

• + ~ I® Osborne In 'tJI McGI'a,,~"'1iI1

386™ SX MICROPROCESSOR
PROGRAMMER'S REFERENCE

MANUAL

1989

This book is a reprint of an existing
title by Intel and is also available

from Intel Corporation

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specification at any time, without notice.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
BITBUS, COMMputer, CREDIT, Data Pipeline, ETOX, Genius, i, t, i486, i860, ICE,
iCEL, ICEVIEW, iCS, iDBP, iDIS, i2 ICE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel,
int.l, Inte1386, int.IBOS, Intel Certified, Intelevision, int.ligent Identifier, int.ligent
Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSXM,
Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME, MULTIBUS,
MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming, Rip­
plemode, RM)(f80, RUPI, Seamless, SLD, SugarCube, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical
suffix.

MDS in an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark
of Mohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.

CHMOS and MHOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

OS/2 is a trademark of International Business Machines Corporation.

UNIX is a registered trademark of AT&T.

Windows is a trademark of Microsoft Corporation.

©INTEL CORPORATION 1989

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION TO THE 386™ SX MICROPROCESSOR Page
1.1 ORGANIZATION OF THIS MANUAL ... 1-1
1 .1.1 Part 1-Application Programming .. 1-2
1.1.2 Part II - System Programming ... 1-3
1.1.3 Part 111- Compatibility.................. 1-4
1.1.4 Part IV -Instruction Set 1-4
1.1.5 Appendices 1-4
1.2 RELATED LITERATURE .. 1-5
1.3 NOTATIONAL CONVENTIONS ... 1-5
1 .3.1 Bit and By1e Order... 1-6
1.3.2 Undefined Bits and Software Compatibility.. 1-6
1.3.3 instruction Operands 1-7
1.3.4 Hexadecimal Numbers 1-7
1.3.5 Segmented Addressing 1-8
1.3.6 Exceptions 1-8

PART I-APPLICATIONS PROGRAMMING

CHAPTER 2
BASIC PROGRAMMING MODEL
2.1 MEMORY ORGANIZATION ... 2-1
2.1.1 Unsegmented or "Flat" Model................................ 2-3
2.1.2 Segmented Model... 2-3
2.2 DATA TYPES ... 2-3
2.3 REGISTERS .. 2-7
2.3.1 General Registers .. 2-7
2.3.2 Segment Registers 2-9
2.3.3 Stack Implementation 2-11
2.3.4 Flags Register 2-13
2.3.4.1 STATUS FLAGS .. 2-13
2.3.4.2 CONTROL FLAG 2-13
2.3.4.3 INSTRUCTION POINTER .. 2-14
2.4 INSTRUCTION FORMAT .. 2-15
2.5 OPERAND SELECTION 2-16
2.5.1 Immediate Operands 2-17
2.5.2 Register Operands 2-18
2.5.3 Memory Operands 2-18
2.5.3.1 SEGMENT SELECTION 2-19
2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION .. 2-19
2.6 INTERRUPTS AND EXCEPTIONS 2-22

CHAPTER 3
APPLICATION PROGRAMMING
3.1 DATA MOVEMENT INSTRUCTIONS .. 3-1
3.1.1 General-Purpose Data Movement Instructions 3-1
3.1.2 Stack Manipulation Instructions 3-2
3.1.3 Type Conversion Instructions 3-4
3.2 BINARY ARITHMETIC INSTRUCTIONS ... 3-6
3.2.1 Addition and Subtraction Instructions 3-7
3.2.2 Comparison and Sign Change Instruction 3-8

iii

TABLE OF CONTENTS

Page
3.2.3 Multiplication Instructions 3-8
3.2.4 Division Instructions ... 3-9
3.3 DECIMAL ARITHMETIC INSTRUCTIONS 3-9
3.3.1 Packed BCD Adjustment Instructions 3-10
3.3.2 Unpacked BCD Adjustment Instructions.. 3-10
3.4 LOGICAL INSTRUCTIONS 3-11
3.4.1 Boolean Operation Instructions 3-11
3.4.2 Bit Test and Modify Instructions .. 3-12
3.4.3 Bit Scan Instructions 3-12
3.4.4 Shift and Rotate Instructions 3-12
3.4.4.1 SHIFT INSTRUCTIONS ... 3-13
3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS ... 3-15
3.4.4.3 ROTATE INSTRUCTIONS ... 3-16
3.4.4.4 FAST "BIT BLT" USING DOUBLE-SHIFT INSTRUCTIONS 3-18
3.4.4.5 FAST BIT STRING INSERT AND EXTRACT 3-19
3.4.5 Byte-Set-On-Condition Instructions 3-22
3.4.6 Test Instruction .. 3-22
3.5 CONTROL TRANSFER INSTRUCTIONS 3-22
3.5.1 Unconditional Transfer Instructions ... 3-23
3.5.1.1 JUMP INSTRUCTION 3-23
3.5.1.2 CALL INSTRUCTIONS 3-23
3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS 3-24
3.5.2 Conditional Transfer Instructions 3-24
3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS 3-24
3.5.2.2 LOOP INSTRUCTIONS 3-24
3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES ... 3-26
3.5.3 Software Interrupts 3-26
3.6 STRING OPERATIONS ... 3-27
3.6.1 Repeat Prefixes 3-28
3.6.2 Indexing and Direction Flag Control 3-28
3.6.3 String Instructions .. 3-29
3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES 3-29
3.8 FLAG CONTROL INSTRUCTIONS 3-35
3.8.1 Carry and Direction Flag Control Instructions 3-35
3.8.2 Flag Transfer Instructions 3-35
3.9 COPROCESSOR INTERFACE INSTRUCTIONS 3-38
3.10 SEGMENT REGISTER INSTRUCTIONS 3-39
3.10.1 Segment-Register Transfer Instructions 3-39
3.10.2 Far Control Transfer Instructions 3-40
3.10.3 Data Pointer Instructions 3-40
3.11 MISCELLANEOUS INSTRUCTIONS 3-41
3.11.1 Address Calculation Instruction 3-41
3.11.2 No-Operation Instruction 3-41
3.11.3 Translate Instruction 3-42
3.12 USAGE GUIDELINES 3-42

PART II-SYSTEMS PROGRAMMING

CHAPTER 4
SYSTEM ARCHITECTURE
4.1 SYSTEM REGISTERS 4-1
4.1.1 System Flags ... 4-2
4.1.2 Memory-Management Registers 4-3

iv

TABLE OF CONTENTS

Page
4.1.3 Control Registers 4-5
4.1.4 Debug Registers 4-6
4.1.5 Test Registers 4-6
4.2 SYSTEM INSTRUCTIONS 4-8

CHAPTER 5
MEMORY MANAGEMENT
5.1 SELECTING A SEGMENTATION MODEL .. 5-3
5.1.1 Flat Model .. 5-3
5.1.2 Protected Flat Model ... 5-4
5.1.3 Multi-Segment Model ... 5-5
5.2 SEGMENT TRANSLATION ... 5-6
5.2.1 Segment Registers .. 5-7
5.2.2 Segment Selectors .. 5-10
5.2.3 Segment Descriptors 5-11
5.2.4 Segment Descriptor Tables 5-15
5.2.5 Descriptor Table Base Registers 5-15
5.3 PAGE TRANSLATION ... 5-17
5.3.1 PG Bit Enables Paging .. 5-18
5.3.2 Linear Address 5-19
5.3.3 Page Tables 5-19
5.3.4 Page-Table Entries .. 5-19
5.3.4.1 PAGE FRAME ADDRESS 5-20
5.3.4.2 PRESENT BIT 5-21
5.3.4.3 ACCESSED AND DIRTY BITS 5-21
5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS 5-22
5.3.5 Translation Lookaside Buffer 5-22
5.4 COMBINING SEGMENT AND PAGE TRANSLATION .. 5-23
5.4.1 Flat Model 5-23
5.4.2 Segments Spanning Several Pages 5-24
5.4.3 Pages Spanning Several Segments 5-24
5.4.4 Non-Aligned Page and Segment Boundaries 5-24
5.4.5 Aligned Page and Segment Boundaries 5-24
5.4.6 Page-Table Per Segment .. 5-24

CHAPTER 6
PROTECTION
6.1 SEGMENT-LEVEL PROTECTION ... 6-1
6.2 SEGMENT DESCRIPTORS AND PROTECTION .. 6-2
6.2.1 Type Checking 6-2
6.2.2 Limit Checking 6-4
6.2.3 Privilege Levels 6-5
6.3 RESTRICTING ACCESS TO DATA ... 6-7
6.3.1 Accessing Data in Code Segments 6-8
6.4 RESTRICTING CONTROL TRANSFERS 6-9
6.5 GATE DESCRIPTORS ,.. 6-11
6.5.1 Stack Switching 6-14
6.5.2 Returning from a Procedure 6-17
6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM 6-18
6.6.1 Privileged Instructions 6-19
6.6.2 Sensitive Instructions. 6-19
6.7 INSTRUCTIONS FOR POINTER VALIDATION ... 6-19
6.7.1 Descriptor Validation .. 6-20

v

TABLE OF CONTENTS

Page
6.7.2 Pointer Integrity and RPL ... 6-21
6.8 PAGE-LEVEL PROTECTION 6-22
6.8.1 Page-Table Entries Hold Protection Parameters 6-22
6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN 6-22
6.8.1.2 TYPE CHECKING 6-23
6.8.2 Combining Protection of Both Levels of Page Tables .. 6-23
6.8.3 Overrides to Page Protection 6-23
6.9 COMBINING PAGE AND SEGMENT PROTECTION 6-24

CHAPTER 7
MULTITASKING
7.1 TASK STATE SEGMENT .. 7-2
7.2 TSS DESCRIPTOR .. 7-2
7.3 TASK REGISTER ... 7-4
7.4 TASK GATE DESCRIPTOR ... 7-6
7.5 TASK SWITCHING .. 7-7
7.6 TASK LINKING .. 7-10
7.6.1 Busy Bit Prevents Loops ... 7-12
7.6.2 Modifying Task Linkages ... 7-12
7.7 TASK ADDRESS SPACE .. 7-13
7.7.1 Task Linear-to-Physical Space Mapping ... 7-13
7.7.2 Task Logical Address Space ... 7-14

CHAPTER 8
INPUT/OUTPUT
8.1 I/O ADDRESSING .. .
8.1.1 I/O Address Space

~:~·~/~f~~~uM~~be~SI/~.::
8.2.1 Register I/O Instructions
8.2.2 Block I/O Instructions
8.3 PROTECTION AND I/O
8.3.1 I/O Privilege Level
8.3.2 I/O Permission Bit Map

CHAPTER 9
EXCEPTIONS AND INTERRUPTS
9.1 EXCEPTION AND INTERRUPT VECTORS .. .
9.2 INSTRUCTION RESTART .. .
9.3 ENABLING AND DISABLING INTERRUPTS .. .
9.3.1 NMI Masks Further NMls .. .
9.3.2 IF Masks INTR .. .
9.3.3 RF Masks Debug Faults
9.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts
9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS
9.5 INTERRUPT DESCRIPTOR TABLE .. .
9.6 lOT DESCRIPTORS
9.7 INTERRUPT TASKS AND INTERRUPT PROCEDURES .. .
9.7.1 Interrupt Procedures
9.7.1.1 STACK OF INTERRUPT PROCEDURE
9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE
9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDURE
9.7.1.4 PROTECTION IN INTERRUPT PROCEDURES

vi

8-1
8-2
8-3
8-3
8-4
8-4
8-5
8-5
8-6

9-1
9-2
9-3
9-3
9-3
9-4
9-4
9-5
9-5
9-6
9-8
9-8
9-8
9-8
9-8
9-9

TABLE OF CONTENTS

Page
9.7.2 Interrupt Tasks ... 9-11
9.8 ERROR CODE 9-12
9.9 EXCEPTION CONDITIONS. 9-13
9.9.1 Interrupt 0 - Divide Error .. 9-13
9.9.2 Interrupt 1 - Debug Exceptions 9-13
9.9.3 Interrupt 3 - Breakpoint ... 9-14
9.9.4 Interrupt 4-0verflow ... 9-14
9.9.5 Interrupt 5 - Bounds Check 9-14
9.9.6 Interrupt 6 -Invalid Opcode 9-14
9.9.7 Interrupt 7 - Coprocessor Not Available 9-15
9.9.8 Interrupt 8 - Double Fault 9-15
9.9.9 Interrupt 9 - Coprocessor Segment Overrun 9-16
9.9.10 Interrupt 10-lnvalid TSS .. 9-16
9.9.11 Interrupt 11 - Segment Not Present 9-17
9.9.12 Interrupt 12 - Stack Exception 9-18
9.9.13 Interrupt 13 - General Protection 9-19
9.9.14 Interrupt 14 - Page Fault 9-20
9.9.14.1 PAGE FAULT DURING TASK SWITCH .. 9-21
9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER 9-21
9.9.15 Interrupt 16 - Coprocessor Error. 9-22
9.10 EXCEPTION SUMMARY ... 9-23
9.11 ERROR CODE SUMMARy............. 9-24

CHAPTER 10
I NITIALIZA TION
10.1 PROCESSOR STATE AFTER RESET ... 10-1
10.2 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE ... 10-2
10.2.1 System Tables ... 10-3
10.2.2 NMI Interrupt 10-3
10.2.3 First Instruction 10-3
10.3 SWITCHING TO PROTECTED MODE 10-4
10.3.1 System Tables ... 10-4
10.3.2 NMI Interrupt .. 10-4
10.3.3 PE Bit 10-4
10.4 SOFTWARE INITIALIZATION IN PROTECTED MODE ... 10-4
10.4.1 Segmentation.. 10-5
10.4.2 Paging... 10-5
10.4.3 Tasks 10-5
10.5 TLB TESTING. 10-6
10.5.1 Structure of the TLB 10-6
10.5.2 Test Registers .. 10-6
10.5.3 Test Operations ... 10-9
10.6 INITIALIZATION EXAMPLE ... 10-10

CHAPTER 11
COPROCESSING AND MULTIPROCESSING
11.1 COPROCESSING 11-1
11.1.1 The ESC and WAIT Instructions 11-1
11.1.2 The EM and MP Bits .. 11-3
11 .1.3 The TS Bit .. 11-3
11.1.4 Coprocessor Exceptions ... 11-4
11.1.4.1 INTERRUPT 7 - COPROCESSOR NOT AVAILABLE .. 11-4
11.1.4.2 INTERRUPT 9 - COPROCESSOR SEGMENT OVERRUN 11-4

vii

TABLE OF CONTENTS

Page
11.1.4.3 INTERRUPT 16 - COPROCESSOR ERROR 11-5
11.2 GENERAL-PURPOSE MULTIPROCESSING 11-5
11.2.1 LOCK Prefix and the LOCK# Signal 11-6
11.2.2 Automatic Locking 11-6
11.2.3 Stale Data ... 11-7

CHAPTER 12
DEBUGGING
12.1 DEBUGGING SUPPORT 12-1
12.2 DEBUG REGISTERS 12-2
12.2.1 Debug Address Registers (DRO-DR3) 12-3
12.2.2 Debug Control Register (DR7) 12-3
12.2.3 Debug Status Register (DR6) 12-4
12.2.4 Breakpoint Field Recognition 12-5
12.3 DEBUG EXCEPTIONS 12-6
12.3.1 Interrupt 1 - Debug Exceptions 12-6
12.3.1.1 INSTRUCTION-BREAKPOINT FAULT ... 12-7
12.3.1.2 DATA-BREAKPOINT TRAP ... 12-7
12.3.1.3 GENERAL-DETECT FAULT 12-8
12.3.1.4 SINGLE-STEP TRAP 12-8
12.3.1.5 TASK-SWITCH TRAP .. 12-9
12.3.2 Interrupt 3 - Breakpoint Instruction 12-9

PART III-COMPATIBILITY

CHAPTER 13
EXECUTING 80286 PROGRAMS
13.1 TWO WAYS TO RUN 80286 TASKS .. 13-2
13.2 DIFFERENCES FROM 80286 PROCESSOR 13-2
13.2.1 Reserved Word of Segment Descriptor .. 13-2
13.2.2 New Segment Descriptor Type Codes 13-2
13.2.3 Restricted Semantics of LOCK Prefix 13-2
13.2.4 Additional Exceptions 13-3

CHAPTER 14
386™ SX MICROPROCESSOR REAL-ADDRESS MODE
14.1 ADDRESS TRANSLATION .. 14-1
14.2 REGISTERS AND INSTRUCTIONS 14-2
14.3 INTERRUPT AND EXCEPTION HANDLING 14-3
14.4 ENTERING AND LEAVING REAL-ADDRESS MODE .. 14-3
14.4.1 Switching to Protected Mode 14-3
14.5 SWITCHING BACK TO REAL-ADDRESS MODE ... 14-4
14.6 REAL-ADDRESS MODE EXCEPTIONS 14-4
14.7 DIFFERENCES FROM 8086 PROCESSOR ... 14-5
14.8 DIFFERENCES FROM 80286 REAL-ADDRESS MODE 14-8
14.8.1 Bus Lock 14-9
14.8.2 Initial Values of General Registers 14-9
14.8.3 MSW Initialization ... 14-10
14.8.4 Bus Hold .. 14-10

viii

TABLE OF CONTENTS

CHAPTER 15
VIRTUAL-SOS6 MODE Page
15.1 EXECUTING 8086 PROCESSOR CODE .. 15-1
15.1.1 Registers and Instructions 15-1
15.1.2 Address Translation ... 15-2
15.2 STRUCTURE OF A VIRTUAL-8086 TASK ... 15-3
15.2.1 Paging for Virtual-8086 Tasks ... 15-4
15.2.2 Protection within a Virtual-8086 Task 15-5
15.3 ENTERING AND LEAVING VIRTUAL-8086 MODE ... 15-5
15.3.1 Transitions Through Task Switches 15-6
15.3.2 Transitions Through Trap Gates and Interrupt Gates ... 15-7
15.4 ADDITIONAL SENSITIVE INSTRUCTIONS 15-8
15.4.1 Emulating 8086 Operating System Calls 15-8
15.4.2 Emulating the Interrupt-Enable Flag 15-9
15.5 VIRTUAL I/O 15-9
15.5.1 I/O-Mapped I/O .. 15-10
15.5.2 Memory-Mapped I/O 15-10
15.5.3 Special I/O Buffers 15-11
15.6 DIFFERENCES FROM 8086 PROCESSOR ... 15-11
15.7 DIFFERENCES FROM 80286 REAL-ADDRESS MODE ... 15-14

CHAPTER 16
MIXING 16-BIT AND 32-BIT CODE
16.1 USING 16-BIT AND 32-BIT ENVIRONMENTS 16-2
16.2 MIXING 16-BIT AND 32-BIT OPERATIONS .. 16-2
16.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS .. 16-3
16.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS 16-4
16.4.1 Size of Code-Segment Pointer 16-4
16.4.2 Stack Management for Control Transfers 16-4
16.4.2.1 CONTROLLING THE OPERAND SIZE FOR A CALL 16-6
16.4.2.2 CHANGING SIZE OF A CALL 16-6
16.4.3 Interrupt Control Transfers 16-6
16.4.4 Parameter Translation .. 16-7
16.4.5 The Interface Procedure 16-7

PART IV -INSTRUCTION SET

CHAPTER 17
3S6™ SX MICROPROCESSOR INSTRUCTION SET
17.1 OPERAND-SIZE AND ADDRESS-SIZE ATIRIBUTES .. 17-1
17.1.1 Default Segment Attribute ... 17-1
17.1.2 Operand-Size and Address-Size Instruction Prefixes ... 17-1
17.1.3 Address-Size Attribute for Stack .. 17-2
17.2 INSTRUCTION FORMAT .. 17-2
17.2.1 ModR/M and SIB Bytes ... 17-3
17.2.2 How to Read the Instruction Set Pages .. 17-8
17.2.2.1 OPCODE ... 17-8
17.2.2.2 INSTRUCTION .. 17-9
17.2.2.3 CLOCKS .. 17-10
17.2.2.4 DESCRIPTION .. 17-12
17.2.2.5 OPERATION .. 17-12
17.2.2.6 DESCRIPTION .. 17-15
17.2.2.7 FLAGS AFFECTED ... 17-15
17.2.2.8 PROTECTED MODE EXCEPTIONS ... 17-16

ix

TABLE OF CONTENTS

Page
17.2.2.9 REAL ADDRESS MODE EXCEPTIONS .. 17-17
17.2.2.10 VIRTUAL-8086 MODE EXCEPTIONS ... 17-17
AAA .. 17-18
AAD .. 17-19
AAM ... 17-20
AAS .. 17-21
ADC .. 17-22
ADD .. 17-23
AND .. 17-24
ARPL .. 17-25
BOUND .. 17-27
BSF .. 17-29
BSR .. 17-31
BT ... 17-31
BTC .. 17-34
BTR .. 17-36
BTS .. 17-38
CALL .. 17-40
CBW/CWDE ... 17-47
CLC .. 17-48
CLD .. 17-49
CLI .. 17-50
CLTS .. 17-51
CMC ... 17-52
CMP ... 17-53
CMPS/CMPSB/CMPSW/CMPSD ... 17-54
CWD/CDQ .. 17-56
DAA .. 17-57
DAS .. 17-58
DEC .. 17-59
DIV ... 17-60
ENTER ... 17-62
HLT .. 17-64
IDIV .. 17-65
IMUL ... 17-67
IN ... 17-69
INC ... 17-70
INS/INSB/INSW/INSD .. 17-71
INT/INTO .. 17-73
IRET/IRETD .. 17-78
Jcc ... 17-83
JMP .. 17-86
LAHF .. 17-91
LAR .. 17-92
LEA .. 17-94
LEAVE .. 17-96
LGDT/LiDT ... 17-97
LGS/LSS/LDS/LES/LFS ... 17-99
LLDT ... 17-102
LMSW .. 17-104
LOCK ... 17-105
LODS/LODSB/LODSW/LODSD ... 17-107
LOOP/LOOPcond .. 17-109

x

TABLE OF CONTENTS

Page
LSL ... 17-111
LTR ... 17-113
MOV ... 17-114
MOV ... 17-116
MOVS/MOVSB/MOVSW /MOVSD .. 17-118
MOVSX .. 17-120
MOVZX ... 17-121
MUL .. 17-122
NEG ... 17-124
NOP ... 17-125
NOT .. 17-126
OR .. 17-127
OUT .. 17-128
OUTS/OUTSB/OUTSW /OUTSD ... 17-128
POP .. 17-131
POPNPOPAD .. 17-134
POPF/POPFD .. 17-136
PUSH ... 17-137
PUSHNPUSHAD ... 17-139
PUSHF/PUSHFD .. 17-141
RCL/RCR/ROL/ROR ... 17-142
REP/REPE/REPZ/REPNE/REPNZ .. 17-145
RET .. 17-148
SAHF .. 17-152
SAL/SAR/SHL/SHR .. 17-153
SBB .. 17-156
SCAS/SCASB/SCASW/SCASD ... 17-158
SETcc ... 17-160
SGDT/SIDT .. 17-162
SHLD .. 17-164
SHRD ... 17-166
SLDT .. 17-168
SMSW .. 17-169
STC .. 17-170
STD .. 17-171
STI .. 17-172
STOS/STOSB/STOSW /STOSD ... 17-173
STR .. 17-175
SUB .. 17-176
TEST .. 17-178
VERR, VERW ... 17-179
WAIT .. 17-181
XCHG ... 17-182
XLAT/XLATB ... 17-183
XOR .. 17-185

APPENDIX A
OPCODE MAP

APPENDIX B
COMPLETE FLAG CROSS·REFERENCE

xi

TABLE OF CONTENTS

APPENDIX C
STATUS FLAG SUMMARY

APPENDIX D
CONDITION CODES

APPENDIX E
INSTRUCTION FORMAT AND TIMING

Figure

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
4-1
4-2
4-3
4-4
4-5
5-1
5-2
5-3
5-4
5-5

Figures

Title

Bit and Byte Order
Segmented Addressing
Fundamental Data Types .. .
Bytes, Words, and Doublewords in Memory
Data Types
Application Register Set .. .
An Unsegmented Memory .. .
A Segmented Memory
Stacks .. .
EFLAGS Register
Effective Address Computation
PUSH Instruction
PUSHA Instruction
POP Instruction .. .
POPA Instruction
Sign Extension
SHUSAl Instruction
SHR Instruction .. .
SAR Instruction .. .
SHlD Instruction .. .
SHRD Instruction
ROl Instruction .. .
ROR Instruction
RCl Instruction .. .
RCR Instruction .. .
Formal Definition of the ENTER Instruction .. .
Nested Procedures .. .
Stack Frame After Entering MAIN
Stack Frame After Entering PROCEDURE A
Stack Frame After Entering PROCEDURE B
Stack Frame After Entering PROCEDURE C .. .
low Byte of EFLAGS Register .. .
Flags Used with PUSHF and POPF
System Flags
Memory Management Registers
Control Registers
Debug Registers .. .
Test Registers .. .
Flat Model .. .
Protected Flat Model
Multi-Segment Model
TI Bit Selects Descriptor Table .. .
Segment Registers

xii

Page

1-6
2-4
2-5
2-5
2-8
2-9

2-11
2-12
2-13
2-14
2-20

3-3
3-3
3-4
3-5
3-5

3-14
3-14
3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-31
3-32
3-33
3-33
3-34
3-36
3-37
3-38

4-2
4-4
4-5
4-7
4-7
5-4
5-5
5-6
5-8
5-9

Figure

5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
8-2
9-1
9-2
9-3
9-4
9-5
9-6
9-7
10-1
10-2
10-3
10-4
11-1
12-1
14-1
15-1
15-2
15-3
16-1
17-1
17-2
17-3
17-4

TABLE OF CONTENTS

Figures
Title

Segment Translation .. .
Segment Selector .. .
Segment Descriptors
Segment Descriptor (Segment Not Present) .. .
Descriptor Tables
Descriptor Table Base Register
Format of a Linear Address
Page Translation .. .
Format of a Page Table Entry
Format of a Page Table Entry for a Not-Present Page
Combined Segment and Page Address Translation
Each Segment Can Have Its Own Page Table
Descriptor Fields Used for Protection
Protection Flags
Privilege Check for Data Access
Privilege Check for Control Transfer without Gate
Call Gate .. .
Call Gate Mechanism .. .
Privilege Check for Control Transfer with Call Gate
Initial Stack Pointers in a TSS
Stack Frame during Interlevel Call .. .
Protection Fields of a Page Table Entry
Task State Segment .. .
TSS Descriptor
TR Register .. .
Task Gate Descriptor
Task Gates Reference Tasks .. .
Nested Tasks
Overlapping Linear-to-Physical Mappings .. .
Memory-Mapped I/O .. .
I/O Permission Bit Map .. .
IDTR Register Locates IDT in Memory
IDT Gate Descriptors
Interrupt Procedure Call .. .
Stack Frame after Exception or Interrupt .. .
Interrupt Task Switch
Error Code
Page Fault Error Code .. .
Contents of the EDX Register after Reset
Contents of the CRO Register after Reset
TLB Structure
Test Registers .. .
Software Routine to Recognize the 387'" SX Coprocessor
Debug Registers .. .
8086 Address Translation .. .
8086 Address Translation .. .
Entering and Leaving Virtual-8086 Mode .. .
Privilege Level 0 Stack after Interrupt in Virtual-8086 Task
Stack after Far 16- and 32-Bit Calls
386'· SX Microprocessor Instruction Format
ModR/M and SIB Byte Formats .. .
Bit Offset for BIT[EAX,21) .. .
Memory Bit Indexing .. .

xiii

Page

5-9
5-10
5-12
5-15
5-16
5-17
5-19
5-20
5-20
5-21
5-23
5-25
6-3
6-6
6-8

6-10
6-11
6-12
6-13
6-15
6-17
6-22
7-3
7-4
7-5
7-6
7-8

7-11
7-14

8-3
8-7
9-6
9-7
9-9

9-10
9-11
9-12
9-21
10-2
10-2
10-7
10-7
11-2
12-3
14-2
15-3
15-6
15-8
16-5
17-2
17-4

17-15
17-16

Table

2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
5-1
6-1
6-2
6-3
6-4
7-1
7-2
9-1
9-2
9-3
9-4
9-5
9-6
10-1
10-2
12-1
12-2
14-1
14-2
17-1
17-2
17-3
17-4
17-5
17-6

TABLE OF CONTENTS

Tables

Title

Register Names
Status Flags
Default Segment Selection Rules .. .
Exceptions and Interrupts
Operands for Division .. .
Bit Test and Modify Instructions .. .
Conditional Jump Instructions
Repeat Instructions .. .
Flag Control Instructions
Application Segment Types
System Segment and Gate Types .. .
Interlevel Return Checks
Valid Descriptor Types for LSL Instruction .. .
Combined Page Directory and Page Table Protection
Checks Made during a Task Switch
Effect of a Task Switch on Busy, NT, and Link Fields
Exception and Interrupt Vectors
Priority Among Simultaneous Exceptions and Interrupts
Interrupt and Exception Classes
Invalid TSS Conditions .. .
Exception Summary .. .
Error Code Summary .. .
Processor State Following Power-Up
Meaning of Bit Pairs in the TR6 Register
Breakpointing Examples .. .
Debug Exception Conditions .. .
Exceptions and Interrupts
New 386™ SX Microprocessor Exceptions
Effective Size Attributes
16-Bit Addressing Forms with the ModR/M Byte .. .
32-Bit Addressing Forms with the ModR/M Byte
32-Bit Addressing Forms with the SIB Byte
Task Switch Times for Exceptions
386™ SX Microprocessor Exceptions

xiv

Page

2-10
2-14
2-19
2-23
3-9

3-12
3-25
3-28
3-37
5-13

6-2
6-18
6-20
6-23
7-10
7-11
9-2
9-5

9-16
9-17
9-23
9-24
10-3
10-9
12-6
12-6
14-5
14-9
17-2
17-5
17-6
17-7

17-11
17-16

Introduction to the 386 ™ SX 1
Microprocessor

CHAPTER 1
INTRODUCTION TO THE 386™ SX MICROPROCESSOR

The 386™ SX microprocessor is a 32-bit CPU with a 16-bit external data bus and a 24-bit
external address bus. The 386 SX CPU brings the high-performance software of the
Inte1386™ architecture to midrange systems. The processor can address up to 16 mega­
bytes of physical memory and 64 terabytes of virtual memory.

The 386 SX microprocessor includes:

• 32-bit integer processor for performing arithmetic and logical operations

• interface to the 381'" SX numerics coprocessor, an external floating-point arithmetic
unit for supporting the 32-, 64-, and 80-bit formats specified in IEEE standard 754

• segmentation, a form of memory management for creating independent, protected
address spaces

• paging, a form of memory management which provides access to data structures
larger than the available memory space by keeping them partly in memory and partly
on disk

• instruction backup for allowing a program to be restarted following an exception
(necessary for supporting demand-paged virtual memory)

• pipelined instruction execution for allowing the interpretation of different instruc­
tions to be overlapped

• debugging registers for hardware support of instruction and data breakpoints

The 386 SX microprocessor is 100% object code compatible with the 386 DX, 80286 and
8086. System manufacturers can provide 386 DX microprocessor based systems opti­
mized for performance and 386 SX microprocessor based systems optimized for cost,
both sharing the same operating systems and application software.

In addition to the 386 SX microprocessor, the Inte1386 family also includes a micropro­
cessor with a 16-bit external bus designed specifically for embedded applications:

• 376 T
" Embedded Processor-A reduced form of the 386 DX microprocessor opti­

mized for embedded applications, such as process controllers. The 376 processor
lacks the paging and 8086-compatibility features provided in the 386 SX microproces­
sor. The 376 processor is available in a surface-mount plastic package, which provides
the lowest cost and smallest form factor for any implementation of the Inte1386
architecture.

1.1 ORGANIZATION OF THIS MANUAL

This book presents the Intel386 architecture in four parts:

Part I
Part II

- Application Programming
- System Programming

1-1

Part III
Part IV
Appendices

INTRODUCTION TO THE 386™ SX MICROPROCESSOR

- Compatibility
- Instruction Set

These divisions are determined by the architecture and by the ways programmers use
this book. The first three parts are explanatory, showing the purpose of architectural
features, developing terminology and concepts, and describing instructions as they relate
to specific purposes or to specific architectural features. The remaining parts are refer­
ence material for programmers developing software for the 386 SX microprocessor.

The first three parts cover the operating modes and protection mechanism of the 386 SX
microprocessor. The distinction between application programming and system program­
ming is related to the protection mechanism of the 386 SX microprocessor. One purpose
of protection is to prevent applications from interfering with the operating system. For
this reason, certain registers and instructions are inaccessible to application programs.
The features discussed in Part I are those which are accessible to applications; the
features in Part II are available only to programs running with special privileges, or
programs running on systems where the protection mechanism is not used.

The mode of the 386 SX microprocessor affects which instructions and architectural
features are accessible. The 386 SX microprocessor has three modes for running
programs:

Protected mode uses the native 32-bit instruction set of the processor. In this mode all
instructions and architectural features are available.

Real-address mode (also called "real mode") emulates the programming environment of
the 8086 processor, with a few extensions (such as the ability to break out of this mode).
Reset initialization places the processor into real mode.

Virtual-8086 mode (also called "V86 mode") is another form of 8086 emulation mode.
Unlike real-address mode, virtual-8086 mode is compatible with protection and memory
management. The processor can enter virtual-8086 mode from protected mode to run a
program written for the 8086 processor, then leave virtual-8086 mode and re-enter pro­
tected mode to continue a program which uses the 32-bit instruction set.

The features available to application programs in protected mode and to all programs in
virtual-8086 mode are the same. These features are described in Part I of this book. The
additional features available to system programs in protected mode are described in
Part II. Part III describes real-address mode and virtual-8086 mode, as well as how to
run a mix of 16-bit and 32-bit programs.

1.1.1 Part 1-Application Programming

This part presents the architecture used by application programmers.

1-2

INTRODUCTION TO THE 386'· SX MICROPROCESSOR

Chapter 2-Basic Programming Model: Introduces the models of memory organization.
Defines the data types. Presents the register set used by applications. Introduces the
stack. Explains string operations. Defines the parts of an instruction. Explains address
calculations. Introduces interrupts and exceptions as they apply to application
programming.

Chapter 3 - Application Instruction Set: Surveys the instructions commonly used for
application programming. Considers instructions in functionally related groups; for
example, string instructions are considered in one section, while control-transfer instruc­
tions are considered in another. Explains the concepts behind the instructions. Details of
individual instructions are deferred until Part IV, the instruction-set reference.

1.1.2 Part 11- System Programming

This part presents the Intel386 architectural features used by operating systems, device
drivers, debuggers, and other software which support application programs.

Chapter 4 - System Architecture: Describes the features of the 386 SX microprocessor
used by system programmers. Introduces the remaining registers and data structures of
the 386 SX microprocessor which were not discussed in Part I. Introduces the system­
oriented instructions in the context of the registers and data structures they support.
References the chapters in which each register, data structure, and instruction is dis­
cussed in more detail.

Chapter 5 - Memory Management: Presents details of the data structures, registers, and
instructions which support segmentation. Explains how system designers can choose be­
tween an unsegmented ("flat") model of memory organization and a model with
segmentation.

Chapter 6-Protection: Discusses protection as it applies to segments. Explains the im­
plementation of privilege rules, stack switching, pointer validation, user and supervisor
modes. Protection aspects of multitasking are deferred until the following chapter.

Chapter 7 - Multitasking: Explains how the hardware of the 386 SX microprocessor
supports multitasking with context-switching operations and intertask protection.

Chapter 8-Input/Output: Describes the I/O features of the 386 SX microprocessor,
including I/O instructions, protection as it relates to I/O, and the I/O permission bit map.

Chapter 9 - Exceptions and Interrupts: Explains the basic interrupt mechanisms of the
386 SX microprocessor. Shows how interrupts and exceptions relate to protection. Dis­
cusses all possible exceptions, listing causes and including information needed to handle
and recover from each exception.

Chapter 10 - Initialization: Defines the condition of the processor after reset initializa­
tion. Explains how to set up registers, flags, and data structures. Contains an example of
an initialization program.

1-3

INTRODUCTION TO THE 386™ SX MICROPROCESSOR

Chapter 11-Coprocessing and Multiprocessing: Explains the instructions and flags
which support multiple processors with shared memory and floating-point arithmetic
coprocessors.

Chapter 12 - Debugging: Tells how to use the debugging registers of the 386 SX
microprocessor.

1.1.3 Part 111-Compatibility

This part explains the features of the architecture which support 16-bit programming.
All three execution modes have support for 16-bit programming: 16-bit operations can
be performed in protected mode using the operand size prefix, programs written for the
8086 processor or the real mode of the 80286 processor can run in real mode on the
386 SX microprocessor, and a virtual machine monitor can be used to emulate real mode
using virtual-8086 mode, even while multitasking with 32-bit programs.

Chapter 13 - Executing 80286 Programs: Because the 386 SX microprocessor supports a
superset of the programming environment of the 80286 processor, an application can be
ported to the 386 SX microprocessor along with its operating system. It is also possible
to port only the application, for use with a 32-bit operating system.

Chapter 14 - Real-Address Mode: Explains the real mode of the 386 SX microprocessor.
In this mode, the 386 SX microprocessor appears as a fast real-mode 80286 processor or
a fast 8086 processor enhanced with additional instructions.

Chapter 15 - Virtual-8086 Mode: The 386 SX microprocessor can switch rapidly between
protected mode and virtual-8086 mode, which allows multitasking among programs run­
ning in different modes.

Chapter 16-Mixing 16-Bit and 32-Bit Code: Even within a program or task, the 386 SX
microprocessor can mix 16-bit and 32-bit modules. Any particular module can use both
16-bit and 32-bit operands and addresses.

1.1.4 Part IV -Instruction Set

Parts I and II present the instruction set as it relates to specific aspects of the architec­
ture. Part III discusses compatibility with programs written for Intel 16-bit processors.
Part IV presents the instructions in alphabetical order, with the detail needed by
assembly-language programmers and programmers of debuggers, compilers, operating
systems, etc. Instruction descriptions include an algorithmic description of operations,
effect of flag settings, effect on flag settings, effect of operand and address-size at­
tributes, and exceptions which may be generated.

1.1.5 Appendices

The appendices present tables of encodings and other details in a format designed for
quick reference by programmers.

1-4

INTRODUCTION TO THE 386™ SX MICROPROCESSOR

1.2 RELATED LITERATURE

The following books contain additional material related to the Inte1386 family:

80386 Processor System Software Writer's Guide, Order Number 231499
386™ DX Microprocessor High-Performance 32-Bit CHMOS Microprocessor with Integrated

Memory Management, Order Number 231630
376™ Embedded Processor Programmer's Reference Manual, Order Number 240314
386™ DX Microprocessor Programmer's Reference Manual, Order Number 230985
387™ DX Programmer's Reference Manual, Order Number 231917
376™ High-Performance 32-Bit Embedded Processor, Order Number 240182
386™ SX Microprocessor, Order Number 240187
Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843

The 386™ SX Microprocessor Hardware Reference Manual is the companion of this book
for use by hardware designers. It contains information which may be useful to program­
mers, especially system programmers. For example, software may be affected by these
features of the hardware design:

• Asserting (or not asserting) the READY # input in response to bus cycles to unim-
plemented addresses.

• Asserting (or not asserting) the READY # input in response to write cycles to ROM.

• Assignment of the memory space to different bus sizes (16 or 32 bits).

• Assignment of the memory space to different forms of memory, such as EPROM,
dynamic RAM, and fast static RAM.

• Assignment of user-defined interrupt vectors.

• Placement of I/O ports in the physical memory space, or in a separate I/O address
space.

• Response of hardware to receiving a halt indication from the processor.

• Response of hardware to receiving a shutdown indication from the processor.

• Running the built-in self-test (BIST). This test can be invoked only from hardware,
and the result of the test can be read only by software.

The data sheet contains the latest information regarding device parameters (voltage
levels, bus cycle timing, priority of simultaneous exceptions and interrupts, etc.). The
data sheet is found in the Microprocessor and Peripheral Handbook (vol. 1).

1.3 NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation
of instructions, and for hexadecimal numbers. A review of this notation makes the man­
ual easier to read.

1-5

INTRODUCTION TO THE 386'· SX MICROPROCESSOR

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bot­
tom of the figure; addresses increase toward the top. Bit positions are numbered from
right to left. The numerical value of a set bit is equal to two raised to the power of the bit
position. The 386 SX microprocessor is a "little endian" machine; this means the bytes
of a word are numbered starting from the least significant byte. Figure 1-1 illustrates
these conventions.

Numbers are usually expressed in decimal notation (base 10). When hexadecimal (base
16) numbers are used, they are indicated by an 'H' suffix.

1.3.2 Undefined Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as resewed.
When bits are marked as undefined or reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. Software should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers
which contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a
register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously stored from the same
register. .

GMATEST
ADDRESS

31

BYTE 3

DATA STIIUC1\JfII

11

UNDEFIlED

BYTE 2 BYTE 1

1

24

20

11

12

•
4

BYTE 0
SllAU.EST

0 ADDRESS

t
BYTEOFF5n

. Figure 1-1. Bit and Byte Order

1-6

240331

INTRODUCTION TO THE 386 T• SX MICROPROCESSOR

NOTE

Depending upon the values of reselVed register bits will make software dependent upon
the unspecified manner in which the 386 SX microprocessor handles these bits.
Depending upon reselVed values risks incompatibility with future processors. AVOID
ANY SOFTWARE DEPENDENCE UPON THE STATE OF RESERVED 386 SX
MICROPROCESSOR REGISTER BITS.

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for
the 386 SX microprocessor is used. In this subset, an instruction has the following
format:

label: mnemonic argumentl, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the
same function.

• The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form
of either literals or identifiers for data items. Operand identifiers are either reserved
names of registers or are assumed to be assigned to data items declared in another
part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand
is the source and the left operand is the destination. Some assembly languages put the
source and destination in reverse order.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOAD REG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand.

1.3.4 Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the char­
acter H. A hexadecimal digit is a character from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F). A leading zero is added if the number would otherwise begin with one of the
digits A-F. For example, OFH is equivalent to the decimal number 15.

1-7

INTRODUCTION TO THE 386'· SX MICROPROCESSOR

1.3.5 Segmented Addressing

Intel processors use byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte number is used
to address memory. The memory which can be addressed with this number is called an
address space.

Intel processors also support segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a
program can keep its code (instructions) and stack in separate segments. Code addresses
would always refer to the code space, and stack addresses would always refer to the stack
space. An example of the notation used to show segmented addresses is shown below.

CS:EIP

This example refers to a byte within the code segment. The byte number is held in the
EIP register.

1.3.6 Exceptions

An exception is an event which occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. There are several different types of
exceptions, and some of these types may provide error codes. An error code reports
additional information about the error. Error codes are produced only for some excep­
tions. An example of the notation used to show an exception and error code is shown
below.

PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code is
zero, as shown below.

#PF(O)

1-8

Part I
Applications Programming

Basic Programming Model 2

CHAPTER 2
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment of the 386™ SX micro­
processor as seen by assembly language programmers. The chapter introduces program­
mers to those features of the Intel386 ™ architecture which directly affect the design and
implementation of application programs.

The basic programming model consists of these parts:

• Memory organization

• Data types

• Registers

• Instruction format

• Operand selection

• Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers may choose to make I/O instructions available to applications or may choose to
reserve these functions for the operating system. For this reason, the I/O features of the
386 SX microprocessor are discussed in Part II.

This chapter contains a section for each feature of the architecture normally visible to
applications.

2.1 MEMORY ORGANIZATION

The memory on the bus of a 386 SX microprocessor is called physical memory. It is
organized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called a
physical address, which ranges from zero to a maximum of 224 -1 (16 megabytes). Mem­
ory management is a hardware mechanism for making reliable and efficient use of mem­
ory. When memory management is used, programs do not directly address physical
memory. Programs address a memory model, called virtual memory.

Memory management consists of segmentation and paging. Segmentation is a mecha­
nism for providing multiple, independent address spaces. Paging is a mechanism to sup­
port a model of a large address space in RAM using a small amount of RAM and some
disk storage. Either or both of these mechanisms may be used. An address issued by a
program is a logical address. Segmentation hardware translates a logical address into an
address for a continuous, unsegmented address space, called a linear address. Paging
hardware translates a linear address into a physical address.

Memory may appear as a single, addressable space like physical memory. Or, it may
appear as one or more independent memory spaces, called segments. Segments can be
assigned specifically for holding a program's code (instructions), data, or stack. In fact, a
single program may have up to 16,383 segments of different sizes and kinds. Segments

2-1

BASIC PROGRAMMING MODEL

can be used to increase the reliability of programs and systems. For example, a pro­
gram's stack can be put into a different segment than its code to prevent the stack from
growing into the code space and overwriting instructions with data.

Whether or not multiple segments are used, logical addresses are translated into linear
addresses by treating the address as an offset into a segment. Each segment has a seg­
ment descriptor, which holds its base address and size limit. If the offset does not exceed
the limit, and no other condition exists which would prevent reading the segment, the
offset and base address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if
bit 31 of the CRO register is clear (the CRO register is discussed in Chapter 4). This
register bit controls whether paging is used or not used. If the bit is set, the paging
hardware is used to translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks of 4K bytes, called pages. The logical address space is
mapped into the linear address space, which is mapped into some number of pages. A
page may be in memory or on disk. When a logical address is issued, it is translated into
an address for a page in memory, or an exception is issued. An exception gives the
operating system a chance to read the page from disk and update the page mapping. The
program which generated the exception then can be restarted without generating an
exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers. If paging is used, it is normally invisible to the application
programmer. It only becomes visible when there is an interaction between the applica­
tion program and the paging algorithm used by the operating system. When all of the
pages in memory are used, the operating system uses its paging algorithm to decide
which memory pages should be sent to disk. All paging algorithms (except random algo­
rithms) have some kind of worst-case behavior which may be exercised by some kinds of
application programs.

The architecture of the 386 SX microprocessor gives designers the freedom to choose a
different memory model for each program, even when more than one program is running
at the same time. The model of memory organization can range between the following
extremes:

• A "flat" address space where the code, stack, and data spaces are mapped to the
same linear addresses. To the greatest extent possible, this eliminates segmentation
by allowing any type of memory reference to access any type of data.

• A segmented address space with separate segments for the code, data, and stack
spaces. As many as 16,383 linear address spaces of up to 4 gigabytes each can be used.

Both models can provide memory protection. Models intermediate between these ex­
tremes also can be chosen. The reasons for choosing a particular memory model and the
manner in which system programmers implement a model are discussed in Part II­
System Programming.

2-2

BASIC PROGRAMMING MODEL

2.1.1 Unsegmented or "Flat" Model

The simplest memory model is the flat model. Although there isn't a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory opera­
tions to refer to the same memory space.

In a flat model, segments may cover the entire 16 megabyte range of physical addresses,
or they may cover only those addresses which are mapped to physical memory. The
advantage of the smaller address space is it provides a minimum level of hardware
protection against software bugs; an exception will occur if any logical address refers to
an address for which no memory exists.

2.1.2 Segmented Model

In a segmented model of memory organization, the logical address space consists of as
many as 16,383 segments of up to 4 gigabytes each, or a total as large as 246 bytes (64
terabytes). The processor maps this 64 terabyte logical address space onto the physical
address space (up to 16 megabytes) by the address translation mechanism described in
Chapter 5. Application programmers may ignore the details of this mapping. The advan­
tage of the segmented model is that offsets within each address space are separately
checked and access to each segment can be individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 2-1).

1. A segment selector, which is a 16-bit field which identifies a segment.

2. An offset, which is a 32-bit byte address within a segment.

The processor uses the segment selector to find the linear address of the beginning of
the segment, called the base address. Programs access memory using fixed offsets from
this base address, so an object-code module may be loaded into memory and run without
changing the addresses it uses (dynamic linking). The size of a segment is defined by the
programmer, so a segment can be exactly the size of the module it contains.

2.2 DATA TYPES

Bytes, words, and doublewords are the principal data types (see Figure 2-2). A byte is
eight bits. The bits are numbered 0 through 7, bit 0 being the least significant bit (LSB).

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits.
The bits of a word are numbered from 0 through 15, bit 0 again being the least signifi­
cant bit. The byte containing bit 0 of the word is called the low byte; the byte containing
bit 15 is called the high byte. On the 386 SX microprocessor, the low byte is stored in the
byte with the lower address. The address of the low byte also is the address of the word.
The address of the high byte is used only when the upper half of the word is being
accessed separately from the lower half.

2-3

BASIC PROGRAMMING MODEL

I

I
I

f-

I

I-
~

OFFSET WITHIN SEGMENT t
OPERAND

I-

SEGMENT SELECTOR~

15 o
SEGMENT SELECTOR

31 o
OFFSET WITHIN SEGMENT

240331

Figure 2-1. Segmented Addressing

A doubleword is four bytes occupying any four consecutive addresses. A doubleword
contains 32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again
being the least significant bit. The word containing bit 0 of the doubleword is called the
low word; the word containing bit 31 is called the high word. The low word is stored in
the two bytes with the lower addresses. The address of the lowest byte is the address of
the doubleword. The higher addresses are used only when the upper word is being
accessed separately from the lower word, or when individual bytes are being accessed.
Figure 2-3 illustrates the arrangement of bytes within words and doublewords.

Note that words do not need to be aligned at even-numbered addresses and double­
words do not need to be aligned at addresses evenly divisible by four. This allows maxi­
mum flexibility in data structures (e.g., records containing mixed byte, word, and
doubleword items) and efficiency in memory utilization. Because the 386 SX micropro­
cessor has a 16-bit data bus, communication between processor and memory takes place

2-4

7

I
15

31

BASIC PROGRAMMING MODEL

0

BYTE I BYTE

7 0

HIGH BYTE LOW BYTE WORD

add, ... n+1 addr ... n

23 15 o
HIGH+ORD DOUBLEWORD

address n + 3 addre.s n + 2 adcI, ••• + 1 addr ••• n

Figure 2-2. Fundamental Data Types

BYTE
ADDRESS

E

D

C

B

A

9

8

7

8

5

4

3

2

o

MEMORY
VALUES

7A

FE

06

38

1F

23

OB

74

CB

31

}
WORDAT
ADDRESSB
CONTAINS FE08

}
DOUBLE WORD AT
ADDRESS A
CONTAINS 7AFE0836

I BYTE AT ADDRESS
9 CONTAINS 1F

}
WORD AT ADDRESS 6
CONTAINS 2308

WORD AT ADDRESS 2 ICONTAINS 74CB

WORD AT ADDRESS 1
CONTAINS CB31

NOTE: ALL VALUES IN HEXADECIMAL

Figure 2-3. Bytes, Words, and Doublewords in Memory

2·5

240331

240331

BASIC PROGRAMMING MODEL

as word transfers aligned to even addresses; the processor converts word transfers
aligned to odd addresses into multiple transfers. These unaligned operations reduce
speed by requiring extra bus cycles. For maximum speed, data structures (especially
stacks) should be designed so, whenever possible, word operands are aligned to even
addresses.

Although bytes, words, and doublewords are the fundamental types of operands, the
processor also supports additional interpretations of these operands. Specialized instruc­
tions recognize the following data types (shown in Figure 2-4):

Integer:

Ordinal:

Near Pointer:

Far Pointer:

String:

Bit field:

Bit string:

BCD:

A signed binary number held in a 32-bit doubleword, 16-bit word, or
8-bit byte. All operations assume a two's complement representation.
The sign bit is located in bit 7 in a byte, bit 15 in a word, and bit 31 in a
doubleword. The sign bit is set for negative integers, clear for positive
integers and zero. The value of an 8-bit integer is from - 128 to + 127;
a 16-bit integer from - 32,768 to + 32,767; a 32-bit integer from - 231 to
+231 -1.

An unsigned binary number contained in a 32-bit doubleword, 16-bit
word, or 8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a
16-bit ordinal from 0 to 65,535; a 32-bit ordinal from 0 to 232 -1.

A 32-bit logical address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for
references within a segment in a segmented model.

A 48-bit logical address consisting of a 16-bit segment selector and a
32-bit offset. Far pointers are used in a segmented memory model to
access other segments.

A contiguous sequence of bytes, words, or doublewords. A string may
contain from zero to 232 - 1 bytes (4 gigabytes).

A contiguous sequence of bits. A bit field may begin at any bit position
of any byte and may contain up to 32 bits.

A contiguous sequence of bits. A bit string may begin at any bit position
of any byte and may contain up to 232 - 1 bits.

A representation of a binary-coded decimal (BCD) digit in the range 0
through 9. Unpacked decimal numbers are stored as unsigned byte
quantities. One digit is stored in each byte. The magnitude of the num­
ber is the binary value of the low-order half-byte; values 0 to 9 are valid
and are interpreted as the value of a digit. The high-order half-byte
must be zero during multiplication and division; it may contain any
value during addition and subtraction.

2-6

•"n+-I® 'eI BASIC PROGRAMMING MODEL

Packed BCD: A representation of binary-coded decimal digits, each in the range 0 to
9. One digit is stored in each half-byte, two digits in each byte. The digit
in bits 4 to 7 is more significant than the digit in bits 0 to 3. Values 0 to
9 are valid for a digit.

2.3 REGISTERS

The 386 SX microprocessor contains sixteen registers which may be used by an applica­
tion programmer. As Figure 2-5 shows, these registers may be grouped as:

i. General Registers. These eight 32-bit registers are free for use by the programmer.
Tabie 2-1 shows the hames of these registers.

2. Segment registers. These registers hold segment selectors associated with different
forms of memory access. For example, there are separate segment registers for ac­
cess to code and stack space. These six registers determine, at any given time, which
segments of memory are currently available.

3. Status and control registers. These registers report and allow modification of the
state of the 386 SX microprocessor.

2.3.1 General Registers

The general registers; are the 32-bit registers EAX, EBX, ECX, ED X, EBP, ESP, ESI,
and ED!. These registers are used to hold operands for logical and arithmetic opera­
tions. They also may be used to hold operands for address calculations (except the ESP
register cannot be used as an index operand). The names of these registers are derived
from the names of the general registers on the 8086 processor, the AX, BX, CX, OX,
BP, SP, SI, and 01 registers. As Figure 2-5 shows, the low 16 bits of the general registers
can be referenced using these names.

Operations which specify a general register as a destination can change part or all of the
register. If a destination register has more bytes than the operand, the upper part of the
register is left unchanged. Instructions which use a 16-bit general register require the
16-bit operand size prefix. The prefix is a byte with the value 67H placed before the rest
of the instruction. Instruction opcodes use a single bit to select either 8- or 32-bit oper­
ands. Selection of 16-bit operands is infrequent enough that an instruction prefix is a
more efficient instruction encoding than one in which an additional bit in the opcode is
used. This, together with byte alignment of instructions, provides greater code density
than with word-aligned instruction sets. The 386 SX microprocessor has many one-, two-,
and three-byte instructions which would be two- and four-byte instructions in a word­
aligned instruction set.

Each byte of the 16-bit registers AX, BX, CX, and DX also have other names. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low
bytes).

All of the general-purpose registers are available for address calculations and for the
results of most arithmetic and logical operations; however, a few instructions assign
specific registers to hold operands. For example, string instructions use the contents of

