

infel®

LITERATURE
To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 7641
Mt. Prospect, IL 60056-7641

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725
This 800 number is for external customers only.

Product line handbooks contain data sheets, application notes, article reprints and other design
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the
U.S. and Canada.

TITLE INTEL ISBN ORDER NUMBER

SET OF THIRTEEN HANDBOOKS 231003 N/A
(Available in U.S. and Canada)

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

COMPONENTS QUALITY/RELIABILITY 210997 1-55512-132-2

EMBEDDED APPLICATIONS 270648 1-55512-123-3

8-BIT EMBEDDED CONTROLLERS 270645 1-55512-121-7

16-BIT EMBEDDED CONTROLLERS 270646 1-55512-120-9

16/32-BIT EMBEDDED PROCESSORS 270647 1-55512-122-5

MEMORY PRODUCTS 210830 1-55512-117-9

MICROCOMMUNICATIONS 231658 1-55512-119-5

MICROCOMPUTER PRODUCTS 280407 1-55512-118-7

MICROPROCESSORS 230843 1-55512-115-2

PACKAGING 240800 1-55512-128-4

PERIPHERAL COMPONENTS 296467 1-55512-127-6

PRODUCT GUIDE 210846 1-55512-116-0
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC 296083 1-55512-124-1

ADDITIONAL LITERATURE:
(Not included in handbook set)

AUTOMOTIVE HANDBOOK 231792 1-55512-125-x

INTERNATIONAL LITERATURE GUIDE EOO029 N/A
(Available in Europe only)

CUSTOMER LITERATURE GUIDE 210620 N/A

MILITARY HANDBOOK 210461 1-55512-126-8
(2 volume set)

SYSTEMS QUALITY/RELIABILITY 231762 1-55512-046-6

LlTINCOV/091790

u.s. and CANADA LITERATURE ORDER FORM
NAME: __ _
COMPANY: __ _

ADDRESS: ________________________ ~-------------------
CITY: _________________________ STATE: ____ ZIP: ____ __

COUNTRY:
PHONE NO.: ~ __ ~ ____________________________________ __

ORDER NO

Include postage:
Must add 15% of Subtotal to cover U.S.
and Canada postage. (20% all other.)

TITLE QTY. PRICE TOTAL

x =

x =

x =

x =

x =

x =

x =

x =

x =

x =

Subtotal

Must Add Your
Local Sales Tax

) Postage

Total

Pay by check, money order, or include company purchase order with this form ($100 minimum). We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for
d~livery.

D VISA D MasterCard D American Express Expiration Date ____________ _
Account No. _____________________________ _

Signature _____ ..--__ ,...-__,.-______ ---'-___________ _

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

International Customers outside the U.S. and Canada
should use the International order form on the next page or
contact their local Sales Office or Distributor.

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725
Prices good until 12/31/91.
Source HB

CG/LOFI/091790

INTERNATIONAL LITERATURE ORDER FORM
NAME: __ _

COMPANY: ________________________________ ~-----------
ADDRESS: __ _

CITY: _____________________ STATE: ___ ZIP: ___ __
COUNTRY: _____________________ __
PHONE NO.: ~_-L __________________ __

ORDER NO TITLE QTV. PRICE TOTAL

x

x =
x -, ----,
x =
x =
x =
x =
x

x =
x

Subtotal

Must Add Your
Local Sales Tax

Total

PAYMENT

Cheques should be made payable to your loes/lntel Sales Office (see inside back cover).

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
loes/lntel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to
your loes/lntel Sales Office.

CG/091790

Intel386™ OX
MICROPROCESSOR

HARDWARE
REFERENCE

MANUAL

1991

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, Above, ActionMedia, BITBUS, Code Builder, DeskWare, Digital Studio, DVI,
EtherExpress, ETOX, FaxBACK, Grand Challenge, i, i287, i386, i387, i486, i487,
i750, i860, i960, ICE, iLBX, Inboard, Intel, Inte1287, Inte1386, Inte1387, Inte1486,
Inte1487, intel inside., Intellec, iPSC, iRMX, iSBC, iSBX, iWARP, LAN Print,
LANSelect, LANShell, LANSight, LAN Space, LANSpool, MAPNET, Matched, MCS,
Media Mail, NetPort, NetSentry, OpenNET, PR0750, ProSolver, READY-LAN,
Reference Point, RMX/80, SatisFAXtion, Snapln 386, Storage Broker, SugarCube,
The Computer Inside., TokenExpress, Visual Edge, and WYPIWYF.

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products. '

Micro Channel, OS/2 and PS/2 are trademarks of International Business Machines Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
M1. Prospect, IL 60056-7641

©INTEL CORPORATION 1986. 1990, 1991 CG-072391

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor­
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel's customer support is extensive. It can start with assistance during your development
effort to network management. 100 Intel sales and service offices are located worldwide-in the U.S., Canada,
Europe and the Far East. So wherever you're using Intel technology, our professional staff is within close
reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in

environments which represent product groupings (e.g., iRMX® environment).

NETWORK SERVICE AND SUPPORT
Today's broad spectrum of powerful networking capabilities are only as good as the customer support provided
by the vendor. Intel offers network services and support structured to meet a wide variety of end-user comput­
ing needs. From a ground up design of your network's physical and logical design to implementation, installa­
tion and network wide maintenance. From software products to turn-key system solutions; Intel offers the
customer a· complete networked solution. With over 10 years of network experience in both the commercial
and Government arena; network products, services and support from Intel provide you the most optimized
network offering in the industry.

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded micro controllers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BlTBUS'M and
LAN applications.

CG/CUSTSUPP/112890

PREFACE

The Inte1386"1 DX microprocessor is a high-performance 32-bit microprocessor. This
manual provides complete hardware reference information for Inte1386 DX micropro­
cessor system designs. It is written for system engineers and hardware designers who
understand the operating principles of microprocessors and microcomputer systems.
Readers of this manual should be familiar with the information in the Introduction to the
80386 (Intel publication Order Number 231252).

RELATED PUBLICATIONS

In this manual, the Inte1386 DX microprocessor is presented from a hardware perspec­
tive. Information on the software architecture, instruction set, and programming of the
Intel386 DX microprocessor can be found in these related Intel publications:

• 386™ DX Microprocessor Programmer's Reference Manual, Order Number 230985

• 80386 System Software Writer's Guide, Order Number 231499

• 386"1 DX Microprocessor Data Sheet, Order Number 231630

The 386™ DX Microprocessor Data Sheet contains device specifications for the
Inte1386 DX microprocessor. Always consult the most recent version of this publication
for specific Intel386 DX microprocessor parameter values.

Detailed device specifications on Inte1386 DX microprocessor family components can be
found in the following publications:

• 38TM DX Math Coprocessor Data Sheet, Order Number 240448

• 82380 Data Sheet, Order Number 290128

• 82385 Data Sheet, Order Number 290143

• 82310/11 Data Sheet, Order Number 290167

• 82350 Data Sheet, Order Number 290220

• 82596DX Data Sheet, Order Number 290219

Together with thelnteI386'" DX Microprocessor Hardware Reference Manual, these pub­
lications provide a complete description of the Intel386 DX microprocessor system for
hardware designers, software engineers, and all users of Intel386 DX microprocessor
systems.

The Inte1386 DX microprocessor is object-code compatible with 3 other processors: the
Intel486 TA', the Intel386 SX and the 376"1 microprocessors.

The Intel486 DX processor integrates cache memory, floating point hardware and mem­
ory management on-chip while retaining binary compatibility with previous members of
the 86 architectural family. Related documentation includes:

• i486T>1 Microprocessor Data Sheet, Order Number 240440

• i486 "I Microprocessor Programmer's Reference Manual, Order Number 240486

iii

PREFACE

The Inte1386 SX processor (16-bit data bus) - The Intel386 DX processor adapted for
mid-range personal computers, which are, sensitive to the higher system cost of a 32-bit
bus. Related documentation includes:

• 386™ SX Microprocessor Data Sheet, Order Number 240187

• 386™ SX Microprocessor Hardware Reference Manual, Order Number 240332

The 376 embedded processor (16-bit data bus) - A reduced form of the Intel386 pro­
cessor, optimized for embedded applications. Related documentation includes:

• 376™ Microprocessor Data Sheet, Order Number 240182

• 376™ Embedded Processor Programmer's Reference Manual, Order Number 240314

ORGANIZATION OF THIS MANUAL.

The information in this manual is divided into 12 chapters and three appendices. The
material begins with a description of the Inte1386 DX microprocessor and continues with
discussions of hardware design information needed to implement Intel386 DX micropro­
cessor system designs.

• Chapter 1, "System Overview." This chapter provides an overview of the Inte1386 DX
microprocessor and its supporting devices.

• Chapter 2, "Internal Architecture." This chapter describes the internal architecture
of the Intel386 DX microprocessor.

• Chapter 3, "Local Bus Interface." This chapter discusses the Inte1386 DX micropro­
cessor local bus interface. This chapter includes Inte1386 DX microprocessor signal
descriptions, memory and I/O organization, and local bus interface guidelines.

• Chapter 4, "Performance Considerations." This chapter explores the factors that
affect the performance of an Inte1386 DX microprocessor system.

• Chapter 5, "Coprocessor Hardware Int,erface." This chapter describes the interface
between the Inte1386 DX microprocessor and the Intel387™ Numeric Coprocessors.
This coprocessor expands the floating-point numerical processing capabilities of the
Inte1386 DX microprocessor.

• Chapter 6, "Memory Interfacing." This chapter discusses techniques for designing
memory subsystems for the Intel386 DX microprocessor.

• Chapter 7, "Cache Subsystems." This chapter describes cache memory subsystems,
which provide higher performance at lower relative cost.

e
• Chapter 8, "I/O Interfacing." This chapter discusses techniques for connecting I/O

devices to an Inte1386 DX microprocessor system.
, ,

• Chapter 9, "MULTIBUS I and Intel386 DX Microprocessor." This chapter describes
the interface between an Intel386 DX microprocessor system and the Intel
MULTIBUS I multi-master system bus.

• Chapter 10, "MULTIBUS II and Intel386 DX Microprocessor." This chapter
describes the interface between an Intel386 DX microprocessor system and the Intel
MULTIBUS II multi-master system bus. '

iv

PREFACE

• Chapter 11, "Physical Design and Debugging." This chapter contains recommenda­
tions for constructing and debugging Intel386 DX microprocessor systems.

• Chapter 12, "Test Capabilities." This chapter describes Intel386 DX microprocessor
test procedures.

• Appendix A contains descriptions of the components of the basic memory interface
described in Chapter 6.

• Appendix B contains descriptions of the components of the dynamic RAM subsystem
described in Chapter 6.

v

TABLE OF CONTENTS

CHAPTER 1 Page
SYSTEM OVERVIEW
1.1 MICROPROCESSOR .. 1-1
1.2 COPROCESSORS ... '" 1-4
1.3 INTEGRATED SYSTEM PERIPHERAL .. 1-4
1.4 CACHE CONTROLLER ... :... 1-5
1.5 EISA CHIP SET ... 1-6
1.6 MCA CHIP SET ... 1-6
1.7 LAN COPROCESSOR 1-7
1.8 CLOCK GENERATOR ... 1-7
1.9 8086/80286 FAMILY COMPONENTS•... 1-7
1.10 INTEL PROGRAMMABLE LOGIC DEVICES :... 1-8

CHAPTER 2
INTERNAL ARCHITECTURE
2.1 BUS INTERFACE UNIT ... 2-2
2.2 CODE PRE FETCH UNIT•.... 2-2
2.3 INSTRUCTION DECODE UNIT ... 2-2
2.4 EXECUTION UNIT ..•..................... 2-4
2.5 SEGMENTATION UNIT .. ;.................................. 2-4
2.6 PAGING UNIT ...•. 2-4

CHAPTER 3
LOCAL BUS INTERFACE
3.1 BUS OPERATIONS ... 3-2
3.1.1 Bus States 3-3
3.1.2 Address Pipelining ... 3-6
3.1.3 32-Bit Data Bus Transfers and Operand Alignment .. :.. 3-6
3.1.4 Read Cycle 3-11
3.1.5 Write Cycle .. : 3-13
3.1.6 Pipelined Address Cycle 3-13
3.1.7 Interrupt Acknowledge Cycle .. : 3-16
3.1.8 Halt/Shutdown Cycle .. :.... 3-17
3.1.9 BS16 Cycle .. 3-18
3.1 .10 16-Bit Byte Enables and Operand Alignment 3-19
3.2 BUS TIMING ~ ,... 3-23
3.2.1 Read Cycle Timing ... , ,.. 3-23
3.2.2 Write Cycle Timing 3-23
3.2.3 READY# Signal Timing ... 3-24
3.3 CLOCK GENERATION ... 3-25
3.3.1 Clock Timing .. ,... 3-25
3.3.2 Crystal Oscillator Clock Generator 3-26
3.4 INTERRUPTS :.. 3-27
3.4.1 Non-Maskable Interrupt (NMI) ... 3-28
3.4.2 Maskable Interrupt (INTR) ... 3-29
3.4.3 Interrupt Latency ... :....................................... 3-29
3.5 BUS LOCK .. ;... 3-30
3.5.1 Locked Cycle Activators 3-30
3.5.2 Locked Cycle Timing ... 3-31

. 3.5.3 LOCK# Signal Duration '" 3-32
3.6 HOLD/HLDA (Hold Acknowledge) .. 3-32

vii

TABLE OF CONTENTS

Page
3.6.1 HOLD/HLDA Timing 3-33
3.6.2 HOLD Signal Latency·.. .. 3-34
3.6.3 HOLD State Pin Conditions 3-35
3.7 RESET ... 3-35
3.7.1 RESET Timing .. 3-35
3.7.2 Intel386 DX Microprocessor Internal States .. 3-35
3.7.3 Intel386 DX Microprocessor External States ... 3-36

CHAPTER 4
PERFORMANCE CONSIDERATIONS
4.1 WAIT STATES AND PIPELINING .. :....... 4-1

CHAPTER 5
COPROCESSOR HARDWARE INTERFACE
5.1 Intel387 DX MATH COPROCESSOR INTERFACE ... 5-2
5.1.1 Intel387 DX Math Coprocessor Connections .. 5-2
5.1.2 Intel387 DX Math Coprocessor Bus Cycles .. 5-4
5.1.3 Intel387 DX Math Coprocessor Clock Input ... 5-4
5.2 LOCAL BUS ACTIVITY WITH THE Intel387 DX MATH COPROCESSOR 5-5
5.3 80287/lnte1387 DX MATH COPROCESSOR RECOGNITION .. 5-6
5.3.1 Hardware Recognition of the NPX .. 5-6
5.3.2 Software Recognition of the NPX .. 5-6

CHAPTER 6
MEMORY INTERFACING
6.1 MEMORY SPEED VERSUS PERFORMANCE AND COST .. 6-1
6.2 BASIC MEMORY INTERFACE .. 6-1
6.2.1 TIL Devices 6-2
6.2.2 PLD Devices ... 6-3
6.2.3 Address Latch .. 6-6
6.2.4 Address Decoder 6-6
6.2.5 Data Transceiver .. 6-7
6.2.6 Bus Control Logic .. 6-7
6.2.7 EPROM Interface 6-9
6.2.8 16-Bit Interface ... 6-11
6.3 DYNAMIC RAM (DRAM) INTERFACE ... 6-12
6.3.1 Interleaved Memory .. ,.... 6-12
6.3.2 DRAM Memory Performance ... 6-13
6.3.3 DRAM Controller .. 6-14
6.3.3.1 3-CLK DRAM CONTROLLER 6-14
6.3.3.2 DRAM TIMING ANALYSIS :.. 6-19
6.3.3.3 LOGIC DELAY ... 6-20
6.3.3.4 ADDRESS BUS TIMINGS ... 6-20
6.3.3.5 DATA BUS TIMINGS ... 6-22
6.3.3.6 AVOIDING DATA BUS CONTENTION .. :..................... 6~23
6.3.3.7 CONTROL SIGNAL TIMINGS ... 6-24
6.3.3.8 LOGIC PATHS .. 6-25
6.3.3.9 CAPACITIVE LOADING ... 6-26
6.3.4 DRAM Design Variations ... 6-26
6.3.4.1 3-CLK DESIGN VARIATIONS .. 6-26
6.3.4.2 USING TAP DELAY LINES ... 6-27
6.3.4.3 REDUCING THE CLOCK FREQUENCy... 6-27
6.3.5 Refresh Cycles 6-28

viii

TABLE OF CONTENTS

Page
6.3.5.1 DISTRIBUTED REFRESH .. ;...................... 6-28
6.3.5.2 BURST REFRESH ... 6-29
6.3.5.3 DMA REFRESH USING THE 82380 DRAM REFRESH CONTROLLER 6-29
6.3.6 Initialization 6-30

. CHAPTER 7
CACHE SUBSYSTEMS
7.1 INTRODUCTION TO CACHES ... 7-2
7.1.1 Program Locality .. 7-2
7.1.2 Block Fetch 7-2
7.2 CACHE ORGANIZATIONS .. 7-3
7.2.1 Fully Associative Cache ... 7-3
7.2.2 Direct Mapped Cache .. 7-4
7.2.3 Set Associative Cache .. ;.............................. 7-6
7.3 CACHE UPDATING ... 7-8
7.3.1 Write-Through System .. :...... 7-8
7.3.2 Buffered Write-Through System .. 7-8
7.3.3 Write-Back System ... 7-9
7.3.4 Cache Coherency .. 7-10
7.4 EFFICIENCY AND PERFORMANCE ... 7-11
7.5 CACHE AND DMA ,.. 7-13
7.6 CACHE EXAMPLE ... ;.......... 7-13
7.6.1 Example Design ... ,.......... 7-13
7.6.2 Example Cache Memory Organization ... 7-14
7.7 82385 CACHE CONTROLLER .. 7-15
7.7.1 Bus Structure with the 82385 .. 7-16
7.7.2 82385/lnte1386 DX Microprocessor Interface .. 7-17
7.7.2.1 Intel386 DX MICROPROCESSOR INTERFACE ... 7-17
7.7.2.2 Intel38TDX MATH COPROCESSOR INTERFACE ... 7-19
7.7.2.3 82385 SYSTEM CONFIGURATION INPUTS .. 7-19
7.7.3 82385 Cache Organization .. 7-20
7.7.3.1 DIRECT MAPPED ORGANIZATION .. 7-20
7.7.3.2 TWO-WAY SET ASSOCIATIVE ORGANIZATION ... 7-20
7.7.3.3 CACHE SRAM TIMING EQUATIONS ... 7-22
7.7.4 System Interface .. 7-24
7.7.4.1 READ DATA SETUP .. 7-24
7.7.5 Special Design Notes ... ;.. 7-24

CHAPTER 8
I/O INTERFACING
8.1 I/O MAPPING VERSUS MEMORY MAPPING ... 8-1
8.2 8-BIT, 16-BIT, AND 32-BIT I/O INTERFACES .. 8-1
8.2.1 Address Decoding 8-2
8.2.2 8-Bit I/O 8-2
8.2.3 16-Bit I/O .. ;..... 8-4
8.2.4 32-Bit I/O 8-4
8.2.5 Linear Chip Selects ... 8-4
8.3 BASIC I/O INTERFACE ... 8-4
8.3.1 Address Latch :... 8-5
8.3.2 Address Decoder ;.. 8-5
8.3.3 Data Transceiver 8-6
8.3.4 Bus Control Logic ... : ;........ 8-8
8.4 TIMING ANALYSIS FOR I/O OPERATIONS ... 8-9

ix

TABLE OF CONTENTS

Page
8.5 BASIC I/O EXAMPLES .. 8-12
8.5.1 8274 Serial Controller ;.. 8-12
8.5.2 82380 Programmable Interrupt Controller .. 8-13
8.5.2.1 CASCADED INTERRUPT CONTROLLERS TO THE 82380 PIC 8-13
8.5.3 8259A Interrupt Controller ... 8-14
8.5.3.1 SINGLE INTERRUPT CONTROLLER ... 8-14
8.5.3.2 CASCADED INTERRUPT CONTROLLERS ... 8-15
8.5.3.3 HANDLING MORE THAN 64 INTERRUPTS ... 8-15
8.6 80286-COMPATIBLE BUS CYCLES ... 8-16
8.6.1 AO/A1 Generator .. 8-17
8.6.2 SO#/S1# Generator ... :................ 8-18
8.6.3 Wait-State Generator ... 8-18
8.6.4 Bus Controller and Bus Arbiter ... 8-20
8.6.5 82380 Integrated System Peripheral.. 8-21
8.6.6 82586 LAN Coprocessor ... 8-21
8.6.6.1 DEDICATED CPU ... 8-24
8.6.6.2 DECOUPLED DUAL-PORT MEMORy.. 8-24
8.6.6.3 COUPLED DUAL-PORT MEMORy... 8-25
8.6.6.4 SHARED BUS 8-25

CHAPTER 9
MUL TIBUS I AND Intel386 DX MICROPROCESSOR
9.1 MULTIBUS I (IEEE 796) .. 9-1
9.2 MULTI BUS I INTERFACE EXAMPLE .. 9-2
9.2.1 Address Latches and Data Transceivers .. 9-2
9.2.2 Address Decoder ... 9-5
9.2.3 Wait-State Generator ... 9-5
9.2.4 Bus Controller and Bus Arbiter ... 9-7
9.3 TIMING ANALYSIS OF MULTIBUS I INTERFACE .. 9-10
9.4 82289 BUS ARBITER .. 9-10
9.4.1 Priority Resolution : ... 9-11
9.4.2 82289 Operating Modes .. :... 9-11
9.4.3 MULTIBUS I Locked Cycles .. 9-14
9.5 OTHER MULTIBUS I DESIGN CONSIDERATIONS .. 9-14
9.5.1 Interrupt-Acknowledge on MULTIBUS I .. 9-14
9.5.2 Byte Swapping during MULTIBUS I Byte Transfers ... 9-15
9.5.3 Bus Timeout Function for MULTIBUS I Accesses .. 9-17
9.5.4 MULTIBUS I Power Failure Handling .. 9-18
9.6 iLBX™ BUS EXPANSION .. 9-18
9.7 DUAL-PORT RAM WITH MULTIBUS I .. 9-20
9.7.1 Avoiding Deadlock with Dual-Port RAM .. 9-20

CHAPTER 10
MUL TIBUS II AND Intel386 DX MICROPROCESSOR
10.1 MULTIBUS II STANDARD ... 10-1
10.2 PARALLEL SYSTEM BUS (iPSB) .. 10-1
10.2.1 iPSB Interface ... ;.................. 10-4
10.2.1.1 BAC SIGNALS ... 10-4
10.2.1.2 MIC SIGNALS ... 10-6
10.3 LOCAL BUS EXTENSION (iLBX II) ... 10-7
10.4 SERIAL SYSTEM BUS (iSSB) ... 10-7

x

TABLE OF CONTENTS

CHAPTER 11 Page
PHYSICAL DESIGN AND DEBUGGING
11.1 GENERAL DESIGN GUIDELINES ... 11-1
11.2 POWER DISSIPATION AND DISTRIBUTION .. 11-1
11.2.1 Power and Ground Planes 11-2
11.3 DECOUPLING CAPACITORS .. 11-4
11.4 HIGH FREQUENCY DESIGN CONSIDERATIONS .. 11-8
11.4.1 Transmission Line Effects 11-9
11.4.1.1 TRANSMISSION LINE TYPES ... 11-10
11.4.1.1.1 Micro Strip Lines 11-10
11.4.1.1.2 Strip Lines .. , 11-11
11.4.2 Impedance Mismatch ... 11-12
11.4.2.1 IMPEDANCE MATCHING ... 11-16
11.4.2.1.1 Need for Termination ... 11-17
11.4.2.1.2 Series Termination .. 11-17
11.4.2.1.3 Parallel Terminated Lines ... 11-18
11.4.2.1.4 Thevenins Equivalent Termination 11-19
11.4.2.1.5 A.C. Termination ... 11-20
11.4.2.1.6 Active Termination .. 11-21
11.4.2.1.7 Impedance Matching Example ... 11-22
11.4.2.2 DAISY CHAINING .. 11-23
11.4.2.3 90-DEGREE ANGLES 11-24
11.4.2.4 VIAS (FEED THROUGH CONNECTIONS) .. 11-24
11.4.3 Interference.... 11-24
11.4.3.1 ELECTROMAGNETIC INTERFERENCE (CROSS-TALK) 11-25
11.4.3.2 MINIMIZING CROSS-TALK .. 11-25
11.4.3.3 ELECTROSTATIC INTERFERENCE .. 11-28
11.4.4 Propagation Delay.. 11-28
11.5 LATCH-UP .. 11-29
11.6 CLOCK CONSIDERATIONS .. 11-29
11.6.1 Requirements 11-29
11.6.2 Routing 11-30
11.7 THERMAL CHARACTERISTICS 11-32
11.8 DEBUGGING CONSIDERATIONS .. 11-33
11.8.1 Hardware Debugging Features 11-33
11.8.2 Bus Interface .. 11-34
11.8.3 Simplest Diagnostic Program 11-35
11.8.4 Building and Debugging a System Incrementally..... 11-36
11.8.5 Other Simple Diagnostic Software 11-37
11.8.6 Debugging Hints ... '-'.:.:.. 11-39

CHAPTER 12
TEST CAPABILITIES
12.1 INTERNAL TESTS ... 12-1
12.1.1 Automatic Self-Test 12-1
12.1.2 Translation Lookaside Buffer Tests ... 12-2
12.2 BOARD-LEVEL TESTS 12-5

APPENDIX A
LOCAL BUS CONTROL PLD DESCRIPTIONS

APPENDIX B
DRAM PLD DESCRIPTIONS

xi

Figure

1-1
, 1-2

2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
5-1
5-2 r
5-3
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14

TABLE OF CONTENTS

Figures

Title

Intel386™ DX Microprocessor System Block Diagram
Micro Channel-Compatible Solution with 82311 Chip Set
Instruction Pipelining
Intel386™ DX Microprocessor Functional Units .. .
ClK2 and ClK Relationship .. .
Intel386™ DX CPU Bus States Timing Example :
Bus State Diagram (Does Not Include Address Pipelining)
Non-Pipelined Address and Pipelined Address Differences
Consecutive Bytes in Hardware Implementation .. .
Address, Data Bus, and Byte Enables for 32-Bit Bus ;
Misaligned Transfer ... , .. .
Non-Pipelined Address Read Cycles .. .
Non-Pipelined Address Write Cycles .. .
Pipelined Address Cycles .. .
Interrupt Acknowledge Bus Cycles
Internal NA# and BS16# logic .. .
32-Bit and 16-Bit Bus Cycle Timing ... ;.
32-Bit and 16-Bit Data Addressing .. .
Using ClK to Determine Bus Cycle Start
Clock Generator
'ADS# Synchronizer
Error Condition Caused by Unlocked Cycles
lOCK# Signal during Address Pipelining .. .
Bus State Diagram with HOLD State .. .
RESET, ClK, and ClK2 Timing .. .
Intel386™ DX CPU System with Intel387'M DX Math Coprocessor
Pseudo-Synchronous Interface
Software Routine to Recognize the Coprocessor :
Basic Memory Interface Block Diagram .. ,
PlD Equation arid Device Implementation
85C220, EPlD Macrocell Architecture
I/O Controller Schematic
250 Nanosecond EPROM Timing Diagram .. .
3-ClK DRAM Controller Schematic ~ .. .
3-ClK DRAM Controller Cycles
Timing Waveforms (Read Cycle) .. ,
Timing Waveforms (Write Cycle)
Avoiding Data Bus Contention .. .
Tap Delay Line
Refresh Request Generation .. ,
Cache Memory System
Fully Associative Cache Organization .. :
Direct Mapped Cache Organization ... ,
Two-Way Set Associative Cache Organization
Stale Data Problem .. .
Bus Watching
Hardware Transparency .. .
Non-Cacheable Memory .. .
Example of Cache Memory Organization
Intel386™ DX Microprocessor System Bus Structure
Intel386™ DX Microprocessor/82385 System Bus Structure
Intel386™ DX Microprocessor/82385 Interface
Direct Mapped Cache without Data Buffers .. .
Direct Mapped Cache with Data Buffers

xii

Page

1-2
1-3
2-1
2-3
3-4
3-5
3-6
3-7
3-8
3-9

3-10
3-12
3-14
3-15
3-17
3-19
3-20
3-21
3-25
3-26
3-27
3-31
3-32
3-34
3-36

5-3
5-5
5-7
6-2
6-5
6-6
6-8

6-10
6-15
6-18
6-19
6-20
6-24
6-27
6-30

7-1
7-4
7-5
7-7
7-9

7-10
7-11
7-12
7-15
7-16
7-17
7-18
7-20
7-21

Figure

7-15
7-16
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9'
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
10-1
10-2
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22

TABLE OF CONTENTS

Figures
Title

Two-Way Set Associative Cache without Data Buffers
Two-Way Set Associative Cache with Data Buffers
32-Bit to 8-Bit Bus Conversion .. .
Linear Chip Selects
Basic I/O Interface Block Diagram , : .. .
I/O Controller Schematic
Basic I/O Timing Diagram
8274 Interface ; .. .
Single 8259A Interface .. .
80286-Compatible Interface .. .
AO, A1, and BHE# Logic
SO#/S1 # Generator Logic
Wait-State Generator Logic
82288 and 82289 Connections
Intel386™ DX Microprocessor/82380 Interface
LAN Station .. .
Decoupled Dual-Port Memory Interface .. .
Coupled Dual-Port Memory Interface .. .
Shared Bus Interface
Intel386™ DX Microprocessor/MUL TIBUS I Interface
MUL TIBUS I Address Latches and Data Transceivers
Wait-State Generator Logic
MUL TIBUS Arbiter and Bus Controller .. .
MUL TIBUS I Read Cycle Timing ' .. .
MULTIBUS I Write Cycle Timing
Bus Priority Resolution .. .
Operating Mode Configurations .. ,
Bus-Select Logic for Interrupt Acknowledge ;
Byte-Swapping Logic
Bus-Timeout Protection Circuit .. .
iLBXTM Signal Generation .. .
iPSB Bus Cycle Timing , .. .
iPSB Bus Interface .. ~
Reduction in Impedance .. .
Typical Power and Ground Trace Layout for Double-Layer Boards
Orthogonal Arrangement

. Circuit without Decoupling .. ,
Decoupling with Surface Mount Capacitors .. .
Decoupling with Leaded Capacitors ; ... , .. .
Micro Strip Lines .. .
Strip Lines .. .
Overshoot and Undershoot Effects
Loaded Transmission Line ,
Lattice Diagram ,
Latt.ice Diag~am.Example ~ .. .
Senes Termination
Parallel Termination ' ; ... :
Thevenins Equivalent Circuit
A.C. Termination ... ;
Active Termination
Impedance Mismatch Example
Use of Series Termination to Avoid Impedance Mismatch
Daisy Chaining .. .
Avoiding 90-Degree Angles
Typical Layout ' .. .

xiii

Page

7-21
7-22
8-3
8-5
8-6
8-7

8-10
8-13
8-14
8-17
8-19
8-20
8-20
8-21
8-22
8-23
8-24
8-25
8-26
9-3
9-4
9-6
9-7
9-8
9-9

9-12 '
9-13
9-16
9-17
9-18
9-19
10-3
10-4
11-4
11-5
11-6
11-7
11-8
11-8

11-10
11-11
11-12
11-13
11-15
11-16
11-18
11-18
11-20
11-21
11-21
11-23
11-23
11-24
11-24
11-26

in.teI®

Figure

11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
12-1
12-2
A-1
A-2
A-3
B-1
B-2
B-3
B-4

Table

1-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
4-1

4-2
6-1
6-2
7-1
8-1
8-2
9-1
11-1
11-2
11-3
B-1

TABLE OF CONTENTS

Figures
Title

Closed Loop Signal Paths are Undesirable
Typical Intel386™ OX Microprocessor Clock Circuit
CLK2 Timing Diagram
Clock Routing :
Star Connection
4-Byte Diagnostic Program .. .
More Complex Diagnostic Program .. .
Object Code for Diagnostic Program
Intel386™ OX Microprocessor Self-Test
TLB Test Registers .. .
IOPLD1 Equations
IOPLD2 Equations
RESET/CLOCK PLD Equations
PLD Sampling Edges .. .
DRAMP1 PLD Equations
DRAMP2 PLD Equations
Refresh Address Counter PLD Equations

Tables

Title

Intel386™ Family System Components .. ,
Summary of Intel386™ OX Microprocessor Signal Pins
Bus Cycle Definitions
Possible Data Transfers on 32-Bit Bus
Misaligned Data Transfers on 32-Bit Bus .. .
Generation of BHE#, BLE#, and Ai from Byte Enables
Byte Enables during BS16 Cycles .. .
Output Pin States during RESET .. .
Intel386™ OX Microprocessor Performance with Wait States and

Pipelining .. .
Performance versus Wait States and Operating Frequency
Common Logic Families* .. .
DRAM Memory Performance
Cache Hit Rates
Data Lines for 8-Bit I/O Addresses .. .
AO, Ai, and BHE# Truth Table
MULTIBUS I Timing Parameters .. .
Voltage at End Points A and B .. .
Comparison of Various Termination Techniques .. .
Timing Specifications for CLK2
Refresh Address Counter PLD Pin Description .. .

xiv

Page

11-27
11-30
11-30
11-31
11-32
11-35
11-38
11-40

12-2
12-4
A-3
A-6

A-10
B-1
B-2
B-7

B-13

Page

1-4
3-3
3-4
3-9

3-11
3-22
3-22
3-36

4-2
4-3
6-3

6-13
7-12

8-2
8-18
9-10

11-16
11-22
11-31
B-12

System Overview 1

CHAPTER 1
SYSTEM OVERVIEW

The Intel386 DX microprocessor is a 32-bit microprocessor that forms the basis for a
high-performance 32-bit system. The Inte1386 DX microprocessor incorporates multi­
tasking support, memory management, pipelined architecture, address translation
caches, and a high-speed bus interface all on one chip. The integration of these features
speeds the execution of instructions and reduces overall chip count for a system. Paging
and dynamic data bus sizing can each be invoked selectively, making the Intel386 DX
microprocessor suitable for a wide variety of system designs and user ,applications.

While the Intel386 DX microprocessor represents a significant improvement over previ­
ous generations of microprocessors, substantial ties to the earlier processors are pre­
served. Software compatibility at the object-code level is provided, so that an existing
investment in 8086 and 80286 software can be maintained. New software can be built
upon existing routines, reducing the time to market for new products. Hardware com­
patibility is preserved through the dynamic bus-sizing feature.

The Intel386 DX microprocessor is fully supported by a family of peripheral and perfor­
mance enhancement components. The major components of an Intel386 DX micropro­
cessor system and their functions are shown in Figure 1-1 and Figure 1-2. Table 1-1
describes these components.

1.1 MICROPROCESSOR

The 33-MHz Intel386 DX microprocessor has a peak execution rate of over 16 million
native instructions per second. It sustains rates of eight million equivalent VAX instruc­
tions per second, a speed comparable to that of most super minicomputers. This achieve­
ment is made possible through a state-of-the-art design that includes a pipelined internal
architecture, address translation caches, and a high-performance bus.

The Intel386 DX microprocessor features 32-bit wide internal and external data paths
and eight general-purpose 32-bit registers. The instruction set offers 8-, 16-, and 32-bit
data types, and the processor outputs 32-bit physical addresses directly, for a physical
memory capacity of four gigabytes.

The Inte1386 DX microprocessor has separate 32-bit data and address paths. A 32-bit
memory access can be completed in only. two clock cycles, enabling the bus to sustain a
throughput of 40 megabytes per second (at 20 MHz). By making prompt transfers
between the microprocessor, memory, and peripherals, the high-speed bus design
ensures that the entire system benefits from the processor's increased performance.

Pipelined architecture enables the Inte1386 DX microprocessor to perform instruction
fetching, decoding, execution, and memory management functions in parallel. The six
independent units that make-up the Intel386 DX microprocessor pipeline are described

1-1

CLOCK
GENERATOR

CLK2

1386" OX
MICRO·

PROCESSOR

CACHE
MEMORY

SYSTEM OVERVIEW

1387'· OX
MATH

COPROCESSOR

82835
CACHE

CONTROLLER

MAIN
MEMORY PERIPHERALS

82370
OMA

82596 OX
LAN

COPROCESSOR

Figure 1-1. l"ntel386™ OX Microprocessor System Block Diagram

231732i1-1

in detail in Chapter 2. Because the Intel386 DX microprocessor prefetches instructions
and queues them internally, instruction fetch and decode times are absorbed in the
pipeline; the processor rarely has to wait for an instruction to execute.

Pipelining is not unusual in modern microprocessor architecture; however, including
the memory management unit (MMU) in the on-chip pipeline is a unique feature of the
Intel386 DX Architecture. By performing memory management on-chip, the
Intel386 DX microprocessor eliminates the serious access delays typical of implementa­
tions that use off-chip memory management units. The benefit is not only high perfor­
mance but also relaxed memory-access time requirements, hence lower system cost.

1-2

SYSTEM OVERVIEW

r:=:J INDICATES CHIP SET

231732i1-2

Figure 1-2. Micro Channel-Compatible Solution with 82311 Chip Set

The integrated memory management and protection mechanism translates logical
addresses to physical addresses and enforces the protection rules necessary for maintain­
ing task integrity in a multitasking environment. The paging function simplifies the
operating-system swapping algorithms by providing a uniform mechanism for managing
the physical structure of memory.

The Inte1386 DX microprocessor supports virtual 8086 (V86) mode. In this mode, one or
more 8086 programs can be integrated into the protected, multi task environment of the
Intel386 DX CPU. V86 tasks take advantage of the hardware support of multitasking
offered by the Intel386 DX protected-mode, allowing multiple V86 tasks, each executing
an 8086 program.

Task switching occurs frequently in real-time multitasking or multiuser systems. To per­
form task switching efficiently, the Intel386 DX microprocessor incorporates special
high-speed hardware. Only a single instruction or an interrupt is needed for the
Intel386 DX microprocessor to perform a complete task switch. A 20-MHz Inte1386 DX

1-3

SYSTEM OVERVIEW

Table 1-1. Intel386™ Family System Components

Component Description

Inte1386'M OX Microprocessor 32-bit high-performance microprocessor with on-chip
memory management and protection

Intel38TM OX Math Coprocessor Performs numeric instruction in parallel with Intel386 OX
microprocessor; expands instruction set

82380 Integrated System Peripheral Provides 32-bit high-speed direct memory access, inter-
rupt control, and interval timers

82385 Cache Controller Provides cache directory and management logic

8259A Programmable Interrupt Controller Provides interrupt control and management

82350 EISA Chip Set Extends the 32~bit transfer capability of the Intel386 DX
microprocessor to the I/O expansion bus

82311 MCA Chip Set Provides for the design of a very high performance
Micro Channel compatible PS/2 system

825960X LAN Coprocessor Performs high-level commands, command chaining and
interprocessor communications via shared memory

microprocessor can save the state of one task (all registers), load the state of another
task (all registers, even segment and paging registers if required), and resume execution
in less than 14 microseconds (at 20 MHz). For less sophisticated task and interrupt
handling, the latency can be as short as 2.9 microseconds (at 20 MHz).

1.2 COPROCESSORS

The performance of most applications can be enhanced by the use of specialized copro­
cessors. A coprocessor provides the hardware to perform functions that would otherwise
be performed in software. Coprocessors extend the instruction set of the Intel386 DX
microprocessor.

The Intel386 DX microprocessor has a numeric coprocessor interface designed for· the
Inte1387 DX math coprocessor. For applications that benefit from high-precision integer
and floating-point calculations, the numeric coprocessor provides full support for the
IEEE standard for floating-point operations. The Intel387 DX math coprocessor is soft­
ware compatible with the 80287 and the 8087, earlier numeric coprocessors.

1.3 INTEGRATED SYSTEM PERIPHERAL

A DMA (Direct Memory Access) controller performs DMA transfers between main
memory and an I/O device, typically a hard disk, floppy disk, or communications chan­
nel. In a DMA transfer, a large block of data can be copied from one place to another
without the intervention of the CPU.

1-4

SYSTEM OVERVIEW

The 82380 Integrated System Peripheral is a multi-function Intel386 DX microprocessor
companion chip. It integrates a 32-bit DMA Controller with other necessary processor
support functions needed in an Intel386 DX microprocessor environment. The 82380 is
optimized for use with the Intel386 DX microprocessor. It enhances the overall Intel386
DX microprocessor system performance by providing high data throughput as well as
efficient bus operation. The 32-bit DMA Controller provides eight independently pro­
grammable channels that can transfer data at the full bandwidth of the Inte1386 DX
microprocessor bus. Other features of the 82380 are listed as follows.

• High performance 32-bit DMA Controller

8 independently programmable channels

32 megabytes per second data transfer rate at 16 MHz

40 megabytes per second data transfer rate at 20 MHz

Capable of transferring data between devices with different bus widths

Automatic byte assembly/disassembly capability for non-aligned data transfers

Buffer chaining capability for transferring data into non-contiguous memory
buffers

• 20-Source Interrupt Controller

15 external, 5 internal interrupt requests

82C59A susperset

Individually programmable interrupt vectors

• Four 16-bit programmable Interval Timers

- 82C54 compatible

• Programmable Wait State Generator

- 0 to 15 wait states for memory and I/O access cycles

• DRAM Refresh Controller

- Refresh request always has the highest priority among the DMA requests

• Inte1386 DX microprocessor Shutdown Detect and Reset Control,

- Software and hardware reset

• Optimized for use with the Inte1386 DX microprocessor

Resides on local bus for maximum bus bandwidth

1.4 CACHE CONTROLLER

A cache memory subsystem provides fast local storage for frequently accessed code and -
data. This results in faster memory access for the microprocessor· and reduces the
amount of traffic on the system bus.

1-5

SYSTEM OVERVIEW

The 82385 I Cache Controller is a high performance peripheral designed specifically for
. the Intel386 DX microprocessor. The 82385 allows the Intel386 DX microprocessor to
reach its full performance potential by offering the following features:

• Supports a 32-kbyte cache memory organized as either 2-way set associative or direct
mapped.

• Integrated cache directory and management logic.

• Utilizes posted writes for zero wait states on write cycles.

• Guarantees cache coherency by bus watching.

• Supports non-cache able accesses.

• Presents an Inte1386 DX microprocessor interface to system resources.

• Dhrystone benchmark shows an average hit rate of 95%.

1.5 EISA CHIP SET

EISA extends the 32-bit transfer capability of the Intel386 DX microprocessor to the I/O
expansion bus. The 82350 chip set is a highly integrated solution in a 5-piece chip set
using 3 components:

• 82358 EISA Bus Controller

• 82357 Integrated System Peripheral

• 82352 EISA Bus Buffer (3 used)

The 82355 Bus Master Interface Controller (BMIC) is provided for add-in board sup­
porL The BMIC provides all of the necessary control signals, address lines and data lines
for an EISA bus master to interface to the EISA bus.

The EISA specification and the 82350 chip set are both designed to be 100% backward
compatible to the ISA (Industry Standard Architecture) AT-bus. Therefore, software
and add-in boards designed for the ISA bus may be used in higher performance EISA
systems.

This high performance, high integration 82350 EISA solution is designed to be used with
the Intel486 DX and Intel386 SX microprocessors as.well as the Intel386 DX micropro­
cessor (up to and including 33 MHz).

1.6 MCA CHIP SET

The 82311 chip set consists of standard peripheral components for implementing an
IBM PS/2 compatible motherboard which supports the Micro Channel Architecture.
Included in the Micro Channel compatible chip set are seven highly integrated VLSI
peripherals including:

e' 82303 Local I/O Support Chip

• 82304 Local I/O Support Chip

• 82307 DMNCACP Controller

1-6

SYSTEM OVERVIEW

• 82308 Micro Channel Bus Controller

• 82309 Address Bus Controller

• 82706 VGA Graphics Controller

• 82077 Floppy Disk Controller

The 82311 solution not only offers Micro Channel compatibility, but also high integra­
tion and performance. It features all the peripheral functions required to interface to the
CPU, Micro Channel Bus, I/O Peripheral Bus and the Graphics Channel.

The 82311 chip set supports the Inte1386 DX microprocessors up to 25 MHz, and the
. Inte1386 SX microprocessor.

1.7 LAN COPROCESSOR

The 82596DX is im intelligent high performance LAN coprocessor that performs high­
level commands, command chaining, and interprocessor communications via shared
memory. This relieves the host CPU of many tasks associated with network control; all
time critical functions are performed independently of the CPU which greatly improves
performance.

The high performance 82596DX bus interface combined with the high integration of the
serial interface components (82C501AD or 82521 TA), allows the integration of the LAN
circuitry into the motherboard. This increases overall system performance while reduc­
ing system complexity and manufacturing costs.

The 82596 product family comprises of 3 products:

• 82596DX optimiZed for the Intel386 DX CPU

• 82596SX optimized for the Intel386 SX CPU

• 82596CA opt~mized for the Intel486 DX CPU

1.8 CLOCK GENERATOR

The Clock Generator circuit (see Figure 3-16) generates timing for the Inte1386 DX
microprocessor and its support components. The circuit provides both the Intel386 DX
microprocessor clock (CLK2) and a half-frequency clock (CLK) to indicate the internal
phase of the Inte1386 DX microprocessor and to drive 80286-compatible devices that
may be included in the system. It can also be used to generate the RESET signal for the
Intel386 DX microprocessor and other system components. Both CLK2 and CLK are
used throughout this manual to describe execution times.

1.9 8086/80286 FAMILY COMPONENTS

With the appropriate interface, the Intel386 DX microprocessor can use 8086/80286
family components.

1-7

SYSTEM OVERVIEW

The 8259A Programmable Interrupt Controller manages interrupts for an Inte1386 DX
microprocessor system. Interrupts from as many as eight external sources are accepted
by one 8259A; as many as 64 requests can be accommodated by cascading several 8259A
chips. The 8259A resolves priority between active interrupts, then interrupts the proces­
sor and passes a code to the processor to identify the interrupting source. Programmable
features of the 8259A allow it to be used in a variety of ways to fit the interrupt require­
ments of a particular system.

1.10 INTEL PROGRAMMABLE LOGIC DEVICES

Intel manufactures a line of high speed PLDs (Programmable Logic Devices) specifically
designed for use with microprocessors such as the Intel386 DX. These devices called
j.LPLDs (Microcomputer Programmable Logic Devices) include the 85C220 and the
85C508/85C509. Some of the design examples in this manual use these devices.

1-8

Internal Architecture 2

CHAPTER 2
I NTERNAL ARCHITECTURE

The internal architecture of the Intel386 DX microprocessor consis~s of six functional
units that operate in parallel. Fetching, decoding, execution, memory management, and
bus accesses for several instructions are performed simultaneously. This parallel opera­
tion is called pipelined instruction processing. With pipelining, each instruction is per­
formed in stages, and the processing of several instructions at different stages
may overlap as illustrated in Figure 2-1. The six-stage pipelined processing of the
Intel386 DX microprocessor results in higher performance and an enhanced throughput
rate over non-pipe lined proGessors.

The six functional units of the Intel386 DX microprocessor are identified as follows:

• Bus Interface Unit

• Code Prefetch Unit

• Instruction Decode Unit

• Execution Unit

• Segmentation Unit

• Paging Unit

TYPICAL
PROCESSDR

--ELAPSEDTIME---------___

1386~ DX MICROPROCESSOR

BUS UNIT

DECODE
UNIT

EXECUTION
UNIT

MMU

~~~-~~~~~~==~"" .. :"'E."XE:~C..,U"'T:E:l:~~EX~E~C-U_T~E~2~~~-E_X-E_C~U-T_-E_3~:~~EX~E~C-U_T~E~4:1 ... ~~~==~ 

~~~======~~-~~__"' .. "'A"'DD"'R~&"'M"'M"'U=_ __ ......J"_AD_D_R_&_M_MU____LI ~=======~ 
231732i2-1

Figure 2-1. Instruction Pipelining

2-1

INTERNAL ARCHITECTURE

The Execution Unit in turn consists of three subunits:

• Control Unit

• Data Unit

• Protection Test Unit

Figure 2-2 shows the organization of these units. This chapter describes the function of
each unit, as well as interactions between units.

2.1 BUS INTERFACE UNIT

The Bus Interface Unit provides the interface between the Inte1386 DX microprocessor
and its environment. It accepts internal requests for code fetches (from the Code
Prefetch Unit) and data transfers (from the Execution Unit), and prioritizes the
requests. At the same time, it generates or processes the signals to perform the current
bus cycle. These signals include the address, data, and control outputs for accessing
external memory and I/O. The Bus Interface Unit also controls the interface to external
bus masters and coprocessors.

2.2 CODE PREFETCH UNIT

The Code Prefetch Unit performs the program look ahead function of the Inte1386 DX
microprocessor. When the Bus Interface Unit is not performing bus cycles to execute an
instruction, the Code Prefetch Unit uses the Bus Interface Unit to fetch sequentially
along the instruction byte stream. These prefetched instructions are stored in the 16-byte
Code Queue to await processing by the Instruction Decode Unit.

Code prefetches are given a lower priority than data transfers; assuming zero wait state
memory access, prefetch activity never delays execution. On the other hand, if there is
no data transfer requested, prefetching uses bus cycles that would otherwise be idle.
Instruction prefetching reduces to practically zero the time that the processor spends
waiting for the next instruction.

2.3 INSTRUCTION DECODE UNIT

The Instruction Decode Unit takes instruction stream bytes from the Prefetch Queue
and translates them into microcode. The decoded instructions are then stored in a three­
deep Instruction Queue (FIFO) to await processing by the Execution Unit. Immediate
data and opcode offsets are also taken from the Prefetch Queue. The decode unit works
in parallel with the other units and begins decoding when there is a free slot in the FIFO
and there are bytes in the prefetch queue. Opcodes can be decoded at a rate of one byte
per clock. Immediate data and offsets· can be decoded in one clock regardless of their
length.

2-2

I\)

CiJ

SEGMENTATION UNIT PAGING UNIT
i i

EFFECTIVE ADDRESS BUS
3-INPUT ~~~gR~N~MI
ADDER RESET. HLDA

--l 1--

BARREL

32

EFFECTIVE ADDRESS BUS / JI D~SCRIPTION ; REGISTERS

EXECUTION UNIT
----::::-1

I
I

L-,.-,-_",-' I
I
I

32

? LIMIT AND
ATTRIBUTE

PLA

I-----,==~
I L--r'"'-=="--~=~
L __

SHIFTER. INSTRUCTION
ADDER STATUS DECODER

I FLAGS

I M~~Jlb~YI
I 3-DECODED
I REGISTER . CO:J:OL INS~~~~110N ~
I FILE CO~~~OL I
I ALU CONTROL I INSTRUCTION l__ _ _____________ .J DECODE

DEDICATED ALU BUS

PAGE
CACHE

32

...I

~
8

Figure 2-2. Intel386™ OX Microprocessor Functional Units

BEO# - BE3#
A2-A31

M/IOH. D/CH.
W/RH. LOCKH.
ADSH. NAH. READYH
BSI6#. READY#

DO-D31

_________ ---.J

BUS UNIT

231732i2-2

l
@l

Z
-I m
::D z » .-
»
::D
n
::I:
=i m
~ c:
::D
m

INTERNAL ARCHITECTURE

2.4 EXECUTION UNIT

The Execution Unit executes the instructions from the Instruction Queue and therefore
communicates with all other units required to complete the instruction. The functions of
its three subunits are as follows:

• The Control Unit contains microcode and special parallel hardware that speeds mul~
tiply, divide, and effective address calculation.

• The Data Unit contains the ALU, a file of eight 32-bit general~purpose registers, and
a 64-bit barrel shifter (which performs multiple bit shifts in one clock). The Data Unit
performs data operations requested by the Control Unit.

• The Protection Test Unit checks for segmentation violations under the control of the
microcode.

To speed up the execution of memory reference instructions, the Execution Unit par­
tially overlaps the execution of any memory reference instruction with the previous
instruction. Because memory reference instructions are frequent, a performance gain of
approximately nine percent is achieved.

2.5 SEGMENTATION UNIT

The Segmentation Unit translates logical addresses into linear addresses at the request
of the Execution Unit. The on-chip Segment Descriptor Cache stores the currently used
segment descriptors to speed this translation. At the same time it performs the transla­
tion, the Segmentation Unit checks for bus-cycle segmentation violations. (These checks
are separate from the static segmentation violation checks performed by the Protection
Test Unit.) The translated linear address is forwarded to the Paging Unit.

2.6 PAGING UNIT

When the Intel386 DX microprocessor paging mechanism is enabled, the Paging Unit
translates linear addresses generated by the Segmentation Unit or the Code Prefetch
Unit into physical addresses. (If paging is not enabled, the physical address is the same
as the linear address, and no translation is necessary.) The Page Descriptor Cache stores
recently used Page Directory and Page Table entries in its Translation Lookaside Buffer
(TLB) to speed this translation. The Paging Unit forwards physical addresses to the Bus
Interface Unit to perform memory and I/O accesses.

2-4

Local Bus Interface 3

CHAPTER 3
LOCAL BUS INTERFACE

Local bus operations are considered in this chapter. The Inte1386 DX microprocessor
performs a variety of bus operations in response to internal conditions and external
conditions (interrupt servicing, for example). The function and timing of the signals that
make up the local bus interface are described, as well as the sequences of particular local
bus operations.

The high-speed bus interface of the Intel386 DX microprocessor provides high perfor­
mance in any system. At 33 MHz, the Inte1386 DX CPU bus transfers up to 66 Mbytes/
sec. of data. At the same time, the bus control inputs and status outputs of the
Intel386 DX microprocessor allow for adaptation to a wide variety of system
environments.

The Intel386 DX microprocessor communicates with external memory, I/O, and other
devices through a parallel bus interface. This interface consists of a data bus, a separate
address bus, five bus status pins, and three bus control pins as follows:

• The bidirectional data bus consists of 32 pins (D31-DO). Either 8, 16,24, or 32 bits of
data can be transferred at once.

• The address bus, which generates 32-bit addresses, consists of 30 address pins
(A31-A2) and four byte-enable pins (BE3#-BEO#). Each byte-enable pin corre­
sponds to one of four bytes of the 32-bit data bus. The address pins identify a 4-byte
location, and the byte-enable pins select the active bytes within the 4-byte location.

• The bus status pins establish the type of bus cycle to be performed. These outputs
indicate the following conditions:

Address Status (ADS#)-address bus outputs valid
Write/Read (W/R#)-write or read cycle
Memory /I/O (M/IO#)-memory or I/O access
Data/Control (D/C#) - data or control cycle
LOCK# -locked bus cycle.

• The bus control pins allow external logic to control the bus cycle on a cycle-by-cycle
basis. These inputs perform the following functions:

READY # - ends the current bus cycle; controls bus cycle duration

Next Address (NA#) - allows address pipelining, that is, emitting address and status
signals for the next bus cycle during the current cycle

Bus Size 16 (BS16#)-activates 16-bit data bus operation; data is transferred on the
lower 16 bits of the data bus, and an extra cycle is provided for transfers of more than
16 bits. .

The following pins are used to control the execution of.instructions in the Intel386 DX
microprocessor and to interface external bus masters. The Intel386 DX microprocessor
provides both a standard interface to communicate with other bus masters and a special
interface to support a numerics coprocessor.

3-1

LOCAL BUS INTERFAcE

• The CLK2 input provides a double-frequency clock signal for synchronous operation.
This signal is divided by two internally, so the Intel386 DX microprocessor fundamen­
tal frequency is half the CLK2 signal frequency. For example, a 20-MHz Intel386 DX
microprocessor uses a 40-MHz CLK2 signal.

• The RESET input forces the Intel386 DX microprocessor to a known reset state.

• The HOLD signal can be generated by another bus master to request that the
Intel386 DX microprocessor release control of the bus. The Intel386 DX micropro­
cessor responds by activating the Hold Acknowledge (HLDA) signal as it relinquishes
control of the local bus.

• The Maskable Interrupt (INTR) and Non-Maskable Interrupt (NMI) inputs cause
the Inte1386 DX microprocessor to interrupt its current instruction stream and begin
execution of an interrupt service routine.

• The BUSY#, ERROR#, and Pro.cessor Extension Request (PEREQ) signals make
up the interface to an external numeric coprocessor. BUSY # and ERROR# are
status signals from the coprocessor; PEREQ allows the coprocessor to request data
from the Intel386 DX microprocessor.

All of the Intel386 DX microprocessor bus interface pins are summarized in Table 3-1.

3.1 BUS OPERATIONS

There are seven types of bus operations:

• Memory read

• Memory write

• I/O read

• I/O write

• Instruction fetch

• Interrupt acknowledge

• Halt/shutdown

Each bus cycle is initiated when the address is valid on the address bus, and bus status
pins are driven to states that correspond to the type of bus cycle, and ADS# is driven
low. Status pin states that correspond to each bus cycle type are shown in Table 3-2.
Notice that the signal combinations marked as invalid states may occur when ADS# is
false (high). These combinations will never occur if the signals are sampled on the CLK2
rising edge when ADS# is low, and the Intel386 DX microprocessor internal CLK is
high (as indicated by the CLK output of the clock generator circuit shown in
Figure 3-16). Bus status signals must be qualified withADS# asserted (low) to identify
the bus cycle.

Memory read and memory write cycles can be locked to prevent another bus master
from using the local bus and allow for indivisible read-modify-write operations.

3-2

LOCAL BUS INTERFACE

Table 3-1. Summary of Intel386™ OX Microprocessor Signal Pins

Input
Output

Signal Name Signal Function
Active Input/ Synch or

High Impedance
State Ouput Asynch

During HLDA?
to CLK2

CLK2 Clock - I - -

DO-D31 Data Bus High I/O S Yes

BEO#-BE3# Byte Enables Low 0 - Yes

A2-A31 Address Bus High 0 - Yes

W/R# Write-Read Indication High 0 - Yes

D/C# Data-Control Indication High 0 - Yes

M/IO# Memory-I/O Indication High 0 - Yes

LOCK# Bus Lock Indication Low 0 - Yes

ADS# Address Status Low 0 - Yes

NA# Next Address Request Low I S -

BS16# Bus Size 16 Low I S -

READY# Transfer Acknowledge Low I S -

HOLD Bus Hold Request High I S -

HLDA Bus Hold Acknowledge High 0 - No

PEREQ Processor Extension Request High I A -

BUSY# Coprocessor Busy· Low I A -

ERROR# Coprocessor Error Low I A -

INTR Maskable Interrupt Request High I A -

NMI Non-Maskable Intrpt Request High I A -

RESET Reset High I S -

3.1.1 Bus States

The Intel386 DX microprocessor uses a double-frequency clock input (CLK2) to gener­
ate its internal processor clock signal (CLK). As shown in Figure 3-1, each CLK cycle is
two CLK2 cycles wide.

Notice that· the internal Inte1386 DX mieroprocessor matches the external CLK signal.
The CLK signal is permitted to lag CLK2 slightly, but will never lead CLK2, so that it
can be used relia~ly as a phase status indicator. All Inte1386 DX microprocessor inputs
are sampled at CLK2 rising edges. Many Inte1386 DX microprocessor signals are sam­
pled every other CLK2 rising edge; some are sampled on the CLK2 edge when CLK is
high, while some are sampled on the CLK2 edge when CLK is low. The maximum data
transfer rate for a bus operation, as determined by the Intel386 DX microprocessor
internal clock, is 32 bits for every two CLK cycles,or 66 megabytes per second (CLK2 =
66 MHz, internal CLK = 33 MHz).

3-3

M/IO# D/C#

Low Low

Low Low

Low High

Low High

High Low

High Low

High High

High High

INTERNAL
PROCESSOR CLOCK

(CLK)

lOCAL BUS INTERFACE

Table 3-2. Bus Cycle Definitions

W/R#

Low

High

Low

High

Low

High

Low

High

Bus Cycle Type

INTERRUPT ACKNOWLEDGE

does not occur when ADS# is low

I/O DATA READ

I/O DATA WRITE

INSTRUCTION FETCH

HALT: SHUTDOWN:
Address = 2 Address = 0

(BEO# High (BEO# Low
BE1# High BE1# High
BE2# Low BE2# High
BE3# High BE3# High
A2-A31 Low) A2-A31 Low)

MEMORY DATA READ

MEMORY DATA WRITE

PROCESSOR CLOCK
PERIOD

PROCESSOR CLOCK
PERIOD

Locked?

Yes

-

No

No

No

No

Some Cycles

Some Cycles

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD
<1>1 <1>2 <1>1 <1>2

62 ns MIN 80386·16
(16 MHz MAX)

50 ns MIN · 80386-20
(20 MHz MAX)

40 ns MIN · 80386-25
(25 MHz MAX)

30 ns MIN · 80386-33
(33 MHz MAX)

231732i3-1

Figure 3-1. ClK2and ClK Relationship

3-4

LOCAL BUS INTERFACE

Each bus cycle is comprised of at least two bus states, Tl and T2. Each bus state in turn
consists of two CLK2 cycles, which can be thought of as Phase 1 and Phase 2 of the bus
state. Figure 3-2 shows bus states for some typical read and write cycles. During the first
bus state (Tl), address and bus status pins go active. During the second bus state (T2),
external logic and devices respond. If the READY # input of the Intel386 DX micropro­
cessor is sampled low at the end of the second CLK cycle, the bus cycle terminates. If
READY# is high when sampled, the bus cycle continues for an additional T2 state,
called a wait state, and READY # is sampled again. Wait states are added until
READY # is sampled low.

When no bus cycles are needed by the Intel386 DX microprocessor (no bus requests are
pending, the Intel386 DX microprocessor remains in the idle bus state (Ti). The rela­
tionship between Tl, T2, and Ti is shown in Figure 3-3.

CLK2 [

CLK [

8EO#-8El #
A2-A31. [

M/IO#.D/CH

W/R# [

ADS # [

NA# [

8S16 # [

READY# [

LOCK# [

00- 031 [

IDLE I CYCLE 1 I
NON-PIPELINED

(READ)

CyCLE 2
NON-PIPELINED

(WRITE)

n T1 T2 T1 T2 T2

_nIU rL1l rtn-rtn-rtn-rtn-
-V Y lr lr lr lr

XX IX VALID 1 IX VALID 2

XIXXXXIX 1/

f\.-r-~I
IXXXX IXXX XX XX ~xxx

32-BIT 32-BIT
BusllZE BUSiSIZE

Xl>\X.X.X l>\X.X.X y '(XXXX XXXXY

XIXXXx IXXXX XXX AM XXJ ~

TI

rtn-
lr

T1

CYCLE 3
NON-PIPELINED

(READ)

T2 T2

rtfL rtn-n.ru
\J lr lr

xxxxx VALID 3

,{XXX>"

\- I

XXX IXXX '<XXXX
32-BIT

BUStZE

n

rL1l
V-
~:xxx

~

IXXXX

XXX IXXX xx '<M2S.2!

'(XX IXXX XT ~ m
END CYCLE 1 END CYCLE 2 END CYCLE 3

XIXXXXIX VALID 1 IX VALID 2 IXXX IX VALID 3 IXXXX

- ----------~--~< OUT)-- ----- ---- --~---
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active cycle can
immediately follow the write cycle.

231732i3-2

Figure 3·2. Inte1386'M OX CPU Bus States Timing Example

3-5

LOCAL BUS INTERFACE

BUB States:

ALWAYS

READY # ASSERTED·

REQUEST PENDING

T1-first clock of a non-pipelined bus cycle (80386 drives new address and asserts ADS")
T2-subsequent clocks of a bus cycle when NA" has not been sampled asserted in the current bus cycle
H- idle state

The fastest bus cycle consists of two states: T1 and T2.

READY# NEGATED·
NA# NEGATED

231732i3-3

Figure 3-3. Bus State Diagram (Does Not Include Address Pipelining)

3.1.2 Address Pipelining

In the Intel386 OX microprocessor, the timing address and status outputs can be con­
trolled so the outputs become valid before the end of the previous bus cycle_ This tech­
nique, which allows bus cycles to be overlapped, is called address pipelining. Figure 3-4
compares non-pipelined address cycles to pipelined address cycles.

Address pipelining increases bus throughput without decreasing allowable memory or
I/O access time, thus allowing high bandwidth with relatively inexpensive components. In
addition, using pipelining to address slower devices can yield the same throughput as
addressing faster devices with no pipelining. A 20-MHz Intel386 OX microprocessor can
transfer data at the maximum rate of 40 megabytes per second while allowing an address
access time of three CLK cycles (150 nanoseconds at CLK = 20 MHz neglecting signal
delays); without address pipelining, the access time is only two CLK cycles (100 nano­
seconds at CLK = 20 MHz). When address pipeline is activated following an idle bus
cycle, performance is decreased slightly because the first bus cycle cannot be pipelined.
This condition is explained fully in Chapter 4.

3.1.3 32-Bit Data Bus Transfers and Operand Alignment

The Inte1386 OX microprocessor can address up to four gigabytes (232 bytes, addresses
OOOOOOOOH-FFFFFFFFH) of physical memory and up to 64 kilobytes (216 bytes,
addresses OOOOOOOOH-OOOOFFFFH) of I/O. The Intel386 OX microprocessor maintains
separate physical memory and I/O spaces.

3-6

NON·PIPELINED

CLK2
(INPUT)

BEOII-BE3', A2-A31,
MIIOM, D/C', WfRlt

(OUTPUTS)

ADS'
(OUTPUT)

NA'
(INPUT)

READYiI
(INPUT)

LOCKt
(OUTPUT)

DO-D31
(INPUT DURING READ)

PIPELINED

CLK2
(INPUT)

BEDN-BE3#,A2-A31,
M/IO#, DIe", W/R,.

(OUTPUTS)

ADSit
(OUTPUT)

NM
(INPUT)

READY'
(INPUT)

LOCK"
(OUTPUT)

Do-D31
(INPUT DURING READ)

LOCAL BUS INTERFACE

n n n ~ n

.' I.. .' 1.2 .' I.. .' I.. .' I ..

Figure 3-4. Non-Pipelined Address and Pipelined Address Differences

3-7

231732i3-4

LOCAL BUS INTERFACE

The programmer views the address space (memory or I/O) of the Intel386 DX micro­
processor as a sequence of bytes. Words consist of two consecutive bytes, and double
words consist of four consecutive bytes. However, in the system hardware, address space
is implemented in four sections. Each of the four 8-bit portions of the data bus (DO-D7,
D8-DIS, DI6-D23, and D24-D31) connects to a section. When the Intel386 DX micro­
processor reads a doubleword, it accesses one byte from each section. The Intel386 DX
microprocessor automatically translates the programmers' view of consecutive bytes into
this hardware implementation (see Figure 3-S).

