[Pjul

$)ONPo.IJ PARY pue s.108s3201doId1N ., 98F[IU]

$661

2 .

e ——— e e AT

Microprocessors
PClsets

Peripheral
Components

Intel486™ Microprocessors
and Related Products




intgl.

For additional information on Intel products in the U.S. or Canada, call Intel’s Literature Center at
(800) 548-4725 or write to:

Intel Literature

P.O. Box 7641

Mt. Prospect, Il 60056-7641

To order literature outside of the U.S. and Canada contact your local international sales office.

CURRENT DATABOOKS

Product line databooks contain datasheets, application notes, article reprints, and other design information.
Databooks can be ordered in the U.S. and Canada by calling TAB/McGraw-Hill at 1-800-822-8158; outside of

the U.S. and Canada contact your local international sales office.

Title Intel Order Number
Automotive Products 231792
Embedded Applications (2 vol. set) 270648
Embedded Microcontrollers 270646
Embedded Microprocessors 272396
Flash Memory (2 vol. set) 210830
Intel486™ Microprocessors and Related Products 241731
i960® Processors and Related Products 272084
Military and Special Products 210461
Networking 297360
OEM Boards, Systems and Software 280407
Packaging 240800
Pentium™ Processors and Related Products 241732
Peripheral Components 296467

ISBN

N/A
1-55512-242-6
1-55512-230-2
1-55512-231-0
1-55512-232-9
1-55512-235-3
1-55512-234-5

N/A
1-55512-236-1
1-55512-237-X
1-55512-238-8
1-55512-239-6
1-55512-240-X

A complete set of this information is available on CD-ROM through Intel's Data on Demand program, order
number 240897. For information about Intel's Data on Demand ask for item number 240952.



intgl.
24-HOUR AUTOMATED TECHNICAL SUPPORT*

Intel’'s Application Bulletin Board System (BBS) and FaxBack System are at your service, 24-hours a day, at no
charge, and the information is updated frequently.

FaxBack SYSTEM

Technical and product information are available 24-hours a day! Order documents containing:

¢ Product Announcements o Design/Application Recommendations
e Product Literature o Stepping/Change Notifications

¢ Intel Device Characteristics ¢ Quality and Reliability Information

Information on the following subjects is also available: ;
Development Tools

e Microcontroller and Flash .

e OEM Branded Systems ¢ Quality and Reliability/Change Notification
¢ Multibus/BBS Listing » Microprocessor/PCl/Peripheral

e Multimedia o Intel Architecture Lab

To use FaxBack for Intel components and systems, dial (800) 628-2283 or (916) 356-3105 (U.S. and Canada)
or +44{0} 1793-496646 (Europe) and follow the automated voice-prompt menu. Document orders will be faxed
to the fax number you specify. Catalogs are updated twice a month, so call for the latest information!

BULLETIN BOARD SYSTEM

Intel’s Application Bulletin Board System (BBS) enables file retrieval 24-hours a day. The following can be
located on the BBS:

o Software Drivers ¢ Product/Technical Documentation
¢ Tool Information ¢ Firmware Upgrades
o Software/Application Utilities * Quality and Reliability Data

To use the Intel Application BBS (components and systems), dial (916) 356-3600 for download access (U.S.
and Canada) or +44{0} 1793-496340 (Europe). The BBS will support 1200-19200 baud rate modem. Typical
modem configuration: 9600 baud rate, No Parity, 8 Data Bits, 1 Stop Bit. A directory listing of BBS files is also
available through FaxBack or our 800 BBS (800-897-2536).

Retail Products

Information on Intel's retail products (Coprocessors and wireless, video, personal conferencing and network
products) is available through the following services:

Internet : ftp.intel.com (143.185.65.2)
CompuServe: GO INTELFORUM (modem settings: E-7-1, up to 14.4 Kbps)
Country BBS (N-8-1, up to 14.4 Kbps) FaxBack
North America (503) 264-7999 _ (800) 525-3019 or
(503) 264-6835

Europe . +44 1 793-432955 +44 1 793-432509
Australia +61 2 975-3066 +61 2 975-3922
Taiwan +886 2 718-6422 +886 2 514-0815
Singapore +65 256-4776 +65 256-5350
Hong Kong +852 530-4116 +852 844-4448
Korea +822 784-3430 +822 767-2594

*Support services provided courtesy of Intel Application Support



Intel486™
Microprocessor and

Related Products

Microprocessors, PClsets, Peripheral Components

1995



Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as
provided in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice. |

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its
FASTPATH trademark or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be -obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

©INTEL CORPORATION, 1995



intal.
DATASHEET DESIGNATIONS

Intel uses various datasheet markings to designate each phase of the document as it
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page. Following are the definitions of each marking:

Datasheet Marking Description

Product Preview Contains information on products in the design phase of
development. Do not finalize a design with this
information. Revised information will be published
when the product becomes available.

Advanced Information Contains information on products being sampled or in
the initial production phase of development.*

Preliminary Contains preliminary information on new products in
production.*

No Marking Contains information on products in full production.*
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Overview

Intel486™ Microprocessor

Intel OverDrive™ Processors

Peripheral Components

Flash Memory Components

Intel486™ Microprocessor
SmartDie™ Products







i ntel . CONTENTS

Table of Contents

Alphanumeric INdeX .. ... e

CHAPTER 1

Overview
[0 RS TOREZIY) [Ted o] o o TeT= T X To] (NN

CHAPTER 2

Intel486™ Microprocessor
DATA SHEETS
Inteld86 Processor Family .. ...t i i et e e
B2420 PCISEt . ...ttt s
B2420EX PCISEE . ..ottt e
APPLICATION NOTES
AP-469 Cache and Memory Design Considerations for the IntelDX2™
MiCTOPIOCESSOr . . oottt e e
AP-485 Intel Processor Identification with the CPUID Instruction.................
AP-496 Migrating from the Intel486 SL Microprocessor to the SL Enhanced
INtel486 MICTOPIrOCESSOF . ...t ettt eeees
AP-497 Managing Power with the SL Enhanced Intel486 Microprocessor .. .......
AP-498 Thermal Design for High Performance Notebooks ......................
AP-504 Clock Throttling the SL Enhanced Intel486 Processor in a Networked
ENVIrONMENt. .. ..o e et
AP-505 Picking Up the Pace: Designing the IntelDX4™ Processor into Intel486
Processor-Based Desktop Systems . ... i i

CHAPTER 3

Intel OverDrive™ Processors
INtel OVErDIiVETM PrOCESSOIS . o v vttt ettt et et ettt et ettt et ie e

