nne s 2-13
2.3.4.2 CONTROL FLAGooiiiiiieieiieeieeetete ettt sttt st e et sbe et en et nne e 2-13
2.3.4.3 INSTRUCTION POINTERooiiiiiiiererentiiee s s s ene e e 2-14
2.4 INSTRUCTION FORMAT ..ottt sttt st se et e et sa bbb s ae s s 2-15
2.5 OPERAND SELECTIONcoiiiiiiiiieierteie st stesee e eaes e s enee e e et e saesaeseessassenesnanseenes 2-16
2.5.1 Immediate OPEraNdSc.ccceeiiieiiiieccee et e et e e e e e e e e re e eareeeaeeesseessesreeesaneeeas 2-17
2.5.2 ReQIStEr OPEIaNGdSccceiieriiriiiieiieeieeeite sttt e st see st st ess e e sae e seeseesteseeeeesnaenanean 2-18
2.5.3 MEMOTY OPEIANGSc.eoiuiruirrerieniirieeieirte e see st et esteaesaesbessesseesaeneeseseessessesensesnesneans 2-18
2.5.3.1 SEGMENT SELECTIONoooiiiiiiiiieieiet ettt et st saesae e e sasae e annans 2-19
2.5.3.2 EFFECTIVE-ADDRESS COMPUTATIONccooiiiiiiiiiereeiereeeieseesreeesrerere e 2-19
2.6 INTERRUPTS AND EXCEPTIONSooiiiiiieiirieiee et 2-22
CHAPTER 3

APPLICATION PROGRAMMING

3.1 DATA MOVEMENT INSTRUCTIONSooiiiiiiiiiiniiniteee et e s 3-1
3.1.1 General-Purpose Data Movement INStrucCtionscccooceeieeiieninieeeienceee e 3-1
3.1.2 Stack Manipulation INStrUCtIONScceeeieiiee e 3-2
3.1.3 Type Conversion INSIrUCIONScccceiriiiiiieiiie e 3-4
3.2 BINARY ARITHMETIC INSTRUCTIONScccccueue. etreteestient st re s sa e sassae et et e aesnenans 3-6
3.2.1 Addition and Subtraction INStrUCtIONSccoceeririririecceceee e 3-7
3.2.2 Comparison and Sign Change INStruCtioncccoceiieieiinenenieeee e 3-8

intel” TABLE OF CONTENTS

Page
3.2.3 Multiplication INSIrUCHIONScoiiiiiiiciec et 3-8
3.2.4 DiViSiON INSIIUCHONSc.vviiiiiiiieiiecsree sttt sae e a e e s e e enneeeanes 3-9
3.3 DECIMAL ARITHMETIC INSTRUCTIONSooiiiieieeert ettt saesae e 39
3.3.1 Packed BCD Adjustment INStructionsc.ccecceviriiiiiiiiininieinceceiesescee e 3-10
3.3.2 Unpacked BCD Adjustment INStruCtionsccoeeviiiiiiiieniiniencciieiinieseneeeenn 3-10
3.4 LOGICAL INSTRUCTIONSooiiiieeieciecienie et esaesste st stesaesaesreeae s saestesasesasaenae s 3-11
3.4.1 Boolean Operation INSTIUCHONSc..eciviriieeiiiie e erae e aee e 3-11
3.4.2 Bit Test and Modify INSTrUCIONScccccuiiiiiiiiec e 3-12
3.4.3 Bit SCan INSHUCHONS ...cceeiiiiiiiiiieirircnt et s e sae s e s st e s b e sse s sesanesasase 3-12
3.4.4 Shift and Rotate INSIrUCHONSeiiiiiiiiiiii e e 3-12
3.4.4.1 SHIFT INSTRUCTIONS ..ottt sttt et e e sae e sn e s saeennaesnne s 3-13
3.4.4.2 DOUBLE-SHIFT INSTRUCTIONScceitiiiiiriieiieie et teeeeee st ssesie e e naesae e 3-15
3.4.4.3 ROTATE INSTRUCTIONSootiiiiiieriiecterrersre et e et sv e sae s 3-16
3.4.4.4 FAST “BIT BLT” USING DOUBLE-SHIFT INSTRUCTIONScccoviiiriiniriieenneene 3-18
3.4.4.5 FAST BIT STRING INSERT AND EXTRACTooeiiiierierierresenresre e aesaesae s 3-19
3.4.5 Byte-Set-On-Condition INSTUCHONScociiieiiiieieeeee e 3-22
3.4.6 Test INSIIUCHIONcccuiiiiiiiiii e e 3-22
3.5 CONTROL TRANSFER INSTRUCTIONScoictiriiieieeieee et 3-22
3.5.1 Unconditional Transfer INStruCtionsc.cccoerverririieniieeienseere e 3-23
3.5.1.1 JUMP INSTRUCTIONoiiiiiiiiiiiiiiiitecteseesie st stesste e e e esre st esaesaeess e e st e ebesaneensenn 3-23
3.5.1.2 CALL INSTRUCTIONSoiiiiiiiiieienieste sttt se et st et eneas 3-23
3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONScccecovvverrnrennen. 3-24
3.5.2 Conditional Transfer INSrUCtIONSccceveririeriiiereese e 3-24
3.5.2.1 CONDITIONAL JUMP INSTRUCTIONScociiieriireienenienee et e 3-24
3.5.2.2 LOOP INSTRUCTIONS ..ottt sttt e s e s sne e 3-24
3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMEScccoooiiineneeeneeeeee e 3-26
3.5.3 SOftWare INTEITUPLSccoouiiiiiiiiicicee et ee e see e e s sata e e s eanee s 3-26
3.6 STRING OPERATIONS ...ttt sttt sae e st aesan e are s 3-27
3.6.1 Repeat Prefixescoouiiiiiiiiieicee ettt 3-28
3.6.2 Indexing and Direction Flag Controlccocevinirieeiinnenseeereeseee e 3-28
3.6.3 StriNG INSIIUCHONSvveeeiiiieiiiiieeiie sttt st e e ee st e saaesaaeens 3-29
3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGESccccocovviineirrinieennen. 3-29
3.8 FLAG CONTROL INSTRUCGTIONS ..ottt se e s see e 3-35
3.8.1 Carry and Direction Flag Control INStructionscccceeerirerieennnecenieneneeee e 3-35
3.8.2 Flag Transfer INSIrUCIONSc..ooviiiiieiiiee e e 3-35
3.9 COPROCESSOR INTERFACE INSTRUCTIONSoooiiiiiiiiiencenee et 3-38
3.10 SEGMENT REGISTER INSTRUCTIONSoooiiieieririenieeeeenee e s 3-39
3.10.1 Segment-Register Transfer INStructionsccccocuvviniiiniiiiiice 3-39
3.10.2 Far Control Transfer INStrUCHIONScovierieiieiecerecee e s 3-40
3.10.3 Data Pointer INSIrUCIONSccueiiiiiirieiieieee ettt 3-40
3.11 MISCELLANEOUS INSTRUCTIONSc.coiiiiieieieienieeree e see e 3-41
3.11.1 Address Calculation INStrUCHONcccccirieiiieiieseeecreee e 3-41
3.11.2 No-Operation INSrUCONccocuiieiieiicecee et e e 3-41
3.11.3 Translate INSIIUCTIONooiiiiiii e e 3-42
3.12 USAGE GUIDELINEScccetiitiitieieeeeete et ssee sttt s sae e se st see s sae e e naesnnansraen 3-42

PART II-SYSTEMS PROGRAMMING

CHAPTER 4
SYSTEM ARCHITECTURE
4.1 SYSTEM REGISTERSoooiiiiiiitiieeieetestee sttt sttt s ae st s b e e et eaeesaaenreens 4-1
4.1.1 SYSIEM FIAGS ..o.eeiiiieiieiie ettt 4-2
4.1.2 Memory-Management Registers ... 4-3

intel” TABLE OF CONTENTS

Page
4.1.3 CONtrol REGISLEIScoiiiiiiiiiiieieiieiteie sttt st st ae s 4-5
4.1.4 Debug REQGISEISc.eovuiiiiiiiiiiieiiet ettt st 4-6
4.1.5 TeSt REGISIEIScouiiiiiiiiiiiiciict et s 4-6
4.2 SYSTEM INSTRUCTIONSocoiiiimiiiiiiicteieicene ettt e 4-8
CHAPTER 5
MEMORY MANAGEMENT
5.1 SELECTING A SEGMENTATION MODELccccoctiiiiiireriinieeieie et 5-3
B5.1.1 FIAt MOGEI ...t sttt st sb e s be e e 5-3
5.1.2 Protected Flat MOlcccoiiiiiiiiiiiiiciie e e 5-4
5.1.3 Multi-Segment Modelccooeiiriinii et e e 5-5
5.2 SEGMENT TRANSLATION ..ottt ettt sie st e see et e e s naesneen 5-6
5.2.1 Segment REGISIEIScoiiiiiiiiiie ettt et st 5-7
5.2.2 SegMENt SEIECIOTSocviiiieiiitiereeeeteree ettt e et 5-10
5.2.3 Segment DESCHIPLOIScoo ittt et e e e e s e e e e ste s s e aanaes 5-11
5.2.4 Segment DescCriptor TADIESccccoiiiiiiiriiieiie e 5-15
5.2.5 Descriptor Table Base RegiSterscccceriiiiiiiiiiienieiieceete e e 5-15
5.3 PAGE TRANSLATIONooiiiiitiiienienieieseni ettt st e be st se e nees 5-17
5.3.1 PG Bit ENables Pagingcccccceoiiiiiieiiieiieie ettt 5-18
5.3.2 LIiNGAr AAAIESSceiiiiiiiiieeeiie ettt ettt st et e e e be s sane e bebe e snee s 5-19
5.3.3 Page TabIESoeiiiiiiiiiiitec e e s e e 5-19
5.3.4 Page-Table Entries ettt ettt eea bbb e et be et b e et ene st ae st e nen 5-19
5.3.4.1 PAGE FRAME ADDRESSoooiiiiiiciiecnt ettt er e s 5-20
5.3.4.2 PRESENT BIT ..ottt sttt s st se e s 5-21
5.3.4.3 ACCESSED AND DIRTY BITSooiiiiiiiieeeeteesesee et st e 5-21
5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITScccccoiiiieiiiinene e 5-22
5.3.5 Translation Lookaside BUFferccccecieiiiiiiiiiieiinese e 5-22
5.4 COMBINING SEGMENT AND PAGE TRANSLATIONccccoviiiniinenienriesie s 5-23
5.4.1 Flat MOdEIooeiiiii e s 5-23
5.4.2 Segments Spanning Several Pagescccccviiiiiiiiiinieiiieneeee e 5-24
5.4.3 Pages Spanning Several SEgMENtSccccccevieriiriiniie et 5-24
5.4.4 Non-Aligned Page and Segment Boundariesccccccoveieeeiiieecvenesceseee s e 5-24
5.4.5 Aligned Page and Segment BOUNArI€Sc.cccouvriineiiiinieeninneeee e 5-24
5.4.6 Page-Table Per SEgMENTccccccoveiiiiiieiinece sttt s 5-24
CHAPTER 6
PROTECTION
6.1 SEGMENT-LEVEL PROTECTIONcoctiiiiiiiiiiieiercree et s 6-1
6.2 SEGMENT DESCRIPTORS AND PROTECTIONccoomiiirenincreeeeeeneenae et 6-2
6.2.1 TYPE ChECKINGciiiiiiiiiiieeeee ettt sttt sr e e e aee e 6-2
6.2.2 Limit ChECKING ..eeecveeiieeciie ettt ee s e et e e eaae e et e e e b e e aeeeeneeeenreseeesaneennns 6-4
6.2.3 Privilege LEVEISoooieeieiei ettt et e 6-5
6.3 RESTRICTING ACCESS TO DATA ...ttt sttt st ettt sr e sane s e 6-7
6.3.1 Accessing Data in Code SEgMENLScccceeveeiiiieriieiesie et sr e e 6-8
6.4 RESTRICTING CONTROL TRANSFERSccoiiiiiiieeiee e 6-9
6.5 GATE DESCRIPTORSoiiiiiiiiriecetene ettt s b et s st e e e 6-11
6.5.1 Stack SWItChINGceiriieiieieeee et st e ene 6-14
6.5.2 Returning from @ ProCEAUIEccviecieiiieceeceiee ettt cee ettt et e aae e 6-17
6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM [T 6-18
6.6.1 Privileged INSITUCHIONScccveiiiieciie ettt ettt cre et e 6-19
6.6.2 Sensitive INSIIUCHIONSceiiiiiiii et et 6-19
6.7 INSTRUCTIONS FOR POINTER VALIDATIONccoeiceiietieieiesienieneeseseeesaeaesaessseeneens 6-19
6.7.1 Descriptor Validationcooceeriiiiriininine et st s e 6-20

intel® TABLE OF CONTENTS

Page
6.7.2 Pointer Integrity and RPLc..coociiiiiiiiieee e 6-21
6.8 PAGE-LEVEL PROTECTIONoociiiiiiiiieniine ettt s s e 6-22
6.8.1 Page-Table Entries Hold Protection Parametersccccooiniininnininincneee, 6-22
6.8.1.1 RESTRICTING ADDRESSABLE DOMAINcccooiiiriiriiiiiieicirier et 6-22
6.8.1.2 TYPE CHECGKINGccotiiirieiiiiiii ettt sttt s e s es e eae e 6-23
6.8.2 Combining Protection of Both Levels of Page Tables ..o, 6-23
6.8.3 Overrides to Page Protectionccccooiiviiniiiiininiie 6-23
6.9 COMBINING PAGE AND SEGMENT PROTECTIONcccccoiniiiiinieeeee e 6-24
CHAPTER 7
MULTITASKING
7.1 TASK STATE SEGMENToiiiiiiiiiine et et en s s e enes 7-2
7.2 TSS DESCRIPTOR ..ottt ettt sttt ettt s st n e e e s eesne s e 7-2
7.3 TASK REGISTER ..ottt et st 7-4
7.4 TASK GATE DESCRIPTOR ..ottt sttt e e s eee 7-6
7.5 TASK SWITCHINGoooiiiiirieiei et e e s 7-7
7.6 TASK LINKINGoeniiieiiiee ettt st s s 7-10
7.6.1 BUSY Bit Prevents LOOPScciciieiiiiiieiiiicen e ce et e st s s e s e s sner e e e snreee e e 7-12
7.6.2 Modifying Task LINKAGEScovceeiiieiiiniie sttt 7-12
7.7 TASK ADDRESS SPACE ...ttt st e s e 7-13
7.7.1 Task Linear-to-Physical Space Mappingccoovvieiiniiniiiiieieeee e 7-13
7.7.2 Task Logical ADAreSs SPACEcccceveerieiriiriiiie et 7-14
CHAPTER 8
INPUT/OUTPUT
8.1 1/O ADDRESSINGocoiitietieieitinteeee sttt st steeite s bt ea bt s e e seesaesreeas e mesneesnesbenrnene 8-1
8.1.1 1/O AAAreSS SPACEceeiiiieiiiiiiiiiiiieti ettt se e s r e s sre e 8-2
8.1.2 Memory-Mapped 1/Occcoveeviiiieiineeee e T 8-3
8.2 I/O INSTRUCTIONS ...ttt et te e sttt e n e e s ensemesmnans 8-3
8.2.1 Register 1/O INStrUCHIONSooviiiiiiinicciiistere ettt 8-4
8.2.2 BIOCK I/O INSIIUCHIONSooviiiiieeieecictcr ettt s 8-4
8.3 PROTECTION AND /O ..ottt sttt s enn e s 8-5
8.3.1 /O Privilege LEVEIooiieiieeeeeee ettt e 8-5
8.3.2 1/O PermisSion Bit Mapccoveiririeienie ettt s e 8-6
CHAPTER 9
EXCEPTIONS AND INTERRUPTS
9.1 EXCEPTION AND INTERRUPT VECTORScccoiiiieiiiicnieccrceresre s 9-1
9.2 INSTRUCTION RESTARToiciiiireieretierc et s s s e saesra e 9-2
9.3 ENABLING AND DISABLING INTERRUPTScoceiiiiirrenerinrenciee e 9-3
9.3.1 NMI Masks FUrther NMIS ... 9-3
9.3.2 IF MaSkS INTR ...t e e ae e 9-3
9.3.3 RF Masks Debug Faultscccociiiiiiniiic 9-4
9.3.4 MOV or POP to SS Masks Some Exceptions and Interruptsccccoovvrvvninnenne. 9-4
9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTSc........ 9-5
9.5 INTERRUPT DESCRIPTOR TABLEcociiitiieterieeee e 9-5
9.6 IDT DESCRIPTORS ...ttt sttt e 9-6
9.7 INTERRUPT TASKS AND INTERRUPT PROCEDUREScccoooiiiiniiiiccecence 9-8
9.7.1 INtErrupt PrOCEAUIESoieiiiiiiiieiieete ettt e e s s e sase e st eeae s sanees 9-8
9.7.1.1 STACK OF INTERRUPT PROCEDUREcceeiririeiereietieniseee et sene 9-8
9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDUREcccocerciiienenecrerceeeeenee 9-8
9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDUREcc.cccooiiiiiniiiiicncccie e 9-8
9.7.1.4 PROTECTION IN INTERRUPT PROCEDURESccceconiiiiiiiiecincseeee e 99

Vi

intgl® TABLE OF CONTENTS

Page
9.7.2 INEITUPE TASKS ooiuviiiiiiiiiiieiitiee ettt e e e e et e e sstbt e e s bbre e e stsareesassnsbnaeeeas 9-11
9.8 ERROR CODEooiiieiieeiitecee sttt st sttt ee e be s bs e sbe e s sbne s saebe e s sbneeas 9-12
9.9 EXCEPTION CONDITIONSoooiiiiiiiieieenieerie ettt see st eeene s 9-13
9.9.1 Interrupt 0 —DivVide EITOFccooviiiiiiiiieeeee et 9-13
9.9.2 Interrupt 1 —Debug EXCEPtioNScccociviiiniiiiiiiiiiiii i, 9-13
9.9.3 Interrupt 3 —Breakpointocceeeiiiiiieeiie e 9-14
9.9.4 Interrupt 4 —OVEITIOWoviiiiiiii et s 9-14
9.9.5 Interrupt 5—BouNnds CheCKccuiiieeiiiiiiiiiiieeeeee e e 9-14
9.9.6 Interrupt 6 —INvalid OPCOAEccoviiieiiiiiieiiiee et e e e e e 9-14
9.9.7 Interrupt 7 —Coprocessor Not Availablecccceeeiiiiiniiniin s 9-15
9.9.8 Interrupt 8 —Double Faultccoeiiiiiiiiii e 9-15
9.9.9 Interrupt 9— Coprocessor Segment OVEITUNcooceeivieenieeiiieniee e 9-16
9.9.10 Interrupt 10—Invalid TSSooiiiiieiee e e e e s s 9-16
9.9.11 Interrupt 11 —Segment Not Presentcccocivvininiiiiiininicie, 9-17
9.9.12 Interrupt 12 —Stack EXCEPLONccc.oviiiiiiiieiiicne e 9-18
9.9.13 Interrupt 13 —General ProteCtioncccueeiiiiiiiciiii e 9-19
9.9.14 Interrupt 14 —Page Faultcooiviiiii 9-20
9.9.14.1 PAGE FAULT DURING TASK SWITCHcooriiiiiiiriieiecreeeee e 9-21
9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTERcccoceeviiiiiinieecen. 9-21
9.9.15 Interrupt 16 — COProCESSOr EITOT ...c.coueiiiiiiiee ettt e s eree e 9-22
9.10 EXCEPTION SUMMARYiiiiiiiiitiiiieniieeieeesiee s sireeses e s e str e sanessateesasessnnsnnesasneens 9-23
9.11 ERROR CODE SUMMARY oiiiiiiiiieiieiitee et eite st e et esaesssseesaeesasessaeeesaennesnnnees 9-24
CHAPTER 10
INITIALIZATION
10.1 PROCESSOR STATE AFTER RESETcccooiiiiiiiicerte e 10-1
10.2 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODEccoooiiiiiiiicneceee, 10-2
10.2.1 System TabIEsooieiieiee e e 10-3
10.2.2 NMIINEEITUPLE oo e e 10-3
10.2.3 First INSTrUCHONeiiiie e 10-3
10.3 SWITCHING TO PROTECTED MODEoooiiiiiieeie et 10-4
10.3.1 SyStemM TabIES .cooiieiiiiiiiii sttt e e e e e s 10-4
10.3.2 NMIINEEITUPT -.oveeiiiieieie ettt st e e ee e e abe e s s sane e e s sanreeesanneenrneessnnnee 10-4
T0.3.3 PE Bit oottt et st e e e saa et e nne e e nees 10-4
10.4 SOFTWARE INITIALIZATION IN PROTECTED MODEccocceiiieiieiieeiieceees e 10-4
10.4.1 SeGMENTALION .ooiiiiiiiiiiii e et e e s e esna e e 10-5
T0.4.2 PAGING oottt e e 10-5
LR G T =] (TP PP 10-5
10.5 TLB TESTINGooiiiiiiieieieitesie ettt sttt st sat e s an s b eben e saneenees 10-6
10.5.1 Structure Of the TLBcooiiiiieiiee e e 10-6
10.5.2 TSt REGISLEIS ..o e 10-6
10.5.3 TSt OPEratioNS ...coueeeueeriiiiieiiieieeite ettt sttt te s e e e sne e sneenneennees 10-9
10.6 INITIALIZATION EXAMPLEooiiiiiieriecee et 10-10
CHAPTER 11
COPROCESSING AND MULTIPROCESSING
11.1 COPROGCESSINGceiiiiiiieiteeie et sttt ettt st st e sae st e e e eane e 11-1
11.1.1 The ESC and WAIT INSTrUCHONScoeeiiiriieiirieneeeeee e 1141
11.1.2 The EM @nd MP Bitscooiiiiiiiiiiies sttt st e e e 11-3
11.1.3 THE TS Bit 1eeeeiiiiect ettt ettt s e e b ebe e sneesane s 11-3
11.1.4 Coprocessor EXCEPLONSccoeveeriiriiiiiieiesee e 11-4
11.1.4.1 INTERRUPT 7 —COPROCESSOR NOT AVAILABLEcccceoiniinieeeeeeeeeeene, 11-4
11.1.4.2 INTERRUPT 9— COPROCESSOR SEGMENT OVERRUNccccociiniieniiicnnnnn. 11-4

vii

intel® TABLE OF CONTENTS

Page
11.1.4.3 INTERRUPT 16 —COPROCESSOR ERRORcccecoeiminriirine e eeerees 11-5
11.2 GENERAL-PURPOSE MULTIPROCESSINGccectrimriieriieniienieinie e 11-5
11.2.1 LOCK Prefix and the LOCK# Signalccceieeererrerierieniineneneresesseeserieseeeses e enne 11-6
11.2.2 AUtOMALIC LOCKING ..iveiiieiiiiiesieie ettt ettt e e st e sae e s 11-6
11.2.3 StAle DALAcveiiieiiiieeseee ettt ettt b sne et aesbnne 11-7
CHAPTER 12
DEBUGGING
12.1 DEBUGGING SUPPORT ..ottt s sae e sae s sb e se e e b s seennans 12-1
12.2 DEBUG REGISTERS ..ottt e 12-2
12.2.1 Debug Address Registers (DRO-DR3)cccccevieiiiiiinniriinierenesee e e 12-3
12.2.2 Debug Control Register (DR7)cccoviiriiriiirierin et 12-3
12.2.3 Debug Status Register (DRB)ccceevierieriiiriie ettt 12-4
12.2.4 Breakpoint Field ReCOgNition ...t e 12-5
12.3 DEBUG EXCEPTIONScooiiiieietcieiei ettt 12-6
12.3.1 Interrupt 1 —Debug EXCEPHONScccovviiiiiiiiiie e e 12-6
12.3.1.1 INSTRUCTION-BREAKPOINT FAULT ..ottt s 12-7
12.3.1.2 DATA-BREAKPOINT TRAPcoiiiiiiiitiictcertente et 12-7
12.3.1.3 GENERAL-DETECT FAULTociiiiiiirtiieietiete et sae et 12-8
12.3.1.4 SINGLE-STEP TRAPootiiiiiiinireetetest ettt st b et a e e sre e st ee e sneen 12-8
12.3.1.5 TASK-SWITCH TRAPoiiiieieiieieceeienre ettt sr et saes s st besaeenean 12-9
12.3.2 Interrupt 3 —Breakpoint INSrUCHIONccocieviiriiiniereece e 12-9