The Intel386 DX microprocessor memory spaces and I/O space are or~anized physically
as sequences of 32-bit doublewords (230 32-bit memory locations and 2 4 32-bit I/O ports
maximum). Each doubleword starts at a physical address that is a multiple of four, and
has four individually addressable bytes at consecutive addresses.

Pins A31-A2 correspond to the most significant bits of the physical address; these pins
address doublewords of memory. The two least significant bits of the physical address
are used interrially to activate the appropriate byte enable output (BE3#-BEO#).
Figure 3-6 shows the relationship between physical address, doubleword location, data
bus pins, and'byte enables. This relationship holds for a 32-bit bus only; the organization
for a 16-bit bus is described later in Section 3.1.10.

Data can be transferred in quantities of 32 bits, 24 bits, 16 bits, or 8 bits for each bus
cycle of a data transfer. Table 3-3 shows which bytes of a 32-bit doubleword can be
transferred in a single bus cycle. If a data transfer can be completed in a single cycle, the

.A , L 031-024 MEMORYCS
J ... I/"

... L
023-016)I MEMORYCS r ... v

i386'·CPU
... , I

~ 015-08 ;:t MEMORYCS
'I

A r-07-00 MEMORYCS
... v

I BEO#

BE1#

BE2#

BE3#

231732i3-5

Figure 3-5. Consecutive Bytes in Hardware Implementation

3-8

BEO

BEl

BE2

BE3

BEO

BEl

BE2

BE3

BEO

LOCAL BUS INTERFACE

BYTE
ADDRESS

0

1

2

3

4

5

6

7

8

-

-
-

WORD
ADDRESS

0

0

2

2

4

4

6

6

8

-
-

-

131 24123 16115 81 7
BE3# BE2# BE1#

DWORD
ADDRESS

0

0

0

0

4

4

4

4

8

-
-
-

BEO#
01

Figure 3-6. Address, Data Bus, and Byte Enables for 32-Bit Bus

Table 3-3. Possible Data Transfers on 32-Bit Bus

Possible Data Transfers to 32-Bit Memory

Size Byte Enables

32 bits 3-2-1-0

24 bits 3-2-1
2-1-0

16 bits 3-2
2-1
1-0

8 bits 3
2
1
0

231732i3-6

transfer is said to be aligned. For example, a word transfer involving D23-D8 and acti­
vating BEl # and BE2# is aligned.

Transfers of words and doublewords that overlap a doubleword boundary of the
Intel386 DX microprocessor are called misaligned transfers. These transfers require two
bus cycles, which are automatically generated by the Intel386 DX microprocessor. For
example, a word transfer at (byte) address 0003R requires two byte transfers: the first
transfer activates doubleword address 0004R and uses D7-DO, and the second transfer
activates doubleword address OOOOR and uses D3l-D24.

3-9

LOCAL BUS INTERFACE

Figure 3-7 shows the steps required for a misaligned 32-bit transfer. In the first bus cycle,
the physical address crosses over into the next doubleword location, and BEO# and
BEl # are active. In the second bus cycle, the address is decremented to the previous
doubleword, and BE2# and BE3# are active. After the transfer, the data bits are auto­
matically assembled in the correct order.

Table 3-4 shows the sequence of bus cycles for all possible misaligned· transfers. Even
though misaligned transfers are transparent to a program, they are slower than aligned
transfers and should thus be avoided.

FIRST BUS CYCLE: A31 - A2 = n + 4

n+7

n+3

BE3
HIGH

n+6

SECOND BUS CYCLE: A31 - A2 = n

n+7

n+3

DATA BUS

iE3
LOW

n+8

32·BIT MEMORY

BE2
HIGH

n+5

32·BIT MEMORY

DATA BUS

BE2
LOW

n+5

DATA BUS

BE1
LOW

BE1
HIGH

Figure 3-7. Misaligned Transfer

3-10

n+4

n+4

DATA BUS

BEO
LOW

BEO'
HIGH

231732i3-7

LOCAL BUS INTERFACE

Table 3-4. Misaligned Data Transfers on 32-Bit Bus

First Cycle Second Cycle
Transfer Physical

Type Address Address Byte Address Byte
Bus Enables Bus Enables

Word 4N + 3 4N + 4 0 4N 3

Doubleword 4N + 1 4N + 4 0 4N 1-3

Doubleword 4N + 2 4N + 4 0-1 4N 2-3

Doubleword 4N + 3 4N + 4 0-2 4N 3

Because the Intel386 DX microprocessor operates on only bytes, words, and double­
words, certain combinations of BE3#-BEO# are never produced. For example, a bus
cycle is never performed with· only BEO# and BE2# active because such a transfer
would be an operation on two noncontiguous bytes at the same time. A single 3-byte
transfer will never occur, but a 3-byte transfer followed or preceded by a I-byte transfer
can occur for some misaligned doubleword transfers.

3.1.4 Read Cycle

Read cycles are of two types: pipelined address cycles and non-pipelined address cycles.
In a non-pipelined address cycle, the address bus and bus status signals become valid
during the first CLK period of the cycle. In a pipelined address cycle, the address
bus and bus status signals are output before the beginning of cycle, in the previous bus
cycle, to allow longer memory access times. Pipelined address cycles are described in
Section 3.1.6.

The timing for two non-pipelined address read cycles (one with and one without a wait
state) is shown in Figure 3-8.

The sequence of signals for the non-pipelined read cycle is as follows:

o The Intel386 DX microprocessor initiates the cycle by driving ADS# low. The states
of the address bus (A3I-A2), byte enable pins (BE3#-BEO#), and bus status outputs
(M/IO#, D/C#, W/R#, and LOCK#) at the CLK2 edge when ADS# is sampled low
determine the type of bus cycle to be performed. For a read cycle,

W/R# is low

M/IO# is high for a memory read, low for an I/O read

For a memory read, D/C# is high if data is to be read, low if an instruction is to
be read. Immediate data is included in an instruction.

LOCK# is low if the bus cycle is a locked cycle. In a read-modify-write sequence,
both the memory data read cycle and the memory data write cycle are locked. No
other bus master should be permitted to control the bus between two locked bus
cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS#)
remain active through the end of the read cycle.

3-11

ClK2

ClK

BEO#-BE3#,
A2-A31,

M/IO#, DIC#

W/R#

AD5#

NA#

B516#

READY#

lOCK#

IDLE

TI

LOCAL BUS INTERFACE

CYCLE 1
NON·PIPELINED

(READ)

T1 T2 T1

CYCLE 2
NON·PIPElINED

(READ)

T2

VALID 2

IDLE

T2 n

DO-D31 - --- --,- - --0--
I

Figure 3-8. Non-Pipelined Address Read Cycles

231732i3·8

• At the end of T2, READY# is sampled. If READY# is low, the Inte1386 DX micro­
processor reads the input data on the data bus.

• If READY# is high, wait states (one CLK cycle) are added until READY# is sam­
pled low. READY# is sampled at the end of each wait state.

• Once READY # is sampled low, the Inte1386 DX microprocessor reads the input
data, and the read cycle terminates. If a new bus cycle is pending, it begins on the
next CLK cycle.

3-12

LOCAL BUS INTERFACE

3.1.5 Write Cycle

Write cycles, like read cycles, are of two types: pipelined address and non-pipelined
address. Pipelined address cycles are described in Section 3.1.6.

Figure 3-9 shows two non-pipelined address write cycles (one with and one without a
wait state. The sequence of, signals for a non-pipelined write cycle is as follows:

• The Intel386 DX microprocessor initiates the cycle by driving ADS# low. The states
of the address bus (A31-A2), byte enable pins (BE3#-BEO#), and bus status outputs
(M/IO#, D/C#, W/R#, and LOCK#) at the CLK edge when ADS# is sampled low
to determine the type of bus cycle to be performed. For a write cycle,

W/R# is high

M/IO# is high for a memory write, low for an I/O write

D/C# is high

LOCK# is low if the bus cycle is a locked cycle. In a read-modify-write sequence,
both the memory data read cycle and the memory data write cycle are locked. No
other bus master should .be permitted to control the bus between two locked bus
cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS#)
remain active through the end of the write cycle.

• At the start of Phase 2 in Tl, output data becomes valid on the data bus. This data
remains valid until the start of Phase 2 in Tl of the next bus cycle.

.At the end of T2, READY # is sampled. If READY # is low, the write cycle
terminates.

• If READY# is not low, wait states are added until. READY# is sampled low.
READY # is sampled at the end of each wait state.

• Once READY # is sampled low, the write cycle terminates. If a new bus cycle is
pending, it begins on the next eLK cycle.

3.1.6 Pipelined Address Cycle

Address pipe lining allows bus cycles to be overlapped, increasing the amount of time
available for the memory or I/O device to respond. The NA# input of the Inte1386 DX
microprocessor controls address pipelining. NA# is generated by logic in the system to
indicate that the address bus is no longer needed (for example, after the address has
been latched). If the system is designed so that NA# goes active before the end of the
cycle, address pipelining may occur.

NA# is sampled at the rising CLK2 edge of Phase 2 of each CLK cycle. Once NA# is
sampled active, the address, byte enables, and bus status signals for the next bus cycle
are output as soon as they are available internally. Once NA# is sampled active, it is not
required again until the CLK cycle after ADS# goes active.

3-13

ClK2

ClK

BEO#·BE3#
A2-A31,

M/IO#,O/C#

W/R#

AOS#

NA#

BS16#

REAOY#

lOCK#

00-031

Ti

LOCAL BUS INTERFACE

CYCLE 1
NON·PIPELINEO

(WRITE)

T1 T2 T1

CYClE2
NON·PIPElINEO

(WRITE)

T2 T2

Figure 3-9. Non-Pipelined Address Write Cycles

IDLE

Ti

231732i3-9

Figure 3-10 illustrates the effect of NA#. During the second eLK cycle (T2) of a non­
pipelined address cycle, NA# is sampled low. The address, byte enables, and bus status
signals for the next bus cycle are output in the third eLK cycle (the first wait state of the
current bus cycle). Thereafter, NA# is sampled in the next eLK cycle after ADS# is
valid (Tl of each bus cycle); if NA# is active, the address, byte enables and bus-status
pins for the next cycle are output in T2 if another bus cycle is pending.

3·14

LOCAL BUS INTERFACE

IDLE CYCLE 1
NON-PIPELINED

(WRITE)

CYCLE 2
NON-PIPELINED

(READ)

CYCLE 3
PIPELINED
(WRITE)

CYCLE ~
PIPELINED

(READ)

n T1 T2 T1 T2 T2P T1 P T2P T1 P T21

CLK2 [

CLK [

8EO# - 8E3# [
A2-A31.

W/IO#.D/C#

W/R# [

ADS# [

NA# [

8516# [£¥~t:::£.~~M?'~~>C::l.~

READY# [C¥~c.!.~~~~-+~~~'"

IDLE

n

LOCK # ["'~~r'-......;;;;:;;:....:.....-r'--+-----r '---:----r '-.......;~---f\j~~
00- 031 [

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled during wait
states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-plpelined cycle with at least
one wait state (Cycle 2 above). '

231732i3-10

Figure .3-10. Pipelined Address Cycles

The first bus cycle after an idle bus state is always non-pipelined. To initiate address
pipelining, this cycle must be extended by at least one eLK cycle so that the address and
status can be output before the end of the cycle. Subsequent cycles can be pipelined as
long as no idle bus cycles occur.

NA# is sampled at the start of Phase 2 of any eLK cycle in which ADS# is not active,
specifically,

• The second eLK cycle of a non-pipelined address cycle

• The first eLK cycle of a pipelined address cycle

• Any wait state of a non-pipelined address or pipelined address cycle unless NA# has
already been sampled active

3-15

LOCAL BUS INTERFACE

Once NA# is sampled active, it remains active internally throughout the current bus
cycle. If NA# and READY # are active in the same CLK cycle, the state of NA# is
irrelevant, because READY # causes the start of a new bus cycle; therefore, the new
address and status signals are always output regardless of the state of NA#.

A complete discussion of the considerations for using address pipelining can be found in
the 386'" DX Microprocessor Data Sheet (Order Number 231630).

3.1.7 Interrupt Acknowledge Cycle

An unmasked interrupt causes the Intel386 DX microprocessor to suspend execution of
the current program (after it completes the instruction it is executing) and perform
instructions from another program called an interrupt service routine. Interrupts are
described in detail in Section 3.4.

The 8259A Programmable Interrupt Controller is a system component that coordinates
the interrupts of several devices (eight interrupts for a single 8259A; up to 64 interrupts
with eight cascaded 8259As). When a device signals an interrupt request, the 8259A
activates the INTR input to the Inte1386 DX microprocessor.

Interrupt acknowledge cycles are special bus cycles designed to activate the 8259A INTA
input. INTA signals the 8259A to output a service-routine vector on the data bus. The
Intel386 DX microprocessor performs two back-to-back interrupt acknowledge cycles in
response to an active INTR input (as long as the interrupt flag of the Intel386 DX
microprocessor is enabled).

Interrupt acknowledge cycles are similar to regular bus cycles in that the Intel386 DX
microprocessor bus outputs signals atthe start of each bus cycle and an active READY #
terminates each bus cycle. The cycles are shown in Figure 3-1l.

• ADS# is driven low to start each bus cycle.

• Control signals M/IO#, D/C#, and W/R# are driven low to signal two interrupt­
acknowledge bus cycles. These signals must be decoded to generate the INTA input
signal for the 8259A. The decoding logic is usually included in the bus controller logic
for the particular design. Bus controller designs are discussed in Chapters 6 and 8.

• LOCK# is active from the beginning of the first cycle to the end of the second.
HOLD requests from other bus masters are not recognized until after the second
interrupt acknowledge cycle.

• The address driven during the first cycle is 4; during the second cycle, the address is O.
BE3#, BE2#, and BE1# are high, BEO# is low, and A31-A3 are low for both cycles;
A2 is high for the first cycle and low for the second.

• The Intel386 DX microprocessor floats D31-DO for both cycles; however, at the end
of .the second cycle, the service routine vector at the 8259A outputs is read by the
Inte1386 DX microprocessor on pins D7-DO.

• , READY # must go low to terminate each cycle.

3-16

ClK2 [

ClK [

BEl #. BE2#. BE3# [

BEO#. A3-A31. [
M/IO#. D/C#. W/R#

lOCK# [

ADS# [

00-07 [

08-031 [

LOCAL BUS INTERFACE

PREVIOUS I
CYCLE

T2 T1

INTERRUPT
ACKNOWLEDGE

CYCLE I

T2 T2 TI

JUl rut rut rul rut
-V V V V V
.... ~ ,Jf\Jf\

... "'V'ir"

",...&...., .1'1.

.1'1.

--'"-,
X X X

X X : X IGNORED X

X X :XY w... ~X

IGNORED
. ---- ---- ----- --0--

IGNORED
. ---- .. --- ----- --cp--

IDLE
(4 BUS STATES)

TI Ti

rut rut
V V

,Jf\X XX

,X ,X

X X

.X X

XX X

---- -----

---- -----

ACKNOWLEDGE
CYCLE 2

IOLE I INTERRUPT

Tl 11 T2 T21 n

ill h.Il rut rul n.n.
V V V V V

X XX

r
.Jf\Jf\ lXX)! XXX)!

/"
X ~XX XX

,/
.(OJ.

,"-V

X X .X

X X ,<IGNORED XXX)!

:X X Y w... m
VECTOR

..... -- ----- ---- --0---
IGNORED

----- ---- --cp---
Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA# has no practical effect. Choose the
approach which is simplest for your system hardware design.

231732i3-11

Figure 3-11. I nterrupt Acknowledge Bus Cycles

System logic must delay READY # to extend the cycle to the minimum pulse-width
requirement of the 8259A Programmable Interrupt Controller. In addition, the
Intel386 DX microprocessor inserts four Ti states between the two cycles to match the
recovery time of the 8259A.

3.1.8 Halt/Shutdown Cycle

The halt condition in the Intel386 DX microprocessor occurs in response to a HLT
instruction. The shutdown condition occurs when the Inte1386 DX microprocessor is
processing a double fault and encounters a protection fault; the Intel386 DX micropro­
cessor cannot recover and shuts down. Halt or shutdown cycles result from these condi­
tions. Externally, a shutdown cycle differs from a halt cycle only in the resulting address
bus outputs.

3·17

LOCAL BUS INTERFACE

As with other bus cycles, a halt or shutdown cycle is initiated by activating ADS# and
the bus status pins as follows:

• M/IO# and W/R# are driven high, and D/C# is driven low to indicate a halt or
shutdown cycle.

• All address bus outputs are driven low. For a halt condition, BE2# is active; for a
shutdown condition, BEO# is active. These signals are used by external devices to
respond to the halt or shutdown cycle.

READY # must be asserted to complete the halt or shutdown cycle. The Intel386 DX
microprocessor will remain in the halt or shutdown condition until...

• NMI goes high; Intel386 DX microprocessor services the interrupt

• RESET goes high; Inte1386 DX microprocessor is reinitialized

In the halt condition (but not in the shutdown condition), if maskable interrupts are
enabled, an active INTR input will cause the Inte1386 DX microprocessor to end the
halt cycle to service the interrupt. The Inte1386 DX microprocessor can service processor
extension (PEREQ input) requests and HOLD (HOLD input) requests while in the halt
or shutdown condition.

3.1.9 8516 Cycle

The Inte1386 DX microprocessor can perform data transfers for both 32-bit and 16-bit
data buses. A control input, BSI6#, allows the bus size to be specified for each bus
cycle. This dynamic bus sizing gives the Intel386 DX microprocessor flexibility in using
16-bit components and buses.

The BSI6# input causes the Intel386 DX microprocessor to perform data transfers for a
16-bit data bus (using data bus signals DIS-DO) rather than a 32-bit data bus. The
Intel3.86 DX microprocessor automatically performs two or three cycles for data trans­
fers larger than 16 bits and for misaligned (odd-addressed) 16-bit transfers.

BSI6# must be supplied by external hardware, either through chip select decoding or
directly from the addressed device. BSI6# is sampled at the start of Phase 2 only in CLK
cycle as long as ADS# is not active. If BSI6# and READY # are sampled low in the
same CLK cycle, the Inte1386 DX microprocessor assumes a 16-bit data bus.

The BSI6# control input affects the performance of a data transfer only for data trans­
fers in which I} BEO# or BEl# is active and 2) BE2# or BE3#is active at the same
time. In these transfers, the Intel386 DX microprocessor must perform two bus cycles
using only the lower half of the data bus.

If a BS16 cycle requires. an additional bus cycle, the Intel386 DX microprocessor will
retain the current address for the second cycle. Address pipelining cannot be used with
BS16 cycles because address pipelining requires that the next address be generated on

3-18

LOCAL BUS INTERFACE

the bus before the end of the current bus cycle. Therefore, because both signals are
sampled at the same sampling window, BSI6# must be active before or at the same time
as NA# to guarantee 16-bit operation. Once NA# is sampled active in a bus cycle and
BSI6# is not active at that time, BSI6# must be negated for the remainder of the bus
cycle.

If BSI6# is asserted during the last clock of the bus cycle and NA# was not asserted
previously in the bus cycle, then the processor performs a 16-bit bus cycle. This is true,
even if NA# is asserted during the last clock of the bus cycle. Figure 3-12 illustrates this
logic.

Figure 3-13 compares the signals for 32-bit and 16-bit bus cycles.

3.1.10 i6-Bit Byte Enables and Operand Alignment

For a 16-bit· data bus, the Intel386 DX microprocessor views memory and I/O as
sequences of 16-bit words. For this configuration, the Bus High Enable (BHE#), AO or
Bus Low Enable (BLE#), and Al signals are needed. BHE# and BLE# are ,byte
enables that correspond to two banks of memory in the same way that BE3#-BEO#
correspond to four banks. Al is added to A31-A2 to generate the addresses of 2-byte
locations instead of 4-byte locations. Figure 3-14 compares the addressing configurations
of 32-bit and 16-bit data buses.

The BHE#, BLE#, and Al signals can be generated from BE3#, BE2#, BEl#, and
BEO# using just four external logic gates. Table 3-5 shows the truth table for this con­
version. Note that certain combinations of BE3#-BEO# are never generated.

When BSI6# is sampled active, the states of BE3#-BEO# determine how the
Intel386 DX microprocessor responds:

.. BSI6# has no effect if activated for a bus cycle in which BE3# and BE2# are
inactive.

NAIIL1NAI (PIN 013) I (lNTtRNAL)

85161 BS1S,
(PIN CI4) T ('NTERNAL)

-
i38S'· ox CPu

231732i3-12

Figure 3-12. Internal NA# and 8S16# Logic

3-19

CLK2

CLK

BEO#-BE3#,
A2-A31,

MIIO#, D/C#

WIR#

AOS#

BS16#

IDLE I CVCLE1
NON·PIPELINED

(WRITE)

TI T1 T2

~JVq

~£.lllp~

LOCAL BUS INTERFACE

CLK2

CLK

BEO#, BE1#

IDLE

TI

A TRANSFER REQUIRING TWO
CYCLES ON 16·BIT DATA BUS

CVCLE1A
NON·PIPELINEO

WRITE)
PART TWO

T1 T2

CVCLE1 I
NON·PIPELINED

(WRITE
PART ONE

T1 T2

CJpL.l£lUt"'----I-~

BE2#, BE3#, nb~-,j,V"--i---i---i--""i
A2-A31 ,

MIIO#, OIC# .ajC:J.~I£lI'\.--+---+---+---f

AOS#

B516#

00-015

Figure 3-13. 32-Bit and 16-Bit Bus Cycle Timing

3-20

231732i3-13

LOCAL BUS INTERFACE

32 DATA BUS (00-031)

1386'· OX 32-BIT
CPU ADDRESS BUS (BEO#-BE3#.A2-A31) I.lEI.lORY

TBS16#

"HIGH"

32 DATA BUS (00-D31)

ADDRESS BUS

(BEO#-BE3#, A2-A31)

16 DATA BUS (00-DI5)

231732;3-14

Figure 3-14. 32-Bit .and 16-Bit Data Addressing

• If BEO# and BEI# are both inactive during a BSl6 cycle, and either BE2# or BE3#
is active,

For a write cycle, data on D31-D16is duplicated on DIS-DO, regardless of the
state of BSI6#. (This duplication occurs because BSI6# is sampled late in the
cycle but data must be available early.)

For a read cycle, data that would normally be read on D31-D24 is read on
DIS-D8, and data that would normally be read on D2J-DI6 is read on D7-DO.

• If BEO# or BEl # is active, and BE2# or BE3# is active, two bus cycles are required_
The two cycles are identical except BEO# and BEl # are inactive in the second
cycle and

For a write cycle, the data that was on D31-D16 in the first cycle is copied onto
DIS-DO. .

For a read cycle, data that would normally be read on D31-D24 is read on
DIS-D8, and data that would normally be read on D23-D16 is read on D7-DO.

Table 3-6 shows which combinations of BE3#-BEO# require two bus cycles and the
states of BE3#-BEO# for each cycle.

In some cases, 16-bit cycles maybe performed without using BSI6#. Address pipelining
may be used as follows for these. cycles_

• BSI6# is not needed for cycles that use only DIS-DO.

• BSI6# is not needed for a word-aligned 16-bit write. For write cycles, all 32 bits of
the data bus are driven regardless of bus size.

3-21

LOCALBU51NTERFACE

Table 3-S. Generation of BHE#, BLE#, and A1 from Byte Enables

InteI386'· OX Microprocessor Signals 16-Bit Bus Signals
Comments

BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO)

H* H* H* H* x x x x - no active bytes
H H H, L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* x x , x x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* x x x x-not contiguous bytes
L* H* L* H* x x x x-not contiguous bytes
L* H* L* L* x x x x - not contiguous bytes
L L H H H L L
L* L* H* L* x ' x x x - not contiguous bytes
L L L H L L H
L L L L L L L

BLE# asserted when 00-07 of 16-bit bus is active.
BHE# asserted when 08-015 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.

Key:
x = don't care
H = high voltage level
L = low voltage level
* = a non-occurring pattern of Byte Enables; either none are asserted, or the pattern has Byte

Enables asserted for non-contiguous bytes

Table 3-6. Byte Enables during B516 Cycles

First Cycle Second Cycle

!3E3# BE2# BE1# BEO# BE3# BE2# BE1# BEO#

High High High Low No second cycle

High High Low High No second cycle

High High Low Low No second cycle

High Low High High No second cycle

High Low Low High High Low High High

High Low Low Low High Low High High

Low High High High No second cycle

Low Low High High No second cycle

Low Low Low High Low Low High High

Low Low Low Low Low Low High High

3-22

lOCAL BUS INTERFACE

3.2 BUS TIMING

This section describes timing requirements for read cycles, write cycles, and the
READY# signal.

All Inte1386 DX microprocessor signals have setup and hold time requirements relative
to CLK2. The timings of certain signals relative to one another depends on whether
address pipelining is used. These facts must be considered when determining external
logic needed to facilitate bus cycles.

The analyses that follow are based on the assumption that a 20-MHz Intel386 DX micro­
processor is used. If the processor is operated at a different frequency, the timings will
change accordingly. Example worst-case signal parameter values from the 386'" DX
Microprocessor Data Sheet (Order Number 231630) are used; consult the most recent
data sheet to confirm these values. Also note that delay times and setup times must be
factored into the timing of system response and interaction with the Inte1386 DX micro­
processor to ensure comfortable margins for all critical timings.

3.2.1 Read Cycle Timing

For read cycles, the minimum amount of time from the output of valid addresses to the
reading of the data bus sets an upper limit on memory access times (including address
decoding time). In a non-pipelined address cycle, this time is

Four ClK2 cycles (at 20 MHz)
- A31-A2 output delay (maximum)
- D31-DO input setup (minimum)

100 nanoseconds
- 30 nanoseconds
- 11 nanoseconds

59 nanoseconds

With address pipelining and no wait states, the address is valid one CLK cycle earlier:

Non-pipelined value
+ One ClK cycle (2 CLK2 cycles)

59 nanoseconds
+ 50 nanoseconds

109 nanoseconds

For both cases above, each wait state in the bus cycle adds 50 nanoseconds.

3.2.2 Write Cycle Timing

For write cycles, the elapsed time from the output of valid address to the end of the cycle
determines how quickly the external logic must decode and latch the address. In a non­
pipe lined address cycle, this time is

Four CLK2 cycles (at 20 MHz)
- A31-A2 output delay (maximum)

(With address pipelining)
(With N wait states)

3-23

100 nanoseconds
- 30 nanoseconds

70 nanoseconds

(+ 50 nanoseconds)
(+ N* 50 nanoseconds)

LOCAL BUS INTERFACE

The minimum amount of time from the output of valid write data by the access device to
the end of the write cycle is the least amount of time external logic has to read the data.
This setup time is

Three CLK2 cycles (at 20 MHz)
- D31-DO output delay (maximum)

(With N wait states)

75 nanoseconds
- 38 nanoseconds

37 nanoseconds

(+ N*50 nanoseconds)

Data outputs are valid beyond the end of the bus cycle. This data hold time is at least

One CLK2 cycle
+D31-DO hold time (minimum)

(Wait states do. not affect this parameter)

25 nanoseconds
+ 4 nanoseconds

29 nanoseconds

Wait states add the same amounts of data-to-end-of-cycle time as they do for read
cycles. (See Section 3.2.1.)

3.2.3 READY# Signal Timing

The ready signal is ignored during the first CLK period (Tl) of each bus cycle and
sampled on the last rising edge of CLK2 in each CLK period thereafter until it is found
active.

The amount of time from the output of valid address signals to the assertion of
READY # to end a bus cycle determines how quickly external logic must generate the
READY# signal. READY# must meet the Inte1386 DX microprocessor setup time. In
a nonpipelined address cycle, READY # signal timing is as follows:

Four CLK2 cycles 100 nanoseconds
- A31-A2 output delay (maximum) - 30 nanoseconds
-READY# setup (minimum) - 12 nanoseconds

(With address pipelining)
(With N wait states)

58 nanoseconds

(+ 50 nanoseconds)
(+ N* 50 nanoseconds)

Again, pipelining and wait states increase this amount of time.

Because the efficiency of a cache depends upon quick turnaround of cache hits (i.e.,
when requested data is found in the cache) the timing of the READY # signal is critical;
therefore, READY # is typically generated combinationally from the cache hit compar­
ator. If the READY# signal is returned too slowly, the speed advantage of the cache
is lost.

3-24

lOCAL BUS INTERFACE

3.3 CLOCK GENERATION

3.3.1 Clock Timing

The CLK2 and CLK outputs of the clock generator are both MOS-Ievel outputs with
output high voltage levels of Vcc-0.6V and adequate drive for TTL inputs.CLK2 is
twice the frequency of CLK.

The internal CLK signal of the Intel386 DX microprocessor is matched to the external
CLK output by the falling edge of the RESET signal. This operation is described with
the RESET function in Section 3.7.

The skew between CLK2 and CLK signals is maintained at 0 nanoseconds (regardless of
clock frequency). For closely timed interfaces, peripheral devices must be timed by
CLK2. Devices that cannot be operated at the double-clock frequency must use the CLK
output. The Inte1386 DX microprocessor interface to these devices must allow for the
CLK2-to-CLK skew.

The phase of the CLK output is useful for determining the beginning of a bus cycle.
Because each CLK2 cycleis 25 nanoseconds (at CLK2 = 40 MHz), and bus status signal
delays may be as much as 32 nanoseconds, it is impossible to tell from these status
signals alone which CLK2 cycle begins the bus cycle, and therefore when to expect valid
address signals. The phase of CLK can be used to make this determination. ADS#
should be sampled on rising CLK2 transitions when CLK is high, i.e., at the end of
phase 2 (see Figure 3-15).

25n.~ ~l I I I
I I I I I I

ClK2 m1...R1-uuL
I-l RISING EDGE
I . I QUALIFIER

ClK

ADS8

NOTE: TIMES ARE GIVEN FOR THE 20·MHz InteI386'" OX CPU

231732i3-15

Figure 3-15. Using ClK to Determine Bus Cycle Start

3-25

LOCAL BUS INTERFACE

3.3.2 Crystal Oscillator Clock Generator

Figure 3-16 shows a clock generator circuit for the Intel386 DX microprocessor. It is
implemented with TTL and CMOS components. It provides the CLK2, CLK, and
RESET signals needed by the Intel386 DX microprocessor and local bus controller. The
CLK2 signal provides the fundamental timing for the Intel386 DX microprocessor and is
generated by a CMOS crystal oscillator. This oscillator must have a CMOS output buffer
guaranteed compatible with the Inte1386 DX microprocessor CLK2 input. A 74F109
flip-flop divides CLK2 by two to generate CLK. CLK has the same phase as the
Intel386 DX microprocessor internal clock, going low during phase 1 and high during
phase 2. A 74F379 generates a synchronous RESET output, ensuring that the falling
edge of RESET occurs during phase 2.

This circuit is recommended for designs up to 25 MHz. The timings of the 74F109 and
74F379 prohibit the use of this circuit at 33 MHz. In this case, the function of the circuit
may be implemented in an E-series PAL or 85C220-80 PLD.

The recommended circuit does not implement ADS# synchronization. The ADS# syn­
chronizer is not necessary if all registered PLDs in the local bus controller use CLK2.
Clocking PLDs with CLK2 (rather than CLK) is the preferred method since it minimizes
skew between the processor and its surrounding logic. If it is necessary to have an
address status signal synchronous to CLK, then an ADS# synchronizer may be built
using a delay line and flip-flop, as shown in Figure 3-17.

32.000 MHZ
OR 40.000 MHZ
OR 50.000 MHZ

CMOS
OSCillATOR

8

4 '-1-0 .;..74;.;.,F3;.;,7.;,.9 --. 2

5 20

12 3D

13 40

9 CK

1 G

10
30
_ 11
30
40 15

4Q 14

Figure 3-16. Clock Generator

3-26

ClK2

ClK

RESET

231732i3·16

ADS

ClK

LOCAL BUS INTERFACE

10NS

11

PR
14 J

12 CK

13 K

15

74F109

10
QI--'---I

9
Q

Figure 3-17. ADS# Synchronizer

ADSO

231732i3-17

An alternative method of generating CLK2 is to use a TTL oscillator coupled to a
74ACT244 buffer. Altliough a typical 74ACT244 datasheet does not guarantee an output
compatible with the Intel386 DX microprocessor CLK2 input, some manufacturers
devices have been observed to have sufficiently fast rise/fall times (4 ns at CL = 80 pf), as
well as the necessary swing, to meet the Inte1386 DX microprocessor CLK2 require­
ments. This approach is recommended if the Inte1386 DX microprocessor must run
synchronously with an external clock (i.e., EFI). Similarly, if a CMOS level swing is
required on CLK, a 74AC109 flip-flop may be used instead of the 74F109.

3.4 INTERRUPTS

Both hardware-generated and software-generated interrupts can alter the programmed
execution of the Inte1386 DX microprocessor. A hardware-generated interrupt occurs in
response to an active input on one of two Intel386 DXmicroprocessor interrupt request
inputs (NMI or INTR). A software-generated interrupt occurs in response to an INT
instruction or an exception (a software condition that requires servicing). For complete
information on software-generated interrupts, see the 386"1 DX Microprocessor Program­
mer's Reference Manual.

In response to an interrupt request, the Inte1386 DXmicroprocessor processes the inter­
rupt (saves the processor state on the stack, plus task information if a task switch is
required) and services the interrupt (transfers program execution to one of 256 possible
interrupt service routines). Entry-point descriptors to service routines or interrupt tasks
are stored in a table (Interrupt Descriptor Table orIDT) in memory. To access a par­
ticular service routine, the Inte1386 DX microprocessor must obtain a vector, or index, to
the table location that contains the corresponding descriptor. The source of this vector

3-27

LOCAL BUS INTERFACE

depends on the type of interrupt; if the interrupt is maskable (INTR input active), the
vector is supplied by the 8259A Interrupt Controller. If the interrupt is nonmaskable
(NMI input active), location 2 in the IDT is used automatically.

The NMI request and the INTR request differ in that the Intel386 DX microprocessor
can be programmed to ignore INTR requests (by clearing the interrupt flag of the
Intel386 DX microprocessor). An NMI request always provokes a response from the
Inte1386 DX microprocessor unless the Intel386 DX microprocessor is already servicing
a previous NMI request. In addition, an INTR request causes the Intel386 DX micro­
processor to perform two interrupt-acknowledge bus cycles to fetch the service-routine
vector. These bus cycles are not required for an NMI request, because the vector loca­
tion for an NMI request is fixed.

Under the following two conditions a service routine will not be interrupted by an
incoming interrupt:

• The incoming interrupt is an INTR request, and the Intel386 DX microprocessor is
programmed to ignore maskable interrupts. (The Intel386 DX microprocessor is
automatically programmed to ignore maskable interrupts when it receives any inter­
rupt request. This condition may be changed by the interrupt service routine.) In this
case, the INTR request will be serviced only if it is still active when maskable inter­
rupts are reenabled.

• The incoming interrupt is an NMI, and the Inte1386 DX microprocessor is servicing a
previous NMI. In this case, the NMI is saved automatically to be processed after the
IRET instruction in the NMI service routine has been executed. Only one NMI can
be saved; any others that occur while the Intel386 DX microprocessor is servicing a
previous NMI will not be recognized.

If neither of the above conditions is true, and an interrupt occurs while the Intel386 DX
microprocessor is servicing a previous interrupt, the new interrupt is processed and ser­
viced immediately. The Intel386 DX microprocessor then continues with the previous
service routine. The last interrupt processed is the first one serviced.

If an NMI request and an INTR request arrive at the Inte1386 DX microprocessor
simultaneously, the NMI request is processed first. Multiple hardware interrupts arriving
at the 8259A are processed according to their priority and are sent to the Intel386 DX
microprocessor INTR input one at a time. ,

3.4.1 Non-Maskable Interrupt (NMI)

The NMI input of the Intel386 DX microprocessor generally signals a catastrophic
event, such as an imminent power loss, a memory error, or a bus parity error. This input
is edge-triggered (on a low-to-high transition) and asynchronous. A valid signal is low for
eight CLK2 periods before the transition and high eight CLK2 periods after the transi­
tion. The NMI signal can be asynchronous to CLK2.

3-28

LOCAL BUS INTERFACE

An NMI request automatically causes the Inte1386 DX microprocessor to execute the
service routine corresponding to location 2 in the IDT. The Intel386 DX microprocessor
will not service subsequent NMI requests until the current request has been serviced.
The Inte1386 DX microprocessor disables INTR requests (although these can be reen­
abled in the service routine) in Real Mode. In Protected Mode, the disabling of INTR
requests depends on the gate in IDT location 2.

3.4.2 Maskable Interrupt (INTR)

The INTR input of the Inte1386 DX microprocessor allows external devices to interrupt
Inte1386 DX microprocessor program execution. To ensure recognition by the
Intel386 DX microprocessor, the INTR input must be held high until the Inte1386 DX
microprocessor acknowledges the interrupt by performing the interrupt acknowledge
sequence. The INTR input is sampled at the beginning of every instruction; it must be
high at least eight CLK2periods prior to the instruction to guarantee recognition as a
valid interrupt. This requirement reduces the possibility of false inputs from voltage
glitches. In addition, maskable interrupts must enabled in software for. interrupt recog­
nition. The INTR input may be asynchronous to CLK2.

The INTR signal is usually supplied by the 8259A Programmable Interrupt Controller,
which in tum is connected to devices that require interrupt servicing. The 8259A, which
is controlled by commands from the Intel386 DX microprocessor (the 8259A appears as
a set of I/O ports), accepts interrupt requests from devices connected to the 8259A,
determines the priority for transmitting the requests to the Intel386 DX microprocessor,
activates the INTR input, and supplies the appropriate service routine vector when
requested.

An INTR request· causes the Intel386 DX microprocessor to execute two back-to-back
interrupt acknowledge bus cycles, as described earlier in Section 3.1.7. .

3.4.3 Interrupt Latency

The time that elapses before an interrupt request is serviced (interrupt latency) varies
according to several factors. This delay must be taken into account by the interrupt
source. Any of the following factors can affect interrupt latency:

• If interrupts are masked, an INTR request will not be recognized until interrupts are
reenabled.

• If an NMI is currently being serviced, an incoming NMI request will not be recog­
nized until the Inte1386 DX microprocessor encounters the IRET instruction.

• If the Intel386 DX microprocessor is currently executing an instruction, the instruc­
tion must be completed. An interrupt request is recognized oI).ly on an instruction
boundary. (However, Repeat String instructions can be interrupted after each
iteration.)

3-29

LOCAL BUS INTERFACE

• Saving the Flags register and CS:EIP registers (which contain the return address)
requires time.

• If interrupt servicing requires a task switch, time must· be allowed for saving and
restoring registers.

• If the interrupt service routine saves registers that are not automatically saved by the
Intel386 DX microprocessor, these instructions also delay the beginning of interrupt
servicing.

The longest latency occurs when the interrupt request arrives while the Intel386 DX
microprocessor is executing a long instruction such as multiplication, division, or a task­
switch in the Protected mode.

If the instruction loads the Stack Segment register, an interrupt is not processed until
after the following instruction, which should be an ESP load. This allows the entire stack
pointer to be loaded without interruption.

If an instruction sets the interrupt flag (thereby enabling interrupts), an interrupt is not
processed until after the next instruction.

3.5 BUS LOCK

In a system in which more than one device may control the local bus, locked cycles must
be used when it is critical that two or more bus cycles follow one another immediately.
Otherwise, the cycles can be separated by a cycle from another bus master.

Any bus cycles that must be performed back-to-back without any intervening bus cycles
by other bus masters should be locked. The use of a semaphore is one example of this
precept. The value of a semaphore indicates a condition, such as the availability of a
device. If the Inte1386 DX microprocessor reads a semaphore to determine that a device
is available, then writes a new value to the semaphore to indicate that it intends to
take control of the device, the read cycle and write cycle should be locked to prevent
another bus master from reading from or writing to the semaphore in between the two
cycles. The erroneous condition that could result from unlocked cycles is illustrated in
Figure 3-18.

The LOCK# output of the Intel386 DX microprocessor signals the other bus masters
that they may not gain control of the bus. In addition, an Intel386 DX microprocessor
with LOCK# asserted will not recognize a HOLD request from another bus master.

3.5.1 Locked Cycle Activators

The LOCK# signal is activated explicitly by the LOCK prefix on certain instructions.
LOCK# is also asserted automatically for an XCHG instruction, a descriptor update,
interrupt acknowledge cycles, and a page table update.

3-30

LOCAL BUS INTERFACE

BUS MASTER 1
READS

VALUE 0 = NOT BUSY

BUS MASTER 1
WRITES

VALUE 1 = BUSY

BUS MASTER 1
HAS CONTROL

OF DEVICE

SEMAPHORE

-EJj
-8

NO ERROR

SEMAPHORE

BUS MASTER 1 r::1
READS -~

VALUE O=NOT BUSY /

/

LOCKED
CYCLES

BUS MASTER 2
READS

VALUE 1 = BUSY

BUS MASTER 2
WAITS FOR

VALUE TO CHANGE

UNLOCKED / r;;1_
CYCLES \ L.:J

BUS MASTER 2
READS

VALUE 0 = NOT BUSY
\

\
BUS MASTER 1 EJ

WRITES - 1
VALUE 1 = BUSY

EJ-- BUS MASTER 2
WRITES

VALUE 1 = BUSY

ERROR
BOTH BUS MASTERS

TRY TO CONTROL DEVICE

Figure 3-18. Error Condition Caused by Unlocked Cycles

3.5.2 Locked Cycle Timing

231732i3-18

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle. LOCK# is
deactivated when READY # is sampled low at the end of the last bus cycle to be locked.

LOCK# is activated and deactivated on these CLK2 edges whether or not address pipe­
lining is used. If address pipelining is used, LOCK# will remain active until after the
address bus and bus cycle status signals have been asserted for the pipe lined. cycle.
Consequently, the LOCK# signal can extend into the next memory access cycle that
does not need to be locked. (See Figure 3-19.) The result is that the use of the bus by
another bus master is delayed by one bus cycle.

3-31

ClK

BE3#-BEO#
A31-A2

lOCK#

NA#

READY#

LOCAL BUS INTERFACE

UNLOCKED lOCKED lOCKED UNLOCKED
BUS CYCLE BUS CYCLE BUS CYCLE BUS CYCLE

Figure 3-19. LOCK# Signal during Address Pipelining

3.5.3 LOCK# Signal Duration

231732i3-19

The maximum duration of the LOCK# signal affects the maximum HOLD request
latency because HOLD is not recognized until LOCK# goes inactive. The duration of
LOCK# depends on the instruction being executed and the number of wait states per
cycle.

The longest duration of LOCK# in real mode is two bus cycles plus approximately two
clocks. This occurs during the XCHG instruction and in LOCKed read-modify-write
operations. The longest duration of LOCK# in protected mode is five bus cycles plus
approximately fifteen clocks. This occurs when an interrupt (hardware or software inter­
rupt) occurs and the Intel386 DX microprocessor performs a LOCKed read of the gate
in the IDT (8 bytes), a read of the target descriptor (8 bytes), and a write of the accessed
bit in the target descriptor.

3.6 HOLD/HLDA (Hold Acknowledge)

The Inte1386 DX microprocessor provides on-chip arbitration logic that supports a pro­
tocol for transferring control of the local bus to other bus masters. This protocol is
implemented through the HOLD input and HLDA output.

3-32

LOCAL BUS INTERFACE

3.6.1 HOLD/HLDA Timing

To gain control of the local bus, the requesting bus master drives the Inte1386 DX
microprocessor HOLD input active. This signal must be synchronous to the CLK2 input
of the Inte1386 DX microprocessor. The Inte1386 DX microprocessor responds by com­
pleting its current bus cycle (plus a second locked cycle or a second cycle required by
BS16#). Then the Intel386 DX microprocessor sets all outputs but HLDA to the three­
state OFF condition to effectively remove itself from the bus and drives HLDA active to
signal the requesting bus master that it may take control of the bus.

The requesting bus master must maintain HOLD active until it no longer needs the bus.
When HOLD goes low, the Inte1386 DX microprocessor drives HLDA low and begins a
bus cycle (if one is pending).

For valid system operation, the requesting bus master must not take control of the bus
before it receives the HLDA signal and must remove itself from the bus before
de-asserting the HOLD signal. Setup and hold times relative to CLK2 for both rising and
falling transitions of the HOLD signal must be met.

When the Inte1386 DX microprocessor receives an active HOLD input, it completes the
current bus cycle before relinquishing control of the bus. Figure 3-20 shows the state
diagram for the bus including the HOLD state.

During the HOLD state, the Inte1386 DX microprocessor can continue executing
instructions in its Prefetch Queue. Program execution is delayed if a read cycle is needed
while the Intel386 DX microprocessor is in the HOLD state. The Intel386 DX micro­
processor can queue one write cycle internally, pending the return of bus access; if more
than one write cycle is needed, program execution is delayed until HOLD is released
and the Inte1386 DX microprocessor regains control of the bus.

HOLD has priority over most bus cycles, but HOLD is not recognized between two
interrupt acknowledge cycles, between two repeated cycles of a BS16 cycle, or during
locked cycles. For the Inte1386 DX microprocessor, HOLD is recognized between two
cycles required for misaligned data transfers; for the 8086 and 80286 HOLD it is not
recognized. This difference should be considered if critical misaligned data transfers are
not locked.

HOLD is not recognized while RESET is active, but is recognized during the time
between the high-to-Iow transition of RESET and the first instruction fetch.

All inputs are ignored while the Inte1386 DX microprocessor is in the HOLD state,
except for the following:

• HOLD is monitored to determine when the Inte1386 DX microprocessor may regain
control of the bus.

• RESET takes precedence over the HOLD state. An active RESET input will reini­
tialize the Intel386 DX microprocessor.

• One NMI request is recognized and latched. It is serviced after HOLD is released.

3-33

LOCAL BUS INTERFACE

HOLD SSERTED

Bus States:

READY" ASSERTED­
HOLD NEGATEO­

NO REOUEST

T1-fjrst clock of a non·pipelined bus cycle (80386 drives new address 811d '
asserts ADS #).
T2-subsequenl clocks of a bus cycle when NA # has not been sampled
asserted in the current bus cycle.
T21-subsequent clocks of a bus cycle when NA # has been sampled as­
serted in the current bus cycle but there is not yet an internal bus request
pending (80386 will not drive new address or assert ADS #).
T2P-subsequent clocks of a bus cycle when NA' has been sampled
asserted in the current bus cycle and there is an internal bus request pend­
ing (80386 drives new address and asserts ADS').
T1 P-first clock 01 a pipe lined bus cycle.
Ti-idle state.
Th-hold acknowledge state (80386 asserts HLDA).
Asserting NA #" for pipelined address gives access to three more bus
states: T21, T2P and T1 P.
Using pipelirfed address, the fastest bus cycle consists of T1 P and T2P.

READY# NEGAT[O

Figure 3-20. Bus State Diagram with HOLD State

3.6.2 HOLD Signal Latency

231732i3-20

Because other bus masters such as DMA controllers are typically used in time-.critical
applications, the amount of time the bus master must wait (latency) for bus access can be
a critical design consideration.

The minimum possible latency occurs when the Inte1386 DX microprocessor receives the
HOLD input during an idle cycle. HLDA is asserted on the CLK2 rising edge following
the HOLD active input (synchronous to CLK2).

Because a bus cycle must be terminated before HLDA can go active, the maximum
possible latency occurs when a bus-cycle instruction is being executed. Wait states
increase latency, and HOLD is not recognized between locked bus cycles, repeated
cycles due to BS16#, and interrupt acknowledge cycles.

3-34

LOCAL BUS INTERFACE

3.6.3 HOLD State Pin Conditions

LOCK#, M/IO#, D/C#, W/R#, ADS#, A31-A2, BE3#-BEO#, and D31-DO enter the
three-state OFF condition in the HOLD state. Note that external pullup resistors may
be required on ADS#, LOCK# and other signals to guarantee that they remain inactive
during transitions between bus masters.

3.7 RESET

RESET starts or restarts the Inte1386 DX microprocessor. When the Intel386 DX micro­
processor detects a low-to-high transition on RESET, it terminates all activities. When
RESET goes low again, the Intel386 DX microprocessor is initialized to a known inter­
nal state and begins fetching instructions from the reset address.

3.7.1 RESET Timing

The clock generator generates the RESET signal to initialize the Inte1386 DX micropro­
cessor and other system components.

The RESET input of the Intel386 DX microprocessor must remain high for at least 15
CLK2 periods to ensure proper initialization (at least 80 CLK2 periods if self-test is to
be performed). The CLK output of the clock generator is initialized with the rising edge
of RESET. When RESET goes low, the Inte1386 DX microprocessor adjusts the falling
edge of its internal clock (CLK) to coincide with the start of the first CLK2 cycle after
the high-to-Iow transition of RESET. The clock generator times the high-to-Iow edge of
RESET (synchronous to CLK2) so that the phase of the internal CLK of the Inte1386
DX microprocessor matches the phase of the CLK output of the clock generator. This
relationship is shown in Figure 3-21.

On the high-to-Iow transition of RESET, the BUSY# pin is sampled. If BUSY# is low,
the Inte1386 DX microprocessor will perform a self-test lasting approximately 220 + 60
CLK2 cycles before it begins executing instructions. The· Inte1386 DX microprocessor
continues with initialization after the test, regardless of the test results.

The Intel386 DX microprocessor fetches its first instruction from linear address
OFFFFFFFOH, sometime between 350 and 450 CLK2 cycles after the high-to-Iow tran­
sition of RESET (or, if self-test is performed, after completion of self-test). Because
paging is disabled, linear address OFFFFFFFOH is the same as physical address
OFFFFFFFOH. This location normally contains a JMP instruction to the beginning of the
bootstrap program.

3.7.2 Intel386 OX Microprocessor Internal States

RESET should be kept high for at least one millisecond after Vee and CLK2 have
reached their DC and AC specifications.

3-35

lOCAL BUS INTERFACE

CLK2 [

RES# [~'----------5S 5 mml
THE CLOCK GENERATOR ENSURES THAT

ITS RESET OUTPUT FALLING EDGE
OCCURS DURING PHASE lWO

RESET [____ --1/,.-------SS 5-5 ------..... {'--____ _

1386N ox CPU ASSUMES RESET
FALLING EDGE OCCURS DURING

PHASE lWO, AND SETS ITS
OWN INTERNAL PHASE TO MATCH

231732i3-21

Figure 3-21. RESET, ClK; and ClK2 Timing

The Intel386 DX microprocessor samples its ERROR# input during initialization to
determine the type of processor extension present in the system. This sampling occurs at
some time at least 20 CLK2 periods after the high-to-Iow transition of RESET and
before the first instruction fetch. If the ERROR# input is low, the Intel386 DX micro­
processor assumes that an Intel387 DX math coprocessor is being used, and the pro­
grammer must issue a command (FINIT) to reset the ERROR# input after
initialization. If ERROR# is high no processor extension is assumed.

3.7.3 Intel386 OX Microprocessor External States

RESET causes the Inte1386 DX microprocessor output pins to enter the states shown in
Table 3-7. Data bus pins enter the three-state condition.

Prior to its first instruction fetch, the Inte1386 DX microprocessor makes no internal
requests to the bus, and, therefore, will relinquish bus control if it receives a HOLD
request (see Section 3.6 for a complete description of HOLD cycles).

Interrupt requests (INTR and NMI) are not recognized before the first instruction fetch.

Table 3-7. Output Pin States during RESET

Pin Name Pin State

LOCK#, O/C#, AOS#, A31-A2 High

W/R#, M/IO#, HLOA, BE3#-BEO# Low

031-00 Three-State

3-36

Performance Considerations 4

CHAPTER 4
PERFORMANCE CONSIDERATIONS

System performance measures how fast a microprocessing system performs a given task
or set of instructions. Through increased processing speed and data throughput, a
Inte1386 DX microprocessor operating at the heart of a system can improve overall
performance immensely. The design of supporting logic and devices for efficient inter­
action with the Intel386 DX microprocessor is also important in optimizing system
performance.

This chapter describes consideratiQns for achieving high performance in Intel386 DX
microprocessor-based systems. A variety of examples illustrate the potential perfor­
mance levels for a number of applications. Two general methods can be used to match .'
the speed of the Intel386 DX CPU to external devices: bus cycle timing or caches. Bus
cycle timing includes wait states and pipelining option. Chapter 7· discusses caches.

4.1 WAIT STATES AND PIPELINING

Because a system may include devices·whose response is slow relative to the Inte1386 DX
microprocessor bus cycle, the overall system performance is often less than the potential
performance of the Inte1386 DX microprocessor. Two techniques for accommodating
slow devices are wait states and address pipelining. The designer must consider how to
use one or both of these techniques to minimize the impact of device performance on
system performance.

The impact of memory device speed on performance is generally much greater than that
of I/O device speed because most programs require more memory accesses than I/O
accesses. Therefore, the following discussion focuses on memory performance.

Wait states are extra CLK cycles added to the Inte1386 DX microprocessor bus cycle.
External logic generates wait states by delaying the READY # input to the Intel386 DX
microprocessor. For an Intel386 DX microprocessor operating at 33 MHz, one wait state
adds 30 nanoseconds to the time available for the memory to respond. Each wait state
increases the bus cycle time by 50 percent of the zero wait-state cycle time; however,
overall system' performance does not vary in direct proportion to the bus cycle increase.
The second column of Table 4-1 shows the performance impact (based on an example
simulation) for memory accesses requiring different numbers of wait states; one wait
state results in an overall performance decrease of 19 percent.

Unlike a wait state, address pipelining increases the time that a memory has to respond
by one CLK cycle without lengthening the bus cycle. This extra CLK cycle eliminates the
output qelay of the Inte1386 DX microprocessor address and status outputs. Address
pipelining overlaps the address and status outputs of the next bus cycle with the end of
the current bus cycle, lengthening the address access time by one or more CLK cycles
from the, point of view of the accessed memory device. An access that requires two wait

4-1

PERFORMANCE CONSIDERATIONS

Table 4-1. Intel386™ DX Microprocessor Performance with Wait States and Pipelining

Wait States Wait States Performance Relative
Bus

When Address When Address to Non-Pipelined
Utilization

is Pipelined is Not Pipelined o Wait-State

0 0 1.00 73%

0 1 0.91 79%

1 1 0.81 86%

1 2 0.76 89%

2 2 0.66 91%

2 3 0.63 92%

3 3 0.57 93%

states without address pipelining would require one wait state with address pipelining.
The third column of Table 4-1 shows performance with pipelining for different wait-state
requirements.

Address pipelining is advantageous for most bus cycles, but if the next address is not
available before the current cycle ends, the Intel386 OX microprocessor cannot pipeline
the next address, and the bus timing is identical to a non-pipelined bus cycle. Also, the
first bus cycle after an idle bus must always be non-pipelined because there is no previ­
ous cycle in which to output the address early. If the next cycle is to be pipelined, the
first cycle must be lengthened by at least one wait state so that the address can be output
before the end of the cycle.

With the Inte1386 OX microprocessor, address pipelining is optional so that bus cycle
timing can be closely tailored to the access time of the memory device; pipelining can be
activated once the address is latched externally or not activated if the address is not
latched.

The Intel386 OX microprocessor NA# input controls address pipelining. When the sys­
tem no longer requires the Inte1386 OX microprocessor to drive the address of the
current bus cycle (in most systems, when the address has been latched), the system can
activate the Inte1386 OX microprocessor NA# input. The Intel386 OX microprocessor
outputs the address and status signals for the next bus cycle on the next eLK cycle.

The system must activate the NA# signal without knowing which device the next bus
cycle will access. In an optimal Intel386 OX microprocessor system, address pipe lining
should be used even for fast memory that does not require pipelining, because if a fast
memory access is followed by a pipelined cycle to slower memory, one wait state is saved.
If a fast memory access is followed by another fast memory access, the extra time is not
used, and no processor time is lost. Therefore, all devices in a system must be able to
accept both pipelined and non-pipe lined cycles.

4-2

PERFORMANCE CONSIDERATIONS

Consider a system in which a non-pipelined memory access requires one wait state and a
non-pipelined I/O access requires four wait states. The bus control logic reads chip select
signals from the address decoder to determine whether one or four wait states are
required for the bus cycle. The bus control logic also determines whether the address has
been pipelined, because a pipelined cycle requires one less wait state. The system
includes logic for generating a Bus Idle signal that indicates whether the bus cycle has
ended. The bus control logic can therefore detect that the address has been pipe lined if
the Address Status (ADS#) signal goes active while the Bus Idle signal is inactive.

Address pipelining is less effective for I/O devices requiring several wait states. The
larger the number of wait states required, the less significant the elimination of one wait
state through pipelining becomes. This fact coupled with the relative infrequency of I/O
accesses means that address pipelining for I/O devices usually makes little difference to
system performance.

A third and less common approach to accommodating memory speed is reducing the
Intel386 DX microprocessor operating frequency. Because a slower clock frequency
increases the bus cycle time, fewer wait states may be required for particular memory
devices. At the same time, however, system performance depends directly on the'
Inte1386 DX microprocessor clock frequency; execution time increases in direct propor­
tion to the increase in clock period (reduction in clock frequency).

The design and application determine whether frequency reduction makes sense. In
some instances, a slight reduction in clock frequency reduces the wait-state requirement
and increases system performance. Table 4-2 shows that a 25-MHz Inte1386 DX micro­
processor operating with zero wait states yields better performance than a 33-MHz
Inte1386 DX microprocessor operating with two wait states.

Table 4-2. Performance versus Wait States and Operating Frequency

Number of 33 MHz Without 33 MHz with 25 MHz Without 25 MHz With
Wait States Pipelining Pipelining Pipelining Pipelining

0 1.00 0.91 0.76 0.69

1 0.81 0.76 0.61 0.56

2 0.66 0.63 0.50' 0.48

3 0.57 -, 0.43 -

4-3

Coprocessor Hardware 5
Interface

CHAPTER 5
COPROCESSOR HARDWARE INTERFACE

A numeric coprocessor enhances the performance of an Inte1386 DX microprocessor
system by performing numeric instructions in parallel with the Inte1386 DX microproces­
sor. The Inte1386 DX microprocessor automatically passes on these instructions to the
coprocessor as it encounters them.

The Intel387 DX math coprocessor performs 32-bit data transfers and interfaces directly
with the Intel386 DX microprocessor. The Inte1387 DX math coprocessor supports the
instruction set of both the 80287 and the 8087, offering additional enhancements that
include full compatibility with the IEEE Floating-Point Standard, 754-1985. The perfor­
mance of a 16-MHz Intel387 DX math coprocessor is about eight times faster than that
of a 5-MHz 80287.

The Intel386 DX microprocessor samples its ERROR# input during initialization to
determine if a coprocessor is present. Very little logic or board space is required to
support a numerics option. The math coprocessor can be an option. A socket can be
designed on the board such that the Intel387 DX math coprocessor is a user installed
option.

Data transfers to and from a coprocessor are accomplished through I/O addresses
800000F8H and 800000FCH; these addresses are automatically generated by the
Inte1386 DX microprocessor for coprocessor instructions and allow simple chip-select
generation using A31 (high) and M/IO# (low). Because A31 is high for coprocessor
cycles, the coprocessor addresses lie outside the range of the programmed I/O address
space and are easy to distinguish from programmed I/O addresses. Coprocessor usage is
independent of the I/O privilege level of the Intel386 DX microprocessor.

The Intel386 DX microprocessor has three input signals for controlling data transfer to
and from an Intel387 DX math coprocessor: BUSY#, Processor Extension Request
(PEREQ), and ERROR#. These signals, which are level-sensitive and may be asynchro­
nous to the CLK2 input of the Inte1386 DX microprocessor, are described as follows:

• BUSY # indicates that the coprocessor is executing an instruction and therefore can­
not accept a new one. When the Intel386 DX microprocessor encounters any copro­
cessor instruction except FNINIT and FNCLEX, the BUSY # input must be inactive
(high) before the coprocessor accepts the instruction. A new instruction therefore
cannot overrun the execution of the current coprocessor instruction. (Certain
Inte1387 DX math coprocessor instructions can be transferred when BUSY # is active
(low). These instructions are queued and do not interfere with the current
instruction.)

• PEREQ indicates that the coprocessor needs to transfer data to or from memory.
Because the coprocessor is never a bus master, all input and output data transfers are
performed by the Intel386 DX microprocessor. PEREQ always goes inactive before
BUSY # goes inactive.

5-1

COPROCESSOR HARDWARE INTERFACE

• ERROR# is asserted after a coprocessor math instruction results in an error that is
not masked by the coprocessor's control register. The data sheets for the Intel387 DX
math coprocessor describe these errors and explain how to mask them under program
control. If an error occurs, ERROR# goes active before BUSY # goes inactive, so
that the Intel386 DX microprocessor can take care of the error before performing
another data transfer.

5.1 Intel387 OX MATH COPROCESSOR INTERFACE

The Intel387 DX math coprocessor achieves significant enhancements in performance
and instruction capabilities over the 80287. To achieve maximum speed, the interface
with the Inte1386 DX microprocessor is synchronous and includes a full 32-bit data bus.
Detailed information on other Inte1387 DX math coprocessor enhancements can be
found in the 381'" DX Math Coprocessor Data Sheet.

The Intel387 DX math coprocessor is designed to run either fully synchronously or
pseudosynchronously with the Intel386 OX microprocessor. In the pseudosynchronous
mode, the interface logic of the Intel387 OX math coprocessor runs with the clock signal
of the Inte1386 DX microprocessor, whereas internal logic runs with a different clock
signal.

5.1.1 Intel387 OX Math Coprocessor Connections

The connections between the Intel386 DX microprocessor and the Inte1387 DX math
coprocessor are shown in Figure 5-1 and are described as follows:

• The Intel387 DX math coprocessor BUSY#, ERROR#, and PEREQ outputs are
connected to corresponding Inte1386 DX microprocessor inputs.

• The Intel387 DX math coprocessor RESETIN input is connected to the system's
RESET signal.

• The Intel387 DX math coprocessor Numeric Processor Select chip-sel~ct inputs
(NPS1# and NPS2) are connected directly to the Intel386 DX microprocessor
M/IO# and A31 outputs, respectively. For coprocessor cycles, M/IO# is always low;
A31, high.

• The Intel387 DX math coprocessor Command (CMDO#) input differentiates data
from commands. This input is connected directly to the Inte1386 DX microprocessor
A2 output. The Inte1386 DX microprocessor outputs address 800000F8H when writ­
ing a command or reading status, address 800000FCH when writing or reading data.

• All 32 bits (D31-DO) of the Inte1386 DX microprocessor data bus connect directly to
the data bus of the Intel387 DX math coprocessor. Because the data lines are con­
nected directly, any local data bus transceivers must be disabled when the
Intel386 DX microprocessor reads data from the Intel387 DX math coprocessor.

5-2

COPROCESSOR HARDWARE INTERFACE

FROM OTHER PERIPHERALS

ADSO# r- ~>- CKM

i387'" OX NPX • CLOCK CLOCK
GENERATOR GENERATOR 387CLK2

(OPTIONAL)

CLK2 386ClK2

ClK
RESET RESET IN

READY#

ADS#

WAIT STATE -GENERATOR
(OPTIONAL)

AND OR lOGIC
READYO#

t i387'" OX
MATH COPROCESSOR

HLDA :.....-. DIC# - RESET
lOCK# :.....-.

~ READY#
BEO#-BE3# --i..-...-....., CLK2 -- BS16# MIIO# NPS1# -- NA# A31 NPS2 -- HOLD A30-A3 -- J -- INTR A2 CMD#

1386'" OX -- NMI WIR# WIR#

ADS# ADS# STEN
32

00-031 D~-D31

BUSY# BUSY#

ERROR# ERROR#

PEREQ PEREQ

231732i5-1

Figure 5-1. InteI386'" OX CPU System with Intel387'M OX Math Coprocessor

5-3

COPROCESSOR HARDWARE INTERFACE

• The Intel387 DX math coprocessor READY#, ADS#, and W/R# inputs are con­
nected. to the corresponding pins on the Intel386 DX microprocessor. READY # and
ADS# are used by the Inte1387 DX math coprocessor to track bus activity and deter­
mine when W/R#, NPS1#, NPS2, and Status Enable (STEN) can be sampled.

• Status Enable (STEN) serves as a chip select for the Inte1387 DX math coprocessor.
This pin is high to enable the Intel387 DX math coprocessor, and may be driven low
to float all Inte1387 DX math coprocessor outputs. STEN may be used to do onboard
testing (using the overdrive method). STEN may also be used to activate one
Inte1387 DX math coprocessor at a time, in systems with multiple Inte1387 DX math
coprocessors. If not needed, STEN should be pulled high.

• Ready Out (READYO#) can be used to acknowledge Intel387 DX math coprocessor
bus cycles. The Intel387 DX math coprocessor activates READYO# at such a time
that write cycles are terminated after two clocks and read cycles are terminated after
three clocks. READYO# can be connected to the Inte1386 DX microprocessor
READY # input through logic that ORs READY # signals from other devices. Alter­
natively, READYO# can .be left disconnected, and external logic can be used to
acknowledge Inte1387 DX math coprocessor bus cycles.

5.1.2 Intel387 OX Math Coprocessor Bus Cycles

When the Inte1386 DX microprocessor encounters a coprocessor instruction, it automat­
ically generates one or more I/O cycles to addresses 800000F8H and 800000FCH. The
Intel386 DX microprocessor will perform all necessary bus cycles to memory and trans­
fer data to and from the Inte1387 DX math coprocessor. All Intel387 DX math copro­
cessor transfers are 32 bits wide. If the memory subsystem is only 16 bits wide, the
Intel386 OX microprocessor automatically performs the necessary conversion before
transferring data to or from the Intel387 DX math coprocessor. Since the Intel387 DX
math coprocessor is a 32-bit device, BS16# must not be asserted during Intel387 DX
math coprocessor communication cycles.

Read cycles (transfers from the Intel387 DX math coprocessor to the Intel386 DX
microprocessor) require at least one wait state, whereas write cycles to the Intel387 DX
math coprocessor require no wait states. This requirement is automatically reflected in
the state of the READYO# output of the Intel387 DX math coprocessor, which can be
used to generate the necessary wait state.