CHAPTER 4

Peripheral Components
DESKTOP AND MOBILE PERIPHERAL DATA SHEETS
82091AA Advanced Integrated Peripheral (AIP) .................... .. ... ...
82078 CHMOS Single-Chip Floppy Disk Controller. ...t
82078 44 Pin CHMOS Single-Chip Floppy Disk Controller. ......................
82078 64 Pin CHMOS Single-Chip Floppy Disk Controller.......................
82077SL CHMOS Single-Chip Floppy Disk Controller ..........................
82595 ISA/PCMCIA High Integration Ethernet Controller .......................
82593 CSMA/CD Core LANController..........coviiiniiiiiiiiii i
82503 Dual Serial Transceiver (DST) ......oiiiiiiiii it ieannn
Ethernet LAN Card ProductBrief ... it iiiiiaann,
DataFax 14.4 Card ProductBrief ............. ittt
FaxModem 24/96 Card ProductBrief ....... ... ... ... i,
DESKTOP PERIPHERAL DATA SHEETS
82489DX Advanced Programmabile Interrupt Controller ........................
UPI-41AH/42AH Universal Peripheral Interface 8-Bit Slave Microcontroller . ... ...
UPI-C42/UPI-L42 Universal Peripheral Interface CHMOS 8-Bit Slave
Microcontroller . ..... ... e e e
MOBILE PERIPHERAL DATA SHEET
8XC51SL/Low Voltage 8XC51SL Keyboard Controller .........................
APPLICATION NOTES
AP-366 89C124FX Data/Fax Modem Chip Set-Reduction of Power Consumption. .
AP-358 Intel 82077SL for Super Dense Floppies ..............ccovivviiinnnn..

Xi

1-1

2-399
2-401

2-405
2-442

2-471
2-483
2-491

2511
2-542

4-1
4-204
4-207
4-208
4-209
4-210
4-211
4-212
4-213
4-216
4-218

4-220
4-303

4-304
4-305

4-306
4-310



CONTENTS i ntel o

Table of Contents (Continued)

CHAPTER 5
Flash Memory Components ‘
28F001BX-T/28F001BX-B 1M (128K x 8) CMOS FlashMemory................. 5-1
28F200BX-T/B, 28F002BX-T/B 2 Mbit (128K x 16, 256K x 8) Boot Block Flash
Memory Family . ... o e 5-2
28F200BL-T/B, 28F002BL-T/B 2-Mbit (128K x 16, 256K x 8) Low Power Boot -
Block Flash Memory Family ...ttt 5-3
28F400BX-T/B, 28F004BX-T/B 4 Mbit (256K x 16, 512K x 8) Boot Block Flash
MemoryFamily ...............ooiivieanan. e 5-4
28F008SA 8-Mbit (1-Mbit x 8) FlashFile Memory Extended Temperature
Specifications Included ........ ... i e 5-5
28F016SA 16-Mbit (1-Mbit x 16, 2-Mbit x 8) FlashFile Memory................... 5-6
CHAPTER 6
Intel486™ Microprocessor SmartDie™ Products
SL Enhanced Intel486 DX2 Microprocessor SmartDie™ Product Specification .. .. 6-1
SL Enhanced Intel486 SX Microprocessor SmartDie Product Specification........ 6-2



-
|nte| o ALPHANUMERIC INDEX

Alphanumeric Index

28F001BX-T/28F001BX-B 1M (128K x8) CMOS FlashMemory ....................... 5-1
28F008SA 8-Mbit (1-Mbit x 8) FlashFile Memory Extended Temperature Specifications

INCIUAEd . . .o e e e 5-5
28F016SA 16-Mbit (1-Mbit x 16, 2-Mbit x 8) FlashFileMemory ......................... 5-6
28F200BL-T/B, 28F002BL-T/B 2-Mbit (128K x 16, 256K x 8) Low Power Boot Block Flash

Memory Family .. ... e e e e 5-3
28F200BX-T/B, 28F002BX-T/B 2 Mbit (128K x 16, 256K x 8) Boot Block Flash Memory

Family . oo e e e 5-2
28F4OOBX-T/ B, 28F004BX-T/B 4 Mbit (256K x 16, 512K x 8) Boot Block Flash Memory

Family . oo e e 5-4
82077SL CHMOS Single-Chip Floppy Disk Controller . ..., 4-209
82078 44 Pin CHMOS Single-Chip Floppy Disk Controller .....................cooouL.. 4-207
82078 64 Pin CHMOS Single-Chip Floppy Disk Controller .....................ooooitt. 4-208
82078 CHMOS Single-Chip Floppy Disk Controller ..., 4-204
82091AA Advanced Integrated Peripheral (AIP) . ....... ..., 4-1
82420 PlISet. . ..ottt e et 2-399
B2420EX PCISEt . .\ttt e 2-401
82489DX Advanced Programmable Interrupt Controller .......................coooe... 4-220
82503 Dual Serial TransCeiver (DST) ... vvtit ittt ettt e eennnns 4-212
82593 CSMA/CD Core LAN Controller ....... ...t iiiinannns 4-211
82595 ISA/PCMCIA High Integration EthernetController.............................. 4-210
8XC51SL/Low Voltage 8XC51SL Keyboard Controller .....................ccoiiin... 4-305
AP-358 Intel 82077SL for Super Dense Floppies ..........coviiiiiiiiiiiiieeennnnnn. 4-310
AP-366 89C124FX Data/Fax Modem Chip Set-Reduction of Power Consumption ........ 4-306
AP-469 Cache and Memory Design Considerations for the IntelDX2™ Microprocessor.... 2-405
AP-485 Intel Processor Identification with the CPUID Instruction ....................... 2-442
AP-496 Migrating from the Intel486™ SL Microprocessor to the SL Enhanced Intel486

Y [T o o] o Ty =TT o] PN 2-471
AP-497 Managing Power with the SL Enhanced Intel486 Microprocessor................ 2-483
AP-498 Thermal Design for High Performance Notebooks . ............................ 2-491
AP-504 Clock Throttling the SL Enhanced Intel486 Processor in a Networked

ENVIrONmMeNt ..o e 2-511
AP-505 Picking Up the Pace: Designing the IntelDX4™ Processor into Intel486

Processor-Based Desktop Systems . ...t e 2-542
DataFax 14.4 Card ProductBrief . . ... ... i e e 4-216
Ethernet LAN Card Product Brief. . ... ..o i e 4-213
FaxModem 24/96 Card Product Brief . . ...t i 4-218
Intel OverDriveT™ ProCeSSOrS .. ...ttt ittt et iieee e eeennnnns 3-1
INtel486 MICTOPIOCESSOr . . oottt ettt ettt eaaans 1-1
Intel486 Processor Family .........uuuuittii it 21
SL Enhanced Intel486 DX2 Microprocessor SmartDie™ Product Specification........... 6-1
SL Enhanced Intel486 SX Microprocessor SmartDie Product Specification .............. 6-2
UPI-41AH/42AH Universal Peripheral Interface 8-Bit Slave Microcontroller .............. 4-303
UPI-C42/UPI-L42 Universal Peripheral Interface CHMOS 8-Bit Slave Microcontroller ..... 4-304

xi






intal.