PART Ili—COMPATIBILITY

CHAPTER 13
EXECUTING 80286 PROGRAMS ‘
13.1 TWO WAYS TO RUN 80286 TASKSccooririririiieneereniteteeeseerenee s seesraeeesaeseeaens 13-2
13.2 DIFFERENCES FROM 80286 PROCESSORcccooiirineireeneenerecr e 13-2
13.2.1 Reserved Word of Segment DeSCrPtOrccccceiviiiienenieiiene e 13-2
13.2.2 New Segment Descriptor TYpe COAESccoirerereriiiieniniei et eesee e 13-2
13.2.3 Restricted Semantics of LOCK PrefiXcccceciniineniinnciieeseccece e 13-2
13.2.4 Additional EXCEPLIONSccooeevieiiriieiiecer e e 13-3
CHAPTER 14
386™ SX MICROPROCESSOR REAL-ADDRESS MODE
14.1 ADDRESS TRANSLATIONccoiiiiiiieiieerii ettt e e et s e e 141
14.2 REGISTERS AND INSTRUCTIONSccooiiiiiieieieeeereseeseeesr e s 14-2
14.3 INTERRUPT AND EXCEPTION HANDLINGcccccoeiiniiienieieieneenieereeie et e 14-3
14.4 ENTERING AND LEAVING REAL-ADDRESS MODEcccoocenieneniiiinenenieenee e 14-3
14.4.1 Switching to Protected MOdecooeiiiririiiie e 14-3
14.5 SWITCHING BACK TO REAL-ADDRESS MODEccccoceminiire et 14-4
14.6 REAL-ADDRESS MODE EXCEPTIONScooiiiiiieeeieieierieeee e 14-4
14.7 DIFFERENCES FROM 8086 PROCESSORcccccooiiinieinineeniecsree e s 14-5
14.8 DIFFERENCES FROM 80286 REAL-ADDRESS MODEcccoomtriinenenreeeeneecieiens 14-8
T4.8.1 BUS LOCK .ottt s st sre e s e sae e nae e 14-9
14.8.2 Initial Values of General REGIStErScoceeverviiiiiiiiienin ettt 14-9
14.8.3 MSW INItI@liZAtIONcceirirerieiieeereeee ettt s s sre e 14-10
T14.8.4 BUS HOIA ..ottt s e e r e s s 14-10

viii

intgl® TABLE OF CONTENTS

CHAPTER 15
VIRTUAL-8086 MODE Page
15.1 EXECUTING 8086 PROCESSOR CODEcccecoctiiieiiiiinieicciesiecicsienrccesae e 15-1
15.1.1 Registers and INSIIUCHIONSccceeeviiiiiiiiiiiiiceie e 15-1
15.1.2 Address Translationcccccevvieiiiiiniiniiic e 15-2
15.2 STRUCTURE OF A VIRTUAL-8086 TASKcccoviriiiiiiiiiiiiniii e 15-3
15.2.1 Paging for Virtual-8086 Taskscccciviiiiiiiiiiiniinincicii e 15-4
15.2.2 Protection within a Virtual-8086 Taskc..ccccooveeviiiiiiiiinicniiiniieienen 15-5
15.3 ENTERING AND LEAVING VIRTUAL-8086 MODEc.ccccvveriiiiiiiiniiiincccneninee 15-5
15.3.1 Transitions Through Task SWItChescc.cccooiiiiiiiiiiiiieeeee e 15-6
15.3.2 Transitions Through Trap Gates and Interrupt Gatesccccecvnviiniininiiiinennen, 15-7
15.4 ADDITIONAL SENSITIVE INSTRUCTIONSoooiiiiiiiiiceiereesin e 15-8
15.4.1 Emulating 8086 Operating System Callsccccceecuiiniiiiiiiiiiiiniie e, 15-8
15.4.2 Emulating the Interrupt-Enable Flag ... 15-9
15.5 VIRTUAL 1/O ..ottt sttt s e st san e ss et be e s 15-9
15.5.1 1/O-MapPed I/Oceooiiiiiiiiiiici i e 15-10
15.5.2 Memory-Mapped 1/O ..ot 15-10
15.5.3 Special [/O BUFEISoeeeeie ettt s 15-11
15.6 DIFFERENCES FROM 8086 PROCESSORcccooiiiiiiiiriccientcnecre e 15-11
15.7 DIFFERENCES FROM 80286 REAL-ADDRESS MODEcccccecviiiiiiinieniiiicinnens 15-14
CHAPTER 16
MIXING 16-BIT AND 32-BIT CODE
16.1 USING 16-BIT AND 32-BIT ENVIRONMENTSccccoiiniririnicrenern e 16-2
16.2 MIXING 16-BIT AND 32-BIT OPERATIONScociiiiiiiiicieerrc s 16-2
16.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTSccccooiiiiiiiiiniieiene 16-3
16.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTScc......... 16-4
16.4.1 Size of Code-Segment POINLErccccoviriiiiiiniiiici 16-4
16.4.2 Stack Management for Control Transfers ..., 16-4
16.4.2.1 CONTROLLING THE OPERAND SIZE FOR A CALLcccceeiiriiniiiieececeee e 16-6
16.4.2.2 CHANGING SIZE OF A CALL ...ccueiiiiiiereieene et 16-6
16.4.3 Interrupt Control TransSfers ...t 16-6
16.4.4 Parameter TranSIationc..ooo i e 16-7
16.4.5 The Interface ProCedure ..o 16-7
PART IV—INSTRUCTION SET
CHAPTER 17
386™ SX MICROPROCESSOR INSTRUCTION SET
17.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTESccccoooiiiiiiiieerccec e 171
17.1.1 Default Segment ARMDULEcocvvriiiii e, 17-1
17.1.2 Operand-Size and Address-Size Instruction PrefiXesccccevvviinienienininennee. 17-1
17.1.3 Address-Size Attribute for Stack ..., 17-2
17.2 INSTRUCTION FORMAT ..ottt ettt 17-2
17.2.1 MOAR/M and SIB BYLESccciiiieiiirirreeiinie st e s 17-3
17.2.2 How to Read the Instruction Set Pagescccoceiiiiiniinininiicec, 17-8
17.2.2.1 OPCODE ... e s 17-8
17.2.2.2 INSTRUGCTION ..ottt st 17-9
17.2.2.3 CLOGCKS ...ttt sa b s e 17-10
17.2.2.4 DESCRIPTION ...ttt st e sae e s 17-12
17.2.2.5 OPERATION ..ottt s s s e s e 17-12
17.2.2.6 DESCRIPTION ..ottt sae st e ne e 17-15
17.2.2.7 FLAGS AFFECTEDooiiiiieeeettere et s s 17-15
17.2.2.8 PROTECTED MODE EXCEPTIONSoociiiieeiieeeieeeieeeneeee e 17-16

intel” TABLE OF CONTENTS

Page
17.2.2.9 REAL ADDRESS MODE EXCEPTIONScccooiiiiiiininintniereeeee e 1717
17.2.2.10 VIRTUAL-8086 MODE EXCEPTIONSccceciimiiniiiinie e 17-17
AAA bt e et h et e e Rt eae e s bt nbe e b e e re e b e e s renatenree e 17-18
AAD e et e et et e e e et e e e bte e e na e e e s abbe e s e s beeeeesareaeasnannes 17-19
AAM e e e r s e 17-20
AAS e ettt E et h bR e et e et e naerhe s e e b e bt et et srenaeen 17-21
ADC .. b Rt bR bRt h e e E e re e e sne s 17-22
ADD ...t e e e et e e E e st s E b e Rt et e n e r e narenntenree e 17-23
AND . et b e e b e R bt Rt Rt b et st e et eanas 17-24
ARPL ot st Lusanssssasansasansansesnes 17-25
BOUND ...ttt s bttt sbe s bbb s bt e s s e nr e r e e nesere e 17-27
1= 1] TP PROPT 17-29
B R e et e e b sre e b e s e nnens 17-31
= 3 PP O PP PRUPRRN 17-31
1= 2 TSROSO 17-34
1= 1 1 ST PRSP UP PP TP 17-36
BT S e e nre 17-38
CALL ittt et h e h e e R ettt R e bbb ne e ene e b ennes 17-40
CBW/CWDE ...ttt st sttt bbb et b ekt e ae et bt ebe et e eennesreentenneseesnnes 17-47
CLC e e e a e R n b ees 17-48
L0718 5 LTSRS RPPPRRRO 17-49
L0 I PSSR 17-50
[0 I 1 T O PRSPPSOt 17-51
CMO e e bbb 17-52
CIMP ettt h bt b e s e Rt et b e eaeenre e nbe e s beeeneeenresareens 17-53
CMPS/CMPSB/CMPSW/CMPSDccctiruiiiieiiiieiieirenre st sre e see e sire s snessneennee e 17-54
CWD/CDQ) ...ttt ettt st s he e i e s b e s s e s e e et e s b e emeeene s ereesmbeenesnberareen 17-56
DAA e e e e e R e et e ae e sr e n e be e et enaeenre 17-57
DIAS e e e R h e R e eb s et e e r e et eresrean 17-58
DEC bbb e ne b et en e e n e nre e nr 17-59
DIV e e et saenreas 17-60
ENTER oottt ettt h e e e et et s b e st e e sh e e b e et R e et neenae e neents 17-62
| PO ST 17-64
IDIV et h bR R bt st r e neeae e e e 17-65
IMUL Lttt et b e sa e et et h e b en e sb et b e bttt be e nre e Reenres 17-67
IN et e b e et h e eh R e e e s heene e ennes 17-69
INC e e bbbt r e b e 17-70
INS/INSB/INSW/INSDooiiiiiiieiiniitiiiiniece et 17-71
INT/INTO ettt bbbt e ae st e b se et ebe s eeebe e b e s e seesreene e e e eneennes 17-73
IRET/IRETD L.ttt st sttt s st b e st s b e sat e b et amaesneenneesanes 17-78
I Lo PSSP PPN 17-83
UM ettt e b e eR R bt b et e R et et e e e re e enes 17-86
LAHR e ettt e E e ne e bt et e e e e e R bena e e s be et e eeenras 17-91
I SRS UTSPTPPR 17-92
LB A et R bbbt R e e e et sae e sheene e enen 17-94
LEAVE ...t s R e h e n e s r e b e a b nes 17-96
LGDT/LIDT ettt et b e nr e s ebeennns 17-97
LGS/LSS/LDS/LES/LEFS ..ottt st 17-99
L PO OSSOSO 17-102
LIMSW ettt st h et e e b e e h e R bt e Rt e at st e te et et e naenreneene 17-104
[0 17 OO PO TR OO R P O PR 17-105
LODS/LODSB/LODSW/LODSDcvtiiieterrieiieiiesienieneetesesiaesie s siesses e sees e sbe s eneeseeseesaeens 17-107
LOOP/LOOPEONG ...ttt ettt sttt et sae s s bt eae et et seesbesaeeneeseasaeennanes 17-109

intel® TABLE OF CONTENTS

Page
LS ettt ettt b et e et e bt e bt e b e e b e e abe et e e abe et e bt e sane e nasenaes 17-111
I 11 OO OO TSP SPPPRS PP 17-113
MOV ettt et e e e e e et e e e e e e e eba e e e e aba e e e e bae e e et bt e e e baeeeeabeaeenateetraeas 17-114
MOV e e e s e e e e e e s e bbraee s e e b b e taaaaeaeaas b bt reeeeeeeaeaarbaeeaaranaes 17-116
MOVS/MOVSB/MOVSW/MOVSDcociiiiiieiiieitenieesieeeeseesie sttt sbe e sae e sae s 17-118
MOVSX ettt ettt sttt a e sbe e e et e e be e baeaae et e ente s et e nbaenba e e nbeentes 17-120
MOVZX ..ottt e e e e b e e e tr e e e sbbe e e easeeesesbtaeeenbbeeeessaeeesanseeesanseeeeeabessbneas 17-121
MUL <ttt s st b et st b et e e b e e s b e e ab e e b e e e st e bt e aee et ens 17-122
INEG .ottt ettt e e st a e et e be e b e e beenbeeabe et e e atesbe bt e bae e aeeneen 17-124
N[] PP UUPUOR SRR 17-125
N[PO P RO RPSUPP SRR 17-126
(@] OO SOPRRPVPRUPONt 17-127
(0 11 LSOO PR PPTRPRRPSUPPONt 17-128
OUTS/OUTSB/OUTSW/OUTSDoocviiiiiiieiieniieniieieeee st sieesseesressnesnesssesseessesssessseseesnesane 17-128
PO e et e e — e e e e aabe e e e bt e e e aateeaaaaataeeaanaaeanntaeeatnteeeateannnnnan 17-131
POPA/POPADooiiieeeiiteeieeetie e te s te e s cte s e st e s taeasae s be e s saeaeseeessseesssesssseenasaessteesssaasaannseens 17-134
POPF/POPFED ...ttt ettt sttt b e sttt e ae e st ne s e et e st enssesae e e st ennis 17-136
PUSH ettt ettt be st e s e e b e et e e be et e e abe et e e e e et e ae e ae e e beenees 17-137
PUSHA/PUSHAD ..ottt ettt et eeste st e st et s b e et e et st e eseesanestesnteestesaensnanse 17-139
PUSHF/PUSHEDooiiiiecieit ittt st sts st e e s seesae st e st e ssaasaeesaeesbeesbeenseenseseensenane 17-141
RCL/RCR/ROL/RORooevieitieieecieeeteeste s steesaeeiae st e e esse et e sssesssassaessaesse e bessseesbesseasaeesenssenens 17-142
REP/REPE/REPZ/REPNE/REPNZcomiiiiiiiiiiieeeeeeeesve e st e s see et sn s s 17-145
2 = [U UPPPORURRPRRNY 17-148
SAHF .ottt ettt e et ea e et e be et e ehaeeraeeaae b eeneete e beebeeaaerenaneans 17-152
SAL/SAR/SHL/SHR ...ttt sttt st sttt e ta e sae s es e s s s e b e saesrasranseenee 17-153
SBB ..ttt e b e et e et et b e aa e he s bt e been e et enreenrearente et 17-156
SCAS/SCASB/SCASW/SCASDooccieriiriinieitiesieeae st et sstessaessaesssesssesstessesssessseasseseassesns 17-158
ST I o]o PP SRR 17-160
SGDT/SIDT .etieitiieieesteeeirte s rrte e et e et e s e e e sta e s ee e esae e st e s beesaba e e aeeenseessseeessseessssansaeensansnnennnes 17-162
SHLD .ttt sb et e et e b aesha e e e e na e e s a e e st e be e beetaerenaneene 17-164
SHRD ..ttt et st e et be e b e e ne e aeeae e benbe et enteeereeneaeenteans 17-166
110 1 T OO PR PRUPOPRRSRRRORORON 17-168
SMSW ettt sttt e e e et e e at e s te e ae e e aeeenseeeaat e e beeenrae e naeeesanraeeaaes 17-169
ST C et nae bt b b e et eaeeate e aeerae et e nneesreeae e beebeesaatenntenns 17-170
£ I OSSOSO 17-171
I OSSR 17-172
STOS/STOSB/STOSW/STOSDoccciiiiiieciiecee e ereesreete st e eeeseesae e sbesssesbeessesanesessnenns 17-173
LS 1 SO 17-175
510] = ST 17-176
TE ST ettt sttt b et e bt e bt e be e n b e e be e be e s e et e eha e bereanteens 17-178
VERR, VERW ...ttt ettt ettt st st s e e e e aeete s b e sssaeanesneanssaeenseans 17-179
L I O USRS PSSRROPPO 17-181
D (7 = [C TR USRPSRRORRRION 17-182
XLAT/XLATB ..ottt ettt sr e e sa et e e st e st e st e sae e e s e be s s e e st enseebareanneens 17-183
D (@ | SRS 17-185
APPENDIX A
OPCODE MAP
APPENDIX B

COMPLETE FLAG CROSS-REFERENCE

xi

intgl” TABLE OF CONTENTS

APPENDIX C
STATUS FLAG SUMMARY
APPENDIX D
CONDITION CODES
APPENDIX E
INSTRUCTION FORMAT AND TIMING

Figures
Figure Title Page
1-1 Bit and Byte Order ..o 1-6
2-1 Segmented AdAreSSINGcoocieiieiiiiieiiiiiii e 2-4
2-2 Fundamental Data TYPeSccccovveiiiiiiiiiiiieci e 2-5
2-3 Bytes, Words, and Doublewords in MemMOrycccccvvieiiiecnncenniiniccieeeneenne 2-5
2-4 DAt TYPES ettt e s e e e ne e 2-8
2-5 Application Register Stccooviviiiiniii 29
2-6 An Unsegmented MemMOrYcccociiiiiiiniiniinnii e 2-11
2-7 A Segmented MEMOIYcooociiiiiiiieeee ittt e s ee e e 2-12
2-8 SHTACKS .eiiiiiieiii ettt sttt e sae e e snn e e eeesnanee s 2-13
2-9 EFLAGS ReQIStErcoociiiiiiiieeeeer e 2-14
2-10 Effective Address Computationc.ccocvevveriiniiniincnie e, 2-20
3-1 PUSH Instruction 3-3
3-2 PUSHA Instruction . 3-3
3-3 POP Instruction 3-4
3-4 POPA Instruction 3-5
3-5 SigN EXIENSIONooviiiiiiiiii 3-5
3-6 SHL/SAL INSLIUCHON ..oveiiiiiiiieieeceie et 3-14
3-7 SHR INSIUCHON ..ot 3-14
3-8 SAR INSIrUCHION ..ooviiiiiiii 3-15
3-9 SHLD INSIIUCION ..ot 3-16
3-10 SHRD INSIrUCHION ... e 3-16
3-11 ROL INSITUCHION ..ot 3-17
3-12 ROR INSLIUCHON .ottt s 3-17
3-13 RCL INSIrUCION ..o 3-18
3-14 RCR INSIIUCHION .. 3-18
3-15 Formal Definition of the ENTER Instructionccccociiviiiiniiiiiicceee, 3-31
3-16 Nested ProCeAUIEScccoiiiiiiiiieiicii it e e 3-32
3-17 Stack Frame After Entering MAINcccoiiiiiiniiice, 3-33
3-18 Stack Frame After Entering PROCEDURE A ... 3-33
3-19 Stack Frame After Entering PROCEDURE B ... 3-34
3-20 Stack Frame After Entering PROCEDURE C 3-36
3-21 Low Byte of EFLAGS ReQ@IStercccooiieeiiiiiiiieiiecieeseeeeree e 3-37
3-22 Flags Used with PUSHF and POPFcccoiiiiiiiiecceeeeee e 3-38
4-1 System FIagsccoiiiiiiiiii 4-2
4-2 Memory Management Registerscocvviniiniiiiniinicceen 4-4
4-3 CoNntrol REGISTEISoiuiiiiiiiiieceee e s 4-5
4-4 Debug REGISErScooviiiiiiiiie e 4-7
4-5 Test RegiSters ... 4-7
5-1 Flat MOAEIooiiiiee s 5-4
5-2 Protected Flat Modelcooooiiiiiiii e 5-5
5-3 Multi-Segment Modelccociiiiiiii s 5-6
5-4 Tl Bit Selects Descriptor Tableccccooieiiiieiiine e 5-8
5-5 Segment REQISIEIScoviiiiiiiiiee e e e 5-9

Xii

intel” TABLE OF CONTENTS

Figures

Figure Title Page
5-6 Segment Translationcccocvvciiiiiiii 5-9
5-7 SegmeNt SEIECIOTcc.ooviiiiirierieeee s 5-10
5-8 SegMeNnt DESCHPIOIScoiiiiiiiiiiiceieeeerec et 5-12
5-9 Segment Descriptor (Segment Not Present)cccccvceiiiiiiniinecninnnens 5-15
5-10 DeSCrPLOr TADIESccooieriiiiiiieeeiie e e e s e 5-16
5-11 Descriptor Table Base Registercccvviviniiniiniiinniieinie e 5-17
5-12 Format of a Linear Address 5-19
5-13 Page Translation ..o e e e 5-20
5-14 Format of a Page Table Entry 5-20
5-15 Format of a Page Table Entry for a Not-Present Page . 5-21
5-16 Combined Segment and Page Address Translationccccceceveeicncnnnnne 5-23
5-17 Each Segment Can Have Its Own Page Tablec.cccocevininnciiiininnnnen. 5-25
6-1 Descriptor Fields Used for Protectioncccccceeviinieniininiinnnnencce 6-3
6-2 Protection Flagsccccvreiiiiiiiiieee e 6-6
6-3 Privilege Check for Data ACCESScccceciricieriiiieiienice e 6-8
6-4 Privilege Check for Control Transfer without Gateccocceeiviiniiinnene 6-10
6-5 Call GALE ...uviieeeieeie e s b 6-11
6-6 Call Gate MeChaniSMc.coeiieiiiece e s 6-12
6-7 Privilege Check for Control Transfer with Call Gatecccccvvviininiinnns 6-13
6-8 Initial Stack Pointers in a TSSccccoceviiiiviennen. 6-15
6-9 Stack Frame during Interlevel Call 6-17
6-10 Protection Fields of a Page Table Entrycccccecvviiniininiincciiccee, 6-22
7-1 Task State SegMeNtccccoviriiiiii 7-3
7-2 TSS DESCHPLOL ..ccneiiiiieiiieeteeie ettt e 7-4
7-3 TR REGISIEI .. e 7-5
7-4 Task Gate DeSCHPIOrcoooiiiiii e e 7-6
7-5 Task Gates Reference Tasks ..., 7-8
7-6 NeSted TaSKScccovieeiiiiiiiie e e 7-11
7-7 Overlapping Linear-to-Physical Mappingsccccceceniiniininneninnenncecnne 7-14
8-1 Memory-Mapped 1/Occoiriiiiie e 8-3
8-2 1/O Permission Bit Mapcccccceeevevniinecie e, 8-7
9-1 IDTR Register Locates IDT in Memory 9-6
9-2 IDT Gate DESCHPIOIScocciiiiiiieiii it 9-7
9-3 Interrupt Procedure Call ..o 9-9
9-4 Stack Frame after Exception or Interruptccceeveiieniiniiciicniinc s 9-10
9-5 Interrupt Task SWItCHcoceoiiiii e e 9-11
9-6 ErrOr COAEooiiiiieieii et 9-12
9-7 Page Fault Error COdeccccoviiiiiiiiiiiiieiese e 9-21
10-1 Contents of the EDX Register after Resetc.cccoceviiiiiiiiiniciiincicnns 10-2
10-2 Contents of the CRO Register after Reset ... 10-2
10-3 TLB STUCIUIE ...t 10-7
10-4 TeSt REGISIEIS ... 10-7
1141 Software Routine to Recognize the 387™ SX CoOprocessorcc.cooeeeuene 11-2
12-1 Debug REGISIErScccociiiiiiiieiiiie e 12-3
14-1 8086 Address Translationccccceeieiiiiiiineiii e 14-2
15-1 8086 Address Translationcc.cccvveeriiriiiinicne s 15-3
15-2 Entering and Leaving Virtual-8086 Modeccoccvviiiiiiiieninnicnicceee, 15-6
15-3 Privilege Level 0 Stack after Interrupt in Virtual-8086 Taskccccceovueeee. 15-8
16-1 Stack after Far 16- and 32-Bit Callscccceeiivirieiiiiiiin e, 16-5
17-1 386™ SX Microprocessor Instruction Formatc.cccecvveiiiniinicniinienn, 17-2
17-2 ModR/M and SIB Byte FOrmatscccccoeeeieeiiiiiinieseenccceeceeseece e 17-4
17-3 Bit Offset for BIT[EAX,21] ..oooieeiie ettt st 17-15
17-4 Memory Bit INAEXING ...c.cooiiiiiiiiiicie e 17-16

xiii

intel” TABLE OF CONTENTS

Tables
Table Title Page
2-1 Register NAMEScccooviiiiiiiiiicieeee et s s 2-10
2-2 STALUS FIAGS .eeiiiiiiiiiiiii ettt e st e e b e e re e e sateen 2-14
2-3 Default Segment Selection RUIEScooeieeviniiiiienie e 2-19
2-4 Exceptions and INtErruUPLSccooceeeeiriierinienis et 2-23
3-1 Operands for DIVISIONcccocciiiiiiiiiiecenee e s 39
3-2 Bit Test and Modify INStruCtionsccccivviiriiiniiii e 3-12
3-3 Conditional Jump INSTIUCHIONScccceviiieii e 3-25
3-4 Repeat INSTUCHIONScocuiiiiiiiiiree e 3-28
3-5 Flag Control INStrUCHIONScciieeiriieieee et 3-37
5-1 Application SegmMeENt TYPESceoicieiiiiicr e s 5-13
6-1 System Segment and Gate TYPES ...c.cccevcerreermreriinicereee e seee e eseesee e seens 6-2
6-2 Interlevel Return CheckS ...t 6-18
6-3 Valid Descriptor Types for LSL INStructionc.cccocvvriinvnniniinieenccncniene 6-20
6-4 Combined Page Directory and Page Table Protectionccccovevenvnennen. 6-23
7-1 Checks Made during a Task Switchc.cccoccreenene. . 7-10
7-2 Effect of a Task Switch on Busy, NT, and Link Fields . 7-11
9-1 Exception and Interrupt Vectorsccccvcervvercenencnnens . 9-2
9-2 Priority Among Simultaneous Exceptions and Interruptscccccccevvenenene 9-5
9-3 Interrupt and Exception Classesccovvirciieniiicneccercce e, 9-16
9-4 Invalid TSS CONAItIONSccuevrireieieiei ettt 9-17
9-5 Exception SUMMArY ... 9-23
9-6 Error Code SUMMANYcceviiiieniicinie ettt steree e vt es e see e 9-24
10-1 Processor State Following POWEr-Upccoccveeiiiercreenciieeene e 10-3
10-2 Meaning of Bit Pairs in the TR6 RegiStercccevrcericrinniccinecccreeneens 10-9
1241 Breakpointing EXamples ...t 12-6
12-2 Debug Exception CONditioNScccceeiiieeiiieeeec e 12-6
14-1 Exceptions and INterruPtScoccccreenerineniinii et e 14-5
14-2 New 386™ SX Microprocessor EXCeptionsccccvveevvreneniensienenesneeeenne. 14-9
17-1 Effective Size AHMDULESccooceeiiiiieciecrcee s 17-2
17-2 16-Bit Addressing Forms with the ModR/M Bytecccovviiiiniinccnnnnns 17-5
17-3 32-Bit Addressing Forms with the MOdR/M Bytecccooveeiinieicencecennene, 17-6
17-4 32-Bit Addressing Forms with the SIB Byte 17-7
17-5 Task Switch Times for Exceptions e 17-11
17-6 386™ SX Microprocessor EXCeptionscccvreeeinrcenensenensene s 17-16

xiv

Introduction to the 386™ SX 1
Microprocessor

CHAPTER 1
INTRODUCTION TO THE 386™ SX MICROPROCESSOR

The 386™ SX microprocessor is a 32-bit CPU with a 16-bit external data bus and a 24-bit
external address bus. The 386 SX CPU brings the high-performance software of the
Intel386™ architecture to midrange systems. The processor can address up to 16 mega-
bytes of physical memory and 64 terabytes of virtual memory.

The 386 SX microprocessor includes:
e 32-bit integer processor for performing arithmetic and logical operations

o interface to the 387™ SX numerics coprocessor, an external floating-point arithmetic
unit for supporting the 32-, 64-, and 80-bit formats specified in IEEE standard 754

e segmentation, a form of memory management for creating independent, protected
address spaces

e paging, a form of memory management which provides access to data structures
larger than the available memory space by keeping them partly in memory and partly
on disk

o instruction backup for allowing a program to be restarted following an exception
(necessary for supporting demand-paged virtual memory)

e pipelined instruction execution for allowing the interpretation of different instruc-
tions to be overlapped

o debugging registers for hardware support of instruction and data breakpoints

The 386 SX microprocessor is 100% object code compatible with the 386 DX, 80286 and
8086. System manufacturers can provide 386 DX microprocessor based systems opti-
mized for performance and 386 SX microprocessor based systems optimized for cost,
both sharing the same operating systems and application software.

In addition to the 386 SX microprocessor, the Intel386 family also includes a micropro-
cessor with a 16-bit external bus designed specifically for embedded applications:

e 376™ Embedded Processor—A reduced form of the 386 DX microprocessor opti-
mized for embedded applications, such as process controllers. The 376 processor
lacks the paging and 8086-compatibility features provided in the 386 SX microproces-
sor. The 376 processor is available in a surface-mount plastic package, which provides
the lowest cost and smallest form factor for any implementation of the Intel386
architecture.

1.1 ORGANIZATION OF THIS MANUAL
This book presents the Intel386 architecture in four parts:

Part I — Application Programming
Part 11 —System Programming

1-1

intel” INTRODUCTION TO THE 386™ SX MICROPROCESSOR

Part III — Compeatibility
Part IV — Instruction Set
Appendices

These divisions are determined by the architecture and by the ways programmers use
this book. The first three parts are explanatory, showing the purpose of architectural
features, developing terminology and concepts, and describing instructions as they relate
to specific purposes or to specific architectural features. The remaining parts are refer-
ence material for programmers developing software for the 386 SX microprocessor.

The first three parts cover the operating modes and protection mechanism of the 386 SX
microprocessor. The distinction between application programming and system program-
ming is related to the protection mechanism of the 386 SX microprocessor. One purpose
of protection is to prevent applications from interfering with the operating system. For
this reason, certain registers and instructions are inaccessible to application programs.
The features discussed in Part I are those which are accessible to applications; the
features in Part II are available only to programs running with special privileges, or
programs running on systems where the protection mechanism is not used.

The mode of the 386 SX microprocessor affects which instructions and architectural
features are accessible. The 386 SX microprocessor has three modes for running
programs:

Protected mode uses the native 32-bit instruction set of the processor. In this mode all
instructions and architectural features are available.

Real-address mode (also called “real mode”’) emulates the programming environment of
the 8086 processor, with a few extensions (such as the ability to break out of this mode).
Reset initialization places the processor into real mode.

Virtual-8086 mode (also called “V86 mode”) is another form of 8086 emulation mode.
Unlike real-address mode, virtual-8086 mode is compatible with protection and memory
management. The processor can enter virtual-8086 mode from protected mode to run a
program written for the 8086 processor, then leave virtual-8086 mode and re-enter pro-
tected mode to continue a program which uses the 32-bit instruction set.

The features available to application programs in protected mode and to all programs in
virtual-8086 mode are the same. These features are described in Part I of this book. The
additional features available to system programs in protected mode are described in
Part II. Part III describes real-address mode and virtual-8086 mode, as well as how to
run a mix of 16-bit and 32-bit programs.

1.1.1 Part |—-Application Programming
This part presents the architecture used by application programmers.

1-2

intel” INTRODUCTION TO THE 386™ SX MICROPROCESSOR

Chapter 2 —Basic Programming Model: Introduces the models of memory organization.
Defines the data types. Presents the register set used by applications. Introduces the
stack. Explains string operations. Defines the parts of an instruction. Explains address
calculations. Introduces interrupts and exceptions as they apply to application
programming.

Chapter 3—Application Instruction Set: Surveys the instructions commonly used for
application programming. Considers instructions in functionally related groups; for
example, string instructions are considered in one section, while control-transfer instruc-
tions are considered in another. Explains the concepts behind the instructions. Details of
individual instructions are deferred until Part IV, the instruction-set reference.

1.1.2 Part Il -System Programming

This part presents the Intel386 architectural features used by operating systems, device
drivers, debuggers, and other software which support application programs.

Chapter 4—System Architecture: Describes the features of the 386 SX microprocessor
used by system programmers. Introduces the remaining registers and data structures of
the 386 SX microprocessor which were not discussed in Part 1. Introduces the system-
oriented instructions in the context of the registers and data structures they support.
References the chapters in which each register, data structure, and instruction is dis-
cussed in more detail.

Chapter 5—Memory Management: Presents details of the data structures, registers, and
instructions which support segmentation. Explains how system designers can choose be-
tween an unsegmented (“flat”) model of memory organization and a model with
segmentation.