5.1.3 Intel387 OX Math Coprocessor Clock Input

The Intel387 DX math coprocessor can be operated in two modes. In either mode, the
CLK2 signal must be connected to the 386CLK2 input of the Intel387 DX math copro­
cessor because the interface to the Intel386 DX microprocessor is always synchronous.
The state of the Intel387 DX math coprocessor CKM input determines its mode:

• In synchronous mode, CKM is high and the 387CLK2 input is not connected. The
Intel387 DX math coprocessor operates from the CLK2 signal. Operation of the
Intel387 DX math coprocessor is fully synchronous with that of the Intel386 DX
microprocessor.

5-4

COPROCESSOR HARDWARE INTERFACE

• In pseudo-synchronous mode, CKM is low and a frequency source for the 387CLK2
input must be provided. Only the interface logic of the Intel387 DX math coprocessor
is synchronous with the Inte1386 DX microprocessor. The internal logic of the
Intel387 DX math coprocessor operates from the 387CLK2 clock source, whose fre­
quency may be 10/16 to 14/10 times the speed of CLK2. Figure 5-2 depicts pseudo­
synchronous operation.

5.2 LOCAL BUS ACTIVITY WITH THE Intel387 OX MATH
COPROCESSOR

The Inte1387 DX math coprocessor uses two distinct methods ,to interact with the
Intel386 DX microprocessor:

• The Inte1386 DX microprocessor initiates coprocessor operations during the execu­
tion of a coprocessor instruction (an ESC instruction). These interactions occur under
program control.

• The coprocessor uses the PEREQ signal to request the Inte1386 DX microprocessor
to initiate operand transfers to or from system memory. These operand transfers
occur when the Intel387 DX math coprocessor requests them; thus, they are asyn­
chronous to the instruction execution of the Intel386 DX microprocessor.

When the Inte1386 DX microprocessor executes an ESC instruction that requires trans­
fers of operands to or from the coprocessor, the Intel386 DX microprocessor automati­
cally sets an internal memory address base register, memory address limit register, and'
direction flag. The (;oprocessor can then request operand transfers by driving PEREQ
active. These requests occur only when the coprocessor is executing an instruction (when
BUSY # is active).

CLK2 -

i386~ ox CPu

INTERFACE

. NUMERIC
CORE

i387'· ox
MATH

387CLK2 COPROCESSOR

SYNCHRONOUS

ASYNCHRONOUS

Figure 5-2. Pseudo-Synchronous Interface

5-5

231732iS-2

COPROCESSOR HARDWARE INTERFACE

Two, three, four or five bus cycles may be necessary for each operand transfer. These
cycles include one coprocessor cycle plus one of the following:

• One memory cycle for an aligned operand

• Two memory cycles for a misaligned operand

• Two Or three memory cycles for misaligned 32-bit operands to 16-bit memory

• Four memory cycles for misaligned 64-bit operands to 16-bit memory

Data transfers for the coprocessor have the same bus priority as programmed data
transfers.

5.3 80287/lnte1387 OX MATH COPROCESSOR RECOGNITION

In systems that provide a math coprocessor, it is necessary for both hardware and soft­
ware to correctly determine the presence and identity of the coprocessor.

5.3.1 Hardware Recognition of the NPX

The Intel386 DX microprocessor samples its ERROR# input some time after the falling
edge of RESET and before executing the first ESC instruction. The Intel387 DX math
coprocessor keeps its ERROR# output in active state after hardware reset. Subse­
quently if ERROR# was sampled active, the Intel386 DX CPU employs the 32-bit
protocol of the Intel387 DX math coprocessor.

5.3.2 Software Recognition of the NPX

Figure 5-3 shows an example of a recognition routine that determines whether a math
coprocessor is present, and distinguishes between the Intel387 SX/DX coprocessors and
the 8087/80287. This routine can be executed on any Intel386 DX, Inte1386 SX, 80286, or
8086 microprocessor hardware configuration that has a math coprocessor socket.

Even though the Intel386 DX microprocessor uses the value of ERROR# after RESET
to select microcode which conforms to the Inte1387 DX 32-bit protocol, the software
designer should not use Intel reserved bits to determine the presence or identity of
coprocessors. To assure compatibility with future processors a software recognition test
is necessary.

The example guards against the possibility of accidentally reading an expected value
from a floating data bus when no math coprocessor is present. Data read from a floating
bus is undefined. By expecting to read a specific bit pattern from the math coprocessor,
the routine protects itself from the indeterminate state of the bus. The example also
avoids depending on any values in reserved bits, thereby maintaining compatibility with
future numerics coprocessors.

5-6

COPROCESSOR HARDWARE INTERFACE

~B~b/67/~~/lab MACRO ASSEMBLER Test for presence of a Numerics Chip. Revision 1." PAGE 1

DOS 3.2B (B33-Nl aB~b/671a6/16b MACRO ASSEMBLER V2.B ASSEMBLY Of MODULE TEST- NPX
OBJECT MODULE PLACED IN fINDNPX.oBJ

LaC OBJ

BBBB (18B
1111
l

e9C8 1111

BBBB
BBBB 9BDBE3
BBB3 BEBBBB
BBBb C7B~5A5A
BBBBA 9BDD3C

BBn aB3CBB
BB1B 752A

BB12 9BD93C

BB15 ~aB~
BB17 253f18
BB1A 3D3fBB
BBH' 751D

LINE

7
~
9

18
11
12
13
H
15
lb
17
18
19
2B
21
22
23
2~
25
2b
27
2~
29
3B
31
32
33
3~
35
3b
37
38
39
~B
~l
~2

~3
~~
~5
~b
~7

. ~6

SOURCE

+1 StitleC'Test for presence of a Numerics Chip. Revision 1.0')

nalle Test_NPX

stack segment stack ' stack'
dw lBB dup (? l

sst dw
stack ends

data segment public 'data'
temp dw Bh
data ends

dgroup group data, stack
cgroup group code

code segllent public 'code'
assume cs: cgroup, ds: dgroup

start:

Look for an 8B87. 8B287. i387 SX or i387 DX NPX.
Note that we cannot execute WAIT on lIB8b/M if no 8887 is present. ,

test_npx:
fninit ; nust use non"wait form

si ,offset dgroup: terap mov
mov
fnstsw

cmp
jne

word ptr [sil,SASAH ; Initialize temp to non-zero value
[sil nust use non-wait form of fstsw

It is not necessary to use a blAIT instruction
after fnstsw or fnstew. Do not use one here.

byte ptr [sil," See if correct" status with zeroes was read
no_npx Jump if not a valid status word. meaning no NPX

Naill see if ones .can be correctly written from the control word.

fnstcw

mov
and
cmp
jne

[sil

ax. [sil
ax. 193fh
ax.3fh
no_npx

Look at the control word; do not use k1AIT form
»0 not use a IIIAIT instruction here!
See if ones can be written by NPX
See if selected parts of control. word look OK
{heck that· ones and zeroes were correctly read
Jump if no NPX is installed

Somne numerics chip is installed. NPX -instructions and. klAIT are nOIll safe.
See if the NPX is an 8B~7. ~B2a7. i387 SX or i387 DX NPX
This code is necessary if a denormal exception handler is used or the
new i367 J)X NPX instructions will be used .

Figure 5-3. Software Routine to Reco.gnize the Coprocessor

5-7

COPROCESSOR .HARDWARE INTERFACE

606b/a7/6MlSb MACRO ASSEMBLER

LOC OBJ

001F 'BD'Ea
0022 'BD'EE
0025 'BDEF'
0026 'BD'C0
002B 'BD'E0
002E 'BDED'
0031 'BDD3C
003~ 6B0~

003b 'E
0037 7~0b

003' EB07'0
003C

003C EB0~'0
003F

003F EB01'0
00~2

00~2

LINE

~,

50
51
52
53
5~
55
5b
57
56
5'
b0
b1
b2
b3
b~

b5
bb
b7
b6
b'
70
71
72
73
7~
75
76
77
76
7'
a0
a1

ASSEMBLY COMPLETE, NO ERRORS FOUND

Test for presence of a Numerics Chip, Revision 1.0 PAGE 2

SOURCE

fld1
fldz
fdiv
fld st
fchs
fcompp
fstsw {sO·
lIIav ax,[siJ
sahf
je found_a7_2a7

Must use default control word froIR FNINIT
Form infinity ,
6067/267 says. inf = -inf
Form negative infinity
i387 SX/DX NPX says .inf <> -inf
See if they are the salle and reRlQve them
Look at status from FCOMPP

See if the infinities matched
Jump if a0a7l287 is present

An i367 SX/DX NPX is present', If denormal exceptions are used for an 6B.!.71267,
they must be masked. The i367 SX/DX NPX will automatically normalize denormal
operands faster than an exception handler can·

jmp found_3a7 SLDX

set up f or no NPX

jmp exi t
found_8L287:

set up for 8712a7

jllP exit
found-3a7 :

set up for 367 SLDX

~xit:
code ends

end start I ds: dgroup I ss: dgroup: ~st

Figure 5-3. Software Routine to Recognize the Coprocessor (Contd.)

5-8

Memory Interfacing 6
,

CHAPTER 6
MEMORY INTERFACING

The Intel386 DX microprocessor high-speed bus interface has many features that con­
tribute to high-performance memory interfaces. This chapter outlines approaches to
designing memory systems that utilize these features, describes memory design consider­
ations, and lists a number of useful examples. The concepts illustrated by these examples
apply to a wide variety of memory system implementations.

6.1 MEMORY SPEED VERSUS PERFORMANCE AND COST

In a high-performance microprocessing system, overall system performance is linked to
the performance of memory subsystems. Most bus cycles in a typical microprocessing
system are used to access memory because memory is used to store programs as well as
the data used in processing.

To realize the performance potential of the Inte1386 DX microprocessor, a system must
use relatively fast memory. A high-performance processor coupled with low-performance
memory provides no better throughput than a less expensive low-performance processor.
Fast memory devices, however, cost more than slow memory devices.

The cost-performance tradeoff can be mediated by partitioning functions and using a
combination of both fast and slow memories. If the most frequently used functions are
placed in fast memory and all other functions are placed in slow memory, high perfor­
mance for most operations can be achieved at a cost significantly less than that of a fast
memory subsystem. For example, in a RAM-based system that uses read-only memory
devices primarily during initialization, the PROM or EPROM can be slow (requiring
three to four wait states) and yet have little effect on system performance. RAM memory
can also be partitioned into fast local memory and slower system memory. Other perfor­
mance considerations are described in detail in Chapter 4.

The relationship between memory subsystem performance and the speed of individual
memory devices is determined by the design of the memory subsystem. Cache systems,
which couple a small cache memory with a larger main memory, are described in Chap­
ter 7. Basic memory interfaces are described in this chapter.

6.2 BASIC MEMORY INTERFACE

The high performance and flexibility of the Intel386 DX microprocessor local bus inter­
face plus the availability of programmable and semi-custom logic (programmable logic
arrays, for example) make it practical to design custom bus control logic that meets the
requirements of a particular system. Standard logic components can generate the bus
control signals needed to interface the Intel386 DX microprocessor with memory and
I/O devices. The basic memory interface is discussed in this chapter; the basic I/O inter­
face is presented in Chapter 8.

6-1

MEMORY INTERFACING

The block diagram of the basic memory interface is shown in Figure 6-1. The bus control
logic provides the control signals for the address latches, data buffers, and memory
devices; it also returns READY # active to end the Intel386 DX microprocessor bus
cycle and NA# to control address pipelining. The address decoder generates chip-select
signals and the BS16# signal based on the address outputs of the Intel386 DX micro­
processor. This interface is suitable for accessing ROMs, EPROMs, and static RAMs
(SRAMs).

6.2.1 TTL Devices

TTL devices are specified by number (function), but not by family (speed). Virtually any
family of a device can be used if it meets the performance requirements of the applica­
tion. For example, a 74xOO device might be implemented with a 74FOO or 74ASOO.

Table 6-1 lists the most common families of TTL devices, and some of their relative
performance specifications. Generally, the F and AS families provide the highest
performance.

~

BUS I--
CONTROL f-

LOGIC
ADDRESS !----

~ DECODER

flb ~ ~ ;I

ADDRESS -" MEMORY
DEVICE

LATCH #1 READY# NA# BUS STATUS

" ~ ---.. ADDRESS
I...-

BS16# r-v' '"
;386" DXCPU ... ~

A "\ DATA """"-

be
MEMORY

DATA ~RANSCEIVER '----
DEVICE

... I'" #2

I'"

231732i6-1

Figure 6-1. Basic Memory Interface Block Diagram

6-2

MEMORY INTERFACING

Table 6-1. Common Logic Families*

74xxx The original TIL family. Now obsolete.

74Lxxx Low-power version of standard TTL. Very slow and now obsolete.

74LSxxx Low-power Schottky TIL. Lower power and higher speed than standard TIL. Widely
used in microprocessor systems.

74Sxxx Schottky TIL. High speed and high power consumption. Now obsoleted by newer
families.

74ALSxxx Advanced low-powe'r Schottky TIL. An improved version of LS TIL, providing faster
speed, lower power, and better-defined specifications.

74ASxxx Advanced Schottky TIL. A replacement for Schottky TIL, with higher speeds and
lower power.

74Fxxx Fairchild Advanced Schottky TIL. A competitor of AS.

There are also several families of CMOS logic that are pin-compatible with the TIL families and use
the same type number designations. CMOS logic has the advantage of very low power consump-
tion. Unlike TIL, however, the power consumption of CMOS logic increases linearly with switching
frequency.

There are several major families of CMOS logic, as follows:

74Cxxx CMOS equivalents of standard TIL devices, but considerably slower. Obsoleted by
newer families.

74HCxxx High-sPeed CMOS logic. Speeds comparable to LS TIL.

74HCTxxx High-speed CMOS logic with TIL-compatible input thresholds. Widely used as a low-
power LS TIL replacement.

74ACxxx Advanced CMOS, logic, with higher speeds than HC. This nomenclature is used for
several families, including Fairchild's FACT family and the ACL family from TI, Signet-
ics, and Phillips.

74ACTxxx Same as 74AC, with TIL-compatible thresholds

*Microprocessor Based Design. Michael Slater; © 1987PLD Devices

6.2.2 PLD Devices

Many design examples in this manual use PLDs (Programmable Logic Devices) and
EPLDs (Erasable Programmable Logic Devices), which can be programmed by the user
to implement. random logic. A PLD device can be used as a state machine or a signal
decoder, for example. The advantages of PLDs include the followjng:

1. PLD pinout is determined by the designer, which can simplify board layout by mov­
ing signals as required.

2. PLDs are inexpensive as compared to dedicated bus controllers.

6-3

MEMORY INTERFACING

EPLDs have the following additional advantages:

1. Programmability/erasability allows EPLD functions to be changed easily, simplifying
prototype development.

2. Since EPLDs are implemented in CMOS technology, they can consume an order of
magnitude less power than bipolar PLDs. Power-conscious applications can benefit
greatly from using EPLDs.

3. Since the EPROM cell size is an order of magnitude smaller than an equivalent
bipolar fuse, EPLDs can implement more functions in the same package. This
higher integration can result in a lower overall component count for a design. The
added flexibility can also mean that an extremely low number of "raw" (unpro­
grammed) devices need to be stocked versus bipolar PLDs.

4. Once an EPLD design has been tested, plastic OTP (One-Time Programmable)
versions of the device can be used in a production environment.

PLDs and EPLDs have the following tradeoffs:

1. Most PLDs do not have buried (not connected to outputs) registers. For some state
machine applications, this means using an otherwise available output pin to store
the current state.

2. The drive capability of CMOS EPLDs may be insufficient for some applications.
While the trend is towards use of CMOS throughout a system, in cases where high
current levels are required, some additional buffering is required with EPLDs.

A PLD consists logically of a programmable AND array whose output terms feed a fixed
OR array. Any sum-of-products equation, within the limits of the number of PLD inputs,
outputs, and equation terms, can be realized by specifying the correct AND array con­
nections. Figure 6-2 shows an example of two PLD equations and the corresponding
logic array. Note that every horizontal line in the AND array represents a multi-input
AND gate; every vertical line represents a possible input to the AND gate. An X at the
intersection of a horizontal line and a vertical line represents a connection from the
input to the AND gate.

The sum-of-products is then routed to a configurable macrocell. The macrocell in
Figure 6-3 can be configured as a combinational output or registered output. The output
can be active high or active low. A separate AND term controls the output buffer.

Designing with PLDs consists of determining where XS must be placed in the AND array
and how to configure the macrocell. This task is simplified by logic compilers, such as
iPLS II (Intel's Programmable Logic Software II) or ABEL. Logic compilers accept
input in the form of sum-of-product equations and translate the input into a JEDEC
programming file that can be used by programming hardware/software.

6-4

CLK

O'l
&,

A

BOOLEAN EQUATION:

D=A"Q"/B
+/A " IQ • B;

EPLD IMPLEMENTATION:

.....
IA

A S

INPUT

~

IS IB
B

OE

=8= -g-
I/O

-Q-~ CLK r±JD g:

FROMB
INPUT

~

Figure 6-2. PLD Equation and Device Implementation

FEEDBACK

S

COMBINATIONAL
OR REGISTERED
(SELECTABLE)

231732;6·2

i:

s:
m
s:
o
lJ
-<
Z

@l

-I
m
lJ

~
Z
G)

OE

INVERT
CONTROL

FEEOBACK

MEMORY INTERFACING

I
I ClK
I
I
I
I
I
I
I

o Q

MACROCEll
REGISTER

I
I
I

II SELECT:
I I L ________________ ~

Figure 6-3. 85C220 EPLD Macrocell Architecture

1/0 PIN

231732i6-3

PLDs and other Programmable Logic Devices are specified by part number. Different
manufacturers use different numbering schemes. Intel PLDs are described in the
Programmable Logic Handbook. One EPLD in particular is shown in this chapter, the
85C220_ The 85C220 is a 20-pin upgrade to many common bipolar PLDs and is shown in
this chapter implementing state machine functions.

The 74x373 Latch Enable (LE) input is controlled by the Address Latch Enable (ALE or
ALE#) signal from the bus control logic that goes active at the start of each bus cycle.
The 74x373 Output Enable (OE#) is always active.

6.2.3 Address Latch

Latches maintain the address for the duration of the bus cycle and are necessary to
pipeline addresses because the address for the next bus cycle appears on the address
lines before the current cycle ends. In this example, 74x373 latches are used. Although
the Intel386 DX microprocessor can be run without address pipelining to eliminate the
need for address latching, the system will usually run less efficiently.

6.2.4 Address Decoder

Address decoders, which convert the Intel386 DX microprocessor address into chip­
select signals, can be located before or after the address latches. If it is placed before the
latches, the chip-select signal becomes valid as early as possible but must be latched

6-6

MEMORY INTERFACING

along with the address. Therefore, the number of address latches needed is determined
by the location of the address decoder as well as the number of address bits and chip­
select signals required by the interface. Chip-select signals can be routed to the bus
control logic to set the correct number of wait states for the accessed device.

The decoder consists of two one-of-four decoders, one for memory address decoding and
one for I/O address decoding. In general, the number of decoders needed depends on
the memory mapping complexity. The 85C508 EPLD performs both address decoding
and latching functions in a single device. In this basic example, the A31 output is suffi­
cient to determine which memory device is to be selected.

6.2.5 Data Transceiver

Standard 8-bit transceivers (74x245, in this example) provide isolation and additional
drive capability for the Intel386 DX microprocessor data bus. Transceivers are necessary
to prevent the contention on the data bus that occurs if some devices are slow to remove
read data from the data bus after a read cycle. If a write cycle follows a read cycle, the
Intel386 DX microprocessor may drive the data bus before a slow device has removed its
outputs from the bus, potentially causing reliability problems. Transceivers can be omit­
ted only if the data float time of the device is short enough and the load on the Intel386
DX microprocessor data pins meets device specifications.

A bus interface must include enough transceivers to accommodate the device with the
most inputs and outputs on the data bus. Normally, 32-bit-wide memories, which require
four 8-bit transceivers, are used in Inte1386 DX microprocessor systems.

The 74x245 transceiver is controlled through two input signals:

• Data Transmit/Receive (DT /R #) - When high, this input enables the transceiver for
a write cycle. When low, it enables the transceiver for a read cycle. This signal is just
a latched version of the Inte1386 DX microprocessor W/R# output .

• Data Enable (DEN#)- When low, this input enables the transceiver outputs. This
signal is generated by the bus control logic. .

6.2.6 Bus Control Logic

Bus control logic is shown in Figure 6-4. The bus controller is implemented in two PLDs.
One PLD (IOPLD1) follows the Intel386 DX microprocessor bus cycles and generates
the overall bus cycle timing. The second PLD (IOPLD2) generates most of the bus
control signals. The equations for these PLDs are listed in Appendix A of this manual.

6-7

85C220
CLOCK &

"ESET
GENERATOR

CLK
RESET CLK2

I T
RESET CLK2 J

ADS#

INT" - -
-

NA#

M/IO#

W/R#

D/C

-

0>
ell

- -

~~Y
READY# -

1386'· DX
CPU

READY

AS

~ A3 74F138

A12-A20 ADDRESS BUS

8EO#
8E1#

8516#

A
DOo015 DATA BUS

'I

~"DY~ IOPLD1 IOPLD2
CLK2 CLK2 -
CLK - CLK WICNTO -
NA TRtOEN - ADS WTCHT' -
MIlO - READY WTCNT2 -
WI" INTA INTA -P20RB
D/C EPRD EPRDY -
A3. IOWR IOWA PlRECYC -
TlMEDLY lORD lORD BUSCYC -
BUSCYC RECV RECY ALEIO -

- CS1WS nUEDLY -

~ - CS3WS CSSWS -

" ALE#
ADDRESS BUS

r 74F373
LATCHES A1-A15- x.

-
OT/R# DEN#

" 74F245
TRANSCElVER TO DATA BUS

r x.

Figure 6-4. I/O Controller Schematic

INT IP0-7

ft-~ AD 8259A

'f cs#~I~

In

iii

i
g

I
ijE

..
" ID

~ C
27256A ~ EPROM

V' X. g

11

TO
INTERRUPT

_INTA
_IOWR
_lORD

-~ _ClOP
:_SELECT

TO ~ DATA BUS

V'

231732i6-4

l

s::
m s::
o
~
Z
-I
m
:::D

~
Z
G)

®

MEMORY INTERFACING

The bus controller decodes the Inte1386 DX microprocessor status outputs (W/R#,
M/IO#, and D/C#) and activates a command signal for the type of bus cycle requested.
The command signal corresponds to the bus cycle types (described in Chapter 3) as
follows:

• Memory data read and memory code read cycles generate the EPROM Read Com­
mand (EPRD#) output. EPRD# commands the selected memory device to output
data.

• I/O read cycles generate the I/O Read Command (IORD#) output. IORD# com­
mands the selected I/O device to output data.

• I/O write cycles generate the I/O Write Command (IOWR#) output. IOWR# com­
mands the selected I/O device to receive the data on the data bus.

• Interrupt-acknowledge cycles generate the Interrupt Acknowledge (INTA#) output,
which is returned to the 8259A Interrupt Controller. The second INTAcycle com­
mands the 8259A to place the interrupt vector on the bus.

The bus controller also controls the READY # input to the Intel386 DX microprocessor
that ends each bus cycle. The bus control PLD counts wait states and returns
TIMEDLY# after the number of wait states required by the accessed device. The design
of this portion of the bus controller depends on the requirements of the system; rela­
tively simple systems need less wait-state logic than more complex systems. The basic
interface described here uses a PLD device to generate TIMEDL Y #; other designs may
use counters and/or shift registers.

6.2.7 EPROM Interface

Figure 6-5 shows the signal timing for bus cycles from an Intel386 DX microprocessor
operating at 20 MHz to a 27256 EPROM, which has a 250-nanosecond access time.

In the EPROM interface, the OE# input of each EPROM devices is connected directly
to the EPRD# signal from the bus controller. The wait state requirement is calculated
by adding up worst-case delays and comparing the total with the Inte1386 DX micropro­
cessor bus cycle time.

The bus cycle timings can be calculated from the waveforms in Figure 6-5. In the follow­
ing example, the timings for I/O accesses are calculated for CLK2 = 40 MHz, clock
circuitry and IOPLD1 implemented using an 85C220-66 (12 ns) PLD and IOPLD2
implemented in a 20R8 PLD. All times are in nanoseconds. Check the most recent
386'" DX Microprocessor Data Sheet to confirm all parameter values.

tAR: Address stable before Read (EPRD# fall)

(2 x CLK2 period)- PLD RegOut Max (ALEIO)- Latch Enable Max
+ PLD RegOut Min (EPRD#)
(2 x 25) - 12 - 13
+ 1.5

= 26.5 nanoseconds

6-9

~
o

NON-PIPEUNED I
T2JT2 T2

EPROM READ NON-PIPELINED EPROM READ

IIDLElnlT2 nlT2IT2!T21T2 T112 nln 11 I
CLK'

PCLK

ADS#

ADDR
~ ~.- ._--- ~

ALEIO ~

EPRD# \ / \ /

TIMEDLY

\ / \ /
TRIOEN

\ / \ /
DT_R~

DATA READ READ)

NA#

B516#
\ / ~ /

T. I T2 I T2 I

BUSCYC \ f\ 1\'---__
IQRDY#

'----./. ~

Figure 6-5. 250 Nanosecond EPROM Timing Diagram

T2 I T2

231732i6-5

l

s:
m s:
o
~
Z
-I m
:JJ

~
Q
z
C>

@J

MEMORY INTERFACING

tRR: Read (EPRD#) pulse width

(10 x CLK2 period) - PLD RegOut Skew (EPRD# low to high)
(10 x 25) - 4

= 246 nanoseconds

tRA: Address hold after Read (EPRD# rise)

(0 x CLK2 period) - PLD RegOut Max (EPRD#) + PLD RegOut Min
(ALEIO)
+ Latch Enable Min
(0 x 25) - 6 + 2
+ 5

1 nanoseconds

tAD: Data delay from Address

(12 x CLK2 period)
- xcvr. prop. Max
(12 x 25)
- 6

= 258 nanoseconds

- PLD RegOut Max - Latch Enable Max
- Intel386 DX Microprocessor Data Setup Min
- 12 - 13
-11

tRD: Data delay from Read (EPRD#)

(10 x CLK2 period) - PLD RegOut Max (EPRD#) - xcvr. prop Max
- Intel386 DX Microprocessor Data Setup Min
(10 x 25) - 6 - 6
-11

= 227 nanoseconds

6.2.8 16-Bit Interface

The use of a 16-bit data bus can be advantageous for some systems. Memory imple­
mented as 16-bits wide rather than 32-bits wide reduces chip count. I/O addresses
located at word boundaries rather than doubleword boundaries can be software compat­
ible with some systems that use 16-bit microprocessors.

For example, if BS16# is asserted for EPROM accesses, only two byte-wide EPROMs
are needed. Overall performance is reduced because 32-bit data accesses and all code
prefetches from the EPROMs are slower (requiring two bus cycles instead of one).
However, this reduction is acceptable in certain applications. A system that uses

6-11

MEMORY INTERFACING

EPROMs only for power-on initialization and runs programs entirely from SRAM or
DRAM has only a power-on time increase over the 32-bit EPROM system; its main
programs run at the same speed as the 32-bit system.

The Intel386 DX microprocessor BS16# input directs the Intel386 DX microprocessor
to perform data transfers on only the lower 16 bits of the data bus. In systems in which
16-bit memories are used, the address decoder logic must generate the BS16# signal for
16-bit accesses. Since NA# cannot be asserted during a bus cycle in which BS16# is
asserted (because the current address may be needed for additional cycles), the decoder
logic should also guarantee that the NA# signal is not generated. When the Intel386 DX
microprocessor samples BS16# active and NA# inactive, it automatically performs any
extra bus cycles necessary to complete a transfer on a 16-bit bus. The Intel386 DX
microprocessor response is determined by the size and alignment of the data to be
transferred, as described in Chapter 3.

6.3 DYNAMIC RAM (DRAM) INTERFACE

This section presents a dynamic RAM (DRAM) memory subsystem design that is both
cost-effective and fast. The design can be adapte!i for a wide variety of speed and system
requirements to provide high throughput at minimum cost. The DRAM design in this
section illustrates DRAM subsystem design concepts and analysis. This system would be
suitable for use as the main memory of an 82385 cache system described in Chapter 7.
Because the 82385 cache controller provides the majority of memory requests in zero
wait states, the performance of the main memory is less critical.

6.3.1 Interleaved Memory

DRAMs provide relatively fast access times at a low cost per bit; therefore, large mem­
ory systems can be created at low cost. However, DRAMs have the disadvantage that
they require a brief idle time between accesses to precharge; if this idle time is not
provided, the data in the DRAM can be lost. If back-to-back accesses to the same bank
of DRAM chips are performed, the second access must be delayed by the precharge
time. To determine if additional idle states will be needed, compare the DRAM cycle
time to the cycle length of the Inte1386 DX microprocessor. To avoid this delay, memory
should be arranged so that each subsequent memory access is most likely to be directed
to a different bank. In this configuration, wait· time between accesses is not required
because while one bank of DRAMs performs the current access, another bank pre­
charges and will be ready to perform the next access immediately.

Most programs tend to make subsequent accesses to adjacent memory locations during
code fetches, stack operations, and array accesses, for example. If DRAMs are inter­
leaved (i.e., arranged in multiple banks so that adjacent addresses are 'in different
banks), the DRAM precharge time can be avoided for most accesses. With two banks of
DRAMs, one for even 32-bit doubleword addresses and one for odd doubleword
addresses, all sequential 32-bit accesses can be completed without waiting for the
D RAMs to precharge.

6-12

MEMORY INTERFACING

Even if random accesses are made, two DRAM banks allow 50 percent of back-to-back
accesses to be made without waiting for the DRAMs to precharge. The precharge time is
also avoided when the Intel386 DX microprocessor has no bus accesses to be performed.
During these idle bus cycles, the most recently accessed DRAM bank can precharge so
that the next memory access to either bank can begin immediately.

The DRAM memory system design described here uses two interleaved banks of
DRAMs. The DRAM controller keeps track of the precharge time for each bank while
allowing memory accesses to begin as soon as possible.

6.3.2 DRAM Memory Performance

Table 6-2 shows the performance that can be obtained using this DRAM design with a
variety of processor and DRAM speeds. Performance is indicated by the number of wait
states per bus cycle (the number of CLK cycles in addition to the two-CLK minimum
time required to complete the access).

The performance for each processor and DRAM speed combination is given for both
the case of an access to the opposite bank of interleaved memories, in which no pre­
charge time is required, and the case of an access to the same bank, in which the
precharge time is factored in.

The number of wait states required for interleaved accesses is based on the assumption
that the address for the next access is pipelined. For cycles in which the address is not
pipelined, one extra wait-state must be added to the number in Table 6-2. This require­
ment applies to all cycles that follow an idle bus state because these cycles can never be
pipelined.

Table 6-2. DRAM Memory Performance

DRAM Bus Cycle Wait-States
Inte1386'M OX Microprocessor

Access Time
Clock Rate Interleaved

(Nanoseconds) Piped:Unpiped
Same Bank

16 MHz 80 0* :1 * 1 *

16 MHz 100 0* :1 * 1 *
16 MHz 150 1 :2 3

20 MHz 70 0* :1 * 2

20 MHz 100 1 :2 3

25 MHz 60 0* :1 * 2 *

25 MHz 80 1 :2 3

33 MHz 60 1 +*:2 4 *
33 MHz 80 2 :3 5

*Add one additional wait-state to these times for write accesses.
+ Effective 0 wait states can be achieved by implementing a cache.

NOTE: The numbers for the 16 MHz 100-nanosecond DRAM are based on the assumption that no data
transceivers are used.

6-13

MEMORY INTERFACING

The number of wait states for same-bank accesses applies only to back-to-back cycles
(without intervening idle bus time) to the same bank of DRAMs. Because the controller
must allow the DRAMs to precharge before starting the access, address pipelining does
not speed up the same-bank cycle; the number of wait states is identical with or without
address pipelining.

The numbers in Table 6-2 are affected by DRAM refresh cycles. All DRAMs require
periodic refreshing of each data cell to maintain the correct voltage levels. An access to
a memory cell, called a refresh cycle, accomplishes the refresh. During one of these
periodic refresh cycles, the DRAM cannot respond to processor requests.

Although the distributed DRAM refresh cycles occur infrequently, they can delay the
current access so that the current access requires a total of up to four wait states (for the
cases marked with an asterisk (*» or eight wait states (for the other cases).

6.3.3 DRAM Controller

The design in this chapter is a 3-CLK pipelined DRAM controller. The timing analysis is
done at 20 MHz. The design can be scaled to match the speed of your design. Other
variations for DRAM control are discussed following the sample system.

6.3.3.1 3-ClK DRAM CONTROllER

Figure 6-6 shows a schematic of the 3-CLK DRAM controller. The DRAM array con­
tains two banks of 32-bit-wide DRAMs. The top and bottom halves of the pictured array
represent the two banks, which are each divided vertically along the four bytes for each
doubleword.

The DRAM chips used to create the DRAM banks can be of any length (N), and they
can be one, four or eight bits wide. If Nx1 DRAM chips are used, 64 chips are required
for the two banks; if Nx4 DRAM chips are used, 16 chips are required; if Nx8 DRAM
chips are used, only 8 chips are required. The banks in Figure 6-6 are made from eight
256x8 DRAM modules, but another type of DRAM can be substituted easily.

Two Row Address Strobe (RAS) signals are generated by the controller, one for each
bank. The top bank is activated by RASO# and contains the DRAM memory locations
for which the Inte1386 DX microprocessor address bit A2 is low. The bottom bank is
activated by RAS1#, which corresponds to Intel386 DX microprocessor addresses for
which A2 is high.

Each of the 32 data lines of the Intel386 DX microprocessor are connected to one
DRAM data bit from each bank. If Nx1 DRAMs are used, the corresponding data line is
connected to both the Din and Dout pins. If Nx4 or Nx8 DRAMs are used, each data
line is connected only to the corresponding I/O pin.

Each bank has four Column Address Strobes (CAS#); one for each byte of the Intel386
DX microprocessor data bus. The Intel386 DX microprocessor Byte Enable Signals
(BE3#-BEO#) map to the active bank's CAS signals. CASO# is generated by OR-ing

6-14

~ I
C11

I
I

I

CLK2

PCLK" DRAIIP2 WE

RASO ...,220 CR

~ RAS1 RAS1P i
DAAMSTART RASOP

MUXOE' REF",

WIR CAS

REFREC ALE

RESET DRAMRDY

BANK 0

W/A#I II
~ ~56

"0

1386'· OX
CPU

ADS#

M/IO#

READY#

A2

A31
A30

A12-A20

A3-Al1

I IIII:~ DRAMPl

CAS# X 8

~

~C:~O WEO
25.

-'-"-w_ ..
CAS#

X8

25.
a
~
WEO

25. CAS# X8
RAS#

lr
.....J!W

~----------+-----+-~+1~MIO P2M8 ~=t~~~~--------r---rj=~~~~::::~~~~~~~~~~~ PAZ ROWSEL

r-l>-I-++I-+-f IREADY MUXOE
WEO 25.
CAS# X8

RASOP RASO 20R510

RAS1P RAS1 _'0 __

=~~~ 25. IA.-X8 ,

CA5# 256~
RAS#

X8

~
CAS# 25.

X8
RAS#

ri-+---ISEL 1 REFADAOE ~

REFIN DRAMSTART ::

RESET SEL2 13

I I !
iii -

11 ~::::::::::::::::::::::~=:::::~A~1~2-~A2~0~::::::::~ I

I IIII ADDllESSBUS
LA3-LA 11 MUX ADDRESS BUS I I

BEOO-BE30 ~O

v ~~
1-__ 00_-0_31..11\(DATA BUS DATA BUS VI TRAN~'VER DRAM DATA BUS

~
c g
~

il
~
i

231732i6-6

Figure 6-6. 3-ClK DRAM Controller Schematic

l

s:
m s:
o
::u
-<
Z

@>

-I m
::u

~
Z
C)

MEMORY INTERFACING

the RAS# from that bank and BEO# with the CAS# signal to enable the least­
significant byte (D7-DO). Similarly, CAS3# is generated by RAS#, BE3# and CAS#
and enables the most significant byte (D31-D24).

The Write Enable (WE#) and the multiplexed address signals are connected to every
DRAM module in both banks. For drive considerations the multiplexed address is gen­
erated separately for each bank.

A single WE# control signal and four CAS control signals ensure that only those
DRAM bytes selected for a write cycle are enabled. All other data bytes maintain their
outputs in the high-impedance state. A common design error is to use a single CAS#
control signal and four WE# control signals, using the WE# signals to write the DRAM
bytes selectively in write cycles that use fewer than 32 bits. However, although the
selected bytes are written correctly, the unselected bytes are enabled for a read cycle.
These bytes output their data to the unselected bits of the data bus while the data
transceivers output data to every bit of the data bus. When two devices simultaneously
output data to the same bus, reliability problems and even permanent component dam­
age can result. Therefore, a DRAM design should use CAS signals to enable bytes for a
write cycle.

DRAMs require both the row and column addresses to be placed sequentially onto the
multiplexed address bus. A set of 74F258 multiplexers accomplishes this function.

Four 74F245 octal transceivers buffer the DRAM from the data bus. Most DRAMs used
in the 3-CLK design require these transceivers to meet the read-data float time. When a
DRAM read cycle is followed immediately by a Intel386 DX microprocessor write cycle,
the Intel386 DX microprocessor drives its data bus one CLK2 period after the read cycle
completes. If the data transceivers are omitted, the CAS inactive delay plus the DRAM
output buffer turn-off time (t-OFF) must be less than a CLK2 period to avoid data bus
contention.

Two PLDs are used to monitor the Intel386 DX microprocessor status signals and gen­
erate the appropriate control signals for the DRAM, multiplexer, and transceivers. PLD
codes and pin descriptions for the 3-CLK design are listed in Appendix B of this manual.
These PLDs, DRAMP1 and DRAMP2 contain state machines to perform the following
functions:

• DRAMPl

Performs bus cycle tracking

Monitors the Inte1386 DX microprocessor DRAM chip select logic

Signals start of DRAM cycles to DRAMP2

Generates the RAS# signals and the Address Mux select signal (ROWSEL)

Controls refresh cycle arbitration and controls the address output enables for
refresh cycles

• DRAMP2

Receives and stores DRAM refresh requests from the refresh counter

Keeps track of DRAM banks requiring precharge time

6-16

MEMORY INTERFACING

Provides the data transceiver and address latch control signals

Produces the CAS# and WE# DRAM signals

Generates the READY# signal to end DRAM bus cycles

A DRAM read or write access is requested when all the chip-select signal inputs to
DRAMPI are sampled active simultaneously. These signals become active when all of
the following conditions exist at once:

o M/IO#, W/R#, and D/C# outputs of the Inte1386 DX microprocessor indicate either
a memory read, memory write, or code fetch.

o The bus is idle or the current bus cycle is ending (READY # active).

• ADS# is active.

• A31 is low (in this design, the lower half (two gigabytes) of the Intel386 DX micro­
processor memory space is mapped to the DRAM controller).

If DRAMPI is not already performing a cycle, it begins the access immediately. How­
ever, if the DRAM controller is performing a refresh cycle, or if it is waiting for the
DRAM bank to precharge, the request is latched and performed when the controller is
not busy.

The Refresh Interval Counter PAL is a timer that generates refresh requests at the
. necessary intervals. The Refresh Address Counter PLD maintains the next refresh
address. Both the Refresh Interval Counter PLD and the Refresh Address Counter PLD
are simple enough to be replaced by TTL counter chips; however, the use of PLDs
reduces the total chip count. If there is a spare timer or counter in the system, it can be
used to replace one or both of these PLDs.

Figure 6-7 shows the timing of DRAM control signals for the 3-CLK design for the
following five sequential DRAM cycles:

1. Read cycle

2. Read cycle to the opposite bank (no precharge)

3. Write cycle to that same bank (requires precharge)

4. Refresh cycle (always requires precharge)

5. Read cycle (cycle after refresh always requires precharge)

During a normal DRAM access, only the RAS signal that corresponds to the selected
bank is activated. During a refresh cycle, both RAS signals are activated. During write
cycles, only the CAS signals corresponding to the enabled bytes are activated. During
read cycles, all CAS signals are enabled.

6-17

ClK2

IDLE DRAM READ BANK 0 I DRAM READ BANK 1 DRAM WRITE BANK 1 DRAM REFRESH
NON·PIPEUNED PIPEUNED PIPELINED (ALWAYS BOTH BANKS)

1234123 1 2 3 4 I 5 1 2 3 4 5

~ ~JV\I\.~[v\. 'V\.~~ 'V\. 'V\.~~rv"-~l\lVV\I\,~~
ClK Y Y \J" Y ~ \J" Y Y \J" \J" \J" Y V \.FjV-Y Y Y

ADS. W>L ...J1iU W- ...JJD '<M..- ..1lD ~ ~!
SELECT

ROWSEl r ~
MUX X X

ROW COLUMN ROW COLUMN ROW COLUMN REFRESH

RASO' I

RAS1'

~ CASd

ex>
WEO

'-1\
lOW ONLY 'ForlED BYTJS ,

I
DATA

ALE:
REAr--1\ READ WRITE

DT/R.

IREADY
r-- ----,.

NAO ~ 1"\
REFRED

MUXOE' '-

Figure 6-7. 3-ClK DRAM Controller Cycles

DRAM READ BANK 1
PIPELINED

~~I~r
V \J" \J"[\

'--e-
X

ROW CQlUMP

'----- -
,\

\

J

I

I

23173216-7

l

!:
m
!:
o
::D
-<
Z
-I
m
::D

~
Z
G)

<8

MEMORY INTERFACING

6.3.3.2 DRAM TIMING ANALYSIS

Figure 6-7 shows the signals for bus cycles from a Inte1386 DX microprocessor to a
D RAM subsystem. This figure will be used for determining the worst case logic timings
for a Inte1386 DX microprocessor operating at 20 MHz.

In this example, the timing for DRAM accesses are calculated for CLK2 = 40 MHz,
DRAMP2 implemented using an 85C220 (12 ns) EPLD, DRAMPI implemented with a
P20R8 PLD, and Refresh Address implemented with a P20RSlO PLD. For a registered
PLD to change states on each clock edge its maximum clock to output delay plus its
minimum setup time must be less than the time between clock edges. This is because the
register outputs are fed back and used as input variables in determining the PLD terms.

The 3-CLK DRAM controller in Figure 6-6 performs reads and writes in 3 pipelined
clocks (1 wait state). Successive accesses to the same bank will require two clocks of
RAS# precharge. Typical DRAM read and write cycles are shown in Figure 6-8 and 6-9.

READ CYCLE

lAP

RAS

tcSH

CAS

AO·A9

~ __ ~IA~A~C ________ ~ ________ ~IO=FF~

DATA VALID DATA

231732i6-8

Figure 6-8. Timing Waveforms (Read Cycle)

6-19

MEMORY INTERFACING

WRITE CYCLE

RAS V,H - --.... I---------"'~ ______ II'
V,L -

AD-A9

tWCR

DATA

231732i6-9

Figure 6-9. Timing Waveforms (Write Cycle)

6.3.3.3 LOGIC DELAY

Logic delay is the time required for an output to change with respect to an input.
Devices usually have the following specifications: typical delays, maximum delays and
minimum delays. For this chapter we will use worst case logic delays for the commercial
operating range.

6.3.3.4 ADDRESS BUS TIMINGS

The first timings to consider are the address set up and hold times for RAS# and
CAS # . The address becomes active from the start of phase one and are valid after the
address valid delay (T6). The address then passes through the MUX before getting to
the DRAM. RAS# is generated on the following phase one CLK2 edge by DRAMPI.
The worst case address set up time occurs when the address is delayed the maximum
time and RAS# is delayed the minimum amount of time.

T ASR : Row address setup time

= (2 x CLK2 period) - Intel386 DX microprocessor Address Valid Delay Max (T6) -
MUX Prop Max (I to Z) + PLD RegOut Min (RAS#)

6-20

MEMORY INTERFACING

= 50 - 30 - 6 + 2

= 16 nanoseconds

The worst case address hold time from RAS# occurs when the ROWSEL signal is at a
minimum and RAS# delay is at a maximum.

T RAH : Row address hold time

= (1 x CLK2 period) + PLD RegOut Min (ROWSEL) + Mux Prop Min (S to Z) -
PLD RegOut Max (RAS#)

= 25 + 2 + 4 - 12

= 19 nanoseconds

Because CAS# is generated a CLK2 cycle later for write cycles, worst case consider­
ations are the column address setup time for read cycles and the column address hold
time for write cycles.

TASC : Column address setup time (read cycles)

= (1 x CLK2) - PLD RegOut Max (ROWSEL) - Mux Prop Max (S to Z) + PLD
RegOut Min (CAS#) + (2 x Or-gate Prop Min)

= 25 - 12 - 11 + 1.5 + 6

= 9.5 nanoseconds

TCAH : Column address hold time (write cycles)

= (2 x CLK2) - PLD RegOut Max (CAS#) - (2X Or-gate Prop Max) + PLD
RegOutMin (ROWSEL) + Mux Prop Min (S to Z)

= 50 - 6 - 12 + 2 + 4

= 38 nanoseconds

The write enable (WE#) signal is generated two CLK2 before CAS# on write cycle and
one CLK2 before CAS# on a read cycle.

T RCS : Read command setup time

= (1 x CLK2) - PLD RegOut Max (WE#) + PLD RegOut Min (CAS#) + (2 x
Or-gate Prop Min)

= 25 - 6 + 1.5 + 6

= 26.5 nanoseconds

6-21

MEMORY INTERFACING

6.3.3.5 DATA BUS TIMINGS

The next timings to consider are the data path delays. These calculations include data
buffers.

T RAe : Read data access from RAS

= (6 x CLK2) - PLD RegOut Max (RAS#) - Intel386 DX microprocessor Data
Setup Min (T21) - Xcvr Prop Max

150 - 12 - 11 - 7

120 nanoseconds

T CAS : Read data access from CAS#

= (4 x CLK2) - PLD RegOut Max (CAS#) - (2 x Or-gate Prop Max) - Intel386 DX
microprocessor Data Setup Min - Xcvr Prop Max

= 100 - 6 - 12 - 11 - 7

= 64 nanoseconds

TOFF : Min output data hold time from CAS#. This is done to assure that the Intel386
DX microprocessor Data Hold Time (T22) will be met

For the inactive CAS# edge:

= PLD RegOut Min (CAS#) + (2 x Or-gate Prop Min) + Xcvr Prop Min - Intel386
DX microprocessor Read Data hold time (T22)

= 1.5 + 6 + 2.5 - 6

= 4.0 nanoseconds Therefore T OFF can be 0 and the read data hold time will still be
met

For the inactive DEN# edge:

= PLD RegOut Min (ALE#) + Or~gate Prop Min + Xcvr Disable Min

1.5 + 3 + 2

6.5 nanoseconds Which meets the Intel386 DX Microprocessor read data hold
time (T22) of 6 nanoseconds at 20 MHz.

For write cycles the maximum Intel386 DX microprocessor write data valid delay is 38
nanoseconds measured from the start of clock phase two. CAS# is delayed two CLK2
periods till the start of the next clock phase two to assure the data will be valid.

6-22

MEMORY INTERFACING

T DS : Write data setup to CAS#

= (2 x CLK2 period) - Inte1386 DX microprocessor Write Data Valid Delay (T12) -
Xcvr Prop Max + PLD RegOut Min (CAS#) + (2 x Or-gate Prop Min)

= 50 - 38 - 7 + 1.5 + 6

= 12.5 nanoseconds

T DH : Data hold time from CAS# active

= (3 x CLK2 period) - PLD RegOut Max (CAS#) - (2 x Or-gate Prop Max) +
(PLD RegOut Min (ALE) + OR-gate Prop Min) + Xcvr Disable Min

= 75 - 6 - 12 + (1.5 +3) + 2

= 63.5 nanoseconds

6.3.3.6 AVOIDING DATA BUS CONTENTION

Using data transceivers allows write cycles to follow read cycles without additional wait
states. Care must be taken to disable the transceivers before changing their direction.
Figure 6-10 shows the timing for· a read cycle directly followed by a write cycle.

On the Inte1386 DX microprocessor data bus side of the transceivers the read data stops
driving the bus when DEN# goes inactive and the data buffer disables its output.

T xop : Transceiver stops driving the processor side of the data bus

= PLD RegOut Max (ALE#) + Or-gate Prop Max + Xcvr Disable Max

= 6 + 6 + 7.5

= 19.5 nanoseconds or 5.5 nanoseconds before the start of phase two

The Intel386 DX microprocessor does not start driving write data until a minimum of 4
ns (T12) after the start of phase two so no contention will occur.

On the DRAM side of the transceivers the read cycle ends whenCAS# goes inactive
and the DRAMs turn off. The write cycle data will be driven onto the bus at the start of
phase one of the next clock after DEN# becomes active.

ToFF : DRAM data turn off from CAS#

= (2 x CLK2 period) - PLD Reg Out Max (CAS#) - (2 x Or-gate Prop Max) +
(PLD RegOut Min (ALE) + Or-gate Prop Min) + Xcvr Enable Min

= 50 - 6 - 12 + (1.5 + 3) + 3

= 39.5 nanoseconds

6-23

ClK2

ClK

DEN#

DT/R#

MEMORY INTERFACING

READ BANK 0

T2 P

WRITE BANK 1

DATA BUS
(PROCESSOR SIDE) _._D_A_TA_B_U_FF_ER_D-tR~IVI_NG ___ ::i 80386 DRIVING

CAS#

DATA BUS

(DRAM SIDE) -----f----.JI

Figure 6-10. Avoiding Data Bus Contention

231732i6-10

The DRAMs must be able to turn off the output drivers following a read cycle in 39.5
nanoseconds to avoid the bus contention with the data being, written on the next cycle.

The direction of the data transceivers must be changed while DEN# is inactive and the
outputs have been disabled.

Figure 6-6 has separate CAS# lines for each bank. This is to allow a, (T CRP)' CAS# to
RAS# precharge time for alternate bank accesses.

6.3.3.7 CONTROL SIGNAL TIMINGS

In addition to the DRAM memory access signals, the DRAM controller must generate
the NA# and READY # inputs for the Intel386 DX microprocessor.

Once a bus cycle is in progress and the current address has been valid for at least one
entire bus state, the NA# input is sampled at the end of every phase one until the bus
cycle is acknowledged. Once NA# is sampled asserted the address and status bits for the

6-24

MEMORY INTERFACING

current bus cycle can no longer be assumed valid. The 3-clock DRAM controller does
not assert NA# in the first T2 but in the second T2 making it a T2p. NA# is asserted at
the beginning of phase one.

TNA setup

= (1 x CLK2 period) - PLD RegOut Max (CAS#)

= 25 - 6

= 19 nanoseconds The Intel386 DX microprocessor requires NA# setup time (T15)
to be 9 ns.

NA# remains asserted till READY # is returned to the Inte1386 DX microprocessor and
the cycle ends. Asserting NA# in the next clock cycle is not necessary and only serves to
extend the hold time.

When READY # is asserted during a read cycle or an interrupt acknowledge cycle the
Inte1386 DX microprocessor latches the input data. During write cycles READY #
causes the bus cycle to terminate. The Intel386 DX microprocessor READY# setup and
hold times are specified in relation to the end of phase two.

T READY setup:

= (2 x CLK2 period) - (2x And-gate Prop Max) - PLD RegOut Max (DRAM­
RDY#)

= 50 - 14 - 8

= 30 nanoseconds Meets Inte1386 DX microprocessor READY # setup tirrte (T19)

= PLD RegOut Min (DRAMRDY#) + (2x And-gate Prop Min)

= 1.5 + 6

= 7.5 nanoseconds Meets Inte1386 DX microprocessor READY # hold time (T20)

6.3.3.8 LOGIC PATHS

When performing worst case logic delay analysis, it is often necessary to consider the
maximum delay of one signal path and the minimum delay of another separate signal
path. However, when two or more signals are generated from the same device, or signal.
paths have common elements in their delay paths, it is more realistic to consider the'
signal skew than to consider the theoretical maximum skew.

6-25

MEMORY INTERFACING

For example consider the minimum RAS# pulse width specification. Instead of:

TRAS = (6 x CLK2) - PLD RegOut Max (RAS# active) + PLD RegOut Min (RAS#
inactive)

It would be more realistic to consider

TRAS = (6 x CLK2) - PLD RegOut Skew (RAS# active-inactive)

Where the skew depends on:

The capacitance

- The opposite going signal edges

The skew would even be less for the same signal between two positive or two negative
edges. For example TRC, the RAS# cycle time, is measured from RAS# active to
RAS# active. The timing analysis would be the number of clock cycles minus the RAS#
active-active skew.

6.3.3.9 CAPACITIVE LOADING

The delay of a logic device is affected by the capacitive load on the output. Most devices
are specified at a given load and include either a delay versus load graph or a nanosec­
onds per picofarad specification. The Intel386 DX microprocessor data sheet includes a
delay versus load graph. From this graph a linear approximation of the relay can be
made. The data sheet specifies the delay for a particular load. If the actual load is
greater than the specified load, an additional delay factor needs to be calculated.

The Intel386 DX microprocessor specifications are made at the 1.5 volt levels. If the
component interfaced is specified at another level, it will be necessary to consider the
rise times of signals. The Inte1386 DX microprocessor data sheet provides a rise time
versus capacitance graph.

6.3.4 DRAM Design Variations

6.3.4.1 3-CLK DESIGN VARIATIONS

Some of the possible variations of the 3-CLK designs are as follows:

• The 3-CLK designs can use any length DRAM in Nxl, Nx4, and Nx8 widths.

• The 3-CLK design can use the internal PLD registers or external TTL registers on the
RAS and/or CAS signals.

• Data transceivers are optional. If a data transceiver is used, the DRAM read access
must meet the Inte1386 DX microprocessor read-data setup time. If no data trans­
ceiver is used, the DRAM read-data-float time must not interfere with the next
Intel386 DX microprocessor cycle, particularly if it is a write cycle, and the Inte1386
DX microprocessor data pin loading must not be exceeded.

6-26

MEMORY INTERFACING

• The choice of chip-select logic in the design is arbitrary. Other DRAM memory­
mapping schemes can be implemented by modifying the address decoding to the
DRAM State PLD chip-selects.

.• It is possible to deassert RAS# before the end of the cycle to improve the RAS#
precharge time .

• For a single DRAM bank rather than two, the user should tie the DRAMPI PLD A2
input low, leave RASI # unconnected (only RASO# is used), and feed the Intel386
DX microprocessor address bit A2 into the address multiplexer. The DRAMPI PLD
equations can be modified to change the RASI # output to duplicate the RASO#
output for more drive capability, and the A2 input can be used as another chip-select
input. When only one bank is used, no accesses can be interleaved, and back-to-back
accesses run with three wait states with the 3-CLK design (independent of address
pipelining).

6.3.4.2 USING TAP DELAY LINES

To further optimize your memory design it may be necessary to use tap delay lines. Tap
delay lines allow signals to be generated in relation to other signals instead of from olock
edges. In Figure 6-11, after RAS# is asserted for a memory read, the MUX select is
changed to select the column address. The 5 nanosecond delay allows for RAS# address
hold time while the 20 nanosecond delay of CAS# allows for column address setup time.

Tap delay lines can be used to satisfy other DRAM parameters, such as minimum RAS#
pulse width. Tap delay lines may allow a design to use the le,!-st number of wait states.

6.3.4.3 REDUCING THE CLOCK FREQUENCY

Many of the memory system timings are related to the clock frequency. If the limiting
factor of a memory system design is due to a timing that is dependent on the frequency,
slowing the clock frequency should be considered. A small reduction in clock frequency

RAS# NS
MEMREAD#

5
ROWSEL

10

15

20
CAS#

25

231732i6-11

Figure 6-11. Tap Delay Line

6-27

MEMORY INTERFACiNG

may reduce overall system performance less than adding a wait state. Reducing the clock
frequency affects the time for both external bus activity and. internal computations. The
relationship between clock frequency and system performance is approximately linear.
Table 4-2 gives relative performance versus wait states and operating frequency.

6.3.5 Refresh Cycles

All DRAMs require periodic refreshing of their data. For most DRAMs, periodic acti­
vation of each of the row a~dress signals internally refreshes the data in every column of
the row. Almost all DRAMs allow a RAS-only refresh cycle, the timing of which is the
same as a read cycle, except that only the RAS signals are activated (no CAS signals),
. and all of the data pins are in the high impedance state.

The 3-CLK design uses RAS-only refresh. The address multiplexer is placed in the high
impedance state, and the Refresh Address Counter PLD is enabled to output the
address of the next row to be refreshed. Then the DRAMP1 PLD activates both RASO#
and RAS1# to refresh the selected row for both banks at once. After the refresh cycle is
complete, the Refresh Address Counter PLD increments so that the next refresh cycle
refreshes the next sequential row.

The frequency of refreshing and the number of rows to be refreshed depend on the type
of DRAM. For most larger DRAMs (64KxN and larger), only the lower eight multi­
plexed address bits (A7-AO, 256 rows) must be supplied for the refresh cycle; the upper
address bits are ignored. The Refresh Address Counter PLD must output only eight bits
and only the lower eight bits of the address multiplexer must be placed in the high
impedance state. The OE# signals of the higher order address multiplexers can be tied
low. Larger DRAMs generally require refresh every 4 milliseconds. The following sec­
tions describe refresh specifically for larger DRAMs, although the concepts apply to
smaller DRAMs.

6.3.5.1 DISTRIBUTED REFRESH

In distributed refresh, the 256 refresh cycles are distributed equally within the
4-millisecond interval. Every 15.625 microseconds (4 milliseconds/256), a single row
refresh is performed. After 4 milliseconds all 256 rows have been refreshed, and the
pattern repeats.

The Refresh Interval Counter PLD is programmed to request a single distributed
refresh cycle at intervals slightly under 15.625 microseconds. The counter requests a new
refresh cycle after a preset number of CLK cycles. This number is dependent on the
CLK frequency and can be calculated as follows for a 20-MHz CLK signal:

20 MHz x 15.625 microseconds - 5/256 = 312.48
i = 312 CLK cycles

The term 5/256 is subtracted to allow for the time it takestheDRAMPl PLD to respond
to the request. Refresh requests are always given highest priority; however, if a DRAM
access is already in progress, it must finish before the refresh cycle can start. The 3-CLK

6-28

MEMORY INTERFACING

controller responds within 1-5 CLKs of the refresh request. The maximum latency (the
difference between the longest and shortest responses) for the design is therefore 5
CLKs. This time is spread out among all 256 accesses, so 5/256 is subtracted in the above
equations to account for the latency period. The counter immediately resets itself after it
reaches the maximum count, regardless of this latency period.

Distributed refresh has two advantages over other types of refresh:

• Refresh cycles are spread out, guaranteeing that the Inte1386 DX microprocessor
access is never delayed very long for refresh cycles. Most programs execute in approx­
imately the same time, regardless of when they are run with respect to DRAM
refreshes.

• Distributed refresh hardware is typically simpler than hardware required for other
types of refresh.

6.3.5.2 BUR&T REFRESH

Burst refreshes perform all 256 row refreshes consecutively once every 4 milliseconds
rather than distributing them equally over the time period. Once a refresh is performed,
the next 4-millisecond period is guaranteed free of refresh cycles. Time-critical sections
of code <.:an be executed during this time.

The 3-CLK design can be modified for burst refreshes by lengthening the maximum
count of the Refresh Interval Counter to cover a 4-millisecond interval and holding the
Refresh Request (RFRQ) signal active for 256 refresh cycles instead of a single refresh
cycle. The completion of 256 refresh cycles can be determined by clearing the Refresh
Address Counter PLD before the first refresh cycle and monitoring the outputs until
they reach the zero address again. The Row Select (ROWSEL) signal can be used to
clock the Refresh Address Counter PLD. The longer interval counter and extra logic
requires another PLD device.

6.3.5.3 DMA REFRESH USING THE 82380 DRAM REFRESH CONTROLLER

The 82380 DRAM Refresh Controller can be used to perform refresh operations. The
82380 refresh logic provides a 24-bit Refresh Address Counter. Timer 1 is used to ini­
tiate refresh cycles. When the refresh function is enabled, the output of Timer 1,
TOUTl/REF#, becomes the Refresh Request signal: The 82380 uses DMA operation to
perform DRAM refresh. During a DRAM refresh cycle, TOUTl/REF# will be acti­
vated and a Refresh Address will be placed on the Address Bus. In order to ensure that
no refresh cycles will be delayed, the Refresh Request is always arbitrated with the
highest priority among the DMA requests.

DMA refresh can be used for both 3-CLK and 2-CLK designs. To activate both b&nks,
the 82380's Refresh Request (TOUTl/REF#) is ANDed withthe Intel386 DX micro­
processor's Hold Acknowledge (HLDA) to qualify for a valid refresh operation. The
output of this ANDed signal is connected to theRFRQ input of the DRAMP1 PLD (see
Figure 6-12). The DRAM State PLD must be modified to ignore chip selects. This
modification is needed to prevent the PLD from attempting to run a normal access cycle
after .the refresh cycle is complete.

6-29

MEMORY INTERFACING

(FROM 82380)

V" 1--___ RFRQ
TOUTI/REF# ----t"")

HLOA Piji.----....;..--L-~ . (TO ORAMP1 PLD)
(FROM i386'" OX CPU)

Figure 6-12. Refresh Request Generation

231732i6-12

In addition, the DRAMP2 PLD must be modified so that the Ready (RDY) signal is
generated on refresh accesses. Finally, the OE# input of the address multiplexer should
be tied low so that it never enters the high impedance state, and the row address should
include the least significant address bits (AlO:3).

When using the 82380 DRAM Refresh Control to perform refresh, the Refresh Interval
Counter PLD and the Refresh Address Counter PLD can be eliminated.

6.3.6 Initialization

Once the system is initialized, the integrity of the DRAM data and states is maintained,
even during a Intel386 DX microprocessor halt or shutdown state or hardware reset,
because all DRAM system functions are performed in hardware.

The controller PLDs contain some state and counter information that is not implicitly
reset during a power-up or hardware reset. The state machines are designed so that they
enter the idle state within 18 cue cycles regardless of whether they powerup in a valid
state. The counters can start in apy state. Thus, even though the state machines and
counters can powerup into any state, they are ready for operation before the Inte1386
DX microprocessor begins its first bus access.

Some DRAMs require a number of warm-up cycles before they can operate. Either
method listed below can provide these cycles:

• Performing several dummy DRAM cycles as part of the Intel386 DX microprocessor
initialization process. Setting up the Intel386 DX microprocessor registers and per­
forming a REP LaDS instruction is one way to perform these dummy cycles.

• Activating the RFRQ signal, using external logic, for a preset amount of time, causing
the DRAM control hardware t6 run several refresh cycles.

6-30

Cache Subsystems 7

CHAPTER 7
CACHE SUBSYSTEMS

Operating at 33 MHz, the Inte1386 DX microprocessor can perform a complete bus cycle
in only 60 nanoseconds, for a maximum bandwidth of 66 megabytes per second. To
sustain this maximum speed, the Intel386 DX microprocessor must be matched with a
high-performance memory system. The system must be fast enough to complete bus
cycles with no wait states and large enough to allow the Intel386 DX microprocessor to
execute large application programs.

Traditional memory systems have been implemented with dynamic RAMs (DRAMs),
which provide a large amount of memory for a small amount of board space and money.
However, low-cost DRAMs that can complete random read-write cycles in 60 nanosec­
onds are not commonly available. Faster static RAMs (SRAMs) can meet the bus timing
requirement, but they offer a relatively small amount of memory at a higher cost. Large
SRAM systems can be prohibitively expensive.

A cache memory system contains a small amount of fast memory (SRAM) and a large
amount of slow memory (DRAM). The system is configured to simulate a large amount
of fast memory. Cache memory therefore provides the performance of SRAMs at a cost
approaching that of DRAMs. A cache memory system (see Figure 7-1) consists of the
following sections:

.. Cache-fast SRAMs between the processor and the (slower) main memory

.. Main memory-DRAMs

.. Cache controller -logic to implement the cache .

r--------------------,
DRAM

SRAM

CACHE 1- . MAIN
1386'· OX MEMORY

t
CACHE

CONTROLLER

L ____________________ ~

CACH E MEMORY SYSTEM

Figure 7-1. Cache Memory System

7-1

23173217-1

CACHE SUBSYSTEMS

7.1 INTRODUCTION TO CACHES

In a cache memory system, all the data is stored in main memory and some data is
duplicated in the cache. When the processor accesses memory, it checks the cache first.
If the desired data is in the cache, the processor can access it quickly, because the cache
is a fast memory. If the data is not in the cache, it must be fetched from the main
memory.

A cache reduces average memory access time if it is organized so that the code and data
that the processor needs most often is in the cache. Programs execute most quickly when
most operations are transfers to and from the faster cache memory. If the requested data
is found in the cache, the memory access is called a cache hit; if not, it is called a cache
miss. The hit rate is the percentage of accesses that are hits; it is affected by the size and
physical organization of the cache, the cache algorithm, and the program being run. The
success of a cache system depends on its ability to maintain the data in the cache in a
way that increases the hit rate. The various cache organizations presented in Section 7.2
reflect different strategies for achieving this goal.

Section 7.7 of this chapter introduces the 82385 High Performance 32-BiLCache Con­
troller. The 82385 Cache Controller integrates a cache directory and all cache manage­
ment logic on one chip.

7.1.1 Program Locality

'Predicting the location of the next memory access would be impossible if programs
accessed memory completely at random. However, programs usually. access memory in
the neighborhood of locations accessed recently. This principle is known as program
locality or locality of reference.

Program locality makes cache systems possible. The same concept, on a larger scale,
allows demand paging systems to work well. In typical programs, code execution usually
proceeds sequentially or in small loops so that the next few accesses are nearby. Data
variables are often accessed several times in succession. Stacks grow and shrink from one
end so that the next few accesses are all near the top of the stack. Character strings and
vectors are often scanned sequentially.

The principle of program locality pertains to how programs tend to behave, but it is not
a law that all programs always obey. Jumps in code sequences and context switching
between programs are examples of behavior that may not uphold program locality.

7.1.2 Block Fetch

The block fetch uses program locality to increase the hit rate of a cache. The cache
controller partitions the main memory into blocks. Typical block sizes (also known as
line size) are 2, 4, 8, or 16 bytes. A 32-bit processor usually uses two or four words per

7-2

CACHE SUBSYSTEMS

block. When a needed word is not in the cache, the cache controller moves not only the
needed word from the main memory into the cache, but also the entire block that con­
tains the needed word.