2-7

BASIC PROGRAMMING MODEL

15

1"'1"'1"'1"'1
101("I

31 ~ foil(- 0

1'"1"'1"' j1"I"'II'I" '1"'1
101("I

~ foil(-

15 0
1IIjI'I"'II'1
101("I

31 0
I"' jill I'" j1II'III'I"'I'"1
101("I

o
11'II'I"IjI'1
~ foil(-

~ f0li(-
O

1"'II'I"IjI'1
~ foil(-
~ foil(-

31 0
I" 'I"' I' , 'I' II I"' I" 'I' , 'I' , 'I
101("I

u ~ 0

1"'1"'1"'1"'1"'1"'1"'1"'1"'1"'1"'1"'1
101("I

101("I

1"'1"'1"'1"'1"'1"'1"'1"'1"'1"'1"'1"'1
101("I

1'"111'1" '1"'1" '1"'1 I"' j1I1I" '111'1
~~~10I(;=====~--~"~1 

I" '1"'1"'1"'1" '1,111 1IIjI'I"'II'1 

Figure 2-4. Data Types 

2-8 

BYTE ,NTEGER 
7-B,T MAGN,TUDE 
1-B,T S,GN 

WORD ,NTEGER 
15-B,T MAGN,TUDE 
1-B,T S,GN 

DOUBLEWORD ,NTEGER 
31-B,T MAGN,TUDE 
1-B,T S,GN 

BYTE ORD,NAL 
8-B,T MAGN,TUDE 

WORD ORD,NAL 
16-B,T MAGN,TUDE 

DOUBLEWORD ORD,NAL 
32-B,T MAGN,TUDE 

BCD ,NTEGER 
4-B'T D,G,T PER BYTE 
4-B'T D,G,T PER BYTE 

PACKED BCD ,NTEGER 
4-B,T PER HALF-BYTE 
4-B,T PER HALF-BYTE 

NEAR PO,NTER 
32-B,T OFFSET 

FAR PO,NTER 
32-B,T OFFSET 
16-B,T SELECTOR 

B,T F,ELD 
UP TO 32 B,TS 

B,T STR,NG 
UP TO 128 MEGAB,TS 

BYTE STR,NG 
UP TO 16 MEGABYTES 

240331 



BASIC PROGRAMMING MODEL 

GENERAL REGISTERS 

31 23 15 7 0 16-BIT 32-BIT 

AK AL AX EAX 

DH DL OX EDX 

CH CL CX ECX 

BK BL BX EBX 

BP EBP 

SI ESI 

01 EDI 

SP ESP 

SEGMENT REGISTERS 

15 0 

CS 

SS 

OS 

ES 

FS 

GS 

STATUS AND CONTROL REGISTERS 

31 o 
EFLAGS 

Elp 
240331 

Figure 2-5. Application Register Set 

the ECX, ESI, and EDI registers as operands. By assigning specific registers for these 
functions, the instruction set can be encoded more compactly. The instructions using 
specific registers include: double-precision multiply and divide, I/O, strings, translate, 
loop, variable shift and rotate, and stack operations. 

2.3.2 Segment Registers 

Segmentation gives system designers the flexibility to choose among various models of 
memory organization. Implementation of memory models is the subject of Part 11-
System Programming. 

2-9 



BASIC PROGRAMMING MODEL 

The segment registers contain 16-bit segment selectors, which index into tables in mem­
ory. The tables hold the base address for each segment, as well as other information 
regarding memory access. An unsegmented model is created by mapping each segment 
to the same place in physical memory, as shown in Figure 2-6. 

At any instant, up to six segments of memory are immediately available. The segment 
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments. 
Each register is associated with a particular kind of memory access (code, data, or stack). 
Each register specifies a segment, from among the segments used by the program, which 
is used for its kind of access (see Figure 2-7). Other segments can be used by loading 
their segment selectors into the segment registers. 

The segment containing the instructions being executed is called the code segment. Its 
segment selector is held in the CS register. The 386 SX microprocessor fetches instruc­
tions from the code segment, using the contents of the EIP register as an offset into the 
segment. The CS register is loaded as the result of interrupts, exceptions, and instruc­
tions which transfer control between segments (e.g., the CALL and JMP instructions). 

Before a procedure is called, a region of memory needs to be allocated for a stack. The 
stack is used to hold the return address, parameters passed by the calling routine, and 
temporary variables allocated by the procedure. All stack operations use the SS register 
to find the stack segment. Unlike the CS register, the SS register can be loaded explic­
itly, which permits application programs to set up stacks. 

The DS, ES, FS, and GS registers allow as many as four data segments to be available 
simultaneously. Four data segments give efficient and secure access to different types of 
data structures. For example, separate data segments can be created for the data struc­
tures of the current module, data exported from a higher-level module, a dynamically­
created data structure, and data shared with another program. If a bug causes a program 
to run wild, the segmentation mechanism can limit the damage to only those segments 
allocated to the program. An operand within a data segment is addressed by specifying 
its offset either in an instruction or a general register. 

Table 2-1. Register Names 

8-Bit 16-Bit 32-Bit 

AL AX EAX 
AH 
BL BX EBX 
BH 
CL CX ECX 
CH 
OL OX EOX 
OH 

SI ESI 
01 EOI 
BP EBP 
SP ESP 

2-10 



BASIC PROGRAMMING MODEL 

DIFFERENT LOGICAL SEGMENTS ONE PHYSICAL ADDRESS SPACE 

CSI 

SSI 

DSI 

ESI 

Fsi -
GS 

I-

-
r---

240331 

Figure 2-6. An Unsegmented Memory 

Depending on the structure of data (i.e., the way data is partitioned into segments), a 
program may require access to more than four data segments. To access additional 
segments, the DS, ES, FS, and GS registers can be loaded by an application program 
during execution. The only requirement is to load the appropriate segment register be­
fore accessing data in its segment. 

A base address is kept for each segment. To address data within a segment, a 32-bit 
offset is added to the segment's base address. Once a segment is selected (by loading the 
segment selector into a segment register), an instruction only needs to specify the offset. 
Simple rules define which segment register is used to form an address when only an 
offset is specified. 

2.3.3 Stack Implementation 

Stack operations are supported by three registers: 

1. Stack Segment (SS) Register: Stacks reside in memory. The number of stacks in a 
system is limited only by the maximum number of segments. A stack may be up to 4 
gigabytes long, the maximum size of a segment on the 386 SX microprocessor. One 
stack is available at a time - the stack whose segment selector is held in the SS 
register. This is the current stack, often referred to simply as "the" stack. The SS 
register is used automatically by the processor for all stack operations. 

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack 
(TOS) in the current stack segment. It is used by PUSH and POP operations, sub­
routine calls and returns, exceptions, and interrupts. When an item is pushed onto 

2-11 



BASIC PROGRAMMING MODEL 

DIFFERENT LOGICAL SEGMENTS DIFFERENT ADDRESS SPACES 
IN PHYSICAL MEMORY 

CSI 

SSI 

DSI CODE 
ESI SEGMENT 

Fsi ~ 

l- STACK 

I-- SEGMENT 

I--
DATA 

SEGMENT 

DATA 

SEGMENT 

DATA 

SEGMENT 

DATA 

SEGMENT 

Figure 2-7. A Segmented Memory 

240331 

the stack (see Figure 2-8), the processor decrements the ESP register, then writes 
the item at the new TOS. When an item is popped off the stack, the processor 
copies it from the TOS, then increments the ESP register. In other words, the stack 
grows down in memory toward lesser addresses. 

3. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to 
access data structures passed on the stack. For example, on entering a subroutine 
the stack contains the return address and some number of data structures passed to 
the subroutine. The subroutine adds to the stack whenever it needs to create space 
for temporary local variables. As a result, the stack pointer moves around as tempo­
rary variables are pushed and popped. If the stack pointer is copied into the base 
pointer before anything is pushed on the stack, the base pointer can be used to 
reference data structures with fixed offsets. If this is not done, the offset to access a 
particular data structure would change whenever a temporary variable is allocated 
or de-allocated. 

When the EBP register is used to address memory, the current stack segment is 
selected (i.e., the SS segment). Because the stack segment does not have to be 

2·12 



BASIC PROGRAMMING MODEL 

STACK SEGMENT 

31 o 
_~~~~ME~; ~!t~~ 

POP 

TOP OF 

I STACK 
ESP 

PUSH 

240331 

Figure 2-8. Stacks 

specified, instruction encoding is more compact. The EBP register also can be used 
to address other segments. 

Instructions, such as the ENTER and LEAVE instructions, are provided which au­
tomatically set up the EBP register for convenient access to variables. 

2.3.4 Flags Register 

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register 
named EFLAGS. Figure 2-9 defines the bits within this register. The flags control cer­
tain operations and indicate the status of the 386 SX microprocessor. 

The flags may be considered in three groups: status flags, control flags, and system flags. 
Discussion of the system flags occurs in Part II. 

2.3.4.1 STATUS FLAGS 

The status flags of the EFLAGS register report the kind of result produced from the 
execution of arithmetic instructions. The MOV instruction does not affect these flags. 
Conditional jumps and subroutine calls allow a program to sense the state of the status 
flags and respond to them. For example, when the counter controlling a loop is decre­
mented to zero, the state of the ZF flag changes, and this change can be used to sup­
press the conditional jump to the start of the loop. 

The status flags are shown in Table 2-2. 

2.3.4.2 CONTROL FLAG 

The control flag DF of the EFLAGS register controls string instructions. 

2-13 



Name 

OF 
SF 
ZF 
AF 
PF 
CF 

31 

BASIC PROGRAMMING MODEL 

23 15 

16-BIT FLAGS REGISTER 

A 

o 

I 00000000000000000 I~I~H~I ~~ 1~1~1*1~I~H:H~111~1 

VIRTUAL 8086 MODE -X J I 
RESUME FLAG- ~::J 

NESTED TASK FLAG-X-
1/0 PRIVILEGE LEVEL-X-----' 

OVERFLOW-S:====:J 
DIRECTION FLAG-C 

INTERRUPT ENABLE-X:======J 
TRAP FLAG-S 
SIGN FLAG-S---------' 

ZERO FLAG-S:========~J 
AUXILIARY CARRY - S 

PARITY FLAG-S-------------' 
CARRY FLAG -S --------------' 

S ~ STATUS FLAG, C ~ CONTROL FLAG, X ~ SYSTEM FLAG 

NOTE: 0 OR 1 INDICATES INTEL RESERVED. 00 NOT DEFINE. 

Figure 2-9. EFLAGS Register 

Table 2-2. Status Flags 

Purpose Condition Reported 

240331 

overflow Result exceeds positive or negative limit of number range 
sign Result is negative (less than zero) 
zero Result is zero 
auxiliary carry Carry out of bit position 3 (used for BCD) 
parity Low byte of result has even parity (even number of set bits) 
carry flag Carry out of most significant bit of result 

DF (Direction Flag, bit 10) 

Setting the DF flag causes string instructions to auto-decrement, that is, to process 
strings from high addresses to low addresses. Clearing the DF flag causes string instruc­
tions to auto-increment, or to process strings from low addresses to high addresses. 

2.3.4.3 INSTRUCTION POINTER 

The instruction pointer (EIP) register contains the offset into the current code segment 
for the next instruction to execute. The instruction pointer is not directly available to the 
programmer; it is controlled implicitly by control-transfer instructions (jumps, returns, 
etc.), interrupts, and exceptions. 

2-14 



BASIC PROGRAMMING MODEL 

2.4 INSTRUCTION FORMAT 

The information encoded in an instruction includes a specification of the operation to be 
performed, the type of the operands to be manipulated, and the location of these oper­
ands. If an operand is located in memory, the instruction also must select, explicitly or 
implicitly, the segment which contains the operand. 

An instruction may have various parts and formats. The exact format of instructions is 
shown in Appendix B; the parts of an instruction are described below. Of these parts, 
only the opcode is always present. The other parts mayor may not be present, depending 
on the operation involved and the location and type of the operands. The parts of an 
instruction, in order of occurrence, are listed below: . 

• Prefixes: one or more bytes preceding an instruction which modify the operation of 
the instruction. The following prefixes can be used by application programs: 

1. Segment override-explicitly specifies which segment register an instruction 
should use, instead of the default segment register. 

2. Address size - switches between 16- and 32-bit addressing. Either size can be the 
default; this prefix selects the non-default size. 

3. Operand size - switches between 16- and 32-bit data size. Either size can be the 
default; this prefix selects the non-default size. 

4. Repeat-used with a string instruction to cause the instruction to be repeated 
for each element of the string. 

• Opcode: specifies the operation performed by the instruction. Some operations have 
several different opcodes, each specifying a different form of the operation. 

• Register specifier: an instruction may specify one or two register operands. Register 
specifiers occur either in the satpe byte as the opcode or in the same byte as the 
addressing-mode specifier. 

• Addressing-mode specifier: when present, specifies whether an operand is a register 
or memory location; if in memory, specifies whether a displacement, a base register, 
an index register, and scaling are to be used. 

• SIB (scale, index, base) byte: when the addressing-mode specifier indicates an index 
register will be used to calculate the address of an operand, a SIB byte is included in 
the instruction to encode the b~se register, the index register, and a scaling factor. 

• Displacement: when the addressing-mode specifier indicates a displacement will be 
used to compute the address of an operand, the displacement is encoded in the 
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is 
used in the common case when the displacement is sufficiently small. The processor 
extends an 8-bit displacement to 16 or 32 bits, taking into account the sign. 

• Immediate operand: when present, directly provides the value of an operand. Imme­
diate operands may be bytes, words, or doublewords. In cases where an 8-bit imme­
diate operand is used with a 16- or 32-bit operand, the processor extends the eight-bit 
operand to an integer of the same sign and magnitude in the larger size. In the same 
way, a 16-bit operand is extended to 32-bits. 

2-15 



BASIC PROGRAMMING MODEL 

2.5 OPERAND SELECTION 

An instruction acts on zero or more operands. An example of a zero-operand instruction 
is the Nap instruction (no operation). An operand can be held in any of these places: 

• In the instruction itself (an immediate operand). 

• In a register (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP, 
or EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the 
case of 8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers; 
or the EFLAGS register for flag operations). Use of 16-bit register operands requires 
use of the 16-bit operand size prefix (a byte with the value 67H preceding the 
instruction ). 

• In memory. 

• At an I/O port. 

Immediate operands and operands in registers can be accessed more rapidly than oper­
ands in memory because memory operands require extra bus cycles. Register and imme­
diate operands are available on-chip, the latter because they are prefetched as part of 
interpreting the instruction. 

Of the instructions which have operands, some specify operands implicitly; others specify 
operands explicitly; still others use a combination of both. For example: 

Implicit operand: AAM 

By definition, AAM (ASCII adjust for multiplication) operates on the contents of 
the AX register. 

Explicit operand: XCHG EAX, EBX 

The operands to be exchanged are encoded in the instruction with the opcode. 

Implicit and explicit operands: PUSH COUNTER 

The memory variable COUNTER (the explicit operand) is copied to the top of the 
stack (the implicit operand). 

Note that most instructions have implicit operands. All arithmetic instructions, for exam­
ple, update the EFLAGS register. 

An instruction can explicitly reference one or two operands. Two-operand instructions, 
such as MaY, ADD, and XOR, generally overwrite one of the two participating oper­
ands with the result. This is the difference between the source operand (the one unaf­
fected by the operation) and the destination operand (the one overwritten by the result). 

2-16 



BASIC PROGRAMMING MODEL 

For most instructions, one of the two explicitly specified operands-either the source or 
the destination - can be either in a register or in memory. The other operand must be in 
a register or it must be an immediate source operand. This puts the explicit two-operand 
instructions into the following groups: 

• Register to register 

• Register to memory 

• Memory to register 

• Immediate to register 

• Immediate to memory 

Certain string instructions and stack manipulation instructions, however, transfer data 
from memory to memory. Both operands of some string instructions are in memory and 
are specified implicitly. Push and pop stack operations allow transfer between memory 
operands and the memory-based stack. 

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD 
instructions. Two of the three operands are specified explicitly, as for the two-operand 
instructions, while a third is taken from the ECX register or supplied as an immediate. 
Other three-operand instructions, such as the string instructions when used with a repeat 
prefix, take all their operands from registers. 

2.5.1 Immediate Operands 

Certain instructions use data from the instruction itself as one (and sometimes two) of 
the operands. Such an operand is called an immediate operand. It may be a byte, word, 
or doubleword. For example: 

SHR PATTERN, 2 

One byte of the instruction holds the value 2, the number of bits by which to shift the 
variable PATTERN. 

TEST PATTERN, 0FFFF00FFH 

A doubleword of the instruction holds the mask which IS used to test the variable 
PATTERN. 

IMUL ex, MEMWORD, 3 

A word in memory is multiplied by an immediate 3 and stored into the CX register. 

All arithmetic instructions (except divide) allow the source operand to be an immediate 
value. When the destination is the EAX or AL register, the instruction encoding is one 
byte shorter than with the other general registers. 

2-17 



BASIC PROGRAMMING MODEL 

2.5.2 Register Operands 

Operands may be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX, 
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, 
DI, SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, 
or DL). An instruction which uses 16-bit register operands must use the 16-bit operand 
size prefix (a byte with the value 67H before the remainder of the instruction). 

The 386 SX microprocessor has instructions for referencing the segment registers (CS, 
DS, ES, SS, FS, and GS). These instructions are used by application programs only if 
segmentation is being used. 

The 386 SX microprocessor also has instructions for changing the state of individual 
flags in the EFLAGS register. Instructions have been provided for setting and clearing 
flags which often need to be accessed. The other flags, which are not accessed so often, 
can be changed by pushing the contents of the EFLAGS register on the stack, making 
changes to it while it's on the stack, and popping it back into the register. 

2.5.3 Memory Operands 

Instructions with explicit operands in memory must reference the segment containing 
the operand and the offset from the beginning of the segment to the operand. Segments 
are specified using a segment-override prefix, which is a byte placed at the beginning of 
an instruction. If no segment is specified, simple rules assign the segment by default. The 
offset is specified in one of the following ways: 

1. Most instructions which access memory contain a byte for specifying the addressing 
method of the operand. The byte, called the modR/M byte, comes after the opcode 
and specifies whether the operand is in a register or in memory. If the operand is in 
memory, the address is calculated from a segment register and any of the following 
values: a base register, an index register, a scaling factor, and a displacement. When 
an index register is used, the modR/M byte also is followed by another byte to 
specify the index register and scaling factor. This form of addressing is the most 
flexible. 

2. A few instructions select segments by default: 

A MOV instruction with the AL or EAX register as either source or destination can 
address memory with a doubleword encoded in the instruction. This special form of 
the MOV instruction allows no base register, index register, or scaling factor to be 
used. This form is one byte shorter than the general-purpose form. 

String operations address memory in the DS segment using the ESI register, (the 
MOVS, CMPS, OUTS, LODS, and SCAS instructions) or using the ES segment and 
EDI register (the MOVS, CMPS, INS, and STOS instructions). 

Stack operations address memory in the SS segment using the ESP register (the 
PUSH, POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, 
POPFD, CALL, RET, IRET, and IRETD instructions, exceptions, and interrupts). 

2-18 



BASIC PROGRAMMING MODEL 

2.5.3.1 SEGMENT SELECTION 

Explicit specification of a segment is optional. If a segment is not specified using a 
segment-override prefix, the processor automatically chooses a segment according to the 
rules of Table 2-3. (If a flat model of memory organization is used, the rules for selecting 
segments are not apparent to application programs.) 

Table 2-3. Default Segment Selection Rules 

Type of Reference Segment Used Default Selection Rule Register Used 

Instructions Code Segment Automatic with instruction fetch. 
CS register 

Stack Stack Segment All stack pushes and pops., Any memory ref-
LSS register erence which uses ESP or ESP as a base 

register. 

Local Data Data Segment All data references except when relative to 
OS register stack or string destination. 

Destination Strings E-Space Segment Destination of string instructions. 
ES register 

Different kinds of memory access have different default segments. Data operands usu­
ally use the main data segment (the DS segment). However, the ESP and EBP registers 
are used for addressing the stack, so when either register is used, the stack segment (the 
SS segment) is selected. 

Segment-override prefixes are used to override the default segment selection. Segment­
override prefixes are provided for each of the segment registers. Only the following 
special cases have a default segment selection which is not affected by a segment­
override prefix: 

• Destination strings in string instructions use the ES segment 

• Stack operands use the SS segment 

• Instruction fetches use the CS segment 

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION 

The modR/M byte provides the most flexible form of addressing. Instructions which have 
a modR/M byte after the opcode are the most common in the instruction set. For mem­
ory operands specified by a modR/M byte, the offset within the selected segment is the 
sum of three components: 

• A displacement 

• A base register 

• An index register (the index register may be multiplied by a factor of 2, 4, or 8) 

2-19 



BASIC PROGRAMMING MODEL 

The offset which results from adding these components is called an effective address. 
Each of these components may have either a positive or negative value. Figure 2-10 
illustrates the full set of possibilities for modR/M addressing. 

The displacement component, because it is encoded in the instruction, is useful for 
relative addressing by fixed amounts, such as: 

• Location of simple scalar operands. 

• Beginning of a statically allocated array. 

• Offset to a field within a record. 

The base and index components have similar functions. Both use the same set of general 
registers. Both can be used for addressing which changes during program execution, 
such as: 

• Location of procedure parameters and local variables on the stack. 

• The beginning of one record among several occurrences of the same record type or in 
an array of records. 

• The beginning of one dimension of multiple dimension array. 

• The beginning of a dynamically allocated array. 

The uses of general registers as base or index components differ m the following 
respects: 

• The ESP register cannot be used as an index register. 

• When the ESP or EBP register is used as the base, the SS segment is the default 
selection. In all other cases, the DS segment is the default selection. 

The scaling factor permits efficient indexing into an array when the array elements are 2, 
4, or 8 bytes. The scaling of the index register is done in hardware at the time the 
address is evaluated. This eliminates an extra shift or multiply instruction. 

SEGMENT + BASE + (INDEX'" SCALE) + DISPLACEMENT 

EAX EAX 
CS ECX ECX 
SS EDX EDX 2 NO DISPLACEMENT 
DS + EBX + EBX ". + a-BIT DISPLACEMENT 
ES ESP 4 32-BIT DISPLACEMENT 
FS EBP EBP 
GS ESI ESI a 

EDI EDI 

240331 

Figure 2-10. Effective Address Computation 

2-20 



BASIC PROGRAMMING MODEL 

The base, index, and displacement components may be used in any combination; any of 
these components may be null. A scale factor can be used only when an index also is 
used. Each possible combination is useful for data structures commonly used by pro­
grammers in high-level languages and assembly language. Suggested uses for some com­
binations of address components are described below. 

DISPLACEMENT 

The displacement alone indicates the offset of the operand. This form of addressing is 
used to access a statically allocated scalar operand. A byte, word, or doubleword dis­
placement can be used. 

BASE 

The offset to the operand is specified indirectly in one of the general registers, as for 
"based" variables. 

BASE + DISPLACEMENT 

A register and a displacement can be used together for two distinct purposes: 

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displace­
ment component encodes the offset of the beginning of the array. The register holds 
the results of a calculation to determine the offset to a specific element within the 
array. 

2. Access a field of a record. The base register holds the address of the beginning of 
the record, while the displacement is an offset to the field. 

An important special case of this combination is access to parameters in a procedure 
activation record. A procedure activation record is the stack frame created when a sub­
routine is entered. In this case, the EBP register is the best choice for the base register, 
because it automatically selects the stack segment. This is a compact encoding for this 
common function. 

(INDEX * SCALE) + DISPLACEMENT 

This combination is an efficient way to index into a static array when the element size is 
2,4, or 8 bytes. The displacement addresses the beginning of the array, the index register 
holds the subscript of the desired array element, and the processor automatically con­
verts the subscript into an index by applying the scaling factor. 

BASE + INDEX + DISPLACEMENT 

Two registers used together support either a two-dimensional array (the displacement 
holds the address of the beginning of the array) or one of several instances of an array of 
records (the displacement is an offset to a field within the record). 

2-21 



BASIC PROGRAMMING MODEL 

BASE + (INDEX * SCALE) + DISPLACEMENT 

This combination provides efficient indexing of a two-dimensional array when the ele­
ments of the array are 2, 4, or 8 bytes in size. 

2.6 INTERRUPTS AND EXCEPTIONS 

The 386 SX microprocessor has two mechanisms for interrupting program execution: 

1. Exceptions are synchronous events which are responses of the processor to certain 
conditions detected during the execution of an instruction. 

2. Interrupts are asynchronous events typically triggered by external devices needing 
attention. 

Interrupts and exceptions are alike in that both cause the processor to temporarily sus­
pend the program being run in order to run a program of higher priority. The major 
distinction between these two kinds of interrupts is their origin. An exception is always 
reproducible by re-executing the program which caused the exception, while an interrupt 
can have a complex, timing-dependent relationship with programs. 

Application programmers normally are not concerned with handling exceptions or inter­
rupts. The operating system, monitor, or device driver handles them. More information 
on interrupts for system programmers may be found in Chapter 9. Certain kinds of 
exceptions, however, are relevant to application programming, and many operating sys­
tems give application programs the opportunity to service these exceptions. However, 
the operating system defines the interface between the application program and the 
exception mechanism of the 386 SX microprocessor. Table 2-4 lists the interrupts and 
exceptions. 

• A divide-error exception; results when the DIV or IDIV instruction is executed with a 
zero denominator or when the quotient is too large for the destination operand. (See 
Chapter 3 for more information on the DIV and IDIV instructions.) 

• A debug exception may be sent back to an application program if it results from the 
TF (trap) flag. 

• A breakpoint exception results when an INT3 instruction is executed. This instruction 
is used by some debuggers to stop program execution at specific points. 

• An overflow exception results when the INTO instruction is executed and the OF 
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction. 

• A bounds-check exception results when the BOUND instruction is executed with an 
array index which falls outside the bounds of the array. See Chapter 3 for a discussion 
of the BOUND instruction. 

• The coprocessor-not-available exception occurs if the program contains instructions 
for a coprocessor, but no coprocessor is present in the system. 

• A coprocessor-error exception is generated when a coprocessor detects an illegal 
operation. 

2-22 



BASIC PROGRAMMING MODEL 

Table 2-4. Exceptions and Interrupts 

Vector Number Description 

0 Divide Error 
1 Debugger Call 
2 NMI Interrupt 
3 Breakpoint 
4 INTO-detected Overflow 
5 BOUND Range Exceeded 
6 Invalid Opcode 
7 Coprocessor Not Available 
8 Double Fault 
9 Coprocessor Segment Overrun 
10 Invalid Task State Segment 
11 Segment Not Present 
12 Stack Exception 
13 General Protection 
15 (Intel reserved. Do not use.) 
16 Coprocessor Error 

17-31 (Intel reserved. Do not use.) 
32-255 Maskable Interrupts 

The INT instruction generates an interrupt whenever it is executed; the processor treats 
this interrupt as an exception. Its effects (and the effects of all other exceptions) are 
determined by exception handler routines in the application program or the operating 
system. The INT instruction itself is discussed in Chapter 3. See Chapter 9 for a more 
complete description of exceptions. 

Exceptions caused by segmentation and paging are handled differently than interrupts. 
Normally, the contents of the program counter (EIP register) are saved on the stack 
when an exception or interrupt is generated. But exceptions resulting from segmentation 
and paging restore the contents of some processor registers to their state before interpre­
tation of the instruction began. The saved contents of the program counter address the 
instruction which caused the exception, rather than the instruction after it. This lets the 
operating system fix the exception-generating condition and restart the program which 
generated the exception. This mechanism is completely transparent to the program. 

2-23 





Application Programming 3 





CHAPTER 3 
APPLICATION PROGRAMMING 

This chapter is an overview of the instructions which programmers can use to write 
application software for the 386™ SX microprocessor. The instructions are grouped by 
categories of related functions. 

The instructions not discussed in this chapter normally are used only by operating­
system programmers. Part II describes these instructions. 

These instruction descriptions are for the 386 SX microprocessor in protected mode. 
The instruction set in this mode is a 32-bit superset of the instruction set used in Intel 
16-bit processors. In real-address mode or virtual-86 mode, the 386 SX microprocessor 
appears to have the architecture of a fast, enhanced 16-bit processor with instruction set 
extensions. See Chapters 13, 14, 15, and 16 for more information about running the 
16-bit instruction set. All of the instructions described in this chapter are available in all 
modes. 

The instruction set description in Chapter 17 contains more detailed information on all 
instructions, including encoding, operation, timing, effect on flags, and exceptions which 
may be generated. 

3.1 DATA MOVEMENT INSTRUCTIONS 

These instructions provide convenient methods for moving bytes, words, or doublewords 
between memory and the processor registers. They come in three types: 

1. General-purpose data movement instructions. 

2. Stack manipulation instructions. 

3. Type-conversion instructions. 

3.1.1 General-Purpose Data Movement Instructions 

MOV (Move) transfers a byte, word, or doubleword from the source operand to the 
destination opcrand. The MOV instruction is useful for transferring data along any of 
these paths: 

• To a register from memory 

• To memory from a register 

• Between general registers 

• Immediate data to a register 

• Immediate data to memory 

3-1 



APPLICATION PROGRAMMING 

The MOY instruction cannot move from memory to memory or from a segment register 
to a segment register. Memory-to-memory moves can be performed, however, by the 
string move instruction MOYS. A special form of the MOY instruction is provided for 
transferring data between the AL or EAX registers and a location in memory specified 
by a 32-bit offset encoded in the instruction. This form of the instruction does not allow 
a segment override, index register, or scaling factor to be used. The encoding of this 
form is one byte shorter than the encoding of the general-purpose MOY instruction. A 
similar encoding is provided for moving an 8-, 16-, or 32-bit immediate into any of the 
general registers. 

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place 
of three MOY instructions. It does not require a temporary location to save the contents 
of one operand while the other is being loaded. The XCHG instruction is especially 
useful for implementing semaphores or similar data structures for process 
synchronization. 

The XCHG instruction can swap two byte operands, two word operands, or two double­
word operands. The operands for the XCHG instruction may be two register operands, 
or a register operand and a memory operand. When used with a memory operand, 
XCHG automatically activates the LOCK signal. (See Chapter 11 for more information 
on bus locking.) 

3.1.2 Stack Manipulation Instructions 

PUSH (Push) decrements the stack pointer (ESP register), then copies the source oper­
and to the top of stack (see Figure 3-1). The PUSH instruction often is used to place 
parameters on the stack before calling a procedure. Inside a procedure, it can be used to 
reserve space on the stack for temporary variables. The PUSH instruction operates on 
memory operands, immediate operands, and register operands (including segment regis­
ters). A special form of the PUSH instruction is available for pushing a 32-bit general 
register on the stack. This form has an encoding which is one byte shorter than the 
general-purpose form. 

PUSHA (Push All Registers) saves the contents of the eight general registers on the 
stack (see Figure 3-2). This instruction simplifies procedure calls by reducing the number 
of instructions required to save the contents of the general registers. The processor 
pushes the general registers on the stack in the following order: EAX, ECX, EDX, EBX, 
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the 
PUSHA instruction; is reversed using the POPA instruction. 

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by 
the ESP register) to the destination operand, and then increments the ESP register to 
point to the new top of stack. See Figure 3-3. POP moves information from the stack to 
a general register, segment register, or to memory. A special form of the POP instruction 
is available for popping a doubleword from the stack to a general register. This form has 
an encoding which is one byte shorter than the general-purpose form. 

3-2 



APPLICATION PROGRAMMING 

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD 

31 o 31 o 

.-- ESP 

DOUBLEWORD .-- ESP 

240331 

Figure 3-1. PUSH Instruction 

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION 

31 0 ~ 0 

.-- ESP 

EAX 

ECX 

EDX 

EBX 

OLD ESP 

EBP 

ESI 

EDI .-- ESP 

240331 

Figure 3-2. PUSHA Instruction 

3-3 



APPLICATION PROGRAMMING 

BEFORE POPPING A DOUBLEWORD 

31 0 

DOUBLEWORD ~ESP 

AFTER POPPING A DOUBLEWORD 

~ 0 

Figure 3-3. POP Instruction 

~ESP 

240331 

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general 
registers, except for the ESP register. The ESP register is restored by the action of 
reading the stack (popping). See Figure 3-4. 

3.1.3 Type Conversion Instructions 

The type conversion instructions convert bytes into words, words into doublewords, and 
doublewords into 64-bit quantities (called quadwords). These instructions are especially 
useful for converting signed integers, because they automatically fill the extra bits of the 
larger item with the value of the sign bit of the smaller item. This results in an integer of 
the same sign and magnitude, but a larger format. This kind of conversion, shown in 
Figure 3-5, is called sign extension. 

There are two kinds of type conversion instructions: 

• The CWO, COO, CBW, and CWOE instructions which only operate on data in the 
EAX register. 

• The MOVSX and MOVZX instructions, which permit one operand to be in a general 
register while letting the other operand be in memory or a register. 

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word) 
double the size of the source operand. The CWO instruction copies the sign (bit 15) of 
the word in the AX register into every bit position in the OX register. The COO instruc­
tion copies the sign (bit 31) of the doubleword in the EAX register into every bit posi­
tion in the EOX register. The CWO instruction can be used to produce a doubleword 
dividend from a word before a word division, and the COO instruction can be used to 
produce a quadword dividend from a doubleword before doubleword division. 

3-4 



APPLICATION PROGRAMMING 

BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION 

31 o 31 o 

~ESP 

EAX 

ECX 

EDX 

EBX 

IGNORED 

EBP 

ESI 

EDI ~ESP 

240331 

Figure 3-4. POPA Instruction 

15 0 

ISI"I"I"I"I"I"I"I"I"I"I"I"I"I"I"I::~~:~,:::" 
~ 15 0 

Islslslslslslslslslslslslsl·lslslsl"I"I"I"I"I"I"I"I"I"I"I"I"I"I"I:~::"~: 
240331 

Figure 3-5. Sign Extension 

3-5 



APPLICATION PROGRAMMING 

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into 
every bit position in the AX register. 

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in 
the AX register into every bit position in the EAX register. 

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or 
16-bit value to 32-bit value by using the value of the sign to fill empty positions. 

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or 
16-bit value to 32-bit value by clearing the empty bit positions. 

3.2 BINARY ARITHMETIC INSTRUCTIONS 

The arithmetic instructions of the 386 SX microprocessor operate on numeric data en­
coded in binary. Operations include the add, subtract, multiply, and divide as well as 
increment, decrement, compare, and change sign (negate). Both signed and unsigned 
binary integers are supported. The binary arithmetic instructions may also be used as 
steps in arithmetic on decimal integers. Source operands can be immediate values, gen­
eral registers, or memory. Destination operands can be general registers or memory 
(except when the source operand is in memory). The basic arithmetic instructions have 
special forms for using an immediate value as the source operand and the AL or EAX 
registers as the destination operand. These forms are one byte shorter than the general­
purpose arithmetic instructions. 

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of 
result which was produced. The kind of instruction used to test the flags depends on 
whether the data is being interpreted as signed or unsigned. The CF flag contains infor­
mation relevant to unsigned integers; the SF and OF flags contain information relevant 
to signed integers. The ZF flag is relevant to both signed and unsigned integers; the ZF 
flag is set when all bits of the result are clear. 

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to re­
flect the size of the operation. For example, an 8-bit ADD instruction sets the CF flag if 
the sum of the operands exceeds 255 (decimal). 

If the integer is unsigned, the CF flag may be tested after one of these arithmetic oper­
ations to determine whether the operation required a carry or borrow to be propagated 
to the next stage of the operation. The CF flag is set if a carry occurs (addition instruc­
tions ADD, ADC, AAA, and DAA) or borrow occurs (subtraction instructions SUB, 
SBB, AAS, DAS, CMP, and NEG). 

The INC and DEC instructions do not change the state of the CF flag. This allows the 
instructions to be used to update counters used for loop control without changing the 
reported state of arithmetic results. To test the arithmetic state of the counter, the ZF 
flag can be tested to detect loop termination, or the ADD and SUB instructions can be 
used to update the value held by the counter. 

3-6 



APPLICATION PROGRAMMING 

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the 
sign bit of the result. The most significant bit (MSB) of the magnitude of a signed 
integer is the bit next to the sign - bit 6 of a byte, bit 14 of a word, or bit 30 of a 
doubIeword. The OF flag is set in either of these cases: 

• A carry was generated from the MSB into the sign bit but no carry was generated out 
of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other 
words, the result was greater than the greatest positive number which could be rep­
resented in two's complement form. 

• A carry was generated from the sign bit into the MSB but no carry was generated into 
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG). 
In other words, the result was smaller than the smallest negative number which could 
be represented in two's complement form. 

These status flags are tested by either kind of conditional instruction: lee (jump on 
condition ee) or SETee (byte set on condition). 

3.2.1 Addition and Subtraction Instructions 

ADD (Add Integers) replaces the destination operand with the sum of the source and 
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected. 

ADC (Add Integers with Carry) replaces the destination operand with the sum of the 
source and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the 
ADC instruction performs the same operation as the ADD instruction. An ADC instruc­
tion is used to propagate carry when adding numbers in stages, for example when using 
32-bit ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF 
flags are affected. 

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the 
state of the CF flag. This allows the use of INC instructions to update counters in loops 
without disturbing the status flags resulting from an arithmetic operation used for loop 
control. The ZF flag can be used to detect when carry would have occurred. Use an 
ADD instruction with an immediate value of 1 to perform an increment which updates 
the CF flag. A one-byte form of this instruction is available when the operand is a 
general register. The OF, SF, ZF, AF, and PF flags are affected. 

SUB (Subtract Integers) subtracts the source operand from the destination operand and 
replaces the destination operand with the result. If a borrow is required, the CF flag is 
set. The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF, 
ZF, AF, PF, and CF flags are affected. 

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination 
operand and replaces the destination operand with the result, minus 1 if the CF flag is 
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB 
instruction. An SBB instruction is used to propagate borrow when subtracting numbers 
in stages, for example when using 32-bit SUB instructions to subtract one quadword 
operand from another. The OF, SF, ZF, AF, PF, and CF flags are affected. 

3-7 



APPLICATION PROGRAMMING 

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction pre­
serves the state of the CF flag. This allows the use of the DEC instruction to update 
counters in loops without disturbing the status flags resulting from an arithmetic opera­
tion used for loop control. Use a SUB instruction with an immediate value of 1 to 
perform a decrement which updates the CF flag. A one-byte form of this instruction is 
available when the operand is a general register. The OF, SF, ZF, AF, and PF flags are 
affected. 

3.2.2 Comparison and Sign Change Instruction 

CMP (Compare) subtracts the source operand from the destination operand. It updates 
the OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination 
operands. A subsequent Jee or SETee instruction can test the flags. 

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG 
instruction is to change the sign of a two's complement operand while keeping its mag­
nitude. The OF, SF, ZF, AF, PF, and CF flags are affected. 

3.2.3 Multiplication Instructions 

The 386 SX microprocessor has separate multiply instructions for unsigned and signed 
operands. The MUL instruction operates on unsigned integers, while the IMUL instruc­
tion operates on signed integers as well as unsigned. 

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source 
operand and the AL, AX, or EAX register. If the source is a byte, the processor multi­
plies it by the value held in the AL register and returns the double-length result in the 
AH and AL registers. If the source operand is a word, the processor multiplies it by the 
value held in the AX register and returns the double-length result in the DX and AX 
registers. If the source operand is a doubleword, the processor multiplies it by the value 
held in the EAX register and returns the quadword result in the EDX and EAX regis­
ters. The MUL instruction sets the CF and OF flags when the upper half of the result is 
non-zero; otherwise, the flags are cleared. The state of the SF, ZF, AF, and PF flags is 
undefined. 

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL 
instruction has three forms: 

1. A one-operand form. The operand may be a byte, word, or doubleword located in 
memory or in a general register. This instruction uses the EAX and EDX registers 
as implicit operands in the same way as the MUL instruction. 

2. A two-operand form. One of the source operands is in a general register while the 
other may be in a general register or memory. The result replaces the general­
register operand. 

3. A three-operand form; two are source operands and one is the destination. One of 
the source operands is an immediate value supplied by the instruction; the second 
may be in memory or in a general register. The result is stored in a general register. 

3-8 



APPLICATION PROGRAMMING 

The immediate operand is a two's complement signed integer. If the immediate 
operand is a byte, the processor automatically sign-extends it to the size of the 
second operand before performing the multiplication. 

The three forms are similar in most respects: 

• The length of the product is calculated to twice the length of the operands. 

• The CF and OF flags are set when significant bits are carried into the upper half of 
the result. The CF and OF flags are cleared when the upper half of the result is the 
sign-extension of the lower half. The state of the SF, ZF, AF, and PF flags is 
undefined. 

However, forms 2 and 3 differ because the product is truncated to the length of the 
operands before it is stored in the destination register. Because of this truncation, the 
OF flag should be tested to ensure that no significant bits are lost. (For ways to test the 
OF flag, see the JO, INTO, and PUSHF instructions.) 

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the 
operands are signed or unsigned, the lower half of the product is the same. The CF and 
OF flags, however, cannot be used to determine if the upper half of the result is 
non-zero. 

3.2.4 Division Instructions 

The 386 SX microprocessor has separate division instructions for unsigned and signed 
operands. The DIY instruction operates on unsigned integers, while the IDlY instruc­
tion operates on both signed and unsigned integers. In either case, a divide-error excep­
tion is generated if the divisor is zero or if the quotient is too large for the AL, AX, or 
EAX register. 

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX 
register by the source operand. The dividend (the accumulator) is twice the size of the 
divisor (the source operand); the quotient and remainder have the same size as the 
divisor, as shown in Table 3-1. 

Non-integral results are truncated toward O. The remainder is always smaller than the 
divisor. For unsigned byte division, the largest quotient is 255. For unsigned word divi­
sion, the largest quotient is 65,535. For unsigned doubleword division the largest quo­
tient is 232 -1. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined. 

Table 3-1. Operands for Division 

Operand Size 
Dividend Quotient Remainder 

(Divisor) 

Byte AX register AL register AH register 
Word OX and AX AX register OX register 
Ooubleword EOX and EAX EAX register EOX register 

3-9 



APPLICATION PROGRAMMING 

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the 
source operand. The IDlY instruction uses the same registers as the DIY instruction. 

For signed byte division, the maximum positive quotient is + 127, and the minimum 
negative quotient is - 128. For signed word division, the maximum positive quotient is 
+ 32,767, and the minimum negative quotient is - 32,768. For signed doubleword divi­
sion the maximum positive quotient is 232 -1, the minimum negative quotient is - 231. 
Nonintegral results are truncated towards O. The remainder always has the same sign as 
the dividend and is less than the divisor in magnitude. The state of the OF, SF, ZF, AF, 
PF, and CF flags is undefined. 

3.3 DECIMAL ARITHMETIC INSTRUCTIONS 

Decimal arithmetic is performed by combining the binary arithmetic instructions (al­
ready discussed in the prior section) with the decimal arithmetic instructions. The deci­
mal arithmetic instructions are used in one of the following ways: 

• To adjust the results of a previous binary arithmetic operation to produce a valid 
packed or unpacked decimal result. 

• To adjust the inputs to a subsequent binary arithmetic operation so that the operation 
will produce a valid packed or unpacked decimal result. These instructions operate 
only on the AL or AH registers. Most use the AF flag. 

3.3.1 Packed BCD Adjustment Instructions 

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed dec­
imal operands in the AL register. A DAA instruction must follow the addition of two 
pairs of packed decimal numbers (one digit in each half-byte) to obtain a pair of valid 
packed decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF, 
and CF flags are affected. The state of the OF flag is undefined. 

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid 
packed decimal operands in the AL register. A DAS instruction must always follow the 
subtraction of one pair of packed decimal numbers (one digit in each half-byte) from 
another to obtain a pair of valid packed decimal digits as results. The CF flag is set if a 
borrow is needed. The SF, ZF, AF, PF, and CF flags are affected. The state of the OF 
flag is undefined. 

3.3.2 Unpacked BCD Adjustment Instructions 

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid 
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow 
the addition of two unpacked decimal operands in the AL register. The CF flag is set 
and the contents of the AH register are incremented if a carry occurs. The AF and CF 
flags are affected. The state of the OF, SF, ZF, and PF flags is undefined. 

3-10 



APPLICATION PROGRAMMING 

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid 
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow 
the subtraction of one unpacked decimal operand from another in the AL register. The 
CF flag is set and the contents of the AH register are decremented if a borrow is 
needed. The AF and CF flags are affected. The state of the OF, SF, ZF, and PF flags is 
undefined. 

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two 
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of 
two decimal numbers to produce a valid decimal result. The upper digit is left in the AH 
register, the lower digit in the AL register. The SF, ZF, and PF flags are affected. The 
state of the AF, OF, and CF flags is undefined. 

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers 
to prepare for the division of two valid unpacked decimal operands, so that the quotient 
produced by the division will be a valid unpacked decimal number. The AH register 
should contain the upper digit and the AL register should contain the lower digit. This 
instruction adjusts the value and places the result in the AL register. The AH register 
will be clear. The SF, ZF, and PF flags are affected. The state of the AF, OF, and CF 
flags is undefined. 

3.4 LOGICAL INSTRUCTIONS 

The logical instructions have two operands. Source operands can be immediate values, 
general registers, or memory. Destination operands can be general registers or memory 
(except when the source operand is in memory). The logical instructions modify the state 
of the flags. Short forms of the instructions are available when the an immediate source 
operand is applied to a destination operand in the AL or EAX registers. The group of 
logical instructions includes: 

• Boolean operation instructions 

• Bit test and modify instructions 

• Bit scan instructions 

• Rotate and shift instructions 

• Byte set on condition 

3.4.1 Boolean Operation Instructions 

The logical operations are performed by the AND, OR, XOR, and NOT instructions. 

NOT (Not) inverts the bits in the specified operand to form a one's complement of the 
operand. The NOT instruction is a unary operation which uses a single operand in a 
register or memory. NOT has no effect on the flags. 

3-11 



APPLICATION PROGRAMMING 

The AND, OR, and XOR instructions perform the standard logical operations "and," 
"or," and "exclusive or." These instructions can use the following combinations of 
operands: 

• Two register operands 

• A general register operand with a memory operand 

• An immediate operand with either a general register operand or a memory operand 

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag 
undefined, and update the SF, ZF, and PF flags. 

3.4.2 Bit Test and Modify Instructions 

This group of instructions operates on a single bit which can be in memory or in a 
general register. The location of the bit is specified as an offset from the low end of the 
operand. The value of the offset either may be given by an immediate byte in the instruc­
tion or may be contained in a general register. 

These instructions first assign the value of the selected bit to the CF flag. Then a new 
value is assigned to the selected bit, as determined by the operation. The state of the 
OF, SF, ZF, AF, and PF flags is undefined. Table 3-2 defines these instructions. 

3.4.3 Bit Scan Instructions 

These instructions scan a word or doubleword for a set bit and store the bit index (an 
integer representing the bit position) of the first set bit into a register. The bit string 
being scanned may be in a register or in memory. The ZF flag is set if the entire word is 
clear, otherwise the ZF flag is cleared. In the former case, the value of the destination 
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined. 

BSF (Bit Scan Fonvard) scans low-to-high (from bit 0 toward the upper bit positions). 

BSR (Bit Scan Reverse) scans high-to-low (from the uppermost bit toward bit 0). 

3.4.4 Shift and Rotate Instructions 

The shift and rotate instructions rearrange the bits within an operand. 

Table 3-2. Bit Test and Modify Instructions 

Instruction Effect on CF Flag Effect on Selected Bit 

BT (Bit Test) CF flag ~ Selected Bit no effect 
BTS (Bit Test .and Set) CF flag ~ Selected Bit Selected Bit ~ 1 
BTR (Bit Test and Reset) CF flag ~ Selected Bit Selected Bit ~ 0 
BTC (Bit Test and Complement) CF flag ~ Selected Bit Selected Bit ~ - (Selected Bit) 

3-12 



APPLICATION PROGRAMMING 

These instructions fall into the following classes: 

• Shift instructions 

• Double shift instructions 

• Rotate instructions 

3.4.4.1 SHIFT INSTRUCTIONS 

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords. 
An arithmetic shift right copies the sign bit into empty bit positions on the upper end of 
the operand, while a logical shift right fills clears the empty bit positions. An arithmetic 
shift is a fast way to perform a simple calculation. For example, an arithmetic shift right 
by onc bit position divides an integer by two. A logical shift right divides an unsigned 
integer or a positive integer, but a signed negative integer loses its sign bit. 

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their 
treatment of the bit positions emptied by shifting the contents of the operand. Note that 
there is no difference between an arithmetic shift left and a logical shift left. Two names, 
SAL and SHL, are supported for this instruction in the assembler. 

A count specifies the number of bit positions to shift an operand. Bits can be shifted up 
to 31 places. A shift instruction can give the count in any of three ways. One form of shift 
instruction always shifts by one bit position. The second form gives the count as an 
immediate operand. The third form gives the count as the value contained in the CL 
register. This last form allows the count to be a result from a calculation. Only the low 
five bits of the CL register are used. 

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the 
CF flag is left with the value of the last bit shifted out of the operand. In a single-bit 
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the 
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position, 
the state of the OF flag is undefined. On a shift of one or more bit positions, the SF, ZF, 
PF, and CF flags are affected, and the state of the AF flag is undefined. 

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left 
by one bit position or by the number of bits specified in the count operand (an immedi­
ate value or a value contained in the CL register). Empty bit positions are cleared. See 
Figure 3-6. 

SUL (Shift Logical Left) is another name for the SAL instruction. It is supported in the 
assembler. 

SUR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right 
by one bit position or by the number of bits specified in the count operand (an immedi­
ate value or a value contained in the CL register). Empty bit positions are cleared. See 
Figure 3-7. 

3-13 



APPLICATION PROGRAMMING 

INITIAL STATE: 

OF CF OPERAND 

00 10001000100010001000100010001111 

AFTER 1-BIT SHL/SAL INSTRUCTION: 

[2] [2].--10001000100010001000100010001111101.-- 0 

AFTER 10-BIT SHLISAL INSTRUCTION: 

o 0.--1 00100010001000100011110000000000 1.-- 0 

240331 

Figure 3-6. SHL/SAL Instruction 

INITIAL STATE: 

OPERAND CF 

10001000100010001000100010001111 0 
AFTER 1-BIT SHR INSTRUCTION: 

o ~I 01000100010001000100010001000111 1~[2] 

AFTER 10-BIT SHR INSTRUCTION: 

o ~I 00000000001000100010001000100010 1~0 
240331 

Figure 3-7. SHR Instruction 

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand 
to the right by one bit position or by the number of bits specified in the count operand 
(an immediate value or a value contained in the CL register). The sign of the operand is 
preserved by clearing empty bit positions if the operand is positive, or setting the empty 
bits if the operand is negative. See Figure 3-8. 

Even though this instruction can be used to divide integers by an integer power of two, 
the type of division is not the same as that produced by the IDIV instruction. The 
quotient from the IDlY instruction is rounded toward zero, whereas the "quotient" of 
the SAR instruction is rounded toward negative infinity. This difference is apparent only 
for negative numbers. For example, when the IDlY instruction is used to divide - 9 by 4, 

3-14 



APPLICATION PROGRAMMING 

INITIAL STATE (POSITIVE OPERAND): 

OPERAND CF 

I 01000100010001000100010001000111 ~ 

AFTER 1·BIT SAR INSTRUCTION: 

00100010001000100010001000100011 ~~ 

INITIAL STATE (NEGATIVE OPERAND): 

OPERAND CF 

I 11000100010001000100010001000111 ~ 

AFTER 1·BIT SAR INSTRUCTION: 

11100010001000100010001000100011 ~~ 

240331 

Figure 3-8. SAR Instruction 

the result is - 2 with a remainder of - 1. If the SAR instruction is used to shift - 9 right 
by two bits, the result is - 3. The "remainder" of this kind of division is + 13; however, 
the SAR instruction stores only the high-order bit of the remainder (in the CF flag). 

3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS 

These instructions provide the basic operations needed to implement operations on long 
unaligned bit strings. The double shifts operate either on word or doubleword operands, 
as follows: 

• Take two word operands and produce a one-word result (32-bit shift). 

• Take two doubleword operands and produce a doubleword result (64-bit shift). 

Of the two operands, the source operand must be in a register while the destination 
operand may be in a register or in memory. The number of bits to be shifted is specified 
either in the CL register or in an immediate byte in the instruction. Bits shifted out of 
the source operand fill empty bit positions in the destination operand, which also is 
shifted. Only the destination operand is stored. 

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the 
CF flag is set to the value of the last bit shifted out of the destination operand, and the 
SF, ZF, and PF flags are affected. On a shift of one bit position, the OF flag is set if the 

3·15 



APPLICATION PROGRAMMING 

sign of the operand changed, otherwise it is cleared. For shifts of more than one bit 
position, the state of the OF flag is undefined. For shifts of one or more bit positions, 
the state of AF flag is undefined. 

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling 
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The 
result is stored back into the destination operand. The source operand is not modified. 

SURD (Shift Right Double) shifts bits of the destination operand to the right, while 
filling empty bit positions with bits shifted out of the source operand (see Figure 3-10). 
The result is stored back into the destination operand. The source operand is not 
modified. 

3.4.4.3 ROTATE INSTRUCTIONS 

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits 
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits 
are emptied during a rotation. 

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension 
of the operand in two of the rotate instructions, allowing a bit to be isolated and then 
tested by a conditional jump instruction (JC or JNC). The CF flag always contains the 
value of the last bit rotated out of the operand, even if the instruction does not use the 
CF flag as an extension of the operand. The state of the SF, ZF, AF, and PF flags is not 
affected. 

31 DESTINATION 0 

~~.-~::::::ME:M:O:RY:O:R:R:EG:IS:T:ER::::~I~-1 
SOURCE 0 

REGISTER 

240331 

Figure 3-9. SHLD Instruction 

31 SOURCE o 
REGISTER 

31 DESTINATION 0 

..... __ M_E_M_OR_Y_O_R_RE_G_IS_TE_R __ -'t-0 
240331 

Figure 3-10. SHRD Instruction 

3-16 



APPLICATION PROGRAMMING 

]n a single-bit rotation, the OF flag is set if the operation changes the uppermost bit 
(sign bit) of the destination operand. If the sign bit retains its original value, the OF flag 
is cleared. After a rotate of more than one bit position, the value of the OF flag is 
undefined. 

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one 
bit position or by the number of bits specified in the count operand (an immediate value 
or a value contained in the CL register). For each bit position of the rotation, the bit 
which exits from the left of the operand returns at the right. See Figure 3-11. 

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by 
one bit position or by the number of bits specified in the count operand (an immediate 
value or a value contained in the CL register). For each bit position of the rotation, the 
bit which exits from the right of the operand returns at the left. See Figure 3-12. 

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destina­
tion operand left by one bit position or by the number of bits specified in the count 
operand (an immediate value or a value contained in the CL register). 

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on 
the upper end of the destination operand. Each bit which exits from the left side of the 
operand moves into the CF flag. At the same time, the bit in the CF flag enters the right 
side. See Figure 3-13. 

31 DESTINATION o 

0IiL_~==M:E:M:OR:Y:O:R:RE:G:IS:TE:R==~I~---1 

240331 

Figure 3-11. ROL Instruction 

I ~r31~ ____ ~D~E~ST~IN~A~TI~ON~ ____ ~O 
L......f MEMORY OR REGISTER 

240331 

Figure 3-12. ROR Instruction 

3-17 



APPLICATION PROGRAMMING 

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword desti­
nation operand right by one bit position or by the number of bits specified in the count 
operand (an immediate value or a value contained in the CL register). 

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower 
end of the destination operand. Each bit which exits from the right side of the operand 
moves into the CF flag. At the same time, the bit in the CF flag enters, the left side. See 
Figure 3-14. 

3.4.4.4 FAST "BIT BLT" USING DOUBLE-SHIFT INSTRUCTIONS 

One purpose of the double shift instructions is to implement a bit string move, with 
arbitrary misalignment of the bit strings. This is called a "bit bit" (BIT BLock Transfer). 
A simple example is to move a bit string from an arbitrary offset into a doubleword­
aligned byte string. A left-to-right string is moved 32 bits at a time if a double shift is 
used inside the move loop. 

MOV ESI, ScrAddr 
MOV EDI,DestAddr 
MOV EBX,WordCnt 
MOV CL,RelOffset relative offset Dest-Src 
MOV EDX, [ESIl load first word of source 
ADD ESI, 4 bump source address 

BltLoop: 
LODS new low order part 
SHLD EDX,EAX,CL EDX overwritten with aligned stuff 
XCHG EDX,EAX Swap high/low order words 
STOS Write out next aligned chunk 
DEC EBX Decrement loop count 
JNZ BltLoop 

31 DESTINATION o 

MEMORY OR REGISTER I:-J 
240331 

Figure 3-13. RCL Instruction 

DESTINATION 0 

MEMORY OR REGISTER 

240331 

Figure 3-14. RCR Instruction 

3-18 



APPLICATION PROGRAMMING 

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest 
possible performance. Without a double shift, the best which can be achieved is 16 bits 
per loop iteration by using a 32-bit shift, and replacing the XCHG instruction with a 
ROR instruction by 16 to swap the high and low words of registers. A more general loop 
than shown above would require some extra masking on the first doubleword moved 
(before the main loop), and on the last doubleword moved (after the main loop), but 
would have the same 32-bits per loop iteration as the code above. 

3.4.4.5 FAST BIT STRING INSERT AND EXTRACT 

The double shift instructions also make possible: 

• Fast insertion of a bit string from a register into an arbitrary bit location in a larger 
bit string in memory, without disturbing the bits on either side of the inserted bits 

• Fast extraction of a bit string into a register from an arbitrary bit location in a larger 
bit string in memory, without disturbing the bits on either side of the extracted bits 

The following coded examples illustrate bit insertion and extraction under various 
conditions: 

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e., spans 
four bytes or less): 

Insert a right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 
2. The length of the bit string is an immediate value 

and the bit offset is held in a register. 

The ESI register holds the right-justified bit string 
to be inserted. 
The EDI register holds the bit offset of the start of the 
SUbstring. 
The EAX register and ECX are also used. 

MOV ECX,EDI 
SHR EDI,3 
AND CL,7H 
MOV EAX,[EDIlstrg_base 
ROR EAX,CL 
SHRD EAX,ESI,length 
ROL EAX,length 
ROL EAX,CL 
MOV[EDIlstrg_base,EAX 

save original offset 
divide offset by 8 (byte addr) 
get low three bits of offset 
move string dword into EAX 
right justify old bit field 
bring in new bits 
right justify new bit field 
bring to final position 
replace doubleword in memory 

3-19 



APPLICATION PROGRAMMING 

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans 
five bytes or less): 

Insert a right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 
2. The length of the bit string is an immediate value 

and the bit offset is held in a register. 

The ESI register holds the right-justified bit string 
to be inserted. 
The EDI register holds the bit offset of the start of the 
substring. 
The EAX, EBX, ECX, and EDI registers also are used. 

MDV ECX,EDI temp storage for offset 
SHR EDI,S divide offset by 32 (dwords) 
SHL EDr, 2 multiply by 4 (byte address) 
AND CL,lFH get low five bits of offset 
MDV EAX,[EDIlstrg_base move low string dword into EAX 
MDV EDX, [EDIlstrg_base+4 other string dword into EDX 
MDV EBX,EAX temp storage for part of string 
SHRD EAX,EDX,CL shift by offset within dword 
SHRD EAX,EBX,CL shift by offset within dword 
SHRD EAX,ESI,length bring in new bits 
RDL EAX,length right justify new bit field 
MDV EBX,EAX temp storage for string 
SHLD EAX,EDX,CL shift by offset within word 
SHLD EDX,EBX,CL shift by offset within word 
MDV [EDIlstrg_base,EAX replace dword in memory 
MDV [EDI 1 str9-base + 4, EDX replace dword in memory 

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e., 
spans four or five bytes): 

Insert right-justified bit string from a register into 
a bit string in memory. 

Assumptions: 
1. The base of the string array is doubleword aligned. 
2. The length of the bit string is 32 bits 

and the bit offset is held in a register. 

The ESI register holds the 32-bit string to be inserted. 
The EDI register holds the bit offset to the start of the 
substring. 
The EAX, EBX, ECX, and EDI registers also are used. 

MDV EDX,EDI save original offset 

3-20 



SHR 
SHL 
AND 
MOV 
MOV 
MOV 
SHRD 
SHRD 
MOV 
MOV 
SHLD 
SHLD 

APPLICATION PROGRAMMING 

EDI,S 
EDI,2 
CL,lFH 
EAX, [EDIlstrg_base 
EDX, [EDIlstrg_base+4 

divide offset by 32 (dwords) 
multiply by 4 (byte address) 
isolate low five bits of offset 
move low string dword into EAX 
other string dword into EDX 
temp storage for part of string 
shift by offset within dword 
shift by offset within dword 
move 32-bit field into position 
temp storage for part of string 
shift by offset within word 
shift by offset within word 

EBX,EAX 
EAX,EDX 
EDX,EBX 
EAX,ESI 
EBX,EAX 
EAX,EDX 
EDX,EBX 

MOV [EDIlstrg_base,EAX replace dword in memory 
MOV [EDIlstrg_base,+4,EDX replace dword in memory 

4. Bit String Extraction from Memory (when the bit string is 1-25 bits long, i.e., spans 
four bytes or less): 

Extract a right-justified bit string into a register from 
a bit string in memory. 

Assumptions: 
1) The base of the string array is doubleword aligned. 
2) The length of the bit string is an immediate value 

and the bit offset is held in a register. 

The EAX register hold the right-justified, zero-padded 
bit string that was extracted. 
The EDI register holds the bit offset of the start of the 
SUbstring. 
The EDI, and ECX re~isters also are used. 

MOV ECX,EDI 
SHR EDr,3 
AND CL,7H 
MOV EAX,[EDIlstrg_base 
SHR EAX,CL 

temp storage for offset 
divide offset by 8 (byte addr) 
get low three bits of offset 
move string dword into EAX 
shift by offset within dword 

AND EAX,mask extracted bit field in EAX 

5. Bit String Extraction from Memory (when bit string is 1-32 bits long, i.e., spans five 
bytes or less): 

Extract a right-justified bit string into a register from a 
bit string in memory. 

Assumptions: 
1) The base of the string array is doubleword aligned. 
2) The length of the bit string is an immediate 

value and the bit offset is held in a register. 

The EAX register holds the right-justified, zero-padded 
bit string that was extracted. 

3-21 



APPLICATION PROGRAMMING 

The EDI register holds the bit offset of the start of the 
substring. 
The EAX, EBX, and ECX registers also are used. 

MDV ECX,EDI temp storage for offset 
SHR EDI,S divide offset by 32 (dwords) 
SHL EDI,2 multiply by 4 (byte address) 
AND CL,lFH get low five bits of offset in 
MDV EAX,[EDIlstrg_base move low string dword into EAX 
MDV EDX,[EDIlstrg_base +4 other string dword into EDX 
SHRD EAX,EDX,CL shift right by offset in dword 
AND EAX,mask extracted bit field in EAX 

3.4.5 Byte-Set-On-Condition Instructions 

This group of instructions sets a byte to the value of zero or one, depending on any of 
the 16 conditions defined by the status flags. The byte may be in a register or in memory. 
These instructions are especially useful for implementing Boolean expressions in high­
level languages such as Pascal. 

Some languages represent a logical one as an integer with all bits set. This can be done 
by using the SETcc instruction with the mutually exclusive condition, then decrementing 
the result. 

SETcc (Set Byte on Condition cc) loads the value 1 into a byte if condition cc is true; 
clears the byte otherwise. See Appendix D for a definition of the possible conditions. 

3.4.6 Test Instruction 

TEST (Test) performs the logical "and" of the two operands, clears the OF and CF 
flags, leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can 
be tested by conditional control transfer instructions or the byte-set-on-condition in­
structions. The operands may be bytes, words, or doublewords. 

The difference between the TEST and AND instructions is the TEST instruction does 
not alter the destination operand. The difference between the TEST and BT instructions 
is the TEST instruction can test the value of multiple bits in one operation, while the BT 
instruction tests a single bit. 

3.5 CONTROL TRANSFER INSTRUCTIONS 

The 386 SX microprocessor provides both conditional and unconditional control transfer 
instructions to direct the flow of execution. Conditional transfers are executed only for 
certain combinations of the state of the flags. Unconditional control transfers are always 
executed. 

3-22 



APPLICATION PROGRAMMING 

3.5.1 Unconditional Transfer Instructions 

The JMP, CALL, RET, INT and IRET instructions transfer execution to a destination 
in a code segment. The destination can be within the same code segment (near transfer) 
or in a different code segment (far transfer). The forms of these instructions which 
transfer execution to other segments are discussed in a later section of this chapter. If 
the model of memory organization used in a particular application does not make seg­
ments visible to application programmers, far transfers will not be used. 

3.5.1.1 JUMP INSTRUCTION 

JMP (Jump) unconditionally transfers execution to the destination. The JMP instruction 
is a one-way transfer of execution; it does not save a return address on the stack. 

The JMP instruction transfers execution from the current routine to a different routine. 
The address of the routine is specified in the instruction, in a register, or in memory. The 
location of the address determines whether it is interpreted as a relative address or an 
absolute address. 

Relative Address. A relative jump uses a displacement (immediate mode constant used 
for address calculation) held in the instruction. The displacement is signed and variable­
length (byte or doubleword). The destination address is formed by adding the displace­
ment to the address held in the EIP register. The EIP register then contains the address 
of the next instruction to be executed. 

Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the 
following ways: 

1. The program can jump to an address in a general register. This 32-bit value is copied 
into the EIP register and execution continues. 

2. The destination address can be a memory operand specified using the standard 
addressing modes. The operand is copied into the EIP register and execution 
continues. 

3.5.1.2 CALL INSTRUCTIONS 

CALL (Call Procedure) transfers execution and saves the address of the instruction 
following the CALL instruction for later use by a RET (Return) instruction. CALL 
pushes the current contents of the EIP register on the stack. The RET instruction in the 
called procedure uses this address to transfer execution back to the calling program. 

CALL instructions, like JMP instructions, have relative and absolute forms. 

Indirect CALL instructions specify an absolute address in one of the following ways: 

1. The program can jump to an address in a general register. This 32-bit value is copied 
into the EIP register, the return address is pushed on the stack, and execution 
continues. 

3-23 



APPLICATION PROGRAMMING 

2. The destination address can be a memory operand specified using the standard 
addressing modes. The operand is copied into the EIP register, the return address is 
pushed on the stack, and execution continues. 

3.5.1.3 RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS 

RET (Return From Procedure) terminates a procedure and transfers execution to the 
instruction following the CALL instruction which originally invoked the procedure. The 
RET instruction restores the -contents of the EIP register which were pushed on the 
stack when the procedure was called. 

The RET instructions have an optional immediate operand. When present, this constant 
is added to the contents of the ESP register, which has the effect of removing any 
parameters pushed on the stack before the procedure call. 

[RET (Return From Interrupt) returns control to an interrupted procedure. The IRET 
instruction differs from the RET instruction in that it also restores the EFLAGS register 
from the stack. The contents of the EFLAGS register are stored on the stack when an 
interrupt occurs. 

3.5.2 Conditional Transfer Instructions 

The conditional transfer instructions are jumps which transfer execution if the states in 
the EFLAGS register match conditions specified in the instruction. 

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS 

Table 3-3 shows the mnemonics for the jump instructions. The instructions listed as pairs 
are alternate names for the same instruction. The assembler provides these names for 
greater clarity in program listings. 

A form of the conditional jump instructions is available which uses a displacement added 
to the contents of the EIP register if the specified condition is true. The displacement 
may be a byte or doubleword. The displacement is signed; it can be used to jump for­
ward or backward. 

3.5.2.2 LOOP INSTRUCTIONS 

The loop instructions are conditional jumps which use a value placed in the ECX regis­
ter as a count for the number of times to run a loop. All loop instructions decrement the 
contents of the ECX register on each repetition and terminate when zero is reached. 
Four of the five loop instructions accept the ZF flag as a condition for terminating the 
loop before the count reaches zero. 

3-24 



APPLICATION PROGRAMMING 

Table 3-3. Conditional Jump Instructions 

Unsigned Conditional Jumps 

Mnemonic Flag States Description 

JNJNBE (CF or ZF) = 0 above/not below nor equal 
JAE/JNB CF = 0 above or equal/not below 
JB/JNAE CF = 1 below/not above nor equal 
JBE/JNA (CF or ZF) = 1 below or equal/not above 
JC CF = 1 carry 
JE/JZ ZF = 1 equal/zero 
JNC CF = 0 not carry 
JNE/JNZ ZF = 0 not equal/not zero 
JNP/JPO PF = 0 not parity/parity odd 
JP/JPE PF = 1 parity/parity even 

Signed Conditional Jumps 

JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal 
JGE/JNL (SF xor OF) = 0 greater or equal/not less 
JUJNGE (SF xor OF) = 1 less/not greater nor equal 
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater 
JNO OF = 0 not overflow 
JNS SF = 0 not sign (non-negative) 
JO OF = 1 overflow 
JS SF = 1 sign (negative) 

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements 
the contents of the ECX register before testing for the loop-terminating condition. If 
contents of the ECX register are non-zero, the program jumps to the destination speci­
fied in the instruction. The LOOP instruction causes the execution of a block of code to 
be repeated until the count reaches zero. When zero is reached, execution is transferred 
to the instruction immediately following the LOOP instruction. If the value in the ECX 
register is zero when the instruction is first called, the count is predecremented to 
OFFFFFFFFH and the LOOP runs 232 times. 

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same 
instruction. These instructions are conditional jumps which decrement the contents of 
the ECX register before testing for the loop-terminating condition. If the contents of the 
ECX register are non-zero and the ZF flag is set, the program jumps to the destination 
specified in the instruction. When zero is reached or the ZF flag is clear, execution is 
transferred to the instruction immediately following the LOOPE/LOOPZ instruction. 

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms 
for the same instruction. These instructions are conditional jumps which decrement the 
contents of the ECX register before testing for the loop-terminating condition. If the 
contents of the ECX register are non-zero and the ZF flag is clear, the program jumps to 
the destination specified in the instruction. When zero is reached or the ZF flag is set, 
execution is transferred to the instruction immediately following the LOOPE/LOOPZ 
instruction. 

3-25 



APPLICATION PROGRAMMING 

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES 

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the 
ECX register holds a value of zero. The JECXZ instruction is used in combination with 
the LOOP instruction and with the string scan and compare instructions. Because these 
instructions decrement the contents of the ECX register before testing for zero, a loop 
will run 232 times if the loop is entered with a zero value in the ECX register. The 
JECXZ instruction is used to create loops which fall through without executing when the 
initial value is zero. A JECXZ instruction at the beginning of a loop can be used to jump 
out of the loop if the count is zero. When used with repeated string scan and compare 
instructions, the JECXZ instruction can determine whether the loop terminated due to 
the count or due to satisfaction of the scan or compare conditions. 

3.5.3 Software Interrupts 

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of 
execution to an exception or interrupt handler. 

INTn (Software Interrupt) calls the handler specified by an interrupt vector encoded in 
the instruction. The INT instruction may specify any interrupt type. This instruction is 
used to support multiple types of software interrupts or to test the operation of interrupt 
service routines. The interrupt service routine terminates with an IRET instruction, 
which returns execution to the instruction following the INT instruction. 

INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF 
flag is set. If the flag is clear, execution continues without calling the handler. The OF 
flag is set by arithmetic, logical, and string instructions. This instruction supports the use 
of software interrupts for handling error conditions, such as arithmetic overflow. 

BOUND (Detect Value Out of Range) compares the signed value held in a general reg­
ister against an upper and lower limit. The handler for the bounds-check exception is 
called if the value held in the register is less than the lower bound or greater than the 
upper bound. This instruction supports the use of software interrupts for bounds check­
ing, such as checking an array index to make sure it falls within the range defined for the 
array. 

The BOUND instruction has two operands. The first operand specifies the general reg­
ister being tested. The second operand is the base address of two words or doublewords 
at adjacent locations in memory. The lower limit is the word or doubleword with the 
lower address; the upper limit has the higher address. The BOUND instruction assumes 
that the upper limit and lower limit are in adjacent memory locations. These limit values 
cannot be register operands; if they are, an invalid-opcode exception occurs. 

The upper and lower limits of an array can reside just before the array itself. This puts 
the array bounds at a constant offset from the beginning of the array. Because the 
address of the array already will be present in a register, this practice avoids extra bus 
cycles to obtain the effective address of the array bounds. 

3-26 



APPLICATION PROGRAMMING 

3.6 STRING OPERATIONS 

String operations manipulate large data structures in memory, such as alphanumeric 
character strings. See also the section on I/O for information about the string I/O in­
structions (also known as block I/O instructions). 

The string operations are made by putting string instructions (which execute only one 
iteration of an operation) together with other features of the Intel386 architecture, such 
as repeat prefixes. The string instructions are: 

MOVS-Move String 
CMPS - Compare string 
SCAS - Scan string 
LODS - Load string 
STOS - Store string 

After a string instruction executes, the string source and destination registers point to 
the next elements in their strings. These registers automatically increment or decrement 
their contents by the number of bytes occupied by each string element. A string element 
can be a byte, word, or doubleword. The string registers are: 

ESI - Source index register 
EDI - Destination index register 

String operations can begin at higher addresses and work toward lower ones, or they can 
begin at lower addresses and work toward higher ones. The direction is controlled by: 

DF -Direction flag 

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are 
decremented. These instructions set and clear the flag: 

STD - Set direction flag instruction 
CLD - Clear direction flag instruction 

To operate on more than one element of a string, a repeat prefix must be used, such as: 

REP - Repeat while the ECX register not zero 
REPE/REPZ-Repeat while the ECX register not zero and the ZF flag is set 
REPNE/REPNZ - Repeat while the ECX register not zero and the ZF flag is clear 

Exceptions or interrupts which occur during a string instruction leave the registers in a 
state which allows the string instruction to be restarted. The source and destination 
registers point to the next string elements, the EIP register points to the string instruc­
tion, and the ECX register has the value it held following the last successful iteration. 
All that is necessary to restart the operation is to service the interrupt or fix the source 
of the exception, then execute an IRET instruction. 

3-27 



APPLICATION PROGRAMMING 

3.6.1 Repeat Prefixes 

The repeat prefixes REP (Repeat While EeX Not Zero), REPE/REPZ (Repeat While 
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated 
operation of a string instruction. This form of iteration allows string operations to pro­
ceed much faster than would be possible with a software loop. 

When a string instruction has a repeat prefix, the operation executes until one of the 
termination conditions specified by the prefix is satisfied. 

For each repetition of the instruction, the string operation may be suspended by an 
exception or interrupt. After the exception or interrupt has been serviced, the string 
operation can restart where it left off. This mechanism allows long string operations to 
proceed without affecting the interrupt response time of the system. 

All three prefixes shown in Table 3-4 cause the instruction to repeat until the ECX 
register is decremented to zero, if no other termination condition is satisfied. The repeat 
prefixes differ in their other termination condition. The REP prefix has no other termi­
nation condition. The REPE/REPZ and REPNE/REPNZ prefixes are used exclusively 
with the SCAS (Scan String) and CMPS (Compare String) instructions. The REPE/ 
REPZ prefix terminates if the ZF flag is clear. The REPNE/REPNZ prefix terminates if 
the ZF flag is set. The ZF flag does not require initialization before execution of a 
repeated string instruction, because both the SCAS and CMPS instructions affect the ZF 
flag according to the results of the comparisons they make. 

3.6.2 Indexing and Direction Flag Control 

Although the general registers are completely interchangable under most conditions, the 
string instructions require the use of two specific registers. The source and destination 
strings are in memory addressed by the ESI and EDI registers. The ESI register points 
to source operands. By default, the ESI register is used with the DS segment register. A 
segment-override prefix allows the ESI register to be used with the CS, SS, ES, FS, or 
GS segment registers. The EDI register points to destination operands. It uses the seg­
ment indicated by the ES segment register; no segment override is allowed. The use of 
two different segment registers in one instruction permits operations between strings in 
different segments. 

When ESI and EDI are used in string instructions, they automatically are incremented 
or decremented after each iteration. String operations can begin at higher addresses and 
work toward lower ones, or they can begin at lower addresses and work toward higher 
ones. The direction is controlled by the DF flag. If the flag is clear, the registers are 

Table 3-4. Repeat Instructions 

Repeat Prefix Termination Condition 1 Termination Condition 2 

REP ECX=O none 
REPE/REPZ ECX=O ZF=O 
REPNE/REPNZ ECX=O ZF=1 

3-28 



int:el'lP APPLICATION PROGRAMMING 

incremented. If the flag is set, the registers are decremented. The STD and CLD in­
structions set and clear this flag. Programmers should always put a known value in the 
DF flag before using a string instruction. 

3.6.3 String Instructions 

MOVS (Move String) moves the string element addressed by the ESI register to the 
location addressed by the EDI register. The MOVSB instruction moves bytes, the 
MOVSW instruction moves words, and the MOVSD instruction moves doublewords. 
The MOVS instruction, when accompanied by the REP prefix, operates as a memory­
to-memory block transfer. To set up this operation, the program must initialize the ECX, 
ESI, and EDI registers. The ECX register specifies the number of elements in the block. 

CMPS (Compare Strings) subtracts the destination string element from the source string 
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written 
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is 
cleared. CMPSB compares bytes, CMPSW compares words, and CMPSD compares 
doublewords. 

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL 
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF 
flags. The string and the register are not modified. If the values are equal, the ZF flag is 
set; otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction 
scans words; the SCASD instruction scans doublewords. 

When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SeAS or CMPS 
instructions, the loop which is formed is terminated by the loop counter or the effect the 
SCAS or CMPS instruction has on the ZF flag. 

LODS (Load String) places the source string element addressed by the ESI register into 
the EAX register for doubleword strings, into the AX register for word strings, or into 
the AL register for byte strings. This instruction usually is used in a loop, where other 
instructions process each element of the string as they appear in the register. 

STOS (Store String) places the source string element from the EAX, AX, or AL register 
into the string addressed by the EDI register. This instruction usually is used in a loop, 
where it writes to memory the result of processing a string element read from memory 
with the LODS instruction. A REP STOS instruction is the fastest way to initialize a 
large block of memory. 

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES 

These instructions provide machine-language support for implementing block-structured 
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify 
procedure entry and exit in compiler-generated code. They support a structure of point­
ers and local variables on the stack called a stack frame. 

3-29 



APPLICATION PROGRAMMING 

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of 
block-structured languages. In these languages, a procedure has access to its own vari­
ables and some number of other variables defined elsewhere in the program. The scope 
of a procedure is the set of variables to which it has access. The rules for scope vary 
among languages; they may be based on the nesting of procedures, the division of the 
program into separately-compiled files, or some other modularization scheme. 

The ENTER instruction has two operands. The first specifies the number of bytes to be 
reserved on the stack for dynamic storage in the procedure being entered. Dynamic 
storage is the memory allocated for variables created when the procedure is called, also 
known as automatic variables. The second parameter is the lexical nesting level (from 0 
to 31) of the procedure. The nesting level is the depth of a procedure in the heirarchy of 
a block-structured program. The lexical level has no particular relationship to either the 
protection privilege level or to the I/O privilege level. 

The lexical nesting level determines the number of stack frame pointers to copy into the 
new stack frame from the preceding frame. A stack frame pointer is a doubleword used 
to access the variables of a procedure. The set of stack frame pointers used by a proce­
dure to access the variables of other procedures is called the display. The first double­
word in the display is a pointer to the previous stack frame. This pointer is used by a 
LEAVE instruction to undo the effect of an ENTER instruction by discarding the cur­
rent stack frame. 

Example: ENTER 2048.3 

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two 
previous stack frames in the stack frame for this procedure. 

After the ENTER instruction creates the display for a procedure, it allocates the dy­
namic (automatic) local variables for the procedure by decrementing the contents of the 
ESP register by the number of bytes specified in the first parameter. This new value in 
the ESP register serves as the initial top-of-stack for all PUSH and POP operations 
within the procedure. 

To allow a procedure to address its display, the ENTER instruction leaves the EBP 
register pointing to the first doubleword in the display. Because stacks grow down, this is 
actually the doubleword with the highest address in the display. Data manipulation in­
structions which specify the EBP register as a base register automatically address loca­
tions within the stack segment instead of the data segment. 

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical 
level is 0, the non-nested form is used. The non-nested form pushes the contents of the 
EBP register on the stack, copies the contents of the ESP register into the EBP register, 
and subtracts the first operand from the contents of the ESP register to allocate dynamic 
storage. The non-nested form differs from the nested form in that no stack frame point­
ers are copied. The nested form of the ENTER instruction occurs when the second 
parameter (lexical level) is not zero. 

3-30 



APPLICATION PROGRAMMING 

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the 
number of bytes of dynamic storage to allocate for local variables, and LEVEL is the 
lexical nesting level. 

The main procedure (in which all other procedures are nested) operates at the highest 
lexical level, level 1. The first procedure it calls operates at the next deeper lexical level, 
level 2. A level 2 procedure can access the variables of the main program, which are at 
fixed locations specified by the compiler. In the case of levell, the ENTER instruction 
allocates only the requested dynamic storage on the stack because there is no previous 
display to copy. 

A procedure which calls another procedure at a lower lexical level gives the called pro­
cedure access to the variables of the caller. The ENTER instruction provides this access 
by placing a pointer to the calling procedure's stack frame in the display. 

A procedure which calls another procedure at the same lexical level should not give 
access to its variables. In this case, the ENTER instruction copies only that part of the 
display from the calling procedure which refers to previously nested procedures operat­
ing at higher lexical levels. The new stack frame does not include the pointer for ad­
dressing the calling procedure's stack frame. 

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the 
same lexical level. In this case, each succeeding iteration of the re-entrant procedure can 
address only its own variables and the variables of the procedures within which it is 
nested. A re-entrant procedure always can address its own variables; it does not require 
pointers to the stack frames of previous iterations. 

By copying only the stack frame pointers of procedures at higher lexical levels, the 
ENTER instruction makes certain that procedures access only those variables of higher 
lexical levels, not those at parallel lexical levels (see Figure 3-16). 

Block-structured languages can use the lexical levels defined by ENTER to control ac­
cess to the variables of nested procedures. In the figure, for example, if PROCEDURE 
A calls PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C 

Push EBP 
Set a temporary value FRAME_PTR :- ESP 
If LEVEL) 0 then 

Repeat (LEVEL-1) times: 
EBP:- EBP-4 
Push the doubleword pointed to by EBP 

End repeat 
Pus h F RAM E_P TR 

End if 
E B P : - F RAM E_P T R 
ESP :- ESP- STORAGE 

Figure 3-15. Formal Definition of the ENTER Instruction 

3-31 



APPLICATION PROGRAMMING 

MAIN PROCEDURE (LEXICAL LEVEL 1) 

PROCEDURE A (LEXICAL LEVEL 2) 

PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

PROCEDURE D (LEXICAL LEVEL 4) 

240331 

Figure 3-16. Nested Procedures 

will have access to the variables of MAIN and PROCEDURE A, but not those of 
PROCEDURE B because they are at the same lexical level. The following definition 
describes the access to variables for the nested procedures in the figure. 

1. MAIN has variables at fixed locations. 

2. PROCEDURE A can access only the variables of MAIN. 

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE B cannot access the variables of PROCEDURE C or PROCE­
DURED. 

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE C cannot access the variables of PROCEDURE B or PROCE­
DURED. 

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, 
and MAIN. PROCEDURE D cannot access the variables of PROCEDURE B. 

In the following diagram, an ENTER instruction at the beginning of the MAIN program 
creates three doublewords of dynamic storage for MAIN, but copies no pointers from 
other stack frames (See Figure 3-17). The first doubleword in the display holds a copy of 
the last value in the EBP register before the ENTER instruction was executed. The 
second doubleword (which, because stacks grow down, is stored at a lower address) 
holds a copy of the contents of the EBP register following the ENTER instruction. After 
the instruction is executed, the EBP register points to the first doubleword pushed on 
the stack, and the ESP register points to the last doubleword in the stack frame. 

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (See 
Figure 3-18). The first doubleword is the last value held in MAIN's EBP register. The 
second doubleword is a pointer to MAIN's stack frame which is copied from the second 
doubleword in MAIN's display. This happens to be another copy of the last value held in 

3-32 



APPLICATION PROGRAMMING 

DISPLAY [ OLDEBP ...-- EBP 

MAIN'S EBP 

DYNAMIC [ STORAGE 

...-- ESP 

Figure 3-17. Stack Frame After Entering MAIN 

DISPLAY 

DYNAMIC 

STORAGE 

[ 

OLD EBP 

MAIN'S EBP 

~EBP 

MAIN'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

...-- ESP 

Figure 3-18. Stack Frame After Entering PROCEDURE A 

3-33 

240331 

240331 



APPLICATION PROGRAMMING 

MAIN's EBP register. PROCEDURE A can access variables in MAIN because MAIN 
is at level 1. Therefore the base address for the dynamic storage used in MAIN is the 
current address in the EBP register, plus four bytes to account for the saved contents of 
MAIN's EBP register. All dynamic variables for MAIN are at fixed, positive offsets from 
this value. 

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new 
display (See Figure 3-19). The first doubleword holds a copy of the last value in PRO­
CEDURE A's EBP register. The second and third doublewords are copies of the two 
stack frame pointers in PROCEDURE A's display. PROCEDURE B can access vari­
ables in PROCEDURE A and MAIN by using the stack frame pointers in its display. 

DISPLAY 

DYNAMIC 

STORAGE 

[ 
[ 

OLD EBP 

MAIN'S EBP 

MAIN'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE A'S EBP ...-EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE B'S EBP 

...-ESP 

Figure 3-19, Stack Frame After Entering PROCEDURE B 

3-34 

240331 



APPLICATION PROGRAMMING 

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new 
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the 
last value in PROCEDURE B's EBP register. This is used by the LEAVE instruction to 
restore PROCEDURE B's stack frame. The second and third doublewords are copies of 
the two stack frame pointers in PROCEDURE A's display. If PROCEDURE C were at 
the next deeper lexical level from PROCEDURE B, a fourth doubleword would be 
copied, which would be the stack frame pointer to PROCEDURE B's local variables. 

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCE­
DURE C is not intended to access PROCEDURE B's variables. This does not mean 
that PROCEDURE C is completely isolated from PROCEDURE B; PROCEDURE C 
is called by PROCEDURE B, so the pointer to the returning stack frame is a pointer to 
PROCEDURE B's stack frame. In addition, PROCEDURE B can pass parameters to 
PROCEDURE C either on the stack or through variables global to both procedures 
(i.e., variables in the scope of both procedures). 

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The 
LEAVE instruction does not have any operands. The LEAVE instruction copies the 
contents of the EBP register into the ESP register to release all stack space allocated to 
the procedure. Then the LEAVE instruction restores the old value of the EBP register 
from the stack. This simultaneously restores the ESP register to its original value. A 
subsequent RET instruction then can remove any arguments and the return address 
pushed on the stack by the calling program for use by the procedure. 

3.8 FLAG CONTROL INSTRUCTIONS 

The flag control instructions change the state of bits in the EFLAGS register, as shown 
in Table 3-5. 

3.8.1 Carry and Direction Flag Control Instructions 

The carry flag instructions are useful with instructions like the rotate-with-carry instruc­
tions RCL and RCR. They can initialize the carry flag, CF, to a known state before 
execution of an instruction which copies the flag into an operand. 

The direction flag control instructions set or clear the direction flag, DF, which controls 
the direction of string processing. If the DF flag is clear, the processor increments the 
string index registers, ESI and EDI, after each iteration of a string instruction. If the DF 
flag is set, the processor decrements these index registers. 

3.8.2 Flag Transfer Instructions 

Though specific instructions exist to alter the CF and DF flags, there is no direct method 
of altering the other application-oriented flags. The flag transfer instructions allow a 
program to change the state of the other flag bits using the bit manipulation instructions 
once these flags have been moved to the stack or the AH register. 

3-35 



DISPLAY 

DYNAMIC 

STORAGE 

APPLICATION PROGRAMMING 

[ 
[ 

OLD EBP 

MAIN'S EBP 

MAIN'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE A'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE B'S EBP 

PROCEDURE B'S EBP 

MAIN'S EBP 

PROCEDURE A'S EBP 

PROCEDURE C'S EBP 

~EBP 

~ESP 

Figure 3-20. Stack Frame After Entering PROCEDURE C 

3-36 

240331 



APPLICATION PROGRAMMING 

Table 3-5. Flag Control Instructions 

Instruction Effect 

STC (Set Carry Flag) CF <- 1 
CLC (Clear Carry Flag) CF <- 0 
CMC (Complement Carry Flag) CF <- - (CF) 
CLD (Clear Direction Flag) DF <- 0 
STD (Set Direction Flag) DF <- 1 

The LAHF and SAHF instructions deal with five of the status flags, which are used 
primarily by the arithmetic and logical instructions. 

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register 
bits 7, 6, 4,2, and 0, respectively (see Figure 3-21). The contents of the remaining bits 5, 
3, and 1 are left undefined. The contents of the EFLAGS register remain unchanged. 

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF, 
ZF, AF, PF, and CF flags, respectively (see Figure 3-21). 

The PUSHF and POPF instructions are not only useful for storing the flags in memory 
where they can be examined and modified, but also are useful for preserving the state of 
the EFLAGS register while executing a subroutine. 

PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see 
Figure 3-22). The PUSHFD instruction pushes the entire EFLAGS register onto the 
stack (the RF flag reads as clear, however). 

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 14, 