Chapter 6 —Protection: Discusses protection as it applies to segments. Explains the im-
plementation of privilege rules, stack switching, pointer validation, user and supervisor
modes. Protection aspects of multitasking are deferred until the following chapter.

Chapter 7—Multitasking: Explains how the hardware of the 386 SX microprocessor
supports multitasking with context-switching operations and intertask protection.

Chapter 8 —Input/Output: Describes the I/O features of the 386 SX microprocessor,
including I/O instructions, protection as it relates to I/O, and the I/O permission bit map.

Chapter 9— Exceptions and Interrupts: Explains the basic interrupt mechanisms of the
386 SX microprocessor. Shows how interrupts and exceptions relate to protection. Dis-
cusses all possible exceptions, listing causes and including information needed to handle
and recover from each exception.

Chapter 10—Initialization: Defines the condition of the processor after reset initializa-
tion. Explains how to set up registers, flags, and data structures. Contains an example of
an initialization program.

intgl® INTRODUCTION TO THE 386™ SX MICROPROCESSOR

Chapter 11— Coprocessing and Multiprocessing: Explains the instructions and flags
which support multiple processors with shared memory and floating-point arithmetic
COpProcessors.

Chapter 12— Debugging: Tells how to use the debugging registers of the 386 SX
MiCroprocessor.

1.1.3 Part lll - Compatibility

This part explains the features of the architecture which support 16-bit programming.
All three execution modes have support for 16-bit programming: 16-bit operations can
be performed in protected mode using the operand size prefix, programs written for the
8086 processor or the real mode of the 80286 processor can run in real mode on the
386 SX microprocessor, and a virtual machine monitor can be used to emulate real mode
using virtual-8086 mode, even while multitasking with 32-bit programs.

Chapter 13 — Executing 80286 Programs: Because the 386 SX microprocessor supports a
superset of the programming environment of the 80286 processor, an application can be
ported to the 386 SX microprocessor along with its operating system. It is also possible
to port only the application, for use with a 32-bit operating system.

Chapter 14 —Real-Address Mode: Explains the real mode of the 386 SX microprocessor.
In this mode, the 386 SX microprocessor appears as a fast real-mode 80286 processor or
a fast 8086 processor enhanced with additional instructions.

Chapter 15— Virtual-8086 Mode: The 386 SX microprocessor can switch rapidly between
protected mode and virtual-8086 mode, which allows multitasking among programs run-
ning in different modes.

Chapter 16 —Mixing 16-Bit and 32-Bit Code: Even within a program or task, the 386 SX
microprocessor can mix 16-bit and 32-bit modules. Any particular module can use both
16-bit and 32-bit operands and addresses.

1.1.4 Part IV—Instruction Set

Parts I and II present the instruction set as it relates to specific aspects of the architec-
ture. Part III discusses compatibility with programs written for Intel 16-bit processors.
Part IV presents the instructions in alphabetical order, with the detail needed by
assembly-language programmers and programmers of debuggers, compilers, operating
systems, etc. Instruction descriptions include an algorithmic description of operations,
effect of flag settings, effect on flag settings, effect of operand and address-size at-
tributes, and exceptions which may be generated.

1.1.5 Appendices

The appendices present tables of encodings and other details in a format designed for
quick reference by programmers.

14

intgl® INTRODUCTION TO THE 386™ SX MICROPROCESSOR

1.2 RELATED LITERATURE
The following books contain additional material related to the Intel386 family:

80386 Processor System Software Writer’s Guide, Order Number 231499

386™ DX Microprocessor High-Performance 32-Bit CHMOS Microprocessor with Integrated
Memory Management, Order Number 231630

376™ Embedded Processor Programmer’s Reference Manual, Order Number 240314

386™ DX Microprocessor Programmer’s Reference Manual, Order Number 230985

387™ DX Programmer’s Reference Manual, Order Number 231917

376™ High-Performance 32-Bit Embedded Processor, Order Number 240182

386™ SX Microprocessor, Order Number 240187

Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843

The 386™ SX Microprocessor Hardware Reference Manual is the companion of this book
for use by hardware designers. It contains information which may be useful to program-
mers, especially system programmers. For example, software may be affected by these
features of the hardware design:

e Asserting (or not asserting) the READY# input in response to bus cycles to unim-
plemented addresses.

o Asserting (or not asserting) the READY# input in response to write cycles to ROM.
e Assignment of the memory space to different bus sizes (16 or 32 bits).

e Assignment of the memory space to different forms of memory, such as EPROM,
dynamic RAM, and fast static RAM.

e Assignment of user-defined interrupt vectors.

e Placement of I/O ports in the physical memory space, or in a separate I/O address
space.

e Response of hardware to receiving a halt indication from the processor.

e Response of hardware to receiving a shutdown indication from the processor.

¢ Running the built-in self-test (BIST). This test can be invoked only from hardware,
and the result of the test can be read only by software.

The data sheet contains the latest information regarding device parameters (voltage
levels, bus cycle timing, priority of simultaneous exceptions and interrupts, etc.). The
data sheet is found in the Microprocessor and Peripheral Handbook (vol. 1).

1.3 NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation
of instructions, and for hexadecimal numbers. A review of this notation makes the man-
ual easier to read.

1-5

intgl” INTRODUCTION TO THE 386™ SX MICROPROCESSOR

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bot-
tom of the figure; addresses increase toward the top. Bit positions are numbered from
right to left. The numerical value of a set bit is equal to two raised to the power of the bit
position. The 386 SX microprocessor is a “little endian” machine; this means the bytes
of a word are numbered starting from the least significant byte. Figure 1-1 illustrates
these conventions.

Numbers are usually expressed in decimal notation (base 10). When hexadecimal (base
16) numbers are used, they are indicated by an ‘H’ suffix.

1.3.2 Undefined Bits and SoftWare Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved.
When bits are marked as undefined or reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. Software should follow these guidelines in dealing with reserved bits:

e Do not depend on the states of any reserved bits when testing the values of registers
which contain such bits. Mask out the reserved bits before testing.

e Do not depend on the states of any reserved bits when storing to memory or to a
register.

¢ Do not depend on the ability to retain information written into any reserved bits.

e When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously stored from the same
register. ‘

DATA STRUCTURE
31 2 15 14 0 AT OFFSET
GREATEST 2
ADORESS
- ”
24
20
1
' il 12
s
UNDEFNED 4
' SMALLEST
BYTEJ BYTE 2 N BYTE 1 BYTEO | O ADORESS
BYTE OFFSET
240331

“Figure 1-1. Bit and Byte Order

1-6

intgl® INTRODUCTION TO THE 386™ SX MICROPROCESSOR

NOTE

Depending upon the values of reserved register bits will make software dependent upon
the unspecified manner in which the 386 SX microprocessor handles these bits.
Depending upon reserved values risks incompatibility with future processors. AVOID
ANY SOFTWARE DEPENDENCE UPON THE STATE OF RESERVED 386 SX
MICROPROCESSOR REGISTER BITS.

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for
the 386 SX microprocessor is used. In this subset, an instruction has the following
format:

label: mnemonic argumentl, argument2, argument3

where:
e A label is an identifier which is followed by a colon.

e A mnemonic is a reserved name for a class of instruction opcodes which have the
same function.

e The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form
of either literals or identifiers for data items. Operand identifiers are either reserved
names of registers or are assumed to be assigned to data items declared in another
part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand
is the source and the left operand is the destination. Some assembly languages put the
source and destination in reverse order.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand.

1.3.4 Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the char-
acter H. A hexadecimal digit is a character from the set (0, 1, 2, 3,4, 5,6,7, 8,9, A, B,
C, D, E, F). A leading zero is added if the number would otherwise begin with one of the
digits A-F. For example, OFH is equivalent to the decimal number 15.

1-7

intgl® INTRODUCTION TO THE 386™ SX MICROPROCESSOR

1.3.5 Segmented Addressing

Intel processors use byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte number is used
to address memory. The memory which can be addressed with this number is called an
address space.

Intel processors also support segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a
program can keep its code (instructions) and stack in separate segments. Code addresses
would always refer to the code space, and stack addresses would always refer to the stack
space. An example of the notation used to show segmented addresses is shown below.

CS:EIP

This example refers to a byte within the code segment. The byte number is held in the
EIP register.

1.3.6 Exceptions

An exception is an event which occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. There are several different types of
exceptions, and some of these types may provide error codes. An error code reports
additional information about the error. Error codes are produced only for some excep-
tions. An example of the notation used to show an exception and error code is shown
below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code is
zero, as shown below.

#PF(0)

1-8

Part |
Applications Programming

Basic Programming Model 2

CHAPTER 2
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment of the 386™ SX micro-
processor as seen by assembly language programmers. The chapter introduces program-
mers to those features of the Intel386™ architecture which directly affect the design and
implementation of application programs.

The basic programming model consists of these parts:
¢ Memory organization

e Data types

e Registers

e Instruction format

e Operand selection

e Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers may choose to make I/O instructions available to applications or may choose to
reserve these functions for the operating system. For this reason, the I/O features of the
386 SX microprocessor are discussed in Part II.

This chapter contains a section for each feature of the architecture normally visible to
applications.

2.1 MEMORY ORGANIZATION

The memory on the bus of a 386 SX microprocessor is called physical memory. It is
organized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called a
physical address, which ranges from zero to a maximum of 2%*—1 (16 megabytes). Mem-
ory management is a hardware mechanism for making reliable and efficient use of mem-
ory. When memory management is used, programs do not directly address physical
memory. Programs address a memory model, called virtual memory.

Memory management consists of segmentation and paging. Segmentation is a mecha-
nism for providing multiple, independent address spaces. Paging is a mechanism to sup-
port a model of a large address space in RAM using a small amount of RAM and some
disk storage. Either or both of these mechanisms may be used. An address issued by a
program is a logical address. Segmentation hardware translates a logical address into an
address for a continuous, unsegmented address space, called a linear address. Paging
hardware translates a linear address into a physical address.

Memory may appear as a single, addressable space like physical memory. Or, it may
appear as one or more independent memory spaces, called segments. Segments can be
assigned specifically for holding a program’s code (instructions), data, or stack. In fact, a
single program may have up to 16,383 segments of different sizes and kinds. Segments

2-1

intel® BASIC PROGRAMMING MODEL

can be used to increase the reliability of programs and systems. For example, a pro-
gram’s stack can be put into a different segment than its code to prevent the stack from
growing into the code space and overwriting instructions with data.

Whether or not multiple segments are used, logical addresses are translated into linear
addresses by treating the address as an offset into a segment. Each segment has a seg-
ment descriptor, which holds its base address and size limit. If the offset does not exceed
the limit, and no other condition exists which would prevent reading the segment, the
offset and base address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if
bit 31 of the CRO register is clear (the CRO register is discussed in Chapter 4). This
register bit controls whether paging is used or not used. If the bit is set, the paging
hardware is used to translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks of 4K bytes, called pages. The logical address space is
mapped into the linear address space, which is mapped into some number of pages. A
page may be in memory or on disk. When a logical address is issued, it is translated into
an address for a page in memory, or an exception is issued. An exception gives the
operating system a chance to read the page from disk and update the page mapping. The
program which generated the exception then can be restarted without generating an
exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers. If paging is used, it is normally invisible to the application
programmer. It only becomes visible when there is an interaction between the applica-
tion program and the paging algorithm used by the operating system. When all of the
pages in memory are used, the operating system uses its paging algorithm to decide
which memory pages should be sent to disk. All paging algorithms (except random algo-
rithms) have some kind of worst-case behavior which may be exercised by some kinds of
application programs.

The architecture of the 386 SX microprocessor gives designers the freedom to choose a
different memory model for each program, even when more than one program is running
at the same time. The model of memory organization can range between the following
extremes:

e A “flat” address space where the code, stack, and data spaces are mapped to the
same linear addresses. To the greatest extent possible, this eliminates segmentation
by allowing any type of memory reference to access any type of data.

o A segmented address space with separate segments for the code, data, and stack
spaces. As many as 16,383 linear address spaces of up to 4 gigabytes each can be used.

Both models can provide memory protection. Models intermediate between these ex-
tremes also can be chosen. The reasons for choosing a particular memory model and the
manner in which system programmers implement a model are discussed in Part II—
System Programming.

2-2

intgl” BASIC PROGRAMMING MODEL

2.1.1 Unsegmented or “Flat” Model

The simplest memory model is the flat model. Although there isn’t a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory opera-
tions to refer to the same memory space.

In a flat model, segments may cover the entire 16 megabyte range of physical addresses,
or they may cover only those addresses which are mapped to physical memory. The
advantage of the smaller address space is it provides a minimum level of hardware
protection against software bugs; an exception will occur if any logical address refers to
an address for which no memory exists.

2.1.2 Segmented Model

In a segmented model of memory organization, the logical address space consists of as
many as 16,383 segments of up to 4 gigabytes each, or a total as large as 2*° bytes (64
terabytes). The processor maps this 64 terabyte logical address space onto the physical
address space (up to 16 megabytes) by the address translation mechanism described in
Chapter 5. Application programmers may ignore the details of this mapping. The advan-
tage of the segmented model is that offsets within each address space are separately
checked and access to each segment can be individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 2-1).

1. A segment selector, which is a 16-bit field which identifies a segment.
2. An offset, which is a 32-bit byte address within a segment.

The processor uses the segment selector to find the linear address of the beginning of
the segment, called the base address. Programs access memory using fixed offsets from
this base address, so an object-code module may be loaded into memory and run without
changing the addresses it uses (dynamic linking). The size of a segment is defined by the
programmer, so a segment can be exactly the size of the module it contains.

2.2 DATA TYPES

Bytes, words, and doublewords are the principal data types (see Figure 2-2). A byte is
eight bits. The bits are numbered 0 through 7, bit 0 being the least significant bit (LSB).

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits.
The bits of a word are numbered from 0 through 15, bit 0 again being the least signifi-
cant bit. The byte containing bit 0 of the word is called the low byte; the byte containing
bit 15 is called the high byte. On the 386 SX microprocessor, the low byte is stored in the
byte with the lower address. The address of the low byte also is the address of the word.
The address of the high byte is used only when the upper half of the word is being
accessed separately from the lower half.

2-3

intel® BASIC PROGRAMMING MODEL

-
OPERAND
OFFSET WITHIN SEGMENT B
SEGMENT SELECTOR~—/
15 0
[SEGMENT SELECTOR]
31 0
OFFSET WITHIN SEGMENT j
240331

Figure 2-1. Segmented Addressing

A doubleword is four bytes occupying any four consecutive addresses. A doubleword
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again
being the least significant bit. The word containing bit 0 of the doubleword is called the
low word; the word containing bit 31 is called the high word. The low word is stored in
the two bytes with the lower addresses. The address of the lowest byte is the address of
the doubleword. The higher addresses are used only when the upper word is being
accessed separately from the lower word, or when individual bytes are being accessed.
Figure 2-3 illustrates the arrangement of bytes within words and doublewords.

Note that words do not need to be aligned at even-numbered addresses and double-
words do not need to be aligned at addresses evenly divisible by four. This allows maxi-
mum flexibility in data structures (e.g., records containing mixed byte, word, and
doubleword items) and efficiency in memory utilization. Because the 386 SX micropro-
cessor has a 16-bit data bus, communication between processor and memory takes place

2-4

BASIC PROGRAMMING MODEL

7 0
BYTE BYTE
15 7 0
| weuevre | owevie | woro
address n+ 1 address n
31 23 15 7 0
| HIGH WORD | LOW WORD] oouseworo
address n+3 address n+2 address + 1 address n
240331
Figure 2-2. Fundamental Data Types
MEMORY
BYTE VALUES
ADDRESS
E
D 7A
c FE WORD AT DOUBLE WORD AT
ADDRESS B ADDRESS A
B 06 CONTAINS FE06 CONTAINS 7AFE0636
A 36
BYTE AT ADDRESS
9 1F 9 CONTAINS 1F
8
7 23 WORD AT ADDRESS 6
6 B CONTAINS 2308
5
4
3 74 WORD AT ADDRESS 2
p CONTAINS 74CB
2 WORD AT ADDRESS 1
1 31 CONTAINS CB31
0
NOTE: ALL VALUES IN HEXADECIMAL
240331

Figure 2-3. Bytes, Words, and Doublewords in Memory

2-5

intel”

BASIC PROGRAMMING MODEL

as word transfers aligned to even addresses; the processor converts word transfers
aligned to odd addresses into multiple transfers. These unaligned operations reduce
speed by requiring extra bus cycles. For maximum speed, data structures (especially
stacks) should be designed so, whenever possible, word operands are aligned to even

addresses.

Although bytes, words, and doublewords are the fundamental types of operands, the
processor also supports additional interpretations of these operands. Specialized instruc-
tions recognize the following data types (shown in Figure 2-4):

Integer:

Ordinal:

Near Pointer:

Far Pointer:

String:

Bit field:

Bit string:

BCD:

A signed binary number held in a 32-bit doubleword, 16-bit word, or
8-bit byte. All operations assume a two’s complement representation.
The sign bit is located in bit 7 in a byte, bit 15 in a word, and bit 31 in a
doubleword. The sign bit is set for negative integers, clear for positive
integers and zero. The value of an 8-bit integer is from —128 to +127;
a 163-1bit integer from —32,768 to +32,767; a 32-bit integer from —2*' to
+27 —1.

An unsigned binary number contained in a 32-bit doubleword, 16-bit
word, or 8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a
16-bit ordinal from 0 to 65,535; a 32-bit ordinal from 0 to 232 —1.

A 32-bit logical address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for
references within a segment in a segmented model.

A 48-bit logical address consisting of a 16-bit segment selector and a
32-bit offset. Far pointers are used in a segmented memory model to
access other segments.

A contiguous sequence of bytes, words, or doublewords. A string may
contain from zero to 2** —1 bytes (4 gigabytes).

A contiguous sequence of bits. A bit field may begin at any bit position
of any byte and may contain up to 32 bits.

A contiguous sequence of bits. A bit string may begin at any bit position
of any byte and may contain up to 2** —1 bits.

A representation of a binary-coded decimal (BCD) digit in the range 0
through 9. Unpacked decimal numbers are stored as unsigned byte
quantities. One digit is stored in each byte. The magnitude of the num-
ber is the binary value of the low-order half-byte; values 0 to 9 are valid
and are interpreted as the value of a digit. The high-order half-byte
must be zero during multiplication and division; it may contain any
value during addition and subtraction.

2-6

intel® BASIC PROGRAMMING MODEL

Packed BCD: A representation of binary-coded decimal digits, each in the range 0 to
9. One digit is stored in each half-byte, two digits in each byte. The digit
in bits 4 to 7 is more significant than the digit in bits 0 to 3. Values 0 to
9 are valid for a digit.

2.3 REGISTERS

The 386 SX microprocessor contains sixteen registers which may be used by an applica-
tion programmer. As Figure 2-5 shows, these registers may be grouped as:

1. General Registers. These eight 32-bit registers are free for use by the programmer.
Table 2-1 shows the names of these registers.

2. Segment registers. These registers hold segment selectors associated with different
forms of memory access. For example, there are separate segment registers for ac-
cess to code and stack space. These six registers determine, at any given time, which
segments of memory are currently available.

3. Status and control registers. These registers report and allow modification of the
state of the 386 SX microprocessor.

2.3.1 General Registers

The general registers; are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI,
and EDI. These registers are used to hold operands for logical and arithmetic opera-
tions. They also may be used to hold operands for address calculations (except the ESP
register cannot be used as an index operand). The names of these registers are derived
from the names of the general registers on the 8086 processor, the AX, BX, CX, DX,
BP, SP, SI, and DI registers. As Figure 2-5 shows, the low 16 bits of the general registers
can be referenced using these names.

Operations which specify a general register as a destination can change part or all of the
register. If a destination register has more bytes than the operand, the upper part of the
register is left unchanged. Instructions which use a 16-bit general register require the
16-bit operand size prefix. The prefix is a byte with the value 67H placed before the rest
of the instruction. Instruction opcodes use a single bit to select either 8- or 32-bit oper-
ands. Selection of 16-bit operands is infrequent enough that an instruction prefix is a
more efficient instruction encoding than one in which an additional bit in the opcode is
used. This, together with byte alignment of instructions, provides greater code density
than with word-aligned instruction sets. The 386 SX microprocessor has many one-, two-,
and three-byte instructions which would be two- and four-byte instructions in a word-
aligned instruction set.

Each byte of the 16-bit registers AX, BX, CX, and DX also have other names. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low
bytes).

All of the general-purpose registers are available for address calculations and for the

results of most arithmetic and logical operations; however, a few instructions assign
specific registers to hold operands. For example, string instructions use the contents of

2-7

BASIC PROGRAMMING MODEL

m BYTE INTEGER

3 7-BIT MAGNITUDE
1-BIT SIGN

15-BIT MAGNITUDE

1-BIT SIGN

31 0
I'I'I"I'[TI'I'I'ITTTTI"ITTI'I'l'I'TT[Tﬂ'[‘ITI] DOUBLEWORD INTEGER
[> 31-BIT MAGNITUDE
1-BIT SIGN
- 7 0

8-BIT MAGNITUDE

[T BYTE ORDINAL
e
0

16-BIT MAGNITUDE

e
0

32-BIT MAGNITUDE

rnTTITlTITI']'I'ITI'IT‘"nTTFTﬂTTI" DOUBLEWORD ORDINAL
]

0
[m1111'|111111'q BCD INTEGER

> < 4-BIT DIGIT PER BYTE
4-BIT DIGIT PER BYTE

0
rlTTTlTITl'ITrlTI] PACKED BCD INTEGER

3 < 4-BIT PER HALF-BYTE
4-BIT PER HALF-BYTE

32-BIT OFFSET

rrrrrrr111111'm]111'rm'|'n'rrrrl] NEAR POINTER
f————>

R LA LRI LAY LA LAL) LA LAL) R LA I LA FAR POINTER
32-BIT OFFSET
< » 16-BIT SELECTOR
LA AL RS LAY LRI LAL) LRI LAL R AL R LA BIT FIELD
— UP TO 32 BITS

II““”I”Il'”l""”'l ceoe m BIT STRING

UP TO 128 MEGABITS

[T, [BYTE STRING
=]

UP TO 16 MEGABYTES

240331

Figure 2-4. Data Types

2-8

BASIC PROGRAMMING MODEL

GENERAL REGISTERS

0 16-BIT 32-BIT

31 23 15 7
AK AL AX
DH DL DX
CH CL CX
BK BL BX

BP

sl

SP

31

15

SEGMENT REGISTERS

cs

SS

DS

ES

FS

GS

STATUS AND CONTROL REGISTERS

FLAGS

EAX
EDX
ECX
EBX

EBP
ESI

EDI
ESP

240331

Figure 2-5. Application Register Set

the ECX, ESI, and EDI registers as operands. By assigning specific registers for these
functions, the instruction set can be encoded more compactly. The instructions using
specific registers include: double-precision multiply and divide, 1/O, strings, translate,
loop, variable shift and rotate, and stack operations.

2.3.2 Segment Registers

Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models is the subject of Part I1—
System Programming.

intel® BASIC PROGRAMMING MODEL

The segment registers contain 16-bit segment selectors, which index into tables in mem-
ory. The tables hold the base address for each segment, as well as other information
regarding memory access. An unsegmented model is created by mapping each segment
to the same place in physical memory, as shown in Figure 2-6.

At any instant, up to six segments of memory are immediately available. The segment
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments.
Each register is associated with a particular kind of memory access (code, data, or stack).
Each register specifies a segment, from among the segments used by the program, which
is used for its kind of access (see Figure 2-7). Other segments can be used by loading
their segment selectors into the segment registers.

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The 386 SX microprocessor fetches instruc-
tions from the code segment, using the contents of the EIP register as an offset into the
segment. The CS register is loaded as the result of interrupts, exceptions, and instruc-
tions which transfer control between segments (e.g., the CALL and JMP instructions).

Before a procedure is called, a region of memory needs to be allocated for a stack. The
stack is used to hold the return address, parameters passed by the calling routine, and
temporary variables allocated by the procedure. All stack operations use the SS register
to find the stack segment. Unlike the CS register, the SS register can be loaded explic-
itly, which permits application programs to set up stacks.

The DS, ES, FS, and GS registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of
data structures. For example, separate data segments can be created for the data struc-
tures of the current module, data exported from a higher-level module, a dynamically-
created data structure, and data shared with another program. If a bug causes a program
to run wild, the segmentation mechanism can limit the damage to only those segments
allocated to the program. An operand within a data segment is addressed by specifying
its offset either in an instruction or a general register.

Table 2-1. Register Names

8-Bit ' 16-Bit 32-Bit
AL AX EAX
AH
BL BX EBX
BH
cL cX ECX
CH
DL DX EDX
DH
S| ESl
DI EDI
BP EBP
SP ESP

2-10

intgl” BASIC PROGRAMMING MODEL

DIFFERENT LOGICAL SEGMENTS ONE PHYSICAL ADDRESS SPACE

\J

240331

Figure 2-6. An Unsegmented Memory

Depending on the structure of data (i.e., the way data is partitioned into segments), a
program may require access to more than four data segments. To access additional
segments, the DS, ES, FS, and GS registers can be loaded by an application program
during execution. The only requirement is to load the appropriate segment register be-
fore accessing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit
offset is added to the segment’s base address. Once a segment is selected (by loading the
segment selector into a segment register), an instruction only needs to specify the offset.
Simple rules define which segment register is used to form an address when only an
offset is specified.

2.3.3 Stack Implementation
Stack operations are supported by three registers:

1. Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a
system is limited only by the maximum number of segments. A stack may be up to 4
gigabytes long, the maximum size of a segment on the 386 SX microprocessor. One
stack is available at a time—the stack whose segment selector is held in the SS
register. This is the current stack, often referred to simply as “the” stack. The SS
register is used automatically by the processor for all stack operations.

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack
(TOS) in the current stack segment. It is used by PUSH and POP operations, sub-
routine calls and returns, exceptions, and interrupts. When an item is pushed onto

2-11

intgl® BASIC PROGRAMMING MODEL

DIFFERENT LOGICAL SEGMENTS DIFFERENT ADDRESS SPACES
IN PHYSICAL MEMORY

CS
SS
DS
ES
FS|

CODE
SEGMENT

Y

STACK
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

240331

Figure 2-7. A Segmented Memory

the stack (see Figure 2-8), the processor decrements the ESP register, then writes
the item at the new TOS. When an item is popped off the stack, the processor
copies it from the TOS, then increments the ESP register. In other words, the stack
grows down in memory toward lesser addresses.

. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to
access data structures passed on the stack. For example, on entering a subroutine
the stack contains the return address and some number of data structures passed to
the subroutine. The subroutine adds to the stack whenever it needs to create space
for temporary local variables. As a result, the stack pointer moves around as tempo-
rary variables are pushed and popped. If the stack pointer is copied into the base
pointer before anything is pushed on the stack, the base pointer can be used to
reference data structures with fixed offsets. If this is not done, the offset to access a
particular data structure would change whenever a temporary variable is allocated
or de-allocated.

When the EBP register is used to address memory, the current stack segment is
selected (i.e., the SS segment). Because the stack segment does not have to be

2-12

intel” BASIC PROGRAMMING MODEL

STACK SEGMENT

31 0

BOTTOM OF STACK
(INITIAL ESP VALUE)

o : POP
s + TOP OF

— ' ‘ = STACK
PUSH

ESP

240331

Figure 2-8. Stacks

specified, instruction encoding is more compact. The EBP register also can be used
to address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided which au-
tomatically set up the EBP register for convenient access to variables.

2.3.4 Flags Register

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register
named EFLAGS. Figure 2-9 defines the bits within this register. The flags control cer-
tain operations and indicate the status of the 386 SX microprocessor.

The flags may be considered in three groups: status flags, control flags, and system flags.
Discussion of the system flags occurs in Part II.

2.3.4.1 STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the
execution of arithmetic instructions. The MOV instruction does not affect these flags.
Conditional jumps and subroutine calls allow a program to sense the state of the status
flags and respond to them. For example, when the counter controlling a loop is decre-
mented to zero, the state of the ZF flag changes, and this change can be used to sup-
press the conditional jump to the start of the loop.

The status flags are shown in Table 2-2.
2.3.4.2 CONTROL FLAG
The control flag DF of the EFLAGS register controls string instructions.