A block fetch can retrieve the data located before the requested byte (look-behind),
after the requested byte (look-ahead), or both. Generally, blocks are aligned (2-byte
blocks on word boundaries, 4-word blocks on doubleword boundaries). An access to any
byte in the block copies the whole block into the cache. When memory locations are
accessed in ascending order (code accesses, for example), an access to the first byte of a
block in main memory results in a look-ahead block fetch. When memory locations are
accessed in descending order, the block fetch is look-behind. .

Block size is one of the most important parameters in the design of a cache memory
system. If the block size is too small, the look-ahead and look-behind are reduced, and
therefore the hit rate is reduced, particularly for programs that do not contain many
loops. However, too large a block size has the following disadvantages:

" Larger blocks reduce the number of blocks that fit into a cache. Because each block
fetch overwrites older cache contents, a small number of blocks results in data being
overwritten shortly after it is fetched.

" As a block becomes larger, each additional word is further from the requested word,
therefore less likely to be needed by the processor (according to program locality).

" Large blocks tend to require a wider bus between the cache and the main memory, as
well as more static and dynamic memory, resulting in increased cost.

As with all cache parameters, the block size must be determined by weighing perfor­
mance (as estimated from simulation) against cost.

7.2 CACHE ORGANIZATIONS

7.2.1 Fully Associative Cache

Most programs make reference to code segments, subroutines, stacks, lists, and buffers.
located in different parts of the address space. An effective cache must therefore hold
several noncontiguous blocks of data.

Ideally, a 128-block cache would hold the 128 blocks most likely to be used by the
processor regardless of the distance between these words in main memory. In such a
cache, there would be no single relationship between all the addresses of these 128
blocks, so the cache would have to store the entire address of each block as well as the
block itself. When the processor requested data from memory, the cache controller
would compare the address of the requested data with each of the 128 addresses in the
cache. If a match were found, the data for that address would be sent to the processor.
This type of cache organization, depicted in Figure 7-2, is called fully associative.

7-3

CACHE SUBSYSTEMS

31 24 23 2 1 0

32-BIT I CACHE/DRAM I I +-BYTE
PROCESSOR SELECT TAG ENABLE

ADDRESS _ _

TAG ~
22 BITS

FFFFFC

000000

FFFFF4

16339C

FFFFF8

.... L... ___ '"
2816 BIT SRAM

1_16 MEGABYTE DRAM ~ 24 BITS_I

DATA

24682468
DATA ~ 11223344
4 BYTES - 33333333

24682468 -
12345678 -
33333333

- 87654321

87654321

11223344

4096 BIT SRAM

12345678

1-32BITS-t

16 MEGABYTE DRAM

Figure 7-2. Fully Associative Cache Organization

FFFFFC

FFFFF8

FFFFF4

1633AO

16339C

163398

OOOOOC

000008

000004

000000

231732i7-2

A fully associative cache provides the maximum flexibility in determining which blocks
are stored in the cache at any time. In the previous example, up to 128 unrelated blocks
could be stored in the cache. Unfortunately, a 128-address compare is usually unaccept­
ably slow, expensive, or both. One of the basic issues of cache organization is how to
minimize the restrictions on which words may be stored in the cache while limiting the
number of required address comparisons.

7.2.2 Direct Mapped Cache

In a direct mapped cache, unlike a fully associative cache, only one address comparison
is needed to determine whether requested data is in the cache.

The many address comparisons of the fully associative cache are necessary because any
block frem the main memory can be placed in any location of the cache. Thus, every
block of the cache must be checked for the requested address. The direct mapped cache
reduces the number of comparisons needed by allowing each block from the main mem­
ory only one possible location in the cache.

7-4

CACHE SUBSYSTEMS

Each direct mapped Cilche address has two parts. The first part, called the cache index
field, contains enough bits to specify a block location within the cache. The second part,
called the tag field, contains enough bits to distinguish a block from other blocks that

. may be stored at a particular cache location.

For example, consider a 64-kilobyte direcf mapped cache that contains 16K 32-bit loca­
tions and caches 16 megabytes of main memory. The cache index field must include
14 bits to select one of the 16K blocks in the cache, plus 2 bits (or 4 byte Enables) to
select a byte from the 4-byte block. The tag field must be 8 bits wide to identify One of
the 256 blocks that can occupy the seleCted cache location. The remaining 8 bits of the
32-bit Intel386 DX microprocessor address are decoded to select the cache subsystem
from among other memories in the memory space. The direct-mapped cache organiza­
tion is shown in Figure 7-3.

32.BIT 131 24123 . 16 15 o
PROCESSOR I CACHE/DRAM I

ADDRESS SE~ECT TAG INDEX

j.-64K CACHE = 16 BITS--+!

1+--16 MEGABYTE DRAM = 24 BITS----+!

INDEX TAG

FFFC 01
FFF8 FF

0010
OOOC
0008 00
0004 01
0000 00

(14 BITS) j.8 BIT~

64KSRAM

DATA

12345678
f...J 11223344

87654321 P 11235813
13579246 I-

j+32BITS~

CACHE

DATA INDEX

FFFC
11223344 FFF8

0010
0000
0008
0004
0000

--
-

'--- 12345678 FFFC
FFF8

0010
OOOC
0008 - 11235813 0004
0000

FFFC
FFF8

.0010
OOOC

87654321 0008
0004

13579246 0000

j+32BITS.j

16 MEGABYTE DRAM

Figure 7-3. Direct Mapped Cache Organization

7-5

TAG

I FF

I 01

I ~
231732;7·3

CACHE SUBSYSTEMS

In a system such as shown in Figure 7-3, a request for the byte of data at the address
12FFE8H in the main memory is handled as follows:

1. The cache controller determines the cache location from the 14 most significant bits
of the index field (FFE8H).

2. The controller compares the tag field (12H) with the tag stored at location FFE8H
in the cache.

3. If the tag matches, the processor reads the least significant byte from the data in the
cache.

4. If the tag does not match, the controller fetches the 4-byte block at address
12FFE8H in the main memory and loads it into location FFE8H of the cache,
replacing the current block. The controller must also change the tag stored at loca­
tion FFE8H to 12H. The processor then reads the least significant byte from the
new block.

Any address whose index field is FFE8H can be loaded into the cache only at location
FFE8H; therefore, the cache controller makes only one comparison to determine if the
requested word is in the cache. Note that the address comparison requires only the tag
field of the address. The index field need not be compared because anything stored in
~ache location FFE8H has an index field of FFE8H. The direct mapped cache uses
direct addressing to eliminate all but one comparison operation.

The direct mapped cache, however, is not without drawbacks. If the processor in the
example above makes frequent requests for locations 12FFE8H and 44FFE8H, the con­
troller must access the main memory frequently, because only one of these locations can
be in the cache at a time. Fortunately, this sort of program behavior is infrequent enough
that the direct mapped cache, although offering poorer performance than a fully asso­
ciative cache, still provides an acceptable performance at a much lower cost.

7.2.3 Set Associative Cache

The set associative cache compromises between the extremes of fully associative and
direct mapped caches. This type of cache has several sets (or groups) of direct mapped
block~ that operate as several direct mapped caches in parallel. For each cache index,
there are several block locations allowed, one in each set. A block of data arriving from
the main memory can go into a particular block location of any set. Figure 7-4 shows the
organization for a 2-way set associative cache.

With the same amount of memory as the direct mapped cache of the previous example,
the set associative cache contains half as many locations, but allows two blocks for each
location. The index field is thus reduced to 'j5 bits, and the extra bit becomes part of the
tag field.

7-6

TAG OFF

001

~9BITS~

32KS

DATA

24662466

77777777

1+32 BITS--j

RAM

CACHE SUBSYSTEMS

32·BIT
PROCESSOR

ADDRESS
INDEX

I+-2 x 32K SRAM = 15 BITS--j

1+--16 MEGABYTE DRAM = 24 BITS----.j

DATA INDEX

24862468 7FFC
11223344 7FFB

0010
INDEX TAG DATA OOOC

OOOS
0004
0000

7FFC 001 12345678
7FF8 1FF 11223344 ~
0010 --
OOOC -

7FFC
7FFB

0008 000 87654321 P.- - 12345678 0004 001 11235813
0000 000 13578246 I-

0010
OOOC 1+9BITS~ 1+32 BITS--\

OOOS
32KSRAM - 11235813 0004

77777777 0000

64KCACHE ,," l 7FF8

0010
OOOC

87654321 0008
0004

13579246 0000

1+32 BITS--\

16 MEGABYTE DRAM

Figure 7-4. Two-Way Set Associative Cache Organization

TAG

IF

00

00

231732;7·4

Because the set associative cache has several places for blocks with the same cache index
in their addresses, the excessive main memory traffic that is a drawback of a direct
mapped cache is reduced and the hit rate increased. A set associative cache, therefore,
performs more efficiently than a direct mapped cache.

The set associative cache, however, is more complex than the direct mapped cache. In
the 2-way set associative cache, there are two locations in the cache in which each block
can be stored; therefore, the controller must make two comparisons to determine in
which block, if any, the requested data is located. A set associative cache also requires a
wider tag field, and thus a larger SRAM to store the tags, than a direct mapped cache
with the same amount of cache memory and main memory. In addition, when informa­
tion is placed into the cache, a decision must be made as to which block should receive
the information.

7-7

CACHE SUBSYSTEMS

The controller must also decide which block of the cache to overwrite when a block fetch
is executed. There are several locations, rather than just one, in which the data from the
main memory could be written. Three common approaches for choosing the block to
overwrite are as follows:

• Overwriting the least recently accessed block. This approach requires the controller
to maintain least-recently used (LRU) bits that indicate the block to overwrite. These
bits must be updated by the cache controller on each cache transaction.

• Overwriting the blocks in sequential order (FIFO).

• Overwriting a block chosen at random.

The performance of each strategy depends upon program behavior. Any of the three
strategies is adequate for most set associative cache designs; however, the LRU algo­
rithm tends to provide the highest hit rate.

7.3 CACHE UPDATING

In a cache system, two copies of the same data can exist at once, one in the cache and
one in the main memory. If one copy is altered and the other is not, two different sets of
data become associated with the same address. A cache must contain an updating system
to prevent old data values (called stale data) from being used. Otherwise, the situation
shown in Figure 7-5 could occur. The following sections describe the write-through and
write-back methods of updating the main memory during a write operation to the cache.

7 .3.1 Write-Through System

In a write-through system, the controller copies write data to the main memory immedi­
ately after it is written to the cache. The result is that the main memory always contains
valid data. Any block in the cache can be overwritten immediately without data loss.

The write-through approach is simple, but performance is decreased due to the time
required to write the data to main memory and increased bus traffic (which is significant
in multi-processing systems).

7.3.2 Buffered Write-Through System

Buffered write~through is a variation of the write-through technique. In a buffered write­
through system, write accesses to the main memory are buffered, so that the processor
can begin a new cycle before the write cycle to the main memory is completed. If a write
access is followed by a read access that is a cache hit, the read access can be performed
while the main memory is being updated. The decrease in performance of the write­
through system is thus avoided. However, because usually only a single write access can
be buffered, two consecutive writes to the main memory will require the processor to
wait. A write followed by a read miss will also require the processor to wait.

7-8

CACHE SUBSYSTEMS

1. PROCESSOR READ DATA; DATA NOT
FOUND IN CACHE. DATA IS COPIED
INTO CACHE FROM MEMORY.

2. PROCESSOR WRITES A NEW VALUE
FOR THE DATA JUST READ.

3. LATER, ANOTHER READ CAUSES
NEW DATA TO BE OVERWRITTEN.
NEW DATA IS LOST.

4. PROCESSOR READS THE SAME
LOCATION AS IN STEP 1. STALE
DATA IS COPIED INTO CACHE.
PROCESSOR GETS WRONG DATA.

;3B6 OX CPU

o-u

Figure 7-5. Stale Data Problem

7.3.3 Write-Back System

231732;7·5

In a write-back system, the tag field of each block in the cache includes a bit called the
altered bit. This bit is set if the block has been written with new data and therefore
contains data that is more recent than the corresponding data in the main memory.
Before overwriting any block in the cache, the cache controller checks the altered bit. If
it is set, the controller writes the block to main memory before loading new data into the
cache.

Write-back is faster than write-through because the number of times an altered block
must be copied into the main memory is usually less than the number of write accesses.
However, write-back has these disadvantages:

• Write-back cache controller logic is more complex than write-through. When a write­
back system must write an altered block to memory, it must reconstruct the write
address from the tag and perform the write-back cycle as well as the requested access.

• All altered blocks must be written to the main memory before another device can
access these blocks in main memory.

7-9

CACHE SUBSYSTEMS

• In a power failure, the data in the cache is lost, so there is no way to tell which
locations of the main memory contain stale data. Therefore, the main memory as well
as the cache must be considered volatile and provisions must be made to save the
data in the cache in the case ofa power failure.

7.3.4 Cache Coherency

Write-through and write-back eliminate stale data in the main memory caused by cache
write operations. However, if caches are used in a system in which more than one device
has access to the main memory (multi~processing systems or DMA systems, for exam­
pie), another stale data problem is introduced. If new data is written to main memory by
one device, the cache maintained by another devicewill contain stale data, A system that
prevents the stale cache data problem is said to maintain cache coherency. Four cache
coherency approaches are described below:

• Bus Watching (Snooping) - The cache controller monitors the system address lines
when other masters are accessing shared memory. If another master writes to a loca~
tion in shared memory which also resides in the cache memory, the cache controller
invalidates that cache entry. The 82385 uses snooping to maintain cache coherency in
~uIti-master systems. Figure 7-6 illustrates bus watching.

• Hardware transparency - Hardware guarantees cache coherency by ensuring that all
accesses to memory mapped by a cache are seen by the cache. This is accomplished
either by routing the accesses of all devices to the main memory through the same

OTHER BUS
MASTER

~

1386'· OX CPU • .. 82385

SHARED
MEMORY

231732i7·6

Figure 7-6. Bus Watching

7-10

CACHE SUBSYSTEMS

cache or by copying all cache writes both to the main memory and to all other caches
that share the same memory (a technique known as broadcasting). Hardware trans­
parent systems are illustrated in Figure 7-7.

• Non-cacheable memory - Cache coherency is maintained by designating shared
memory as non-cacheable. In such a system, all accesses to shared memory are cache
misses, because the shared memory is never copied into the cache. The non-cacheable
memory can be identified using chip-select logic or high-address bits. Figure 7-8 illus­
trates non-cacheable memory.

Software can offset the reduction in the hit rate caused by non-cacheable memory by
using the string move instruction (REP MOVS) to copy data between non-cacheable
memory and cacheable memory and by mapping shared memory accesses to the
cacheable locatio~s. This technique is especially appropriate for systems in which
copying is necessary for other reasons (as in some implementations of UNlX for
example).

• Cache flushing - A cache flush writes any altered data to the main memory (if this
has not been done with write-through) and clears the contents of the cache. If all the
caches in the system are flushed before a device writes to shared memory, the poten­
tial for stale data in any cache is eliminated.

Combinations of various cache coherency techniques may offer the optimal solution for a
particular system. For example, a system might use hardware transparency for time­
critical 110 operations such as paging and non-cache able memory for slower I/O such as
printing.

7.4 EFFICIENCY AND PERFORMANCE

The measurement of cache effectiveness is divided into two topics: efficiency and per­
formance. Cache efficiency is its ability to maintain the most used code and data
requested by the microprocessor. Efficiency is measured in terms of hit rate. Perfor­
mance is a measurement of the speed in which a microprocessor can perform a given

OTHER
BUS CACHE

MASTER
MAIN

J
MEMORY ,

i3B6~ OX
CPU CACHE -

231732i7-7

Figure 7-7. Hardware Transparency

7-11

1386" OX
CPU

CACHE SUBSYSTEMS

OTHER BUS
MASTER

_________ } NON·CACHEABLE

MEMORY } CACHE CACHEABLE

~

231732i7·8

Figure 7-8. Non-Cacheable Memory

task, and is measured in effective wait-states. Hit rate is but one of many factors which
affect performance. Write policy, update policy, and coherency methods are perfor­
mance factors as well.

Hit rate data for various cache organizations is shown in Table 7-1. These statistics were
computed by analyzing several mainframe traces, and selecting the one which produced
the lowest hit rate. Thus, the numbers listed are a conservative estimate of cache effi­
ciency. Note that hit rate statistics are not absolute quantities. The hit rate of a partic­
ular cache implementation can vary widely depending on software. Therefore, Table 7-1
should only be. used to compare one cache configuration against another listed. The
relative hit rates should be weighed against other considerations, such as hardware com­
plexity, in selecting a cache organization.

Table 7-1. Cache Hit Rates

Cache Configuration
Hit Rate

Size Associativity Line Size

1K direct 4 bytes 41%
8K direct 4 bytes 73%

16K direct 4 bytes 81%
32K direct 4 bytes 86%
32K 2-way 4 bytes 87%
32K direct 8 bytes 91%
64K direct 4 bytes 88%
64K 2-way 4 bytes 89%
64K 4-way 4 bytes 89%
64K direct 8 bytes .'. 92%
64K 2-way 8 bytes 93%

128K direct 4 bytes 89%
128K 2-way 4 bytes 89%
128K direct 8 bytes 93%

7-12

CACHE SUBSYSTEMS

7.5 CACHE AND DMA

Cache coherency is an issue one must consider when placing a DMA controller in an
Intel386 DX microprocessor system. Because the DMA controller has access to main
memory, it can potentially introduce stale data. As was mentioned before, stale data can
be avoided in the following ways:

o Implementing bus watching (snooping). In this approach, the DMA controller writes
to main memory, and the cache controller monitors DMA cycles and automatically
invalidates any cache location altered by DMA.

o Implementing a transparent cache, in which memory accesses from both the
Inte1386 DX microprocessor and the DMA controller are directed through the cache.

• Restrict DMA cycles to non-cacheable areas of memory.

The first method has a distinct advantage: since the DMA controller does not access the
cache directly, the Intel386 DX microprocessor can read from the cache while the DMA
controller is moving data to the main memory. Although bus watching is difficult to
implement in a discrete cache design, the 82385 integrates this function and performs
zero waitstate bus watching. The overall memory bandwidth is increased since the
Intel386 DX microprocessor can access its cache at the same time as the DMA control­
ler accesses main memory.

The second approach has the advantage of requiring minimal hardware, but has the
disadvantage that the Intel386 DX microprocessor must be placed in HOLD during
DMA transfers. The third approach is useful if a separate, dual-ported memory can be
used as the non-cache able memory, and the DMA device is tightly coupled to this mem­
ory. In all approaches, the cache should be made software transparent, so that DMA
cycles do not require special actions by software to insure cache coherency.

7.6 CACHE EXAMPLE

The cache system example described in this section illustrates some of the decisions a
cache designer must make. The requirements of a particular system may result in differ­
ent choices than the ones made here. However, the issues presented in this section will
arise in the process of designing any cache system.

7.6.1 Example Design

The cache system uses a direct-mapped cache. In previous generations of computers, it
was often practical to build a 2-way or 4-way associative cache. SRAMs had low memory
capacity, so many of them were needed to construct a cache of reasonable size. However,
today's SRAMs are more dense, cost less, and take up less space. It is now more eco­
nomical to increase cache efficiency by increasing cache size (SRAMs) rather than asso­
ciativity (control logic and comparators).

7-13

CACHE SUBSYSTEMS

The main memory is updated using buffered write-through. Implementing buffered
write-through is slightly more complicated than unbuffered write-through, but it has the
advantage that the processor can continue to run while the DRAM write is taking place.
In contrast, write-back is significantly more complicated, but may be beneficial if main
memory traffic must be kept to a minimum (as in multiprocessor systems, for example).

The line size is four bytes, which is most convenient for the 32-bit data bus of the
Intel386 DX microprocessor. An 8-byte line size would transfer twice as much data for
every DRAM access, but would require a wider bus as well as more SRAMs, DRAMs,
and transceivers. In such cases, one must weigh the additional cost against the additional
performance.

The cache in this example stores both code and data, rather than only code. Code-only
caches are easier to implement because there are no write accesses. They can be useful
if data accesses are infrequent. In general, however, most programs make frequent data
accesses. The code prefetch function of the Intel386 DX microprocessor makes the
access time for code less critical to overall performance, since opcodes returned to the
processor more quickly may only reside in the code queue longer.

7.6.2 Example Cache Memory Organization

The example cache is organized as shown in Figure 7-9.The cache holds 64 Kbytes (16K
locations of 4-byte blocks) of data and code and requires 16K 16-bit tag locations. The
main memory can hold up to 2 Gbytes.

The 32-bit address from the Intel386 DX microprocessor is divided into the following
three fields:

• Select - Bit A31 is used to select the cache/DRAM subsystem.

• Tag - Bits A30-A16 identify which DRAM location currently is associated with each
cache location.

• Index - Bits A15~A2 identify one of the 16,384 doubleword locations in the cache.

Each doubleword location of the cache can be occupied by one of the 32,768 blocks from
main memory (one block from each 64-kilobyte section).

The Intel386 DX microprocessor bits A31-A2 are interpreted as follows:

1. Select bit A31 is low during cache/DRAM cycles.

2. Index bits A15-A2 select the cache location.

3. Tag bits A30-A16 are compared with the tag information stored in the cache
to determine of the block in the cache is the block needed by the Intel386 DX
microprocessor.

7-14

CACHE SUBSYSTEMS

31 32·BIT
PROCESSOR

ADDRESS SELECT INDEX

INDEX TAG

FFFC 01
FFF8 FF

0010
OOOC
0008 00
0004 01
0000 00

(14 BITS) I_ -I
15 BYTES

64KSRAM

!-64K CACHE=16 BITS-!

I-:z GIGABYTE DRAM = 31 BYTES~

DATA INDEX

FFFC
11223344 FFF8

0010
DATA OOOC

12345678
~ 11223344

OOOS
0004
0000

87654321
~ ~ 11235813 12345678

13579246 -
FFFC
FFF8

j+32BITS+j
0010
OOOC
0.008

CACHE '--+ 11235813 0004
0000

FFFC
FFF8

0010
OOOC

87654321 0008
0004

13579246 0000

j+32BITS+j

TAG

l~~

1-'
)-

Figure 7-9. Example of Cache Memory Organization

231732i7·9

a. If the tag matches, the Intel386 DX microprocessor either reads the data in the
cache or writes new data into the cache. In the case of a write, the data is also
written to the main memory.

b. If the tag does not match during a read cycle, a doubleword is read from main
memory, stored in the cache, and simultaneously presented to the Intel386 DX
microprocessor. The new tag is also stored in the cache. During a write, if the
tag does not match, the cache is not updated.

7 . ., 82385 CACHE CONTROLLER

The 82385 Cache Controller enables the Inte1386 DX microprocessor to reach its full
performance potential by reducing the average number of wait states to nearly zero. It
does this by keeping a copy of the most frequently accessed code and data from main
memory in its zero wait state cache memory. When the Intel386 DX microprocessor
subsequently requests this data, the 82385 will respond with zero wait states.

7-15

CACHE SUBSYSTEMS

The 82385 resides on the Inte1386 DX microprocessor local bus and interfaces directly to
the Intel386 DX microprocessor. It presents a 'functional Inte1386 DX microprocessor
bus (called the 82385 local bus) for the system interface. This dual bus structure and the
82385's ability to "snoop" the system interface allows the Inte1386 DX microprocessor to
run locally out of the cache while another bus master has control of the 82385 local bus.

7.7.1 Bus Structure with the 82385

Figure 7-10 shows the bus structure of a typical Intel386 DX microprocessor system. The
Intel386 DX microprocessor local bus consists of the physical Intel386 DX microproces­
sor address, data, and control buses. The local address and data buses are buffered/
latched to become the system address and data buses. The local control bus is decoded
by bus control logic to generate the various system bus read and write commands.

The addition of an 82385 creates two distinct buses: the actual Intel386 DX micropro­
cessor local bus and the 82385 local bus (Figure 7-11). The 82385 local bus is functionally
equivalent to the Inte1386 DX microprocessor local bus, with system resources interfac­
ing to it in the same manner as they would with the Intel386 DX microprocessor local

i386'· ox MICROPROCESSOR

...
0
I!: z
0
0

"II ,.

8US
CONTROL

"II ,.

SYSTEM
MEMORY

4 ~

~
C§

~ r

DATA
BUFFER

~ ~

~ r'

SYSTEM BUS

(II I (II ... i386'· ox
'" c LOCAL BUS c «

~ "II ,.

ADDRESS
BUFFER

"II ,.

SYSTEM I/O I

Figure 7-10. Intel386™ OX Microprocessor System Bus StrlJcture

7-16

231732i7-10

CACHE SUBSYSTEMS

......---..........--.~ 1

SYSTEM BUS

i3B6'" ox CPU
LOCAL BUS

~
82385

LOCAL BUS

~

231732i7-11

Figure 7-11. Intel386™ OX Microprocessor/82385 System Bus Structure

bus. The 82385 local bus is not simply a buffered version of the Intel386 DX micropro­
cessor local bus, but rather is distinct from and able to operate in parallel with the
Intel386 DX microprocessor local bus. The 82385 directly interfaces to the Intel386 DX
microprocessor on the Intel386 DX microprocessor local bus.

7.7.2 82385/lnte1386 OX Microprocessor Interface

The 82385 directly interfaces to the Intel386 DX microprocessor. It has three inputs
which are used to decode Inte1386 DX microprocessor local bus accesses, non-cacheable
memory accesses, and 16-bit accesses. It runs fully synchronously with the Intel386 DX
microprocessor and returns data with a full 32-bit data bus. The Intel387 DX math
coprocessor also resides on the Intel386 DX microprocessor local bus.

7.7.2.1 Intel386 OX MICROPROCESSOR INTERFACE

The connections between the Intel386 DX microprocessor and the 82385 are shown in
Figure 7-12. As can be seen, the 82385 interfaces directly to the Intel386 DX micropro­
cessor. The 82385 setup specifications for the Intel386 DX microprocessor address and
control bus are designed to meet the Intel386 DX microprocessor output delays.

7-17

12 or 13 .- _ .. -

:52

TO
CACHE 4

2

2

'~
ex> -----t

-

4

.,

.,

CALEN 82385 CLCK2
I

CLK2

CT/R# RESET RESET
1386'· DX CSO-CS3# ADS# AOS#

CPU
COEA#. COEB# . NA# NA#

CWEAII. CWEB# LOCK#
3

LOCK#

M/IO#. O/CI/. W/R#
4

M/IO#. O/C#. W/R#

BEO#- BO#
30

BEO#- BE3#

A2-A31 A2-A31
32

00-031

BHOLO REAOYl#

I
REAOY#

BHLOA REAOYO#

WBS BROYEN#

FLUSH BREAOY#

MISS# BACP -
BLOCK# BAOEII -
BNA# LOSTB-

BAOS# OOE#

BBEOH - BBE3# BTlR#

~ CAB A S~B+ l!: CP'o l!: CP 0
..:: OE# OEI/ OE#

OIR 4x646 4x374 374 £ SBA CBA BOO

BM/IOI/. = 32 BOO-B031 30 BA2-B031 3 BO/CH.
BREAD' BW/RI/

823B5 LOCAL BUS

Figure 7-12. Intel386™ OX Microprocessor/82385 Interface

}
FROM
OSC/RESET
CIRCUIT

OTHER
16 DXCPU
.B READY

231732i7-12

l

n
~
:::J:
m
en c
OJ

~
m s: en

@I

CACHE SUBSYSTEMS

7.7.2.2 Intel387 OX MATH COPROCESSOR INTERFACE

Coprocessor cycles are indicated when the Intel386 DX microprocessor generates I/O
cycles to addresses 800000F8H and 800000FCH. The 82385 monitors the Intel386 DX
microprocessor M/IO# and A31 signals to determine when the coprocessor is being
accessed. When a coprocessor access is encountered by the 82385, the cycle is effectively
ignored (the 82385 remains idle) during the cycle.

Care must be taken in designs which allow the Intel387 DX math coprocessor to be an
option. Any time that the 82385 recognizes a coprocessor access by the Inte1386 DX
microprocessor, it will remain idle until the cycle is terminated. Therefore, if the
Intel386 DX microprocessor executes a coprocessor cycle without the Iritel387 DX math
coprocessor being present, the 82385 must see a READYI# to indicate the completion
of the cycle. Therefore, these cycles must be locally terminated.

7.7.2.3 82385 SYSTEM CONFIGURATION INPUTS

The 82385 offers three inputs which are used to allow various system configurations. The
inputs allow for Inte1386 DX microprocessor local bus accesses (LBA#), for non­
cache able memory accesses (NCA#), and %-bit accesses (X16#). These 82385 inputs
are required to be activated in the first state where addresses are valid (Tl or first T2P)
and must remain valid until addresses change from the Inte1386 DX microprocessor
(after the last T2 or TIP).

Non-Cacheable Accesses-NCA#. NCA# allows areas of memory to be mapped as non­
cacheable. Memory mapped I/O and dual-ported memory are typical examples of areas
which are generally non-cacheable.

16-Bit Transfers-X16#. 16-bit transfers can be managed by the Inte1386 DX micropro­
cessor by using its BS16# input. The 82385 can accommodate these transfers by the use
of its X16# input. If X16# is activated, the access is treated as non-cacheable. The
Intel386 DX microprocessor byte enables '(BEO#-BE3#) are monitored by the 82385 to
determine if it must lock two halves of a 16-bit transfer.

Intel386 DX Microprocessor Local Bus Cycles-LBA#. The 82385 LBA# input allows
devices to reside on the Intel386 DX microprocessor local bus. Certain I/O ports or
some memory space might be desired to be locally specific to the Inte1386 DX micropro­
cessor. The Intel387 DX math coprocessor resides on the Inte1386 DX microprocessor
local bus, but the 82385 internally recognizes coprocessor accesses (M/IO# low and A31
high). The Intel387 DX math coprocessor does not need to be externally decoded as a
local bus device.

7-19

CACHE SUBSYSTEMS

7.7.3 82385 Cache Organiza~ion

The cache directory and management logic are integrated into the 82385. The cache
data memory consists of external SRAMs which are used to store the actual code and
data. The 82385 supplies all of the necessary control signals to access the cache data
memory. Via a configuration input, the 82385 can be designed as either a direct mapped
cache or a two-way set associative cache.

7.7.3.1 DIRECT MAPPED ORGANIZATION

The recommended SRAM configuration for the direct mapped mode is the use of four
8K x 8 SRAMs. The 82385 will logically regard this as one bank of 8K x 32 (a total of
32 kbytes). The design can further be configured to use four bi-directional buffers (such
as 74AS245s) between the SRAMs and the Intel386 DX microprocessor local data bus
(see Figures 7-13 and 7-14). The buffers may be used if the SRAMs do not have an
output enable or if the capacitive loading on the SRAM data pins requires substantial
derating of the SRAM output enable time.

7.7.3.2 TWO-WAY SET ASSOCIATIVE ORGANIZATION

In the two-way set associative mode, the 82385 logically views the cache data memory as
if it were two banks of 4K x 32 (a total of 32 kbytes). Each bank is then accessed as a
cache "way" by the 82385. The typical design will incorporate eight 4K x 4 SRAMs for
each bank (ideally 4K x 8 SRAMs would be used). Again, this can further be configured
to use bi-directional buffers (see Figures 7-15 and 7-16).

/

8Kx8
8Kx8

8Kx8

CACHE
SRAM

2x373
II"'.L---i Q D II-+----i

(8K x 8) CALEN

4

ONEAl
COEAI
CSOII-CS31

Figure 7-13. Direct Mapped Cache without Data Buffers

7-20

82385
CACHE
CONTROL

231732i7-13

8Kx8
8Kx8

8Kx8

CACHE
SRAM

(8Kx 8)