Overview






INtal.

Intel486™ MICROPROCESSOR

INTRODUCTION

Intel microprocessors and peripherals provide a broad
range of time-saving, energy-efficient, high-perform-
ance solutions to designers of both mobile and desktop
microprocessor-based systems. Intel’s microprocessor/
peripheral interface delivers time and performance ad-
vantages to the designers of microprocessor-based sys-
tems, meeting their demand for greater performance,
lower power consumption and a wider variety of built-
in features for their customers.

HIGH-PERFORMANCE
ENTRY-LEVEL SYSTEMS

Intel offers an entire product line of entry-level micro-
processors for desktop and mobile systems, ranging
from the 25 MHz version of the Intel486T™ SX proces-
sor to the high performance 100 MHz IntelDX4 proc-
essor. The IntelDX4 processor is the world’s fastest
486, providing a new level of affordable computing
power to the business desktop and unparalled perform-
ance to mobile computers. Intel couples superior per-
formance with sophisticated energy-efficient SL tech-
nology to meet the requirements of the EPA’s Energy
Star guidelines.

REDUCED TIME TO MARKET

Intel’s universal motherboard for Intel486 microproces-
sor-based desktop systems and scalable architecture for
mobile systems reduces the development effort required
to produce an entire product line of high-performance
entry-level systems, thereby reducing time to market.

December 1994
Order Number: 241816-002

Intel offers a wide variety of off-the-shelf components
to fulfill the requirements of system designers while
simplifying the implementation of their designs. Off-
the-shelf system solutions greatly decrease the potential
risk of costly project delays due to component incom-
patibility. These system solutions greatly reduce the
amount of time required to design, debug, manufacture
and test microprocessor-based systems.

INCREASED RELIABILITY

High reliability is a tangible goal that translates to
higher reliability for your product, reduced downtime,
and reduced repair costs. As more and more functions
are integrated into fewer components, the resulting sys-
tem requires less power, produces less heat, and re-
quires fewer mechanical connections—again resulting
in greater system reliability.

LOWER COSTS

Using proven, reliable off-the-shelf components will re-
duce design costs, manufacturing costs, and time to
market while increasing project viability and product
reliability.

1-1
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INTEL486™ PROCESSOR FAMILY

IntelDX4™ Processor

— Up to 100-MHz Operation

— Speed-Multiplying Technology
— 32-Bit Architecture

— 16K-Byte On-Chip Cache

— Integrated Floating-Point Unit

— 3.3V Core Operation with 5V Tolerant

1/0 Buffers

— SL Technology

— Static Design

— IEEE 1149.1 Boundary Scan
Compatibility

— Binary Compatible with Large
Software Base

Write-Back Enhanced IntelIDX2™T™

Processor

— Speed-Multiplying Technology

— 32-Bit Architecture

— 8K-Byte On-Chip Write-Back Cache

— Integrated Floating-Point Unit

— SL Technology

— Static Design

— IEEE 1149.1 Boundary Scan
Compatibility

— Binary Compatible with Large
Software Base

IntelIDX2™ Processor

— Speed-Multiplying Technology

— 32-Bit Architecture

— 8K-Byte On-Chip Cache

— Integrated Floating-Point Unit

— SL Technology

— Static Design

— |IEEE 1149.1 Boundary Scan
Compatibility

— Binary Compatible with Large
Software Base

IntelSX2™ Processor

— Speed-Multiplying Technology

— 32-Bit Architecture

— 8K-Byte On-Chip Cache

— SL Technology

— Static Design

— |IEEE 1149.1 Boundary Scan
Compatibility

— Binary Compatible with Large
Software Base

Intel486™ DX Processor

— 32-Bit Architecture

— 8K-Byte On-Chip Cache

— Integrated Floating-Point Unit

— SL Technology

— Static Design

— IEEE 1149.1 Boundary Scan
Compatibility

— Binary Compatible with Large
Software Base

Intel486 SX Processor

— 32-Bit Architecture

— 8K-Byte On-Chip Cache

— SL Technology

— Static Design

— IEEE 1149.1 Boundary Scan
Compatibility

— Binary Compatible with Large
Software Base

*Other brands and names are the property of their respective owners.

December 1994
Order Number: 242202-001 21
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DATA SHEET DESIGNATIONS

Intel uses various data sheet markings to designate each phase of the document as it relates to the product.
The marking appears in the lower, inside corner of the data sheet. The followmg is the definition of these
markings:

Data Sheet Marking : : Description

Product Preview Contains information on products in the design phase of development. Do not

finalize a design with this information. Revised information will be published when

the product becomes available.

Advance Information | Contains information on products being sampled or in the initial production phase of
: development. T

Preliminary Contains preliminary information on new products in production.

No Marking Contains information on products in full production.

t Specifications within these data sheets are subject to change without notice. Venfy with your local Intel sales office that
you have the latest datasheet before finalizing a design.

S22
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1.0 INTRODUCTION

The Intel486 processor family enables a range of
low-cost, high-performance entry-level system de-
signs capable of running the entire installed base of
DOS*, Windows*, 0S/2*, and UNIX* applications
written for the Intel architecture. This family includes
the IntelDX4 processor, the fastest Intel486 proces-
sor (up to 50% faster than an IntelDX2 processor).
The IntelDX4 processor integrates a 16K unified
cache and floating point hardware on-chip for
improved performance. The IntelIDX2 processor
integrates an 8K unified cache and floating point
hardware on chip. The IntelDX2 processor is also
available with a write-back on-chip cache for im-
proved entry-level performance. The IntelDX4 and
IntelDX2 processors use Intel's speed-multiplying
technology, allowing the processor to operate at fre-
quencies higher than the external memory bus. The
Intel486 DX processor offers the features of the
IntelDX2 processors without speed-multiplying. The
Intel486 SX processor offers the features of the
Intel486 DX processor without floating point hard-
ware and the IntelSX2 processor adds speed-multi-
plying to the Intel486 SX processor. The entire
Intel486 processor family incorporates energy effi-
cient “SL Technology” for mobile and desktop com-
puting.

SL Technology enables desktop system designs
that exceed the Environment Protection Agency’s
(EPA) Energy Star program guidelines without com-
promising performance. It also increases system de-
sign flexibility and improves battery life in all Intel486
processor-based notebooks. SLTechnology allows
system designers to differentiate their power man-
agement schemes with a variety of energy-efficient
or battery-life preserving features. Intel486 proces-
sors provide power management features that are
transparent to application and operating system
software. Stop Clock, Auto HALT Power Down, and
Auto Idle power down allow software transparent
control over processor power management. Equally
important is the capability of the processor to man-
age system power consumption. Intel486 processor
System Management Mode (SMM) incorporates a
non-maskable System Management Interrupt
(SMI#), a corresponding Resume (RSM) instruction
and a new memory space for system management
code. Intel’'s SMM ensures seamless power control
of the processor core, system logic, main memory,
and one or more peripheral devices, that is transpar-
ent to any application or operating system.