2-13

BASIC PROGRAMMING MODEL

31

16-BIT FLAGS REGISTER
A

23 15 7

00000000000000000 Vk b I b1 1 R 1 4 4 N el

o

o
-

PL |F|F|F

VIRTUAL 8086 MODE —XJ |
RESUME FLAG— X

NESTED TASK FLAG= X ~———d
170 PRIVILEGE LEVEL=— X ————
OVERFLOW=—S
DIRECTION FLAG— € ——————————
INTERRUPT ENABLE—X

AUXILIARY CARRY — S

TRAP FLAG—S
SIGN FLAG—S
ZERO FLAG—S

PARITY FLAG—S
CARRY FLAG —S

S = STATUS FLAG, C = CONTROL FLAG, X = SYSTEM FLAG

NOTE: O OR 1 INDICATES INTEL RESERVED. DO NOT DEFINE.

240331

Figure 2-9. EFLAGS Register

Table 2-2. Status Flags

Name Purpose Condition Reported
OF overflow Result exceeds positive or negative limit of number range
SF sign Result is negative (less than zero)
ZF zero Result is zero
AF auxiliary carry Carry out of bit position 3 (used for BCD)
PF parity Low byte of result has even parity (even number of set bits)
CF carry flag Carry out of most significant bit of result

DF (Direction Flag, bit 10)

Setting the DF flag causes string instructions to auto-decrement, that is, to process
strings from high addresses to low addresses. Clearing the DF flag causes string instruc-
tions to auto-increment, or to process strings from low addresses to high addresses.

2.3.4.3 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset into the current code segment
for the next instruction to execute. The instruction pointer is not directly available to the
programmer; it is controlled implicitly by control-transfer instructions (jumps, returns,
etc.), interrupts, and exceptions.

intgl” BASIC PROGRAMMING MODEL

2.4 INSTRUCTION FORMAT

The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these oper-
ands. If an operand is located in memory, the instruction also must select, explicitly or
implicitly, the segment which contains the operand.

An instruction may have various parts and formats. The exact format of instructions is
shown in Appendix B; the parts of an instruction are described below. Of these parts,
only the opcode is always present. The other parts may or may not be present, depending
on the operation involved and the location and type of the operands. The parts of an
instruction, in order of occurrence, are listed below:

o Prefixes: one or more bytes preceding an instruction which modify the operation of
the instruction. The following prefixes can be used by application programs:

1. Segment override—explicitly specifies which segment register an instruction
should use, instead of the default segment register.

2. Address size —switches between 16- and 32-bit addressing. Either size can be the
default; this prefix selects the non-default size.

3. Operand size —switches between 16- and 32-bit data size. Either size can be the
default; this prefix selects the non-default size.

4. Repeat—used with a string instruction to cause the instruction to be repeated
for each element of the string.

e Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

e Register specifier: an instruction may specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as the
addressing-mode specifier.

¢ Addressing-mode specifier: when present, specifies whether an operand is a register
or memory location; if in memory, specifies whether a displacement, a base register,
an index register, and scaling are to be used.

e SIB (scale, index, base) byte: when the addressing-mode specifier indicates an index
register will be used to calculate the address of an operand, a SIB byte is included in
the instruction to encode the base register, the index register, and a scaling factor.

o Displacement: when the addressing-mode specifier indicates a displacement will be
used to compute the address of an operand, the displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is
used in the common case when the displacement is sufficiently small. The processor
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign.

e Immediate operand: when present, directly provides the value of an operand. Imme-
diate operands may be bytes, words, or doublewords. In cases where an 8-bit imme-
diate operand is used with a 16- or 32-bit operand, the processor extends the eight-bit
operand to an integer of the same sign and magnitude in the larger size. In the same
way, a 16-bit operand is extended to 32-bits.

2-16

intel” BASIC PROGRAMMING MODEL

2.5 OPERAND SELECTION

An instruction acts on zero or more operands. An example of a zero-operand instruction
is the NOP instruction (no operation). An operand can be held in any of these places:

o In the instruction itself (an immediate operand).

o In a register (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP,
or EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the
case of 8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers;
or the EFLAGS register for flag operations). Use of 16-bit register operands requires
use of the 16-bit operand size prefix (a byte with the value 67H preceding the
instruction).

¢ In memory.

e At an I/O port.

Immediate operands and operands in registers can be accessed more rapidly than oper-
ands in memory because memory operands require extra bus cycles. Register and imme-
diate operands are available on-chip, the latter because they are prefetched as part of
interpreting the instruction.

Of the instructions which have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

Implicit operand: AAM

By definition, AAM (ASCII adjust for multiplication) operates on the contents of
the AX register.

Explicit operand: XCHG EAX, EBX
The operands to be exchanged are encoded in the instruction with the opcode.
Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the
stack (the implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for exam-
ple, update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions,
such as MOV, ADD, and XOR, generally overwrite one of the two participating oper-
ands with the result. This is the difference between the source operand (the one unaf-
fected by the operation) and the destination operand (the one overwritten by the result).

2-16

intgl” BASIC PROGRAMMING MODEL

For most instructions, one of the two explicitly specified operands —either the source or
the destination—can be either in a register or in memory. The other operand must be in
a register or it must be an immediate source operand. This puts the explicit two-operand
instructions into the following groups:

e Register to register

e Register to memory

e Memory to register

o Immediate to register

e Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data
from memory to memory. Both operands of some string instructions are in memory and

are specified implicitly. Push and pop stack operations allow transfer between memory
operands and the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from the ECX register or supplied as an immediate.
Other three-operand instructions, such as the string instructions when used with a repeat
prefix, take all their operands from registers.

2.5.1 Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of
the operands. Such an operand is called an immediate operand. It may be a byte, word,
or doubleword. For example:

SHR PATTERN, @&

One byte of the instruction holds the value 2, the number of bits by which to shift the
variable PATTERN.

TEST PATTERN, BFFFFBOFFH

A doubleword of the instruction holds the mask which is used to test the variable
PATTERN.

ImuL CX, MEMWORD, 3
A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one
byte shorter than with the other general registers.

2-17

intel” BASIC PROGRAMMING MODEL

2.5.2 Register Operands

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX,
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI,
DI, SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL,
or DL). An instruction which uses 16-bit register operands must use the 16-bit operand
size prefix (a byte with the value 67H before the remainder of the instruction).

The 386 SX microprocessor has instructions for referencing the segment registers (CS,
DS, ES, SS, FS, and GS). These instructions are used by application programs only if
segmentation is being used.

The 386 SX microprocessor also has instructions for changing the state of individual
flags in the EFLAGS register. Instructions have been provided for setting and clearing
flags which often need to be accessed. The other flags, which are not accessed so often,
can be changed by pushing the contents of the EFLAGS register on the stack, making
changes to it while it’s on the stack, and popping it back into the register.

2.5.3 Memory Operands

Instructions with explicit operands in memory must reference the segment containing
the operand and the offset from the beginning of the segment to the operand. Segments
are specified using a segment-override prefix, which is a byte placed at the beginning of
an instruction. If no segment is specified, simple rules assign the segment by default. The
offset is specified in one of the following ways:

1. Most instructions which access memory contain a byte for specifying the addressing
method of the operand. The byte, called the modR/M byte, comes after the opcode
and specifies whether the operand is in a register or in memory. If the operand is in
memory, the address is calculated from a segment register and any of the following
values: a base register, an index register, a scaling factor, and a displacement. When
an index register is used, the modR/M byte also is followed by another byte to

specify the index register and scaling factor. This form of addressing is the most
flexible.

2. A few instructions select segments by default:

A MOV instruction with the AL or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of
the MOV instruction allows no base register, index register, or scaling factor to be
used. This form is one byte shorter than the general-purpose form.

String operations address memory in the DS segment using the ESI register, (the
MOVS, CMPS, OUTS, LODS, and SCAS instructions) or using the ES segment and
EDI register (the MOVS, CMPS, INS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the
PUSH, POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF,
POPFD, CALL, RET, IRET, and IRETD instructions, exceptions, and interrupts).

2-18

intel” BASIC PROGRAMMING MODEL

2.5.3.1 SEGMENT SELECTION

Explicit specification of a segment is optional. If a segment is not specified using a
segment-override prefix, the processor automatically chooses a segment according to the
rules of Table 2-3. (If a flat model of memory organization is used, the rules for selecting
segments are not apparent to application programs.)

Table 2-3. Default Segment Selection Rules

Segment Used .
Type of Reference Register Used Default Selection Rule
Instructions Code Segment Automatic with instruction fetch.
CS register
Stack Stack Segment All stack pushes and pops., Any memory ref-
LSS register erence which uses ESP or EBP as a base
register.
Local Data Data Segment All data references except when relative to
DS register stack or string destination.
Destination Strings E-Space Segment Destination of string instructions.
ES register

Different kinds of memory access have different default segments. Data operands usu-
ally use the main data segment (the DS segment). However, the ESP and EBP registers
are used for addressing the stack, so when either register is used, the stack segment (the
SS segment) is selected.

Segment-override prefixes are used to override the default segment selection. Segment-
override prefixes are provided for each of the segment registers. Only the following
special cases have a default segment selection which is not affected by a segment-
override prefix:

o Destination strings in string instructions use the ES segment
o Stack operands use the SS segment

o Instruction fetches use the CS segment

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION

The modR/M byte provides the most flexible form of addressing. Instructions which have
a modR/M byte after the opcode are the most common in the instruction set. For mem-
ory operands specified by a modR/M byte, the offset within the selected segment is the
sum of three components:

e A displacement
e A base register

e An index register (the index register may be multiplied by a factor of 2, 4, or 8)

2-19

intel® BASIC PROGRAMMING MODEL

The offset which results from adding these components is called an effective address.
Each of these components may have either a positive or negative value. Figure 2-10
illustrates the full set of possibilities for modR/M addressing.

The displacement component, because it is encoded in the instruction, is useful for
relative addressing by fixed amounts, such as:

o Location of simple scalar operands.

o Beginning of a statically allocated array.

o Offset to a field within a record.

The base and index components have similar functions. Both use the same set of general

registers. Both can be used for addressing which changes during program execution,
such as:

¢ Location of procedure parameters and local variables on the stack.

o The beginning of one record among several occurrences of the same record type or in
an array of records.

e The beginning of one dimension of multiple dimension array.

o The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following
respects:

e The ESP register cannot be used as an index register.

e When the ESP or EBP register is used as the base, the SS segment is the default

selection. In all other cases, the DS segment is the default selection.

The scaling factor permits efficient indexing into an array when the array elements are 2,
4, or 8 bytes. The scaling of the index register is done in hardware at the time the
address is evaluated. This eliminates an extra shift or multiply instruction.

SEGMENT + BASE + (INDEX ¥ SCALE) + DISPLACEMENT
== EAX
cs EAX ECX !
ss ECX EDX
ss EDX EDX 2 NO DISPLACEMENT
DS >+< EBX >+ * + 8-BIT DISPLACEMENT
csp 4 32-BIT DISPLACEMENT
FS EBP
EBP
s ESI
ESi Esl 8
. EDI
240331

Figure 2-10. Effective Address Computation

2-20

. ®
intel BASIC PROGRAMMING MODEL

The base, index, and displacement components may be used in any combination; any of
these components may be null. A scale factor can be used only when an index also is
used. Each possible combination is useful for data structures commonly used by pro-
grammers in high-level languages and assembly language. Suggested uses for some com-
binations of address components are described below.

DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is
used to access a statically allocated scalar operand. A byte, word, or doubleword dis-
placement can be used.

BASE

The offset to the operand is specified indirectly in one of the general registers, as for
“based” variables.

BASE +DISPLACEMENT
A register and a displacement can be used together for two distinct purposes:

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displace-
ment component encodes the offset of the beginning of the array. The register holds
the results of a calculation to determine the offset to a specific element within the
array.

2. Access a field of a record. The base register holds the address of the beginning of
the record, while the displacement is an offset to the field.

An important special case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame created when a sub-
routine is entered. In this case, the EBP register is the best choice for the base register,
because it automatically selects the stack segment. This is a compact encoding for this
common function.

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is
2, 4, or 8 bytes. The displacement addresses the beginning of the array, the index register
holds the subscript of the desired array element, and the processor automatically con-
verts the subscript into an index by applying the scaling factor.

BASE +INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement
holds the address of the beginning of the array) or one of several instances of an array of
records (the displacement is an offset to a field within the record).

2-21

intel” BASIC PROGRAMMING MODEL

BASE + (INDEX * SCALE) +DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the ele-
ments of the array are 2, 4, or 8 bytes in size.

2.6 INTERRUPTS AND EXCEPTIONS

The 386 SX microprocessor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events which are responses of the processor to certain
conditions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily sus-
pend the program being run in order to run a program of higher priority. The major
distinction between these two kinds of interrupts is their origin. An exception is always
reproducible by re-executing the program which caused the exception, while an interrupt
can have a complex, timing-dependent relationship with programs.

Application programmers normally are not concerned with handling exceptions or inter-
rupts. The operating system, monitor, or device driver handles them. More information
on interrupts for system programmers may be found in Chapter 9. Certain kinds of
exceptions, however, are relevant to application programming, and many operating sys-
tems give application programs the opportunity to service these exceptions. However,
the operating system defines the interface between the application program and the
exception mechanism of the 386 SX microprocessor. Table 2-4 lists the interrupts and
exceptions.

o A divide-error exception; results when the DIV or IDIV instruction is executed with a
zero denominator or when the quotient is too large for the destination operand. (See
Chapter 3 for more information on the DIV and IDIV instructions.)

e A debug exception may be sent back to an application program if it results from the
TF (trap) flag.

e A breakpoint exception results when an INT3 instruction is executed. This instruction
is used by some debuggers to stop program execution at specific points.

¢ An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction.

¢ A bounds-check exception results when the BOUND instruction is executed with an
array index which falls outside the bounds of the array. See Chapter 3 for a discussion
of the BOUND instruction.

e The coprocessor-not-available exception occurs if the program contains instructions
for a coprocessor, but no coprocessor is present in the system.

e A coprocessor-error exception is generated when a coprocessor detects an illegal
operation.

2-22

intel” BASIC PROGRAMMING MODEL

Table 2-4. Exceptions and Interrupts

Vector Number Description
0 Divide Error
1 Debugger Call
2 NMI Interrupt
3 Breakpoint
4 INTO-detected Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Coprocessor Not Available
8 Double Fault
9 Coprocessor Segment Overrun
10 Invalid Task State Segment
11 Segment Not Present
12 Stack Exception
13 General Protection
15 (Intel reserved. Do not use.)
16 Coprocessor Error
17-31 (Intel reserved. Do not use.)
32-255 Maskable Interrupts

The INT instruction generates an interrupt whenever it is executed; the processor treats
this interrupt as an exception. Its effects (and the effects of all other exceptions) are
determined by exception handler routines in the application program or the operating
system. The INT instruction itself is discussed in Chapter 3. See Chapter 9 for a more
complete description of exceptions.

Exceptions caused by segmentation and paging are handled differently than interrupts.
Normally, the contents of the program counter (EIP register) are saved on the stack
when an exception or interrupt is generated. But exceptions resulting from segmentation
and paging restore the contents of some processor registers to their state before interpre-
tation of the instruction began. The saved contents of the program counter address the
instruction which caused the exception, rather than the instruction after it. This lets the
operating system fix the exception-generating condition and restart the program which
generated the exception. This mechanism is completely transparent to the program.

2-23

Application Programming

CHAPTER 3
APPLICATION PROGRAMMING

This chapter is an overview of the instructions which programmers can use to write
application software for the 386™ SX microprocessor. The instructions are grouped by
categories of related functions.

The instructions not discussed in this chapter normally are used only by operating-
system programmers. Part II describes these instructions.

These instruction descriptions are for the 386 SX microprocessor in protected mode.
The instruction set in this mode is a 32-bit superset of the instruction set used in Intel
16-bit processors. In real-address mode or virtual-86 mode, the 386 SX microprocessor
appears to have the architecture of a fast, enhanced 16-bit processor with instruction set
extensions. See Chapters 13, 14, 15, and 16 for more information about running the
16-bit instruction set. All of the instructions described in this chapter are available in all
modes.

The instruction set description in Chapter 17 contains more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which
may be generated.

3.1 DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for moving bytes, words, or doublewords
between memory and the processor registers. They come in three types:

1. General-purpose data movement instructions.

2. Stack manipulation instructions.

3. Type-conversion instructions.

3.1.1 General-Purpose Data Movement Instructions

MOV (Move) transfers a byte, word, or doubleword from the source operand to the
destination operand. The MOV instruction is useful for transferring data along any of
these paths:

e To a register from memory
e To memory from a register
o Between general registers

e Immediate data to a register

e Immediate data to memory

3-1

intel” APPLICATION PROGRAMMING

The MOV instruction cannot move from memory to memory or from a segment register
to a segment register. Memory-to-memory moves can be performed, however, by the
string move instruction MOVS. A special form of the MOV instruction is provided for
transferring data between the AL or EAX registers and a location in memory specified
by a 32-bit offset encoded in the instruction. This form of the instruction does not allow
a segment override, index register, or scaling factor to be used. The encoding of this
form is one byte shorter than the encoding of the general-purpose MOV instruction. A
similar encoding is provided for moving an 8-, 16-, or 32-bit immediate into any of the
general registers.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place
of three MOV instructions. It does not require a temporary location to save the contents
of one operand while the other is being loaded. The XCHG instruction is especially
useful for implementing semaphores or similar data structures for process
synchronization.

The XCHG instruction can swap two byte operands, two word operands, or two double-
word operands. The operands for the XCHG instruction may be two register operands,
or a register operand and a memory operand. When used with a memory operand,
XCHG automatically activates the LOCK signal. (See Chapter 11 for more information
on bus locking.)

3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP register), then copies the source oper-
and to the top of stack (see Figure 3-1). The PUSH instruction often is used to place
parameters on the stack before calling a procedure. Inside a procedure, it can be used to
reserve space on the stack for temporary variables. The PUSH instruction operates on
memory operands, immediate operands, and register operands (including segment regis-
ters). A special form of the PUSH instruction is available for pushing a 32-bit general
register on the stack. This form has an encoding which is one byte shorter than the
general-purpose form.

PUSHA (Push All Registers) saves the contents of the eight general registers on the
stack (see Figure 3-2). This instruction simplifies procedure calls by reducing the number
of instructions required to save the contents of the general registers. The processor
pushes the general registers on the stack in the following order: EAX, ECX, EDX, EBX,
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the
PUSHA instruction; is reversed using the POPA instruction.

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by
the ESP register) to the destination operand, and then increments the ESP register to
point to the new top of stack. See Figure 3-3. POP moves information from the stack to
a general register, segment register, or to memory. A special form of the POP instruction
is available for popping a doubleword from the stack to a general register. This form has
an encoding which is one byte shorter than the general-purpose form.

3-2

H ®
intel APPLICATION PROGRAMMING

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD
31 0 k) 0

<««— ESP

DOUBLEWORD <«— ESP

240331

Figure 3-1. PUSH Instruction

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION
31 0 31 0

«—— ESP

EAX

ECX

EDX

EBX

OLD ESP

EBP

ESI
EDI -«—— ESP

240331

Figure 3-2. PUSHA Instruction

3-3

intgl” APPLICATION PROGRAMMING

BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD
31 0 31 0

-««— ESP

DOUBLEWORD ««— ESP

240331

Figure 3-3. POP Instruction

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the action of
reading the stack (popping). See Figure 3-4.

3.1.3 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit quantities (called quadwords). These instructions are especially
useful for converting signed integers, because they automatically fill the extra bits of the
larger item with the value of the sign bit of the smaller item. This results in an integer of
the same sign and magnitude, but a larger format. This kind of conversion, shown in
Figure 3-5, is called sign extension.

There are two kinds of type conversion instructions:

e The CWD, CDQ, CBW, and CWDE instructions which only operate on data in the
EAX register.

o The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word)
double the size of the source operand. The CWD instruction copies the sign (bit 15) of
the word in the AX register into every bit position in the DX register. The CDQ instruc-
tion copies the sign (bit 31) of the doubleword in the EAX register into every bit posi-
tion in the EDX register. The CWD instruction can be used to produce a doubleword
dividend from a word before a word division, and the CDQ instruction can be used to
produce a quadword dividend from a doubleword before doubleword division.

3-4

H ®
intel APPLICATION PROGRAMMING

BEFORE POPA INSTRUCTION

AFTER POPA INSTRUCTION

31 3 0
<«— ESP
EAX
ECX
EDX
EBX
IGNORED
EBP
ESI
EDI < ESP
240331
Figure 3-4. POPA Instruction
15 0
s{N|N|N{N[N|N|N|N[N|N[N|N]N|N|N]| BEFORE SIGN
EXTENSION
31 15 0
s|s|s|s|s|s|s|s|s|s|s|s|s|s|s|s|s|n|nfn]n|n|n]|n|n|n]n|n|n]n|n|n]AFTER SIGN
EXTENSION

240331

3-5

Figure 3-5. Sign Extension

intel” APPLICATION PROGRAMMING

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into
every bit position in the AX register.

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in
the AX register into every bit position in the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by using the value of the sign to fill empty positions.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by clearing the empty bit positions.

3.2 BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the 386 SX microprocessor operate on numeric data en-
coded in binary. Operations include the add, subtract, multiply, and divide as well as
increment, decrement, compare, and change sign (negate). Both signed and unsigned
binary integers are supported. The binary arithmetic instructions may also be used as
steps in arithmetic on decimal integers. Source operands can be immediate values, gen-
eral registers, or memory. Destination operands can be general registers or memory
(except when the source operand is in memory). The basic arithmetic instructions have
special forms for using an immediate value as the source operand and the AL or EAX
registers as the destination operand. These forms are one byte shorter than the general-
purpose arithmetic instructions.

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of
result which was produced. The kind of instruction used to test the flags depends on
whether the data is being interpreted as signed or unsigned. The CF flag contains infor-
mation relevant to unsigned integers; the SF and OF flags contain information relevant
to signed integers. The ZF flag is relevant to both signed and unsigned integers; the ZF
flag is set when all bits of the result are clear.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to re-
flect the size of the operation. For example, an 8-bit ADD instruction sets the CF flag if
the sum of the operands exceeds 255 (decimal).

If the integer is unsigned, the CF flag may be tested after one of these arithmetic oper-
ations to determine whether the operation required a carry or borrow to be propagated
to the next stage of the operation. The CF flag is set if a carry occurs (addition instruc-
tions ADD, ADC, AAA, and DAA) or borrow occurs (subtraction instructions SUB,
SBB, AAS, DAS, CMP, and NEG).

The INC and DEC instructions do not change the state of the CF flag. This allows the
instructions to be used to update counters used for loop control without changing the
reported state of arithmetic results. To test the arithmetic state of the counter, the ZF
flag can be tested to detect loop termination, or the ADD and SUB instructions can be
used to update the value held by the counter.

3-6

intel® APPLICATION PROGRAMMING

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the
sign bit of the result. The most significant bit (MSB) of the magnitude of a signed
integer is the bit next to the sign—bit 6 of a byte, bit 14 of a word, or bit 30 of a
doubleword. The OF flag is set in either of these cases:

e A carry was generated from the MSB into the sign bit but no carry was generated out
of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other
words, the result was greater than the greatest positive number which could be rep-
resented in two’s complement form.

e A carry was generated from the sign bit into the MSB but no carry was generated into
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG).
In other words, the result was smaller than the smallest negative number which could
be represented in two’s complement form.

These status flags are tested by either kind of conditional instruction: Jec (jump on
condition cc) or SETcc (byte set on condition).

3.2.1 Addition and Subtraction Instructions

ADD (Add Integers) replaces the destination operand with the sum of the source and
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers with Carry) replaces the destination operand with the sum of the
source and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the
ADC instruction performs the same operation as the ADD instruction. An ADC instruc-
tion is used to propagate carry when adding numbers in stages, for example when using
32-bit ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF
flags are affected.

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the
state of the CF flag. This allows the use of INC instructions to update counters in loops
without disturbing the status flags resulting from an arithmetic operation used for loop
control. The ZF flag can be used to detect when carry would have occurred. Use an
ADD instruction with an immediate value of 1 to perform an increment which updates
the CF flag. A one-byte form of this instruction is available when the operand is a
general register. The OF, SF, ZF, AF, and PF flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is
set. The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF,
ZF, AF, PF, and CF flags are affected.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus 1 if the CF flag is
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB
instruction. An SBB instruction is used to propagate borrow when subtracting numbers
in stages, for example when using 32-bit SUB instructions to subtract one quadword
operand from another. The OF, SF, ZF, AF, PF, and CF flags are affected.

3-7

intel® APPLICATION PROGRAMMING

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction pre-
serves the state of the CF flag. This allows the use of the DEC instruction to update
counters in loops without disturbing the status flags resulting from an arithmetic opera-
tion used for loop control. Use a SUB instruction with an immediate value of 1 to
perform a decrement which updates the CF flag. A one-byte form of this instruction is
available when the operand is a general register. The OF, SF, ZF, AF, and PF flags are
affected.

3.2.2 Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from the destination operand. It updates
the OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination
operands. A subsequent Jcc or SETcc instruction can test the flags.

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG
instruction is to change the sign of a two’s complement operand while keeping its mag-
nitude. The OF, SF, ZF, AF, PF, and CF flags are affected.

3.2.3 Multiplication Instructions

The 386 SX microprocessor has separate multiply instructions for unsigned and signed
operands. The MUL instruction operates on unsigned integers, while the IMUL instruc-
tion operates on signed integers as well as unsigned.

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source
operand and the AL, AX, or EAX register. If the source is a byte, the processor multi-
plies it by the value held in the AL register and returns the double-length result in the
AH and AL registers. If the source operand is a word, the processor multiplies it by the
value held in the AX register and returns the double-length result in the DX and AX
registers. If the source operand is a doubleword, the processor multiplies it by the value
held in the EAX register and returns the quadword result in the EDX and EAX regis-
ters. The MUL instruction sets the CF and OF flags when the upper half of the result is
non-zero; otherwise, the flags are cleared. The state of the SF, ZF, AF, and PF flags is
undefined.

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL
instruction has three forms:

1. A one-operand form. The operand may be a byte, word, or doubleword located in
memory or in a general register. This instruction uses the EAX and EDX registers
as implicit operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the
other may be in a general register or memory. The result replaces the general-
register operand.

3. A three-operand form; two are source operands and one is the destination. One of
the source operands is an immediate value supplied by the instruction; the second
may be in memory or in a general register. The result is stored in a general register.

3-8

intgl® APPLICATION PROGRAMMING

The immediate operand is a two’s complement signed integer. If the immediate
operand is a byte, the processor automatically sign-extends it to the size of the
second operand before performing the multiplication.

The three forms are similar in most respects:
e The length of the product is calculated to twice the length of the operands.

e The CF and OF flags are set when significant bits are carried into the upper half of
the result. The CF and OF flags are cleared when the upper half of the result is the
sign-extension of the lower half. The state of the SF, ZF, AF, and PF flags is
undefined.

However, forms 2 and 3 differ because the product is truncated to the length of the
operands before it is stored in the destination register. Because of this truncation, the
OF flag should be tested to ensure that no significant bits are lost. (For ways to test the
OF flag, see the JO, INTO, and PUSHF instructions.)

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
operands are signed or unsigned, the lower half of the product is the same. The CF and
OF flags, however, cannot be used to determine if the upper half of the result is
non-zero.

3.2.4 Division Instructions

The 386 SX microprocessor has separate division instructions for unsigned and signed
operands. The DIV instruction operates on unsigned integers, while the IDIV instruc-
tion operates on both signed and unsigned integers. In either case, a divide-error excep-
tion is generated if the divisor is zero or if the quotient is too large for the AL, AX, or
EAX register.

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX
register by the source operand. The dividend (the accumulator) is twice the size of the
divisor (the source operand); the quotient and remainder have the same size as the
divisor, as shown in Table 3-1.

Non-integral results are truncated toward 0. The remainder is always smaller than the
divisor. For unsigned byte division, the largest quotient is 255. For unsigned word divi-
sion, the largest quotient is 65,535. For unsigned doubleword division the largest quo-
tient is 2°2— 1. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined.