CACHE SUBSYSTEMS

<t
!;:
C
CIl

~~~~----------~~ 
4x245 ...J 

OATA1.1U-L---'\IA SIJL---I--''\ ~ 
CSO#­
CS3# WEI 

00-031 ~ 

4 

CALEN 

CT/R# 
COEA# 

CSO#-CS3# 

Figure 7-14. Direct Mapped Cache with Data Buffers 

4Kx4 

CACHE SRAM 
BANK A 
(4Kx4) 

ADDRESS 

CACHE SRAM 
BANK B 

(4K,32) 

DATAI¢========+~ 
00-031 

CALEN 

CWEA# 

COEA# 
CSO#-CS3# 

CWEB# 
COEB# 

82385 
CACHE 
CONTROL 

82385 
CACHE 
CONTROL 

Figure 7-15. Two-Way Set Associative Cache without Data Buffers 

7-21 

231732;7-14 

231732;7-15 



. 
4Kx4 

ADDRESS 
;--

CACHE SRAM 
BANK A 
(4Kx4) 

DATA 

~ CSO#-
CS3# WEN 

4 

4 

CSO#- OED WEN 
CS3# 

;L-
ADDRESS 

CACHE SRAM 'I 

BANK B 
(4K x 32) 

A 
DATA 

'\I 

CACHE SUBSYSTEMS 

01 2x373 
A I 

_0 0 

~2JA13 
I--

OED E 

~t -<I - - CALEN 

-" 
4x245 

I " 
A B 

" 'I 

DO~D31 ;! OED DIR Ul 
Ul 

74A~~ -,--

74AS~~ -,--

" 
OED DIR 

I " 
A B 

" '\I IV 

~ 00-031 
... 

« c 
Ul 
:l mr--
<il--
0 
0 
~I--
!3r--
x 
~-
~-
~ 

w 
II: c 82385 

COEA# CACHE ~~; CWEA# CONTROL 
m 

~~: 9 
CSO#-CS3# 

CT/R# 

~ 

~~: CWEB# 
COEB# 

;, "'v;' 

Figure 7-16. Two-Way Set Associative Cache with Data Buffers 

7.7.3.3 CACHE SRAM TIMING EQUATIONS 

231732i7-16 

In order to determine the required timing specifications for the SRAM being used with 
the 82385, it is necessary to complete a timing analysis. The following is a list of equa­
tions which can be used to determine these specifications. 

Read Cycles 

• Address Access Time (With Buffers) 

The smaller of: 

4xCLK2 - 386 Min Data - 385 Max CALEN - 74AS373 C-to-Q - 74AS245 A-to-B 
Period Setup (t21) Delay (t21b) Max Delay Max Delay 

4xCLK2 - 386 Min Data - 385 Max Addr - 74AS373 D-to-Q - 74AS245 A-to-B 
Period Setup (t21) Valid Delay (t6) Max Delay Max Delay 

7-22 



CACHE SUBSYSTEMS 

• Address Access Time (Without Buffers) 

The smaller of: 

4xCLK2 - 386 Min Data - 385 Max CALEN - 74AS373 C-to-Q 
Period Setup (t21) Delay (t21b) Max Delay 

4xCLK2 - 386 Min Data - 385 Max Addr 
Period Setup (t21) Valid Delay (t6) 

- 74AS373 D-to-Q 
Max Delay 

• Chip Select Access Time (With Buffers) 

4xCLK2 - 386 Min Data - 385 Max CS(O-3)#- 74AS245 A-to-B 
Period Setup (t21) Delay (t23) Max Delay 

• Chip Select Access Time (Without Buffers) 

4xCLK2 - 386 Min Data - 385 Max CS(O-3)# 
Period Setup (t21) Delay (t23) 

• Output Enable to Data Valid (Direct Mapped Without Buffers) 

2xCLK2 - 386 Min Data - 385 Max COE# 
Period Setup (t21) Delay (t25a) 

• Output Enable to Data Valid (Two-Way Without Buffers) 

2xCLK2 - 386 Min Data - 385 Max COE# 
Period Setup (t21) Delay (t25b) 

In 82385 configurations which use buffers for the cache-data memory, the output enable 
time for the SRAM is effectively the address access time since there is no output enable 
on the SRAM itself. The 82385 controls the direction and enabling of the 74AS245 
buffers. 

Write Cycles 

• Address Valid to End of Write 

The smaller of: 

3xCLK2 +385 CWE# Min- 385 Max CALEN -74AS373 C-to-Q 
Period Delay (t22a) Delay (t21b) Max Delay 

3xCLK2 + 385 CWE# Min - 386 Max Addr 
Period Delay (t22a) Valid Delay (t6) 

• Data Setup Time (With Buffers) 

-74AS373 C-to-Q 
Max Delay 

385 CWE# Min - 74AS08 Max - 74AS245 Enable to Data 
Pulse (t22b) Prop Delay Max Delay 

• Data Hold Time (With Buffers) 

74AS08 Min - 74AS245 Enable to Data 
Prop Delay Min Delay 

7-23 



CACHE SUBS,YSTEMS 

• Data Hold Time (Without Buffers) 

The smaller of: 

1xCLK2 + 386 Min Data - 385 CWE# Max 
Period Hold (t22) Delay (t22a) 

1xCLK2 + 386 Min Data - 385 CWE# Max 
Period Valid (t12) Delay (t22a) 

7.7.4 System Interface 

The 82385 presents the 82385 local bus for the system interface. Since the 82385 local 
bus is functionally equivalent to the Intel386 DX microprocessor local bus, the' system 
interface is virtually identical. There are some timing differences that need to be under­
stood. These relate to the data setup time and the ready setup time. 

7.7.4.1 READ DATA SETUP 

At 33 MHz, the read data setup time for the Inte1386 DX microprocessor is 5 ns. This 
does not take into account any buffers in the data path which add to the setup~With an 
82385 cache system, the need to update the cache memory for read miss cycles changes 
the data setup. The equation to determine the data setup for the buffered cache orga­
nization is given by: 

74xx646 Max Propagation Delay + 74xx245 Max Propagation Delay 

+ SRAM Min Write Setup + One CLK2 Period - 82385 CWE# Min Delay 
(82385 t22a) 

The BREADY # signal is used by the 82385 to determine when the cache update can be 
completed for a read-miss cycle. When BREADY # is activated at the end of a cache­
read miss access, it tells the 82385 to trigger the rising edge of CWE# which updates the 
cache-data SRAMs. For this reason, the BREADY# setup (82385 t37a) for a cache­
read miss is 13 ns at 33 MHz. 

7.7.5 Special Design Notes 

The ability to disable the cache is useful for system memory diagnostic purposes. While 
the 82385 itself does not have a specific cache enable/disable feature, the FLUSH input 
can effectively be used to disable the cache. By keeping the FLUSH input active, all 
Inte1386 DX microprocessor memory accesses (which have LBA# inactive) will be for­
warded to the system bus. The FLUSH pin invalidates all of the directory tags which 
makes the cycles read misses. In addition, no coherency issues will exist when the cache 
is enabled since it was previously flushed. 

Certain architectures which use the Intel386 DX microprocessor implement a special 
, function for the A20 address line. When the Intel386 DX microprocessor is running in 
Real Mode,the A20 line is kept active low (via a registered I/O poit) so that regardless 

7-24 



CACHE SUBSYSTEMS 

of the state of A20, the memory subsystem will always see it inactive. In Protected Mode, 
the true state of A20 is forwarded to the system. Beginning with the 82385 (B) step, 6 ns 
of time will be available from the Intel386 DX microprocessor A20 valid specification to 
the 82385 A20 setup specification. This allows a logic gate (such as a 74AS08) to reside 
between the Intel386 DX microprocessor and the 82385 for the A20 line. The A20 
address line can be manipulated between the Intel386 DX microprocessor and the 82385 
in order to handle any possible coherency issues. 

7-25 





I/O Interfacing 8 





CHAPTERS 
I/O INTERFACING 

The Intel386 DX microprocessor supports 8-bit, 16-bit, and 32-bit I/O devices that can 
be mapped into either the 64-kilobyte I/O address space or the 4-gigabyte physical mem­
ory address space. This chapter presents the issues to consider when designing an inter­
face to an I/O device. Mapping as well as timing considerations are described. Several 
examples illustrate the design concepts. . 

8.1 I/O MAPPING VERSUS MEMORY MAPPING 

I/O mapping and memory mapping of I/O devices differ in the following respects: 

011 The address decoding required to generate chip selects for I/O-mapped' devices is 
often simpler than that required for memory-mapped devices. J/O-mapped devices 
reside in the I/O space of the Inte1386 DX microprocessor (64 kilobytes); memory­
mapped devices reside in a much larger memory space (4 gigabytes) that makes use of 
more address lines. 

OIl Memory-mapped devices can be accessed using any Intel386 DX microprocessor 
instruction, so I/O-to-memory, memory-to-I/O, and I/O-tocI/O transfers as well as 
compare and test operations can be coded efficiently. I/O-mapped devices can be 
accessed only through the IN, OUT, INS, and OUTS instructions. All I/O transfers' 
are performed via the AL (8-bit), AX (16-bit), or EAX (32-bit) registers. The first 256 
bytes of the I/O space are directly addressable. The entire 64-kilobyte I/O space is 
indirectIyaddressable through the DX register. 

• Memory mapping offers more flexibility in protection than I/O mapping does. 
Memory-mapped devices are protected by memory management and protection fea­
tures. A device can be inaccessible to a task, visible but protected, or fully accessible, 
depending on where the device is mapped in the memory space. Paging provides the 
same protection levels for individual 4-kilobyte pages and indicates whether a page 
has been written to. The I/O privilege level of the Inte1386 DX microprocessor pro­
tects I/O-mapped devices by either preventing a task from accessing any I/O devices 
or by allowing a task to access all I/O devices. A virtual-8086-mode I/O permission 
bitmap can be used to selectthe privilege level for a combination of I/O bytes. 

8.2 8-BIT, 16-BIT, AND 32-BIT I/O INTERFACES 

The Inte1386 DX microprocessor can operate with 8-bit, 16-bit, and 32-bit peripherals. 
The interface to a peripheral device depends not only upon data width, but also upon 
the signal requirements of the device and its location within the memory space or I/O 

, space. 

8-1 



I/O INTERFACING 

8.2.1 Address Decoding 

Address decoding to generate chip selects must be performed whether I/O devices are 
I/O-mapped or memory-mapped. The decoding technique should be simple to minimize 
the amount of decoding logic. 

One possible technique for decoding memory-mapped I/O addresses is to map the entire 
I/O space of the Inte1386 DX microprocessor into a 64-kilobyte region of the memory 
space. The address decoding logic can be configured so that each I/O device responds to 
both a memory address and an I/O address. Such a configuration is compatible for both 
software that uses I/O instructions and software that assumes memory-mapped I/O. 

Address decoding can be simplified by spacing the addresses of I/O devices so that some 
of the lower address lines can be omitted. For example, if devices are placed at every 
fourth address, the Intel386 DX microprocessor Byte Enable outputs (BE3#-BEO#) 
can be ignored for I/O accesses and each device can be connected directly to the same 
eight data lines. The 64-kilobyte I/O space is large enough to allow the necessary free­
dom in allocating addresses for individual devices. 

Addresses can be assigned to I/O devices arbitrarily within the I/O space or memory 
space. Addresses for either I/O-mapped or memory-mapped devices should be selected 
to minimize the number of address lines needed. 

8.2.2 8-Bit I/O 

Eight-bit I/O devices can be connected to any of the four 8-bit sections of the data bus. 
Table 8-1 illustrates how the address assigned to a device determines which section of 
the data bus is used to transfer data to and from the device. 

In a write cycle, if BE3# and/or BE2# is active but not BEl# or BEO#, the write data 
on the top half of the data bus is duplicated on the bottom half. If the addresses of two 
devices differ only in the values of BE3#-BEO# (the addresses lie within the same 
doubleword boundaries), BE3#-BEO# must be decoded to provide a chip select signal 
that prevents a write to one device from erroneously performing a write to the other. 
This chip select can be generated using an address decoder PLD such as the 85C508 
device or TTL logic. 

Table 8-1. Data Lines for 8-Bit I/O Addresses 

Address 4N + 3 4N + 2 4N + 1 4N 

Byte 031-024 023-016 015-08 , 07-00 

Word 031-016 015-00 

Ooubleword 031-00 

8-2 



BE3# 

BE2# 

BE1# 

BEO# 

I/O INTERFACING 

OE# 

OE# 

DECODE t--_ .... 

Figure 8-1. 32-Bit to 8-Bit Bus Conversion 

a·BIT 1/0 DEVICE 

231732i8·1 

Another technique for interfacing with 8-bit peripherals is shown in Figure 8-1. The 
32-bit data bus is multiplexed onto an 8-bit bus to accommodate byte-oriented DMA or 
block transfers to memory-mapped 8-bit I/O devices. The addresses assigned to devices 
connected to this interface can be closely spaced because only one 8-bit section of the 
data bus is enabled at a time. 

8-3 



I/O INTERFACING 

8.2.3 16-Bit I/O 

To avoid extra bus cycles and to simplify device selection, 16-bit I/O devices should be 
assigned to even addresses. If I/O addresses are located on adjacent word bciundaries, 
address decoding must generate the Bus Size 16 (BS16#) signal so that the Intel386 DX 
microprocessor performs a 16-bit bus cycle. If the addresses are located on every other 
word boundary (every doubleword address), BS16# is not needed. 

8.2.4 32-Bit I/O 

To avoid extra bus cycles and to simplify device selection, 32-bit devices should be 
assigned to addresses that are even multiples of four. Chip select for a 32-bit device 
should be conditioned by all byte enables (BE3#-BEO#) being active. 

8.2.5 Linear Chip Selects 

Systems with 14 or fewer I/O ports that reside only in the I/O space or that require more 
than one active select (at least one high active and one low active) can use linear chip 
selects to access I/O devices. Latched address lines A2-A15 connect directly to I/O 
device selects as shown in Figure 8-2. 

8.3 BASIC I/O INTERFACE 

In a typical Intel386 DX microprocessor system design, a number of slave I/O devices 
can be controlled through the same local bus interface. Other I/O devices, particularly 
those capable of controlling the local bus, require more complex interfaces. This section 
presents a basic interface for slave peripherals. 

The high performance and flexibility of the Intel386 DX microprocessor local bus inter­
face plus the increased availability of programmable and semi-custom logic make it fea­
sible to design custom bus control logic that meets the requirements of particular system. 

The basic I/O interface shown in Figure 8-3 can be used to connect the Inte1386 DX 
microprocessor to virtually all slave peripherals. The following list includes some com-. 
mon peripherals compatible with this interface: 

8259A Programmable Interrupt Controller 
8237 DMA Controller (remote mode) . 
82258 Advanced DMA Controller (remote mode) 
8253, 8254 Programmable Interval Timer 
8272 Floppy Disk Controller 
82064 Fixed Disk Controller 
8274 Multi-Protocol Serial Controller 
8255 Programmable Peripheral Interface 
8041, 8042 Universal Peripheral Interface 

8-4 



I/O INTERFACING 

ADDRESS =[]s 
LINE 

iORC iiD . 110 DEVICE 

. iOWC WR 

A15 

A14 

(AlONE CHIP SELECT 

CS 

CS 

iiD 

--C WIi 

CS 

cs 
iiD 
WR 

(B) MULTIPLE CHIP SELECTS 

110 DEVICE 

1/0 DEVICE 

Figure 8-2. Linear Chip Selects 

231732iB-2 

The bus interface control logic presented here is identical to the one used in the basic 
memory interface described in Chapter 6. In most systems, the same control logic, 
address latches, and data buffers can be used to access both memory and I/O devices. 
The schematic of the interface is shown in Figure 8-4 and described in the following 
sections. 

8.3.1 Address Latch 

Latches maintain the address for the duration of the bus cycle. In this example, 74x373 
latches are used. 

The 74x373 Latch Enable (LE) input is controlled by the Address Latch Enable (ALE) 
signal from the bus control logic that goes active at the start of each bus cycle. The 
74x373 Outp:ut Enable (OE#) is always active. 

8.3.2 Address Decoder 

In this example, the address decoder, which converts the Inte1386 DX microprocessor 
address into chip-select signals, is located before the address latches. In general, the 
decoder may also be placed after the latches. If it is placed before the latches, the 

8-5 



I/O INTERFACING 

I 

BUS 
ADDRESS 

I ~ 
CONTROL t-- ,..-l\ DECODER LOGIC WAIT-BTATE I-GENERATOR rV -" 110 

DEVICE 

~ #1 

- - -,I 
ADDRESS 

BUS .~ LATCH 
READY. 

STATUS r I- :..... 
ADDRESS 

J.. 
110 

i3B6'· OX CPU DEVICE 

~ 112 

DATA ~ 

A -". TRANSCEIVER V" 
DATA .... .. 

... .. 

231732i8-3 

Figure 8·3. Basic I/O Interface Block Diagram 

chip-select signal becomes valid as early as possible but must be latched along with the 
address. Therefore, the number of address latches needed is determined by the location 
of the address decoder as well as the number of address bits and chip-select signals 
required by the interface. The chip-select signals are routed to the bus control logic to 
set the correct number of wait states for the accessed device. 

The decoder consists of two one-of-four decoders, one for memory address decoding and 
one for I/O address decoding. In general, the number of decoders needed depends on 
the memory mapping complexity. In this basic example, an output of the memory 
address decoder activates the I/O address decoder for I/O accesses. The addresses for 
the I/O devices are located so that only address bits A4 and AS are needed to generate 
the correct chip-select signal. 

8.3.3 Data Transceiver 

Standard 8-bit transceivers (74x24S, in this example) provide isolation and additional 
drive capability for the Inte1386 DX microprocessor data bus. Transceivers are necessary 
to prevent the contention on the data bus that occurs if some devices are slow to remove 
read data from the data bus after a read cycle. If a write cycle follows a read cycle; the 
Intel386 DX microprocessor may drive the data bus before a slow device has removed its 
outputs from the bus, potentially causing bus contention problems. Transceivers can be 
omitted only if the data float time of the device is short enough and the load on the 
Intel386 DX microprocessor data pins meets device specifications. 

8-6 



85C220 
CLOCK. 

RESET 
GENERATOR 

CLK 
RESET CLK2 

I J. 
T 

RESET ClK2 U 
A05# 

INTR f-- -
-

NA# 

M/IO# 

W/R# 

D/C 

,...---

(Xl 

.!.J 

.- -
READY# 

Pf1RDY 

-
i386'~ OX 

CPU 
READY 

AS 

7a A3 ,74F138 

A12-A20 ADDRESS BUS 

BEO# 
BE1# 

8516# 

Ii 
00-015 DATA BUS 

~ 
- -

10RDY =:J IOPLD1 IOPLD2 
~ CLK2 CLK2 

CLK f- CLK WICNTO ~ 
NA TRIOEN - ADS WTeNT1 -
MilO - READY WTCNT2 -
WIR INTA INTA -

P20R8 
D/C EPRD EPRDY -
A31 IOWA IOWR PIRECYC -
TIMEDLY lORD lORD BUSCYC -
BUSCVC RECV RECV ALEJO -

- CS1WS TIMEDLY -

~ - CS3WS CSSWS -

~ ALE# 
ADDRESS BUS 

r 74F373 
LATCHES A1-A15 .--. .2 

.......... 
DT/R# OEN# 

.. 74F245 
TRANSCEIVER TO DATA BUS 

V .2 

Figure 8-4. I/O Controller Schematic 

INT IPOo7 

lA-#. AO 8259A 

CS# ~ i ~ 1'1 
TTT 

UI 
::> 
<II 

~ 
Q 

0 
t-

I 
UI 

OE ::> 
<II .. 27256A ;! 

EPROM « 
Q 

V .2 0 
t-

11 

TO 
INTERRUPT 

-- INT' 
-"IOWR -----.-IORO 

_10 
----.. CHIP 
----.. SELECT 

j TO 
DATA BUS 

Y 

231732i6-4 

l 

.:::::: o 
Z 
-I 
m 
:0 
)l! 
Q 
z 
C) 

~ 



"m_l® 
111'tJI I/O INTERFACING 

A bus interface must include enough transceivers to accommodate the device with the 
most inputs and outputs on the data bus. If the widest device has 16 data bits and if the 
I/O addresses are located so that all devices are connected only to the lower half of the 
data bus, only two 8-bit transceivers are needed. 

The 74x245 transceiver is controlled through two input signals: 

• Data Transmit/Receive (DT /R #) - When high, this input enables the transceiver for 
a write cycle. When low, it enables the transceiver for a read cycle. This signal is just 
a latched version of the Intel386 DX microprocessor W/R# output. 

• Data Enable (DEN#)-When low, this input enables the transceiver outputs. This 
signal isgenerated by the bus control logic. 

Note that in a system using the 82380, the data transceivers must be disabled whenever 
the Intel386 DX microprocessor performs a read access to one of the internal registers 
of the 82380. Otherwise, both the 82380 and the data transceivers will be driving the 
local bus which causes data contention. This can be avoided by decoding the 82380 
address space in the bus controller logic. Together with the bus cycle definition signals 
(W/R#, M/IO#), the data transceivers can be disabled by deactivating the DEN# 
signal. 

8.3.4 Bus Control Logic 

The bus control logic for the basic I/O interface is the same as the logic for the memory 
interface described in Section 6.2. The bus controller decodes the Intel386 DX micro­
processor status outputs (W/R#, MIIO#, and D/C#) and activates a command signal for 
the type of bus cycle requested. The command signal corresponds to the bus cycle types 
(described in Chapter 3) as follows: 

• EPROM data read and memory code read cycles generate the Memory Read Com­
mand (EPRD#) output. EPRD# commands the selected memory device to output 
data. 

• I/O read cycles generate the I/O Read Command (IORD#) output. IORD# com­
mands the selected I/O device to output data. 

• I/O write cycles generate the I/O Write Command (IOWR#) output. IOWR# com­
mands the selected memory device to receive the data on the data bus. 

Interrupt-acknowledge cycles generate the Interrupt Acknowledge (INTA#) output, 
which is returned to the 8259A Interrupt Controller. 

The bus controller also controls the READY # input to the Intel386 DX microprocessor 
that ends each bus cycle. The IOPLD2 bus control PLD counts wait states and returns 
TIMEDL Y # after the number of wait states required by the accessed device. The design 
of this portion of the bus controller depends on the requirements of the system; rela­
tively simple systems need less wait-state logic than more complex systems. The basic 
interface described here uses a PLD device to generate T1MEDL Y #; other designs may 
use counters and/or shift registers. 

8-8 



I/O INTERFACING 

If several I/O devices reside on the local bus, TIMEDL Y # logic can be simplified by 
combining into a single input the chip selects for devices that require the same number 
of wait states. Adding wait states to some devices to make the wait-state requirements of 
several devices the same does not significantly impact performance. If the response of 
the device is already slow (four wait states, for example), the additional wait state 
amounts to a relatively small delay. Typically, I/O devices are used infrequently enough 
that the access time is not critical. 

8.4 TIMING ANALYSIS FOR I/O OPERATIONS 

In this section, timing requirements for devices that use the basic I/O interface are 
discussed. The values of the various device specifications are examples only; for correct 
timing analysis, always refer to the latest data sheet for the particular device. 

Timing for Inte1386 DX microprocessor I/O cycles is identical to memory cycle timing in 
most respects; in particular, timing depends on the design of the interface. The worst­
case timing values are calculated by assuming the maximum delay in the address latches, 
chip select logic, and command signals, and the longest propagation delay through the 
data transceivers (if used). These calculations yield the minimum possible access time 
for an I/O access for comparison with the access time of a particular I/O device. Wait 
states must be added to the basic worst-case values until read and write cycle times 
exceed minimum device access times. 

The timing requirement for the address decoder dictates that the logic be combinational 
(not latched or registered) with a propagation delay less than the maximum delay calcu­
lated below . 

. The CSWS signal requires a maximum decoder delay of: 

(4 x CLK2) 
(4 x 25) 

- Intel386 DX microprocessor Addr Valid 
- 30 

= 55 nanoseconds 
(CLK2 = 40 MHz) 

- PLD setup 
- 15 

The timings of the other signals can be calculated from the waveforms in Figure 8-5. In 
the following example, the timings for I/O accesses are calculated for CLK2 = 40 MHz, 
85C220-66 (12 ns) EPLDs to implement IOPLD1 and Clock circuitry, and a 20R8 PLD 
to implement IOPLD2. All times are in nanoseconds. 

tAR: Address stable before Read (IORD# fall) 
tAW: Address stable before Write (IOWR# fall) 

(2 x CLK2) - PLD RegOut Max - Latch Enable Max 
+ PLD RegOut Min 
(2 x 25) - 12 - 13 
+ 1.5 

26.5 nanoseconds 

8-9 



PERIPHERA~ PERIPHERAL 
_RECOVERY I--- RECOVERY -

IDLE PERIPHERAL READ 
-PERIPHERAl...j ~ PE~r~':~Al-l 

NON· PIPE LINED FLOAT PER~~~~I~'E~EAD 

I 

I I I I 
ClK V U U if VV U V V~ V~ J'VV ~ U U V V li"J' 

ADSit I--I\l ...LJ I\.L I,1l 
ADDR rJJlJ.. JJJ.. Ill,}, (V' (Y' 

DATA 
READ READ 

~ SEl 

0 AlEIO 1,1\ I 

TRIOEN# 
I~ II \ 

IORDH 
~ 

IOWR#" 

I 
NA# 

IOROY# 
LII 

I 1"- I 

Figure 8-5. Basic I/O Timing Diagram 

PERIPHERAL WRITE 
PIPELINED 

I 

J V ~ J V-V J' 
\.l. ~ 

READ WRITE 

\ I 

IL II \ 

i 
I 

\ 

I 

J l1' 
\.l. V-

L\X, lXX, 

F -

1"-II 

231732i8-5 

l 

.:::::: o 
Z 
--I 
m 
::c 

~ 
z 
G) 

@J 



I/O INTERFACING 

tRR: Read (IORD#) pulse width, 
TWW: Write (IOWR#) Pulse Width 

(10 x CLK2) 
(10 x 25) 
= 248 nanoseconds 

- PLD RegOut Skew 
-2 

tRA: Address hold after Read (IORD# rise) 

(2 x CLK2) - PLD RegOut Max + PLD RegOut Min 
+ Latch Enable Min 
(2 x 25) - 6 + 2 
+ 5 

= 53 nanoseconds 

tAD: Data delay from Address 

(12 x CLK2) 
- xcvr. prop Min 
(12 x 25) 
- 6 
= 264 nanoseconds 

- PLD RegOut Max + Latch Enable Max 
- Intel386 DX microprocessor Data Setup Min 
- 6 - 13 
-11 

tRD: Data delay from Read (IORD#) 

(10 x CLK2) - PLD RegOut Max - xcvr. prop Min 
- Intel386 DX microprocessor Data Setup MIn 
(10 x 25) - 6 - 6 
-11 

= 227 nanoseconds 

tDW: Data setup before write (IOWR# rise) 

(10 x CLK2) - PLD RegOut Max - xcvr. Enable Max 
+ PLD RegOut Min 
(10 x 25) - 12 - 11 
+ 1.5 

= 228.5 nanoseconds 

Many peripherals require a minimum recovery time between back-to-back accesses. This 
recovery time is usually provided in software by a series of NOP instructions. A JMP to 
the next instruction also provides a delay because it flushes the Intel386 DX micropro­
cessor Prefetch Queue; this method has a more predictable execution time than the 
NOP method. 

8-11 



I/O INTERFACING 

In Intel386 DX microprocessor systems, the instructions that provide recovery time are 
executed more quickly than in earlier systems. For software compatibility with earlier 
microprocessor generations, hardware must guarantee the recovery time. However, the 
circuitry to delay bus commands selectively for the specific instance of back-to-back 
accesses to a particular device is typically more complex than the frequency of such 
accesses justifies. Therefore, the preferred solution is to delay all I/O cycles by the 
minimum recovery time. Because most I/O accesses are relatively infrequent, perfor­
mance is not degraded. 

Only two peripherals do not meet the bus controller specifications: the 8041 and 8042 
UPls (Universal Peripheral Interface 8-bit Microcomputers). These intelligent peripher­
als meet all but the command recovery specification, so they can be used if this delay is 
implemented in software. 

8.5 BASIC I/O EXAMPLES 

In this section, two examples of the interface to slave I/O devices are presented. Typi­
cally, several of these devices exist on the Intel386 DX microprocessor local bus. The 

. basic I/O interface presented above is used for both examples. 

8.5.1 8274 Serial Controller 

The 8274 Multi-Protocol Serial Controller (MPSC) is designed to interface high-speed 
serial communications lines using a variety of communications protocols, including asyn­
chronous, IBM bisynchronous, and HDLC/SDLC protocols. The 8274 contains two inde­
pendent full-duplex channels and can serve as a high-performance replacement for two 
8251A Universal Synchronous/Asynchronous Receiver Transmitters (USARTs). 

Figure 8-6 shows connections from the basic I/O interface through which the 
Intel386 DX microprocessor communicates with the 8274. The 8274 is accessed as a 
sequence of four 8-bit I/O addresses (I/O-mapped or memory-mapped). The Serial I/O 
(SERIO#) signal is a chip select generated by address decoding logic. RD# and WR# 
signals are provided by the bus control logic. DB7-DBO inputs connect to the lower eight 
outputs of the data transceiver (D7-DO). 

The 8274 Al and AO inputs are used for channel selection and data or command selec­
tion. These inputs are connected to two address lines that are determined by the 8274 
addresses. The addresses must be chosen so that the Al and AO inputs receive the 
correct signals for addressing the 8274. 

The 8274 requires a minimum recovery time between back-to-back accesses that is pro-
vided for in the basic I/O interface hardware. . 

8-12 



I/O INTERFACING 

8274 

FROM DATA 
TRANSCEIVER D7-DO DB7-DBO 

FROM ADDRESS (A3 Al 

LATCH A2 AO 
MODEM INTERFACE 

FROM 
ADDRESS SERIO# CS# 
DECODER 

FROM BUS (RDN RDN 
CONTROLLER WRN WRH 

231732i8-6 

Figure 8-6. 8274 Interface 

8.5.2 82380 Programmable Interrupt Controller 

The 82380 Programmable Interrupt Controller (PIC) can be used in interrupt-driven 
microcomputer systems. It has 15 external and 5 internal interrupt requests. Each of the 
external requests can be cascaded with an additional 82C59A Interrupt Controller to 
accommodate up· to 120 external interrupt sources. 

The 82380 PIC handles interrupt priority resolution and returns a preprogrammed ser­
vice routine vector to the Intel386 DX microprocessor during an interrupt acknowledge 
cycle. It consists of three 82C59A compatible banks. The 82380 Data Sheet contains 
detailed information on the 82380 PIC. 

When an interrupt occurs, the 82380 PIC activates its Interrupt (INT) output, which is 
connected to the Interrupt Request (INTR) input of the Inte1386 DX microprocessor. 
The Intel386 DX microprocessor automatically executes two back-to-back interrupt 
acknowledge cycles, as described in Chapter 3. The 82380 PIC will automatically termi­
nate the interrupt acknowledge cycles by driving its READYO# signal. Each acknowl­
edge cycle will be extended by five wait states. Also, four idle states are inserted by the 
Intel386 DX microprocessor between two consecutive interrupt acknowledge cycles. 

8.5.2.1 CASCADED INTERRUPT CONTROLLERS TO THE 82380 PIC 

Each of the external requests of the 82380 PIC can be cascaded with one 'slave' 82C59A 
Interrupt Controller. With all its external requests cascaded, the 82380 PIC can handle 
up to 120 external requests. 

8-13 



I/O INTERFACING 

For a cascaded interrupt request, the 82380 PIC will output an 8-bit cascade address on 
the data bus during the first interrupt acknowledge cycle. A simple circuit can latch the 
8-bit address and encode it to drive the CAS signals (CAS2#-CASO#) of the slave 
controllers. During the second interrupt acknowledge cycle, the 82380 will not drive the 
data bus; instead, the selected slave controller will put the interrupt vector on the data 
bus for the Intel386 DX microprocessor. 

Chapter 9 describes the interface to slave controllers that reside on a MULTIBUS I 
system bus. 

8.5.3 8259A Interrupt Controller 

The 8259A Programmable Interrupt Controller is designed for use in interrupt-driven 
microcomputer systems. A single 8259A can process up to eight interrupts. Multiple 
8259As can be cascaded to accommodate up to 64 interrupts. A technique to handle 
more than 64 interrupts is discussed at the end of this section. 

The 8259A handles interrupt priority resolution and returns a preprogrammed service 
routine vector to the InteI386 DX microprocessor during an interrupt-acknowledge 
cycle. 

8.5.3.1 SINGLE INTERRUPT CONTROLLER 

Figure 8-7 shows the connections from the basic I/O interfaceused for the InteI386 DX 
microprocessor and a single 8259A. Programmable Interrupt Controller (PIC#) is a 
chip-select signal from the address decoding logic. INTA#, RD#, and WR# are gener­
ated by the bus control logic. BD7-BDO are connected to the lower eight outputs of the 

INTER 

A2 
(FROM ADDRESS 

LATCH) 

PIC# (CHIP SELECT 
FROM ADDRESS DECODER 

FROM {'OWC# 
BUS IORC# 

CONTROL INTA# 

8259A 

~ IRO 

~+ 
IRl 

11 
DO 

10 
FROM ~ IR2 01 

9 
RUPTING -=- IR3 02 

DEVICES -#- 03 
8 

IR4 

-#- 04 
7 

IRS 
~ IR6, 

6 
05 

2L 06 
5 

IR7 
27 

07 
4 

AO 
N/C 12 

CASO 
NIC 13 - 16 

CASl SPEN 
N/C15 17 

CAS2 INT 
1 Cs 
2 

WR 
3 AD 

26 
INTA 

Figure 8-7. Single 8259A Interface 

8-14 

~7 

I TO 
DATA 
TRANSCEIVERS 

TO ;386'· ox CPU 
INTR INPUT 

231732i8·7 



I/O INTERFACING 

data transceiver. The A2 bit, connected to the 8259A AO input, is used by the 
Intel386 DX microprocessor to distinguish between the two interrupt acknowledge 
cycles; 8259A register addresses must therefore be located at two consecutive double­
word boundaries. 

When an interrupt occurs, the 8259A activates its Interrupt (INT) output, which is con­
nected to the Interrupt Request (INTR) input of the Intel386 DX microprocessor. The 
Intel386 DX microprocessor automatically executes two back-to-back interrupt­
acknowledge cycles, as described in Chapter 3. The 8259A timing requirements are as 
follows: 

• Each interrupt-acknowledge cycle must be extended by at least one wait state. Wait­
state generator logic must provide for this extension. 

• Four idle bus cycles must be inserted between the two interrupt-acknowledge cycles. 
The Inte1386 DX microprocessor automatically inserts these idle cycles. 

8.5.3.2 CASCADED INTERRUPT CONTROLLERS 

Several 8259As can be cascaded to handle up to 64 interrupt requests. In a cascaded 
configuration, one 8259A is designated as the master controller; it receives input from 
the other 8259As, called slave controllers. The interface between the Intel386 DX micro­
processor and multiple cascaded 8259As is an extension of the single-8259A interface 
with the following additions: 

• The cascade address outputs (CAS2#-CASO#) are output to provide address and 
chip-select signals for the slave controllers. 

• The interrupt request ljnes (IR7-IRO) of the master controller are connected to the 
INT outputs of the slave controller's, 

Each slave controller resolves priority between up to eight interrupt requests and trans­
mits a single interrupt request to the master controller. The master controller, in turn, 
resolves interrupt priority between up to eight slave controllers and transmits a single 
interrupt request to the Intel386 DX microprocessor. 

The timing of the interface is basically the same as that of a single 8259A. During the 
first interrupt-acknowledge cycle, all the 8259As freeze the states of their interrupt 
request inputs. The master controller outputs the cascade address to select the slave 
controller that is generating the request with the highest priority. During the second 
interrupt-acknowledge cycle, the selected slave controller outputs an interrupt vector to 
the Intel386 DX microprocessor. 

Chapter 9 describes the interface to slave controllers that reside on a MULTIBUS I 
systetp bus. 

8.5.3.3 HANDLING MORE THAN 64 INTERRUPTS 

If an Inte1386 DX microprocessor system requires more than 64 interrupt request lines, 
a third level of 8259As in polled mode can be added to the configuration described 
above. When a third-level controller receives an interrupt request, it drives one of the 

8-15 



I/O INTERFACING 

interrupt request inputs to a slave controller active. The slave controller sends an 
interrupt request to the master controller, and the master controller interrupts the 
Intel386 DX microprocessor. The slave controller then returns a service-routine vector 
to the Intel386 DX microprocessor. The service routine must include commands to poll 
the third level of interrupt controllers to determine the source of the interrupt request. 

The only additional hardware required to handle more than 64 interrupts are the extra 
8259As and the chip-select logic. For maximum performance, third-level interrupt con­
trollers should be used only for noncritical, infrequently used interrupts. 

8.6 80286-COMPATIBLE BUS CYCLES 

Some devices (the 82258, for example) require an 80286-compatible interface in order to 
communicate with the Intel386 DX microprocessor. An 80286-compatible interface must 
generate the following signals: 

• Address bits Al and AO, and Byte High Enable (BHE#) from the Inte1386 DX 
microprocessor BE3#-BEO# outputs 

• Bus cycle definition signals SO# and SI# from the Intel386 DX inicroprocessor 
M/IO#, W/R#, and D/C# outputs 

• Address Latch Enable (ALE#), Dev1ce Enable (DEN), and Data Transmit/Receive 
(DT /R #) signals 

• I/O Read Command (IORC#) and I/O Write Command (IOWC#) signals for I/O 
cycles 

• Memory Read Command (MRDC#) and Memory Write Command (MWTC#) sig­
nals for memory cycles 

• Interrupt Acknowledge (INTA#) signal for interrupt-acknowledge cycles 

In the following example, the interface is constructed using the 80286-compatible bus' 
controller (82288) and bus arbiter (82289). The 82289, along with the bus arbiters of 
other processing subsystems, coordinates control of the bus between the Intel386 DX 
microprocessor and other bus masters. The 82288 provides the control signals to perform 
bus cycles .. Communication between the Intel386 DX microprocessor and these devices 
is accomplished through PLDs that are programmed to perform· all necessary signal 
translation and generation. Latching and buffering of the data and address buses is 
performed by TTL logic. 

Figure 8-8 shows a block diagram of the interface, which consists of the following parts: 

• AO/AI generator-Generates the lower address bits from Inte1386 DX microproces­
sor BEO#-BE3# outputs 

• Address decoder-Determines the device the Intel386 DX microprocessor will access 

• Address latches - Connect directly to Intel386 DX microprocessor address pins 
A19-A2 and the outputs of the AO/AI generator 

• Data transceivers-Connect directly to Inte1386 DX microprocessor data pins 
DIS-DO 

8-16 



I/O INTERFACING 

... 

II 
BYTE ENABLES ) Ao/A1 ... ". LOGIC 

ADDRESS LATCHED ADDRESS 
LATCH 

1386 DX CPU ADDRESS -
~ '" 

ADDRESS 

~ .... 

DECODER 

1386'· DX 
". 

CPU .A .A DATA 
1386 DX CPU DATA TRANSCEIVER DATA 

'f '" 'f 

.... 
80386 STATUS 50#/51# r-LOGIC 

". 

~ 82288 
BUS 

CONTROLLER , 
WAIT-5TATE 
GENERATOR 

...... 
J 82289 
~ BUS 

ARBITER 

Figure 8-8~ 80286-Compatible Interface. 

.... 

'" 

... 
". 

.. 

.. 

TO 80286 
COMPATIBLE 
PERIPHERALS 

231732i8-8 

• SO#/Sl# generator-Translates Intel386 DX microprocessor outputs into the SO# 
and Sl # signals . 

• Wait-state generator-Controls the length of the Intel386 DX microprocessor bus 
cycle through the READY# signal 

• 82288 Bus Controller - Generates the bus command signals 

• 82289 Bus Arbiter-Arbitrates contention for bus control between the Intel386 DX 
microprocessor and other bus masters 

8.6.1 AO/ A 1 Generator 

The AO, A1, and BHE# signals are 80286-compatible. These signals are generated from 
the Inte1386 DX microprocessor byte enables (BEO#-BE3#) as shown in Table 8-2. The 
truth table can be implemented with the logic shown in Figure 8-9. 

8-17 



I/O INTERFACING 

Table 8-2. AD, A1, and BHE# Truth Table 

Inte1386'M OX Microprocessor Signals 16-Bit Bus Signals 
Comments 

BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO) 

H* H* H* H* x x x x - no active bytes 

H H H L L H L 

H H L H L L H 

H H L L L L L 

H L H H H H L 

H* L* H* L* x x x x- not contiguous bytes 

H L L H L L H 

H L L L L L L 

L H H H H L H 

L* H* H* L* x x x x-not contiguous bytes 

L* H* L* H* x x x x-not contiguous bytes 

L* H* L* L* x x x x-not contiguous bytes 

L L H H H L L 

L* L* H* L* x x x x - not contiguous bytes 

L L L H L L H 

L L L L L L L 

BLE# asserted when 00-07 of 16-bit bus is active. 
BHE# asserted when 08-015 of 16-bit bus is active. 
A 1 low for all even words; A 1 high for all odd words. 

Key: 
x = don't care 
H = high voltage level 
L = low voltage level 
* = a non-occurring pattern of Byte Enables; either none are asserted, or the pattern has Byte 

Enables asserted for non-contiguous bytes 

8.6.2 SO#/S1 # Generator 

SO# and Sl# are 80286-compatible status signals that must be provided for the 82288 
and 82289. The SO#/Sl# logic in Figure 8-10 generates these signals from Inte1386 DX 
microprocessor status outputs (D/C#, M/IO#, and W/R#) and wait-state generator out­
puts. WSl and WS2 are wait-state generator outputs that correspond to the first and 
second wait states of the Intel386 DX microprocessor bus cycle. These signals ensure 
that SO# and Sl# are valid for two CLK cycles. 

8.6.3 Wait-State Generator 

The wait-state generator PLD shown in Figure 8-11 controls the READY# input of the 
Inte1386 DX microprocessor. For local bus cycles, the wait-state generator produces 
signal outputs that correspond to each wait state of the Intel386 DX microprocessor bus 

8-18 



l 

BE21 
H 

I/O INTERFACING 

BEDI 
l 

l x Ii 
l 

BE21 
l x If 
L l '~. 

H 
Ii x x 

l H 

BEll 
K-map for A 1 signal 

BEDI 

H 

l H 

l x l 
l 

BE21 
l .x: H 

l H :x 
H 

x x l 

l H 

BEll 

l l 

l 
H 

l 

x l 

l 

l l 

l 
H 

l 

x l 

l 

K-map for l6-bit BHE# signal 

BEDI 
l H 

l x l H l 

l x l .H 
H 

l l X' H 
BE31 

x x H .x l 

l H l 

BEll 

BE3 [)o---{>o21Al 
I BEll ---

BEDI 

[~HE BE31 BE31 ----..-
BEll 

K-map for lS-bit BlE # signal 

Figure 8-9. AO, A 1, and BHE# Logic 

231732i8-9 

cycle, and the PLD READY # output uses these signals to set READY # active after the 
required number of wait states. Two of the wait-state signals, WSI and WS2, are also 
used to generate SO# and Sl#,:as shown in Figur\! 8-10. 

The PCLK signal, which necessary for producing 80286-compatible wait states, isgener­
ated by dividing the CLK signal from the 82384 by two. 

To meet the READY# input hold time 'requirement (25 nanoseconds) for the 82288 Bus 
Controller, the. READY# signal must be two CLK cycles long. Therefore, two PLD 
equations are required to generate READY#. The first equation generates the Ready 
Pulse (RDYPLSE) output. RDYPLSE is fed into the READY # equation to extend 
READY # by an additional CLK cycle. These signals are gated by PCLK. 

RDYPLSE : = ARDY * PCLK 

/READY : = ARDY * PCLK + RDYPLSE 

8-19 



I/O INTERFACING 

MIlO. - ..... +-HI-.:I~ .... 

DIC. --t-;~=r-\---+---.J 

WIR. 

CHIP SELECT ------4~ __ , 
FOR B0286 

COMPATIBLES 

WS1 ----------~r_~ 
WS2 -----------..,'-~ 

Figure 8-10. SO#/S1# Generator Logic 

r1> 
WS1 

J Q 

K 
85C220 

AD50. 

, ClK -
82288 ALE 1 )---

...... ClK. 

~ 
PClK 

CHIP SELECT 
FOR 80286 

COMPATIBLES 

Figure 8-11. Wait-State Generator Logic 

8.6.4 Bus Controller and Bus Arbiter 

so. 

(THESE OUTPUTS 
SHOULD BE 
lATCHED BY ClK) 

Sl. 

231732i8-10 

W51 

WS2 
I T050151 

GENERATOR 

READY# - TO i386'· OX CPU 

231732i8-11 

Connections for the 82288 and 82289 are shown in Figure 8-12. The 82288 MB input is 
tied, low so that the 82288 operates in local-bus mode. Both the 82288 and the 82289 are 
selected by an output of the address decoder that selects 80286-compatible cycles. The 
AEN# signal from the 82289 enables the 82288 outputs. 

8-20 



SO# 

Sl# 

M/IO# 

READY# 

MBEN 

LOCK# 

1 

~ 

I/O INTERFACING 

82289 

SO# LLOCK# r---
Sl# CBRO# I---
MIIO# BUSY# I--
READY# BPRO# r--
SYSB BREQ# I--
LOCK# 

AEN# I-
BPRN# 

82288 

'--- SOH MRDC# -I---'"' 
-.........- Sl# MWDC# ~r--

MIIO# 10RC# ~r--
READY# 10WC# r+--
CENL INTA# I-~ 
MB 

ALE 
CMDLY 

DT/R# 

l 
AEN# 

DEN 

C 
80286 

OMPATIBLE 
BUS 

TO ADDRESS LATCH 

TO DATA TRANSCEIVER 

TO DATA TRANSCEIVER 

,Figure 8-12. 82288 and 82289 Connections 

8.6.5 82380 Integrated System Peripheral 

231732i8-12 

The 82380 is designed for easy interface to the Intel386 DX microprocessor. It consists 
of a set of signals to interface directly to the Intel386 DX microprocessor local bus. 
Figure 8-13 depicts a typical system configuration with the Intel386 DX microprocessor. 

When the 82380 switches from slave to master mode (or vice versa), there are idle states 
in which the ADS# signal is left floating. In order not to confuse the internal state 
machine of the 82380, a 10 K ohm pull-up resistor should be used on the ADS# signal to 
ensure that this line is inactive during these idle states. 

As described in Section 8.3.3, the data transceivers should be disabled during any read 
access to the 82380 in the slave mode to prevent bus contention. 

8.6.6 82586 LAN Coprocessor 

The 82586 is an intelligent, high-performance communications controller designed to 
perform most tasks required for controlling access to a local area network (LAN). In 
most applications, the 82586 is the communication manager for a station connected to a 

8-21 



I/O INTERFACING 

FROM OTHER 
PERIPHERALS 

Vee 

CLOCK GENERATOR 10K!) 

CLK2 RESET RESET 

CLK2 

I 
ADS# 

ADS~ CLK2 82380 

RESET CPURST 

OPTIONAL 
READY# 

I 
WAITSTATE READYO# 

LOGIC 

i386'"DX CPU READY# 

HOLD HOLD 

HLDA HLDA 

INT INT 

D/C# D/C# 

W/R# W/R# 

M/IO# M/IO# 

BEO-3#, 
-.A- t.. 

BE0-3#, 
A2-A31 K ) A2-A31 

~ I I I :. 
Do-D31 K ) 00-D31 

~ l UU r 

TO BUS· TO BUS 
CONTROLLER BUFFERS 

NOTE: INTERFACE WITHOUT CACHE 

231732i8-13 

Figure 8·13. Intel386™ OX Microprocessor/82380 Interface 

LAN. Such a station usually includes a host CPU, shared memory, a Serial Interface 
Unit, a transceiver, and a LAN link (see Figure 8-14). The 82586 performs all functions 
associated with data transfer between the shared memory and the LAN link, including: 

• Framing 

• Link management 

• Address filtering 

• Error detection 

• Data encoding 

• Network management 

8-22 



I/O INTERFACING 

,..--- --- - - -- - - -----, 
I I 
I I 
I I 
I I 

I 

HOST 
CPU 

CHANNEL 

ATIENTION 

INTERRUPT 

82586 
LAN 

COPROCESSOR 

SERIAL 
INTERFACE 

82501 
ETHERNET 

SERIAL 
INTERFACE 

TRANSCEIVER 
CABLE 

IEEE 802.3 COMPATIBLE 
WORKSTATION 

82C502 
ETHERNET 

TRANSCEIVER 
CHIP 

L ______ --- - --------

IEEE 802.3/ETHERNET LINK 

Figure 8-14. LAN Station 

• Direct memory access (DMA) 

• Buffer chaining 

• High-level (user) command interpretation 

231732i8-14 

The 82586 has two interfaces: a bus interface to the Intel386 DX microprocessor local 
bus and a network interface to the Serial Interface Unit. The bus interface is described 
here. For detailed information on using the 82586, refer to the Local Area Networking 
(LAN) Component User's Manual. 

The 82586, which is a master on the Inte1386 DX microprocessor local bus, communi­
cates directly with the Inte1386 DX microprocessor through the Channel Attention (CA) 
and interrupt (INT) signals. There are several ways to design an interface between the 

8-23 



I/O INTERFACING 

82586 and the Intel386 DX microprocessor. In general, higher performance interfaces 
(requiring less servicing time from the Intel386 DX microprocessor) are more expensive. 
Four types of interfaces are described in this section: 

• Dedicated CPU 

• Decoupled dual-port memory 

• Coupled dual-port memory 

• Shared bus 

8.6.6.1 DEDICATED CPU 

Dedicating a CPU to control the 82586 results in a high-performance, high-cost inter­
face. The CPU, typically an 80186, an 80188, or a microcontroller, executes the data link 
layer (a functional division) of software and sometimes the network, transport, and ses­
sion layers as well. (For definitions of these layers, see the Local Area Networking (LAN) 
Components User's Manual). The dedicated CPU relieves the Inte1386 DX microproces­
sor of these layers and provides a high-level, message-oriented interface that can be 
treated in software as a standard I/O device. In hardware, the interface is mapped into a 
dual-port memory. 

8.6.6.2 DECOU PLED DUAL-PORT MEMORY 

A decoupled dual-port memory interface, shown in Figure 8-15, contains two sections of 
memory: 

• Inte1386 DX microprocessor core memory-typically DRAM that provides executable 
memory space for the operating system 

• 82586 communication channel memory-typically dual-ported SRAM that contains 
the commands and buffers of the 82586 

82502 

LAN 

231732;8·15 

Figure 8·15. Decoupled Dual·Port Memory Interface 

8-24 



I/O INTERFACING 

Only the dual-ported SRAM is shared; the 82586 cannot access the Intel386 DX miCro­
processor core memory. The Inte1386 DX microprocessor and 82586 operate in parallel 
except when both require access to the SRAM. In this instance, one processor must wait 
while the other completes its access. At all other times, the two devices are decoupled. 

This interface requires at least one level of data copying to move data between the 
Inte1386 DX microprocessor core memory and the 82586 communication channel mem~ 
ory. However, usually the data must be copied to separate the frame header information. 

8.6.6.3 COUPLED DUAL-PORT MEMORY 

In a coupled dual-port memory interface, the Inte1386 DX microprocessor and the 82586 
share a common memory space as illustrated in Figure 8-16. The 82586, with 24 address 
bits; can address up to 16 megabytes of memory. If the Inte1386 DX microprocessor 
memory is larger than 16 megabytes, some memory is inaccessible to the 82586; this 
memory must be taken into account in the system design. 

The advantage of coupled dual-port memory is that the 82586 can perform DMA trans­
fers directly into the operating system memory. In this case, other logic must remove the 
frame header information from the data prior to the DMA transfer. Through the buffer­
chaining feature of the 82586, the header information can be directed to a separate 
buffer, as long as the minimum buffer size requirements are met. 

8.6.6.4 SHARED BUS 

In a shared bus interface (Figure 8-17), the Intel386 DX microprocessor and the 82586 
share a common address and data bus. The HOLD and HLDA signals provide bus 
arbitration. When one device enters the hold state in response to the HOLD input, the 
other device can access the bus. . 

231732i8-16 

Figure 8-16. Coupled Dual-Port Memory Interface 

8-25 



I/O INTERFACING 

231732i8-17 

Figure 8-17. Shared Bus Interface 

The shared bus interface is probably the simplest and least expensive interface. How­
ever, the performance of the Inte1386 DX microprocessor may drop tremendously 
because the Intel386 DX microprocessor must wait for the 82586 to complete its bus 
operation before it can access the bus. This wait can be several hundred eLK cycles. 

8-26 



MULTIBUSland 9 
Intel386 ox Microprocessor 





CHAPTER 9 
MULTI BUS I AND Intel386 DX MICROPROCESSOR 

Previous chapters have presented single-bus systems in which a single Tnte1386 DX 
microprocessor connects to memory, I/O, and coprocessors. This chapter introduces the 
system bus, which connects several single-bus systems to create a powerful multiprocess­
ing system. Two examples of multiprocessing system buses are the Intel MUL TIBUS I, 
discussed in this chapter, and the Intel MULTIBUS II, discussed in Chapter 10. 

A system bus connects several processing subsystems (each of which can include a local 
bus and private resources) and the resources that are shared between the processing 
subsystems. Because all the processing subsystems perform operations simultaneously on 
their respective local buses, such a multiprocessing system results in a significant 
increase in throughput over a single-bus system. 

Another advantage of using a system bus is that the system can be expanded modularly. 
The system bus establishes the standard interface through which additionaJ processing 
subsystems communicate with one another. Through this interface, components from 
different vendors can be integrated. 

A central concern of any multiprocessing system is dividing resources between the sys­
tem bus and the individual local buses; that is, determining which resources to share 
between all processors and which to keep for only one processor's use. These cho~ces 
affect system reliability, integrity, throughput, and performance. The deciding factors are 
often the requirements of the particular target system. 

Because local resources are isolated from failures occurring in other parts of the system, 
they enhance the overall reliability of the system. Also, because the processor does not 
have to contend with other processors for access to its local resources, bus cycles are 
performed quickly. However, local resources add to the system cost because each 
resource must be duplicated for each subsystem that requires it. 

Resources used by more than one processing subsystem but not used frequently by any 
subsystem should be placed on the system bus. The system can minimize the idle time of 
such resources. However, this advantage must be weighed against the disadvantage of 
increased access time when more than one processor must use a system resource. 

9.1 MULTI BUS I (IEEE 796) 

The Intel MULTIBUS I (IEEE 796 Standard) is a proven, industry-standard, 16-bit 
multiprocessing system bus. A wide variety of MULTIBUS I compatible I/O subsystems, 
memory boards, general purpose processing boards, and dedicated function boards are 
available from Intel. Designers who choose the MULTIBUS I protocols in their system 
bus have a ready supply of system components available for use in their products. 

MULTIBUS I protocols are described in detail in the Intel MULTIBUS® I Architecture 
Reference Book. 

9-1 



MUL TIBUS I AND Intel386 DX MICROPROCESSOR 

One method of constructing an interface between the Intel386 DX microprocessor and 
the MULTIBUS I is to generate all MUL TIBUS I signals using only TTL and PLD 
devices. A simpler method is to use the 80286-compatible interface described in 
Chapter 8. The latter option is described in the MULTIBUS I interface example in this 
chapter. 

9.2 MULTIBUS I INTERFACE EXAMPLE 

The MULTIBUS I interface presented in the following example consists of the 80286-
compatible, 82289 Bus Arbiter and 82288 Bus Controller. The 82289, along with the bus 
arbiters of other processing subsystems, coordinates control of the MUL TIBUS I; the 
82288 provides the control signals to perform MULTIBUS I accesses. Communication 
between the Intel386 DX microprocessor and these devices is accomplished through 
PLDs that are programmed to perform all necessary signal translation and generation. 
Latching and buffering of the data and address buses is performed by TTL logic. 

Figure 9-1 shows a block diagram of the interface, which consists of the following parts: 

• AO/ Al generator - Generates the lower address bits from Inte1386 DX microproces­
sor BEO#-BE3# outputs 

• Address decoder - Determines whether the bus cycle requires a MUL TIBUS I access 

• MULTIBUS I address latches-Connect directly to Intel386 DX microprocessor 
address pins A23-A2 and the outputs of the AO/Al generator 

• MUL TIBUS I data latch/transceivers - Connect directly to Intel386 DX microproces­
sor data pins DIS-DO 

• SO#/SI# generator-Translates Intel386 DX microprocessor outputs into the SO# 
and SI# signals 

• Wait-state generator-Controls the length of the Inte1386 DX microprocessor bus 
cycle through the READY # signal 

• 82288 Bus Controller-Generates the MULTIBUS I command signals 

• 82289 Bus Arbiter - Arbitrates contention for bus control between the Intel386 DX 
microprocessor and other MULTI BUS I masters 

These elements of the 80286-compatible interface are described in detail in Chapter 8. 
The block diagram in Figure 9-1 does not include the Intel386 DX microprocessor local 
bus interface and local resources. In a complete system, some logic (for example, the 
address decoder) is common to both MULTIBUS I and local bus interfaces. The follow­
ing discussion includes only the logic necessary for the MULTIBUS I interface. 

9.2.1 Address Latches and Data Transceivers 

MULTIBUS I allows up to 24 address lines and 16 data lines. In this example, the 
MULTIBUS addresses are located in a 2S6-kilobyte range between FOOOOOH and 
F3FFFFH, so that all 24 address lines are used. The 16 data lines correspond to the 
lower half of the Inte1386 DX microprocessor data bus. 

9-2 



co 
Cu 

i386m DX 
CPU 

BYTE ENABLES AOIA1 
LOGIC hi 

A ... 

ADDRESS 
LATCH 

DATA 
~ 1386 DX CPU DATA ,)I TRANSCEIVER 

... 
80386STATUS ,.. 

SO#/S1# 
LOGIC 

, 
WAIT-STATE 
GENERATOR 

J 

!-

~ 

~ 

L--.-

82288 
BUS 

CONTROLLER 

82289 
BUS 

ARBITER 

.... 
MULTIBUS ADDRESS 

V 

. 

~ MULTIBUS DATA> 

. 

Figure 9-1. Intel386™ OX Microprocessor/MULTIBUS I Interface 

MULTIBUS I 

231732i9-1 

l 

35: 
c: 

@) 

!:j 
m c: en 
l> 
z 
c 
a 
CD 

~. 
Q) 

~ 
35: 
(; 
::D 
o 
"'C 
::D 
o o 
m en en o 
::D 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

Inverting address latches convert the Inte1386 DX microprocessor address outputs to the 
active-low MULTIBUS I address bits. MULTIBUS I address bits are numbered in 
hexadecimal so that A23-AO on the Intel386 DX microprocessor bus become 
ADR17#-ADRO# on the MULTI BUS I (as shown in Figure 9-4). The BHE# signal is 
latched to provide the MULTIBUS I BHEN# signal. 

MUL TIBUS I requires address outputs to be valid for at least 50 nanoseconds after the 
MULTIBUS I command goes inactive; therefore, the address on all bus cycles is latched. 
The Address Enable (AEN#) output of the 82289 Bus Arbiter, which goes active when 
the 82289 has control of the MULTIBUS I, is an output enable for the MULTIBUS I 
latches. The ALE# output of the 82288 latches the Inte1386 DX microprocessor address 
for the MULTIBUS I, as shown in Figure 9-2. 

Inverting latch/transceivers are needed to provide active-low MULTIBUS I data bits. 
MULTIBUS I data bits are numbered in hexadecimal, so D1S-DO convert to DATF#­
DATO#. Data is latched only on write cycles. For MULTIBUS I write cycles, the 82288 
ALE#, DEN, and DT/R# inputs can control the address latches and data latch/ trans­

. ceivers. For MUL TIBUS I read cycles, the local bus RD# signal can control the latch/ 
transceivers. If DEN were used, data contention on the Intel386 DX microprocessor 
local bus would result when a MULTIBUS I read cycle immediately followed a local 
write, cycle. 

ADDRESS 
A23-AO 

INVERTING 
LATCH 

ALE----' 
(FROM 82288)' 

INVERTING 
LATCHI 

TRANSCEIVER 

DEN---' 

DTIRH .:.-----' 
(FROM 82288) 

Figure 9·2. MULTIBUS I Address Latches and Data Transceivers 

9-4 

231732i9-2 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

9.2.2 Address Decoder 

A MULTIBUS I system typically has both shared and local memory. I/O devices can also 
be located either on MULTIBUS lora local bus. Therefore, the address space of the 
Inte1386 DX microprocessor must be allocated between MUL TIBUS I and the local bus, 
and address decoding logic must be used to select one bus or the other. 

The following two signals are needed for MUL TIBUS I selection: 

• Bus Size 16 (BS16#) must be returned active to the Intel386 DX microprocessor to 
ensure a 16-bit bus cycle. Additional terms for other devices requiring a 16-bit bus 
can be added to the BS16# PLD equation. 

• MUL TIBUS Enable (MBEN) selects the 82288 Bus Controller and the 82289 Bus 
Arbiter on the MULTIBUS I interface. Other outputs of the decoder PLD are pro­
grammed to select memory and I/O devices on the local bus. 

The decoding of addresses to select either the local bus or the MULTIBUS I is straight 
forward. In the following example, the system uses the first 64 megabytes of the 
Intel386 DX microprocessor memory address space, requiring 26 address lines. The 
MULTIBUS I memory is allocated to the addresses from FOOOOOH to F3FFFFH. The 
same PLD equation generates the two PLD outputs BS16# and MBEN: 

/A25 * /A24 * A23 * A22 * A2l * A20 * /A19 * /A18 

I/O resources residing on MULTIBUS I can be memory-mapped into the memory space 
of the Intel386 DX microprocessor or I/O-mapped into the I/O address space indepen­
dent of the physical location of the devices on MULTIBUS I. The addresses of memory­
mapped I/O devices must be decoded to generate I/O read or I/O write commands for 
memory references that fall within the I/O-mapped regions of the memory space. This 
technique is discussed in Chapter 8 along with the tradeoffs between memory-mapped 
I/O and I/O-mapped I/O. 

9.2.3 Wait-State Generator 

The wait-state generator controls the READY# input of the Inte1386 DX microproces­
sor. For local bus cycles, the wait-state generator produces signal outputs that corre­
spond to each wait state of the Inte1386 DX microprocessor bus cycle, and the PLD 
READY# output uses these signals to set READY# active after the required number 
of wait states. Two of the wait-state signals, WSI and WS2, are also used to generate 
SO# and Sl#. 

READY# generation for MULTIBUS I cycles is linked to the Transfer Acknowledge 
(XACK#) signal, which is returned active by the accessed device on MULTIBUS I when 
the MULTIBUS I cycle is complete. For a system containing a MULTIBUS I interface 
as well as a local bus, XACK# must be incorporated into the wait-state generator to 
produce the READY # signal. The necessary logic is shown in Figure 9-3. 

9-5 



82289AEN# 

MUl TlBUS XACK# 

(BUS CONTROllER) 
ENOCYC2 

ADSO# 

ClK 

82288 ALE 

MUL TIBUS I AND Intel386 OX MICROPROCESSOR 

-- ARDY 
] y-- J Q 

r- K 

r-- > 

~ 
WS1 WS1 

J Q 

K 85C220 

WS2 

J"">--= 
...... ClK# READY# .... I--

PClK 

MOEN 

Figure 9-3. Wait-State Generator Logic 

I TOSO/S1 
GENERATOR 

TO i386'· OX 
CPU 

231732i9-3 

For MULTIBUS I accesses, the wait-state generator is started by the ALE# signal from 
the 82288. When XACK# goes active, it is synchronized to CLK. The resulting Asyn­
chronous Ready (ARDY) signal, incorporated into the PLD equation for the READY # 
signal, causes READY# to be output between two and three CLK cycles after ARDY 
goes active. 

The PCLK signal, which is necessary for producing 80286-compatible wait states, is gen­
erated by dividing the CLK signal from the clock generator by two. 

To meet the READY# input hold time requirement (25 nanoseconds) for the 82288 Bus 
Controller, the READY# signal for MULTIBUS I cycles must be two CLK cycles long. 
Therefore, two PLD equations are required to generate READY#. The first equation 
generates the Ready Pulse (RDYPLSE) output. RDYPLSE is fed into the READY # 
equation to extend READY # by an additional CLK cycle. These signals are gated by 
MBEN and PCLK. 

RDYPLSE : = ARDY * MBEN * PCLK 

/READY : = ARDY * MBEN * PCLK + RDYPLSE * MBEN 

9-6 



MUL TIBUS I AND Intel386 DX MICROPROCESSOR 

9.2.4 Bus Controller and Bus Arbiter 

Connections for the 82288 and 82289 are shown in Figure 9-4. The 82288 can operate in 
either local-bus mode or MULTIBUS I mode; a pullup resistor on the 82288 MB input 
activates the MULTIBUS I mode. Both the 82288 and the 82289 are selected by the 
MBEN output of the address decoder PLD. The AEN# signal from the 82289 enables 
the 82288 outputs. 

Timing diagrams for MULTIBUS I read and write cycles are shown in Figures 9-5 and 
9-6. The only differences between the timings are that a read cycle controls the data 
latch/transceivers using RD# and outputs the MRDC# command signal, whereas a 
write cycle controls the data latch/transceivers using DEN and outputs the MWTC# 
command. 

82289 MULTIBUS I 

SO# 
so# LLOCK# r---- LOCK# 

SI# SI# CBRO# I- CBRa# 

MIIO# 
MIIO# BUSY# I-- BUSY# 

READY# 
READY# BPRO# r---- BPRO# 

MBEN 
SYSB BREa# r-- BREa# 

LOCK# 
LOCK# 

AEN# I-
r- BPRN# 

BPRN# 

82288 

--- SOt MRDC# ... +-- MRDC# 

'--- SI# MWDC# t--f-- MWTC# 

MIIO# IORC# H"- IORC# -.... 
> READY# IOWC# H-- IOWC# 

lK • CENL INTA# r-f-.... INTA# 

MB 
ALE TO MULTIBUS ADDRESS LATCH 

CMDLY 

* 
DTIR# } 

I 
AEN# TO MULllB 

DEN 
US DATA TRANSCEIVER 

231732i9-4 

Figure 9 .. 4. MULTIBUS Arbiter and Bus Controller 

9-7 



ClK2 -hhlJ-U 
ClK 

D/C,W/~ 
MilO 

-~ 

- ex ) 
- / 

CSYNC 

WS2 \ 

" So-51 
(PlD) 

MRDC 

CO 
00 CPURD 

MBAlE 

MBADDR, 
BHE 

DATA 

XACK 

READY 

ENDCYC2 

Ts ' Tc Tc 

ULfUlJ L.fUl.JU 1Sl.JLI1J ~ 

L-lLS) ~ ~ ~f--
I t::J 

\ 

'" r"\ rY 

/ 

-

X -
, 

r-"," 
'--of 

V-
I\. 

231732i9-5 

Figure 9-5. MULTIBUS I Read Cycle Timing 

l 

s:: 
c 
~ m c 
tJ) 

» 
z 
o 
::::J -CD 
c;.; 
CXI 
0) 

~ 
s:: o 
::tI 
o 
"U 
::tI 
o 
C') 
m 
tJ) 
tJ) 

o 
::tI 

@ 



CD ® 
ClK2 

ClK 

D/C, WIll, 
M/iO 

WSl 

j--w-u ULJ 
-+, 

~ ~ I 
I 

1 / 
I I / 
I I 

I 

WS2 ! I \ 
I \. 

iO-si 
(PLD) ! i 

; i 
MWfC I I 

~ 
MBDEN 

I I 

I I 

I I 
MBAlE I I 

I I 

MB AQ!!!!, 
BHE ; i 

I I 
DATA 

~ " I 
iiACR 

I ( 

READY I I 
I I 

ENDCYCZ I I 
I I 

I I I 
Ts Tc Tc (3 Tcs 

MINIMUM) 

ULJ ULJ ULJ ULJ ULJ ul)~ 
~ ~ ~ ~ ~ ~I-

7 .. ,,-

/ .. 
1-\ 

~ --..; 

\ 

/ \ 

\ . lC 

Figure 9·6. MUL TIBUS I Write Cycle Timing 

I 

~ 
Pcb< 

: 
I 
I 
I 
I 

I 

i 
I 
I 
I 
! 

I 

I 

I 
I 

1 
rt 

I 

U 

-

r-

231732i9-6 

l 

s: 
c: 
~ 
iii c: 
(J) 

» z 
c 

~ 
c;) 
co 

,Q) 

~ 
s: 
o 
::D 
o 
"tI 
::D 
o o 
m 
(J) 
(J) 

o 
::D 

@ 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

9.3 TIMING ANALYSIS OF MULTIBUS I INTERFACE 

The timing specifications for the MULTIBUS I are explained in the MULTIBUS® I 
Specification, Order Number 9800683. Table 9-1 lists the MULTIBUS I parameters that 
relate to the Inte1386 DX microprocessor system. These calculations are based on 
the assumption that 74ALS580 latches and 74F544 transceivers are used for the 
MULTIBUS I address and data interface. 

In addition to the parameters in Table 9-1, designers must allow for the following: 

• To ensure sufficient access time for the slave device, bus operations must not be 
terminated until an XACK# signal is received .from the slave device . 

• Following an MRDC# or an IORC# command, the responding slave device must 
disable its data drivers within 125 nanoseconds after the return of the XACK# signal. 
All devices that meet the MULTIBUS I specification of 65 nanoseconds meet this 
requirement. 

9.4 82289 BUS ARBITER 

In a MUL TIBUS I system, several processing subsystems contend for the use of shared 
resources. If one processor requests access to MUL TIBUS I while another processor is 
using it, the requesting processor must wait. Bus arbitration logic controls access to 
MULTIBUS I for all processing subsystems. 

Table 9-1. MUL TIBUS I Timing Parameters 

Timing MULTIBUS InteI386'" OX Microprocessor 
Parameter Specification System Timing 

tAS 50 ns 125 ns (2 ClK cycles) 
Address setup minimum - 20 ns (ALE max delay) 
before command - 22 ns (74AlS580 max. delay) 
active + 3ns (Command min. delay) 

, 86 ns min. 

tDS 50 ns 125 ns (2 ClK cycles) 
Write data minimum - 30ns (DEN max. delay) 
setup before - 12 ns (74F544 max. delay) 
command active + 3 ns (Command min. delay) 

86 ns min. 

tAH 50 ns 187.5ns (3 CLKcycles) 
Address hold minimum - 25 ns (Command inactive max. delay) 
after command + 3 ns (ALE max. delay) 
inactive 165.5ns min. 

9-10 



MUL TIBUS I AND Intel386 DX MICROPROCESSOR 

Each processing subsystem contains its own 82289 Bus Arbiter. The Bus Arbiter directs , 
its processor onto the bus and allows higher and lower priority bus masters to access the 
bus. Once the bus arbiter gains control of MULTIBUS I, the Inte1386 DX microproces­
sor can access system resources. The bus arbiter handles bus contention in a manner that 
is transparent to the Intel386 DX microprocessor. 

Each processor in the multiprocessing system initiates bus cycles as though it has exclu­
sive use of MULTI BUS I. The bus arbiter keeps track of whether the subsystem has 
control of the bus and prevents the bus controller from accessing the bus when the 
subsystem does not control the bus. 

When the bus arbiter receives control of MULTIBUS I, it enables the bus controller and 
address latches to drive MULTI BUS I. When the transfer is complete, MULTIBUS I 
returns the XACK# signal, which activates READY # to end the bus cycle. 

9.4.1 Priority Resolution 

Because a MUt TIBUS I system includes many bus masters, logic must be provided 
to resolve priority between two bus masters that simultaneously request control of 
MULTIBUS I. Figure 9-7 shows two common methods for resolving priority: serial 
priority and parallel priority. 

~ 

The serial priority technique is implemented py daisy-chaining the Bus Priority In 
(BPRN#) and Bus Priority Out (BPRO#) signals of all the bus arbiters in the system. 
Due to delays in the daisy chain, this technique accommodates only a limited number of 
bus arbiters. 

The parallel priority technique requires external logic to recognize the BPRN # inputs 
from all bus arbiters and return the BPRO# signal aCtive to the requesting bus arbiter 
that has the highest priority. The number of bus arbiters accommodated with this tech­
nique depends on the complexity of the decoding logic. 

Priority resolution logic need not be included in the design of a single processing sub­
system with a MULTIBUS I interface. The bus arbiter takes control of MULTIBUS I 
when the BPRN# signal goes active and relinquishes control when BPRN# goes inac­
tive. As long.as external logic exists to control the BPRN# inputs of all bus arbiters, a 
subsystem can be designed independent of the priority resolution circuit. 

9.4.2 82289 Operating Modes 

Following a MUL TIBUS I cycle, the controlling bus arbiter can either retain bus control 
or release control so that another bus master can access the bus. Three modes for 
relinquishing bus control are as follows: 
• Mode 1-The bus arbiter releases the bus at the end of each cycle. 
• Mode 2 - The bus arbiter retains control of the bus until another bus master (of any 

priority) requests control. 

• Mode 3 - The bus arbiter retains control of the bus until a higher priority bus master 
requests control. 

9-11 



MUL TIBUS I AND Intel386 OX MICROPROCESSOR 

SERIAL PRIORITY RESOLVING TECHNIQUE 

74146 
PRIORITY 

4 ENCODER 

PARALLEL PRIORITY RESOLVING TECHNIQUE 

Figure 9-7. Bus Priority Resolution 

1 

74136 ; 
3T06 

DECODER 4 

231732i9-7 

In addition, the bus arbiter can switch between modes 2 and 3, based on the type of bus 
cycle. 

Figure 9-8 shows the strapping configurations required to implement each of these four 
techniques. 

The operating mode of one bus arbiter affects the throughput of both the individual 
subsystem as well as other subsystems on MUL TIBUS I. This is because the delay 
required to transfer MUL TIBUS I control from one bus arbiter to another affects all 

9-12 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

82289 82289 

RESET RESET 

ALWA'fS/ClIQ[CK 

":' 

MODE 1 MODE 2 

82289 82289 

RESET RESET RESET RESET 

'Q 

PARALLEL D 

~ 
I/D 
OR 

MODE 3 
ADDRESSABLE 

LATCH 
ENABLE . MUL TIBUS . BCLK 

* WHEN LOW, 82289 IN MODE 3; 
WHEN HIGH, 82289 IN MODE 2 

231732i9-8 

Figure 9-8. Operating Mode Configurations 

subsystems waiting to use MULTIBUS I. Therefore, the most efficient operating mode 
depends on how often a subsystem accesses MUL TIBUS I and how this frequency com­
pares to that of the other subsystems. 

• Mode 1 is adequate for a subsystem that needs MULTIBUS I access only occasion­
ally. By releasing MULTIBUS I after each bus cycle, the subsystem minimizes its 
impact on other subsystems that use MUL TIBUS I. . 

• Mode 2 is suited for a subsystem that is one of several subsystems that are all equally 
likely to require MULTIBUS I. The performance decrease caused by the delay nec­
essary to take control of MULTIBUS I is distributed . evenly to all subsystems. 

• Mode 3 should be used for a subsystem that uses MULTIBUS I frequently. The delay 
required for taking control of MULTIBUS I and the consequent performance 
decrease is shifted to subsystems that use MULTIBUS I less often. 

• Switching between modes 2 and 3 is useful if the subsystem demand for 
MUL TIBUS I is unknown or variable. 

9-13 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

9.4.3 MULTIBUS I Locked Cycles 

Locked bus cycles for the local bus are described in Chapter 3. In locked bus cycles, the 
Intel386 OX microprocessor asserts the LOCK# signal to prevent another bus master 
from intervening between two bus cycles. In the same manner, an Intel386 OX micro­
processor processing subsystem can assert the LLOCK# output of its bus arbiter to 
prevent other subsystems from gaining control of MULTIBUS 1. A locked cycle over­
rides the normal operating mode of the bus arbiter (one of the four modes mentioned in 
Section 9.4.2. 

Locked MULTIBUS I cycles are typically used to implement software semaphores 
(described in Section 3.5) for critical code sections or critical real-time events. Locked 
cycles can also be used for high-performance transfers within one instruction. 

The Intel386 OX microprocessor initiatesalocked MULTIBUS I cycle by asserting its 
LOCK# output to the 82289 bus arbiter. The bus arbiter outputs its LLOCK# signal to 
the MULTIBUS I LOCK# status line and holds LLOCK# active until the LOCK# 
signal from the Intel386 OX microprocessor goes inactive. The LLOCK# signal from the 
bus arbiter must be connected to the MULTIBUS I LOCK# status line through a 
tristate driver controlled by the AEN# output of the bus arbiter. 

9.5 OTHER MULTIBUS I DESIGN CONSIDERATIONS 

Additional design considerations are presented in this section. These considerations 
include provisions for interrupt handling, 8-bit transfers, timeout protection, and power 
failure handling on MULTIBUS 1. 

9.5.1 Interrupt-Acknowledge on MULTI BUS I 

When an interrupt is received by the Intel386 OX microprocessor, the Intel386 OX 
microprocessor generates an interrupt-acknowledge cycle (described in Chapter 3) to 
fetch an 8-bit interrupt vector from the 8259A Programmable Interrupt Controller. The 
8259A can be located on either MUL TIBUS lora local bus. 

Multiple 8259As can be cascaded (one master and up to eight slaves) to process up to 64 
interrupts. Three configurations are possible for cascaded interrupt controllers: 

• All of the interrupt controllers for one Intel386OX microprocessor reside on the 
local bus of that processor, and all interrupt-acknowledge cycles are directed to the 
local bus. 

• All slave interrupt controllers (those that connect directly to interrupting devices) 
reside on MULTIBUS 1. The master interrupt controller may reside on either the 
local bus or MULTIBUS 1. In this case, all interrupt-acKnowledge cycles are directed 
to MULTIBUS 1. 

9-14 



MUL TIBUS I AND Intel386 DX MICROPROCESSOR 

• Some slave interrupt controllers reside on local buses, and other slave interrupt con­
trollers reside on MULTIBUS I. In this case, the appropriate bus for the interrupt­
acknowledge cycle depends on the cascade address generated by the master interrupt 
controller. 

In the first two configurations, no decoding is needed because all interrupt acknowledge 
cycles are directed to one bus. However, if a system contains a master interrupt control­
ler residing on a local bus and at least one slave interrupt controller residing on MUL­
TIBUS I, address decoding must select the bus for each interrupt-acknowledge cycle. 

The interrupt-acknowledge cycle must be considered in the design of this decoding logic. 
The Intel386 DX microprocessor responds to an active INTR input by performing two 
bus cycles. During the first cycle, the master interrupt controller determines which, if 
any, of its slave controllers should return the interrupt vector and drive sits cascade 
address pins (CASO#, CASI#, CAS2#) to select that slave controller. During the sec­
ond cycle, the Inte1386 DX microprocessor reads an 8-bit vector from the selected inter­
rupt controller and uses this vector to service the interrupt. 

In a system that has slave controllers residing on MULTI BUS I, the circuit shown in 
Figure 9-9 can be used to decode the three cascade address pins from the master con­
troller to select either MULTIBUS I or the local bus for the interrupt-acknowledge 
cycle. If MULTIBUS I is selected, the 82289 Bus Arbiter is enabled. The 82289 in turn 
requests control of MULTIBUS I and enables the address and data transceivers when 
the request is granted. 

The bus-select signal must become valid for the second interrupt-acknowledge cycle. The 
master controller's cascade address outputs become valid within 565 nanoseconds after 
the INT A# output from the bus control logic goes active. Bus-select decoding requires 