Intel486™ PROCESSOR FAMILY

Intel486 processors are available in a full range of
speeds (25 MHz to 100 MHz), packages (PGA,
SQFP PQFP), and voltages (5V, 3.3V) to meet any
system design requirements. )

1.1 Processor Features

All of the Intel486 processors consist of a 32-bit inte-
ger processing unit, an on-chip cache, and a memo-
ry management unit. This ensures full binary com-
patibility with the 8086, 8088, 80186, 80286,
Intel386™ SX, Intel386 DX, and all versions of
Intel486 processors. All of the Intel486 processors
offer the following features:

® 32-bit RISC integer core—The Intel486 processor
performs a complete set of arithmetic and logical
operations on 8-, 16-, and 32-bit data types using
a full-width ALU and eight general purpose regis-
ters.

® Single Cycle Execution—Many instructions exe-
cute in a single clock cycle.

® /nstruction Pipelining—The fetching, decoding,
address translation and execution of instructions
are overlapped within the Intel486 processor.

® On-Chip Floating Point Unit—Intel486 processors
support the 32-, 64-, and 80-bit formats specified
in IEEE standard 754. The unit is binary compati-
ble with the 8087, Intel287T™, Intel387™ coproc-
essors, and Intel OverDrive™ processor.

® On-Chijp Cache with Cache Consistency Sup-
port—An 8-Kbyte (16 Kbyte on the IntelDX4 proc-
essor) internal cache is used for both data and
instructions. Cache hits provide zero wait-state
access times for data within the cache. Bus activ-
ity is tracked to detect alterations in the memory
represented by the internal cache. The internal
cache can be invalidated or flushed so that an
external cache controller can maintain cache
consistency.

® External Cache Control—Write-back and flush
controls for an external cache are provided so
the processor can maintain cache consistency.

® On-Chip Memory Management Unit—Address
management and memory space protection
mechanisms maintain the integrity of memory in a
multitasking and virtual memory environment.
Both segmentation and paging are supported.
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Burst Cycles—Burst transfers allow a new double
word to be read from memory on each bus clock
cycle. This capability is especially useful for in-
struction prefetch and for filing the internal
cache.

Write Buffers—The processor contains four write
buffers to enhance the performance of consecu-
tive writes to memory. The processor can contin-
ue internal operations after a write to these buff-
ers, without waiting for the write to be completed
on the external bus.

Bus Backoff—If another bus master needs con-
trol of the bus during a processor initiated bus
cycle, the Intel486 processor will float its bus sig-
nals, then restart the cycle when the bus be-
comes available again.

Instruction Restart—Programs can continue exe-
cution following an exception generated by an
unsuccessful attempt to access memory. This
feature is important for supporting demand-paged
virtual memory applications.

Dynamic Bus Sizing—External controllers can dy-
namically alter the effective width of the data bus.
Bus widths of 8, 16, or 32 bits can be used.

Boundary Scan (JTAG)—Boundary Scan pro-
vides in-circuit testing of components on printed
circuit boards. The Intel Boundary Scan imple-
mentation conforms with the IEEE Standard Test
Access Port and Boundary Scan Architecture.

2-10
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SL Technology provides the following features:

® /ntel System Management Mode—A unique Intel
architecture operating mode provides a dedicat-
ed special purpose interrupt and address space
that can be used to implement intelligent power
management and other enhanced functions in a
manner that is completely transparent to the op-
erating system and applications software.

® //O Restart—An /0 instruction interrupted by a
System Management Interrupt (SMI#) can auto-
matically be restarted following the execution of
the RSM instruction.

e Stop Clock—The Intel486 processor has a stop
clock control mechanism that provides two low-
power states: a “fast wake-up” Stop Grant state
(~20 mA-100 mA) and a “‘slow wake-up” Stop
Clock state with CLK frequency at 0 MHz
(100 pA-1000 pA).

® Auto HALT Power Down—After the execution of
a HALT instruction, the Intel486 processor issues
a normal Halt bus cycle and the clock input to the
Intel486 processor core is automatically stopped,
causing the processor to enter the Auto HALT
Power Down state (~20 mA-100 mA).

® Upgrade Power Down Mode—When a Intel486
processor upgrade is installed, the upgrade pow-
er down mode detects the presence of the up-
grade, powers down the core, and tri-states all
outputs of the original processor, so the Intel486
processor enters a very low current mode.

® Auto Idle Power Down —This function allows the
processor to reduce the core frequency to the
bus frequency when both the core and bus are
idle. Auto Idle Power Down is software transpar-
ent and does not affect processor performance.
Auto Idle Power Down provides an average pow-
er savings of 10% and is only applicable to clock
multiplied processors.
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Enhanced Bus Mode Features (for the Write-Back
Enhanced IntelDX2 Processor only):

e Write Back Internal Cache—The Write-Back En-
hanced IntelDX2 processor adds write-back sup-
port to the 8-Kbyte unified cache. The on-chip
cache is configurable to be write-back or write-
through on a line by line basis. The internal cache
implements a modified MESI protocol, which is
most applicable to uniprocessor systems.

® Enhanced Bus Mode—The definitions of some
signals have been changed to support the new
Enhanced Bus mode (write-back mode).

Intel486™ PROCESSOR FAMILY

e Write Bursting—Data written from the processor
to memory can be bursted (zero wait state trans- -
fer).

1.2 Intel486™ Processor Product
Family

Table 1-1 shows the Intel486 processors available
by Clock Mode, Supply Voltage, Maximum Frequen-
cy, and Package. Likewise, an individual product will
have either a 5V supply voltage or a 3.3V supply
voltage, but not both. An individual product will have
either a 1X clock or a 2X clock, but not both. Please
contact Intel for the latest product availability and
specifications. .

Table 1-1. Product Options

Processor 168-
Intel486™™ Vee Frequency (MHz) Pin | 208-Lead | 196-Lead
Processors . SQFP PQFP
25| 33 40 50 [ 66 | 75 [ 100 | PGA
1X Clock
Intel486 SX Processor 33V | »w | ¥
‘ 5V v | I v
IntelSX2™ Processor 5V I v
Intel486 DX Processor 3.3V v v
5v(1) v v v v
IntelDX2™ Processor 3.3V v | v v
5V v | v v
Write-Back Enhanced 3.3V v | v v
IntelDX2 Processor 5V v | ”
IntelDX4™ Processor 3.3V v | v v v
2X Clock
Intel486 SX Processor@ | 3.3V | » | » P
5V | » | ¥~ v
Intel486 DX Processor(2) | 3.3V v v
5V I v
NOTES:

1. The 5V 33-MHz Intel486 DX processor is available in 168-pin PGA and 196-lead PQFP packages. The 5V 50-MHz
Intel486 DX processor is available in a 168-pin PGA package only.