Table 3-1. Operands for Division

Oper_a r'|d Size Dividend Quotient Remainder
(Divisor)

Byte AX register AL register AH register

Word DX and AX AX register DX register

Doubleword EDX and EAX EAX register EDX register

3-9

H ®
intel APPLICATION PROGRAMMING

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the
source operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is +127, and the minimum
negative quotient is —128. For signed word division, the maximum positive quotient is
+32,767, and the minimum negative quotient is —32,768. For signed doubleword divi-
sion the maximum positive quotient is 2°>— 1, the minimum negative quotient is —23'.
Nonintegral results are truncated towards 0. The remainder always has the same sign as
the dividend and is less than the divisor in magnitude. The state of the OF, SF, ZF, AF,
PF, and CF flags is undefined.

3.3 DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic is performed by combining the binary arithmetic instructions (al-
ready discussed in the prior section) with the decimal arithmetic instructions. The deci-
mal arithmetic instructions are used in one of the following ways:

e To adjust the results of a previous binary arithmetic operation to produce a valid
packed or unpacked decimal result.

o To adjust the inputs to a subsequent binary arithmetic operation so that the operation
will produce a valid packed or unpacked decimal result. These instructions operate
only on the AL or AH registers. Most use the AF flag.

3.3.1 Packed BCD Adjustment Instructions

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed dec-
imal operands in the AL register. A DAA instruction must follow the addition of two
pairs of packed decimal numbers (one digit in each half-byte) to obtain a pair of valid
packed decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF,
and CF flags are affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid
packed decimal operands in the AL register. A DAS instruction must always follow the
subtraction of one pair of packed decimal numbers (one digit in each half-byte) from
another to obtain a pair of valid packed decimal digits as results. The CF flag is set if a
borrow is needed. The SF, ZF, AF, PF, and CF flags are affected. The state of the OF
flag is undefined.

3.3.2 Unpacked BCD Adjustment Instructions

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow
the addition of two unpacked decimal operands in the AL register. The CF flag is set
and the contents of the AH register are incremented if a carry occurs. The AF and CF
flags are affected. The state of the OF, SF, ZF, and PF flags is undefined.

3-10

intgl® APPLICATION PROGRAMMING

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow
the subtraction of one unpacked decimal operand from another in the AL register. The
CF flag is set and the contents of the AH register are decremented if a borrow is
needed. The AF and CF flags are affected. The state of the OF, SF, ZF, and PF flags is
undefined.

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of
two decimal numbers to produce a valid decimal result. The upper digit is left in the AH
register, the lower digit in the AL register. The SF, ZF, and PF flags are affected. The
state of the AF, OF, and CF flags is undefined.

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers
to prepare for the division of two valid unpacked decimal operands, so that the quotient
produced by the division will be a valid unpacked decimal number. The AH register
should contain the upper digit and the AL register should contain the lower digit. This
instruction adjusts the value and places the result in the AL register. The AH register
will be clear. The SF, ZF, and PF flags are affected. The state of the AF, OF, and CF
flags is undefined.

3.4 LOGICAL INSTRUCTIONS

The logical instructions have two operands. Source operands can be immediate values,
general registers, or memory. Destination operands can be general registers or memory
(except when the source operand is in memory). The logical instructions modify the state
of the flags. Short forms of the instructions are available when the an immediate source
operand is applied to a destination operand in the AL or EAX registers. The group of
logical instructions includes:

e Boolean operation instructions
e Bit test and modify instructions
e Bit scan instructions

e Rotate and shift instructions

e Byte set on condition

3.4.1 Boolean Operation Instructions
The logical operations are performed by the AND, OR, XOR, and NOT instructions.

NOT (Not) inverts the bits in the specified operand to form a one’s complement of the
operand. The NOT instruction is a unary operation which uses a single operand in a
register or memory. NOT has no effect on the flags.

3-11

intel” APPLICATION PROGRAMMING

The AND, OR, and XOR instructions perform the standard logical operations “and,”

“or,” and “exclusive or.” These instructions can use the following combinations of

operands:

o Two register operands

o A general register operand with a memory operand

e An immediate operand with either a general register operand or a memory operand

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag
undefined, and update the SF, ZF, and PF flags.

3.4.2 Bit Test and Modify Instructions

This group of instructions operates on a single bit which can be in memory or in a
general register. The location of the bit is specified as an offset from the low end of the
operand. The value of the offset either may be given by an immediate byte in the instruc-
tion or may be contained in a general register.

These instructions first assign the value of the selected bit to the CF flag. Then a new

value is assigned to the selected bit, as determined by the operation. The state of the
OF, SF, ZF, AF, and PF flags is undefined. Table 3-2 defines these instructions.

3.4.3 Bit Scan Instructions

These instructions scan a word or doubleword for a set bit and store the bit index (an
integer representing the bit position) of the first set bit into a register. The bit string
being scanned may be in a register or in memory. The ZF flag is set if the entire word is

clear, otherwise the ZF flag is cleared. In the former case, the value of the destination
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined.

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions).

BSR (Bit Scan Reverse) scans high-to-low (from the uppermost bit toward bit 0).

3.4.4 Shift and Rotate Instructions
The shift and rotate instructions rearrange the bits within an operand.

Table 3-2. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit
BT (Bit Test) CF flag < Selected Bit no effect
BTS (Bit Test and Set) CF flag < Selected Bit Selected Bit < 1
BTR (Bit Test and Reset) CF flag < Selected Bit Selected Bit <~ 0
BTC (Bit Test and Complement) CF flag < Selected Bit Selected Bit < - (Selected Bit)

3-12

integl® APPLICATION PROGRAMMING

These instructions fall into the following classes:
o Shift instructions
¢ Double shift instructions

e Rotate instructions

3.4.4.1 SHIFT INSTRUCTIONS

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords.
An arithmetic shift right copies the sign bit into empty bit positions on the upper end of
the operand, while a logical shift right fills clears the empty bit positions. An arithmetic
shift is a fast way to perform a simple calculation. For example, an arithmetic shift right
by one bit position divides an integer by two. A logical shift right divides an unsigned
integer or a positive integer, but a signed negative integer loses its sign bit.

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their
treatment of the bit positions emptied by shifting the contents of the operand. Note that
there is no difference between an arithmetic shift left and a logical shift left. Two names,
SAL and SHL, are supported for this instruction in the assembler.

A count specifies the number of bit positions to shift an operand. Bits can be shifted up
to 31 places. A shift instruction can give the count in any of three ways. One form of shift
instruction always shifts by one bit position. The second form gives the count as an
immediate operand. The third form gives the count as the value contained in the CL
register. This last form allows the count to be a result from a calculation. Only the low
five bits of the CL register are used.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is left with the value of the last bit shifted out of the operand. In a single-bit
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position,
the state of the OF flag is undefined. On a shift of one or more bit positions, the SF, ZF,
PF, and CF flags are affected, and the state of the AF flag is undefined.

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left
by one bit position or by the number of bits specified in the count operand (an immedi-
ate value or a value contained in the CL register). Empty bit positions are cleared. See
Figure 3-6.

SHL (Shift Logical Left) is another name for the SAL instruction. It is supported in the
assembler.

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right
by one bit position or by the number of bits specified in the count operand (an immedi-
ate value or a value contained in the CL register). Empty bit positions are cleared. See
Figure 3-7.

3-13

intel” APPLICATION PROGRAMMING

INITIAL STATE:
OF CF OPERAND
E E L 10001000100010001000100010001111]

AFTER 1-BIT SHL/SAL INSTRUCTION:

E] E]<——| ooo1ooo1ooo1ooo1ooo1ooo1ooo111110J<— 0

AFTER 10-BIT SHL/SAL INSTRUCTION:

E E<—[00100010001000100011110000000000 |<—— 0

240331

Figure 3-6. SHL/SAL Instruction

INITIAL STATE:

OPERAND CF
10001000100010001000100010001111J [)a

AFTER 1-BIT SHR INSTRUCTION:

0 —»l 01000100010001000100010001000111 J——)m

AFTER 10-BIT SHR INSTRUCTION:

0o—>» r00000000001 000100010001000100010 |—> m

240331

Figure 3-7. SHR Instruction

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand
to the right by one bit position or by the number of bits specified in the count operand
(an immediate value or a value contained in the CL register). The sign of the operand is
preserved by clearing empty bit positions if the operand is positive, or setting the empty
bits if the operand is negative. See Figure 3-8.

Even though this instruction can be used to divide integers by an integer power of two,
the type of division is not the same as that produced by the IDIV instruction. The
quotient from the IDIV instruction is rounded toward zero, whereas the “quotient” of
the SAR instruction is rounded toward negative infinity. This difference is apparent only
for negative numbers. For example, when the IDIV instruction is used to divide —9 by 4,

3-14

intel” APPLICATION PROGRAMMING

INITIAL STATE (POSITIVE OPERAND):
OPERAND
I 01000100010001000100010001000111 I

[>]s

AFTER 1-BIT SAR INSTRUCTION:

— r0010001 0001000100010001000100011 I—> m

INITIAL STATE (NEGATIVE OPERAND):
OPERAND CF
I 11000100010001000100010001000111 I E

AFTER 1-BIT SAR INSTRUCTION:

——)I 11100010001000100010001000100011 l———) E]

—

240331

Figure 3-8. SAR Instruction

the result is —2 with a remainder of — 1. If the SAR instruction is used to shift —9 right
by two bits, the result is —3. The “remainder” of this kind of division is + 13; however,
the SAR instruction stores only the high-order bit of the remainder (in the CF flag).

3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS

These instructions provide the basic operations needed to implement operations on long
unaligned bit strings. The double shifts operate either on word or doubleword operands,
as follows:

e Take two word operands and produce a one-word result (32-bit shift).

e Take two doubleword operands and produce a doubleword result (64-bit shift).

Of the two operands, the source operand must be in a register while the destination
operand may be in a register or in memory. The number of bits to be shifted is specified
either in the CL register or in an immediate byte in the instruction. Bits shifted out of
the source operand fill empty bit positions in the destination operand, which also is
shifted. Only the destination operand is stored.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the
CF flag is set to the value of the last bit shifted out of the destination operand, and the
SF, ZF, and PF flags are affected. On a shift of one bit position, the OF flag is set if the

3-15

H ®
intel APPLICATION PROGRAMMING

sign of the operand changed, otherwise it is cleared. For shifts of more than one bit
position, the state of the OF flag is undefined. For shifts of one or more bit positions,
the state of AF flag is undefined.

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The
result is stored back into the destination operand. The source operand is not modified.

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while
filling empty bit positions with bits shifted out of the source operand (see Figure 3-10).
The result is stored back into the destination operand. The source operand is not
modified.

3.4.4.3 ROTATE INSTRUCTIONS

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits
are emptied during a rotation.

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension
of the operand in two of the rotate instructions, allowing a bit to be isolated and then
tested by a conditional jump instruction (JC or JNC). The CF flag always contains the
value of the last bit rotated out of the operand, even if the instruction does not use the
CF flag as an extension of the operand. The state of the SF, ZF, AF, and PF flags is not
affected.

31 DESTINATION)

| s J=— MEMORY OR REGISTER —|<—I
31 SOURCE 0
— REGISTER |

240331

Figure 3-9. SHLD Instruction

31 SOURCE 0

| REGISTER H

DESTINATION

31 0
s MEMORY OR REGISTER 1—-»' cF I

240331

Figure 3-10. SHRD Instruction

3-16

intel” APPLICATION PROGRAMMING

In a single-bit rotation, thec OF flag is sct if the operation changes the uppermost bit
(sign bit) of the destination operand. If the sign bit retains its original value, the OF flag
is cleared. After a rotate of more than one bit position, the value of the OF flag is
undefined.

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one
bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). For each bit position of the rotation, the bit
which exits from the left of the operand returns at the right. See Figure 3-11.

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by
one bit position or by the number of bits specified in the count operand (an immediate
value or a value contained in the CL register). For each bit position of the rotation, the
bit which exits from the right of the operand returns at the left. See Figure 3-12.

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destina-
tion operand left by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on
the upper end of the destination operand. Each bit which exits from the left side of the
operand moves into the CF flag. At the same time, the bit in the CF flag enters the right
side. See Figure 3-13.

31 DESTINATION 0

I CF I«—Er MEMORY OR REGISTER lj

240331

Figure 3-11. ROL Instruction

31 DESTINATION 0
| MEMORY OR REGISTER | e A |

240331

Figure 3-12. ROR Instruction

3-17

intgl” APPLICATION PROGRAMMING

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword desti-
nation operand right by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower
end of the destination operand. Each bit which exits from the right side of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters, the left side. See
Figure 3-14.

3.4.4.4 FAST “BIT BLT” USING DOUBLE-SHIFT INSTRUCTIONS

One purpose of the double shift instructions is to implement a bit string move, with
arbitrary misalignment of the bit strings. This is called a “bit blt” (BIT BLock Transfer).
A simple example is to move a bit string from an arbitrary offset into a doubleword-
aligned byte string. A left-to-right string is moved 32 bits at a time if a double shift is
used inside the move loop.

MOV ESI,ScrAddr
Mgy EDI,DestAddr
MOV EBX,Word(nt
MOV CL,RelOffset ; relative offset Dest-Src

MoV EDX, [ESII 3 load first word of source
ADD ESI,4 ; bump source address
BltLoop:
LODS 5 new low order part
SHLD EDX,EAX,CL ; EDX overwritten with aligned stuff
XCHG EDX,EAX ; Swap high/low order words
STOS ; Urite out next aligned chunk
DEC EBX ; Decrement loop count

INZ BltLoop

DESTINATION °

31
l—-l o |— MEMORY OR REGISTER 143

240331

Figure 3-13. RCL Instruction

31 DESTINATION 0
-—»[MEMORY OR REGISTER J——»l CF

240331

Figure 3-14. RCR Instruction

3-18

intel” APPLICATION PROGRAMMING

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest
possible performance. Without a double shift, the best which can be achieved is 16 bits
per loop iteration by using a 32-bit shift, and replacing the XCHG instruction with a
ROR instruction by 16 to swap the high and low words of registers. A more general loop
than shown above would require some extra masking on the first doubleword moved
(before the main loop), and on the last doubleword moved (after the main loop), but
would have the same 32-bits per loop iteration as the code above.

3.4.4.5 FAST BIT STRING INSERT AND EXTRACT

The double shift instructions also make possible:

o Fast insertion of a bit string from a register into an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the inserted bits

o Fast extraction of a bit string into a register from an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the extracted bits

The following coded examples illustrate bit insertion and extraction under various
conditions:

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e., spans
four bytes or less):

3 Insert a right-justified bit string from a register into
; a bit string in memory.

Assumptions:

; 1. The base of the string array is doubleword aligned.

; 2. The length of the bit string is an immediate value

H and the bit offset is held in a register.

The ESI register holds the right-justified bit string

; to be inserted.

; The EDI register holds the bit offset of the start of the
substring.

; The EAX register and ECX are also used.

nov - ECX,EDI ; save original offset

SHR EDI,3 ; divide offset by 8 (byte addr)
AND CL,7H ; get low three bits of offset
MOV EAX,[EDIlstrg_base ; move string dword into EAX
ROR EAX,CL ; right justify old bit field
SHRD EAX,ESI,length ; bring in new bits

ROL EAX,length ; right justify new bit field
ROL EAX,CL ; bring to final position
MOVIEDIIstrg_base,EAX ; replace doubleword in memory

3-19

ntel® APPLICATION PROGRAMMING

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans
five bytes or less):

3 Insert a right-justified bit string from a register into
3 a bit string in memory.

; Assumptions:

; 1. The base of the string array is doubleword aligned.
; 2. The length of the bit string is an immediate value
3 and the bit offset is held in a register.

; The ESI register holds the right-justified bit string

; to be inserted.

; The EDI register holds the bit offset of the start of the
; substring.

; The EAX, EBX, ECX, and EDI registers also are used.

mov - ECX,EDI ; temp storage for offset

SHR EDI,S ; divide offset by 32 (dwords)
SHL EDI,2 ; multiply by 4 (byte address)
AND CL,1FH ; get low five bits of offset
MOV EAX,[EDIlstrg_base ; move low string dword into EAX
MOV EDX,[EDI)strg_base+l ; other string dword into EDX
MoV EBX,EAX ; temp storage for part of string
SHRD EAX,EDX,CL 5 shift by offset within dword
SHRD EAX,EBX,CL ; shift by offset within dword
SHRD EAX,ESI,length 3 bring in new bits

ROL EAX,length 3 right justify new bit field
MoV EBX,EAX ; temp storage for string

SHLD EAX,EDX,CL ; shift by offset within word
SHLD EDX,EBX,CL ; shift by offset within word
MoV [(EDIlstrg_base,EAX ; replace dword in memory

MoV (EDIlstrg_base+4,EDX ; replace dword in memory

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e.,
spans four or five bytes):

;i Insert right-justified bit string from a register into
; a bit string in memory.

; Assumptions:

3 1. The base of the string array is doubleword aligned.
3 2. The length of the bit string is 32 bits

; and the bit offset is held in a register.

; The ESI register holds the 32-bit string to be inserted.
; The EDI register holds the bit offset to the start of the
;3 substring.

; The EAX, EBX, ECX, and EDI registers also are used.

MoV EDX,EDI © 3 save original offset

3-20

intel” APPLICATION PROGRAMMING

SHR EDI,S ; divide offset by 32 (dwords)
SHL EDI,Z ; multiply by 4 (byte address)
AND CL,1FH ; isolate low five bits of offset
MOV EAX,[EDIlstrg_base 5 move low string dword into EAX
MoV EDX,[EDI)strg_base+l ; other string dword into EDX
MoV EBX,EAX ; temp storage for part of string

SHRD EAX,EDX
SHRD EDX,EBX

shift by offset within dword
shift by offset within dword

MoV EAX,ESI ; move 32-bit field into position
MoV EBX,EAX ; temp storage for part of string
SHLD EAX,EDX ; shift by offset within word
SHLD EDX,EBX ; shift by offset within word

Moy [EDI)strg_base,EAX ; replace dword in memory

MOV [EDIlstrg_base,+H4,EDX ; replace dword in memory

4. Bit String Extraction from Memory (when the bit string is 1-25 bits long, i.e., spans
four bytes or less):

; Extract a right-justified bit string into a register from
; a bit string in memory.

; Assumptions:

3 1) The base of the string array is doubleword aligned.
; 2) The length of the bit string is an immediate value
H and the bit offset is held in a register.

; The EAX register hold the right-justified, zero-padded

; bit string that was extracted.

3 The EDI register holds the bit offset of the start of the
;3 substring.

; The EDI, and ECX registers also are used.

Mov ECX,EDI ; temp storage for offset

SHR EDI,3 ; divide offset by & (byte addr)
AND CL,7H ; get low three bits of offset
MOV EAX,[EDIIstrg_base ; move string dword into EAX
SHR EAX,CL ; shift by offset within dword
AND EAX,mask ; extracted bit field in EAX

5. Bit String Extraction from Memory (when bit string is 1-32 bits long, i.e., spans five
bytes or less):

; Extract a right-justified bit string into a register from a
; bit string in memory.

; Assumptions:

3 1) The base of the string array is doubleword aligned.
; 2) The length of the bit string is an immediate

; value and the bit offset is held in a register.

; The EAX register holds the right-justified, zero-padded
; bit string that was extracted.

3-21

intel” APPLICATION PROGRAMMING

; The EDI register holds the bit offset of the start of the
; substring. i
3 The EAX, EBX, and ECX registers also are used.

MoV ECX,EDI ; temp storage for offset

SHR EDI,S ; divide offset by 32 (dwords)
SHL EDI,2 ; multiply by 4 (byte address)
AND CL,1FH ; get low five bits of offset in
MOV EAX,[EDIlstrg_base ; move low string dword into EAX
MOV EDX,[EDI)strg_base +4 ; other string dword into EDX
SHRD EAX,EDX,CL ; shift right by offset in dword

AND EAX,mask extracted bit field in EAX

3.4.5 Byte-Set-On-Condition Instructions

This group of instructions sets a byte to the value of zero or one, depending on any of
the 16 conditions defined by the status flags. The byte may be in a register or in memory.
These instructions are especially useful for implementing Boolean expressions in high-
level languages such as Pascal.

Some languages represent a logical one as an integer with all bits set. This can be done
by using the SETcc instruction with the mutually exclusive condition, then decrementing
the result.

SETcc (Set Byte on Condition cc) loads the value 1 into a byte if condition cc is true;
clears the byte otherwise. See Appendix D for a definition of the possible conditions.

3.4.6 Test Instruction

TEST (Test) performs the logical “and” of the two operands, clears the OF and CF
flags, leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can
be tested by conditional control transfer instructions or the byte-set-on-condition in-
structions. The operands may be bytes, words, or doublewords.

The difference between the TEST and AND instructions is the TEST instruction does
not alter the destination operand. The difference between the TEST and BT instructions
is the TEST instruction can test the value of multiple bits in one operation, while the BT
instruction tests a single bit.

3.5 CONTROL TRANSFER INSTRUCTIONS

The 386 SX microprocessor provides both conditional and unconditional control transfer
instructions to direct the flow of execution. Conditional transfers are executed only for
certain combinations of the state of the flags. Unconditional control transfers are always
executed.

3-22

intel® APPLICATION PROGRAMMING

3.5.1 Unconditional Transfer Instructions

The JMP, CALL, RET, INT and IRET instructions transfer execution to a destination
in a code segment. The destination can be within the same code segment (near transfer)
or in a different code segment (far transfer). The forms of these instructions which
transfer execution to other segments are discussed in a later section of this chapter. If
the model of memory organization used in a particular application does not make seg-
ments visible to application programmers, far transfers will not be used.

3.5.1.1 JUMP INSTRUCTION

JMP (Jump) unconditionally transfers execution to the destination. The JMP instruction
is a one-way transfer of execution; it does not save a return address on the stack.

The JMP instruction transfers execution from the current routine to a different routine.
The address of the routine is specified in the instruction, in a register, or in memory. The
location of the address determines whether it is interpreted as a relative address or an
absolute address.

Relative Address. A relative jump uses a displacement (immediate mode constant used
for address calculation) held in the instruction. The displacement is signed and variable-
length (byte or doubleword). The destination address is formed by adding the displace-
ment to the address held in the EIP register. The EIP register then contains the address
of the next instruction to be executed.

Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the
following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register and execution continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register and execution
continues.

3.5.1.2 CALL INSTRUCTIONS
CALL (Call Procedure) transfers execution and saves the address of the instruction
following the CALL instruction for later use by a RET (Return) instruction. CALL
pushes the current contents of the EIP register on the stack. The RET instruction in the
called procedure uses this address to transfer execution back to the calling program.
CALL instructions, like JMP instructions, have relative and absolute forms.
Indirect CALL instructions specify an absolute address in one of the following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied

into the EIP register, the return address is pushed on the stack, and execution
continues.

3-23

intel” APPLICATION PROGRAMMING

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register, the return address is
pushed on the stack, and execution continues.

3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS

RET (Return From Procedure) terminates a procedure and transfers execution to the
instruction following the CALL instruction which originally invoked the procedure. The
RET instruction restores the -contents of the EIP register which were pushed on the
stack when the procedure was called.

The RET instructions have an optional immediate operand. When present, this constant
is added to the contents of the ESP register, which has the effect of removing any
parameters pushed on the stack before the procedure call.

IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET
instruction differs from the RET instruction in that it also restores the EFLAGS register
from the stack. The contents of the EFLAGS register are stored on the stack when an
interrupt occurs.

3.5.2 Conditional Transfer Instructions

The conditional transfer instructions are jumps which transfer execution if the states in
the EFLAGS register match conditions specified in the instruction.

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS

Table 3-3 shows the mnemonics for the jump instructions. The instructions listed as pairs
are alternate names for the same instruction. The assembler provides these names for
greater clarity in program listings.

A form of the conditional jump instructions is available which uses a displacement added
to the contents of the EIP register if the specified condition is true. The displacement
may be a byte or doubleword. The displacement is signed; it can be used to jump for-
ward or backward.

3.5.2.2 LOOP INSTRUCTIONS

The loop instructions are conditional jumps which use a value placed in the ECX regis-
ter as a count for the number of times to run a loop. All loop instructions decrement the
contents of the ECX register on each repetition and terminate when zero is reached.
Four of the five loop instructions accept the ZF flag as a condition for terminating the
loop before the count reaches zero.

3-24

intgl” APPLICATION PROGRAMMING

Table 3-3. Conditional Jump Instructions

Unsigned Conditional Jumps
Mnemonic Flag States Description
JA/UNBE (CForzZF) =0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/UNAE CF =1 below/not above nor equal
JBE/UNA (CF or ZF) =1 below or equal/not above
JC CF =1 carry
JE/JZ ZF =1 equal/zero
JNC CF=0 not carry
JNE/JNZ ZF =0 not equal/not zero
JNP/JPO PF =0 not parity/parity odd
JP/JPE PF =1 parity/parity even

Signed Conditional Jumps

JG/INLE ((SF xor OF) or ZF) = 0 greater/not less nor equal
JGE/JNL (SF xor OF) = 0 greater or equal/not less
JL/UNGE (SF xor OF) = 1 less/not greater nor equal
JLE/UNG ((SF xor OF) or ZF) = 1 less or equal/not greater
JNO OF = not overflow
JNS SF=0 not sign (non-negative)
JO OF =1 overflow
JS SF =1 sign (negative)

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements
the contents of the ECX register before testing for the loop-terminating condition. If
contents of the ECX register are non-zero, the program jumps to the destination speci-
fied in the instruction. The LOOP instruction causes the execution of a block of code to
be repeated until the count reaches zero. When zero is reached, execution is transferred
to the instruction immediately following the LOOP instruction. If the value in the ECX
register is zero when the instruction is first called, the count is predecremented to
OFFFFFFFFH and the LOOP runs 2°? times.

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same
instruction. These instructions are conditional jumps which decrement the contents of
the ECX register before testing for the loop-terminating condition. If the contents of the
ECX register are non-zero and the ZF flag is set, the program jumps to the destination
specified in the instruction. When zero is reached or the ZF flag is clear, execution is
transferred to the instruction immediately following the LOOPE/LOOPZ instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms
for the same instruction. These instructions are conditional jumps which decrement the
contents of the ECX register before testing for the loop-terminating condition. If the
contents of the ECX register are non-zero and the ZF flag is clear, the program jumps to
the destination specified in the instruction. When zero is reached or the ZF flag is set,
execution is transferred to the instruction immediately following the LOOPE/LOOPZ
instruction.

3-25

intel® APPLICATION PROGRAMMING

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the
ECX register holds a value of zero. The JECXZ instruction is used in combination with
the LOOP instruction and with the string scan and compare instructions. Because these
instructions decrement the contents of the ECX register before testing for zero, a loop
will run 2°? times if the loop is entered with a zero value in the ECX register. The
JECXZ instruction is used to create loops which fall through without executing when the
initial value is zero. A JECXZ instruction at the beginning of a loop can be used to jump
out of the loop if the count is zero. When used with repeated string scan and compare
instructions, the JECXZ instruction can determine whether the loop terminated due to
the count or due to satisfaction of the scan or compare conditions.

3.5.3 Software Interrupts

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of
execution to an exception or interrupt handler.

INTn (Software Interrupt) calls the handler specified by an interrupt vector encoded in
the instruction. The INT instruction may specify any interrupt type. This instruction is
used to support multiple types of software interrupts or to test the operation of interrupt
service routines. The interrupt service routine terminates with an IRET instruction,
which returns execution to the instruction following the INT instruction.

INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF
flag is set. If the flag is clear, execution continues without calling the handler. The OF
flag is set by arithmetic, logical, and string instructions. This instruction supports the use
of software interrupts for handling error conditions, such as arithmetic overflow.

BOUND (Detect Value Out of Range) compares the signed value held in a general reg-
ister against an upper and lower limit. The handler for the bounds-check exception is
called if the value held in the register is less than the lower bound or greater than the
upper bound. This instruction supports the use of software interrupts for bounds check-
ing, such as checking an array index to make sure it falls within the range defined for the
array.

The BOUND instruction has two operands. The first operand specifies the general reg-
ister being tested. The second operand is the base address of two words or doublewords
at adjacent locations in memory. The lower limit is the word or doubleword with the
lower address; the upper limit has the higher address. The BOUND instruction assumes
that the upper limit and lower limit are in adjacent memory locations. These limit values
cannot be register operands; if they are, an invalid-opcode exception occurs.

The upper and lower limits of an array can reside just before the array itself. This puts
the array bounds at a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra bus
cycles to obtain the effective address of the array bounds.