30 nanoseconds, for a total of 595 nanoseconds from INTA# to bus-select valid. The 
four idle bus cycles that the Inte1386 DX microprocessor automatically inserts between 
the two interrupt-acknowledge cycles provides some of this time. The wait-state genera­
tor must add wait states to the first interrupt-acknowledge cycle to provide the rest of 
the time needed for the bus-select signal to become valid. 

The cascade address outputs are gated onto A8, A9, and AIO of the address bus through 
three-state drivers during the second interrupt-acknowledge cycle. Bus control logic 
must generate a Master Cascade Enable (MCE) signal to enable these drivers. This 
signal must remain valid long enough for the cascade address to be captured in 
MULTIBUS I address latches; however it must be de-asserted before the Intel386 DX 
microprocessor drives the address bus. 

9.5.2 Byte Swapping during MULTIBUS I Byte Transfers 

The MULTIBUS I standard specifies that all byte transfers must be performed on the 
lower eight data lines (MULTIBUS I DATO#-DAT7#), regardless of the address of the 
data. An Intel386 DX microprocessor subsystem must swap data from eight of its upper 
24 data lines (D8-DI5, DI6-D23, or D24-D31) to its lower eight data lines (DO-D7) 
before transferring data to MULTIBUS I, and swap data from its lower data lines to the 

9-15 



MUL TIBUS I AND Intel386 OX MICROPROCESSOR 

r--;-
(FROM SLAVE 

INTERRUPT CONTROLLER) 

8259A 0, 

1.IN~TA~":CA~Sj2111--'4A2_ _ 74530 CASVALlD(l) 

i: iT 
74AlS580 

MASTER~~~~I-~ __ ""'~~ J, OF 
t-----t»-+-J"¢l~~~ (74500 

L-1 ___ ~Aa~IA9~Al~0L-_~~ __ -L __ r:::::::::::~sre ,/ ~... A20-Ao 

'~-.--~---~ 
~ VMt Of" 

INTA 
MCE 

,...-t'-----t .-----<~I SYSB/R£SI! 

1< 
AENr--

82289 
BUS 

ARBITER 

CENL ..... ------<JH-+-'="'"'--i-"4>-bo-t>>-+-lcMOLY _ 

...... vcc':....r: ~~NL AEN 

I MBIO'" L----iALE 1---'----"..) 
LOCALMB ~ "". :::.:.::..-----..... ~IM/Ill BUS -

CONTROLLER WAIT·STATE 82288 
- GENERATOR BUS 

_ READY I .... ________ ~=CO::N=TR=OL:LE:R~.J 
AffDYENI .. 

ARCY 

Figure 9-9. Bus-Select Logic for Interrupt Acknowledge 

231732i9·9 

appropriate upper data lines when reading a byte from MULTIBUS 1. This byte­
swapping requirement maintains compatibility between 8-bit, I6-bit, and 32-bit systems 
sb aring the same MUL TIBUS 1. 

The BSI6# signal is generated and returned to the Intel386 DX microprocessor for all 
MULTIBUS I cycles. The Intel386 DX microprocessor automatically swaps data 
between the lower half (DIS-DO) and the upper half (D3I-DI6) of its data bus and 
adds an extra bus cycle as necessary to complete the data transfer. Therefore, only the 
logic to swap data from DIS-D8 to D7-DO is needed to meet the byte-swapping require­
ment of MUL TIBUS 1. 

Figure 9-10 illustrates a circuit that performs the byte-swapping function. The Output 
Enable (OE#) inputs of the data latch/transceivers are conditioned by the states of the 
BHE# and AO outputs of the address decoder. 

9-16 



MUL TIBUS I AND Intel386 DX MICROPROCESSOR 

BUS 
CONTROL 

13B6~ ox CPU 
OATABUS 

74F373 

LE OE 

ALE~ ":'" 

)0.4 ............. +-....... -_.� 74ALS5BO 

Figure 9-10. Byte-Swapping Logic 

9.5.3 Bus Timeout Function for MUL TIBUS I Accesses 

BUS 
CONTROL 

MULTIBUS BHEN 

MULTIBUS ADRO 

231732i9-10 

The MULTIBUS I XACK# signal terminates ail Inte1386 DX microprocessor bus cycl'f 
by driving the wait-state generator logic. However, if the Intel386 DX microprocessor 
addresses a nonexistent device on MUL TIBUS I, the XACK# signal is never generated. 
Without a bus-timeout protection circuit, the Intel386 DX microprocessor waits indefi­
nitely for an active READY # signal and prevents other processors from using 
MULTIBUS I. 

Figure 9-11 shows an implementation of a bus-timeout circuit that ensures that all 
MUL TIBUS I cycles eventually end. The ALE# output of the bus controller activates a 
one-shot that outputs a I-millisecond pulse. The rising edge of the pulse activates the 
TIMEOUT# signal if READY # does not go active within 1 millisecond to clear the 
TIMEOUT# flip-flop. The TIMEOUT# signal is input to the wait-state generator logic 
to activate the READY# signal. When READY# goes active, it is returned to clear the. 
TIMEOUT# signal. 

9-17 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

., 
~ 
~ 
~ .....-

a C a I- READY# 

ALE 0 ..... - 0 
CLK2 a Q 

"""- '--

TIMEOUT# 

231732i9-11 

Figure 9-11. Bus-Timeout Protection Circuit 

9.5.4 MUL TIBUS I Power Failure Handling 

The MULTJBUS I interface includes a Power Fail Interrupt PFIN signal to signal an 
impending system power failure. Typically, PFIN# is connected to the non-maskable 
interrupt (NMI) request input of each Inte1386 DX microprocessor. The NMI service 
routine can direct the Inte1386 DX microprocessor to save its environment immediately, 
before falling voltages and the MULTIBUS I Memory Protect (MPRO#) signal prevent 
any further memory activity. In systems with memory backup power or nonvolatile mem­
ory, the saved environment can be recovered on power up. 

The power-up sequence of the Inte1386 DX microprocessor can check the state of the 
MUL TIBUS I Power Fail Sense Latch (PFSN #) to see if a previous power failure has 
occurred. If this signal is active (low), the Inte1386 DX microprocessor can branch to a 

. power-up routine that resets the latch using the Power Fail Sense Reset signal (PFSR#), 
restores the previous Inte1386 DX microprocessor environment, and resumes execution. 

Further guidelines for designing Inte1386 DX microprocessor systems with power failure 
features are contained in the Intel MULTIBUS® I Specification. 

9.6 iLBXTM BUS EXPANSION 

The iLBX (Local Bus Expansion) is a high-performance bus interface standard that 
permits the modular expansion of an Inte1386 DX microprocessor-based system. An 
iLBX interface links the Inte1386 DX microprocessor system board with additional 
boards containing memory, I/O subsystems, and other peripheral devices or bus masters. 
Any board that conforms to the iLBX standard can be added to the system as the user's 
needs dictate. For a 16-MHz Intel386 DX microprocessor-based system, a typical iLBX 
access cycle requires six wait states. 

The iLBX™ Bus Specification describes the iLBX Local Bus Expansion standard III 

detail. 

9-18 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

The iLBX bus interface requires the generation of AI, AO, and BHE# from the 
Inte1386 DX microprocessor BE3#-BEO# outputs .. The iLBX connector contains 
24 address bits (AB23-ABO) and 16 data bits (DBlS-DBO), which are taken from the 
buffered address lines (A23-AO), and data lines (DIS-DO) of the Inte1386 DX micro­
processor local bus. BHE# is inverted and buffered to provide the Byte High Enable 
(BHEN) signal. 

The ReadlWrite (RIW#), Data Strobe (DSTB#), and Address Strobe (ASTB#) con­
trols are generated from local bus control signals using the logic shown in Figure 9-12. 
R1W# is a delayed, inverted version of the W/R# output of the Inte1386 DX micropro­
cessor. DSTB# goes active when either RD# or WR# from the local bus control goes 
active. ASTB# and DSTB# are delayed to allow adequate setup time for BHEN. In this 
example, the WS2 signal, which is active during the third CLK cycle of the Inte1386 DX 
microprocessor bus cycle, provides the delay. 

A chip-select output of address decoding logic goes active for accesses to the memory 
and I/O locations allocated to the iLBX bus and selects the iLBX address and data 
buffers. Command signals from the local bus. control logic enable the outputs of the 
iLBX transceivers. 

When an iLBX cycle is complete, the Acknowledge (ACK#) signal is returned over the 
iLBX bus. This signal must be synchronized and incorporated into the wait-state gener­
ator logic to provide the READY # signal. 

W/RII -------, 

:~:----I~.' .. 
eLK 

WS2 

RDII 

WRII 

.... ----- ASTBII 

READYII -1.>0--+ .... DSTBII 

RESET 

ILBXENII 

Figure 9-12. iLBX™ Signal Generation 

9-19 

231732i9-12 



MULTIBUS I AND Intel386 DX MICROPROCESSOR 

9.7 DUAL-PORT RAM WITH MULTIBUS I 

A dual-port RAM is a memory subsystem that can be accessed by both the Inte1386 DX 
microprocessor, through its local bus, and other processing subsystems, through the 
MULTIBUS I system bus. Dual-port RAM offers some of the advantages of both local 
resources and system resources. It is an effective solution when using only local memory 
or only system memory would decrease system cost and/or performance significantly. 

The Inte1386 DX microprocessor accesses dual-port RAM through its high-speed local 
bus, leaving MULTIBUS I free for other system operations. Other processing sub­
systems can pass data to and from the Intel386 DX microprocessor through the dual­
port RAM using MULTIBUS I. 

If necessary, dual-port RAM can be mapped to reserve address ranges for the exclusive 
use of the InteI386 DX microprocessor. The Intel386 DX microprocessor and the other 
processing subsystems need not use the same address mapping for dual-port RAM. 

The disadvantage of dual-port RAM is that its design is more complex than that of 
either local or system memory. Dual-port RAM requires arbitration logic to ensure that 
only one of the two buses gains access at one time. 

9.7.1 Avoiding Deadlock with Dual-Port RAM 

The MULTIBUS-LOCK# signal and the Inte1386 DX microprocessor LOCK# signal 
mediate contention when both the Intel386 DX microprocessor and a MULTIBUS I 
device attempt to access dual-port RAM. However, locked cycles to dual-port RAM can 
potentially result in deadlock. Deadlock arises when the Intel386 DX microprocessor 
performs locked cycles to ensure back-to-back accesses to dual-port RAM and MULTI­
BUS I. 

Suppose the Intel386 DX microprocessor locks an access to dual-port RAM followed by 
a MULTIBUS access, to ensure that the accesses are performed back-to-back. (This 
could happen only in protected mode during interrupt processing when the IDT is in the 
dual-port RAM and the target descriptor is in MULTIBUS RAM.) At the same time the 
InteI386 DX microprocessor performs the first locked cycle, another device gains control 
of MULTIBUS I for the purpose of accessing dual-port RAM. The Inte1386 DX micro­
processor cannot gain control of MULTIBUS I to complete the locked operation, and 
the other device cannot relinquish control of MUL TIBUS I because it cannot complete 
its access to dual-port RAM. Each device therefore enters an interminable wait state. 

Two approaches can be used to avoid deadlock: 

• Requiring software to be free of locked accesses to dual-port RAM. 

• Designing hardware to negate the LOCK# signal for transfers between dual-port 
RAM and MULTIBUS I. If this approach is used, software writers must be informed 
that such transfers will not be locked even though software dictates locked cycles. 

9-20 



MUL TIBUS II and 1 0 
Intel386 OX Microprocessor 





CHAPTER 10 
MULTIBUS 'II AND Intel386 OX MICROPROCESSOR 

Standard bus interfaces guarantee compatibility between existing and newly developed 
systems. This compatibility safeguards a user's hardware investment against obsoles­
cence even in the face of rapidly advancing technology. The MULTIBUS I standard 
interface has proven its value in providing flexibility for the expansion of existing systems 
and the integration of new designs. The MULTIBUS II standard interface extends 
Intel's Open Systems design strategy into the world of 32-bit microprocessing systems. 

10.1 MULTIBUS II STANDARD 

The MULTIBUS II standard is a processor-independent bus architecture that features a 
32-bit parallel system bus with a maximum throughput of 40 megahytes per second~ 
high-speed local bus access to off-board memory, a low-cost serial system bus, and full 
multiprocessing support. MULTIBUS II achieves these features through five specialized 
Intel buses: 

• Parallel System Bus (iPSB) 

• Local Bus Extension (iLBX II) 

• Serial System Bus (iSSB) 

• Multi-channel DMA 110 Bus 

• System Expansion I/O Bus (iSBXTM) 

The DMA I/O Bus and the. iSBX are carried over directly from MULTIBUS I architec­
ture. See the MULTIBUS~ I Architectural Specification for a full description of these 
buses. The multiple bus structure provides the following important advantages over a 
single, generalized bus: 

• Each bus is optimized fora specific function. 

• The buses perform operations in parallel. 

• Buses that are not needed for a particular system can be omitted, avoiding unneces­
sary costs. 

10.2 PARALLEL SYSTEM BUS (iPSB) 

The Parallel System Bus (iPSB) is optimized for interprocessor data transfer and com­
munication. Its burst transfer capability provides a maximum sustained bandwidth of 
40 megabytes per second for high-performance data transfers. 

10-1 



MULTIBUS II AND Intel386 OX MICROPROCESSOR 

The iPSB supports four address spaces per bus agent (a board that encompasses a 
functional subsystem). The conventional I/O and memory address spaces are included, 
plus two other address spaces that support advanced functions: . 

• A 255 address message space supports message passing. Typically, a microprocessor 
performs interprocessor communications inefficiently. Message passing allows two 
bus agents to exchange a block of data at full bus bandwidth without supervision from 
a microprocessor. An intelligent bus interface capable of message passing shifts the 
burden of interprocessor communication away from the processor, thus enhancing 
overall system performance. 

• An interconnect space allows geographic addressing, which is the identification of any 
bus agent (board) by slot number. Every MULTIBUS II system contains a Central 
Services Module (CSM) that provides system services, such as uniform initialization 
and bus timeout detection, for all bus agents residing on the iPSB bus. The CSM may 
use the registers of the interconnect space of each bus agent to configure the agent 
dynamically. Stake pin jumpers, DIP switches, and .other hardware configuration 
devices can be eliminate<;l. 

Because the Inte1386 DX microprocessor can access only memory space or I/O space, 
the message space and interconnect space may be mapped into the memory space or the 
I/O space. Decoding logic provides chip select signals for the devices implementing the 
message space and the interconnect space, as well as devices in the memory space and 
the I/O space. 

Three types of bus cycles define activity on the iPSB bus:.-

• Arbitration Cycle - Determines the next owner of the bus. This cycle consists of a 
resolution phase, in which competing bus agents determine priority for bus control, 
and an acquisition phase, in which the agent with the highest priority initiates a 
transfer cycle. 

• Transfer Cycle- Performs a data transfer between the bus owner and another bus 
agent. This cycle consists of a request phase, in which address control signals are 
driven, and a reply phase, in which the two agents perform a handshake to synchro­
nize the data transfer. The reply phase is repeated and data transfers continue until 
the bus owner ends the transfer cycle. , 

• Exception Cycle - Indicates that an exception (error) has occurred during a transfer 
cycle. This cycle consists of a signal phase, in which an exception signal from one bus 
agent causes all other bus agents to terminate any arbitration and transfer cycles in 
progress, and a reCQvery phase, in which the. exception signals go inactive. A new 
arbitration cycle can begin on the clock cycle after the recovery phase. 

Figure 10-1 shows how the timing of these cycles overlap. 

10-2 



ARBITRATION CYCLE 

TRANSFER CYCLE .,.----"'\, .,.----"\, 

~ 

a 
Col 

EXCEPTION CYCLE 

231732i10-1 

Figure 10-1. iPSB Bus Cycle Timing 

l 

:s:: 
c: 
~ 
m 
c: 
CJ) 

= » z 
c 

@ 

:::J -CD 
W co 
Q) 

~ 
:s:: 
(5 
:::D 
o 
"D 
:::D o o 
m 
CJ) 
CJ) 

o 
:::D 



MULTIBUS II AND Intel386 DX MICROPROCESSOR 

10.2.1 iPSe Interface 

Each bus agent must provide a means of transferring data between its Intel386 DX 
microprocessor, its interconnect registers, and the iPSB bus. The location of bus inter­
face logic to meet this requirement is shown in Figure 10-2. A full-featured subsystem 
may also include provisions for the message passing protocols used by the iPSB bus. 

The iPSB interface may be conveniently implemented by a Bus Arbiter/Controller 
(BAC), a Message Interrupt Controller (MIC), and miscellaneous logic. The BAC coor­
dinates direct interaction with the other devices on the iPSB bus, while the MIC works 
through the BAC to send and receive interrupt messages. Other logic is needed for 
address decoding, parity checking, and control signal generation. 

The BAC and MIC are implemented in Intel gate arrays. In addition, Intel has devel­
oped an advanced CMOS device, the Message Passing Coprocessor (MPC), that inte­
grates the functions of the BAC and the MIC plus parity checking and full message 
passing (solicited and unsolicited), all in one package. Detailed information on the MPC 
82389 is available in the Microprocessor arid Peripheral Handbook, Order Number 230843. 

10.2.1.1 BAC SIGNALS 

The BAC provides arbitration and system control logic for the arbitration, transfer, and 
exception cycles defined by the MULTIBUS II architecture. Through the BAC, the bus 
agent functions as either a requestor or a replier in a transfer cycle. In all cases, the 
device requiring iPSB bus access (either the Intel386 DX microprocessor or the MIC) is 
completely isolated from the iPSB; the BAC provides all direct interaction. 

LOCAL 

INTERCONNECT 

MESSAGES 

ALL 
EXTERNAL 

REFERENCES 

BUS INTERFACE 
FUNCTIONAL PATHS 

LOCALMEM 
OR I/O ACCESS 

BUS 
INTERFACE 

LOGIC 

INCOMING 
INTERCONNECT 

REFERENCE 

IPSBBUS 

INTERCONN£CT 
REFERENCES 

INCOMING 
MESSAGE 

Figure 10-2. iPSB Bus Interface, 

10-4 

INTERCONNECT 
SPACE 

231732i10·2 



MULTIBUS II AND Intel386 DX MICROPROCESSOR 

The BAC signals can be divided into three functional groups: 

• iPSB interface 

• Local bus interface 

• Register interface with the Inte1386 DX microprocessor 

The iPSB interface signals perform mainly arbitration and system control. Five bidirec­
tional Arbitration signals (ARBS-ARBO) are used during reset to read a cardslot ID and 
arbitration ID from the CSM, and during arbitration cycles to output the arbitration ID 
for priority resolution. Bus Request (BREQ#) is a bidirectional signal. Each bus agent 
asserts BREQ# to request control of the bus and samples BREQ# to determine if other 
agents are also contending for bus control. 

Bus Error (BUSERR#) is a bidirectional signal that a bus agent outputs to all other bus 
agents when it detects a parity error during a transfer cycle. Bus Timeout (TIMOUT #) 
is output by the CSM to all bus agents when a bus cycle fails to end within a prescribed 
time period. 

Ten System Control signals (SC9#-SCO#) coordinate transfer cycles. The 
MULTIBUS® II Architectural Specification defines each of these signals. Directional 
enables (SCOEH and SCOEL) are provided for transceivers to buffer these bidirec­
tional signals. External logic checks byte parity on the multiplexed address and data bus 
(AD31-ADO) and sets the Parity inputs (PAR3-PARO) accordingly. 

Other iPSB signals are Reset (RST#), Reset-Not-Complete (RSTNC#), and ID Latch 
(LACHn#, n = slot number). These signals are used only during reset. 

Local bus interface signals pertain to the communication between the BAC and the 
Inte1386 DX microprocessor or between the BAC and the MIC. These signals indicate to 
the BAC when to request bus control and what type of bus cycle to drive when it gains 
bus control. 

Four control signals are necessary for each of the two devices connected to the BAC. 
The signals that connect to the Inte1386 DX microprocessor are REQUESTA, 
GRANTA, READYA, and S;ELECTA; those that connect to the MIC are REQUESTB, 
GRANTB, READYB, and SELECTB. 

To request bus control, the Intel386 DX microprocessor or the MIC activates one of the 
REQUEST signals. The corresponding GRANT signal is returned by the BAC when it 
has bus control. Data width and address space selections are encoded on the 
WIDTHl#, WIDTHO#, SPACEl#, and SPACEO# inputs, whileWR# dictates either a 
write cycle or a read cycle. These five inputs translate directly to SC6#-SC2# outputs 
during the request phase of a transfer cycle. READY A or READYB indicates that 
WIDTHO#, WIDTHl#, SPACEO#, SPACEl#, and WR# can be read by the BAC to 
drive the transfer cycle. 

LASTINA or LASTINB controls the end-of-cycle signal for burst transfers. The 
LOCK# input is activated for locked transfers. 

10-5 



MULTIBUS II AND Intel386 OX MICROPROCESSOR 

The bus agent that receives a transfer cycle from the bus owner must have its BAC 
enabled by an active SELECT input. Errors detected by the replying agent are encoded 
by its MIC on the AGERR2-AGERRO inputs to its BAC so that the BAC can drive the 
SC7#-SC5# lines accordingly. If an error occurs, the requesting agent notifies the 
Intel386 DX microprocessor through the EINT signal. 

The register interface signals control register operations between the Inte1386· DX 
microprocessor and the BAC. Three 5-bit registers (Arbitration ID, Slot ID, and Error 
Port) are addressed through RSELl and RSELO. Data is transferred on RI04-RIOO; 
the direction of transfer is indicated by RRW. 

10.2.1.2 MIC SIGNALS 

The MIC coordinates interrupt handling for a bus agent on the iPSB bus. Interrupts are 
implemented as virtual interrupts in the message space. To send an interrupt message, 
the Inte1386 DX microprocessor writes four bytes to the MIC to indicate the source, 
destination, and type of message. The MIC then coordinates the message transfer. The 
MIC of the receiving bus agent reads the 4-byte message and stores it in a 4-deep 
message queue to be read by the Intel386 DX microprocessor. 

The MIC signals are divided into three groups: 

• iPSB interface 

• Local bus interface 

• BAC interface 

The iPSB interface consists of the multiplexed address/data bus (AD31#-ADO#). 
Although the MIC gains access to the iPSB bus through the BAC, the MIC drives the 
address/data bus directly. As a requesting agent, the MIC drives the address and data at 
the appropriate times. As a receiving agent, the MIC monitors the address/data bus for 
its address. When it recognizes its address, the MIC selects its BAC to perform the 
required handshake and read the message into the message queue. Then, the MIC inter­
rupts the Intel386 DX microprocessor to indicate that the message is pending in the 
queue. The Intel386 DX microprocessor reads the message and services the interrupt 
accordingly. 

The local bus interface consists of seven register/ports, addressed through A2-AO, 
through which the MIC and the Intel386 DX microprocessor communicate. Data is 
transferred over D7-DO, and WR# and RD# determine the direction of transfer. Other 
signals include the MIC Chip Select (CS#), a WAIT# signal for adding wait states to 
the Inte1386 DX microprocessor cycle, and a Message Interrupt (MINT) to signal an 
interrupt condition to the Inte1386 DX microprocessor. 

The BAC interface includes REQUESTB, ·READYB, SELECTB, and GRANTB. These 
signals have already been described with the other BAC signals. 

While the BAC and the MIC together provide the backbone for an iPSB interface, other 
logic provides buffering and control to round out the interface. An 8751 Microcontroller 
coordinates Intel386 DX microprocessor access to the interconnect space. An address 

10-6 



MULTIBUS II AND Intel386 DX MICROPROCESSOR 

decoder distinguishes between local, interconnect, and iPSB accesses. PLDs control the 
buffering of signals between the Intel386 DX microprocessor, BAC, MIC, 8751 Micro­
controller, and iPSB bus. 

10.3 LOCAL BUS EXTENSION (iLBX II) 

The iLBX II bus extension is a high-speed execution bus designed for quick access to 
off-board memory. One iLBX II bus extension can support either two processing sub­
systems (called the primary requesting agent and the secondary requesting agent) plus 
four memory subsystems, or a single processing subsystem plus five memory subsystems. 
A MULTIBUS II system may contain more than one iLBX II bus extension to meet its 
memory requirements. 

The iLBX II bus extension features a 26-bit address bus and a separate 32-bit data bus. 
Because these paths are separate, the extension allows pipelining of transfer cycles; the 
request phase of a transfer cycle can overlap the reply phase of the previous cycle. 

Other features of the iLBX II bus extension are: 

• A unidirectional handshake for fast data transfers 

• Mutual exclusion capability to control multiported memory 

• Interconnect space (for each bus agent) through which the primary requesting agent 
initializes and configures all other bus agents. . 

10.4 SERIAL SYSTEM BUS (iSSB) 

The Serial System Bus (iSSB) provides a simple, low-cost alternative to the Parallel 
System Bus (iPSB) bus. In applications that do not require the high performance of the 
iPSB bus, the iSSB bus can provide some cost reduction. In systems containing both the 
iPSB bus and the iSSB bus, the iSSB bus provides an alternate path for interface control, 
diagnostics, or redundancy. 

The iSSB bus can contain up to 32 bus agents distributed over a maximum of 10 meters. 
Bus control is determined through an access protocol called Carrier Sense Multiple 
Access with Collision Detection (CSMNCD). This protocol allows agents to transmit 
data whenever they are ready. In case of simultaneous transmission by two or more bus 
agents, the iSSB invokes a deterministic collision resolution algorithm to grant fair 
access to all agents. 

From the application point of view, the error detection capability of the iSSB bus, cou­
pled with an intelligent bus agent interface (able to retransmit) makes the iSSB bus as 
reliable as the iPSB bus, even though the iSSB bus may be up to 10 meters long. 

10-7 





Physical Design and 11 
Debugging 





CHAPTER 11 
PHYSICAL DESIGN AND DEBUGGING 

To maximize the performance of high-speed Intel386 DX processor systems, it is recom­
mended that optimum design guidelines be followed. This chapter outlines the basic 
design issues, ranging from power and ground issues to achieving proper thermal envi­
ronment for Intel386 DX microprocessor. 

11.1 GENERAL DESIGN GUIDELINES 

The performance and proper. operation of any high-speed system greatly depends upon 
appropriate physical layout. This section gives an overview of design guidelines for layout 
which are significant to both higher- and lower-frequency system design implementation. 

The ever-increasing improvement of integrated circuit technology has led to an enor-' 
mous increase in performance. The Inte1386 DX microprocessor, with an operating fre­
quency of 33 MHz (CLK2=66 MHz) and a corre~ponding fast edge rate, presents a 
challenge to the conventional interconnection technologies. This challenge applies espe­
cially to system designers who are responsible for providing suitable, high frequency 
interconnections at the systems level. 

At higher frequencies, the interconnections in a circuit behave like· transmission lines 
which degrade the system's overall speed and distort its output waveforms. 

In laying out a conventional printed circuit board, there is freedom in defining the 
length, shape and sequence of interconnections. However with high-speed devices such 
as the Inte1386 DX processor, this task should be carried out with careful planning, 
evaluation, and testing of the wiring patterns. It is critical to understand the physical 
properties of transmission lines. . 

1.1.2 POWER DISSIPATION AND DISTRIBUTION 

The Inte1386 DX microprocessor uses fast one-micro CHMOS IV process. The main 
difference between the previous HMOS microprocessors and the new one~ is that power 
dissipation is primarily capacitive and that there is almost no DC power dissipation. As 
power dissipation is directly proportional to frequency, accommodating high-speed sig­
nals on printed circuit boards and through the interconnections is very critical. The 
power dissipation of the VLSI device in operation is expressed by the sum of the power 
dissipation of the circuit elements, which include internal logic gates, I/O buffers and 
cache RAMs. It is also a function of the operating conditions. 

11-1 



PHYSICAL DESIGN AND DEBUGGING 

The worst-case power dissipation of any VLSI device is estimated in the following 
manner: 

1. To estimate typical power dissipation for each circuit element: 

PG : Typical power dissipation for internal logic gates (mW) 

PI/a: Typical power dissipation for I/O buffers (mW) 

2. To estimate total typical power dissipation: 

P T = P G + PliO (mW) ... (1) 

where PT is the total typical power dissipation (mW) 

3. To estimate the worst case power dissipation: 
P d = PT X Cv (mW) ... (2) 

where Pd is the worst case power dissipation (mW) and Cv is a multiplier that is 
dependent upon power supply voltage. 

lnternallogic power dissipation varies with operating frequency and to some extent with 
wait-states and software. It is directly proportional to the supply voltage. Process varia­
tions in manufacturing also affect the internal logic power dissipation, although to a 
lesser extent than with the NMOS processes. 

The I/O buffer power dissipation, which accounts for roughly 10 to 25 percent of the 
overall power dissipation, varies with the frequency and the supply voltage. It is also 
affected by the capacitive bus load. The capacitive bus loadings for all output pins is 
specified in the Intel386 DX processor data sheet. The Inte1386 DX processor's output 
valid delays will increase if these loadings are exceeded. The addressing pattern of the 
software can affect I/O buffer power dissipation by changing the effective frequency at 
the address pins. The frequency variations at the data pins tends to be smaller; thus, a 
varying data pattern should not cause a significant change in the total power dissipation. 

To calculate the total power dissipated by the board, the following formulas can be used: 

To calculate the maximum statistical power: 

PtypiCall + PtypiCal2 + .... [ (P maxI - PtyPicall)2 + (P max2 - PtyPical2)2 + ..... 

where P t icall and P maxI are the typical and maximum power dissipation of each of the 
integrate~ circuits on the board. The Inte1386 DX processor should be placed closer to 
fan or where the airflow is unrestricted. 

11.2.1 Power and Ground Planes 

Today's high-speed CMOS logic devices are susceptible to the ground noise and the 
problems that this noise creates in digital system design. This noise is a direct result of 
the fast switching speed and high drive capability of these devices, which are requisites in 

11-2 



PHYSICAL DESIGN AND DEBUGGING 

high-performance systems. Logic designers can use techniques designed to minimize this 
problem. One technique is to reduce capacitance loading on signal lines and provide 
optimum power and ground planes. 

Power and ground lines have inherent inductance and capacitance, which affect the total 
impedance of the entire system. Higher impedances reduce current and therefore offer 
reduced power consumption, while low impedances (ground planes) help minimize prob­
lems like noise and cross talk. Hence, it is very important for a designer to have a 
controlled impedance design where high speed signals are involved. The formula for 
impedance is as follows: 

'Impedance = (ljC)1/2. 

The total characteristic impedance for the power supply can be reduced by adding more 
lines. For multi-layer boards, power and ground planes must be used in the Inte1386 DX 
microprocessor designs. 

The effect of adding more lines to reduce impedance is illustrated in Figure 11-1 which 
shows that two lilies in parallel have half the impedance of a single line. 

To reduce impedance even further, more lines should be added. To lower the imped­
ance, an infinite number of lines or a plane should be used. Planes also provide the best 
distribution of power and ground. 

The Intel386 DX microprocessor has 20 power (Ved and 21 ground (Vss) pins. All 
power and ground pins must be connected to their respective planes. IdealJy, the 
Inte1386 DX microprocessor should be placed at the center of the board to take full 
advantage of these planes. Although Inte1386 DX CPU generally demands less power 
than the conventional devices, the possibility of power surges is increased due to proces­
sors higher operating frequency and its wide address and data buses. Peak-to-peak noise 
on Vee relative to Vss should be maintained at no more than 400 mY, and preferably to 
no more than 200 m V. 

Although power and ground planes are preferable to power and ground traces, double­
layer boards present a need for routing of the power and ground traces. 

'The inductive effect of a printed-circuit board (PCB) trace can be reduced by bypassing 
(or decoupling). Careful layout procedures should be observed to minimize inductances. 
Figure 11-2 shows methods for reducing the inductive effects of PCB traces. The power 
and ground trace layout has a low series inductance as shown in Figure 11-2. This is 
because the loop area between the integrated circuits (lCs) and the decoupling capaci­
tors is small and the power and ground traces are closer. This results in lower character­
istic impedance, which in turn reduces the line voltage drop. 

Another placement technique is called orthogonal arrangement, which requires more 
area than the previous technique but produces similar results. This arrangement is 
shown in Figure 11-3. These techniques also reduce the electromagnetic interference 
(EMI), which will be discussed in Section 11.3.3.1. ' 

11-3 



PHYSICAL DESIGN AND DEBUGGING 

roo®' I Lo 

zo=J~ rca Co 

231732i11-1 

Figure 11-1. Reduction in Impedance 

11.3 DECOUPLING CAPACITORS 

The advanced, high-speed CMOS logic families available today have much faster edge 
rates than do the older, slower logic technologies. The switching speeds and drive capa­
bility needed to provide high performance systems are also associated with increased 
noise levels. Some noise levels are inconsequential because they fall within the switching 
times of the other devices. However, the switching activity of one device can propagate 
to other devices through the power supply. For example, in the TTL NAND gate shown 
in Figure 11-4, both the Q3 and the Q4 transistors are ON for a short time while output 
is switching. This increased loading causes a negative spike on Vee and a positive spike 
on Vss. 

In synchronous systems where several gates switch simultaneously, the result is a signif­
icant amount of noise on the power and ground lines. This noise can be removed by 
decoupling the power supply. First, it is necessary to match the power supply's imped­
ance to that of the individual components. Any power supply presents a low source 
impedance to other circuits, whether they are individual components on the same board 

11-4 



PHYSICAL DESIGN AND DEBUGGING 

GNO 
5v 

Ie Packages 

\. I 
~ I Oecoupling 

GN0L---T-__ +-
1 U·'~" 

231732i11-2 

Figure 11-2. Typical Power and Ground Trace Layout for Double-Layer Boards 

or other boards in a multi-board system. It is necessary to match the supply's impedance 
to that of the components in order to-lessen the potential for voltage drops that can be 
caused by Ie edge rates, ground- or signal-level shifting, or noise induced currents or 
voltage reflections. 

A mismatch can be minimized by using a suitable high-frequency capacitor for bulk 
decoupling of major circuitry sections, or for decoupling entire pc boards in multi-board 

11-5 



Return or ./ 
,GNDTrace 

PHYSICAL DESIGN AND DEBUGGING 

5V Trace 

s S 
IV x/1 x/1 

?I I ?\ I 
/ I / I 

" i,U 
GND GND 

// /' 

?\" 7'\'< I I 
I 

I / I =s r-, r, 
GND GND 

/.-- // 

7'1'< X 
I 7'1 I 

/ I / I , S" I, I, 
GND GND 

~ l./II 5V --.A 5V 

231732i11-3 

Figure 11-3. Orthogonal Arrangement 

systems. This capacitor is typically placed at the supply's entry point to the board. It 
should be an aluminum or' tantalum-electrolytic type capacitor having a low equivalent 
series capacitance and low equivalent series inductance. The capacitance value is typi­
callylO to 47 JlF. An additional 0.1 JlF capacitor may be needed if supply noise is still a 
problem. 

A second type of decoupling is used for the rest of the ICs on the board. Additional 
decoupling capacitors can be used across the devices between Vee and V ss lines. The 
voltage spikes that occur due to switching of gates are reduced because the extra current 
required during switching is supplied by the decoupling capacitors. These capacitors 
should be placed close to their devices since the -inductance of lengthier connection 
traces reduce their effectiveness. 

11-6 



PHYSICAL DESIGN AND DEBUGGING 

A _-...... --.,---' 

3_--+--_ ..... 
f-----ey 

A4 

231732i11-4 

Figure 11-4. Circuit without Decoupling 

Most popular logic families require that a capacitor of 0.01 f.LF to 0.1 f.LF (RF grade) be 
placed between every two to five packages, depending on the application. For high-speed 
CMOS logic, a good rule of thumb is to place one of these bypasses between every two to 
three ICs, depending on the supply voltage, the operating-speed and EMI requirements. 
The capacitors should be evenly distributed throughout the board to be most effective. 
In addition, the board should be decoupled from the external supply line with a 10 to 47 
f.LF capacitor. In some cases, it might be helpful to add a 1 f.LF tantalum capacitor at 
major supply trace branches, particularly on large PCBs. 

Surface mount (chip) capacitors are preferable for decoupling the Inte1386 DX micro­
processor because they exhibit lower inductance and require less total board space. They 
should be connected as shown in Figure 11-5. These capacitors reduce inductance, which 
keeps the voltage spikes to a minimum. Surface mount capacitors should be used to keep 
the leads as short as possible. 

Inductance is also reduced by the parallel inductor relationships of multiple pins. Six 
leaded capacitors are required to match the effectiveness of one chip capacitor, but 
because only a limited number can fit around Intel386 DX CPU; the configuration 
shown in Figure 11-6 is recommended ifleaded capacitors are used. 

11-7 



PHYSICAL DESIGN AND DEBUGGING 

[1 0 

0 m 0 =0.1 ~F 

;386 ,. OX CPU 

~ 0 rt] =1.0 ~F 

0 ~ 

231732;11·5 

Figure 11-5. Decoupling with Surface Mount Capacitors 

~o~o 
-D- -tm- ~ =1.0~F 
-mJ- CJ-

;386 ,. OX CPU 

~ o =0.1 ~F -D-
~ -CJ-

O~O~ 
231732;11·6 

Figure 11-6. Decoupling with Leaded Capacitors 

11.4 HIGH FREQUENCY DESIGN CONSIDERATIONS 

The overwhelming concern in dealing with high speed technologies is the management 
of transmission lines. As the edge rates of the signals increase, the physical interconnec­
tions between devices behave like transmission lines. Although transmission-line theory 
is straightforward, the difference between ordinary interconnections and transmission 
lines is fairly complex. Transmission lines have distributed elements which are hard to 
define and designers tend to over compensate for the effects of these elements. 

Efficient Intel386 DX CPU designs require the identification of the transmission lines 
over back plane wiring, printed circuit board traces, etc. Once this task is accomplished, 
designer's next concern should be to deal with problems associated with electromagnetic 
propagation, impedance control, propagation delay and coupling. 

11-8 



PHYSICAL DESIGN AND DEBUGGING 

The following sections discuss the negative effects of a transmission line that occur when 
operating at higher frequencies. In higher frequency design the reflection and cross talk 
effects are inevitable; it is impossible to design optimum systems without accounting for 
these effects. Later sections include a discussion of techniques that can minimize these 
effects. . 

11.4.1 Transmission Line Effects 

As a general rule, any interconnection is considered to be a transmission line when the 
time required for the signal to travel the length of the interconnection is greater than 
one-eighth of the signal rise time (True K.M., "Reflection: Computations and Waveforms, 
The Interface Handbook, " Fairchild Corp., Mountain View, CA., 1975, Ch. 3). The rise 
time can be either rise time or fall time, whichever is smaller, and it corresponds to the 
linear ramp amplitude from 0% to 100%. Normally the rise times are specified between 
10% to 90% or 20% to 80% amplitude points. The respective values are multiplied by 
1.25 or 1.67 to obtain the linear-ramp duration from 0% to 100% amplitude. 

For example in a PCB using G-lO and polymide (the two main dielectric systems avail­
able for printed circuit boards) signals travel . at approximately 5 to 6 inches per 
nanosecond (ns). 

If trv/l < 8 then the signal path is not a transmission line but it is a lumped element 
(True K.M., "Reflection: Computations and Waveforms, The Interface Handbook," Fair­
child Corp., Mountain View, CA., 1975, Ch. 3). 

where 

tr = rise time 0%-100% 
v = speed of propagation (5 to 6 inches/sec) 
I = length of interconnection (one-way only) 

The calculation is given by: 

6t,/1 ::;; 8 so I ~ 6trl8 = (6x4X 1.67)/8 = 5.01 inches 

This calculation is based on the fact that the maximum rise time of the signals for the 
Intel386 DX processor is 4 ns. For I > = 5.01 inches, interconnections will act as trans­
mission lines. 

Every conductor that carries an AC signal and acts as a transmission line has a distrib­
uted resistance, an inductance and a capacitance which combine to produce the charac­
teristic impedance (ZO). The value of ZO depends upon physical attributes such as cross­
sectional area, the distance between the conductors and other ground or signal 
conductors, and the dielectric constant of the material between them. Because the char­
acteristic impedance is reactive, its effect increases with frequency. 

11-9 



PHYSICAL DESIGN AND DEBUGGING 

11.4.1.1 TRANSMISSION LINE TYPES 

Although many different types of transmission lines (conductors) exist, those most com­
monly used on the printed circuit boards are micro strip lines, strip lines, printed circuit 
traces, side-by-side conductors and flat conductors. 

11.4.1.1.1 Micro Strip Lines 

The micro strip trace consists of a signal plane that is separated from a ground plane by 
a dielectric as shown in Figure 11-7. G-IO fiber-glass epoxy, which is most common, has 
an er = 5 where er is the dielectric constant of the insulation. 

w = the width of signal line (inches) . 
t = the thickness of copper (.0015 inches for 1 oz CU/.003 inches for 2 oz Cu) 
h = the height of dielectric for controlled impedance (inches) 

The characteristic impedance, ZO, is a function of dielectric constant and the, geometry 
of the board. This is theoretically given by the following formula: 

ZO = [87/v'(er + 1.41)] In (5.98h/.8w+t) ohms 

where er is the relative dielectric constant of the board material and h, wand t are the 
dimensions of the strip. Knowing the line width, the thickness of Cu and the height of 
dielectric, the characteristic impedance can be easily calculated. 

The propagation delay (tpd) associated with the trace is a function of the dielectric only. 
This is calculated as follows: 

tpd = 1.017 v'(0.475er + 0.67) ns/ft 

For G-lO fiber-glass epoxy boards (er = 5.0), the propagation delay of micro strip is cal­
culated to be 1.77 ns/ft. 

Micro Strip w ------+>1 _____________ ~ 

231732ill-7 

Figure 11-7. Micro Strip Lines 

11-10 



PHYSICAL DESIGN AND DEBUGGING 

11.4.1.1.2 Strip Lines 

A strip line is a strip conductor centered in a dielectric medium between two voltage 
planes. The characteristic impedance is given theoretically by the equation below: 

ZO = (601 ve; In (5.98bhr (0.8 W + t)) ohms 

where b = distance between the planes for controlled impedance as shown in 
Figure 11-8. 

The propagation. delay .is given by the following formula 

tpd = 1.017 \l'Et.ns/ft 

For G-I0 fiberglass epoxy boards (er = 5.0), the propagation delay of the strip lines is 
2.27 ns/ft. 

Typical values of the characteristic impedance and propagation delay of these types of 
lines are as follows: 

ZO = 50 ohms 

tpd = 2 ns/ft (or 6" Ins ) 

The three major effects of transmission line phenomenon are impedance mismatch, cou­
pling and skew. 

The follQwing section will discuss them briefly and provide solutions to minimize their 
effects. 

Ground 
Planes 

Strip Line 

~---------+ Dielectric 

Figure 11-8. Strip Lines 

11-11 

231732ill-8 



PHYSICAL DESIGN AND DEBUGGING 

11.4.2 Impedance Mismatch 

As mentioned earlier, the impedance of a transmission line is a function of the geometry 
of the line, its distance from the ground plane, and the loads along the line. Any discon­
tinuity in the impedance will cause reflections. 

Impedance mismatch occurs between the transmission line characteristic impedance and 
the input or output impedances of the devices that are connected to the line. The result 
is that the signals are reflected back and forth on the line. These reflections can atten­
uate or reinforce the signal depending upon the phase relationships. The results of these 
reflections include overshoot, undershoot, ringing and. other undesirable effects. 

At slower edge rates, the effects of these reflections are not severe. However at faster 
rates, the rise time of the signal is short with respect to the propagation delay. Thus it 
can cause problems as shown in Figure 11-9. 

Overshoot occurs when the voltage level exceeds the maximum (upper) limit of the 
output voltage, while undershoot occurs when the level exceeds the minimum (lower) 
limit. These conditions can cause excess current on the input gates which results in 
permanent damage to the device. 

The amount of reflection voltage can be easily estimated. Figure 11-10 shows a system 
exhibiting reflections. 

.. ... 
~ 
o 
> 

Expected Output 
Signal 

Undershoot 

~~---T-ime---~--~~~={) 

Figure 11-9. Overshoot and UndershOot Effects 

11-12 

231732i11-9 



PHYSICAL DESIGN AND DEBUGGING 

B 

231732i11-10 

Figure 11-10. Loaded Transmission Line 

The magnitude of a reflection is usually represented in terms of a reflection coefficient. 
This is illustrated in the following equations: 

T =. V,lVi = Reflected voltage/Incident voltage 

T source = (Zsource - Zo)/(Zsource + Zo) 

Reflection voltage Vr is given by Vi' the voltage incident at the point of the reflection, 
and the reflection coefficient. 

The model transmission line can now be completed. In Figure 11-10, the voltage seen at . 
point A is given by the following equation: 

This voltage Va enters the transmission line at "A" and appears at "B" delayed by tpd' 

Vb = Va (t -xlv) H(t- xlv) 

where x = distance along the transmission line from point "A" and H(t)' is the unit stop 
function. The waveform encounters the load~, and this may cause reflection. The 
reflected wave enters the transmission line at "B" and appears at point "A" after time 
delay (~d): 

11-13 



PHYSICAL DESIGN AND DEBUGGING 

This phenomenon continues infinitely, but it is negligible after 3 or 4 reflections. Hence: 

Each reflected waveform is treated as a separate source that is independent of the 
reflection coefficient at that point and the incident waveform. Thus the waveform from 
any point and on the transmission line and at any given time is as follows: 

Each reflection is added to the total voltage through the unit step function H(t). The 
above equation can be rewritten as follows: 

V(x,t) = ( Z~~Zs) {Vs(t-tpdX) H(t-tpdx) 

+ TI [Vs(t-'tpd(2L-x)) H(t-tpd (2L-x))] 

+ TITs [Vs(t-tpd(2L+x)) H(t-tpd(2L+x))] 

+ ... } 

The lattice diagram is a convenient visual tool for calculating the total voltage due to 
reflections as described in the equations above. Two vertical lines are drawn to represent 
points A and B on the horizontal dimension x. The vertical dimensioll then represents 
time. A waveform will travel back and forth between points A and B of the transmission 
line in time, producing the lattice diagram shown in Figure 11-11. The voltage at a given 
point is the sum of all the individual reflected voltages up to that time. Notice that at 
each endpoint two waves are converging - the incident wave and the reflected wave. 
Therefore, the voltage at the endpoints A or B at the time of the waveform reflection 
would be calculated by summing both the incident and reflected waves up to and includ­
ing the point in question. 

As an example, let the simple configuration shown in Figure 11-10 be assumed. Assume 
the following: 

Vs = 3.70 H(t) V 
Zo = 75!1 
Zsource = 30 !1 
Zioad = 1 00 !1 

11-14 



PHYSICAL DESIGN AND DEBUGGING 

A B 

T~O 

Tpd 

2Tpd 

3Tpd 

4Tpd 

rL3rs2V"" ;::. Vr5 

5Tpd 

6Tpd 

... 

x 

231732i11-11 

Figure 11-11. Lattice Diagram 

The appropriate reflection coefficients can be calculated as follows: 

f source = (30 - 75)/ (30 + 75) = -0.42857 
f load = (100 - 75)/ (100 + 75) = 0.14286 
Va = VsX 75/(75 + 30) = 2.64286 V 
Vr1 = 2.64286 X 0.14286 = 0.37755 V 
Vr2 = 0.37755 X -0.42857 = -0.16181 V 
Vr3 = -0.16181 X 0.14286 = - 0.02312 V 
Vr4 = -0.02312 X -0.42857 = 0.00991 V 
Vr5 = 0.00991 X 0.14286 = 0.00142 V 
V'6 = 0.00142 X -0.42857 = -0.00061 V 
Vr7 = -0.00061 X 0.14286 = -0.00009 V 

Figure 11-12 shows the corresponding lattice diagram. 

Thus the voltage at point B can be tabulated as shown in Table 11-1. 

Impedance discontinuity problems are managed by imposing limits and control during 
the routing phase of the design. Design rules must be observed to control trace geome­
try, including specification of the trace width and spacing for each layer. This is very 
important because it ensures the traces are smooth and constant without sharp turns. 

11-15 



PHYSICAL DESIGN AND DEBUGGING 

A 
B VIB.I) 

VIA,I) 1= 0 ....-__ 

2.857 V 2T ... 
l'----;:;.:.:~:.-----..-.r Tpo 3.02 V 

2.845V 4Tpo 
1'-_--~~~:::.----13T ... 2.835V 

1_---.::::.~~~----15TPd2.847v 
2.846 V 6Tpd ....-__ 

7T ... 2.846 V 

231732i11-12 

Figure 11-12. Lattice Diagram Example 

Table 11-1. Voltage at End Points A and B 

tpd V(A,t) V(8,t) 

0 2.64286 0 

1tPd . 2.64286 3.02041 

2tpd 2.85860 3.02041 
3tpd 2.85860 2.83549 

4tpd 2.84539 2.83549 

5tpd 2.84539 2.84681 

6tpd 2.84620 2.84681 

7tpd 2.84620 2.84611 

There are several techniques which can be employed to further minimize the effects 
caused by an impedance mismatch during the layout process: 

1. Impedance matching 

2. Daisy chaining 

3. Avoidance of 90° corners. 

4. Minimization of the number of vias. 

11.4.2.1 IMPEDANCE MATCHING 

Impedance matching is the process of matching the impedance of the source or load 
with that of the trace. It is accomplished with a technique called termination. The reflec­
tion, overshoot and undershoot of signals are reduced by terminating the remote end of 

11-16 



PHYSICAL DESIGN AND DEBUGGING 

the transmission line from the source. The terminating' impedance combines with' the 
destination input circuitry to produce a load that closely matches the characteristic 
impedance of the line (board traces have characteristic impedances in the range of 
30 ohms to 200 ohms). 

The calculation of characteristic impedance was already discussed. Impedance of the 
printed circuit board backplane connectors have the impedance in the same range as the 
traces (Le., 30 to 200 ohms) .. 

The characteristic impedance of a backplane may change, depending upon the length of 
the conductors or when using twisted pairs of co-axial cable in place of PC traces. Back­
plane impedance is also affected by the number of boards plugg~d into the backplane. 

11.4.2.1.1 Need for Termination 

The transmission line should be terminated when the tpd exceeds one-third of tr (rise 
time). If the tpd < 1/3 tr, the line can be left unterminated, provided the capacitive 
coupling between the traces does not cause cross-talk. 

Termination thus eliminates impedance mismatches, increases noise immunity, sup­
presses RFIIEMI, and helps to ensure that signals reach their destination with minimum 
of distortion. There are five methods for terminating traces on the board: 

1. Series 

2. Parallel 

3. Thevenin 

4. AC. 

5. Active 

Terminations can be costly, because they require additional components and power. 
With passive terminations, extra drivers are needed to deliver more current to the line. 
With active terminations extra power is needed which increases the power dissipation of 
the system. 

11.4.2.1.2 Series Termination 

One way of controlling ringing on longer lines is with the series termination technique 
also known as damping. This is accomplished by placing a resistor in series with the 
transmission line at the driving device end. The receiver has no termination. The value 
of the impedance looking into the driving device (Rdriver + Riine = Zo) should approx­
imate the impedance of the. line as closely as possible. In this circuit the ringing dampens 
out when the reflection coefficient goes to zero. Figure 11-13 illustrates the series 
termination. 

11-17 



PHYSICAL DESIGN AND DEBUGGING 

-t> 
Zo =750 

A 

"NV'v 
B 

(~ ) 
C {>-• • 

RL 
Driver L=9'~ Receiver 

231732i11-13 

Figure 11 -13. Series Termination 

One main advantage of series termination is that only logic power dissipation results so 
. that lower overall power is required than with other techniques. There is one penalty, 
however, in that the distributed loading along the transmission line cannot be used 
because only half of the voltage waveform is travelling down the line. There is no limit 
on the number of loads that can be placed at the end of the series terminated connec­
tion. However, the drop in voltage across the series terminating resistor limits loading to 
a maximum of 10 loads. 

11.4.2.1.3 Parallel Terminated Lines 

Parallel termination is achieved by placing a resistor of an appropriate value between the 
input of the loading device and the ground as shown in Figure 11-14. To determine an 
appropriate value, the currents required by all inputs and the leakage currents of the 
drivers should be summed. A resistor should be selected so that its addition to the circuit 
does not exceed the output capacity of the weakest driver. 

ZO=750 

Driver' 

231732i11-14 

Figure 11-14. Parallel Termination 

11-18 



PHYSICAL DESIGN AND DEBUGGING 

Since the input impedance of the device is high compared to the characteristic line 
impedance, the resistor and the line function as a single impedance with a magnitude 
that is· defined by the value of the resistor. 

When the resistor matches the line impedance, the reflection coefficient at the load 
approaches zero, and no reflection will occur. One useful approach is to place the ter­
mination as close to the loading device as possible. 

Parallel terminated lines are used to achieve optimum circuit performance and to drive 
distributed loads (an important benefit of using parallel terminations). 

There are two significant advantages of using the' parallel termination. First, it provides 
an undistributed waveform along the entire line. Second, when a long line .is loaded in 
parallel termination, it does not affect the rise and fall time or the propagation delay of 
the driving device. Note that parallel termination can also be used with wire wrap and 
backplane wiring where the characteristic impedance is not exactly defined. If the 
designer approximates thy characteristic impedance, the reflection coefficient will be 
very small. This results in minimum overshoot and ringing. Parallel termination is not 
recommended for characteristic impedances of less than 100 ohms because of large d.c. 
current requirements. 

11.4.2.1.4 Thevenins Equivalent Termination 

This technique isan extension of parallel termination technique. It consists of connect­
ing one resistor from the line to the ground and another from the line to the V cc. Each 
resistor has a value of twice the characteristic impedance of the line, so the equivalent 
resistance matches the line impedance. This scheme is shown in Figure 11-15. 

If there were no logic devices present, the line would be placed half way between the 
V cc and the V ss. When the logic device is driving the line, a portion of the required 
current is provided by the resistors, so the drivers can supply less current than needed in 
parallel termination. The resistor value can be adjusted to bias the lines towards the V cc 
or the V ss. Ordinarily it is adjusted such that the two are equal, providing balanced 
performance. The Thevenin's circuit provides good overshoot suppression and noise 
immunity. 

Due to power dissipation, this technique is best suited for bipolar and mix MOS devices 
and is not suitable for pure CMOS implementations. The reasons for not using 
Thevenin's equivalent for the pure CMOS system design are as follows: 

First CMOS circuits have very high impedance to both ground and Veo and their 
switching threshold is 50% of the supply voltage. Second, besides dissipating more 
power, multiple input crossings may occur which creates output oscillations. 

The main problem with Thevenin termination is high power dissipation through the 
termination resistors in relationship to the total power consumption of all of the CMOS 
devices on the board: For this reason, most designers prefer series terminations for 
CMOS to CMOS connections as this does not introduce any additional impedance from 
the signal to the ground. The main advantage of the series termination technique, apart 

11-19 



PHYSICAL DESIGN AND DEBUGGING 

Driver Receiver 

231732i11-15 

Figure 11·15. Thevenins Equivalent Circuit 

from its reduced power consumption, is its flexibility. The received signal amplitude can 
be adjusted to match the switching threshold of the receiver simply by changing the value 
of the terminating resistor. This is a very useful technique for interconnecting the logic 
devices with long lines. 

11.4.2.1.5 A.C. Termination 

Another technique that can be used for designs which cannot tolerate the high power 
dissipation of parallel termination and the delays created by series termination is AC. 
termination. It consists of a resistor and a capacitor connected in series from the line to 
the ground. It is similar to the parallel termination technique in functionality except that 
the capacitor blocks the D.C. component of the signal and thus reduces the power dis­
sipation. This technique is shown in Figure 11-16. 

The main disadvantage of AC. termination is that it requires two components. Further, 
the optimum value for the RC time constant of the termination network is not easy to 
calculate. One usually begins with a resistive value which is slightly larger than the 
characteristic line impedance. It is then critical to determine the capacitor value. If the 
value of the RC time constant is· small, the RC circuit will act as an edge generator. and 
will create overshoots and undershoots. Increasing the capacitor value reduces the over­
shoot and undershoot, but it increases power consumption. As a rule of thumb, the RC 
time constant should be greater than twice the line delay. The power dissipation of AC. 
termination is a function of the frequency. 

11-20 



PHYSICAL DESIGN AND DEBUGGING 

Driver Receiver 

231732i11-16 

Figure 11-16. A.C. Termination 

11.4.2.1.6 Active Termination 

These terminations consist of resistors that are connected between the inputs and out­
puts of buffer drivers as shown in Figure 11-17. 

The main advantage of this technique is that it can tolerate large impedance variations 
and this tolerance is valuable when tri-state drivers are connected to backplane buses. 
However, the terminations are costly, and the signals that are produced are not as clean 

Active Terminati~n 

PC Boards in 
Backplane 

1111 
Connectors 

One Line of Backplane Bus 

Figure 11-17. Active Termination 

11-21 

Active Termination 

231732i11-17 



PHYSICAL DESIGN AND DEBUGGING 

as other terminations. A common solution is to place active terminations at both ends of 
the bus. This helps to maintain the uniform drive levels along the entire length of the 
bus, and it reduces crosstalk and ringing. 

Table 11-2 shows the comparisons of different termination techniques. 

11.4.2.1.7 Impedance Matching Example 

Previous sections discuss the techniques for calculating characteristic impedances (using 
transmission line theory) and the termination procedures used match impedances. This 
section describes an impedance matching example that utilizes these techniques. 
Figure 11-18 shows a simple interconnection which acts like a transmission line as shown 
by the calculations. 

In this example the different values are given as follows: 

Zs = source impedance = 10 ohms 
trs = source rise-time = 3 nsec (normalized to 0% to 100%) 
Z1 = load impedance = 10 Kohms 
trl = load rise-time = 3 nsec (normalized to 0% to 100%) 
I = length of interconnection = 9 in. 
trace = micro-strip 
er = dielectric constant = 5.0 
h = .008 in. 
w = .01 in. 
t = .0015 in. (1 oz. Cu) 
v = 6 in./nsec 

The interconnection will act as a transmission line if (as was shown in Section 11.4.1). 

I 0:: (tr· V)/8 
(tr • V)/8 = 2.25 

The value of 1=9 in., thus the interconnection acts like a transmission line. The imped­
ance of the transmission line is calculated as follows: 

ZO = 87/ v(er + 1.41) x In (5.98h/(.8w+t)) 
= 34.39 In 5.035 = 55.6 ohms 

Table 11·2. Comparison of Various Termination Techniques 

Termination 
# of Extra RL Power Consumption 

Components 

Series 1 2o-Zout Low 
Parallel 1 20 High 
Thevenin 2 220 High 
A.C.* 2 20 Medium 
Active 1 220 Medium 

* A.C. also uses a capacitor of 200 pf to 500 pf. 

11-22 

Prop 
Delay 

Yes 
No 
No 
No 
No 



PHYSICAL DESIGN AND DEBUGGING 

L=g" 

Trace Is Microstrip 

231732i11-18 

Figure 11-18. Impedance Mismatch Example 

Since Zs = 10 ohms, the termination techniques described previously will be needed to 
match the difference of 45.6 ohms. One method is to use a series terminating resistor of 
45.6 ohms or use A.C. termination where R=55.6 ohms and C=O.3 J.,LF. The terminated 
circuit of Figure 11-18 is shown in Figure 11-19. 

11.4.2.2 DAISY CHAINING 

In laying out PC boards, a stub or T-connection is another source of signal reflection. 
These types of connections act as inductive loads in the signal path. In daisy chaining, a 
single trace is run from the source, and the loads are distributed along this trace. This is 
shown in Figure 11-20. 

An alternative way to this technique is to run multiple traces from the source to each 
load. Each trace will have unique reflections. These reflections are then transmitted 
down other traces when they return to the source. In such cases a separate termination is 
required for each branch. To eliminate these T-connections, high-frequency designs are 
routed as daisy chains. 

Along the chain, each gate provides its own impedance load, thus it is, necessary to 
distribute these loads evenly along the length of the chain. Hence, the impedance along 
the chain will change in a series of steps and it is easier to match. The overall speed of 
this line is faster and predictable. 

231732i11-19 

Figure 11-19. Use of Series Termination to Avoid Impedance Mismatch 

11-23 



PHYSICAL DESIGN AND DEBUGGING 

SOURCE 

231732i11-20 

Figure 11-20. Daisy Chaining 

11.4.2.3 gO-DEGREE ANGLES 

Another major cause of reflections are 90-degree angles in the signal paths, which cause 
an abrupt change in the signal direction. It promotes signal reflection. For high­
frequency layout of designs, avoid 90-degree angles and use 45 or 120-degree angles as 
shown in Figure 11-21. 

11.4.2.4 VIAS (FEED THROUGH CONNECTIONS) 

Another impedance source that degrades high frequency circuit performance is vias. 
Expert layout techniques can eliminate vias to avoid reflection sites on PCBs. 

11.4.3 Interference 

Previous sections discussed reflections in high-frequency design, their causes, and tech­
niques to minimize them. The following sections discuss additional issues related to high 

Receiver 

Driver Driver 

BAD GOOD 

231732ill-21 

Figure 11-21. Avoiding gO-Degree Angles 

11-24 



PHYSICAL DESIGN AND DEBUGGING 

frequency design, including interference. In general, interference occurs when electrical 
activity in one conductor causes transient voltage to appear in another conductor. Two 
main factors increase the interference in any circuit: 

1. Variation of current and voltage ,in the lines causes frequency interference. This 
interference increases with frequency. 

2. Coupling occurs when conductors are in close proximity. 

Two types of interference are observed in high frequency circuits: 

1. Electromagnetic Interference (EMI) 

2. Electrostatic Interference (ESI) 

.11.4.3.1 ELECTROMAGNETIC INTERFERENCE (CROSS-TALK) 

Cross-talk is a problem at high operating frequencies: when operating frequency 
increases, signal wavelength becomes comparable to the length of some of the intercon­
nections on .the PC board. Cross-talk is a phenomenon of a signal in one trace which 
induces another similar signal in an adjacent trace. There are two types of couplings 
between parallel traces which determine the amount of cross-talk in a circuit. These are 
called inductive coupling and radiative coupling. 

Inductive coupling occurs when current in one trace produces current in a parallel trace. 
This current decreases with increasing distance from the source. Hence, closely spaced 
wires or traces will incur the greatest degree of inductive coupling. Both the traces in this 
case act like normal conductors. 

Radiative coupling occurs when two parallel traces act as a dipole antenna which radi­
ates signals that parallel wires can pick up. This results in the corruption of the signal 
that is already present in the trace. The intensity of this type of coupling is directly 
proportional to the current present in the trace. However, it is inversely proportional to 
the distance between the radiating source and the receiver. 

11.4.3.2 MINIMIZING CROSS-TALK 

When laying out a board for a high frequency processor-based system, several guidelines 
should be followed to minimize cross-talk. 

One source of cross-talk is the presence of a common impedance path. Figure 11-22 
shows a typical layout which does not have the same earth ground and signal ground. 

To reduce cross-talk, it is necessary to minimize the common impedance paths, which 
are Z2, Z3 and Z4 shown primarily as ground impedances. During current switching, the 
ground line voltage drops causing noise emission. By enlarging the ground conductor 

11-25 



PHYSICAL DESIGN AND DEBUGGING 

(Parasitic 
C T Capacitance) 

I 
Chassis Ground 

Figure 11-22. Typical Layout 

Parasitic 
Capacitance J C 

231732i11-22 

(which reduces its effective impedance), this noise can be minimized. This technique 
also provides a secondary advantage in that it forms a shield which reduces the emissions 
of other circuit traces, particularly in multi-layer circuit boards. 

The impedances Z2through Z4 depend upon thickness of copper pc-board foil, the 
circuit switching speeds, and the effective lengths of the traces. The current flowing 
through these common impedance paths radiates more noise as its value increases. The 
amount of voltage generated by these switching currents and multiplied by the imped­
ance is difficult to predict. 

An effective way of reducing EMI is to decouple the power supply by adding bypass 
capacitors between Vee and ground. This technique is similar to the general technique 
discussed earlier (the goal of the previous technique was to maintain correct logic 
levels). 

11-26 



PHYSICAL DESIGN AND DEBUGGING 

The design of effective decoupling and bypass schemes centers on maximizing the charge 
stored in the circuit bypass loops while minimizing the inductances in these loops. Some 
other precautions that can minimize the EMI are as follows: 

• Running a ground line in between two adjacent signal lines. The extra line should be 
grounded at both ends. 

• The address and data buses can also be separated by ground lines. This technique 
may be expensive due to large number of address and data lines. 

• Removing closed-loop signal paths that can create inductive noise (as shown III 

Figure 11-23). 

Minimizing cross-talk involves first examining the circuit's interconnection with its near­
est neighbors since parallel and adjacent lines can interact and cause EM!. It is neces­
sary to maximize the distance between adjacent parallel wires. 

01 02 

03 

231732i11-23 

Figure 11-23. Closed Loop Signal Paths are Undesirable 

11-27 



PHYSICAL DESIGN AND DEBUGGING 

11.4.3.3 ELECTROSTATIC INTERFERENCE 

We have discussed two types of coupling, namely inductive and radiative coupling which 
are responsible for creating electromagnetic interference. A third, known as capacitive 
coupling, occurs when two equipotential parallel traces are separated by a dielectric and 
act as a, capacitor. According to the standard capacitor equation, the electric field 
between the two capacitor surfaces varies with the permitivity of the dielectric and with 
the area of the parallel conductors. 

Electrostatic interference (ESI) is caused by this type of coupling. The charge built on 
one plate of the capacitor induces opposite charge on the other. To minimize the ESI, 
the following steps should be taken. 

• Separate the signal lines so that' the effect of capacitive coupling is negated. 

• Run a ground line in between the two lines to cancel the electrostatic fields. 

For high-frequency designs, a rule of thumb is to include ground planes under each 
signal layer. ,Ground planes limit the cross-talk caused by a capacitive coupling between 
small sections of adjacent layers that are at equipotentials. Additionally, when the width 
and the thickness of signal lines and their distance from the ground is constant, the 
effect of capacitive coupling upon impedance remains uniform within ( + -) 5 percent 
across the board. Using fixed impedance does not reduce capacitive coupling, but it does 
simplify the modeling of propagation delays and coupling effects. In addition, capacitive 
coupling can cause interference between layers so the wires sho,uld be routed orthogo­
nally on neighboring board layers; 

11.4.4 Propagation Delay 

The propagation delay of a circuit is a function of the loads on the line, the impedance, 
, and the length of the line segments. The term propagation delay means the propagation 
delay in the entire circuit, including the delay in the transmission line (which is a func- ' 
tion of its dielectric constant). 

Also, the printed-circuit interconnections add to the propagation delay of the signal on a 
wire. These interconnections not only decrease the operating speed of the circuits, but. 
also cause reflections which produce undershoot and'overshoot. . 

When the propagation delays in a circuit are significant, the design must compensate for 
signal skew. Signal skew occurs when the wire lengths (and thus the propagation delays) 
between each source and each corresponding load are unequal. 

Another negative aspect of propagation delay is that it may generate a race condition. 
This condition occurs when two signals must reach the same destination within one clock 
pulse of one another. To avoid race conditions, it is necessary to have the signals travel 
through same-length traces. If one route is shorter, then the signals will arrive at differ­
ent times, causing race conditions. 

11-28 



PHYSICAL DESIGN AND DEBUGGING 

One way to minimize this is by decreasing the lengths of the interconnections. Overall 
route lengths are shorter in multilayer printed-circuit boards than in double layer boards 
because ground and power traces are not present. In addition to adding ground planes, a 
routing program can help to shorten the paths. 

The guidelines discussed so far are prominent at higher operating frequencies. Debug­
ging an Inte1386 DX processor-based system at higher frequencies requires careful plan­
ning of the layout and the physical design. The following sections cover latch-up and 
thermal characteristics which are system design considerations that stem from the device 
itself. 

11.5 LATCH-UP 

Latch-up is a condition in CMOS devices which occurs when Vee becomes shorted to 
V ss. Much attention has been directed at eliminating this phenomenon under normal 
conditions. It is necessary for board designers to be aware of latch-up, of its causes, and 
of how to prevent it. 

Latch-up is triggered when the voltage limits on the I/O pins are exceeded, causing the 
internal PN junction to become forward-biased. The following steps ensure the preven­
tion of latch-up. 

• Observe the maximum input voltage rating of I/O pins. 

• Never apply power to Inte1386 DX processor pin or to any device connected to it 
before applying power to the Inte1386 DX processor. 

• Use good termination techniques to prevent overshoot and undershoot. 

• Ensure a proper layout to minimize reflections and to reduce noise on the signals. 

11.6 CLOCK CONSIDERATIONS 

11.6.1 Requirements 

For performance at high frequencies, the clock signal (CLK2) for the Intel386 DX 
microprocessor must be free of noise and within the specifications listed in the 
Intel386 DX microprocessor data sheet. These requirements can be met by following 
these guidelines: 

• Construct the Clock Generating circuit as shown in Figure 11-24. 

• Terminate the CLK2 output to obtain a clean signal. 

• Avoid placing too many loads on a single driver and carefully plan the traces to 
minimize reflection. 

• Use an oscilloscope to verify the waveform of CLK2 against the specification in the 
Inte1386 DX microprocessor data sheet. 

11-29 



PHYSICAL DESIGN AND DEBUGGING 

74AS244 

66.67 MHz 2 18 
or 50 MHz A1 Y1 ACLK2 

OSC 4 16 
A2 Y2 

6 
Buffer 14 

A3 Y3 

8 12 
A4 Y4 BCLK2 

G 

231732;11·24 

Figure 11·24. Typical Intel386™ DX Microprocessor Clock Circuit 

[ 
Vee-O.BV 

CLK2 2.0V 
O.BV 

231732;11·25 

Figure 11·25. CLK2 Timing Diagram 

The clock input requirements for Intel386 DX microprocessor systems are more strin­
gent than those for many commonly used TTL devices. The clock timings are shown in 
Figure 11-25 and Table 11-3. 

11.6.2 Routing 

Achieving the proper clock routing around a 33-MHz printed circuit board is delicate 
because a myriad of problems, some of them subtle, can arise if certain design guide 
lines are not followed. For example fast clock edges cause reflections from high imped­
ance terminations. These reflections can cause significant sign.al degradations in the 
systems operating at 33 MHz. This section covers some design guidelines which should 
be observed to properly layout the clock lines for efficient Intel386 DX processor 
operation. 

11-30 



Symbol 

t1 

t2a 

t2b 

t3a 

t3b 

t4 

t5 

PHYSICAL DESIGN AND DEBUGGING 

Table 11-3. Timing Specifications for CLK2 

Parameter 

Operating Frequency 

CLK2 Period 

CLK2 High Time 