2. With the addition of SL Technology to the Intel486 processor family, the Low Power Intel486 SX and Low Power Intel486
DX processors have been superseded with the 3.3V Intel486 processors described in this document.
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2.0 HOW TO USE:THIS DOCUMENT

2.1 Introduction

This_data sheet is a compilation of previously pub-
lished individual data sheets for the Intel486 SX,
IntelSX2, Intel486 DX, IntelDX2 and IntelDX4 proc-
essors. With the addition of the Write-Back En-
hanced InteIDX2 and information previously pub-
lished for the introduction of the SL Enhanced
Intel486 processors, this data sheet encompasses
the entire current Intel486 processor family.

This data sheet describes the Intel486 processor ar-
chitecture, features and technical details. Unless
otherwise stated, any description for the Intel486
processor listed in this data sheet applies to all
Intel486 processors. Where architectural or other
differences do occur (for example, the IntelDX4
processor has a 16-Kbyte on-chip cache, all other
Intel486 processors have an 8-Kbyte on-chip
~ cache), these differences are described in separate

sections. Section 2.2 provides a brief section de-
scription, highlighting the specific sections that con-
tain processor-unique information.

This data sheet does not detail the Intel486SL proc-
essor, the Low Power Intel486 SX or Low Power
Intel486 DX directly. The Low Power Intel486 proc-
essors have been superseded by current versions of
the Intel486 processors. ’

It is important to note that all Intel486 DX, IntelDX2,
and IntelDX4 processors have an on-chip floating
point unit. The Intel486 SX and IntelSX2 processors
do not have on-chip floating point and do not pro-
vide FERR# and IGNNE#, floating point error re-
porting signals.

The 5V 50-MHz Intel486 DX processor does not im-
plement SL Technology and does not contain the
following pins: SMIACT#, SRESET, SMi#,
STPCLK#, and UP#.

Boundary Scan (JTAG) testability features, capability
and associated test signals (TCK, TMS, TDI, and
TDO) are standard on all Intel486 processors except
the Intel486 SX processors in 168-pin PGA package.
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2.2 Section Contents and Processor
Specific Information

The following is a brief description of the contents of
each section:

Section 1: “Introduction.” This section is an
overview of the current Intel486
processor family, product features
and highlights. This section also lists
product frequency, voltage and

package offerings.

“How to Use This Document.” This
section presents information to aid in
the use of this data sheet.

“Pin Description.” This section con-
tains all of the pin configurations for
the various package options (168-
Pin PGA, 208-Lead SQF, and 196-
Lead PQFP), package diagrams, pin
assignment tables and pin assign-
ment differences for the various
processors within a package class.

The 168-Pin PGA and 208-Lead
SQFP package diagrams shown are
for the IntelDX2, Write-Back En-
hanced IntelDX2 and IntelDX4 proc-
essors, with differences for other
members of the Intel486 processor
family listed in separate tables. The
196-Lead PQFP package diagram is
for the Intel486 DX processor. Differ-
ences for the Intel486 SX processor
in the 196-Lead package are also
listed in a separate table.

This section also provides a quick
pin reference table that lists pin sig-
nals for the Intel486 processor fami-
ly. The table, whenever necessary,
has sections applicable to each cur-
rent Intel486 processor family mem-
ber.

“Architectural Overview.” This sec-
tion describes the Intel486 proces-
sor architecture, including the regis-
ter and instruction sets, memory or-
ganization, data types and formats,
and interrupts for all Intel486 proces-
sors.

Section 2:

Section 3:

Section 4:



Section 5:

Section 6:

Section 7:

Section 8:

The architectural overview describes
the 32-bit RISC integer core of the
Intel486 processor. The on-chip

floating point unit for the Intel486 DX

IntelDX2 and IntelDX4 processors is
included in this section. Operational
differences for the Intel486 SX and
IntelSX2 processors (i.e. processors
that do not containing on-chip float-
ing point units) are also described in
detail.

“Real Mode Architecture.” This sec-
tion describes the Intel486 proces-
sor real-mode architecture, including
memory addressing, reserved loca-
tions, interrupts, and Shutdown and
HALT. This section applies to all
Intel486 processors.

“Protected Mode Architecture.” This
section describes the Intel486 pro-
tected-mode architecture, including
addressing mechanism, segmenta-
tion, protection, paging and virtual
8086 environment. This section ap-
plies to all Intel486 processors.

“On-Chip Cache.” This section de-
scribes the on-chip cache of the
Intel486 processors. Specific infor-
mation on size, features, modes, and
configurations is described. The dif-
ferences between the IntelDX4 proc-
essor on-chip cache (16-KByte) and
other members of the Intel486 proc-
essor family on chip cache (8-KByte)
are detailed.

This section also documents fea-
tures, modes and operational issues
specific to the Write-Back Enhanced
IntelDX2 processor. The specifics for
the Write-Back Enhanced IntelDX2
are interleaved with sections on the
Standard mode  (write-through)
cache of other Inteld86 processors
as appropriate.

“System Management Mode (SMM)
Architectures.” This section de-
scribes the System Management
Mode architecture of the Intel486
processors, including system man-
agement mode interrupt processing
and programming mode. Specific in-
formation to the Write-Back En-
hanced IntelDX2 processor only are
listed in appropriate sections.

Section 9:

" Section 10:

Section 11:

Intel486™ PROCESSOR FAMILY

This section applies to Intel486 proc-
essors except the 50 MHz Intel486
DX processor, which does not imple-
ment SL Technology.

“Hardware Interface.” This section
describes the hardware interface of
the current Intel486 processor fami-
ly, including signal descriptions, in-
terrupt interfaces, write buffers, reset
and initialization, and clock control.

The IntelDX4 processor speed multi-
plying options are detailed in this
section. The Write-Back Enhanced
IntelDX2 processor signals (both
new pins and those which have dif-
ferent operational functions) are de-
tailed in this section. Reset and ini-
tialization, as it applies to all of the
Intel486 processor family, is also
documented here.

Use and operation of the Stop Clock,
Auto HALT Power Down and other
power-saving SL Technology fea-
tures are described. Information spe-
cific to the Write-Back Enhanced
IntelDX2 processor is also docu-
mented whenever appropriate.

“Bus Operation.” This section de-
scribes the Intel486 processor bus
operation, including the data transfer
mechanism and bus functional de-
scription. When in Standard Bus
mode, the Write-Back Enhanced
IntelDX2 processor bus operation is
the same as other members of the
Intel486 processor family. Specific
information to the Write-Back
IntelDX2 processor in Enhanced Bus
mode is detailed in a separate sec-
tion for ease of use.