11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege 
level of the current code segment is 0 (most privileged), the IOPL bits (bits 13 and 12) 

THE BIT POSITIONS OF THE FLAGS ARE THE SAME, 

WHETHER THEY ARE HELD IN THE EFLAGS REGISTER OR 

THE AH REGISTER. BIT POSITIONS SHOWN AS 0 OR 1 

ARE INTEL RESERVED. DO NOT USE. 

Figure 3-21. Low Byte of EFLAGS Register 

3-37 

240331 



APPLICATION PROGRAMMING 

~I.~----------------------------------------------~.~I PUSHFD/POPFD 

li"'" .(---------------~ ~------____Jl.o_II PUSHF/POPF 

31 15 o 

V R 0 N .... 001 T S Z 0 A 0 P C 
o 0 o 0 o 0 o 0 o 0 o 0 o 0 Q. 1 

M F T Q F F F F F F F F F 

BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED. DO NOT USE. 

240331 

Figure 3-22. Flags Used with PUSHF and POPF 

also are affected. If the I/O privilege level (IOPL) is 0, the IF flag (bit 9) also is affected. 
The POPFD instruction pops a doubleword into the EFLAGS register, but it only can 
change the state of the same bits affected by a POPF instruction. 

3.9 COPROCESSOR INTERFACE INSTRUCTIONS 

The 387 SX Numerics Coprocessor provides an extension to the instruction set of the 
base architecture. The coprocessor extends the instruction set of the 386 SX micropro­
cessor to support high-precision integer and floating-point calculations. These extensions 
include arithmetic, comparison, transcendental, and data transfer instructions. The co­
processor also contains frequently-used constants, to enhance the speed of numeric 
calculations. 

The coprocessor instructions are embedded in the instructions for the 386 SX micropro­
cessor, as though they were being executed by a single processor having both integer and 
floating-point capabilities. But the coprocessor actually works in parallel with the 386 SX 
microprocessor, so the performance is higher. 

The 386 SX microprocessor also has features to support emulation of the numerics 
coprocessor when the coprocessor is absent. The software emulation of the coprocessor 
is transparent to application software, but much slower. See Chapter 11 for more infor­
mation on coprocessor emulation. 

ESC (Escape) is a bit pattern which identifies floating-point arithmetic instructions. The 
ESC bit pattern tells the processor to send the opcode and operand addresses to the 
numerics coprocessor. The coprocessor uses instructions containing the ESC bit pattern 
to perform high-performance, high-precision floating point arithmetic. When the copro­
cessor is not present, these instructions generate coprocessor-not-available exceptions. 

3-38 



APPLICATION PROGRAMMING 

WAIT (Wait) is an instruction which suspends program execution while the BUSY # pin 
is active. The signal on this pin indicates that the coprocessor has not completed an 
operation. When the operation completes, the processor resumes execution and can 
read the result. The WAIT instruction is used to synchronize the processor with the 
coprocessor. Typically, a coprocessor instruction is launched, a WAIT instruction is ex­
ecuted, then the results of the coprocessor instruction are read. Between the coprocessor 
instruction and the WAIT instruction, there is an opportunity to execute some number 
of non-coprocessor instructions in parallel with the coprocessor instruction. 

3.10 SEGMENT REGISTER INSTRUCTIONS 

There are several distinct types of instructions which use segment registers. They are 
grouped together here because, if system designers choose an unsegmented model of 
memory organization, none of these instructions are used. The instructions which deal 
with segment registers are: 

1. Segment-register transfer instructions. 

MoV SegReg, ... 
MoV "', SegReg 
PUSH SegReg 
POP SegReg 

2. Control transfers to another executable segment. 

JMP far 
CALL far 
RET far 

3. Data pointer instructions. 

LDS reg, 48-bit memory operand 
LES reg, 48-bit memory operand 
LFS reg, 48-bit memory operand 
LGS reg, 48-bit memory operand 
LSS reg, 48-bit memory operand 

4. Note that the following interrupt-related instructions also are used in unsegmented 
systems. Although they can transfer execution between segments when segmentation 
is used, this is transparent to the application programmer. 

INT n 
INTO 
BOUND 
IRET 

3.10.1 Segment-Register Transfer Instructions 

Forms of the MaY, pop, and PUSH instructions also are used to load and store seg­
ment registers. These forms operate like the general-register forms, except that one 
operand is a segment register. The MaY instruction cannot copy the contents of a 
segment register into another segment register. 

3-39 



APPLICATION PROGRAMMING 

The POP and MaY instructions cannot place a value in the CS register (code segment); 
only the far control-transfer instructions affect the CS register. When the destination is 
the SS register (stack segment), interrupts are disabled until after the next instruction. 

When a scgment register is loaded, the signal on the LOCK# pin of the processor is 
asserted. This prevents other bus masters from modifying a segment descriptor while it is 
being read. 

No 16-bit operand size prefix is needed when transferring data between a segment reg­
ister and a 32-bit general register. 

3.10.2 Far Control Transfer Instructions 

The far control-transfer instructions transfer execution to a destination in another seg­
ment by replacing the contents of the CS register. The destination is specified by a far 
pointer, which is a 16-bit segment selector and a 32-bit offset into the segment. The far 
pointer can be an immediate operand or an operand in memory. 

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS 
registers on the stack. 

Far RET. An intersegment RET instruction restores the values of the CS and EIP reg­
isters from the stack. 

3.10.3 Data Pointer Instructions 

The data pointer instructions load a far pointer into the processor registers. A far 
pointer consists of a 16-bit segment selector, which is loaded into a segment register, and 
a 32-bit offset into the segment, which is loaded into a general register. 

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS 
register and a general register. The source operand must be a memory operand, and the 
destination operand must be a general register. 

Example: LDS ESI , STRING_X 

Loads the DS register with the segment selector for the segment addressed by 
STRING_X, and loads the offsct within the segment to STRING_X into the ESI 
register. Specifying the ESI register as the destination operand is a convenient way 
to prepare for a string operation, when the source string is not in the current data 
segment. 

LES (Load Pointer Using ES) has the same effect as thc LDS instruction, except the 
segment selector is loaded into the ES register rather than the DS register. 

Example: LES EDI, DESTINA TION_X 

3-40 



APPLICATION PROGRAMMING 

Loads the ES register with the segment selector for the segment addressed by DES­
TINATION_X, and loads the offset within the segment to DESTINATION_X into 
the EDI register. This instruction is a convenient way to select a destination for a 
string operation if the desired location is not in the current E-data segment. 

LFS (Load Pointer Using FS) has the same effect as the LOS instruction, except the FS 
register receives the segment selector rather than the OS register. 

LGS (Load Pointer Using GS) has the same effect as the LOS instruction, except the GS 
register receives the segment selector rather than the OS register. 

LSS (Load Pointer Using SS) has the same effect as the LOS instruction, except the SS 
register receives the segment selector rather than the OS register. This instruction is 
especially important, because it allows the two registers which identify the stack (the SS 
and ESP registers) to be changed in one uninterruptible operation. Unlike the other 
instructions which can load the SS register, interrupts are not inhibited at the end of the 
LSS instruction. The other instructions, such as POP SS, turn off interrupts to permit 
the following instruction to load the ESP register without an intervening interrupt. Since 
both the SS and ESP registers can be loaded by the LSS instruction, there is no need to 
disable or re-enable interrupts. 

3.11 MISCELLANEOUS INSTRUCTIONS 

The following instructions do not fit in any of the previous categories, but are no less 
important. 

3.11.1 Address Calculation Instruction 

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory 
(rather than its contents) into the destination operand. The source operand must be in 
memory, and the destination operand must be a general register. This instruction is 
especially useful for initializing the ESI or EDI registers before the execution of string 
instructions or initializing the EBX register before an XLAT instruction. The LEA in­
struction can perform any indexing or scaling which may be needed. 

Example: LEA EBX, EBCDIC TABLE 

Causes the processor to place the address of the starting location of the table la­
beled EBCDIC_TABLE into EBX. 

3.11.2 No-Operation Instruction 

NOP (No Operation) occupies a byte of code space. When executed, it increments the 
EIP register to point at the next instruction, but affects nothing else. 

3-41 



APPLICATION PROGRAMMING 

3.11.3 Translate Instruction 

XLATB (Translate) replaces the contents of the AL register with a byte read from a 
translation table in memory. The contents of the AL register are interpreted as an 
unsigned index into this table, with the contents of the EBX register used as the base 
address. The XLAT instruction does the same operation and loads its result into the 
same register, but it gets the byte operand from memory. This function is used to convert 
character codes from one alphabet into another. For example, an ASCII code could be 
used to look up its EBCDIC equivalent. 

3.12 USAGE GUIDELINES 

The instruction set of the 386 SX microprocessor has been designed with certain pro­
gramming practices in mind. These practices are particularly relevant to assembly lan­
guage programmers, but may be of interest to compiler designers as well. 

• Use the EAX register when possible. Many instructions are one byte shorter when 
the EAX register is used, such as loads and stores to memory when absolute ad­
dresses are used, transfers to other registers using the XCHG instruction, and oper­
ations using immediate operands. 

• Use the D-data segment when possible. Instructions which deal with the D-space are 
one byte shorter than instructions which use the other data segments, because of the 
lack of a segment-override prefix. 

• Emphasize short one-, two-, and three-byte instructions. Because instructions for the 
386 SX microprocessor begin and end on byte boundaries, it has been possible to 
provide many instruction en co dings which are more compact than those for proces­
sors with word-aligned instruction sets. An instruction in a word-aligned instruction 
set must be either two or four bytes long (or longer). Byte alignment reduces code 
size and increases execution speed. 

• Access 16-bit data with the MOVSX and MOVZX instructions. These instructions 
sign-extend and zero-extend word operands to doubleword length. This eliminates the 
need for an extra instruction to initialize the high word. 

• For fastest interrupt response, use the NMI interrupt when possible. 

• In place of using an ENTER instruction at lexical level 0, use a code sequence like: 

PUSH EBP 
MOV EBP, ESP 
SUB ESP, BYTE_COUNT 

This executes in six clock cycles, rather than ten. 

The following techniques may be applied as optimizations to enhance the speed of a 
system after its basic functions have been implemented: 

• The jump instructions come in two forms: one form has an eight-bit immediate for 
relative jumps in the range from 128 bytes back to 127 bytes forward, the other form 
has a full 32-bit displacement. Many assemblers use the long form in situations where 

3-42 



APPLICATION PROGRAMMING 

the short form can be used. When it is clear that the short form may be used, explic­
itly specify the destination operand as being byte length. This tells the assembler to 
use the short form. If the assembler does not support this function, it will generate an 
error. Note that some assemblers perform this optimization automatically. 

• Use the ESP register to reference the stack in the deepest level of subroutines. Don't 
bother setting up the EBP register and stack frame. 

• For fastest task switching, perform task switching in software. This allows a smaller 
processor state to be saved and restored. See Chapter 7 for a discussion of 
multitasking. 

• Use the LEA instruction for adding registers together. When a base register and 
index register are used with the LEA instruction, the destination is loaded with their 
sum. The contents of the index register may be scaled by 2, 4, or 8. 

• Use the LEA instruction for adding a constant to a register. When a base register and 
a displacement are used with the LEA instruction, the destination is loaded with their 
sum. The LEA instruction can be used with a base register, index register, scale 
factor, and displacement. 

• Use integer move instructions to transfer floating-point data. 

• Use the form of the RET instruction which takes an immediate value for byte-count. 
This is a faster way to remove parameters from the stack than an ADD ESP instruc­
tion. It saves three clock cycles on every subroutine return, and 10% in code size. 

• When several references are made to a variable addressed with a displacement, load 
the displacement into a register. 

3-43 





Part II 
Systems Programming 





System Architecture 4 





CHAPTER 4 
SYSTEM ARCHITECTURE 

Many of the architectural features of the 386™ SX microprocessor are used only by 
system programmers. This chapter presents an overview of these features. Application 
programmers may need to read this chapter, and the following chapters which describe 
the use of these features, in order to understand the hardware facilities used by system 
programmers to create a reliable and secure environment for application programs. The 
system-level architecture also supports powerful debugging features which application 
programmers may wish to use during program development. 

The system-level features of the Intel386™ architecture include: 

Memory Management 
Protection 
Multi tasking 
Input/Output 
Exceptions and Interrupts 
Initialization 
Coprocessing and Multiprocessing 
Debugging 

These features are supported by registers and instructions, all of which are introduced in 
the following sections. The purpose of this chapter is not to explain each feature in 
detail, but rather to place the remaining chapters of Part II in perspective. When a 
register or instruction is mentioned, it is accompanied by an explanation or a reference 
to a following chapter. 

4.1 SYSTEM REGISTERS 

The registers intended for use by system programmers fall into these categories: 

EFLAGS Register 
Memory-Management Registers 
Control Registers 
Debug Registers 
Test Registers 

The system registers control the execution environment of application programs. Most 
systems restrict access to these facilities by application programs (although systems can 
be built where all programs run at the most privileged level, in which case application 
programs are allowed to modify these facilities). 

4-1 



SYSTEM ARCHITECTURE 

4.1.1 System Flags 

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging, 
task switching, and the virtual-8086 mode. An application program should ignore these 
flags. An application program should not attempt to change their state. In most systems, 
an attempt to change the state of a system flag by an application program results in an 
exception. The 386 SX microprocessor makes use of some of the bit positions which are 
reserved on the 386 SX microprocessor. A 386 SX program should not attempt to 
change the state of these bits. These flags are shown in Figure 4-1. 

VM (Virtual-8086 Mode, bit 17) 

Setting the VM flag places the processor in virtual-8086 mode. This is an emulation 
of the programming environment of an 8086 processor. See Chapter 14 for more 
information. 

RF (Resume Flag, bit 16) 

The RF flag temporarily disables debug exceptions so that an instruction can be 
restarted after a debug exception without immediately causing another debug excep­
tion. When the debugger is entered, this flag allows it to run normally (rather than 
recursively calling itself until the stack overflows). The RF flag is not affected by the 

31 

o 0 

11111111 
7 6 5 4 321 098 7 6 5 4 3 2 1 0 

V R N ..J 001 T S Z o 0 o 0 o 0 o 0 o 0 o 0 0 11. 

M F T 2 F F F F F F 

VIR,UAC 8086 MOD' (V". t 1J 
r 

~ , 

RESUME FLAG (RF) 
NESTED FLAG (NF) .. 
1/0 PRIVILEGE LEVEL (IOPL) 
INTERRUPT ENABLE FLAG (IF) 
TRAP FLAG (TF) --

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED. 
DO NOT USE 

Figure 4-1. System Flags 

4-2 

o A o P C 
1 

F F F 

240331 



SYSTEM ARCHITECTURE 

POPF instruction, but it is affected by the POPFD and IRET instructions. See 
Chapter 12 for details. 

NT (Nested Task, bit 14) 

The processor uses the nested task flag to control chaining of interrupted and called 
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is 
affected by the POPF, POPFD, and IRET instructions. Improper changes to the 
state of this flag can generate unexpected exceptions in application programs. See 
Chapter 7 and Chapter 9 for more information on nested tasks. 

10PL (I/O Privilege Level, bits 12 and 13) 

The I/O privilege level is used by the protection mechanism to control access to the 
I/O address space. The privilege level of the code segment currently executing 
(CPL) and the 10PL determine whether this field can be modified by the POPF, 
POPFD, and IRET instructions. See Chapter 8 for more information. 

IF (Interrupt-Enable Flag, bit 9) 

Setting the IF flag puts the processor in a mode in which it responds to maskable 
interrupt requests (INTR interrupts). Clearing the IF flag disables these interrupts. 
The IF flag has no effect on either exceptions or nonmaskable interrupts (NMI 
interrupts). The CPL and 10PL determine whether this field can be modified by the 
CLI, STI, POPF, POPFD, and IRET instructions. See Chapter 9 for more details 
about interrupts. 

TF (Trap Flag, bit 8) 

Setting the TF flag puts the processor into single-step mode for debugging. In this 
mode, the processor generates a debug exception after each instruction, which al­
lows a program to be inspected as it executes each instruction. Single-stepping is just 
one of several debugging features of the 386 SX microprocessor. If an application 
program sets the TF flag using the POPF, POPFD, or IRET instructions, a debug 
exception is generated. See Chapter 12 for more information. 

4.1.2 Memory-Management Registers 

Four registers of the 386 SX microprocessor specify the location of the data structures 
which control segmented memory management, as shown in Figure 4-2. Special instruc­
tions are provided for loading and storing these registers. The GDTR and IDTR regis­
ters may be loaded with instructions which get a six-byte block of data from memory. 
The LDTR and TR registers may be loaded with instructions which take a 16-bit seg­
ment selector as an operand. The remaining bytes of these registers are then loaded 
automatically by the processor from the descriptor referenced by the operand. 

4-3 



SYSTEM ARCHITECTURE 

SELECTOR BASE ADDRESS LIMIT 

15 o 31 o 15 o 
TR 1--_____ ...... 

LDTR 

IDTR 1--_____ ...... 

GDTR 

240331 

Figure 4-2. Memory Management Registers 

Most systems will protect the instructions which load memory-management registers 
from use by application programs (although a system in which no protection is used is 
possible ). 

GDTR 

LDTR 

IDTR 

Global Descriptor Table Register 

This register holds the 32-bit base address and 16-bit segment limit for the 
global descriptor table (GDT). When a reference is made to data in mem­
ory, a segment selector is used to find a segment descriptor in the GDT or 
LDT. A segment descriptor contains the base address for a segment. See 
Chapter 5 for an explanation of segmentation. 

Local Descriptor Table Register 

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit 
segment selector for the local descriptor table (LDT). The segment which 
contains the LDT has a segment descriptor in the GDT. There is no seg­
ment descriptor for the GDT. When a reference is made to data in mem­
ory, a segment selector is used to find a segment descriptor in the GDT or 
LDT. A segment descriptor contains the base address for a segment. See 
Chapter 5 for an explanation of segmentation. 

Interrupt Descriptor Table Register 

This register holds the 32-bit base address and 16-bit segment limit for the 
interrupt descriptor table (IDT). When an interrupt occurs, the interrupt 
vector is used as an index to get a gate descriptor from this table. The gate 
descriptor contains a far pointer used to start up the interrupt handler. See 
Chapter 9 for details of the interrupt mechanism. 

4-4 



TR 

SYSTEM ARCHITECTURE 

Task Register 

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit 
segment selector for the task currently being executed. It references a task 
state segment (TSS) descriptor in the global descriptor table. See 
Chapter 7 for a description of the multitasking features of the 386 SX 
microprocessor. 

4.1.3 Control Registers 

Figure 4-3 shows the format of the control registers CRO, CR1, CR2, and CR3. Most 
systems prevent application programs from loading the control registers (although an 
unprotected system would allow this). Application programs can read this register to 
determine if a numerics coprocessor is present. Forms of the MOV instruction allow the 
register to be loaded from or stored in general registers. For example: 

MOV EAX. CRIl 
MOV CR3. EBX 

The CRO register contains system control flags, which control modes or indicate states 
which apply generally to the processor, rather than to the execution of an individual task. 
A program should not attempt to change any of the reserved bit positions. 

PG (Paging, bit 31) 

This bit enables paging when set, and disables paging when clear. See Chapter 5 for 
more information about paging. See Chapter 10 for information on how to enable 
paging. 

TS (Task Switched, bit 3) 

The processor sets the TS bit with every task switch and tests it when interpreting 
coprocessor instructions. See Chapter 11 for more information. 

31 23 15 7 o 

PAGE DIRECTORY BASE REGISTER (PDBR) I RESERVED CR3 

PAGE FAULT LINEAR ADDRESS CR2 

RESERVED CR1 

~I RESERVED I~I~I~I: CRO 

240331 

Figure 4-3. Control Registers 

4-5 



SYSTEM ARCHITECTURE 

EM (Emulation, bit 2) 

When set, the EM bit indicates coprocessor functions are to be emulated in soft­
ware. See Chapter 11 for more information. 

MP (Math Present, bit 1) 

The MP bit controls the function of the WAIT instruction, which is used to synchro­
nize with a coprocessor. See Chapter 11 for more information. 

PE (Protection Enable, bit 0) 

Setting the PE bit enables protection of segments and pages. See Chapter 6 for more 
information about protection. See Chapter 10 and Chapter 14 for information on 
how to enable paging. 

When an exception is generated during paging, the CR2 register has the 32-bit linear 
address which caused the exception. See Chapter 9 for more information about handling 
exceptions generated during paging (page faults). 

When paging is used, the CR3 register containing the starting physical address of the 
page directory (the first-level page table). Note that the page directory must be aligned 
to a page boundary, so the low 12 bits of the register must be kept clear. The CR3 
register is also known as the page-directory base register (PDBR). 

4.1.4 Debug Registers 

The debug registers bring advanced debugging abilities to the 386 SX microprocessor, 
including data breakpoints and the ability to set instruction breakpoints without modify­
ing code segments (useful in debugging ROM-based software). Only programs executing 
with the highest level of privileges may access these registers. See Chapter 12 for a 
complete description of their formats and use. The debug registers are shown in 
Figure 4-4. 

4.1.5 Test Registers 

The test registers are not a formal part of the Intel386 architecture. They are an 
implementation-dependent facility provided for testing the translation lookaside buffer 
(TLB). See Chapter 10 for a complete description of their formats and use. The test 
registers are shown in Figure 4-5. 

4-6 



31 

SYSTEM ARCHITECTURE 

31 23 15 7 o 

LEN IR/WILEN IR/WILEN IR/WILEN lR/W 00 G '1~1~1*1~IL G L G L 
3322110 0 D OOO EE3322 1 1 00 

DR7 

o 0 0 0 0 0 0 0 0 0 0 0 0 000 *B o 0 0 0 0 0 0 0 0 B B B B 
T S D 3 2 1 0 

DR6 

RESERVED DR5 

RESERVED DR4 

BREAKPOINT 3 LINEAR ADDRESS DR3 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 1 LINEAR ADDRESS DR1 

BREAKPOINT 0 LINEAR ADDRESS ORO 

NOTE: 0 MEANS INTEL INTEL RESERVED. DO NOT DEFINE. 

Figure 4-4. Debug Registers 

1 
2 

1 
09876543210 

R 

PHYSICAL ADDRESS 000 0 000 
P 

E o 0 
L 

P 

LINEAR ADDRESS V D D u Ulw IW 0 o 0 o C 
# # # 

Figure 4-5. Test Registers 

4-7 

240331 

TR7 

TR6 

240331 



SYSTEM ARCHITECTURE 

4.2 SYSTEM INSTRUCTIONS 

System instructions deal with functions such as: 

1. Verification of pointer parameters (see Chapter 6): 

Instruction Description 
Useful to Protected from 

Application? Application? 

ARPL Adjust RPL No No 
LAR Load Access Rights Yes No 
LSL Load Segment Limit Yes No 
VERR Verify for Reading Yes No 
VERW Verify for Writing Yes No 

2. Addressing descriptor tables (see Chapter 5): 

Instruction Description 
Useful to Protected from 

Application? Application? 

LLOT Load LOT Register Yes No 
SLOT Store LOT Register Yes No 
LGOT Load GOT Register No Yes 
SGOT Store GOT Register No No 

3. Multitasking (see Chapter 7): 

Instruction Description Useful to Protected from 
Application? Application? 

LTR Load Task Register No Yes 
STR Store Task Register Yes No 

4. Coprocessing and Multiprocessing (see Chapter 11): 

Instruction Description Useful to Protected from 
Application? Application? 

CLTS Clear TS bit in CRO No Yes 
ESC Escape Instructions Yes No 
WAIT Wait Until Coprocessor Not Busy Yes No 
LOCK Assert Bus-Lock No Can be 

5. Input and Output (see Chapter 8): 

Instruction Description Useful to Protected from 
Application? Application? 

IN Input Yes Can be 
OUT Output Yes Can be 
INS Input String Yes Can be 
OUTS Output String Yes Can be 

4-8 



SYSTEM ARCHITECTURE 

6. Interrupt control (see Chapter 9): 

Instruction Description 
Useful to Protected from 

Application? Application? 

CLI Clear IF flag Can Be Can be 
STI Store IF flag Can be Can be 
LlOT Load lOT Register No Yes 
SlOT Store lOT Register No No 

7. Debugging (see Chapter 10): 

Instruction Description 
Useful to Protected from 

Application? Application? 

MOV LOAO and store debug registers No Yes 

8. System Control: 

Instruction Description 
Useful to Protected from 

Application? Application? 

SMSW Store MSW No No 
LMSW Load MSW No Yes 
MOV Load and Store CRO No Yes 
HLT Halt Processor No Yes 

The SMSW and LMSW instructions are provided for compatibility with the 80286 pro­
cessor. A program for the 386 SX microprocessor should not use these instructions. A 
program should access the CRO register using forms of the MOV instruction. The 
LMSW instruction does not affect the PG bit, and it cannot be used to clear the PE bit. 

The HLT instruction stops the processor until an enabled interrupt or RESET# signal is 
received. (Note that the NMI interrupt is always enabled.) A special bus cycle is gener­
ated by the processor to indicate halt mode has been entered. Hardware may respond to 
this signal in a number of ways. An indicator light on the front panel may be turned on. 
An NMI interrupt for recording diagnostic information may be generated. Reset initial­
ization may be invoked. Software designers may need to be aware of the response of 
hardware to halt mode. 

In addition to the chapters mentioned above, detailed information about each of these 
instructions can be found in the instruction reference chapter, Chapter 17. 

4-9 





Memory Management 5 





CHAPTER 5 
MEMORY MANAGEMENT 

Memory management is a hardware mechanism which lets operating systems create sim­
plified environments for running programs. For example, when several programs are 
running at the same time, they must each be given an independent address space. If they 
all had to share the same address space, each would have to perform difficult and time­
consuming checks to avoid interfering with the others. 

Memory management consists of segmentation and paging. Segmentation is used to give 
each program several independent, protected address spaces. Paging is used to support 
an environment where large address spaces are simulated using a small amount of RAM 
and some disk storage. System designers may choose to use either or both of these 
mechanisms. When several programs are running at the same time, either mechanism 
can be used to protect programs against interference from other programs. 

Segmentation allows memory to be completely unstructured and simple, like the memory 
model of an 8-bit processor, or highly structured with address translation and protection. 
The memory management features apply to units called segments. Each segment is an 
independent, protected address space. Access to segments is controlled by data which 
describes its size, the privilege level required to access it, the kinds of memory references 
which can be made to it (instruction fetch, stack push or pop, read operation, write 
operation, etc.), and whether it is present in memory. 

Segmentation is used to control memory access, which is useful for catching bugs during 
program development and for increasing the reliability of the final product. It also is 
used to simplify the linkage of object code modules. There is no reason to write position­
independent code when full use is made of the segmentation mechanism, because all 
memory references can be made relative to the base addresses of a module's code and 
data segments. Segmentation can be used to create ROM-based software modules, in 
which fixed addresses (fixed, in the sense that they cannot be changed) are offsets from 
a segment's base address. Different software systems can have the ROM modules at 
different physical addresses because the segmentation mechanism will direct all memory 
references to the right place. 

In a simple memory architecture, all addresses refer to the same address space. This is 
the memory model used by 8-bit microprocessors, such as the 8080 processor, where the 
logical address is the physical address. The 386 ™ SX microprocessor can be used in this 
way by mapping all segments into the same address space and keeping paging disabled. 
This might be done where an older design is being updated to 32-bit technology without 
also adopting the new architectural features. 

An application also could make partial use of segmentation. A frequent cause of soft­
ware failures is the growth of the stack into the instruction code or data of a program. 
Segmentation can be used to prevent this. The stack can be put in an address space 
separate from the address space for either code or data. Stack addresses always would 

5-1 



MEMORY MANAGEMENT 

refer to the memory in the stack segment, while data addresses always would refer to 
memory in the data segment. The stack segment would have a maximum size enforced by 
hardware. Any attempt to grow the stack beyond this size would generate an exception. 

A complex system of programs may make full use of segmentation. For example, a 
system in which programs share data in real time can have precise control of access to 
that data. Program bugs would appear as exceptions generated when a program makes 
improper access. This would be useful as an aid to debugging during program develop­
ment, and it also may be used to trigger error-recovery procedures in systems delivered 
to the end-user. 

Segmentation hardware translates a segmented (logical) address into an address for a 
continuous, unsegmented address space, called a linear address. If paging is enabled, 
paging hardware translates a linear address into a physical address. If paging is not 
enabled, the linear address is used as the physical address. The physical address appears 
on the address bus coming out of the processor. 

Paging is a mechanism used to simulate a large, unsegmented address space using a 
small, fragmented address space and some disk storage. Paging provides access to data 
structures larger than the available memory space by keeping them partly in memory and 
partly on disk. 

Paging is applied to units of 4K bytes called pages. When a program attempts to access a 
page which is on disk, the program is interrupted in a special way. Unlike other excep­
tions and interrupts, an exception generated due to address translation restores the 
contents of the processor registers to values which allow the exception-generating in­
struction to be re-executed. This special treatment is called instruction restart. It allows 
the operating system to read the page from disk, update the mapping of linear addresses 
to physical addresses for that page, and restart the program. This process is transparent 
to the program. 

If an operating system never sets bit 31 of the eRO register (the PG bit), the paging 
mechanism is not enabled. Linear addresses are used as physical addresses. This might 
be done where a design using a 16-bit processor is being updated to use a 32-bit proces­
sor. An operating system written for a 16-bit processor does not use paging because the 
size of its address space is so small (64K bytes) that it is more efficient to swap entire 
segments between RAM and disk, rather than individual pages. 

Paging would be enabled for operating systems which can support demand-paged virtual 
memory, such as Unix. Paging is transparent to application software, so an operating 
system intended to support application programs written for 16-bit processors may run 
those programs with paging enabled. Unlike paging, segmentation is not transparent to 
application programs. Programs which use segmentation must be run with the segments 
they were designed to use. 

5-2 



MEMORY MANAGEMENT 

5.1 SELECTING A SEGMENTATION MODEL 

A model for the segmentation of memory is chosen on the basis of reliability and per­
formance. For example, a system which has several programs sharing data in real-time 
would get maximum performance from a model which checks memory references in 
hardware. This would be a multi-segment model. 

At the other extreme, a system which has just one program may get higher performance 
from an unsegmented or "flat" model. The elimination of "far" pointers and segment­
override prefixes reduces code size and increases execution speed. Context switching is 
faster, because the contents of the segment registers no longer have to be saved or 
restored. 

Some of the benefits of segmentation also can be provided by paging. For example, data 
can be shared by mapping the same page into the address space of each program. 

5.1.1 Flat Model 

The simplest model is the flat model. In this model, all segments are mapped to the 
entire physical address space. To the greatest extent possible, this model removes the 
segmentation mechanism from the architecture seen by either the system designer or the 
application programmer. This might be done for a programming environment like 
UNIX, which supports paging but does not support segmentation. 

A segment is defined by a segment descriptor. At least two segment descriptors must be 
created for a flat model, one for code references and one for data references. The 
segment selector for the stack segment may be mapped to the data-segment descriptor. 
Whenever memory is accessed, the contents of one of the segment registers are used to 
select a segment descriptor. The segment descriptor provides the base address of the 
segment and its limit, as well as access control information (see Figure 5-1). 

ROM usually is put at the top of the physical address space, because the processor 
begins execution at OFFFFFOH. RAM is placed at the bottom of the address space 
because the initial base address for the DS data segment after reset initialization is O. 

For a flat model, each descriptor has a base address of 0 and a segment limit of 4 
gigabytes. By setting the segment limit to 4 gigabytes, the segmentation mechanism is 
kept from generating exceptions for memory references which fall outside of a segment. 
Exceptions could still be generated by the paging or protection mechanisms, but these 
also can be removed from the memory model. 

5-3 



MEMORY MANAGEMENT 

SEGMENT 
REGISTERS 

CS ~ I I 
SS 

~ 
OS ~ I 

5.1.2 Protected Flat Model 

SEGMENT 
DESCRIPTORS 

ACCESS I LIMIT 
BASE ADDRESS 

ACCESS I LIMIT 
BASE ADDRESS 

I 

~ 

Figure 5-1. Flat Model 

PHYSICAL 
MEMORY 

EPROM 

DRAM 

16M 

o 

240331 

The protected flat model is like the flat model, except the segment limits are set to 
include only the range of addresses for which memory actually exists. A general­
protection exception will be generated on any attempt to access unimplemented mem­
ory. This might be used for systems in which the paging mechanism is disabled, because 
it provides a minimum level of hardware protection against some kinds of program bugs. 

In this model, the segmentation hardware prevents programs from addressing non­
existent memory locations. The consequences of being allowed access to these memory 
locations are hardware-dependent. For example, if the processor does not receive a 
READY # signal (the signal used to acknowledge and terminate a bus cycle), the bus 
cycle does not terminate and program execution stops. 

Although no program should make an attempt to access these memory locations, an 
attempt may occur as a result of program bugs. Without hardware checking of addresses, 
it is possible that a bug could suddenly stop program execution. With hardware checking, 
programs fail in a controlled way. A diagnostic message can appear, and recovery pro­
cedures can be attempted. 

An example of a protected flat model is shown in Figure 5-2. Here, segment descriptors 
have been set up to cover only those ranges of memory which exist. A code and a data 
segment cover the EPROM and DRAM of physical memory. A second data segment has 
been created to cover EPROM. This allows EPROM to be referenced as data. This 
would be done, for example, to access constants stored with the instruction code in 
ROM. 

5-4 



MEMORY MANAGEMENT 

SEGMENT 
REGISTERS 

~ ______ C_S ______ ~~ 

ES ~ 

L....--SS_~ 
L....-__ DS __ -"~ 

I 
I 
I 

I 

SEGMENT 
DESCRIPTORS 

ACCESS I LIMIT 
BASE ADDRESS 

ACCESS I LIMIT 
BASE ADDRESS 

ACCESS I LIMIT 
BASE ADDRESS 

1--.. 
,/ 
I 

1--.. 
Figure 5-2. Protected Flat Model 

5.1.3 Multi-Segment Model 

PHYSICAL 
MEMORY 

EPROM 

DRAM 

16M 

o 

240331 

The most sophisticated model is the multi-segment model. Here, the full capabilities of 
the segmentation mechanism are used. Each program is given its own table of segment 
descriptors, and its own segments. The segments can be completely private to the pro­
gram, or they can be shared with specific other programs. Access between programs and 
particular segments can be individually controlled. 

Up to six segments can be ready for immediate use. These are the segments which have 
segment selectors loaded in the segment registers. Other segments are accessed by load­
ing their segment selectors into the segment registers (see Figure 5-3). 

Each segment is a separate address space. Even though they may be placed in adjacent 
blocks of physical memory, the segmentation mechanism prevents access to the contents 
of one segment by reading beyond the end of another. Every memory operation is 
checked against the limit specified for the segment it uses. An attempt to address mem­
ory beyond the end of the segment generates a general-protection exception. 

The segmentation mechanism only enforces the address range specified in the segment 
descriptor. It is the responsibility of the operating system to allocate separate address 
ranges to each segment. There may be situations in which it is desirable to have seg­
ments which share the same range of addresses. For example, a system may have both 
code and data stored in a ROM. A code segment descriptor would be used when the 
ROM is accessed for instruction fetches. A data segment descriptor would be used when 
the ROM is accessed as data. 

5-5 



MEMORY MANAGEMENT 

SEGMENT SEGMENT PHYSICAL 
REGISTERS DESCRIPTORS MEMORY 

CS ~ 
16M 

SS ~ 

OS ~ 
ES ~ 
FS ~ 

GS ~ 

o 
ACCESS I LIMIT I 

BASE ADDRESS ------..... L-_______ .J 

240331 

Figure 5-3. Multi-Segment Model 

5.2 SEGMENT TRANSLATION 

A logical address consists of the 16-bit segment selector for its segment and a 32-bit 
offset into the segment. A logical address is translated into a linear address by adding 
the offset to the base address of the segment. The base address comes from the segment 
descriptor, a data structure in memory which provides the size and location of a segment, 
as well as access control information. The segment descriptor comes from one of two 

5-6 



MEMORY MANAGEMENT 

tables, the global descriptor table (GOT) or the local descriptor table (LOT). There is 
one GOT for all programs in the system, and one LOT for each separate program being 
run. If the operating system allows, different programs can share the same LOT. The 
system also may be set up with no LOTs; all programs may use the GOT. 

Every logical address is associated with a segment (even if the system maps all segments 
into the same linear address space). Although a program may have thousands of seg­
ments, only six may be available for immediate use. These are the six segments whose 
segment selectors are loaded in the processor. The segment selector holds information 
used to translate the logical address into the corresponding linear address. 

Separate segment registers exist in the processor for each kind of memory reference (code 
space, stack space, and data spaces). They hold the segment selectors for the segments 
currently in use. Access to other segments requires loading a segment register using a 
form of the MOY instruction. Up to four data spaces may be available at the same time, 
so there are a total of six segment registers. 

When a segment selector is loaded, the base address, segment limit, and access control 
information also are loaded into the segment register. The processor does not reference 
the descriptor tables again until another segment selector is loaded. The information 
saved in the processor allows it to translate addresses without making extra bus cycles. In 
systems in which multiple processors have access to the same descriptor tables, it is the 
responsibility of software to reload the segment registers when the descriptor tables are 
modified. If this is not done, an old segment descriptor cached in a segment register 
might be used after its memory-resident version has been modified. 

The segment selector contains a 13-bit index into one of the descriptor tables. The index 
is scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit 
base address of the descriptor table. The base address comes from either the global 
descriptor table register (GOTR) or the local descriptor table register (LOTR). These 
registers hold the linear address of the beginning of the descriptor tables. A bit in the 
segment selector specifies which table to use, as shown in Figure 5-4. 

The translated address is the linear address, as shown in Figure 5-5. If paging is not 
used, it also is the physical address. If paging is used, a second level of address transla­
tion produces the physical address. This translation is described in Section 5.3. 

5.2.1 Segment Registers 

Each kind of memory reference is associated with a segment register. Code, data, and 
stack references each access the segments specified by the contents of their segment 
registers. More segments can be made available by loading their segment selectors into 
these registers during program execution. 

Every segment register has a "visible" part and an "invisible" part, as shown in 
Figure 5-6. There are forms of the MOY instruction to access the visible part of these 
segment registers. The invisible part is maintained by the processor. 

5-7 



MEMORY MANAGEMENT 

SEGMENT GLOBAL LOCAL 
SELECTOR DESCRIPTOR DESCRIPTOR 

TABLE TABLE 

I I TI I TI = 0 TI = 1 
I 

t t 
I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

I 

I I 

I I 

I I 

I I 

r, 
.. 
~ 

I SELECTOR 

LIMIT I I LIMIT 

I 
GDTR LDTR 

BASE ADDRESS I BASE ADDRESS 

240331 

Figure 5-4. TI Bit Selects Descriptor Table 

5-8 



LOGICAL 
ADDRESS 

cs 

SS 

DS 

ES 

FS 

GS 

MEMORY MANAGEMENT 

OFFSET 

DESCRIPTOR TABLE 

SEGMENT BASE 
DESCRIPTOR 

ADDRESS 

LINEAR 
ADDRESS DIR I PAGE I OFFSET 

Figure 5-5. Segment Registers 

16·BIT VISIBLE 
SELECTOR HIDDEN DESCRIPTOR 

~--------~-------------------f 

~--------~-------------------f 

~--------~-------------------f 
~------~----------------~ 
~------~----------------~ 

Figure 5-6. Segment Translation 

o 

240331 

240331 

The operations which load these registers are instructions for application programs (de­
scribed in Chapter 3). There are two kinds of these instructions: 

1. Direct load instructions such as the MOV, POP, LDS, LSS, LGS, and LFS instruc­
tions. These instructions explicitly reference the segment registers. 

2. Implied load instructions such as the far pointer versions of the CALL and JMP 
instructions. These instructions change the contents of the CS register as an inciden­
tal part of their function. 

When these instructions are used, the visible part of the segment register is loaded with 
a segment selector. The processor automatically fetches the base address, limit, type, and 
other information from the descriptor table and loads the invisible part of the segment 
register. 

5·9 



MEMORY MANAGEMENT 

Because most instructions refer to segments whose selectors already have been loaded 
into segment registers, the processor can add the offset into the segment to the seg­
ment's base address with no performance penalty. 

5.2.2 Segment Selectors 

A segment selector points to the information which defines a segment, called a segment 
descriptor. A program may have more segments than the six whose segment selectors 
occupy segment registers. When this is true, the program uses forms of the MOY in­
struction to change the contents of these registers when it needs to access a new 
segment. 

A segment selector identifies a segment descriptor by specifying a descriptor table and a 
descriptor within that table. Segment selectors are visible to application programs as a 
part of a pointer variable, but the values of selectors are usually assigned or modified by 
link editors or linking loaders, not application programs. Figure 5-7 shows the format of 
a segment selector. 

Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the 
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the 
base address of the descriptor table (from the GDTR or LDTR register). 

Table-Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a 
set bit selects the current LDT. 

Requested Privilege Level: When this field contains a privilege level having a greater 
value (i.e., less privileged) than the program, it overrides the program's privilege level. 
When a program uses a segment selector obtained from a less privileged program, this 
makes the memory access take place with the privilege level of the less privileged pro­
gram. This is used to guard against a security violation, in which a less privileged pro­
gram uses a more privileged program to access protected data. 

For example, system utilities or device drivers must run with a high level of privilege in 
order to access protected facilities, such as the control registers of peripheral interfaces. 
But they must not interfere with other protected facilities, even if a request to do so is 

15 321 0 

INDEX 

n TABLE INDICATOR (0 = GDT, 1 = LDT) 
RPL REQUESTED PRIVILEGE LEVEL 

(00 = MOST PRIVILEGED, 11 = LEAST) 

240331 

Figure 5-7. Segment Selector 

5-10 



MEMORY MANAGEMENT 

received from a less privileged program. If a program requested reading a sector of disk 
into memory occupied by a more privileged program, such as the operating system, the 
RPL can be used to generate a general-protection exception when the segment selector 
obtained from the less privileged program is used. This exception occurs even though the 
program using the segment selector would have a sufficient privilege level to perform the 
operation on its own. 

Because the first entry of the GDT is not used by the processor, a selector which has an 
index of 0 and a table indicator of 0 (i.e., a selector which points to the first entry of the 
GDT) is used as a "null selector." The processor does not generate an exception when a 
segment register (other than the CS or SS registers) is loaded with a null selector. It 
does, however, generate an exception when a segment register holding a null selector is 
used to access memory. This feature can be used to initialize unused segment registers. 

5.2.3 Segment Descriptors 

A segment descriptor is a data structure in memory which provides the processor with 
the size and location of a segment, as well as control and status information. Descriptors 
typically are created by compilers, linkers, loaders, or the operating system, but not 
application programs. Figure 5-8 illustrates the two general descriptor formats. The sys­
tem segment descriptor is described more fully in Chapter 6. All types of segment de­
scriptors take one of these formats. 

Base: Defines the location of the segment within the 16 megabyte physical address space. 
The processor puts together the three base address fields to form a single 32-bit value. 

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (212). When the 
bit is clear, the segment limit is interpreted in units of one byte; when set, the segment 
limit is interpreted in units of 4K bytes (one page). Note that the twelve least significant 
bits of the address are not tested when scaling is used. For example, a limit of 0 with the 
Granularity bit set results in valid offsets from 0 to 4095. Also note that only the Limit 
field is affected. The base address remains byte granular. 

Limit: Defines the size of the segment. The processor puts together the two limit fields 
to form a 20-bit value. The processor interprets the limit in one of two ways, depending 
on the setting of the Granularity bit: 

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in 
increments of 1 byte. 

2. If the Granularity bit is set, the Limit has a value from 4 kilobytes to 4 gigabytes, in 
increments of 4K bytes. 

For most segments, a logical address may have an offset ranging from 0 to the limit. 
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit 
field; they may be addressed with any offset except those from 0 to the limit (see the 
Type field, below). This is done to allow segments to be created in which increasing the 
value held in the Limit field allocates new memory at the bottom of the segment's 

5-11 



MEMORY MANAGEMENT 

DESCRIPTORS USED FOR APPLICATION CODE AND DATA SEGMENTS 

2222211111111 1 
31 4 3 2 1 098 7 6 543 2 098 7 o 

A LIMIT D D 
BASE 31:24 G 1 o V 19:16 P P T TYPE BASE 23:16 

L L 

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00 

DESCRIPTORS USED FOR SPECIAL SYSTEM SEGMENTS 

222221111111111 
31 432 1 098 7 6 543 2 1 0 9 8 7 o 

+4 
A LIMIT D D 

BASE 31:24 G 1 o V 19:16 P P T TYPE BASE 23:16 

L L 

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00 

AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE 

BASE SEGMENT BASE ADDRESS 

DPL DESCRIPTOR PRIVILEGE LEVEL 

DT DESCRIPTOR TYPE 

(0 = SYSTEM; 1 = APPLICATION) 

G GRANULARITY 

LIMIT SEGMENT LIMIT 

P SEGMENT PRESENT 

TYPE SEGMENT TYPE 

240331 

Figure 5-8. Segment Descriptors 

address space, rather than at the top. Expand-down segments are intended to hold 
stacks, but it is not necessary to use them. If a stack is going to be put in a segment which 
does not need to change size, it can be a normal data segment. 

DT field: The descriptors for application segments have this bit set. This bit is clear for 
system segments and gates. 

Type: The interpretation of this field depends on whether the segment descriptor is for 
an application segment or a system segment. System segments have a slightly different 

5-12 



MEMORY MANAGEMENT 

descriptor format, discussed in Chapter 6. The Type field of a memory descriptor spec­
ifies the kind of access which may be made to a segment, and its direction of growth (see 
Table 5-1). 

For data segments, the three lowest bits of the type field can be interpreted as expand­
down (E), write enable (W), and accessed (A). For code segments, the three lowest bits 
of the type field can be interpreted as conforming (C), read enable (R), and 
accessed (A). 

Data segments can be read-only or read/write. Stack segments are data segments which 
must be read/write. Loading the SS register with a segment selector for any other type of 
segment generates a general-protection exception. If the stack segment needs to be able 
to change size, it can be an expand-down data segment. The meaning of the segment 
limit is reversed for an expand-down segment. While an offset in the range from a to the 
segment limit is valid for other kinds of segments (outside this range a general­
protection exception is generated), in an expand-down segment these offsets are the 
ones which generate exceptions. The valid offsets in an expand-down segment are those 
which generate exceptions in the other kinds of segments. Other segments must be 
addressed by offsets which are equal or less than the segment limit. Offsets into expand­
down segments always must be greater than the segment limit. This interpretation of the 
segment limit causes memory space to be allocated at the bottom of the segment when 
the segment limit is increased, which is correct for stack segments because they grow 
toward lower addresses. If the stack is given a segment which does not change size, it 
does not need to be an expand-down segment. 

Code segments can be execute-only or execute/read. An execute/read segment might be 
used, for example, when constants have been placed with instruction code in a ROM. In 

Table 5-1. Application Segment Types 

Number E W A Type Description 

0 0 0 0 Data Read-Only 
1 0 0 1 Data Read-Only, accessed 
2 0 1 0 Data Read/Write 
3 0 1 1 Data Read/Write, accessed 
4 1 0 0 Data Read-Only, expand-down 
5 1 0 1 Data Read-Only, expand-down, accessed 
6 1 1 0 Data Read/Write, expand-down 
7 1 1 1 Data Read/Write, expand-down, accessed 

Number C R A Type Description 

8 0 0 0 Code Execute-Only 
9 0 0 1 Code Execute-Only, accessed 

10 0 1 0 Code Execute/Read 
11 0 1 1 Code Execute/Read, accessed 
12 0 0 0 Code Execute-Only, conforming 
13 0 0 1 Code Execute-Only, conforming, accessed 
14 0 1 0 Code Execute/Read-Only, conforming 
15 0 1 1 Code Execute/Read-Only, conforming, accessed 

5-13 



MEMORY MANAGEMENT 

this case, the constants can be read either by using an instruction with a CS override 
prefix or by placing a segment selector for the code segment in a segment register for a 
data segment. 

Code segments can be either conforming or non-conforming. A transfer of execution 
into a more privileged conforming segment keeps the current privilege level. A transfer 
into a non-conforming segment at a different privilege level results in a general­
protection exception, unless a task gate is used (see Chapter 6 for a discussion of multi­
tasking). System utilities which do not access protected facilities, such as data-conversion 
functions (e.g., EBCDIC/ASCII translation, Huffman encoding/decoding, math library) 
and some types of exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND 
range exceeded) may be loaded in conforming code segments. 

The Type field also reports whether the segment has been accessed. Segment descriptors 
initially report a segment as having been accessed. If the Type field then is set to a value 
for a segment which has not been accessed, the processor restores the value if the seg­
ment is accessed. By clearing and testing the low bit of the Type field, software can 
monitor segment usage (the low bit of the Type field also is called the Accessed bit). 

For example, a program development system might clear all of the Accessed bits for the 
segments of an application. If the application crashes, the states of these bits can be used 
to generate a map of all the segments accessed by the application. Unlike the break­
points provided by the debugging mechanism (Chapter 12), the usage information ap­
plies to segments rather than physical addresses. 

Note that the processor updates the Type field when a segment is accessed, even if the 
access is a read cycle. If the descriptor tables have been put in ROM, it is necessary for 
the hardware designer to prevent the ROM from being enabled onto the data bus during 
a write cycle. It also is necessary to return the READY # signal to the processor when a 
write cycle to ROM occurs, otherwise the cycle does not terminate. 

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used 
to control access to the segment, using the protection mechanism described in Chapter 6. 

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present 
exception when a selector for the descriptor is loaded into a segment register. This is 
used to detect access to segments which have become unavailable. A segment can be­
come unavailable when the system needs to 'create free memory. Items in memory, such 
as character fonts or device drivers, which currently are not being used are de-allocated. 
An item is de-allocated by marking the segment "not present" (this is done by clearing 
the Segment-Present bit). The memory occupied by the segment then can be put to 
another use. The next time the de-allocated item is needed, the segment-not-present 
exception will indicate the segment needs to be loaded into memory. When this kind of 
memory management is provided in a manner invisible to application programs, it is 
called virtual memory. A system may maintain a total amount of virtual memory far larger 
than physical memory by keeping only a few segments present in physical memory at any 
one time. 

5-14 



MEMORY MANAGEMENT 

Figure 5-9 shows the format of a descriptor when the Segment-Present bit is clear. When 
this bit is clear, the operating system is free to use the locations marked Available to 
store its own data, such as information regarding the whereabouts of the missing 
segment. 

5.2.4 Segment Descriptor Tables 

A segment descriptor table is an array of segment descriptors. There are two kinds of 
descriptor tables: 

• The global descriptor table (GDT) 

• The local descriptor tables (LDT) 

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table 
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable 
in length and may contain up to 8192 (213) descriptors. The first descriptor in the GDT 
is not used by the processor. A segment selector to this "null descriptor" does not 
generate an exception when loaded into a segment register, but it always generates an 
exception when an attempt is made to access memory using the descriptor. By initializing 
the segment registers with this segment selector, accidental reference to unused segment 
registers can be guaranteed to generate an exception. 

5.2.5 Descriptor Table Base Registers 

The processor finds the global descriptor table (GDT) and interrupt descriptor table 
(IDT) using the GDTR and IDTR registers. These registers hold descriptors for tables 
in the physical address space. They also hold limit values for the size of these tables (see 
Figure 5-11). 

The limit value is expressed in bytes. As with segments, the limit value is added to the 
base address to get the address of the last valid byte. A limit value of 0 results in exactly 
one valid byte. Because segment descriptors are always eight bytes, the limit should 

11111 1 
31 6 543 2 0 9 8 7 o 

D D 
AVAILABLE 0 P T TYPE AVAILABLE +4 

L 

AVAILABLE 

240331 

Figure 5-9. Segment Descriptor (Segment Not Present) 

5-15 



MEMORY MANAGEMENT 

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE 

I 
+38 +38 

I 
+30 +30 

I 
+28 +28 

I 
+20 +20 

I 
+18 +18 

I 
+10 +10 

I 
+8 +8 

FIRST DESCRIPTOR IN 

GDT IS NOT USED +0 +0 
~ '* -

GDTR REGISTER LDTR REGISTER 

SELECTOR 

I LIMIT LIMIT 

BASE ADDRESS BASE ADDRESS 

NOTE: ADDRESSES SHOWN IN HEXADECIMAL 

240331 

Figure 5-10. Descriptor Tables 

always be one less than an integral multiple of eight (i.e., 8N - 1). The LGDT and 
SGDT instructions read and write the GDTR register; the LIDT and SIDT instructions 
read and write the IDTR register. 

A third descriptor table is the local" descriptor table (LDT). It is found using a 16-bit 
segment selector held in the LDTR register. The LLDT and SLDT instructions read and 
write the segment selector in the LDTR register. The LDTR register also holds the base 
address and limit for the LDT, but these are loaded automatically by the processor from 
the segment descriptor for the LDT. 

5-16 



MEMORY MANAGEMENT 

47 16 15 o 

BASE ADDRESS LIMIT 

5 2 1 o 

BYTE ORDER IS SHOWN BELOW 

240331 

Figure 5-11. Descriptor Table Base Register 

5.3 PAGE TRANSLATION 

A linear address is a 32-bit address into a uniform, unsegmented address space. This 
address space may be a large physical address space, or paging may be used to simulate 
this address space using a small amount of RAM and some disk storage. When paging is 
used, a linear address is translated into its corresponding physical address, or an excep­
tion is generated. The exception gives the operating system a chance to read the page 
from disk (perhaps sending a different page out to disk in the process), then restart the 
program which generated the exception. 

Paging is different from segmentation through its use of small, fixed-size pages. Unlike 
segments, which usually are the same size as the data structures they hold, on the 386 SX 
microprocessor, pages are always 4K bytes. If segmentation is the only form of address 
translation which is used, a data structure which is present in physical memory will have 
all of its parts in memory. If paging is used, a data structure may be partly in memory 
and partly in disk storage. 

The information which maps linear addresses into physical addresses and exceptions is 
held in data structures in memory, called page tables. As with segmentation, this infor­
mation is cached in processor registers to minimize the number of bus cycles required 
for address translation. Unlike segmentation, these processor registers are completely 
invisible to application programs. (For testing purposes, these registers are visible to 
programs running with maximum privileges; see Chapter 10 for details.) 

The paging mechanism treats the 32-bit linear address as having three parts, two lO-bit 
indexes into the page tables and a 12-bit offset into the page addressed by the page 
tables. Because both the virtual pages in the linear address space and the physical pages 
of memory are aligned to 4K-byte page boundaries, there is no need to modify the low 12 
bits of the address. These 12 bits pass straight through the paging hardware, whether 
paging is enabled or not. Note that this is different from segmentation, because segments 
can start at any byte address. 

Two levels of page tables are used. The top level page table is called the page directory. It 
maps the upper 10 bits of the linear address to the second level of page tables. The 
second level of page tables maps the middle 10 bits of the linear address to the base 
address of a page in physical memory (called a page frame address), or to an exception. 

5-17 



MEMORY MANAGEMENT 

An exception also may be generated by an entry in the page directory. This gives the 
operating system a chance to bring in a page table from disk storage. By allowing the 
second-level page tables to be sent to disk, the paging mechanism can support mapping 
of the entire linear address space using only a few pages in memory. 

The CR3 register holds the page frame address of the page directory. For this reason, it 
also is called the page directory base register or PDBR. The upper 10 bits of the linear 
address are scaled by four (the number of bytes in a page table entry) and added to the 
value in the PDBR register to get the physical address of an entry in the page directory. 
This value is truncated to a 24-bit value associated with 16 megabyte physical memory. 
Because the page frame address is always clear in its lowest 12 bits, this addition is 
performed by concatenation (replacement of the low 12 bits with the scaled index). 

When the entry in the page directory is accessed, a number of checks are performed. 
Exceptions may be generated if the page is protected or is not present in memory. If no . 
exception is generated, the upper most 8 bits are truncated, the next 12 bits are used to 
select one of 212 page tables. This is done because of the 24-bit physical address limita­
tion of the 386 SX. The middle 10 bits of the linear address are scaled by four (again, the 
size of a page table entry) and concatenated with the page frame address to get the 
physical address of an entry in the second-level page table. 

Again, access checks are performed, and exceptions may be generated. If no exception 
occurs, the upper 20 bits of the second-level page table entry are concatenated with the 
lowest 12 bits of the linear address to form the physical address of the operand (data) in 
memory. For a 386 DX CPU system, the upper 20 bits select one of 220 page frames. But 
for a 386 SX CPU system, the upper 20 bits only select one of 212 page frames. Again, 
this is because the 386 SX microprocessor is limited to a 24-bit physical address space. 
The upper 8 bits (A24-A31 ) are truncated when the address is output on 24 address pins. 

Although this process may seem complex, it all takes place with very little overhead. The 
processor has a cache for page table entries called the translation lookaside buffer 
(TLB). The TLB satisfies most requests for reading the page tables. Extra bus cycles 
occur only when a new page is accessed. The page size (4K bytes) is large enough so that 
very few bus cycles are made to the page tables, compared to the number of bus cycles 
made to instructions and data. At the same time, the page size is small enough to make 
efficient use of memory. (No matter how small a data structure is, it occupies at least 
one page of memory; page sizes larger than 4K bytes waste memory.) 

5.3.1 PG Bit Enables Paging 

If paging is enabled, a second stage of address translation is used to generate the phys­
ical address from the linear address. If paging is not enabled, the linear address is used 
as the physical address. 

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is 
set by the operating system during software initialization. The PG bit must be set if the 
operating system is running more than one program in virtual-8086 mode or if demand­
paged virtual memory is used. 

5-18 



MEMORY MANAGEMENT 

5.3.2 Linear Address 

A linear address is mapped to a physical address by specifying a page table, a page 
within that table, and an offset within that page. Figure 5-12 shows the format of a linear 
address. 

Figure 5-13 shows how the processor translates the DIR, PAGE, and OFFSET fields of 
a linear address into the physical address using two levels of page tables. The addressing 
mechanism uses the DIR field as an index into a page directory, uses the PAGE field as 
an index into the page table determined by the page directory, and uses the OFFSET 
field to address an operand within the page specified by the page table. 

5.3.3 Page Tables 

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096 
bytes of memory or, at most, 1K 32-bit entries. 

Two levels of tables are used to address a page of memory. The top level is called the 
page directory. It addresses up to 1K page tables in the second level. A page table in the 
second level addresses up to 1K pages in physical memory. All the tables addressed by 
one page directory, therefore, can address 4K or 212 pages. Because each page contains 
4K or 212 bytes, the tables of one rage directory can span the entire linear address space 
of the 386 SX microprocessor (22 ). 

The physical address of the current page directory is stored in the CR3 register, also 
called the page directory base register (PDBR). Memory management software has the 
option of using one page directory for all tasks, one page directory for each task, or some 
combination of the two. See Chapter 10 for information on initialization of the CR3 
register. See Chapter 7 for how the contents of the CR3 register can change for each 
task. 

5.3.4 Page-Table Entries 

Entries in either level of page tables have the same format. Figure 5-14 illustrates this 
format. 

31 2221 12 11 o 

DIR PAGE OFFSET 

240331 

Figure 5·12. Format of a Linear Address 

5-19 



MEMORY MANAGEMENT 

I DIR I PAGE I OFFSET I PAGE FRAME 

I I PHYSICAL 
ADDRESS 

PAGE DIRECTORY PAGE TABLE 

.... PG TBL ENTRY 

'-. DIR ENTRY -

I CR3 
t t 

240331 

Figure 5-13. Page Translation 

PAGE FRAME ADDRESS 31 .. 12 

P - PRESENT 
R/W - READ/WRITE 
U/S - USER/SUPERVISOR 
A - ACCESSED 
o - DIRTY 
AVAIL - AVAILABLE FOR SYSTEMS PROGRAMMER USE 

NOTE: 0 INDICATES INTEL RESERVED. DO NOT DEFINE. 

240331 

Figure 5-14. Format of a Page Table Entry 

5.3.4.1 PAGE FRAME ADDRESS 

The page frame address is the base address of a page. Because pages are located on 
4K-byte boundaries, the lowest 12 bits of the page frame address are always clear. In a 
page table entry, the upper most 8 bits are truncated, the next 12 bits are used to specify 
a page frame address, and the lowest 12 bits specify control and status bits for the page. 

5-20 



MEMORY MANAGEMENT 

In a page directory, the page frame address is the address of a page table. In a second­
level page table, the page frame address is the address of a page containing instructions 
or data. 

5.3.4.2 PRESENT BIT 

The Present bit indicates whether the page frame address in a page table entry maps to 
a page in physical memory. When set, the page is in memory. 

When the Present bit is clear, the page is not in memory, and the rest of the page table 
entry is available for the operating system, for example, to store information regarding 
the whereabouts of the missing page. Figure 5-15 illustrates the format of a page table 
entry when the Present bit is clear. 

If the Present bit is clear in either level of page tables when an attempt is made to use a 
page table entry for address translation, a page-fault exception is generated. In systems 
which support demand-paged virtual memory, the following sequence of events then 
occurs: 

1. The operating system copies the page from disk storage into physical memory. 

2. The operating system loads the page frame address into the page table entry and 
sets its Present bit. Other bits, such as the R/W bit, may be set, too. 

3. Because a copy of the old page table entry may still exist in the translation lookaside 
buffer (TLB), the operating system empties it. See Section 5.3.5 for a discussion of 
the TLB and how to empty it. 

4. The program which caused the exception is then restarted. 

Note that there is no Present bit for the page directory. Although the page directory may 
be in disk storage while the tasks which use it are suspended, it must be brought into 
memory before any of these tasks may be run. 

5.3.4.3 ACCESSED AND DIRTY BITS 

These bits provide data about page usage in both levels of page tables. The Accessed bit 
is used to report read or write access to a page or second-level page table. The Dirty bit 
is used to report write access to a page. 

31 1 0 

AVAILABLE H 
240331 

Figure 5-15. Format of a Page Table Entry for a Not-Present Page 

5-21 



MEMORY MANAGEMENT 

With the exception of the Dirty bit in a page directory entry, these bits are set by the 
hardware; however, the processor does not clear either of these bits. The processor sets 
the Accessed bits in both levels of page tables before a read or write operation to a page. 
The processor sets the Dirty bit in the second-level page table before a write operation 
to an address mapped by that page table entry. The Dirty bit in directory entries is 
undefined. 

The operating system may use the Accessed bit when it needs to create some free mem­
ory by sending a page or second-level page table to disk storage. By periodically clearing 
the Accessed bits in the page tables, it can see which pages have been used recently. 
Pages which have not been used are candidates for sending out to disk. 

The operating system may use the Dirty bit when a page is sent back to disk. By clearing 
the Dirty bit when the page is brought into memory, the operating system can see if it 
has received any write access. If there is a copy of the page on disk, and the copy in 
memory has not received any writes, there is no need to update disk from memory. 

See Chapter 11 for how the 386 SX microprocessor updates the Accessed and Dirty bits 
in multiprocessor systems. 

5.3.4.4 READ/WRITE AND USER/SUPERVISOR BITS 

The ReadIWrite and User/Supervisor bits are used for protection checks applied to 
pages, which the processor performs at the same time as address translation. See Chap­
ter 6 for more information. 

5.3.5 Translation Lookaside Buffer 

The processor stores the most recently used page table entries in an on-chip cache, 
called the translation lookaside buffer or TLB. Most paging is performed using the 
contents of the TLB. Bus cycles to the page tables are performed only when a new page 
is used. 

The TLB is invisible to application programs, but not to operating systems. Operating­
system programmers must flush the TLB (dispose of its page table entries) when entries 
in the page tables are changed. If this is not done, old data which has not received the 
changes might get used for address translation. A change to an entry for a page which is 
not present in memory does not require flushing the TLB, because entries for not­
present pages are not cached. 

The TLB is flushed when the CR3 register is loaded. The CR3 register can be loaded in 
either of two ways: 

1. Explicit loading using MOY instructions, such as: 

MOV CR3, EAX 
MOV EAX, CR3 

5-22 



MEMORY MANAGEMENT 

2. Implicit loading by a task switch which changes the contents of the CR3 register. 
(See Chapter 7 for more information on task switching.) Note that if the contents of 
the CR3 register do not change during a task switch, the TLB is not flushed. 

5.4 COMBINING SEGMENT AND PAGE TRANSLATION 

Figure 5-16 combines Figure 5-2 and Figure 5-9 to summarize both stages of translation 
from a logical address to a physical address when paging is enabled. Options available in 
both stages of address translation can be used to support several different styles of 
memory management. 

5.4.1 Flat Model 

When the 386 SX microprocessor is used to run software written without segments, it 
may be desirable to remove the segmentation features of the 386 SX microprocessor. 
The 386 SX microprocessor does not have a mode bit for disabling segmentation, but the 

16 o 32 
lOGICA 
ADDRE ~S I SELECTOR I 

DESCRIP~OR TAB1 

~ DESCRIPTOR + ~- rep 
LINEAR I I ADDRESS DIR PAGE 

I 

PAGE DIRECTORY 

"+-
~ DIRENTRY f--

o 

DFFSET I 

PAGE FRAME 
OFFSET 

I PHYSICAL 
ADDRESS 

PAGE TABLE 

PG TBl ENTRY f 

J 

Figure 5-16. Combined Segment and Page Address Translation 

5-23 

240331 



MEMORY MANAGEMENT 

same effect can be achieved by mapping the stack, code, and data spaces to the same 
range of linear addresses. The 32-bit offsets used by 386 SX microprocessor instructions 
can cover the entire linear address space. 

When paging is used, the segments can be mapped to the entire linear address space. If 
more than one program is being run at the same time, the paging mechanism can be 
used to give each program a separate address space. 

5.4.2 Segments Spanning Several Pages 

The Intel386 ™ architecture allows segments which are larger the size of a page 
(4K bytes). For example, a large data structure may span thousands of pages. If paging 
were not used, access to any part of the data structure would require the entire data 
structure to be present in physical memory. With paging, only the page containing the 
part being accessed needs to be in memory. 

5.4.3 Pages Spanning Several Segments 

Segments also may be smaller than the size of a page. If one of these segments is placed 
in a page which is not shared with another segment, the extra memory is wasted. For 
example, a small data structure, such as a I-byte semaphore, occupies 4K bytes if it is 
placed in a page by itself. If many semaphores are used, it is more efficient to pack them 
into a single page. 

5.4.4 Non-Aligned Page and Segment Boundaries 

The Intel386 architecture does not enforce any correspondence between the boundaries 
of pages and segments. A page may contain thc end of one segment and the beginning of 
another. Likewise, a segment may contain the end of one page and the beginning of 
another. 

5.4.5 Aligned Page and Segment Boundaries 

Memory-management software may be simpler and more efficient if it enforces some 
alignment between page and segment boundaries. For example, if a segment which may 
fit in one page is placed in two pages, there may be twice as much paging overhead to 
support access to that segment. 

5.4.6 Page-Table Per Segment 

An approach to combining paging and segmentation which simplifies memory­
management software is to give each segment its own page table, as shown in 
Figure 5-17. This gives the segment a single entry in the page directory which provides 
the access control information for paging the segment. 

5-24 



intel'!!> MEMORY MANAGEMENT 

PAGE FRAMES 

LOT PAGE DIRECTORY PAGE TABLES 

~ PTE 

PTE 

PTE f-

DESCRIPTOR r-- POE I--l I I DESCRIPTOR f-- POE f-

PTE W I 
PTE r-

LOT PAGE DIRECTORY PAGE TABLES -.CJ 
PAGE FRAMES 

240331 

Figure 5-17. Each Segment Can Have Its Own Page Table 

5-25 





Protection 6 





CHAPTER 6 
PROTECTION 

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks 
from interfering with each other. For example, protection can keep one task from over­
writing the instructions or data of another task. 

During program development, the protection mechanism can give a clearer picture of 
program bugs. When a program makes an unexpected reference to the wrong memory 
space, the protection mechanism can block the event and report its occurrence. 

In end-user systems, the protection mechanism can guard against the possibility of soft­
ware failures caused by undetected program bugs. If a program fails, its effects can be 
confined to a limited domain. The operating system can be protected against damage, so 
diagnostic information can be recorded and automatic recovery may be attempted. 

Protection may be applied to segments and pages. Two bits in a processor register define 
the privilege level of the program currently running (called the current privilege level or 
CPL). The CPL is checked during address translation for segmentation and paging. 

Although there is no control register or mode bit for turning off the protection mecha­
nism, the same effect can be achieved by assigning privilege level 0 (the highest level of 
privilege) to all segment selectors, segment descriptors, and page table entries. 

6.1 SEGMENT-LEVEL PROTECTION 

Protection provides the ability to limit the amount of interference a malfunctioning pro­
gram can inflict on other programs and their data. Protection is a valuable aid in soft­
ware development because it allows software tools (operating system, debugger, etc.) to 
survive in memory undamaged. When an application program fails, the software is avail­
able to report diagnostic messages, and the debugger is available for post-mortem anal­
ysis of memory and registers. In production, protection can make software more reliable 
by giving the system an opportunity to initiate recovery procedures. 

Each memory reference is checked to verify that it satisfies the protection checks. All 
checks are made before the memory cycle is started; any violation prevents the cycle 
from starting and results in an exception. Because checks are performed in parallel with 
address translation, there is no performance penalty. There are five protection checks: 

1. Type check 

2. Limit check 

3. Restriction of addressable domain 

4. Restriction of procedure entry points 

5. Restriction of instruction set 

6-1 



PROTECTION 

A protection violation results in an exception. See Chapter 9 for an explanation of the 
exception mechanism. This chapter describes the protection violations which lead to 
exceptions. 

6.2 SEGMENT DESCRIPTORS AND PROTECTION 

Figure 6-1 shows the fields of a segment descriptor which are used by the protection 
mechanism. Individual bits in the Type field also are referred to by the names of their 
functions. 

Protection parameters are placed in the descriptor when it is created. In general, appli­
cation programmers do not need to be concerned about protection parameters. 

When a program loads a segment selector into a segment register, the processor loads 
both the base address of the segment and the protection information. The invisible part 
of each segment register has storage for the base, limit, type, and privilege level. While 
this information is resident in the segment register, subsequent protection checks on the 
same segment can be performed with no performance penalty. 

6.2.1 Type Checking 

In addition to the descriptors for application code and data segments, the 386™ SX 
microprocessor has descriptors for system segments and gates. These are data structures 
used for managing tasks (Chapter 7) and exceptions and interrupts (Chapter 9). 
Table 6-1 lists all the types defined for system segments and gates. Note that not all 
descriptors define segments; gate descriptors hold pointers to procedure entry points. 

Table 6-1. System Segment and Gate Types 

Type Description 

0 reserved 
1 Available 80286 TSS 
2 LDT 
3 Busy 80286 TSS 
4 Call Gate 
5 Task Gate 
6 80286 Interrupt Gate 
7 80286 Trap Gate 
8 reserved 
9 Available 386'· SX TSS 

10 reserved 
11 Busy 386 SX TSS 
12 386 SX Call Gate 
13 reserved 
14 386 SX Interrupt Gate 
15 386 SX Task Gate 

6-2 



PROTECTION 

DATA SEGMENT DESCRIPTOR 

21111111111 

31 o 9 8 7 6 543 2 1 0 9 8 7 o 

LIMIT 
D 

BASE 31:24 P 1 0 EW A BASE 23:16 
19:16 

L 

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 

CODE SEGMENT DESCRIPTOR 

21111111111 
31 o 9 8 7 6 543 2 1 0 9 8 7 o 

LIMIT D 
BASE 31:24 

19:16 P 1 1 C R A BASE 23:16 

L 

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 

SYSTEM SEGMENT DESCRIPTOR 

21111111111 
31 o 9 8 7 6 543 2 1 0 9 8 7 o 

+4 
LIMIT D 

BASE 31:24 P 0 TYPE BASE 23:16 
19:16 

L 

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 

A ACCESSED 
C CONFORMING 
DPL DESCRIPTOR PRIVILEGE LEVEL 
E EXPAND-DOWN 
R READABLE 
LIMIT SEGMENT LIMIT 
W WRITABLE 

240331 

Figure 6·1. Descriptor Fields Used for Protection 

6-3 



PROTECTION 

The Type fields of code and data segment descriptors include bits which further define 
the purpose of the segment (see Figure 6-1): 

• The Writable bit in a data-segment descriptor controls whether programs can write to 
the segment. 

• The Readable bit in an executable-segment descriptor specifies whether programs 
can read from the segment (e.g., to access constants stored in the code space). A 
readable, executable segment may be read in two ways: 

1. With the CS register, by using a CS override prefix. 

2. By loading a selector for the descriptor into a data-segment register (the DS, ES, 
FS, or GS registers). 

Type checking can be used to detect programming errors which would attempt to use 
segments in ways not intended by the programmer. The processor examines type infor­
mation on two kinds of occasions: 

1. When a selector for a descriptor is loaded into a segment register. Certain segment 
registers can contain only certain descriptor types; for example: 

• The CS register only can be loaded with a selector for an executable segment. 

• Selectors of executable segments which are not readable cannot be loaded into 
data-segment registers. 

• Only selectors of writable data segments can be loaded into the SS register. 

2. Certain segments can be used by instructions only in certain predefined ways; for 
example: 

• No instruction may write into an executable segment. 

• No instruction may write into a data segment if the writable bit is not set. 

• No instruction may read an executable segment unless the readable bit is set. 

6.2.2 Limit Checking 

The Limit field of a segment descriptor prevents programs from addressing outside the 
segment. The effective value of the limit depends on the setting of the G bit (Granularity 
bit). For data segments, the limit also depends on the E bit (Expansion-Direction bit). 
The E bit is a designation for one bit of the Type field, when referring to data segment 
descriptors. 

When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor. 
In this case, the limit ranges from 0 to OFFFFFH (220 - 1 or 1 megabyte). When the G 
bit is set, the processor scales the value in the Limit field by a factor of 212. In this case 
the limit ranges from OFFFH (212 - 1 or 4K bytes) to OFFFFFFFFH (232 - 1 or 4 
gigabytes). Note that when scaling is used, the lower twelve bits of the address are not 
checked against the limit; when the G bit is set and the segment limit is 0, valid offsets 
within the segment are 0 through 4095. 

6-4 



PROTECTION 

For all types of segments except expand-down data segments (stack segments), the value 
of the limit is one less than the size, in bytes, of the segment. The processor causes a 
general-protection exception in any of these cases: 

• Attempt to access a memory byte at an address > limit 

• Attempt to access a memory word at an address > (limit - 1) 

• Attempt to access a memory doubleword at an address > (limit - 3) 

For expand-down data segments, the limit has the same function but is interpreted 
differently. In these cases the range of valid offsets is from (limit + 1) to 232 - 1. An 
expand-down segment has maximum size when the segment limit is O. 

Limit checking catches programming errors such as runaway subscripts and invalid 
pointer calculations. These errors are detected when they occur, so identification of the 
cause is easier. Without limit checking, these errors could overwrite critical memory in 
another module, and the existence of these errors would not be discovered until the 
damaged module crashed, an event which may occur long after the actual error. Protec­
tion can block these errors and report their source. 

In addition to limit checking on segments, there is limit checking on the descriptor 
tables. The GDTR and LDTR registers contain a 16-bit limit value. It is used by the 
processor to prevent programs from selecting a segment descriptor outside the descrip­
tor table. The limit of a descriptor table identifies the last valid byte of the table. Be­
cause each descriptor is eight bytes long, a table which contains up to N descriptors 
should have a limit of 8N - 1. 

A descriptor may be given a zero value. This refers to the first descriptor in the GDT, 
which is not used. Although this descriptor may be loaded into a segment register, any 
attempt to reference memory using this descriptor will generate a general-protection 
exception. 

6.2.3 Privilege Levels 

The protection mechanism recognizes four privilege levels, numbered from 0 to 3. The 
greater numbers mean lesser privileges. If all other protection checks are satisfied, a 
general-protection exception is generated if a program attempts to access a segment 
using a less privileged level (greater privilege number) than that applied to the segment. 

Although no control register or mode bit is provided for turning off the protection 
mechanism, the same effect can be achieved by assigning all privilege levels the value of 
O. (The PE bit in the eRO register is not an enabling bit for the protection mechanism 
alone; it is used to enable "protected mode," the mode of program execution in which 
the full 32-bit architecture is available. When protected mode is disabled, the processor 
operates in "real-address mode," where it appears as a fast, enhanced 8086 processor.) 

6-5 



PROTECTION 

Privilege levels can be used to improve the reliability of operating systems. By giving the 
operating system the highest privilege level, it is protected from damage by bugs in other 
programs. If a program crashes, the operating system has a chance to generate a diag­
nostic message and attempt recovery procedures. 

Another level of privilege can be established for other parts of the system software, such 
as the programs which handle peripheral devices, called device drivers. If a device driver 
crashes, the operating system should be able to report a diagnostic message, so it makes 
sense to protect the operating system against bugs in device drivers. A device driver, 
however, may service an important peripheral such as a disk drive. If the application 
program crashed, the device driver should not corrupt the directory structure of the disk, 
so it makes sense to protect device drivers against bugs in applications. Device drivers 
should be given an intermediate privilege level between the operating system and the 
application programs. Application programs are given the lowest privilege level. 

Figure 6-2 shows how these levels of privilege can be interpreted as rings of protection. 
The center is for the segments containing the most critical software, usually the kernel of 
an operating system. Outer rings are for less critical software. 

TASKC 

240331 

Figure 6-2. Protection Flags 

6-6 



PROTECTION 

The following data structures contain privilege levels: 

• The lowest two bits of the CS segment register hold the current privilege level (CPL). 
This is the privilege level of the program being run. The lowest two bits of the SS 
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level 
of the code segment from which instructions are being fetched. The CPL changes 
when control is transferred to a code segment with a different privilege level. 

• Segment descriptors contain a field called the descriptor privilege level (DPL). The 
DPL is the privilege level applied to a segment. 

• Segment selectors contain a field called the requested privilege level (RPL). The RPL is 
intended to represent the privilege level of the procedure which created the selector. 
If the RPL is a less privileged level than the CPL, it overrides the CPL. When a more 
privileged program receives a segment selector from a less privileged program, the 
RPL causes the memory access take place at the less privileged level. 

Privilege levels are checked when the selector of a descriptor is loaded into a segment 
register. The checks used for data access differ from those used for transfers of execu­
tion among executable segments; therefore, the two types of access are considered sep­
arately in the following sections. 

6.3 RESTRICTING ACCESS TO DATA 

To address operands in memory, a segment selector for a data segment must be loaded 
into a data-segment register (the DS, ES, FS, GS, or SS registers). The processor checks 
the segment's privilege levels. The check is performed when the segment selector is 
loaded. As Figure 6-3 shows, three different privilege levels enter into this type of priv­
ilege check. 

The three privilege levels which are checked are: 

1. The CPL (current privilege level) of the program. This is held in the two least­
significant bit positions of the CS register. 

2. The DPL (descriptor privilege level) of the segment descriptor of the segment con­
taining the operand. 

3. The RPL (requestor's privilege level) of the selector used to specify the segment 
containing the operand. This is held in the two lowest bit positions of the segment 
register used to access the operand (the SS, DS, ES, FS, or GS registers). If the 
operand is in the stack segment, the RPL is the same as the CPL. 

Instructions may load a segment register only if the DPL of the segment is the same or a 
less privileged level (greater privilege number) than the less privileged of the CPL and 
the selector's RPL. 

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data 
segments at all privilege levels are accessible; when the CPL is 1, only data segments at 
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at 
privilege level 3 are accessible. 

6-7 



31 

CPL 

DPL 

RPL 

I CPL I 

I RPL I 

PROTECTION 

OPERAND SEGMENT DESCRIPTOR 

1 1 

4 3 

D 

P 

L 

I 

1111 

CURRENT CODE SEGMENT REGISTER 

OPERAND SEGMENT SELECTOR 

CURRENT PRIVILEGE LEVEL 

DESCRIPTOR PRIVILEGE LEVEL 

REQUESTED PRIVILEGE LEVEL 

7 

It ,It 

PRIVILEGE 

CHECK 

Figure 6-3. Privilege Check for Data Access 

6.3.1 Accessing Data in Code Segments 

o 

+4 

+0 

, 

240331 

It may be desirable to store data in a code segment, for example, when both code and 
data are provided in ROM. Code segments may legitimately hold constants; it is not 
possible to write to a segment defined as a code segment, unless a data segment is 
mapped to the same address space. The following methods of accessing data in code 
segments are possible: 

1. Load a data-segment register with a segment selector for a nonconforming, read­
able, executable segment. 

6-8 



PROTECTION 

2. Load a data-segment register with a segment selector for a conforming, readable, 
executable segment. 

3. Use a code-segment override prefix to read a readable, executable segment whose 
selector already is loaded in the CS register. 

The same rules for access to data segments apply to case 1. Case 2 is always valid 
because the privilege level of a code segment with a set Conforming bit is effectively the 
same as the CPL, regardless of its DPL. Case 3 is always valid because the DPL of the 
code segment selected by the CS register is the CPL. 

6.4 RESTRICTING CONTROL TRANSFERS 

With the 386 SX microprocessor, control transfers are provided by the JMP, CALL, 
RET, INT, and IRET instructions, as well as by the exception and interrupt mecha­
nisms. Exceptions and interrupts are special cases discussed in Chapter 9. This chapter 
discusses only the JMP, CALL, and RET instructions. 

The "near" forms of the JMP, CALL, and RET instructions transfer program control 
within the current code segment, and therefore are subject only to limit checking. The 
processor checks that the destination of the JMP, CALL, or RET instruction does not 
exceed the limit of the current code segment. This limit is cached in the CS register, so 
protection checks for near transfers require no performance penalty. 

The operands of the "far" forms of the JMP and CALL instruction refer to other seg­
ments, so the processor performs privilege checking. There are two ways a JMP or 
CALL instruction can refer to another segment: 

1. The operand selects the descriptor of another executable segment. 

2. The operand selects a call gate descriptor. This gated form of transfer is discussed in 
Chapter 7. 

As Figure 6-4 shows, two different privilege levels enter into a privilege check for a 
control transfer which does not use a call gate: 

1. The CPL (current privilege level). 

2. The DPL of the descriptor of the destination code segment. 

Normally the CPL is equal to the DPL of the segment which the processor is currently 
executing. The CPL may, however, be greater (less privileged) than the DPL if the 
current code segment is a conforming segment (as indicated by the Type field of its 
segment descriptor). A conforming segment runs at the privilege level of the calling 
procedure. The processor keeps a record of the CPL cached in the CS register; this value 
can be different from the DPL in the segment descriptor of the current code segment. 

6-9 



31 

C 

CPL 

DPL 

1 CPL I 

PROTECTION 

OPERAND SEGMENT DESCRIPTOR 

111111 
54321 0 9 8 7 

D TYPE 
P 

1111CIRIA L 

I 
I 

CURRENT CODE SEGMENT REGISTER 

CONFORMING BIT 

CURRENT PRIVILEGE LEVEL 

DESCRIPTOR PRIVILEGE LEVEL 

, , , 
PRIVILEGE 

CHECK 

Figure 6-4. Privilege Check for Control Transfer without Gate 

o 

+4 

240331 

The processor only permits a JMP or CALL instruction directly into another segment if 
one of the following privilege rules is satisfied: 

• The DPL of the segment is equal to the current CPL. 

• The segment is a conforming code segment, and its DPL is less (more privileged) than 
the current CPL. 

Conforming segments are used for programs, such as math libraries and some kinds of 
exception handlers, which support applications but do not require access to protected 
system facilities. When control is transferred to a conforming segment, the CPL does not 
change, even if the selector used to address the segment has a different RPL. This is the 
only condition in which the CPL may be different from the DPL of the current code 
segment. 

Most code segments are not conforming. For these segments, control can be transferred 
without a gate only to other code segments at the same level of privilege. It is sometimes 
necessary, however, to transfer control to higher privilege levels. This is accomplished 
with the CALL instruction using call-gate descriptors, which is explained in Chapter 7. 
The JMP instruction may never transfer control to a nonconforming segment whose 
DPL does not equal the CPL. 

6-10 



PROTECTION 

6.5 GATE DESCRIPTORS 

To provide protection for control transfers among executable segments at different priv­
ilege levels, the 386 SX microprocessor uses gate descriptors. There are four kinds of gate 
descriptors: 

• Call gates 

• Trap gates 

• Interrupt gates 

• Task gates 

Task gates are used for task switching and are discussed in Chapter 7. Chapter 9 explains 
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is 
concerned only with call gates. Call gates are a form of protected control transfer. They 
are used for control transfers between different privilege levels. They only need to be 
used in systems in which more than one privilege level is used. Figure 6-5 illustrates the 
format of a call gate. 

A call gate has two main functions: 

1. To define an entry point of a procedure. 

2. To specify the privilege level required to enter a procedure. 

Call gate descriptors are used by CALL and JUMP instructions in the same manner as 
code segment descriptors. When the hardware recognizes that the segment selector for 
the destination refers to a gate descriptor, the operation of the instruction is determined 
by the contents of the call gate. A call gate descriptor may reside in the GOT or in an 
LOT, but not in the interrupt descriptor table (lOT). 

32-BIT CALL GATE 

1111111 
31 6 5 4 3 2 1 0 9 8 7 6 543 o 

D DWORD 
OFFSET IN SEGMENT 31:16 P P o 1 1 0 o 0 000 COUNT 

+4 

L 

SEGMENT SELECTOR OFFSET IN SEGMENT 15:00 

DPL DESCRIPTOR PRIVILEGE LEVEL 

P SEGMENT PRESENT 240331 

Figure 6-5. Call Gate 

6-11 



PROTECTION 

The selector and offset fields of a gate form a pointer to the entry point of a procedure. 
A call gate guarantees that all control transfers to other segments go to a valid entry 
point, rather than to the middle of a procedure (or worse, to the middle of an instruc­
tion). The operand of the control transfer instruction is not the segment selector and 
offset within the segment to the procedure's entry point. Instead, the segment selector 
points to a gate descriptor, and the offset is not used. Figure 6-6 shows this form of 
addressing. 

I ..... DESTINATION ADDRESS 

15 o 31 

I SELECTOR I OFFSET WITHIN SEGMENT 

, 
NOT USED 

DESCRIPTOR TABLE 

I I 
~ OFFSET DPL I COUNT 

SELECTOR OFFSET 

I I 

I I 

w "" BASE I DPL I BASE 

+ ~ BASE 

I I 

PROCEDURE ENTRY POINT 

Figure 6-6. Call Gate Mechanism 

6-12 

o 

GATE 
DESCRIPTOR 

CODE SEGMENT 

DESCRIPTOR 

240331 



PROTECTION 

As shown in Figure 6-7, four different privilege levels are used to eheck the validity of a 
control transfer through a call gate. 

CALL GATE 

31 15 7 o 

I ~ I I I +4 

I 

DESTINATION CODE SEGMENT DESCRIPTOR 

31 15 7 0 

11111 1 ~1 1 +4 

I 

CURRENT CODE SEGMENT REGISTER 

I CPL 

CALL GATE SELECTOR 

1 RPL 

t t r r 
CPl CURRENT PRIVILEGE LEVEL 

I 
DPL DESCRIPTOR PRIVilEGE LEVEL PRIVILEGE 

RPL REQUESTED PRIVILEGE LEVEL CHECK 

240331 

Figure 6-7. Privilege Check for Control Transfer with Call Gate 

6-13 



PROTECTION 

The privilege levels checked during a transfer of execution through a call gate are: 

1. The CPL (current privilege level). 

2. The RPL (requestor's privilege level) of the segment selector used to specify the call 
gate. 

3. The DPL (descriptor privilege level) of the gate descriptor. 

4. The DPL of the segment descriptor of the destination code segment. 

The DPL field of the gate descriptor determines from which privilege levels the gate may 
be used. One code segment can have several procedures which are intended for use from 
different privilege levels. For example, an operating system may have some services 
which are intended to be used by both the operating system and application software, 
such as routines to handle character I/O, while other services may be intended only for 
use by operating system, such as routines which initialize device drivers. 

Gates can be used for control transfers to more privileged levels or to the same privilege 
level (though they are not necessary for transfers to the same level). Only CALL instruc­
tions can use gates to transfer to less privileged levels. A JMP instruction may use a gate 
only to transfer control to a code segment with the same privilege level, or to a conform­
ing code segment with the same or a more privileged level. 

For a JMP instruction to a nonconforming segment, both of the following privilege rules 
must be satisfied; otherwise, a general-protection exception is generated. 

MAX (CPL,RPL) ::; gate DPL 
destination code segment DPL = CPL 

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the 
following privilege rules must be satisfied; otherwise, a general-protection exception is 
generated. 

MAX (CPL,RPL) ::; gate DPL 
destination code segment DPL ::; CPL 

6.5.1 Stack Switching 

A procedure call to a more privileged level does the following: 

1. Changes the CPL. 

2. Transfers control (execution). 

3. Switches stacks. 

All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiv­
ing calls from less privileged levels. If the caller were to provide the stack, and the stack 
was too small, the called procedure might crash as a result of insufficient stack space. 
Instead, less privileged programs are prevented from crashing more privileged programs 

6-14 



PROTECTION 

by creating a new stack when a call is made to a more privileged level. The new stack is 
created, parameters are copied from the old stack, the contents of registers are saved, 
and execution proceeds normally. When the procedure returns, the contents of the saved 
registers restore the original stack. A complete description of the task switching mecha­
nism is provided in Chapter 7. 

The processor finds the space to create new stacks using the task state segment (TSS), as 
shown in Figure 6-8. Each task has its own TSS. The TSS contains initial stack pointers 
for the inner protection rings. The operating system is responsible for creating each TSS 
and initializing its stack pointers. An initial stack pointer consists of a segment selector 
and an initial value for the ESP register (an initial offset into the segment). The initial 
stack pointers are strictly read-only values. The processor does not change them while 
the task runs. These stack pointers are used only to create new stacks when calls are 
made to more privileged levels. These stacks disappear when the called procedure re­
turns. The next time the procedure is called, a new stack is created using the initial stack 
pointer. 

When a call gate is used to change privilege levels, a new stack is created by loading an 
address from the TSS. The processor uses the DPL of the destination code segment (the 
new CPL) to select the initial stack pointer for privilege level 0, 1, or 2. 

32-BIT TASK STATE SEGMENT 

31 15 

I SS2 

ESP2 

I SS1 

ESP1 

I SSO 

ESPO 

J 

NOTE: ADDRESSES ARE IN HEXADECIMAL 

Figure 6-8. Initial Stack Pointers in a TSS 

6-15 

o 

64 

18 

14 

10 

OC 

8 

4 

o 

240331 



PROTECTION 

The DPL of the new stack segment must equal the new CPL; if not, a stack-fault excep­
tion is generated. It is the responsibility of the operating system to create stacks and 
stack-segment descriptors for all privilege levels which are used. The stacks must be 
read/write as specified in the Type field of their segment descriptors. They must contain 
enough space, as specified in the Limit field, to hold the contents of the SS and ESP 
registers, the return address, and the parameters and temporary variables required by 
the called procedure. 

As with calls within a privilege level, parameters for the procedure are placed on the 
stack. The parameters are copied to the new stack. The parameters can be accessed 
within the called procedure using the same relative addresses which would have been 
used if no stack switching had occurred. The count field of a call gate tells the processor 