3-26

intgl® APPLICATION PROGRAMMING

3.6 STRING OPERATIONS

String operations manipulate large data structures in memory, such as alphanumeric
character strings. See also the section on I/O for information about the string I/O in-
structions (also known as block I/O instructions).

The string operations are made by putting string instructions (which execute only one
iteration of an operation) together with other features of the Intel386 architecture, such
as repeat prefixes. The string instructions are:

MOVS —Move String
CMPS — Compare string
SCAS —Scan string
LODS —Load string
STOS — Store string

After a string instruction executes, the string source and destination registers point to
the next elements in their strings. These registers automatically increment or decrement
their contents by the number of bytes occupied by each string element. A string element
can be a byte, word, or doubleword. The string registers are:

ESI—Source index register
EDI —Destination index register

String operations can begin at higher addresses and work toward lower ones, or they can
begin at lower addresses and work toward higher ones. The direction is controlled by:

DF —Direction flag

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are
decremented. These instructions set and clear the flag:

STD —Set direction flag instruction
CLD — Clear direction flag instruction

To operate on more than one element of a string, a repeat prefix must be used, such as:

REP — Repeat while the ECX register not zero
REPE/REPZ —Repeat while the ECX register not zero and the ZF flag is set
REPNE/REPNZ —Repeat while the ECX register not zero and the ZF flag is clear

Exceptions or interrupts which occur during a string instruction leave the registers in a
state which allows the string instruction to be restarted. The source and destination
registers point to the next string elements, the EIP register points to the string instruc-
tion, and the ECX register has the value it held following the last successful iteration.
All that is necessary to restart the operation is to service the interrupt or fix the source
of the exception, then execute an IRET instruction.

3-27

intel® APPLICATION PROGRAMMING

3.6.1 Repeat Prefixes

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated
operation of a string instruction. This form of iteration allows string operations to pro-
ceed much faster than would be possible with a software loop.

When a string instruction has a repeat prefix, the operation executes untll one of the
termination conditions specified by the prefix is satisfied.

For each repetition of the instruction, the string operation may be suspended by an
exception or interrupt. After the exception or interrupt has been serviced, the string
operation can restart where it left off. This mechanism allows long string operations to
proceed without affecting the interrupt response time of the system.

All three prefixes shown in Table 3-4 cause the instruction to repeat until the ECX
register is decremented to zero, if no other termination condition is satisfied. The repeat
prefixes differ in their other termination condition. The REP prefix has no other termi-
nation condition. The REPE/REPZ and REPNE/REPNZ prefixes are used exclusively
with the SCAS (Scan String) and CMPS (Compare String) instructions. The REPE/
REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates if
the ZF flag is set. The ZF flag does not require initialization before execution of a
repeated string instruction, because both the SCAS and CMPS instructions affect the ZF
flag according to the results of the comparisons they make.

3.6.2 Indexing and Direction Flag Control

Although the general registers are completely interchangable under most conditions, the
string instructions require the use of two specific registers. The source and destination
strings are in memory addressed by the ESI and EDI registers. The ESI register points
to source operands. By default, the ESI register is used with the DS segment register. A
segment-override prefix allows the ESI register to be used with the CS, SS, ES, FS, or
GS segment registers. The EDI register points to destination operands. It uses the seg-
ment indicated by the ES segment register; no segment override is allowed. The use of
two different segment registers in one instruction permits operations between strings in
different segments.

When ESI and EDI are used in string instructions, they automatically are incremented
or decremented after each iteration. String operations can begin at higher addresses and
work toward lower ones, or they can begin at lower addresses and work toward higher
ones. The direction is controlled by the DF flag. If the flag is clear, the registers are

Table 3-4. Repeat Instructions

Repeat Prefix Termination Condition 1 Termination Condition 2
REP ‘ ECX=0 none
REPE/REPZ ECX=0 ZF=0
REPNE/REPNZ ' ECX=0 ZF =1

3-28

intgl® APPLICATION PROGRAMMING

incremented. If the flag is set, the registers are decremented. The STD and CLD in-
structions set and clear this flag. Programmers should always put a known value in the
DF flag before using a string instruction.

3.6.3 String Instructions

MOVS (Move String) moves the string element addressed by the ESI register to the
location addressed by the EDI register. The MOVSB instruction moves bytes, the
MOVSW instruction moves words, and the MOVSD instruction moves doublewords.
The MOVS instruction, when accompanied by the REP prefix, operates as a memory-
to-memory block transfer. To set up this operation, the program must initialize the ECX,
ESI, and EDI registers. The ECX register specifies the number of elements in the block.

CMPS (Compare Strings) subtracts the destination string element from the source string
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is
cleared. CMPSB compares bytes, CMPSW compares words, and CMPSD compares
doublewords.

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF
flags. The string and the register are not modified. If the values are equal, the ZF flag is
set; otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction
scans words; the SCASD instruction scans doublewords.

When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS
instructions, the loop which is formed is terminated by the loop counter or the effect the
SCAS or CMPS instruction has on the ZF flag.

LODS (Load String) places the source string element addressed by the ESI register into
the EAX register for doubleword strings, into the AX register for word strings, or into
the AL register for byte strings. This instruction usually is used in a loop, where other
instructions process each element of the string as they appear in the register.

STOS (Store String) places the source string element from the EAX, AX, or AL register
into the string addressed by the EDI register. This instruction usually is used in a loop,
where it writes to memory the result of processing a string element read from memory
with the LODS instruction. A REP STOS instruction is the fastest way to initialize a
large block of memory.

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES

These instructions provide machine-language support for implementing block-structured
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify
procedure entry and exit in compiler-generated code. They support a structure of point-
ers and local variables on the stack called a stack frame.

3-29

intel” APPLICATION PROGRAMMING

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of
block-structured languages. In these languages, a procedure has access to its own vari-
ables and some number of other variables defined elsewhere in the program. The scope
of a procedure is the set of variables to which it has access. The rules for scope vary
among languages; they may be based on the nesting of procedures, the division of the
program into separately-compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be
reserved on the stack for dynamic storage in the procedure being entered. Dynamic
storage is the memory allocated for variables created when the procedure is called, also
known as automatic variables. The second parameter is the lexical nesting level (from 0
to 31) of the procedure. The nesting level is the depth of a procedure in the heirarchy of
a block-structured program. The lexical level has no particular relationship to either the
protection privilege level or to the I/O privilege level.

The lexical nesting level determines the number of stack frame pointers to copy into the
new stack frame from the preceding frame. A stack frame pointer is a doubleword used
to access the variables of a procedure. The set of stack frame pointers used by a proce-
dure to access the variables of other procedures is called the display. The first double-
word in the display is a pointer to the previous stack frame. This pointer is used by a
LEAVE instruction to undo the effect of an ENTER instruction by discarding the cur-
rent stack frame.

Example: ENTER 20u48,3

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two
previous stack frames in the stack frame for this procedure.

After the ENTER instruction creates the display for a procedure, it allocates the dy-
namic (automatic) local variables for the procedure by decrementing the contents of the
ESP register by the number of bytes specified in the first parameter. This new value in
the ESP register serves as the initial top-of-stack for all PUSH and POP operations
within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP
register pointing to the first doubleword in the display. Because stacks grow down, this is
actually the doubleword with the highest address in the display. Data manipulation in-
structions which specify the EBP register as a base register automatically address loca-
tions within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical
level is 0, the non-nested form is used. The non-nested form pushes the contents of the
EBP register on the stack, copies the contents of the ESP register into the EBP register,
and subtracts the first operand from the contents of the ESP register to allocate dynamic
storage. The non-nested form differs from the nested form in that no stack frame point-
ers are copied. The nested form of the ENTER instruction occurs when the second
parameter (lexical level) is not zero.

3-30

intel® APPLICATION PROGRAMMING

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the
number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

The main procedure (in which all other procedures are nested) operates at the highest
lexical level, level 1. The first procedure it calls operates at the next deeper lexical level,
level 2. A level 2 procedure can access the variables of the main program, which are at
fixed locations specified by the compiler. In the case of level 1, the ENTER instruction
allocates only the requested dynamic storage on the stack because there is no previous
display to copy.

A procedure which calls another procedure at a lower lexical level gives the called pro-
cedure access to the variables of the caller. The ENTER instruction provides this access
by placing a pointer to the calling procedure’s stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give
access to its variables. In this case, the ENTER instruction copies only that part of the
display from the calling procedure which refers to previously nested procedures operat-
ing at higher lexical levels. The new stack frame does not include the pointer for ad-
dressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the
same lexical level. In this case, each succeeding iteration of the re-entrant procedure can
address only its own variables and the variables of the procedures within which it is
nested. A re-entrant procedure always can address its own variables; it does not require
pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the
ENTER instruction makes certain that procedures access only those variables of higher
lexical levels, not those at parallel lexical levels (see Figure 3-16).

Block-structured languages can use the lexical levels defined by ENTER to control ac-
cess to the variables of nested procedures. In the figure, for example, if PROCEDURE
A calls PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C

y value FRAME_PTR := ESP
h

EL-1) times:
= EBP -4
Push the doubleword pointed to by EBP
End repeat
Push FRAME_PTR
if
:= FRAME_PTR

En
EB _
ESP := ESP - STORAGE

U voUva

Figure 3-15. Formal Definition of the ENTER Instruction

3-31

intel” APPLICATION PROGRAMMING

MAIN PROCEDURE (LEXICAL LEVEL1)

PROCEDURE A (LEXICAL LEVEL 2)

| PROCEDURE B (LEXICAL LEVEL 3) |

PROCEDURE C (LEXICAL LEVEL 3)

l PROCEDURE D (LEXICAL LEVEL 4) |

240331

Figure 3-16. Nested Procedures

will have access to the variables of MAIN and PROCEDURE A, but not those of
PROCEDURE B because they are at the same lexical level. The following definition
describes the access to variables for the nested procedures in the figure.

1. MAIN has variables at fixed locations.
2. PROCEDURE A can access only the variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the variables of PROCEDURE C or PROCE-
DURE D.

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the variables of PROCEDURE B or PROCE-
DURE D.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A,
and MAIN. PROCEDURE D cannot access the variables of PROCEDURE B.

In the following diagram, an ENTER instruction at the beginning of the MAIN program
creates three doublewords of dynamic storage for MAIN, but copies no pointers from
other stack frames (See Figure 3-17). The first doubleword in the display holds a copy of
the last value in the EBP register before the ENTER instruction was executed. The
second doubleword (which, because stacks grow down, is stored at a lower address)
holds a copy of the contents of the EBP register following the ENTER instruction. After
the instruction is executed, the EBP register points to the first doubleword pushed on
the stack, and the ESP register points to the last doubleword in the stack frame.

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (See
Figure 3-18). The first doubleword is the last value held in MAIN’s EBP register. The
second doubleword is a pointer to MAIN’s stack frame which is copied from the second
doubleword in MAIN’s display. This happens to be another copy of the last value held in

3-32

APPLICATION PROGRAMMING

DISPLAY

DYNAMIC
STORAGE

OLD EBP

MAIN'S EBP

240331

Figure 3-17. Stack Frame After Entering MAIN

DISPLAY

DYNAMIC
STORAGE

OLD EBP

MAIN’S EBP

MAIN’S EBP

MAIN’'S EBP

PROCEDURE A’S EBP

<«— EBP

«— ESP

240331

Figure 3-18. Stack Frame After Entering PROCEDURE A

3-33

intel” APPLICATION PROGRAMMING

MAIN’s EBP register. PROCEDURE A can access variables in MAIN because MAIN
is at level 1. Therefore the base address for the dynamic storage used in MAIN is the
current address in the EBP register, plus four bytes to account for the saved contents of
MAIN’s EBP register. All dynamic variables for MAIN are at fixed, positive offsets from
this value.

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new
display (See Figure 3-19). The first doubleword holds a copy of the last value in PRO-
CEDURE A’s EBP register. The second and third doublewords are copies of the two
stack frame pointers in PROCEDURE A’s display. PROCEDURE B can access vari-
ables in PROCEDURE A and MAIN by using the stack frame pointers in its display.

OLD EBP

MAIN’S EBP

MAIN'S EBP

MAIN’S EBP

PROCEDURE A’'S EBP

PROCEDURE A’'S EBP <«—— EBP
DISPLAY MAIN’S EBP
PROCEDURE A’S EBP
PROCEDURE B’S EBP
DYNAMIC
STORAGE
«— ESP

240331

Figure 3-19. Stack Frame After Entering PROCEDURE B

3-34

intel” APPLICATION PROGRAMMING

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the
last value in PROCEDURE B’s EBP register. This is used by the LEAVE instruction to
restore PROCEDURE B’s stack frame. The second and third doublewords are copies of
the two stack frame pointers in PROCEDURE A’s display. If PROCEDURE C were at
the next deeper lexical level from PROCEDURE B, a fourth doubleword would be
copied, which would be the stack frame pointer to PROCEDURE B’s local variables.

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCE-
DURE C is not intended to access PROCEDURE B’s variables. This does not mean
that PROCEDURE C is completely isolated from PROCEDURE B; PROCEDURE C
is called by PROCEDURE B, so the pointer to the returning stack frame is a pointer to
PROCEDURE B’s stack frame. In addition, PROCEDURE B can pass parameters to
PROCEDURE C either on the stack or through variables global to both procedures
(i.e., variables in the scope of both procedures).

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The
LEAVE instruction does not have any operands. The LEAVE instruction copies the
contents of the EBP register into the ESP register to release all stack space allocated to
the procedure. Then the LEAVE instruction restores the old value of the EBP register
from the stack. This simultaneously restores the ESP register to its original value. A
subsequent RET instruction then can remove any arguments and the return address
pushed on the stack by the calling program for use by the procedure.

3.8 FLAG CONTROL INSTRUCTIONS

The flag control instructions change the state of bits in the EFLAGS register, as shown
in Table 3-5.

3.8.1 Carry and Direction Flag Control Instructions

The carry flag instructions are useful with instructions like the rotate-with-carry instruc-
tions RCL and RCR. They can initialize the carry flag, CF, to a known state before
execution of an instruction which copies the flag into an operand.

The direction flag control instructions set or clear the direction flag, DF, which controls
the direction of string processing. If the DF flag is clear, the processor increments the
string index registers, ESI and EDI, after each iteration of a string instruction. If the DF
flag is set, the processor decrements these index registers.

3.8.2 Flag Transfer Instructions

Though specific instructions exist to alter the CF and DF flags, there is no direct method
of altering the other application-oriented flags. The flag transfer instructions allow a
program to change the state of the other flag bits using the bit manipulation instructions
once these flags have been moved to the stack or the AH register.

3-35

ntel® APPLICATION PROGRAMMING

OLD EBP

MAIN'S EBP

MAIN’S EBP

MAIN’S EBP

PROCEDURE A'S EBP

PROCEDURE A’S EBP

MAIN'S EBP

PROCEDURE A’S EBP

PROCEDURE B’S EBP

PROCEDURE B’'S EBP <««— EBP
DISPLAY MAIN'S EBP
PROCEDURE A’'S EBP
L PROCEDURE C’S EBP
DYNAMIC
STORAGE
— ESP

240331

Figure 3-20. Stack Frame After Entering PROCEDURE C

3-36

intel” APPLICATION PROGRAMMING

Table 3-5. Flag Control Instructions

Instruction Effect
STC (Set Carry Flag) CF <1
CLC (Clear Carry Flag) CF«0
CMC (Complement Carry Flag) CF < - (CF)
CLD (Clear Direction Flag) DF <0
STD (Set Direction Flag) DF « 1

The LAHF and SAHF instructions deal with five of the status flags, which are used
primarily by the arithmetic and logical instructions.

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register
bits 7, 6, 4, 2, and 0, respectively (see Figure 3-21). The contents of the remaining bits 5,
3, and 1 are left undefined. The contents of the EFLAGS register remain unchanged.

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively (see Figure 3-21).

The PUSHF and POPF instructions are not only useful for storing the flags in memory
where they can be examined and modified, but also are useful for preserving the state of
the EFLAGS register while executing a subroutine.

PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see
Figure 3-22). The PUSHFD instruction pushes the entire EFLAGS register onto the
stack (the RF flag reads as clear, however).

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 14,
11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege
level of the current code segment is 0 (most privileged), the IOPL bits (bits 13 and 12)

6 5 3 2 1
s1z1 12 o [P 1, €
F|F F F F

THE BIT POSITIONS OF THE FLAGS ARE THE SAME,
WHETHER THEY ARE HELD IN THE EFLAGS REGISTER OR
THE AH REGISTER. BIT POSITIONS SHOWN AS O OR 1
ARE INTEL RESERVED. DO NOT USE.

240331

Figure 3-21. Low Byte of EFLAGS Register

3-37

intel” APPLICATION PROGRAMMING

o »| PUSHFD/POPFD
3 »| PUSHF/POPF
31 15 0
vir|_ IN] 2 |o]o|i |T|s|z],.|A].|P]|.]|c
0 0 o ol |o
ojofofofolojojojofofofojojo |- 11 8 [elelelelelr 1l el 116

BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED. DO NOT USE.

240331

Figure 3-22. Flags Used with PUSHF and POPF

also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected.
The POPFD instruction pops a doubleword into the EFLAGS register, but it only can
change the state of the same bits affected by a POPF instruction.

3.9 COPROCESSOR INTERFACE INSTRUCTIONS

The 387 SX Numerics Coprocessor provides an extension to the instruction set of the
base architecture. The coprocessor extends the instruction set of the 386 SX micropro-
cessor to support high-precision integer and floating-point calculations. These extensions
include arithmetic, comparison, transcendental, and data transfer instructions. The co-
processor also contains frequently-used constants, to enhance the speed of numeric
calculations.

The coprocessor instructions are embedded in the instructions for the 386 SX micropro-
cessor, as though they were being executed by a single processor having both integer and
floating-point capabilities. But the coprocessor actually works in parallel with the 386 SX
microprocessor, so the performance is higher.

The 386 SX microprocessor also has features to support emulation of the numerics
coprocessor when the coprocessor is absent. The software emulation of the coprocessor
is transparent to application software, but much slower. See Chapter 11 for more infor-
mation on coprocessor emulation.

ESC (Escape) is a bit pattern which identifies floating-point arithmetic instructions. The
ESC bit pattern tells the processor to send the opcode and operand addresses to the
numerics coprocessor. The coprocessor uses instructions containing the ESC bit pattern
to perform high-performance, high-precision floating point arithmetic. When the copro-
cessor is not present, these instructions generate coprocessor-not-available exceptions.

3-38

intel” APPLICATION PROGRAMMING

WAIT (Wait) is an instruction which suspends program execution while the BUSY# pin
is active. The signal on this pin indicates that the coprocessor has not completed an
operation. When the operation completes, the processor resumes execution and can
read the result. The WAIT instruction is used to synchronize the processor with the
coprocessor. Typically, a coprocessor instruction is launched, a WAIT instruction is ex-
ecuted, then the results of the coprocessor instruction are read. Between the coprocessor
instruction and the WAIT instruction, there is an opportunity to execute some number
of non-coprocessor instructions in parallel with the coprocessor instruction.

3.10 SEGMENT REGISTER INSTRUCTIONS

There are several distinct types of instructions which use segment registers. They are
grouped together here because, if system designers choose an unsegmented model of
memory organization, none of these instructions are used. The instructions which deal
with segment registers are:

1. Segment-register transfer instructions.

MOV SegReg, .-
MOV ..., SegReg
PUSH SegReg
POP SegReg

2. Control transfers to another executable segment.

JIP far
CALL far
RET far

3. Data pointer instructions.

LDS reg, 48-bit memory operand
LES reg, 4d-bit memory operand
LFS reg, 4B-bit memory operand
LGS reg, 48-bit memory operand
LSS reg, Y8-bit memory operand

4. Note that the following interrupt-related instructions also are used in unsegmented
systems. Although they can transfer execution between segments when segmentation
is used, this is transparent to the application programmer.

INT n
INTD
BOUND
IRET

3.10.1 Segment-Register Transfer Instructions

Forms of the MOV, POP, and PUSH instructions also are used to load and store seg-
ment registers. These forms operate like the general-register forms, except that one
operand is a segment register. The MOV instruction cannot copy the contents of a
segment register into another segment register.

3-39

H ®
intel APPLICATION PROGRAMMING

The POP and MOV instructions cannot place a value in the CS register (code segment);
only the far control-transfer instructions affect the CS register. When the destination is
the SS register (stack segment), interrupts are disabled until after the next instruction.

When a segment register is loaded, the signal on the LOCK# pin of the processor is
asserted. This prevents other bus masters from modifying a segment descriptor while it is
being read.

No 16-bit operand size prefix is needed when transferring data between a segment reg-
ister and a 32-bit general register.

3.10.2 Far Control Transfer Instructions

The far control-transfer instructions transfer execution to a destination in another seg-
ment by replacing the contents of the CS register. The destination is specified by a far
pointer, which is a 16-bit segment selector and a 32-bit offset into the segment. The far
pointer can be an immediate operand or an operand in memory.

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS
registers on the stack.

Far RET. An intersegment RET instruction restores the values of the CS and EIP reg-
isters from the stack.

3.10.3 Data Pointer Instructions

The data pointer instructions load a far pointer into the processor registers. A far
pointer consists of a 16-bit segment selector, which is loaded into a segment register, and
a 32-bit offset into the segment, which is loaded into a general register.

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS
register and a general register. The source operand must be a memory operand, and the
destination operand must be a general register.

Example: LDS ESI, STRING_X

Loads the DS register with the segment selector for the segment addressed by
STRING_X, and loads the offset within the segment to STRING_X into the ESI
register. Specifying the ESI register as the destination operand is a convenient way

to prepare for a string operation, when the source string is not in the current data
segment.

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the
segment selector is loaded into the ES register rather than the DS register.

Example: LES EDI, DESTINATION_X

3-40

intel” APPLICATION PROGRAMMING

Loads the ES register with the segment selector for the segment addressed by DES-
TINATION_X, and loads the offset within the segment to DESTINATION_X into
the EDI register. This instruction is a convenient way to select a destination for a
string operation if the desired location is not in the current E-data segment.

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS
register receives the segment selector rather than the DS register.

LGS (Load Pointer Using GS) has the same effect as the LDS instruction, except the GS
register receives the segment selector rather than the DS register.

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS
register receives the segment selector rather than the DS register. This instruction is
especially important, because it allows the two registers which identify the stack (the SS
and ESP registers) to be changed in one uninterruptible operation. Unlike the other
instructions which can load the SS register, interrupts are not inhibited at the end of the
LSS instruction. The other instructions, such as POP SS, turn off interrupts to permit
the following instruction to load the ESP register without an intervening interrupt. Since
both the SS and ESP registers can be loaded by the LSS instruction, there is no need to
disable or re-enable interrupts.

3.11 MISCELLANEOUS INSTRUCTIONS

The following instructions do not fit in any of the previous categories, but are no less
important.

3.11.1 Address Calculation Instruction

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory
(rather than its contents) into the destination operand. The source operand must be in
memory, and the destination operand must be a general register. This instruction is
especially useful for initializing the ESI or EDI registers before the execution of string
instructions or initializing the EBX register before an XLAT instruction. The LEA in-
struction can perform any indexing or scaling which may be needed.

Example: LEA EBX, EBCDIC_TABLE

Causes the processor to place the address of the starting location of the table la-
beled EBCDIC_TABLE into EBX.

3.11.2 No-Operation Instruction

NOP (No Operation) occupies a byte of code space. When executed, it increments the
EIP register to point at the next instruction, but affects nothing else.

3-41

intel” APPLICATION PROGRAMMING

3.11.3 Translate Instruction

XLATB (Translate) replaces the contents of the AL register with a byte read from a
translation table in memory. The contents of the AL register are interpreted as an
unsigned index into this table, with the contents of the EBX register used as the base
address. The XLAT instruction does the same operation and loads its result into the
same register, but it gets the byte operand from memory. This function is used to convert
character codes from one alphabet into another. For example, an ASCII code could be
used to look up its EBCDIC equivalent.

3.12 USAGE GUIDELINES

The instruction set of the 386 SX microprocessor has been designed with certain pro-
gramming practices in mind. These practices are particularly relevant to assembly lan-
guage programmers, but may be of interest to compiler designers as well.

e Use the EAX register when possible. Many instructions are one byte shorter when
the EAX register is used, such as loads and stores to memory when absolute ad-
dresses are used, transfers to other registers using the XCHG instruction, and oper-
ations using immediate operands.

o Use the D-data segment when possible. Instructions which deal with the D-space are
one byte shorter than instructions which use the other data segments, because of the
lack of a segment-override prefix.

¢ Emphasize short one-, two-, and three-byte instructions. Because instructions for the
386 SX microprocessor begin and end on byte boundaries, it has been possible to
provide many instruction encodings which are more compact than those for proces-
sors with word-aligned instruction sets. An instruction in a word-aligned instruction
set must be either two or four bytes long (or longer). Byte alignment reduces code
size and increases execution speed.

e Access 16-bit data with the MOVSX and MOVZX instructions. These instructions
sign-extend and zero-extend word operands to doubleword length. This eliminates the
need for an extra instruction to initialize the high word.

o For fastest interrupt response, use the NMI interrupt when possible.

e In place of using an ENTER instruction at lexical level 0, use a code sequence like:

PUSH EBP
nov EBP, ESP
SUB ESP, BYTE_COUNT

This executes in six clock cycles, rather than ten.
The following techniques may be applied as optimizations to enhance the speed of a
system after its basic functions have been implemented:

e The jump instructions come in two forms: one form has an eight-bit immediate for
relative jumps in the range from 128 bytes back to 127 bytes forward, the other form
has a full 32-bit displacement. Many assemblers use the long form in situations where

3-42

intel” APPLICATION PROGRAMMING

the short form can be used. When it is clear that the short form may be used, explic-
itly specify the destination operand as being byte length. This tells the assembler to
use the short form. If the assembler does not support this function, it will generate an
error. Note that some assemblers perform this optimization automatically.

e Use the ESP register to reference the stack in the deepest level of subroutines. Don’t
bother setting up the EBP register and stack frame.

e For fastest task switching, perform task switching in software. This allows a smaller
processor state to be saved and restored. See Chapter 7 for a discussion of
multitasking.

e Use the LEA instruction for adding registers together. When a base register and
index register are used with the LEA instruction, the destination is loaded with their
sum. The contents of the index register may be scaled by 2, 4, or 8.

¢ Use the LEA instruction for adding a constant to a register. When a base register and
a displacement are used with the LEA instruction, the destination is loaded with their
sum. The LEA instruction can be used with a base register, index register, scale
factor, and displacement.

e Use integer move instructions to transfer floating-point data.

o Use the form of the RET instruction which takes an immediate value for byte-count.
This is a faster way to remove parameters from the stack than an ADD ESP instruc-
tion. It saves three clock cycles on every subroutine return, and 10% in code size.

e When several references are made to a variable addressed with a displacement, load
the displacement into a register.

3-43

Part Il
Systems Programming

System Architecture

CHAPTER 4
SYSTEM ARCHITECTURE

Many of the architectural features of the 386™ SX microprocessor are used only by
system programmers. This chapter presents an overview of these features. Application
programmers may need to read this chapter, and the following chapters which describe
the use of these features, in order to understand the hardware facilities used by system
programmers to create a reliable and secure environment for application programs. The
system-level architecture also supports powerful debugging features which application
programmers may wish to use during program development.

The system-level features of the Intel386™ architecture include:

Memory Management

Protection

Multitasking

Input/Output

Exceptions and Interrupts
Initialization

Coprocessing and Multiprocessing
Debugging

These features are supported by registers and instructions, all of which are introduced in
the following sections. The purpose of this chapter is not to explain each feature in
detail, but rather to place the remaining chapters of Part II in perspective. When a
register or instruction is mentioned, it is accompanied by an explanation or a reference
to a following chapter.

4.1 SYSTEM REGISTERS
The registers intended for use by system programmers fall into these categories:

EFLAGS Register
Memory-Management Registers
Control Registers

Debug Registers

Test Registers

The system registers control the execution environment of application programs. Most
systems restrict access to these facilities by application programs (although systems can
be built where all programs run at the most privileged level, in which case application
programs are allowed to modify these facilities).

4-1

intel® SYSTEM ARCHITECTURE

4.1.1 System Flags

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging,
task switching, and the virtual-8086 mode. An application program should ignore these
flags. An application program should not attempt to change their state. In most systems,
an attempt to change the state of a system flag by an application program results in an
exception. The 386 SX microprocessor makes use of some of the bit positions which are
reserved on the 386 SX microprocessor. A 386 SX program should not attempt to
change the state of these bits. These flags are shown in Figure 4-1.