“Testability.” This section describes
the testability of the Intel486 proces-
sors, including the built-in self test
(BIST), on-chip cache testing, trans-
lation lookaside buffer (TLB) testing,
tri-state output test mode, and
boundary scan (JTAG).

Both the Write-Back Enhanced
IntelDX2 and the IntelDX4 proces-
sors have unique cache structures
that alter testing in comparison to
other members of the current
Intel486 processor family These
processor-specific differences are
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documented in this section. A com-
plete listing of Boundary Scan ID
Codes and Boundary Scan Register
Bits orders are also included.

Section12:  “Debugging Support.” This section
describes the Intel486 processor de-
bugging support, including the break-
point instruction, single-step trap and
debug registers. This section applies
to all Intel486 processors.

Section 13:  “Instruction Set Summary.”

: section provides clock count and in-
struction encoding summaries for all
the Intel486 processors.

Section 14: “Differences between Intel486 Proc-
essors and Intel386™ Processors.”
This section lists the differences be-
tween the Intel486 processor family
and the Intel386 processor family.
Also described and documented are
differences between the
with an Intel387™ math coproces-
sors and the Intel486 processors
with on-chip floating point units. This
section applies to all Intel486 proc-

©sSsors.

Section 15: “Differences between the PGA,
SQFP and PQFP Versions of the
Intel486 SX and Intel486 DX Proces-
sors.” The Low Power Intel486 SX
and Inteld86 DX processors have
been superseded by the current
Intel486 processors. This section
lists the differences between the cur-
rent Intel486 SX and Intel4d86 DX
products offered in PGA, SQFP and
PQFP packages. The
Intel486 SX and Intel486 DX proces-
sors in the PQFP package can oper-
ate in 2X clock mode, which is de-
scribed in detail here. Electrical
specifications for the Intel486 SX
and Intel486 DX processors in 2X
Clock mode are listed in this section.

Section 16: “OverDrive™ Processor Socket.”
This section describes the OverDrive
processor socket requirements for
end-user  upgradability
Intel486 processor family. This sec-
tion applies to all Intel486 proces-

SOrs.
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Section 17:

Section 18:

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

a

intel.
“Electrical Data.” This section lists
the AC and DC specifications for all
Intel486 processors. Processor spe-
cific information is listed in both com-

mon and separate tables and sec-
tions as appropriate.

“Mechanical Data.” This section lists
the mechanical and thermal data, in-
cluding the package specifications
(PGA, SQFP and PQFP) for all
Intel486 processors. Processor spe-
cific information is listed in both com-
mon and separate tables and sec-
tions as appropriate.

“Advanced Features.” This section
documents the advanced features of
the Intel486 processor family not
covered in other sections of this data
sheet.

“Features Determination.” This sec-
tion documents the CPUID function
to determine the Intel486 processor
family identification and processor
specific information. This section ap-
plies to all Intel486 processors.

“IBIS Models.” This section provides
a detailed sample listing of the types
of 1/0 buffer modeling information
available for the Intel486 processor
family. This section applies to all
Intel486 processors.

“BSDL Listing.” This section pro-
vides a sample listing of a BSDL file
for the Intel486 processor family.
This section applies to all Intel486
processors.

“System Design Notes.” This sec-
tion provides design notes applica-
ble to the use of System Manage-
ment Mode and SMM routines with
the Intel486 processor. This section
applies to all Intel486 processors,
except the 50-MHz Intel486 DX
processor.
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2.3 Documents Replaced by This Data
Sheet

This Data Sheet contains all of the latest information
for the Intel486 processor family and replaces the
following documentation:

SL Enhanced Intel4d86™ Microprocessor Data
Sheet Addendum, Order No. 241696

Intel486™ SX Microprocessor Data Book, Order No.
240950

IntelSXZ™ Microprocessor Data Sheet, Order No.
241966

Intel486™ DX Microprocessor Data Book, Order
No. 240440

Intel486™ DX2 Microprocessor Data Book, Order
No. 241245

IntelDX4™ Microprocessor Data Book, Order No.
241944

Intel486™ Family of Microprocessors Low Power
Version Data Sheet, Order No. 241199

Intel486™ PROCESSOR FAMILY

3.0 PIN DESCRIPTION

3.1 Pin Assignments

The following figures show the pin assignments of
each package type for the Intel486 processor prod-
uct family. Tables are provided showing the pin dif-
ferences between the existing Intel486 processor
products and the Intel486 processor products.

168-Pin PGA—Pin Grid Array

e Package Diagram

¢ Pin Assignment Difference Table
® Pin Cross Reference by Pin Name

208-Lead SQFP—Quad Flat Pack

e Package Diagram

® Pin Assignment Difference Table

® Pin Assignment Table in numerical order

196-Lead PQFP—PIlastic Quad Flat Pack

® Package Diagram

* Pin Assignment Difference Table

* Pin Assignment Table in numerical order
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A B c D E F G H J K L M N P Q R S
1 D20 D19 D11 D9 vss DP1 vss vss vee vss vss vss 02 Do A3l A28 a27 1
0] O O O O O O O O O O O
2 D22 D21 D18 D13 vee D8 vee D3 DS vece D6 vee D1 A29 vss A25 A26 2
O O O O O O @] O o O
3 TCK vss CLK D17 D10 D1S D12 DP2 D16 D14 D7 D4 DPO A0 A7 vee A23 3
@) c O O O o O O ©o O @) o O
4 D23 vss vce Al9 vss NC 4
O O o O
5 op3 vss vee A21 Al8 Al4 5
O O o O O
s D24 D2S D27 A4 vee vss 6
O O O O
7 vss vee D26 A22 AlS Al2 v
o O O O
8 D29 D31 D28 A20 vee vss 8
o O O o O
5 vss vec D30 168-Pin PGA Al6  vee vss .
O O o O O
IntelDX2™ Processor
10 INC SMI# SRESET A1l vece vss 10
O O O Pin Side View O O O
11 vss vee up# A9 vce vss 1
0O O O O O O
12 NC INC SMIACT# AS All vss 12
O O O O O O
13 INC INC NC A7 A8 Al0 13
O O O o O O
14 TDI ™S FERR# A2 vee vss 14
O O O o O O
15 IGNNE# NMI FLUSH# AZO}“ HOLD KEN# STPCLK# BRDY# BE2# BEO# PWT D/C#  LOCK# HLDA BREQ Al A6 15
O o0 o0 0o O o0 o 0o 0o o 0o o o o o
) 16 INTR TDO RESET BS8#% vee RDY# vee vee BE1# vee vee vee M/IO% VCC PLOCK# BLAST# A4 16
O o 0O o O o 0o 0o OO0 o 0o o o o o
17 AHOLD EADS# BS16% BOFF# vss BE3# vss vss PCD vss vss vss W/R¥ vss PCHK# INC ADS#
O o0 O o 0O o0 o OO0 OO0 O 0 0o o o0 o ¢