how many doublewords (up to 31) to copy from the caller's stack to the stack of the 
called procedure. If the count is 0, no parameters are copied. 

If more than 31 doublewords of data need to be passed to the called procedure, one of 
the parameters can be a pointer to a data structure, or the saved contents of the SS and 
ESP registers may be used to access parameters in the old stack space. 

The processor performs the following stack-related steps in executing a procedure call 
between privilege levels. 

1. The stack of the called procedure is checked to make certain it is large enough to 
hold the parameters and the saved contents of registers; if not, a stack exception is 
generated. 

2. The old contents of the SS and ESP registers are pushed onto the stack of the called 
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the 
zero-extended upper word is Intel® reserved; do not use). 

3. The parameters are copied from the stack of the caller to the stack of the called 
procedure. 

4. A pointer to the instruction after the CALL instruction (the old contents of the CS 
and EIP registers) is pushed onto the new stack. The contents of the SS and ESP 
registers after the call point to this return pointer on the stack. 

Figure 6-9 illustrates the stack frame before, during, and after a successful interlevel 
procedure call and return. 

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure 
at privilege level 3 cannot be called by a less privileged procedure. The stack for privilege 
level 3 is preserved by the contents of the SS and EIP registers which have been saved on 
the stack of the privilege level called from level 3. 

A call using a call gate does not check the values of the words copied onto the new stack. 
The called procedure should check each parameter for validity. A later section discusses 
how the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check 
pointer values. 

6-16 



OLD STACK, 
BEFORE CAll: 

PARM 1 

PARM 2 

PARM 3 

PROTECTION 

NEW STACK, 
AFTER CAll, 
BEFORE RETURN: 

OlDSS 

OLD ESP 

PARM 1 

PARM 2 

PARM 3 

OlDCS 

OLDBP 

OLD STACK, 
AFTER RETURN: 

Figure 6-9. Stack Frame during Interlevel Call 

6.5.2 Returning from a Procedure 

240331 

The "near" forms of the RET instruction only transfer control within the current code 
segment, therefore are subject only to limit checking. The offset to the instruction fol­
lowing the CALL instruction is popped from the stack into the EIP register. The proces­
sor checks that this offset does not exceed the limit of the current code segment. 

The "far" form of the RET instruction pops the return address which was pushed onto 
the stack by an earlier far CALL instruction. Under normal conditions, the return 
pointer is valid, because it was generated by a CALL or INT instruction. Nevertheless, 
the processor performs privilege checking because of the possibility that the current 
procedure altered the pointer or failed to maintain the stack properly. The RPL of the 
code-segment selector popped off the stack by the return instruction should have the 
privilege level of the calling procedure. 

A return to another segment can change privilege levels, but only toward less privileged 
levels. When a RET instruction encounters a saved CS value whose RPL is numerically 
greater than the CPL (less privileged level), a return across privilege levels occurs. A 
return of this kind performs these steps: 

1. The checks shown in Table 6-2 are made, and the CS, EIP, SS, and ESP registers 
are loaded with their former values, which were saved on the stack. 

2. The old contents of the SS and ESP registers (from the top of the current stack) are 
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP 
value is not checked against the limit of the stack segment. If the ESP value is 

6-17 



PROTECTION 

Table 6-2. Interlevel Return Checks 

Type of Check Exception Type Error Code 

top-of-stack must be within stack segment limit stack 0 
top-of-stack + 7 must be within stack segment limit stack 0 
RPL of return code segment must be greater than the CPL protection Return CS 
Return code segment selector must be non-null protection Return CS 
Return code segment descriptor must be within descriptor table protection Return CS 
limit 
Return segment descriptor must be a codesegment protection Return CS 
Return code segment is present segment not present Return CS 
DPL of return non-conforming code segment must equal RPL of protection Return CS 
return code segment selector, or DPL of return conforming 
code segment must be less than or equal to RPL of return code 
segment selector 
ESP + N + 15* must be within the stack segment limit stack fault Return CS 
segment selector at ESP + N + 12* must be non-null protection Return CS 
segment descriptor at ESP + N + 12* must be within descriptor protection Return CS 
table limit 
stack segment descriptor must be read/write protection Return CS 
stack segment must be present stack fault Return CS 
old stack segment DPL must be equal to RPL of old code seg- protection Return CS 
ment 
old stack segment selector must have an RPL equal to the DPL protection Return CS 
of the old stack segment 

*N is the value of the immediate operand supplied with the RET instruction. 

beyond the limit, that fact is not recognized until the next stack operation. (The 
contents of the SS and ESP registers for the returning procedure are not preserved; 
normally, their values are the same as those contained in the TSS.) 

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of 
these registers refer to segments whose DPL is less than the new CPL (excluding 
conforming code segments), the segment register is loaded with the null selector 
(Index = 0, TI = 0). The RET instruction itself does not signal exceptions in these 
cases; however, any subsequent memory reference using a segment register contain­
ing the null selector will cause a general-protection exception. This prevents less 
privileged code from accessing more privileged segments using selectors left in the 
segment registers by a more privileged procedure. 

6.6 INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM 

Instructions which can affect the protection mechanism or influence general system per­
formance can only be executed by trusted procedures. The 386 SX microprocessor has 
two classes of such instructions: 

1. Privileged instructions - those used for system control. 

2. Sensitive instructions - those used for I/O and IIO-related activities. 

6-18 



PROTECTION 

6.6.1 Privileged Instructions 

The instructions which affect protected facilities can be executed only when the CPL is 0 
(most privileged). If one of these instructions is executed when the CPL is not 0, a 
general-protection exception is generated. These instructions include: 

CLTS 
HLT 
LGDT 
LIDT 
LLDT 
LMSW 
LTR 
MOV to/from CRO 
MOV to/from DRn 
MOV to/from TRn 

-Clear Task-Switched Flag 
- Halt Processor 
- Load GDT Register 
- Load IDT Register 
- Load LDT Register 
- Load Machine Status Word 
- Load Task Register 
- Move to Control Register 0 
- Move to Debug Register n 
- Move to Test Register n 

6.6.2 Sensitive Instructions 

Instructions which deal with I/O need to be protected, but they also need to be used by 
procedures executing at privilege levels other than 0 (the most privileged level). The 
mechanisms for protection of I/O operations are covered in detail in Chapter 8. 

6.7 INSTRUCTIONS FOR POINTER VALIDATION 

Pointer validation is necessary for maintaining isolation between privilege levels. It con­
sists of the following steps: 

1. Check if the supplier of the pointer is allowed to access the segment. 

2. Check if the segment type is compatible with its use. 

3. Check if the pointer offset exceeds the segment limit. 

Although the 386 SX microprocessor automatically performs checks 2 and 3 during in­
struction execution, software must assist in performing the first check. The ARPL in­
struction is provided for this purpose. Software also can use steps 2 and 3 to check for 
potential violations, rather than waiting for an exception to be generated. The LAR, 
LSL, VERR, and VER W instructions are provided for this purpose. 

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a 
compatible privilege level and type. The LAR instruction has one operand - a segment 
selector for a descriptor whose access rights are to be checked. The segment descriptor 
must be readable at a privilege level which is numerically greater (less privileged) than 
the CPL and the selector's RPL. If the descriptor is readable, the LAR instruction gets 
the second doubleword of the descriptor, masks this value with OOFxFFOOH, stores the 
result into the specified 32-bit destination register, and sets the ZF flag. (The x indicates 
that the corresponding four bits of the stored value are undefined.) Once loaded, the 

6-19 



PROTECTION 

access rights can be tested. All valid descriptor types can be tested by the LAR instruc­
tion. If the RPL or CPL is greater than the DPL, or if the segment selector would exceed 
the limit for the descriptor table, no access rights are returned, and the ZF flag is 
cleared. Conforming code segments may be accessed from any privilege level. 

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If 
the descriptor referenced by the segment selector (in memory or a register) is readable 
at the CPL, the, LSL instruction loads the specified 32-bit register with a 32-bit, byte 
granular limit calculated from the concatenated limit fields and the G bit of the descrip­
tor. This only can be done for descriptors which describe segments (data, code, task 
state, and local descriptor tables); gate descriptors are inaccessible. (Table 6-3 lists in 
detail which types are valid and which are not.) Interpreting the limit is a function of the 
segment type. For example, downward-expandable data segments (stack segments) treat 
the limit differently than other kinds of segments. For both the LAR and LSL instruc­
tions, the ZF flag is set if the load was successful; otherwise, the ZF flag is cleared. 

6.7.1 Descriptor Validation 

The 386 SX microprocessor has two instructions, VERR and VERW, which determine 
whether a segment selector points to a segment which can be read or written using the 
CPL. Neither instruction causes a protection fault if the segment cannot be accessed. 

VERR (Verity for Reading) verifies a segment for reading and sets the ZF flag if that 
segment is readable using the CPL. The VERR instruction checks the following: 

• The segment selector points to a segment descriptor within the bounds of the GDT or 
an LDT. 

• The segment selector indexes to a code or data segment descriptor. 

• The segment is readable and has a compatible privilege level. 

Table 6-3. Valid Descriptor Types for LSL Instruction 

Type Code Descriptor Type Valid? 

0 Reserved no 
1 reserved no 
2 LOT yes 
3 reserved no 
4 reserved no 
5 Task Gate no 
6 reserved no 
7 reserved no 
8 reserved no 
9 Available 386'" SX TSS yes 
A reserved no 
B Busy 386 SX TSS yes 
C 386 SX Call Gate no 
0 reserved no 
E 386 SX Interrupt Gate no 
F 386 SX Trap Gate no 

6-20 



PROTECTION 

The privilege check for data segments and nonconforming code segments verifies that 
the DPL must be a less privileged level than either the CPL or the selector's RPL. 
Conforming segments are not checked for privilege level. 

VERW (Verify for Writing) provides the same capability as the VERR instruction for 
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag 
if the segment can be written. The instruction verifies the descriptor is within bounds, is 
a segment descriptor, is writable, and has a DPL which is a less privileged level than 
either the CPL or the selector's RPL. Code segments are never writable, whether con­
forming or not. 

6.7.2 Pointer Integrity and RPL 

The requested privilege level (RPL) can prevent accidental use of pointers which crash 
more privileged eode from a less privileged level. 

A common example is a file system procedure, FREAD (file_id, n_bytes, buffecptr). 
This hypothetical procedure reads data from a disk file into a buffer, overwriting what­
ever is already there. It services requests from programs operating at the application 
level, but it must run in a privileged mode in order to read from the system I/O buffer. If 
the application program passed this procedure a bad buffer pointer, one which pointed 
at critical code or data in a privileged address space, the procedure could cause damage 
which would crash the system. 

Use of the RPL can avoid this problem. The RPL allows a privilege override to be 
assigned to a selector. This privilege override is intended to be the privilege level of the 
code segment which generated the segment selector. In the above example, the RPL 
would be the CPL of the application program which called the system level procedure. 
The 386 SX microprocessor automatically checks any segment selector loaded into a 
segment register to determine whether its RPL allows access. 

To take advantage of the processor's checking of the RPL, the called procedure need 
only check that all segment selectors passed to it have an RPL for the same or a less 
privileged level as the original caller's CPL. This guarantees that the segment selectors 
are not more privileged than their source. If a selector is used to access a segment which 
the source would not be able to access directly, i.e., the RPL is less privileged than the 
segment's DPL, a general-protection exception is generated when the selector is loaded 
into a segment register. 

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector to 
be the larger (less privileged) of its original value and the value of the RPL field for a 
segment selector stored in a general register. The RPL fields are the two least significant 
bits of the segment selector and the register. The latter normally is a copy of the caller's 
CS register on the stack. If the adjustment changes the selector's RPL, the ZF flag is set; 
otherwise, the ZF flag is cleared. 

6-21 



PROTECTION 

6.8 PAGE-LEVEL PROTECTION 

Protection applies to both segments and pages. When the flat model for memory seg­
mentation has been used, page-level protection prevents programs from interfering with 
each other. 

Each memory reference is checked to verify that it satisfies the protection checks. All 
checks are made before the memory cycle is started; any violation prevents the cycle 
from starting and results in an exception. Because checks are performed in parallel with 
address translation, there is no performance penalty. There are two page-level protec­
tion checks: 

1. Restriction of addressable domain 

2. Type checking 

A protection violation results in an exception. See Chapter 9 for an explanation of the 
exception mechanism. This chapter describes the protection violations which lead to 
exceptions. 

6.8.1 Page-Table Entries Hold Protection Parameters 

Figure 6-10 highlights the fields of a page table entry which control access to pages. The 
protection checks are applied for both first- and second-level page tables. 

6.8.1.1 RESTRICTING ADDRESSABLE DOMAIN 

Privilege is interpreted differently for pages and segments. With segments, there are four 
privilege levels, ranging from 0 (most privileged) to 3 (least privileged). With pages, 
there are two levels of privilege: 

1. Supervisor level (U/S = 0) -for the operating system, other system software (such as 
device drivers), and protected system data (such as page tables). 

2. User level (U/S = 1) - for application code and data. 

The privilege levels used for segmentation are mapped into the privilege levels used for 
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is 
3, the processor is running at user level. 

R/W - READ/WRITE 
U/S - USER/SUPERVISOR 

240331 

Figure 6-10. Protection Fields of a Page Table Entry 

6-22 



PROTECTION 

When the processor is running at supervisor level, alI pages are accessible. When the 
processor is running at user level, only pagcs from the user level are accessible. 

6.8.1.2 TYPE CHECKING 

Only two types of pages are recognized by the protection mechanism: 

1. Read-only access (R/W = 0) 

2. Read/write access (R/W = 1) 

When the processor is running at supervisor level, all pages are both readable and writ­
able (write-protection is ignored). When the processor is running at user level, only 
pages which belong to user level and are marked for read/write access are writable. 
User-level pages which are read/write or read-only are readable. Pages from the super­
visor level are neither readable nor writable from user level. A general-protection excep­
tion is generated on any attempt to violate the protection rules. 

6.8.2 Combining Protection of Both Levels of Page Tables 

For anyone page, the protection attributes of its page directory entry (first-level page 
table) may differ from those of its second-level page table entry. The 386 SX micropro­
cessor checks the protection for a page by examining the protection specified in both the 
page directory (first-level page table) and the second-level page table. Table 6-4 shows 
the protection provided by the possible combinations of protection attributes. 

Table 6-4. Combined Page Directory and Page Table Protection 

Page Directory Entry Page Table Entry Combined Effect 

Privilege Access Type Privilege Access Type Privilege Access Type 

User Read-Only User Read-Only User Read-Only 
User Read-Only User Read-Write User Read-Only 
User Read-Write User Read-Only User Read-Only 
User Read-Write User Read-Write User Read/Write 
User Read-Only Supervisor Read-Only User Read-Only 
User Read-Only Supervisor Read-Write User Read-Only 
User Read-Write Supervisor Read-Only User Read-Only 
User Read-Write Supervisor Read-Write User Read/Write 
Supervisor Read-Only User Read-Only User Read-Only 
Supervisor Read-Only User Read-Write User Read-Only 
Supervisor Read-Write User Read-Only User Read-Only 
Supervisor Read-Write User Read-Write User Read/Write 
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write 
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write 
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write 
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write 

6-23 



PROTECTION 

6.8.3 Overrides to Page Protection 

Certain accesses are checked as if they are privilege-level 0 accesses, for any value of 
CPL: 

• Access to segment descriptors (LOT, GOT, TSS and lOT). 

• Access to inner stack during a CALL instruction, or exceptions and interrupts, when 
a change of privilege level occurs. 

6.9 COMBINING PAGE AND SEGMENT PROTECTION 

When paging is enabled, the 386 SX microprocessor first evaluates scgment protection, 
then evaluates page protection. If the processor detects a protection violation at either 
the segment level or the page level, the operation does not go through; an exception 
occurs instead. If an exception is generated by segmentation, no paging exception is 
generated for the operation. 

For example, it is possible to define a large data segment which has some parts which are 
read-only and other parts which are read-write. In this case, the page directory (or page 
table) entries for the read-only parts would have the U/S and R/W bits specifying no 
write access for all the pages described by that directory entry (or for individual pages 
specified in the second-level page tables). This technique might be used, for example, to 
define a large data segment, part of which is read-only (for shared data or ROMmed 
constants). This defines a "flat" data space as one large segment, with "flat" pointers 
used to access this "flat" space, while protecting shared data, shared files mapped into 
the virtual space, and supervisor areas. 

6-24 



Multitasking 7 





CHAPTER 7 
MULTITASKING 

The 386™ SX microprocessor provides hardware support for multitasking. A task is a 
program which is running, or waiting to run while another program is running. A task is 
invoked by an interrupt, exception, jump, or call. When one of these forms of transfer­
ring execution is used with a destination specified by an entry in one of the descriptor 
tables, this descriptor can be a type which causes a new task to begin execution after 
saving the state of the current task. There are two types of task-related descriptors which 
can occur in a descriptor table: task state segment descriptors and task gates. When 
execution is passed to either kind of descriptor, a task switch occurs. 

A task switch is like a procedure call, but it saves more processor state information. A 
procedure call only saves the contents of the general registers, and it might save the 
contents of only one register (the EIP register). A procedure call pushes the contents of 
the saved registers on the stack, in order that a procedure may call itself. When a 
procedure calls itself, it is said to be re-entrant. 

A task switch transfers execution to a completely new environment, the environment of a 
task. This requires saving the contents of nearly all the processor registers, such as the 
EFLAGS register. Unlike procedures, tasks are not re-entrant. A task switch does not 
push anything on the stack. The processor state information is saved in a data structure 
in memory, called a task state segment. 

The registers and data structures which support multitasking are: 

• Task state segment 

• Task state segment descriptor 

• Task register 

• Task gate descriptor 

With these structures, the 386 SX microprocessor can switch execution from one task to 
another, with the context of the original task saved to allow the task to be restarted. In 
addition to the simple task switch, the 386 SX microprocessor offers two other task­
management features: 

1. Interrupts and exceptions can cause task switches (if needed in the system design). 
The processor not only performs a task switch to handle the interrupt or exception, 
but it automatically switches back when the interrupt or exception returns. Inter­
rupts may occur during interrupt tasks. 

2. With each switch to another task, the 386 SX microprocessor also can switch to 
another LDT. This can be used to give each task a different logical-to-physical 
address mapping. This is an additional protection feature, because tasks can be 
isolated and prevented from interfering with one another. The PDBR register also is 
reloaded. This allows the paging mechanism to be used to enforce the isolation 
between tasks. 

7-1 



MULTITASKING 

Use of the multitasking mechanism is optional. In some applications, it may not be the 
best way to manage program execution. Where extremely fast response to interrupts is 
needed, the time required to save the processor state may be too great. A possible 
compromise in these situations is to use the task-related data structures, but perform 
task switching in software. This allows a smaller processor state to be saved. This tech­
nique can be one of the optimizations used to enhance system performance after the 
basic functions of a system have been implemented. 

7.1 TASK STATE SEGMENT 

The processor state information needed to restore a task is saved in a type of segment, 
called a task state segment or TSS. Figure 7-1 shows the format of a TSS for a 386 SX 
CPU (compatibility with 80286 tasks is provided by a different kind of TSS; see 
Chapter 13). The fields of a TSS are divided into two main categories: 

1. Dynamic fields the processor updates with each task switch. These fields store: 

• The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI). 

• The segment registers (ES, CS, SS, DS, FS, and GS). 

• The flags register (EFLAGS). 

• The instruction pointer (EIP). 

• The selector for the TSS of the previous task (updated only when a return is 
expected). 

2. Static fields the processor reads, but does not change. These fields are set up when 
a task is created. These fields store: 

• The selector for the task's LDT. 

• The logical address of the stacks for privilege levels 0, 1, and 2. 

• The T-bit (debug trap bit) which, when set, causes the processor to raise a debug 
exception when a task switch occurs. (See Chapter 12 for more information on 
debugging. ) 

• The base address for the I/O permission bit map. If present, this map is stored in 
the TSS at higher addresses. The base address points to the beginning of the 
map. (See Chapter 8 for more information about the I/O permission bit map.) 

If paging is used, it is important to avoid placing a page boundary within the part of the 
TSS which is read by the processor during a task switch (the first 108 bytes). If a page 
boundary is placed within this part of the TSS, the pages on either side of the boundary 
must be present at the same time. It is an unrecoverable error to receive a page fault or 
general-protection exception after the processor has started to read the TSS. 

7.2 TSS DESCRIPTOR 

The task state segment, like all other segments, is defined by a descriptor. Figure 7-2 
shows the format of a TSS descriptor. 

7-2 



MULTITASKING 

31 23 15 o 
1/0 MAP BASE o 0 0 0 0 0 o 0 o 0 0 0 0 IT 

000 0 0 0 0 0 0 0 0 0 0 0 0 0 LDT 

000 0 0 0 0 0 0 0 0 0 0 000 GS 

o 0 0 0 000 000 0 0 0 0 0 0 FS 

000 0 0 0 0 0 0 0 0 0 0 0 0 0 DS 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ss 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cs 
000 0 0 0 0 0 0 0 0 0 0 0 0 0 ES 

EDI 

ESI 

EBP 

ESP 

EBX 

EDX 

ECX 

EAX 

EFLAGS 

INSTRUCTION POINTER (EIP) 

CR3 (PDPR) 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 SS2 

ESP2 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS1 

ESP1 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 SSO 

ESPO 

o 0 0 0 0 0 0 000 0 0 0 0 0 0 BACK LINK TO PREVIOUS TSS 

NOTE: 0 MEANS INTEL RESERVED. DO NOT DEFINE. 

Figure 7-1. Task State Segment 

64 

60 

5C 

58 

54 

50 

4C 

4B 

44 

40 

3C 

38 

34 

30 

2C 

28 

24 

20 

1 

1 

lC 

8 

4 

10 

oc 
8 

4 

o 

240331 

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently 
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a 
value of 11 (decimal) indicates a busy task. Tasks are not re-entrant. The 386 SX micro­
processor uses the Busy bit to detect an attempt to call a task whose execution has been 
interrupted. 

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions 
similar to their use in data-segment descriptors. The Limit field must have a value equal 
to or greater than 67H, one byte less than the minimum size of a task state. An attempt 

7-3 



MULTITASKING 

to switch to a task whose TSS descriptor has a limit less than 67H generates an excep­
tion. A larger limit is required if an I/O permission map is used. A larger limit also may 
be required for the operating system, if the system stores additional data in the TSS. 

A procedure with access to a TSS descriptor can cause a task switch. In most systems, 
the DPL fields of TSS descriptors should be clear, so only privileged software can per­
form task switching. 

Access to a TSS descriptor does not give a procedure the ability to read or modify the 
descriptor. Reading and modification only can be done using a data descriptor mapped 
to the same location in memory. Loading a TSS descriptor into a segment register gen­
erates an exception. TSS descriptors only may reside in the GDT. An attempt to access 
a TSS using a selector with a set TI bit (which indicates the current LDT) generates an 
exception. 

7.3 TASK REGISTER 

The task register (TR) is used to find the current TSS. Figure 7-3 shows the path by 
which the processor accesses the TSS. 

31 

BASE 31:24 

TSS DESCRIPTOR 

222221111111111 
432109876543210987 

A LIMIT D TYPE 
G 0 o V 19:16 

p P 

L L o 11 10 Ie 11 

BASE 23:16 

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00 

AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE 

B BUSY BIT 

BASE SEGMENT BASE ADDRESS 

DPL DESCRIPTOR PRIVILEGE LEVEL 

DT DESCRIPTOR TYPE 

(0 = SYSTEM; 1 = APPLICATION) 

G GRANULARITY 

LIMIT SEGMENT LIMIT 

P SEGMENT PRESENT 

TYPE SEGMENT TYPE 

Figure 7-2. TSS Descriptor 

7-4 

o 

240331 



MULTITASKING 

TASK STATE SEGMENT 

~ + ~ 

VISIBLE PART INVISIBLE PART 

SELECTOR BASE ADDRESS SEGMENT LIMIT I TR 

, 
GLOBAL DESCRIPTOR TABLE 

N 

f----
TSS DESCRIPTOR 

0 

240331 

Figure 7-3. TR Register 

7-5 



MULTITASKING 

The task register has both a "visible" part (i.e., a part which can be read and changed by 
software) and an "invisible" part (i.e., a part maintained by the processor and inaccessi­
ble to software). The selector in the visible portion indexes to a TSS descriptor in the 
GDT. The processor uses the invisible portion of the TR register to retain the base and 
limit values from the TSS descriptor. Keeping these values in a register makes execution 
of the task more efficient, because the processor does not need to fetch these values 
from memory to reference the TSS of the current task. 

The LTR and STR instructions are used to modify and read the visible portion of the 
task register. Both instructions take one operand, a 16-bit segment selector located in 
memory or a general register. 

LTR (Load task register) loads the visible portion of the task register with the operand, 
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the 
invisible portion with information from the TSS descriptor. The LTR instruction is a 
privileged instruction; it may be executed only when the CPL is O. The LTR instruction 
generally is used during system initialization to put an initial value in the task register; 
afterwards, the contents of the TR register are changed by events which cause a task 
switch. 

STR (Store task register) stores the visible portion of the task register in a general 
register or memory. The STR instruction is not privileged. 

7.4 TASK GATE DESCRIPTOR 

A task gate descriptor provides an indirect, protected reference to a task. Figure 7-4 
illustrates the format of a task gate. 

TASK GATE DESCRIPTOR 

11111 1 
31 65432 0987 o 

D 
RESERVED P P 00101 RESERVED 

L 

TSS SEGMENT SELECTOR RESERVED 

DPL DESCRIPTOR PRIVILEGE LEVEL 
P SEGMENT PRESENT 

240331 

Figure 7-4. Task Gate Descriptor 

7-6 



MULTITASKING 

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is 
not used. 

The DPL of a task gate controls access to the descriptor for a task switch. A procedure 
may not select a task gate descriptor unless the selector's RPL and the CPL of the 
procedure are numerically less than or equal to the DPL of the descriptor. This prevents 
less privileged procedures from causing a task switch. (Note that when a task gate is 
used, the DPL of the destination TSS descriptor is not used.) 

A procedure with access to a task gate can cause a task switch, as can a procedure with 
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy 
three needs: 

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the 
TSS descriptor, each task should have only one such descriptor. There may, how­
ever, be several task gates which select a single TSS descriptor. 

2. The need to provide selective access to tasks. Task gates fill this need, because they 
can reside in an LOT and can have a DPL which is different from the TSS descrip­
tor's OPL. A procedure which does not have sufficient privilege to use the TSS 
descriptor in the GOT (which usually has a OPL of 0) can still call another task if it 
has access to a task gate in its LOT. With task gates, the operating system can limit 
task switching to specific tasks. 

3. The need for an interrupt or exception to cause a task switch. Task gates also may 
reside in the lOT, which allows interrupts and exceptions to cause task switching. 
When an interrupt or exception supplies a vector to a task gate, the 386 SX micro­
processor switches to the indicated task. 

Figure 7-5 illustrates how both a task gate in an LOT and a task gate in the lOT can 
identify the same task. 

7.5 TASK SWITCHING 

The 386 SX microprocessor transfers execution to another task in any of four cases: 

1. The current task executes a JMP or CALL to a TSS descriptor. 

2. The current task executes a JMP or CALL to a task gate. 

3. An interrupt or exception indexes to a task gate in the lOT. 

4. The current task executes an IRET when the NT flag is set. 

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all 
ordinary mechanisms of the 386 SX microprocessor which can be used in circumstances 
in which no task switch occurs. The descriptor type (when a task is called) or the NT flag 
(when the task returns) make the difference between the standard mechanism and the 
form which causes a task switch. 

7-7 



MULTITASKING 

TASK STATE SEGMENT 

LOCAL DESCRIPTOR TABLE GLOBAL DESCRIPTOR TABLE 

I L 

I I 

'" TASK GATE ~ TSS DESCRIPTOR 

1 I 

I I 

I I 

INTERRUPT DESCRIPTOR 
TABLE 

I 

I 

TASK GATE -

I 

I 

1 
240331 

Figure 7-5. Task Gates Reference Tasks 

To cause a task switch, a JMP or CALL instruction can transfer execution to either a 
TSS descriptor or a task gate. The effect is the same in either case: the 386 SX micro­
processor transfers execution to the specified task. 

An exception or interrupt causes a task switch when it indexes to a task gate in the IDT. 
If it indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See 
Chapter 9 for more information on the interrupt mechanism. 

7-8 



MULTITASKING 

An interrupt service routine always returns execution to the interrupted procedure, 
which may be in another task. If the NT flag is clear, a normal return occurs. If the NT 
flag is set, a task switch occurs. The task receiving the task switch is specified by the TSS 
selector in the TSS of the interrupt service routine. 

A task switch has these steps: 

1. Check that the current task is allowed to switch to the new task. Data-access privi­
lege rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and 
the task gate must be greater than or equal to both the CPL and the RPL of the gate 
selector. Exceptions, interrupts, and IRET instructions are permitted to switch tasks 
regardless of the DPL of the destination task gate or TSS descriptor. 

2. Check that the TSS descriptor of the new task is marked present and has a valid 
limit (greater than or equal to 67H). Any errors up to this point occur in the context 
of the current task. These errors restore any changes made in the processor state 
when an attempt is made to exercute the error-generating instruction. This lets the 
return address for the exception handler point to the error-generating instruction, 
rather than the instruction following the error-generating instruction. The exception 
handler can fix the condition which caused the error, and restart the task. The 
intervention of the exception handler can be completely transparent to the applica­
tion program. 

3. Save the state of the current task. The processor finds the base address of the 
current TSS in the task register. The processor registers are copied into the current 
TSS (the EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS, 
and EFLAGS registers). 

4. Load the TR register with the selector to the new task's TSS descriptor, set the new 
task's Busy bit, and set the TS bit in the CRO register. The selector is either the 
operand of a JMP or CALL instruction, or it is taken from a task gate. 

5. Load the new task's state from its TSS and continue execution. The registers loaded 
are the LDTR register; the EFLAGS register; the general registers EIP, EAX, 
ECX, EDX, EBX, ESP, EBP, ESI, EDI; and the segment registers ES, CS, SS, DS, 
FS, and GS. Any errors detected in this step occur in the context of the new task. To 
an exception handler, the first instruction of the new task appears not to have 
executed. 

Note that the state of the old task is always saved when a task switch occurs. If the task 
is resumed, execution starts with the instruction which normally would have been next. 
The registers are restored to the values they held when the task stopped running. 

Every task switch sets the TS (task switched) bit in the eRO register. The TS bit is useful 
to system software when a coprocessor (such as a numerics coprocessor) is present. The 
TS bit indicates that the context of the coprocessor may be different from that of the 
current task. Chapter 11 discusses the TS bit and coprocessors in more detail. 

Exception service routines for exceptions caused by task switching (exceptions resulting 
from steps 5 through 17 shown in Table 7-1) may be subject to recursive calls if they 
attempt to reload the segment selector which generated the exception. The cause of the 
exception (or the first of multiple causes) should be fixed before reloading the selector. 

7-9 



MULTITASKING 

Table 7-1. Checks Made during a Task Switch 

Step Condition Checked Exception1 Error Code Reference 

1 TSS descriptor is present in memory NP New Task's TSS 
2 TSS descriptor is not busy GP New Task's TSS 
3 TSS segment limit greater than or equal to 103 TS New Task's TSS 

4 Registers are loaded from the values in the TSS 

5 LOT selector of new task is valid2 TS New Task's TSS 
6 Code segment OPL matches selector RPL TS New Code Segment 
7 SS selector is valid2 GP New Stack Segment 
8 Stack segment is present in memory SF New Stack Segment 
9 Stack segment OPL matches CPL SF New Stack Segment 

10 LOT of new task is present in memory TS New Task's TSS 
11 CS selector is valid2 TS New Code Segment 
12 Code segment is present in memory NP New Code Segment 
13 Stack segment OPL matches selector RPL GP New Stack Segment 
14 OS, ES, FS, and GS selectors are valid2 GP New Oata Segment 
15 OS, ES, FS, and GS segments are readable GP New Oata Segment 
16 OS, ES, FS, and GS segments are present in memory NP New Oata Segment 
17 OS, ES, FS, and GS segment OPL greater than or equal GP New Oata Segment 

to CPL (unless these are conforming segments) 

1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS excep­
tion, SF = Stack exception. 

2. A selector is valid if it is in the compatible type of table (e.g., an LOT selector may not be in any table 
except the GOT), occupies an address within the table's segment limit, and refers to a compatible type of 
descriptor (e.g. a selector in the CS register only is valid when it indexes to a descriptor for a code 
segment; the descriptor type is specified in its Type field). 

The privilege level at which the old task was running has no relation to the privilege level 
of the new task. Because the tasks are isolated by their separate address spaces and task 
state segments, and because privilege rules control access to a TSS, no privilege checks 
are needed to perform a task switch. The new task begins executing at the privilege level 
indicated by the RPL of new contents of the CS register, which are loaded from the TSS. 

7.6 TASK LINKING 

The Link field of the TSS and the NT flag are used to return execution to the previous 
task. The NT flag indicates whether the currently executing task is nested within the 
execution of another task, and the Link field of the current task's TSS holds the TSS 
selector for the higher-level task, if there is one (see Figure 7-6). 

When an interrupt, exception, jump, or call causes a task switch, the 386 SX micropro­
cessor copies the segment selector for the current task state segment into the TSS for the 
new task and sets the NT flag. The NT flag indicates the Link field of the TSS has been 
loaded with a saved TSS selector. The new task releases control by executing an IRET 
instruction. When an IRET instruction is executed, the NT flag is checked. If it is set, 
the processor does a task switch to the previous task. Table 7-2 summarizes the uses of 
the fields in a TSS which are affected by task switching. 

7-10 



TOP LEVEL TASK 

TSS 

NT = 0 

J LINK 

I' 

MULTITASKING 

NESTED TASK 

TSS 

NT = 1 

I LINK 

MORE DEEPLY 
NESTED TASK 

TSS 

NT = 1 

I LINK 

Figure 7-6. Nested Tasks 

I 

I , 

CURRENTLY 
EXECUTING TASK 

EFLAGS 

NT = 1 

TRREGISTER 

I 

I 

240331 

Table 7-2. Effect of a Task Switch on Busy, NT, and Link Fields 

Field Effect of Jump 
Effect of CALL Effect of IRET 

Instruction or Interrupt Instruction 

Busy bit of new Bit is set. Must have Bit is set. Must have been No change. Must be 
task been clear before. clear before. set. 

Busy bit of old Bit is cleared. No change. Bit is Bit is cleared. 
task currently set. 

NT flag of new Flag is cleared. Flag is set. No change. 
task 

NT flag of old No change. No change. Flag is cleared. 
task 

Link field of new No change. Loaded with selector for No change. 
task. old task's T88. 

Link field of old No change. No change. No change. 
task. 

7-11 



MULTITASKING 

Note that the NT flag may be modified by software executing at any privilege level. It is 
possible for a program to set its NT bit and execute an IRET instruction, which would 
have the effect of invoking the task specified in the Link field of the current task's TSS. 
To keep spurious task switches from succeeding, the operating system should initialize 
the Link field of every TSS it creates. 

7.6.1 Busy Bit Prevents Loops 

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one 
saved task context, the context saved in the TSS, therefore a task only may be called 
once before it terminates. The chain of suspended tasks may grow to any length, due to 
multiple interrupts, exceptions, jumps, and calls. The Busy bit prevents a task from being 
called if it is in this chain. A re-entrant task switch would overwrite the old TSS for the 
task, which would break the chain. 

The processor manages the Busy bit as follows: 

1. When switching to a task, the processor sets the Busy bit of the new task. 

2. When switching from a task, the processor clears the Busy bit of the old task if that 
task is not to be placed in the chain (i.e., the instruction causing the task switch is a 
JMP or IRET instruction). If the task is placed in the chain, its Busy bit remains set. 

3. When switching to a task, the processor generates a general-protection exception if 
the Busy bit of the new task already is set. 

In this way, the processor prevents a task from switching to itself or to any task in the 
chain, which prevents re-entrant task switching. 

The Busy bit may be used in mUltiprocessor configurations, because the processor as­
serts a bus lock when it sets or clears the Busy bit. This keeps two processors from 
invoking the same task at the same time. (See Chapter 11 for more information on 
multiprocessing. ) 

7.6.2 Modifying Task Linkages 

Modification of the chain of suspended tasks may be needed to resume an interrupted 
task before the task which interrupted it. A reliable way to do this is: 

1. Disable interrupts. 

2. First change the Link field in the TSS of the interrupting task, then clear the Busy 
bit in the TSS descriptor of the task being removed from the chain. 

3. Re-enable interrupts. 

7-12 



MULTITASKING 

7.7 TASK ADDRESS SPACE 

The LOT selector and POBR (CR3) field of the TSS can be used to give each task its 
own LOT and page tables. Because segment descriptors in the LOTs are the connections 
between tasks and segments, separate LOTs for each task can be used to set up individ­
ual control over these connections. Access to any particular segment can be given to any 
particular task by placing a segment descriptor for that segment in the LOT for that task. 
If paging is enabled, each task can have its own set of page tables for mapping linear 
addresses to physical addresses. 

It also is possible for tasks to have the same LOT. This is a simple and memory-efficient 
way to allow some tasks to communicate with or control each other, without dropping 
the protection barriers for the entire system. 

Because all tasks have access to the GOT, it also is possible to create shared segments 
accessed through segment descriptors in this table. 

7.7.1 Task Linear-to-Physical Space Mapping 

The choices for arranging the linear-to-physical mappings of tasks fall into two general 
classes: 

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled, 
this is the only choice. Without paging, all linear addresses map to the same physical 
addresses. When paging is enabled, this form of linear-to-physical mapping is ob­
tained by using one page directory for all tasks. The linear space may exceed the 
available physical space if demand-paged virtual memory is supported. 

2. Independent linear-to-physical mappings for each task. This form of mapping comes 
from using a different page directory for each task. Because the POBR (page direc­
tory base register) is loaded from the TSS with each task switch, each task may have 
a different page directory. 

The linear address spaces of different tasks may map to completely distinct physical 
addresses. If the entries of different page directories point to different page tables and 
the page tables point to different pages of physical memory, then the tasks do not share 
any physical addresses. 

The task state segments must lie in a space accessible to all tasks so that the mapping of 
TSS addresses does not change while the processor is reading and updating the TSSs 
during a task switch. The linear space mapped by the GOT also should be mapped to a 
shared physical space; otherwise, the purpose of the GOT is defeated. Figure 7-7 shows 
how the linear spaces of two tasks can overlap in the physical space by sharing page 
tables. 

7-13 



MULTITASKING 

PAGE FRAMES 

TSS. 

1 I TASK A 

TASK A TSS PAGE DIRECTORIES PAGE TABLES PAGE 

~ PTE 
TASK A 

1 PTE PAGE 

PDBR f--- POE f---- PTE 

POE I-- I SHAREDPT TASK A 
PAGE 

=--1 1 
PTE SHARED 

PAGE 

"- PTE 

TASK B TSS 

1 
SHARED 

1 PAGE 

~I TASKB 

1 PDBR r-- POE - PTE PAGE 

POE - PTE I-

TSSs PAGE DIRECTORIES PAGE TABLES I TASKB I PAGE 

PAGE FRAMES 

240331 

Figure 7-7. Overlapping Linear-to-Physical Mappings 

7.7.2 Task Logical Address Space 

By itself, an overlapping linear-to-physical space mapping does not allow sharing of data 
among tasks. To share data, tasks must also have a common logical-to-linear space map­
ping; i.e., they also must have access to descriptors which point into a shared linear 
address space. There are three ways to create shared logical-to-physical address-space 
mappings: 

1. Through the segment descriptors in the GDT. All tasks have access to the descrip­
tors in the GDT. If those descriptors point into a linear-address space which is 
mapped to a common physical-address space for all tasks, then the tasks can share 
data and instructions. 

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selec­
tors in their TSSs select the same LDT for use in address translation. Segment 
descriptors in the LDT addressing linear space mapped to overlapping physical 

7-14 



MULTITASKING 

space provide shared physical memory. This method of sharing is more selective 
than sharing by the GOT; the sharing can be limited to specific tasks. Other tasks in 
the system may have different LOTs which do not give them access to the shared 
areas. 

3. Through segment descriptors in the LOTs which map to the same linear address 
space. If the linear address space is mapped to the same physical space by the page 
mapping of the tasks involved, these descriptors permit the tasks to share space. 
Such descriptors are commonly called "aliases." This method of sharing is even 
more selective than those listed above; other descriptors in the LOTs may point to 
independent linear addresses which are not shared. 

7-15 





Input/Output 8 





CHAPTER 8 
INPUT/OUTPUT 

This chapter explains the input/output architecture of the 386'" SX microprocessor. 
Input/output is accomplished through I/O ports, which are registers connected to periph­
eral devices. An I/O port can be an input port, an output port, or a bidirectional port. 
Some I/O ports are used for carrying data, such as the transmit and receive registers of a 
serial interface. Other I/O ports are used to control peripheral devices, such as the 
control registers of a disk controller. 

The input/output architecture is the programmer's model of how these ports are ac­
cessed. The discussion of this model includes: 

• Methods of addressing I/O ports. 

• Instructions which perform I/O operations. 

• The I/O protection mechanism. 

8.1 I/O ADDRESSING 

The 386 SX microprocessor allows I/O ports to be addressed in either of two ways: 

• Through a separate I/O address space accessed using I/O instructions. 

• Through memory-mapped I/O, where I/O ports appear in the address space of phys­
ical memory. 

The use of a separate I/O address space is supported by special instructions and a 
hardware protection mechanism. When memory-mapped I/O is used, the general­
purpose instruction set can be used to access I/O ports, and protection is provided using 
segmentation or paging. Some system designers may prefer to use the I/O facilities built 
into the processor, while others may prefer the simplicity of a single physical address 
space. 

If segmentation or paging is used for protection of the I/O address space, the A VL fields 
in segment descriptors or page table entries may be used to mark pages containing I/O 
as unrelocatable and unswappable. The A VL fields arc provided for this kind of use, 
where a system programmer needs to make an extension to the address translation and 
protection mechanisms. 

Hardware designers use these ways of mapping I/O ports into the address space when 
they design the address decoding circuits of a system. I/O ports can be mapped twice, so 
that they appear in both the I/O address space and the address space of physical mem­
ory. System programmers may wish to tell the hardware designers what kind of I/O 
addressing they would like to have. 

8-1 



INPUT/OUTPUT 

8.1.1 I/O Address Space 

The 386 SX microprocessor provides a separate I/O address space, distinct from the 
address space for ~hysical memory, where I/O ports can be placed. The I/O address 
space consists of 21 (64K) individually addressable 8-bit ports; any two consecutive 8-bit 
ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. 

The M/IO# pin on the 386 SX microprocessor indicates when a bus cycle to the I/O 
address space occurs. When a separate I/O address space is used, it is the responsibility 
of the hardware designer to make use of this signal to select I/O ports rather than 
memory. In fact, the use of the separate I/O address space simplifies the hardware 
design because these ports can be selected by a single signal; unlike other processors, it 
is not necessary to decode a number of upper address lines in order to set up a separate 
I/O address space. 

A program can specify the address of a port in two ways. With an immediate byte 
constant, the program can specify: 

• 256 8-bit ports numbered 0 through 255. 

• 128 16-bit ports numbered 0, 2, 4, ... , 252, 254. 

• 64 32-bit ports numbered 0, 4, 8, ... , 248, 252. 

Using a value in the DX register, the program can specify: 

• 8-bit ports numbered 0 through 65535. 

• 16-bit ports numbered 0, 2, 4, ... , 65532, 65534. 

• 32-bit ports numbered 0, 4, 8, ... , 65528, 65532. 

The 386 SX microprocessor can transfer 8, 16, or 32 bits to a device in the I/O space. 
Like words in memory, 16-bit ports should be aligned to even addresses so that all 16 bits 
can be transferred in a single bus cycle. The processor will access a 32-bit port in two 
16-bit bus cycles if it is aligned to the even addresses, three cycles if it is not. The 
processor supports data transfers to unaligned ports, but there is a performance penalty 
because an extra bus cycle must be used. 

The IN and OUT instructions move data between a register and a port in the I/O 
address space. The instructions INS and OUTS move strings of data between the mem­
ory address space and ports in the I/O address space. 

Note that I/O port addresses OF8H through OFFH are reserved for use by Intel. Do not 
assign I/O ports to these addresses. Also note that the processor performs bus cycles to 
I/O addresses 8000F8H and 8000FCH as part of the coprocessor interface (these ad­
dresses are beyond the defined range of the I/O address space). 

8-2 



INPUT/OUTPUT 

8.1.2 Memory-Mapped I/O 

I/O devices may be placed in the address space for physical memory. This is called 
memory-mapped I/O. As long as the devices respond like memory components, they can 
be used with memory-mapped I/O. 

Memory-mapped I/O provides additional programming flexibility. Any instruction which 
references memory may be used to access an I/O port located in the memory space. For 
example, the MOV instruction can transfer data between any register and a port. The 
AND, OR, and TEST instructions may be used to manipulate bits in the control and 
status registers of peripheral devices (see Figure 8-1). Memory-mapped I/O can use the 
full instruction set and the full complement of addressing modes to address I/O ports. 

Memory-mapped I/O, like any other memory reference, is subject to access protection 
and control. See Chapter 6 for a discussion of memory protection. 

8.2 I/O INSTRUCTIONS 

The I/O instructions of the 386 SX microprocessor provide access to the processor's I/O 
ports for the transfer of data. These instructions have the address of a port in the I/O 
address space as an operand. There are two kinds of I/O instructions: 

1. Those which transfer a single item (byte, word, or doubleword) to or from a register. 

PHYSICAL MEMORY 

r---------------, N 

ROM 

INPUT/OUTPUT PORT 

INPUT/OUTPUT PORT 

INPUT/OUTPUT PORT 

RAM 

L...-___________ .....J 0 

240331 

Figure 8-1. Memory-Mapped I/O 

8-3 



INPUT/OUTPUT 

2. Those which transfer strings of items (strings of bytes, words, or doublewords) lo­
cated in memory. These are known as "string I/O instructions" or "block I/O 
instructions. " 

These instructions cause the M/IO# signal to be driven low (logic 0) during a bus cycle, 
which indicates to external hardware that access to the I/O address space is taking place. 
If memory-mapped I/O is used, there is no reason to use I/O instructions. 

8.2.1 Register I/O Instructions 

The I/O instructions IN and OUT move data between I/O ports and the EAX register 
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The IN and 
OUT instructions address I/O ports either directly, with the address of one of 256 port 
addresses coded in the instruction, or indirectly using an address in the DX register to 
select one of 64K port addresses. 

IN (Input from Port) transfers a byte, word, or doubleword from an input port to the 
AL, AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port 
to the AL register. A word IN instruction transfers 16 bits from the port to the AX 
register. A doubleword IN instruction transfers 32 bits from the port to the EAX 
register. 

OUT (Output from Port) transfers a byte, word, or doubleword from the AL, AX, or 
EAX registers to an output port. A byte OUT instruction transfers 8 bits from the AL 
register to the selected port. A word OUT instruction transfers 16 bits from the AX 
register to the port. A doubleword OUT instruction transfers 32 bits from the EAX 
register to the port. 

8.2.2 Block I/O Instructions 

The INS and OUTS instructions move blocks of data between I/O ports and memory. 
Block I/O instructions use an address in the DX register to address a port in the I/O 
address space. These instructions use the DX register to specify: 

• 8-bit ports numbered 0 through 65535. 

• 16-bit ports numbered 0, 2, 4, ... , 65532, 65534. 

• 32-bit ports numbered 0, 4, 8, ... , 65528, 65532. 

Block I/O instructions use either the SI or DI register to address memory. For each 
transfer, the SI or DI register is incremented or decremented, as specified by the DF 
flag. 

The INS and OUTS instructions, when used with repeat prefixes, perform block input or 
output operations. The repeat prefix REP modifies the INS and OUTS instructions to 
transfer blocks of data between an I/O port and memory. These block I/O instructions 

8·4 



INPUT/OUTPUT 

are string instructions (see Chapter 3 for more on string instructions). They simplify 
programming and increase the speed of data transfer by eliminating the need to use a 
separate LOOP instruction or an intermediate register to hold the data. 

The string I/O instructions operate on byte strings, word strings, or doubleword strings. 
After each transfer, the memory address in the ESI or EOI registers is incremented or 
decremented by 1 for byte operands, by 2 for word operands, or by 4 for doubleword 
operands. The OF flag controls whether the register is incremented (the OF flag is 
clear) or decremented (the OF flag is set). 

INS (Input String from Port) transfers a byte, word, or doubleword string element from 
an input port to memory. The INSB instruction transfers a byte from the selected port to 
the memory location addressed by the ES and EOI registers. The INSW instruction 
transfers a word. The INSO instruction transfers a doubleword. A segment override 
prefix cannot be used to specify an alternate destination segment. Combined with a REP 
prefix, an INS instruction makes repeated read cycles to the port, and puts the data into 
consecutive locations in memory. 

OUTS (Output String from Port) transfers a byte, word, or doubleword string element 
from memory to an output port. The OUTSB instruction transfers a byte from the mem­
ory location addressed by the ES and EOI registers to the selected port. The OUTSW 
instruction transfers a word. The OUTSO instruction transfers a doubleword. A segment 
override prefix cannot be used to specify an alternate source segment. Combined with a 
REP prefix, an OUTS instruction reads consecutive locations in memory, and writes the 
data to an output port. 

8.3 PROTECTION AND I/O 

The I/O architecture has two protection mechanisms: 

1. The IOPL field in the EFLAGS register controls access to the I/O instructions. 

2. The I/O permission bit map of a TSS segment controls access to individual ports in 
the I/O address space. 

These protection mechanisms are available only when a separate I/O address space is 
used. When memory-mapped I/O is used, protection is provided using segmentation or 
paging. 

8.3.1 I/O Privilege Level 

In systems where I/O protection is used, access to I/O instructions is controlled by the 
IOPL field in the EFLAGS register. This permits the operating system to adjust the 
privilege level needed to perform I/O. In a typical protection ring model, privilege levels 
o and 1 have access to the I/O instructions. This lets the operating system and the device 
drivers perform I/O, but keeps applications and less privileged device drivers from ac­
cessing the I/O address space. Applications access I/O through the operating system. 

8-5 



INPUT/OUTPUT 

The following instructions can be executed only if CPL :::; IOPL: 

IN 
INS 
OUT 
OUTS 
CLI 
STI 

-Input 
- Input String 
-Output 
- Output String 
-Clear Interrupt-Enable Flag 
- Set Interrupt-Enable Flag 

These instructions are called "sensitive" instructions, because they are sensitive to the 
IOPL field. In virtual-8086 mode, IOPL is not used; only the I/O permission bit map 
limits access to I/O ports (see Chapter 15). 

To use sensitive instructions, a procedure must run at a privilege level at least as privi­
leged as that specified by the IOPL field. Any attempt by a less privileged procedure to 
use a sensitive instruction results in a general-protection exception. Because each task 
has its own copy of the EFLAGS register, each task can have a different IOPL. 

A task can change IOPL only with the POPF instruction; however, such changes are 
privileged. No procedure may changer its IOPL unless it is running at privilege level O. 
An attempt by a less privileged procedure to change the IOPL does not result in an 
exception; the 10PL simply remains unchanged. 

The POPF instruction also may be used to change the state of the IF flag (as can the 
CLI and STI instructions); however, changes to the IF flag using the POPF instruction 
are IOPL-sensitive. A procedure may change the setting of the IF flag with a POPF 
instruction only if it runs with a CPL at least as privileged as the IOPL. An attempt by a 
less privileged procedure to change the IF flag does not result in an exception; the IF 
flag simply remains unchanged. 

8.3.2 I/O Permission Bit Map 

The 386 SX microprocessor can generate exceptions for references to specific I/O ad­
dresses. These addresses are specified in the I/O permission bit map in the TSS (see 
Figure 8-2). The size of the map and its location in the TSS are variable. The processor 
finds the I/O permission bit map with the I/O map base address in the TSS. The base 
address is a 16-bit offset into the TSS. This is an offset to the beginning of the bit map. 
The limit of the TSS is the limit on the size of the I/O permission bit map. 

Because each task has its own TSS, each task has its own I/O permission bit map. Access 
to individual I/O ports can be granted to individual tasks. 

If the CPL and IOPL allow I/O instructions to execute, the processor checks the I/O 
permission bit map. Each bit in the map corresponds to an I/O port byte address; for 
example, the control bit for address 41 (decimal) in the I/O address space is found at bit 
position 1 of the sixth byte in the bit map. The processor tests all the bits corresponding 

8-6 



INPUT/OUTPUT 

TASK STATE SEGMENT 

11111111 I 
1/0 PERMISSION 

BIT MAP 

I · ~.--------li . : 1/0 MAP BASE • 

I I 
NOTE: BASE ADDRESS FOR 1/0 BIT MAP MUST NOT 

EXCEED DFFF (HEXADECIMAL) 

LAST BYTE OF BIT MAP MUST BE FOLLOWED BY 
A BYTE WITH ALL BITS SET. 

Figure 8-2. I/O Permission Bit Map 

240331 

to the I/O port being addressed; for example, a doubleword operation tests four bits 
corresponding to four adjacent byte addresses. If any tested bit is set, a general­
protection exception is generated. If all tested bits are clear, the I/O operation proceeds. 

Because I/O ports which are not aligned to word and doubleword boundaries are per­
mitted, it is possible that the processor may need to access two bytes in the bit map when 
I/O permission is checked. For maximum speed1 the processor has been designed to read 
two bytes for every access to an I/O port. To prevent exceptions from being generated 
when the ports with the highest addresses are accessed, an extra byte needs to come 
after the table. This byte must have all of its bits set, and it must be within the segment 
limit. 

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O 
addresses not spanned by the map are treated as if they had set bits in the map. For 
example, if the TSS segment limit is 10 bytes past the bit map base address, the ma~has 
11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O address 
space generate exceptions. 

If the I/O bit map base address is greater than or equal to the TSS segment limit, there 
is no I/O permission map, and all I/O instructions generate exceptions. The base address 
must be less than or equal to ODFFFH. 

8-7 





Exceptions and Interrupts 9 





CHAPTER 9 
EXCEPTIONS AND INTERRUPTS 

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The 
task or proeedure is called a handler. Interrupts occur at random times during the exe­
cution of a program, in response to signals from hardware. Exceptions occur when in­
structions are executed which provoke exceptions. Usually, the servicing of interrupts 
and exceptions is performed in a manner transparent to application programs. Interrupts 
are used to handle events external to the processor, such as requests to service periph­
eral devices. Exceptions handle conditions detected by the processor in the course of 
executing instructions, such division by O. 

There two sources for interrupts and two sources for exceptions: 

1. Interrupts 

• Maskable interrupts, which are received on the INTR input of the 386™ SX 
microprocessor. Maskable interrupts do not occur unless the interrupt-enable 
flag (IF) is set. 

• Nonmaskable interrupts, which are received on the NMI (Non-Maskable Inter­
rupt) input of the processor. The processor does not provide a mechanism to 
prevent nonmaskable interrupts. 

2. Exceptions 

• Processor-detected exceptions. These are further classified as faults, traps, and 
aborts. 

• Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions 
may trigger exceptions. These instructions often are called "software interrupts," 
but the processor handles them as exceptions. 

This chapter explains the features of the 386 SX microprocessor which control and 
respond to interrupts. 

9.1 EXCEPTION AND INTERRUPT VECTORS 

The processor associates an identifying number with each different type of interrupt or 
exception. This number is called a vector. 

The NMI interrupt and the exceptions are assigned vectors in the range 0 through 31. 
Not all of these vectors are currently used in the Inte1386™ architecture; unassigned 
vectors in this range are reserved for possible future uses. Do not use unassigned vectors. 

The vectors for maskable interrupts are determined by hardware. External interrupt 
controllers (such as Intel's 8259A Programmable Interrupt Controller) put the vector on 
the bus of the 386 SX microprocessor during its interrupt-acknowledge cycle. Any vec­
tors in the range 32 through 255 can be used. Table 9-1 shows the assignment of excep­
tion and interrupt vectors. 

9-1 



EXCEPTIONS AND INTERRUPTS 

Table 9-1. Exception and Interrupt Vectors 

Vector Number Description 

0 Divide Error 
1 Debug Exception 
2 NMI Interrupt 
3 Breakpoint 
4 INTO-detected Overflow 
5 BOUND Range Exceeded 
6 Invalid Opcode 
7 Coprocessor Not Available 
8 Double Fault 
9 Coprocessor Segment Overrun 
10 Invalid Task State Segment 
11 Segment Not Present 
12 Stack Fault 
13 General Protection 
14 Page Fault 
15 (Intel® reserved. Do not use.) 
16 Coprocessor Error 

17-31 (Intel reserved. Do not use.) 
32-255 Maskable Interrupts 

Exceptions are classified as faults, traps, or aborts depending on the way they are re­
ported and whether restart of the instruction which caused the exception is supported. 

Faults 

Traps 

Aborts 

A fault is an exception which is reported at the instruction boundary prior to 
the instruction in which the exception was detected. The fault is reported 
with the machine restored to a state which permits the instruction to be 
restarted. The return address for the fault handler points to the instruction 
which generated the fault, rather than the instruction following the faulting 
instruction. 

A trap is an exception which is reported at the instruction boundary immedi­
ately after the instruction in which the exception was detected. 

An abort is an exception which does not always report the location of the 
instruction causing the exception and does not allow restart of the program 
which caused the exception. Aborts are used to report severe errors, such as 
hardware errors and inconsistent or illegal values in system tables. 

9.2 INSTRUCTION RESTART 

For most exceptions and interrupts, transfer of execution does not take place until the 
end of the current instruction. This leaves the EIP register pointing at the instruction 
which comes after the instruction which was being executed when the exception or in­
terrupt occurred. If the instruction has a repeat prefix, transfer takes place at the end of 

9-2 



EXCEPTIONS AND INTERRUPTS 

the current iteration with the registers set to execute the next iteration. But if the excep­
tion is a fault, the processor registers are restored to the state they held before execution 
of the instruction began. This permits instruction restart. 

Instruction restart is used to handle exceptions which block access to operands. For 
example, an application program could make reference to data in a segment which is not 
present in memory. When the exception occurs, the exception handler must load the 
segment (probably from a hard disk) and resume execution beginning with the instruc­
tion which caused the exception. At the time the exception occurs, the instruction may 
have altered the contents of some of the processor registers. If the instruction read an 
operand from the stack, it is necessary to restore the stack pointer to its previous value. 
All of these restoring operations are performed by the processor in a manner completely 
transparent to the application program. 

When a fault occurs, the EIP register is restored to point to the instruction which re­
ceived the exception. When the exception handler returns, execution resumes with this 
instruction. 

9.3 ENABLING AND DISABLING INTERRUPTS 

Certain conditions and flag settings cause the processor to inhibit certain kinds of inter­
rupts and exceptions. 

9.3.1 NMI Masks Further NMls 

While an NMI interrupt handler is executing, the processor disables additional calls to 
the procedure or task which handles the interrupt until the next IRET instruction is 
executed. This prevents stacking up calls to the interrupt handler. 

9.3.2 IF Masks INTR 

The IF flag can turn off servicing of interrupts received on the INTR pin of the proces­
sor. When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set, 
INTR interrupts are serviced. As with the other flag bits, the processor clears the IF flag 
in response to a RESET signal. The STI and CLI instructions set and clear the IF flag. 

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) put the IF flag 
(bit 9 in the EFLAGS register) in a known state. These instructions may be executed 
only if the CPL is an equal or more privileged level than the IOPL. A general-protection 
exception is generated if they are executed with a lesser privileged level. 

The IF flag also is affected by the following operations: 

• The PUSHF instruction stores all flags on the stack, where they can be examined and 
modified. The POPF instruction can be used to load the modified form back into the 
EFLAGS register. 

9·3 



EXCEPTIONS AND INTERRUPTS 

• Task switches and the POPF and IRET instructions load the EFLAGS register; 
therefore, they can be used to modify the setting of the IF flag. 

• Interrupts through interrupt gates automatically clear the IF flag, which disables in­
terrupts. (Interrupt gates are explained later in this chapter.) 

9.3.3 RF Masks Debug Faults 

The RF flag in the EFLAGS register can be used to turn off servicing of debug faults. If 
it is clear, debug faults are serviced; if it is set, they are ignored. This is used to suppress 
multiple calls to the debug exception handler when a breakpoint occurs. 

For example, an instruction breakpoint may have been set for an instruction which ref­
erences data in a segment which is not present in memory. When the instruction is 
executed for the first time, the breakpoint generates a debug exception. Before the 
debug handler returns, it should set the RF flag in the copy of the EFLAGS register 
saved on the stack. This allows the segment-not-present fault to be reported after the 
debug exception handler transfers execution back to the instruction. If the flag is not set, 
another debug exception occurs after the debug exception handler returns. 

The processor sets the RF bit in the saved contents of the EFLAGS register when the 
other faults occur, so multiple debug exceptions are not generated when the instruction 
is restarted due to the segment-not-present fault. The processor clears its RF flag when 
the execution of the faulting instruction completes. This allows an instruction breakpoint 
to be generated for the following instruction. (See Chapter 12 for more information on 
debugging. ) 

9.3.4 MOV or POP to 55 Masks Some Exceptions and Interrupts 

Software which needs to change stack segments often uses a pair of instructions; for 
example: 

M[)V SS, AX 
M[)V ESP, StackTop 

If an interrupt or exception occurs after the segment selector has been loaded but before 
the ESP register has been loaded, these two parts of the logical address into the stack 
space are inconsistent for the duration of the interrupt or exception handler. 

To prevent this situation, the 386 SX microprocessor inhibits interrupts, debug excep­
tions, and single-step trap exceptions after either a MOV to SS instruction or a POP to 
SS instruction, until the instruction boundary following the next instruction is reached. 
General-protection faults may still be generated. If the LSS instruction is used to modify 
the contents of the SS register, the problem does not occur. 

9-4 



EXCEPTIONS AND INTERRUPTS 

9.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND 
INTERRUPTS 

If more than one exception or interrupt is pending at an instruction boundary, the pro­
cessor services them in a predictable order. The priority among classes of exception and 
interrupt sources is shown in Table 9-2. The processor first services a pending exception 
or interrupt from the class which has the highest priority, transferring execution to the 
first instruction of the handler. Lower priority exceptions are discarded; lower priority 
interrupts are held pending. Discarded exceptions are re-issued when the interrupt han­
dler returns execution to the point of interruption. 

9.5 INTERRUPT DESCRIPTOR TABLE 

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a 
descriptor for the procedure or task which services the associated event. Like the GDT 
and LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of 
the IDT may contain a descriptor. To form an index into the IDT, the processor scales 
the exception or interrupt vector by eight, the number of bytes in a descriptor. Because 
there are only 256 vectors, the IDT need not contain more than 256 descriptors. It can 
contain fewer than 256 descriptors; descriptors are required only for the interrupt vec­
tors which may occur. 

The IDT may reside anywhere in physical memory. As Figure 9-1 shows, the processor 
locates the IDT using the IDTR register. This register holds both a 32-bit base address 
and 16-bit limit for the IDT. The LIDT and SIDT instructions load and store the con­
tents of the IDTR register. Both instructions have one operand, which is the address of 
six bytes in memory. 

If a vector references a descriptor beyond the limit, the processor enters shutdown 
mode. In this mode, the processor stops executing instructions until an NMI interrupt is 
received or reset initialization is invoked. The processor generates a special bus cycle to 
indicate it has entered shutdown mode. Software designers may need to be aware of the 
response of hardware to receiving this signal. For example, hardware may turn on an 
indicator light on the front panel, generate an NMI interrupt to record diagnostic infor­
mation, or invoke reset initialization. 

Table 9-2. Priority Among Simultaneous Exceptions and Interrupts 

Priority Description 

Highest Faults except debug faults 
Trap instructions INTO, INT n, INT 3 
Debug traps for this instruction 
Debug traps for next instruction 
NMI interrupt 

Lowest I NTR interrupt 

9-5 



EXCEPTIONS AND INTERRUPTS 

IDTR REGISTER 

47 16 15 o 

I lOT BASE ADDRESS 1 lOT LIMIT 

J 

1 INTERRUPT DESCRIPTOR TABLE 

~e----. GATE FOR 
INTERRUPT #N 

GATE FOR 
INTERRUPT #3 

GATE FOR 
INTERRUPT #2 

GATE FOR 
INTERRUPT #1 

240331 

Figure 9-1. 10TR Register Locates lOT in Memory 

LIDT (Load IDT register) loads the IDTR register with the base address and limit held 
in the memory operand. This instruction can be executed only when the CPL is O. It 
normally is used by the initialization code of an operating system when creating an IDT. 
An operating system also may use it to change from one IDT to another. 

SIDT (Store IDT register) copies the base and limit value stored in IDTR to memory. 
This instruction can be executed at any privilege level. 

9.6 lOT DESCRIPTORS 

The IDT may contain any of three kinds of descriptors: 

• Task gates 

• Interrupt gates 

• Trap gates 

9-6 



EXCEPTIONS AND INTERRUPTS 

Figure 9-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate 
in an lOT is the same as the task gate in the GOT or an LOT already discussed in 
Chapter 7.) 

TASK GATE 

11111 1 
31 6 5 432 0 9 8 7 

0 
RESERVED P P 00101 RESERVED 

L 

TSS SEGMENT SELECTOR RESERVED 

31 

31 

DPL 

OFFSET 
p 

INTERRUPT GATE 

2222211111111 1 
4 3 2 1 0 9 8 7 6 5 432 0 9 8 7 

0 
OFFSET 31 :16 P p o 1 1 1 0 000 

L 

SEGMENT SELECTOR OFFEST 15:00 

TRAP GATE 

1111111 
6 543 2 1 0 9 8 7 654 

0 
OFFSET 31:16 P P o 1 1 1 0 000 

L 

SEGMENT SELECTOR OFFEST 15:00 

DESCRIPTOR PRIVILEGE LEVEL 

OFFSET TO PROCEDURE ENTRY POINT 

SEGMENT PRESENT BIT 

DO NOT USE 

RSVRD. 

RSVRD. 

RESERVED 

SELECTOR SEGMENT SELECTOR FOR DESTINATION CODE SEGMENT 

Figure 9-2. lOT Gate Descriptors 

9-7 

o 

+4 

+0 

o 

+4 

o 

+4 

240331 



EXCEPTIONS AND INTERRUPTS 

9.7 INTERRUPT TASKS AND INTERRUPT PROCEDURES 

Just as a CALL instruction can call either a procedure or a task, so an exception or 
interrupt can "call" an interrupt handler as either a procedure or a task. When respond­
ing to an exception or interrupt, the processor uses the exception or interrupt vector to 
index to a descriptor in the IDT. If the processor indexes to an interrupt gate or trap 
gate, it calls the handler in a manner similar to a CALL to a call gate. If the processor 
finds a task gate, it causes a task switch in a manner similar to a CALL to a task gate. 

9.7.1 Interrupt Procedures 

An interrupt gate or trap gate indirectly references a procedure which runs in the con­
text of the currently executing task, as shown in Figure 9-3. The selector of the gate 
points to an executable-segment descriptor in either the GDT or the current LDT. The 
offset field of the gate descriptor points to the beginning of the exception or interrupt 
handling procedure. 

The 386 SX microprocessor calls an exception or interrupt handling procedure in much 
the same manner as a procedure call; the differences are explained in the following 
sections. 

9.7.1.1 STACK OF INTERRUPT PROCEDURE 

Just as with a transfer of execution using a CALL instruction, a transfer to an exception 
or interrupt handling procedure uses the stack to store the processor state. As Figure 9-4 
shows, an interrupt pushes the contents of the EFLAGS register onto the stack before 
pushing the address of the interrupted instruction. 

Certain types of exceptions also push an error code on the stack. An exception handler 
can use the error code to help diagnose the exception. 

9.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE 

An interrupt procedure differs from a normal procedure in the method of leaving the 
procedure. The IRET instruction is used to exit from an interrupt procedure. The IRET 
instruction is similar to the RET instruction except that it increments the contents of the 
EIP register by an extra four bytes and restores the saved flags into the EFLAGS regis­
ter. The IOPL field of the EFLAGS register is restored only if the CPL is O. The IF flag 
is changed only if CPL :5 IOPL. 

9.7.1.3 FLAG USAGE BY INTERRUPT PROCEDURE 

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after 
its current value is saved on the stack as part of the saved contents of the EFLAGS 
register. In so doing, the processor prevents instruction tracing from affecting interrupt 
response. A subsequent IRET instruction restores the TF flag to the value in the saved 
contents of the EFLAGS register on the stack. 

9-8 



INTERRUPT 
VECTOR -----. 

~ 

EXCEPTIONS AND INTERRUPTS 

IDT 

I 

I 
OFFSET 

~.~ ~ INTERRUPT OR TRAP _ 
GATE -

I 

I 

I 
... 

GDT OR LDT 

DESTINATION CODE 

SEGMENT 

I BASE ADDRESS 

I 

t- SEGMENT 
DESCRIPTOR 

L 

L 

L 

Figure 9-3. Interrupt Procedure Call 

240331 

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An 
interrupt which uses an interrupt gate clears the IF flag, which prevents other interrupts 
from interfering with the current interrupt handler. A subsequent IRET instruction re­
stores the IF flag to the value in the saved contents of the EFLAGS register on the 
stack. An interrupt through a trap gate does not change the IF flag. 

9.7.1.4 PROTECTION IN INTERRUPT PROCEDURES 

The privilege rule which governs interrupt procedures is similar to that for procedure 
calls: the processor does not permit an interrupt to transfer execution to a procedure in 

9-9 



EXCEPTIONS AND INTERRUPTS 

NO PRIVilEGE lEVEL CHANGE, NO ERROR 
CODE 

~OlDESP 

OlDEFlAGS 

I OlDCS 

OlDEIP ~NEWESP 

PRIVilEGE lEVEL CHANGE, NO ERROR 
CODE 

UNUSED 

I OlDSS 

OLD ESP 

OlDEFlAGS 

I OlDCS 

OlDEIP 

~ESPFROM 
TSS 

~NEWESP 

NO PRIVilEGE lEVEL CHANGE, WITH ERROR 
CODE 

~OlDESP 

OlDEFlAGS 

I OlDCS 

OlDEIP 

ERROR CODE ~NEWESP 

PRIVilEGE lEVEL CHANGE, WITH 
ERROR CODE 

UNUSED ~ESPFROM 
TSS 

I OlDSS 

OLD ESP 

OLD EFlAGS 

I OlDCS 

OlDEIP 

ERROR CODE ~NEWESP 

240331 

Figure 9-4. Stack Frame after Exception or Interrupt 

a less privileged segment (numerically greater privilege level). An attempt to violate this 
rule results in a general-protection exception. 

Because interrupts generally do not occur at predictable times, this privilege rule effec­
tively imposes restrictions on the privilege levels at which exception and interrupt han­
dling procedures can run. Either of the following techniques can be used to keep the 
privilege rule from being violated. 

• The exception or interrupt handler can be placed in a conforming code segment. This 
technique can be used by handlers for certain exceptions (divide error, for example). 
These handlers must use only the data available on the stack. If the handler needs 
data from a data segment, the data segment would have to have privilege level 3, 
which would make it unprotected. 

• The handler can be placed in a code segment with privilege level O. This handler 
would always run, no matter what CPL the program has. 

9-10 



int:el'Ji) EXCEPTIONS AND INTERRUPTS 

9.7.2 Interrupt Tasks 

A task gate in the lOT indirectly references a task, as Figure 9-5 illustrates. The segment 
selector in the task gate addresses a TSS descriptor in the GOT. 

When an exception or interrupt calls a task gate in the lOT, a task switch results. 
Handling an interrupt with a separate task offers two advantages: 

• The entire context is saved automatically. 

• The interrupt handler can be isolated from other tasks by giving it a separate address 
space. This is done by giving it a separate LOT. 

INTERRUPT 
VECTOR ~ 

--.. 

I-

t-

lOT TSS 

I 

I 

TASK GATE - f----

1 

I 

I 

TSS SELECTOR 

GOT 

I TSS BASE ADDRESS 

I 

TSS 
DESCRIPTOR 

I 

I 

I 

240331 

Figure 9-5. Interrupt Task Switch 

9-11 



EXCEPTIONS AND INTERRUPTS 

A task switch caused by an interrupt operates in the same manner as the other task 
switches described in Chapter 7. The interrupt task returns to the interrupted task by 
executing an IRET instruction. 

Some exceptions return an error code. If the task switch is caused by one of these, the 
processor pushes the code onto the stack corresponding to the privilege level of the 
interrupt handler. 

When interrupt tasks are used in an operating system for the 386 SX microprocessor, 
there are actually two mechanisms which can create new tasks: the software scheduler 
(part of the operating system) and the hardware scheduler (part of the processor's inter­
rupt mechanism). The software scheduler needs to accommodate interrupt tasks which 
may be generated when interrupts are enabled. 

9.8 ERROR CODE 

With exceptions related to a specific segment, the processor pushes an error code onto 
the stack of the exception handler (whether it is a procedure or task). The error code 
has the format shown in Figure 9-6. The error code resembles a segment selector; how­
ever instead of an RPL field, the error code contains two one-bit fields: 

1. The processor sets the EXT bit if an event external to the program caused the 
exception. 

2. The processor sets the IDT bit if the index portion of the error code refers to a gate 
descriptor in the IDT. 

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT 
(TI bit clear) or to the LDT (TI bit set). The remaining 14 bits are the upper bits of the 
selector for the segment. In some cases the error code is null (Le., all bits in the lower 
word are clear). 

The error code is pushed on the stack as a doubleword. This is done to keep the stack 
aligned on addresses which are multiples of four. The upper half of the doubleword is 
reserved. 

31 3 2 1 0 

RESERVED SELECTOR INDEX 

240331 

Figure 9-6. Error Code 

9-12 



EXCEPTIONS AND INTERRUPTS 

9.9 EXCEPTION CONDITIONS 

The following sections describe conditions which generate exceptions. Each description 
classifies the exception as a fault, trap, or abort. This classification provides information 
needed by system programmers for restarting the procedure in which the exception 
occurred: 

Faults 

Traps 

Aborts 

The saved contents of the CS and EIP registers point to the instruction which 
generated the fault. 

The saved contents of the CS and EIP registers stored when the trap occurs 
point to the instruction to be executed after the instruction which generated 
the trap. If a trap is detected during an instruction which transfers execution, 
the saved contents of the CS and EIP registers reflect the transfer. For exam­
ple, if a trap is detected in a JMP instruction, the saved contents of the CS 
and EIP registers point to the destination of the JMP instruction, not to the 
instruction at the next address above the JMP instruction. 

An abort is an exception which permits neither precise location of the in­
struction causing the exception nor restart of the program which caused the 
exception. Aborts are used to report severe errors, such as hardware errors 
and inconsistent or illegal values in system tables. 

9.9.1 Interrupt O-Divide Error 

The divide-error fault occurs during a DIV or an IDIV instruction when the divisor is O. 

9.9.2 Interrupt 1 - Debug Exceptions 

The processor generates a debug exception for a number of conditions; whether the 
exception is a fault or a trap depends on the condition, as shown below: 

• Instruction address breakpoint fault 

• Data address breakpoint trap 

• General detect fault 

• Single-step trap 

• Task-switch breakpoint trap 

The processor does not push an error code for this exception. An exception handler can 
examine the debug registers to determine which condition caused the exception. See 
Chapter 12 for more detailed information about debugging and the debug registers. 

9-13 



EXCEPTIONS AND INTERRUPTS 

9.9.3 Interrupt 3 - Breakpoint 

The INT 3 instruction generates a breakpoint trap. The INT 3 instruction is one byte 
long, which makes it easy to replace an opcode in a code segment in RAM with the 
breakpoint opcode. The operating system or a debugging tool can use a data segment 
mapped to the same physical address space as the code segment to place an INT 3 
instruction in places where it is desired to call the debugger. Debuggers use breakpoints 
as a way to suspend program execution in order to examine registers, variables, etc. 

The saved contents of the CS and EIP registers point to the byte following the break­
point. If a debugger allows the suspended program to resume execution, it replaces the 
INT 3 instruction with the original opcode at the location of the breakpoint, and it 
decrements the saved contents of the EIP register before returning. See Chapter 11 for 
more information on debugging. 

9.9.4 Interrupt 4-0verflow 

The overflow trap occurs when the processor executes an INTO instruction with the OF 
flag set. Because signed and unsigned arithmetic both use some of the same instructions, 
the processor cannot determine when overflow actually occurs. Instead, it sets the OF 
flag when the results, if interpreted as signed numbers, would be out of range. When 
doing arithmetic on signed operands, the OF flag can be tested directly or the INTO 
instruction can be used. 

9.9.5 Interrupt 5-Bounds Check 

The bounds-check fault is generated when the processor, while executing a BOUND 
instruction, finds that the operand exceeds the specified limits. A program can use the 
BOUND instruction to check a signed array index against signed limits defined in a 
block of memory. 

9.9.6 Interrupt 6-lnvalid Opcode 

The invalid-opcode fault is generated when an unreserved invalid opcode is detected by 
the execution unit. (The exception is not detected until an attempt is made to execute 
the invalid opcode; i.e., prefetching an invalid opcode does not cause this exception.) No 
error code is pushed on the stack. The exception can be handled within the same task. 

This exception also occurs when the type of operand is invalid for the given opcode. 
Examples include an intersegment JMP instruction using a register operand, or an LES 
instruction with a register source operand. 

A third condition which generates this exception is the use of the LOCK prefix with an 
instruction which may not be locked. Only certain instructions may be used with bus 
locking, and only forms of these instructions which write to a destination in memory may 
be used. All other uses of the LOCK prefix generate an invalid-opcode exception. 

9-14 



EXCEPTIONS AND INTERRUPTS 

The following is a list of invalid opcodes reserved by Intel. These opcodes do not gener­
ate exception 6. 

Intel reserved opcodes (single byte) 
82 
06 
Fl 

Intel reserved opcodes (two byte) 

OF 07 
OF 10 
OF 11 
OF 12 
OF 13 
F6 XX 
F7 XX 

CO XX 
Cl XX 
00 XX 
01 XX 
02 XX 
03 XX 

9.9.7 Interrupt 7-Coprocessor Not Available 

The coprocessor-not-available fault is generated by either of two conditions: 

• The processor executes an ESC instruction, and the EM bit of the CRO register is set. 

• The processor executes a WAIT instruction or an ESC instruction, and both the MP 
bit and the TS bit of the CRO register are set. 

See Chapter 11 for more information about the coprocessor interface. 

9.9.8 Interrupt 8 - Double Fault 

Normally, when the processor detects an exception while trying to call the handler for a 
prior exception, the two exceptions can be handled serially. If, however, the processor 
cannot handle them serially, it signals the double-fault exception instead. To determine 
when two faults are to be signalled as a double fault, the 386 SX microprocessor divides 
the exceptions into three classes: benign exceptions, contributory exceptions, and page 
faults. Table 9-3 shows this classification. 

9-15 



EXCEPTIONS AND INTERRUPTS 

Table 9-3. Interrupt and Exception Classes 

Class Vector Number Description 

1 Debug Exceptions 
2 NMI Interrupt 

Benign 
3 Breakpoint 
4 Overflow 

Exceptions 
5 Bounds Check 

and Interrupts 
6 Invalid Opcode 
7 Coprocessor Not Available 

16 Coprocessor Error 

0 Divide Error 
9 Coprocessor Segment Overrun 

Contributory 10 Invalid TSS 
Exceptions 11 Segment Not Present 

12 Stack Fault 
13 General Protection 

Page Faults 14 Page Fault 

When two benign exceptions or interrupts occur, or one benign and one contributory, 
the two events can be handled in succession. When two contributory events occur, they 
cannot be handled, and a double-fault exception is generated. 

If a benign or contributory exception is followed by a page fault, the two events can be 
handled in succession. This is also true if a page fault is followed by a benign exception. 
However if a page fault is followed by a contributory exception or another page fault, a 
double-fault abort is generated. 

The processor always pushes an error code onto the stack of the double-fault handler; 
however, the error code is always O. The faulting instruction may not be restarted. If any 
other exception occurs while attempting to call the double-fault handler, the processor 
enters shutdown mode. This mode is similar to the state following execution of a HLT 
instruction. No instructions are executed until an NMI interrupt or a RESET signal is 
received. The processor generates a special bus cycle to indicate it has entered shutdown 
mode. 

9.9.9 Interrupt 9 - Coprocessor Segment Overrun 

The coprocessor-segment overrun abort is generated if the middle portion of a coproces­
sor operand is protected or not-present. This exception can be avoided. See Chapter 11 
for more information about the coprocessor interface. 

9.9.10 Interrupt 10 -Invalid TSS 

An invalid-TSS fault is generated if a task switch to a segment with an invalid TSS is 
attempted. A TSS is invalid in the cases shown in Table 9-4. An error code is pushed 

9-16 



EXCEPTIONS AND INTERRUPTS 

Table 9-4. Invalid TSS Conditions 

Error Code Index Description 

TSS segment TSS segment limit less than 67H 
LDT segment Invalid LDT or LDT not present 
Stack segment Stack segment selector exceeds descriptor table limit 
Stack segment Stack segment is not writable 
Stack segment Stack segment DPL not compatible with CPL 
Stack segment Stack segment selector RPL not compatible with CPL 
Code segment Code segment selector exceeds descriptor table limit 
Code segment Code segment is not executable 
Code segment Non-conforming code segment DPL not equal to CPL 
Code segment Conforming code segment DPL greater than CPL 
Data segment Data segment selector exceeds descriptor table limit 
Data segment Data segment not readable 

onto the stack of the exception handler to help identify the cause of the fault. The EXT 
bit indicates whether the exception was caused by a condition outside the control of the 
program (e.g., if an external interrupt using a task gate attempted a task switch to an 
invalid TSS). 

This fault can occur either in the context of the original task or in the context of the new 
task. Until the processor has completely verified the presence of the new TSS, the ex­
ception occurs in the context of the original task. Once the existence of the new TSS is 
verified, the task switch is considered complete; i.e., the TR register is loaded with a 
selector for the new TSS and, if the switch is due to a CALL or interrupt, the Link field 
of the new TSS references the old TSS. Any errors discovered by the processor after this 
point are handled in the context of the new task. 

To ensure a TSS is available to process the exception, the handler for an invalid-TSS 
exception must be a task called using a task gate. 

9.9.11 Interrupt 11 - Segment Not Present 

The segment-not-present fault is generated when the processor detects that the present 
bit of a descriptor is clear. The processor can generate this fault in any of these cases: 

• While attempting to load the CS, OS, ES, FS, or GS registers; loading the SS register, 
however, causes a stack fault. 

• While attempting to load the LOT register using an LLOT instruction; loading the 
LOT register during a task switch operation, however, causes an invalid-TSS 
exception. 

• While attempting to use a gate descriptor which is marked segment-not-present. 

This fault is restartable. If the exception handler loads the segment and returns, the 
interrupted program resumes execution. 

9-17 



EXCEPTIONS AND INTERRUPTS 

If a segment-not-present exception occurs during a task switch, not all the steps of the 
task switch are complete. During a task switch, the processor first loads all the segment 
registers, then checks their contents for validity. If a segment-not-present exception is 
discovered, the remaining segment registers have not been checked and therefore may 
not be usable for referencing memory. The segment-not-present handler should not rely 
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS 
registers without causing another exception. The exception handler should check all 
segment registers before trying to resume the new task; otherwise, general protection 
faults may result later under conditions which make diagnosis more difficult. There are 
three ways to handle this case: 

1. Handle the segment-not-present fault with a task. The task switch back to the inter­
rupted task causes the processor to check the registers as it loads them from 
the TSS. 

2. Use the PUSH and POP instructions on all segment registers. Each POP instruction 
causes the processor to check the new 'contents of the segment register. 

3. Check the saved contents of each segment register in the TSS, simulating the test 
which the processor makes when it loads a segment register. 

This exception pushes an error code onto the stack. The EXT bit of the error code is set 
if an event external to the program caused an interrupt which subsequently referenced a 
not-present segment. The IDT bit is set if the error code refers to an IDT entry (e.g., an 
INT instruction referencing a not-present gate). 

An operating system typically uses the segment-not-present exception to implement vir­
tual memory at the segment level. A not-present indication in a gate descriptor, however, 
usually does not indicate that a segment is not present (because gates do not necessarily 
correspond to segments). Not-present gates may be used by an operating system to 
trigger exceptions of special significance to the operating system. 

9.9.12 Interrupt 12-Stack Exception 

A stack fault is generated under two conditions: 

• As a result of a limit violation in any operation which refers to the SS register. This 
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as 
well as other memory references which implicitly use the stack (for example, MOV 
AX, [BP + 6]). The ENTER instruction generates this exception when there is too 
little space for allocating local variables. 

• When attempting to load the SS register with a descriptor which is marked segment­
not-present but is otherwise valid. This can occur in a task switch, a CALL instruction 
to a different privilege level, a return to a different privilege level, an LSS instruction, 
or a MOV or POP instruction to the SS register. 

9-18 



EXCEPTIONS AND INTERRUPTS 

When the processor detects a stack exception, it pushes an error code onto the stack of 
the exception handler. If the exception is due to a not-present stack segment or to 
overflow of the new stack during an interlevel CALL, the error code contains a selector 
to the segment which caused the exception (the exception handler can test the present 
bit in the descriptor to determine which exception occurred); otherwise, the error code 
is O. 

An instruction generating this fault is restartable in all cases. The return address pushed 
onto the exception handler's stack points to the instruction which needs to be restarted. 
This instruction usually is the one which caused the exception; however, in the case of a 
stack exception from loading a not-present stack-segment descriptor during a task 
switch, the indicated instruction is the first instruction of the new task. 

When a stack exception occurs during a task switch, the segment registers may not be 
usable for addressing memory. During a task switch, the selector values are loaded be­
fore the descriptors are checked. If a stack exception is generated, the remaining seg­
ment registers have not been checked and may cause exceptions if they are used. The 
stack fault handler should not expect to use the segment selectors found in the CS, SS, 
DS, ES, FS, and GS registers without causing another exception. The exception handler 
should check all segment registers before trying to resume the new task; otherwise, 
general protection faults may result later under conditions where diagnosis is more 
difficult. 

9.9.13 Interrupt 13 - General Protection 

All protection violations which do not cause another exception cause a general­
protection exception. This includes (but is not limited to): 

• Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments. 

• Exceeding the segment limit when referencing a descriptor table. 

• Transferring execution to a segment which is not executable. 

• Writing to a read-only data segment or a code segment. 

• Reading from an execute-only code segment. 

• Loading the SS register with a selector for a read-only segment (unless the selector 
comes from a TSS during a task switch, in which case an invalid-TSS exception 
occurs). 

• Loading the SS, DS, ES, FS, or GS register with a selector for a system segment. 

• Loading the DS, ES, FS, or GS register with a selector for an execute-only code 
segment. 

• Loading the SS register with the selector of an executable segment. 

• Accessing memory using the DS, ES, FS, or GS register when it contains a null 
selector. 

• Switching to a busy task. 

• Violating privilege rules. 

9-19 



EXCEPTIONS AND INTERRUPTS 

• Exceeding the instruction length limit of 15 bytes (this only can occur when redun­
dant prefixes are placed before an instruction). 

• Loading the CRO register with a set PG bit (paging enabled) and a clear PE bit 
(protection disabled). 

• Interrupt or exception through an interrupt or trap gate from virtual-8086 mode to a 
handler at a privilege level other than O. 

The general-protection exception is a fault. In response to a general-protection excep­
tion, the processor pushes an error code onto the exception handler's stack. If loading a 
descriptor causes the exception, the error code contains a selector to the descriptor; 
otherwise, the error code is null. The source of the selector in an error code may be any 
of the following: 

1. An operand of the instruction. 

2. A selector from a gate which is the operand of the instruction. 

3. A selector from a TSS involved in a task switch. 

9.9.14 Interrupt 14 - Page Fault 

A page fault occurs when paging is enabled (the PG bit in the CRO register is set) and 
the processor detects one of the following conditions while translating a linear address to 
a physical address: 

• The page-directory or page-table entry needed for the address translation has a clear 
Present bit, which indicates that a page table or the page containing the operand is 
not present in physical memory. 

• The procedure does not have sufficient privilege to access the indicated page. 

The processor provides the page fault handler two items of information which aid in 
diagnosing the exception and recovering from it: 

• An error code on the stack. The error code for a page fault has a format different 
from that for other exceptions (see Figure 9-7). The error code tells the exception 
handler three things: 

1. Whether the exception was due to a not-present page or to an access rights 
violation. 

2. Whether the processor was executing at user or supervisor level at the time of 
the exception. 

3. Whether the memory access which caused the exception was a read or write. 

• The contents of the CR2 register. The processor loads the CR2 register with the 
32-bit linear address which generated the exception. The exception handler can use 
this address to locate the corresponding page directory and page table entries. If 
another page fault can occur during execution of the page fault handler, the handler 
should push the contents of the CR2 register onto the stack. 

9-20 



EXCEPTIONS AND INTERRUPTS 

Field Value Description 

U/S 0 The access causing the fault originated when the 
processor was executing in supervisor mode. 

1 The access causing the fault originated when the 
processor was executing in user mode. 

W/R 0 The access causing the fault was a read. 

1 The access causing the fault was a write. 

p 0 The fault was caused by a not-present page. 

1 The fault was caused by a page-level protection violation. 

240331 

Figure 9-7. Page Fault Error Code 

9.9.14.1 PAGE FAULT DURING TASK SWITCH 

These operations during a task switch cause access to memory: 

1. Write the state of the original task in the TSS of that task. 

2. Read the GDT to locate the TSS descriptor of the new task. 

3. Read the TSS of the new task to check the types of segment descriptors from 
the TSS. 

4. May read the LDT of the new task in order to verify the segment registers stored in 
the new TSS. 

A page fault can result from accessing any of these operations. In the last two cases the 
exception occurs in the context of the new task. The instruction pointer refers to the next 
instruction of the new task, not to the instruction which caused the task switch (or the 
last instruction to be executed, in the case of an interrupt). If the design of the operating 
system permits page faults to occur during task-switches, the page-fault handler should 
be called through a task gate. 

9.9.14.2 PAGE FAULT WITH INCONSISTENT STACK POINTER 

Special care should be taken to ensure that a page fault does not cause the processor to 
use an invalid stack pointer (SS:ESP). Software written for Intel® 16-bit processors often 
uses a pair of instructions to change to a new stack; for example: 

MDV SS, AX 
MOV SP, StackTop 

9·21 



EXCEPTIONS AND INTERRUPTS 

With the 386 SX microprocessor, because the second instruction accesses memory, it is 
possible to get a page fault after the selector in the SS segment register has been 
changed but before the contents of the SP register have received the corresponding 
change. At this point, the two parts of the stack pointer SS:SP (or, for 32-bit programs, 
SS:ESP) are inconsistent. The new stack segment is being used with the old stack 
pointer. 

The processor does not use the inconsistent stack pointer if the handling of the page 
fault causes a stack switch to a well defined stack (i.e., the handler is a task or a more 
privileged procedure). However, if the page fault handler is called by a trap or interrupt 
gate and the page fault occurs at the same privilege level as the page fault handler, the 
processor will attempt to use the stack indicated by the inconsistent stack pointer. 

In systems which use paging and handle page faults within the faulting task (with trap or 
interrupt gates), software executing at the same privilege level as the page fault handler 
should initialize a new stack by using the LSS instruction rather than an instruction pair 
shown above. When the page fault handler is running at privilege level 0 (the normal 
case), the problem is limited to programs which run at privilege level 0, typically the 
kernel of the operating system. 