CLK2 High Time 

CLK2 Low Time 

CLK2 Low Time 

CLK2 Fall Time 

CLK2 Rise Time 

Clock 
Source 

25 MHz 33 MHz 
i386'" OX 1386 OX 

CPU Unit CPU Unit 

Min Max Min Max 

4 25 MHz B 33.3 MHZ 

20 125 ns 15.0 62.5 ns 

7 ns 6.25 ns 

4 ns 4.5 ns 

7 ns 6.25 ns 

5 ns 4.5 ns 

7 ns 4 ns 

7 ns 4 ns 

Figure 11-26. Clock Routing 

Notes 

Half of CLK2 Frequency 

at 2V 

at3.7V 

at 2V 

atO.BV 

3.7Vto O.BV 

O.BVto 3.7V 

Thevenin's 
Termination 

231732i11-26 

Since the rise/fall time of the clock signal is typically in the range of 2-4 ns, the reflec­
tions at this speed could result in undesirable noise and unacceptable signal degradation. 
The degree of refkction depends on the impedance of the traces of the clock connec­
tions. These reflections can be optimized by using proper terminations and by keeping 
the length .of the traces as short as possible. The preferred method is to connect all of 
the loads via a single trace as shown in Figure 11-26, thus avoiding the extra stubs 
associated with each load. The loads should be as close to one another as possible. 
Multiple clock sources should be used for distributed loads. 

A less desirable method is the star connection layout in which the clock traces branch to 
the load as closely as possible (Figure 11-27). In this layout, the stubs should be kept as 
short as possible. The maximum allowable length of the traces depends upon the fre­
quency and the total fanout, but the length of the traces in the star connection should be 
equal. Lengths of less than one inch are recommended. 

11-31 



Clock 
Source 

PHYSICAL DESIGN AND DEBUGGING 

Series 
Termination 

Figure 11-27. Star Connectipn 

11.7 THERMAL CHARACTERISTICS 

231732i11-27 

The thermal specification for the Inte1386 DX microprocessor defines the maximum case 
temperature. This section describes how to ensure that an Intel386 DX microprocessor 
system meets this specification. 

Thermal specifications for the Intel386 DX microprocessor are designed to guarantee a 
tolerable temperature at the. surface of the Inte1386 DX microprocessor chip. This tem­
perature (called the junction temperature) can be determined from external measure­
ments using the known thermal characteristics of the package. Two equations for 
calculating junction temperature are as follows: 

where 

Tj = junction temperature 

a = ambient temperature 

Te = case temperature 

Sja = junction-to-ambient temperature coefficient 

Sje = junction-to-case temperature coefficient 

PD = power dissipation (worst-case Icc * Vee) 

11-32 



PHYSICAL DESIGN AND DEBUGGING 

Case temperature calculations offer several advantages over ambient temperature 
calculations: 

• Case temperature is easier to measure accurately than ambient temperature because 
the measurement is localized to a single point (top .center of the package). 

• The worst-case junction temperature (Tj ) is lower when calculated with case temper-
ature for the following reasons: 

The junction-to-case thermal coefficient (Sjc) is lower than the junction-to­
ambient thermal coefficient (Sja); therefore, calculated junction temperature var­
ies less with power dissipation (PD). 

Sjc is not affected by air flow in the system; Sja varies with air flow. 

With the case-temperature specification, the designer can either set the ambient temper­
ature or use fans to control case temperature. Finned heat sinks or conductive cooling 
may also be used in environments where the use of fans is precluded. To approximate 
the case temperature for various environments, the two equations above should be com-

, bined by setting the junction temperature equal for both, resulting in this equation: 

The current data sheet should be consulted to determine the values of Sja (for the 
system's air flow) and ambient temperature that will yield the desired case temperature. 
Whatever the conditions are, the case temperature is easy to verify. ' 

11.8 DEBUGGING CONSIDERATIONS 

This section outlines an approach to building and debugging Inte1386 DX microproces­
sor hardware incrementally. In a short time, a complete Intel386 DX microprocessor­
based ,system can be built and working. This approach does not have to be followed to 
the letter, but it provides several valuable debugging concepts and useful hints. Use 
these guidelines in conjunction witli the Intel386 DX microprocessor data sheet, which 
contains detailed information about the Intel386 DX microprocessor. . 

11.8.1 Hardware Debugging Features 

Even before a system is built, debugging can be made easier by planning a suitable 
environment for the Inte1386 DX microprocessor. The Intel386 DX microprocessor 
board (whether it is a printed circuit board or a wire-wrap board) must have power and 
ground planes. The user should provide a decoupling capacitor between Vec and GND 
next to each Ie on the board. All Inte1386 DX microprocessor Vcc and GND pins should 
be connected individually to the appropriate power or ground plane; multiple power or 
ground pins should not be daisy-chained . 

. 11-33 



PHYSICAL DESIGN AND DEBUGGING 

Room in the system should be included for the following physical features to aid 
debugging: 

• Two switches: one for generating the RESET signal to the Intel386 DX microproces­
sor and one for tying the READY# signal high (negated). 

• Connections for a logic analyzer on major control signals: 
Inputs to the Intel386 DX microprocessor: 

Ready (READY#) 
Next Address (NA#) 
Bus Size 16 (BS16#) 
Data Bus (DO-D31) 

Outputs from the Intel386 DX microprocessor: 
Address Strobe (ADS#) 

Write/Read (W/R#), Data/Control (D/C#), 
Memory/IO (M/IO#), Lock (LOCK#) 

Address Bus (A2-A31) 
Byte Enable (BEO#-BE3#) 

Logic analyzer connection points should be provided to all Inte1386 DX microproces­
sor address outputs (A2-A31 and BEO#-BE3#) even if there are not enough logic 
analyzer inputs to accommodate all of them. Initially, only BEO#, BE1#, BE2#, 
BE3#, and the output of the address decoder circuit should be connected. The single 
output of an address decoder circuit represents many bits of address information. If 
the address decoder does not work as expected, more of the logic analyzer inputs 
should be moved to the Inte1386 DX microprocessor address pins. 

• Buffers and visual indicators (such as LEDs) for three or four of the critical 
Inte1386 DX microprocessor control signals. A visual indicator for the ADS# output, 
for example, will light when the system is performing bus cycles. 

11.8.2 Bus Interface 

During initial debugging, bus-cycle operation should be simplified. The Intel386 DX 
microprocessor bus interface is flexible enough to be tested in stages. To simplify bus 
control, the initial testing should be performed with a non-pipelined address. The NA# 
input should be tied high (negated) to guarantee no address pipelining. The only signals 
that need to be controlled are the READY# input and the BS16# input. 

The READY# input on the Intel386 DX microprocessor lets the user delay the end of 
any bus cycle for as long as necessary. For each CLK cycle after T2 that READY # is not 
sampled active, a wait state is added. READY # can be used to provide extra time (wait 
states) for slow memories or peripherals. Wait state requirements are a function of the 
device being addressed. Therefore, the address decoder must determine how many wait 
states, if any, to add to each bus cycle. The address decoder circuit (usually in conjunc­
tion with a shift register) must generate the READY# signal when it is time for the bus 
cycle to end. It is critical for the system to generate the READY # signal; if it does not, 
the Intel386 DX microprocessor will wait forever for the bus cycle to end. 

11-34 



PHYSICAL DESIGN AND DEBUGGING 

EPROMs, static RAMs, and peripherals all interface in much the same way. The 
EPROM interface is the simplest because EPROMs are read-only devices. RAM inter­
faces must support byte addressability during RAM write cycles. Therefore, RAM write 
enables for each byte of the 32-bit data bus must be controlled separately. 

The BS16# signal must be activated when the current bus cycle communicates over a 
16-bit bus. An address decoder circuit can be used to determine if BS16# must be 
asserted during the current bus cycle. 

11.8.3 Simplest Diagnostic Program 

To start debugging Inte1386 DX microprocessor hardware, the user should make a set of 
EPROMs containing a simple program, such as a 4-byte diagnostic, that loops. Such a 
program is shown in Figure 11-28. Because the program is four bytes long, it will exercise 
all 32 bits of the data bus. This program tests only the code prefetch ability of the 
Inte1386 DX microprocessor. 

In generating this program, the user should take into account the initial values of the 
Intel386 DX microprocessor CS register (FOOOR) and IP register (FFFOR) after reset. 
The software entry point (label START in Figure 11-28) must match the CS:IP location. 

The Intel386 DX microprocessor is initially in Real Mode (the mode that emulates the 
8086) after reset. With this simple diagnostic code, it will remain in Real Mode. In Real 
Mode, CS:IP generates the physical code fetch address directly, without any descriptors, 
by shifting CS left by 4 bits and adding IP thus: 

(CS) 
(IP) 

FOOO 
+ FFFO 

FFFFO 

ASSUME CS:SIMPLEST_CODE 

0333 SIMPLESLCODE SEGMENT 
FFF3 ORG 3FFF3H 

FFF3 93 START: NOP 
FFFl 93 NOP 
FFF2 EB FC JMP START 

FFF4 SIMPLEST_CODE ENDS 
END 

Figure 11-28. 4-Byte Diagnostic Program 

11-35 



PHYSICAL DESIGN AND DEBUGGING 

Also, after reset (until the Intel386 DX microprocessor executes an intersegment JMP or 
CALL instruction), the physical base address of the code segment is set internally to 
FFFFOOOOH. Therefore, the physical address of the first code fetch after reset is always 
FFFFFFFOH. The simple diagnostic program must begin at this location. 

11.8.4 Building and Debugging a System Incrementally 

When designing an Inte1386 DX microprocessor system, the designer plans the entire 
system. The core portions must be tested, however, before building the entire system. 
Beginning with only the Intel386 DX microprocessor and the clock generator, the 
following steps outline an approach that enables the designer to build up a system 
incrementally: 

1. Install the clock generator. Check that the CLK2 signal is clean. Connect the CLK2 
signal to the Intel386 DX microprocessor. 

2. Connect the RESET output to the Intel386 DX microprocessor RESET input, and 
with CLK2 running, check that the state of the Intel386 DX microprocessor during 
RESET is correct. 

3. Tie the Intel386 DX microprocessor INTR, NMI, and HOLD input pins low. Tie 
the READY # pin high so that the first bus cycle will not end. Reset the 
Inte1386 DX microprocessor, and check that the Inte1386 DX microprocessor is 
emitting the. correct signals to perform its first code fetch from physical address 
FFFFFFFOH. Connect the address latch, and verify that the address is driven at its 
outputs. 

4. Connect the address decoding hardware to the Intel386 DX microprocessor, and 
check that after reset, the Inte1386 DX microprocessor is attempting to select the 
EPROM devices in which the initial code to be executed will be stored. 

5. Connect the data transceiver to the system, and check that after reset, the trans­
ceiver control pins are being driven for a read cycle. Connect all address pins of the 
EPROM sockets, and check that after reset, they are receiving the correct address 
for the first code fetch cycle. 

Intel's iPPS programmer for EPROMs supports dividing an object module into four 
EPROMs, as is necessary for a 32-bit data bus to EPROM. The programmer can also 
divide an object module into two EPROMs for a 16-bit data bus to the EPROMs. (In 
this case, the BS16# input to the Intel386 DX microprocessor must be asserted during 
all bus cycles communicating with the EPROMs). 

When the clock generator, Intel386 DX microprocessor, address decoder, address latch, 
data transceiver, and READY # generation logic (including wait-state generation) are 
functioning, the Inte1386 DX microprocessor is capable of running the software in the 
EPROMs. Now the simple debug program described above can be run to see whether 
the parts of the system work together. 

11-36 



PHYSICAL DESIGN AND DEBUGGING 

Mter installing the EPROMs, the READY# line should be tied high (negated) so that 
the Inte1386 DX microprocessor begins its first bus cycle after reset and then continues 
to add wait states. While the system is in this state, the circuit should be probed to verify 
signal states, using a voltmeter or oscilloscope probe. 

The programmer should check whether the address latches have latched the first address 
and whether the address decoder is applying a chip-select signal to the EPROMs. The 
EPROMs should be emitting the first four opcode bytes of the first code to be executed 
(90H, 90H, EBH, FCH for the 4-byte program of Figure 11-28), and the opcode should 
be propagating through the data transceivers to the. Intel386 DX microprocessor data 
pins. 

Then the READY # input should be connected to the READY # generation logic, the 
Intel386 DX microprocessor, and the results should be tested when the simple program 
runs. Because the program loops back on itself, it runs continuously. At this point, the 
system has progressed to running multiple bus cycles, so a logic analyzer is needed to 
observe the dynamic behavior of the system. 

When the EPROMs programmed with the simple 4-byte diagnostic program are 
.. installed and the Inte1386 DX microprocessor is executing the code, the LED indicator 
for ADS# (if included in the system) glows, because ADS# is generated for each bus 
cycle by the Inte1386 DX microprocessor. It is necessary to check that the EPROMs are 
selected for each code fetch cycle. After system operation is verified with the simple 
program, more complex programs can be run. 

11.8.5 Other Simple Diagnostic Software 

Other simple programs can be used to check the other operations the system must 
perform. The program described here is longer than the 4-byte program illustrated pre­
viously; it tests the abilities to write data into RAM and read the data back to the 
Inte1386 DX microprocessor. 

This second diagnostic program, shown in Figure 11-29, is also suitable for placing into 
EPROMS. Because this diagnostic loops back to itself, the ADS# LED should glow 
continuously, just as it does when running the 4-byte program. 

The program in Figure 11-29 is based on the assumption that hardware exists to report 
whether the data being read back from RAM is correct. This hardware consists of a 
writable output latch that can display a byte value written to it. The byte value written is 
a function of the RAM data comparison test. If the data is correct, the byte value written 
is AAH (10101010); if the data is incorrect, 55H (01010101) is written. 

This diagnostic program is not comprehensive, but it does exercise EPROM, RAM, and 
an output latch to verify that the basic hardware works. 

The program is short (45 bytes) to be easily understood. Because it is short and because 
it loops continuously, a logic analyzer or even an oscilloscope can be used to observe 
system activity. 

11-37 



PHYSICAL DESIGN AND DEBUGGING 

PAGE 66,132 

EQUATES 
, 
LATCH EQU 0C8H ;PRESUMES A HARDWARE 

;LATCH IS AT I/O ADDR C8H 
GOOD-SIGNAL EQU 0AAH 
BAD-SIGNAL EQU 055H 

CODE TO VERIFY ABILITY TO WRITE AND READ RAM CORRECTLY 

ASSUME CS:INITIAL_CODE 
INITIAL_CODE SEGMENT 

ORG 0F000H ;THIS IS INTENDED TO BE LOCATED 
;AT PHYSICAL ADDRESS FFFFF000H 

TSLLOOP: MOV BX, 0000H ;INITIALIZE BASE ~EGISTER TO 0 
MOV DS, BX ;INITIALIZE DS REGISTER TO 0 
MOV rBX], 5473H ;WRITE 5473H TO RAM ADDR 0 AND 1 
MOV rBX]+2, 2961H lWRITE 2961H TO RAM ADDR 2 AND 3 
JMP READ lJMP TO FORCE CPU TO BREAK 

lPRE-FETCH QUEUE AND FETCH THE 
lNEXT INSTRUCTION AGAIN. THIS 
lPREVENTS THE RAM DATA WRITTEN 
lFROM JUST LINGERING ON THE DATA 
lBUS UNTIL THE READ OCCURS 

READ: CMP rBX], 5473H lREAD DATA FROM RAM AD DR 0 AND 1 
;AND COMPARE WITH VALUE WRITTEN 

JNE BADRAM ;IF DATA DOESN'T MATCH, THEN JMP 
CMP rBX]+2, 2961H lREAD DATA FROM RAM ADDR 2 AND 3 

lAND COMPARE WITH VALUE WRITTEN 
JNE BADRAM ;IF DATA DOESN'T MATCH, THEN JMP 

MOV .AL, GOOD-SIGNAL 
OUT LATCH, AL lSIGNAL THAT DATA WAS CORRECT 
JMP TSLLOOP 

BADRAM: MOV AL, BAD-SIGNAL 
OUT LATCH, AL lSIGNAL THAT DATA WAS BAD 
JMP TSLLOOP 

ORG 0FFF0H lPOSITION THE FOLLOWING INSTRUCTION 
lAT OFFSET 0FFF0H 

START: JMP TST-LOOP lINTRA-SEGMENT JUMP (WITHIN 
l SEGMENT) 
lTHIS IS INTENDED TO BE THE FIRST 
lINSTRUCTION EXECUTED, SO IT MUST 
lBE LOCATED AT PHYSICAL ADDRESS 
lFFFFFFF0H. 

INITIAL_CODE ENDS 
END 

Figure 11-29. More Complex Diagnostic Program 

11-38 



PHYSICAL DESIGN AND DEBUGGING 

This program can be written in ASM86 assembly language. Because the primary purpose 
of this program is to exercise the system hardware quickly, the InteI386 DX micropro­
cessor is not tested extensively, and Protected Mode is not enabled. 

The diagnostic software verifies the ability of the system to perform bus cycles. The . 
InteI386 DX microprocessor fetches code from the EPROMs, implying that EPROM 
read cycles function correctly, Instructions in the program explicitly generate bus cycles 
to write and read RAM. The data value read back from RAM is checked for correctness, 
then a byte (AAH if the data is correct, 55H if it is not) is output to the 8-bit output 
latch. The program then loops back to its beginning and starts over. 

After the source code is assembled, the resulting object code should be as shown in 
Figure 11-30. 

11.8.6 Debugging Hints 

The debugging approach described in this section is incremental; it lets the programmer 
debug the system piece by piece. If even the simple 4-byte program does not run, a logic 
analyzer can be used to determine where the problem is. At the very least, the 
Intel386 DX microprocessor should be initiating a code fetch cycle to EPROM. 

The InteI386 DX microprocessor stops running only for one of three reasons: 

• The READY # signal is never asserted to terminate the bus cycle. 

• The HALT instruction is encountered, so the InteI386 DX microprocessor enters a 
HALT state. 

• The InteI386 DX microprocessor encountets a shutdown condition. In Real Mode 
operation (as in the simple diagnostic program), a shutdown usually indicates that the 
Intel386 DX microprocessor is reading garbage on the data bus. 

If the Intel386 DX microprocessor stops running, the cause can be determined easily if 
the system contains simple hardware decoders with associated LEDs to visually indicate 
halt and shutdown conditions. The InteI386 DX microprocessor emits specific codes on 
its WIR#, D/C#, M/IO#, and address outputs to indicate halt or shutdown. A circuit to 
decode these signals can be tested by executing a HLT instruction (F4H) to see if the 
halt LED is turned on. The shutdown LED cannot be tested in the same way, but its 
decoder is so similar to the halt decoder that if the halt decoder works, the shutdown 
decoder should also work. 

If the shutdown LED comes on and the Intel386 DX microprocessor stops running, the 
data being read in during code fetch cycles is garbled. The programmer should check the 
EPROM contents, the wiring of the address path and data path, and the data transceiv­
ers. The 4-byte diagnostic program should be used to investigate the system. This pro­
gram should work before more complex software is used. 

If neither the halt LED nor the shutdown LED is on when the Intel386 DX micropro­
cessor stops running, theREADY# generation circuit has not activated READY# to 
comple~e the bus cycle. The Intel386 DX microprocessor is adding wait states to the 

11-39 



PHYSICAL DESIGN AND DEBUGGING 

·PAGE 66,132 

EQUATES 

00C8 LATCH EQU 0C8H 
00AA GOOLSIGNAL EQU 0AAH 
0055 BALSIGNAL EQU 055H 

CODE TO VERIFY ABILITY TO WRITE 
AND READ RAM CORRECTLY 

ASSUME CS:INITIAL_CODE 
0000 INITIAL_CODE SEGMENT 

F000 ORG 0F000H 

F000 BB 0000 TSLLOOP: MOV BX, 0000H 
F003 8E DB MOV DS, BX 
F005 C7 07 5473 MOV [BX1, 5473H 
F009 C7 47 02 2961 MOV [BX1+2, 2961H 
F00E EB 01 90 JMP READ 

F011 81 3F 5473 READ: CMP [BXl, 5473H 
F015 75 0D JNE BADRAM 
F017 81 7F 02 2961 CMP [BX1+2, 2961H 
F01C 75 06 JNE BAD RAM 

F01E B0 AA MOV AL, GOOLSIGNAL 
F020 E6 C8 OUT LATCH, AL 
F022 EB DC JMP TSLLOOP 

F024 B0 55 BADRAM: MOV AL, BALSIGNAL 
F026 E6 C8 OUT LATCH, AL 
F028 EB D6 JMP TSLLOOP 

FFF0 ORG 0FFF0H 
FFF0 E9 F000 R START: JMP TSLLOOP 

FFF3 INITIAL_CODE ENDS 
END 

Warning Severe 
Errors Errors 
0 0 

Figure 11-30. Object Code for Diagnostic Program 

cycle, waiting for the READY # signal to go active. The address at the address latch 
outputs and the states of the W/R#, D/C#, and M/IO# signals should be checked to 
narrow the investigation to a specific part of the READY # generation circuit. Then the 
circuit should be investigated with the logic analyzer. 

Once the basic system is built and debugged, more software and further enhancements 
can be added to the system. The incremental approach described applies to these addi­
tions. Systematic, step-by-step testing and debugging is the surest way to build a reliable 
Intel386 DX microprocessor-based system. 

11-40 



Test Capabilities 12 





CHAPTER 12 
TEST CAPABILITIES 

The Inte1386 DX microprocessor contains built-in features that enhance its testability. 
These features are derived from signature analysis and proprietary test techniques. All 
the regular logic blocks of the Intel386 DX microprocessor, or about half of all its 
internal devices, can be tested using these built-in features. 

The Intel386 DX microprocessor testability features include aids for both internal and 
board-level testing. This chapter describes these features. 

12.1 INTERNAL TESTS 

Allowances have been made for two types of internal tests: automatic self-test and 
Translation Lookaside Buffer (TLB) tests. The automatic self-test is controlled com­
pletely by the Intel386 DX microprocessor. The designer needs only to initiate the test 
and check the results. The TLB tests must be externally developed and applied. The 
Intel386 DX microprocessor provides an interface that makes this test development 
simple. 

12.1.1 Automatic Self-Test 

The Inte1386 DX microprocessor can automatically verify the functionality of its three 
major Programmable Logic Arrays (PLAs) (the Entry Point, Control, and Test PLAs) 
and the contents of its Control ROM (CROM). The automatic self-test is initiated by 
setting the BUSY # input active during initialization (as described in Chapter 3). The 
test result is stored in the EAX register of the Inte1386 DX microprocessor. 

The self-test progresses as follows (see Figure 12-1): 

1. Normal PLA or CROM inputs are disabled. ' 

2. A pseudo-random count sequence, generated by an internal Linear Feedback Shift 
register (LFSR), provides all possible combinations of PLA and CROM inputs. 

3. PLA and CROM outputs for each input combinations are directed to a parallel-load 
LFSR. 

4. Through the action of this LFSR, a signature of all output results is accumulated. 

5. After all input combinations have been sequenced, the final contents of the LFSR 
are XORed with a signature constant stored in the Intel386 DX microprocessor. If 
the LFSR contents match the signature constant, the result will be all zeroes, indi­
cating functional PLA and CROM. 

6. The result is loaded into the EAX register. 

12-1 



TEST CAPABILITIES 

TOEAX 

231732i12-1 

Figure 12-1. Intel386™ OX Microprocessor Self-Test 

The self-test provides lOO-percent coverage of single-bit faults, which statistically com­
prise a high percentage of total faults. 

12.1.2 Translation Lookaside Buffer Tests 

The on-chip Page Descriptor Cache of the Inte1386 DX microprocessor stores its data in 
the TLR (Cache operation is discussed fully in Chapter 7.) The linear-to-physical map-. 
ping values for the most recent memory accesses are stored in the TLB, thus allowing 
fast translation for subsequent accesses to those locations_ The TLB consists of: 

• Content-addressable memory (CAM)-holds 32 linear addresses (Page Directory and 
Page Table fields only) and associated tag bits (used for data protection and cache 
implementation) 

• Random access memory (RAM) - holds the 32 physical addresses (upper 20 bits only) 
that correspond to the linear addresses in the CAM 

• Logic-implements the four-way cache and includes a 2-bit replacement pointer that 
determines to which of the four sets a new entry is directed during a write to the 
TLR 

To translate a linear address to a physical address, the Intel386 OX microprocessor tries 
to match the Page Directory and Page Table fields of the linear address with an entry in 
the CAM. If a hit (a match) occurs, the corresponding 20 bits of physical address are 

12-2 



TEST CAPABILITIES 

retrieved from the RAM and added to the 12 bits of the Offset field of the linear 
address, creating a 32-bit physical address. If a miss (no match) occurs, the Intel386 DX 
microprocessor must bring the Page Directory and Page Table values into the TLB from 
memory. 

The Inte1386 DX microprocessor provides an interface through which to test the TLB. 
Two 32-bit test registers of the Inte1386 DX microprocessor are used to write and read 
the contents of the TLB through the MOV TREG, reg and MOV reg, TREG instruc­
tions. An Intel386 DX microprocessor program can be used to generate test patterns 
which are applied to the TLB through automatic test machines or assembly language 
programs. 

The paging mechanism of the Intel386DX microprocessor must be disabled during a 
test of the TLB. The internal response is therefore not identical to that of normal oper­
ation, but the main functionality of the TLB can be verified. 

Test register #6 is used as the command register for TLB accesses; test register #7 is 
used as the data register. Addresses and commands are written to the TLB through the 
command register. Data is read from or written to the TLB through the data register. 

The two test operations that may be performed on the TLB are: 

• Write the physical address contained in the data register and the linear address and 
tag bits contained in the command register into a TLB location designed by the data 
register. 

• Look up a TLB entry using the linear address and tag bits contained in the command 
register. If a hit occurs, copy the corresponding physical address into the data regis­
ter, and set the value of the hit/miss bit in the data register. If a miss occurs, clear the 
hit/miss bit. In this case, the physical address in the data register is undefined. 

A command is initiated by writing to the command register. The command register has 
the format shown in Figure 12-2 (top). The two possible commands are distinguished by 
the state of bit 0 in the command register. If bit 0 = 1, a TLB lookup operation is 
performed. If bit 0 = 0, a TLB write is performed. 

The tag bits (not including the linear address) consist of the following: 

Bit Name Definition 

11 Valid (V) , Entry is valid 
10 Oirty (0) Entry has been changed 
9 Not Oirty (0#) Entry has not been changed 
8 User (U) Entry is accessible to User privilege level 
7 Not User (U#) Entry is not accessible to User privilege level 
6 Writable (W) Entry may be changed 
5 Not Writable (W#) Entry may not be changed 

12-3 



TEST CAPABILITIES 

31 12 11 5 4 o ' 
~------------~--~~~~~ 

31 

LINEAR ADDRESS 

PHYSICAL ADDRESS 

TAG 

COMMAND REGISTER 

LOOKUP/ 
WRITEN 

12 11 5 4 3 2 1 0 

~I 

DATA REGISTER 

MIT/REPLACEMENT 
MISS POINTER 

OR 
REPLACEMENT BIT 

Figure 12-2. TLB Test Registers 

231732i12-2 

The complement of the Dirty, User, and Writable bits are provided to force a hit or miss 
for TLB lookups. A lookup operation with a bit and its complement both low is forced to 
be a miss; if both bits are high, a hit is forced. A write operation must always be per­
formed with a bit and its complement bit having opposite values. 

The data register has the format shown in Figure 12-2 (bottom). The replacement 
pointer indicates which of the four sets of the TLB is to receive write data. Its value is 
changed according to a proprietary algorithm after every TLB hit. For testing, a TLB 
write may use the replacement pointer value that exists in the TLB, or it may use the 
value in bits 3 and 2 of the data register. If data register bit 4 = 0, the existing replace­
ment pointer is used. If bit 4 = 1, bits 3 and 2 of the data register are used. 

The TLB write operation progresses as follows: 

1. The physical address, replacement bit, and replacement pointer value (optional) are 
written to the data register. 

2. The linear address and tag values are written to the command register, as well as a 
o value for bit O. 

It is important not to write the same linear address to more than one TLB entry. Oth­
erwise, hit information returned during a TLB lookup operation is undefined. 

12-4 



TEST CAPABILITIES 

The TLB lookup operation progresses as follows: 

• The linear address and tag values are written to the command register, as well as a 1 
value for bit O. 

• New values for the hit/miss bit and replacement pointer are written to bits 4-2 in the 
data register. If the hit/miss bit (bit 4) is 1, bits 31-12 contain the physical address 
from the TLB. Otherwise, bits 31-12 are undefined. 

For more information on how to write routines to test the TLB, refer to the 386™ DX 
Microprocessor Programmer's Reference Manual. 

12.2 BOARD .. LEVEL TESTS 

For board-level testing, it is often desirable to isolate areas of the board from the inter­
actions of other devices. The Inte1386 DX microprocessor can be forced to a state in 
which all but two of its pins are effectively removed from their circuits. This state is 
accomplished through the HOLD and HLDA pins. 

When the HOLD input of the Inte1386 DX microprocessor is asserted, the Intel386 DX 
microprocessor places all of its outputs except for HLDA in the three-state condition. 
HLDA is then driven high. The Intel386 DX microprocessor remains in this condition 
until HOLD is de-asse,rted. Note that RESET being asserted takes priority over HOLD 
requests. 

The Inte1386 DX microprocessor completes its current bus cycle before responding to 
the HOLD input. Detailed information on HOLDIHLDA response is given in 
Chapter 3. 

12-5 





Local Bus Control PLD A 
Descriptions 





APPENDIX A 
LOCAL BUS CONTROL PLD DESCRIPTIONS 

The bus controller is implemented in two PLDs. One PLD (called IOPLD1) follows the 
Intel386 DX microprocessor status lines and initiates I/O and EPROM accesses. The 
second PLD (IOPLD2) contains the bus cycle tracking state machine and determines the 
number of wait states for I/O system accesses. 

EPROMs and peripherals are usually arranged with 16-bit data bus interfaces. This 
subsystem asserts BS16# for all accesses to the I/O and EPROMs. Because all accesses 
are BS16#, pipelined cycles cannot be requested. This system can coexist with a 
subsystem that uses pipelining, provided the pipelined system keeps NA# asserted until 
the end of the cycle. The DRAM subsystem described in Chapter 6 will meet this 
requirement. 

The PLDs are clocked by CLK2. They could also be clocked by CLK. Using CLK2 has 
the following advantages over using CLK: 

• The skew from clock to command signal is reduced, so higher performance is possible 
with slower devices. 

• The Inte1386 DX microprocessor ADS# and READY # signals can be sampled 
directly. 

• The PLD can provide delays in 25 nanosecond, rather than 50 nanosecond, 
increments. 

The advantages of using CLK to clock the PLDs are as follows: 

• A slower PLD device could be used. 

• One PLD input is saved because only CLK, rather than CLK and CLK2, is needed. 

Because CLK2 is used to clock the PLDs, the choice of PLDs is limited by the frequency 
of the processor. 

IOPLD1 FUNCTIONS 

IOPLDl is implemented as two state machines. The first state machine enables the data 
transceivers between the processor and the peripherals. The transceivers remain active 
until the end of the bus cycle. The second state machine determines the type of cycle 
that has been initiated. Once a cycle has been started, the state machine waits for the 
TIMEDLY # signal from IOPLD2 before continuing the cycle. 

IOPLD2 FUNCTIONS 

The IOPLD2 has two functions. First, the PLD contains the bus cycle tracking state 
machine. The BUSCYC# signal is used by IOPLDl for determining the start of bus 
cycles. Second, the PLD counter determines the number of wait states from IOPLDl 
initiating a bus cycle until the time it returns TIMEDL Y # to IOPLDl. If peripheral 

A-1 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

devices requiring different numbers of wait states are in the system, the TIMEDL Y # 
state machine must check the chip select wait state pins (CSIWS#, CS3WS#, , 
CS5WS#). These signals are generated from the mapping of the I/O devices. The 8259A 
interface has not been built or tested. 

PLD EQUATIONS 

The equations for 10PLDI, IOPLD2, and the RESET/CLOCK PLDs are shown in 
Figures A-I, A-2, and A-3, respectively. These equations are shown in a high-level PLD 
language (ABEL, by Data I/O) that allows the PLD to be described as a series of states 
rather than equations. This language frees the designer of the tedious task of implement­
ing the state machine and reducing the logical equations manually. The language saves 
time not only in the initial design, but also in debugging the state machines. The auto­
mated term reduction of the high-level PLD language allows the designer to explore 
many implementations quickly, which is a useful feature for complex PLD designs. The 
PLD equations generated by ABEL are included to allow the conversion to a different 
PLD programming language. 

A-2 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

module iopldl; flag '-r3'; flag '-ul'; 
title 'eprom/io controller intel corporation' 

"This 85C221l generates IORD#, IOWR#, [PRD#, and INTA# for 
"the peripheral subsystem. It decodes and responds to 
"the following bus cycles: i/o read, i/o write, memory 
"read (with A31 high), interrupt acknowledge, halt, 
"and shutdown. 

U7 device '[1l321l'; 
h,l,c,x = 1,1l, .C., .X.; 

gnd pin 11l; 
vcc pin 21l; 
oe pin 11; 

"81l386 CLK2 clk2 pin 1; 
clk pin 2; 
na pin 3; 

"low during phase 1, high during phase 2 
"low to begin bus cycles 

mio pin 4; 
wr pin 5; 

"high during memory cycles, low for i/o 
"high for write, low for read 

dc pin 6; "high for data cycles, low for control cycles 
"processor address A31 ' 
"time delay input 

pa31 pin 7; 
timedly pin 8; 
buscyc pin 9; "low during active bus cycles 

recv pin 12; "low during float and recovery 
iord pin 13; "low to read io 
iowr pin 14; " low to write to 
eprd pin 15; " low to read eproms 
inta pin 16; " low for interrupt acknowledge 
trioen pin 18; " low to enable io transceiver 
iordy pin 19; • 'low to indicate ready 

idle 
ioreadl 
ioread2 
iowritel 
iowrite2 
epreadl 
epread2 
intakl 
intak2 
recover 

[l,l,l,l,l,lJ ; 
[1l,l,l,l,l,lJ ; 
[1l,l,l,l,f/J,lJ ; 
[l,ll,l,l,l,lJ ; 
[l,l,l,l,f/J,lJ ; 
[l,l,f/J,l,l,lJ ; 
[l,l,f/J,l,ll,lJ ; 
[l,l,l,ll,l,lJ ; 
[l,l,l,f/J,Il,lJ ; 
11,1,1,1,1,f/Jl; 

"io transceiver enable 

state_diagram [trioenl; 
state 1: "idle 

if (na & !buscyc & !mio & !pa31 & recv & clk) then Il 
else if (na & !buscyc & mio & pa31 & recv & clk) then f/J 
else 1; 

state fIJ: "enable transceiver between processor and peripherals 
if (!iordy & clk) then 1 
else if (buscyc & clk) then 1 
else iii; 

Figure A-1. IOPLD1' Equations 

A-3 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

"io state machine 

state_diagram (iord,iowr,eprd,inta,iordy,recv1; 

pa31 & !wr & clk: epreadl; 
state idle: 

case na & 
na & 
na & 
na & 
na & 

!buscyc & 
!buscyc & 
!buscyc & 
!buscyc & 
!buscyc & 

!pa31 & !mio & dc & wr & clk: iowritel; 
!pa31 & !mio & dc & !wr & elk: ioreadl; 
!pa31 & !mio & !dc & !wr & clk: intakl; 
mio & !dc & wr & clk: iowrite2; "halt 

endcase; 

state epreadl: 
state epread2: 
state iowritel: 
state iowrite2: 

if (!timedly & clk) then epread2 else epreadl; 
if (clk) then idle else epread2; 
if (!timedly & clk) then iowrite2 else iowritel; 
if (!mio & clk) then recover 
else if (mio & clk) then idle 
else iowrite2; 

state ioreadl: 
state ioread2: 
state intakl: 
state intak2: 
state recover: 

if (!timedly & clk) then ioread2 else ioreadl; 
if (clk) then recover else ioread2; 
if (!timedly & clk) then intak2 else intakl; 
if (clk) then recover else intak2; 
if (!timedly & clk) then idle else recover; 

test_vectors ([clk2,clk,na,mio,wr,dc,pa31,timedly,buscyc,oe1 -> 
[iord,iowr,eprd,inta,iordy,recv1); 

[c,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,h1; , 'idle 
[c,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,h1; , 'idle 
{c,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,h1; , 'idle 

[c,h,h,h,l,l,h,h,l,ll -> (h,h, 1,h,h,h1; I 'eprom read 
(c,h,h,h,l,l,h,h,l.ll -> (h,h, 1 ,h,h,h1; , 'eprom read 
[c,h,h,h,l,l,h,h,l,ll -> [h,h, 1 ,h,h,h1; , 'eprom read 
[c,h,h,h,l,l,h,h,l,ll -> [h,h, 1,h,h,h1; , I eprom read 
[c,h,h,h,l,l,h,l,l,ll -> [h,h,1,h,1,h1; , 'eprom read 
[c,h,h,h,h,h,h,h, h, 11 -> [h,h,h,h,h,h1; , 'idle 

[c,h,h,l,l,h,l,h,l,ll -> [1 ,h,h,h,h,h1; , 'io read 
[c,h,h,l,l,h,l,h,l,ll -> [1 ,h,h,h,h,h1; , 'io read 
[c,h,h,l,l,h,l,h,l,ll -> [l,h,h,h,h,h1; , , i a read 
[c,h,h,l,l,h,l,h,l,ll -> [1,h,h,h,h,h1; , 'io read 
[c,h,h,l,l,h,l,l,l,lJ -> [l,h,h,h,1,h1; , 'io read 
[c,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,ll; , 'recovery 
[c,h,h,h,h,h,h,h ,h, 11 -> [h,h,h,h,h,lJ ; , 'recovery 
(c,h,h,h,h,h,h,l,h,ll -> [h,h,h,h,h,h1; , 'recovery 

[c,h,h,l,h,h,l,h,l,ll -> [h,1,h,h,h,h1; , I io write 
[c,h,h,l,h,h,l,h,l,ll -> [h,1,h,h,h,h1; , 'io write 
[c,h,h,l,h,h,l,h,l,ll -> [h,1,h,h,h,h1; l' io write 
[c,h,h,l,h,h,l,h,l,ll -> (h,1,h,h,h,h1; , 'io write 
[c,h,h,l,h,h,l,l,l,ll -> [h,h,h,h,1,h1; "io write 
[c,h,h,l,h,h,h,h,h,ll -> [h,h,h,h,h,ll; , 'recovery 
[c,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,ll; , 'recovery 
[c,h,h,h,h,h,h,l,h,ll -> [h,h,h,h,h,h1; , 'recovery 

[c,h,h,l,l,l,l,h,l,ll -> [h,h,h,1,h,h1; "interrupt ack 
[c,h,h,l,l,l,l,h,l,ll -> [h,h,h, 1,h,h1; "interrupt ack 
[c,h,h,l,l,l,l,h,l,lJ -> [h,h,h,1,h,h1; , 'interrupt ack 
[c,h,h,l,l,l,l,h,l,ll -> [h,h,h,1,h,h1; , 'interrupt ack 
[c,h,h,l,l,l,l,l,l,ll -> [h,h,h,1,1,h1; "interrupt ack 
[c,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,lJ ; "recovery 
[c,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,ll; "recovery 
[c,h,h,h,h,h,h,l,h,ll -> [h,h,h,h,h,h1; , 'recovery 

[c,h,h,h,h,l,l,h,l,ll -> [h,h,h,h,1,h1; "ha lt or shutdown 

Figure A-1. IOPLD1 Equations (Contd.) 

A-4 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

[e,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,hl; 
[e,h,h,h,h,h,h,h,h,ll -> [h,h,h,h,h,hl; 

, 'idle 
"idle 

end iopldl; 

eprom/io controller intel corporation 
Equations for Module iopldl 

Device U7 

- Reduced Equations: 

!trioen := (!elk. & !trioen 
# !buseye & iordy & !trioen 
# !buseye & elk & mio & na & pa31 & reev & trioen 
# !buseye & elk & !mio & na & !pa31 & reev & trioen); 

!iord := (!elk & eprd & inta & !iord & iowr & reev 
# eprd & inta & !iord & iordy & iowr & reev 
# !buseye & elk & de & eprd & inta & iordy & iowr & !mio & 

na & !pa31 & reev & !wr); 

!iowr .- (!elk & eprd & inta & iord & iordy & !iowr & reev 
# eprd & inta & iord & iordy & !iowr & reev & timedly 
# !buseye & elk & de & eprd & inta & iord & iordy & iowr & 

!mio & na & !pa31 & reev & wr); 

!eprd := (!elk & !eprd & i~ta & iord & iowr & reev 
# !eprd & inta & iord & iordy & iowr & reev 
# !buseye & elk & inta & iord & iordy & iowr & na & pa31 & 

reev & !wr); 

!inta .- (!elk & ep~d & !inta & iord & iowr & reev 

!iordy .-

# eprd & !inta & iord & iordy & iowr & reev 
# !buseye & elk & !de & eprd & iord & iordy & iowr & !mio & 

na & !pa31 & reev & !wr); 

(! elk & eprd & iord & !iordy & iowr & reev 
# elk & eprd & !inta & iord & iordy & iowr & reev & !timedly 
# !elk & eprd & inta & !iordy & iowr & reev 
# elk ,& eprd & inta & !iord & iordy & iowr & reev & !timedly 
# elk & eprd & inta & iord & iordy & !iowr & reev & !timedly 
# !elk & inta & iord & !iordy & iowr & reev 
# elk & !eprd & inta & iord & iordy & iowr & reev & !timedly 
# !buseye & elk & !de & eprd & inta & iord & iordy & iowr & 

mio & na & reev & wr); 

!reev .- (!elk & eprd & inta & iord & iordy & iowr & !reev 
# eprd & inta & iord & iordy & iowr & !reev & timedly 
# elk & eprd & !inta & iord & !iordy & iowr & reev 
# elk & eprd & inta & !iord & !iordy & iowr & reev 
# elk & eprd & 'inta & !iordy & iowr & !mio & reev); 

Figure A·1. IOPLD1 Equations (Contd.) 

A-5 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

module iopld2; flag '-r3'; 
title 'eprom/io wait state timer and bus cycle tracking' 
"This P2BR6 determines the number of wait states and recovery 
"states for 1/0 reads, 1/0 writes, eprom reads, and Interrupt 
"ackn.wledge cycles. Choose the number of wall slales for each 
"peripheral by Ihe chip selects 

U8 device 'p20r8'; 
h,I,c,x·I,O,.C.,.X.; 

oe pin 13; 

cI k 2 pin 1 ; "80386 CLK2 
clk pin 2 ; 
lor d pin 3 ; 
lowr pin 4 ; 
eprd pin 5 ; 
In t a pin 6 ; 
recv pin 7 ; 
ads pin 8 ; 
ready pin 9 ; 
cslws pin 1 ° ; 
cs3ws pin 11 ; 
csSws pin 14; 

IIlIcnlO pin 22; 
wlcntl pin 21 ; 
wtcnt2 pin 20 ; 
tlmedly pin 15 ; 
alelo pin 16 ; 
buscyc pin 17 ; 
plpecyc pin 18 ; 

I die • [1, 1 , 1 , 1 ] 
I 1m e 1 • [1, 1 , 1 , 0 ] 
Ilme2' [1,1,0,1] 
Ilme3' [1,1,0,0] 
tlme4' [1,0,1,1] 
limeS' [1,0,1,0] 
tlme6' [1,0,0,1] 
Ilme7' [1,0,0,0] 
tlmeup' [0,1,1,1] 

low 
low 
low 
low 
low 
low 
low 
low 
from 
fro m 
from 

"wall 
"walt 
"wall 
"time 
"high 
II 1 ow 
"low 

during phase I, high during p ha H 
to read 10 
to w r I t e 10 
10 read eproms 
for Interrupt acknowledge 
during flo at and recovery 
to begin bus cycles 
to end bus cycles 
decoder: 1 wa It s I ate chi p select 
decoder: 3 wa It 5 ta t e chi p Hlecl 
decoder: 5 wall 5 ta I e chi p selecl 

stat e counter b I I 
state counter b I I 
stale counter b I I 
delay output 
to make address latch transparent 

during active b u 5 cycles 
a fie r pipellned bU5 cycles 

2 

"""""""""11""1111""" ""IIIIII"""IIII""""nllll""""IIIIII""""""IIIIII"""""II"" 

"10 address lalch enable 

equations !alelo :. (!Iord clk) 
(!Iowr clk) 
(!Inta' clk) , 
(!alelo. !clk); 

II""""IIUIIIIIIIIII""""IIIIII""""""""""IIIIIIIIII""IIIIII"II""""""'I""""""lllllIn 

Figure A-2. IOPLD2 Equations 

A-6 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

"10 cyclo Ilmor 

,1.lo.dlagram [llmedly,wlcnI2,wlcnll,wlcnI0]; 
.1.le Id]e 

if «!Iord I !Iowr I !Inlo) & clk) Ihon lim03 
0150 If (!eprd & clk) Ihen IIm02 
o],o,lf (!recv & clk) Ihen IIme2 
ol.e Idle; 

• I a I e I 1m 0 7 : if clk Ihen limoS 01.0 I I m e 7 ; 
,10 Ie limeS: II clk I hen I 1m 0 5 el'5l!! limoS; 
,1.10 limeS: If clk Ihon I 1m e 4 e I , 0 lim 0 5 ; 
,1.le I 1m e 4 : If clk I hen IIm03 01.0 I 1m 0 4 ; 
,Iole Ilme3: If c] k I h 0 n I 1m 0 2 01.0 I 1m 03; 
,1010 I 1m 0 2 : If c] k I hen I 1m e 1 e],o Ilm02; 
.1.le I I mol: if clk I hen Ilmeup e] ,e I I iii e 1 ; 
• I. Ie IImeup: if Ii 0 r d & iowr & eprd & I n I. & clk),lhon 

""IIIIU""""""""""II"II""""""""II"II""II"""II"II""""""1InIIIIIIUII""II"11 

"bu. cyclo tracking 

.Iale.dl.gram [bu.cyc,plpocyc] 
,tate [1,1]: "Id]o 

If (!od, & clk) Ihon [0,1] 
01.0 [1, 1 ] ; 

.1.10 [0,1]: "ocllve 
If (!re.dy & .d, & clk) Ihon [1,1] 
0] • elf (! r o. d Y & ! ad. & c I k) I hen [1, 0 ] 
.1, 0 [0,1]; 

.1.le [1,0]: "plpollnod 
If (clk) Ihon [0,1] 
e I ,e [1,0]; 

.Ioto [0,0]: "1]legol 
go I 0 [1, 1 ] ; 

I d] 0 

"""""II""IIUII"""""nll""""""""II""""""""""II"IIII"""11OII"II""""IIUIIU" 

Figure A-2. IOPLD2 Equations (Contd.) 

A-7 

e] .0 I 1m e up; 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

test-veeton ([clk2,clk,iord,lowr,eprd,inta,recvl ; [timedlyl); 

[c,h,h,h,h,h,hl 
[c,h,h,h,h,h,hl 
[c,h,h,h,h,h,hl 
[c,h,h,h,h,h,hl 

; [h I ; 
; [h I; 

[h I ; 
[h I; 

[c,h,l,h,h,h,hl ; [hi; 
[c,h,l,h,h,h,hl ; [hi; 
[c,h,l,h,h,h,hl; [hi; 
[c,h,l,h,h,h,hl ; [hi; 
[c,h,h,h,h,h,hl ; [hi; 

[c,h,l,h,h,h,hl " [hi; 
[c,h,l,h,h,h,hl " [hi; 
[c,h,l,h,h,h,hl " [hi; 
[e,h,l,h,h,h,h] ~ [11; 
[c,h,h,h,h,h,11 " [hi; 

[c,h,h,l,h,h,hl " [hi; 
[c,h,h,l,h,h,hl " [hi; 
[c,h,h,l,h,h,hl " [hi; 
[c,h,h,l,h,h,hl " [II; 
[c,h,h,h,h,h,hl " [hi; 

[c,h,h,h,l,h,hl • [hi; 
[c,h,h,h,l,h,hl • [hi; 
[c,h,h,h,l,h,hl • [II; 
[c,h,h,h,h,h,hl • [hi; 

.. i dIe 
" I die 
" I die 
II i dIe 

"10 read 
Ilia read 
Ilia read 
"ia read 
" I die 

"Interrupt acknowledge 
"interrupt acknowledge 
"interrupt acknowledge 
"Interrupt acknowledge 
" I die 

.. i 0 \Pol r i t e 
Ilia write 
II i 0 \PI r i t e 
.. i 0 \PI r i t e 
.. i dIe 

lIeprom read 
"eprol!! read 
lIeprom read 
"Idle 

test-vecton ([clk2,clk,ods,readyl " [buscyc,plpecycll 

[c,l,h,hl " [x,hl; 
[c,h,h,11 • [x,hl; 
[c,l,h,hl " [h,hl; 
[c,h,l,hl " [I,hl; 
[ c , I , h ,II " [I , hi ; 
[c,h,h,11 • [h,hl; 

[c,I,I,hl" [h,hl; 
[c,h,l,hl " [I,hl; 
[ c , I , h , I I " [I, hi; 
[c,h,I,I] " [h,ll; 
[ c , I , I ,hi [ h , II ; 
[c,h,h,h] [I,hl; 

[c,h,h,ll" [h,hl; 
[ c , I , h , h] " [h, hi ; 
[c,h,l,hl" [I,hl; 
[ c , I , I , hi" [I, hi; 
[c,h,h,hl " [I,h]; 
[c,l,h,hl" [I,hl; 
[c',h,h,h] " [I,hl; 
[ c , 1 I h , c] -+ [1 J h ] i 
[c,h,h,l] " [h,hl; 
[c,l,h,hl " [h,hl; 

"Idle-busy-idle 

"idle-bu.y-pipe-busy 

"Idle-busy-busy-idle 

end lopal2; 

Figure A-2. IOPLD2 Equations (Contd.) 

A-a 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

eprom/io wail slale limer and bus cycle Irapking 
Equalions for Module iolime 

Device ua 
- Reduced Equalions: 

aleio :" !(!aleio , !elk , elk' !inla , elk , !iord , elk 
!iowr); 

Ilmedly :" !C!elk , !Iimedly , wlenlO & 
I elk' Ilmedly , !wlenlO & 
, !eprd & !Iimedly , wlenlO 
I !inla , !Iimedly , wlenlO 
I !lord '!Ilmedly wlenlO 
I !iowr & !Iimedly wlenlO 

wlenll , wlenl2 
wlenll & wlenl2 
& wlenll , wlenl2 

wlenll , wlenl2 
wlenll wlenl2 
wi e nil ,& wi e n I 2 ) ; 

wlenl2 :" !C!elk , limedly , !wlenl2 
I Ilmedly , !wlenlO , !wlenl2 
, Ilmedly , !wlenll , !wlen(2); 

wlenll :" !(!elk & limedly & !wlenll 

wlentO :" 

I limedly & !wlenlO , !wlenll 
I elk' limedly , wlcnlO , wlcnll & !wlent2 

elk & !lnla , limedly , wlenlO , wlenll 
elk !iord' Ilmedly , wlenlO , wlenll 

I elk !lowr limedly ,deniO wlenll 
I elk !eprd limedly wlenlO wlenll 
I elk !reev limedly wlcnlO wlenll); 

! ( ! elk 
I elk 
I elk 
I elk 
I elk 
I elk 

Ilmedly 
limedly 
limedly 
!inta & 
! lor d 
! i 0 W r 

!wlentO 
wlenlO & !wlenll 

& wlenlO , !wtent2 
timedly , wlenlO 
limedly , wlenlO 
limedly & wlentO); 

bus eye :" !Cbuseye 'elk !pipeeye 
I !ads & buscye & elk 
I !buseye & !elk , pipeeye 
I !buseye , pipeeye , ready); 

pipeeye := !(buseye & !elk , !pipeeye 
, !ads , !buseye & elk , pipeeye , !ready); 

Figure A-2. IOPLD2 Equations (Contd.) 

A-9 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

module clock; flag '-r3'; flag '-ul'; 
title 'clock generator intel corporation' 

"This 85C220 divides the doulbe frequency ClK2 input 
"by two to generate a single frequency ClK. It also 
"provides synchronous reset outputs from an asynch­
"ronous reset input. The lowest two bits of the DRAM 
"refresh timer are included in this PlD. 

U2 device 'E0320'; 
h,l,c,x = 1,0, .C., .x.; 

gnd pin 10; 
vee pin 20; 
o e pin 11; 

clk2 pin 1; 
res pin 2; 
refreq pin 3; 

elk pin 12; 
re.elh pin 13; 
re.etl pin 14; 
leO pin 15; 
tel pin 16; 
Icoul pin 17; 
1I0od pin 18; 
re.ync pin 19; 

rt ImeO 
r II mel 
rllme2 
rllme3 • 

[ 0 , 0 I 
[0, II 
[ 1 ,01 
[1, II 

"80386 CLK2 
"asynchronous re.et Input 
"low to high Iron.ltlon requests refresh cycle 

"low during pha.e 1, high during pho.e 2 
"high during re.et, changes during pha.e 
"10. during reset, change. during pha.e 1 
"bll 0 of refre.h timer 
"bit 1 of refresh Ilmer 
"carry from bll. 0 and 1 of refres) Ilmer 
Ill ow to load refresh timer 
"flip flop In re.el synchronizer 

"elk2 divide by Iwo 
equation. elk :. !elk; 

lire set synchronizer 
equations re.yne:· (res' !elk>' (re'ync' elk); 
equations re.eth :- (re.yne , !elk) , (re.eth , elk); 
equaiions re.ell :. !re.eth; 

"Iowe.t 2 bit. of refre.h timer 
.tate_dlagram [tel,teOI; 
state rtlmeO: If (elk) then rtlmel el.e rtlmeO; 
.tote rtlmel: If (elk) then rtlme2 else rtlmel; 
.t.te rtlme2: If (elk) then rtlme3 else rtlme2; 
• t • t e ,r tim e 3: I f (e I k) I hen r tim e 0 e I s e r I I me 3 ; 

"refresh' Ilmer e.rry and load 
.tale_dlagram [leout,lloadl 
.tale [0,11: "Idle 

If (tel' leO' !refreq , !elk) then [1,11 
el.e If (tel' teO' refreq" !elk) Ihen [0,01 
e I • e [0, 1 I ; 

st.te [1,11: "Increment refre.h timer 
got 0 [0, 1 I ; 

.tale [0,01: "load refre.h timer 
go I 0 [0, 1 I ; 

.Iate [1,01: "Illegal 
got 0 [1, 1 I ; 

Figure A-3. RESET/CLOCK PLD Equations 

A-10 



"M_I® 
II 1'eI LOCAL BUS CONTROLPLD DESCRIPTIONS 

test.vector5.([clk2,refreql .. [clk,tcl,tcO,tcout,tloadl) 

[ c , II ... [ I , I , I , I , hI; co u n t 0 
[ c , II .. [h, I , I , I , hI; count 0 
[ c , II .. [ I , I , h , I , hI; count 1 
[ c , II .. [ h , I , h , I , hI; co u n t 1 
[ c , II .. [ I , h , I , I , hi; count 2 
[ c , II .. [h, h, I , I ,h I; count 2 
[ c , II .. [ I ,h , h , I , hI; count 3 
[ c , II .. [h,h,h,h,hl; count 3, car r y 
[ c , II .. [ I , I , I , I , h I count 0 
[ c , II .. [ h , I , I , I , h I count 0 
[ c , II .. [ I , I ,h , I , h I count 1 
[ c ; II .. [ h , I ,h , I , h I count 1 
[ c , II .. [ I , h , I , I , h I count 2 
[ c , I I .. [ h , h , I , I , h I count 2 
[c, II .. [ I , h ,h , I , h I count 3 
[ c , II .. [h,h,h,h,hl count 3, carry . 
[c, h I .. [ I , I , I , I , h I count 0 
[c, h I .. [ h , I , I , I , h I count 0 
[c, h I .. [ I , I ,h , I , h I count 1 
[ c , h I .. [h, I , h , I , h I count 1 
[c, h I .. [ I , h , I , I , hI count 2 
[c, h I .. [ h , h , I , I , hI, count 2 
[c, h I .. [ I, h , h , I , hI; count 3 
[ c , h I .. [ h , h , h , I , II ; count 3, load 
[ c , h I .. [ I , I , I , I , hI; count 0 
[ c ,h I .. [ h , I , I , I , hi; count 0 

test.vectors ([clk2,resl .. [clk,re5ync,reseth,resetll) 

[c, h I .. 
[c, h I .. 
[c, h I .. 
[c, h I .. 
[c, h I .. 
[ c ,h I .. 
[ c , II .. 
[ c , II .. 
[ c , II .. 
[ c , I I .. 
[ c , I I .. 
[ c , II .. 

end clock; 

[ I , x , x , x I 
[h , h , x , x I 
[ I , h , x , x I 
[h , h , h , x I 
II, h, h, II 
[h , h , h , II 
[ I , h , h , I I II r e !5 In put negated 
[h, I , h , II 
[ I , I , h , I I 
[h, I , I , II "reseth faIling edge occur5 during 
[I,I,I,hl," rese tl rising edge occurs during 
[ h , I , I , hI; 

Figure A-3. RESET/CLOCK PLDEquations (Contd.) 

A-l1 

pha5e 2 
pha5e 1 



LOCAL BUS CONTROL PLD DESCRIPTIONS 

clock generator Intel corporation 
Equation' for Module clock 

Device U2 

- Reduced Equation': 

clk :- !(elk); 

re,yne :- !(!elk • Ire, , elk • !resync); 

reseth .- !(!elk !re5Ync' elk 6 !reseth); 

re,etl .- !(re,eth); 

tel :- !lelk teO tel' !elk , !tel , !teO , !te1); 

teO :- !(elk teO' !elk , !teO); 

teout :- !(!tcod , !tload 
, teout 6 tload 
, elk. tload 
, !teO 6 tload 

!t e 1 , t loa d 
refreq'tloed); 

tload .- !l!elk , refreq , teO' tel' !teout , tload); 

Figure A-3. RESET/CLOCK PLD Equations (Contd.) 

A-12 



DRAM PLD Descriptions B 





APPENDIX B 
DRAM PLD DESCRIPTIONS 

This section describes the inputs, outputs, and functions of each of the PLDs in the 
DRAM design described in Chapter 6. The terms Start-Of-Phase and Middle-Of-Phase 
used to describe PLD input sampling times refer to the Intel386 DX microprocessor 
internal CLK phase and are defined in Figure B-lo 

The setup, hold, and propagation delay times for each PLD input and output can be 
determined from the PLD data sheets. In a few cases, the setup and hold times during 
certain events must be violated; in these cases, the PLD equations mask these inputs so 
they are not sampled. Because the states are fully registered and because inputs are 
masked when their setup or hold times cannot be guaranteed, no hazards exist. 

DRAM PLDs 

The DRAM PLDs determine when to run a new DRAM cycle and tracks the state of 
the DRAM through the cycle. The inputs sample DRAM requests from the processor 
(or any other bus master) as well as requests for refresh. The outputs store state infor­
mation and generate the two RAS signals and two multiplexer control signals. 

The equations for the DRAMPI are shown in Figure B-2. The DRAMPI is imple­
mented in a 20R8 PLD. The equations for DRAMP2 are shown in Figure B-3. The 
DRAMP2 is implemented in an 85C220 EPLD. 

For a PLD to change states on each clock edge, its maximum clock to output delay plus 
its minimum setup time must be less than the time between clock edges. 

START·OF·PHASE START·OF·PHASE 

MIDDLE·OF·PHASE MIDDLE·OF·PHASE 

2131732ib-1 

Figure B·1. PLD Sampling Edges 

B-1 



DRAM PLD DESCRIPTIONS 

module DRAM_CONTROLLER_FOR_80386 flag '-r3','-t2 U 

title '80386 Interleaved DRAM Controller pal-t plpellned lws' 
U33 device 'P20R8'; 

" Constants: 
ON 
OFF 
h 
I 

1 ; 
o ; 
1 ; 
o ; 
• X • ; " ABEL 'don't care' symbol 
• C • ; " ABEL 'clacking Input' symbol 

"Pin names: 
"Control 

c lk 2 
oe 

pin 1; "81il386 Double-Frequency system clock 
pin 13; "Output Enable (tie active law> 

"Inputs 
pc lk 
ads 
mlo 
pa2 
Iready 
r a sOp 
5e 11 
raslp 
ref I n 
res e t 
s e 12 

"Outputs 
r a s 0 
r a s 1 
rowsel 
muxoe 
dramstar( 
refadroe 
plpecyc 
buscyc 

pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 

pin 
pin 
pin 
pin 
pin 
pin 
pin 
pin 

I die 
startdram • 
cal_den' 
coLden2-

2 ; 
3 ; 
4 ; 
5 ; 
6 ; 
7 ; 
S; 
8 ; 
1 0 ; 
11 ; 
14; 

17 ; 
18 ; 
20 ; 
1 S; 
15 ; 
16 ; 
21 ; 
22; 

rasOldle' [II; 
raslldle' [II; 
rasOact • [01; 
ras1act· [01; 

"processor/phase c lack 
"ads from 80386 
"M/IO from 80386 
"A2 from 80386 
lIinver5e of Ready In t a the 80386 
"RASO precharged from PLD2 
"High for DRAM address 
"RASI precharged fro m PLD 2 
"request for s tar t refresh 
" RESET from c lac k circuitry 
" High for DRAM address cycles 

"DRAM RAS aut put for bank 0 
"DRAM RAS output for bank 1 
"DRAM address mux s e I e c t 
"DRAM address mux output enable 
"DSTART for PLD2 and refresh 
" output enable for refresh 
" law during pipe cycle 
" law 

[1,1) ; 
[ 0 , 1 ) ; 
[ 0 , 0 I ; 
[ 1 , 0 I ; 

when bus cycle active 

e q • 
address 

select· [5ell & sel21 ; 

PLD 

1,"""'IU"""""""""""""""""'I""""'I"""""IIII""""'1111'"""""""'1""'11111111'"""'1 

Figure B-2. DRAMP1 PLD Equations 

8-2 



DRAM PLD DESCRIPTIONS 

"bu. cycle tracking 

state.dlagr.m [bu,cyc,pipecycl 
.tate [1,11: "Idle 

if (!ad, I pclk) then [0,11 
e I ,e [1, 1 1 ; 

,tate [0,11: ".ctlve 
if (Iready I .d. I pclk) 
el,e If (Iready I !.d. 
el.e [0,11; 

,tate [1,01: "plpelined 
if (pclk> then [0,11 
e I ,e [1, 0 1 ; 

st.te [0,01: "Illegal 
got a [1, 1 1 ; 

the n [1, 1 1 
pclk) then [1,01 

""II"llllt,"""""IIIIIIIIII"""IIII""II"IIIIIIIIII"II"1111""IIIIUIIHIIII"'IIIIIIIIIIIII"IIII"II"II"" 

start.diagram [dram,tart,rowsell; 

.tate idle: "wait for DRAM or refresh cycle. 
If (pclk I !ad. I mio I select I !muxoe I !p.2 I r.,Op • 

!refin ) then startdram 
el,e if (pclk I !ad, • mlo I ,elect I !muxoe • p.2 • ra,lp 

!refln) then ,tartdram 
el,e If (pclk • ad. & mlo • ,elect. !muxoe • ra,lp • ra.Op 

• !bu,cyc • !iready • !refln) then .tartdram 
el,e idle; 

,t.te ,tartdram: 
goto coLden; 

" B5sert dramstart 

,tate col.den: "change row,el to ,elect column on mux. 
if (pclk) then coLden2 
else coLden; 

,tate coLden2: 
If (polk) then Idle 
el,e coLden2; 

""II""IIII"UIIII"IIII""""IIIIIIIIU"IIIIIIII"IIII""'III1IIInll""IIII'III""lllln'IIIII""IIIIOIIII"" 

.t.te.di.gram [r.,OI; 

,tate ra,Oldle: "wait for DRAM or refre,h cycle, 
if (pclk I !ad, • miD I ,elect. !muxoe I !pa2 I r.,Dp 

!refin) then ra,Oaet 
el.e if (pelk I ,elect I miD' !muxoe & !pa2 I ra,Op 

!bu,eye • !refln I ! Iready) then ra,Oaet 
el,e if (pelk I muxoe I !refadroe) then ra,Oaet 
el.e ra,Oidle; 

,tate ra.Daet: " ."ert r., for bank 0 
If (pelk I reset) then ra,Oldle 
else if (pelk I Iready) then rasOldle 
else if (pclk & muxoe & ref.droe) then rasOldle 
el!H!! rasOactj 

"IIII""""IIII""II""II"IIIIIIII'U"IIIIII"IIII""II"IIII"IIII""IIIIUII""IIII"""II""IIII"IIIIII""II 

Figure 8-2. DRAMP1 PLD Equations (Contd.) 

8-3 



DRAM PLD DESCRIPTIONS 

,tate.dlagram [ra,l]; 

~tate ra,lld]e: "walt fpr DRAM ar refre.h cycle, 
If (pclk , !ads , mia' .elecl • !muxae , pa2 , raslp & 

!refln) then raslaet 
e15e If(pcH & ,.Ieet & mla & !muxae , pa2 I r •• lp & !buHyc 

!refln & ! Iready} then rasl.ct 
el.e If (pclk & muxae & !refadrae) Ihen ra,lacl 
el,e ra.lldle; 

,tate raslacl: "a.5ert ras far bank 
If (pelk I re5et> lhen r.,lldle 
else If (pclk Ire.dy) then ra,lldle 
else If (pclk , muxae , refadrae) Ihen r.sOldle 
el5e ra,lacl; 

11111111111'""1111111111""111111"""1111110111111"111111111111""11111111111111"""""111111"111'011111111 

.tale.dlagram [muxae,refadrae]; 

.tate [0,11: "walt far refln 
If (pclk & refln I ra51 & rasO & dramslart ) Ihen [1,1] 
e I s e [0, 1 ] ; 

state [1,1]: "turn aff raw/calumn mux ae 
If (pclk , "Ht> Ihen [0,1] 
el5e If (pclk & r •• O , ra,1> Ihen [1,0] 
elsE if (pelt. refadroe ir !rasO ir !ras1) therl [0,1] 
e I s e [1, 1 I ; 

,late [1,0]: "Iurn an refresh addre,. pal's ae 
If (pclk & resell Ihen [0,11 
el5e If (pclk & !rasO I !ras1> Ihen [1,1] 
e 1 s e (1 I 0 ] j 

.Iate [0,0]: "illegal 
9 a I a [0, 1 ] ; 

""IIIIII""llllllnll""IIOIIIIIIII""II"II"IIIIIIII""1111II"IIII"UIIIIII""IIII""IIII"IIIIIIIIIIIIII"'III 

le,Lvectors 
([clk2,pclk,ad"mla,pa2,sell,.eI2,ra.Op,ra,lp,lready,refln,re,el] 

[dram,larl,ra.O,rasl,rQw,el,muxae,refadroe]); 
d , , 

.eerrrrr 
lie llaae 
III amp e e a 
"k d I a d 
"2 • 0 2 P P Y n 
[c,h,h,h,h,h,h,h,h,I,I,hl 
[c,l,h,h,h,h,h,h,h,I,I,hl 

[c,h,h,h,h,h,h,h,h,I,I,11 
[c,l,x,h,h,h,h,h,h,I,I,11 
[c,h,l,h,l,h,h,h,h,I,I,I] 
[c,l,x,h,l,h,h,h,h,I,I,11 
[c, h, h, h, I ,h, h, I ,h, I , I , I] 
[c,l,h,h,l,h,h,l,h,I,I,11 
[c,h,h,h,l,h,h,l,h,I,I,I] 
[c,!,x,h,l,h,h,l,h,x,!,!l 

a r 
a m e 

r w u f 
m a a 5 x a 

e a a 
lee 

[h,h,h,h,x,h]; 
[h,h,h,h,x,h] ; 

[h,h,h,h,l,h]; 
[h,h,h,h,l,h]; 
[ I , I , h , h , I , h ] ; 
[ I , I , h , I , I , h ] ; 
[ h , I , h , I , I , h ] ; 
[ h , I , h , I , I , h ] ; 
[ h , I , h , h , I , hi; 
[ h , I , h , h , I , hi; 

r e, e I 
res e I 
read bank 
Idle/ra,ldle 
Idle/r.,ldle 
dram,larl/rasOacl 

change MUX ,elecl 
dram,larl/rasOact 
MUX selecl 
rasDoet 
rasOacl 
read bank 

Figure B-2. DRAMP1 PLD Equations (Contd.) 

8-4 



DRAM PLD DESCRIPTIONS 

[c,h,l,h,h,h,h,l,h,h,l,ll -+ [ I ,h, 1 ,h, I ,h I; 
[c,l,x,h,h,h,h,l,h,x,l,ll -+ [ I ,h , I , I , I , hi;, 
[c,h,h,h,h,h,h,h,l,l,l,ll -+ [h, h , I , I , I , hi; 
[ c , I , h , h ,'h , h , h , h , I , I , I , I I -+ [h, h, I , I , I ,h I; 
[c,h,h,h,h,h,h,h,I,I,I,11 -+ [h , h , I , h , I ,h I ; 
[c, I , x , h , x ,h , h ,h , I , x , I , I I -+ [h, h, I ,h, I ,h I; 

[c,h,I,h,h,h,h,h,I,h,I,ll -+ [h,h,h,h,I,hl; 
[c,I,x,h,h,h,h,h,I,x,I,ll -+ [h,h,h,h,I,hl; 
[c,h,l,h,h,h,h,h,l,l,l,ll -+ [h,h,h,h,I,hl; 
[c,I,x,h,h,h,h,h,I,I,I,11 -+ [h,h,h,h,I,hl; 

[c,h,I,h,h,h,h,h,I,I,I,11 -+ [h,h,h,h,I,hl; II 

[c,I,x,h,h,h,h,h,I,I,I,ll -+ [h,h,h,h,I,hl; II 

[c,h,h,h,h,h,h,h,h,I,I,ll -+ [ I , h, I ,h , I ,h I ; II 

[ c , I , h , h , h , h , h , h , h , I , I , I, I -+ [ I , h , I , I , I , hi; II 

[c,h,h,h,h,h,h,h,l,l,l,ll -+ [h ,h , I , I , I , hI; II 

[c,l,h,h,h,h,h,h,l,l,l,ll -+ [h, h, I , I, I ,h I; II 

[c,h,h,h,h,h,h,h,l,l,l,ll -+ [h, h, I ,h, I ,h I; II 

[c,l,x,h,x,h,h,h,l,x,l,ll -+ [ h , h , I , h ,I , hI; II 

rasO read then refresh 
[c,h,I,h,I,h,h,h,h,h,I,11 -+ [I,I,h,h,I,hl; 
[c,I,x,h,I,h,h,h,h,I,h,ll -+ [I,I,h,I,I,hl; 
[ c , h , h, ,h , I ,h ,h , I ,h , L, h , II -+ [h', I ,h; I , I , hi; 
[c,I,h,h,I,h,h,I,h,I,h,11 -+ [h,I,h,I,I,hl; 
[c,h,h,h,I,h,h,I,h,I,h,ll -+ [h,I,h,h,I,hl 
[c,I,h,h,I,h,h,I,h,x,h,11 -+ [h,I,h,h,I,hl 
[c,h,h,h,I,h,h,I,h,h,h,ll -+ [h,h,h,h,I,hl 
[c,I,h,h,I,h,h,I,h,x,h,11 -+ [h,h,h,h,I,hl 
[c,h,h,h,h,h,h,h,h,I,h,ll -+ [h,h,h,h,h,hl 
[c,l,h,h,h,h,h,h,h,l,h,ll -+ [h,h,h,h,h,hl 
[c,h,h,h,h,h,h,h,h,I,h,ll -+' [h,h,h,h,h,ll 
[c,I,h,h,h,h,h,h,h,I,h,ll -+ [h,h,h,h,h,11 
[c,h,h,h,h,h,h,h,h,I,h,11 -+ [h,l;I,h,h,ll 
[c,I,h,h,h,h,h,h,h,I,x,11 -+ [h,I,I,h,h,11 
[c,h,h,h,h,h,h,h,h,I,x,ll -+ [h,I,I,h,h,hl 
[c,I,h,h,h,h,h,I,I,I,x,ll -+ [h,I,I,h,h,hl, 
[c,h,h,h,h,h,h,I,I,I,I,11 -+ [h,h,h,h,I,hl; 
[c,I,h,h,h,h,h,I,I,I,I,11 -+ [h,h,h,h,I,hl; 
['c , h , h , h , h, h , h , I , I , I , I , I I -+ [ h , h , h , h , I , hi; 
[c,I,h,h,h,h,h,h,h,I,I,ll -+ [h,h,h,h,I,hl; 
[c,h,h,h,h,h,h,h,h,I,I,11 -+ [h,h,h,h,l,hl; 

end DRAM_COHTROLLER_FOR_80~86; 

dramstart/ras1act 
change MUX select 
dramstart/ras1act 
MUX select 
ras1act 
ras1act 
read bank 1 

,b a c k to b a c k rea d 
wa 1 t for prechuge 
ba ck to b a c k read 
wa 1 t for prechuge 

ba ck to b Be k read 
wa It for precharge 

dramstart/ras1act 
change MUX select 
dramstart/raslact 
MUX select 
ras1act 
rashct 

ldle/rBsldle 
change MUX select 
dramstart/rBsOBct 
MUX select 
rasOBct 
rBsOact 
rBsOBct 
rasOBct 
Refln Bct. Muxoe 

act refadroe 

Bct RAS 

deact muxoe 

de B'C t R A 5 

mempend 

Figure B·2. DRAMP1 PLD Equations (Contd.) 

8-5 



DRAM PLD DESCRIPTIONS 

Device U33 

- Reduced Equations: 

buscyc :" !(bU5CYC , pclk • !plpecyc 
, !buscyc • !pclk , plpecyc 
, !buscyc • !Iready , plpecyc 
, !ads , bU5CyC , pclk); 

plpecyc :" !(buscyc' !pclk' !plpecyc 
, !ads , !buscyc , Iready , pclk , plpecycl; 

dramstart :" !C!dramshrt , !pclk 
, !dramstart , rowsel 
, !buscyc , !Iready , miD' !mUXDe , pclt , 

rasOp , raslp , !refln • rDws~1 , sell' sel2 
, lads , miD' !mUXDe , pa2 , pclk , raslp , 
!refln , rDwsel , sell' sel2 

, lads , miD' !mUXDe , !pa2 , pclt , rasOp , 
! ref In' r D w 5 ell s ell, , s e 12 I ; 

rDwsel :" !(!pclk , !rDwsel , !dramstartl; 
rasO :" !(!Iready , !rasO , !refadrDe , !reset 

, !Iready , !muxDe , !rasO , !reset 
, !pclk , !rasO 
, muxoe , pclk , rasO , !refadrDe 
, !buscyc , !Iready 'miD' !mUXDe , !pa2 , pclk , 

rasO i rssOp , !refln I sell' sel2 
, !ads , miD' !mUXDe , !pa2 , pclk , rasO , rasOp 
!refln , sell' se121; 

rasl :" !(!Iready' !rasl , !refadrDe' !reset 
, !Iready , !muxDe , !ras~ & !reset 
, !pclk , !ra51 
, muxoe , pclk , rasl , !refadrDe 
, !buscyc , !Iready , miD' !mUXDe , pa2 , pclk , 
rasl , raslp , !refln , sell' sel2 

, !ads , miD I !muxDe , pa2 , pclk , rasl , raslp 
!refln' sell' se121; 

mUXDe :" !(!mUXDe , !refadrDe 
, pclk , !ra50 & !rasl , refadrDe 
, muxoe , pclk • reset 
, !dramstart , !muxDe 
, !muxDe , !rasO 
, !muxDe , !rasl , 
, !muxDe • !refln 
, !mUXDe I !pclkl; 

refadrDe :" !(muxoe & rasl I !refadrDe , !reset 
muxoe rasO i !refa~rDe I !reset 
muxoe !pdlk I !refadrDe 

, mUXDe pclk I rasO I rasl , !reset); 

Figure 8-2. DRAMP1 PLD Equations (Contd.) 

8-6 



DRAM PLD DESCRIPTIONS 

module 
flag '-r3' 1'~~2' ,'-ul' 

title 
'80386 Interleaved DRAM Controller pld-2 pipelined 1ws 
Intel Corporation.' 

U34 device 'E~32~'; 

" Constants: 

ON 
OFF 
h 
1 
x 
c 

"Pin names: 

"Control 
clk2 
oe 

"Inputs 
pclk 
w r 
muxoe 
dramstart 
rasO 
ras1 
refreq 
reset 

"Outputs 
dramrdy 
ale 
cas 
refin 
rasOp 
ras1p 
qr 
we 

1; 
0; 
1; 
0; 
.x. ; 
.C. ; 

" ABEL 'don't care' symbol 
" ABEL 'clocking input' symbol 

pin 1; "80386 Double-Frequency system clock 
pin 11; " Output Enable (tie active low) 

pin 2; 
pin 7; 
pin 6; 
pin 5; 
pin 4; 
pin 3; 
pin 8; 
pin 9; 

" system clock 
.. write/readit from 8111386 
" from dramp1 PLD 
" from dramp1 PLD. 
" from drampl PLD 
" from dramp1 PLD 
" from refresh counter 

pin 12; " READY for dram cycles 
pin 13; " Address latch enable 
pin 14; n cas for drams 
pin 15; n refresh request to dramp1 PLD 
pin 16; " precharge counter to dramp1 PLD 
pin 17; " precharge counter to dramp1 PLD 
pin 18; " 
pin 19; " write enable 

Figure 8-3. DRAMP2 PLD Equations 

S·7 



DRAM PLD DESCRIPTIONS 

state_diagram [refin,qr]; 
state [0,1]: "idle 

if (refreq & pclk) then [1,1] 
else [0,1]; 

state [1,1]: " request refresh 
if (pclk & reset) then [0,1] 
else if ( !rasO & !rasl & pclk ) then [0,0] 
else [1,1]; 

state [0,0]: " wait for request to be negated 
if (pclk & reset) then [0,1] 
else if ( !refreq & pclk) then [0,1] 
else [0,0]; 

state [1,0]: " illegal 

state_diagram [rasOp]; 
state 1: 

state 0: 

state_diagram [raslp]; 
state 1: 

state 0: 

state_diagram [we]; 

goto [0,1]; 

if (pclk & !rasO) then 0 
else 1; 

if (pclk & rasO) then 1 
else 0; 

if (pclk & !rasl) then 0 
else 1; 

if (pclk & rasl) then 1 
else 0; 

state 1: "read cycle 
if (!pclk & !dramstart & w_r) then 0 
else if (!pclk & !dramstart & !w~r) then 1 
else 1; 

state 0: " write cycle 

state_diagram [dramrdy]; 

if (!pclk & !dra~~tart & !w_r) then 1 
else if (!pclk & !dramstart & w_r then 0 
else 0; 

state [1]: "not ready Gr inactive 
if (pclk & !muxoe & !ale) then [0] 
else [1]; 

state [0]: 
if (pclk ) then [1] 
else [0]; 

Figure B·3. DRAMP2 PLD Equations (Contd.) 

8-8 



infel® DRAM PLD DESCRIPTIONS 

state_diagram [cas,ale]; 
state [1,1]: 

if (pclk & !rasO & ras1 & !w_r) then [0,0] 
else if (pclk & rasO & !ras1 & !w_r) then [0,0] 
else if (pclk & !rasO & ras1 & w_r) then [1,0) 
else if (pclk & rasO & !ras1 & w_r) then [1,0) 
else [1,1); 

state [1,0]: n wait fer valid write data 
gete [0,0]; 

state [0,0]: 
if (reset & pclk) then [1,1] 
else if (pclk & !dramrdy) then [1,1] 
else [0,0]; 

state [0,1): "invalid state 
gote [1,1]; 

Figure B-3. DRAMP2 PLD Equations (Contd.) 

8-9 



I"n+-I® 'eI DRAM PLD DESCRIPTIONS 

test _vectors ([clk2,pclk,w_r,dramstart,rasO,rasl,muxoe,refreq,reset] 
[cas,rasOp,raslp,dramrdy,refin,we]l; 

d 
r 

"c p a r r 
1t1 c m a a 
"k 1 w s s s 
"2 k r t 0 1 
[c,h,l, h,h,h 
[c,l,l, h,h,h 
[c, h, 1, h,h,h 
[c, 1, 1, x,x,h 
[c, h, 1, l,l,h 
[c,l,l, l,l,h 
[c,h,l, h,l,h 
[c,l,l, h,l,h 
[c,h,l, h,l,h 
[c,l,l, h,l,h 

[c, h,l, h,h,h 
[c,l,l, h,h,h 
[c,l,l, h,h,h 

[c,h,h, h,h,h 
[c,l, h, x,x,h 
[c, h, h, l,l,h 
[c,l,h, l,l,h 
[c,h,h, h,l,h 
[c,l,h, h,l,h 
[c,h,h, h,l,h 
[c,l,h, h,l,h 

[c,h,h, h,h,h 
[c,l,h, h,h, !"" 
[c,l, h, h,h,h 

r r r r r 
m e r a a e e 
u f e c s s a f 
x r S a 0 1 d i w 
0 e e s p p y n e 
e q t read cycle 

,x ,h ,h -> [h,h,h,h,x,x]; "reset 
,x ,h ,h -> [h,h,h,h,x,h]; "reset 
,1 ,1 ,1 -> [h,h,h,h,l(h] ; "idle/rasidle 
,1 ,1 ,1 -> [h,h,h,h,l,h]; "idle/rasidle 
,1 ,I ,1 -> [l,l,h,h,l,h]; " startdram/rasOact 
,1 ,1 ,1 -> [l,l,h,h,l,h]; " col_den/rasOact 
,1 ,1 ,1 -> [l,l,h,l,l,h] ; " rasOact 
,1 ,1 ,1 -> [l,l,h,l,l,h]; " rasOact 
,1 ,1 ,1 -> [h,l,h,h,l,h]; " rasOact 
,I ,I ,I -> [h,l,h,h,l,h]; " rasOact 

,I ,I ,I -> [h,h,h,h,l,h]; " idle/rasidle 
,I ,I ,I -> [h,h,h,h,l,h]; " idle/rasidle 
,1 ,I ,1 -> [h,h,h,h,l,h]; " idle/rasidle 

write cycle 
,1 ,1 ,1 -> [h,h,h,h,l,h]; "idle/rasidle 
,I ,I ,I -> [h,h,h,h,l,l]; "idle/rasidle 
,I ,I ,I -> [h,l,h,h, 1,1]; " startdram/rasOact 
,I ,I ,I -> [l,l,h,h,l,l]; " col_den/rasOact 
,I ,I ,I -> [l,l,h,l, 1, 1]; " rasOact 
,I ,I ,I -> [l,l,h,l,l,l] ; " rasOact 
,I ,I ,I -> [h,l,h,h,l,l]; .. rasOact 
,1 ,1 ,1 -> [h,l,h,h,l,l]; .. rasOact 

,1 ,1 ,1 -> [h,h,h,h,l,l]; " idle/rasidle 
, 1 ,1 ,1 -> [h,h,h,h,l,l]; " idle/rasidle 
,I ,1 ,1 -> [h,h,h,h,l,l]; .. idle/rasidle 

Figure 8-3. DRAMP2 PLD Equations (Contd.) 

8-10 

-> 



DRAM PLD DESCRIPTIONS 

80386 Interleaved DRAM Controller pld-l pipelined lws 
Equations for Module DRAM_CONTROLLER_FOR_80386 

Device U34 

- Reduced Equations: 

!refin := (!refin & !refreq 

* !qr * pclk & !rasO & !rasl & refin * pclk & refin & reset * !pclk & !refin); 

!qr (!pclk & !qr & !refin * !qr & !refin & refreq & !reset * pclk & qr & !rasO & !rasl & refin & !reset); 

! rasOp (!pclk & ! rasOp * pclk & ! rasO) ; 

!raslp (!pclk & !raslp * pclk & !rasl); 

!we := (dramstart & !we * pclk & !we * !dramstart & !pclk & w_r); 

!dramrdy := (!dramrdy & !pclk * !ale & dramrdy & !muxoe & pclk); 

leas := 

!ale := 

(!ale & dramrdy & !reset 

* !ale & !pclk 

* !ale & cas 

* cas & pclk & rasO & !rasl & !w_r 

* cas & pclk & !rasO & rasl & !w:..r) ; 

(!ale & dramrdy & !reset 
t !ale & !pclk 
t !ale & cas 

* cas & pclk & rasO & !rasl 
It cas & pclk & !rasO & rasl); 

. Figure B-3. DRAMP2 PLD Equations (Contd.) 

8-11 



DRAM PLD DESCRIPTIONS 

REFRESH ADDRESS COUNTER PLD 

The Refresh Address Counter PLD maintains the address of the next DRAM row to be 
refreshed. After every refresh cycle, the PLD increments this address. Table B-1 shows 
the inputs and outputs of the Refresh Address Counter PLD. 

PLD equations are shown in Figure B-4. Ten bits of row address are provided using a 
20RSlO PLD. For a system operating at any speed, standard-PLD speeds are sufficient. 

Table 8-1. Refresh Address Counter PLD Pin Description 

PLD Controls 

Name Connects From PLD Usage 

. CLOCK PLD register clock 

OE outputs enable on refresh 

PLD Inputs 

Name Connects From PLD Usage Sampled 

NCO 
NC1 
NC2 
NC3 

Not connected Not used Never 
NC4 
NC5 
NC6 
NC7 

PLD Outputs 

Name Connects To PLD Usage Changes State 

QO Muxed Addr 0 
Q1 Muxed Addr 1 
Q2 Muxed Addr 2 
Q3 Muxed Addr 3 
Q4 Muxed Addr 4 Implements 9-bit counter Any Clock 
Q5 Muxed Addr 5 
Q6 Muxed Addr 6 
Q7 Muxed Addr 7 
Q8 Muxed Addr 8 

8-12 



DRAM PLD DESCRIPTIONS 

module rehddr; 
flag '-r3'; 
title 'refresh address counter pal HDM Intel corporation' 

"Increments the addr~ss b, one until 9 bits are 01FFH 

U3S device 'p20rsl0'; 
h,l,c , ! " 1,0,.C.,.x.; 

gnd pin 12; 
vcc pin 24; 
oe pin 13; 

c 1 k pin 1; 

RAO pin 14 
RAI pin IS 
RA2 pin 16 
RA3 pin 17 
RA4 pin 18 
RAS pin 19 
RA6 pin 20 
RA7 pin 23 
RA8 pin 22 

"refresh Increment signal 

"bit 0 of refresh address 
"bit 1 of refresh address 

"bit 2 of refresh address 
"bit 3 of refresh address 
"bit 4 of refresh address 
"bit 5 of refresh address 
"bit 6 of refr~sh address 
"'b I t 7 0 f ref res had d res s 
"bit B of refresh addre.s 

equatlo~s RAO :" !RAO; 

state_diagram [RA1] 
state [0]: 

If (RAO) then 
else [0]; 
state [1]: 

If (RAO) then [0] 
e I!! [1]; . 

state_diagram [R A 2] 
stat e [ 0 ] : 

If (RAI , RAO) then 
e I!! [ 0 ] ; 

s ta t.e [ II: 
If (R AI , RAO) then 
else [1] ; 

state_diagram [R A 3] 
stat e [ 0 I : 

If (RA2 , R AI RAO) 
e I!! [ 0 ] ; 

stat e [1] : 
I f CRA2 , R AI RAO) 
e I!! [1] ; 

state_diagram [R A 4 I 
state [ 0 ] : 

If (RA3 , RAI RAO) 
e I!! [ 0 ] ; 

stat e [ 1] : 

If (RA3 , RA2 RAI 
e I!! [1] ; 

[ 0 ] 

then 

then [ 0 ] 

then 1 

, RAO) then [ 0 ] 

Figure 8-4. Refresh Address Counter PLD Equations 

6-13 



I"n+-I® 'e- DRAM PLD DESCRIPTIONS 

state_dl~gram [RASI 
state [01: 

If (RA4 RA3' RA2 , RAl , RAO) then 1 
e 15e [0 I ; 

state [11: 
If (RA4 , RA3 , RA2 , RAl , RAO) then [01 
e I s e [1 I ; 

5t~te_dlagr~m [RAGI 
state [01: 

If (RAS , RA4 , RA3 & RA2 & RAl &RAO) then 1 
e I s e [0 I ; 

state [11: 
If (RAS , RA4 , RA3 & RA2 , RAl , RAO) then [01 
e I s e [1 I ; 

state_diagram [RA71 
state [01: 

If (RAG 
else [0]; 

state [11: 

RAS , RA4 , RA3 , RA2 & RAl & RAO) then 1 

If (RAG' RAS & RA4 , RA3 & RA2 & RAl & RAO) then [01 
e I s e [1 I ; 

state_dlaQram [RA81 
state [01: 

if (RA7 RAG & RAS & RA4 & RA3 & RA2 & RAl & 
RAO) then 1 

e I s e [0 I ; 
state [11: 

If (RA7 , RAG & RAS , RA4 & RA3 & RA2 & RAl & 
RAO) then [0] 

e I s e [1 I ; 

test_vectors ([clkl .. [RA8,RA7,RAG,RAS,RA4,RA3,RA2,RA1,RAO]) 

end refaddr; 

[cl .. [x,O,O,O,O,O,O,O,OI "0 
[el -+ [x,I,x,x,x,x,x,x,1] 
[cl .. [x,x,x,x,x,x,x,l,OI 
[c] -+ [X,X,I,X,X,X,x,x,x] 
[el ... [X,I,X,X,X,x,x,x,x] 
[el .. [x,x,x,x,x,x,x,x,x] liS 
[el ... [X,X,X,I,X,X,X,x,x] 
[el ... [x,X,X,X,I,X,X,X,x] 
( c] .. , [x 1 X I X I X I X 1 X I X I x' J X ] 1 

[col ... (x,x.,X,X,I,X,X,X,x]; 
[cl .. [0,0,0,0,0,1,0,1,01; "10 
[el .. [x,x,x,x,x,x,x,x,x]; 
[el ... [X,I,X,X,X,x,x,x,x]; 
(el ... [X,I,X,X,X,x,x,x,x]; 
[el ... [X,I,X,X,X,x,x,x,x]; 
[cl .. [x,x,x,x,x,l,l,l,ll; "lS 

Figure 8-4. Refresh Address Counter PLD Equations (Contd.) 

8-14 



DRAM PLD DESCRIPTIONS 

refresh address counter pal intel corporation 
Equations for Module refaddr 

Device U3S 

- Reduced Equations: 

RAO :" !CRAO); 

RA1 :, !CRAO & RA1 # !RAO & !RA1); 

RA2 :" !(RAO RA1 & RA2 , !RAO & !RA2 I !RA1 & !RA2); 

RA3 : ' ! ( R A 0 & R A 1 & RA2 RA3 , !RAO & !RA3 , ! R A 1 & ! R A 3 
I ! R A 2 & !RA3); 

RA4 : ' ! ( R A 0 & R A 1 & RA2 & RA3 & R A 4 , ! R A 0 & ! R A 4 , ! R A 1 & ! R A 4 , ! R A 2 & ! R A 4 , ! R A 3 & ! R A 4) ; 

RAS : . ! ( R A 0 & R A 1 & RA2 & R A 3 & R A 4 & R A 5 , ! R A 0 ! R A 5 , ! RA 1 & !RAS 
!RA2 !RAS 
! R A 3 ! R A 5 , !RA4 & ! R AS) ; 

RAG : . !(RAO & R A 1 & R A 2 & RA3 & R A 4 & R A 5 & RAG , !RAO & !RAG , ! R A 1 & ! RAG , !RA2 & ! RAG 
I ! R A 3 ! RAG , !RA4 !RAG , ! R A 5 ! RAG) ; 

RA7 : ' !C R A 0 & R A 1 & RA2 & RA3 & RA4 & RAS & RAG & R A 7 , ! R A 0 ! R A 7 
! R A 1 ! R A 7 
! R A 2 !RA7 , !RA3 ! R A 7 
!RA4 !RA7 
!RAS !RA7 , !RAG ! R A 7> ; 

RAe : . ! ( R A 0 & R A 1 & RA2 & RA3 & RA4 & RAS & RAG & RA7 & , !RAO !RAe 
! R A 1 ! RAe 
! R A 2 ! RAe 
!RA3 ! RAe 
! R A 4 ! RAe 

I ! R A 5 ! RAe 
I ! RAG ! RAe , !RA7 ! RAe) ; 

Figure 8-4. Refresh Address Counter PLD Equations (Contd.) 

8-15 

RAe 



















ALABAMA 

Intel Corp. 
5015 Bradford Dr .• #2 
Huntsville 35805 
Tel: (205) 830-4010 
FAX: (205) 837-2640 

ARIZONA 

tlntel Corp. 
410 North 44th Street 
Suite 500 
Phoenix 85008 
Tel: (602)231-0386 
FAX: (602)244-0446 

Intel Corp. 
7225 N. Mona Lisa Rd. 
Suite 215 
Tucson 65741 
Tel: (602) 544-0227 
FAX: (602) 544-0232 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen Street 
Suite 116 
Canoga Park 91303 
Tel: (818) 704-8500 
FAX: (818) 340-1144 

tlntel Corp. 
300 N. Continental Blvd. 
Suite 100 
EI Segundo 90245 
Tel: (213) 640-6040 
FAX: (213) 640-7133 

Intel Corp. 
1 Sierra Gate Plaza 
Suite 280C 
Roseville 95678 
Tel: (916) 782-8086 
FAX: (916) 782-8153 

tin tel Corp. 
9665 Chesapeake Dr. 
Suite 325 
San Diego 92123 
Tel: (619) 292-8086 
FAX: (619) 292-0628 

tlntel Corp." 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 
TWX: 910·595-1114 
FAX: (714) 541-9157 

tlntel Corp. * 
San Tomas 4 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 
Tel: (408) 986-8086 
TWX: 910·338-0255 
FAX: (408) 727-2620 

COLORADO 

Intel Corp. 
4445 Northpark Drive 
sun. 100 
Colorado Springs 80907 
Tel: (719) 594-6622 
FAX: (303) 594-0720 

tlntel Corp." 
600 S. Cherry SI. 
Suite 700 
Denver 80222 
Tel: (303) 321-8086 
TWX: 910-931-2289 
FAX: (303) 322-8670 

CONNECTICUT 

tlnlel Corp. 
301 Lee Farm Corporate Park 
83 Wooster Heights Rd. 
Danbury' 06810 
Tel: (203) 748-3130 
FAX: (203) 794-0339 

tSales and Service Office· 
*Field Application Location 

DOMESTIC SALES OFFICES 
FLORIDA MICHIGAN OHIO VIRGINIA 

tlntel Corp. tlnlel Corp. tlntel Corp. * tlntel Corp. 
800 Fairway Drive 7071 Orchard Lake Road 3401 Park Center Drive 9030 Siony Poinl Pkwy. 
Suite,l60 Suite 100 Suite 220 Suite 360 
Deerfield Beach 33441 West Bloomfield 48322 Dayton 45414 Richmond 23235 
Tel: (305) 421-0506 Tel: (313) 851-8096 Tel: (513) 890-5350 Tel: (804) 330-9393 
FAX: (305) 421-2444 FAX: (313) 851-8770 TWX: 810-450-2528 FAX: (804) 330-3019 

FAX: (513) 890-8658 
tlntel Corp. MINNESOTA tlntel Corp.* WASHINGTON 5850 T.G. Lee Blvd. 25700 Science Park Dr. Sulle 340 tlntel Corp. Suite 100 tlntel Corp. Orlando 32822 
Tel: (407) 240-8000 

3500 W. BOth SI. Beachwood 44122 15510Bth Avenue N.E. 
FAX: (407) 240-8097 

Suite 360 Tel: (216) 464-2736 Suite 386 
~~~~~\n211~a~~~ TWX: 810-427-9298 Bellevue 98004 