VM (Virtual-8086 Mode, bit 17)

Setting the VM flag places the processor in virtual-8086 mode. This is an emulation

of the programming environment of an 8086 processor. See Chapter 14 for more
information.

RF (Resume Flag, bit 16)

The RF flag temporarily disables debug exceptions so that an instruction can be
restarted after a debug exception without immediately causing another debug excep-
tion. When the debugger is entered, this flag allows it to run normally (rather than
recursively calling itself until the stack overflows). The RF flag is not affected by the

11111111
31 765432109876543210
< 1|7]s|z].|al. Pl |c
olofofolofofoofofolofofofo|¥|lo|] & |°|° ol |0 |1
Fl |T] C |F|F|F|F|F|F| |F| |F| |F

A

—»»| 2z <

VIRTUAL 8086 MODE (VM) —
RESUME FLAG (RF)

NESTED FLAG (NF)

1/0 PRIVILEGE LEVEL (IOPL)
INTERRUPT ENABLE FLAG (IF)
TRAP FLAG (TF)

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE

240331

Figure 4-1. System Flags

4-2

intgl® SYSTEM ARCHITECTURE

POPF instruction, but it is affected by the POPFD and IRET instructions. See
Chapter 12 for details.

NT (Nested Task, bit 14)

The processor uses the nested task flag to control chaining of interrupted and called
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is
affected by the POPF, POPFD, and IRET instructions. Improper changes to the
state of this flag can generate unexpected exceptions in application programs. See
Chapter 7 and Chapter 9 for more information on nested tasks.

IOPL (I/O Privilege Level, bits 12 and 13)

The I/O privilege level is used by the protection mechanism to control access to the
I/O address space. The privilege level of the code segment currently executing
(CPL) and the IOPL determine whether this field can be modified by the POPF,
POPFD, and IRET instructions. See Chapter 8 for more information.

IF (Interrupt-Enable Flag, bit 9)

Setting the IF flag puts the processor in a mode in which it responds to maskable
interrupt requests (INTR interrupts). Clearing the IF flag disables these interrupts.
The IF flag has no effect on either exceptions or nonmaskable interrupts (NMI
interrupts). The CPL and IOPL determine whether this field can be modified by the
CLI, STI, POPF, POPFD, and IRET instructions. See Chapter 9 for more details
about interrupts.

TF (Trap Flag, bit 8)

Setting the TF flag puts the processor into single-step mode for debugging. In this
mode, the processor generates a debug exception after each instruction, which al-
lows a program to be inspected as it executes each instruction. Single-stepping is just
one of several debugging features of the 386 SX microprocessor. If an application
program sets the TF flag using the POPF, POPFD, or IRET instructions, a debug
exception is generated. See Chapter 12 for more information.

4.1.2 Memory-Management Registers

Four registers of the 386 SX microprocessor specify the location of the data structures
which control segmented memory management, as shown in Figure 4-2. Special instruc-
tions are provided for loading and storing these registers. The GDTR and IDTR regis-
ters may be loaded with instructions which get a six-byte block of data from memory.
The LDTR and TR registers may be loaded with instructions which take a 16-bit seg-
ment selector as an operand. The remaining bytes of these registers are then loaded
automatically by the processor from the descriptor referenced by the operand.

43

intel”

SYSTEM ARCHITECTURE

SELECTOR BASE ADDRESS LiMiT

15 0 31 0 15 0

| | | 11 __| TR

L | 1] 1 | LOTR
[R ~ | ioTR
| | B | GDTR

240331

Figure 4-2. Memory Management Registers

Most systems will protect the instructions which load memory-management registers
from use by application programs (although a system in which no protection is used is

possible).

GDTR

LDTR

IDTR

Global Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the
global descriptor table (GDT). When a reference is made to data in mem-
ory, a segment selector is used to find a segment descriptor in the GDT or
LDT. A segment descriptor contains the base address for a segment. See
Chapter 5 for an explanation of segmentation.

Local Descriptor Table Register

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit
segment selector for the local descriptor table (LDT). The segment which
contains the LDT has a segment descriptor in the GDT. There is no seg-
ment descriptor for the GDT. When a reference is made to data in mem-
ory, a segment selector is used to find a segment descriptor in the GDT or
LDT. A segment descriptor contains the base address for a segment. See
Chapter 5 for an explanation of segmentation.

Interrupt Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the
interrupt descriptor table (IDT). When an interrupt occurs, the interrupt
vector is used as an index to get a gate descriptor from this table. The gate
descriptor contains a far pointer used to start up the interrupt handler. See
Chapter 9 for details of the interrupt mechanism.

4-4

intel” SYSTEM ARCHITECTURE

TR Task Register

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit
segment selector for the task currently being executed. It references a task
state segment (TSS) descriptor in the global descriptor table. See
Chapter 7 for a description of the multitasking features of the 386 SX
MmiCroprocessor.

4.1.3 Control Registers

Figure 4-3 shows the format of the control registers CR0, CR1, CR2, and CR3. Most
systems prevent application programs from loading the control registers (although an
unprotected system would allow this). Application programs can read this register to
determine if a numerics coprocessor is present. Forms of the MOV instruction allow the
register to be loaded from or stored in general registers. For example:

Mmov - EAX, (RO
mov - CR3, EBX

The CRO register contains system control flags, which control modes or indicate states
which apply generally to the processor, rather than to the execution of an individual task.
A program should not attempt to change any of the reserved bit positions.

PG (Paging, bit 31)

This bit enables paging when set, and disables paging when clear. See Chapter 5 for
more information about paging. See Chapter 10 for information on how to enable

paging.
TS (Task Switched, bit 3)

The processor sets the TS bit with every task switch and tests it when interpreting
coprocessor instructions. See Chapter 11 for more information.

31 23 15 7 0
M T
PAGE DIRECTORY BASE REGISTER (PDBR) RESERVED CR3
PAGE FAULT LINEAR ADDRESS CR2
RESERVED CR1
P Tlefmip]
GI RESERVED SI"I PIE| CRO
t t
240331

Figure 4-3. Control Registers

4-5

intel® SYSTEM ARCHITECTURE

EM (Emulation, bit 2)

When set, the EM bit indicates coprocessor functions are to be emulated in soft-
ware. See Chapter 11 for more information.

MP (Math Present, bit 1)

The MP bit controls the function of the WAIT instruction, which is used to synchro-
nize with a coprocessor. See Chapter 11 for more information.

PE (Protection Enable, bit 0)

Setting the PE bit enables protection of segments and pages. See Chapter 6 for more
information about protection. See Chapter 10 and Chapter 14 for information on
how to enable paging.

When an exception is generated during paging, the CR2 register has the 32-bit linear
address which caused the exception. See Chapter 9 for more information about handling
exceptions generated during paging (page faults).

When paging is used, the CR3 register containing the starting physical address of the
page directory (the first-level page table). Note that the page directory must be aligned
to a page boundary, so the low 12 bits of the register must be kept clear. The CR3
register is also known as the page-directory base register (PDBR).

4.1.4 Debug Registers

The debug registers bring advanced debugging abilities to the 386 SX microprocessor,
including data breakpoints and the ability to set instruction breakpoints without modify-
ing code segments (useful in debugging ROM-based software). Only programs executing
with the highest level of privileges may access these registers. See Chapter 12 for a
complete description of their formats and use. The debug registers are shown in
Figure 4-4.

4.1.5 Test Registers

The test registers are not a formal part of the Intel386 architecture. They are an
implementation-dependent facility provided for testing the translation lookaside buffer
(TLB). See Chapter 10 for a complete description of their formats and use. The test
registers are shown in Figure 4-5.

4-6

SYSTEM ARCHITECTURE

31 23 15 7 0
ILEN R/WJLEN JR/WJLEN IR/WJLEN JR/W G GILIGILIG|L|G]L|G]L
alalz 2l1|1|olo°°D°°°55332211oo°“7
sls]s elefsle
ooooooootoooooooolTlso ooooo.oooola ’I‘I° DR6
RESERVED DRS
. .
RESERVED DR4
BREAKPOINT 3 LINEAR ADDRESS oR3
+ $ +
BREAKPOINT 2 LINEAR ADDRESS N DR2
. + +
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT O LINEAR ADDRESS DAO
. .
. .

NOTE: 0 MEANS INTEL INTEL RESERVED. DO NOT DEFINE.

240331
Figure 4-4. Debug Registers
111
31 2109876543210
R R
PHYSICAL ADDRESS 0000000 L E |o o| TR?
P
LINEAR ADDRESS v|p : u :' w:'o 0o0o|c| TRE
240331

Figure 4-5. Test Registers

47

intel”

SYSTEM ARCHITECTURE

4.2 SYSTEM INSTRUCTIONS

System instructions

deal with functions such as:

1. Verification of pointer parameters (see Chapter 6):

. - Useful to Protected from
Instruction Description Application? Application?
ARPL Adjust RPL No No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
2. Addressing descriptor tables (see Chapter 5):
. _— Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register Yes No
SLDT Store LDT Register Yes No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
3. Multitasking (see Chapter 7):
. . Useful to Protected from
Instruction Description Application? Application?
LTR Load Task Register No Yes
STR Store Task Register Yes No

4. Coprocessing a

nd Multiprocessing (see Chapter 11):

. . Useful to Protected from
Instruction Description Application? Application?
CLTS Clear TS bit in CRO No Yes
ESC Escape Instructions Yes No
WAIT Wait Until Coprocessor Not Busy Yes No
LOCK Assert Bus-Lock No Can be
5. Input and Output (see Chapter 8):
. - Useful to Protected from
Instruction Description Application? Application?
IN Input Yes Can be
ouT Output Yes Can be
INS Input String Yes Can be
OUTS Output String Yes Can be

48

intgl”

SYSTEM ARCHITECTURE

6. Interrupt control (sce Chapter 9):

; . Useful to Protected from
Instruction Description Application? Application?
CLI Clear IF flag Can Be Can be
STI Store IF flag Can be Can be
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
. Debugging (see Chapter 10):
. - Useful to Protected from
Instruction Description Application? Application?
Mov LOAD and store debug registers No Yes
. System Control:
. . Useful to Protected from
Instruction Description Application? Application?
SMSW Store MSW No No
LMSW Load MSW No Yes
MoV Load and Store CRO No Yes
HLT Halt Processor No Yes

The SMSW and LMSW instructions are provided for compatibility with the 80286 pro-
cessor. A program for the 386 SX microprocessor should not use these instructions. A
program should access the CRO register using forms of the MOV instruction. The
LMSW instruction does not affect the PG bit, and it cannot be used to clear the PE bit.

The HLT instruction stops the processor until an enabled interrupt or RESET# signal is
received. (Note that the NMI interrupt is always enabled.) A special bus cycle is gener-
ated by the processor to indicate halt mode has been entered. Hardware may respond to
this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initial-
ization may be invoked. Software designers may need to be aware of the response of
hardware to halt mode.

In addition to the chapters mentioned above, detailed information about each of these
instructions can be found in the instruction reference chapter, Chapter 17.

4-9

Memory Management

CHAPTER 5
MEMORY MANAGEMENT

Memory management is a hardware mechanism which lets operating systems create sim-
plified environments for running programs. For example, when several programs are
running at the same time, they must each be given an independent address space. If they
all had to share the same address space, each would have to perform difficult and time-
consuming checks to avoid interfering with the others.

Memory management consists of segmentation and paging. Segmentation is used to give
each program several independent, protected address spaces. Paging is used to support
an environment where large address spaces are simulated using a small amount of RAM
and some disk storage. System designers may choose to use either or both of these
mechanisms. When several programs are running at the same time, either mechanism
can be used to protect programs against interference from other programs.

Segmentation allows memory to be completely unstructured and simple, like the memory
model of an 8-bit processor, or highly structured with address translation and protection.
The memory management features apply to units called segments. Each segment is an
independent, protected address space. Access to segments is controlled by data which
describes its size, the privilege level required to access it, the kinds of memory references
which can be made to it (instruction fetch, stack push or pop, read operation, write
operation, etc.), and whether it is present in memory.

Segmentation is used to control memory access, which is useful for catching bugs during
program development and for increasing the reliability of the final product. It also is
used to simplify the linkage of object code modules. There is no reason to write position-
independent code when full use is made of the segmentation mechanism, because all
memory references can be made relative to the base addresses of a module’s code and
data segments. Segmentation can be used to create ROM-based software modules, in
which fixed addresses (fixed, in the sense that they cannot be changed) are offsets from
a segment’s base address. Different software systems can have the ROM modules at
different physical addresses because the segmentation mechanism will direct all memory
references to the right place.

In a simple memory architecture, all addresses refer to the same address space. This is
the memory model used by 8-bit microprocessors, such as the 8080 processor, where the
logical address is the physical address. The 386™ SX microprocessor can be used in this
way by mapping all segments into the same address space and keeping paging disabled.
This might be done where an older design is being updated to 32-bit technology without
also adopting the new architectural features.

An application also could make partial use of segmentation. A frequent cause of soft-
ware failures is the growth of the stack into the instruction code or data of a program.
Segmentation can be used to prevent this. The stack can be put in an address space
separate from the address space for either code or data. Stack addresses always would

5-1

intel” MEMORY MANAGEMENT

refer to the memory in the stack segment, while data addresses always would refer to
memory in the data segment. The stack segment would have a maximum size enforced by
hardware. Any attempt to grow the stack beyond this size would generate an exception.

A complex system of programs may make full use of segmentation. For example, a
system in which programs share data in real time can have precise control of access to
that data. Program bugs would appear as exceptions generated when a program makes
improper access. This would be useful as an aid to debugging during program develop-
ment, and it also may be used to trigger error-recovery procedures in systems delivered
to the end-user.

Segmentation hardware translates a segmented (logical) address into an address for a
continuous, unsegmented address space, called a linear address. If paging is enabled,
paging hardware translates a linear address into a physical address. If paging is not
enabled, the linear address is used as the physical address. The physical address appears
on the address bus coming out of the processor.

Paging is a mechanism used to simulate a large, unsegmented address space using a
small, fragmented address space and some disk storage. Paging provides access to data
structures larger than the available memory space by keeping them partly in memory and
partly on disk.

Paging is applied to units of 4K bytes called pages. When a program attempts to access a
page which is on disk, the program is interrupted in a special way. Unlike other excep-
tions and interrupts, an exception generated due to address translation restores the
contents of the processor registers to values which allow the exception-generating in-
struction to be re-executed. This special treatment is called instruction restart. It allows
the operating system to read the page from disk, update the mapping of linear addresses
to physical addresses for that page, and restart the program. This process is transparent
to the program.

If an operating system never sets bit 31 of the CRO register (the PG bit), the paging
mechanism is not enabled. Linear addresses are used as physical addresses. This might
be done where a design using a 16-bit processor is being updated to use a 32-bit proces-
sor. An operating system written for a 16-bit processor does not use paging because the
size of its address space is so small (64K bytes) that it is more efficient to swap entire
segments between RAM and disk, rather than individual pages.

Paging would be enabled for operating systems which can support demand-paged virtual
memory, such as Unix. Paging is transparent to application software, so an operating
system intended to support application programs written for 16-bit processors may run
those programs with paging enabled. Unlike paging, segmentation is not transparent to
application programs. Programs which use segmentation must be run with the segments
they were designed to use.

5-2

intel” MEMORY MANAGEMENT

5.1 SELECTING A SEGMENTATION MODEL

A model for the segmentation of memory is chosen on the basis of reliability and per-
formance. For example, a system which has several programs sharing data in real-time
would get maximum performance from a model which checks memory references in
hardware. This would be a multi-segment model.

At the other extreme, a system which has just one program may get higher performance
from an unsegmented or “flat” model. The elimination of “far” pointers and segment-
override prefixes reduces code size and increases execution speed. Context switching is
faster, because the contents of the segment registers no longer have to be saved or
restored.

Some of the benefits of segmentation also can be provided by paging. For example, data
can be shared by mapping the same page into the address space of each program.

5.1.1 Flat Model

The simplest model is the flat model. In this model, all segments are mapped to the
entire physical address space. To the greatest extent possible, this model removes the
segmentation mechanism from the architecture seen by either the system designer or the
application programmer. This might be done for a programming environment like
UNIX, which supports paging but does not support segmentation.

A segment is defined by a segment descriptor. At least two segment descriptors must be
created for a flat model, one for code references and one for data references. The
segment selector for the stack segment may be mapped to the data-segment descriptor.
Whenever memory is accessed, the contents of one of the segment registers are used to
select a segment descriptor. The segment descriptor provides the base address of the
segment and its limit, as well as access control information (see Figure 5-1).

ROM usually is put at the top of the physical address space, because the processor
begins execution at OFFFFFOH. RAM is placed at the bottom of the address space
because the initial base address for the DS data segment after reset initialization is 0.

For a flat model, each descriptor has a base address of 0 and a segment limit of 4
gigabytes. By setting the segment limit to 4 gigabytes, the segmentation mechanism is
kept from generating exceptions for memory references which fall outside of a segment.
Exceptions could still be generated by the paging or protection mechanisms, but these
also can be removed from the memory model.

5-3

H ®
intel MEMORY MANAGEMENT

SEGMENT SEGMENT PHYSICAL
REGISTERS DESCRIPTORS MEMORY
ACCESS I LIMIT 16M
cs BASE ADDRESS EPROM
SS

N

DS ACCESS I LIMIT DRAM

BASEADDRESS | S 0

240331

Figure 5-1. Flat Model

5.1.2 Protected Flat Model

The protected flat model is like the flat model, except the segment limits are set to
include only the range of addresses for which memory actually exists. A general-
protection exception will be generated on any attempt to access unimplemented mem-
ory. This might be used for systems in which the paging mechanism is disabled, because
it provides a minimum level of hardware protection against some kinds of program bugs.

In this model, the segmentation hardware prevents programs from addressing non-
existent memory locations. The consequences of being allowed access to these memory
locations are hardware-dependent. For example, if the processor does not receive a
READY# signal (the signal used to acknowledge and terminate a bus cycle), the bus
cycle does not terminate and program execution stops.

Although no program should make an attempt to access these memory locations, an
attempt may occur as a result of program bugs. Without hardware checking of addresses,
it is possible that a bug could suddenly stop program execution. With hardware checking,
programs fail in a controlled way. A diagnostic message can appear, and recovery pro-
cedures can be attempted.

An example of a protected flat model is shown in Figure 5-2. Here, segment descriptors
have been set up to cover only those ranges of memory which exist. A code and a data
segment cover the EPROM and DRAM of physical memory. A second data segment has
been created to cover EPROM. This allows EPROM to be referenced as data. This
would be done, for example, to access constants stored with the instruction code in
ROM.

5-4

intel® MEMORY MANAGEMENT

SEGMENT SEGMENT PHYSICAL
REGISTERS DESCRIPTORS MEMORY
ACCESS TIMIT 16M
cs > BASE ADDRESS [EPROM
ACCESS | LIMIT /
ES BASE ADDRESS
ss
\ DRAM
ACCESS LIMIT
s > BASE ADDRESS [T 0
240331

Figure 5-2. Protected Flat Model

5.1.3 Multi-Segment Model

The most sophisticated model is the multi-segment model. Here, the full capabilities of
the segmentation mechanism are used. Each program is given its own table of segment
descriptors, and its own segments. The segments can be completely private to the pro-
gram, or they can be shared with specific other programs. Access between programs and
particular segments can be individually controlled.

Up to six segments can be ready for immediate use. These are the segments which have
segment selectors loaded in the segment registers. Other segments are accessed by load-
ing their segment selectors into the segment registers (see Figure 5-3).

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents
of one segment by reading beyond the end of another. Every memory operation is
checked against the limit specified for the segment it uses. An attempt to address mem-
ory beyond the end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified in the segment
descriptor. It is the responsibility of the operating system to allocate separate address
ranges to each segment. There may be situations in which it is desirable to have seg-
ments which share the same range of addresses. For example, a system may have both
code and data stored in a ROM. A code segment descriptor would be used when the
ROM is accessed for instruction fetches. A data segment descriptor would be used when
the ROM is accessed as data.

5-5

MEMORY MANAGEMENT

SEGMENT
REGISTERS

cs

SEGMENT
DESCRIPTORS

ACCESS | LIMIT

BASE ADDRESS

PHYSICAL
MEMORY

ACCESS l LIMIT

BASE ADDRESS

ACCESS LIMiT
BASE ADDRESS

ACCESS LIMIT
BASE ADDRESS

FS

ACCESS I LIMIT

BASE ADDRESS

/

GS

ACCESS LIMIT
BASE ADDRESS

ACCESS LIMIT
BASE ADDRESS

ACCESS LIMIT
BASE ADDRESS

ACCESS [TmiT

BASE ADDRESS

ACCESS LIMIT

BASE ADDRESS

[NS

16M

240331

Figure 5-3. Multi-Segment Model

5.2 SEGMENT TRANSLATION

A logical address consists of the 16-bit segment selector for its segment and a 32-bit
offset into the segment. A logical address is translated into a linear address by adding
the offset to the base address of the segment. The base address comes from the segment
descriptor, a data structure in memory which provides the size and location of a segment,
as well as access control information. The segment descriptor comes from one of two

5-6

intel® MEMORY MANAGEMENT

tables, the global descriptor table (GDT) or the local descriptor table (LDT). There is
one GDT for all programs in the system, and one LDT for each separate program being
run. If the operating system allows, different programs can share the same LDT. The
system also may be set up with no LDTs; all programs may use the GDT.

Every logical address is associated with a segment (even if the system maps all segments
into the same linear address space). Although a program may have thousands of seg-
ments, only six may be available for immediate use. These are the six segments whose
segment selectors are loaded in the processor. The segment selector holds information
used to translate the logical address into the corresponding linear address.

Separate segment registers exist in the processor for each kind of memory reference (code
space, stack space, and data spaces). They hold the segment selectors for the segments
currently in use. Access to other segments requires loading a segment register using a
form of the MOV instruction. Up to four data spaces may be available at the same time,
so there are a total of six segment registers.

When a segment selector is loaded, the base address, segment limit, and access control
information also are loaded into the segment register. The processor does not reference
the descriptor tables again until another segment selector is loaded. The information
saved in the processor allows it to translate addresses without making extra bus cycles. In
systems in which multiple processors have access to the same descriptor tables, it is the
responsibility of software to reload the segment registers when the descriptor tables are
modified. If this is not done, an old segment descriptor cached in a segment register
might be used after its memory-resident version has been modified.

The segment selector contains a 13-bit index into one of the descriptor tables. The index
is scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit
base address of the descriptor table. The base address comes from either the global
descriptor table register (GDTR) or the local descriptor table register (LDTR). These
registers hold the linear address of the beginning of the descriptor tables. A bit in the
segment selector specifies which table to use, as shown in Figure 5-4.

The translated address is the linear address, as shown in Figure 5-5. If paging is not
used, it also is the physical address. If paging is used, a second level of address transla-
tion produces the physical address. This translation is described in Section 5.3.

5.2.1 Segment Registers

Each kind of memory reference is associated with a segment register. Code, data, and
stack references each access the segments specified by the contents of their segment
registers. More segments can be made available by loading their segment selectors into
these registers during program execution.

Every segment register has a “visible” part and an “invisible” part, as shown in
Figure 5-6. There are forms of the MOV instruction to access the visible part of these
segment registers. The invisible part is maintained by the processor.

5-7

MEMORY MANAGEMENT

SEGMENT GLOBAL LOCAL
SELECTOR DESCRIPTOR DESCRIPTOR
TABLE TABLE

T

I

L TI=0 Ti=1
v v
|]
|]
| |
|]
1 1
] |
]]
| |
] |
| |
] 1
|]
]]

— —
[SELECTOR |
r------1
I BASE ADDRELs':lT GDTR l BASE ADDRELS|:IT LOTR

240331

Figure 5-4. Tl Bit Selects Descriptor Table

5-8

intel” MEMORY MANAGEMENT

15 o 31 0
sosen, e | e]
DESCRIPTOR TABLE
SEGMENT BASE
DESCRIPTOR [+ |—
ADDRESS

hooaess | PR | pace | orrser |

240331

Figure 5-5. Segment Registers

16-BIT VISIBLE
SELECTOR HIDDEN DESCRIPTOR
cs
SS
DS
ES
FS
GS

240331

Figure 5-6. Segment Translation

The operations which load these registers are instructions for application programs (de-
scribed in Chapter 3). There are two kinds of these instructions:

1. Direct load instructions such as the MOV, POP, LDS, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL and JMP
instructions. These instructions change the contents of the CS register as an inciden-
tal part of their function.

When these instructions are used, the visible part of the segment register is loaded with
a segment selector. The processor automatically fetches the base address, limit, type, and

other information from the descriptor table and loads the invisible part of the segment
register.

59

intel” MEMORY MANAGEMENT

Because most instructions refer to segments whose selectors already have been loaded
into segment registers, the processor can add the offset into the segment to the seg-
ment’s base address with no performance penalty.

5.2.2 Segment Selectors

A segment selector points to the information which defines a segment, called a segment
descriptor. A program may have more segments than the six whose segment selectors
occupy segment registers. When this is true, the program uses forms of the MOV in-
struction to change the contents of these registers when it needs to access a new
segment.

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a
part of a pointer variable, but the values of selectors are usually assigned or modified by
link editors or linking loaders, not application programs. Figure 5-7 shows the format of
a segment selector.

Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the
base address of the descriptor table (from the GDTR or LDTR register).

Table-Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a
set bit selects the current LDT.

Requested Privilege Level: When this field contains a privilege level having a greater
value (i.e., less privileged) than the program, it overrides the program’s privilege level.
When a program uses a segment selector obtained from a less privileged program, this
makes the memory access take place with the privilege level of the less privileged pro-
gram. This is used to guard against a security violation, in which a less privileged pro-
gram uses a more privileged program to access protected data.

For example, system utilities or device drivers must run with a high level of privilege in
order to access protected facilities, such as the control registers of peripheral interfaces.
But they must not interfere with other protected facilitics, even if a request to do so is

15 3210

INDEX 1| RPL

Ll TABLE INDICATOR (0 = GDT, 1 = LDT)
RPL REQUESTED PRIVILEGE LEVEL
(00 = MOST PRIVILEGED, 11 = LEAST)

240331

Figure 5-7. Segment Selector

5-10

intel” MEMORY MANAGEMENT

rcceived from a less privileged program. If a program requested reading a sector of disk
into memory occupied by a more privileged program, such as the operating system, the
RPL can be used to generate a general-protection exception when the segment selector
obtained from the less privileged program is used. This exception occurs even though the
program using the segment selector would have a sufficient privilege level to perform the
operation on its own.

Because the first entry of the GDT is not used by the processor, a selector which has an
index of 0 and a table indicator of 0 (i.e., a selector which points to the first entry of the
GDT) is used as a “null selector.” The processor does not generate an exception when a
segment register (other than the CS or SS registers) is loaded with a null selector. It
does, however, generate an exception when a segment register holding a null selector is
used to access memory. This feature can be used to initialize unused segment registers.

5.2.3 Segment Descriptors

A segment descriptor is a data structure in memory which provides the processor with
the size and location of a segment, as well as control and status information. Descriptors
typically are created by compilers, linkers, loaders, or the operating system, but not
application programs. Figure 5-8 illustrates the two general descriptor formats. The sys-
tem segment descriptor is described more fully in Chapter 6. All types of segment de-
scriptors take one of these formats.

Base: Defines the location of the segment within the 16 megabyte physical address space.
The processor puts together the three base address fields to form a single 32-bit value.

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (2'%). When the
bit is clear, the segment limit is interpreted in units of one byte; when set, the segment
limit is interpreted in units of 4K bytes (one page). Note that the twelve least significant
bits of the address are not tested when scaling is used. For example, a limit of 0 with the
Granularity bit set results in valid offsets from 0 to 4095. Also note that only the Limit
field is affected. The base address remains byte granular.

Limit: Defines the size of the segment. The processor puts together the two limit fields
to form a 20-bit value. The processor interprets the limit in one of two ways, depending
on the setting of the Granularity bit:

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in
increments of 1 byte.