9.9.15 Interrupt 16 - Coprocessor Error 

A coprocessor-error fault is generated when the processor detects a signal from the 
38TM SX numerics coprocessor on the ERROR# pin. If the EM bit of the CRO register 
is clear (no emulation), the processor tests this pin at the beginning of certain ESC 
instructions or when it executes a WAIT instruction. See Chapter 11 for more informa­
tion on the coprocessor interface. 

9-22 



EXCEPTIONS AND INTERRUPTS 

9.10 EXCEPTION SUMMARY 

Table 9-5 summarizes the exceptions recognized by the 386 SX microprocessor. 

Table 9-5. Exception Summary 

Vector 
Return Address 

Exception Source of the 
Description Points to Faulting 

Number 
Instruction? 

Type Exception 

Division by Zero 0 Yes FAULT DIVand IDIV 
instructions 

Debug Exceptions 1 1 1 Any code or data 
reference 

Breakpoint 3 No TRAP INT 3 instruction 
Overflow 4 No TRAP INTO instruction 
Bounds Check 5 Yes FAULT BOUND instruction 
Invalid Opcode 6 Yes FAULT Reserved Opcodes 
Coprocessor Not 7 Yes FAULT ESC and WAIT 
Available instructions 
Double Fault 8 Yes ABORT Any instruction 
Coprocessor 9 No ABORT ESC instructions 
Segment Overrun 
Invalid TSS 10 Yes FAULT2 JMP, CALL, IRET 

instructions, 
interrupts, and 
exceptions 

Segment Not 11 Yes FAULT Any instruction 
Present which changes 

segments 
Stack Fault 12 Yes FAULT Stack operations 
General Protection 13 Yes FAULTfTRAp3 Any code or data 

reference 
Page Fault 14 Yes FAULT Any code or data 

reference 
Coprocessor Error 16 Yes FAULT4 ESC and WAIT 

instructions 
Software Interrupt o to 255 No TRAP INT n instructions 

1. Debug exceptions are either traps or faults. The exception handler can distinguish between traps and 
faults by examining the contents of the DR6 register. 

2. An invalid-TSS exception cannot be restarted if it occurs within a handler. 
3. All general-protection faults are restartable. If the fault occurs while attempting to call the handler, the 

interrupted program is restartable, but the interrupt may be lost. 
4. Coprocessor errors are not reported until the first ESC or WAIT instruction following the ESC instruc­

tion which generated the error. 

9-23 



EXCEPTIONS AND INTERRUPTS 

9.11 ERROR CODE SUMMARY 

Table 9-6 summarizes the error information which is available with each exception. 

Table 9-6. Error Code Summary 

Description Vector Number 
Is an Error 

Code Generated? 

Divide Error 0 No 
Debug Exceptions 1 No 
Breakpoint 3 No 
Overflow 4 No 
Bounds Check 5 No 
Invalid Opcode 6 No 
Coprocessor Not Available 7 No 
Double Fault 8 Yes (always zero) 
Coprocessor Segment Overrun 9 No 
Invalid TSS 10 Yes 
Segment Not Present 11 Yes 
Stack Fault 12 Yes 
General Protection 13 Yes 
Page Fault 14 Yes 
Coprocessor Error 16 No 
Software Interrupt 0-255 No 

9-24 



Initialization 10 





CHAPTER 10 
INITIALIZATION 

The 386'" SX microprocessor has an input, called the RESET# pin, which invokes reset 
initialization. After asserting the signal on the RESET# pin, some registers of the 386 
SX microprocessor are set to known states. These known states, such as the contents of 
the EIP register, are sufficient to allow software to begin execution. Software then can 
build the data structures in memory, such as the GOT and lOT tables, which are used by 
system and application software. 

Hardware asserts the RESET# signal at power-up. Hardware may assert this signal at 
other times. For example, a button may be provided for manually invoking reset initial­
ization. Reset also may be the response of hardware to receiving a halt or shutdown 
indication. 

After reset initialization, the DH register holds a number which identifies the processor 
type. Binary object code can be made compatible with other Intel® processors by using 
this number to select the correct initialization software. Note the 386 SX microprocessor 
has several processing modes. It begins execution in a mode which emulates an 8086 
processor, called real-address mode. If protected mode is to be used (the mode in which 
the 32-bit instruction set is available), the initialization software changes the setting of a 
mode bit in the CRO register. 

10.1 PROCESSOR STATE AFTER RESET 

A self-test may be requested at power-up. The self-test is requested by asserting the 
signal on the BUSY# pin during the falling edge of the RESET# signal. It is the re­
sponsibility of the hardware designer to provide the request for self-test, if desired. 
Reset initialization takes 350 to 450 CLK2 clock periods. If the self-test is selected, it 
takes about 220 clock periods (Intel reserves the right to change the exact number of 
periods without notification). For a 16 MHz processor, this takes about 33 milliseconds. 
(Note that chips are graded by their CLK frequency, which is half the frequency of 
CLK2.) 

The EAX register is clear if the 386 SX microprocessor passed the test. A non-zero 
value in the EAX register after self-test indicates the processor is faulty. If the self-test is 
not requested, the contents of the EAX register after reset initialization are undefined 
(possibly non-zero). The OX register holds a component identifier and revision number 
after reset initialization, as shown in Figure 10-1. The OH register contains the value 23, 
which indicates a 386 SX microprocessor. The OL register contains a unique identifier 
of the revision level. 

The state of the CRO register following power-up is shown in Figure 10-2. These states 
put the processor into real-address mode with paging disabled. 

10-1 



I .... 

31 

31 

INITIALIZATION 

EDX REGISTER 

DX REGISTER ---...)~~I 

16 15 8 7 o 

RESERVED DEVICEID STEPPING ID 

Figure 10-1. Contents of the EDX Register after Reset 

23 

CONTROL REGISTER ZERO 

15 

RESERVED 

7 3 1 0 

I~ ~I;I:I CRG I~I 
I L...-----o - PAGING DISABLED 

o - NO TASK SWITCH--.---------l1 
o - DO NOT MONITOR COPROCESSOR~====:J o - COPROCESSOR NOT PRESENT-
o - PROTECTION NOT ENABLED REAL ADDRESS MODEI-

Figure 10-2. Contents of the CRD Register after Reset 

240331 

240331 

The state of the EBX, ECX, ESI, EDI, EBP, ESP, GDTR, LDTR, TR, and debug 
registers is undefined following power-up. Software should not depend on any undefined 
states. The state of the flags and other registers following power-up is shown in 
Table 10-1. 

Note that the invisible parts of the CS and DS segment registers are initialized to values 
which allow execution to begin, even though segments have not been defined. The base 
address for the code segment is set to 64K below the top of the physical address space, 
which allows room for a ROM to hold the initialization software. The base address for 
the data segments are set to the bottom of the physical address space (address 0), where 
RAM is expected to be. To preserve these addresses, no instruction which loads the 
segment registers should be executed until a descriptor table has been defined and its 
base address and limit have been loaded into the GDTR register. 

10.2 SOFTWARE INITIALIZATION IN REAL-ADDRESS MODE 

Mter reset initialization, software sets up data structures needed for the processor to 
perform basic system functions, such as handling interrupts. If the processor remains in 
real-address mode, software sets up data structures in the form used by the 8086 proces­
sor. If the processor is going to operate in protected mode, software sets up data struc­
tures in the form used by the 80286 and 386 SX microprocessors, then switches modes. 

10-2 



INITIALIZATION 

Table 10-1. Processor State Following Power-Up 

Register State (hexadecimal) 

EFLAGS OXXXXOO02H 1 

EIP OOOOFFFOH 
CS OFOOOH2 

OS 0000H3 

SS OOOOH 
ES 0000H3 

PS OOOOH 
GS OOOOH 
IOTR (base) OOOOOOOOH 
IOTR (limit) 03FFH 
OR? OOOOH 

1. The high fourteen bits of the EFLAGS register are undefined following power-up. All of the flags are clear. 
2. The invisible part of the CS register holds a base address of OFFFFOOOOH and a limit of OFFFFH. 
3. The invisible parts of the OS and ES registers hold a base address of 0 and a limit of OFFFFH. 

10.2.1 System Tables 

In real-address mode, no descriptor tables are used. The interrupt vector table, which 
starts at address 0, needs to be loaded with pointers to exception and interrupt handlers 
before interrupts can be enabled. The NMI interrupt is always enabled. If the interrupt 
vector table and the NMI interrupt handler need to be loaded into RAM, there will be a 
period of time following reset initialization when an NMI interrupt cannot be handled. 

10.2.2 NMI Interrupt 

Hardware must provide a mechanism to prevent an NMI interrupt from being generated 
while software is unable to handle it. For example, the interrupt vector table and NMI 
interrupt handler can be provided in ROM. This allows an NMI interrupt to be handled 
immediately after reset initialization. Another solution would be to provide a mechanism 
which passes the NMI signal through an AND gate controlled by a bit in an I/O port. 
Hardware can clear the bit when the processor is reset, and software can set the bit 
when it is ready to handle NMI interrupts. System software designers should be aware of 
the mechanism used by hardware to protect software from NMI interrupts following 
reset. 

10.2.3 First Instruction 

Execution begins with the instruction addressed by the initial contents of the CS and IP 
registers. To allow the initialization software to be placed in a ROM at the top of the 
address space, the high 4 bits of addresses issued for the code segment are set, until the 
first instruction which loads the CS register, such as a far jump or call. As a result, 
instruction fetching begins from address OFFFFFOH. Because the size of the ROM is 

10-3 



INITIALIZATION 

unknown, the first instruction is intended to be a jump to the beginning of the initializa­
tion software. Only near jumps may be performed within the ROM-based software. 
After a far jump is executed, addresses issued for the code segment are clear in their 
high 4 bits. 

10.3 SWITCHING TO PROTECTED MODE 

Before switching to protected mode, a minimum set of system data structures must be 
created, and a minimum number of registers must be initialized. 

10.3.1 System Tables 

To allow protected mode software to access programs and data, at least one descriptor 
table, the GDT, and two descriptors must be created. Descriptors are needed for a code 
segment and a data segment. The stack can be be placed in a normal read/write data 
segment, so no descriptor for the stack is required. Before the GDT can be used, the 
base address and limit for the GDT must be loaded into the GDTR register using an 
LGDT instruction. 

10.3.2 NMI Interrupt 

If hardware allows NMI interrupts to be generated, the IDT and a gate for the NMI 
interrupt handler need to be created. Before the IDT can be used, the base address and 
limit for the IDT must be loaded into the IDTR register using an LIDT instruction. 

10.3.3 PE Bit 

Protected mode is entered by setting the PE bit in the CRO register. Either an LMSW or 
MaY CRO instruction may be used to set this bit (the MSW register is part of the CRO 
register). Because the processor overlaps the interpretation of several instructions, it is 
necessary to discard the instructions which already have been read into the processor. A 
JMP instruction immediately after the LMSW instruction changes the flow of execution, 
so it has the effect of emptying the processor of instructions which have been fetched or 
decoded. 

After entering protected mode, the segment registers continue to hold the contents they 
had in real-address mode. Software should reload all the segment registers. Execution in 
protected mode begins with a CPL of O. 

10.4 SOFTWARE INITIALIZATION IN PROTECTED MODE 

The data structures needed in protected mode are determined by the memory­
management features which are used. The processor supports segmentation models 
which range from a single, uniform address space (flat model) to a highly structured 
model with several independent, protected address spaces for each task (multisegmented 

10-4 



INITIALIZATION 

model). Paging can be enabled for allowing access to large data structures which are 
partly in memory and partly on disk. Both of these forms of address translation require 
data structures which are set up by the operating system and used by the memory­
management hardware. 

10.4.1 Segmentation 

A flat model without paging only requires a GOT with one code and one data segment 
descriptor. A flat model with paging requires code and data descriptors for supervisor 
mode and another set of code and data descriptors for user mode. In addition, it re­
quires a page directory and at least one second-level page table. 

A multisegmented model may require additional segments for the operating system, as 
well as segments and LOTs for each application program. LOTs require segment de­
scriptors in the GOT. Most operating systems, such as OS/2, allocate new segments and 
LOTs as they are needed. This provides maximum flexibility for handling a dynamic 
programming enviroriment, such as an engineering workstation. An embedded system, 
such as a process controller, might pre-allocate a fixed number of segments and LOTs 
for a fixed number of application programs. This would be a simple and efficient way to 
structure the software environment of a system which requires fast real-time 
performance. 

10.4.2 Paging 

Unlike segmentation, paging is controlled by a mode bit. If the PG bit in the CRO 
register is clear (its state following reset initialization), the paging mechanism is com­
pletely absent froin the processor architecture seen by programmers. 

If the PG bit is set, paging is enabled. The bit may be set using a MOY CRO instruction. 
Before setting the PG bit, the following conditions must be true: 

• Software has created at least two page tables, the page directory and at least one 
second-level page table. 

• The POBR register (same as the CR3 register) is loaded with the base address of the 
page directory. 

• The processor is in protected mode (paging is not available in real-address mode). If 
all other restrictions are met, the PG and PE bits can be set at the same time. 

As with the PE bit, setting the PG bit must be followed immediately with a JMP instruc­
tion. (Alternatively, the code which sets the PG bit can come from a page which has the 
same physical address after paging is enabled.) 

10.4.3 Tasks 

If the multitasking mechanism is not used, it is unnecessary to initialize the TR register. 

10-5 



INITIALIZATION 

If the multitasking mechanism is used, a TSS and a TSS descriptor for the initialization 
software must be created. TSS descriptors must not be marked as busy when they are 
created; TSS descriptors should be marked as busy only as a side-effect of performing a 
task switch. As with descriptors for LDTs, TSS descriptors reside in the GDT. The LTR 
instruction is used to load a selector for the TSS descriptor of the initialization software 
into the TR register. This instruction marks the TSS descriptor as busy, but does not 
perform a task switch. The selector must be loaded before performing the first task 
switch, because a task switch copies the current task state into the TSS. After the LTR 
instruction has been used, further operations on the TR register are performed by task 
switching. As with segments and LDTs, TSSs and TSS descriptors can be either preallo­
cated or allocated as needed. 

10.5 TLB TESTING 

The 386 SX microprocessor provides a mechanism for testing the translation lookaside 
buffer (TLB), the cache used for translating linear addresses to physical addresses. Al­
though failure of the TLB hardware is extremely unlikely, users may wish to include TLB 
confidence tests among other power-up tests for the 386 SX microprocessor. 

NOTE 

This TLB testing mechanism is unique to the 386 SX microprocessor and may not be 
continued in the same way in future processors. Software which uses this mechanism 
may be incompatible with future processors. 

When testing the TLB, turn off paging to avoid interference with the test data written to 
the TLB. 

10.5.1 Structure of the TLB 

The TLB is a four-way set-associative memory. Figure 10-3 illustrates the structure of 
the TLB. There are four sets of eight entries each. Each entry consists of a tag and data. 
Tags are 24 bits wide. They contain the high-order 20 bits of the linear address, the valid 
bit, and three attribute bits. The data portion of each entry contains the upper 12 bits of 
the physical address. 

10.5.2 Test Registers 

Two test registers, shown in Figure 10-4, are provided for the purpose of testing. The 
TR6 register is the test command register, and the TR7 register is the test data register. 
These registers are accessed by variants of the MOY instruction. The MOY instructions 
are defined in both real-address mode and protected mode. The test registers are privi­
leged resources; in protected mode, the MOY instructions which access them can be 
executed only at privilege level 0 (most privileged). An attempt to read or write the test 
registers from any other privilege level causes a general-protection exception. 

10-6 



31 

INITIALIZATION 

71 
TAG DATA 

~ SET 11 

TAG DATA 

0 TAG DATA 

71 
TAG DATA 

,---- SET 10 

~I_- TAG DATA 

0 TAG DATA 
A 

~I 71 
TAG DATA 

~ SET 01 

TAG DATA 

0 TAG DATA 

71 
TAG DATA 

SET 00 

TAG DATA 

0 TAG DATA 

Figure 10-3. TLB Structure 

1 
2 0 9876543210 

P 
PHYSICAL ADDRESS o 0 0 0 0 0 0 L 

LINEAR ADDRESS V D 
D 
# 

Figure 10-4. Test Registers 

10-7 

U 
U w wo 
# # 

R 
E o 0 
P 

o 0 o C 

240331 

TR7 

TR6 

240331 



INITIALIZATION 

The test command register (TR6) contains a command and an address tag: 

C This is the Command bit. There are two TLB testing commands: 
write entries into the TLB, and perform TLB lookups. To cause an 
immediate write into the TLB entry, move a doubleword into the 
TR6 register which contains a clear C bit. To cause an immediate 
TLB lookup (read), move a doubleword into the TRp register which 
contains a set C bit. 

Linear Address On a TLB write, a TLB entry is allocated to this linear address; the 
rest of that TLB entry is assigned using the value of the TR7 register 
and the value just written into the TR6 register. On a TLB lookup, 
the TLB is interrogated per this value; if one and only one TLB entry 
matches, the rest of the fields of the TR6 and TR7 registers are set 
from the matching TLB entry. 

V This bit indicates the TLB entry contains valid data. Entries in the 
TLB which are not loaded with page table entries have a clear v bit. 
All V bits are cleared by writing to the CR3 register, which has the 
effect of emptying or "flushing" the cache. The cache must be 
flushed after modifying the page tables, because otherwise unmodi­
fied data might get used for address translation. 

D, D# The D bit (and its complement). 

U, U# The U/S bit (and its complement). 

W, W# The R/W bit (and its complement). 

The meaning of these pairs of bits is given in Table 10-2. 

The test data register (TR7) holds data read from or data to be 
written to the TLB. 

Physical Address This is the data field of the TLB. On a write to the TLB, the TLB 
entry allocated to the linear address in the TR6 register is set to this 
value. On a TLB lookup (read), the data field (physical address) 
from the TLB is loaded into this field. 

PL On a TLB write, a set PL bit causes the REP field of the TR7 regis­
ter to be used for selecting which of four associative blocks of the 
TLB entry is loaded. If the PL bit is clear, the internal pointer of the 
paging unit is used to select the block. On a TLB lookup (read), the 
PL bit indicates whether the read was a hit (the PL bit is set) or a 
miss (the PL bit is clear). 

10-8 



REP 

Bit 

0 
0 
1 
1 

INITIALIZATION 

For a TLB write, selects which of four associative blocks of the TLB 
is to be written. For a TLB read, if the PL bit is set, REP reports in 
which of the four associative blocks the tag was found; if the PL bit is 
clear, the contents of this field are undefined. 

Table 10-2. Meaning of Bit Pairs in the TRS Register 

Bit# Effect during TlB lookup Value after TlB Write 

0 Miss all Bit is undefined 
1 Match if the bit is clear Bit is clear 
0 Match if the bit is clear Bit is set 
1 Match all Bit is undefined 

10.5.3 Test Operations 

To write a TLB entry: 

1. Move a doubleword to the TR 7 register which contains the desired physical address, 
PL, and REP values. The PL bit must be set. The REP field must point to the 
associative block in which to place the entry. 

2. Move a doubleword to the TR6 register which contains the appropriate linear ad­
dress, and values for the V, D, U, and W bits. The C bit must be set. 

Do not write duplicate tags; the results of doing so are undefined. 

To lookup (read) a TLB entry: 

1. Move a doubleword to the TR6 register which contains the appropriate linear ad­
dress and attributes. The C bit must be set. 

2. Read the TR 7 register. If the PL bit in the TR 7 register is set, then the rest of the 
register contents report the TLB contents. If the PL bit is clear, then the other 
values in the TR7 register are indeterminate. 

For the purposes of testing, the V bit functions as another bit of addresss. The V bit for 
a lookup request should usually be set, so that uninitialized tags do not match. Lookups 
with the V bit clear are unpredictable if any tags are unitialized. 

10-9 



INITIALIZATION 

10.6 INITIALIZATION EXAMPLE 

TITLE('Protected Mode Initialization for the 386 SX processor') 
NAME RESET 

; ••••••••••••••• * •• *.* ••••••••••••••••••••••••••••••••••••••••••• 
This code will initialize the 386 SX processor from 

, 

a cold bOQt to a flat memory model. 

Upon reset the processor starts executing at address 
OFFFFFOH. 

Assume the following : 

- a short jump at address OFFFFFOH causes execution to begin 
at INIT in segment RESET_CODE. 

- segment RESET CODE is based at physical address OFFOOOOH, 
i.e. at the start of the last 64K in the 16M address space. 

- segment START which contains the application code is based 
at 
physical address OFEOOOOH. 

- the initial GOT descriptors are in ROM. These are used to 
build a temporary GOT in RAM starting from physical 
address 001000H. 

; •••••••••••••••••• *.* ••• * •••••••••••••••••••••• * ••••• ******.* ••• 

ORG OFEOOOOH 
•• *** Application code goes here ***** 

START PROC FAR 

START ENDP 

10-10 



•"n+-I® 'e' INITIALIZATION 

ORG OFFOOOOH 
reset_code: 

INIT: 

; define some 
GOT ALIAS PTR 
GOT-CODE PrR 
GDT-DATA-PTR 
GDT=APPL=PTR 

constants 
EQU 
EQU 
EQU 
EQU 

8 
8*2 
8*3 
8*4 

CLI 
CLD 

disable interrupts 
clear direction flag 

move temporary GOT to RAM at physical OlOOOh 
MOV SI,OFFSET GOT 
MOV 01,0 
MOV AX,CS 
MOV DS,AX 
MOV AX,lOOH 

MOV 
MOV 
REP 

switch 
LGOT 
MOV 
MOV 

flush 
JMP 
DB 
DO 
OW 

FLUSH: 

ES,AX 
CX,(END GOT - GOT) 
MOVSB -

to protected mode 
ES:FWORD PTR (GOT_ALIAS_PTRl 
EAX,l 
CRO,EAX 

queue 
FAR PTR FLUSH 
OEAH 
FWSH 
GOT_CODE_PTR 

begining of GOT in 
memory. 

set byte count 
move data 

load GDTR 
enable PE bit 
switch to protected 
mode 

set DS,ES,SS to address flat linear space (0 ••• 4GB) 
MOV BX,GOT DATA - GOT 
MOV DS,BX -
MOV ES,BX 
MOV SS,BX 

initialize stack pointer to some (arbitrary) RAM location 
MOV ESP,OFFSET END_GOT 

Begin 
JMP 
DB 
DO 
OW 

execution of application 
FAR PTR START 
OEAH 
START 
GOT_APPL_PTR 

code. 

10-11 



INITIALIZATION 

386 SX Descriptor template 

DESC STRUC 
lim 0 15 
bas-O-15 
bas:=16_23 
access 
gran 
bas 24 31 

DESC -ENDS 

, 
; Temporary Global 

GDT LABEL 

; GOT entry 0 
GOT_NULL 

; GOT entry 1 
GOT_ALIAS 

; GDT entry 2 
GOT_CODE 

; GOT entry 3 
GDT_DATA 

; GOT entry 4 
GOT START 

LABEL 

ow 
OW 
DB 
DB 
DB 
DB 

o 
o 
o 
o 
o 
o 

Descriptor Table 

BYTE 

- null descriptor 
OESC <> 

-GOT 
OESC <40,1000H,O,93H,O,O> 

- code segment 
DESC <0200H,O,FFH,9BH,O,O> 

- data segment 
DESC <OFFFFH,O,O,92h,OCFH,O> 

- application code 
DESC <0200H,O,FEH,9BH,O,O> 

BYTE 

end reset_code 

10-12 



Coprocessing and 
Multiprocessing 

11 





CHAPTER 11 
COPROCESSING AND MULTIPROCESSING 

A common method of increasing system performance is to use multiple processors. The 
Intel386™ architecture supports two kinds of multiprocessing: 

• An interface for specific, performance-enhancing processors called coprocessors. 
These processors extend the instruction set of the 386™ SX microprocessor to include 
groups of closely-related instructions which are executed, in parallel with the original 
instruction set, by dedicated hardware. These extensions include IEEE-format 
floating-point arithmetic and raster-scan computer graphics. 

• An interface for other processors. Other processors could be an 80286 processor, 
386 DX processor, another 386 SX microprocessor, or an 8086 or 8088 processor in a 
PC or workstation. Several 386 SX microprocessors could be in the same system to 
control multiple peripheral devices or to provide additional computational power. 

11.1 COPROCESSING 

The features of the Inte1386 architecture which are the coprocessor interface include: 

• ESC and WAIT instructions 

• TS, EM, and MP bits of the CRO register 

• Coprocessor Exceptions 

The 386 SX microprocessor has been optimized to provide an interface for the 80387 SX 
numeric floating-point coprocessor. 

Figure 11-1 shows an example of a recognition routine that determines whether an NPX 
is present. 

The example guards against the possibility of accidentally reading an expected value 
from a floating data bus when no NPX is present. Data read from a floating bus is 
undefined. By expecting to read a specific bit pattern from the NPX, the routine protects 
itself from the indeterminate state of the bus. The example also avoids depending on any 
values in reserved bits, thereby maintaining compatibility with future numerics 
coprocessors. 

11.1.1 The ESC and WAIT Instructions 

The 386 SX microprocessor interprets the bit pattern 11011 (binary) in the highest five 
bits of the first byte of an instruction as an opcode intended for a coprocessor. Instruc­
tions which start with this bit pattern are called ESCAPE or ESC instructions. The 
processor performs the following functions before sending these instructions to thc 
coprocessor: 

• Test the EM bit to determine whether coprocessor functions are to be emulated by 
software. 

11-1 



COPROCESSING AND MULTIPROCESSING 

.********************************************************* , 
TITLE Test for presence of a Numerics Coprocessor, Rev 1.0 
.********************************************************* , 
NAME Test_NPX 

start: 

, 

Determine if 387 SX coprocessor is present 

fninit must use non-wait form 
mov si, offset temp 
mov word ptr [si],5A5Ah init temp to non-zero 
fnstsw [si] must use non-wait form of fnstsw. 

Do not use the WAIT instruction until positive recognition is 
complete. 

cmp 
jnz 

byte ptr [si],O 
no_npx 

See if status with zeros are read 
jump if not a valid status word, means no NPX 

Now see if one can be correctly written from the control word 

; Do not use a WAIT here! 

fnstcw [si] 
mov ax, [5i] 
and aX,103Fh 
cmp ax,3Fh 
jne no_npx 

An NPX is installed! 

look at the control word 
see if ones can be written by NPX 
selected parts of control word look ok 
check if ones & zeroes correctly read 
jump if no NPX installed ' 

found 387SX: 

set up for 387 SX coprocessor 

jmp exit 

No NPX found 

set up for no numeric coprocessor 
, 
exit: 

Figure 11-1. Software Routine to Recognize the 387'" SX Coprocessor 

11-2 



COPROCESSING AND MULTIPROCESSING 

• Test the TS bit to determine whether there has been a context switch since the last 
ESC instruction. 

• For some ESC instructions, test the signal on the ERROR# pin to determine 
whether the coprocessor produced an error in the previous ESC instruction. 

The WAIT instruction is not an ESC instruction, but it causes the processor to perform 
some of the tests which are performed for an ESC instruction. The processor performs 
the following actions for a WAIT instruction: 

• Wait until the coprocessor no longer asserts the BUSY # pin. 

• Test the signal on the ERROR# pin (after the signal on the BUSY# pin is de as­
serted). If the signal on the ERROR# pin is asserted, the 386 SX microprocessor 
generates the coprocessor-error exception, which indicates that the coprocessor pro­
duced an error in the previous ESC instruction. 

The WAIT instruction can be used to generate a coprocessor-error exception if an error 
is pending from a previous ESC instruction. 

11.1.2 The EM and MP Bits 

The EM and MP bits of the eRO register affect the operations which are performed in 
response to coprocessor instructions. 

The EM bit determines whether coprocessor functions are to be emulated. If the EM bit 
is set when an ESC instruction is executed, the coprocessor-not-available exception is 
generated. The exception handler then can emulate the coprocessor instruction. This 
mechanism is used to create software which adapts to the hardware environment; install­
ing a coprocessor for performance enhancement can be as simple as plugging in a chip. 

The MP bit controls whether the processor monitors the signals from the coprocessor. 
This bit is an enabling signal for the hardware interface to the coprocessor. The MP bit 
affects the operations performed for the WAIT instruction. If the MP bit is set when a 
WAIT instruction is executed, then the TS bit is tested; otherwise, it is not. If the TS bit 
is set under these conditions, the coprocessor-not-available exception is generated. 

The states of the EM and MP bits can be modified using a MOY instruction with the 
eRO register as the destination operand. The states can be read using a MOY instruc­
tion with the eRO register as the source operand. These forms of the MOY instruction 
can be executed only with privilege level 0 (most privileged). 

11.1.3 The T5 Bit 

The TS bit of the eRO register indicates that the context of the coprocessor does not 
match that of the task being run on the 386 SX microprocessor. The 386 SX micropro­
cessor sets the TS bit each time it performs a task switch (whether triggered by software 
or by a hardware interrupt). If the TS bit is set while an ESC instruction is executed, a 

11-3 



COPROCESSING AND MULTIPROCESSING 

coprocessor-not-available exception is generated. The WAIT instruction also generates 
this exception, if both the TS and MP bits are set. This exception gives software the 
opportunity to switch the context of the coprocessor to correspond to the current task. 

The CLTS instruction (legal only at privilege level 0) clears the TS bit. 

11.1.4 Coprocessor Exceptions 

Three exceptions are used by the coprocessor interface: interrupt 7 (coprocessor not 
available), interrupt 9 (coprocessor segment overrun), and interrupt 16 (coprocessor 
error). 

11.1.4.1 INTERRUPT 7-COPROCESSOR NOT AVAILABLE 

This exception occurs in either of two conditions: 

• The processor executes an ESC instruction while the EM bit is set. In this case, the 
exception handler should emulate the instruction which caused the exception. The TS 
bit also may be set. 

• The processor executes either the WAIT instruction or an ESC instruction when both 
the MP and TS bits are set. In this case, the exception handler should update the 
state of the coprocessor, if necessary. 

11.1.4.2 INTERRUPT 9-COPROCESSOR SEGMENT OVERRUN 

A coprocessor operand may cross the address limit. The address limit is the point at 
which the address space wraps around. For segments with 32-bit addressing, the address 
limit is OFFFFFFFFH; for expand-up segments, the address limit is OFFFFH; for 
expand-down segments, the address limit is O. 

The processor checks only the first and last bytes of a coprocessor operand before per­
forming an operation on the operand. If the first and last bytes of the operand are in the 
segment, but on different sides of the address limit, it is possible for the middle part of 
the operand to be in memory which is outside of the segment, write-protected, or not­
present. For example, a 64-bit operand at address OFFFCH in a segment with 16-bit 
addressing occupies the bytes from OFFFCH to OFFFFH and from 0 to 3. If the segment 
limit is set to OFFFDH, the second, third, and fourth bytes of the operand are outside of 
the segment. If a new page starts at OFFFDH, the second, third, and fourth bytes of the 
operand may be write-protected or not-present. Any of these cases will generate a 
coprocessor-segment-overrun exception. 

The addresses of the failed numeric instruction and its operand may be lost; a FSTENV 
instruction does not return reliable numeric coprocessor state information. The 
coprocessor-segment-overrun exception should be handled by executing a FNINIT in­
struction (i.e., a FINIT instruction without a preceding WAIT instruction). The return 
address on the stack might not point to either the failed numeric instruction or the 

11-4 



COPROCESSING AND MULTIPROCESSING 

instruction following thc failed numeric instruction. The failed numeric instruction is not 
restartable; however, the interrupted task may be restartable if it did not contain the 
failed numeric instruction. 

For the 387'" SX math coprocessor, the address limit can be avoided by keeping copro­
cessor operands at least 108 bytes away from the limit (108 bytes is the largest number of 
bytes affected by a floating-point arithmetic instruction, the FSTORE instruction). 

11.1.4.3 INTERRUPT 16-COPROCESSOR ERROR 

The 387 SX math coprocessor can generate a coprocessor-error exception in response to 
six different exception conditions. If the exception condition is not masked by a bit in the 
control register of the coprocessor, it appears as a signal at the ERROR# input of the 
processor. The processor generates a coprocessor-error exception the next time the sig­
nal on the ERROR# input is sampled, which is only at the beginning of the next WAIT 
instruction or certain ESC instructions. If the exception is masked, the coprocessor han­
dles the exception itself; it does not assert the signal on the ERROR# input in this case. 

11.2 GENERAL-PURPOSE MULTIPROCESSING 

The 386 SX microprocessor has the basic features needed to implement a general­
purpose multiprocessing system. While the system architecture of multiprocessor systems 
varies greatly, they generally have a need for reliable communications with memory. A 
processor in the process of reading a segment descriptor, for example, should reject 
attempts to update the descriptor until the read operation is complete. 

It also is necessary to have reliable communications with other processors. Bus masters 
need to exchange data in a reliable way. For example, a bit in memory may be shared by 
several bus masters for use as a signal that some resource, such as a peripheral device, is 
idle. A bus master may test this bit, see that the resource is free, and change the state of 
the bit. The state would indicate to other potential bus masters that the resource is in 
use. A problem could arise if another bus master reads the bit between the time the first 
bus master reads the bit and the time the state of the bit is changed. This condition 
would indicate to both potential bus masters that the resource is free. They may inter­
fere with each other as they both attempt to use the resource. The processor prevents 
this problem through support of locked bus cycles; requests for control of the bus are 
ignored during locked cycles. 

The 386 SX microprocessor protects the integrity of critical memory operations by as­
serting a signal called LOCK#. It is the responsibility of the hardware designer to use 
this signal for blocking memory access between processors when this signal is asserted. 

The processor automatically asserts this signal for some critical memory operations. Soft­
ware can specify which other memory operations also need to have this signal asserted. 

11-5 



COPROCESSING AND MULTIPROCESSING 

The features of the general-purpose multiprocessing interface include: 

• The LOCK# signal, which appears on a pin of the processor. 

• The LOCK instruction prefix, which allows software to assert the LOCK# signal. 

• Automatic assertion of the LOCK# signal; for some kinds of memory operations. 

11.2.1 LOCK Prefix and the LOCK# Signal 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following 386 SX CPU instructions when they modify memory. An invalid-opcode 
exception results from using the LOCK prefix before any other instruction, or with these 
instructions when no write operation is made to memory (i.e., when the destination 
operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG instruction. 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 configurations lock the entire physical memory space. 

Semaphores (shared memory used for signalling between multiple processors) should be 
accessed using identical address and length. For example, if one processor accesses a 
semaphore using word access, other processors should not access the semaphore using 
byte access. 

The integrity of the lock is not affected by the alignment of the memory field. The 
LOCK# signal is asserted for as many bus cycles as necessary to update the entire 
operand. 

11.2.2 Automatic Locking 

There are some critical memory operations for which the processor automatically asserts 
the LOCK# signal. These operations are: 

• Acknowledging interrupts. 
After an interrupt request, the interrupt controller uses the data bus to send the 
interrupt vector of the source of the interrupt to the processor. The processor asserts 
LOCK# to ensure no other data appears on the data bus during this time. 

11-6 



COPROCESSING AND MULTIPROCESSING 

• Setting the Busy bit of a TSS descriptor. 

The processor tests and sets the Busy bit in the Type field of the TSS descriptor when 
switching to a task. To ensure two different processors do not switch to the same task 
simultaneously, the processor asserts the LOCK# signal while testing and setting 
this bit. 

• Loading of segment descriptors. 

While copying the contents of a segment descriptor from a descriptor table to a 
segment register, the processor asserts LOCK# so the descriptor will not be modified 
by another processor while it is being loaded. For this action to be effective, 
operating-system procedures which update descriptors should use the following steps: 

Use a locked operation when updating the access-rights byte to mark the de­
scriptor not-present, and specify a value for the Type field which indicates the 
descriptor is being updated. 

Update the fields of the descriptor. (This may require several memory accesses; 
therefore, LOCK cannot be used.) 

Use a locked operation when updating the access-rights byte to mark the de­
scriptor as valid and present. 

• Executing an XCHG instruction. 

The 386 SX microprocessor always asserts LOCK# during an XCHG instruction 
which references memory (even if the LOCK prefix is not used). 

11.2.3 Stale Data 

Multiprocessor systems are subject to conditions under which updates to data in one 
processor are not applied to copies of the data in other processors. This can occur with 
the 386 SX microprocessor when segment descriptors are updated. 

If multiple processors are sharing segment descriptors and one processor updates a 
segment descriptor, the other processors may retain old copies of the descriptor in the 
invisible part of their segment registers. 

An interrupt sent from one processor to another can handle this problem. When one 
processor changes data which may be held in other processors, it can send an interrupt 
signal to them. If the interrupt is serviced by an interrupt task, the task switch automat­
ically discards the data in the invisible part of the segment registers. When the task 
returns, the data is updated from the descriptor tables in memory. 

In multiprocessor systems which need a cachability signal from the processor, it is rec­
ommended that physical address pin A23 be used to indicate cachability. Segment de­
scriptors or page table entries may be used to control this bit from software. The system 
then can possess up to 8 megabytes of physical memory (half the address space is 
sacrificed). 

11-7 





Debugging 12 





CHAPTER 12 
DEBUGGING 

The 386™ SX microprocessor has advanced debugging facilities which are particularly 
important for sophisticated software systems, such as multitasking operating systems. 
The failure conditions for these software systems can be very complex and time­
dependent. The debugging features of the 386 SX microprocessor give the system pro­
grammer valuable tools for looking at the dynamic state of the processor. 

The debugging support is accessed through the debug registers. They hold the addresses 
of memory locations, called breakpoints, which invoke debugging software. An exception 
is generated when a memory operation is made to one of these addresses. A breakpoint 
is specified for a particular form of memory access, such as an instruction fetch or a 
doubleword write operation. The debug registers support both instruction breakpoints 
and data breakpoints. 

With other processors, instruction breakpoints are set by replacing normal instructions 
with breakpoint instructions. When the breakpoint instruction is executed, the debugger 
is called. But with the debug registers of the 386 SX microprocessor, this is not neces­
sary. By eliminating the need to write into the code space, the debugging process is 
simplified (there is no need to set up a data segment mapped to the same memory as the 
code segment) and breakpoints can be set in ROM-based software. In addition, break­
points can be set on reads and writes to data which allows real-time monitoring of 
variables. 

12.1 DEBUGGING SUPPORT 

The features of the Inte1386™ architecture which support debugging are: 

Reserved debug interrupt vector 

Specifies a procedure or task to be called when an event for the debugger occurs. 

Debug address registers 

Specifies the addresses of up to four breakpoints. 

Debug control register 

Specifies the forms of memory access for the breakpoints. 

Debug status register 

Reports conditions which were in effect at the time of the exception. 

12·1 



DEBUGGING 

Trap bit of TSS (T-bit) 

Generates a debug exception when an attempt is made to perform a task switch to a 
task with this bit set in its TSS. 

Resume flag (RF) 

Suppresses multiple exceptions to the same instruction. 

Trap flag (TF) 

Generates a debug exception after every execution of an instruction. 

Breakpoint instruction 

Calls the debugger (generates a debug exception). This instruction is ap alternative 
way to set code breakpoints. It is especially useful when more than four breakpoints 
are desired, or when breakpoints are being placed in the source code. 

Reserved interrupt vector for breakpoint exception 

Calls a procedure or task when a breakpoint instruction is executed. 

These features allow a debugger to be called either as a separate task or as a procedure 
in the context of the current task. The following conditions can be used to call the 
debugger: 

• Task switch to a specific task. 

• Execution of the breakpoint instruction. 

• Execution of any instruction. 

• Execution of an instruction at a specified address. 

• Read or write of a byte, word, or doubleword at a specified address. 

• Write to a byte, word, or doubleword at a specified address. 

• Attempt to change the contents of a debug register. 

12.2 DEBUG REGISTERS 

Six registers are used to control debugging. These registers are accessed by forms of the 
MOV instruction. A debug register may be the source or destination operand for one of 
these instructions. The debug registers are privileged resources; the MOV instructions 
which access them may be executed only at privilege level O. An attempt to read or write 
the debug registers from any other privilege level generates a general-protection excep­
tion. Figure 12-1 shows the format of the debug registers. 

12-2 



DEBUGGING 

DEBUG REGISTERS 

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 111 111 
1 098 7 6 S 4 3 2 1 0 9 8 7 6 S 4 3 2 1 0 9 8 7 6 S 4 3 2 1 0 

L R L R L R L R 
E I E I E I E I G L G L G L G L G L 
N W N W N W N W o 0 0 0.0 o N N N N N N N N N N DR7 

3 3 2 2 1 1 0 0 

B B B B B B B o 0 o 0 o 0 o 0 o 0 o 0 o 0 o 0 T S 0 000 0 0 0 0 0 o 3 210 DR6 

RESERVED DRS 

RESERVED DR4 

BREAKPOINT 3 PHYSICAL ADDRESS DR3 

BREAKPOINT 2 PHYSICAL ADDRESS DR2 

BREAKPOINT 1 PHYSICAL ADDRESS 
DRt 

DRO 
BREAKPOINT 0 PHYSICAL ADDRESS 

BITS MARKED 0 ARE RESERVED. DO NOT USE. 

240331 

Figure 12-1. Debug Registers 

12.2.1 Debug Address Registers (DRO-DR3) 

Each of these registers holds the linear address for one of the four breakpoints. If paging 
is enabled, these addresses are translated to physical addresses by the paging algorithm. 
Each breakpoint condition is specified further by the contents of the DR7 register. 

12-3 



DEBUGGING 

12.2.2 Debug Control Register (DR7) 

The debug control register shown in Figure 12-1 specifies the sort of memory access 
associated with each breakpoint. Each address in registers DRO to DR3 corresponds to a 
field RIWO to RIW3 in the DR7 register. The processor interprets these bits as follows: 

00 - Break on instruction execution only 
01- Break on data writes only 
10 - undefined 
11- Break on data reads or writes but not instruction fetches 

The LENO to LEN3 fields in the DR7 register specify the size of the breakpointed 
location in memory. A size of 1, 2, or 4 bytes may be specified. The length fields are 
interpreted as follows: 

00 - one-byte length 
01- two-byte length 
10 - undefined 
11- four-byte length 

If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using 
any other length is undefined. 

The low eight bits of the DR7 register (fields LO to L3 and GO to G3) individually enable 
the four address breakpoint conditions. There are two levels of enabling: the local (LO 
through L3) and global (GO through G3) levels. The local enable bits are automatically 
cleared by the processor on every task switch to avoid unwanted breakpoint conditions in 
the new task. They are used to breakpoint conditions in a single task. The global enable 
bits are not cleared by a task switch. They are used to enable breakpoint conditions 
which apply to all tasks. 

The LE and GE bits control the "exact data breakpoint match" mode of the debugging 
mechanism. If either the LE or GE bit is set, the processor slows execution so that data 
breakpoints are reported for the instruction which triggered the breakpoint, rather than 
the next instruction to execute. One of these bits should be set when data breakpoints 
are used. The processor clears the LE bit at a task switch, but it does not clear the 
GE bit. 

12.2.3 Debug Status Register (DRS) 

The debug status register shown in Figure 12-1 reports conditions sampled at the time 
the debug exception was generated. Among other information, it reports which break­
point triggered the exception. 

12-4 



DEBUGGING 

When an enabled breakpoint generates a debug exception, it loads the low four bits of 
this register (BO through B3) before entering the debug exception handler. The B bit is 
set if the condition described by the DR, LEN, and R/W bits is true, even if the break­
point is not enabled by the Land G bits. The processor sets the B bits for all breakpoints 
which match the conditions present at the time the debug exception is generated, 
whether or not they are enabled. 

The BT bit is associated with the T bit (debug trap bit) of the TSS (see Chapter 6 for the 
format of a TSS). The processor sets the BT bit before entering the debug handler if a 
task switch has occurred to a task with a set T bit in its TSS. There is no bit in the DR7 
register to enable or disable this exception; the T bit of the TSS is the only enabling bit. 

The BS bit is associated with the TF flag. The BS bit is set if the debug exception was 
triggered by the single-step execution mode (TF flag set). The single-step mode is the 
highest-priority debug exception; when the BS bit is set, any of the other debug status 
bits also may be set. 

The BD bit is set if the next instruction will read or write one of the eight debug registers 
while they are being used by in-circuit emulation. 

Note that the contents of the DR6 register are never cleared by the processor. To avoid 
any confusion in identifying debug exceptions, the debug handler should clear the regis­
ter before returning. 

12.2.4 Breakpoint Field Recognition 

The address and LEN bits for each of the four breakpoint conditions define a range of 
sequential byte addresses for a data breakpoint. The LEN bits permit specification of a 
one-, two-, or four-byte range. Two-byte ranges must be aligned on word boundaries 
(addresses which are multiples of two) and four-byte ranges must be aligned on double­
word boundaries (addresses which are multiples of four). These requirements are en­
forced by the processor; it uses the LEN bits to mask the lower address bits in the debug 
registers. Unaligned code or data breakpoint addresses do riot yield the expected results. 

A data breakpoint for reading or writing is triggered if any of the bytes participating in a 
memory access is within the range defined by a breakpqint address register and its LEN 
bits. Table 12-1 gives some examples of combinations of addresses and fields with mem­
ory references which do and do not cause traps. 

A data breakpoint for an unaligned operand can be made from two sets of entries in the 
breakpoint registers where each entry is byte-aligned, and the two entries together cover 
the operand. This breakpoint generates exceptions only for the operand, not for any 
neighboring bytes. 

12-5 



DEBUGGING 

Table 12-1. Breakpointing Examples 

Comment Address (hex) Length (in bytes) 

Register Contents ORO AOO01 1 (LENO = 00) 
Register Contents OR1 AOO02 1 (LENO = 00) 
Register Contents OR2 80002 2 (LENO = 01) 
Register Contents OR3 COOOO 4 (LENO = 11) 

AOO01 1 
AOO02 1 
AOO01 2 
AOO02 2 

Memory Operations Which Trap BOO02 2 
BOO01 4 
COOOO 4 
COO01 2 
COO03 1 

AOOOO 1 

Memory Operations Which Don't Trap 
AOO03 4 
BOOOO 2 
COO04 4 

Instruction breakpoint addresses must have a length specification of one byte (LEN = 
00); the behavior of code breakpoints for other operand sizes is undefined. The proces­
sor recognizes an instruction breakpoint address only when it points to the first byte of 
an instruction. If the instruction has any prefixes, the breakpoint address must point to 
the first prefix. 

12.3 DEBUG EXCEPTIONS 

Two of the interrupt vectors of the 386 SX microprocessor are reserved for debug ex­
ceptions. The debug exception is the usual way to invoke debuggers designed for the 
386 SX microprocessor; the breakpoint exception is intended for putting breakpoints in 
debuggers. 

12.3.1 Interrupt 1-Debug Exceptions 

The handler for this exception usually is a debugger or part of a debugging system. The 
processor generates a debug exception for any of several conditions. The debugger can 
check flags in the DR6 and DR7 registers to determine which condition caused the 
exception and which other conditions also might apply. Table 12-2 shows the states of 
these bits for each kind of breakpoint condition. 

Instruction breakpoints are faults; other debug exceptions are traps. The debug excep­
tion may report either or both at one time. The following sections present details for 
each class of debug exception. 

12·6 



DEBUGGING 

Table 12-2. Debug Exception Conditions 

Flags Tested Description 

BS = 1 Single-step trap 
BO = 1 and (GEO = 1 or LEO = 1) Breakpoint defined by DRO, LENa, and R/WO 
B1 = 1 and (GE1 = 1 or LE1 = 1) Breakpoint defined by DR1, LEN1, and R/W1 
B2 = 1 and (GE2 = 1 or LE2 = 1) Breakpoint defined by DR2, LEN2, and R/W2 
B3 = 1 and (GE3 = 1 or LE3 = 1) Breakpoint defined by DR3, LEN3, and R/W3 
BD = 1 Debug registers in use for in-circuit emulation 
BT = 1 Task switch 

12.3.1.1 INSTRUCTION-BREAKPOINT FAULT 

The processor reports an instruction breakpoint before it executes the breakpointed 
instruction (i.e., a debug exception caused by an instruction breakpoint is a fault). 

The RF flag permits the debug exception handler to restart instructions which cause 
faults other than debug faults. When one of these faults occurs, the system software 
writer must set the RF bit in the copy of the EFLAGS register which is pushed on the 
stack in the debug exception handler routine. This bit is set in preparation of resuming 
the program's execution at the breakpoint address without generating another break­
point fault on the same instruction. (Note: the RF bit does not cause breakpoint traps or 
other kinds of faults to be ignored.) 

The processor clears the RF flag at the successful completion of every instruction except 
after the IRET instruction, the POPF instruction, and JMP, CALL, or INT instructions 
which cause a task switch. These instructions set the RF flag to the value specified by the 
the saved copy of the EFLAGS register. 

The processor sets the RF flag in the copy of the EFLAGS register pushed on the stack 
before entry into any fault handler. When the fault handler is entered for instruction 
breakpoints, for example, the RF flag is set in the copy of the EFLAGS register pushed 
on the stack; therefore, the IRET instruction which returns control from the exception 
handler will set the RF flag in the EFLAGS register, and execution will resume at 
the breakpointed instruction without generating another breakpoint for the same 
instruction. 

If, after a debug fault, the RF flag is set and the debug handler retries the faulting 
instruction, it is possible that retrying the instruction will generate other faults. The 
restart of the instruction after these faults also occurs with the RF flag set, so repeated 
debug faults continue to be suppressed. The processor clears the RF flag only after 
successful completion of the instruction. 

12.3.1.2 DATA-BREAKPOINT TRAP 

A data-breakpoint exception is a trap; i.e., the processor generates an exception for a 
data breakpoint after executing the instruction which accesses the breakpointed memory 
location. 

12-7 



DEBUGGING 

When using data breakpoints, it is recommended either the LE or GE bits of the DR7 
register also be set. If either the LE or GE bits are set, any data breakpoint trap is 
reported immediately after completion of the instruction which accessed the break­
pointed memory location. This immediate reporting is done by forcing the 386 SX mi­
croprocessor execution unit to wait for completion of data operand transfers before 
beginning execution of the next instruction. If neither bit is set, data breakpoints may not 
be generated until one instruction after the data is accessed, or they may not be gener­
ated at all. This is because instruction execution normally is overlapped with memory 
transfers. Execution of the next instruction may begin before the memory operations of 
the previous instruction are completed. 

If a debugger needs to save the contents of a write breakpoint location, it should save 
the original contents before setting the breakpoint. Because data breakpoints are traps, 
the original data is overwritten before the trap exception is generated. The handler can 
report the saved value after the breakpoint is triggered. The data in the debug registers 
can be used to address the new value stored by the instruction which triggered the 
breakpoint. 

12.3.1.3 GENERAL-DETECT FAULT 

The general-detect fault occurs when an attempt is made to use the debug registers at 
the same time they are being used by in-circuit emulation. This additional protection 
feature is provided to guarantee emulators can have full control over the debug registers 
when required. The exception handler can detect this condition by checking the state of 
the BD bit of the DR6 register. 

12.3.1.4 SINGLE-STEP TRAP 

This trap occurs after an instruction is executed if the TF flag was set before the instruc­
tion was executed. Note the exception does not occur after an instruction which sets the 
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step 
trap does not occur until after the instruction following the POPF instruction. 

The processor clears the TF flag before calling the exception handler. If the TF flag was 
set in a TSS at the time of a task switch, the exception occurs after the first instruction is 
executed in the new task. 

The single-step flag normally is not cleared by privilege changes inside a task. The INT 
instructions, however, do clear the TF flag. Therefore, software debuggers which single­
step code must recognize and emulate INTn or INTO instructions rather than executing 
them directly. 

To maintain protection, the operating system should check the current execution privi­
lege level after any single-step trap to see if single stepping should continue at the 
current privilege level. 

12-8 



DEBUGGING 

The interrupt priorities guarantee that if an external interrupt occurs, single stepping 
stops. When both an external interrupt and a single step interrupt occur together, the 
single step interrupt is processed first. This clears the TF flag. After saving the return 
address or switching tasks, the external interrupt input is examined before the first in­
struction of the single step handler executes. If the external interrupt is still pending, 
then it is serviced. The external interrupt handler does not run in single-step mode. To 
single step an interrupt handler, single step an INTn instruction which calls the interrupt 
handler. 

12.3.1.5 TASK-SWITCH TRAP 

The debug exception also occurs after a task switch if the T bit of the new task's TSS is 
set. The exception occurs after control has passed to the new task, but before the first 
instruction of that task is executed. The exception handler can detect this condition by 
examining the BT bit of the DR6 register. 

Note that if the debug exception handler is a task, the T bit of its TSS should not be set. 
Failure to observe this rule will put the processor in a loop. 

12.3.2 Interrupt 3 - Breakpoint Instruction 

The breakpoint trap is caused by execution of the INT 3 instruction. Typically, a debug­
ger prepares a breakpoint by replacing the first opcode byte of an instruction with the 
opcode for the breakpoint instruction. Whcn execution of the INT 3 instruction calls the 
exception handler, the return address points to the first byte of the instruction following 
the INT 3 instruction. 

With older processors, this feature is used extensively for setting instruction breakpoints. 
With the 386 SX microprocessor, this use is more easily handled using the debug regis­
ters. However, the breakpoint exception still is useful for breakpointing debuggers, be­
cause the breakpoint exception can call an exception handler other than itself. The 
breakpoint exception also can be useful when it is necessary to set a greater number of 
breakpoints than permitted by the debug registers, or when breakpoints are being placed 
in the source code of a program under development. 

12-9 





Part III 
Compatibility 





Executing 80286 Programs 13 





CHAPTER 13 
EXECUTING 80286 PROGRAMS 

In general, programs written for protected mode on an 80286 processor run without 
modification on the 386™ SX microprocessor, because the features of the 80286 proces­
sor are an object-code compatible subset of those of the 386 SX microprocessor. The 
Default bit in segment descriptors indicates whether the processor is to treat a code, 
data, or stack segment as an 80286 or 386 SX CPU segment. 

The segment descriptors used by the 80286 processor are supported by the 386 SX 
microprocessor if the Intel®-reserved word (highest word) of the descriptor is clear. On 
the 386 SX microprocessor, this word includes the upper bits of the base address and the 
segment limit. 

The segment descriptors for data segments, code segments, local descriptor tables (there 
are no descriptors for global descriptor tables), and task gates are the same for both the 
80286 and 386 SX microprocessors. Other 80286 descriptors, TSS segment, call gate, 
interrupt gate, and trap gate, are supported by the 386 SX microprocessor. The 386 SX 
microprocessor also has new versions of descriptors for TSS segment, call gate, interrupt 
gate, and trap gate which support the 32-bit architecture of the 386 SX microprocessor. 
Both kinds of descriptors can be used in the same system. 

For those segment descriptors common to both the 80286 and 386 SX microprocessors, 
clear bits in the reserved word cause the 386 SX microprocessor to interpret these de­
scriptors exactly as the 80286 processor does; for example: 

Base Address The upper eight bits of the 32-bit base address are clear, which limits 
base addresses to 24 bits. 

Limit The upper four bits of the limit field are clear, restricting the value of 
the limit field to 64K bytes. 

Granularity bit The Granularity bit is clear, indicating the value of the 16-bit limit is 
interpreted in units of 1 byte. 

Big bit In a data-segment descriptor, the B bit is clear, indicating the segment 
is no larger than 64 Kbytes. 

Default bit In an code-segment descriptor, the D bit is clear, indicating 16-bit 
addressing and operands are the default. In a stack-segment descrip­
tor, the D bit is clear, indicating use of the SP register (instead of the 
ESP register) and a 64K byte maximum segment limit. 

For formats of these descriptors and documentation of their use see the iAPX 80286 
Programmer's Reference Manual. 

13-1 



EXECUTING 80286 PROGRAMS 

13.1 TWO WAYS TO RUN 80286 TASKS 

When porting 80286 programs to the 386 SX microprocessor, there are two approaches 
to consider: 

1. Porting an entire 80286 software system to the 386 SX microprocessor, complete 
with the old operating system, loader, and system builder. 

In this case, all tasks will have 80286 TSSs. The 386 SX microprocessor is being used 
as if it were a faster version of the 80286 processor. 

2. Porting selected 80286 applications to run in a 386 SX microprocessor environment 
with a 386 SX microprocessor operating system, loader, and system builder. 

In this case, the TSSs used to represent 80286 tasks should be changed to 386 SX 
processor TSSs. It is possible to mix 80286 and 386 SX processor TSSs, but the 
benefits are small and the problems are great. All tasks in a 386 SX microprocessor 
software system should have 386 SX processor TSSs. It is not necessary to change 
the 80286 object modules themselves; TSSs are usually constructed by the operating 
system, by the loader, or by the system builder. See Chapter 16 for more discussion 
of the interface between 16-bit and 32-bit code. 

13.2 DIFFERENCES FROM 80286 PROCESSOR 

The few differences between the 80286 and 386 SX microprocessors affect operating 
systems more than application programs. 

13.2.1 Reserved Word of Segment Descriptor 

Because the 386 SX microprocessor uses the contents of the reserved word of 80286 
segment descriptors, 80286 programs which place values in this word may not run cor­
rectly on the 386 SX microprocessor. 

13.2.2 New Segment Descriptor Type Codes 

Operating-system code which manages space in descriptor tables often uses an invalid 
value in the access-rights field of descriptor-table entries to identify unused entries. 
Access rights values of 80H and OOH remain invalid for both the 80286 and 386 SX 
microprocessors. Other values which were invalid on the 80286 processor may be valid 
on the 386 SX microprocessor because uses for these bits are defined for the 386 SX 
microprocessor. 

13.2.3 Restricted Semantics of LOCK Prefix 

The 80286 processor performs the bus lock function differently than the 386 SX micro­
processor. Programs which use forms of memory locking specific to the 80286 processor 
may not run properly when run on the 386 SX microprocessor. 

13-2 



EXECUTING 80286 PROGRAMS 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following 386 SX microprocessor instructions when they modify memory. An invalid­
opcode exception results from using the LOCK prefix before any other instruction, or 
with these instructions when no write operation is made to memory (i.e., when the 
destination operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG instruction. 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 processor configurations lock the entire physical memory space. 

On the 80286 processor, the LOCK prefix is sensitive to IOPL; if CPL is less privileged 
than the IOPL, a general protection exception is generated. On the 386 SX micropro­
cessor, no check against IOPL is performed. 

13.2.4 Additional Exceptions 

The 386 SX microprocessor defines new exceptions which can occur even in systems 
designed for the 80286 processor. 

• Exception #6 - invalid opcode 

This exception can result from improper use of the LOCK instruction prefix. 

• Exception #14-page fault 

This exception may occur in an 80286 program if the operating system enables paging. 
Paging can be used in a system with 80286 tasks if all tasks use the same page direc­
tory. Because there is no place in an 80286 TSS to store the PDBR register, switching 
to an 80286 task does not change the value of the PDBR register. Tasks ported from 
the 80286 processor should be given 386 SX processor's TSSs so they can make full 
use of paging. 

13-3 





386™ SX Microprocessor 14 
Real-Address Mode 





CHAPTER 14 
386 ™ SX MICROPROCESSOR REAL-ADDRESS MODE 

The real-address mode of the 386'" SX microprocessor runs programs written for the 
8086, 8088, 80186, or 80188 processors, or for the real-address mode of an 80286 or 
80386 processor. 

The architecture of the 386 SX microprocessor in this mode is almost identical to that of 
the 8086, 8088, 80186, and 80188 processors. To a programmer, a 386 SX microprocessor 
in real-address mode appears as a high-speed 8086 processor with extensions to the 
instruction set and registers. The principal features of this architecture are defined in 
Chapters 2 and 3. 

This chapter discusses certain additional topics which complete the system programmer's 
view of the 386 SX microprocessor in real-address mode: 

• Address formation. 

• Extensions to registers and instructions. 

• Interrupt and exception handling. 

• Entering and leaving real-address mode. 

• Real-address mode exceptions. 

• Differences from 8086 processor. 

• Differences from 80286 processor in real-address mode. 

14.1 ADDRESS TRANSLATION 

In real-address mode, the 386 SX microprocessor does not interpret 8086 selectors by 
referring to descriptors; instead, it forms linear addresses as an 8086 processor would. It 
shifts the selector left by four bits to form a 20-bit base address. The effective address is 
extended with four clear bits in the upper bit positions and added to the base address to 
create a linear address, as shown in Figure 14-1. 

Because of the possibility of a carry, the resulting linear address may have as many as 21 
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 
to 10FFEFH (1 megabyte plus approximately 64K bytes) of the linear address space. 
Because paging is not available in real-address mode, the linear address is used as the 
physical address. 

Unlike the 8086 and 80286 processors, the 386 SX microprocessor can generate 32-bit 
effective addresses using an address override prefix; however in real-address mode, the 
value of a 32-bit address may not exceed 65,535 without causing an exception. For full 
compatibility with 80286 real-address mode, pseudo-protection faults (interrupt 12 or 13 
with no error code) occur if an effective address is generated outside the range 0 through 
65,535. 

14-1 



386 T• SX MICROPROCESSOR REAL-ADDRESS MODE 

19 

BASE 16-BlT SEGMENT SELECTOR 

+ 

OFFSET I 0 0 0 0 , 16-111T EfFECTIVE ADDRESS 

o 19 15 

20 0 

A~=S I xxxxxxxxxxxxxxxxxxxxx I 

240331 

Figure 14-1. 8086 Address Translation 

14.2 REGISTERS AND INSTRUCTIONS 

The register set available in real-address mode includes all the registers defined for the 
8086 processor plus the new registers introduced with the 386 SX microprocessor: FS, 
GS, debug registers, control registers, and test registers. New instructions which explic­
itly operate on the segment registers FS and GS are available, and the new segment­
override prefixes can be used to cause instructions to use the FS and GS registers for 
address calculations. 

The instruction codes which generate invalid-opcode exceptions include instructions 
from protected mode which move or test 386 SX microprocessor segment selectors and 
segment descriptors, i.e., the VERR, VERW, LAR, LSL, LTR, STR, LLDT, and SLDT 
instructions. Programs executing in real-address mode are able to take advantage of the 
new application-oriented instructions added to the architecture with the introduction of 
the 80186, 80188, 80286, 386 SX and 386 DX microprocessors: 

• New instructions introduced on the 80186, 80188, and 80286 processors. 

PUSH immediate data 

Push all and pop all (PUSHA and POPA) 

Multiply immediate data 

Shift and rotate by immediate count 

String I/O 

ENTER and LEAVE instructions 

BOUND instruction 

• New instructions introduced on the 386 SX microprocessor. 

LSS, LFS, LGS instructions 

Long-displacement conditional jumps 

Single-bit instructions 

14-2 



386 '" SX MICROPROCESSOR REAL-ADDRESS MODE 

Bit scan instructions 

Double-shift instructions 

Byte set on condition instruction 

Move with sign/zero extension 

Generalized multiply instruction 

MOY to and from control registers 

MOY to and from test registers 

MOY to and from debug registers 

14.3 INTERRUPT AND EXCEPTION HANDLING 

Interrupts and exceptions in 386 SX microprocessor real-address mode work much as 
they do on an 8086 processor. Interrupts and exceptions call interrupt procedures 
through an interrupt table. The processor scales the interrupt or exception identifier by 
four to obtain an index into the interrupt table. The entries of the interrupt table are far 
pointers to the entry points of interrupt or exception handler procedures. When an 
interrupt occurs, the processor pushes the current values of the CS and IP registers onto 
the stack, disables interrupts, clears the TF flag, and transfers control to the location 
specified in the interrupt table. An IRET instruction at the end of the handler proce­
dure reverses these steps before returning control to the interrupted procedure. Excep­
tions do not return error codes in real-address mode. 

The primary difference in the interrupt handling of the 386 SX microprocessor com­
pared to the 8086 processor is the location and size of the interrupt table depend on the 
contents of the IDTR register. Ordinarily, this fact is not apparent to programmers, 
because, after reset initialization, the IDTR register contains a base address of 0 and a 
limit of 3FFH, which is compatible with the 8086 processor. However, the LIDT instruc­
tion can be used in real-address mode to change the base and limit values in the IDTR 
register. See Chapter 9 for details on the IDTR register, and the LIDT and SIDT in­
structions. If an interrupt occurs and its entry in the interrupt table is beyond the limit 
stored in the IDTR register, a double-fault exception is generated. 

14.4 ENTERING AND LEAVING REAL-ADDRESS MODE 

Real-address mode is in effect after reset initialization. Even if the system is going to run 
in protected mode, the start-up program runs in real-address modc while preparing to 
switch to protected mode. 

14.4.1 Switching to Protected Mode 

The only way to leave real-address mode is to switch to protected mode. The processor 
enters protected mode when a MOY to CRO instruction sets the PE (protection enable) 
bit in the CRO register. (For compatibility with the 80286 processor, the LMSW instruc­
tion also may be used to set the PE bit.) 

14-3 



386'M SX MICROPROCESSOR REAL-ADDRESS MODE 

See Chapter 10 "Initialization" for other aspects of switching to protected mode. 

14.5 SWITCHING BACK TO REAL-ADDRESS MODE 

The processor re-enters real-address mode if software clears the PE bit in the CRO 
register with a MOY CRO instruction (for compatibility with the 80286 processor, the 
LMSW instruction can set the PE bit, but cannot clear it). A procedure which re-enters 
real-address mode should proceed as follows: 

1. If paging is enabled, perform the following sequence: 

• Transfer control to linear addresses which have an identity mapping; i.e., linear 
addresses equal physical addresses. 

• Clear the PG bit in the CRO register. 

• Move a a into the CR3 register to flush the TLB. 

2. Transfer control to a segment which has a limit of 64K (OFFFFH). This loads the CS 
register with the segment limit it needs to have in real mode. 

3. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor 
containing the following values, which are appropriate for real mode: 

• Limit = 64K (OFFFFH) 

• Byte granular (G = 0) 

• Expand up (E = 0) 

• Writable (W = 1) 

• Present (P = 1) 

• Base = any value 

Note that if the segment registers are not reloaded, execution continues using the 
descriptors loaded during protected mode. 

4. Disable interrupts. A CLI instruction disables INTR interrupts. NMI interrupts can 
be disabled with external circuitry. 

5. Clear the PE bit in the CRO register. 

6. Jump to the real mode program using a far JMP instruction. This flushes the instruc­
tion queue and puts appropriate values in the access rights of the CS register. 

7. Use the LIDT instruction to load the base and limit of the real-mode interrupt 
vector table. 

8. Enable interrupts. 

9. Load the segment registers as needed by the real-mode code. 

14.6 REAL-ADDRESS MODE EXCEPTIONS 

The 386 SX microprocessor reports some exceptions differently when executing in real­
address mode than when executing in protected mode. Table 14-1 details the real­
address-mode exceptions. 

14-4 



386 '" SX MICROPROCESSOR REAL-ADDRESS MODE 

Table 14-1. Exceptions and Interrupts 

Source of the 
Does the Return Address 

Description Vector 
Exception 

Point to the Instruction Which 
Caused the Exception? 

Divide Error 0 DIV and IDIV instructions yes 
Debug 1 any 1 

Breakpoint 3 INT instruction no 
Overflow 4 INTO instruction no 
Bounds Check 5 BOUND instruction yes 
Invalid Opcode 6 reserved opcodes yes 

and improper use of 
LOCK prefix 

Coprocessor Not 7 ESC or WAIT yes 
Available 
IDT limit too small 8 any yes 
Reserved 9 to 11 
Stack Exception 12 stack operation yes 

crosses address 
limit 

Protection 13 operand crosses yes 
address limit, 
instruction crosses 
address limit, or 
instruction exceeds 
15 bytes 

Reserved 14 and 15 
Coprocessor Error 16 ESC or WAIT yes2 

instructions 
Software Interrupt o to 255 INT n instructions no 

1. Some debug exceptions pOint to the faulting Instruction, others pOint to the follOWing Instruction. The 
exception handler can test the DR6 register to determine which has occurred. 

2. Coprocessor errors are reported on the first ESC or WAIT instruction after the ESC instruction which 
generated the error. 

14.7 DIFFERENCES FROM 8086 PROCESSOR 

In general, the 386 SX microprocessor in real-address mode will correctly run ROM­
based software designed for the 8086, 8088, 80186, and 80188 processors. Following is a 
list of the minor differences between program execution on the 8086 and 386 SX 
microprocessors. 

1. Instruction clock counts. 

The 386 SX microprocessor takes fewer clocks for most instructions than the 8086 
processor. The areas most likely to be affected are: 

• Delays required by I/O devices between I/O operations. 

• Assumed delays with 8086 processor operating in parallel with an 8087. 

2. Divide-error exceptions point to the DIV instruction. 

Divide-error exceptions on the 386 SX microprocessor always leave the saved CS:IP 

14-5 



386™ SX MICROPROCESSOR REAL-ADDRESS MODE 

value pointing to the instruction which failed. On the 8086 processor, the CS:IP 
value points to the next instruction. 

3. Undefined 8086 processor opcodes. 

Opcodes which were not defined for the 8086 processor generate an invalid-opcode 
exception or execute one of the new instructions introduced with the 80286 or 386 
SX microprocessors. 

4. Value written by PUSH SP. 

The 386 SX microprocessor pushes a different value on the stack for a PUSH SP 
instruction than the 8086 processor. The 386 SX microprocessor pushes the value of 
the SP register before it is incremented as part of the push operation; the 8086 
processor pushes the value of the SP register after it is incremented. If the value 
pushed is important, replace PUSH SP instructions with the following three 
instructions: 

PUSH BP 
MDV BP, SP 
XCHG BP I [BPl 

This code functions as the 8086 processor PUSH SP instruction on the 386 SX 
microprocessor. 

5. Shift or rotate by more than 31 bits. 

The 386 SX microprocessor masks all shift and rotate counts to the lowest five bits. 
This MOD 32 operation limits the count to a maximum of 31 bits, which limits the 
amount of time that interrupt response may be delayed while the instruction is 
executing. 

6. Redundant prefixes. 

The 386 SX microprocessor sets a limit of 15 bytes on instruction length. The only 
way to violate this limit is by putting redundant prefixes before an instruction. A 
general-protection exception is generated if the limit on instruction length is vio­
lated. The 8086 processor has no instruction length limit. 

7. Operand crossing offset 0 or 65,535. 

On the 8086 processor, an attempt to access a memory operand which crosses offset 
65,535 (e.g., MOV a word to offset 65,535) or offset 0 (e.g., PUSH a word when SP 
= 1) causes the offset to wrap around modulo 65,536. The 386 SX microprocessor 
generates an exception in these cases: a general-protection exception if the segment 
is a data segment (i.e., if the CS, DS, ES, FS, or GS register is being used to address 
the segment) or a stack exception if the segment is a stack segment (i.e., if the SS 
register is being used). 

8. Sequential execution across offset 65,535. 

On the 8086 processor, if sequential execution of instructions proceeds past offset 
65,535, the processor fetches the next instruction byte from offset 0 of the same 
segment. On the 386 SX microprocessor, the processor generates a general­
protection exception in such a case. 

14-6 



386 '" SX MICROPROCESSOR REAL-ADDRESS MODE 

9. LOCK is restricted to certain instructions. 

The LOCK prefix and its output signal should only be used to prevent other bus 
masters from interrupting a data movement operation. The LOCK prefix only may 
be used with the following 386 SX microprocessors instructions when they modify 
memory. An invalid-opcode exception results from using LOCK before any other 
instruction, or with these instructions when no write operation is made to memory. 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG instruction. 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

10. Single-stepping external interrupt handlers. 

The priority of the 386 SX microprocessor single-step exception is different from the 
8086 processor. The change prevents an external interrupt handler from being 
single-stepped if the interrupt occurs while a program is being single-stepped. The 
386 SX microprocessor single-step exception has higher priority than any external 
interrupt. The 386 SX microprocessor still may single-step through an interrupt 
handler called by the INT instructions or by an exception. 

11. IDlY exceptions for quotients of 80H or 8000H. 

The 386 SX microprocessor can generate the largest negative number as a quotient 
for the IDlY instruction. The 8086 processor generates a divide-error exception 
instead. 

12. Flags in stack. 

The setting of the flags stored by the PUSHF instruction, by interrupts, and by 
exceptions is different from that stored by the 8086 processor in bit positions 12 
through 15. On the 8086 processor these bits are set, but in the 386 SX real-address 
mode, bit 15 is always clear, and bits 14 through 12 have the last value loaded into 
them. 

13. NMI interrupting NMI handlers. 

After an NMI interrupt is recognized by the 386 SX microprocessor, the NMI inter­
rupt is masked until an IRET instruction is executed. 

14. Coprocessor errors call the coprocessor-error exception. 

Any 386 SX microprocessor with a coprocessor must use the coprocessor-error ex­
ception. If an 8086 processor uses another exception for the 8087 interrupt, both 
exception vectors should call the coprocessor-error exception handler. 

15. Numeric exception handlers should allow prefixes. 

On the 386 SX microprocessor, the value of the CS and IP registers saved for 
coprocessor-error exceptions points at any prefixes which come before the ESC in­
struction. On the 8086 processor, the saved CS:IP points to the ESC instruction. 

14-7 



386'" SX MICROPROCESSOR REAL-ADDRESS MODE 

16. Coprocessor does not use interrupt controller. 

The coprocessor-error signal to the 386 SX microprocessor does not pass through an 
interrupt controller (an INT signal from 8087 coprocessor does). Some instructions 
in a coprocessor-error exception handler may need to be deleted if they use the 
interrupt controller. 

17. One megabyte wraparound. 

The address space of the 386 SX microprocessor does not wraparound at 1 mega­
byte in real-address mode. On members of the 8086 family, it is possible to specify 
addresses greater than 1 megabyte. For example, with a selector value OFFFFH and 
an offset of OFFFFH, the effective address would be lOFFEFH (1 megabyte + 
65519 bytes). The 8086 processor, which can form addresses up to 20 bits long, 
truncates the uppermost bit, which "wraps" this address to OFFEFH. However, the 
386 SX microprocessor, which can form addresses up to 24 bits long, does not trun­
cate this bit. 

18. Response to bus hold. 

Unlike the 8086 and 80286 processors, the 386 SX microprocessor responds to re­
quests for control of the bus from other potential bus masters, such as DMA con­
trollers, between transfers of parts of an unaligned operand, such as two bytes which 
form a word. 

19. Interrupt vector table limit. 

The LIDT instruction can be used to set a limit on the size of the interrupt vector 
table. Shutdown occurs if an interrupt or exception attempts to read a vector beyond 
the limit. (The 8086 processor does not have a shutdown mode.) 

20. If a stack operation wraps around the address limit, shutdown occurs. (The 8086 
processor does not have a shutdown mode.) 

21. Six new interrupt vectors. 

The 386 SX microprocessor adds six exceptions which are generated on an 8086 
processor only by program bugs. Exception handlers should be added which treat 
these exceptions as invalid operations. This additional software does not signifi­
cantly affect the existing 8086 processor software, because these interrupts do not 
occur normally. These interrupt identifiers should not be used by 8086 software, 
because they are reserved by Intel®. Table 14-2 describes the new 386 SX micropro­
cessor exceptions. 

14.8 DIFFERENCES FROM 80286 REAL-ADDRESS MODE 

The few differences which exist between 386 SX microprocessor real-address mode and 
80286 real-address mode are not likely to affect any existing 80286 programs except 
possibly the system initialization procedures. 

14-8 



386'" SX MICROPROCESSOR REAL-ADDRESS MODE 

Table 14-2. New 386 '" SX Microprocessor Exceptions 

Vector Description 

5 A BOUND instruction was executed with a register value outside the limit values. 
6 A reserved opcode was encountered, or a LOCK prefix was used improperly. 
7 The EM bit in the CRO register was set when an ESC instruction executed, or the TS 

bit was set when a WAIT instruction was executed. 
8 A vector indexes to an entry in the lOT which is beyond the segment limit for the 

lOT. This can only occur if the default limit has been changed. 
12 A stack operation crossed the address limit. 
13 An operation (other than a stack operation) exceeds the base or bounds of a seg-

ment, instruction execution is crossing the address limit (OFFFFH), or an instruction 
exceeds 15 bytes. 

14.8.1 Bus Lock 

The 80286 processor implements the bus lock function differently than the 386 SX mi­
croprocessor. Programs which use forms of memory locking specific to the 80286 proces­
sor may not run properly if transported to a specific application of the 386 SX 
microprocessor. 

The LOCK prefix and its bus signal only should be used tg prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following 386 SX microprocessor instructions when they modify memory. An invalid­
opcode exception results from using the LOCK prefix before any other instruction, or 
with these instructions when no write operation is made to memory (i.e., when the 
destination operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG instruction. 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 configurations lock the entire physical memory space. 

14.8.2 Initial Values of General Registers 

On the 386 SX microprocessor, certain general registers may contain different values 
after reset initialization than on the 80286 processor. This should not cause compatibility 
problems, because the contents of 8086 registers after reset initialization are undefined. 
If self-test is requested during the reset sequence and errors are detected in the 386 SX 
microprocessor, the EAX register will contain a non-zero value. The EDX register con­
tains the component and revision identifier. See Chapter 10 for more information. 

14-9 



386™ SX MICROPROCESSOR REAL-ADDRESS MODE 

14.8.3 MSW Initialization 

The 80286 processor initializes the MSW register to OFFFOR, but the 386 SX micropro­
cessor initializes this register to OOIOR. This. difference should have no effect, because 
the bits which are different are reserved on the 80286 processor. Programs which read 
the value of the MSW will behave differently on the 386 SX microprocessor only if they 
depend on the setting of the undefined reserved bits. 

14.8.4 Bus Hold 

Unlike the 8086 and 80286 processors, the 386 SX microprocessor responds to requests 
for control of the bus from other potential bus masters, such as DMA controllers, be­
tween transfers of parts of an unaligned operand, such as two bytes which form a word. 

14-10 



Virtua/-8086 Mode 15 





CHAPTER 15 
VIRTUAL-8086 MODE 

The 386'M SX microprocessor supports execution of one or more 8086, 8088, 80186, or 
80188 programs in a 386 SX microprocessor protected-mode environment. An 8086 pro­
gram runs in this environment as part of a virtual-8086 task. Virtual-8086 tasks take 
advantage of the hardware support of multitasking offered by the protected mode. Not 
only can there be multiple virtual-8086 tasks, each one running an 8086 program, but 
virtual-8086 tasks can run in multitasking with other 386 SX microprocessor tasks. 

The purpose of a virtual-8086 task is to form a "virtual machine" for running programs 
written for the 8086 processor. A complete virtual machine consists of 386 SX micropro­
cessor hardware and system software. The emulation of an 8086 processor is the result of 
software using hardware: 

• The hardware provides a virtual set of registers (through the TSS), a virtual memory 
space (the first megabyte of the linear address space of the task), and directly exe­
cutes all instructions which deal with these registers and with this address space. 

• The software controls the external interfaces of the virtual machine (110, interrupts, 
and exceptions) in a manner consistent with the larger environment in which it runs. 
In the case of I/O, software can choose either to emulate I/O instructions or to let the 
hardware execute them directly without software intervention. 

Software which supports virtual 8086 machines is called a virtual-8086 monitor. 

15.1 EXECUTING 8086 PROCESSOR CODE 

The processor runs in virtual-8086 mode when the VM (virtual machine) bit in the 
EFLAGS register is set. The processor tests this flag under two general conditions: 

1. When loading segment registers, to know whether to use 8086-style address 
translation. 

2. When decoding instructions, to determine which instructions are sensitive to IOPL. 

Except for these two modifications to its normal operations, the 386 SX microprocessor 
in virtual-8086 mode operates similarly to protected mode. 

15.1.1 Registers and Instructions 

The register set available in virtual-8086 mode includes all the registers defined for the 
8086 processor plus the new registers introduced by the 386 SX microprocessor: FS, GS, 
debug registers, control registers, and test registers. New instructions which explicitly 
operate on the segment registers FS and GS are available, and the new segment-override 
prefixes can be used to cause instructions to use the FS and GS registers for address 
calculations. Instructions can use 32-bit operands through the use of the operand size 
prefix. 

15-1 



VIRTUAL-SOS6 MODE 

Programs running as virtual-8086 tasks can take advantage of the new application­
oriented instructions added to the architecture by the introduction of the 80186, 80188, 
80286 and 386 SX microprocessors: 

• New instructions introduced on the 80186, 80188, and 80286 processors. 

PUSH immediate data 

Push all and pop all (PUSHA and POPA) 

Multiply immediate data 

Shift and rotate by immediate count 

String I/O 

ENTER and LEAVE instruction 

BOUND instruction 

• New instructions introduced on the 386 SX microprocessor. 

LSS, LFS, LGS instructions 

Long-displacement conditional jumps 

Single-bit instructions 

Bit scan instructions 

Double-shift instructions 

Byte set on condition instruction 

Move with sign/zero extension 

Generalized multiply instruction 

MOV to and from control registers 

MOV to and from test registers 

MOV to and from debug registers 

15.1.2 Address Translation 

In virtual-8086 mode, the 386 SX microprocessor does not interpret 8086 selectors by 
referring to descriptors; instead, it forms linear addresses as an 8086 processor would. It 
shifts the selector left by four bits to form a 20-bit base address. The effective address is 
extended with four clear bits in the upper bit positions and added to the base address to 
create a linear address, as shown in Figure 15-1. 

Because of the possibility of a carry, the resulting linear address may have as many as 21 
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 
to lOFFEFH (1 megabyte plus approximately 64K bytes) of the task's linear address 
space. 

Virtual-8086 tasks generate 32-bit linear addresses. While an 8086 program only can use 
the lowest 21 bits of a linear address, the linear address can be mapped using paging to 
any 24-bit physical address. 

15-2 



BASE 

+ 

OFFSET 

LINEAR 
ADDRESS 

VIRTUAL-SOS6 MODE 

19 3 0 

16-BIT SEGMENT SELECTOR ,0 0 001 
o 19 15 

10 0 0 0 I 16-BIT EFFECTIVE ADDRESS 

20 0 

1 X X X X X X X X X X X X X X X X X X X X X I 

Figure 15-1. SOS6 Address Translation 

240331 

Unlike the 8086 and 80286 processors, the 386 SX microprocessor can generate 32-bit 
effective addresses using an address override prefix; however in virtual-8086 mode, the 
value of a 32-bit address may not exceed 65,535 without causing an exception. For full 
compatibility with 80286 real-address mode, pseudo-protection faults (interrupt 12 or 13 
with no error code) occur if an effective address is generated outside the range 0 through 
65,535. 

15.2 STRUCTURE OF A VIRTUAL-808S TASK 

A virtual-8086 task consists of the 8086 program to be run and the 386 SX microproces­
sor "native mode" code which serves as the virtual-machine monitor. The task must be 
represented by a 386 SX microprocessor TSS (not an 80286 TSS). The processor enters 
virtual-8086 mode to run the 8086 program and returns to protected mode to run the 
monitor or other 386 SX tasks. 

To run in virtual-8086 mode, an existing 8086 processor program needs the following: 

• A virtual-8086 monitor. 

• Operating-system services. 

The virtual-8086 monitor is 386 SX microprocessor protected-mode code which runs at 
privilege-level 0 (most privileged). The monitor mostly consists of initialization and 
exception-handling procedures. As with any other 386 SX microprocessor program, 
code-segment descriptors for the monitor must exist in the GDT or in the task's LDT. 
The linear addresses above 10FFEFH are available for the virtual-8086 monitor, the 

15-3 



VIRTUAL-8086 MODE 

operating system, and other system software. The monitor also may need data-segment 
descriptors so it can examine the interrupt vector table or other parts of the 8086 pro­
gram in the first megabyte of the address space. 

In general, there are two options for implementing the 8086 operating system: 

1. The 8086 operating system may run as part of the 8086 program. This approach is 
desirable for either of the following reasons: 

~ The 8086 application code modifies the operating system. 

~ There is not sufficient development time to reimplement the 8086 operating 
system as a 386 SX microprocessor operating system. 

2. The 8086 operating system may be implemented or emulated in the virtual-8086 
monitor. This approach is desirable for any of the following reasons: 

~ Operating system functions can be more easily coordinated among several 
virtual-8086 tasks. 

~ The functions of the 8086 operating system can be easily emulated by calls to the 
386 SX microprocessor operating system. 

Note that the approach chosen for implementing the 8086 processor operating system 
may have different virtual-8086 tasks using different 8086 operating systems. 

15.2.1 Paging for Virtual-BOB6 Tasks 

Paging is not necessary for a single virtual-8086 task, but paging is useful or necessary for 
any of the following reasons: 

• Creating multiple virtual-8086 tasks. Each task must map the lower megabyte of lin­
ear addresses to different physical locations. 

• Emulating the address wraparound which occurs at 1 megabyte. With members of the 
8086 family, it is possible to specify addresses larger than 1 megabyte. For example, 
with a selector value of OFFFFH and an offset of OFFFFH, the effective address 
would be 10FFEFH (1 megabyte plus 65519 bytes). The 8086 processor, which can 
form addresses only up to 20 bits long, truncates the high-order bit, thereby 
"wrapping" this address to OFFEFH. The 386 SX microprocessor, however, does not 
truncate such an address. If any 8086 processor programs depend on address wrap­
around, the same effect can be achieved in a virtual-8086 task by mapping linear 
addresses between 100000H and 110000H and linear addresses between 0 and 
10000H to the same physical addresses. 

• Creating a virtual address space larger than the physical address space. 

• Sharing 8086 operating system or ROM code which is common to several 8086 pro­
grams running in multitasking. 

• Redirecting or trapping references to memory-mapped I/O devices. 

15-4 



VIRTUAL-SOS6 MODE 

15.2.2 Protection within a Virtual-SOS6 Task 

Protection is not enforced between the segments of an 8086 program. To protect the 
system software running in a virtual-8086 task from the 8086 application program, soft­
ware designers may follow either of these approaches: 

• Reserve the first megabyte (plus 64K bytes) of each task's linear address spaee for the 
8086 processor program. An 8086 processor task cannot generate addresses outside 
this range. 

• Use the U/S bit of page-table entries to protect the virtual-machine monitor and 
other system software in each virtual-8086 task's space. When the processor is in 
virtual-8086 mode, the CPL is 3 (least privileged). Therefore, an 8086 processor pro­
gram has only user privileges. If the pages of the virtual-machine monitor have super­
visor privilege, they cannot be accessed by the 8086 program. 

15.3 ENTERING AND LEAVING VIRTUAL-SOS6 MODE 

Figure 15-2 summarizes the ways to enter and leave an 8086 program. Virtual-8086 
mode is entered by setting the VM flag. There are two ways to do this: 

1. A task switch to a 386 SX microprocessor task loads the image of the EFLAGS 
register from the new TSS. The TSS of the new task must be a 386 SX microproces­
sor TSS, not an 80286 TSS, because the 80286 TSS does not load the high word of 
the EFLAGS register, which contains the VM flag. A set VM flag in the new con­
tents of the EFLAGS register indicates that the new task is executing 8086 instruc­
tions; therefore, while loading the segment registers from the TSS, the 386 SX 
microprocessor forms base addresses in the 8086 style. 

2. An IRET instruction from a procedure of a 386 SX task loads the EFLAGS register 
from the stack. A set VM flag indicates the procedure to which control is being 
returned to be an 8086 procedure. The CPL at the time the IRET instruction is 
executed must be 0, otherwise the processor does not change the state of the VM 
flag. 

When a task switch is used to enter virtual-8086 mode, the segment registers are loaded 
from a TSS. But when an IRET instruction is used to set the VM flag, the segment 
registers keep the contents loaded during protected mode. Software should then reload 
these registers with segment selectors appropriate for virtuaJ-8086 mode. 

The processor leaves virtual-8086 mode when an interrupt or exception occurs. There 
are two cases: 

1. The interrupt or exception causes a task switch. A task switch from a virtual-8086 
task to any other task loads the EFLAGS register from the TSS of the new task. If 
the new TSS is a 386 SX microprocessor TSS and the VM flag in the new contents 
of the EFLAGS register is clear or if the new TSS is an 80286 TSS, the processor 
clears the VM flag of the EFLAGS register, loads the segment registers from the 
new TSS using 386 SX CPU-style address formation, and begins executing the in­
structions of the new task in 386 SX microprocessor protected mode. 

15-5 



VIRTUAL-SOSS MODE 

MODE TRANSITION DIAGRAM 

TASK SWITCH I INITIAL I 
l OR IRET I ENTRY 

INTERRUPT, EXCEPTION 

8086 PROGRAM V86 MONITOR 

(V86 MODE) IRET 
(PROTECTED 

MODE) 

I TASK SWITCH 
OTHER 386" SX TASKS 

TASK SWITCH I 
(PROTECTED MODE) 

TASK SWITCH TASK SWITCH 

240331 

Figure 15-2. Entering and Leaving Virtual-SOSS Mode 

2. The interrupt or exception calls a privilege-level 0 procedure (most privileged). The 
processor stores the current contents of the EFLAGS register on the stack, then 
clears the VM flag. The interrupt or exception handler, therefore, runs as "native" 
386 SX microprocessor protected-mode code. If an interrupt or exception calls a 
procedure in a conforming segment or in a segment at a privilege level other than 0 
(most privileged), the processor generates a general-protection exception; the error 
code is the selector of the code segment to which a call was attempted. 

System software does not change the state of the VM flag directly, but instead changes 
states in the image of the EFLAGS register stored on the stack or in the TSS. The 
virtual-8086 monitor sets the VM flag in the EFLAGS image on the stack or in the TSS 
when first creating a virtual-8086 task. Exception and interrupt handlers can examine the 
VM flag on the stack. If the interrupted procedure was running in virtual-8086 mode, the 
handler may need to call the virtual-8086 monitor. 

15.3.1 Transitions Through Task Switches 

A task switch to or from a virtual-8086 task may come from any of three causes: 

1. An interrupt which calls a task gate. 

2. An action of the scheduler of the 386 SX microprocessor operating system. 

3. Executing an IRET instruction when the NT flag is set. 

In any of these cases, the processor changes the VM flag in the EFLAGS register ac­
cording to the image in the new TSS. If the new TSS is an 80286 TSS, the upper word of 
the EFLAGS register is not in the TSS; the processor clears the VM flag in this case. 
The processor updates the VM flag prior to loading the segment registers from their 

15-6 



VIRTUAL-SOS6 MODE 

images in the new TSS. The new setting of the YM flag determines whether the proces­
sor interprets the new segment-register images as 8086 selectors or 80286 and 386 SX 
microprocessor selectors. 

15.3.2 Transitions Through Trap Gates and Interrupt Gates 

The 386 SX microprocessor leaves virtual-8086 mode as the result of an exception or 
interrupt which calls a trap or interrupt gate. The exception or interrupt handler returns 
to the 8086 program by executing an IRET instruction. 

Because it was designed to run on an 8086 processor, an 8086 program in a virtual-8086 
task will have an 8086-style interrupt table, which starts at linear address O. However, the 
386 SX microprocessor does not use this table directly. For all exceptions and interrupts 
which occur virtual-8086 mode, the processor calls handlers through the IDT. The IDT 
entry for an interrupt or exception in a virtual-8086 task must contain either: 

• A task gate. 

• A 386 SX trap gate (descriptor type 14) or 386 SX microprocessor interrupt gate 
(descriptor type 15), which must point to a nonconforming, privilege-level 0 (most 
privileged), code segment. 

Interrupts and exceptions which call 386 SX microprocessor trap or interrupt gates use 
privilege-level O. The contents of the segment registers are stored on the stack for this 
privilege level. Figure 15-3 shows the format of this stack after an exception or interrupt 
which occurs while a virtual-8086 task is running an 8086 program. 

After the processor saves the 8086 segment registers on the stack for privilege level 0, it 
clears the segment registers before running the handler procedure. This lets the inter­
rupt handler safely save and restore the DS, ES, FS, and GS registers as though they 
were 386 SX microprocessor selectors. Interrupt handlers, which may be called in the 
context of either a regular task or a virtual-8086 task, can use the same code sequences 
for saving and restoring the registers for any task. Clearing these registers before execu­
tion of the IRET instruction does not cause a trap in the interrupt handler. Interrupt 
procedures which expect values in the segment registers or which return values in the 
segment registers must use the register images saved on the stack for privilege level O. 
Interrupt handlers which need to know whether the interrupt occurred in virtual-8086 
mode can examine the YM flag in the stored contents of the EFLAGS register. 

An interrupt handler passes control to the virtual-8086 monitor if the VM flag is set in 
the EFLAGS image stored on the stack and the interrupt or exception is one which the 
monitor needs to handle. The virtual-8086 monitor may either: 

• Handle the interrupt within the virtual-8086 monitor. 

• Call the 8086 program's interrupt handler. 

15-7 



WITHOUT ERROR CODE 

UNUSED 

OLD GS 

OLD FS 

OLD OS 

OLD ES 

OLD SS 

OLD ESP 

OLD EFLAGS 

OLD CS 

OLD EIP 

VIRTUAL·SOS6 MODE 

.-- ESP FROM 
TSS 

.-- NEW ESP 

WITH ERROR CODE 

UNUSED 

OLD SS 

OLD SS 

OLD SS 

OLD SS 

OLD SS 

OLD ESP 

OLD EFLAGS 

OLD CS 

OLD EIP 

ERROR CODE 

.-- ESP FROM 
TSS 

'--NEW ESP 

240331 

Figure 15·3. Privilege Level 0 Stack after Interrupt in Virtual·SOS6 Task 

Sending an interrupt or exception back to the 8086 program involves the following steps: 

1. Use the 8086 interrupt vector to locate the appropriate handler procedure. 

2. Store the state of the 8086 program on the privilege-level 3 stack (least privileged). 

3. Change the return link on the privilege-level 0 stack (most privileged) to point to the 
privilege-level 3 handler procedure. 

4. Execute an IRET instruction to pass control to the handler. 

5. When the IRET instruction from the privilege-level 3 handler again calls the virtual-
8086 monitor, restore the return link on the privilege-level 0 stack to point to the 
original, interrupted, privilege-level 3 procedure. 

6. Execute an IRET instruction to pass control back to the interrupted procedure. 

15.4 ADDITIONAL SENSITIVE INSTRUCTIONS 

When the 386 SX microprocessor is running in virtual-8086 mode, the PUSHF, POPF, 
INT nand IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS 

15-8 



VIRTUAL-808S MODE 

instructions, which are sensitive to 10PL in protected mode, are not sensitive in virtual-
8086 mode. Following is a complete list of instructions which are sensitive in virtual-8086 
mode: 

CLI - Clear Interrupt-Enable Flag 
STI 
PUSHF 
POPF 
INT n 
IRET 

-Set Interrupt-Enable Flag 
-Push Flags 
-Pop Flags 
- Software Interrupt 
- Interrupt Return 

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an 
attempt to use the instructions listed above will trigger a general-protection exception. 
These instructions are sensitive to the IOPL to give the virtual-8086 monitor a chance to 
emulate the facilities they affect. 

15.4.1 Emulating 8086 Operating System Calls 

The INT n instruction is sensitive to IOPL so a virtual-8086 monitor can intercept calls 
to the 8086 operating system. Many 8086 operating systems are called by pushing param­
eters onto the stack, then executing an INT n instruction. If the IOPL is less than 3, INT 
n instructions are intercepted by the virtual-8086 monitor. The virtual-8086 monitor then 
can emulate the function of the 8086 operating system or send the interrupt back to the 
8086 operating system. 

15.4.2 Emulating the Interrupt-Enable Flag 

When the 386 SX microprocessor is running an 8086 program in a virtual-8086 task, the 
PUSHF, POPF, and IRET instructions are sensitive to the IOPL. This lets the virtual-
8086 monitor protect the interrupt-enable flag (IF). Other instructions which affect the 
IF flag (such as the STI and CLI instructions) are sensitive to the IOPL in both 8086 and 
386 SX microprocessor programs. 

Many 8086 programs written for non-multitasking systems set and clear the IF flag to 
control interrupts. This may cause problems in a multitasking environment. If the IOPL 