Intel Corp. FAX: (804) 282-0673 Tel: (206) 453-8086
11300 4th Street North 1WX: 910-576-2867 TWX: 910-443-3002
Suite 170 FAX: (612) 831-6497 OKLAHOMA FAX: (206) 451-9556
St. Petersburg 33716 Intel Corp. Tel: (813) 577-2413 MISSOURI 6801 N. Broadway ~J:' ~o~Ullan Road FAX: (813) 578-1607

tlnlel Corp. Suite 115 Suite 102
3300 Rider Trail South Oklahoma City 73162

Spokan~ 99206
GEIlRGIA Suite 170 Tel: (405) 848-8086 Tel: (509) 928-8086

Earth City 63045 FAX: (405) 840-9819 FAX: (509) 928-9467 tlntel Corp. Tel: (314) 291-1990
20 Technology Parkway FAX: (314) 291-4341 OREGON
Suite 150 WISCONSIN
Norcross 30092 tlnlel Corp.
Tel: (404) 449-0541 NEW JERSEY 15254 N.W. Greenbrier Pkwy. Intel Corp.
FAX: (404) 605-9762

Intel Corp.
Building B 330 S. Executive Dr. Beaverton 97006 Sunol02 Arbor Circle South Tel: (503) 645-8051 Brookfield 53005 ILLINOIS 8 Campus Drive TWX: 910-467-8741 Tel: (414) 784-8087

~~~~e~~;orp. Center III 
~:r:s~g'i)~~~~~k FAX: (503) 645-8181 FAX: (414) 796-2115 

300 N. Martingale Road 
FAX: (201) 644-0680 PENNSYLVANIA 

Suite 400 ~g~~~~~i~e Center 
tlntel Corp. * CANADA Schaumburg 60173 925 Harvest Drive 

Tel: (708) 605-8031 125 Ha~ Mile Road Suite 200 
FAX: (708) 706-9762 Red Bank 07701 Blue Bell 19422 BRITISH COLUMBIA Tel: (908) 747-2233 Tol: (215) 641-1000 
INDIANA FAX: (908) 747-0983 FAX: (215) 641-0785 Intel Semiconductor of 

tlntel Corp. * Canada, Ltd. 
tlnlel Corp. NEW YORK 400 Penn Center Blvd. 4585 Canada Way 
8910 Purdue Road Suite 610 Sune 202 
Suite 350 Intel Corp." 

Pittsburgh 15235 Burnaby V5G 4L6 
Indianapolis 46268 850 Crosskeys Office Park Tel: (412) 823-4970 Tel: (604) 298-0387 . 

~~~}~m)8~~50g~~8 Fairport 14450 FAX: (412) 829-7578 FAX: (604) 298-8234 
Tel: (716) 425-2750
TWX: 510-253-7391
FAX: (716) 223-2561 PUERTO RICO ONTARIO

IOWA
tlntel Corp. '* tlntel Corp. tlntel Semiconductor of Intel Corp. 2950 Express Dr., South South Industrial Park Canada, Ltd. 1930 SI. Andrews Drive N.E. Suite 130 P.O. Box 910 2650 Queensview Drive 2nd Floor Islandia 11722 Las Piedras 00671 Suite 250 Cedar Rapids 52402 Tol: (516) 231-3300 Tel: (809) 733-8616 Ottawa K2B 8H6 Tel: (319) 393-5510 TWX: 510-227-6236 Tel: (613) 829-9714
FAX: (516) 348-7939 TEXAS FAX: (613) 820-5936

KANSAS tlntel Corp. tlntel Corp. tlntel Semiconductor of
tlntel Corp. 300 Wastage Business Center 8911 N. Capital of Texas Hwy. Canada, Ud.
10985 Cody SI. Suite 230 Suite 4230 190 Attwell Drive

Fishkill 12524 Austin 78759 Suno 500 Suite 140 Tel: (512) 794-8086 Overland Park 66210 Tel: (914) 897-3860 Rexdale M9W 6H8
Tel: (913) 345-2727 FAX: (914) 897-3125 FAX: (512) 338-9335 Tel: (416) 675-2105
FAX: (913) 345-2076 Intel Corp. tlnte] Corp." FAX: (416) 675-2438

12000 Ford Road Seventeen State Street Suite 400 MARYLAND 14th Floor
Dallas 75234 QUEBEC

New York 10004
tlntel Corp. * Tel: (212) 248-8086 Tel: (214) 241-8087 tlntel Semiconductor of FAX: (214) 484-1180 10010 Junction Dr. FAX: (212) 248-0888 Canada, Ltd.
Suite 200 tlntel Corp." 1 Rue Holiday
Annapolis Junction 20701

NORTH CAROLINA 7322 S.W. Freeway Suite 115
Tel: (301)206-2860 Suite 1490 Tour East
FAX: !301l206-3677 tlntel Corp. Houston 77074 Pt. Claire H9R 5N3

301 206-3678 Tel: (514) 694-9130 5800 Executive Center Dr. Tel: (713) 988-8086
Suite 105 TWX: 910-881-2490 FAX: 514-694-0064

MASSACHUSETTS Charlotte 28212 FAX: (713) 988-3660
Tol: (704) 568-8966

tlntel Cor~:* FAX: (704) 535-2236 UTAH
Westford Corp. Center
3 Carlisle Road tlnlel Corp. tlnlel Corp.
2nd Floor 5540 Centerview Dr. 428 East 6400 South
Westford 01886 Suite 215 Suite 104
Tel: (508) 692-0960 ~:,I~~~ 9f:16_9537

Murray 84107
TWX: 710-343-6333 Tel: (801) 263-8051
FAX: (508) 692-7867 FAX: (919) 851-8974 FAX: (801) 268-1457

CGJSALEJ022891

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35805
Tel: (205) 837-6955
FAX: 205-751-1581

Hamilton/Avnet Computer
4930 I Corporate Drive
Huntsville 35805

Hamilton/Avnet Electronics
4940 Research Drive
Huntsville 35805
Tel: (205) 837-7210
FAX: 205-721-0356

MTI Systems Sales
4950 Corporate Drive
Suite 120
Huntsville 35806
Tel: (205) 830-9526
FAX: (205) 830-9557

Pioneer/Technologies Group, Inc.
4825 University Square
Huntsville 35805
Tel: (205) 837-9300
FAX: 205-837-9358

ALASKA

Hamilton/Avnet Computer
1400 W. Benson Blvd., Suite 400
Anchorage 99503

ARIZONA

tArrow Electronics, Inc.
4134 E. Wood Street
Phoenix 85040
Tel: (602) 437-0750
1WX: 910-951-1550

Hamilton/Avnet Computer
30 South McKemy Avenue
Chandler 85226

Hamilton/Avnet Computer
90 South McKemy Road
Chandler 85226

tHamilton/Avnet Electronics
505 S. Madison Drive
Tempe 85281
Tel: (602) 231-5140
1WX: 910-950-0077

Hamilton/Avnet Electronics
30 South McKemy
Chandler 85226
Tel: (602) 961-6669
FAX: 602-961-4073

Wyle Distribution Group
4141 E. Raymond
Phoenix 85040
Tel: (602) 249-2232
1WX: 910-371-2871

CALIFORNIA

Arrow Commercial System Group
1502 Crocker Avenue
Hayward 94544
Tel: (415) 489-5371
FAX: (415) 489-9393

Arrow Commercial System Group
14242 Chambers Road
Tustin 92680
Tel: (714) 544-0200
FAX: (714) 731-8438

tAr row Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311
Tel: (213) 701-7500
1WX: 910-493-2086

tArrow Electronics, Inc.
9511 Ridgehaven Court
San Diego 92123
Tel: (619) 565-4800
FAX: 619-279-8062

tArrow Electronics, Inc.
521 Weddell Drive
Sunnyvale 94086
Tel: (408) 745-6600
1WX: 910-339-9371

tCertified Technical Distributor

DOMESTIC DISTRIBUTORS
tArrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680
Tel: (714) 838-5422
1WX: 910-595-2860

Hamilton/Avnet Computer
3170 Pullman Street
Costa Mesa 92626

Hamilton/Avnet Computer
1361 B West 190th Street
Gardena 90248

Hamilton/Avnet Computer
4103 Northgate Blvd.
Sacramento 95834

Hamilton/Avnet Computer
4545 Viewridge Avenue
San Diego 92123

Hamilton/Avnet Computer
1175 Bordeaux Drive
Sunnyvale 94089

Hamilton/Avnet Electronics
21150 Califa Street
Woodland Hills 91367

tHamilton/Avnet Electronics
3170 Pullman Street
Costa Mesa 92626
Tel: (714) 641-4150
1WX: 910-595-2638

tHamiiton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086
Tel: (408) 743-3300
1WX: 910-339-9332

tHamilton/Avnet Electronics
4545 Ridgeview Avenue
San Diego 92123
Tel: (619) 571-7500
1WX: 910-595-2638

tHamilton/Avnet Electronics
21150 Califa SI.
Woodland Hills 91376
Tel: (818) 594-0404
FAX: 818-594-8233

tHamilton/Avnet Electronics
10950 W. Washington Blvd.
Culver City 20230
Tel: (213) 558-2458
1WX: 910-340-6364

tHamilton/Avnet Electronics
1361B West 190th Street
Gardena 90248
Tel: (213) 217-6700
1WX: 910-340-6364

tHamilton/Avnet Electronics
4103 Northgate Blvd.
Sacramento 95834
Tel: (916) 920-3150

Pioneer/Technologies Group, Inc.
134 Rio Robles
San Jose 95134
Tel: (408) 954-9100
FAX: 408-954-9113

Wyle Distribution Group
124 Maryland Street
EI Segundo 90254
Tel: (213) 322-8100

Wyle Distribution Group
7431 Chapman Ave.
Garden Grove 92641
Tel: (714) 891-1717
FAX: 714-891-1621

tWyle Distribution Group
2951 Sunrise Blvd., Suite 175
Rancho Cordova 95742
Tel: (916) 638-5282

tWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123
Tel: (619) 565-9171
1WX: 910-335-1590

tWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051
Tel: (408) 727-2500
TWX: 408-988-2747

tWyle Distribution Group
17872 Cowan Avenue
Irvine 92714
Tel: (714) 863-9953
1WX: 910-371-7127

tWyJe Distribution Group
26677 W. Agoura Rd.
Calabasas 91302
Tel: (818) 880-9000
1WX: 372-0232

COLORADO

Arrow Electronics, Inc.
7060 South Tucson Way
Englewood 80112
Tel: (303) 790-4444

Hamilton/Avnet Computer
9605 Maroon Circle, Ste. 200
Engelwood 80112

tHamilton/Avnet Electronics
9605 Maroon Circle
Suite 200
Englewood 80112
Tel: (303) 799-0663
lWX: 910-935-0787

tWyle Distribution Group
451 E. 124th Avenue
Thornton 80241
Tel: (303) 457-9953
1WX: 910-936-0770

CONNECTICUT

tArrow Electronics, Inc.
12 Beaumont Road
Wallingford 06492
Tel: (203) 265-7741
1WX: 710-476-0162

Hamilton/Avnet Computer
Commerce Industrial Park
Commerce Drive
Danbury 06810

tHamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive
Danbury 06810
Tel: (203) 797-2800
1WX: 710-456-9974

tPioneer/Standard Electronics
112 Main Street
Norwalk 06851
Tel: (203) 853-1515
FAX: 203-838-9901

FLORIDA

tArrow Electronics, Inc.
400 Fairway Drive
Suite 102
Deerfield Beach 33441
Tel: (305) 429-8200
FAX: 305-428-3991

tAr row Electronics, Inc.
37 Skyline Drive
Suite 3101
Lake Marv 32746
Tel: (407) 323-0252
FAX: 407-323-3189

Hamilton/Avnet Computer
6801 N.W. 15th Way
Ft. Lauderdale 33309

Hamilton/Avnet Computer
3247 Spring Forest Road
St. Petersburg 33702

tHamilton/Avnet Electronics
6801 N.W. 15th Way
F1. Lauderdale 33309
Tel: (305) 971-2900
FAX: 305-971-5420

tHamilton/Avnet Electronics
3197 Tech Drive North
SI. Petersburg 33702
Tel: (813) 573-3930
FAX: 813-572-4329

tHamilton/Avnet Electronics
6947 University Boulevard
Winter Park 32792
Tel: (407) 628-3888
FAX: 407-678-1878

tPioneer/Technologies Group, Inc.
337 Northlake Blvd., Suite 1000
Alta Monte Springs 32701
Tel: (407) 834-9090
FAX: 407-834-0865

PioneerfTechnologies Group, Inc.
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 428-8877
FAX: 305-481-2950

GEORGIA

Arrow Commercial System Group
3400 C. Corporate Way
Deluth 30139
Tel: (404) 623-8825
FAX: (404) 623-8802

tArrow Electronics, Inc.
4250 E. Rivergreen Parkway
Deluth 30136
Tel: (404) 497-1300
1WX: 810-766-0439

Hamilton/Avnet Computer
5825 D. Peachtree Corners E.
Norcross 30092

tHamUton/Avnet Electronics
5825 0 Peachtree Corners
Norcross 30092
Tel: (404) 447-7500
1WX: 810-766-0432

Pioneer/Technologies Group, Inc.
3100 F Northwoods Place
Norcross 30071
Tel: (404) 448-1711
FAX: 404-446-8270

ILLINOIS

tArrow Electronics, Inc.
1140 W. Thorndale
Itasca 60143
Tel: (708) 250-0500
lWX: 708-250-0916

Hamilton/Avnet Computer
1130 Thorndale Avenue
Bensenville '601 06

tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60106
Tel: (708) 860-7780
1WX: 708-860-8530

MTI Systems Sales
1100 W. Thorndale
Itasca 60143
Tel: (708) 773-2300

tPioneer/Standard Electronics
2171 Executive Dr., Suite 200
Addison 60101
Tel: (708) 495-9680
FAX: 708-495-9831

INDIANA

tArrow Electronics, Inc.
7108 Lakeview Parkway West Drive
Indianapolis 46268
Tel: (317) 299-2071
FAX: 317-299-0255

Hamilton/Avnet Computer
485 Gradls Drive
Carmel 46032

Hamilton/Avnet Electronics
485 Gradle Drive
Carmel 46032
Tel: (317) 844-9333
FAX: 317-844-5921

tPioneer/Standard Electronics
9350 Priority Way
West Drive
Indianapolis 46250
Tel: (317) 573-0880
FAX: 317-573-0979

CG/SALE/022891

IOWA

Hamilton/Avnet Computer
915 33rd Avenue SW
Cedar Rapids 52404

Hamilton/Avnet Electronics
915 33rd Avenue, S.W.
Cedar Rapids 52404
Tel: (319) 362-4757

KANSAS

Arrow Electronics. Inc.
8208 Melrose Dr., Suite 210
Lenexa 66214
Tel: (913) 541-9542
FAX: 913-541-0328

Hamilton/Avnet Computer
15313 W_ 95th Street
Lenexa 61219

tHamiiton/Avnet Electronics
15313 W_ 95th
Overland Park 66215
Tel: (913) 888-8900
FAX: 913-541-7951

KENTUCKY

Hamilton/Avnet Electronics
805 A. Newtown Circle
Lexington 40511
Tel: (606) 259-1475

MARYLAND

tArrow Electronics, Inc.
8300 Guilford Drive
Suite H, River Center
Columbia 21046
Tel: (301) 995-6002
FAX: 301-381-3854

Hamilton/Avnet Computer
6822 Oak Hall Lane
Columbia 21045

tHamitton/Avnet Electronics
6822 Oak Hall Lane
Columbia 21045
Tel: (301) 995-3500
FAX: 301-995-3593

tMesa Technology Corp.
9720 Patuxent Woods Dr.
Columbia 21046
Tel: (301) 290-8150
FAX: 301-290-6474

tPioneerfTechnologies ~roUPI Inc.
9100 Gaither Road
Gaithersburg 20877
Tel: (301) 921-0660
FAX: 301-921-4255

MASSACHUSETTS

Arrow Electronics, Inc.
25 Upton Dr,
Wilmington 01887
Tel: (506) 658-0900
TWX: 710-393-6770

HamiitonfAvnet Computer
10 D Centennial Drive
Peabody 01960

tHamiiton/Avnet ElectroniCS
100 Centennial Drive
Peabody 01960
Tel: (506) 532-9638
FAX: 506-596-7802

tPioneerfStandard Electronics
44 Hartwell Avenue
Lexington 02173
Tel: (617) 861-9200
FAX: 617-863-1547

Wyle Distribution Group
15 Third Avenue
Burlington 01803
Tel: (617) 272-7300
FAX: 617-272-6809

MICHIGAN

tArrow Electronics, Inc.
19680 Haggerty Road
Livonia 48152 .
Tel: (313) 665-4100
TWX: 810-223-6020

tCertified Technical Distributor

DOMESTIC, DISTRIBUTORS (Contd.)
Hamilton/Avnet Computer
2215 S_E_ A-5
Grand Rapids 49508

~f~ig~~~d~~tR~~~tt~~e{ 00
Novi 48050

Hamilton/Avnet Electronics
2215 29th Streel S.E.
Space A5
Grand Rapids 49508
Tel: (616) 243-8605
FAX: 616-698-1831

Hamilton/Avnet Electronics
41650 Garden Brook
Novi 48050
Tel: (313) 347-4271
FAX: 313-347-4021

tPioneer/Standard Electronics
4505 Broadmoor S.E.
Grand Rapids 49508
Tel: (616) 696-1800
FAX: 616-698-1831

tPioneer/Standard Electronics
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
FAX: 313-427-3720

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910-576-3125

Hamilton/Avnet Computer
12400 Whitewater Drive
Minnetonka 55343

tHamilton/Avnet Electronics
12400 Whitewater DriVe
Minnetonka 55434
Tel: (612) 932-0600
TWX: 910-576-2720

tPioneer!Standard Electronics
7625 Golden Triange Dr.
SuUe G
Eden Prairie 55343
Tel: (612) 944-3355
FAX: 612-944-3794

MISSOURI

tArrow Electronics, Inc.
2380 Schuetz
St. Louis 63141
Tel: (314) 567-6888
FAX: 314-567-1164

Hamilton/Avnet Computer
739 Goddard Avenue
Chesterfield 63005

tHamiiton/Avnet Electronics
741 Goddard
Chesterfield 63005
Tel: (314) 537-1600
FAX: 314-537-4248

NEW HAMPSHIRE

Hamilton/Avnet Computer
2 Executive Park Drive
Bedford 03102

Hamilton/Avnet Computer
.444 East Industrial Park Or.
Manchester 03103

NEW JERSEY

tArrow Electronics. Inc.
4 East Stow Road
Unit 11
Marlton 08053
Tel: (609) 596-8000
FAX: 609-596-9632

tArrow Electronics
6 Century Drive
Parsipanny 07054
Tel: (201) 538-0900
FAX: 201-538-0900

Hamilton/Avnet Computer
1 Keystone Ave., Bldg. 36
Cherry Hill 08003

Hamilton/Avnet Computer
10 Industrial Road
Fairfield 07006

tHamilton/Avnet Electronics
1 Keystone Ave., Bldg. 36
Cherry Hill 08003
Tel: (609) 424-0110
FAX: 609-751-2552

tHamiiton/Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-3390
FAX: 201-575-5839

~~!SO~~ems Sales
Fairtield 07006
Tel: (201) 227-5552
FAX: 201-575-6336

tPioneer/Standard Electronics
14-A Madison Rd,
Fairfield 07006
Tel: (201) 575-3510
FAX: 201-575-3454

NEW MEXICO

Alliance Electronics Inc.
10510 Research Avenue
Albuquerque 87123
Tel: (505) 292-3360
FAX: 505-292-6537

Hamilton/Avnet Computer
5659 Jefferson, N.E. Suites A & B
Albuquerque 87109

tHamiiton/Avnet Electronics
5659A Jefferson N.E.
Albuquerque 87109
Tel: (505) 765-1500
FAX: 505-243-1395

NEW YORK

tArrow Electronics, Inc.
3375 Brighton Henrietta Townline Rd.
Rochester 14623
Tel: (716) 427-0300
TWX: 510-253-4766

Arrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
TWX: 510-227-6623

Hamilton/Avnet Computer
933 Motor Parkway
Haupauge 11788

Hamilton/Avnet Computer
2060 Townline
Rochester 14623

tHamliton/Avnet Electronics
933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
TWX: 510-224-6166

tHamiiton/Avnet Electronics
2060 Townline Rd.
Rochester 14623
Tel: (716) 272-2744
TWX: 510-253-5470

Hamilton/Avnet Electronics -
103 Twin Oaks Drive
Syracuse 13206
Tel: (315) 437-0288
TWX: 710-541-1560

~~~a~l~~efJ!.~ksgl~~e 
Port Washington 11050 
Tel: (516) 621-6200 
FAX: 510-223-0846 

Pioneer/Standard Electronics 
68 Corporate Drive 
Binghamton 13904 
Tel: (607) 722-9300 
FAX: 607-722-9562 

Pioneer/Standard Electronics 
40 Oser Avenue 
Hauppauge 11787 
Tel: (516) 231-9200 
FAX: 510-227-9869 

tPioneer/Standard Electronics 

~o~~~s;,ar:n~~s:~~t 11797 
Tel: (516) 921-8700 
FAX: 516-921-2143 

tPioneer/Slandard Electronics 
840 Fairport Park 
Fairport 14450 
Tel: (716) 381-7070 
FAX: 716-381-5955 

NORTH CAROLINA 

tArrow Electronics, Inc. 
5240 Greensdairy Road 
RaleIgh 27604 

~~9~~6_~~~~~~ 
Hamllton/Avnet Computer 
3510 Spring Forest Road 
Raleigh 27604 

tHamilton/Avnet Electronics 
3510 Spring Forest Drive 
Raleigh 27604 
Tel: (919) 878-0819 
TWX: 510-928-1836 

PioneerlTechnologies Group, Inc. 
9401 L-Southern Pine Blvd, 
CharloHe 28210 
Tel: (919) 527-8188 
FAX: 704-522-8564 

~~~be~e~;:;;~~~~~:;roup, Inc. 
Suite 148
Durham 27713
Tel: (919) 544-5400
FAX: 919-544-5885

OHIO

Arrow Commercial System Group
284 Cramer Creek Court
Dublin 43017
Tel: (614) 889-9347
FAX: (614) 889-9680

tArrow ElectronIcs, Inc.
6238 Cochran Road
Solon 44139
Tel: (216) 248-3990
TWX: 810-427-9409

Hamilton/Avnet Computer
7764 Washington Village Dr.
Dayton 45459

Hamilton/Avnet Computer
30325 Bainbridge Rd., Bldg. A
Solon 44139

tHamilton/Avnet Electronics
7760 Washington Village Dr.
Dayton 45459
Tel: (513) 439-6733
FAX: 513-439-6711

tHamilton/Avnet Electronics
30325 Bainbridge
Solon 44139
Tel: (216) 349-5100
TWX: 810-427-9452

Hamilton/Avnet Computer
777 Brooksedge Blvd.
Westerville 43081
Tel: (614) 882-7004
FAX: 614-882-8650

Hamilton/Avnet Electronics
777 Brooksedge Blvd.
Westerville 43081
Tel: (614) 882-7004

MTI S~lems Sales
23400 Commerce Park Road
Beachwood 44122
Tel: (216) 464-6688

tPioneer/Standard Electronics
4433lnterpoint Boulevard

~:r~~?~t9900
FAX: 513-236-6133

tPioneer/Standard Electronics
4800 E_ 131st Street
Cleveland 44105
Tel: (216) 587-3600
FAX: 216-663-1004

CGlSALEJ022891

OKLAHOMA

Arrow Electronics, Inc.
4719 South Memorial Dr.
Tulsa 74145

tHamilton/Avnet Electronics
12121 E. 51st St., Suite 102A
Tulsa 74146
,Tel: (918) 252-7297

OREGON

t~lmac Electronics Corp.
1885 N'w, 169th Place
Beaverton 97005
Tel: (503) 629-8090
FAX: 503-645.()611

Hamilton/Avnet Computer
9409 Southwest Nimbus Ave.
Beaverton 97005

tHamilton/Avnet Electronics
9409 S.W. Nimbus Ave.
Beaverton 97005
Tel: (503) 627-0201

• FAX: 503-641-4012

Wyle
9640 Sunshine Court
Bldg, G, Sune 200
Beaverton 97005
Tel: (503) 643-7900
FAX: 503-646-5466

PENNSYLVANIA

Arrow Electronics, Inc.
650 SeeD Road
Monroeville 15146
Tel: (412) 856-7000

Hamilton/Avnet Computer
2800 Uberty Ave,. Bldg, E
Pittsburgh 15222

Hamilton/Avnet Electronics
2800 Liberty Ave.
Pittsburgh 15238
Tel: (412) 281-4150

Pioneer/Standard Electronics
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782-2300
FAX: 412-963-8255

tPioneer{Technologies Group, Inc,
Delaware Valley
261 Gibralter Road
Horsham 19044
Tel: (215) 674-4000
FAX: 215-674-3107

TENNESSEE

Arrow Commercial System Group
3635 Knight Road
Suite 7

~~~rs3\i ~~~:g540 
FAX: (901) 367-2081 

TEXAS 

Arrow Electronics, Inc. 
3220 Commander Drive 
Carrollton 75006 
Tel: (214) 380-6464 
FAX: (214) 248-7208 

tCertified Technical Distributor 

DOMESTIC DISTRIBUTORS (Contd.) 
Hamilton/Avnet Computer Hamilton/Avnet Computer tArrow Electronics, Inc. 
1807A West Braker Lane 17761 Northeast 78th Place 1093 Meyerside, Unit 2 
Austin 78758 Redmond 98052 Mississauga LST 1 M4 

Hamilton/Avnet Computer tHamiiton/Avnet ElectroniCS 
Tel: (416) 673-7769 

Forum 2 17761 N.E. 78th Place FAX: 416-672-0849 

4004 Beltline, Suite 200 Redmond 98052 Hamilton/Avnet Computer 
Dallas 75244 Tel: (206) 881-6697 Canada System Engineering 

Hamilton/Avnet Computer 
FAX: 206-867-0159 Group 

Wyle Distribution Group 
3688 Nashua Drive 

4850 Wright Rd., Suite 190 Units7&8 
Stafford 77477 15385 NE 90th S1reet Mississuaga L4V 1 M5 

Redmond 98052 
tHamiiton/Avnet Electronics Tel: (206) 881-1150 HamiltonfAvnet Computer 
1807 W. Braker Lane FAX: 206-881-1567 3688 Nashua Drive 
Austin 78758 Units 9 & 10 
Tel: (512) 837-8911 WISCONSIN Mississuaga L4V 1 M5 
TWX: 910-874-1319 HamiltonfAvnet Computer Arrow Electronics, Inc. 
tHamiltonfAvnet Electronics 200 N. Patrick Blvd., Ste. 100 6845 Rexwood Road 
4004 Beltline, Suite 200 Brookfield 53005 Units 7, 8, & 9 
Dallas 75234 Tel: (414) 792-0150 Mississuaga L4V 1 R2 
Tel: (214) 308-8111 FAX: 414-792'()156 Hamilton/Avnet Computer TWX: 910-860-5929 190 Colonade Road 
tHamiitonfAvnet Electronics 

Hamilton/Avnet Computer Nepean K2E 7J5 
20875 Crossroads Circle 4850 Wright Rd., Suite 190 Suite 400 tHamiitOnfAvnet Electronics 

Stafford 77477 Waukesha 53186 6845 Rexwood Road 
Tel: (713) 240-7733 Units 3-4-5 
TWX: 910-881-5523 tHamiiton/Avnet Electronics Mississauga L4T 1 R2 
tPioneerlStandard Electronics 28875 Crossroads Circle Tel: (416) 677-7432 

1826-0 Kramer Suite 400 FAX: 416-677-0940 
Waukesha 53186 

Austin 78758 Tel: (414) 764-4510 tHamiiton/Avnet Electronics 
Tel: (512) 835-4000 FAX: 414-764-9509 190 Colonnade Road South 
FAX: 512-835-9829 Nepean K2E 7L5 

tPioneer/Standard Electronics 
Tel: (613) 226-1700 

b~~~ ?5~:2a Road 
CANADA FAX: 613-226-1184 

tZentronics 
Tel: (214) 386-7300 ALBERTA 1355 Meyerside Drive 
FAX: 214-490-6419 Mississauga l5T 1 C9 

tPioneer/Standard Electronics 
Hamilton/Avnet Computer Tel: (416) 564-9600 
2816 21st Street Northeast FAX: 416-564-8320 

10530 Rockley Road Calgary T2E 6Z2 tZentronics Houston 77099 
Tel: (713) 495-4700 Hamilton/Avnet Electronics 155 Colonnade Road 
FAX: 713-495-5642 2816 21st Street NE #3 Unit 17 

Calgary T2E 6Z3 Nepean K2E 7K1 
tWyle Distribution Group Tel: (403) 230-3586 Tel: (613) 226-8840 
1810 Greenville Avenue FAX: 403-250-1591 FAX: 613-226-6352 
Richardson 75081 

QUEBEC Tel: (214) 235-9953 Zentronics 
FAX: 214-644-5064 6815 #8 Street N.E. Arrow Electronics Inc. 

Suite 100 1100 St. Regis 
UTAH Calgary T2E 7H Dorval H9P 2T5 

Hamilton/Avnet Computer 
Tel: (403) 295-8818 Tel: (514) 421-7411 
FAX: 403-295-8714 FAX: 514-421-7430 

1585 West 2100 South 
Salt Lake City 84119 BRITISH COLUMBIA Arrow Electronics, Inc. 

tHamilton/Avnet Electronics tHamiiton/Avnet Electronics 
500 Boul. St-Jean-Baptiste 
Sune 280 

1585 West 2100 South 8610 Commerce Ct. Quebec G2E 5R9 
Sal1 Lake City 84119 Burnaby VSA 4N6 Tel: (418) 871-7500 
Tel: (801) 972-2800 Tel: (604) 420-4101 FAX: 418-871-6816 
TWX: 910-925-4018 FAX: 604-437-4712 Hamilton/Avnet Computer 
tWyle Distribution Group Zentronics 2795 Rue Halpem 
1325 West 2200 South 108-11400 Bridgeport Road 51. Laurent H4S 1 PB 
Suite E Richmond V6X 1T2 tHamiiton/Avnet Electronics West Valley 84119 Tel: (604) 273-5575 2795 Halpern Tel: (801) 974-9953 FAX: 604-273-2413 SI. Laurent H2E 7K1 

WASHINGTON ONTARIO 
Tel: (514) 335-1000 
FAX: 514-335-2481 

tAimac Electronics Corp. Arrow Electronics, Inc. tZentronics 
14360 S.E. Eastgate Way 36 Antares Dr., Unit 100 520 McCaffrey 
Bellevue 98007 Nepean K2E 1W5 5t. Laurent H4T 1 N3 
Tel: (206) 643-9992 Tel: (613) 226-6903 Tel: (514) 737-9700 
FAX: 206-643-9709 FAX: 613-723-2018 FAX: 514-737-5212 

CG/SALE/022891 



FINLAND 

Intel Finland OY 
Ruosilanlie 2 
00390 Helsinki 
Tel: (358) 0 544 644 
TLX: 123332 

FRANCE 

Intel Corporation SARL 
1, Rue Edison-BP 303 
78054 Sf. Quentin-en-Yvetines 
Cedex 
Tel: (33) (1) 3057 70 00 
TLX: 699016 

ISRAEL 

In lei Semiconductor Ltd. 
Atidim Industrial Park-Neve Share! 
P,O. Box 43202 
Tel-Aviv 61430 
T 81: (972) 03-498080 
TLX: 371215 

EUROPEAN SALES OFFICES 
ITALY 

Intel Corporation Iialia s.p.A. 
Milanofiori Palazzo E 
20094 Assago 
Milano 
Tel: (39) (02) 89200950 
TLX: 341286 

NETHERLANDS 

Intel Semiconductor B.V. 
Postbus 84130 
3099 CC Rotterdam 
Tel: (31)10.407.11.11 
TLX: 22283 

SPAIN 

Intel Iberia SA 
Zurbaran, 28 
28010 Madrid 
Tel: (34) (1) 308.25.52 
TLX: 46880 

SWEDEN 

Intel Sweden A.B. 
Dalvagen 24 
171 36 Solna 
Tel: (46) 8 734 01 00 
TLX: 12261 

SWITZERLAND 

Intel Semiconductor A.G. 
Zuerichstrasse 
8185 Winkel-Rueti bei Zuerich 
Tel: (41) 01/860 62 62 
TLX: 825977 

UNITED KINGDOM 

Intel Corporation (U.K.) Ltd. 
Pipers Way 
Swindon, Wiltshire SN3 1RJ 
Tel: (44) (0793) 696000 
TLX: 444447/8 

WEST GERMANY 

Intel GmbH 
Dornacher Strasse 1 
8016 Feldkirchen bei Muenchen 
Tel: (49) 089/90992-0 
FAX: (49) 089/904/3948 

Intel GmbH 
Abraham lincoln Strasse 16-18 
6200 Wiesbaden 
Tel: (49) 06121/7605-0 
TLX: 4-186183 

Intel GmbH 
Zettachring IDA 
7000 Stuttgart 80 
Tel: (49) 0711/7287-280 
TLX: 7-254826 

EU ROPEAN DISTRI BUTORS/REPRESENTATIVES 
AUSTRIA IRELAND NORWAY Bytech Components Ltd. Rapid Silicon 

Bacher Electronics G.m.b.H. Nordisk Elektronikk (Norge) AlS 
12A Cedarwood 3 Bennet Court 

Micro Marketing Ltd. Chineham Business Park Bennet Road Rotenmuehlgasse 26 Glenageary Office Park Postboks 123 Crockford Lane Reading 
1120 Wien Glenageary Smedsvingen 4 Basingstoke Berks RG2 oax 
Tel: (43) (0222) 83 56 46 Co. Dublin 1364 Hvalstad Hants RG24 OWD Tel: 0734 752266 
TLX: 31532 Tel: (21) (353) (01)856288 Tel: (47) (02) 8462 10 Tel: (0256) 707107 FAX: 0734 312728 

FAX: (21) (353) (01) 857364 TLX: 77546 FAX: 0256-707162 
BELGIUM TLX: 31584 

Inelco Belgium SA PORTUGAL Conformix WEST GERMANY 
Av. des Croix de Guerre 94 !SRAEL ATD Portugal LOA Rapid House 
1120 Bruxelles Rua Dr. Faria de Vasconcelos, 3 A Oxford Road Electronic 2000 AG 
Oorlogskruisenlaan,94 Eastronics Ltd. 

1900 Lisboa High Wycombe Stahlgruberring 12 
1120 Brussel 11 Rozanis Street 

Tel: 351 1 8472200 Bucks HP11 2EE 8000 Muenchen 82 
Tel: (32) (02) 21601 60 P.O.B.39300 FAX: 351 i 84721 97 Tel: (0494) 474147 Tel: (49) 089/42001-0 
TLX: 64475 or 22090 Tel-Aviv 61392 FAX: (0494) 452144 TLX: 522561 

Tel: (972) 03-475151 
DENMARK TLX: 33638 SPAIN 

ATD Electronica, SA 
Bytech Systems ITT Multikomponent GmbH 

ITT-Multikomponent Unit 3 Postfach 1265 
Naverland 29 ITALY Plaza Ciudad de Viena, 6 The Western Centre Bahnhofstrasse 44 
2600 Glostrup Intesi 

28040 Madrid Western Road 7141 Moeglingen 
Tel: (45) (0) 2456645 Divisione ITT Industries GmbH 

Tel: (34) (1) 2344000 Bracknell Tel: (49) 07141/4879 
TLX: 33 355 Viale Milanofiori 

TLX: 42477 Berks RG12 1 RW TLX: 7264472 

Palazzo E/5 Metrologia Iberica, SA Tel: (0344) 55333 
FINLAND 20090 Assago (MI) Ctra. de Fuencarral, n.80 FAX: (0344) 867270 Jermyn GmbH 

OY Fintronic AB Tel: (39) 02/824701 28100 Alcobendas (Madrid) 1m Dachsstueck 9 

Melkonkatu 24A TLX: 311351 Tel: (34) (1) 6538611 Jermyn 6250 Limburg 

00210 Helsinki Vestry Estate Tel: (49) 06431/508-0 

Tel: (358) (0) 6926022 Lasi Elettronica S.p.A. SWEDEN Otford Road TLX: 415257-0 

TLX: 124224 V. Ie Fulvio Testi, 126 Sevenoaks 
20092 Ciniselio Balsamo (MI) Nordisk Elektronik AB Kent TN14 5EU Metrologie GmbH 

FRANCE Tel: (39) 02/2440012 Torshamnsgatan 39 Tel: (0732) 450144 Meglingerstrasse 49 
TLX: 352040 Box 36 FAX: (0732) 451251 8000 Muenchen 71 

Almex 16493 Kista Tel: (49) 089/78042-0 
Zone industrielle d'Antony Telcom S.r.1. Tel: (46) 08-03 46 30 TLX: 5213189 
48, rue de l'Aubepine Via M. Civitali 75 TLX: 10547 MMD L1d. 

BP 102 20148 Milano 3 Bennet Court Proelectron Vertriebs GmbH 
92164 Antony Cedex Tel: (39) 02/4049046 SWITZERLAND 

Bennet Road Max Planck Strasse 1-3 
Tel: (33) (1) 40965400 TLX: 335654 Reading 

6072 Dreieich 
TLX: 250067 Industrade A.G. Berks RG2 oax Tel: (49) 06103/30434-3 In Multicomponents Hertistrasse 31 Tel: (0734) 313232 

TLX: 417903 LEX Electronics Viale Milanofiori E/5 8304 Wallisellen FAX: (0734) 313255 
73-79, Rue des Solets 20090 Assago (MI) Tel: (41) (01) 8328111 Silic 585 Tel: (39) 02/824701 TLX: 56788 Metro Systems 94663 Rungis Cedex TLX: 311351 Rapid House YUGOSLAVIA 
Tel: (33) (1) 49 78 48 78 

Silverstar TURKEY Oxford Road TWX: 200485 High Wycombe H.R. Microelectronics Corp. 

Metrologie 
Via Dei Gracchi 20 EMPA Electronic Bucks HP11 2EE 2005 de la Cruz Blvd., Ste. 223 
20146 Milano Lindwurmstrasse 95A Tel: 0494 474171 Santa Clara, CA 95050 Tour d'Asnieres Tel: (39) 02/49961 U.S.A. 4, avo Laurent-Cely TLX: 332189 8000 Muenchen 2 FAX: 0494 21860 

Tel: (1) (408) 988-0286 
92606 Asnieres Cedex Tel: (49) 089/5380570 

TLX: 387452 
Tel: (33) (1) 47 90 62 40 TLX: 528573 Micro Marketing 
TLX: 611448 NETHERLANDS 

~~~~~t~~I~errace UNITED KINGDOM Rapido Electronic Components 
Tekelec-Airtronic Koning en Hartman S.p.a.
Cite des Bruyeres Elektrotechniek B.V. Access Electronic Components Ltd. Dundrum Via C. Beccaria, 8
Rue Carle Vernet - BP 2 Energieweg 1 Jubilee House, Jubilee Road Dublin 14 34133 Trieste
92310 Sevres 2627 AP Delft Letchworth, Herts SG6 1 QH Eire Ita/ia
Tel: (33) (1) 45 34 75 35 Tel: (31) (1)15/609906 Tel: (0462) 480888 Tel: 0001 989 400 Tel: (39) 040/360555
TLX: 204552 TLX: 38250 FAX: (0462) 682467 FAX: 0001 989 828 TLX: 460461

CG/SALE/022891

AUSlRALIA

Intel Australia Ply. Ud.
Unn t3
Allamble Grove BUsiness Park
25 Frenchs Forest Road East
~~f:n~~J~~~~SW' 2086
FAX: 6t-2975-3375

BRAZIL

Intel Semiconductores do Brazil LTDA
Av"nlda Paulista, 1159-CJS 404/405
01311 - Sao Paulo - S.P.
Tel: 55-11-287-5899
TLX:II-37-557-ISDB
FAX: 55-11-287-5119

CHINA/HONG KONG

Intel PRC Corporation
15/F, Office I, Citie Bldg.
Jian Guo Men Wai Street ,

~:I!i(~, ~~850
TLX: 22947 INTEL CN
FAX: (1) 500-2953

Intel Semiconductor Ltd. '*
10lF East Tower
Bond Center
Queensway, Central

~~~~~)b555 
FAX: (852) 868-1989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics. Inc. 
412, Samrah Plaza 
St. Mark's Road 
Bangalore 560001 
Tel: 91-812-215773 
TLX: 953-845-2646 INTEL IN 
FAX: 091-812-215067 

JAPAN 

Intel Japan KK 
5-6 Takodai, Tsukuba-shi 
Ibarakl, 300-26 
Tel: 0298-47-8511 
TLX: 3656-160 
FAX: 0298-47-8450 

Intel~KK· 

~'f-~~~~i~~~hi 
Hachiojl-shl, Tokyo 192 
Tel: 0428-48-8770 
FAX: 0426-48-8775 

Intel Japan KK.* 

~!~·H~n~~hg:ya 
Kumagaya-shi, SaHama 360 
Tel: 0465-24-6871 
FAX: 0485-24-7518 

Intel Japan KK. '* 
Kawa-ass Bldg. 
2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi 
Kanagawa, 222 
Tel: 045-474-7661 
FAX: 045-471,4394 

~:~Ik~~~~~g. 
2-4-1 Terauchi 
~~ron~;_~i~saka 560 
FAX: 08-863-1084 

Inlel Japan K.K. 
Shinmaru Bldg. 
1-5-' Marunouchi 
Chlyoda-ku, Tokyo 100 
Tel: 03-3201-3621 
FAX: 03-3201-6850 

Intel Japan KK 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku. Nagoya-shi 
Aichl450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Korea, Ltd. 
16th ~Ioor, U(a Bldg. 

~~:~'~go~o~8' Youngdeungpo-Ku 
Tel: (2) 784-8168 
FAX: (2) 784-8098 

SINGAPORE 

Intel Singapore Technology. Ltd. 
101 Thomson Road #08-03/06 
United Square 
Singapore 1130 
Tel: (65) 250-7811 
FAX: (65) 250-9256 

TAIWAN 

Intel Technology Far East Ud. 
Taiwan Branch Office 
81h Roor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-716-9660 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

Dafsys S.R.L 
Chacabuco, 90-6 Piso 
l069-Buenos Aires 
Tel: 54-1-34-7726 
FAX: 54-1-34-1871 

AUSTRAUA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TLX: M 30895 
FAX: 011-61-3-543-8179 

NSC-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3128 
Tel: 03 8900970 
FAX: 03 8990819 

BRA2IL 

Elebra Componentes 
Rua Geraldo Flausina Gomes, 78 
7 Andar 
04575 - Sao Paulo - S.P. 
Tel: 55-11-534-9641 
TLX: 55-11-54593/54591 
FAX: 55-11-634-9424 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Room 728 Trade Square 
681 Cheung Sha Wan Road 
Kowloon, Hong Kong 
Tel: (852) 360-8999 

. TWX: 32032 NVTNL HX 
FAX: (852) 725-3695 

INDIA 

Mlcronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-812-600-631 

011-91-812-611-365 
TLX: 9538456332 MDBG 

*Field Application Location 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sian, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MDEV 

Mlcronlc Devices 
25/8, 1 st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Deihl 110 060 
Tel: 011-91-11-5723509 

011-91-11-569771 
TLX: 031-63253 MOND IN 

Mlcronic Devices 
6-3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

5&5 Corporalion 
1587 Kooaer Road 
San Jose, CA 95118 

~: (:~~2~I8-6216 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Knakyushu-shi B02 
Tel: 093-511-6471 
.FAX: 093-551-7861 

CTC Components Systems Co., Ltd. 
4-8-1 Dobashl, Mlyarnae-ku 
Kawasaki-shl, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Cia Semlcon Systems, Inc. 
Flower Hill Shinmachl Higashi-kan 
1-23-9 Shinmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-3439-1600 
FAX: 03-3439-1601 

Okaya Koki 
2-4--18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-t 2-22 Tsukl]1 
Chuo-ku. Tokyo 104 
Tel: 03-3546-5011 
FAX: 03-3546-5044 

KOREA 

J-Tek Corporation 
Dong Sung Bldg. 9/F 
158-24. Samsung-Dong, Kangnam-Ku 
Seoul 135-090 
Tel: (822) 557-8039 
FAX: (822) 557-8304 

Samsung Electronics 

~~~~~g~~~~:~, Chung-Ku 
Seoul 100-102
C.P.O. Box 8780
Tel: (822) 751-3680
TWX: KORSST K 27970
FAX: (822) 753-9065

MEXICO

SSB Electronics. Jnc.
675 Palomar Street, Bldg. 4, Suite A
Chula Vista, CA 92011
Tel: (619) 585-3253
TLX: 287751 CBALL UR
FAX: (619) 585-6322

Dlcopel S.A.
Tochtli 368 Frace. Ind. San Antonio
Azcapotzalco
C.P. 02760-Mexieo, D.F.
Tel: 52-5-561-3211
TLX: 177 3790 Oicome
FAX: 52-5-561-1279

PSI S.A. de C.V.
Fco. Villa esq. AJusco sIn
Cuernavaca- Morelos
Tel: 52-73-13-9412
FAX: 52-73-17-5333

NEW ZEALAND

Email ElectronIcs
36 Olive Road
Penrose, Auckland
Tel: 01 t-64-9.591-155
FAX: 011-64-9-592-681

SAUDI ARABIA

~ ~.y~~~n~ve.
. Sunnyvale, CA 94086
U.SA
Tel: (408) 732-t710
FAX: (408) 732-3095
TLX: 494-3405 ME SYS

SINGAPORE

Electronic Resources pte, Ltd.
17 Harv'l,l; Road

~:-(~1) ~~~fa'8': 1336
TWX: RS 56541 ERS
FAX: (65) 269-5327

SOUTH AFRICA

~~~cteo~~~~i~nrC:~~~:eyet St.) 

~.:;r~';"~o/i:'~tg."7~s'b184 
FAX: 011-2712-803-8294 

TAIWAN 

Micro Electronics Corporation 
12th Floor, Section 3 
~~~~k~l~asl Road 

Tel: (686) 2-7198419
FAX: (886) 2-7197916

Acer Sartek Inc.
15th Floor, Section 2
Chien Kuo North Rd.
Taipei 18479 R.O.C.
Tel: 886-2-50Hl055
TWX: 23756 SERTEK
FAX: (886) 2-5012521

CG/SALE/022891

ALASKA

Intel Corp.
C/o TransAlaska Network
1515 Lore Rd.
Anchorage 99507
Tel: (907) 522-1776

Intel Corp.
C/o TransAIaska Data Systems
c/o Gel Operations
520 Fifth Ave., Suite 407
Fairbanks 99701
Tel: (907) 452-6264

ARIZONA

*Inlol Corp.
410 North 44th Street
Suite 500
Phoenix 85008
Tel: (602) 231-0386
FAX: (602) 244-0446

*Inlol Corp.
500 E. Fry Blvd., Suite M-1S
Sierra Vista 85635
Tel: (602) 459-5010

ARKANSAS

Inlel Corp.
C/o Federal Express
1500 West Park Drive
Little Rock 72204

CALIFORNIA

*Intel Corp.
21515 Vanowen St., Ste. 116
Canoga Park 91303
Tel: (818) 704-8500

*Inlel Corp.
300 N. Continental Blvd.
Suile 100
EI Segundo 90245
Tel: (213) 640-6040

*Inlel Corp.
1900 Prairie City Rd.
Folsom 95630-9597
Tel: (916) 351-6143

*Intel Corp.
9665 Chesapeake Dr., Suite 325
San Diego 92123
Tel: (619) 292-8086

**Intel Corp.
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642

**Intel Corp.
2700 San Tomas Exp., 1st Floor
Santa Clara 95051
Tel: (408) 970-1747

COLORADO

*Intel Corp.
600 S. Cheriy St., Suite 700
Denver 80222
Tel: (303) 321-8086

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051 .
Tel: 1-800-328-0386

MINNESOTA

3500 W. 80th Street
Suite 360

~~~~~~n2~t~~~~~~ 

*Carry-in locations 
"*Carry-in/mail-in locations 

DOMESTIC SERVICE OFFICES 
CONNECTICUT MARYLAND NEW YORK 

*Inlel Corp. **Intel Corp. *Intel Corp. 
301 Lee Farm Corporate Park 10010 Junction Dr., Suite 200 2950 Expressway Dr. South 
83 Wooster Heights Rd. Annapolis Junction 20701 Suite 130 
Danbury 06811 Tel: (301) 206-2860 Islandia 11722 
Tel: (203) 748-3130 Tel: (516) 231-3300 

FLORIOA MASSACH_USETTS Intel Corp. 

**Intel Corp. 300 Wastage Business Center 
**Intel Corp. Suite 230 
800 Fairway Dr .• Suite 160 Westford Corp. Center Fishkill 12524 
Deerfield Beach 33441 3 Carlisle Rd., 2nd Floor 

Tel: (914) 897-3860 
Tel: (305) 421-0506 Westford 01886 

FAX: (305) 421-2444 rei: (508) 692-0960 Intel Corp. 
5858 East Molloy Road 

*Intel Corp. MICHIGAN Syracuse 13211 
5850 T.G. Lee Blvd., 51e. 340 Tel: (3t5) 454-0576 
Orlando 32822 *Intel Corp. 
Tel: (407) 240-8000 7071 Orchard Lake Rd., Ste. 100 

West Bloomfield 48322 NORTH CAROLINA 

GEORGIA rei: (313) 851-8905 
*Intel Corp. 

*Intel Corp. 5800 Executive Center Drive 
20 Technology Park, Suite 150 MINNESOTA Suite 105 
Norcross 30092 Charlotte 28212 
Tel: (404) 449-0541 *Intel Corp. Tel: (704) 568-8966 

3500 W. 801h St., Suite 360 
5523 Theresa Street Bloomington 55431 **Intel Corp. 
Columbus 31907 Tel: (612) 835-6722 5540 Centerview Dr" Suite 215 

HAWAII MISSISSIPPI 
Raleigh 27606 
Tel: (919) 851-9537 

**Intel Corp. Intel Corp. OHIO Honolulu 96820 c/o Compu-Care 
Tel: (808) 847-6738 2001 Airport Road, Suite 205F **Intel Corp. 

Jackson 39208 3401 Park Center Dr., Ste. 220 ILLINOIS Tel: (601) 932-6275 Dayton 45414 
""*tlntel Corp. Tel: (513) 890-5350 
Woodfield Corp. Center III MISSOURI 
300 N. Martingale Rd., Sle. 400 *Intel Corp. 
Schaumburg 60173 *Intel Corp. 25700 SCience Park Dr., Ste. 100 
Tel: (708) 605-8031 4203 Earth City Exp., Ste. 131 Beachwood 44122 

Earth Citr 63045 Tel: (216) 464-2736 

INDIANA Tel: (314 291-1990 

*Intel Corp. Intel Corp. OREGON 

8910 Purdue Rd., Ste. 350 Route 2, Box 221 **Intel Corp. 
Indianapolis 46268 Smithville 64089 15254 N.W. Greenbrier Pkwy. 
Tel: (317) 875-0623 Tel: (913) 345-2727 Building B 

Beaverton 97006 
KANSAS I-!EWJERSEY Tel: (503) 645-8051 

*Jntel Corp. **Intel Corp. 
PENNSYLVANIA 10985 Cody, Suite 140 300 Sylvan Avenue 

Overland Park 66210 Englewood Cliffs 07632 
Tel: (913) 345-2727 *tlntel Corp. Tel: (201) 567-0821 925 HalVest Drive 

Suite 200 KENTUCKY *Inlel Corp. 
Lincroft Office Center Blue Bell 19422 

Intel Corp. 125 Half Mile Road Tel: (215) 641-1000 
133 Walton Ave., Office lA Red Bank 07701 1-800-468-3548 
Lexington 40508 Tel: (908) 747-2233 FAX: (215) 641-0785 
Tel: (606) 255-2957 

**tlntel Corp. 
Intel Corp. NEW MEXICO 400 I='enn Center Blvd., Ste. 610 
896 Hillcrest Road, Apt. A Pittsburgh 15235 
Radcliff 40160 (Louisville) Intel Corp. Tel: (412) 823-4970 

Rio Rancho 1 
LOUISIANA 4100 Sara Road *Inlel Corp. 

Rio Rancho 87124-1025 1513 Cedar Cliff Dr. 
Hammond 70401 (near Albuquerque) Camp Hill 17011 
(selViced from Jackson, MS) Tel: (505) 893-7000 Tel: (717) 761-0860 

CUSTOMER TRAINING CENTERS 
MARYLAND 

10010 Junction Dr. 
Suile 200 
Annapolis Junction 20701 
Tel: 1-800-328-0386 

SYSTEMS ENGINEERING OFFICES 
NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 

PUERTO RICO 

Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

**Intel Corp. 
Westech 360, Suite 4230 
8911 N. Capitol of Texas Hwy. 
Austin 76752·1239 
Tel: (512) 794-8086 

"''''tlntal Corp. 
12000 Ford Rd., Suite 401 
Dallas 75234 
Tel: (214) 241-8087 

**Intel Corp. 
7322 SW Freeway, Suite 1490 
Houston 77074 
Tel: (713) 988-8086 

UTAH 

Intel Corp. 
428 East 6400 South 
Suite 104 
Murray 84107 
Tel: (801) 263-8051 
FAX: (801) 268-1457 

VIRGINIA 

*Intel Corp. 
9030 Stony Point Pkwy. 
Suite 360 
Richmond 23235 
Tel: (804) 330-9393 

WASHINGTON 

**Inlel Corp. 
155 108th Avenue N.E .• Sle. 386 
Bellevue 98004 
Tel: (206) 453-8086 

CANADA 
ONTARIO 

**Intel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829-9714 

**Inlel Semiconductor of 
Canada, Ltd. 
190 Attwell Dr., 5te. 102 
Rexdale (Toronto) M9W 6H8 
Tel: (416) 675-2105 

QUEBEC 

**Intel Semiconductor of 
Canada, Ltd. 
1 Rue Holiday 
Suite 115 
Tour East 
PI. Claire H9R 5N3 
Tel: (514) 694-9130 
FAX: 514-694-0064 

CG/SALEl022891 