A B c D E F G d J K L M N P Q R ., S

242202-1

Figure 3-1. Package Diagram for 168-Pin PGA Package of the IntelDX2™ Processor
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T

A B C D E F G H J K L M N P Q R s
D20 D19 D11 D9 vss DP1 vss vss vee vss vss vss D2 00 A31 A28 A7 1
O 0O 0O O 0O 0o O o0 O o 0O O O O
D22 D21 D18 D13 vee D8 vee D3 DS vee D6 vee D1 A29 vss A25 A26 2
O O 0 O O O O O O O O
TCK  VSS CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DRO  A30  Al7 | veC a23 s
@) O O 0O O O O O O O O o O
D23 vss vee al9 vss NC N
O O O o O
DP3 vss vce A21 Al8 Al4 5
O O O o
D24 D25 D27 A24  vee  vss p
O O O
vss vec D26 A22  A15  AL2 ;
O O O
D29 D31 D28 168-Pin PGA A20  vee  Vss s
O O O O
O Write-Back Enhanced
vss vcc D30 Al6 vec  vss .
@] IntelDX2™ Processor 0] O O
INV  SMI#  SRESET . N A3 vec  Vss
Pin Side View 10
o O 0O O O
vss vee UPH A9 vee vss 1
© O O ~ 0O O O
HITM# CACHE# SMIACT# AS All Vss
1
O O O o |7
INC WB/WTH NC a7 a8 a0 |
O O O o O O
DI ™S FERR# A2 vee vss 14
O O O O O O
IGNNE# NMI FLUSH® A20M¥ HOLD KEN® STPCLK# BRDY# BE2# BEO® PWT  D/C# LOCK®  HLDA BREQ A3 A6

OO0 o0 o0 00 o o0 0O 0O o0 0 OO0 O O o *

INTR TDO RESET BS8# vee RDY# vec vee BE1# vee vee vee M/IO% vCC PLOCK# BLAST# A4

OO0 o0 o0 O 0O o0 O O 0O O 0O O 0O 0 O o |

AHOLD EADS# BS16%# BOFF# vss BE3# vss vss PCD vss vss vss W/R% vss PCHK# INC ADS#

O o o o O oo o0 0o o o 0 o0 o0 o0 oy

A B c D E F G H J K L M N e 0 R s
242202-2

Figure 3-2. Package Diagram for 168-Pin PGA Package of the
Write-Back Enhanced IntelDX2™ Processor
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10

14

15

A B c D E F S H J K L M N P Q R s
D20 D19 D11 D9 vss DP1 vss vss vces vss vss vss D2 DO A3l A28 A27 { 1
o O O O O O O O O O o o
D22 D21 D18 D13 vce D8 vee D3 DS vee D6 vee D1 A29 vss A25 A26 2
O. o O O O O O o O O O
TCK vss CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DPO A30 Al7 vee A23 3
O o 0 0o 0O o 0o o o o©° o O O O
D23 vss vee Al9 ‘{SS VOLDET 4
O O O © O O
DP3 vss vee A21 Al8 Al4 5
O O o O
D24 D25 D27 A4 vee vss 6
O O (0] O
vss vce D26 A22 AlS Al2 ,
O ©) o O
D29 D31 D28 168-Pin PGA A20  vce vss o
o O O
o IntelDX4™ Processor
vss vee D30 Al6 vee vss N
O O Pin Side View o O O
INC SMI# SRESET Al3 vee vss 10
O O 0O O O
vss vece uP# A9 vee vss n
o O O O O O
INC INC SMIACT# AS All vss
o O O O o ¥
INC INC NC a7 A8 Al0 1
o O O O O O
TDI ™S FERR# A2 vee vss 1
o O O o O ©
IGNNE# NMI FLUSH# A20M¥ HOLD KEN# STPCLK# BRDY# BE2# BEO# PWT D/C#%  LOCK# HLDA BREQ A3 A6 15
O o O 0O 0 0 0O O O 0 © O
INTR TDO RESET BS8# vee RDY# vee vee BE1# vce vece vece M/I0% vcC PLOCK# BLAST# A4 6
O o0 O o 0O 0o 0o 0O 0 0o o 0o o0 o o o
AHOLD EADS® BS16# BOFF# vss BE3# vss vss PCD vss vss VSs W/R# vss PCHK# CLKMUL ADS#
0O 0O 0O o O O 0O O o v
A ) B o D E F G H J K L M N P Q R s
242202-3

2-18

Figure 3-3. 168-Pin PGA Pinout Diagram (Pin Side) for the IntelDX4™ Processor
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Table 3-1. Pinout Differences for 168-Pin PGA Package

Previous . .
| Intelass™ [intel486 SX|Inteisx2tm| Previous |.o1i86 px| PreVious | nieibx2 |intelbxa
Pin SX Processor | Processor Intel486 DX Processor IntelDX2™™ Processor | Processor
Processor(7) Processor(7)
Processor(7)
A3| NCO) NC TCK NG TCK TCK() TCK TCK
TCK(4)
A10|  INC@ INC INC INC INC INC INC INC
INV(6)
A12 INC INC INC INC INC INC INC INC
HITM#(6)
A13 NC INC INC NC INC NC INC INC
A14 NC NC TDI NC TDI TDI() TDI TDI
TDI(4)
A15 NMI NMI INC IGNNE # IGNNE # IGNNE # IGNNE # IGNNE #
B10 INC SMI# SMI# INC SMI # INC SMI# SMi#
B12 INC INC INC INC INC INC INC INC
CACHE #(6)
B13 INC INC INC INC INC INC INC INC
WB/WT #(6)
B14 NC NC T™MS NC TMS TMS(5) TMS TMS
TMS(4)
B15 INC INC NMI NMI NMI NMI NMI NMI
B16 NC NC TDO(®) NC TDO TDO(®) TDO TDO
TDOM) )
C10 INC SRESET | SRESET INC SRESET INC SRESET | SRESET
C11 INC UP# UP# INC UP# UP# UP# UP#
C12 INC SMIACT # | SMIACT # INC SMIACT # INC SMIACT# | SMIACT #
C14 INC INC INC FERR # FERR# FERR# FERR # FERR #
G15 INC STPCLK# | STPCLK# INC STPCLK# INC STPCLK# | STPCLK#
J1| Vec® Vec Vee Vee Vee Vee Vee Vees
R17 INC INC INC INC INC INC INC CLKMUL
S4 NC NC NC NC NC NC NC VOLDET
2-19
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NOTES:

1.
C 2

NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to Vgc or Vgg or to any
other signal can result in component malfunction or incompatibility with future steppings of the Intel486 processors.