is less than 3, all instructions which change or test the IF flag generate an exception. The 
virtual-8086 monitor then can control the IF flag in a manner compatible with the 386 
SX microprocessor environment and transparent to 8086 programs. 

15.5 VIRTUAL I/O 

Many 8086 programs written for non-multitasking systems directly access I/O ports. This 
may cause problems in a multitasking environment. If more than one program accesses 
the same port, they may interfere with each other. Most multitasking systems require 
application programs to access I/O ports through the operating system. This results in 
simplified, centralized control. 

15-9 



VIRTUAl·BOB6 MODE 

The 386 SX microprocessor provides I/O protection for creating I/O which is compatible 
with the 386 SX microprocessor environment and transparent to 8086 programs. Design­
ers may take any of several possible approaches to protecting I/O ports: 

• Protect the I/O address space and generate exceptions for all attempts to perform T/O 
directly. 

• Let the 8086 processor program perform I/O directly. 

• Generate exceptions on attempts to access specific I/O ports. 

• Generate exceptions on attempts to access specific memory-mapped I/O ports. 

The method of controlling access to I/O ports depends upon whether they are 1/0-
mapped or memory-mapped. 

15.5.1 I/O-Mapped I/O 

The I/O address space in virtual-8086 mode differs from protected mode only because 
the 10PL is not checked. Only the I/O permission bit map is checked when virtual-8086 
tasks access the I/O address space. 

The I/O permission bit map can be used to generate exceptions on attempts to access 
specific I/O addresses. The I/O permission bit map of each virtual-8086 task determines 
which I/O addresses generate exceptions for that task. Because each task may have a 
different I/O permission bit map, the addresses which generate exceptions for one task 
may be different from the addresses for another task. See Chapter 8 for more informa­
tion about the I/O permission bit map. 

15.5.2 Memory-Mapped I/O 

In systems which use memory-mapped I/O, the paging facilities of the 386 SX micropro­
cessor can be used generate exceptions for attempts to access I/O ports. The virtual-8086 
monitor may use paging to control memory-mapped I/O in these ways: 

• Map part of the linear address space of each task which needs to perform I/O to the 
physical address space where I/O ports are placed. By putting the I/O ports at differ­
ent addresses (in different pages), the paging mechanism can enforce isolation be­
tween tasks. 

• Map part of the linear address space to pages which are not-present. This generates 
an exception whenever a task attempts to perform I/O to those pages. System soft­
ware then can interpret the I/O operation being attempted. 

Software emulation of the I/O space may require too much operating system interven­
tion under some conditions. In these cases, it may be possible to generate an exception 
for only the first attempt to access I/O. The system software then may determine 
whether a program can be given exclusive control of I/O temporarily, the protection of 
the I/O space may be lifted, and the program allowed to run at full speed. 

15-10 



VIRTUAL-SOS6 MODE 

15.5.3 Special I/O Buffers 

Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be 
emulated using page mapping. The linear space for the buffer can be mapped to a 
different physical space for each virtual-8086 task. The virtual-8086 monitor then can 
control which virtual buffer to copy onto the real buffer in the physical address space. 

15.6 DIFFERENCES FROM 8086 PROCESSOR 

In general, virtual-8086 mode will run software written for the 8086, 8088, 80186, and 
80188 processors. The following list shows the minor differences between the 8086 pro­
cessor and the virtual-8086 mode of the 386 SX microprocessor. 

1. Instruction clock counts. 

The 386 SX microprocessor takes fewer clocks for most instructions than the 8086 
processor. The areas most likely to be affected are: 

• Delays required by I/O devices between I/O operations. 

• Assumed delays with 8086 processor operating in parallel with an 8087. 

2. Divide exceptions point to the DIV instruction. 

Divide exceptions on the 386 SX microprocessor always leave the saved CS:IP value 
pointing to the instruction which failed. On the 8086 processor, the CS:IP value 
points to the next instruction. 

3. Undefined 8086 processor opcodes. 

Opcodes which were not defined for the 8086 processor generate an invalid-opcode 
or execute as one of the new instructions defined for the 386 SX microprocessor. 

4. Value written by PUSH SP. 

The 386 SX microprocessor pushes a different value on the stack for PUSH SP than 
the 8086 processor. The 386 SX microprocessor pushes the value in the SP register 
before it is incremented as part of the push operation; the 8086 processor pushes the 
value of the SP register after it is incremented. If the pushed value is important, 
replace PUSH SP instructions with the following three instructions: 

PUSH BP 
MOV BP, SP 
XCHG BP, [BPl 

This code functions as the 8086 PUSH SP instruction on the 386 SX microprocessor. 

5. Shift or rotate by more than 31 bits. 

The 386 SX microprocessor masks all shift and rotate counts to the lowest five bits. 
This limits the count to a maximum of 31 bit positions, thereby limiting the time that 
interrupt response is delayed while the instruction executes. 

15·11 



VIRTUAL-SOS6 MODE 

6. Redundant prefixes. 

The 386 SX microprocessor limits instructions to 15 bytes. The only way to violate 
this limit is with redundant prefixes before an instruction. A general-protection ex­
ception is generated if the limit on instruction length is violated. The 8086 processor 
has no instruction length limit. 

7. Operand crossing offset 0 or 65,535. 

On the 8086 processor, an attempt to access a memory operand which crosses offset 
65,535 (e.g., MaYa word to offset 65,535) or offset 0 (e.g., PUSH a word when the 
contents of the SP register are 1) causes the offset to wrap around modulo 65,536. 
The 386 SX microprocessor generates an exception in these cases, a general­
protection exception if the segment is a data segment (i.e., if the CS, DS, ES, FS, or 
GS register is being used to address the segment), or a stack exception if the seg­
ment is a stack segment (i.e., if the SS register is being used). 

8. Sequential execution across offset 65,535. 

On the 8086 processor, if sequential execution of instructions proceeds past offset 
65,535, the processor fetches the next instruction byte from offset 0 of the same 
segment. On the 386 SX microprocessor, the processor generates a general­
protcction exception. 

9. LOCK is restricted to certain instructions. 

The LOCK prefix and its output signal should only be used to prevent other bus 
masters from interrupting a data movement operation. The LOCK prefix only may 
be used with the following 386 SX microprocessor instructions when they modify 
memory. An invalid opcode exception results from using LOCK before any other 
instruction, or with these instructions when no write operation is made to memory. 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG instruction. 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

10. Single-stepping external interrupt handlers. 

The priority of the 386 SX microprocessor single-step exception is different from 
that of the 8086 processor. This change prevents an external interrupt handler from 
being single-stepped if the interrupt occurs while a program is being single-stepped. 
The 386 SX microprocessor single-step exception has higher priority than any exter­
nal interrupt. The 386 SX microprocessor will still single-step through an interrupt 
handler called by the INT instruction or by an exception. 

11. IDlY exceptions for quotients of 80H or 8000H. 

The 386 SX microprocessor can generate the largest negative number as a quotient 
from the IDlY instruction. The 8086 processor generates a divide-error exception 
instead. 

12. Flags in stack. 

The contents of the EFLAGS register stored by the PUSHF instruction, by inter­
rupts, and by exceptions is different from that stored by the 8086 processor in bit 

15-12 



VIRTUAL-SOS6 MODE 

positions 12 through 15. On the 8086 processor these bits are stored as though they 
were set, but in virtual-8086 mode bit 15 is always clear, and bits 14 through 12 have 
the last value loaded into them. 

13. NMI interrupting NMI handlers. 

After an NMI interrupt is accepted by the 386 SX microprocessor, the NMI inter­
rupt is masked until an IRET instruction is executed. 

14. Coprocessor errors generate interrupt 16. 

Any 386 SX microprocessor system with a coprocessor must use interrupt 16 for the 
coprocessor-error exception. If an 8086 system uses another vector for the 8087 
interrupt, both vectors should point to the coprocessor-error exception handler. 

15. Numeric exception handlers should allow prefixes. 

On the 386 SX microprocessor, the value of CS:IP saved for coprocessor exceptions 
points at any prefixes before an ESC instruction. On 8086 processor systems, the 
saved CS:IP points to the ESC instruction itself. 

16. Coprocessor does not use interrupt controller. 

The coprocessor error signal to the 386 SX microprocessor does not pass through an 
interrupt controller (an 8087 INT signal does). Some instructions in a coprocessor 
error handler may need to be deleted if they deal with the interrupt controller. 

17. Response to bus hold. 

Unlike the 8086 and 80286 processors, the 386 SX microprocessor responds to re­
quests for control of the bus from other potential bus masters, such as DMA con­
trollers, between transfers of parts of an unaligned operand, such as two bytes which 
form a word. 

18. CPL is 3 in virtual-8086 mode. 

The 8086 processor does not support protection, so it has no CPL. Virtual-8086 
mode uses a CPL of 3, which prevents the execution of privileged instructions. 
These are: 

• LIDT instruction 

• LGDT instruction 

• LMSW instruction 

• special forms of the MOV instruction for loading and storing the control registers 

• CLTS instruction 

• HLT instruction 
These instructions may be executed while the processor is in real-address mode· 
following reset initialization. They allow system data structures, such as descriptor 
tables, to be set up before entering protected mode. Virtual-8086 mode is entered 
from protected mode, so it has no need for these instructions. 

15-13 



VIRTUAL-SOS6 MODE 

15.7 DIFFERENCES FROM 80286 REAL-ADDRESS MODE 

The 80286 processor implements the bus lock function differently than the 386 SX mi­
croprocessor. This fact mayor may not be apparent to 8086 programs, depending on how 
the virtual-8086 monitor handles the LOCK prefix. Instructions with the LOCK prefix 
are sensitive to the IOPL; software designers can choose to emulate its function. If, 
however, 8086 programs are allowed to execute LOCK directly, programs which use 
forms of memory locking specific to the 8086 processor may not run properly when run 
on the 386 SX microprocessor. 

The LOCK prefix and its bus signal only should be used to prevent other bus masters 
from interrupting a data movement operation. The LOCK prefix only may be used with 
the following 386 SX microprocessor instructions when they modify memory. An invalid­
opcode exception results from using the LOCK prefix before any other instruction, or 
with these instructions when no write operation is made to memory (i.e., when the 
destination operand is in a register). 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG instruction. 

• One-operand arithmetic and logical: the INC, DEC, NOT, NEG instructions. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and 
XOR instructions. 

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 and 
80286 configurations lock the entire physical memory space. 

Unlike the 8086 and 80286 processors, the 386 SX microprocessor responds to requests 
for control of the bus from other potential bus masters, such as DMA controllers, be­
tween transfers of parts of an unaligned operand, such as two bytes which form a word. 

15-14 



Mixing 16-Bit and 32-Bit 16 
Code 





CHAPTER 16 
MIXING 16-BIT AND 32-BIT CODE 

The 386™ SX microprocessor running in protected mode is a complete 32-bit architec­
ture, but it supports programs written for the 16-bit architecture of earlier Intel® proces­
sors. There are three levels of this support: 

1. Running 8086 and 80286 code with complete compatibility. 

2. Mixing 16-bit modules with 32-bit modules. 

3. Mixing 16-bit and 32-bit addresses and data within one module. 

The first level is discussed in Chapter 13, Chapter 14, and Chapter 15. This chapter 
shows how 16-bit and 32-bit modules can cooperate with one another, and how one 
module can use both 16-bit and 32-bit operands and addressing. 

The 386 SX microprocessor functions most efficiently when it is possible to distinguish 
between pure 16-bit modules and pure 32-bit modules. A pure 16-bit module has these 
characteristics: 

• All segments occupy 64K bytes or less. 

• Data items are either 8 bits or 16 bits wide. 

• Pointers to code and data have 16-bit offsets. 

• Control is transferred only among 16-bit segments. 

A pure 32-bit module has these characteristics: 

• Segments may occupy more than 64K bytes (0 bytes to 4 gigabytes). 

• Data items are either 8 bits or 32 bits wide. 

• Pointers to code and data have 32-bit offsets. 

• Control is transferred only among 32-bit segments. 

A program written for 16-bit processor would be pure 16-bit code. A new program 
written for the protected mode of the 386 SX microprocessor would be pure 32-bit code. 
As applications move from 16-bit processors to the 32-bit 386 SX microprocessor, there 
will be cases where 16-bit and 32-bit code will need to be mixed. Reasons for mixing 
code are: 

• Modules will be converted one-by-one from 16-bit environments to 32-bit 
environments. 

• Older, 16-bit compilers and software-development tools will be used in the new 32-bit 
operating environment until new 32-bit tools are available. 

• The source code of 16-bit modules is not available for modification. 

• The specific data structures used by a given module are fixed at 16-bit word size. 

• The native word size of the source language is 16 bits. 

16-1 



MIXING 16-BIT AND 32-BIT CODE 

16.1 USING 16-BIT AND 32-BIT ENVIRONMENTS 

The features of the architecture which permit the 386 SX microprocessor to mix 16-bit 
and 32-bit address and operand size include: 

• The D-bit (default bit) of code-segment descriptors, which determines the default 
choice of operand-size and address-size for the instructions of a code segment. (In 
real-address mode and virtual-8086 mode, which do not use descriptors, the default is 
16 bits.) A code segment whose D-bit is set is a 32-bit segment; a code segment whose 
D-bit is clear is a 16-bit segment. The D-bit eliminates the need to put the operand 
size and address size in instructions when all instructions use operands and effective 
addresses of the same size. 

• Instruction prefixes to override the default choice of operand size and address size 
(available in protected mode as well as in real-address mode and virtual-8086 mode). 

• Separate 32-bit and 16-bit gates for intersegment control transfers (including call 
gates, interrupt gates, and trap gates). The operand size for the control transfer is 
determined by the type of gate, not by the D-bit or prefix of the transfer instruction. 

• Registers which can be used both for 16-bit and 32-bit operands and effective-address 
calculations. 

• The B bit (Big bit) of data-segment descriptors, which specifies the size of stack 
pointer (the 32-bit ESP register or the 16-bit SP register) used by the processor for 
implicit stack references. 

16.2 MIXING 16-BIT AND 32-BIT OPERATIONS 

The 386 SX microprocessor has two instruction prefixes which allow mixing of 32-bit and 
16-bit operations within one segment: 

• The operand-size prefix (66H) 

• The address-size prefix (67H) 

These prefixes reverse the default size selected by the Default bit. For example, the 
processor can interpret the MOY mem, reg instruction in any of four ways: 

• In a 32-bit segment: 

1. Moves 32 bits from a 32-bit register to memory using a 32-bit effective address. 

2. If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address. 

3. If preceded by an address-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address. 

4. If preceded by both an address-size prefix and an operand-size prefix, moves 
16 bits from a 16-bit register to memory using a 16-bit effective address. 

• In a 16-bit segment: 

1. Moves 16 bits from a 16-bit register to memory using a 16-bit effective address. 

2. If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address. 

16-2 



MIXING 16-BIT AND 32-BIT CODE 

3. If preceded by an address-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address. 

4. If preceded by both an address-size prefix and an operand-size prefix, moves 
32 bits from a 32-bit register to memory using a 32-bit effective address. 

These examples show that any instruction can generate any combination of operand size 
and address size regardless of whether the instruction is in a 16- or 32-bit segment. The 
choice of the 16- or 32-bit default for a code segment is based upon these criteria: 

1. The need to address instructions or data in segments which are larger than 
64K bytes. 

2. The predominant size of operands. 

3. The addressing modes desired. (See Chapter 17 for an explanation of the additional 
addressing modes available when 32-bit addressing is used.) 

The Default bit should be given a setting which allows the predominant size of operands 
to be accessed without operand-size prefixes. 

16.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS 

Because the choice of operand size and address size is specified in code segments and 
their descriptors, data segments can be shared freely among both 16-bit and 32-bit code 
segments. The only limitation is imposed by pointers with 16-bit offsets, which only can 
point to the first 64K bytes of a segment. When a data segment with more than 64K 
bytes is to be shared among 16- and 32-bit segments, the data which is to be accessed by 
the 16-bit segments must be located within the first 64K bytes. 

A stack which spans less than 64K bytes can be shared by both 16- and 32-bit code 
segments. This class of stacks includes: 

• Stacks in expand-up segments with the Granularity and Big bits clear. 

• Stacks in expand-down segments with the Granularity and Big bits clear. 

• Stacks in expand-up segments with the Granularity bit set and the Big bit clear, in 
which the stack is contained completely within the lower 64K bytes. (Offsets greater 
than OFFFFH can be used for data, other than the stack, which is not shared.) 

The B-bit of a stack segment cannot, in general, be used to change the size of stack used 
by a 16-bit code segment. The size of stack pointer used by the processor for implicit 
stack references is controlled by the B-bit of the data-segment descriptor for the stack. 
Implicit references are those caused by interrupts, exceptions, and instructions such as 
the PUSH, POP, CALL, and RET instructions. Although it seems like the B bit could be 
used to increase the stack segment for 16-bit programs beyond 64K bytes, this may not 
be done. The B-bit does not control explicit stack references, such as accesses to param­
eters or local variables. A 16-bit code segment can use a "big" stack only if the code is 
modified so that all explicit references to the stack are preceded by the address-size 
prefix, causing those references to use 32-bit addressing. 

16-3 



MIXING 16-BIT AND 32-BIT CODE 

In big, expand-down segments (the Granularity, Big, and Expand-down bits set), all 
offsets are greater than 64K, therefore 16-bit code cannot use this kind of stack segment 
unless the code segment is modified to use 32-bit addressing. (See Chapter 6 for more 
information about the G, B, and E bits.) 

16.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE 
SEGMENTS 

When transferring control among procedures in 16-bit and 32-bit code segments, pro­
grammers must be aware of three points: 

• Addressing limitations imposed by pointers with 16-bit offsets. 

• Matching of operand-size attribute in effect for the CALL/RET instruction pair and 
the Interrupt/IRET pair for managing the stack correctly. 

• Translation of parameters, especially pointer parameters. 

Clearly, 16-bit effective addresses cannot be used to address data or code located beyond 
OFFFFH in a 32-bit segment, nor can large 32-bit parameters be squeezed into a 16-bit 
word; however, except for these obvious limits, most interface problems between 16-bit 
and 32-bit modules can be solved. Some solutions involve inserting interface code be­
tween modules. 

16.4.1 Size of Code-Segment Pointer 

For control-transfer instructions which use a pointer to identify the next instruction (i.e., 
those which do not use gates), the size of the offset portion of the pointer is determined 
by the operand-size attribute. The implications of the use of two different sizes of code­
segment pointer are: 

• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is 
always possible using a 32-bit operand size. 

• A JMP, CALL, or RET instruction from a 16-bit segment using a 16-bit operand size 
cannot address a destination in a 32-bit segment if the address of the destination is 
greater than OFFFFH. 

An interface procedure can provide a mechanism for transfers from 16-bit segments to 
destinations in 32-bit segments beyond 64K. The requirements for this kind of interface 
procedure are discussed later in this chapter. 

16.4.2 Stack Management for Control Transfers 

Because stack management is different for 16-bit CALL and RET instructions than for 
32-bit CALL and RET instructions, the operand size of the RET instruction must match 
the CALL instruction. (See Figure 16-1.) A 16-bit CALL instruction pushes the contents 
of the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. 
The matching RET instruction also must use a 16-bit operand size to pop these 16-bit 
values from the stack into the 16-bit registers. A 32-bit CALL instruction pushes the 

16-4 



o 0 
I F 
R 
E E 
C X 
T P 
I A 
o N 

N l ~ 

o 0 
I F 
R 
E E 
C X 
T P 
I A 
o N 
N S 

l~ 

MIXING 16-BIT AND 32-BIT CODE 

WITHOUT PRIVILEGE TRANSITION 

AFTER 16-BIT CALL AFTER 32-BIT CALL 

.31 ·0 .31 ·0 

SP 

WITH PRIVILEGE TRANSITION 

AFTER 16-BIT CALL AFTER 32-BIT CALL 

31 0 31 0 

SS SP SS 

PARM2 PARM1 

CS IP _SP 

CS 

EIP _ESP 

. 
240331 

Figure 16-1. Stack after Far 16- and 32-Bit Calls 

contents of the 32-bit EIP register and (for interlevel calls) the 32-bit ESP register. The 
matching RET instruction also must use a 32-bit operand size to pop these 32-bit values 
from the stack into the 32-bit registers. If the two parts of a CALL/RET instruction pair 
do not have matching operand sizes, the stack will not be managed correctly and the 
values of the instruction pointer and stack pointer will not be restored to correct values. 

When the CALL instruction and its matching RET instruction are in segments which 
have D bits with the same values (i.e., both have 32-bit defaults or both have 16-bit 
defaults), the default settings may be used. When the CALL instruction and its matching 
RET instruction are in segments which have different D-bit values, an operand size 
prefix must be used. 

There are three ways for a 16-bit procedure to make a 32-bit call: 

1. Use a 16-bit call to a 32-bit interface procedure. The interface procedure uses a 
32-bit call to the intended destination. 

2. Make the call through a 32-bit call gate. 

3. Modify the 16-bit procedure, inserting an operand-size prefix before the call, to 
change it to a 32-bit call. 

16-5 



MIXING 16-BIT AND 32-BIT CODE 

Likewise, there are three ways to cause a 32-bit procedure to make a 16-bit call: 

1. Use a 32-bit call to a 32-bit interface procedure. The interface procedure uses a 
16-bit call t') the intended destination. 

2. Make the call through a 16-bit call gate. 

3. Modify the 32-bit procedure, inserting an operand-size prefix before the call, 
thereby changing it to a 16-bit call. (Be certain that the return offset does not exceed 
OFFFFH.) 

Programmers can use any of the preceding methods to make a CALL instruction in a 
16-bit segment match the corresponding RET instruction in a 32-bit segment, or to make 
a CALL instruction in a 32-bit segment match the corresponding RET instruction in a 
16-bit segment. 

16.4.2.1 CONTROLLING THE OPERAND SIZE FOR A CALL 

The operand-size attribute in effect for the CALL instruction is specified by the D bit 
for the segment containing the destination and by any operand-size instruction prefix. 

When the selector of the pointer referenced by a CALL instruction selects a gate de­
scriptor, the type of call is determined by the type of call gate. A call through an 80286 
call gate (descriptor type 4) has a 16-bit operand-size attribute; a call through a 386 SX 
microprocessor call gate (descriptor type 12) has a 32-bit operand-size attribute. The 
offset to the destination is taken from the gate descriptor; therefore, even a 16-bit pro­
cedure can call a procedure located more than 64K bytes from the base of a 32-bit 
segment, because a 32-bit call gate contains a 32-bit offset. 

An unmodified 16-bit code segment which has run successfully on an 8086 processor or 
in real-mode on an 80286 processor will have a D-bit which is clear and will not use 
operand-size override prefixes; therefore, it will use 16-bit versions of the CALL instruc­
tion. The only modification needed to make a 16-bit procedure produce a 32-bit call is to 
relink the call to a 386 SX microprocessor call gate. 

16.4.2.2 CHANGING SIZE OF A CALL 

When adding 32-bit gates to 16-bit procedures, it is important to consider the number of 
parameters. The count field of the gate descriptor specifies the size of the parameter 
string to copy from the current stack to the stack of the more privileged procedure. The 
count field of a 16-bit gate specifies the number of words to be copied, whereas the count 
field of a 32-bit gate specifies the number of doublewords to be copied; therefore, the 
16-bit procedure must use an even number of words as parameters. 

16.4.3 Interrupt Control Transfers 

With a control transfer caused by an exception or interrupt, a gate is used. The operand­
size attribute for the interrupt is determined by the gate descriptor in the interrupt 
descriptor table (IDT). 

16-6 



MIXING 16-BIT AND 32-BIT CODE 

A 386 SX microprocessor interrupt or trap gate (descriptor type 14 or 15) to a 32-bit 
interrupt handler can be used to interrupt either 32-bit or 16-bit procedures. However, 
sometimes it is not practical to permit an interrupt or exception to call a 16-bit handler 
when 32-bit code is running, because a 16-bit interrupt procedure has a return offset of 
only 16 bits saved on its stack. If the 32-bit procedure is running at an address beyond 
OFFFFH, the 16-bit interrupt procedure cannot provide the return address. 

16.4.4 Parameter Translation 

When segment offsets or pointers (which contain segment offsets) are passed as param­
eters between 16-bit and 32-bit procedures, some translation is required. If a 32-bit 
procedure passes a pointer to data located beyond 64K to a 16-bit procedure, the 16-bit 
procedure cannot use it. Except for this limitation, interface code can perform any for­
mat conversion between 32-bit and 16-bit pointers which may be needed. 

Parameters passed by value between 32-bit and 16-bit code also may require translation 
between 32-bit and 16-bit formats. The form of the translation is application-dependent. 

16.4.5 The Interface Procedure 

Placing interface code between 32-bit and 16-bit procedures can be the solution to sev­
eral interface problems: 

• Allowing procedures in 16-bit segments to call procedures with offsets greater than 
OFFFFH in 32-bit segments. 

• Matching operand size between CALL and RET instructions. 

• Translating parameters (data). 

The interface code is simplified where these restrictions are followed. 

• Interface code resides in a code segment whose D-bit is set, which indicates a default 
operand size of 32-bits. 

• All procedures which may be called by 16-bit procedures have offsets which are not 
greater than OFFFFH. 

• All return addresses saved by 16-bit procedures also have offsets not greater than 
OFFFFH. 

The interface code becomes more complex if any of these restrictions are violated. For 
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond 
OFFFFH, the interface code will have to provide the offset to the entry point. The 
mapping between 16- and 32-bit addresses only is performed automatically when a call 
gate is used, because the descriptor for a call gate contains a 32-bit address. When a call 
gate is not used, the descriptor must provide the 32-bit address. 

16-7 



MIXING 16-BIT AND 32-BIT CODE 

The interface code calls procedures in other segments. There may be two kinds of 
interface: 

• Where 16-bit procedures call 32-bit procedures. The interface code is called by 16-bit 
CALL instructions and uses the operand-size prefix before RET instructions for per­
forming a 16-bit RET instruction. Calls to 32-bit segments are 32-bit CALL instruc­
tions (by default, because the D-bit is set), and the 32-bit code returns with 32-bit 
RET instructions. 

• Where 32-bit procedures call 16-bit procedures. The interface code is called by 32-bit 
CALL instructions, and returns with 32-bit RET instructions (by default, because the 
D-bit is set). CALL instructions to 16-bit procedures use the operand-size prefix; 
16-bit procedures return with 16-bit RET instructions. 

16-8 



Part IV 
Instruction Set 





386™ SX Microprocessor 17 
Instruction Set 





CHAPTER 17 
386™ SX MICROPROCESSOR INSTRUCTION SET 

This chapter presents instructions for the 386"M SX microprocessor in alphabetical order. 
For each instruction, the forms are given for each operand combination, including object 
code produced, operands required, execution time, and a description. For each instruc­
tion, there is an operational description and a summary of exceptions generated. 

17.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES 

When executing an instruction, the 386 SX microprocessor can address memory using 
either 16 or 32-bit addresses. Consequently, each instruction that uses memory addresses 
has associated with it an address-size attribute of either 16 or 32 bits. The use of 16-bit 
addresses implies both the use of 16-bit displacements in the instruction and the gener­
ation of 16-bit address offsets (segment relative addresses) as the result of the effective 
address calculation. The use of 32-bit addresses implies the use of 32-bit displacements 
and the generation of 32-bit address offsets. Similarly, an instruction that accesses words 
(16 bits) or doublewords (32 bits) has an operand-size attribute of either 16 or 32 bits. 

The attributes are determined by a combination of defaults, instruction prefixes, and 
(for programs executing in protected mode) size-specification bits in segment 
descriptors. 

17.1.1 Default Segment Attribute 

For programs running in protected mode, the D bit in executable-segment descriptors 
specifies the default attribute for both address size and operand size. These default 
attributes apply to the execution of all instructions in the segment. A clear D bit sets the 
default address size and operand size to 16 bits; a set D bit, to 32 bits. 

Programs that execute in real mode or virtual-8086 mode have 16-bit addresses and 
operands by default. 

17.1.2 Operand-Size and Address-Size Instruction Prefixes 

The internal encoding of an instruction can include two byte-long prefixes: the address­
size prefix, 67H, and the operand-size prefix, 66H. (A later section, "Instruction 
Format," shows the position of the prefixes in an instruction's encoding.) These prefixes 
override the default segment attributes for the instruction that follows. Table 17-1 shows 
the effect of each possible combination of defaults and overrides. 

17-1 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

Table 17-1. Effective Size Attributes 

Segment Default D = ... 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N V V N N V V 

Address-Size Prefix 67H N V N V N V N V 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32. 32 16 32 16 

V = Yes, this Instruction prefix IS present 
N = No, this instruction prefix is not present 

17.1.3 Address-Size Attribute for Stack 

Instructions that use the stack implicitly (for example: POP EAX) also have a stack 
address-size attribute of either 16 or 32 bits. Instructions with a stack address-size 
attribute of 16 use the 16-bit SP stack pointer register; instructions with a stack address­
size attribute of 32 bits use the 32-bit ESP register to form the address of the top of the 
stack. 

The stack address-size attribute is controlled by the B-bit of the data-segment descriptor 
in the SS register. A value of zero in the B-bit selects a stack address-size attribute of 16; 
a value of one selects a stack address-size attribute of 32. 

17.2 INSTRUCTION FORMAT 

All instruction encodings are subsets of the general instruction format shown in 
Figure 17-1. Instructions consist of optional instruction prefixes, one or two primary 
opcode bytes, possibly an address specifier consisting of the ModR/M byte and the SIB 
(Scale Index Base) byte, a displacement, if required, and an immediate data field, if 
required. 

INSTRUCTION I ADDRESS- I OPERAND- I SEGMENT 
PREFIX .1 SIZE PREFIX SIZE PREFIX OVERRIDE 

O~l O~l O~l O~l 

r----~---------------------NUMBER OF BYTES 

OPCODE I MODR/M I SIB I DISPLACEMENT I IMMEDIATE 

10R2 OORl OORl O,1,2~4 O,1,20R4 -----------------------NUMBER OF BYTES 

240331 

Figure 17-1. 386 T• SX Microprocessor Instruction Format 

17-2 



386'· SX MICROPROCESSOR INSTRUCTION SET 

Smaller encoding fields can be defined within the primary opcode or opcodes. These 
fields define the direction of the operation, the size of the displacements, the register 
encoding, or sign extension; encoding fields vary depending on the class of operation. 

Most instructions that can refer to an operand in memory have an addressing form byte 
following the primary opcode byte(s). This byte, called the Mod RIM byte, specifies the 
address form to be used. Certain encodings of the Mod RIM byte indicate a second 
addressing byte, the SIB (Scale Index Base) byte, which follows the Mod RIM byte and is 
required to fully specify the addressing form. 

Addressing forms can include a displacement immediately following either the Mod RIM 
or SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits. 

If the instruction specifies an immediate operand, the immediate operand always follows 
any displacement bytes. The immediate operand, if specified, is always the last field of 
the instruction. 

The following are the allowable instruction prefix codes: 

OF3H 
OF3H 
OF2H 
OFOH 

REP prefix (used only with string instructions) 
REPE/REPZ prefix (used only with string instructions) 
REPNE/REPNZ prefix (used only with string instructions) 
LOCK prefix 

The following are the segment override prefixes: 

2EH CS segment override prefix 
36H SS segment override prefix 
3EH DS segment override prefix 
26H ES segment override prefix 
64H FS segment override prefix 
65H GS segment override prefix 
66H Operand-size override 
67H Address-size override 

17.2.1 ModR/M and SIB Bytes 

The Mod RIM and SIB bytes follow the opcode byte(s) in many of the 386 SX micropro­
cessor instructions. They contain the following information: 

• The indexing type or register number to be used in the instruction 

• The register to be used, or more information to select the instruction 

• The base, index, and scale information 

The Mod RIM byte contains three fields of information: 

• The mod field, which occupies the two most significant bits of the byte, combines with 
the rim field to form 32 possible values: eight registers and 24 indexing modes. 

17-3 



386'" SX MICROPROCESSOR INSTRUCTION SET 

• The reg field, which occupies the next three bits following the mod field, specifies 
either a register number or three more bits of opcode information. The meaning of 
the reg field is determined by the first (opcode) byte of the instruction. 

• The rim field, which occupies the three least significant bits of the byte, can specify a 
register as the location of an operand, or can form part of the addressing-mode 
encoding in combination with the mod field as described above. 

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte. 
The presence of the SIB byte is indicated by certain encodings of the ModR/M byte. The 
SIB byte then includes the following fields: 

• The ss field, which occupies the two most significant bits of the byte, specifies the 
scale factor. 

• The index field, which occupies the next three bits following the ss field and specifies 
the register number of the index register. 

• The base field, which occupies the three least significant bits of the byte, specifies the 
register number of the base register. 

Figure 17-2 shows the formats of the ModR/M and SIB bytes. 

The values and the corresponding addressing forms of the ModR/M and SIB bytes are 
shown in Tables 17-2, 17-3, and 17-4. The 16-bit addressing forms specified by the 
ModR/M byte are in Table 17-2. The 32-bit addressing forms specified by the ModR/M 
byte are in Table 17-3. Table 17-4 shows the 32-bit addressing forms specified by the SIB 
byte. 

MODR/M BYTE 

7 6 5 4 3 0 

MOD I REG/OPCODE I RIM 

SIB (SCALE INDEX BASE) BYTE 

7 6 5 4 3 2 0 

SS INDEX BASE 

240331 

Figure 17·2. ModR/M and SIB Byte Formats 

17-4 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

Table 17-2. 16-Bit Addressing Forms with the ModR/M Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(/r) AX CX OX BX SP BP SI 01 
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective 
Mod R/M ModR/M Values in Hexadecimal Address 

[BX+SI] 000 00 08 10 18 20 28 30 38 
[BX+OI] 001 01 09 11 19 21 29 31 39 
[BP+SI] 010 02 OA 12 1A 22 2A 32 3A 
[BP+OI] 00 011 03 OB 13 1B 23 2B 33 3B 
[SI] 100 04 OC 14 1C 24 2C 34 3C 
[01] 101 05 00 15 10 25 20 35 3D 
disp16 110 06 OE 16 1E 26 2E 36 3E 
[BX] 111 07 OF 17 1F 27 2F 37 3F 

[BX + SI] + disp8 000 40 48 50 58 60 68 70 78 
[BX + 01] + disp8 001 41 49 51 59 61 69 71 79 
[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A 
[BP + 01] + disp8 01 011 43 4B 53 5B 63 6B 73 7B 
[SI] +disp8 100 44 4C 54 5C 64 6C 74 7C 
[01] +disp8 101 45 40 55 50 65 60 75 70 
[BP] +disp8 110 46 4E 56 5E 66 6E 76 7E 
[BX] +disp8 111 47 4F 57 5F 67 6F 77 7F 

[BX + SI] + disp16 000 80 88 90 98 AO A8 BO B8 
[BX + 01] + disp16 001 81 89 91 99 A1 A9 B1 B9 
[BX + SI] + disp16 010 82 8A 92 9A A2 AA B2 BA 
[BX + 01] + disp16 10 011 83 8B 93 9B A3 AB B3 BB 
[SI] + disp16 100 84 8C 94 9C A4 AC B4 BC 
[01] + disp16 101 85 80 95 90 A5 AD B5 BO 
[BP] + disp16 110 86 8E 96 9E A6 AE B6 BE 
[BX] + disp16 111 87 8F 97 9F A7 AF B7 BF 

EAX/AX/AL 000 CO C8 DO 08 EO E8 FO F8 
ECXlCXlCL 001 C1 C9 01 09 EQ E9 F1 F9 
EOX/OX/OL 010 C2 CA 02 OA E2 EA F2 FA 
EBX/BX/BL 11 011 C3 CB 03 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 DC E4 EC F4 FC 
EBP/BP/CH 101 C5 CD 05 00 E5 ED F5 FO 
ESI/SI/OH 110 C6 CE 06 DE E6 EE F6 FE 
EOI/Ol/BH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added 
to the index. disp16 denotes a 16-bit displacement following the ModR/M byte, to be added to the 
index. Default segment register is SS for the effective addresses containing a BP index, OS for 
other effective addresses. 

17-5 



386" SX MICROPROCESSOR INSTRUCTION SET 

Table 17-3. 32-Bit Addressing Forms with the ModR/M Byte 

r8(1r) AL CL OL BL AH CH OH BH 
r16(1r) AX CX OX BX SP BP SI 01 
r32(1r) EAX ECX EOX EBX ESP EBP ESI EOI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective Mod R/M ModR/M Values in Hexadecimal Address 

[EAX] 000 00 08 10 18 20 28 30 38 
[ECX] 001 01 09 11 19 21 29 31 39 
[EOX] 010 02 OA 12 1A 22 2A 32 3A 
[EBX] 00 011 03 OB 13 1B 23 2B 33 3B 
H [--] 100 04 OC 14 1C 24 2C 34 3C 
disp32 101 05 00 15 10 25 20 35 30 
[ESI] 110 06 OE 16 1E 26 2E 36 3E 
[EOI] 111 07 OF 17 1F 27 2F 37 3F 

disp8[EAX] 000 40 48 50 58 60 68 70 78 
disp8[ECX] 001 41 49 51 59 61 69 71 79 
disp8[EOX] 010 42 4A 52 5A 62 6A 72 7A 
disp8[EPX]; 01 011 43 4B 53 5B 63 6B 73 7B 
disp8[--] H 100 44 4C 54 5C 64 6C 74 7C 
disp8[ebp] 101 45 40 55 50 65 60 75 70 
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E 
disp8[EOI] 111 47 4F 57 5F 67 6F 77 7F 

disp32[EAX] 000 80 88 90 98 AO A8 BO B8 
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9 
disp32[EOX] 010 82 8A 92 9A A2 AA B2 BA 
disp32[EBX] 10 011 83 8B 93 9B A3 AB B3 BB 
disp32[--]H 100 84 8C 94 9C A4 AC B4 BC 
disp32[EBP] 101 85 80 95 90 A5 AO B5 BO 
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE 
disp32[EOI] 111 87 8F 97 9F A7 AF B7 BF 

EAX/AX/AL 000 CO C8 00 08 EO E8 FO F8 
ECX/CX/CL 001 C1 C9 01 09 E1 E9 F1 F9 
EOX/OX/OL 010 C2 CA 02 OA E2 EA F2 FA 
EBX/BX/BL 11 011 C3 CB 03 OB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 OC E4 EC F4 FC 
EBP/BP/CH 101 C5 CO 05 00 E5 EO F5 FO 
ESI/SIIDH 110 C6 CE 06 OE E6 EE F6 FE 
EOI/Ol/BH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: [--][--] means a SIB follows the ModR/M byte. disp8 denotes an 8-bit displacement following the 
SIB byte, to be sign-extended and added to the index. disp32 denotes a 32-bit displacement 
following the ModR/M byute, to be added to the index. 

17-6 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

Table 17-4. 32-Bit Addressing Forms with the SIB Byte 

r32 EAX ECX EOX EBX ESP [*] ESI EOI 
Base = 0 1 2 3 4 5 6 7 
Base = 000 001 010 011 100 101 110 111 

Scaled Index SS Index ModR/M Values in Hexadecimal 

[EAX] 000 00 01 02 03 04 05 06 07 
[ECX] 001 08 09 OA OB OC 00 OE OF 
[EOX] 010 10 11 12 13 14 15 16 17 
[EBX] 00 011 18 19 1A 1B 1C 10 1E 1F 
none 100 20 21 22 23 24 25 26 27 
[EBP] 101 28 29 2A 2B 2C 20 2E 2F 
[ESI] 110 30 31 32 33 34 35 36 37 
[EOI] 111 38 39 3A 3B 3C 30 3E 3F 

[EAX*2] 000 40 41 42 43 44 45 46 47 
[ECX*2] 001 48 49 4A 4B 4C 40 4E 4F 
[ECX*2] 010 50 51 52 53 54 55 56 57 
[EBX*2] 01 011 58 59 5A 5B 5C 50 5E 5F 
none 100 60 61 62 63 64 65 66 67 
[EBP*2] 101 68 69 6A 6B 6C 60 6E 6F 
[ESI*2] 110 70 71 72 73 74 75 76 77 
[EOI*2] 111 78 79 7A 7B 7C 70 7E 7F 

[EAX*4] 000 80 81 82 83 84 85 86 87 
[ECX*4] 001 88 89 8A 8B 8C 80 8E 8F 
[EOX*4] 010 90 91 92 93 94 95 96 97 
[EBX*4] 10 011 98 89 9A 9B 9C 90 9E 9F 
none 100 AO A1 A2 A3 A4 A5 A6 A7 
[EBP*4] 101 A8 A9 AA AB AC AO AE AF 
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7 
[EOI*4] 111 88 B9 BA BB BC BO BE BF 

[EAX*8] 000 CO C1 C2 C3 C4 C5 C6 C7 
[ECX*8] 001 C8 C9 CA CB CC CO CE CF 
[EOX*8] 010 00 01 02 03 04 05 06 07 
[EBX*8] 11 011 08 09 OA OB OC 00 OE OF 
none 100 EO E1 E2 E3 E4 E5 E6 E7 
[EBP*8] 101 E8 E9 EA EB EC EO EE EF 
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7 
[EOI*8] 111 F8 F9 FA FB FC FO FE FF 

NOTES: [*] means a disp32 with no base if MOO is 00, [ESP] otherwise. This provides the following 
addressing modes: 
disp32[index] 
disp8[EBP] [index] 
disp32[EBP] [index] 

(MOO=OO) 
(MOO=01) 
(MOO= 10) 

17-7 



386 T" SX MICROPROCESSOR INSTRUCTION SET 

17.2.2 How to Read the Instruction Set Pages 

The following is an example of the format used for each 386 SX microprocessor instruc­
tion description in this chapter: 

CMC - Complement Carry Flag 

Opcode 

F5 

Instruction 

CMC 

Clocks 

2 

Description 

Complement carry flag 

The above table is followed by paragraphs labelled "Operation," "Description," "Flags 
Affected," "Protected Mode Exceptions," "Real Address Mode Exceptions," and, 
optionally, "Notes." The following sections explain the notational conventions and 
abbreviations used in these paragraphs of the instruction descriptions. 

17.2.2.1 OPCODE 

The "Opcode" column gives the complete object code produced for each form of the 
instruction. When possible, the codes are given as hexadecimal bytes, in the same order 
in which they appear in memory. Definitions of entries other than hexadecimal bytes are 
as follows: 

/digit: (digit is between 0 and 7) indicates that the Mod RIM byte of the instruction uses 
only the rim (register or memory) operand. The reg field contains the digit that provides 
an extension to the instruction's opcode. 

/r: indicates that the ModR/M byte of the instruction contains both a register operand 
and an rim operand. 

cb, cw, cd, cp: a I-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the 
opcode that is used to specify a code offset and possibly a new value for the code 
segment register. 

ib, iw, id: a I-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction 
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines 
if the operand is a signed value. All words and doublewords are given with the low-order 
byte first. 

+rb, +rw, +rd: a register code, from 0 through 7, added to the hexadecimal byte given 
at the left of the plus sign to form a single opcode byte. The codes are-

rb 
AL 0 
CL 1 
DL 2 
BL 3 

rw 
AX 0 
CX 1 
DX 2 
BX 3 

rd 
EAX 
ECX 
EDX 
EBX 

17-8 

o 
1 
2 
3 



386'" SX MICROPROCESSOR INSTRUCTION SET 

rb rw 
AH 4 SP 4 
CH 5 BP 5 
OH 6 SI 6 
BH 7 DI 7 

17.2.2.2 INSTRUCTION 

rd 
ESP 
EBP 
ESI 
EDI 

4 
5 
6 
7 

The "Instruction" column gives the syntax of the instruction statement as it would 
appear in an ASM386 program. The following is a list of the symbols used to represent 
operands in the instruction statements: 

rel8: a relative address in the range from 128 bytes before the end of the instruction to 
127 bytes after the end of the instruction. 

re116, re132: a relative address within the same code segment as the instruction assem­
bled. re116 applies to instructions with an operand-size attribute of 16 bits; reI32 applies 
to instructions with an operand-size attribute of 32 bits. 

ptrI6:16, ptr16:32: a far pointer, typically in a code segment different from that of the 
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The 
value to the right of the colon is a 16-bit selector or value destined for the code segment 
register. The value to the left corresponds to the offset within the destination segment. 
ptr16:16 is used when the instruction's operand-size attribute is 16 bits; ptr16:32 is used 
with the 32-bit attribute. 

r8: one of the byte registers AL, CL, OL, BL, AH, CH, OH, or BH. 

r16: one of the word registers AX, CX, OX, BX, SP, BP, SI, or 01. 

r32: one of the doubleword registers EAX, ECX, ED X, EBX, ESP, EBP, ESI, or EOI. 

imm8: an immediate byte value. imm8 is a signed number between -128 and + 127 
inclusive. For instructions in which imm8 is combined with a word or doubleword oper­
and, the immediate value is sign-extended to form a word or doubleword. The upper 
byte of the word is filled with the topmost bit of the immediate value. 

imml6: an immediate word value used for instructions whose operand-size attribute is 
16 bits. This is a number between - 32768 and + 32767 inclusive. 

imm32: an immediate doubleword value used for instructions whose operand-size at­
tribute is 32-bits. It allows the use of a number between + 2147483647 and - 2147483648 
inclusive. 

r/m8: a one-byte operand that is either the contents of a byte register (AL, BL, CL, OL, 
AH, BH, CH, OH), or a byte from memory. 

17-9 



386'" SX MICROPROCESSOR INSTRUCTION SET 

r/m16: a word register or memory operand used for instructions whose operand-size 
attribute is 16 bits. The word registers are: AX, BX, CX, DX, SP, BP, SI, DI. The 
contents of memory are found at the address provided by the effective address 
computation. 

r/m32: a doubleword register or memory operand used for instructions whose operand­
size attribute is 32-bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, 
EBP, ESI, EDI. The contents of memory are found at the address provided by the 
effective address computation. 

mS: a memory byte addressed by DS:SI or ES:DI (used only by string instructions). 

m16: a memory word addressed by DS:SI or ES:DI (used only by string instructions). 

m32: a memory doubleword addressed by DS:SI or ES:DI (used only by string 
instructions) . 

m16:16, m16:32: a memory operand containing a far pointer composed of two numbers. 
The number to the left of the colon corresponds to the pointer's segment selector. The 
number to the right corresponds to its offset. 

m16&32, m16&16, m32&32: a memory operand consisting of data item pairs whose sizes 
are indicated on the left and the right side of the ampersand. All memory addressing 
modes are allowed. m16&16 and m32&32 operands are used by the BOUND instruction 
to provide an operand containing an upper and lower bounds for array indices. m16&32 
is used by LIDT and LGDT to provide a word with which to load the limit field, and a 
doubleword with which to load the base field of the corresponding Global and Interrupt 
Descriptor Table Registers. 

moffsS, moffs16, moffs32: (memory offset) a simple memory variable of type BYTE, 
WORD, or DWORD used by some variants of the MaY instruction. The actual address 
is given by a simple offset relative to the segment base. No ModR/M byte is used in the 
instruction. The number shown with moffs indicates its size, which is determined by the 
address-size attribute of the instruction. 

Sreg: a segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, 
DS=3, FS=4, and GS=5. 

17.2.2.3 CLOCKS 

The "Clocks" column gives the approximate number of clock cycles the instruction takes 
to execute. Please refer to data sheet for more accurate values. The clock count calcu­
lations makes the following assumptions: 

• The instruction has been prefetched and decoded and is ready for execution. 

• Bus cycles do not require wait states. 

17-10 



386'· SX MICROPROCESSOR INSTRUCTION SET 

• There are no local bus HOLD requests delaying processor access to the bus. 

• No exceptions are detected during instruction execution. 

• Memory operands are aligned. 

Clock counts for instructions that have an rim (register or memory) operand are sepa­
rated by a slash. The count to the left is used for a register operand; the count to the 
right is used for a memory operand. 

The following symbols are used in the clock count specifications: 

• n, which represents a number of repetitions. 

• m, which represents the number of components in the next instruction executed, 
where the entire displacement (if any) counts as one component, the entire immedi­
ate data (if any) counts as one component, and every other byte of the instruction and 
prefix( es) each counts as one component. 

• pm =, a clock count that applies when the instruction executes in Protected Mode. 
pm = is not given when the clock counts are the same for Protected and Real Address 
Modes. 

When an exception occurs during the execution of an instruction and the exception 
handler is in another task, the instruction execution time is increased by the number of 
clocks to effect a task switch. This parameter depends on several factors: 

• The type of TSS used to represent the current task (386 SX TSS or 80286 TSS). 

• The type of TSS used to represent the new task. 

• Whether the current task is in V86 mode. 

• Whether the new task is in V86 mode. 

Table 17-5 summarizes the task switch times for exceptions. 

Table 17-5. Task Switch Times for Exceptions 

New Task 

Old Task 386'" SX TSS 
VM = 0 80286 TSS 

386 SX VM=O 
TSS 309 282 

386 SX VM=1 
TSS 314 231 

80286 307 282 TSS 

17-11 



386'" SX MICROPROCESSOR INSTRUCTION SET 

17.2.2.4 DESCRIPTION 

The "Description" column following the "Clocks" column briefly explains the various 
forms of the instruction. The "Operation" and "Description" sections contain more 
details of the instruction's operation. 

17.2.2.5 OPERATION 

The "Operation" section contains an algorithmic description of the instruction which 
uses a notation similar to the Algol or Pascal language. The algorithms are composed of 
the following elements: 

Comments are enclosed within the symbol pairs "(*" and "*)". 

Compound statements are enclosed between the keywords of the "if" statement (IF, 
THEN, ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement 
(CASE ... OF, ESAC). 

A register name impl,ies the contents of the register. A register name enclosed in brack­
ets implies the contents of the location whose address is contained in that register. For 
example, ES:[DI] indicates the contents of the location whose ES segment relative ad­
dress is in register DI. [SI] indicates the contents of the address contained in register SI 
relative to Sl's default segment (DS) or overridden segment. 

Brackets also used for memory operands, where they mean that the contents of the 
memory location is a segment-relative offset. For example, [SRC] indicates that the 
contents of the soUrce operand is a segment-relative offset. 

A «- B; indicates that the value of B is assigned to A. 

The symbols =, < >, ;:::, and :5 are relational operators used to compare two values, 
meaning equal, not equal, greater or equal, less or equal, respectively. A relational ex­
pression such as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE. 

The following identifiers are used in the algorithmic descriptions: 

• OperandSize represents the operand-size attribute of the instruction, which is either 
16 or 32 bits. AddressSize represents the address-size attribute, Which is either 16 or 
32 bits. For example, 
IF instruction = CMPSW 
THEN OperandSize ~ 16; 
ELSE 

FI; 

IF instruction = CMPSD 
THEN OperandSize ~ 32; 
FI; 

17-12 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

indicates that the operand-size attribute depends on the form of the CMPS instruc­
tion used. Refer to the explanation of address-size and operand-size attributes at the 
beginning of this chapter for general guidelines on how these attributes arc 
determined. 

• StackAddrSize represents the stack address-size attribute associated with the instruc­
tion, which has a value of 16 or 32 bits, as explained earlier in the chapter. 

• SRC represents the source operand. When there are two operands, SRC is the one on 
the right. 

• DEST represents the destination operand. When there are two operands, DEST is 
the one on the left. 

• LeftSRC, RightSRC distinguishes between two operands when both are source 
operands. 

• eSP represents either the SP register or the ESP register depending on the setting of 
the B-bit for the current stack segment. 

The following functions are used in the algorithmic descriptions: 

• Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding 
the uppermost bits as needed. 

• Addr(operand) returns the effective address of the operand (the result of the effec­
tive address calculation prior to adding the segment base). 

• ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the 
instruction. For examplc, if OperandSize = 32, ZeroExtend of a byte value of -10 
converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the 
value passed to ZeroExtend and the operand-size attribute are the same size, 
Zero Extend returns the value unaltered. 

• SignExtend(value) returns a value sign-extended to the operand-size attribute of the 
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the 
value -10 converts the byte from F6H to a doubleword with hexadecimal value 
FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are 
the same size, SignExtend returns the value unaltered. 

• Push(value) pushes a value onto the stack. The number of bytes pushed is deter­
mined by the operand-size attribute of the instruction. The action of Push is as 
follows: 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

SP - SP - 2; 
SS: [SP] - value; (* 2 bytes assigned starting at 

byte address in SP *) 
ELSE (* OperandSize = 32 *) 

FI; 

SP - SP - 4; 
SS: [SP] - value; (* 4 bytes assigned starting at 

byte address in SP *) 

17-13 



386™ SX MICROPROCESSOR INSTRUCTION SET 

ELSE (* StackAddrSize = 32 *) 
IF OperandSize = 16 
THEN 

FI; 

ESP ~ ESP - 2; 
SS: [ESP] ~ value; (* 2 bytes assigned starting at 

byte address in ESP*) 
ELSE (* Operand Size = 32 *) 

FI; 

ESP ~ ESP - 4; 
SS:[ESP] ~ value; (* 4 bytes assigned starting at 

byte address in ESP*) 

• Pop (value) removes the value from the top of the stack and returns it. The statement 
EAX <f- pope ); assigns to EAX the 32-bit value that Pop took from the top of the 
stack. Pop will return either a word or a doubleword depending on the operand-size 
attribute. The action of Pop is as follows: 
IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

ret val ~ SS: [SPJ; (* 2-byte value *) 
SP ~ SP + 2; 

ELSE (* OperandSize = 32 *) 

FI; 

ret val ~ SS: [SP]; (* 4-byte value *) 
SP ~ SP + 4; 

ELSE (* StackAddrSize = 32 *) 
IF OperandSize = 16 
THEN 

FI; 

ret val ~ SS: [ESP]; (* 2 bytes value *) 
ESP ~ ESP + 2; 

ELSE (* OperandSize = 32 *) 

FI; 

ret val ~ SS:[ESPJ; (* 4 bytes value *) 
ESP ~ ESP + 4; 

RETURN(ret val); (*returns a word or doubleword*) 

• Bit[BitBase, BitOtfset] returns the address of a bit within a bit string, which is a 
sequence of bits in memory or a register. Bits are numbered from low-order to high­
order within registers and within memory bytes. In memory, the two bytes of a word 
are stored with the low-order byte at the lower address. 

If the base operand is a register, the offset can be in the range 0 .. 31. This offset 
addresses a bit within the indicated register. An example, "BIT[EAX, 21]" is illus­
trated in Figure 17-3. 

17-14 



386'" SX MICROPROCESSOR INSTRUCTION SET 

31 21 0 

240331 

Figure 17-3. Bit Offset for BIT[EAX,21] 

If BitBase is a memory address, BitOffset can range from - 2 gigabits to 2 gigabits. 
The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase 
+ (BitOffset DIV 8)), where DIV is signed division with rounding towards negative 
infinity, and MOD returns a positive number. This is illustrated in Figure 17-4. 

• I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O 
permission bitmap and other factors. This function is defined as follows: 

IF TSS type is 80286 THEN RETURN FALSE; FI; 
Ptr ~ [TSS + 66]; (* fetch bitmap pOinter *) 
BitStringAddr ~ SHR (I-O-Address, 3) + Ptr; 
MaskShift ~ I-O-Address AND 7; 
CASE width OF: 

ESAC; 

BYTE: nBitMask ~ 1; 
WORD: nBitMask ~ 3; 
DWORD: nBitMask ~ 15; 

mask ~ SHL (nBitMask, MaskShift); 
CheckString ~ [BitStringAddr] AND mask; 
IF CheckString = 0 
THEN RETURN (TRUE); 
ELSE RETURN (FALSE); 
FI; 

• Switch-Tasks is the task switching function described in Chapter 7. 

17.2.2.6 DESCRIPTION 

The "Description" section contains further explanation of the instruction's operation. 

17.2.2.7 FLAGS AFFECTED 

The "Flags Affected" section lists the flags that are affected by the instruction, as 
follows: 

• If a flag is always cleared or always set by the instruction, the value is given (0 or 1) 
after the flag name. Arithmetic and logical instructions usually assign values to the 
status flags in the uniform manner described in Appendix C. Nonconventional assign­
ments are described in the "Operation" section. 

17-15 



386'" SX MICROPROCESSOR INSTRUCTION SET 

BIT INDEXING (POSITIVE OFFSET) 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 543 2 1 0 

I I I I J 
I BITBASE + 1 I BITBASE BITBASE - 1 I • OFFSET ~ 13 

BIT INDEXING (NEGATIVE OFFSET) 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 107 6 543 2 1 0 

I I I I I 
I BITBASE BITBASE - 1 I BITBASE - 2 I 

-OFFSET ~ -11--.J 

240331 

Figure 17-4. Memory Bit Indexing 

• The values of flags listed as "undefined" may be changed by the instruction in an 
indeterminate manner. 

All flags not listed are unchanged by the instruction. 

17.2.2.8 PROTECTED MODE EXCEPTIONS 

This section lists the exceptions that can occur when the instruction is executed in 
386 SX microprocessor Protected Mode. The exception names are a pound sign (#) 
followed by two letters and an optional error code in parentheses. For example, #GP(O) 
denotes a general protection exception with an error code of O. Table 17-6 associates 
each two-letter name with the corresponding interrupt number. 

Chapter 9 describes the exceptions and the 386 SX microprocessor state upon entry to 
the exception. 

Table 17-6. 386 T" SX Microprocessor Exceptions 

Mnemonic Interrupt Description 

#UD 6 Invalid opcode 
#NM 7 Coprocessor not available 
#DF 8 Double fault 
#TS 10 Invalid TSS 
#NP 11 Segment or gate not present 
#SS 12 Stack fault 
#GP 13 General protection fault 
#PF 14 Page fault 
#MF 16 Math (coprocessor) fault 

17-16 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Application programmers should consult the documentation provided with their operat­
ing systems to determine the actions taken when exceptions occur. 

17.2.2.9 REAL ADDRESS MODE EXCEPTIONS 

Because less error checking is performed by the 386 SX microprocessor in Real Address 
Mode, this mode has fewer exception conditions. Refer to Chapter 14 for further infor­
mation on these exceptions. 

17.2.2.10 VIRTUAL-8086 MODE EXCEPTIONS 

Virtual 8086 tasks provide the ability to simulate Virtual 8086 machines. Virtual 8086 
Mode exceptions are similar to those for the 8086 processor, but there are some differ­
ences. Refer to Chapter 15 for details. 

17-17 



386'" SX MICROPROCESSOR INSTRUCTION SET 

AAA - ASCII Adjust after Addition 

Opcode 

37 

Operation 

Instruction 

AM 

Clocks 

4 

IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN 

AL ~ (AL + 6) AND OFH; 
AH ~ AH + 1; 
AF ~ 1; 
CF ~ 1; 

ELSE 
CF ~ 0; 
AF ~O; 

FI; 

Description 

Description 

ASCII adjust AL after addition 

Execute the AAA instruction only following an ADD instruction that leaves a byte result 
in the AL register. The lower nibbles of the operands of the ADD instruction should be 
in the range 0 through 9 (BCD digits). In this case, the AAA instruction adjusts the AL 
register to contain the correct decimal digit result. If the addition produced a decimal 
carry, the AH register is incremented, and the CF and AF flags are set. If there was no 
decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In 
either case, the AL register is left with its top nibble set to O. To convert the AL register 
to an ASCII result, follow the AAA instruction with OR AL, 30H. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the OF, SF, ZF, and PF flags are undefined 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-18 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

AAD-ASCII Adjust AX before Division 

Opcode 

D5 OA 

Operation 

Instruction 

AAD 

AL ~ AH * 10 + AL; 
AH .;- 0; 

Description 

Clocks 

19 

Description 

ASCII adjust AX before division 

The AAD instruction is used to prepare two unpacked BCD digits (the least-significant 
digit in the AL register, the most-significant digit in the AH register) for a division 
operation that will yield an unpacked result. This is accomplished by setting the AL 
register to AL + (10 * AH), and then clearing the AH register. The AX register is then 
equal to the binary equivalent of the original unpacked two-digit number. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are 
undefined 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-19 



386'· SX MICROPROCESSOR INSTRUCTION SET 

AAM - ASCII Adjust AX after Multiply 

Opcode 

D4 OA 

Instruction 

AAM 

Operation 

AH +- AL/10; 
AL +- AL MOD 10; 

Description 

Clocks 

17 

Description 

ASCII adjust AX after multiply 

Execute the AAM instruction only after executing a MUL instruction between two un­
packed BCD digits that leaves the result in the AX register. Because the result is less 
than 100, it is contained entirely in the AL register. The AAM instruction unpacks the 
AL result by dividing AL by 10, leaving the quotient (most-significant digin in the AH 
register and the remainder (least-significant digit) in the AL register. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are 
undefined 

Protected Mode Exceptions 

None 

Real Addre$s Mode ~xceptions 

None 

Virtual 8986 Mode Exceptions 

None 

17-20 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

AAS - ASCII Adjust AL after Subtraction 

Opcode 

3F 

Operation 

Instruction Clocks 

AAS 4 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL ~ AL - 6; 
AL ~ AL AND OFH; 
AH ~ AH - 1; 
AF ~ 1; 
CF ~ 1; 

ELSE 
CF~ 0; 
AF~ 0; 

FI; 

Description 

Description 

ASCII adjust AL after subtraction 

Execute the AAS instruction only after a SUB instruction that leaves the byte result in 
the AL register. The lower nibbles of the operands of the SUB instruction must have 
been in the range 0 through 9 (BCD digits). In this case, the AAS instruction adjusts the 
AL register so it contains the correct decimal digit result. If the subtraction produced a 
decimal carry, the AH register is decremented, and the CF and AF flags are set. If no 
decimal carry occurred, the CF and AF flags are cleared, and the AH register is un­
changed. In either case, the AL register is left with its top nibble set to O. To convert the 
AL result to an ASCII result, follow the AAS instruction with OR AL, 30H. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the OF, SF, ZF, and PF flags are undefined 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-21 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Ace - Add with Carry 

Opcode 

14 ib 
15 iw 
15 id 
80 /2 ib 
81 /2 iw 
81 /2 id 
83/2 ib 
83 /2 ib 
10 Ir 
11 /r 
11 /r 
12 /r 
13 /r 
13 /r 

Instruction Clocks 

ADC AL,imm8 2 
ADC AX,imml6 2 
ADC EAX,imm32 2 
ADC rlm8,imm8 2/7 
ADC rlml6,imml6 2/7 
ADC rlm32,imm32 2/11 
ADC rlml6,imm8 2/7 
ADC rlm32,imm8 2/11 
ADC rlm8,r8 2/7 
ADC rlml6,rl6 2/7 
ADC rlm32,r32 2/11 
ADC r8,rlm8 2/6 
ADC rl6,rlml6 2/6 
ADC r32,rlm32 2/8 

Operation 

DEST +- DEST + SRC + CF; 

Description 

Description 

Add with carry immediate byte to AL 
Add with carry immediate word to AX 
Add with carry immediate dword to EAX 
Add with carry immediate byte to rim byte 
Add with carry immediate word to rim word 
Add with CF immediate dword to rim dword 
Add with CF sign-extended immediate byte to rim word 
Add with CF sign-extended immediate byte into rim dword 
Add with carry byte register to rim byte 
Add with carry word register to rim word 
Add with CF dword register to rim dword 
Add with carry rim byte to byte register 
Add with carry rim word to word register 
Add with CF rim dword to dword register 

The ADC instruction performs an integer addition of the two operands DEST and SRC 
and the carry flag, CF. The result of the addition is assigned to the first operand 
(DEST), and the flags are set accordingly. The ADC instruction is usually executed as 
part of a multi-byte or multi-word addition operation. When an immediate byte value is 
added to a word or doubleword operand, the immediate value is first sign-extended to 
the size of the word or doubleword operand. 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-22 



386'" SX MICROPROCESSOR INSTRUCTION SET 

ADD-Add 

Opcode 

04 ib 
05 iw 
05 id 
80 /0 ib 
81 /0 iw 
81 /0 id 
83 10 ib 
83 10 ib 
00 /r 
01 /r 
01 /r 
02 /r 
03 /r 
03 /r 

Operation 

Instruction 

ADD AL,immB 
ADD AX,imml6 
ADD EAX,imm32 
ADD rlmB,immB 
ADD rlml6,imml6 
ADD rlm32,imm32 
ADD rlml6,immB 
ADD rlm32,immB 
ADD rlmB,rB 
ADD rlml6,rl6 
ADD rlm32,r32 
ADD rB,rlmB 
ADD rl6,rlml6 
ADD r32,rlm32 

DEST +-- DEST + SRC; 

Description 

Clocks 

2 
2 
2 
2/7 
2/7 
2/11 
2/7 
2/11 
2/7 
2/7 
2/11 
2/6 
2/6 
2/8 

Description 

Add immediate byte to AL 
Add immediate word to AX 
Add immediate dword to EAX 
Add immediate byte to rim byte 
Add immediate word to rim word 
Add immediate dword to rim dword 
Add sign-extended immediate byte to rim word 
Add sign-extended immediate byte to rim dword 
Add byte register to rim byte 
Add word register to rim word 
Add dword register to rim dword 
Add rim byte to byte register 
Add rim word to word register 
Add rim dword to dword register 

The ADD instruction performs an integer addition of the two operands (DEST and 
SRC). The result of the addition is assigned to the first operand (DEST), and the flags 
are set accordingly. 

When an immediate byte is added to a word or doubleword operand, the immediate 
value is sign-extended to the size of the word or doubleword operand. 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-23 



386'" SX MICROPROCESSOR INSTRUCTION SET 

AND-Logical AND 

Opcode 

24 ib 
25 iw 
25 id 
80/4 ib 
81 /4 iw 
81 /4 id 
83/4 ib 
83/4 ib 
20lr 
21 /r 
21 /r 
22 /r 
23 /r 
23 /r 

Operation 

Instruction 

AND AL,immB 
AND AX,imml6 
AND EAX,imm32 
AND rlmB,immB 
AND rlml6,imml6 
AND rlm32,imm32 
AND rlml6,immB 
AND rlm32,immB 
AND rlmB,rB 
AND rlml6,rl6 
AND rlm32,r32 
AND rB,rlmB 
AND r16,rlm16 
AND r32,rlm32 

DEST <- DEST AND SRC; 
CF <- 0; 
OF <- 0; 

Description 

Clocks 

2 
2 
2 
2/7 
2/7 
2/11 
2/7 
2/11 
2/7 
2/7 
2/11 
2/6 
2/6 
2/8 

Description 

AND immediate byte to AL 
AND immediate word to AX 
AND immediate dword to EAX 
AND immediate byte to rim byte 
AND immediate word to rim word 
AND immediate dword to rim dword 
AND sign-extended immediate byte with rim word 
AND sign-extended immediate byte with rim dword 
AND byte register to rim byte 
AND word register to rim word 
AND dword register to rim dword 
AND rim byte to byte register 
AND rim word to word register 
AND rim dword to dword register 

Each bit of the result of the AND instruction is a 1 if both corresponding bits of the 
operands are 1; otherwise, it becomes a O. 

Flags Affected 

The CF and OF flags are cleared; the PF, SF, and ZF flags are set according to the 
result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; # PF( fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-24 



386'· SX MICROPROCESSOR INSTRUCTION SET 

ARPL - Adjust RPL Field of Selector 

Opcode 

63 Ir 

Operation 

Instruction 

ARPL r/mI6,rI6 

Clocks 

pm~ 20/21 

IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC 
THEN 

ZF +- 1; 
RPL bits(0,1) of DEST +- RPL bits(0,1) of SRC; 

ELSE 
ZF +- 0; 

FI; 

Description 

Description 

Adjust RPL of r/ml6 to not less than RPL of r16 

The ARPL instruction has two operands. The first operand is a 16-bit memory variable 
or word register that contains the value of a selector. The second operand is a word 
register. If the RPL field ("requested privilege level" - bottom two bits) of the first 
operand is less than the RPL field of the second operand, the ZF flag is set and the RPL 
field of the first operand is increased to match the second operand. Otherwise, the ZF 
flag is cleared and no change is made to the first operand. 

The ARPL instruction appears in operating system software, not in application pro­
grams. It is used to guarantee that a selector parameter to a subroutine does not request 
more privilege than the caller is allowed. The second operand of the ARPL instruction is 
normally a register that contains the CS selector value of the caller. 

Flags Affected 

The ZF flag is set if the RPL field of the first operand is less than that of the second 
operand 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 6; the ARPL instruction is not recognized in Real Address Mode 

17·25 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; # PF( fault -code) for a page fault 

17-26 



386 lM SX MICROPROCESSOR INSTRUCTION SET 

BOUND-Check Array Index Against Bounds 

Opcode 

62 /r 
62 /r 

Operation 

Instruction Clocks 

BOUND rI6.mI6&16 10 
BOUND r32.m32&32 14 

Description 

Check if r16 is within bounds (passes test) 
Check if r32 is within bounds (passes test) 

IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8j) 
(* Under lower bound or over upper bound *) 

THEN Interrupt 5; 
FI; 

Description 

The BOUND instruction ensures that a signed array index is within the limits specified 
by a block of memory consisting of an upper and a lower bound. Each bound uses one 
word when the operand-size attribute is 16 bits and a doubleword when the operand-size 
attribute is 32 bits. The first operand (a register) must be greater than or equal to the 
first bound in memory (lower bound), and less than or equal to the second bound in 
memory (upper bound) plus the number of bytes occupied for the operand size. If the 
register is not within bounds, an Interrupt 5 occurs; the return EIP points to the 
BOUND instruction. 

The bounds limit data structure is usually placed just before the array itself, making the 
limits addressable via a constant offset from the beginning of the array. 

Flags Affected 

None 

Protected Mode Exceptions 

Interrupt 5 if the bounds test fails, as described above; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault 

The second operand must be a memory operand, not a register. If the BOUND instruc­
tion is executed with a ModR/M byte representing a register as the second operand, 
#UD occurs. 

Real Address Mode Exceptions 

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie 
outside of the effective address space from 0 to OFFFFH; Interrupt 6 if the second 
operand is a register 

17-27 



386'· SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exc~ptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-28 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

BSF - Bit Scan Forward 

Opcode 

OF BC 
OF BC 

Notes 

Instruction 

BSF rl6,rlml6 
BSF r32,rlm32 

Clocks 

10+3n 
14+3n 

n is the number of leading zero bits. 

Operation 

IF rim = 0 
THEN 

ZF -1; 
register - UNDEFINED; 

ELSE 
temp - 0; 
ZF-O; 
WHILE BIT[rlm, temp = 0] 
DO 

temp - temp + 1; 
register - temp; 

00; 
FI; 

Description 

Description 

Bit scan forward on rim word 
Bit scan forward on rim dword 

The BSF instruction scans the bits in the second word or doubleword operand starting 
with bit O. The ZF flag is set if all the bits are 0; otherwise, the ZF flag is cleared and the 
destination register is loaded with the bit index of the first set bit. 

Flags Affected 

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

17-29 



386'· SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-30 



386'· SX MICROPROCESSOR INSTRUCTION SET 

BSR - Bit Scan Reverse 

Opcode 

OF BO 
OF BO 

Operation 

IF rim = 0 
THEN 

ZF +- 1; 

Instruction 

BSR r16.rlm16 
BSR r32.rlmS2 

register +- UNDEFINED; 
ELSE 

temp +- OperandSize - 1; 
ZF +- 0; 
WHILE BIT[rlm, temp] = 0 
DO 

temp +- temp - 1; 
register +- temp; 

00; 
FI; 

Description 

Clocks 

10+3n 
14+3n 

Description 

Bit scan reverse on rim word 
Bit scan reverse on rim dword 

The BSR instruction scans the bits in the second word or doubleword operand from the 
most significant bit to the least significant bit. The ZF flag is set if all the bits are 0; 
otherwise, the ZF flag is cleared and the destination register is loaded with the bit index 
of the first set bit found when scanning in the reverse direction. 

Flags Affected 

The ZF flag is set if all bits are 0; otherwise, the ZF flag is cleared 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-31 



386™ SX MICROPROCESSOR INSTRUCTION SET 

BT -Bit Test 

Opcode 

OF A3 
OF A3 
OF SA /4 ib 
OF SA /4 ib 

Operation 

Instruction 

ST r/mI6,r16 
ST r/m32,r32 
ST r/mI6,immB 
ST r/m32,immB 

CF ~ BIT[LeftSRC, RightSRC]; 

Description 

Clocks 

3/12 
3/14 
3/6 
3/8 

Description 

Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 

The BT instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag. 

Flags Affected 

The CF flag contains the value of the selected bit 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 
displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high-order 27 to 29 bits are 
shifted and combined with the byte displacement in the addressing mode. 

17-32 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

When accessing a bit in memory, the 386 SX microprocessor may access four bytes 
starting from the memory address given by: 

Effective Address + (4 * (BitOffset DIV 32» 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIV 16» 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOV instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 

17-33 



386'" SX MICROPROCESSOR INSTRUCTION SET 

BTC - Bit Test and Complement 

Opcode Instruction Clocks 

OF BB BTC r/mI6,rI6 6/13 
OF BB BTC r/m32,r32 6/17 
OF BA /7 ib BTC rim 16,immB 6/8 
OF BA /7 ib BTC r/m32,immB 6/12 

Operation 

CF ~ BIT[LeftSRC, RightSRC]; 

Description 

Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 

BIT[LeftSRC, RightSRC] ~ NOT BIT[LeftSRC, RightSRC]; 

Description 

The BTC instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag and then complements the bit. 

Flags Affected 

The CF flag contains the complement of the selected bit 

Protected Mode Exceptions 

#OP(O) if the result is in a nonwritable segment; #OP(O) for an illegal memory operand 
effective address in the CS, OS, ES, FS, or OS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 

17-34 



386'" SX MICROPROCESSOR INSTRUCTION SET 

displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high-order 27 to 29 bits are 
shifted and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 386 SX microprocessor may access four bytes 
starting from the memory address given by: 

Effective Address + (4 * (BitOffset DIY 32» 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIY 16» 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOY instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 

17-35 



386'" SX MICROPROCESSOR INSTRUCTION SET 

BTR - Bit Test and Reset 

Opcode 

OF B3 
OF B3 
OF BA /6 ib 
OF BA /6 ib 

Operation 

Instruction 

BTR r/m16,r16 
BTR r/m32,r32 
BTR r/m16,immB 
BTR r/m32,immB 

CF <c- BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] <c- 0; 

Description 

Clocks 

6/13 
6/17 
6/8 
6/12 

Description 

Save bit in carrY flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 

The BTR instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag and then stores 0 in the bit. 

Flags Affected 

The CF flag contains the value of the selected bit 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 (or 15) are supported by using the immediate bit offset field in combination with 

17-36 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

the displacement field of the memory operand. The low-order 3 to 5 bits of the imme­
diate bit offset arc stored in the immediate bit offset field, and the high-order 27 to 29 
bits are shifted and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 386 SX microprocessor may access four bytes 
starting from the memory address given by: 

Effective Address + 4 * (BitOffset DlV 32) 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + 2 * (BitOffset DlV 16) 

for a 16-bit operand size. It may do so even when only a single byte needs to be accessed 
in order to reach the given bit. You must therefore avoid referencing areas of memory 
close to address space holes. In particular, avoid references to memory-mapped I/O 
registers. Instead, use the MOV instructions to load from or store to these addresses, 
and use the register form of these instructions to manipulate the data. 

17-37 



386'M SX MICROPROCESSOR INSTRUCTION SET 

BTS - Bit Test and Set 

Opcode 

OF AS 
OF AS 
OF SA /5 ib 
OF SA /5 ib 

Operation 

Instruction 

STS r/mI6,rI6 
STS r/m32,r32 
STS r/mI6,immB 
STS r/m32,immB 

CF +- BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] +- 1; 

Description 

Clocks 

6/13 
6/17 
6/8 
6/12 

Description 

Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 

The BTS instruction saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the CF flag and then stores 1 in the bit. 

Flags Affected 

The CF flag contains the value of the selected bit 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

The index of the selected bit can be given by the immediate constant in the instruction 
or by a value in a general register. Only an 8-bit immediate value is used in the instruc­
tion. This operand is taken modulo 32, so the range of immediate bit offsets is 0 .. 31. This 
allows any bit within a register to be selected. For memory bit strings, this immediate 
field gives only the bit offset within a word or doubleword. Immediate bit offsets larger 
than 31 are supported by using the immediate bit offset field in combination with the 

17-38 



386 1M SX MICROPROCESSOR INSTRUCTION SET 

displacement field of the memory operand. The low-order 3 to 5 bits of the immediate 
bit offset are stored in the immediate bit offset field, and the high order 27 to 29 bits are 
shifted and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 386 SX microprocessor may access four bytes 
starting from the memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 

for a 32-bit operand size, or two bytes starting from the memory address given by: 

Effective Address + (2 * (BitOffset DIV 16)) 

for a 16-bit operand size. It may do this even when only a single byte needs to be 
accessed in order to get at the given bit. You must therefore be careful to avoid refer­
encing areas of memory close to address space holes. In particular, avoid references to 
memory-mapped I/O registers. Instead, use the MOV instructions to load from or store 
to these addresses, and use the register form of these instructions to manipulate the 
data. 

17-39 



386'· SX MICROPROCESSOR INSTRUCTION SET 

CALL - Call Procedure 

Opcode 

EB cw 
FF /2 
9A cd 
9A cd 
9A cd 
9A cd 
9A cd 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 
EB cd 
FF /2 
9A cp 
9A cp 
9A cp 
9A cp 
9A cp 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 

Instruction 

CALL rel16 
CALL rlm16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL ptr16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL m16:16 
CALL rel32 
CALL rlm32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptr32:32 
CALL ptr16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 

Clocks 

7+m 
7 + m/10+ m,pm=9+ m/12+ m 
17+m,pm=42+m 
pm=64+m 
pm=98+m 
pm=106+8x+m 
ts 
30+m,pm=46+m 
pm=68+m 
pm=102+m 
pm=110+8x+m 
5 + ts 
7+m,pm=9+m 
7+m/10+ m,pm=9+m/12+m 
17+m,pm=42+ m 
pm=64+m 
pm=98+m 
pm= 106+8x+m 
ts 
30+m,pm=46+m 
pm=68+m 
pm=102+m 
pm= 110 +Bx+ m 
5 + ts 

NOTE: Values of ts are given by the following table: 

386'· SX TSS 

Old Task 

N 

386 SX VM=O 
TSS 392 

80286 310 TSS 

Operation 

IF rel16 or rel32 type of call 
THEN (* near relative call *) 

IF Operand Size == 16 
THEN 

Push(IP); 

VM == 0 

y 

401 

316 

EIP ~ (EIP + rel16) AND OOOOFFFFH; 
ELSE (* OperandSize = 32 *) 

Push(EIP); 
EIP ~ EIP + rel32; 

FI; 
FI; 

17-40 

Description 

Call near, displacement relative to next instruction 
Call near, register indirect/memory indirect 
Call intersegment, to full pointer given 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call intersegment, address at rim dword 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call near, displacement relative to next instruction 
Call near, indirect 
Call intersegment, to full pointer given 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 
Call intersegment, address at rim dword 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, x parameters 
Call to task 

New Task 

386 SX TSS 80286 TSS VM == 1 

Via Task Gate? 

N Y N Y 

309 321 285 294 

229 238 285 294 



386'" SX MICROPROCESSOR INSTRUCTION SET 

IF r/m16 or r/m32 type of call 
THEN (* near absolute call *) 

IF OperandSize = 16 
THEN 

Push(lP); 
EIP ~ [r/m16j AND OOOOFFFFH; 

ELSE (* OperandSize = 32 *) 
Push(EIP); 

FI; 
FI; 

EIP ~ [r/m32]; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) 
(* real mode or virtual 8086 mode *) 

AND instruction = far CALL 
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) 

THEN 
IF OperandSize = 16 
THEN 

Push(CS); 
Push(lP); (* address of next instruction; 16 bits *) 

ELSE 
Push(CS); (* padded with 16 high-order bits *) 
Push(EIP); (* address of next instruction; 32 bits *) 

FI; 
IF operand type is m16:16 or m16:32 
THEN (* indirect far call *) 

IF OperandSize = 16 
THEN 

CS:IP ~ [m16:16j; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ [m16:32]; 

FI; 
FI; 
IF operand type is ptr16:16 or ptr16:32 
THEN (* direct far call *) 

IF OperandSize = 16 
THEN 

CS:IP ~ ptr16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ ptr16:32; 

FI; 
FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far CALL 

THEN 

17-41 



386™ SX MICROPROCESSOR INSTRUCTION SET 

If indirect, then check access of EA doubleword; 
#GP(O) if limit violation; 

New CS selector must not be null else #GP(O); 
Check that new CS selector index is within its 

descriptor table limits; else #GP(new CS selector); 
Examine AR byte of selected descriptor for various legal values; 

depending on value: 
go to CONFORMING-CODE-SEGMENT; 
go to NONCONFORMING-CODE-SEGMENT; 
go to CALL-GATE; 
go to TASK-GATE; 
go to TASK-STATE-SEGMENT; 

ELSE #GP(code segment selector); 
FI; 

CONFORMING-CODE-SEGMENT: 
DPL must be ::; CPL ELSE #GP(code segment selector); 
Segment must be present ELSE #NP(code segment selector); 
Stack must be big enough for return address ELSE #SS(O); 
Instruction pointer must be in code segment limit ELSE #GP(O); 
Load code segment descriptor into CS register; 
Load CS with new code segment selector; 
Load EIP with zero-extend(new offset); 
IF OperandSize = 16 THEN EIP ~ EIP AND OOOOFFFFH; FI; 

NONCONFORMING-CODE-SEGMENT: 
RPL must be ::; CPL ELSE #GP(code segment selector) 
DPL must be = CPL ELSE #GP(code segment selector) 
Segment must be present ELSE #NP(code segment selector) 
Stack must be big enough for return address ELSE #SS(O) 
Instruction pointer must be in code segment limit ELSE #GP(O) 
Load code segment descriptor into CS register 
Load CS with new code segment selector 
Set RPL of CS to CPL 
Load EIP with zero-extend(new offset); 
IF OperandSize=16 THEN EIP ~ EIP AND OOOOFFFFH; FI; 

CALL-GATE: 
Call gate DPL must be ~ CPL ELSE #GP(call gate selector) 
Call gate DPL must be ~ RPL ELSE #GP(call gate selector) 
Call gate must be present ELSE #NP(call gate selector) 
Examine code segment selector in call gate descriptor: 

Selector must not be null ELSE #GP(O) 
Selector must be within its descriptor table 

limits ELSE #GP(code segment selector) 
AR byte of selected descriptor must indicate code 

segment ELSE #GP(code segment selector) 
DPL of selected descriptor must be ::; CPL ELSE 

#GP(code segment selector) 

17-42 



386'" SX MICROPROCESSOR INSTRUCTION SET 

IF non-conforming code segment AND DPL < CPL 
THEN go to MORE-PRIVILEGE 
ELSE go to SAME-PRIVILEGE 
FI; 

MORE-PRIVILEGE: 
Get new SS selector for new privilege level from TSS 

Check selector and descriptor for new SS: 
Selector must not be null ELSE #TS(O) 
Selector index must be within its descriptor 

table limits ELSE #TS(SS selector) 
Selector's RPL must equal DPL of code segment 

ELSE #TS(SS selector) 
Stack segment DPL must equal DPL of code 

segment ELSE #TS(SS selector) 
Descriptor must indicate writable data segment 

ELSE #TS(SS selector) 
Segment present ELSE #SS(SS selector) 

IF OperandSize = 32 
THEN 

New stack must have room for parameters plus 16 bytes 
ELSE #SS(SS selector) 

EIP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:EIP value from gate 

ELSE 
New stack must have room for parameters plus 8 bytes 

ELSE #SS(SS selector) 
IP must be in code segment limit ELSE #GP(O) 
Load new SS:eSP value from TSS 
Load new CS:IP value from gate 

FI; 
Load CS descriptor 
Load SS descriptor 
Push long pointer of old stack onto new stack 
Get word count from call gate, mask to 5 bits 
Copy parameters from old stack onto new stack 
Push return address onto new stack 
Set CPL to stack segment DPL 
Set RPL of CS to CPL 

SAME-PRIVILEGE: 
IF OperandSize=32 
THEN 

Stack must have room for 6-byte return address (padded to 8 bytes) 
ELSE #SS(O) 

EIP must be within code segment limit ELSE #GP(O) 
Load CS:EIP from gate 

17-43 



386'" SX MICROPROCESSOR INSTRUCTION SET 

ELSE 
Stack must have room for 4-byte return address ELSE #SS(O) 
IP must be within code segment limit ELSE #GP(O) 
Load CS:IP from gate 

FI; 
Push return address onto stack 
Load code segment descriptor into CS register 
Set RPL of CS to CPL 

TASK-GATE: 
Task gate DPL must be ~ CPL ELSE #TS(gate selector) 
Task gate DPL must be ~ RPL ELSE #TS(gate selector) 
Task Gate must be present ELSE #NP(gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #TS(TSS selector) 
Index must be within GDT limits ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify nonbusy TSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 

SWITCH-TASKS (with nesting) to TSS 
IP must be in code segment limit ELSE #TS(O) 

TASK-STATE-SEGMENT: 
TSS DPL must be ~ CPL else #TS(TSS selector) 
TSS DPL must be ~ RPL ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify available TSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 
SWITCH-TASKS (with nesting) to TSS 
IP must be in code segment limit ELSE #TS(O) 

Description 

The CALL instruction causes the procedure named in the operand to be executed. 
When the procedure is complete (a return instruction is executed within the procedure), 
execution continues at the instruction that follows the CALL instruction. 

The action of the different forms of the instruction are described below. 

Near calls are those with destinations of type r/m16, r/m32, re116, rel32; changing or saving 
the segment register value is not necessary. The CALL rel16 and CALL rel32 forms add 
a signed offset to the address of the instruction following the CALL instruction to de­
termine the destination. The rel16 form is used when the instruction's operand-size at­
tribute is 16 bits; rel32 is used when the operand-size attribute is 32 bits. The result is 
stored in the 32-bit EIP register. With re116, the upper 16 bits of the EIPregister are 
cleared, resulting in an offset whose value does not exceed 16 bits. CALL r/m16 and 
CALL r/m32 specify a register or memory location from which the absolute segment 
offset is fetched. The offset fetched from rim is 32 bits for an operand-size attribute of 32 

17-44 



386'" SX MICROPROCESSOR INSTRUCTION SET 

(r/m32), or 16 bits for an operand-size of 16 (r/m16). The offset of the instruction follow­
ing the CALL instruction is pushed onto the stack. It will be popped by a ncar RET 
instruction within the procedure. The CS register is not changed by this form of CALL. 

The far calls, CALL ptr16:16 and CALL ptr16:32, use a four-byte or six-byte operand as 
a long pointer to the procedure called. The CALL m16:16 and m16:32 forms fetch the 
long pointer from the memory location specified (indirection). In Real Address Mode or 
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits 
for the EIP register (depending on the operand-size attribute). These forms of the in­
struction push both the CS and IP or EIP registers as a return address. 

In Protected Mode, both long pointer forms consult the AR byte in the descriptor in­
dexed by the selector part of the long pointer. Depending on the value of the AR byte, 
the call will perform one of the following types of control transfers: 

• A far call to the same protection level 

• An inter-protection level far call 

• A task switch 

For more information on Protected Mode control transfers, refer to Chapter 6 and 
Chapter 7. 

Flags Affected 

All flags are affected if a task switch occurs; no flags are affected if a task switch does 
not occur 

Protected Mode Exceptions 

For far calls: #GP, #NP, #SS, and #TS, as indicated in the "Operation" section 

For near direct calls: #GP(O) if procedure location is beyond the code segment limits; 
#SS(O) if pushing the return address exceeds the bounds of the stack segment; #PF 
(fault-code) for a page fault 

For a near indirect call: #GP(O) for an illegal memory operand effective address in the 
CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#GP(O) if the indirect offset obtained is beyond the code segment limits; #PF(fault­
code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

17-45 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

Any far call from a 32-bit code segment to a 16-bit code segment should be made from 
the first 64K bytes of the 32-bit code segment, because the operand-size attribute of the 
instruction is set to 16, allowing only a 16-bit return address offset to be saved. 

17-46 



386'" SX MICROPROCESSOR INSTRUCTION SET 

CBW /CWDE - Convert Byte to Word/Convert Word to 
Doubleword 

Opcode 

98 
98 

Operation 

Instruction 

CBW 
CWDE 

Clocks 

3 
3 

IF OperandSize = 16 (* instruction = CBW *) 
THEN AX +-- SignExtend(AL); 
ELSE (* OperandSize = 32, instruction = CWDE *) 

EAX +-- SignExtend(AX); 
FI; 

Description 

Description 

AX <- sign-extend of AL 
EAX <- sign-extend of AX 

The CBW instruction converts the signed byte in the AL register to a signed word in the 
AX register by extending the most significant bit of the AL register (the sign bit) into all 
of the bits of the AH register. The CWDE instruction converts the signed word in the 
AX register to a doubleword in the EAX register by extending the most significant bit of 
the AX register into the two most significant bytes of the EAX register. Note that the 
CWDE instruction is different from the CWD instruction. The CWD instruction uses 
the DX:AX register pair rather than the EAX register as a destination. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-47 



386'M SX MICROPROCESSOR INSTRUCTION SET 

CLC - Clear Carry Flag 

Opcode 

F8 

Operation 

CF <-- 0; 

Description 

Instruction 

CLC 

Clocks 

2 

Description 

Clear carry flag 

The CLC instruction clears the CF flag. It does not affect other flags or registers. 

Flags Affected 

The CF flag is cleared 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-48 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

CLD - Clear Direction Flag 

Opcode 

FC 

Operation 

DF~O; 

Description 

Instruction 

CLD 

Clocks 

2 

Description 

Clear direction flag; SI and DI will increment duro 
ing string instructions 

The CLO instruction clears the direction flag. No other flags or registers are affected. 
After a CLO instruction is executed, string operations will increment the index registers 
(SI and/or OI) that they use. 

Flags Affected 

The OF flag is cleared 

Protected Mode Exteptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17·49 



386'" SX MICROPROCESSOR INSTRUCTION SET 

eLi - Clear Interrupt Flag 

Opcode 

FA 

Operation 

IF <- 0; 

Description 

Instruction 

CLI 

Clocks 

8 

Description 

Clear interrupt flag; interrupts disabled 

The CLI instruction clears the IF flag if the current privilege level is at least as privileged 
as IOPL. No other flags are affected. External interrupts are not recognized at the end 
of the CLI instruction or from that point on until the IF flag is set. 

Flags Affected 

The IF flag is cleared 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater (has less privilege) than the I/O privilege 
level in the flags register. The I/O privilege level specifies the least privileged level at 
which I/O can be performed. 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O) as for Protected Mode 

17-50 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

CL TS - Clear Task-Switched Flag in CRO 

Opcode 

OF 06 

Operation 

Instruction 

CLTS 

TS Flag in CRO ~ 0; 

Description 

Clocks 

5 

Description 

Clear task-switched flag 

The CLTS instruction clears the task-switched (TS) flag in the CRO register. This flag is 
set by the 386 processor every time a task switch occurs. The TS flag is used to manage 
processor extensions as follows: 

• Every execution of an ESC instruction is trapped if the TS flag is set. 

• Execution of a WAIT instruction is trapped if the MP flag and the TS flag are both 
set. 

Thus, if a task switch was made after an ESC instruction was begun, the processor 
extension's context may need to be saved before a new ESC instruction can be issued. 
The fault handler saves the context and clears the TS flag. 

The CLTS instruction appears in operating system software, not in application pro­
grams. It is a privileged instruction that can only be executed at privilege level O. 

Flags Affected 

The TS flag is cleared (the TS flag is in the CRO register, not the flags register) 

Protected Mode Exceptions 

#GP(O) if the CLTS instruction is executed with a current privilege level other than 0 

Real Address Mode Exceptions 

None (valid in Real Address Mode to allow initialization for Protected Mode) 

Virtual 8086 Mode Exceptions 

None 

17-51 



386™ SX MICROPROCESSOR INSTRUCTION SET 

CMC - Complement Carry Flag 

Opcode 

F5 

Operation 

Instruction 

CMC 

CF ~ NOT CF; 

Description 

Clocks 

2 

Description 

Complement carry flag 

The CMC instruction reverses the setting of the CF flag. No other flags are affected. 

Flags Affected 

The CF flag contains the complement of its original value 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-52 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

CMP-Compare Two Operands 

Opcode 

3C ib 
3D iw 
3D id 
80 /7 ib 
81 /7 iw 
81 /7 id 
83 /7 ib 
83 /7 ib 
38 /r 
39 /r 
39 /r 
3A /r 
36/r 
36 /r 

Operation 

Instruction 

CMPAL,immB 
CMP AX,imml6 
CMP EAX,imm32 
CMP rlmB,immB 
CMP rlml6,imml6 
CMP rlm32,imm32 
CMP rlml6,immB 
CMP rlm32,immB 
CMP rlmB,rB 
CMP rlml6,rl6 
CMP rlm32,r32 
CMP rB,rlmB 
CMP rl6,rlml6 
CMP r32,rlm32 

LeftSRC - SignExtend(RightSRC); 

Clocks 

2 
2 
2 
2/5 
2/5 
2/7 
2/5 
2/7 
2/5 
2/5 
2/7 
2/6 
2/6 
2/8 

Description 

Compare immediate byte to AL 
Compare immediate word to AX 
Compare immediate dword to EAX 
Compare immediate byte to rim byte 
Compare immediate word to rim word 
Compare immediate dword to rim dword 
Compare sign extended immediate byte to rim word 
Compare sign extended immediate byte to rim dword 
Compare byte register to rim byte 
Compare word register to rim word 
Compare dword register to rim dword 
Compare rim byte to byte register 
Compare rim word to word register 
Compare rim dword to dword register 

(* CMP does not store a result; its purpose is to set the flags *) 

Description 

The CMP instruction subtracts the second operand from the first but, unlike the SUB 
instruction, does not store the result; only the flags are changed. The CMP instruction is 
typically used in conjunction with conditional jumps and the SETcc instruction. (Refer to 
Appendix D for the list of signed and unsigned flag tests provided.) If an operand 
greater than one byte is compared to an immediate byte, the byte value is first 
sign-extended. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; # PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-53 



386™ SX MICROPROCESSOR INSTRUCTION SET 

CMPS/CMPSB/CMPSW/CMPSD - Compare String Operands 

Opcode 

A6 
A7 
A7 
A6 
A7 
A7 

Instruction 

CMPS m8,m8 
CMPS m16,m16 
CMPS m32,m32 
CMPSB 
CMPSW 
CMPSD 

Operation 

Clocks 

10 
10 
14 
10 
10 
14 

IF (instruction = CMPSD) OR 

Description 

Compare bytes ES:[(E)DI) (second operand) with [(E)SI) (first operand) 
Compare words ES:[(E)OI) (second operand) with [(E)SI) (first operand) 
Compare dwords ES: [(E)DI) (second operand) with [(E)SI) (first operand) 
Compare bytes ES:[(E)DI) with DS:[SI) 
Compare words ES:[(E)DI) with DS:[SI) 
Compare dwords ES:[(E)DI) with DS:[SI) 

(instruction has operands of type DWORD) 
THEN OperandSize ~ 32; 
ELSE OperandSize ~ 16; 
FI; 
IF AddressSize = 16 
THEN 

use SI for source-index and DI for destination-index 
ELSE (* AddressSize = 32 *) 

use ESI for source-index and EDI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

[source-index] - [destination-index]; (* byte comparison *) 
IF DF = 0 THEN IncDec ~ 1 ELSE IncDec ~ -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[source-index] - [destination-index]; (* word comparison *) 
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec ~ - 2; FI; 

ELSE (* Operand Size = 32 *) 
[source-index] - [destination-index]; (* dword comparison *) 
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI; 

FI; 
FI; 
source-index = source-index + IncDec; 
destination-index = destination-ind~x + IncDec; 

Description 

The CMPS instruction compares the byte, word, or doubleword pointed to by the 
source-index register with the byte, word, or doubleword pointed to by the destination­
index register. 

If the address-size attribute of this instruction is 16 bits, the SI and DI registers will be 
used for source- and destination-index registers; otherwise the ESI and EDI registers 
will be used. Load the correct index values into the SI and DI (or ESI and EDI) registers 
before executing the CMPS instruction. 

17-54 



386 T. SX MICROPROCESSOR INSTRUCTION SET 

The comparison is done by subtracting the operand indexed by the destination-index 
register from the operand indexed by the source-index register. 

Note that the direction of subtraction for the CMPS instruction is [SI] - [01] or [ESI] 
- [EOl]. The left operand (SI or ESI) is the source and the right operand (01 or EOl) 
is the destination. This is the reverse of the usual Intel® convention in which the left 
operand is the destination and the right operand is the source. 

The result of the subtraction is not stored; only the flags reflect the change. The types of 
the operands determine whether bytes, words, or doublewords are compared. For the 
first operand (SI or ESI), the DS register is used, unless a segment override byte is 
present. The second operand (DI or EDI) must be addressable from the ES register; no 
segment override is possible. 

After the comparison is made, both the source-index register and destination-index reg­
ister are automatically advanced. If the DF flag is 0 (a CLD instruction was executed), 
the registers increment; if the DF flag is 1 (an STD instruction was executed), the 
registers decrement. The registers increment or decrement by 1 if a byte is compared, by 
2 if a word is compared, or by 4 if a doubleword is compared. 

The CMPSB, CMPSW and CMPSD instructions are synonyms for the byte, word, and 
doubleword CMPS instructions, respectively. 

The CMPS instruction can be preceded by the REPE or REPNE prefix for block com­
parison of CX or ECX bytes, words, or doublewords. Refer to the description of the 
REP instruction for more information on this operation. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; # PF( fault -code) for a page fault 

17-55 



386'" SX MICROPROCESSOR INSTRUCTION SET 

CWO/COQ - Convert Word to Doubleword/Convert Doubleword 
to Quadword 

Opcode 

99 
99 

Operation 

Instruction 

CWO 
coa 

Clocks 

2 
2 

IF OperandSize = 16 (* CWO instruction *) 
THEN 

IF AX < 0 THEN OX +- OFFFFH; ELSE OX +- 0; FI; 
ELSE (* OperandSize = 32, COO instruction *) 

Description 

OX:AX <- sign-extend of AX 
EOX:EAX <- sign-extend of EAX 

IF EAX < 0 THEN EOX +- OFFFFFFFFH; ELSE EOX +- 0; FI; 
FI; 

Description 

The CWD instruction converts the signed word in the AX register to a signed double­
word in the DX:AX register pair by extending the most significant bit of the AX register 
into all the bits of the DX register. The CDQ instruction converts the signed doubleword 
in the EAX register to a signed 64-bit integer in the register pair EDX:EAX by extend­
ing the most significant bit of the EAX register (the sign bit) into all the bits of the EDX 
register. Note that the CWD instruction is different from the CWDE instruction. The 
CWDE instruction uses the EAX register as a destination, instead of the DX:AX regis­
ter pair. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-56 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

DAA - Decimal Adjust AL after Addition 

Opcode 

27 

Operation 

Instruction 

DM 

Clocks 

4 

IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN 

AL ~ AL + 6; 
AF~ 1; 

ELSE 
AF~O; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL ~ AL + 60H; 
CF~ 1; 

ELSE CF ~ 0; 
FI; 

Description 

Description 

Decimal adjust AL after addition 

Execute the DAA instruction only after executing an ADD instruction that leaves a 
two-BCD-digit byte result in the AL register. The ADD operands should consist of two 
packed BCD digits. The DAA instruction adjusts the AL register to contain the correct 
two-digit packe~ decimal result. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the ~F, ZF, PF, and CF flags are set according to the result. 

Protected Mo~e Exceptions 

None 

Real A~~ress Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-57 



386™ SX MICROPROCESSOR INSTRUCTION SET 

DAS - Decimal Adjust AL after Subtraction 

Opcode 

2F 

Operation 

Instruction 

DAS 

Clocks 

4 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL ~ AL - 6; 
AF~ 1; 

ELSE 
AF~ 0; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL ~ AL - 60H; 
CF~ 1; 

ELSE CF ~ 0; 
FI; 

Description 

Description 

Decimal adjust AL after subtraction 

Execute the DAS instruction only after a subtraction instruction that leaves a two-BCD­
digit byte result in the AL register. The operands should consist of two packed BCD 
digits. The DAS instruction adjusts the AL register to contain the correct packed two­
digit decimal result. 

Flags Affected 

The AF and CF flags are set if there is a decimal carry, cleared if there is no decimal 
carry; the SF, ZF, and PF flags are set according to the result. 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-58 



386'· SX MICROPROCESSOR INSTRUCTION SET 

DEC-Decrement by 1 

Opcode 

FE 11 
FF 11 

48+rw 
48+rw 

Operation 

Instruction 

DEC r/m8 
DEC r/m16 
DEC r/m32 
DEC r16 
DEC r32 

DEST <- DEST - 1; 

Description 

Clocks 

2/6 
2/6 
2/10 
2 
2 

Description 

Decrement rim byte by 1 
Decrement rim word by 1 
Decrement rim dword by 1 
Decrement word register by 1 
Decrement dword register by 1 

The DEC instruction subtracts 1 from the operand. The DEC instruction does not 