2. If the Granularity bit is set, the Limit has a value from 4 kilobytes to 4 gigabytes, in
increments of 4K bytes.

For most segments, a logical address may have an offset ranging from 0 to the limit.
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit
field; they may be addressed with any offset except those from 0 to the limit (see the
Type field, below). This is done to allow segments to be created in which increasing the
value held in the Limit field allocates new memory at the bottom of the segment’s

5-11

MEMORY MANAGEMENT

DESCRIPTORS USED FOR APPLICATION CODE AND DATA SEGMENTS

2222211111111 11
31 4 3210987654321009287
BASE 31:24 v LiMIT o l° TYPE BASE 23:1
: Gl1jo|v 19:16 Pl P |t 16
L L
BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

DESCRIPTORS USED FOR SPECIAL SYSTEM SEGMENTS

222221111111111
31 4321098765432100987
Al umir D lp
BASE 31:24 Gl1lo|Vv 19:16 Pl P T TYPE BASE 23:16
L L
BASE ADDRESS 15:00 SEGMENT LIMIT 15:00
AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE
BASE SEGMENT BASE ADDRESS
DPL DESCRIPTOR PRIVILEGE LEVEL
DT DESCRIPTOR TYPE
(0 = SYSTEM; 1 = APPLICATION)
G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT
TYPE SEGMENT TYPE

+4

+0

+4

+0

240331

Figure 5-8. Segment Descriptors

address space, rather than at the top. Expand-down segments are intended to hold
stacks, but it is not necessary to use them. If a stack is going to be put in a segment which
does not need to change size, it can be a normal data segment.

DT field: The descriptors for application segments have this bit set. This bit is clear for
system segments and gates.

Type: The interpretation of this field depends on whether the segment descriptor is for
an application segment or a system segment. System segments have a slightly different

5-12

intel” MEMORY MANAGEMENT

descriptor format, discussed in Chapter 6. The Type ficld of a memory descriptor spec-
ifies the kind of access which may be made to a scgment, and its direction of growth (see
Table 5-1).

For data segments, the three lowest bits of the type field can be interpreted as expand-
down (E), write enable (W), and accessed (A). For code segments, the three lowest bits
of the type field can be interpreted as conforming (C), read enable (R), and
accessed (A).

Data segments can be read-only or read/write. Stack segments are data segments which
must be read/write. Loading the SS register with a segment selector for any other type of
segment generates a general-protection exception. If the stack segment needs to be able
to change size, it can be an expand-down data segment. The meaning of the segment
limit is reversed for an expand-down segment. While an offset in the range from 0 to the
segment limit is valid for other kinds of segments (outside this range a general-
protection exception is generated), in an expand-down segment these offsets are the
ones which generate exceptions. The valid offsets in an expand-down segment are those
which generate exceptions in the other kinds of segments. Other segments must be
addressed by offsets which are equal or less than the segment limit. Offsets into expand-
down segments always must be greater than the segment limit. This interpretation of the
segment limit causes memory space to be allocated at the bottom of the segment when
the segment limit is increased, which is correct for stack segments because they grow
toward lower addresses. If the stack is given a segment which does not change size, it
does not need to be an expand-down segment.

Code segments can be execute-only or execute/read. An execute/read segment might be
used, for example, when constants have been placed with instruction code in a ROM. In

Table 5-1. Application Segment Types

Number E w A Type Description 1
0 0 0 0 Data Read-Only
1 0 0 1 Data Read-Only, accessed
2 0 1 0 Data Read/Write
3 0 1 1 Data Read/Write, accessed
4 1 0 0 Data Read-Only, expand-down
5 1 0 1 Data Read-Only, expand-down, accessed
6 1 1 0 Data Read/Write, expand-down
7 1 1 1 Data Read/Write, expand-down, accessed
Number Cc R A Type Description
8 0 0 0 Code Execute-Only
9 0 0 1 Code Execute-Only, accessed
10 0 1 0 Code Execute/Read
11 0 1 1 Code Execute/Read, accessed
12 0 0 0 Code Execute-Only, conforming
13 0 0 1 Code Execute-Only, conforming, accessed
14 0 1 0 Code Execute/Read-Only, conforming
15 0 1 1 Code Execute/Read-Only, conforming, accessed

5-13

intel® MEMORY MANAGEMENT

this case, the constants can be read either by using an instruction with a CS override
prefix or by placing a segment selector for the code segment in a segment register for a
data segment.

Code segments can be either conforming or non-conforming. A transfer of execution
into a more privileged conforming segment keeps the current privilege level. A transfer
into a non-conforming segment at a different privilege level results in a general-
protection exception, unless a task gate is used (see Chapter 6 for a discussion of multi-
tasking). System utilities which do not access protected facilities, such as data-conversion
functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decoding, math library)
and some types of exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND
range exceeded) may be loaded in conforming code segments.

The Type field also reports whether the segment has been accessed. Segment descriptors
initially report a segment as having been accessed. If the Type field then is set to a value
for a segment which has not been accessed, the processor restores the value if the seg-
ment is accessed. By clearing and testing the low bit of the Type field, software can
monitor segment usage (the low bit of the Type field also is called the Accessed bit).

For example, a program development system might clear all of the Accessed bits for the
segments of an application. If the application crashes, the states of these bits can be used
to generate a map of all the segments accessed by the application. Unlike the break-
points provided by the debugging mechanism (Chapter 12), the usage information ap-
plies to segments rather than physical addresses.

Note that the processor updates the Type field when a segment is accessed, even if the
access is a read cycle. If the descriptor tables have been put in ROM, it is necessary for
the hardware designer to prevent the ROM from being enabled onto the data bus during
a write cycle. It also is necessary to return the READY # signal to the processor when a
write cycle to ROM occurs, otherwise the cycle does not terminate.

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used
to control access to the segment, using the protection mechanism described in Chapter 6.

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present
exception when a selector for the descriptor is loaded into a segment register. This is
used to detect access to segments which have become unavailable. A segment can be-
come unavailable when the system needs to create free memory. Items in memory, such
as character fonts or device drivers, which currently are not being used are de-allocated.
An item is de-allocated by marking the segment “not present” (this is done by clearing
the Segment-Present bit). The memory occupied by the segment then can be put to
another use. The next time the de-allocated item is needed, the segment-not-present
exception will indicate the segment needs to be loaded into memory. When this kind of
memory management is provided in a manner invisible to application programs, it is
called virtual memory. A system may maintain a total amount of virtual memory far larger
than physical memory by keeping only a few segments present in physical memory at any
one time.

5-14

intel” MEMORY MANAGEMENT

Figure 5-9 shows the format of a descriptor when the Segment-Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to
store its own data, such as information regarding the whereabouts of the missing
segment.

5.2.4 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables:

o The global descriptor table (GDT)
o The local descriptor tables (LDT)

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable
in length and may contain up to 8192 (2'%) descriptors. The first descriptor in the GDT
is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a segment register, but it always generates an
exception when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment
registers can be guaranteed to generate an exception.

5.2.5 Descriptor Table Base Registers

The processor finds the global descriptor table (GDT) and interrupt descriptor table
(IDT) using the GDTR and IDTR registers. These registers hold descriptors for tables
in the physical address space. They also hold limit values for the size of these tables (see
Figure 5-11).

The limit value is expressed in bytes. As with segments, the limit value is added to the
base address to get the address of the last valid byte. A limit value of 0 results in exactly
one valid byte. Because segment descriptors are always eight bytes, the limit should

1111111
31 65432108987 0
D Ip
AVAILABLE ol p || TYPE AVAILABLE +4
L
AVAILABLE +0

240331

Figure 5-9. Segment Descriptor (Segment Not Present)

5-15

intel” MEMORY MANAGEMENT

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE
+38 +38
+30 +30
+28 +28
+20 +20
+18 +18
+10 +10
+8 +8

FIRST DESCRIPTOR IN |
GDT IS NOT USED +0 +0
- -
GDTR REGISTER LDTR REGISTER
SELECTOR
| LiMIT LIMIT
BASE ADDRESS BASE ADDRESS

NOTE: ADDRESSES SHOWN IN HEXADECIMAL

240331

Figure 5-10. Descriptor Tables

always be one less than an integral multiple of eight (i.e., 8N — 1). The LGDT and
SGDT instructions read and write the GDTR register; the LIDT and SIDT instructions
read and write the IDTR register.

A third descriptor table is the local descriptor table (LDT). It is found using a 16-bit
segment selector held in the LDTR register. The LLDT and SLDT instructions read and
write the segment selector in the LDTR register. The LDTR register also holds the base
address and limit for the LDT, but these are loaded automatically by the processor from
the segment descriptor for the LDT.

5-16

intel” MEMORY MANAGEMENT

47 16 15 0

BASE ADDRESS LIMIT

BYTE ORDER IS SHOWN BELOW

240331

Figure 5-11. Descriptor Table Base Register

5.3 PAGE TRANSLATION

A linear address is a 32-bit address into a uniform, unsegmented address space. This
address space may be a large physical address space, or paging may be used to simulate
this address space using a small amount of RAM and some disk storage. When paging is
used, a linear address is translated into its corresponding physical address, or an excep-
tion is generated. The exception gives the operating system a chance to read the page
from disk (perhaps sending a different page out to disk in the process), then restart the
program which generated the exception.

Paging is different from segmentation through its use of small, fixed-size pages. Unlike
segments, which usually are the same size as the data structures they hold, on the 386 SX
microprocessor, pages are always 4K bytes. If segmentation is the only form of address
translation which is used, a data structure which is present in physical memory will have
all of its parts in memory. If paging is used, a data structure may be partly in memory
and partly in disk storage.

The information which maps linear addresses into physical addresses and exceptions is
held in data structures in memory, called page tables. As with segmentation, this infor-
mation is cached in processor registers to minimize the number of bus cycles required
for address translation. Unlike segmentation, these processor registers are completely
invisible to application programs. (For testing purposes, these registers are visible to
programs running with maximum privileges; see Chapter 10 for details.)

The paging mechanism treats the 32-bit linear address as having three parts, two 10-bit
indexes into the page tables and a 12-bit offset into the page addressed by the page
tables. Because both the virtual pages in the linear address space and the physical pages
of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12
bits of the address. These 12 bits pass straight through the paging hardware, whether
paging is enabled or not. Note that this is different from segmentation, because segments
can start at any byte address.

Two levels of page tables are used. The top level page table is called the page directory. 1t
maps the upper 10 bits of the linear address to the second level of page tables. The
second level of page tables maps the middle 10 bits of the linear address to the base
address of a page in physical memory (called a page frame address), or to an exception.

5-17

H ®
intel MEMORY MANAGEMENT

An exception also may be generated by an entry in the page directory. This gives the
operating system a chance to bring in a page table from disk storage. By allowing the
second-level page tables to be sent to disk, the paging mechanism can support mapping
of the entire linear address space using only a few pages in memory.

The CR3 register holds the page frame address of the page directory. For this reason, it
also is called the page directory base register or PDBR. The upper 10 bits of the linear
address are scaled by four (the number of bytes in a page table entry) and added to the
value in the PDBR register to get the physical address of an entry in the page directory.
This value is truncated to a 24-bit value associated with 16 megabyte physical memory.
Because the page frame address is always clear in its lowest 12 bits, this addition is
performed by concatenation (replacement of the low 12 bits with the scaled index).

When the entry in the page directory is accessed, a number of checks are performed.
Exceptions may be generated if the page is protected or is not present in memory. If no
exception is generated, the upper most 8 bits are truncated, the next 12 bits are used to
select one of 2'% page tables. This is done because of the 24-bit physical address limita-
tion of the 386 SX. The middle 10 bits of the linear address are scaled by four (again, the
size of a page table entry) and concatenated with the page frame address to get the
physical address of an entry in the second-level page table.

Again, access checks are performed, and exceptions may be generated. If no exception
occurs, the upper 20 bits of the second-level page table entry are concatenated with the
lowest 12 bits of the linear address to form the physical address of the operand (data) in
memory. For a 386 DX CPU system, the upper 20 bits select one of 22° page frames. But
for a 386 SX CPU system, the upper 20 bits only select one of 2! page frames. Again,
this is because the 386 SX microprocessor is limited to a 24-bit physical address space.
The upper 8 bits (A,4-Aj;) are truncated when the address is output on 24 address pins.

Although this process may seem complex, it all takes place with very little overhead. The
processor has a cache for page table entries called the translation lookaside buffer
(TLB). The TLB satisfies most requests for reading the page tables. Extra bus cycles
occur only when a new page is accessed. The page size (4K bytes) is large enough so that
very few bus cycles are made to the page tables, compared to the number of bus cycles
made to instructions and data. At the same time, the page size is small enough to make
efficient use of memory. (No matter how small a data structure is, it occupies at least
one page of memory; page sizes larger than 4K bytes waste memory.)

5.3.1 PG Bit Enables Paging

If paging is enabled, a second stage of address translation is used to generate the phys-
ical address from the linear address. If paging is not enabled, the linear address is used
as the physical address.

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is
set by the operating system during software initialization. The PG bit must be set if the
operating system is running more than one program in virtual-8086 mode or if demand-
paged virtual memory is used.

5-18

intel® MEMORY MANAGEMENT

5.3.2 Linear Address

A linear address is mapped to a physical address by specifying a page table, a page
within that table, and an offset within that page. Figure 5-12 shows the format of a linear
address.

Figure 5-13 shows how the processor translates the DIR, PAGE, and OFFSET fields of
a linear address into the physical address using two levels of page tables. The addressing
mechanism uses the DIR field as an index into a page directory, uses the PAGE field as
an index into the page table determined by the page directory, and uses the OFFSET
field to address an operand within the page specified by the page table.

5.3.3 Page Tables

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096
bytes of memory or, at most, 1K 32-bit entries.

Two levels of tables are used to address a page of memory. The top level is called the
page directory. It addresses up to 1K page tables in the second level. A page table in the
second level addresses up to 1K pages in physical memory. All the tables addressed by
one page directory, therefore, can address 4K or 2'? pages. Because each page contains
4K or 2'? bytes, the tables of one page directory can span the entire linear address space
of the 386 SX microprocessor (2°%).

The physical address of the current page directory is stored in the CR3 register, also
called the page directory base register (PDBR). Memory management software has the
option of using one page directory for all tasks, one page directory for each task, or some
combination of the two. See Chapter 10 for information on initialization of the CR3
register. See Chapter 7 for how the contents of the CR3 register can change for each
task. :

5.3.4 Page-Table Entries

Entries in either level of page tables have the same format. Figure 5-14 illustrates this
format.

31 22 21 12 11 o

DIR PAGE OFFSET

240331

Figure 5-12. Format of a Linear Address

5-19

ntel” MEMORY MANAGEMENT

PAGE FRAME

| om | pace | orFser |

PHYSICAL
— ADDRESS

PAGE DIRECTORY PAGE TABLE

—»-1 PG TBL ENTRY

L1 DIR ENTRY

A

L= F—

240331

Figure 5-13. Page Translation

NOTE: O INDICATES INTEL RESERVED. DO NOT DEFINE.

31 12 11

UJR
PAGE FRAME ADDRESS 31..12 AVAIL O OJDJAJOO|/ |/

S W]

P — PRESENT

R/W — READ/WRITE

u/s — USER/SUPERVISOR

A — ACCESSED

D — DIRTY

AVAIL — AVAILABLE FOR SYSTEMS PROGRAMMER USE

240331

Figure 5-14. Format of a Page Table Entry

5.3.4.1 PAGE FRAME ADDRESS

The page frame address is the base address of a page. Because pages are located on
4K-byte boundaries, the lowest 12 bits of the page frame address are always clear. In a
page table entry, the upper most 8 bits are truncated, the next 12 bits are used to specify
a page frame address, and the lowest 12 bits specify control and status bits for the page.

5-20

intgl” MEMORY MANAGEMENT

In a page directory, the page frame address is the address of a page table. In a second-
level page table, the page frame address is the address of a page containing instructions
or data.

5.3.4.2 PRESENT BIT

The Present bit indicates whether the page frame address in a page table entry maps to
a page in physical memory. When set, the page is in memory.

When the Present bit is clear, the page is not in memory, and the rest of the page table
entry is available for the operating system, for example, to store information regarding
the whereabouts of the missing page. Figure 5-15 illustrates the format of a page table
entry when the Present bit is clear.

If the Present bit is clear in either level of page tables when an attempt is made to use a
page table entry for address translation, a page-fault exception is generated. In systems
which support demand-paged virtual memory, the following sequence of events then
occurs:

1. The operating system copies the page from disk storage into physical memory.

2. The operating system loads the page frame address into the page table entry and
sets its Present bit. Other bits, such as the R/W bit, may be set, too.

3. Because a copy of the old page table entry may still exist in the translation lookaside
buffer (TLB), the operating system empties it. See Section 5.3.5 for a discussion of
the TLB and how to empty it.

4. The program which caused the exception is then restarted.
Note that there is no Present bit for the page directory. Although the page directory may

be in disk storage while the tasks which use it are suspended, it must be brought into
memory before any of these tasks may be run.

5.3.4.3 ACCESSED AND DIRTY BITS

These bits provide data about page usage in both levels of page tables. The Accessed bit
is used to report read or write access to a page or second-level page table. The Dirty bit
is used to report write access to a page.

31 10

AVAILABLE o

240331

Figure 5-15. Format of a Page Table Entry for a Not-Present Page

5-21

intel® MEMORY MANAGEMENT

With the exception of the Dirty bit in a page directory entry, these bits are set by the
hardware; however, the processor does not clear either of these bits. The processor sets
the Accessed bits in both levels of page tables before a read or write operation to a page.
The processor sets the Dirty bit in the second-level page table before a write operation
to an address mapped by that page table entry. The Dirty bit in directory entries is
undefined.

The operating system may use the Accessed bit when it needs to create some free mem-
ory by sending a page or second-level page table to disk storage. By periodically clearing
the Accessed bits in the page tables, it can see which pages have been used recently.
Pages which have not been used are candidates for sending out to disk.

The operating system may use the Dirty bit when a page is sent back to disk. By clearing
the Dirty bit when the page is brought into memory, the operating system can see if it
has received any write access. If there is a copy of the page on disk, and the copy in
memory has not received any writes, there is no need to update disk from memory.

See Chapter 11 for how the 386 SX microprocessor updates the Accessed and Dirty bits
in multiprocessor systems.

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS

The Read/Write and User/Supervisor bits are used for protection checks applied to
pages, which the processor performs at the same time as address translation. See Chap-
ter 6 for more information.

5.3.5 Translation Lookaside Buffer

The processor stores the most recently used page table entries in an on-chip cache,
called the translation lookaside buffer or TLB. Most paging is performed using the
contents of the TLB. Bus cycles to the page tables are performed only when a new page
is used.

The TLB is invisible to application programs, but not to operating systems. Operating-
system programmers must flush the TLB (dispose of its page table entries) when entries
in the page tables are changed. If this is not done, old data which has not received the
changes might get used for address translation. A change to an entry for a page which is
not present in memory does not require flushing the TLB, because entries for not-
present pages are not cached.

The TLB is flushed when the CR3 register is loaded. The CR3 register can be loaded in
either of two ways:

1. Explicit loading using MOV instructions, such as:

nov CR3, EAX
Mov EAX, CR3

5-22

H ®
intel MEMORY MANAGEMENT

2. Implicit loading by a task switch which changes the contents of the CR3 register.
(See Chapter 7 for more information on task switching.) Note that if the contents of
the CR3 register do not change during a task switch, the TLB is not flushed.

5.4 COMBINING SEGMENT AND PAGE TRANSLATION

Figure 5-16 combines Figure 5-2 and Figure 5-9 to summarize both stages of translation
from a logical address to a physical address when paging is enabled. Options available in
both stages of address translation can be used to support several different styles of
memory management.

5.4.1 Flat Model

When the 386 SX microprocessor is used to run software written without segments, it
may be desirable to remove the segmentation features of the 386 SX microprocessor.
The 386 SX microprocessor does not have a mode bit for disabling segmentation, but the

16 0 32 0
LOGICAL
ADDRESS secector | OFFSET |

DESCRIPTOR TABLE

SEGMENT
DESCRIPTOR _F

hORESs | or | pace | orFser |

PAGE FRAME

PHYSICAL
> ADDRESS

PAGE DIRECTORY PAGE TABLE

PG TBL ENTRY

=+ |

Figure 5-16. Combined Segment and Page Address Translation

240331

5-23

. ®
intel MEMORY MANAGEMENT

same effect can be achieved by mapping the stack, code, and data spaces to the same
range of linear addresses. The 32-bit offsets used by 386 SX microprocessor instructions
can cover the entire linear address space.

When paging is used, the segments can be mapped to the entire linear address space. If
more than one program is being run at the same time, the paging mechanism can be
used to give each program a separate address space.

5.4.2 Segments Spanning Several Pages

The Intel386™ architecture allows segments which are larger the size of a page
(4K bytes). For example, a large data structure may span thousands of pages. If paging
were not used, access to any part of the data structure would require the entire data
structure to be present in physical memory. With paging, only the page containing the
part being accessed needs to be in memory.

5.4.3 Pages Spanning Several Segments

Segments also may be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a 1-byte semaphore, occupies 4K bytes if it is
placed in a page by itself. If many semaphores are used, it is more efficient to pack them
into a single page.

5.4.4 Non-Aligned Page and Segment Boundaries

The Intel386 architecture does not enforce any correspondence between the boundaries
of pages and segments. A page may contain the end of one segment and the beginning of
another. Likewise, a segment may contain the end of one page and the beginning of
another.

5.4.5 Aligned Page and Segment Boundaries

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which may
fit in one page is placed in two pages, there may be twice as much paging overhead to
support access to that segment.

5.4.6 Page-Table Per Segment

An approach to combining paging and segmentation which simplifies memory-
management software is to give each segment its own page table, as shown in
Figure 5-17. This gives the segment a single entry in the page directory which provides
the access control information for paging the segment.

5-24

intel® MEMORY MANAGEMENT

PAGE FRAMES

LoT PAGE DIRECTORY PAGE TABLES
PTE
PTE >
PTE L —
DESCRIPTOR |- PDE LI
DESCRIPTOR |—»} PDE
PTE
PTE
LOT PAGE DIRECTORY PAGE TABLES

=
PAGE FRAMES

240331

Figure 5-17. Each Segment Can Have Its Own Page Table

5-25

Protection

CHAPTER 6
PROTECTION

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks
from interfering with each other. For example, protection can keep one task from over-
writing the instructions or data of another task.

During program development, the protection mechanism can give a clearer picture of
program bugs. When a program makes an unexpected reference to the wrong memory
space, the protection mechanism can block the event and report its occurrence.

In end-user systems, the protection mechanism can guard against the possibility of soft-
ware failures caused by undetected program bugs. If a program fails, its effects can be
confined to a limited domain. The operating system can be protected against damage, so
diagnostic information can be recorded and automatic recovery may be attempted.

Protection may be applied to segments and pages. Two bits in a processor register define
the privilege level of the program currently running (called the current privilege level or
CPL). The CPL is checked during address translation for segmentation and paging.

Although there is no control register or mode bit for turning off the protection mecha-
nism, the same effect can be achieved by assigning privilege level 0 (the highest level of
privilege) to all segment selectors, segment descriptors, and page table entries.

6.1 SEGMENT-LEVEL PROTECTION

Protection provides the ability to limit the amount of interference a malfunctioning pro-
gram can inflict on other programs and their data. Protection is a valuable aid in soft-
ware development because it allows software tools (operating system, debugger, etc.) to
survive in memory undamaged. When an application program fails, the software is avail-
able to report diagnostic messages, and the debugger is available for post-mortem anal-
ysis of memory and registers. In production, protection can make software more reliable
by giving the system an opportunity to initiate recovery procedures.

Each memory reference is checked to verify that it satisfies the protection checks. All
checks are made before the memory cycle is started; any violation prevents the cycle
from starting and results in an exception. Because checks are performed in parallel with
address translation, there is no performance penalty. There are five protection checks:
Type check

Limit check

Restriction of addressable domain

Restriction of procedure entry points

IR .

Restriction of instruction set

6-1

intel” PROTECTION

A protection violation results in an exception. See Chapter 9 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

6.2 SEGMENT DESCRIPTORS AND PROTECTION

Figure 6-1 shows the fields of a segment descriptor which are used by the protection
mechanism. Individual bits in the Type field also are referred to by the names of their
functions.

Protection parameters are placed in the descriptor when it is created. In general, appli-
cation programmers do not need to be concerned about protection parameters.

When a program loads a segment selector into a segment register, the processor loads
both the base address of the segment and the protection information. The invisible part
of each segment register has storage for the base, limit, type, and privilege level. While
this information is resident in the segment register, subsequent protection checks on the
same segment can be performed with no performance penalty.

6.2.1 Type Checking

In addition to the descriptors for application code and data segments, the 386™ SX
microprocessor has descriptors for system segments and gates. These are data structures
used for managing tasks (Chapter 7) and exceptions and interrupts (Chapter 9).
Table 6-1 lists all the types defined for system segments and gates. Note that not all
descriptors define segments; gate descriptors hold pointers to procedure entry points.

Table 6-1. System Segment and Gate Types

Type Description
0 reserved
1 Available 80286 TSS
2 LDT
3 Busy 80286 TSS
4 Call Gate
5 Task Gate
6 80286 Interrupt Gate
7 80286 Trap Gate
8 reserved
9 Available 386™ SX TSS
10 reserved
11 Busy 386 SX TSS
12 386 SX Call Gate
13 reserved
14 386 SX Interrupt Gate
15 386 SX Task Gate

intel” PROTECTION

DATA SEGMENT DESCRIPTOR

21111111111

31 0987654321098 7 0
D
LIMIT
BASE 31:24 1916 p |1lo|E|wW]A BASE 23:16 +4
' L
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0

CODE SEGMENT DESCRIPTOR

21111111111

31 098765432100987 0
LIMIT o
BASE 31:24 19116 p |1|1]c|r|A BASE 23:16 +4
L
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0

SYSTEM SEGMENT DESCRIPTOR

21111111111

31 098765432100987 0
LIMIT 0
BASE 31:24 19:16 P |o] TYPE BASE 23:16 +4
' L
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0
A ACCESSED
[CONFORMING
DPL DESCRIPTOR PRIVILEGE LEVEL
E EXPAND-DOWN
R READABLE
LIMIT SEGMENT LIMIT
w WRITABLE

240331

Figure 6-1. Descriptor Fields Used for Protection

6-3

intel” PROTECTION

The Type fields of code and data segment descriptors include bits which further define
the purpose of the segment (see Figure 6-1):

o The Writable bit in a data-segment descriptor controls whether programs can write to
the segment.

o The Readable bit in an executable-segment descriptor specifies whether programs
can read from the segment (e.g., to access constants stored in the code space). A
readable, executable segment may be read in two ways:

1. With the CS register, by using a CS override prefix.

2. By loading a selector for the descriptor into a data-segment register (the DS, ES,
FS, or GS registers).

Type checking can be used to detect programming errors which would attempt to use
segments in ways not intended by the programmer. The processor examines type infor-
mation on two kinds of occasions:

1. When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

o The CS register only can be loaded with a selector for an executable segment.

e Selectors of executable segments which are not readable cannot be loaded into
data-segment registers.

¢ Only selectors of writable data segments can be loaded into the SS register.

2. Certain segments can be used by instructions only in certain predefined ways; for
example:

¢ No instruction may write into an executable segment.
o No instruction may write into a data segment if the writable bit is not set.
¢ No instruction may read an executable segment unless the readable bit is set.

6.2.2 Limit Checking

The Limit field of a segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity
bit). For data segments, the limit also depends on the E bit (Expansion-Direction bit).
The E bit is a designation for one bit of the Type field, when referring to data segment
descriptors.

When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor.
In this case, the limit ranges from 0 to OFFFFFH (2%° — 1 or 1 megabyte). When the G
bit is set, the processor scales the value in the Limit field by a factor of 2'2 In this case
the limit ranges from OFFFH (22 — 1 or 4K bytes) to OFFFFFFFFH (2** — 1 or 4
gigabytes). Note that when scaling is used, the lower twelve bits of the address are not
checked against the limit; when the G bit is set and the segment limit is 0, valid offsets
within the segment are 0 through 4095.

6-4

intgl® PROTECTION

For all types of segments except expand-down data segments (stack segments), the value
of the limit is one less than the size, in bytes, of the segment. The processor causes a
general-protection exception in any of these cases:

e Attempt to access a memory byte at an address > limit
e Attempt to access a memory word at an address > (limit — 1)

e Attempt to access a memory doubleword at an address > (limit — 3)

For expand-do