change the CF flag. To affect the CF flag, use the SUB instruction with an immediate 
operand of 1. 

Flags Affected 

The OF, SF, ZF, AF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) if the result is a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-59 



386'" SX MICROPROCESSOR INSTRUCTION SET 

DIV - Unsigned Divide 

Opcode 

F6/6 
F7/6 
F7/6 

Operation 

Instruction 

DIV AL,rlm8 
DIV AX,rlml6 
DIV EAX,rlm32 

temp +- dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient +- temp; 

Clocks 

14/17 
22/25 
38/43 

remainder +- dividend MOD (rim); 
FI; 

Description 

Unsigned divide AX by rim byte (AL = Quo, AH = Rem) 
Unsigned divide DX:AX by rim word (AX = Quo, DX = Rem) 
Unsigned divide EDX:EAX by rim dword (EAX = Quo, EDX = Rem) 

Note: Divisions are unsigned. The divisor is given by the rim operand. The dividend, 
quotient, and remainder use implicit registers. Refer to the table under "Description." 

Description 

The DIY instruction performs an unsigned division. The dividend is implicit; only the 
divisor is given as an operand. The remainder is always less than the divisor. The type of 
the divisor determines which registers to use as follows: 

Size Dividend Divisor Quotient Remainder 

byte AX rlmB AL AH 
word OX:AX rlm16 AX OX 
dword EOX:EAX rlm32 EAX EOX 

Flags Affected 

The OF, SF, ZF, AF, PF, CF flags are undefined. 

Protected Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (AL, AX, or 
EAX), or if the divisor is 0; #GP(O) for an illegal memory operand effective address in 
the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#PF(fault-code) for a page fault 

17-60 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Real Address Mode Exceptions 

Interrupt 0 if the quotient is too big to fit in the designated register (AL, AX, or EAX), 
or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the 
effective address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-61 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

ENTER - Make Stack Frame for Procedure Parameters 

Opcode 

C8 iwOO 
C8 iw01 
C8 iwib 

Operation 

Instruction 

ENTER imml6,0 
ENTER imml6,1 
ENTER imml6,immB 

level +-- level MOD 32 

Clocks 

10 
14 
17+8(n-1) 

Description 

Make procedure stack frame 
Make stack frame for procedure parameters 
Make stack frame for procedure parameters 

IF OperandSize = 16 THEN Push(BP) ELSE Push (EBP) FI; 
(* Save stack painter *) 

frame-ptr +-- eSP 
IF level> 0 
THEN (* level is rightmost parameter *) 

FOR i +-- 1 TO level - 1 
DO 

IF OperandSize = 16 
THEN 

BP +-- BP - 2; 
Push[BP] 

ELSE (* Operand Size = 32 *) 
EBP +-- EBP - 4; 
Push[EBP]; 

FI; 
00; 
Push(frame-ptr) 

FI; 
IF OperandSize = 16 THEN BP +-- frame-ptr ELSE EBP +-- frame-ptr; FI; 
IF StackAddrSize = 16 
THEN SP +-- SP - First operand; 
ELSE ESP +-- ESP - ZeroExtend(First operand); 
FI; 

Description 

The ENTER instruction creates the stack frame required by most block-structured high­
level languages. The first operand specifies the number of bytes of dynamic storage 
allocated on the stack for the routine being entered. The second operand gives the 
lexical nesting level (0 to 31) of the routine within the high-level language source code. It 
determines the number of stack frame pointers copied into the new stack frame from the 
preceding frame. The BP register (or EBP, if the operand-size attribute is 32 bits) is the 
current stack frame pointer. 

If the operand-size attribute is 16 bits, the 386 SX microprocessor uses the BP register as 
the frame pointer and the SP register as the stack pointer. If the operand-size attribute 
is 32 bits, the processor uses the EBP register for the frame pointer and the ESP register 
for the stack pointer. 

17-62 



386'· SX MICROPROCESSOR INSTRUCTION SET 

If the second operand is 0, the ENTER instruction pushes the frame pointer (BP or EBP 
register) onto the stack; the ENTER instruction then subtracts the first operand from 
the stack pointer and sets the frame pointer to the current stack-pointer value. 

For example, a procedure with 12 bytes of local variables would have an ENTER 12,0 
instruction at its entry point and a LEAVE instruction before every RET instruction. 
The 12 local bytes would be addressed as negative offsets from the frame pointer. 

Flags Affected 

None 

Protected Mode Exceptions 

#SS(O) if the SP or ESP value would exceed the stack limit at any point during instruc­
tion execution; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-63 



386'" SX MICROPROCESSOR INSTRUCTION SET 

HLT-Halt 

Opcode 

F4 

Operation 

Instruction 

HLT 

Enter Halt state; 

Description 

Clocks 

5 

Description 

Halt 

The HLT instruction stops instruction execution and places the 386 processor in a 
HALT state. An enabled interrupt, NMI, or a reset will resume execution. If an inter­
rupt (including NMI) is used to resume execution after an HLT instruction, the saved 
CS:IP (or CS:EIP) value points to the instruction following the HLT instruction. 

Flags Affected 

None 

Protected Mode Exceptions 

The HLT instruction is a privileged instruction; #GP(O) if the current privilege level is 
not 0 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O); the HLT instruction is a privileged instruction 

17-64 



386 T. SX MICROPROCESSOR INSTRUCTION SET 

IDIV -Signed Divide 

Instruction 

IDIV rlmB 

Description 

Signed divide AX by rim byte (AL = Quo, AH = Rem) 
Signed divide DX:AX by EA word (AX = Quo, OX = Rem) 

Opcode 

F6/7 
F7/7 
F7/7 

IDIV AX,rlm16 
IDIV EAX,rlm32 

c:locks 

19/22 
27/30 
43/48 Signed divide EDX:EAX by DWORD byte (EAX=Quo, EDX = Rem) 

Operation 

temp ~ dividend / divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient ~ temp; 
remainder ~ dividend MOD (rim); 

FI; 

Notes: Divisions are signed. The divisor is given by the rim operand. The dividend, 
quotient, and remainder use implicit registers. Refer to the table under "Description." 

Description 

The IDIV instruction performs a signed division. The dividend, quotient, and remainder 
are implicitly allocated to fixed registers. Only the divisor is given as an explicit rim 
operand. The type of the divisor determines which registers tp use as follows: 

Size Divisor quotient Remainder Dividend 

byte r/m8 AL AH AX 
word r/m16 AX OX OX:AX 
dword r/m32 EAX EOX EOX:EAX 

If the resulting quotient is too large to fit in the destination, or if the division is 0, an 
Interrupt 0 is generated. Nonintegral quotients are truncated toward O. The remainder 
has the same sign as the dividend and the absolute value of the remainder is always less 
than the absolute value of the divisor. 

Flags Affected 

The OF, SF, ZF, AF, PF, CF flags are undefined. 

Protected Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if 
the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; #PF(fault-
code) for a page fault . 

17-65 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Real Address Mode Exceptions 

Interrupt 0 if the quotient is too large to fit in the designated register (AL or AX), or if 
the divisor is 0; Interrupt 13 if any part of the operand would lie outside of the effective 
address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-66 



386 ,. SX MICROPROCESSOR INSTRUCTION SET 

IMUL- Signed Multiply 

Opcode Instruction Clocks Description 

F6/5 IMUL r/mB 12-17/15-20 AX+-- AL • r/m byte 
F7/5 IMUL r/ml6 12-25/15-28 DX:AX +-- AX • r/m word 
F7 /5 IMUL r/m32 12-41/17-46 EDX:EAX +-- EAX • r/m dword 
OF AF /r IMUL rI6,r/mI6 12-25/15-28 word register +-- word register' r/m word 
OF AF /r IMUL r32,r/m32 12-41/17-46 dword register +-- dword register' rim dword 
68 /r ib IMUL rI6,r/mI6,immB 13-26,pm = 13-26/14-27 word register +-- r/ml6 • sign-extended immediate 

byte 
68 /r ib IMUL r32,r/m32,immB 13-42,pm = 13-42/16-45 dword register +-- r/m32 • sign-extended immediate 

byte 
68 /r ib IMUL r16,immB 13-26,pm = 13-26/14-27 word register +-- word register' sign-extended imme-

diate byte 
68 /r ib IMUL r32,immB 13-42,pm = 13-42/16-45 dword register <- dword register' sign-extended im-

mediate byte 
69 /r iw IMUL rI6,r/m16,imm16 13-26,pm = 13-26/14-27 word register +-- r/m 16' immediate word 
69 /r id IMUL r32,r/m32,imm32 13-42,pm = 13-42/16-45 dword register +-- r/m32 • immediate dword 
69 /r iw IMUL r16,imm16 13-26,pm = 13-26/14-27 word register <- r/m16' immediate word 
69 /r id IMUL r32,imm32 13-42,pm = 13-42/16-45 dword register +-- rlm32 • immediate dword 

NOTES: The 386 SX microprocessor uses an early-out multiply algorithm. The actual number of clocks depends on the 
position of the most significant bit in the optimizing multiplier. The optimization occurs for positive and negative 
values. 8ecause of the early-out algorithm, clock counts given are minimum to maximum. To calculate the actual 
clocks, use the following formula: 

Actual clock = if m < > 0 then max(ceiling(log2 I m I ), 3) + 6 clocks 
Actual clock = if m = 0 then 9 clocks 
(where m is the multiplier) 

Add three clocks if the multiplier is a memory operand. 

Operation 

result +--- multiplicand * multiplier; 

Description 

The IMUL instruction performs signed multiplication. Some forms of the instruction use 
implicit register operands. The operand combinations for all forms of the instruction are 
shown in the "Description" column above. 

The IMUL instruction clears the OF and CF flags under the following conditions: 

Instruction Form Condition for Clearing CF and OF 

r/mB AL = sign-extend of AL to 16 bits 
r/m16 AX = sign-extend of AX to 32 bits 
r/m32 EDX:EAX = sign-extend of EAX to 32 bits 
r16,r/m16 Result exactly fits within r16 
r/32,r/m32 Result exactly fits within r32 
r16,r/m16,imm 16 Result exactly fits within r16 
r32,r/m32,imm32 Result exactly fits within r32 

17-67 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Flags Affected 

The OF and CF flags as described in the table in the "Description" section above; the 
SF, ZF, AF, and PF flags are undefined 

Protected Mode Exceptions 

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or OS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exeptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

When using the accumulator forms (IMUL rlmB, IMUL rim 16, or IMUL rlm32), the 
result of the multiplication is available even if the overflow flag is set because the result 
is twice the size of the multiplicand and multiplier. This is large enough to handle any 
possible result. 

17-68 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

IN -Input from Port 

Opcode 

E4 ib 
E5 ib 
E5 ib 
EC 
ED 
ED 

Instruction 

IN AL,immB 
INAX,immB 
IN EAX,immB 
IN AL.OX 
IN AX.OX 
IN EAX.OX 

NOTES: *If CPL s; IOPL 

Clocks 

12.pm ~ 6*/26** 
12.pm~6*/26** 

14.pm~8*/28** 
13.pm ~ 7* /27** 
13.pm~7*/27** 
15.pm ~ 9*/29** 

**If CPL > IOPL or if in virtual 8086 mode 

Operation 

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL)) 

Description 

Input byte from immediate port into AL 
Input word from immediate port into AX 
Input dword from immediate port into EAX 
Input byte from port OX into AL 
Input word from port OX into AX 
Input dword from port OX into EAX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-O-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
DEST +--- [SRC]; (* Reads from I/O address space *) 

Description 

The IN instruction transfers a data byte or data word from the port numbered by the 
second operand into the register (AL, AX, or EAX) specified by the first operand. 
Access any port from 0 to 65535 by placing the port number in the DX register and using 
an IN instruction with the DX instruction as the second parameter. These I/O instruc­
tions can be shortened by using an 8-bit port I/O in the instruction. The upper eight bits 
of the port address will be 0 when 8-bit port I/O is used. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is larger (has less privilege) than the I/O privilege 
level and any of the corresponding I/O permission bits in TSS equals 1 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1 

17-69 



386'· SX MICROPROCESSOR INSTRUCTION SET 

INC -Increment by 1 

Opcode 

FE /0 
FF /0 
FF /6 
40+ rw 
40+ rd 

Operation 

Instruction 

INC rlmB 
INC rlm16 
INC rlm32 
INC r16 
INC r32 

DEST ~ DEST + 1; 

Description 

Clocks 

2/6 
2/6 
2/10 
2 
2 

Description 

Increment rim byte by 1 
Increment rim word by 1 
Increment rim dword by 1 
Increment word register by 1 
Increment dword register by 1 

The INC instruction adds 1 to the operand. It does not change the CF flag. To affect the 
CF flag, use the ADD instruction with a second operand of 1. 

Flags Affected 

The OF, SF, ZF, AF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the operand is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17·70 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

INS/INSB/INSW/INSD -Input from Port to String 

Opcode 

6C 
60 
60 
6C 
60 
60 

Instruction 

INS rlmB,OX 
INS rlml6,OX 
INS rlm32,OX 
INSB 
INSW 
INSO 

NOTES: *If CPL :s IOPL 

Clocks 

15,pm ~ 9*/29** 
15,pm~9*/29** 
19,pm ~ 13*/33** 
15,pm ~ 9*/29** 
15,pm~9*/29** 

19,pm ~ 13*/33** 

**If CPL > IOPL or if in virtual 8086 mode 

Operation 

IF AddressSize = 16 
THEN use 01 for dest-index; 
ELSE (* AddressSize = 32 *) 

use EOI for dest-index; 
FI; 
IF (PE = 1) ANO ((VM = 1) OR (CPL > 10PL)) 

Description 

Input byte from port ox into ES:(E)OI 
Input word from port OX into ES:(E)OI 
Input dword from port OX into ES:(E)OI 
Input byte from port OX into ES: (E) 01 
Input word from port OX into ES:(E)OI 
Input dword from port OX into ES:(E)OI 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-a-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

ES:[dest-index) - [OX); (* Reads byte at OX from I/O address space *) 
IF OF = 0 THEN IncOec - 1 ELSE IncOec - -1; FI; 

FI; 
IF OperandSize = 16 
THEN 

ES:[dest-index) - [OX); (* Reads word at OX from I/O address space *) 
IF OF = 0 THEN IncOec - 2 ELSE IncOec - -2; FI; 

FI; 
IF OperandSize = 32 
THEN 

ES:[dest-index) - [OX); (* Reads dword at OX from I/O address space *) 
IF OF = 0 THEN IncOec - 4 ELSE IncOec - -4; FI; 

FI; 
dest-index ~ dest-index + IncOec; 

Description 

The INS instruction transfers data from the input port numbered by the DX register to 
the memory byte or word at ES:dest-index. The memory operand must be addressable 
from the ES register; no segment override is possible. The destination register is the DI 
register if the address-size attribute of the instruction is 16 bits, or the EDI register if the 
address-size attribute is 32 bits. 

17-71 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

The INS instruction does not allow the specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load the correct value 
into the DX register before executing the INS instruction. 

The destination address is determined by the contents of the destination index register. 
Load the correct index into the destination index register before executing the INS 
instruction. 

After the transfer is made, the DI or EDI register advances automatically. If the DF flag 
is 0 (a CLD instruction was executed), the DI or EDI register increments; if the DF flag 
is 1 (an STD instruction was executed), the DI or EDI register decrements. The DI 
register increments or decrements by 1 if a byte is input, by 2 if a word is input, or by 4 
if a doubleword is input. 

The INSB, INSW and INSD instructions are synonyms of the byte, word, and double­
word INS instructions. The INS instruction can be preceded by the REP prefix for block 
input of CX bytes or words. Refer to the REP instruction for details of this operation. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is numerically greater than the I/O privilege level 
and any of the corresponding I/O permission bits in TSS equals 1; #GP(O) if the desti­
nation is in a nonwritable segment; #GP(O) for an illegal memory operand effective 
address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS 
segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault 

17-72 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

INT/INTO - Call to Interrupt Procedure 

Ope ode Instruction Clocks Description 

CC INT 3 33 Interrupt 3 - trap to debugger 
CC INT 3 pm=71 Interrupt 3-Protected Mode, same privilege 
CC INT 3 pm=111 Interrupt 3 - Protected Mode, more privilege 
CC INT3 pm=223 Interrupt 3-from V86 mode to PL 0 
CC INT 3 ts Interrupt 3 - Protected Mode, via task gate 
CD ib INT immB 37 Interrupt numbered by immediate byte 
CD ib INT immB pm=71 Interrupt - Protected Mode, same privilege 
CD ib INT immB pm=111 Interrupt - Protected Mode, more privilege 
CD ib INT immB pm=275 Interrupt-from V86 mode to PL 0 
CD ib INT immB ts Interrupt - Protected Mode, via task gate 
CE INTO Fail:3,pm= 3; Pass:35 Interrupt 4 - if overflow flag is 1 
CE INTO pm=71 Interrupt 4- Protected Mode, same privilege 
CE INTO pm=111 Interrupt 4 - Protected Mode, more privilege 
CE INTO pm=223 Interrupt 4-from V86 mode to PL 0 
CE INTO ts Interrupt 4 - Protected Mode, via task gate 

NOTE: Approximate values of ts are given by the following table: 

New Task 

Old Task 386 T• SX TSS 386 SX TSS 
VM = 0 VM = 1 80286 TSS 

386 SX VM=O 
TSS 467 384 440 

386 SX VM=1 
TSS 472 275 445 

80286 465 382 438 TSS 

Operation 

NOTE: The following operational description applies not only to the above instructions 
but also to external interrupts and exceptions. 

IF PE = 0 
THEN GOTO REAL-ADDRESS-MODE; 
pELSE GOTO PROTECTED-MODE; 
FI; 

REAL-ADDRESS-MODE: 
Push (FLAGS); 
IF ~ 0; (* Clear interrupt flag *) 
TF ~ 0; (* Clear trap flag *) 
Push(CS); 
Push(IP); 
(* No error codes are pushed *) 
CS ~ IDT[lnterrupt number * 4].selector; 
IP ~ IDT[lnterrupt number * 4j.offset; 

17-73 



386 T" SX MICROPROCESSOR INSTRUCTION SET 

PROTECTED-MODE: 
Interrupt vector must be within IDT table limits, 

else #GP(vector number * 8 + 2 + EXT); 
Descriptor AR byte must indicate interrupt gate, trap gate, or task gate, 

else #GP(vector number * 8 + 2 + EXT); 
IF software interrupt (* i.e. caused by INT n, INT 3, or INTO *) 
THEN 

IF gate descriptor DPL < CPL 
THEN #GP(vector number * 8+2+EXT); 
FI; 

FI; 
Gate must be present, else #NP(vector number * 8 + 2 + EXT); 
IF trap gate OR interrupt gate 
THEN GOTO TRAP-GATE-OR-INTERRUPT-GATE; 
ELSE GOTO TASK-GATE; 
FI; 

TRAP-GATE-OR-I NTERRUPT-GATE: 
Examine CS selector and descriptor given in the gate descriptor; 
Selector must be non-null, else #GP (EXT); 
Selector must be within its descriptor table limits 

ELSE #GP(selector + EXT); 
Descriptor AR byte must indicate code segment 

EL8E #GP(selector + EXT); 
8egment must be present, else #NP(selector + EXT); 

IF code segment is non-conforming AND DPL < CPL 
THEN GOTO INTERRUPT-TO-INNER-PRIVILEGE; 
EL8E 

IF code segment is conforming OR code segment DPL = CPL 
THEN GOTO INTERRUPT-TO-SAME-PRIVILEGE-LEVEL; 
EL8E #GP(CS selector + EXT); 
FI; 

FI; 

INTERRUPT -TO-INNER-PRIVILEGE: 
Check selector and descriptor for new stack in current T88; 

Selector must be non-null, else #T8(EXT); 
8elector index must be within its descriptor table limits 

EL8E #T8(88 selector + EXT); 
Selector's RPL must equal DPL of code segment, else #T8(88 

selector + EXT); 
8tack segment DPL must equal DPL of code segment, else #T8(88 

selector + EXT); 
Descriptor must indicate writable data segment, else #T8(88 

selector + EXT); 
Segment must be present, else #88(88 selector + EXT); 

IF 32-bit gate 
THEN New stack must have room for 20 bytes else #88(0) 

17-74 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

ELSE New stack must have room for 10 bytes else #SS(O) 
FI; 
Instruction pointer must be within CS segment boundaries else #GP(O); 
Load new SS and eSP value from TSS; 
IF 32-bit gate 
THEN CS:EIP ~ selector:offset from gate; 
ELSE CS:IP ~ selector:offset from gate; 
FI; 
Load CS descriptor into invisible portion of CS register; 
Load SS descriptor into invisible portion of SS register; 
IF 32-bit gate 
THEN 

Push (long pOinter to old stack) (* 3 words padded to 4 *); 
Push (EFLAGS); 
Push (long pOinter to return location) (* 3 words padded to 4*); 

ELSE 
Push (long pointer to old stack) (* 2 words *); 
Push (FLAGS); 
Push (long pointer to return location) (* 2 words *); 

FI; 
Set CPL to new code segment DPL; 
Set RPL of CS to CPL; 
IF interrupt gate THEN IF ~ 0 (* interrupt flag to 0 (disabled) *); FI; 
TF ~ 0; 
NT~ 0; 

INTERRUPT-FROM-V86-MODE: 
TempEFlags ~ EFLAGS; 
VM ~O; 
TF~O; 

IF service through Interrupt Gate THEN IF ~ 0; 
TempSS ~ SS; 
TempESP ~ ESP; 
SS ~ TSS.SSO; (* Change to level 0 stack segment *) 
ESP ~ TSS.ESPO; (* Change to level 0 stack pOinter *) 
Push(GS); (* padded to two words *) 
Push(FS); (* padded to two words *) 
Push(DS); (* padded to two words *) 
Push(ES); (* padded to two words *) 
GS~O; 

FS ~ 0; 
DS~ 0; 
ES~O; 

Push(TempSS); (* padded to two words *) 
Push (T empESP); 
Push(TempEFlags); 
Push(CS); (* padded to two words *) 
Push(EIP); 

17-75 



386'" SX MICROPROCESSOR INSTRUCTION SET 

CS:EIP <c- selector:offset from interrupt gate; 
(* Starts execution of new routine in 386 SX Protected Mode *) 

INTERRUPT-TO-SAM E-PRIVILEGE-LEVEL: 
IF 32-bit gate 
THEN Current stack limits must allow pushing 10 bytes, else #SS(O); 
ELSE Current stack limits must allow pushing 6 bytes, else #SS(O); 
FI; 
IF interrupt was caused by exception with error code 
THEN Stack limits must allow push of two more bytes; 
ELSE #SS(O); 
FI; 
Instruction pointer must be in CS limit, else #GP(O); 
IF 32-bit gate 
THEN 

Push (EFLAGS); 
Push (long pointer to return location); (* 3 words padded to 4 *) 
CS:EIP <c- selector:offset from gate; 

ELSE (* 16-bit gate *) 
Push (FLAGS); 
Push (long pointer to return location); (* 2 words *) 
CS:IP <c- selector:offset from gate; 

FI; 
Load CS descriptor into invisible portion of CS register; 
Set the RPL field of CS to CPL; 
Push (error code); (* if any *) 
IF interrupt gate THEN IF <c- 0; FI; 
TF <c- 0; 
NT <c- 0; 

TASK-GATE: 
Examine selector to TSS, given in task gate descriptor; 

Must specify global in the local/global bit, else #TS(TSS selector); 
Index must be within GDT limits, else #TS(TSS selector); 
AR byte must specify available TSS (bottom bits 00001), 

else #TS(TSS selector; 
TSS must be present, else #NP(TSS selector); 

SWITCH-TASKS with nesting to TSS; 
IF interrupt was caused by fault with error code 
THEN 

Stack limits must allow push of two more bytes, else #SS(O); 
Push error code onto stack; 

FI; 
Instruction pointer must be in CS limit, else #GP(O); 

Description 

The INT n instruction generates via software a call to an interrupt handler. The imme­
diate operand, from 0 to 255, gives the index number into the Interrupt Descriptor Table 
(IDT) of the interrupt routine to be called. In Protected Mode, the IDT consists of an 

17-76 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

array of eight-byte descriptors; the descriptor for the interrupt invoked must indicate an 
interrupt, trap, or task gate. In Real Address Mode, the lOT is an array of four byte­
long pointers. In Protected and Real Address Modes, the base linear address of the lOT 
is defined by the contents of the IDTR. 

The INTO conditional software instruction is identical to the INT n interrupt instruction 
except that the interrupt number is implicitly 4, and the interrupt is made only if the 
386 SX microprocessor overflow flag is set. 

The first 32 interrupts are reserved by Intel for system use. Some of these interrupts are 
use for internally generated exceptions. 

The INT n instruction generally behaves like a far call except that the flags register is 
pushed onto the stack before the return address. Interrupt procedures return via the 
IRET instruction, which pops the flags and return address from the stack. 

In Real Address Mode, the INT instruction n pushes the flags, the CS register, and the 
return IP onto the stack, in that order, then jumps to the long pointer indexed by the 
interrupt number. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP, #NP, #SS, and #TS as indicated under "Operation" above 

Real Address Mode Exceptions 

None; if the SP or ESP register is 1, 3, or 5 before executing the INT or INTO instruc­
tion, the 386 SX microprocessor will shut down due to insufficient stack space 

Virtual 8086 Mode Exceptions 

#GP(O) fault if IOPL is less than 3, for the INT n instruction only, to permit emulation; 
Interrupt 3 (OCCR) generates a breakpoint exception; the INTO instruction generates 
an overflow exception if the OF flag is set 

17-77 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

IRET/IRETD -Interrupt Return 

Opcode 

CF 
CF 
CF 
CF 
CF 
CF 
CF 

Instruction 

IRET 
IRET 
IRET 
IRETD 
IRETD 
IRETD 
IRETD 

Clocks 

24,pm=42 
pm=86 
ts 
24,pm=42 
pm=86 
pm=113 
ts 

NOTE: Values of ts are given by the following table: 

Old Task 
386'· SX TSS 

VM = 0 

386 SX VM=O 
TSS 328 

80286 318 TSS 

Operation 

IF PE = 0 
THEN (* Real-address mode *) 

IF OperandSize = 32 (* Instruction = IRETD *) 
THEN EIP +- PopO; 
ELSE (* Instruction = IRET *) 

IP +- PopO; 
FI; 
CS +- PopO; 
IF OperandSize = 32 (* Instruction = IRETD *) 
THEN EFLAGS +- PopO; 
ELSE (* Instruction = IRET *) 

FLAGS +- PopO; 
FI; 

ELSE (* Protected mode *) 
IF VM = 1 
THEN #GP(O); 
ELSE 

IF NT = 1 
THEN GOTO TASK-RETURN; 
ELSE 

IF VM = 1 in flags image on stack 
THEN GO TO STACK-RETURN-TO-V86; 
ELSE GOTO STACK-RETURN; 
FI; 

FI; 
FI; 

17-78 

Description 

Interrupt return (far return and pop flags) 
Interrupt return to lesser privilege 
Interrupt return, different task (NT = 1) 
Interrupt return (far return and pop flags) 
Interrupt return to lesser privilege 
Interrupt return to V86 mode 
Interrupt return, different task (NT = 1) 

New Task 

386 SX TSS 
VM = 1 80286 TSS 

377 324 

267 285 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

FI;STACK-RETURN-TO-V86: (* Interrupted procedure was in V86 mode *) 
IF top 36 bytes of stack not within limits 
THEN #SS(O); 
FI; 
IF instruction pointer not within code segment limit THEN #GP(O); 
FI; 

EFLAGS <- SS:[ESP + 8]; (* Sets VM in interrupted routine *) 
EIP <- PopO; 
CS <- PopO; (* CS behaves as in 8086, due to VM = 1 *) 
throwaway <- PopO; (* pop away EFLAGS already read *) 
TempESP <- PopO; 
TempSS <- PopO; 
ES <- PopO; (* pop 2 words; throwaway high-order word *) 
DS <- PopO; (* pop 2 words; throwaway high-order word *) 
FS <- PopO; (* pop 2 words; throwaway high-order word *) 
GS <- PopO; (* pop 2 words; throwaway high-order word *) 

SS:ESP <- TempSS:TempESP; 

(* Resume execution in Virtual 8086 mode *) 

TASK-RETURN: 
Examine Back Link Selector in TSS addressed by the current task 

register: 
Must specify global in the local/global bit, else #TS(new TSS selector); 
Index must be within GDT limits, else #TS(new TSS selector); 
AR byte must specify TSS, else #TS(new TSS selector); 
New TSS must be busy, else #TS(new TSS selector); 
TSS must be present, else #NP(new TSS selector); 

SWITCH-TASKS without nesting to TSS specified by back link selector; 
Mark the task just abandoned as NOT BUSY; 
Instruction pointer must be within code segment limit ELSE #GP(O); 

STACK-RETURN: 
IF OperandSize = 32 
THEN Third word on stack must be within stack limits, else #SS(O); 
ELSE Second word on stack must be within stack limits, else #SS(O); 
FI; 
Return CS selector RPL must be ~ CPL, else #GP(Return selector); 
IF return selector RPL = CPL 
THEN GOTO RETURN-SAME-LEVEL; 
ELSE GOTO RETURN-OUTER-LEVEL; 
FI; 

RETURN-SAME-LEVEL: 
IF OperandSize=32 
THEN 

Top 12 bytes on stack must be within limits, else #SS(O); 
Return CS selector (at eSP + 4) must be non-null, else #GP(O); 

17-79 



386'" SX MICROPROCESSOR INSTRUCTION SET 

ELSE 
Top 6 bytes on stack must be within limits, else #SS(O); 
Return CS selector (at eSP + 2) must be non-null, else #GP(O); 

FI; 
Selector index must be within its descriptor table limits, else #GP 

(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be $: CPL, else #GP(Return selector); 
Segment must be present, else #NP(Return selector); 
Instruction pointer must be within code segment boundaries, else #GP(O); 
FI; 
IF Operand Size = 32 
THEN 

Load CS:EIP from stack; 
Load CS-register with new code segment descriptor; 
Load EFLAGS with third doubleword from stack; 
Increment eSP by 12; 

ELSE 
Load CS-register with new code segment descriptor; 
Load FLAGS with third word on stack; 
Increment eSP by 6; 

FI; 

RETURN-OUTER-LEVEL: 
IF OperandSize=32 
THEN Top 20 bytes on stack must be within limits, else #SS(O); 
ELSE Top 10 bytes on stack must be within limits, else #SS(O); 
FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-null, else #GP(O); 
Selector index must be within its descriptor table limits; 

ELSE #GP(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CS selector RPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be > CPL; 
ELSE #GP(Return selector); 
FI; 
Segment must be present, else #NP(Return selector); 

Examine return SS selector and associated descriptor: 
Selector must be non-null, else #GP(O); 

17-80 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

Selector index must be within its descriptor table limits 
ELSE #GP(SS selector); 

Selector RPL must equal the RPL of the return CS selector 
ELSE #GP(SS selector); 

AR byte must indicate a writable data segment, else #GP(SS selector); 
Stack segment OPL must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
SS must be present, else #NP(SS selector); 

Instruction pointer must be within code segment limit ELSE #GP(O); 
IF OperandSize=32 
THEN 

Load CS:EIP from stack; 
Load EFLAGS with values at (eSP+8); 

ELSE 
Load CS:IP from stack; 
Load FLAGS with values at (eSP+4); 

FI; 
Load SS:eSP from stack; 
Set CPL to the RPL of the return CS selector; 
Load the CS register with the CS descriptor; 
Load the SS register with the SS descriptor; 
FOR each of ES, FS, GS, and OS 
00; 

IF the current value of the register is not valid for the outer level; 
THEN zero the register and clear the valid flag; 
FI; 
To be valid, the register setting must satisfy the following properties: 

Selector index must be within descriptor table limits; 
AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, 
THEN OPL must be ~ CPL, or OPL must be ~ RPL; 

00; 

Description 

In Real Address Mode, the IRET instruction pops the instruction pointer, the CS reg­
ister, and the flags register from the stack and resumes the interrupted routine. 

In Protected Mode, the action of the IRET instruction depends on the setting of the 
nested task flag (NT) bit in the flag register. When the new flag image is popped from 
the stack, the IOPL bits in the flag register are changed only when CPL equals o. 

If the NT flag is cleared, the IRET instruction returns from an interrupt procedure 
without a task switch. The code returned to must be equally or less privileged than the 
interrupt routine (as indicated by the RPL bits of the CS selector popped from the 
stack). If the destination code is less privileged, the IRET instruction also pops the stack 
pointer and SS from the stack. 

17-81 



386™ SX MICROPROCESSOR INSTRUCTION SET 

If the NT flag is set, the IRET instruction reverses the operation of a CALL or INT that 
caused a task switch. The updated state of the task executing the IRET instruction is 
saved in its task state segment. If the task is reentered later, the code that follows the 
IRET instruction is executed. 

Flags Affected 

All flags are affected; the flags register is popped from stack 

Protected Mode Exceptions 

#GP, #NP, or #SS, as indicated under "Operation" above 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand being popped lies beyond address OFFFFH 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation 

17-82 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Jcc - Jump if Condition is Met 

Opcode Instruction Clocks Description 

77 cb JA re/8 7+m,3 Jump short if above (CF = 0 and ZF = 0) 
73 cb JAE re/8 7+m,3 Jump short if above or equal (CF = 0) 
72 cb JB re/8 7+m,3 Jump short if below (CF = 1) 
76 cb JBE re/8 7+m,3 Jump short if below or equal (CF = 1 or ZF = 1) 
72 cb JC re/8 7+m,3 Jump short if carry (CF = 1) 
E3 cb JCXZ re/8 9+m,5 Jump short if CX register is 0 
E3 cb JECXZ re/8 9+m,5 Jump short if ECX re~ister is 0 
74 cb JE re/8 7+m,3 Jump short if equal ( F = 1) 
74 cb JZ re/8 7+m,3 Jump short if 0 (ZF = 1) 
7F cb JG re/8 7+m,3 Jump short if greater (ZF = 0 and SF = OF) 
7D cb JGE re/8 7+m,3 Jump short if greater or equal (SF = OF) 
7C cb JL re/8 7+m,3 Jump short if less (SF < > OF) 
7E cb JLE re/8 7+m,3 Jump short if less or equal ~ZF = 1 or SF < > OF) 
76 cb JNA re/8 7+m,3 Jump short if not above (C = 1 or ZF = 1) 
72 cb JNAE re/8 7+m,3 Jump short if not above or equal (CF = 1) 
73 cb JNB re/8 7+m,3 Jump short if not below (CF = 0) 
77 cb JNBE re/8 7+m,3 Jump short if not below or equal (CF = 0 and ZF = 0) 
73 cb JNC re/8 7+m,3 Jump short if not carry (CF = 0) 
75 cb JNE re/8 7+m,3 Jump short if not equal (ZF = 0) 
7E cb JNG re/8 7+m,3 Jump short if not greater (ZF = 1 or SF < > OF) 
7C cb JNGE re/8 7+m,3 Jump short if not greater or equal (SF < > OF) 
7D cb JNL re/8 7+m,3 Jump short if not less (SF = OF) 
7F cb JNLE re/8 7+m,3 Jump short if not less or equal (ZF = 0 and SF = OF) 
71 cb JNO re/8 7+m,3 Jump short if not overflow (OF = 0) 
7B cb JNP re/8 7+m,3 Jump short if not parity (PF = 0) 
79 cb JNS re/8 7+m,3 Jump short if not sign (SF=O) 
75 cb JNZ re/8 7+m,3 Jump short if not zero !ZF = 0) 
70 cb JO re/8 7+m,3 Jump short if overflow OF = 1) 
7A cb JP re/8 7+m,3 Jump short if parity (PF = 1) 
7A cb JPE re/8 7+m,3 Jump short if parity even rF=l) 
7B cb JPO re/8 7+m,3 Jump short if parity odd ( F = 0) 
78 cb JS re/8 7+m,3 Jump short if sign (SF = 1) 
74 cb JZ re/8 7+m,3 Jump short if zero (ZF = 1) 
OF 87 cw/cd JA re/16/32 7+m,3 Jump near if above (CF = 0 and ZF = 0) 
OF 83 cw/cd JAE re/16/32 7+m,3 Jump near if above or equal (CF = 0) 
OF 82 cw/cd JB re/16/32 7+m,3 Jump near if below (CF = 1) 
OF 86 cw/cd JBE re/16/32 7+m,3 Jump near if below or equal (CF = 1 or ZF = 1 ) 
OF 82 cw/cd JC re/16/32 7+m,3 Jump near if carry (CF = 1) 
OF 84 cw/cd JE re/16/32 7+m,3 Jump near if equal (ZF = 1) 
OF 84 cw/cd JZ re/16/32 7+m,3 Jump near if 0 (ZF = 1) 
OF 8F cw/cd JG re/16/32 7+m,3 Jump near if greater (ZF = 0 and SF = OF) 
OF 8D cw/cd JGE re/16/32 7+m,3 Jump near if greater or equal (SF = OF) 
OF 8C cw/cd JL re/16/32 7+m,3 Jump near if less (SF < > OF) 
OF 8E cw/cd J LE re/16/32 7+m,3 Jump near if less or equal (ZF = 1 or SF < > OF) 
OF 86 cw/cd JNA re/16/32 7+m,3 Jump near if not above (CF = 1 or ZF = 1) 
OF 82 cw/cd JNAE re/16/32 7+m,3 Jump near if not above or equal (CF = 1) 
OF 83 cw/cd JNB re/16/32 7+m,3 Jump near if not below (CF = 0) 
OF 87 cw/cd JNBE re/16/32 7+m,3 Jump near if not below or equal (CF = 0 and ZF = 0) 
OF 83 cw/cd JNC re/16/32 7+m,3 Jump near if not carry (CF = 0) 
OF 85 cw/cd JNE re/16/32 7+m,3 Jump near if not equal (ZF = 0) 
OF 8E cw/cd JNG re/16/32 7+m,3 Jump near if not greater (ZF = 1 or SF < > OF) 
OF 8C cw/cd JNGE re/16/32 7+m,3 Jump near if not greater or e~ual (SF < > OF) 
OF 8D cw/cd J N L re116/32 7+m,3 Jump near if not less (SF = 0 ) 
OF 8F cw/cd JNLE re/16/32 7+m,3 Jump near if not less or e(ual (ZF=O and SF=OF) 
OF 81 cw/cd JNO re/16/32 7+m,3 Jump near if not overflow OF = 0) 
OF 8B cw/cd JNP re/16/32 7+m,3 Jump near if not parity (PF = 0) 
OF 89 cw/cd JNS re/16/32 7+m,3 Jump near if not sign \SF = 0l 
OF 85 cw/cd JNZ re/16/32 7+m,3 Jump near if not zero ZF=O 
OF 80 cw/cd JO re/16/32 7+m,3 Jump near if overflow ~OF = 1) 
OF 8A cw/cd JP re/16/32 7+m,3 Jump near if parity (P = 1) 

Opcode Instruction Clocks Description 

OF 8A cw/cd JPE re/16/32 7+m,3 Jump near if parity even (PF = 1) 
OF 8B cw/cd JPO re/16/32 7+m,3 Jump near if parity odd (PF=O) 
OF 88 cw/cd JS re/16/32 7+m,3 Jump near if sign (SF = 1) 
OF 84 cw/cd JZ re/16/32 7+m,3 

NOTES: The first clock count is for the true condition (branch taken); the second clock count is for the false condition 
(branch not taken). re/16/32 indicates that these instructions map to two; one with a 16-bit relative displacement, 
the other with a 32-bit relative displacement, depending on the operand-size attribute of the instruction. 

17-83 



386" SX MICROPROCESSOR INSTRUCTION SET 

Operation 

IF condition 
THEN 

EIP ~ EIP + SignExtend(reIB/16/32); 
IF OperandSize = 16 
THEN EIP ~ EIP AND OOOOFFFFH; 
FI; 

FI; 

Description 

Conditional jumps (except the JCXZ instruction) test the flags which have been set by a 
previous instruction. The conditions for each mnemonic are given in parentheses after 
each description above. The terms "less" and "greater" are used for comparisons of 
signed integers; "above" and "below" are used for unsigned integers. 

If the given condition is true, a jump is made to the location provided as the operand. 
Instruction coding is most efficient when the target for the conqitional jump is in the 
current code segment and within - 128 to + 127 bytes of the next instruction's first byte. 
The Jump can also target - 32768 thru + 32767 (segment size attribute 16) or - 231 thru 
+ 23 -1 (segment size attribute 32) relative to the next instruction's first byte. When the 
target for the conditional jump is in a different segment, use the opposite case of the 
jump instruction (i.e., the JE and JNE instructions), and then access the target with an 
unconditional far jump to the other segment. For example, you cannot code-

JZ FARLABEL; 

You must instead code-

JNZ BEYOND; 
JMP FARLABEL; 

BEYOND: 

Because there can be several ways to interpret a particular state of the flags, ASM386 
provides more than one mnemonic for most of the conditional jump opcodes. For exam­
ple, if you compared two characters in AX and want to jump if they are equal, use the JE 
instruction; or, if you ANDed the AX register with a bit field mask and only want to 
jump if the result is 0, use the JZ instruction, a synonym for the JE instruction. 

The JCXZ instruction differs from other conditional jumps because it tests the contents 
of the CX or ECX register for 0, not the flags. The JCXZ instruction is useful at the 
beginning of a conditional loop that terminates with a conditional loop instruction (such 
as LOOPNE TARGET LABEL. The JCXZ instruction prevents entering the loop with the 
CX or ECX register equal to zero, which would cause the loop to execute 64K or 32G 
times instead of zero times. 

17-84 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the offset jumped to is beyond the limits of the code segment 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-85 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

JMP-Jump 
Opcode 

EB cb 
E9 cw 
FF /4 
EA cd 
EA cd 
EA cd 
EA cd 
FF /5 
FF /5 
FF /5 
FF /5 
E9 cd 
FF /4 
EA cp 
EA cp 
EA cp 
EA cp 
FF /5 
FF /5 
FF /5 
FF /5 

Instruction 

JMP rel8 
JMP rel16 
JMP r/ml6 
JMP ptr16:16 
JMP ptr16:16 
JMP ptr16:16 
JMP ptr16:16 
JMP m16:16 
JMP m16:16 
JMP m16:16 
JMP m16:16 
JMP rel32 
JMP r/m32 
JMP ptr16:32 
JMP ptr16:32 
JMP ptr16:32 
JMP ptr16:32 
JMP m16:32 
JMP m16:32 
JMP m16:32 
JMP m16:32 

Clocks 

7+m 
7+m 
9+m/14+m 
16+m,pm=31 +m 
pm=53+m 
ts 
ts 
17+m,pm=31 +m 
pm=49+m 
6 + ts 
6 + ts 
7+m 
9+m/14+m 
16+m,pm=31 +m 
pm=53+m 
ts 
ts 
17+m,pm=31 +m 
pm=49+m 
6+ts 
6+ts 

NOTE: Values of ts are given by the following table: 

386'· SXTSS 

Old Task VM = 0 

N y 

386 SX VM=O 
TSS 392 401 

80286 310 316 TSS 

Operation 

IF instruction = relative JMP 
(* i.e. operand is refB, ref 16, or ref32 *) 

THEN 
EIP ~ EIP + refB/16/32, 
IF OperandSize = 16 
THEN EIP ~ EIP AND OOOOFFFFH; 
FI; 

FI; 

17-86 

Description 

Jump short 
Jump near, displacement relative to next instruction 
Jump near indirect 
Jump intersegment, 4-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump r/mI6:16 indirect and intersegment 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump near, displacement relative to next instruction 
Jump near, indirect 
Jump intersegment, 6-byte immediate address 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 
Jump intersegment, address at rim dword 
Jump to call gate, same privilege 
Jump via task state segment 
Jump via task gate 

New Task 

386 SXTSS 80286 TSS VM = 1 

Via Task Gate? 

N Y N Y 

309 321 285 294 

229 238 285 294 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

IF instruction = near indirect JMP 
(* i.e. operand is r/m16 or r/m32 *) 

THEN 
IF OperandSize = 16 
THEN 

FI; 

EIP ~ [r/m16 AND OOOOFFFFH; 
ELSE (* OperandSize = 32 *) 

EIP ~ [r/m32; 
FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) (* real mode or V86 mode *) 
AND instruction = far JMP 
(* i.e., operand type is m16:16, m16:32, ptr16:16, ptr16:32 *) 

THEN GOTO REAL-OR-V86-MODE; 
IF operand type = m 16: 16 or m 16:32 
THEN (* indirect *) 

IF OperandSize = 16 
THEN 

CS:IP ~ [m16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ [m16:32; 

FI; 
FI; 
IF operand type = ptr16:16 or ptr16:32 
THEN 

IF OperandSize = 16 
THEN 

CS:IP ~ ptr16:16; 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

ELSE (* OperandSize = 32 *) 
CS:EIP ~ ptr16:32; 

FI; 
FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far JMP 

THEN 
IF operand type = m16:16 or m16:32 
THEN (* indirect *) 

check access of EA dword; 
#GP(O) or #SS(O) IF limit violation; 

FI; 
Destination selector is not null ELSE #GP(O) 
Destination selector index is within its descriptor table limits ELSE 

#GP(selector) 
Depending on AR byte of destination descriptor: 

17-87 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

GOTO CONFORMING-CODE-SEGMENT; 
GOTO NONCONFORMING-CODE-SEGMENT; 
GOTO CALL-GATE; 
GOTO TASK-GATE; 
GOTO TASK-STATE-SEGMENT; 

ELSE #GP(selector); (* illegal AR byte in descriptor *) 
FI; 

CONFORMING-CODE-SEGMENT: 
Descriptor DPL must be ~ CPL ELSE #GP(selector); 
Segment must be present ELSE #NP(selector); 
Instruction pointer must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pointer; 
ELSE Load CS:IP from destination pointer; 
FI; 
Load CS register with new segment descriptor; 

NONCONFORMING-CODE-SEGMENT: 
RPL of destination selector must be ~ CPL ELSE #GP(selector); 
Descriptor DPL must be = CPL ELSE #GP(selector); 
Segment must be present ELSE # NP(selector); 
Instruction pointer must be within code-segment limit ELSE #GP(O); 
IF OperandSize = 32 
THEN Load CS:EIP from destination pointer; 
ELSE Load CS:IP from destination pointer; 
FI; 
Load CS register with new segment descriptor; 
Set RPL field of CS register to CPL; 

CALL-GATE: 
Descriptor DPL must be 2: CPL ELSE #GP(gate selector); 
Descriptor DPL must be 2: gate selector RPL ELSE #GP(gate selector); 
Gate must be present ELSE #Np(gate selector); 
Examine selector to code segment given in call gate descriptor: 

Selector must not be null ELSE #GP(O); 
Selector must be within its descriptor table limits ELSE 

#GP(CS selector); 
Descriptor AR byte must indicate code segment 

ELSE #GP(CS selector); 
IF non-conforming 
THEN code-segment descriptor, DPL must = CPL 
ELSE #GP(CS selector); 
FI; 
IF conforming 
THEN code-segment descriptor DPL must be ~ CPL; 
ELSE #GP(CS selector); 
Code segment must be present ELSE #NP(CS selector); 
Instruction pOinter must be within code-segment limit ELSE #GP(O); 

17-88 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

IF OperandSize = 32 
THEN Load CS:EIP from call gate; 
ELSE Load CS:IP from call gate; 
FI; 

Load CS register with new code-segment descriptor; 
Set RPL of CS to CPL 

TASK-GATE: 
Gate descriptor DPL must be 2 CPL ELSE #GP(gate selector); 
Gate descriptor DPL must be 2 gate selector RPL ELSE #GP(gate selector); 
Task Gate must be present ELSE #NP(gate selector); 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #GP(TSS selector); 
Index must be within GDT limits ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001); 

ELSE #GP(TSS selector); 
Task State Segment must be present ELSE #NP(TSS selector); 

SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP(O); 

TASK-STATE-SEGMENT: 
TSS DPL must be 2 CPL ELSE #GP(TSS selector); 
TSS DPL must be 2 TSS selector RPL ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001) 

ELSE #GP(TSS selector); 
Task State Segment must be present ELSE #NP(TSS selector); 
SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP(O); 

Description 

The JMP instruction transfers control to a different point in the instruction stream 
without recording return information. 

The action of the various forms of the instruction are shown below. 

Jumps with destinations of type r/m16, r/m32, rei 16, and rel32 are near jumps and do not 
involve changing the segment register value. 

The JMP rel16 and JMP rel32 forms of the instruction add an offset to the address of the 
instruction following the JMP to determine the destination. The rel16 form is used when 
the instruction's operand-size attribute is 16 bits (segment size attribute 16 only); rel32 is 
used when the operand-size attribute is 32 bits (segment size attribute 32 only). The 
result is stored in the 32-bit EIP register. With re116, the upper 16 bits of the EIP register 
are cleared, which results in an offset whose value does not exceed 16 bits. 

17-89 



386'· SX MICROPROCESSOR INSTRUCTION SET 

The JMP r/m16 and JMP r/m32 forms specify a register or memory location from which 
the absolute offset from the procedure is fetched. The offset fetched from rim is 32 bits 
for an operand-size attribute of 32 bits (r/m32), or 16 bits for an operand-size attribute of 
16 bits (r/m16). 

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six-byte oper­
and as a long pointer to the destination. The JMP m16:16 and m16:32 forms fetch the 
long pointer from the memory location specified (indirection). In Real Address Mode or 
Virtual 8086 Mode, the long pointer provides 16 bits for the CS register and 16 or 32 bits 
for the EIP register (depending on the operand-size attribute). In Protected Mode, both 
long pointer forms consult the Access Rights (AR) byte in the descriptor indexed by the 
selector part of the long pointer. Depending on the value of the AR byte, the jump will 
perform one of the following types of control transfers: 

• A jump to a code segment at the same privilege level 

• A task switch 

For more information on protected mode control transfers, refer to Chapter 6 and 
Chapter 7. 

Flags Affected 

All if a task switch takes place; none if no task switch occurs 

Protected Mode Exceptions 

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above. 

Near direct jumps: #GP(O) if procedure location is beyond the code segment limits. 

Near indirect jumps: #GP(O) for an illegal memory operand effective address in the CS, 
OS, ES, FS, or GS segments: #SS(O) for an illegal address in the SS segment; #GP if the 
indirect offset obtained is beyond the code segment limits; #PF(fault-code) for a page 
fault. 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would be outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as under Real Address Mode; #PF(fault-code) for a page fault 

17-90 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

LAHF - Load Flags into AH Register 

Opcode 

9F 

Operation 

Instruction 

LAHF 

AH ~ SF:ZF:xx:AF:xx:PF:xx:CF; 

Description 

Clocks 

2 

Description 

Load: AH = flags SF ZF xx AF xx PF xx CF 

The LAHF instruction transfers the low byte of the flags word to the AH register. The 
bits, from MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indeterminate, 
parity, indeterminate, and carry. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-91 



386'· SX MICROPROCESSOR INSTRUCTION SET 

LAR - Load Access Rights Byte 

Opcode 

OF 021r 
OF 021r 

Description 

Instruction 

LAR r16,rlm16 
LAR r32,rlm32 

Clocks 

pm=15/16 
pm=15/18 

Description 

r16 <-- rim 16 masked by FFOO 
r32 <-- rlm32 masked by OOFxFFOO 

The LAR instruction stores a marked form of the second doubleword of the descriptor 
for the source selector if the selector is visible at the current privilege level (modified by 
the selector's RPL) and is a valid descriptor type. The destination register is loaded with 
the high-order doubleword of the descriptor masked by OOFxFFOO, and the ZF flag is set. 
The x indicates that the four bits corresponding to the upper four bits of the limit are 
undefined in the value loaded by the LAR instruction. If the selector is invisible or of 
the wrong type, the ZF flag is cleared. 

If the 32-bit operand size is specified, the entire 32-bit value is loaded into the 32-bit 
destination register. If the 16-bit operand size is specified, the lower 16-bits of this value 
are stored in the 16-bit destination register. 

All code and data segment descriptors are valid for the LAR instruction. 

The valid special segment and gate descriptor types for the LAR instruction are given in 
the following table: 

Type Name Valid/Invalid 

0 Invalid Invalid 
1 Available 80286 TSS Valid 
2 LDT Valid 
3 Busy 80286 TSS Valid 
4 80286 call gate Valid 
5 80286/386'· SX task gate Valid 
6 80286 trap gate Valid 
7 80286 interrupt gate Valid 
8 Invalid Invalid 
9 Available 386 SX TSS Valid 
A Invalid Invalid 
B Busy 386 SX TSS Valid 
C 386 SX call gate Valid 
D Invalid Invalid 
E 386 SX trap gate Valid 
F 386 SX interrupt gate Valid 

Flags Affected 

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the 
ZF flag is cleared. 

17-92 



386 T. SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 6; the LAR instruction is unrecognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

17-93 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

LEA - Load Effective Address 

Opcode Instruction Clocks 

8Dlr LEA rl6,m 2 
8Dlr LEA r32,m 2 
8Dlr LEA rl6,m 2 
8Dlr LEA r32,m 2 

Operation 

Description 

Store effective address for m in register r16 
Store effective address for m in register r32 
Store effective address for m in register r16 
Store effective address for m in register r32 

IF OperandSize = 16 AND AddressSize = 16 
THEN r16 +- Addr(m); 
ELSE 

IF OperandSize = 16 AND AddressSize = 32 
THEN 

r16 +- Truncate_to_16bits(Addr(m)); 
ELSE 

(* 32-bit address *) 

IF OperandSize = 32 AND AddressSize = 16 
THEN 

r32 +- Truncate_to_16bits(Addr(m)); 
ELSE 

IF OperandSize = 32 AND AddressSize = 32 
THEN r32 +- Addr(m); 
FI; 

FI; 
FI; 

FI; 

Description 

The LEA instruction calculates the effective address (offset part) and stores it in the 
specified register. The operand-size attribute of the instruction (represented by Oper­
andSize in the algorithm under "Operation" above) is determined by the chosen regis­
ter. The address-size attribute (represented by AddressSize) is determined by the USE 
attribute of the segment containing the second operand. The address-size and operand­
size attributes affect the action performed by the LEA instruction, as follows: 

Operand Size Address Size Action Performed 

16 16 16-bit effective address is calculated and stored in re-
quested 16-bit register destination. 

16 32 32-bit effective address is calculated. The lower 16 
bits of the address are stored in the requested 16-bit 
register destination. 

32 16 16-bit effective address is calculated. The 16-bit ad-
dress is zero-extended and stored in the requested 
32-bit register destination. 

17-94 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

Operand Size Address Size Action Performed 

32 32 32-bit effective address is calculated and stored in the 
requested 32-bit register destination. 

Flags Affected 

None 

Protected Mode Exceptions 

#UD if the second operand is a register 

Real Address Mode Exceptions 

Interrupt 6 if the second operand is a register 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

17-95 



386'" SX MICROPROCESSOR INSTRUCTION SET 

LEAVE - High Level Procedure Exit 

Opcode 

C9 
C9 

Operation 

Instruction 

LEAVE 
LEAVE 

IF StackAddrSize = 16 
THEN 

SP ~ BP; 
ELSE (* StackAddrSize = 32 *) 

ESP ~ EBP; 
FI; 
IF OperandSize = 16 
THEN 

BP ~ PopO; 
ELSE (* OperandSize = 32 *) 

EBP ~ PopO; 
FI; 

Description 

Clocks 

4 
6 

Description 

Set SP to SP, then pop SP 
Set ESP to ESP, then pop ESP 

The LEAVE instruction reverses the actions of the ENTER instruction. By copying the 
frame pointer to the stack pointer, the LEAVE instruction releases the stack space used 
by a procedure for its local variables. The old frame pointer is popped into the BP or 
EBP register, restoring the caller's frame. A subsequent RET nn instruction removes any 
arguments pushed onto the stack of the exiting procedure. 

Flags Affected 

None 

Protected Mode Exceptions 

#SS(O) if the BP register does not point to a location within the limits of the current 
stack segment 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

17-96 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

LGDT/LiDT -Load Global/Interrupt Descriptor Table Regi$ter 

Opcode 

OF 01 /2 
OF 01 /3 

Operation 

Instruction 

LGDT m16&32 
LlDT m16&32 

IF instruction = LlDT 
THEN 

IF OperandSize = 16 

Clocks 

11 
11 

Description 

Load minto GDTR 
Load minto IDTR 

THEN IDTR.LimitBase ~ m16:24 (* 24 bits of base loaded *) 
ELSE IDTR.LimitBase ~ m16:32 
FI; 

ELSE (* instruction = LGDT *) 
IF OperandSize = 16 
THEN GDTR.LimitBase ~ m16:24 (* 24 bits of base loaded *) 
ELSE GDTR.LimitBase ~ m16:32, 
FI; 

FI; 

Description 

The LGDT and LIDT instructions load a linear base address and limit value from a 
six-byte data operand in memory into the GDTR or IDTR, respectively. If a 16-bit 
operand is used with the LGDT or LIDT instruction, the register is loaded with a 16-bit 
limit and a 24-bit base, and the high-order eight bits of the six-byte data operand are not 
used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base is loaded; the high-order 
eight bits of the six-byte operand are used as high-order base address bits. 

The SGDT and SIDT instructions always store into all 48 bits of the six-byte data oper­
and. With the 8028q, the upper eight bits are undefined after the SGDT or SIDT in­
struction is executed. With the 386 SX microprocessor, the upper eight bits are written 
with the high-order eight address bits, for both a 16-bit operand and a 32-bit operand. If 
the LGDT or LIDT instruction is used with a 16-bit operand to load the register stored 
by the SGDT or SIDT instruction, the upper eight bits are stored as zeros. 

The LGDT and LIDT instructions appear in operating system software; they are not 
used in application programs. Th~y are the only instructions that directly load a linear 
address (i.e., not a segment relative address) in 386 SX microprocessor Protected Mode. 

Flags Affected 

None 

17-97 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #UD if the source operand is a register; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH; Interrupt 6 if the source operand is a register 

Note: These instructions are valid in Real Address Mode to allow power-up initialization 
for Protected Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-98 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

LGS/LSS/LDS/LES/LFS - Load Full Pointer 

Opcode Instruction Clocks 

C5/r LDS r16,m16:16 7,pm=26 
C5/r LDS r32,m16:32 7,pm=28 
OF 621r LSS r16,m16:16 7,pm=26 
OF 621r LSS r32,m16:32 7,pm=28 
C41r LES r16,m16:16 7,pm=26 
C41r LES r32,m16:32 7,pm=28 
OF 641r LFS r16,m16:16 7,pm=29 
OF 641r LFS r32,m16:32 7,pm=31 
OF 65/r LGS r16,m16:16 7,pm=29 
OF 65/r LGS r32,m16:32 7,pm=31 

Operation 

CASE instruction OF 
LSS: Sreg is SS; (* Load SS register *) 
LOS: Sreg is OS; (* Load OS register *) 
LES: Sreg is ES; (* Load ES register *) 
LFS: Sreg is FS; (* Load FS register *) 
LGS: Sreg is OS; (* Load GS register *) 

ESAC; 
IF (OperandSize = 16) 
THEN 

r16 ~ [Effective Address]; (* 16-bit transfer *) 
Sreg ~ [Effective Address + 2]; (* 16-bit transfer *) 

Description 

Load DS:r16 with pointer from memory 
Load DS:r32 with pointer from memory 
Load SS:r16with pointer from memory 
Load SS:r32 with pointer from memory 
Load ES:r16 with pOinter from memory 
Load ES:r32 with pointer from memory 
Load FS:r16 with pointer from memory 
Load FS:r32 with pointer from memory 
Load GS:r16 with pOinter from memory 
Load GS:r32 with pointer from memory 

(* In Protected Mode, load the descriptor into the segment register *) 
ELSE (* Operand Size = 32 *) 

r32 ~ [Effective Address]; (* 32-bit transfer *) 
Sreg ~ [Effective Address + 4]; (* 16-bit transfer *) 
(* In Protected Mode, load the descriptor into the segment register *) 

FI; 

Description 

The LGS, LSS, LDS, LES, and LFS instructions read a full pointer from memory and 
store it in the selected segment register:registcr pair. The full pointer loads 16 bits into 
the segment register SS, DS, ES, FS, or GS. The other register loads 32 bits if the 
operand-size attribute is 32 bits, or loads 16 bits if the operand-size attribute is 16 bits. 
The other 16- or 32-bit register to be loaded is determined by the r16 or r32 register 
operand specified. 

When an assignment is made to one of the segment registers, the descriptor is also 
loaded into the segment register. The data for the register is obtained from the descrip­
tor table entry for the selector given. 

17-99 



386 T" SX MICROPROCESSOR INSTRUCTION SET 

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS registers with­
out causing a protection exception. (Any subsequent reference to a segment whose cor­
responding segment register is loaded with a null selector to address memory causes a 
#GP(O) exception. No memory reference to the segment occurs.) 

The following is a listing of the Protected Mode checks and actions taken in the loading 
of a segment register: 

IF SS is loaded: 
IF selector is null THEN #GP(O); FI; 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) ; 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS with selector; 
Load SS with descriptor; 

IF OS, ES, FS, or GS is loaded with non-null selector: 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) ; 
AR byte must indicate data or readable code segment ELSE 

#GP(selector) ; 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte; 
ELSE #GP(selector); 
Segment must be marked present ELSE #NP(selector); 

Load segment register with selector and RPL bits; 
Load segment register with descriptor; 

IF OS, ES, FS or GS is loaded with a null selector: 
Load segment register with selector; 
Clear descriptor valid bit; 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; the second operand must be 
a memory operand, not a register; #GP(O) if a null selector is loaded into SS; #PF(fault­
code) for a page fault 

17-100 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Real Address Mode Exceptions 

The second operand must be a memory operand, not a register; Interrupt 13 if any part 
of the operand would lie outside of the effective address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-101 



386'" SX MICROPROCESSOR INSTRUCTION SET 

LLDT - Load Local Descriptor Table Register 

Opcode 

OF 00/2 

Operation 

Instruction 

LLDT rlm16 

LDTR ~ SRC; 

Description 

Clocks 

20/24 

Description 

Load selector rim 16 into LDTR 

The LLDT instruction loads the Local Descriptor Table register (LDTR). The word 
operand (memory or register) to the LLDT instruction should contain a selector to the 
Global Descriptor Table (GDT). The GDT entry should be a Local Descriptor Table. If 
so, then the LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS, 
GS, and CS are not affected. The LDT field in the task state segment does not change. 

The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor refer­
ences (except by the LAR, VERR, VERW or LSL instructions) cause a #GP fault. 

The LLDT instruction is used in operating system software; it is not used in application 
programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #GP(selector) if the selector operand does 
not point into the Global Descriptor Table, or if the entry in the GDT is not a Local 
Descriptor Table; #NP(selector) if the LDT descriptor is not present; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) 
for an illegal address in the SS segment; # PF( fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 6; the LLDT instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode (because the instruction is not recognized, it 
will not execute or perform a memory reference) 

17-102 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Note 

The operand-size attribute has no effect on this instruction. 

17-103 



386™ SX MICROPROCESSOR INSTRUCTION SET 

LMSW - Load Machine Status Word 

Opcode 

OF 01 /6 

Operation 

Instruction 

LMSW r/m16 

Clocks 

10/13 

Description 

Load r/m16 in machine status word 

MSW ~ rim 16; (* 16 bits is stored in the machine status word *) 

Description 

The LMSW instruction loads the machine status word (part of the CRO register) from 
the source operand. This instruction can be used to switch to Protected Mode; if so, it 
must be followed by an intrasegment jump to flush the instruction queue. The LMSW 
instruction will not switch back to Real Address Mode. 

The LMSW instruction is used only in operating system software. It is not used in appli­
cation programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not 0; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

The operand-size attribute has no effect on this instruction. This instruction is provided 
for compatibility with the 80286; 386 SX microprocessor programs should use the MOV 
eRO, ... instruction instead. The LMSW instruction does not affect the PG or ET bits, 
and it cannot be used to clear the PE bit. 

17-104 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

LOCK - Assert LOCK# Signal Prefix 

Opcode 

FO 

Description 

Instruction 

LOCK 

Clocks 

o 
Description 

Assert LOCK# signal for the next instruction 

The LOCK prefix causes the LOCK# signal of the 386 SX microprocessor to be asserted 
during execution of the instruction that follows it. In a multiprocessor environment, this 
signal can be used to ensure that the 386 SX microprocessor has exclusive use of any 
shared memory while LOCK# is asserted. The read-modify-write sequence typically 
used to implement test-and-set on the 386 SX microprocessor is the BTS instruction. 

The LOCK prefix functions only with the following instructions: 

BTS, BTR, BTC 
XCHG 
XCHG 
ADD, OR, ADC, SBB, AND, SUB, XOR 
NOT, NEG, INC, DEC 

mem, reg/imm 
reg, mem 
mem, reg 
mem, reg/imm 
mem 

An undefined opcode trap will be generated if a LOCK prefix is used with any instruc­
tion not listed above. 

The XCHG instruction always asserts LOCK# regardless of the presence or absence of 
the LOCK prefix. 

The integrity of the LOCK prefix is not affected by the alignment of the memory field. 
Memory locking is observed for arbitrarily misaligned fields. 

Flags Affected 

None 

Protected Mode Exceptions 

#UD if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; other exceptions can be generated by the subsequent (locked) instruction 

Real Address Mode Exceptions 

Interrupt 6 if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; exceptions can still be generated by the subsequent (locked) instruction 

17-105 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

#UD if the LOCK prefix is used with an instruction not listed in the "Description" 
section above; exceptions can still be generated by the subsequent (locked) instruction 

17-106 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

LODS/LODSB/LODSW /LODSD - Load String Operand 

Opcode Instruction 

AC LODS mB 
AD LODS m16 
AD LODS m32 
AC LODSB 
AD LODSW 
AD LODSD 

Operation 

AddressSize = 16 
THEN use SI for source-index 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 
IF byte type of instruction 
THEN 

Clocks 

5 
5 
7 
5 
5 
7 

AL ~ [source-index]; (* byte load *) 

Description 

Load byte [(E)SI] into AL 
Load word [(E)SI] into AX 
Load dword [(E)SI] into EAX 
Load byte DS:[(E)SI] into AL 
Load word DS:[(E)SI] into AX 
Load dword DS:[(E)SI] into EAX 

IF DF = 0 THEN IncDec ~ 1 ELSE IncDec ~ -1; FI; 
ELSE 

IF OperandSize = 16 
THEN 

FI; 

AX ~ [source-index]; (* word load *) 
IF DF = 0 THEN IncDec ~ 2 ELSE IncDec ~ -2; FI; 

ELSE (* OperandSize = 32 *) 
EAX ~ [source-index]; (* dword load *) 
IF DF = 0 THEN IncDec ~ 4 ELSE IncDec ~ -4; FI; 

FI; 

source-index ~ source-index + IncDec 

Description 

The LODS instruction loads the AL, AX, or EAX register with the memory byte, word, 
or doubleword at the location pointed to by the source-index register. After the transfer 
is made, the source-index register is automatically advanced. If the DF flag is 0 (the 
CLD instruction was executed), the source index increments; if the DF flag is 1 (the 
STD instruction was executed), it decrements. The increment or decrement is 1 if a byte 
is loaded, 2 if a word is loaded, or 4 if a doubleword is loaded. 

If the address-size attribute for this instruction is 16 bits, the SI register is used for the 
source-index register; otherwise the address-size attribute is 32 bits, and the ESI register 
is used. The address of the source data is determined solely by the contents of the ESI or 
SI register. Load the correct index value into the SI register before executing the LODS 
instruction. The LODSB, LODSW, and LODSD instructions are synonyms for the byte, 
word, and doubleword LODS instructions. 

17-107 



386'" SX MICROPROCESSOR INSTRUCTION SET 

The LaDS instruction can be preceded by the REP prefix; however, the LaDS instruc­
tion is used more typically within a LOOP construct, because further processing of the 
data moved into the EAX, AX, or AL register is usually necessary. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-108 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

LOOP/LOOPcond - Loop Control with CX Counter 

Opcode 

E2 cb 
E1 cb 
E1 cb 
EO cb 
EO cb 

Operation 

Instruction 

LOOP relB 
LOOPE relB 
LOOPZ relB 
LOOPNE relB 
LOOPNZ relB 

Clocks 

11 +m 
11+m 
11+m 
11+m 
11 +m 

Description 

DEC count; jump short if count < > 0 
DEC count; jump short if count < > 0 and ZF ~ 1 
DEC count; jump short if count < > 0 and ZF ~ 1 
DEC count; jump short if count < > 0 and ZF ~ 0 
DEC count; jump short if count < > 0 and ZF = 0 

IF AddressSize = 16 THEN CountReg is CX ELSE CountReg is ECX; FI; 
CountReg ~ CountReg - 1; 

IF instruction < > LOOP 
THEN 

IF (instruction = LOOPE) OR (instruction = LOOPZ) 
THEN BranchCond ~ (ZF = 1) AND (CountReg < > 0); 
FI; 
IF (instruction = LOOPNE) OR (instruction = LOOPNZ) 
THEN BranchCond ~ (ZF = 0) AND (CountReg < > 0); 
FI; 

FI; 

IF BranchCond 
THEN 

IF OperandSize = 16 
THEN 

IP ~ IP + SignExtend(rel8); 
ELSE (* OperandSize = 32 *) 

EIP ~ EIP + SignExtend(re/8); 
FI; 

FI; 

Description 

The LOOP instruction decrements the count register without changing any of the flags. 
Conditions are then checked for the form of the LOOP instruction being used. If the 
conditions are met, a short jump is made to the label given by the operand to the LOOP 
instruction. If the address-size attribute is 16 bits, the CX register is used as the count 
register; otherwise the ECX register is used. The operand of the LOOP instruction must 
be in the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of the 
instruction. 

The LOOP instructions provide iteration control and combine loop index management 
with conditional branching. Use the LOOP instruction by loading an unsigned iteration 
count into the count register, then code the LOOP instruction at the end of a series of 
instructions to be iterated. The destination of the LOOP instruction is a label that points 
to the beginning of the iteration. 

17-109 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the offset jumped to is beyond the limits of the current code segment 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-110 



386'· SX MICROPROCESSOR INSTRUCTION SET 

LSL - Load Segment Limit 

Opcode 

OF 031r 
OF 031r 
OF 03 Ir 
OF 031r 

Description 

Instruction 

LSL rI6,r/mI6 
LSL r32,r/m32 
LSL rI6,r/mI6 
LSL r32,r/m32 

Clocks 

pm = 24/27 
pm =24/27 
pm =29/32 
pm =29/32 

Description 

Load: r16 <- segment limit, selector r/ml6 (byte granular) 
Load: r32 <- segment limit, selector r/m32 (byte granular) 
Load: r16 <- segment limit, selector r/ml6 (page granular) 
Load: r32 <- segment limit, selector r/m32 (page granular) 

The LSL instruction loads a register with an unscrambled segment limit, and sets the ZF 
flag, provided that the source selector is visible at the current privilege level and RPL, 
and that the descriptor is a type accepted by the LSL instruction. Otherwise, the ZF flag 
is cleared, and the destination register is unchanged. The segment limit is loaded as a 
byte granular value. If the descriptor has a page granular segment limit, the LSL instruc­
tion will translate it to a byte limit before loading it in the destination register (shift left 
12 the 20-bit "raw" limit from descriptor, then OR with OOOOOFFFH). 

The 32-bit forms of the LSL instruction store the 32-bit byte granular limit in the 16-bit 
destination register. 

Code and data segment descriptors are valid for the LSL instruction. 

The valid special segment and gate descriptor types for the LSL instruction are given in 
the following table: 

Type Name Valid/Invalid 

0 Invalid Invalid 
1 Available 80286 TSS Valid 
2 LDT Valid 
3 Busy 80286 TSS Valid 
4 80286 call gate Invalid 
5 80286/386'· SX task gate Invalid 
6 80286 trap gate Invalid 
7 80286 interrupt gate Invalid 
8 Invalid Valid 
9 Available 386 SX TSS Valid 
A Invalid Invalid 
B Busy 386 SX TSS Valid 
C 386 SX call gate Invalid 
D Invalid Invalid 
E 386 SX trap gate Invalid 
F 386 SX interrupt gate Invalid 

Flags Affected 

The ZF flag is set unless the selector is invisible or of the wrong type, in which case the 
ZF flag is cleared 

17-111 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 6; the LSL instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

17-112 



386 ™ Sx MICROPROCESSOR INSTRUCTION SET 

L TR - Load Task Register 

Opcode 

OF 00/3 

Description 

Instruction 

LTR r/m16 

Clocks 

pm=27/31 

Description 

Load EA word into task register 

The LTR instruction loads the task register from the source register or memory location 
specified by the operand. The loaded TSS is marked busy. A task switch does not occur. 

The LTR instruction is used only in operating system software; it is not used in applica­
tion programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #GP(O) if the current privi­
lege level is not 0; #GP(selector) if the object named by the source selector is not a TSS 
or is already busy; #NP(selector) if the TSS is marked "not present"; #PF(fault-code) 
for a page fault 

Real Address Mode Exceptions 

Interrupt 6; the LTR instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

Notes 

The operand-size attribute has no effect on this instruction. 

17-113 



386'" SX MICROPROCESSOR INSTRUCTION SET 

MOV - Move Data 

Opcode 

88 Ir 
89 Ir 
89 Ir 
8A Ir 
8B Ir 
8B Ir 
8C Ir 
8E Ir 
AD 
A1 
A1 
A2 
A3 
A3 
BO+ rb 
B8+ rw 
B8+ rd 
C6 
C7 
C7 

Instruction 

MOV rlmB,rB 
MOV rlml6,rl6 
MOV rlm32,r32 
MOV rB,rlmB 
MOV rl6,rlml6 
MOV r32,rlm32 
MOV rlml6,Sreg 
MOV Sreg,rlml6 
MOV AL,moffsB 
MOV AX,moffsl6 
MOV EAX,moffs32 
MOV moffsB,AL 
MOV moffsl6,AX 
MOV moffs32,EAX 
MOV regB,immB 
MOV regl6,imml6 
MOV reg32,imm32 
MOV rlmB,immB 
MOV rlml6,imml6 
MOV rlm32,imm32 

Clocks 

2/2 
2/2 
2/4 
2/4 
2/4 
2/6 
2/2 
2/5,pm=22/23 
4 
4 
6 
2 
2 
4 
2 
2 
2 
2/2 
2/2 
2/4 

Description 

Move byte register to rim byte 
Move word register to rim word 
Move dword register to rim dword 
Move rim byte to byte register 
Move rim word to word register 
Move rim dword to dword register 
Move segment register to rim word 
Move rim word to segment register 
Move byte at (seg:offse~ to AL 
Move word at (seg:offse~ to AX 
Move dword at (seg:offse~ to EAX 
Move AL to (seg:offse~ 
Move AX to (seg:offse~ 
Move EAX to (seg:offse~ 
Move immediate byte to register 
Move immediate word to register 
Move immediate dword to register 
Move immediate byte to rim byte 
Move immediate word to rim word 
Move immediate dword to rim dword 

NOTES: moffsB, moffs 16, and moffs32 all consist of a simple offset relative to the segment base. The 8, 16, 
and 32 refer to the size of the data. The address-size attribute of the instruction determines the 
size of the offset, either 16 or 32 bits. 

Operation 

DEST ~ SRC; 

Description 

The MOY instruction copies the second operand to the first operand. 

If the destination operand is a segment register (DS, ES, SS, etc.), then data from a 
descriptor is also loaded into the register. The data for the register is obtained from the 
descriptor table entry for the selector given. A null selector (values 0000-0003) can be 
loaded into the DS and ES registers without causing an exception; however, use of the 
DS or ES register causes a #GP(O) exception, and no memory reference occurs. 

A MOY into SS instruction inhibits all interrupts until after the execution of the next 
instruction (which is presumably a MOY into ESP instruction). 

Loading a segment register under 386 SX Protected Mode results in special checks and 
actions, as described in the following listing: 

IF SS is loaded; 
THEN 

IF selector is null THEN #GP(O); 
FI; 

Selector index must be within its descriptor table limits else #GP(selector); 
Selector's RPL must equal CPL else #GP(selector); 

17-114 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

AR byte must indicate a writable data segment else #GP(selector); 
OPL in the AR byte must equal CPL else #GP(selector); 
Segment must be marked present else #SS(selector); 
Load SS with selector; 
Load SS with descriptor. 

FI; 
IF OS, ES, FS or GS is loaded with non-null selector; 
THEN 

Selector index must be within its descriptor table limits 
else #GP(selector); 

AR byte must indicate data or readable code segment else #GP(selector); 
IF data or nonconforming code segment 
THEN both the RPL and the CPL must be less than or equal to OPL in AR byte; 
ELSE #GP(selector); 
FI; 
Segment must be marked present else #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

FI; 
IF OS, ES, FS or GS is loaded with a null selector; 
THEN 

Load segment register with selector; 
Clear descriptor valid bit; 

FI; 

Flags Affected 

None 

Protected Mode Exceptions 

#GP, #SS, and #NP if a segment register is being loaded; otherwise, #GP(O) if the 
destination is in a nonwritable segment; #GP(O) for an illegal memory operand effective 
address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS 
segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-115 



386'" SX MICROPROCESSOR INSTRUCTION SET 

MOV - Move to/from Special Registers 

Opcode 

OF 20/r 
OF 22/r 
OF21/r 
OF 21 /r 
OF 23/r 
OF 23/r 
OF 24/r 
OF 26/r 

Instruction 

MOV r32,CRO/CR2/CR3 
MOV CRO/CR2/CR3,r32 
MOV r32,DRO - 3 
MOV r32,DR6/DR7 
MOV DRO - 3,r32 
MOV DR6/DR7,r32 
MOV r32,TR6(TR7 
MOV TR6(TR7,r32 

Operation 

DEST <- SRC; 

Description 

Clocks 

6 
10/4/5 
22 
14 
22 
16 
12 
12 

Description 

Move (control register) to (register) 
Move (register) to (control register) 
Move (debug register) to (register) 
Move (debug register) to (register) 
Move (register) to (debug register) 
Move (register) to (debug register) 
Move (test register) to (register) 
Move (register) to (test register) 

The above forms of the MOV instruction store or load the following special registers in 
or from a general purpose register: 

• Control registers CRO, CR2, and CR3 

• Debug Registers DRO, DRl, DR2, DR3, DR6, and DR7 

• Test Registers TR6 and TR7 

Thirty-two bit operands are always used with these instructions, regardless of the 
operand-size attribute. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are undefined 

Protected Mode Exceptions 

#GP(O) if the current privilege level is not ° 
Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O) if instruction execution is attempted 

Notes 

The instructions must be executed at privilege level ° or in real-address mode; otherwise, 
a protection exception will be raised. 

17-116 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

The reg field within the ModR/M byte specifies which of the special registers in each 
category is involved. The two bits in the mod field are always 11. The rim field specifies 
the general register involved. 

17-117 



386'· SX MICROPROCESSOR INSTRUCTION SET 

MOVS/MOVSB/MOVSW /MOVSD - Move Data from String to 
String 

Opcode 

A4 
AS 
AS 
A4 
AS 
AS 

Operation 

Instruction 

MOVS m8,m8 
MOVS m16,m16 
MOVS m32,m32 
MOVSB 
MOVSW 
MOVSD 

Clocks 

7 
7 
9 
7 
7 
9 

Description 

Move byte [(E)SI] to ES:[(E)DI] 
Move word [(E)SI] to ES:[(E)DI] 
Move dword [(E)SI] to ES:[(E)DI] 
Move byte DS:[(E)SI] to ES:[(E)DI] 
Move word DS:[(E)SI] to ES:[(E)DI] 
Move dword DS:[(E)SI] to ES:[(E)DI] 

IF (instruction = MOVSD) OR (instruction has doubleword operands) 
THEN OperandSize +- 32; 
ELSE Operand Size +- 16; 
IF AddressSize = 16 
THEN use SI for source-index and DI for destination-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index and EDI for destination-index; 
FI; 
IF byte type of instruction 
THEN 

[destination-index] +- [source-index]; (* byte assignment *) 
IF DF = 0 THEN IncDec +- 1 ELSE IncDec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[destination-index] +- [source-index]; (* word assignment *) 
IF DF = 0 THEN IncDec +- 2 ELSE IncDec +- - 2; FI; 

ELSE (* OperandSize = 32 *) 
[destination-index] +- [source-index]; (* doubleword assignment *) 
IF DF = 0 THEN IncDec +- 4 ELSE IncDec +- -4; FI; 

FI; 
FI; 
source-index +- source-index + IncDec; 
destination-index +- destination-index + IncDec; 

Description 

The MOVS instruction copies the byte or word at [(E)SI) to the byte or word at ES­
:[(E)DI). The destination operand must be addressable from the ES register; no segment 
override is possible for the destination. A segment override can be used for the source 
operand; the default is the DS register. 

The addresses of the source and destination are determined solely by the contents of the 
(E)SI and (E)DI registers. Load the correct index values into the (E)SI and (E)DI 
registers before executing the MOVS instruction. The MOVSB, MOVSW, and MOVSD 
instructions are synonyms for the byte, word, and doubleword MOVS instructions. 

17-118 



386'· SX MICROPROCESSOR INSTRUCTION SET 

After the data is moved, both the (E)SI and (E)DI registers are advanced automatically. 
If the OF flag is 0 (the CLO instruction was executed), the registers are incremented; if 
the OF flag is 1 (the STO instruction was executed), the registers are decremented. The 
registers are incremented or decremented by 1 if a byte was moved, 2 if a word was 
moved, or 4 if a doubleword was moved. 

The MOYS instruction can be preceded by the REP prefix for block movement of CX 
bytes or words. Refer to the REP instruction for details of this operation. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, OS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; # PF( fault -code) for a page fault 

17-119 



386™ SX MICROPROCESSOR INSTRUCTION SET 

MOVSX - Move with Sign-Extend 

Opcode 

OF BE Ir 
OF BE Ir 
OF BF Ir 

Operation 

Instruction 

MOVSX rI6,r/mB 
MOVSX r32,r/mB 
MOVSX r32,r/mI6 

DEST ~ SignExtend(SRC); 

Description 

Clocks 

3/6 
3/6 
3/8 

Description 

Move byte to word with sign-extend 
Move byte to dword, sign-extend 
Move word to dword, sign-extend 

The MOVSX instruction reads the contents of the effective address or register as a byte 
or a word, sign-extends the value to the operand-size attribute of the instruction (16 or 
32 bits), and stores the result in the destination register. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-120 



386'" SX MICROPROCESSOR INSTRUCTION SET 

MOVZX - Move with Zero-Extend 

Opcode 

OF 661r 
OF 661r 
OF 671r 

Operation 

Instruction 

MOVZX rI6,r/mB 
MOVZX r32,r/mB 
MOVZX r32,r/mI6 

DEST ~ ZeroExtend(SRC); 

Description 

Clocks 

3/6 
3/6 
3/6 

Description 

Move byte to word with zero-extend 
Move byte to dword, zero-extend 
Move word to dword, zero-extend 

The MOVZX instruction reads the contents of the effective address or register as a byte 
or a word, zero extends the value to the operand-size attribute of the instruction (16 or 
32 bits), and stores the result in the destination register. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-121 



386 T" SX MICROPROCESSOR INSTRUCTION SET 

MUL- Unsigned Multiplication of AL or AX 

Opcode 

F6/4 
F7/4 
F7/4 

Instruction 

MUL AL,rlm8 
MUL AX,rlml6 
MUL EAX,rlm32 

Clocks 

12-17/15-20 
12-25/15-28 
12-41/17-46 

Description 

Unsigned multiply (AX <- AL * rim byte) 
Unsigned multiply (DX:AX <- AX * rim word) 
Unsigned multiply (EDX:EAX <- EAX * rim dword) 

NOTES: The 386 SX uses an early-out multiply algorithm. The actual number of clocks depends on the 
position of the most significant bit in the optimizing multiplier. The optimization occurs for positive 
and negative multiplier values. Because of the early-out algorithm, clock counts given are mini­
mum to maximum. To calculate the actual clocks, use the following formula: 

Actual clock = if m < > 0 then max(ceiling(log2 I m I ), 3) + 6 clocks; 
Actual clock = if m = 0 then 9 clocks 

where m is the multiplier. 

Operation 

IF byte-size operation 
THEN AX ~ AL * rlmB 
ELSE (* word or doubleword operation *) 

IF OperandSize = 16 
THEN DX:AX ~ AX * rlm16 
ELSE (* Operand Size = 32 *) 

EDX: EAX ~ EAX * rlm32 
FI; 

FI; 

Description 

The MUL instruction performs unsigned multiplication. Its actions depend on the size of 
its operand, as follows: 

• A byte operand is multiplied by the AL value; the result is left in the AX register. 
The CF and OF flags are cleared if the AH value is 0; otherwise, they are set. 

• A word operand is multiplied by the AX value; the result is left in the OX:AX 
register pair. The OX register contains the high-order 16 bits of the product. The CF 
and OF flags are cleared if the OX value is 0; otherwise, they are set. 

• A doubleword operand is multiplied by the EAX value and the result is left in the 
EOX:EAX register. The EOX register contains the high-order 32 bits of the product. 
The CF and OF flags are cleared if the EOX value is 0; otherwise, they are set. 

Flags Affected 

The OF and CF flags are cleared if the upper half of the result is 0; otherwise they are 
set; the SF, ZF, AF, PF, and CF flags are undefined 

17-122 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-123 



386 m SX MICROPROCESSOR INSTRUCTION SET 

NEG - Two's Complement Negation 

Opcode 

F6 /3 
F7 3 
F7/3 

Operation 

Instruction 

NEG rlmB 
NEG rlm16 
NEG rlm32 

Clocks 

2/6 
2/6 
2/10 

IF rim = 0 THEN CF ~ 0 ELSE CF ~ 1; FI; 
rim ~ - rim 

Description 

Description 

Two's complement negate rim byte 
Two's complement negate rim word 
Two's complement negate rim dword 

The NEG instruction replaces the value of a register or memory operand with its two's 
complement. The operand is subtracted from zero, and the result is placed in the 
operand. 

The CF flag is set, unless the operand is zero, in which case the CF flag is cleared. 

Flags Affected 

The CF flag is set unless the operand is zero, in which case the CF flag is cleared; the 
OF, SF, ZF, and PF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, OS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; # PF( fault-code) for a page fault 

17-124 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

NOP - No Operation 

Opcode 

90 

Description 

Instruction 

NOP 

Clocks 

3 

Description 

No operation 

The NOP instruction performs no operation. The NOP instruction is a one-byte instruc­
tion that takes up space but affects none of the machine context except the (E)IP 
register. 

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction. 

Flags Affected 

None 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-125 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

NOT - One's Complement Negation 

Opcode 

F6/2 
F7/2 
F7/2 

Operation 

Instruction 

NOT rlmB 
NOT rlm16 
NOT r/m32 

rim ~ NOT rim; 

Description 

Clocks 

2/6 
2/6 
2/10 

Description 

Reverse each bit of rim byte 
Reverse each bit of rim word 
Reverse each bit of rim dword 

The NOT instruction inverts the operand; every 1 becomes a 0, and vice versa. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault 

17-126 



386'" SX MICROPROCESSOR INSTRUCTION SET 

OR - Logical Inclusive OR 

Opcode 

OC ib 
OD iw 
OD id 
80/1 ib 
81 /1 iw 
81 /1 id 
83 /1 ib 
83 /1 ib 
08/r 
09/r 
09/r 
OA /r 
08/r 
08/r 

Operation 

Instruction 

ORAL,immB 
OR /l;X,imm16 
OR E/l;X,imm32 
OR rlmB,immB 
OR rlm16,imm16 
OR rlm32,imm32 
OR rlm16,immB 
OR rlm32,immB 
OR rlmB,rB 
OR rlm16,r16 
OR rlm32,r32 
OR rB,rlmB 
OR r16,rlm16 
OR r32,rlm32 

DEST +- DEST OR SRC; 
CF +- 0; 
OF +- 0 

Description 

Clocks 

2 
2 
2 
2/7 
2/7 
2/11 
2/7 
2/11 
2/6 
2/6 
2/10 
2/7 
2/7 
2/11 

Description 

OR immediate byte to AL 
OR immediate word to /l;X 
OR immediate dword to E/l;X 
OR immediate byte to rim byte 
OR immediate word to rim word 
OR immediate dword to rim dword 
OR sign-extended immediate byte with rim word 
OR sign-extended immediate byte with rim dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 

The OR instruction computes the inclusive OR of its two operands and places the result 
in the first operand. Each bit of the result is 0 if both corresponding bits of the operands 
are 0; otherwise, each bit is 1. 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result; the AF flag is undefined 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault 

17-127 



386" SX MICROPROCESSOR INSTRUCTION SET 

OUT - Output to Port 

Opcode 

E6 ib 
E7 ib 
E7 ib 
EE 
EF 
EF 

Instruction 

OUT immB,AL 
OUT immB,AX 
OUT immB,EAX 
OUT OX,AL 
OUT OX,AX 
OUT OX,EAX 

NOTES: *If CPL $ IOPL 

Clocks 

1 O,pm = 4*/24** 
10,pm=4*/24** 
12,pm=4*/26** 
11,pm=5*/26** 
11,pm=5*/26** 
13,pm=5*/28** 

**If CPL > IOPL or if in virtual 8086 mode 

Operation 

IF (PE = 1) AND ((VM = 1) OR (CPL > 10PL)) 

Description 

Output byte AL to immediate port number 
Output word AL to immediate port number 
Output dword AL to immediate port number 
Output byte AL to port number in OX 
Output word AL to port number in OX 
Output dword AL to port number in OX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-a-Permission (DEST, width(DEST)) 
THEN #GP(O); 
FI; 

FI; 
[DEST] ~ SRC; (* I/O address space used *) 

Description 

The OUT instruction transfers a data byte or data word from the register (AL, AX, or 
EAX) given as the second operand to the output port numbered by the first operand. 
Output to any port from 0 to 65535 is performed by placing the port number in the DX 
register and then using an OUT instruction with the DX register as the first operand. If 
the instruction contains an eight-bit port ID, that value is zero-extended to 16 bits. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is higher (has less privilege) than the I/O privilege 
level and any of the corresponding I/O permission bits in the TSS equals 1 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in the TSS equals 1 

17-128 



386'" SX MICROPROCESSOR INSTRUCTION SET 

OUTS/OUTSB/OUTSW /OUTSD - Output String to Port 

Opcode Instruction Clocks 

6E OUTS OX,r/m8 14,pm ~ 8*/28** 
6F OUTS OX,r/mI6 14,pm = 8*/28** 
6F OUTS OX,r/m32 16,pm = 8*/30** 
6E OUTSB 14,pm = 8*/28** 
6F OUTSW 14,pm = 8*/28** 
6F OUTSO 16,pm = 8*/30** 

NOTES: *If CPL oS IOPL 
**If CPL > IOPL or if in virtual 8086 mode 

Operation 

IF AddressSize = 16 
THEN use SI for source-index; 
ELSE (* AddressSize = 32 *) 

use ESI for source-index; 
FI; 

IF (PE = 1) ANO ((VM = 1) OR (CPL > 10PL)) 

Description 

Output byte [(E)SI] to port in OX 
Output word [(E)SI] to port in OX 
Output dword [(E)SI] to port in OX 
Output byte OS:[(E)SI] to port in OX 
Output word OS:[(E)SI] to port in OX 
Output dword OS:[(E)SI] to port in OX 

THEN (* Virtual 8086 mode, or protected mode with CPL > 10PL *) 
IF NOT I-O-Permission (OEST, width(OEST)) 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

[OX] ~ [source-index]; (* Write byte at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 1 ELSE IncOec ~ - 1; FI; 

FI; 
IF OperandSize = 16 
THEN 

[OX] ~ [source-index]; (* Write word at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ -2; FI; 

FI; 
IF OperandSize = 32 
THEN 

[OX] ~ [source-index]; (* Write dword at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ - 4; FI; 
FI; 

FI; 
source-index ~ source-index + IncOec; 

Description 

The OUTS instruction transfers data from the memory byte, word, or doubleword at the 
source-index register to the output port addressed by the DX register. If the address-size 
attribute for this instruction is 16 bits, the SI register is used for the source-index regis­
ter; otherwise, the address-size attribute is 32 bits, and the ESI register is used for the 
source-index register. 

17-129 



386'" SX MICROPROCESSOR INSTRUCTION SET 

The OUTS instruction does not allow specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load the correct value 
into the DX register before executing the OUTS instruction. 

The address of the source data is determined by the contents of source-index register. 
Load the correct index value into the SI or ESI register before executing the OUTS 
instruction. 

After the transfer, source-index register is advanced automatically. If the DF flag is 0 
(the CLD instruction was executed), the source-index register is incremented; if the DF 
flag is 1 (the STD instruction was executed), it is decremented. The amount of the 
increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a doubleword 
is output. 

The OUTSB, OUTSW, and OUTSD instructions are synonyms for the byte, word, and 
doubleword OUTS instructions. The OUTS instruction can be preceded by the REP 
prefix for block output of CX bytes or words. Refer to the REP instruction for details on 
this operation. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater than the I/O privilege level and any of the 
corresponding I/O permission bits in TSS equals 1; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, or ES segments; #SS(O) for an illegal address in the 
SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

#GP(O) fault if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault­
code) for a page fault 

17-130 



386'· SX MICROPROCESSOR INSTRUCTION SET 

POP - POp a Word from the Stack 

Opcode Instruction 

8F /0 POP ml6 
8F /0 POP m32 
58+ rw POP rl6 
58+ rd POP r32 
1F POP OS 
07 POP ES 
17 POP SS 
OF A1 POP FS 
OF A9 POPGS 

Operation 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 
THEN 

Clocks 

5 
7,pm=9 
4 
6 
7,pm=25 
7,pm=25 
7,pm=25 
7,pm=25 
7,pm=25 

DEST ~ (SS:SP); (* copy a word *) 
SP ~ SP + 2; 

ELSE (* OperandSize = 32 *) 
DEST ~ (SS:SP); (* copy a dword *) 
SP ~ SP + 4; 

FI; 

ELSE (* StackAddrSize = 32 * ) 
IF OperandSize = 16 
THEN 

DEST ~ (SS:ESP); (* copy a word *) 
ESP ~ ESP + 2; 

ELSE (* Operand Size = 32 *) 
DEST ~ (SS:ESP); (* copy a dword *) 
ESP ~ ESP + 4; 

FI; 
FI; 

Description 

Description 

Pop top of stack into memory word 
Pop top of stack into memory dword 
Pop top of stack into word register 
Pop top of stack into dword register 
Pop top of stack into OS 
Pop top of stack into ES 
Pop top of stack into SS 
Pop top of stack into FS 
Pop top of stack into GS 

The POP instruction replaces the previous contents of the memory, the register, or the 
segment register operand with the word on the top of the 386 SX microprocessor stack, 
addressed by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attribute 
of 32 bits). The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by 
4 for an operand-size of 32 bits. It then points to the new top of stack. 

The POP CS instruction is not a 386 SX microprocessor instruction. Popping from the 
stack into the CS register is accomplished with a RET instruction. 

17-131 



386'" SX MICROPROCESSOR INSTRUCTION SET 

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value 
popped must be a selector. In protected mode, loading the selector initiates automatic 
loading of the descriptor information associated with that selector into the hidden part 
of the segment register; loading also initiates validation of both the selector and the 
descriptor information. 

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without 
causing a protection exception. An attempt to reference a segment whose corresponding 
segment register is loaded with a null value causes a #GP(O) exception. No memory 
reference occurs. The saved value of the segment register is null. 

A POP SS instruction inhibits all interrupts, including NMI, until after execution of the 
next instruction. This allows sequential execution of POP SS and POP eSP instructions 
without danger of having an invalid stack during an interrupt. However, use of the LSS 
instruction is the preferred method of loading the SS and eSP registers. 

Loading a segment register while in protected mode results in special checks and actions, 
as described in the following listing: 

IF SS is loaded: 
IF selector is null THEN #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) ; 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS register with selector; 
Load SS register with descriptor; 

IF OS, ES, FS or GS is loaded with non-null selector: 
AR byte must indicate data or readable code segment ELSE 

#GP(selector) ; 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte 
ELSE #GP(selector); 
FI; 
Segment must be marked present ELSE #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

IF OS, ES, FS, or GS is loaded with a null selector: 
Load segment register with selector 
Clear valid bit in invisible portion of register 

Flags Affected 

None 

17-132 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#GP, #SS, and #NP if a segment register is being loaded; #SS(O) if the current top of 
stack is not within the stack segment; #GP(O) if the result is in a nonwritable segment; 
#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault 

17-133 



386'M SX MICROPROCESSOR INSTRUCTION SET 

POPA/POPAD - POp all General Registers 

Opcode 

61 
61 

Operation 

Instruction 

POPA 
POPAD 

Clocks 

24 
24,pm=40 

IF OperandSize = 16 (* instruction = POPA *) 
THEN 

01 ~PopO; 
SI ~ PopO; 
BP ~ PopO; 
throwaway ~ Pop 0; (* Skip SP *) 
BX ~ PopO; 
OX ~ PopO; 
CX ~ PopO; 
AX ~ PopO; 

ELSE (* OperandSize = 32, instruction = POPAO *) 
EOI ~ PopO; 
ESI ~ PopO; 
EBP ~ PopO; 
throwaway ~ Pop 0; (* Skip ESP *) 
EBX ~ PopO; 
EOX ~ PopO; 
ECX ~ PopO; 
EAX ~ PopO; 

FI; 

Description 

Description 

Pop DI, SI, BP, SP, BX, DX, CX, and AX 
Pop EDI, ESI, EBP, ESP, EDX, ECX, and EAX 

The POPA instruction pops the eight 16-bit general registers. However, the SP value is 
discarded instead of loaded into the SP register. The POPA instruction reverses a pre­
vious PUSHA instruction, restoring the general registers to their values before the 
PUSHA instruction was executed. The first register popped is the DI register. 

The POPAD instruction pops the eight 32-bit general registers. The ESP value is dis­
carded instead of loaded into the ESP register. The POPAD instruction reverses the 
previous PUSHAD instruction, restoring the general registers to their values before the 
PUSHAD instruction was executed. The first register popped is the EDI register. 

Flags Affected 

None 

17-134 



386 T. SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#SS(O) if the starting or ending stack address is not within the stack segment; 
#PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault 

17-135 



386™ SX MICROPROCESSOR INSTRUCTION SET 

POPF/POPFD - POp Stack into FLAGS or EFLAGS Register 

Opcode 

9D 
9D 

Instruction 

POPF 
POPFD 

Operation 

Flags +--- PopO; 

Description 

Clocks 

5 
5,pm=7 

Description 

Pop top of stack FLAGS 
Pop top of stack into EFLAGS 

The POPF and POPFD instructions pop the word or doubleword on the top of the stack 
and store the value in the flags register. If the operand-size attribute of the instruction is 
16 bits, then a word is popped and the value is stored in the FLAGS register. If the 
operand-size attribute is 32 bits, then a doubleword is popped and the value is stored in 
the EFLAGS register. 

Refer to Chapter 2 and Chapter 4 for information about the FLAGS and EFLAGS 
registers. Note that bits 16 and 17 of the EFLAGS register, called the VM and RF flags, 
respectively, are not affected by the POPF or POPFD instruction. 

The I/O privilege level is altered only when executing at privilege level O. The interrupt 
flag is altered only when executing at a level at least as privileged as the I/O privilege 
level. (Real-address mode is equivalent to privilege level 0.) If a POPF instruction is 
executed with insufficient privilege, an exception does not occur, but the privileged bits 
do not change. 

Flags Affected 

All flags except the VM and RF flags 

Protected Mode Exceptions 

#SS(O) if the top of stack is not within the stack segment 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation 

17-136 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

PUSH - Push Operand onto the Stack 

Opcode 

FF 16 
FF 16 
50+ Ir 
50+ Ir 
6A 
68 
68 
OE 
16 
1E 
06 
OF AO 
OF A8 

Operation 

Instruction 

PUSH m16 
PUSH m32 
PUSH r16 
PUSH r32 
PUSH immB 
PUSH imm16 
PUSH imm32 
PUSH CS 
PUSH SS 
PUSH DS 
PUSH ES 
PUSH FS 
PUSH GS 

IF StackAddrSize = 16 
THEN 

IF OperandSize = 16 THEN 
SP +--- SP - 2; 

Clocks 

5 
7,pm=9 
2 
4 
2 
2 
4 
2,pm=4 
2,pm=4 
2,pm=4 
2,pm=4 
2,pm=4 
2,pm=4 

(SS:SP) +--- (SOURCE); (* word assignment *) 
ELSE 

SP +--- SP - 4; 
(SS:SP) +--- (SOURCE); (* dword assignment *) 

FI; 
ELSE (* StackAddrSize = 32 *) 

IF OperandSize = 16 
THEN 

ESP +--- ESP - 2; 
(SS:ESP) +--- (SOURCE); (* word assignment *) 

ELSE 
ESP +--- ESP - 4; 
(SS:ESP) +--- (SOURCE); (* dword assignment *) 

FI; 
FI; 

Description 

Description 

Push memory word 
Push memory dword 
Push register word 
Push register dword 
Push immediate byte 
Push immediate word 
Push immediate dword 
Push CS 
Push SS 
Push DS 
Push ES 
Push FS 
Push GS 

The PUSH instruction decrements the stack pointer by 2 if the operand-size attribute of 
the instruction is 16 bits; otherwise, it decrements the stack pointer by 4. The PUSH 
instruction then places the operand on the new top of stack, which is pointed to by the 
stack pointer. 

The 386 SX microprocessor PUSH ESP instruction pushes the value of the ESP register 
as it existed before the instruction. This differs from the 8086, where the PUSH SP 
instruction pushes the new value (decremented by 2). 

17-137 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Flags Affected 

None 

Protected Mode Exceptions 

#SS(O) if the new value of the SP or ESP register is outside the stack segment limit; 
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

None; if the SP or ESP register is 1, the 386 SX microprocessor shuts down due to a lack 
of stack space 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; #PF(fault-code) for a page fault 

17-138 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

PUSHA/PUSHAD - Push all General Registers 

Opcode 

60 
60 

Operation 

Instruction Clocks Description 

PUSHA 18 Push AX, CX, OX, BX, original SP, BP, SI, and 01 
PUSHAD 18,pm =34 Push EAX, ECX, EOX, EBX, original ESP, EBP, ESI, and EOI 

IF OperandSize = 16 (* PUSHA instruction *) 
THEN 

Temp <- (SP); 
Push(AX); 
Push(CX); 
Push(DX); 
Push(BX); 
Push(Temp); 
Push(BP); 
Push(SI); 
Push(DI); 

ELSE (* OperandSize = 32, PUSHAD instruction *) 
Temp <- (ESP); 
Push(EAX); 
Push(ECX); 
Push(EDX); 
Push(EBX); 
Push(Temp); 
Push(EBP); 
Push(ESI); 
Push(EDI); 

FI; 

Description 

The PUSHA and PUSHAD instructions save the 16-bit or 32-bit general registers, re­
spectively, on the 386 SX stack. The PUSHA instruction decrements the stack pointer 
(SP) by 16 to hold the eight word values. The PUSHAD instruction decrements the stack 
pointer (ESP) by 32 to hold the eight doubleword values. Because the registers are 
pushed onto the stack in the order in which they were given, they appear in the 16 or 32 
new stack bytes in reverse order. The last register pushed is the DI or EDI register. 

Flags Affected 

None 

17-139 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#SS(O) if the starting or ending stack address is outside the stack segment limit; 
# PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Before executing the PUSHA or PUSHAD instruction, the 386 SX microprocessor shuts 
down if the SP or ESP register equals 1, 3, or 5; if the SP or ESP register equals 7, 9, 11, 
13, or 15, exception 13 occurs 

Virtual 8086 Mode Exceptions 

Same exceptions as in real-address mode; # PF(fault-eode) for a page fault 

17-140 



386'M SX MICROPROCESSOR INSTRUCTION SET 

PUSHF/PUSHFD - Push Flags Register onto the Stack 

Opcode 

9C 
9C 

Operation 

Instruction 

PUSHF 
PUSHFD 

IF OperandSize = 32 
THEN push(EFLAGS); 
ELSE push(FLAGS); 
FI; 

Description 

Clocks 

4 
4,pm=6 

Description 

Push FLAGS 
Push EFLAGS 

The PUSHF instruction decrements the stack pointer by 2 and copies the FLAGS reg­
ister to the new top of stack; the PUSHFD instruction decrements the stack pointer by 4, 
and the 386 SX microprocessor EFLAGS register is copied to the new top of stack which 
is pointed to by SS:ESP. Refer to Chapter 2 and to Chapter 4 for information on the 
EFLAGS register. 

Flags Affected 

None 

Protected Mode Exceptions 

#SS(O) if the new value of the ESP register is outside the stack segment boundaries 

Real Address Mode Exceptions 

None; the 386 SX microprocessor shuts down due to a lack of stack space 

Virtual 8086 Mode Exceptions 

#GP(O) fault if the I/O privilege level is less than 3, to permit emulation 

17-141 



386™ SX MICROPROCESSOR INSTRUCTION SET 

RCL/RCR/ROL/ROR - Rotate 

Opcode Instruction 

00/2 RCL rlmB,l 
02/2 RCL rlmB,CL 
CO /2 ib RCL rlmB,immB 
01 /2 RCL rlm16,l 
03/2 RCL rlm16,CL 
Cl /2 ib RCL rlm16,immB 
01 /2 RCL rlm32,l 
03/2 RCL rlm32,CL 
Cl /2 ib RCL rlm32,immB 
00/3 RCR rlmB,l 
02/3 RCR rlmB,CL 
CO /3 ib RCR rlmB,immB 
01 /3 RCR rlm16,l 
03/3 RCR rlm16,CL 
Cl /3 ib RCR rlm16,immB 
01 /3 RCR rlm32,l 
03/3 RCR rlm32,CL 
C1 /3 ib RCR rlm32,immB 
00/0 ROL rlmB,l 
02/0 ROL rlmB,CL 
CO /0 ib ROL rlmB,immB 
01 /0 ROL rlm16,l 
03/0 ROL rlm16,CL 
Cl /0 ib ROL rlm16,immB 
01 /0 ROL rlm32,l 
03/0 ROL rlm32,CL 
Cl /0 ib ROL rlm32,immB 
00/1 ROR rlmB,l 
02/1 ROR rlmB,CL 
CO /1 ib ROR rlmB,immB 
01 /1 ROR rlm16,l 
03/1 ROR rlm16,CL 
Cl /1 ib ROR rlm16,immB 
Dl /1 ROR rlm32,l 
03/1 ROR rlm32,CL 
Cl /1 ib ROR rlm32,immB 

Operation 

(* ROL - Rotate Left *) 
temp ~ COUNT; 
WHILE (temp < > 0) 
DO 

Clocks 

9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/14 
9/14 
9/14 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/14 
9/14 
9/14 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 

tmpcf ~ high-order bit of (rim); 
rim ~ rim * 2 + (tmpcf); 
temp ~ temp - 1; 

OD; 
IF COUNT = 1 
THEN 

IF high-order bit of rim < > CF 
THEN OF ~ 1; 
ELSE OF ~ 0; 
FI; 

ELSE OF ~ undefined; 
FI; 

17-142 

Description 

Rotate 9 bits (CF,rlm byte) left once 
Rotate 9 bits (CF,rlm byte) left CL times 
Rotate 9 bits (CF,rlm byte) left immB times 
Rotate 17 bits (CF,rlm word) left once 
Rotate 17 bits (CF,rlm word) left CL times 
Rotate 17 bits (CF,rlmword) left immBtimes 
Rotate 33 bits (Cr,rlm dword) left once 
Rotate 33 bits (CF,rlm dword) left CL times 
Rotate 33 bits (CF,rlm dword) left immB times 
Rotate 9 bits (CF,rlm byte) right once 
Rotate 9 bits (CF,rlm byte) right CL times 
Rotate 9 bits (CF,rlm byte) right immBtimes 
Rotate 17 bits (CF,rlm word) right once 
Rotate 17 bits (CF,rlm word) right CL times 
Rotate 17 bits (CF,rlm word) right immB times 
Rotate 33 bits (CF,rlm dword) right once 
Rotate 33 bits (CF,rlm dword) right CL times 
Rotate 33 bits (CF,rlm dword) right immB times 
Rotate 8 bits rim byte left once 
Rotate 8 bits rim byte left CL times 
Rotate 8 bits rim byte left immB times 
Rotate 16 bits rim word left once 
Rotate 16 bits rim word left CL times 
Rotate 16 bits rim word left immB times 
Rotate 32 bits rim dword left once 
Rotate 32 bits rim dword left CL times 
Rotate 32 bits rim dword left immB times 
Rotate 8 bits rim byte right once 
Rotate 8 bits rim byte right CL times 
Rotate 8 bits rim word right immB times 
Rotate 16 bits rim word right once 
Rotate 16 bits rim word right CL times 
Rotate 16 bits rim word right immB times 
Rotate 32 bits rim dword right once 
Rotate 32 bits rim dword right CL times 
Rotate 32 bits rim dword right immB times 



386'" SX MICROPROCESSOR INSTRUCTION SET 

(* ROR - Rotate Right *) 
temp ~ COUNT; 
WHILE (temp < > 0) 
DO 

tmpcf ~ low-order bit of (rim); 
rim ~ rim / 2 + (tmpcf * 2width(r/m»); 

temp ~ temp - 1; 
DO; 
IF COUNT = 1 
THEN 

IF (high-order bit of rim) < > (bit next to high-order bit of rim) 
THEN OF ~ 1; 
ELSE OF ~ 0; 
FI; 

ELSE OF ~ undefined; 
FI; 

Description 

Each rotate instruction shifts the bits of the register or memory operand given. The left 
rotate instructions shift all the bits upward, except for the top bit, which is returned to 
the bottom. The right rotate instructions do the reverse: the bits shift downward until the 
bottom bit arrives at the top. 

For the RCL and RCR instructions, the CF flag is part of the rotated quantity. The RCL 
instruction shifts the CF flag into the bottom bit and shifts the top bit into the CF flag; 
the RCR instruction shifts the CF flag into the top bit and shifts the bottom bit into the 
CF flag. For the ROL and ROR instructions, the original value of the CF flag is not a 
part of the result, but the CF flag receives a copy of the bit that was shifted from one end 
to the other. 

The rotate is repeated the number of times indicated by the second operand, which is 
either an immediate number or the contents of the CL register. To reduce the maximum 
instruction execution time, the 386 SX microprocessor does not allow rotation counts 
greater than 31. If a rotation count greater than 31 is attempted, only the bottom five 
bits of the rotation are used. The 8086 does not mask rotation counts. The 386 SX 
microprocessor in Virtual 8086 Mode does mask rotation counts. 

The OF flag is defined only for the single-rotate forms of the instructions (second oper­
and is a 1). It is undefined in all other cases. For left shifts/rotates, the CF bit after the 
shift is XORed with the high-order result bit. For right shifts/rotates, the high-order two 
bits of the result are XORed to get the OF flag. 

Flags Affected 

The OF flag is affected only for single-bit rotates; the OF flag is undefined for multi-bit 
rotates; the CF flag contains the value of the bit shifted into it; the SF, ZF, AF, and PF 
flags are not affected 

17-143 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-144 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

REP/REPE/REPZ/REPNE/REPNZ - Repeat Following String 
Operation 

Opcode Instruction Clocks Description 

F36C REP INS r/mB, DX 13+6*(E)CX, Input (E)CX bytes from port DX into ES:[(E)DI] 
pm=7+6*(E)CX"j 
27 + 6*(E)CX 2 

F36D REP INS r/mI6,DX 13 + 6*(E)CX, Input (E)CX words from port DX into ES:[(E)DI] 
pm=7+6*(E)CX"j 
27+6*(E)CX 2 

F36D REP INS r/m32,DX 13+8*(E)CX, Input (E)CX dwords from pot DX into ES:[(E)DI] 
pm=7+8*(E)CX"j 
27+8*(E)CX 2 

F3 A4 REP MOVS mB,mB 7+4*(E)CX Move (E)CX bytes from [(E)SI] to ES:[(E)DI] 
F3 A5 REP MOVS m16,m16 7+4*(E)CX Move (E)CX words from [(E)SI] to ES:[(E)DI] 
F3 A5 REP MOVS m32,m32 7+8*(E)CX Move (E)CX dwords from [(E)SI] to ES:[(E)DI] 
F3 6E REP OUTS DX,r/mB 12+5*(E)CX, Output (E)CX bytes from [(E)SI] to port DX 

pm=6+5*(E)CX"j 
26+5*(E)CX 2 

F3 6F REP OUTS DX,r/mI6 12+5*(E)CX, Output (E)CX words from [(E)SI] to port DX 
pm=6+5*(E)CX"j 
26+5*(E)CX 2 

F36F REP OUTS DX,r/m32 12 + 7*(E)CX, Output (E)CX dwords from [(E)SI] to port DX 
pm=6+7*(E)CX"j 
26 + 7*(E)CX 2 

F2 AC REP LaDS mB 5+6*(E)CX Load (E)CX bytes from [(E)SI] to AL 
F2 AD REP LaDS m16 5+6*(E)CX Load (E)CX words from [(E)SI] to AX 
F2 AD REP LaDS m32 5+8*(E)CX Load (E)CX dwords from [(E)SI] to EAX 
F3 AA REP STOS mB 5+5*(E)CX Fill (E)CX bytes at ES:[(E)DI] with AL 
F3 AS REP STOS m16 5+5*(E)CX Fill (E)CX words at ES:[(E)DI] with AX 
F3 AB REP STOS m32 5+7*(E)CX Fill (E)CX dwords at ES:[(E)DI] with EAX 
F3 A6 REPE CMPS mB,mB 5+9*N Find nonmatching bytes in ES:[(E)OI] and [(E)SI] 
F3 A7 REPE CMPS m16,m16 5+9*N Find nonmatching words in ES:[(E)DI] and [(E)SI] 
F3 A7 REPE CMPS m32,m32 5+13*N Find nonmatching dwords in ES:[(E)DI] and [(E)SI] 
F3 AE REPE SCAS mB 5+8*N Find non-AL byte starting at ES:[(E)DI] 
F3 AF REPE SCAS m16 5+8*N Find non-AX word starting at ES: [(E)DI] 
F3 AF REPE SCAS m32 5+10*N Find non-EAX dword starting at ES:[(E)DI] 
F2 A6 REPNE CMPS mB,mB 5+9*N Find matching bytes in ES:[(E)DI] and [(E)SI] 
F2 A7 REPNE CMPS m16,m16 5+9*N Find matching words in ES:[(E)DI] and [(E)SI] 
F2 A7 REPNE CMPS m32,m32 5+13*N Find matching dwords in ES:[(E)DI] and [(E)SI] 
F2 AE REPNE SCAS mB 5+8*N Find AL, starting at ES:[(E)DI] 
F~ AF REPNE SCAS m16 5+8*N Find AX, starting at ES:[(E)DI] 
F2 AF REPNE SCAS m32 5+10*N Find EAX, starting at ES:[(E)DI] 

NOTES: *1 If CPL :5 IOPL 
*2 If CPL > IOPL or if in virtual 8086 mode 

Operation 

IF AddressSize = 16 
THEN use CX for CountReg; 
ELSE (* AddressSize = 32 *) use ECX for CountReg; 
FI; 
WHILE CountReg < > a 
DO 

service pending interrupts (if any); 
perform primitive string instruction; 
ColmtReg ~ CountReg - 1; 
IF primitive operation is CMPB, CMPW, SCAB, or SCAW 
THEN 

IF (instruction is REP/REPE/REPZ) AND (ZF = 1) 

17-145 



386™ SX MICROPROCESSOR INSTRUCTION SET 

THEN exit WHILE loop 
ELSE 

IF (instruction is REPNZ or REPNE) AND (ZF = 0) 
THEN exit WHILE loop; 
FI; 

FI; 
FI; 

00; 

Description 

The REP, REPE (repeat while equal), and REPNE (repeat while not equal) prefixes 
are applied to string operation. Each prefix causes the string instruction that follows to 
be repeated the number of times indicated in the count register or (for the REPE and 
REPNE prefixes) until the indicated condition in the ZF flag is no longer met. 

Synonymous forms of the REPE and REPNE prefixes are the REPZ and REPNZ pre­
fixes, respectively. 

The REP prefixes apply only to one string instruction at a time. To repeat a block of 
instructions, use the LOOP instruction or another looping construct. 

The precise action for each iteration is as follows: 

1. If the address-size attribute is 16 bits, use the CX register for the count register; if 
the address-size attribute is 32 bits, use the ECX register for the count register. 

2. Check the CX register. If it is zero, exit the iteration, and move to the next 
instruction. 

3. Acknowledge any pending interrupts. 

4. Perform the string operation once. 

5. Decrement the CX or ECX register by one; no flags are modified. 

6. Check the ZF flag if the string operation is a SCAS or CMPS instruction. If the 
repeat condition does not hold, exit the iteration and move to the next instruction. 
Exit the iteration if the prefix is REPE and the ZF flag is 0 (the last comparison was 
not equal), or if the prefix is REPNE and the ZF flag is one (the last comparison 
was equal). 

7. Return to step 1 for the next iteration. 

Repeated CMPS and SCAS instructions can be exited if the count is exhausted or if the 
ZF flag fails the repeat condition. These two cases can be distinguished by using either 
the JCXZ instruction, or by using the conditional jumps that test the ZF flag (the JZ, 
JNZ, and JNE instructions). 

Flags Affected 

The ZF flag is affected by the REP CMPS and REP SCAS as described above 

17-146 



386'" SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

Exceptions can be generated when the string operation is executed; refer to the descrip­
tions of the string instructions themselves 

Real Address Mode Exceptions 

Exceptions can be generated when the string operation is executed; refer to the descrip­
tions of the string instructions themselves 

Virtual 8086 Mode Exceptions 

Exceptions can be generated when the string operation is executed; refer to the descrip­
tions of the string instructions themselves 

Notes 

Not all I/O ports can handle the rate at which the REP INS and REP OUTS instructions 
execute. 

The repeat prefix is ignored when it is used with a non-string instruction. 

17-147 



386'" SX MICROPROCESSOR INSTRUCTION SET 

RET - Return from Procedure 

Opcode 

C3 
CB 
CB 
C2 iw 
CA iw 
CA iw 

Operation 

Instruction 

RET 
RET 
RET 
RET imm16 
RET imm16 
RET imm16 

IF instruction = near RET 
THEN; 

IF OperandSize = 16 
THEN 

IP ~ Pop{); 
EIP ~ EIP AND OOOOFFFFH; 

ELSE (* OperandSize = 32 *) 
EIP ~ Pop{); 

FI; 

Clocks 

12+m 
22+m,pm=36+m 
pm=80 
12+m 
22+m,pm=36+m 
pm=80 

Description 

Return (near) to caller 
Return (far) to caller, same privilege 
Return (far), lesser privilege, switch stacks 
Return (near), pop imm16 bytes of parameters 
Return (far), same privilege, pop imm16 bytes 
Return (far), lesser privilege, pop imm16 bytes 

IF instruction has immediate operand THEN eSP ~ eSP + imm16; FI; 
FI; 

IF (PE = 0 OR (PE = 1 AND VM = 1)) 
(* real mode or virtual 8086 mode *) 
AND instruction = far RET 

THEN; 
IF OperandSize = 16 
THEN 

IP ~ Pop{); 
EIP ~ EIP AND OOOOFFFFH; 
CS ~ Pop{); (* 16-bit pop *) 

ELSE (* OperandSize = 32 *) 
EIP ~ Pop{); 
CS ~ Pop{); (* 32-bit pop, high-order 16-bits discarded *) 

FI; 
IF instruction has immediate operand THEN eSP <-- eSP + imm16; FI; 

FI; 

IF (PE = 1 AND VM = 0) (* Protected mode, not V86 mode *) 
AND instruction = far RET 

THEN 
IF OperandSize=32 
THEN Third word on stack must be within stack limits else #SS(O); 
ELSE Second word on stack must be within stack limits else #SS(O); 
FI; 
Return selector RPL must be ~ CPL ELSE #GP(return selector) 
IF return selector RPL = CPL 

17-148 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

THEN GOTO SAME-LEVEL; 
ELSE GOTO OUTER-PRIVILEGE-LEVEL; 
FI; 

FI; 

SAME-LEVEL: 
Return selector must be non-null ELSE #GP(O) 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector) 
IF non-conforming 
THEN code segment DPL must equal CPL; 
ELSE #GP(selector); 
FI; 
IF conforming 
THEN code segment DPL must be ~ CPL; 
ELSE #GP(selector); 
FI; 
Code segment must be present ELSE #NP(selector); 
Top word on stack must be within stack limits ELSE #S8(0); 
IP must be in code segment limit ELSE #GP(O); 
IF OperandSize=32 
THEN 

Load CS:EIP from stack 
Load CS register with descriptor 
Increment eSP by 8 plus the immediate offset if it exists 

ELSE (* Operand8ize = 16 *) 
Load CS:IP from stack 
Load CS register with descriptor 
Increment eSP by 4 plus the immediate offset if it exists 

FI; 

OUTER-PRIVILEGE-LEVEL: 
IF OperandSize=32 
THEN Top (16 + immediate) bytes on stack must be within stack limits 

ELSE #SS(O); 
ELSE Top (8 + immediate) bytes on stack must be within stack limits ELSE 

#SS(O); 
FI; 
Examine return CS selector and associated descriptor: 

Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector); 
IF non-conforming 
THEN code segment DPL must equal return selector RPL 
ELSE #GP(selector); 
FI; 
IF conforming 

17-149 



386'" SX MICROPROCESSOR INSTRUCTION SET 

THEN code segment DPL must be ~ return selector RPL; 
ELSE #GP(selector); 
FI; 
Segment must be present ELSE #NP(selector) 

Examine return SS selector and associated descriptor: 
Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits 

ELSE #GP(selector); 
Selector RPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Descriptor AR byte must indicate a writable data segment ELSE 

#GP(selector) ; 
Descriptor DPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Segment must be present ELSE #NP(selector); 

IP must be in code segment limit ELSE #GP(O); 
Set CPL to the RPL of the return CS selector; 
IF Operand Mode = 32 
THEN 

Load CS:EIP from stack; 
Set CS RPL to CPL; 
Increment eSP by 8 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

ELSE (* OperandMode = 16 *) 
Load CS:IP from stack; 
Set CS RPL to CPL; 
Increment eSP by 4 plus the immediate offset if it exists; 
Load SS:eSP from stack; 

FI; 
Load the CS register with the return CS descriptor; 
Load the SS register with the return SS descriptor; 
For each of ES, FS, GS, and DS 
DO 

IF the current register setting is not valid for the outer level, 
set the register to null (selector <- AR <- 0); 

To be valid, the register setting must satisfy the following properties: 

OD; 

Selector index must be within descriptor table limits; 
Descriptor AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, THEN 

DPL must be 2: CPL, or DPL must be 2: RPL; 
FI; 

Description 

The RET instruction transfers control to a return address located on the stack. The 
address is usually placed on the stack by a CALL instruction, and the return is made to 
the instruction that follows the CALL instruction. 

17-150 



386™ SX MICROPROCESSOR INSTRUCTION SET 

The optional numeric parameter to the RET instruction gives the number of stack bytes 
(Operand Mode = 16) or words (OperandMode = 32) to be released after the return ad­
dress is popped. These items are typically used as input parameters to the procedure 
called. 

For the intrasegment (near) return, the address on the stack is a segment offset, which is 
popped into the instruction pointer. The CS register is unchanged. For the intersegment 
(far) return, the address on the stack is a long pointer. The offset is popped first, fol­
lowed by the selector. 

In real mode, the CS and IP registers are loaded directly. In Protected Mode, an inter­
segment return causes the processor to check the descriptor addressed by the return 
selector. The AR byte of the descriptor must indicate a code segment of equal or lesser 
privilege (or greater or equal numeric value) than the current privilege level. Returns to 
a lesser privilege level cause the stack to be reloaded from the value saved beyond the 
parameter block. 

The DS, ES, FS, and GS segment registers can be cleared by the RET instruction during 
an interlevel transfer. If these registers refer to segments that cannot be used by the new 
privilege level, they are cleared to prevent unauthorized access from the new privilege 
level. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP, #NP, or #SS, as described under "Operation" above; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would be outside the effective address space from 
o to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-151 



386'M SX MICROPROCESSOR INSTRUCTION SET 

SAHF - Store AH into Flags 

Opcode 

9E 

Operation 

Instruction 

SAHF 

SF:ZF:xx:AF:xx:PF:xx:CF ...... AH; 

Description 

Clocks 

3 

Description 

Store AH into flags SF ZF xx AF xx PF xx CF 

The SAHF instruction loads the SF, ZF, AF, PF, and CF flags with values from the AH 
register, from bits 7, 6, 4, 2, and 0, respectively. 

Flags Affected 

The SF, ZF, AF, PF, and CF flags are loaded with values form the AH register 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-152 



386'" SX MICROPROCESSOR INSTRUCTION SET 

SAL/SAR/SHL/SHR - Shift Instructions 

Opcode Instruction Clocks Description 

00/4 SAL r!mB,1 3/7 Multiply r!m byte by 2, once 
02/4 SAL r!mB,CL 3/7 Multiply r!m byte by 2, CL times 
CO /4 ib SAL r!mB,immB 3/7 Multiply r!m byte by 2, immB times 
01 /4 SAL r!m16,1 3/7 Multiply r!m word by 2, once 
03 /4 SAL r!m16,CL 3/7 Multiply r!m word by 2, CL times 
Cl /4 ib SAL r!m16,immB 3/7 Multiply r!m word by 2, immB times 
01 /4 SAL r!m32,1 3/11 Multiply r!m dword by 2, once 
03 /4 SAL r!m32,CL 3/11 Multiply r!m dword by 2, CL times 
Cl /4 ib SAL r!m32,immB 3/11 Multiply r!m dword by 2, immB times 
00 /7 SAR r!mB,1 3/7 Signed divide' r!m byte by 2, once 
02 /7 SAR r!mB,CL 3/7 Signed divide' r!m byte by 2, CL times 
CO /7 ib SAR r!mB,immB 3/7 Signed divide' r!m byte by 2, immB times 
01 /7 SAR r!m16,1 3/7 Signed divide' r!m word by 2, once 
03/7 SAR r!m16,CL 3/7 Signed divide' r!m word by 2, CL times 
Cl /7 ib SAR r!m16,immB 3/7 Signed divide' r!m word by 2, immB times 
01 /7 SAR r!m32,1 3/11 Signed divide' r!m dword by 2, once 
03 /7 SAR r!m32,CL 3/11 Signed divide' r!m dword by 2, CL times 
Cl /7 ib SAR r!m32,immB 3/11 Signed divide' r!m dword by 2, immB times 
00/4 SHL r!mB,1 3/7 Multiply r!m byte by 2, once 
02/4 SHL r!mB,CL 3/7 Multiply r!m byte by 2, CL times 
CO /4 ib SHL r!mB,immB 3/7 Multiply r!m byte by 2, immB times 
01 /4 SHL r!m16,1 3/7 Multiply r!m word by 2, once 
03 /4 SHL r!m16,CL 3/7 Multiply r!m word by 2, CL times 
Cl /4 ib SHL r!m16,immB 3/7 Multiply r!m word by 2, immB times 
01 /4 SHL r!m32,1 3/11 Multiply r!m dword by 2, once 
03 /4 SHL r!m32,CL 3/11 Multiply r!m dword by 2, CL times 
Cl /4 ib SHL r!m32,immB 3/11 Multiply r!m dword by 2, immB times 
DO /5 SHR r!mB,1 3/7 Unsigned divide r!m byte by 2, once 
02/5 SHR r!mB,CL 3/7 Unsigned divide r!m byte by 2, CL times 
CO /5 ib SHR r!mB,immB 3/7 Unsigned divide r!m byte by 2, immB times 
01 /5 SHR r!m16,1 3/7 Unsigned divide r!m word by 2, once 
03 /5 SHR r!m16,CL 3/7 Unsigned divide r!m word by 2, CL times 
CI /5 ib SHR r!m16,immB 3/7 Unsigned divide r!m word by 2, immB times 
01 /5 SHR r!m32,1 3/11 Unsigned divide r!m dword by 2, once 
03/5 SHR r!m32,CL 3/11 Unsigned divide r!m dword by 2, CL times 
CI /5 ib SHR r!m32,immB 3/11 Unsigned divide r!m dword by 2, immB times 

Not the same division as IDIV; rounding is toward negative infinity. 

Operation 

(* COUNT is the second parameter *) 
(temp) <- COUNT; 
WHILE (temp < > 0) 
DO 

IF instruction is SAL or SHL 
THEN CF <- high-order bit of rim; 
FI; 
IF instruction is SAR or SHR 
THEN CF <- low-order bit of rim; 
FI; 
IF instruction = SAL'or SHL 
THEN rim <- rim * 2; 
FI; 
IF instruction = SAR 
THEN rim <- rim /2 (*Signed divide, rounding toward negative infinity*); 

17-153 



386 T" SX MICROPROCESSOR INSTRUCTION SET 

FI; 
IF instruction = SHR 
THEN rim <- rim /2; (* Unsigned divide *); 
FI; 
temp <- temp - 1; 

aD; 
(* Determine overflow for the various instructions *) 
IF COUNT = 1 
THEN 

IF instruction is SAL or SHL 
THEN OF <- high-order bit of rim < > (CF); 
FI; 
IF instruction is SAR 
THEN OF <- 0; 
FI; 
IF instruction is SHR 
THEN OF <- high-order bit of operand; 
FI; 

ELSE OF <- undefined; 
FI; 

Description 

The SAL instruction (or its synonym, SHL) shifts the bits of the operand upward. The 
high-order bit is shifted into the CF flag, and the low-order bit is cleared. 

The SAR and SHR instructions shift the bits of the operand downward. The low-order 
bit is shifted into the CF flag. The effect is to divide the operand by two. The SAR 
instruction performs a signed divide with rounding toward negative infinity (not the 
same as the IDlY instruction); the high-order bit remains the same. The SHR instruc­
tion performs an unsigned divide; the high-order bit is cleared. 

The shift is repeated the number of times indicated by the second operand, which is 
either an immediate number or the contents of the CL register. To reduce the maximum 
execution time, the 386 SX microprocessor does not allow shift counts greater than 31. If 
a shift count greater than 31 is attempted, only the bottom five bits of the shift count are 
used. (The 8086 uses all eight bits of the shift count.) 

The OF flag is affected only if the single-shift forms of the instructions are used. For left 
shifts, the OF flag is cleared if the high bit of the answer is the same as the result of the 
CF flag (i.e., the top two bits of the original operand were the same); the OF flag is set 
if they are different. For the SAR instruction, the OF flag is cleared for all single shifts. 
For the SHR instruction, the OF flag is set to the high-order bit of the original operand. 

Flags Affected 

The OF flag is affected for single shifts; the OF flag is undefined for multiple shifts; the 
CF, ZF, PF, and SF flags are set according to the result 

17-154 



386'· SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-155 



386'" SX MICROPROCESSOR INSTRUCTION SET 

SBB - Integer Subtraction with Borrow 

Opcode 

1C ib 
10 iw 
10 id 
80 /3 ib 
81 /3 iw 
81 /3 id 
83 /3 ib 
83 /3 ib 
18 /r 
19 /r 
19 /r 
1A /r 
1 B /r 
1 B /r 

Instruction Clocks 

SBB AL,imm8 2 
SBB AX,imml6 2 
SBB EAX,imm32 2 
SBB rlm8,immB 2/7 
SBB rlml6,imml6 2/7 
SBB rlm32,imm32 2/11 
SBB rlml6,immB 2/7 
SBB rlm32,immB 2/11 
SBB rlmB,rB 2/6 
SBB rlml6,rl6 2/6 
SBB rlm32,r32 2/10 
SBB rB,rlmB 2/7 
SBB rl6,rlml6 2/7 
SBB r32,rlm32 2/11 

Operation 

Description 

Subtract with borrow immediate byte from AL 
Subtract with borrow immediate word from AX 
Subtract with borrow immediate dword from EAX 
Subtract with borrow immediate byte from rim byte 
Subtract with borrow immediate word from rim word 
Subtract with borrow immediate dword from rim dword 
Suqtract with borrow sign-extended immediate byte from rim word 
Subtract with borrow sign-extended immediate byte from rim dword 
Subtract with borrow byte register from rim byte 
Subtract with borrow word register from rim word 
Subtract with borrow dword register from rim dword 
Subtract with borrow byte register from rim byte 
Subtract with borrow word register from rim word 
Subtract with borrow dword register from rim dword 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - (SignExtend(SRC) + CF) 
ELSE DEST <-- DEST - (SRC + CF); 

Description 

The SBB instruction adds the second operand (SRC) to the CF flag and subtracts the 
result from the first operand (DEST). The result of the subtraction is assigned to the 
first operand (DEST), and the flags are set accordingly. 

When an immediate byte value is subtracted from a word operand, the immediate value 
is first sign-extended. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

17-156 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-157 



386'M SX MICROPROCESSOR INSTRUCTION SET 

SCAS/SCASB/SCASW /SCASD - Compare String Data 

Opcode Instruction Clocks 

AE SCAS rnB 7 
AF SCAS rn16 7 
AF SCAS rn32 9 
AE SCASB 7 
AF SCASW 7 
AF SCASO 9 

Operation 

IF AddressSize = 16 
THEN use 01 for dest-index; 
ELSE (* AddressSize = 32 *) use EOI for dest-index; 
FI; 
IF byte type of instruction 
THEN 

Description 

Compare bytes AL-ES:[OIJ, update (E)OI 
Compare words AX-ES:[OIJ, update (E)OI 
Compare dwords EAX-ES:[OIJ, update (E)OI 
Compare bytes AL-ES:[OIJ, update (E)OI 
Compare words AX-ES:[OIJ, update (E)OI 
Compare dwords EAX-ES:[OIJ, update (E)OI 

AL - [dest-index); (* Compare byte in AL and dest *) 
IF OF = 0 THEN IndOec ~ 1 ELSE IncOec ~ -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

AX - [dest-index); (* compare word in AL and dest *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ -2; FI; 

ELSE (* OperandSize = 32 *) 
EAX - [dest-index);(* compare dword in EAX & dest *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ -4; FI; 

FI; 
FI; 
dest-index = dest-index + IncOec 

Description 

The SeAS instruction subtracts the memory byte or word at the destination register 
from the AL, AX or EAX register- The result is discarded; only the flags are set. The 
operand must be addressable from the ES segment; no segment override is possible_ 

If the address-size attribute for this instruction is 16 bits, the DI register is used as the 
destination register; otherwise, the address-size attribute is 32 bits and the EDI register 
is used_ 

The address of the memory data being compared is determined solely by the contents of 
the destination register, not by the operand to the SeAS instruction. The operand vali­
dates ES segment address ability and determines the data type. Load the correct index 
value into the DI or EDI register before executing the SeAS instruction. 

17-158 



386'" SX MICROPROCESSOR INSTRUCTION SET 

After the comparison is made, the destination register is automatically updated. If the 
direction flag is 0 (the CLO instruction was executed), the destination register is incre­
mented; if the direction flag is 1 (the STO instruction was executed), it is decremented. 
The increments or decrements are by 1 if bytes are compared, by 2 if words are com­
pared, or by 4 if doublewords are compared. 

The SCASB, SCASW, and SCASO instructions are synonyms for the byte, word and 
doubleword SCAS instructions that don't require operands. They are simpler to code, 
but provide no type or segment checking. 

The SCAS instruction can be preceded by the REPE or REPNE prefix for a block 
search of CX or ECX bytes or words. Refer to the REP instruction for further details. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-159 



386™ SX MICROPROCESSOR INSTRUCTION SET 

SETcc - Byte Set on Condition 

Opcode 

OF 97 
OF 93 
OF 92 
OF 96 
OF 92 
OF 94 
OF 9F 
OF 9D 
OF 9C 
OF 9E 
OF 96 
OF 92 
OF 93 
OF 97 
OF 93 
OF 95 
OF 9E 
OF 9C 
OF 9D 
OF 9F 
OF 91 
OF 9B 
OF 99 
OF 95 
OF 90 
OF 9A 
OF 9A 
OF 9B 
OF 98 
OF 94 

Operation 

Instruction 

SETA rlmB 
SETAE rlmB 
SETB rlmB 
SETBE rlmB 
SETC rlmB 
SETE rlmB 
SETG rlmB 
SETGE rlmB 
SETL rlmB 
SETLE rlmB 
SETNA rlmB 
SETNAE rlmB 
SETNB rlmB 
SETNBE rlmB 
SETNC rlmB 
SETNE rlmB 
SETNG rlmB 
SETNGE rlmB 
SETNL rlmB 
SETNLE rlmB 
SETNO rlmB 
SETNP rlmB 
SETNS rlmB 
SETNZ rlmB 
SETO rlmB 
SETP rlmB 
SETPE rlmB 
SETPO rlmB 
SETS rlmB 
SETZ rlmB 

Clocks 

4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 

IF condition THEN rlmB ~ 1 ELSE rlmB ~ 0; FI; 

Description 

Description 

Set byte if above (CF = 0 and ZF = 0) 
Set byte if above or equal (CF = 0) 
Set byte if below (CF = 1) 
Set byte if below or equal (CF = 1 or (ZF = 1) 
Set if carry (CF = 1) 
Set byte if equal (ZF = 1) 
Set byte if greater (ZF = 0 or SF = OF) 
Set byte if greater or equal (SF = OF) 
Set byte if less (SF < > OF) 
Set byte if less or equal (ZF = 1 or SF < > OF) 
Set byte if not above (CF = 1) 
Set byte if not above or equal (CF = 1) 
Set byte if not below (CF = 0) 
Set byte if not below or equal (CF = 0 and ZF = 0) 
Set byte if not carry (CF = 0) 
Set byte if not equal (ZF = 0) 
Set byte if not greater (ZF = 1 or SF < > OF) 
Set if not greater or equal (SF < > OF) 
Set byte if not less (SF = OF) 
Set byte if not less or equal (ZF = 0 and SF = OF) 
Set byte if not overflow (OF = 0) 
Set byte if not parity (PF = 0) 
Set byte if not sign (SF = 0) 
Set byte if not zero (ZF = 0) 
Set byte if overflow (OF = 1) 
Set byte if parity (PF = 1) 
Set byte if parity even (PF = 1) 
Set byte if parity odd (PF = 0) 
Set byte if sign (SF = 1) 
Set byte if zero (ZF = 1 ) 

The SETcc instruction stores a byte at the destination specified by the effective address 
or register if the condition is met, or a 0 byte if the condition is not met. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a non-writable segment; #GP(O) for an illegal memory oper­
and effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault 

17-160 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-161 



386™ SX MICROPROCESSOR INSTRUCTION SET 

SGDT/SIDT - Store Global/Interrupt Descriptor Table Register 

Opcode 

OF 01 /0 
OF 01 /1 

Operation 

Instruction 

SGOT m 
SlOT m 

Clocks 

9 
9 

DEST ~ 48-bit BASE/LIMIT register contents; 

Description 

Description 

Store GOTR to m 
Store IOTR to m 

The SGDT and SIDT instructions copy the contents of the descriptor table register to 
the six bytes of memory indicated by the operand. The LIMIT field of the register is 
assigned to the first word at the effective address. If the operand-size attribute is 32 bits, 
the next three bytes are assigned the BASE field of the register, and the fourth byte is 
written with zero. The last byte is undefined. Otherwise, if the operand-size attribute is 
16 bits, the next four bytes are assigned the 32-bit BASE field of the register. 

The SGDT and SIDT instructions are used only in operating system software; they are 
not used in application programs. 

Flags Affected 

None 

Protected Mode Exceptions 

Interrupt 6 if the destination operand is a register; #GP(O) if the destination is in a 
nonwritable segment; #GP(O) for an illegal memory operand effective address in the CS, 
DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; #PF(fault­
code) for a page fault 

Real Address Mode Exceptions 

Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the oper­
and would lie outside of the effective address space from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-162 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

Compatibility Note 

The 16-bit forms of the SGOT and SlOT instructions are compatible with the 80286, if 
the value in the upper eight bits is not referenced. The 80286 stores 1 's in these upper 
bits, whereas the 386 SX microprocessor stores O's if the operand-size attribute is 16 bits. 
These bits were specified as undefined by the SGOT and SlOT instructions in the iAPX 
286 Programmer's Reference Manual. 

17-163 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

SHLD - Double Precision Shift Left 

Opcode 

OF A4 
OF A4 
OF AS 
OF AS 

Operation 

Instruction 

SHLD r/m16,r16,immB 
SHLD r/m32,r32,immB 
SHLD r/m16,r16,CL 
SHLD r/m32,r32,CL 

Clocks 

3/7 
3/11 
3/7 
3/11 

Description 

r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 
r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the instruction, either an 
immediate byte or the byte in register CL *) 
ShiftAmt ~ count MOD 32; 
inBits ~ register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt ~ OperandSize 
THEN (* Bad parameters *) 

rim ~ UNDEFINED; 
CF, OF, SF, ZF, AF, PF ~ UNDEFINED; 

ELSE (* Perform the shift *) 
CF ~ BIT [Base, OperandSize - ShiftAmt]; 

(* Last bit shifted out on exit *) 
FOR i ~ OperandSize - 1 DOWNTO ShiftAmt 
DO 

BIT[Base, i] ~ BIT[Base, i - ShiftAmt]; 
OF; 
FOR i ~ ShiftAmt - 1 DOWNTO 0 
DO 

BIT [Base, i] ~ BIT[inBits, i - ShiftAmt + OperandSize]; 
OD; 
Set SF, ZF, PF (rim); 

(* SF, ZF, PF are set according to the value of the result *) 
AF ~ UNDEFINED; 

FI; 
FI; 

Description 

The SHLD instruction shifts the first operand provided by the rim field to the left as 
many bits as specified by the count operand. The second operand (r16 or r32) provides 
the bits to shift in from the right (starting with bit 0). The result is stored back into the 
rim operand. The register remains unaltered. 

The count operand is provided by either an immediate byte or the contents of the CL 
register. These operands are taken MODULO 32 to provide a number between 0 and 31 
by which to shift. Because the bits to shift are provided by the specified registers, the 

17-164 



386 ,. SX MICROPROCESSOR INSTRUCTION SET 

operation is useful for multi precision shifts (64 bits or more). The SF, ZF and PF flags 
are set according to the value of the result. The CF flag is set to the value of the last bit 
shifted out. The OF and AF flags are left undefined. 

Flags Affected 

The SF, ZF, and PF, flags are set according to the result; the CF flag is set to the value 
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign 
change occurred, otherwise it is cleared; after a shift of more than one bit position, the 
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which 
does not affect any flags. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-165 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

SHRD - Double Precision Shift Right 

Opcode Instruction Clocks 

OF AC SHRD r/m16,r16,immB 3/7 
OF AC SHRD r/m32,r32,immB 3/11 
OF AD SHRD r/m16,r16,CL 3/7 
OF AD SHRD r/m32,r32,CL 3/11 

Operation 

Description 

r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 
r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the instruction, either an 
immediate byte or the byte in register CL *) 

ShiftAmt +- count MOD 32; 
inBits +- register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt ~ Operand Size 
THEN (* Bad parameters *) 

rim +- UNDEFINED; 
CF, OF, SF, ZF, AF, PF +- UNDEFINED; 

ELSE (* Perform the shift *) 
CF +- BIT[rlm, ShiftAmt - 1); (* last bit shifted out on exit *) 
FOR i +- 0 TO OperandSize - 1 - ShiftAmt 
DO 

BIT[rlm, i) +- BIT[rlm, i - ShiftAmt); 
00; 
FOR i +- OperandSize - ShiftAmt TO OperandSize - 1 
DO 

BIT[rlm,i) +- BIT[inBits,i + ShiftAmt - Operand Size) ; 
00; 
Set SF, ZF, PF (rim); 

(* SF, ZF, PF are set according to the value of the result *) 
Set SF, ZF, PF (rim); 
AF +-UNDEFINED; 

FI; 
FI; 

Description 

The SHRD instruction shifts the first operand provided by the rim field to the right as 
many bits as specified by the count operand. The second operand (r16 or r32) provides 
the bits to shift in from the left (starting with bit 31). The result is stored back into the 
rim operand. The register remains unaltered. 

The count operand is provided by either an immediate byte or the contents of the CL 
register. These operands are taken MODULO 32 to provide a number between 0 and 31 
by which to shift. Because the bits to shift are provided by the specified register, the 

17-166 



386'· SX MICROPROCESSOR INSTRUCTION SET 

operation is useful for mUlti-precision shifts (64 bits or morc). The SF, ZF and PF flags 
are set according to the value of the result. The CF flag is set to the value of the last bit 
shifted out. The OF and AF flags are left undefined. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result; the CF flag is set to the value 
of the last bit shifted out; after a shift of one bit position, the OF flag is set if a sign 
change occurred, otherwise it is cleared; after a shift of more than one bit position, the 
OF flag is undefined; the AF flag is undefined, except for a shift count of zero, which 
does not affect any flags. 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-167 



386'" SX MICROPROCESSOR INSTRUCTION SET 

SLOT - Store Local Descriptor Table Register 

Opcode 

OF 00/0 

Operation 

Instruction 

SLOT r/m16 

r/m16 <,- LDlR; 

Description 

Clocks 

pm=2/2 

Description 

Store LOTR to EA word 

The SLDT instruction stores the Local Descriptor Table Register (LDTR) in the two­
byte register or memory location indicated by the effective address operand. This regis­
ter is a selector that points into the Global Descriptor Table. 

The SLDT instruction is used only in operating system software. It is not used in appli­
cation programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 6; the SLDT instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

The operand-size attribute has no effect on the operation of the instruction. 

17-168 



386'M SX MICROPROCESSOR INSTRUCTION SET 

SMSW - Store Machine Status Word 

Opcode 

OF 01 /4 

Operation 

Instruction 

SMSW r/ml6 

r/m16 <- MSW; 

Description 

Clocks 

2/2 

Description 

Store machine status word to EA word 

The SMSW instruction stores the machine status word (part of the CRO register) in the 
two-byte register or memory location indicated by the effective address operand. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

Notes 

This instruction is provided for compatibility with the 80286; 386 SX microprocessor 
programs should use the MOV ... , CRO instruction. 

17-169 



386™ SX MICROPROCESSOR INSTRUCTION SET 

STC - Set Carry Flag 

Opcode 

F9 

Operation 

CF ~ 1; 

Description 

Instruction 

STC 

Clocks 

2 

The STC instruction sets the CF flag. 

Flags Affected 

The CF flag is set 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-170 

Description 

Set carry flag 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

STD - Set Direction Flag 

Opcode 

FD 

Operation 

OF ~ 1; 

Description 

Instruction 

STD 

Clocks 

2 

Description 

Set direction flag so (E)SI and/or (E)DI decrement 

The STD instruction sets the direction flag, causing all subsequent string operations to 
decrement the index registers, (E)SI and/or (E)DI, on which they operate. 

Flags Affected 

The DF flag is set 

Protected Mode Exceptions 

None 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17 -171 



386'" SX MICROPROCESSOR INSTRUCTION SET 

STI- Set Interrupt Flag 

Opcode 

F13 

Operation 

IF ~ 1 

Description 

Instruction 

STI 

Clocks 

8 

Description 

Set interrupt flag; interrupts enabled at the end 
of the next instruction 

The STI instruction sets the IF flag. The 386 SX microprocessor then responds to exter­
nal interrupts after executing the next instruction if the next instruction allows the IF 
flag to remain enabled. If external interrupts are disabled and you code the STI instruc­
tion followed by the RET instruction (such as at the end of a subroutine), the RET 
instruction is allowed to execute before external interrupts are recognized. Also, if ex­
ternal interrupts are disabled and you code the STI instruction followed by the CLI 
instruction, then external interrupts are not recognized because the CLI instruction 
clears the IF flag during its execution. 

Flags Affected 

The IF flag is set 

Protected Mode Exceptions 

#GP(O) if the current privilege level is greater (has less privilege) than the I/O privilege 
level 

Real Address Mode Exceptions 

None 

Virtual 8086 Mode Exceptions 

None 

17-172 



386 ™ SX MICROPROCESSOR INSTRUCTION SET 

STOS/STOSB/STOSW /STOSD - Store String Data 

Opcode Instruction Clocks Description 

AA STOS mB 4 Store AL in byte ES:[(E)DIJ, update (E)DI 
AS STOS m16 4 Store AX in word ES:[(E)DIJ, update (E)DI 
AS STOS m32 6 Store EAX in dword ES:[(E)DIJ, update (E)DI 
AA STOSS 4 Store AL in byte ES:[(E)DIJ, update (E)DI 
AS STOSW 4 
AS STOSD 6 

Operation 

IF AddressSize = 16 
THEN use ES:DI for DestReg 
ELSE (* AddressSize = 32 *) use ES:EDI for DestReg; 
FI; 
IF byte type of instruction 
THEN 

(ES:DestReg) <- AL; 
IF DF = 0 
THEN DestReg <- DestReg + 1; 
ELSE DestReg <- DestReg - 1; 
FI; 

ELSE IF OperandSize = 16 
THEN 

(ES:DestReg) <- AX; 
IF DF = 0 
THEN DestReg <- DestReg + 2; 
ELSE DestReg <- DestReg - 2; 
FI; 

ELSE (* OperandSize = 32 *) 
(ES:DestReg) <- EAX; 
IF DF = 0 
THEN DestReg ~ DestReg + 4; 
ELSE DestReg ~ DestReg - 4; 
FI; 

FI; 
FI; 

Description 

Store AX in word ES:[(E)DIJ, update (E)DI 
Store EAX in dword ES:[(E)DIJ, update (E)DI 

The STOS instruction transfers the contents of the AL, AX, or EAX register to the 
memory byte or word given by the destination register relative to the ES segment. The 
destination register is the DI register for an address-size attribute of 16 bits or the EDI 
register for an address-size attribute of 32 bits. 

The destination operand must be addressable from the ES register. A segment override 
is not possible. 

17-173 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

The address of the destination is determined by the contents of the destination register, 
not by the explicit operand of the STOS instruction. This operand is used only to vali­
date ES segment addressability and to determine the data type. Load the correct index 
value into the destination register before executing the STOS instruction. 

After the transfer is made, the DI register is automatically updated. If the DF flag is 0 
(the CLD instruction was executed), the DI register is incremented; if the DF flag is 1 
(the STD instruction was executed), the DI register is decremented. The DI register is 
incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a 
doubleword is stored. 

The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and 
doubleword STOS instructions, that do not require an operand. They are simpler to use, 
but provide no type or segment checking. 

The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX 
bytes, words, or doublewords. Refer to the REP instruction for further details. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-174 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

STR - Store Task Register 

Opcode 

OF 00/1 

Operation 

Instruction 

STR r/m16 

rim ~ task register; 

Description 

Clocks 

pm~2/2 

Description 

Store task register to EA word 

The contents of the task register are copied to the two-byte register or memory location 
indicated by the effective address operand. 

The STR instruction is used only in operating system software. It is not used in applica­
tion programs. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 6; the STR instruction is not recognized in Real Address Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode 

Notes 

The operand-size attribute has no effect on this instruction. 

17-175 



386'" SX MICROPROCESSOR INSTRUCTION SET 

SUB -Integer Subtraction 

Opcode 

2C ib 
2D iw 
2D id 
80 /5 ib 
81 /5 iw 
81 /5 id 
83 /5 ib 
83 /5 ib 
28 /r 
29 /r 
29 /r 
2A /r 
2B /r 
2B /r 

Operation 

Instruction Clocks 

SUB AL,immB 2 
SUB AX,imml6 2 
SUB EAX,imm32 2 
SUB rlmB,immB 2/7 
SUB rlml6,imml6 2/7 
SUB rlm32,imm32 2/11 
SUB rlml6,immB 2/7 
SUB rlm32,immB 2/7 
SUB rlmB,rB 2/6 
SUB rlml6,rl6 2/6 
SUB rlm32,r32 2/10 
SUB rB,rlmB 2/7 
SUB rl6,rlml6 2/7 
SUB r32,rlm32 2/11 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - SignExtend(SRC); 
ELSE DEST +-- DEST - SRC; 
FI; 

Description 

Description 

Subtract immediate byte from AL 
Subtract immediate word from AX 
Subtract immediate dword from EAX 
Subtract immediate byte from rim byte 
Subtract immediate word from rim word 
Subtract immediate dword from rim dword 
Subtract Sign-extended immediate byte from rim word 
Subtract sign-extended immediate byte from rim dword 
Subtract byte register from rim byte 
Subtract word register from rim word 
Subtract dword register from rim dword 
Subtract byte register from rim byte 
Subtract word register from rim word 
Subtract dword register from rim dword 

The SUB instruction subtracts the second operand (SRC) from the first operand 
(DEST). The first operand is assigned the result of the subtraction, and the flags are set 
accordingly. 

When an immediate byte value is subtracted from a word operand, the immediate value 
is first sign-extended to the size of the destination operand. 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

17-176 



386 ,. SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-177 



386 T" SX MICROPROCESSOR INSTRUCTION SET 

TEST - Logical Compare 

Opcode 

A8 ib 
A9 iw 
A9 id 
F6 /0 ib 
F7 /0 iw 
F7 /0 id 
84 /r 
85 /r 
85 /r 

Operation 

Instruction 

TEST AL,immB 
TEST AX,imm16 
TEST EAX,imm32 
TEST rlmB,immB 
TEST rlm16,imm16 
TEST rlm32,imm32 
TEST rlmB,rB 
TEST rlm16,r16 
TEST rlm32,r32 

Clocks 

2 
2 
2 
2/5 
2/5 
2/7 
2/5 
2/5 
2/7 

DEST: = LeftSRC AND RightSRC; 
CF <- 0; 
OF <- 0; 

Description 

Description 

AND immediate byte with AL 
AND immediate word with AX 
AND immediate dword with EAX 
AND immediate byte with rim byte 
AND immediate word with rim word 
AND immediate dword with rim dword 
AND byte register with rim byte 
AND word register with rim word 
AND dword register with rim dword 

The TEST instruction computes the bit-wise logical AND of its two operands. Each bit 
of the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each 
bit is O. The result of the operation is discarded and only the flags are modified. 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the 
result 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-178 



386 T• SX MICROPROCESSOR INSTRUCTION SET 

VERR, VERW - Verify a Segment for Reading or Writing 

Opcode Instruction 

OF 00/4 VERR rlm16 
OF 00/5 VERW r,'m16 

Operation 

Clocks 

pm=10/11 
pm=15/16 

IF segment with selector at (rim) is accessible 
with current protection level 
AND ((segment is readable for VERR) OR 

(segment is writable for VERW)) 
THEN ZF - 1; 
ELSE ZF - 0; 
FI; 

Description 

Description 

Set ZF = 1 if segment can be read, selector in rim 16 
Set ZF = 1 if segment can be written, selector in rlm16 

The two-byte register or memory operand of the VERR and VERW instructions con­
tains the value of a selector. The VERR and VERW instructions determine whether the 
segment denoted by the selector is reachable from the current privilege level and 
whether the segment is readable (VERR) or writable (VERW). If the segment is acces­
sible, the ZF flag is set; if the segment is not accessible, the ZF flag is cleared. To set the 
ZF flag, the following conditions must be met: 

• The selector must denote a descriptor within the bounds of the table (GDT or LDT); 
the selector must be "defined." 

• The selector must denote the descriptor of a code or data segment (not that of a task 
state segment, LDT, or agate). 

• For the VERR instruction, the segment must be readable. For the VERW instruc­
tion, the segment must be a writable data segment. 

• If the code segment is readable and conforming, the descriptor privilege level (DPL) 
can be any value for the VERR instruction. Otherwise, the DPL must be greater than 
or equal to (have less or the same privilege as) both the current privilege level and the 
selector's RPL. 

The validation performed is the same as if the segment were loaded into the DS, ES, FS, 
or GS register, and the indicated access (read or write) were performed. The ZF flag 
receives the result of the validation. The selector's value cannot result in a protection 
exception, enabling the software to anticipate possible segment access problems. 

Flags Affected 

The ZF flag is set if the segment is accessible, cleared if it is not 

17-179 



386'M SX MICROPROCESSOR INSTRUCTION SET 

Protected Mode Exceptions 

Faults generated by illegal addressing of the memory operand that contains the selector; 
the selector is not loaded into any segment register, and no faults attributable to the 
selector operand are generated 

#GP(O) for an illegal memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 6; the VERR and VERW instructions are not recognized in Real Address 
Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-180 



386'" SX MICROPROCESSOR INSTRUCTION SET 

WAIT - Wait until BUSY# Pin is Inactive (HIGH) 

Opcode 

9B 

Description 

Instruction 

WAIT 

Clocks Description 

6 min. Wait until BUSY pin is inactive (HIGH) 

The WAIT instruction suspends execution of the 386 SX microprocessor instructions 
until the BUSY# pin is inactive (high). The BUSY# pin is driven by the 381'M numeric 
coprocessor. 

Flags Affected 

None 

Protected Mode Exceptions 

#NM if the task-switched flag in the machine status word (the lower 16 bits of the eRO 
register) is set; #MF if the ERROR# input pin is asserted (i.e., the 387 math coproces­
sor has detected an unmasked numeric error) 

Real Address Mode Exceptions 

Same exceptions as in Protected Mode 

Virtual 8086 Mode Exceptions 

Same exceptions as in Protected Mode 

17-181 



386" SX MICROPROCESSOR INSTRUCTION SET 

XCHG - Exchange Register/Memory with Register 

Opcode 

90+ r 
90+ r 
90+ r 
90+ r 
86 Ir 
86 Ir 
87 Ir 
87 Ir 
87 Ir 
87 Ir 

Operation 

Instruction 

XCHG AX,r16 
XCHG r16,AX 
XCHG EAX,r32 
XCHG r32,EAX 
XCHG r/m8,r8 
XCHG r8,r/m8 
XCHG r/mI6,r16 
XCHG rI6,r/mI6 
XCHG r/m32,r32 
XCHG r32,r/m32 

temp ~ DEST 
DEST ~ SRC 
SRC ~ temp 

Description 

Clocks 

3 
3 
3 
3 
3/5 
3/5 
3/5 
3/5 
3/9 
3/9 

Description 

Exchange word register with AX 
Exchange word register with AX 
Exchange dword register with EAX 
Exchange dword register with EAX 
Exchange byte register with EA byte 
Exchange byte register with EA byte 
Exchange word register with EA word 
Exchange word register with EA word 
Exchange dword register with EA dword 
Exchange dword register with EA dword 

The XCHG instruction exchanges two operands. The operands can be in either order. If 
a memory operand is involved, the LOCK# signal is asserted for the duration of the 
exchange, regardless of the presence or absence of the LOCK prefix or of the value of 
the IOPL. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) if either operand is in a nonwritable segment; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-182 



386 '" SX MICROPROCESSOR INSTRUCTION SET 

XLA T /X LA TB - Table Look-up Translation 

Opcode 

07 
07 

Operation 

Instruction 

XLAT rnB 
XLATB 

IF AddressSize = 16 
THEN 

AL ~ (BX + ZeroExtend(AL)) 
ELSE (* AddressSize = 32 *) 

Clocks 

5 
5 

AL ~ (EBX + ZeroExtend(AL)); 
FI; 

Description 

Description 

Set AL to memory byte DS:[(E)BX + unsigned ALl 
Set AL to memory byte OS: [(E)BX + unsigned ALl 

The XLA T instruction changes the AL register from the table index to the table entry. 
The AL register should be the unsigned index into a table addressed by the DS:BX 
register pair (for an address-size attribute of 16 bits) or the DS:EBX register pair (for an 
address-size attribute of 32 bits). 

The operand to the XLAT instruction allows for the possibility of a segment override. 
The XLAT instruction uses the contents of the BX register even if they differ from the 
offset of the operand. The offset of the operand should have been moved into the BX or 
EBX register with a previous instruction. 

The no-operand form, the XLATB instruction, can be used if the BX or EBX table will 
always reside in the DS segment. 

Flags Affected 

None 

Protected Mode Exceptions 

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page 
fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

17-183 



386™ SX MICROPROCESSOR INSTRUCTION SET 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-184 



386 'M SX MICROPROCESSOR INSTRUCTION SET 

XOR - Logical Exclusive OR 

Opcode 

34 ib 
35 iw 
35 id 
80 /6 ib 
81 /6 iw 
81 /6 id 
83 /6 ib 
83 /6 ib 
30 /r 
31 /r 
31 /r 
32 /r 
33 /r 
33 /r 

Operation 

Instruction Clocks 

XOR AL,immB 2 
XOR AX,imml6 2 
XOR EAX,imm32 2 
XOR rlmB,immB 2/7 
XOR rlml6,imml6 2/7 
XOR rlm32,imm32 2/11 
XOR rlml6,immB 2/7 
XOR rlm32,immB 2/7 
XOR rlmB,rB 2/6 
XOR rlm16,r16 2/6 
XOR rlm32,r32 2/10 
XOR rB,rlmB 2/7 
XOR rl6,rlml6 2/7 
XOR r32,rlm32 2/11 

DEST <- LeftSRC XOR RightSRC 
CF <- 0 
OF <- 0 

Description 

Description 

Exclusive-OR immediate byte to AL 
Exclusive-OR immediate word to AX 
Exclusive-OR immediate dword to EAX 
Exclusive-OR immediate byte to rim byte 
Exclusive-OR immediate word to rim word 
Exclusive-OR immediate dword to rim dword 
XOR sign-extended immediate byte with rim word 
XOR sign-extended immediate byte with rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
El$clusive-OR dword register to rim dword 
Exclusive-OR byte register to rim byte 
Exclusive-OR word register to rim word 
Exclusive-OR dword register to rim dword 

The XOR instruction computes the exclusive OR of the two operands. Each bit of the 
result is 1 if the corresponding bits of the operands are different; each bit is 0 if the 
corresponding bits are the same. The answer replaces the first operand. 

Flags Affected 

The CF and OF flags are cleared; the SF, ZF, and PF flags are set according to the 
result; the AF flag is undefined 

Protected Mode Exceptions 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment; #PF(fault-code) for a page fault 

Real Address Mode Exceptions 

Interrupt 13 if any part of the operand would lie outside of the effective address space 
from 0 to OFFFFH 

Virtual 8086 Mode Exceptions 

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault 

17-185 





Opcode Map A 





APPENDIX A 
OPCODE MAP 

The opcode tables that follow aid in interpreting 386'· SX microprocessor object code. 
Use the high-order four bits of the opcode as an index to a row of the opcode table; use 
the low-order four bits as an index to a column of the table. If the opcode is OFH, refer 
to the two-byte opcode table and use the second byte of the opcode to index the rows 
and columns of that table. 

A.1 KEY TO ABBREVIATIONS 

Operands are identified by a two-character code of the form Zz. The first character, an 
uppercase letter, specifies the addressing method; the second character, a lowercase 
letter, specifies the type of operand. 

A.2 CODES FOR ADDRESSING METHOD 

A Direct address; the instruction has no modR/M byte; the address of the operand is 
encoded in the instruction; no base register, index register, or scaling factor can be 
applied; e.g., far JMP (EA). 

C The reg field of the modR/M byte selects a control register; e.g., MOY (OF20, 
OF22). 

D The reg field of the modR/M byte selects a debug register; e.g., MOY (OF21,OF23). 

E A modR/M byte follows the opcode and specifies the operand. The operand is 
either a general register or a memory address. If it is a memory address, the 
address is computed from a segment register and any of the following values: a 
base register, an index register, a scaling factor, a displacement. 

F Flags Register. 

G The reg field of the modR/M byte selects a general register; e.g., ADD (00). 

I Immediate data. The value of the operand is encoded in subsequent bytes of the 
instruction. 

J The instruction contains a relative offset to be added to the instruction pointer 
register; e.g., JMP short, LOOP. 

M The modR/M byte may refer only to memory; e.g., BOUND, LES, LDS, LSS, LFS, 
LGS. 

o The instruction has no modR/M byte; the offset of the operand is coded as a word 
or double word (depending on address size attribute) in the instruction. No base 
register, index register, or scaling factor can be applied; e.g., MOY (AO-A3). 

A-1 



OPCODE MAP 

R The mod field of the modR/M byte may refer only to a general register; e.g., MOV 
(OF20-0F24, OF26). 

S The reg field of the modR/M byte selects a segment register; e.g., MOV (8C,8E). 

T The reg field of the modR/M byte selects a test register; e.g., MOV (OF24,OF26). 

X Memory addressed by the DS:SI register pair; e.g., MOVS, COMPS, OUTS, 
LODS, SCAS. 

Y Memory addressed by the ES:DI register pair; e.g., MOVS, CMPS, INS, STOS. 

A.3 CODES FOR OPERAND TYPE 

a Two one-word operands in memory or two double-word operands in memory, de­
pending on operand size attribute (used only by BOUND). 

b Byte (regardless of operand size attribute) 

c Byte or word, depending on operand size attribute. 

d Double word (regardless of operand size attribute) 

p Thirty-two bit or 48-bit pointer, depending on operand size attribute. 

s Six-byte pseudo-descriptor 

v Word or double word, depending on operand size attribute. 

w Word (regardless of operand size attribute) 

A.4 REGISTER CODES 

When an operand is a specific register encoded in the opcode, the register is identified 
by its name; e.g., AX, CL, or ESL The name of the register indicates whether the 
register is 32-, 16-, or 8-bits wide. A register identifier of the form eXX is used when the 
width of the register depends on the operand size attribute; for example, eAX indicates 
that the AX register is used when the operand size attribute is 16 and the EAX register 
is used when the operand size attribute is 32. 

A-2 



OPCODE MAP 

One-Byte Opcode Map 

o 2 3 4 5 6 7 

o 
ADD PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv ES ES 

ADC PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv SS SS 

AND SEG 
=ES DAA 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv 
2 

XOR SEG 
=SS AAA 

Eb,Gb EV,Gv Gb,Eb Gb,Ev AL,lb eAX,lv 
3 

4 
INC general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

5 
PUSH general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSHA POPA BOUND ARPL SEG SEG Operand Address 
GV,Ma EW,Rw =FS =GS Size Size 6 

7 
Short-displacement jump on condition (Jb) 

JO JNO JB JNB JZ JNZ JBE JNBE 

Immediate Grpl MOVB Grpl TEST XCHG 

Eb,lb EV,lv AL,imm8 EV,lb Eb,Gb EV,Gv Eb,Gb EV,Gv 
8 

9 NOP 
XCHG word or double-word register with eAX 

eCX eDX eBX eSP eBP eSI eDI 

MOV MOVSB MOVSW/D CMPSB CMPSW/D 

AL,Ob eAX,Ov Ob,AL OV,eAX Xb,Yb XV,Yv Xb,Yb XV,Yv A 

B 
MOV immediate byte into byte register 

AL CL DL BL AH CH DH BH 

Shift Grp2 RET near LES LOS MOV 

Eb,lb EV,lb Iw GV,Mp GV,Mp Eb,lb EV,lv 
C 

o 
Shift Grp2 

AAM AAD XLAT 
Eb,1 EV,1 Eb,CL EV,CL 

LOOPNE LOOPE LOOP JCXZ IN OUT 

Jb Jb Jb Jb AI,lb eAX,lb Ib,AL Ib,eAX 
E 

LOCK REPNE REP HLT CMC 
Unary Grp3 

REPE Eb Ev 
F 

A-3 



OPCODE MAP 

One-Byte Opcode Map 

8 9 A B C D E F 

o 
OR PUSH 2-byte 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv CS escape 

SBB PUSH POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv DS DS 

SUB SEG DAS 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =CS 2 

CMP SEG MS 
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =DS 3 

DEC general register 
4 

eAX eCX eDX eBX eSP eBP eSI eDI 

5 
POP into general register 

eAX eCX eDX eBX eSP eBP eSI eDI 

PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D 
Iv GvEvlv Ib GvEvlb Yb,DX YV,DX DX,Xb DX,Xv 6 

7 
Short-displacement jump on condition (Jb) 

JS JNS JP JNP JL JNL JLE JNLE 

MOV MOV LEA MOV POP 

Eb,Gb EV,Gv Gb,Eb GV,Ev Ew,Sw GV,M SW,Ew Ev 8 

CBW CWD CALL WAIT PUSHF POPF SAHF LAHF Ap Fv Fv 
9 

TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D 

AL,lb eAX,lv Yb,AL YV,eAX AL,Xb eAX,Xv AL,Xb eAX,Xv 
A 

B 
MOV immediate word or double into word or double register 

eAX eCX eDX eBX eSP eBP eSI eDI 

ENTER RET far INT INT LEAVE INTO IRET IW,IB Iw 3 Ib 
C 

D ESC (Escape to coprocessor instruction set) 

CALL JMP IN OUT 

Jv Jv Ap Jb AL,DX eAX,DX DX,AL DX,eAX 
E 

CLC STC CLI STI CLD STD INC/DEC INC/DEC 
Grp4 Grp5 

F 

A-4 



OPCODE MAP 

Two-Byte Opcode Map (first byte is OFH) 

o 2 3 4 5 6 7 

o Grp6 Grp7 LAR lSl ClTS GV,Ew GV,Ew 

MOV MOV MOV MOV MOV MOV 
Cd,Rd Dd,Rd Rd,Cd Rd,Dd Td,Rd Rd,Td 2 

3 

4 

5 

6 

7 

8 
long-displacement jump on condition (Jv) 

JO JNO JB JNB JZ JNZ JBE JNBE 

9 
Byte Set on condition (Eb) 

SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE 

PUSH POP BT SHlD SHlO 
FS FS EV,Gv EvGvlb EvGvCl A 

lSS BTR lFS lGS MOVZX 

Mp EV,Gv Mp M~ GV,Eb GV,Ew 
B 

C 

D 

E 

F 

A-5 



OPCODE MAP 

Two-Byte Opcode Map (first byte is OFH) 

8 9 A B C D E F 

o 

2 

3 

4 

5 

6 

7 

8 
Long-displacement jump on condition (Jv) 

JS JNS JP JNP JL JNL JLE JNLE 

9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE 

PUSH POP BTS SHRD SHRD IMUL 
GS GS EV,Gv EvGvlb EvGvCL GV,Ev A 

Grp-8 BTC BSF BSR MOVSX 

EV,lb EV,Gv GV,Ev GV,Ev GV,Eb GV,Ew 
B 

C 

D 

E 

F 

A-6 



OPCODE MAP 

Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

000 001 010 011 100 101 110 111 

ADD OR ADC SBB AND SUB XOR CMP 

2 ROL ROR RCL RCR SHL SHR SHL SAR 

TEST TEST NOT NEG MUL IMUL DIV IDIV 
Ib/lv Ib/lv AL/eAX AL/eAX AL/eAX AL/eAX 3 

INC DEC 
Eb Eb 4 

INC DEC CALL CALL JMP JMP PUSH 
Ev Ev Ev eP Ev Ep Ev 5 

Opcodes determined by bits 5,4,3 of modR/M byte: 

mod nnn RIM 

000 001 010 011 100 101 110 111 

6 SLDT STR LLDT LTR VERR VERW 
Ew Ew Ew Ew Ew Ew 

SGDT SIDT LGDT LlDT SMSW LMSW 
Ms Ms Ms Ms Ew Ew 7 

8 BT BTS BTR BTC 

A-7 





Complete Flag 
Cross-Reference 

B 





APPENDIX B 
COMPLETE FLAG CROSS-REFERENCE 

B.1 KEY TO CODES 

T = instruction tests flag 
M = instruction modifies flag (either sets or resets depending on operands) 
o = instruction resets flag 
1 = instruction sets flag 

= instruction's effect on flag is undefined 
R = instruction restores prior value of flag 
blank = instruction does not affect flag 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

AM - - - TM - M 
AAD - M M - M -

AAM - M M - M -
AAS - - - TM - M 
ADC M M M M M TM 
ADD M M M M M M 
AND 0 M M - M 0 
ARPl M 
BOUND 
BSF/BSR - - M - - -

BT /BTS/BTR/BTC - - - - - M 
CAll 
CBW 
ClC 0 
ClD 0 
CLI 0 
ClTS 
CMC M 
CMP M M M M M M 
CMPS M M M M M M T 
CWO 
DAA - M M TM M TM 
DAS - M M TM M TM 
DEC M M M M M 
DIV - - - - - -

ENTER 
ESC 
HlT 
IDIV - - - - - -

IMUl M - - - - M 
IN 
INC M M M M M 
INS T 
INT 0 0 
INTO T 0 0 
IRET R R R R R R R R R T 
Jcond T T T T T 

B-1 



COMPLETE FLAG CROSS-REFERENCE 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

JCXZ 
JMP 
LAHF 
LAR M 
LDS/LES/LSS/LFS/LGS 
LEA 
LEAVE 
LGDT /LI DT /LLDT /LM SW 
LOCK 
LODS T 
LOOP 
LOOPE/LOOPNE T 
LSL M 
LTR 
MOV 
MOV control, debug - - - - - -
MOVS T 
MOVSX/MOVZX 
MUL M - - - - M 
NEG M M M M M M 
NOP 
NOT 
OR 0 M M - M 0 
OUT 
OUTS T 
POP/POPA 
POPF R R R R R R R R R R 
PUSH/PUSHNPUSHF 
RCURCR 1 M TM 
RCURCR count - TM 
REP/REPE/REPNE 
RET 
ROUROR 1 M M 
ROUROR count - M 
SAHF R R R R R 
SAUSAR/SHUSHR 1 M M M - M M 
SAUSAR/SHUSHR - M M - M M 
count 
SBB M M M M M TM 
SCAS M M M M M M T 
SET cond T T T T T 
SGDT/ 
SIDT/SLDT/SMSW 
SHLD/SHRD - M M - M M 
STC 1 
STD 1 
STI 1 
STOS T 
STR 
SUB M M M M M M 
TEST 0 M M - M 0 
VERRNERRW M 
WAIT 
XCHG 
XLAT 
XOR 0 M M - M 0 

B-2 



Status Flag Summary c 





APPENDIX C 
STATUS FLAG SUMMARY 

C.1 STATUS FLAGS' FUNCTIONS 

Bit Name Function 

0 CF Carry Flag - Set on high-order bit carry or borrow; cleared otherwise. 

2 PF Parity Flag - Set if low-order eight bits of result contain an even number of 
1 bits; cleared otherwise. 

4 AF Adjust flag - Set on carry from or borrow to the low order four bits of AL; 
cleared otherwise. Used for decimal arithmetic. 

6 ZF Zero Flag - Set if result is zero; cleared otherwise. 

7 SF Sign Flag - Set equal to high-order bit of result (0 is positive, 1 if 
negative). 

11 OF Overflow Flag - Set if result is too large a positive number or too small a 
negative number (excluding sign-bit) to fit in destination operand; cleared 
otherwise. 

C.2 KEY TO CODES 

T = instruction tests flag 
M = instruction modifies flag (either sets or resets depending on operands) 
o = instruction resets flag 

= instruction's effect on flag is undefined 
blank = instruction does not affect flag 

C-1 



STATUS FLAG SUMMARY 

Instruction OF SF ZF AF PF CF 

AM - - - TM - M 
AAS - - - TM - M 

AAD - M M - M -
AAM - M M - M -

DAA - M M TM M TM 
DAS - M M TM M TM 

ADC M M M M M TM 
ADD M M M M M M 
SBB M M M M M TM 
SUB M M M M M M 
CMP M M M M M M 
CMPS M M M M M M 
SCAS M M M M M M 
NEG M M M M M M 

DEC M M M M M 
INC M M M M M 

IMUL M - - - - M 
MUL M - - - - M 

RCURCR 1 M TM 
RCURCR count - TM 
ROUROR 1 M M 
ROUROR count - M 
SAUSAR/SHUSHR 1 M M M - M M 
SAUSAR/SHUSHR count - M M - M M 

SHLD/SHRD - M M - M M 
BSF/BSR - - M - - -
BT /BTS/BTR/BTC - - - - - M 

AND 0 M M - M 0 
OR 0 M M - M 0 
TEST 0 M M - M 0 
XOR 0 M M - M 0 

C-2 



Condition Codes o 





APPENDIX D 
CONDITION CODES 

Note: The terms "above" and "below" refer to the relation between two unsigned values 
(neither the SF flag nor the OF flag is tested). The terms "greater" and "less" refer to 
the relation between two signed values (the SF and OF flags are tested). 

0.1 DEFINITION OF CONDITIONS 

(For conditional instructions Jcond, and SETcond) 

Mnemonic Meaning Instruction Condition Tested Subcode 

0 Overflow 0000 OF = 1 

NO No overflow 0001 OF = 0 

B Below 0010 CF = 1 NAE Neither above nor equal 

NB Not below 0011 CF = 0 AE Above or equal 

E Equal 0100 ZF = 1 Z Zero 

NE Not equal 0101 ZF = 0 NZ Not zero 

BE Below or equal 0110 (CF or ZF) = 1 NA Not above 

NBE Neither below nor equal 0111 (CF or ZF) = 0 A Above 

S Sign 1000 SF = 1 

NS No sign 1001 SF = 0 

P Parity 1010 PF = 1 PE Parity even 

NP No parity 1011 PF = 0 PO Parity odd 

L Less 1100 (SF xor OF) = 1 NGE Neither greater nor equal 

NL Not less 1101 (SF xor OF) = 0 GE Greater or equal 

LE Less or equal 1110 ((SF xor OF) or ZF) = 1 NG Not greater 

NLE Neither less nor equal 1111 ((SF xor OF) or ZF) = 0 G Greater 

D-1 





Instruction Format and E 
Timing 





APPENDIX E 
INSTRUCTION FORMAT AND TIMING 

This appendix is an excerpt from Section 9 of the 386 ™ SX Microprocessor Data Sheet. 

9. INSTRUCTION SET 

This section describes the 386"" SX microproces­
sor instruction set. A table lists all instructions 
along with instruction encoding diagrams and 
clock counts. Further details of the instruction en­
coding are then provided in the following sections, 
which completely describe the encoding structure 
and the definition of all fields occurring within 386 
microprocessor instructions. 

9.1 386™ SX MICROPROCESSOR 
INSTRUCTION ENCODING AND 
CLOCK COUNT SUMMARY 

For more detailed information on the encodings of 
instructions refer to Section 9 of the 386 SX Data 
Sheet, Instruction Encodings. Section 9.2 explains 
the general structure of instruction encodings, and 
defines exactly the encodings of all fields con­
tained within the instruction. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, de­
coded, and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delay­
ing processor access to the bus. 

E-1 

4. No exceptions are detected during instruction 
execution. 

5. If an effective address is calculated, it does 
not use two general register components. 
One register, scaling and displacement can 
be used within the clock counts shown. How­
ever, if the effective address calculation uses 
two general register components, add 1 clock 
to the clock count shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller re­
fers to a register operand and the larger refers 
to a memory operand. 

2. n = number of times repeated. 

3. m = number of components in the next in­
struction executed, where the entire displace­
ment (if any) counts as one component, the 
entire immediate data (if any) counts as one 
component, and each of the other bytes of 
the instruction and prefix(es) each count as 
one component. 

Misaligned or 32-bit operand accesses: 

1. If instructions access a misaligned 16-bit oper­
and or 32-bit operand on even address: 
*add 2 clocks for read or write. 
**add 4 clocks for read and write. 

2. If instructions access a 32-bit operand on odd 
address: 
* add 4 clocks for read or write 
**add 8 clocks for read and write. 



INSTRUCTION FORMAT AND TIMING 

Table 9-1" 386 TO SX Microprocessor Instruction Set Clock Count Summary 
CLOCK COUNT NOTES 

R_ RMI 
INSTRUCTION FORMAT Add.- .....- AddrMe .....-

Mode or VIrtu8I Mode or VIrtuIII 
VIrtu8I Add ... VI.- Add.-
IlOl8 Mode - Mode 
Mode Mode 

GENERAL DATA TRANSFER 
MOV=M_ 

Register 10 Register/Memcwy I 1000100w I mod rag rim I 2/2 2/2- b h 

Register/Memory 10 Regilt ... I 1000101w I mod rag rim I 2/4 2/4- b h 

Immedia1e 10 RegisterlMemory 1 1100011 w I modOOO rim Ilmmedia1e da1a 2/2 2/2- b h 

Immedia1e 10 Register (Bhort form) 11011 w rag I immediate dala 2 2 

Memory 10 Accumulator (Bhort form) I 1010000w I lull dioplacemanl 4- 4- b h 

Accumulator 10 Memory (Bhortlonn) I 1010001w I lull dioplacement 2- 2- b h 

Register Memory 10 Segment Regis"" I 10001110 I mod sreg3 rim I 2/5 22/23 b h,i,! 

Segment Register 10 Register/Memcwy 1 10001100 I mod sreg3 rim I 2/2 2/2 b h 

MOYSX = Move WIth SIgn Exteneion 

Regis"" From Register/Memcwy I 00001111 I 1011111w I mod rag rim I 3/S- 3/S- b h 

MOVZX = Move WlthZ8ro ~ 

Regis"" From Register/Memory 1 00001111 I 1011011w I mod rag rim I ~/6- 31S- b h 

PUSH = Pueh: 

Register/Memcwy I 11111111 I modll 0 rim I 5/7- 7/9- b h 

Register (shorIlonn) 101010 rag I 2 4 b h 

Segment Register (ES, CS, SS or OS) I 000sreg211 0 I 2 4 b h 

~Register I 00001111 1'0sreg3000 I 2 4 b h ( ,orOS) 

I I immediate dala Immedia1e 011010.0 2 4, b h 

PUSHA=PuMAI I 01100000 I 18 34 b h 

POP = Pop 

RegisterlMemory 10001111 I modOOO rim I 5/7 7/9 b h 

Register (short form) 01011 reg I S S b h 

Segment Register (E5, CS, SS or OS) 
000sreg2111I 7 25 b h,i,l 

~ment Register 
( SorOS) 00001111 11 Osreg3001 I 7 25 b h,i,j 

POPA = Pop All 01100001 I 24 40 b h 

XqHG = Exclllnge 

RegisterlMemory With Register I 1000011w I mod rag r/ml 3/5-- 3/5-- b,l I,h 

Register With Accumulalor (Bhort form) 1,00,0 rag I ClkCount 3 3 

IN = Input trc/m: VIrtu8I 
IlOl8 Mode 

Fixed Port L 1110010w I port number t26 12- 6*/26" S/+, m 

V_Port I 1110110w I t27 13- 7*/27·· s/+, m 

OUT = Output to: 

Fixed Port L 1.'1001'W 1 port number t24 10- 4*/24·· S/+, m 

Variable Port I 1110111w I t25 11- 5"/25"" S/+, m 

LEA = Loed EA to IIegIater I 10001101 I mod reg rim I 2 2 

• If CPL S; IOPL •• If CPL > IOPL 

E-2 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386'· SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

Re.1 R .. I 
INSTRUCTION FORMAT Add,. .. Protected Add,... Protected 

Mode or Vlrtuet Mode or Vlrtuel 
Virtual Add,... Virtual Add,... 
8086 Mode 8086 Mode 
Mode Mode 

SEGMENT CONTROL 

LOS ~ Loed Pointer to OS I 11000101 mod reg rim I 7- 26-128- b h,i,i 

LES ~ Loeci Pointer to ES I 11000100 mod rag rim I 7- 26-128- b h,i,i 

LFS - Loed Pointer to FS I 00001111 10110100 I mod reg rim I 7- 29-131- b h,i,i 

LGS ~ Loed Pointer to GS I 00001111 10110101 I mod reg r/ml 7- 26-128- b h,i,i 

LSS - Loeci Pointer to SS I 00001111 10110010 I mod reg rim I 7- 26-128- b h, i,i 

FLAG CONTROL 

CLC ~ Clear carry Flag I 11111000 2 2 

CLD - CI .. r Direction Flag I 11111100 2 2 

CLI - Clear Interrupt Enable Flag I 11111010 8 B m 

CL TS - Clear Task Switched Flag I 00001111 00000110 I 5 5 c I 

cue - Complement Carry Flag I 11110101 2 2 

LAHF - Loed AH Into Flag I 10011111 2 2 

POPF - Pop Flags I 10011101 5 5' b h, n 

PUSHF ~ Push Flags 10011100 4 4' b h 

SAHF - Store AH Into FI_ 10011110 3 3 

STC ~ Set Carry Flag 11111001 2 2 

STD ~ Set Direction Flag 1 11 1 11 01 2 2 

STI - Set Interrupt Enable Flag 11111011 8 8 m 

ARITHMETIC 

ADD - Add 

Regist", to Register OOOOOOdw I mod reg rim I 2 2 

Register to Memory OOOOOOOw I mod reg rim I 7'- 7-- b h 

Memory to Register OOOOOOtw I mod reg rim I 6- 6- b h 

Immediate to Register/Memory 100000sw ImodOOO rIm I immediate data 2/7** 2/7-- b h 

Immediate to Accumulator (short form) 0000010w I immediate data 2 2 

ADC ~ Add With carry 

Register to Register I 000100dw mod reg rim I 2 2 

Regist ... to Met'nory I 0001000w mod reg rim I 7-' 7-- b h 

Met'nOry to Register I 0001001w mod reg rim I 6- 6- b h 

Immediate to Register/Memory I 100000sw modOl0 rim I immediate data 217-- 2/7** b h 

Immediate to Accumulator (short form) I 0001010w immediate data 2 2 

INC ~ Increment 

Regist ... /Memory I lllllllw I modOOO rim I 216-- 2/6** b h 

Regist", (short form) 101000 reg I 2 2 

SUB - SUbtrpct 

Register from Register I 001010dw I mod reg rim I 2 2 

E-3 



INSTRUCTION FORMAT AND TIMING 

Table 9·1. 386'· SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Addr ... Protected 

Mode or Virtual Mode or Virtual 
Virtual Addr.ss Virtual Addr ... 
8086 Mode 8086 Mod. 
Mode Mod. 

ARITHMETIC (Continued) 

Register from Memory I 00tOl00w ImOdreg r/ml 7"" 7"" b h 

Memory from Register I 0010101w ImOdreg r/ml 6" 6" b h 

Immediate from Register/MemOJy 1100000SW ImOdl0l r/ml immediate data 2/7** 2/7** b h 

Immediate from Accumulator (short form) 10010110wI immediate data 2 2 

SBB ~ Subtract with Borrow 

Register from Register 100011 Odw Imodreg r/ml 2 2 

Register from Memory 100011 DOw I mod reg rIm I 7"" 7"" b h 

Memory from Register I 0001101w I mod reg r/ml 6" 6" b h 

Immediate from Register/Memory 1100000sw ImOdOll rIm I immediate data 2/7"" 2/7"" b h 

Immediate from Accumulator (short form) 10001110wl immediate data 2 2 

DEC ~ Decrement 

RegisterlMemory I 1111111 w Iregoo 1 rim 1 216'" 2/6"" b h 

Regisler (short form) 101001 regl 2 2 

CMP ~ Compare 

Register with Register 100111 Odw ImOdreg r/ml 2 2 

Memory with Register 100111 OOw ImOdreg rIm 1 5" 5" b h 

Register with Memory I 0011 101 w I mod reg r/ml 6" 6" b h 

Immediate with Register/Memory 11 OOOOOsw I mod 111 r/ml immediate data 215" 2/5' b h 

Immediate with Accumulator (short form) 1001111 Ow I immediate data 2 2 

NEG ~ Change Sign I 1111011w ImodOll r/ml 2/6" 2/6" b h 

AM ~ ASCII Adjust for Add I 00110111 1 4 4 

AAS ~ ASCIt Adjust for Subtract l 00 l11111J 4 4 

DM ~ Decimal Adjust for Add I 00100111 I 4 4 

DAS ~ Decimal Adjust for Subtract I 00101111 1 4 4 

MUL ~ Multiply (unsigned) 

Accumulator with Register I Memory I 1111011wlmOdl00 r/ml 

Multiplier-Byte 12-17/15-20" 12-17/15-20" b,d d, h 
-Word 12-25/15-28" 12-25/15-28' b, d d,h 
-Ooubleword 12-41/17-46" '12-41/17-46" b,d d, h 

IMUL ~ Integer Multiply (signed) 

Accumulator with Register/Memory I 1111011w Imodl00 r/ml 

Multiplier-Byte 112-17/15-20" 12-17/15-20" b,d d,h 
-Word 12-25/15-28" 12-25/15-28" b, d d, h 
-Doubleword 12-41/17-46" 12-41/17-46" b,d d,h 

Register with Register I Memory I 00001111 I 10101111 1 mod reg r/ml 

Multiplyer-Byte 12-17/15-20" 12-17/15-20" b,d d,h 
-Word 12-25/15-28" 12-25/17-46" b, d d, h 
-Doubleword 12-41/17-46" 12-41/17-46" b, d d, h 

Register IMemory with Immediate to Register I 011010 s 1 ImOdreg r/ml immediate data 

-Word 13-26 13-26/14-27 b, d d,h 
-Doubleword 13-42 13-42/16-45 b, d d, h 

E-4 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386 T• SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

A_I A_I 
INSTRUCTION FORMAT Add .... Protected Add .... Protected 

Mode or VIm..! Mode or V~ 
VlrIuIIl Add .... VlrIuIIl Add .... - Mode - Mode 
Mode Mode 

~AITHMETIC (Continued) 
DIV = DIYkIe (Unalgned) 

~ccumulator by RegisterlMemory 1111 tOIl w lmod 1 t 0 r/ml 
Divisor-Byte 14/17 14/17 b,e e,h 

-Word 22/25 22/25 b,e e,h 
-Ooubleword 38/43 38/43 b,e e,h 

IDIV = Integer DIvide (SIgned) 

~ccumulator By RegisterlMemory 11111 011 w Imod 111 r/ml 
DIvisor-Byte 19/22 19/22 b,G e,h 

-Word 27/30 27/30 b,e e,h 
-Doubleword 43/46 43146 b,e e,h 

~D = ASCII Adluetlor Divide 1110101011000010101 19 19 

~M = ASCII Adlu" lor Multiply 1110101001000010101 17 17 

FBW = Convert Byte to Word 1100110001 3 3 

CWO = Convert Word to Double Word I tOOll00l 1 2 2 

OGIC 

Shift Rotate Instructions 
Not Through Carry (ADL, ADR, SAL, SAR, SHL, and SHA) 

RegisterlMemory by 1 11101 OOOw ImodTTT r/ml 3/7** 3/7** b h 

RegisterlMemory by Cl 11101001W ImodTTT r/ml 3/7* 3/7* b h 

Register IMemory by Immediate Count 11 1 0 0 0 0 0 w 1 mod TTT r/ml immed 8-bit data 3/7* 3/7* b h 

hrough Carry (ACL and ACA) 

RegisterlMemory by 1 11101 OOOw ImodTTT r/ml 9/10' 9/10' b h 

Registar IMemory by Cl 11101001W ImodTTT r/ml 9/10' 9/10' b h 

RegisterlMemory by Immediate Count 11 1 00000 w 1 mod TTT r/mlimmed 8-M data 9/10' 9/10' b h 

TTT Instruction 
000 ROl 
001 ROR 
010 RCl 
011 RCR 
100 SHLlSAl 
101 SHR 
111 SAR 

~LD = ShIll Lett Double 

Register IMemory by Immediate 1000011111 10100100 I mod reg r Imlimmed 8-M data 3/7*' 3/7'* 

RegisterlMemory by Cl 1000011111 10100101 1 mod reg r/ml 3/7" 3/7** 

~HRD = Shift AIghI Double 

RegisterlMemory by Immediate 100001111 1 10101100 1 mod reg r/mlim:11ed 8-bit data 3/7" 3/7** 

RegisterlMemory by Cl 1000011111101011011modreg r/ml 3/7*" 3/7** 

~D=And 

Register to Register I 001 OOOdw Imod reg r/ml 2 2 

E-5 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386'" SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 
R_ Ha! 

INSTRUCTION FORMAT Add .... Protected Add.-. Protected 
MOde or Virtual MOde or VlrtuIII 
VlrtuIII -.... VIrtual -.... - MOde - MOde 
MOde IIOCIe 

LOGIC (Continued) 

Register to Memory I 0010000w I mod reg r/ml 7** 7** b h 

Memory to Register I 0010001w I mod reg r/ml 6* 6* b h 

Immediate to Register IMemory 11 OOOOOOw I mod 1 00 rIm I immediate data 2/7* 2/7** b h 

Immediate to Accumulator (Short Form) 1001001 Ow I immediate data 2 2 

TEST - And Function to Flap, No ReMlIt 

RegisterlMemory and Register 11000010w lmodreg r/ml 2/5* 2/5* b h 

Immediate Data and RegisterlMemory 11tll0llW ImodOOO rIm I immediate data 2/5* 2/5* b h 

Immediate Data and Accumulator 
(Short Fonn) 1101010 Ow I immediate data 2 2 

OR- Or 

Register to Register 000010dw lmodreg r/ml 2 2 

Register to Memory 00001 OOw lmodreg r/ml 7** 7** b h' 

Memory to Register 0000101w lmodreg r/ml 6* 6* b h 

Immediate to RegisterlMemory 1 OOOOOOw ImodOOl rIm I Immediate data 2/7** 2/7** b h 

Immediate to Accumulator (Short Form) 000011 Ow I immediate data 2 2 

XOR - Excluelve Or 

Register to Register 0011 OOdw I mod reg r/ml 2 2 

Register to Memory 0011 OOOw Imodreg r/ml 7** 7** b h 

Memory to Register 0011001w Imodreg r/ml 6* 6* b h 

Immediate to RegisterlMemory 1 OOOOOOw Imodll 0 rIm I immediate data 2/7** 2/7** b h 

Immediate to Accumulator (Short Form) o 0 1 1 0 lOw I immediate data 2 2 

1111011w ImodOl0 r/ml NOT - Invert Reglater/Memory 2/6** 2/6** b h 
Clk 

STRING MANIPULATION Count 
VIrtuIII 

CMPS - Compe .. Byte Word 11010011 wi - 10* 10* b h MOde 

INS - Input Byte/Word from DX Port 1011011 Ow I I t29 15 9·/29·· b sit,h,m 

LODS - LoIId Byte/Word to AU AXlEAX 11 0 1 0 1 lOw I 5 5* b h 

MOVS - Move Byte Word 11010010wl 7 7** b h 

OUTS - Output BytelWord to DX Port 10110111 wi l t28 14 8-/28" b sit,h,m 

SCAS - Scan Byte Word 11010111 wi 7* 7* b h 

STOS - Store Byte/Word from 

AUAX/EX 11010101 wi 4* 4* b h 

XLAT - T ..... _ String I 11010111 I 5* s* h 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE ClIPS - Compere String 

(Find Non-Match) I 11110011 11010011W I 5+9n** 5+9n** b h 

• If CPL ,;; IOPL •• If CPL > IOPL 

E-6 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386'M SX Microprocessor Instruction Set Clock Count Summary (contd.) 
, CLOCK COUNT NOTES 

R_ ~ 
INSTRUCTION FORMAT AcId .... ~ AdcInN Protec:ted 

II_or VlrtuI II_or Virtu.! 
_I AcId .... Virtu! -.... - Mode - 11-11- -REPEATED STRING MANIPULATION (Continued) 

REPNE ClIPS = c:omp.e StrIng CllcCount 

(Find Matchj 111110010 1010011w VIrtueI 5+9n·* 5+9n*· b h --REP INS = Input SIIing 111110010 0110110w I t 13+6n* 7+ 6n*/27+6n* b slt,h,m 

REP LODS = LoIId String 111110010 1010110w 5+6n 5+6n* b h 

REP MOYS = 11_ StrIng 111110010 1010010w 7+4n* 7+4n** b h 

REP OUTS - Output SII1ng 111110010 0110111 w I t f2+5n* 5+5n·/26+5n· b slt,h,m 

REPE SCM = _n StrIng 

(FInd Non-ALI AX/~ 11111001111010111Wl 5+Sn- 5+Sn* b h 

REPNE SCM = s.n StrIng 

(Find ALI AX/EAXj 11111001011010111Wl 5+Sn* 5+Sn- b h 

RE!, STOS = Store Siring 11111001011010101Wl 5+5n* 5+5n- ~ h 

BIT IIANIPULATION 

IISf' = _n BIt fDrW8l'd 1 0000111111ellll00 lmodrag r/ml 10+3n* 10+3n** b h 

8SR = s.n BltR_ I 0000 11 11 11 011 1 1 0 1 lmod rag r/ml 10+3n* 10+3n*· b h 

IT = Teat BIt 

R~/Memory, Immediate I 000011 1 1 11 01 1 1 01 0 lmod 1 00 r/mllmmed 8-bllda1a! 3/6- 3/6- b h 

Register/Memory, Register I 00001 ~ 11 110100011 lmodrag r/ml 3/12* 3/12* b h 

8TC = T~ BIt.,d CompIeI!Ient 

Register/Memory, Immediate I 00001111 110111010 lmod 1 ; 1 , r/~immed8-bltda~ 6/S* 6/S- b h 

Register/Memory, Register I 0000111 1 11 0 1 11 011 lmod rag r/~ 6/13* 6/13* b h 

ITA = TeatBlt_R_ 

Register/Memexy, Immediate lop 0 0 1111 110111010 Imod 11 0 r/~lmmed B-bK da~ 6/S- 6/S* b h 

Register/Mamexy, Register I 00001111 110110011 lmod rag r/~ 6/13- 6/13* b h 

IITlt ';' Teat BIt _ Set 

Register/~;nory, Immediate I 00001111 110111010 lmoci 1 01 r/mlimmed B-bit da~ 6/S* 6/S- b h 

Register/Mamexy, Register I 00001111 110101011 lmod reg r/~ 6/13* 6/13- b h 

COHTROL TRANSFER 

CALL = c.l1 

Direct Within Segment 111101000 IfulidIopIaceman\ 7+m* 9+m* b r 

Register/Memory 

Indirect Within Segment 111111111 I mod 0'1 Q. ',(!"I 7,+'!1*/ 9+mI 
b h,r 10+m* 12+m-

Direct II]I8isegment 11 00 ; 1 ci , 0 I'!"sig~ fuli'RfI8eI, selector 17+m* 42+m* b j,k,r 

Notes: 
t Clock count shown applies if 1/0 permission allows 110 to the port in virtual 8086 mode. If 1/0 bit map denies permission 
exception 13 fault occurs; refer to clock counts fc;>r !NT 3 instruction. 
• If CPL s: 10PL •• If CPL > 10PL 

E-7 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386™ SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 
A_I A_ 

INSmUCTlON FORMAT - Protected - Protected 
II_or _I Mode or Vlrtu81 
Ylrllllli Add .... Ylrtulll --8088 Mode 8088 Mode 
Mode 11-

CONTROL TRANSFEA (Continued) 
Protected Mode Only (DIrect Intersegment) 

VIS Call Gate to Same Privilege Level 64+m h,j,k,r 
VIS Call Gate to Different Privilege Level, 

(No Parameters) 98+m h,j,k,r 
Via Cell Gate to Different Privilege Level, 

106+8x 
(x Parameters) +m h,j,k,r 

From 288 Task to 2BB TSS 285' h,j,k,r 
From 288 Task to 388 TSS 310 h,j,k,r 
From 288 Task to Virtual 8088 Task (3BB TSS) 227 h,j,k,r 
From 3BB Task to 288 TSS 285 h,j,k,r 
From 3BB Task to 388 TSS 392 h,j,k,r 
From 3BB Task to Virtual 8088 Task (3BB TSS) 309 h,j,k,r 

Indirect Intersegmant I tlttlltt ImodOl1 r/ml 3O+m 46+m b h,j,k,r 

Protected Mode Only (Indirect Intersegment) 
Via Call Gate to Same PrivIlege Level S8+m h,j,k,r 
Via Call Gate to Different Privilege Level, 

(No Parameters) 102+m h,j,k,r 
VIS Call Gate to Different Privilege Level, 

(x Parameters) 110+8x h,j,k,r 
From 288 Task to 2BB TSS +m h,j,k,r 
From 2BB Task to 3BB TSS h,j,k,r 
From 2BB Task to Virtual BOBB Task (388 TSS) h,j,k,r 
From 3BB Task to 2BB TSS h,j,k,r 
From 388 Taak to 3BB TSS 399 h,j,k,r 
From 388 Taak to Virtual BOBB Task (388 TSS) h,j,k,r 

JIIP = UnconcIItIoMl Jump 

Short I 
1 t 1 01 011 I B-bit displacement I 7+m 7+m r 

Direct within Segment I 11101001 I lull displacement 7+m 7+m r 

Aeglster/Memory Indirect within Segment 11 1 1 1 1 1 1 1 I mod 1 00 r/ml 
9+m/ 9+m/ 

b h,r 14+m 14+m 

Direct Intersegment I 1 1 1 0 1 0 1 0 I unsigned full offae1, selector IS+m 31+m j,k,r 

Protected Mode Only (DIrect Intersegment) 
Via Call Gate to Same Privilege Level 53+m h,j,k,r 
From 288 Task to 2BB TSS h,j,k,r 
From 288 Task to 3BB TSS h,j,k,r 
From 288 Taak to Virtual BOBB Task (388 TSS) h,j,k,r 
From 3BB Task to 2BB TSS h,j,k,r 
From 3BB Taak to 3BB TSS h,j,k,r 
From 3BB Task to Virtual BOBB Task (388 TSS) 395 h,j,k,r 

Indirect Intersegment 111111111 I mod 1 01 r/ml 17+m 31+m b h,j,k,r 

Protected Mode Only (Indirect Intersegmant) 
Via Cell Gate to Same Privilege Level 49+m h,j,k,r 
From 2BB Task to 2BB TSS h,j,k,r 
From 288 Taak to 386 TSS hJ,k,r 
From 288 Task to Virtual BOBB Task (388 TSS) h,j,k,r 
From 3BB Task to 288 TSS hj,k,r 
From 3BB Task to 386 TSS 328 h,j,k,r 
From 3BB Task to Vlllual BOBB Taak (3BB TSS) h.j,k,r 

E-8 



INSTRUCTION FORMAT AND TIMING 

Table 9·1. 386™ SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES ..... R ... 

INSTRUCTION FORMAT ~ ProtecMd ~ ProtecMd __ or 
VIrIuIoI 

__ or 
VlrtuIII 

VlrIuIIl 10_ Vlrtulol ~ - -- - --- --CONTROL TRANSFER (Continued) 
RET = Retum from CALL: 

WithinSegment I 11000011 I 12+m b 9oh, , 

Within Segment Adding Immediate to SP I 11000010 I 18-bit diapl I 12+m b 90 h,' 

In1arsegment I 11001011 I 36+m b g,h,j,k" 

ln1arsegment Adding Immedia1a to SP I 11001010 I 16-b" dIapI I 36+m b g,h,j, k,' 

Pro1ac1ad Mode Only (RET): 
to Different PrivItege Level 

Intersegment 72 h,1k" 
Intersegment Adding Immedia1a to SP 72 h,j,k" 

CONDITIONAL JUMPS 
NOTE: lllMS Are Jump "Taken 0' No1 Taken" 
JO = Jump on Overll_ 

8-Bit Displacement I 01110000 I 8-bHdispl I 7 + mo,3 7+mor3 , 
FuN Displacement I 00001111 I 10000000 I full displacement 7 + mor3 7 + mo,3 , 

JNO = Jump on Not Overflow 

8-Bit Displacement I 01110001 I 8-IJjtdispi I 7+mor3 7 + mor3 , 
Full Displacement I 00001111 I 10000001 I full displacement 7 + mor3 7 + mor3 , 

JB/JNAE = Jump on BeIowINot_ or Eq .... 

8-Bit Displacement 101110010 I 8-bHdispi I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10000010 IfuildiSPiaoement 7 + mor3 7 + mor3 , 

JNB/JAE = JIMIP on Not BeIow/Above or Eq .... 

8-B" Diaplacement I 01110011 I 8-b"displ I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10000011 I full displacement 7 + mor3 7 + mor3 , 

JElJZ = J_p on Eq...uzero 

8-8" Displacement I 01110100 I 8-bltdispl I 7 + mor3 7 + mor3 , 
Full DlspIaoament I 00001111 I 10000100 I full dlsplacament 7 + mor3 7 + mor3 , 

JNE/JNZ = Jump on Not EquIIVNot zero 
·8-SH Displacement I 01110101 I 8-bitdispl I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10000101 I full displacement 7 + mor3 7+mor3 , 

JBE/JNA = Jump on Below or Eq...vNot_ 

8-B~ Displacement I 01110110 I 8-bit dIapI I 7 + mor3 7 + mor3 , 
Full Displacement 100001111 I 10000110 I full diaplaoement 7 + mor3 7 + mor3 , 

JNBElJA = Jump on Not Below or Eq .... , Above 

8-B" Displacement I 01110111 I 8-bit dispI I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10000111 I fuN displacement 7 + mor3 7 + mor3 , 

JS = Jump on SIgn 

8-B" Displacement I 01111000 I 8-bit diapl I 7 + mor3 7 + mor3 , 
Full Displacement I 00001111 I 10001000 I full displacement 7 + mor3 7 + mor3 , 

E-9 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386™ SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

R .. I R .. I 
INSTRUCTION FORMAT Add .... Protected Add .... Protected 

M_or VlrtUIII M_or VlrIUII! 
VIrtual Add .... Vlrt .... Add .... 
8088 M_ 8088 M_ 
M_ Mode 

CONDITIONAL JUMPS (Continued) 

JNS ~ Jump on Not SllIn 

8-B~ Displacement I o tIll 001 
, 

8-bitdispl I 7+mo,3 7 + mor3 , 
Full Displacement I 00001111 

, 
10001001 I full displacement 7 + mor3 7+mor3 r 

JP/JPE ~ Jump on Parlty/Partty Even 

8·B~ Displacement I 01111010 
, 

8·bitdispl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 
, 

10001010 I full displacement 7 + mor3 7+mor3 r 

JNP/JPO ~ Jump on Not Perlty/P.rltyOdd 

8-Bit Displacement I 01111011 
, 

8·bit displ I 7 + mor3 7 + mo,3 r 

Full Displacement I 00001111 
, 

10001011 I full displacement 7 + mo,3 7 + mo,3 r 

JU JNGE ~ JUmP on Leu/Not Grea .... or Eq .... 

8·Bit Displacement I Ql111100 
, 

8-bit displ I 7 + mor3 7+mo,3 , 
Full Displacement I 00001111 

, 
10001100 I full displacement 7+mor3 7 + mor3 r 

JNU JGE ~ Jump on Not Leu/G ... ter or Equal 

8-Bit Displacement I 01111101 
, 

8·bitdispl I 7+mor3 7+mor3 r 

Full Displacement I 00001111 
, 

10001101 I full displacement 7 + mor3 7+mor3 r 

JLEI JNG ~ Jump on Leu 0' EqUIIIINot Greate, 

8·B~ Displacement I 01111110 
, 

8·bit displ I 7+mor3 7+mor3 , 
Full Displacement I 00001111 I 10001110 I full displacement 7+mor3 7+mor3 , 

JNLElJG ~ Jump on Not Le .. 0' EqUIIIIG ... te, 

8-Bit Displacement I 01111111 I 8·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001111 I full displacement 7 + mor3 7 + mor3 r 

JCXZ ~ Jump on CX Zero I l1tOOOl1 I 8·bitdispl I 9 + mor5 9+mo,5 r 

JECXZ ~ Jump on ECX Zero I 11100011 I 8-bitdispl I 9 + mor5 9+mor5 , 
(Address Size Prefix Differentiates JCXZ from JECXZ) 

LOOP ~ Loop CX Tim .. I 11100010 
, 

8·bitdispl I l1+m l1+m r 

LooPZ/LooPE ~ Loop with 

I I I Zero/Eq .... 11100001 8-bit displ l1+m 11 + m r 

LooPNZlLooPNE ~ Loop While 

I I I Not Zero 11100000 8·bit displ l1+m tl + m , 
CONDITIONAL BYTE SET 
NOTE: Times Are Registe,/Memory 

SETO ~ SIll Byte on Overlilow 

To Register/Memory I 00001111 
, 

10010000 'madOOO r/ml 4/5' 4/5' h 

SETNO ~ SIll Byte on Not Overlilow 

To Register/Memory I 00001111 
, 

10010001 I madOOO rim I 4/5' 4/5' h 

SETB/SETNAE ~ Set Byte on BeIow/Not Above or EqUIII 

T oRegister/Memory I 000Plll1 
, 

t00100l0 I madOOO r/ml 4/5' 4/5' h 

E-10 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386 T• SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

Real Reel 
INSTRUCTION FORMAT Add .... Prot_ A_ Protected 

Mode or VirtUIII Mode or VirIUIIl 
YlrtUIII Add ..... Ylrt ... 1 Add ..... 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL BYTE SET (Continued) 

SETNB ~ Set Byte on Not Below/ Above or EqUIII 

To Register/Memory I 00001 I I I I 10010011 I modOOO r/ml 415" 4/5" h 

SETE/SETZ ~ Set Byte on Equal/Zero 

To Register/Memory I 00001111 I 10010100 I madOOO r/ml 4/5" 4/5" h 

SETNE/SETNZ ~ Set Byte on Not EqUIII/Not Zero 

To Register/Memory I a a a a I I I I I 10010101 I madOOO r/ml 4/5" 4/5" h 

SETBE/SETNA ~ Set Byte on Betow or Equal/Nol Above 

To Register/Memory I 00001111 I 10010110 I madOOO rIm I 4/5" 4/5" h 

SETNBE/SET A ~ Sel Byte on Nol Below or Equal/Above 

To Register/Memory I 0000 I I I I I 100 I 0 I I I I madOOO rIm I 4/5" 4/5" h 

SETS ~ Sel Byte on SIgn 

To Register/Memory I 0000 I I I I I 10011000 I madOOO r/ml 4/5" 4/5" h 

SETNS ~ Set Byte on Not SIgn 

To Register/Memory I 00001111 I 100 I 100 I I madOOO rIm I 4/5" 4/5" h 

SETP/SETPE ~ Set Byte on Parity/Parity Even 

To Register/Memory I 0000 I I I I I 10011010 I madOOO r/ml 4/5" 4/5" h 

SETNP/SETPO ~ Set Byte on Nol Parity/Parity Odd 

To Register/Memory I 00001 11 I I 10011011 I madOOO rIm I 4/5" 4/5" h 

SETLISETNGE ~ Set Byte on L ... /Not Greater or EqUIII 

To Register/Memory I 0 a 001 1 11 I 10011100 I madOOO rIm I 4/5" 4/5" h 

SETNLlSETGE ~ Set Byte on Nol LeeetGreater or Equal 

To Register/Memory I 000 a I I I 1 I 01 I I I I 01 I madOOO rIm I 4/5" 4/5" h 

SETLE/SETNG ~ Set Byte on L ... or Equal/Not Greater 

To Register/Memory I 0 a 0 0 1 1 11 I 1001 I I I 0 I madOOO rIm I 4/5" 4/5" h 

SETNLE/SETG ~ Sel Byte on Not Le .. or EqUIII/Grealer 

To Register/Memory I 00001 I I 1 I 1001 I I I I I madOOO rIm I 4/5" 4/5" h 

ENTER ~ Enler Procedure I 11001000 I 18-bit displacement, B-bit level I 
L~O 10 10 b h 
L ~ I 14 14 b h 
L> 1 17+ 17+ b h 

8(n-l) 8(n-l) 

LEAYE ~ Laave Procedure I 11001001 I 4" 4" b h 

E-11 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386™ SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES ..... Reel 

INSTRUCTION FORMAT -- ~ Add .... ~ 
Mode or VIrIu8I Mode or VI_' 
VlrIIW -- VIrtual --8018 Mode 8018 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS 

INT = Intenvpt: 

Type Specified I 11001101 I type I 37 b 

Type 3 I 11001100 I 33 b 

INTO = Interrupt 41t OVerflow ..... set I 11001110 I 
If OF = 1 35 b.a 
HOF= 0 3 3 b.a 

_ = Interrupt5ItDeteotV., ... I 01100010 I mod rag rIm I 
OUtofR .... 

H Out of Range 44 b.a a.g, h.l. I<, r 
"'nRange 10 10 b.a a.g.h.l.k.r 

ProtecteclMode Only (INT) 
INT: Type IIpecIIIed 

Via InterTUpt or Trap Gate 
to Sarna Plivilaga Laval 71 g.I.l<,r 

Via Interrupt or Trap Gate 
to Different Privilege Laval 111 g.1l<,r 

From 286 Task to 286 TSS via Task Gate 438 g.I.l<,r 
From 286 Task to 386 TSS via Task Gate 465 g,1. k.r 
From 286 Task to vitt 8086 mel via Task Gate 382 g.I.l<,r 
From 386 Task to 286 TSS via Task Gate 440 g.I.l<,r 
From 386 Task to 386 TSS via Task Gate 467 g.l.k.r 
From 386 Task to vitt 8086 mel via Task Gate 384 g.I.l<,r 
From vitt 8086 mel to 286 TSS via Task Gata 445 g.I.l<,r 
From virl8086 mel to 386 TSS via Task Gate 472 g.I.l<,r 
From vir! 8086 mel to priv level 0 via Trap Gate or Interrupt Gate 275 

INT: TYPE 3 
Via Interrupt or Trap Gate 

to Sarna Plivilege Laval 71 9.1.l<,r 
Via Interrupt or Trap Gate 

to Dlfferant Plivilaga Laval 111 g.l.k.r 
From 286 Task to 286 TSS via Task Gate 382 g.I.l<,r 
From 286 Task to 386 TSS via Task Gate 409 g.l.k.r 
From 286 Task to Vir! 8086 mel via Task Gata 326 g.I.l<,r 
From 386 Task to 286 TSS via Task Gate 364 g.l.k.r 
From 386 Task to 386 TSS via Task Gate 411 g.I.l<,r 
From 386 Task to Vir! 8086 mel via Task Gate 328 g.I.l<,r 
From vir! 8086 mel to 286 TSS via Task Gata 389 g.l.k.r 
From vitt 8086 mel to 386 TSS via Task Gate 416 g.I.l<,r 
From vir! 8086 mel to prIv level 0 via Trap Gate or Interrupt Gate 223 

INTO: 

Via Intarrupt or Trap Grata 
to Sarna Plivilege Laval 71 g.l.k.r 

Via Intamupt or Trap Gata 
to DIfferent Privilege Laval 111 g.l.k.r 

From 286 Task to 286 TSS via Task Gate 384 g,1. I<, r 
From 286 Task to 386 TSS via Task Gata 411 g.l.k.r 
From 286 Task to vitt 8086 mel via Task Gate 328 g,1. I<, r 
From 386 Task to 286 TSS via Task Gate 386 g, I. I<, r 
From 386 Task to 386 TSS via Task Gate 413 g.I.l<,r 
From 386 Task to vir! 8086 mel via Task Gate 329 g.I.l<,r 
Fromvirl8086 mel to 286 TSSvia Task Gate 391 g.I.l<,r 
From vitt 8086 mel to 386 TSS via Task Gate 418 g.I.l<,r 
From vir! 8086 mel to priv level 0 via Trap Gata or Interrupt Gate 223 

E-12 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386 T• SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

R_I R_I 
INSTRUCTION FORMAT Add ..... Protected Add ..... Protected 

Mode or Vlr!wIl Mode or Vlr!wIl 
Vlrtuel Add ..... Vlrtuel Add ..... - Mode - Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS (Continued) 

BOUNO: 

Via Interrupt or Trap Gate 
to Same Privilege Level 71 g,j, k,r 

Via Interrupt or Trap Gate 
to Different Privilege level 111 g, j, k, r 

From 286 Task to 286 TSS via Task Gate 358 g,j, k,r 

From 286 Task to 386 TSS vie Task Gate 388 g, j, k, r 

From 268 Task to vir! 8086 Mode via Task Gate 335 g, j, k, r 

From 386 Task to 286 TSS via Task Gate 368 g,j,k,r 

From 386 Task to 386 TSS via Task Gate 398 g,j, k, r 

From 368 Task to vir! 8086 Mode via Task Gate 347 g,j,k,r, 

From vir! 8086 Mode to 286 TSS via Task Gate 368 g,j, k, r 

From vir! 8086 Mode to 386 TSS via Task Gate 398 g,j, k, r 

From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223 

INTERRUPT RETURN 

IRET = Interrupt Return I 11001111 I 24 g, h,j, k, r 

Protected Mode Only (IREn 
To the Same Privilege level (within task) 42 g, h,j,k,r 

To Different Privilege level (within task) 86 g, h,j, k, r 

From 286 Task to 288 TSS 285 h,j,k,r 

From 288 Task to 388 TSS 318 h,j, k, r 

From 288 Task to Vir!uaI8088 Task 267 h,j, k, r 
From 286 Task to Virtual 8086 Mode (within task) 113 
From 386 Task to 288 TSS 324 h,j, k, r 

From 388 Task to 388 TSS 328 h,j, k, r 

From 386 Task to Virtual 8086 Task 377 h,j,k, r 

From 388 Task to Virtual 8088 Mode (within task) 113 

PROCESSOR CONTROL 

HLT = HALT I 11110100 I 5 5 I 

MOV = Move to and From ControI/DebuglT •• t Reglaten 

CRO/CR2/CR3 from register I 00001111 00100010 11 eeereg 10/4/5 10/4/5 I 

Register From CRO-3 I 00001111 00100000 11 eeereg 6 6 I 

ORO-3 From Register I 00001111 00100011 1 1 eee reg 22 22 I 

DR6-7 From Register I 00001111 00100011 11 eeereg 16 16 I 

Register from DR6-7 I 00001111 00100001 11 see reg 14 14 I 

Register from DRO-3 I 00001111 00100001 11 eeereg 22 22 I 

TR6-7 from Register I 00001111 00100110 11 9ee reg 12 12 I 

Register from TRS-7 I 00001111 00100100 11 eeereg 12 12 I 

NOP = No Operation I 10010000 3 3 

WAIT = Walt until BUSY# pin I. negated I 10011011 6 6 

E-13 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386™ SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

Reel R_I 
INSTRUCTION FORMAT ~ Protected Add ... Protected 

Mode or VlrIuIIl Made or VI .... 
Virtual AdcIrna VlrIuIIl AdcIrna - Mode - Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape 111011 TTT I modLLL rIm I See h 

Tn and LLL bits are opcode 387'· SX 

information for coprocessor. dais sheel 'or 
clock counts 

PREFIX BYTES 

~ SIze PreIIx I 01100111 I 0 0 

LOCK = ..... Lock Prefix I 11110000 I 0 0 m 

Opennel SIze Prellx I 01100110 I 0 0 

Segment 0venIde Prellx 

CS: 00101110 0 0 

DS: 00111110 0 0 

Ell! 00100110 0 0 

F&. 01100100 0 0 

GS: 01100101 0 0 

8S: 00110110 0 0 

PROTECTION CONTROL 

ARPL = AdJuat Req_ PrIvIlege Level 

From RegisterlMemory I 01100011 I mod reg rIm I N/A 20/21"" a h 

LAR = Load __ Righta 

From Register/Memory I 00001111 I 00000010 I mod reg rIm I N/A 15/16" a g, h,j,p 

LGDT = Load GIobeIOeecrIptor 

Table Register I 00001111 I 00000001 ImodOl0 rIm I II" II" b,c h,1 

UDT = Load InterruptOeecrlplo, 

Table Register I 00001111 I 00000001 I modOll rIm I II" II" b,c h,1 

LLDT = Load LocaIOeecrIptor 

Table Register 10 

I I ImodOl0 rIm I Register/Memory 00001111 00000000 N/A 20/24" a g,h,j,1 

LMSW = Load _'na Sta\ua Word 

From RegisterlMemory I 00001111 I 00000001 I modll 0 rIm I 10/13 10/13" b, C h,1 

LSL = Load Segment LImH 

From RegisterlMemory I 00001111 I 00000011 I mod reg rim I 
Byte-Granular Umit N/A 20/21" a g,h,j,p 
Page-Granular UmK N/A 25/26" a g,h,j,p 

LTR = Load TMk Regletar 

From Register/Memory I 00001111 I 00000000 ImodOOl rIm I N/A 23/27" a g,h,j,1 

SGDT = Store Global o.crlptor 

T.b"Reg~ I 00001111 I 00000001 I modOOO rIm I 9" 9" b,c h 

E-14 



INSTRUCTION FORMAT AND TIMING 

Table 9-1. 386™ SX Microprocessor Instruction Set Clock Count Summary (contd.) 
CLOCK COUNT NOTES 

R_ Ral 
INSTRUCTION FORMAT Add ... Protected Add..- Protect.d 

Mocleor VIrtuIII Mode or Virtu! 
VlrIuIol Add ... VIrtu! Add..-- Mode - Mode 
Mode Mode 

SIDT ~ Store Interrupt Deec:rIpto. 

T.llleR ....... I 00001111 I 00000001 I modOO 1 rIm I 9* 9> b,c h 

SLDT ~Stcn lacIII_ptor T.ble Reg_. 

To RegisterlMemory I 00001111 I 00000000 I modOOO r/mi N/A 2/2* a h 

SMSW 
~Stcn ___ I ... 

Stetu8Word I 00001111 I 00000001 Imodl00 r/mi 2/2* 2/2* b,c h,l 

STA ~Stcn T .... Reg_. 

To RegisterlMemory I 00001111 I 00000000 I modOO 1 r/mi N/A 2/2* a h 

VERR ~VerIfy RHd A_ 

RegisterlMemory I 00001111 I 00000000 Imodl00 r/mi N/A 10/11* a g,h,j,p 

VERW ~ Verify Write ~ I 00001111 I 00000000 I modi 01 r/mi N/A 15/16* a g,h,j,p 

INSTRUCTION NOTES FOR TABLE 8-1 

Note. a through c apply to 386 Mlcroproce •• or Real Addre •• Mode only: 
a, This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection). will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 
Note. d through 9 apply to 386 Mlcroproce •• or Real Addre •• Mode and 386 Mlcroproce •• or Protected Virtual 
Addre .. Mode: 
d. The 386 microprocessor uses an earty-out multiply algorithm. The actual number of clocks depends on the position of 
the most significant bit in the operand (multiplier). 

Clock countS given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0 then max ([1092 Imll. 3) + 6 clocks: 

if m = 0 then 9 clocks (where m is the multiplier) 
e. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix. 
g. LOCK # is asserted during descriptor table accesses. 

Note. h through r apply to 386 Mlcroproce •• or Protected Virtual Addre •• Mode only: 

h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not 
present). If the SS regi$ter is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor $YStems. 
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields ·of the flag register are 
updated only if CPL = O. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 

. protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 
fault (general protection violation) will occur. 

E-15 



INSTRUCTION FORMAT AND TIMING 

9.2 INSTRUCTION ENCODING 

9.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure 9-1. Instructions 
consist of one or two primary opcode bytes, possi­
bly an address specifier consisting of the "mod 
rIm" byte and "scaled index" byte, a displacement 
if required, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rIm 
byte, specifies the address mode to be used. Certain 

encodings of the mod rIm byte indicate a second 
addressing byte, the scale-index-base byte, follOws 
the mod rIm byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rIm byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 9-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rIm field, but the Figure does not show all 
fields. Several smaller fields also appear in certain 
instructions, sometimes within the opcode bytes 
themselves. Table 9-2 is a complete list of all fields 
appearing in the 3a6 microprocessor instruction 
set. Further ahead, following Table 9-2 are detailed 
tables for each field. 

ITTT TTTT TIT TTTTTTT I mod TT T rIm I ss index base Id321161al none data32 I 161al none 

l 0 7 OJ \. 7 6 5 3 2 0 1\.7 6 5 3 2 0 I\, I \. I '--______ ----J T T ----,.--- .... ---v---~ 

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

\.. 

"mod rIm" 
byte byte 

register and address 
mode specifier 

I 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 9-1. General Instruction Format 

Table 9-2. Fields within 386 N SX Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rIm Address Mode Specifier (Effective Address can be a General Register) 

ss Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
mn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 
.. 

Note: Table 8-1 shows encoding of Individual Instructions. 

E-16 

immediate 
data 

(4,2,1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rIm 

2 
3 
3 
2 
3 

4 



INSTRUCTION FORMAT AND TIMING 

9.2.2 32-Bit Extensions of the 
Instruction Set 

With the 386 SX microprocessor, the 86/186/286 
instruction set is extended in two orthogonal direc­
tions: 32-bit forms of all 16-bit instructions are 
added to support the 32-bit data types, and 32-bit 
addressing modes are made available for all 
instructions referencing memory. This orthogonal 
instruction set extension is accomplished having a 
Default (D) bit in the code segment descriptor, and 
by having 2 prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the D bit in 
the code segment descriptor, which gives the default 
length (either 32 bits or 16 bits) for both operands and 
effective addresses when executing that code seg­
ment. In the Real Address Mode or Virtual 8086 Mode, 
no code segment descriptors are used, but a D value 
of 0 is assumed internally by the 386 SX when operat­
ing in those modes (for 16-bit default sizes compatible 
with the 8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all 80386 
modes, including the Real Address Mode or the Vir­
tual 8086 Mode. In these modes the default is al­
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

9.2.3 Encoding of Instruction Fields 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

E-17 

9.2.3.1 ENCODING OF OPERAND 
LENGTH (w) FIELD 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wFleld During 16-81t During 32-81t 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

9.2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
Is not Present In Instruction 

Register Selected Register Selected 
reg Field During 16-81t During 32-81t 

000 
001 
010 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
CX ECX 
OX EDX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
DI EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16-81t Data Operations: 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
DL DX 
BL BX 
AH SP 
CH BP 
DH SI 
BH DI 



INSTRUCTION FORMAT AND TIMING 

Register Specified by reg Field 
During 32-Blt Data Operations 

reg 
Function of w Field 

(whenw = 0) (whenw = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

9.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2·bit field 
allowing one of the four 80286 segment registers 
to be specified. The sreg field in other instructions 
is a 3-bit field, allowing the 386 SX microprocessor 
FS and GS segment registers to be specified. 

2-BII sreg2 Field 

2·Blt 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 OS 

3-Blt sreg3 Field 

3-Bit 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

9.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rIm" byte, and a second byte of addressing informa· 
tion, the "s_i_b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rIm" byte has rIm = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rIm" byte, 
also contains three bits (shown as TTT in Figure 8-1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

E-18 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rIm" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rIm" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 



INSTRUCTION FORMAT AND TIMING 

Encoding of 16-blt Address Mode with "mod rIm" 8yte 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+SI) 10000 OS:[BX + SI + d16) 
00001 OS:[BX+OI) 10001 OS:[BX+ 01 + d16) 
00010 SS:[BP+ SI) 10010 SS:[BP+SI+d16) 
00011 SS:[BP+OI) 10011 SS:[BP+01+d16) 
00100 OS:[SI) 10100 OS:[SI+d16) 
00101 OS: [01) 10101 OS: [01 + d16) 
00110 OS:d16 10110 SS:[BP+d16) 
00111 OS: [BX) 10111 OS:[BX+d16) 

01000 OS: [BX + SI + d8) 11000 register-see below 
01001 OS: [BX + 01 + d8) 11001 register-see below 
01010 SS:[BP+SI+d8) 11010 register-see below 
01011 SS:[BP+01+d8) 11 011 register-see below 
01100 OS:[SI+d8) 11100 register-see below 
01101 OS:[01+d8) 11101 register-see below 
01110 SS:[BP+d8) 11 110 register-see below 
01111 OS:[BX+ d8) 11 111 register-see below 

Register Specified by rIm 
During 16-81t Data Operations 

mod rIm Function of w Field 

(whenw=O) (whenw =1) 

11000 AL AX 
11001 CL CX 
11010 OL OX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 OH SI 
11 111 BH 01 

Register Specified by rIm 
During 32-81t Data Operations 

mod rIm Function of w Field 

(whenw=O) (whenw =1) 

11000 AL EAX 
11001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11101 CH EBP 
11 110 OH ESI 
11 111 BH EOI 

E-19 



INSTRUCTION FORMAT AND TIMING 

Encoding of 32-blt Address Mode with "mod rIm" byte (no "s-I-b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 OS: [EAX) 10000 OS:[EAX + d32) 
00001 OS: [ECX) 10001 DS:[ECX + d32) 
00010 OS: [EDX) 10010 DS: [EDX + d32) 
00011 OS: [EBX) 10011 DS: [EBX + d32) 
00100 s-i-b is present 10100 s-i-b is present 
00101 DS:d32 10101 SS:[EBP+d32) 
00110 OS: [ESi) 10110 OS: [ESI + d32] 
00111 DS:[EDil 10111 DS:[EDI + d32) 

01000 DS:[EAX+dB) 11000 register-see below 
01001 DS: [ECX + dB) 11001 register-see below 
01010 OS: [EDX + dB) 11010 register-see below 
01011 OS: [EBX + dB) 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS: [EBP + dB) 11101 register-see below 
01110 DS: [ESI + dB) 11 110 register-see below 
01 111 OS:[EDI+dB) 11 111 register-see below 

Register Specified by reg or rIm 
during 16-Blt Data Operations: 

mod rIm function of w field 

(whenw=O) (whenw=1) 

11000 AL AX 
11001 CL CX 
11010 DL OX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by reg or rIm 
during 32-Blt Data Operations: 

mod rIm function of w field 

(whenw=O) (whenw=1) 

11000 AL EAX 
11001 CL ECX 
11010 DL EDX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 OH ESI 
11 111 BH EDI 

E-20 



INSTRUCTION FORMAT AND TIMING 

Encoding of 32-blt Address Mode ("mod rIm" byte and "s-I-b" byte present): 

mod base Effective Address 

00000 OS: [EAX + (scaled index)] 
00001 OS: [ECX + (scaled index)] 
00010 OS: [EOX + (scaled index)] 
00011 OS: [EBX + (scaled index)] 
00100 SS:[ESP+ (scaled index)] 
00101 OS: [d32 + (scaled index)] 
00110 OS: [ESI + (scaled index)] 
00111 OS: [EOI + (scaled index)] 

01000 OS: [EAX + (scaled index) + dB] 
01001 OS:[ECX + (scaled index) + dB] 
01010 OS: [EOX + (scaled index) + dB] 
01011 OS: [EBX + (scaled index) + dB] 
01100 SS; [ESP + (scaled index) + dB] 
01101 SS: [EBP + (scaled index) + dB] 
01110 OS: [ESI + (scaled index) + dB] 
01 111 OS: [EOI + (scaled index) + dB] 

10000 OS: [EAX + (scaled index) + d32] 
10001 OS: [ECX + (scaled index) + d32] 
10010 OS: [EOX + (scaled index) + d32] 
10011 OS: [EBX + (scaled index) + d32] 
10100 SS:[ESP + (scaled index) + d32] 
10101 SS: [EBP + (scaled index) + d32] 
10110 OS: [ESI + (scaled index) + d32) 
10111 OS: [EOI + (scaled index) + d32] 

NOTE: 
Mod field in "mod rIm" byte; 5S, index, base fields in 
"s-i-b" byte. 

E-21 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 xB 

Index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 no index reg" 
101 EBP 
110 ESI 
111 EOI 

""IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 



INSTRUCTION FORMAT AND TIMING 

9.2.3.5 ENCODING OF OPERATION 
DIRECTION (d) FIELD 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

9.2.3.6 ENCODING OF SIGN-EXTEND (5) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
Immediate Data8 Immedl!lte Data 1613~ 

None None 

1 Sign-Extend Data8 to Fill None 
1S-Bit or 32-Bit Destination 

9.2.3.7 ENCODING OF CONDITIONAL 
TEST (tttn) FIELD 

For the conditional instructions (conditional jumps 
and set on condition), mn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and m giving the condition to test. 

Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
L/NGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less or Equal/Greater Than 1111 

9.2.3.8 ENCODING OF CONTORL OR DEBUG 
OR TEST REGISTER (eee) FIELD 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode RegHame 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DRS 
111 DR? 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

110 TRS 
111 TR? 

Do not use any other encoding 

E-22 







386'·st Microprocessor 
PROGRAMMER'S REFERENCE MANUAL 

You'll develop more effective software for Inter 's 386 '· SX CPU with the 386'· SX Micro­
processor Programmer's Reference Manual. Written by Intel Corporation , this invaluable 
resource covers the 386 SX microprocessor which offers high performance at the lowest 
cost for 32-bit computing. 

386'· SX Microprocessor Programmer's Reference Manual is divided into 
four parts. 
Part One discusses application programming and the most frequently­
used features. The basic programming model including memory organi­
zation , data types, register set, stack, interrupts, exceptions, and more, 
is presented along with the application instruction set. 

Part Two covers system programming and describes the features used by 
operating systems, device drivers, debuggers, and other software which 
support application programs. Unlike any other manual available , this one 
details the system architecture, memory management, protection mecha­
nism, multitasking, 1/0 features, system handling of exceptions and inter­
rupts, processor initialization and debugging. 

Part Three on compatibiiity is vital for anyone who has developed pro­
grams for earlier processors in the Intel x86 family and wants to port 
these applications over to the 386 SX CPU, 

Part Four provides a detailed instruction set in alphabetical order, This 
extensive information is unavailable elsewhere. 

All in all you'll find that the 386'· SX Microprocessor Programmer's Reference Manual is 
packed with comprehensive discussions of the programming and architectural features of 
the 386 SX CPU, With these essential facts , you can immediately begin writing applications 
that take advantage of Intel's powerful microprocessor, 

ISBN 0-07-881673-4 

52495 