INC. Internal No Connect. These pins are not connected to any internal pad in Intel486 processors and OverDrive™
processors. However, new signals are defined for the location of the INC pins in the Intel486 processor proliferations. All
INC pins defined by:Intel have a specific use for jumperless single socket compatibility with current and future processors.
A system design could connect any signal to an INC pin without affecting the operation of the processor. However, the
purpose of a specific INC pin should be understood before it is used. If not, the system design will sacrmce the ability to
implement a jumperless (single socket) flexible motherboard.

. This pin location is for the Vggs pin on the IntelDX4 processor. For compatibility with 3.3V processors that have 5V safe

input buffers (i.e., IntelDX4 processors), this pin should be connected to a Vg trace, not to the V¢ plane. See section
3.2, “Quick Pin Reference,” for a description of the Vs pin on the IntelDX4 processor.

. These pins were only available on previous 50-MHz Intel486 DX processors. These pins are now on all speeds of the

Intel486 DX processor.

. These pins were No Connects on previous Intel486 DX and IntelDX2 processors. For compatibility with old designs, they

can still be left unconnected. )
These pins are used on the Write-Back Enhanced IntelDX2 processor only.

. Previous versions of the Intel486 processor family do not implement SL Technology and are not described in this data

sheet.
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Table 3-2. Pin Cross Reference for 168-Pin PGA Package of the InteIDX2™ Processor

Address Data Control INC(1) Vee Vss
A2 ..... Q14 DO....... P1 A20M# ..D15 A10 B7 A7
A3 ..... R15 D1 ...... N2 ADS# ...S17 A12 B9 A9
Ad...... S16 D2 ...... N1 AHOLD ..A17 A13 B11 A1
A5 ..... Q12 D3 ...... H2 BEO#....K15 B12 c4 B3
A6...... S15 D4 ...... M3 BE1# ....J16 B13 c5 B4
A7 ..... Q13 D5....... J2 BE2# ....J15 R17 E2 B5
A8 ..... R13 D6....... L2 BE3#....F17 NC @ E16 E1
A9 ..... Q11 D7....... L3 BLAST# .R16 G2 E17
A10 ....S13 D8....... F2 BOFF# ..D17 C13 G16 G1
A11 ....R12 D9 ...... D1 BRDY # ..H15 S4 H16 G17
Al2...... S7 D10 ..... E3 BREQ ...Q15 J1 H17
A13 ....Q10 D11 ..... Ct BS8#....D16 K2 H1
Ald...... S5 D12 ..... G3 BS16# ..C17 K16 K1
A5 ... R7 D13 ..... D2 CLK ...... C3 L16 K17
A6 ..... Q9 D14 ..... K3 D/C# ...M15 M2 L1
A17 ..., Q3 Di5...... F3 DPO ...... N3 M16 L17
A8 ..... R5 D16...... J3 DP1....... F1 P16 C M1
A19 ... Q4 D17 ..... D3 DP2 ...... H3 R3 Mi17
A20 ..... Qs D18 ..... c2 DP3 ...... A5 R6 P17
A21 ... Q5 D19 ..... B1 EADS# ..B17 RS Q2
A22 ... Q7 D20 ..... Al FERR# ..C14 R9 R4
A23...... S3 D21 ..... B2 FLUSH# .C15 R10 S6
A24 ... .. Q6 D22 ..... A2 HLDA....P15 R11 S8
A25 ... R2 D23 ..... A4 HOLD....E15 R14 s9
A26...... S2 D24 ..... AB IGNNE# .A15 S10
A27...... S1 D25 ..... B6 INTR ....A16 S11
A28 ..... R1 D26 ..... c7 KEN# ...F15 S12
A29...... P2 D27 ..... c6 LOCK# ..N15 S14
A30...... P3 D28 ..... cs M/IO# ..N16
A31 ... Q1 D29 ..... A8 NMI ..... B15

D30 ..... c9 PCD ..... J17
D31 ..... B8 PCHK# ..Q17
PWT ..... L15
PLOCK ..Q16
RDY# ...F16
RESET ..C16
SMI# ....B10
SMIACT # C12
UP#..... c11
W/R# ...N17
STPCLK#G15
SRESET .C10
TCK ....A3(3)
TDI....A14(3)
TDO ...B16(3)
TMS ...B14(3)
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NOTES:

1. INC. Internal No Connect. These pins are not connected to any internal pad in Intel486™ processors and OverDrive™
processors. However, new signals are defined for the location of the INC pins in the Intel486 processor proliferation. All

~ INC pins defined by Intel have a specific use for jumperless single socket compatibility with current and future processors.
A system design could connect any signal to an INC pin without affecting the operation of the processor. However, the
purpose of a specific INC pin should be understood before it is used. If not, the system design will sacrifice the ability to
implement a jumperless (single socket) flexible motherboard.

2. NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to Vcc or Vgs or to any
other signal can result in component malfunction or incompatibility with future steppings of the Intel486 processors. .

3. Boundary Scan pins are not included on the 168-pin PGA package version of the Intel486 SX processor.
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208 Lead SQFP
IntelDX2™ Processor
(Top View)

8

19— SSA
09— 20A
65 f—— #LOVINS
85 f— 135S
45— SSA
95— 00A
SS 1 ") SSA
5 |—— 20N
€S| 1 SSA
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Figure 3-4. Package Diagram for 208-Lead SQFP of the inteIDX2™ Processor

* Pin 3. See Note 1 for Table 3-3.
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Figure 3-5. Package Diagram for 208-Lead SQFP of the Write-Back Enhanced IntelDX2™ Processor
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Figure 3-6. Package Diagram for 208-Lead SQFP of the IntelIDX4™ Processor
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Table 3-3. Pinout Differences for 208-Lead SQFP Package

Write-Back
Pin # Intel486™™ SX Intel486 DX IntelDX2™™ Enhanced IntelDX4™™
Processor Processor Processor IntelDX2 Processor
Processor
3 Vo Veo Vee Veo Veos
11 INC(2) INC INC INC CLKMUL
63 INC INC INC HITM# INC
64 INC ‘ INC INC WB/WT # INC
66 INC FERR # FERR# FERR# FERR#
70 INC INC INC CACHE # INC
71 INC INC INC INV INC
72 INC IGNNE # IGNNE # IGNNE # IGNNE #
NOTES:

1. This pin location is for the Vccs pin on the IntelDX4 processor. For compatibility with 3.3V processors that have 5V safe
input buffers (i.e., IntelDX4 processors), this pin should be connected to a Vg trace, not to the Vg plane. See section
3.2, “Quick Pin Reference,” for a description of the Vcgs pin on the IntelDX4 processor.

2. INC. Internal No Connect. These pins are not connected to any internal pad in Intel486 processors and OverDriveT™
processors. However, new signals are defined for the location of the INC pins in the Intel486 processor proliferations. All
INC pins defined by Intel have a specific use for jumperless single socket compatibility with current and future processors.
A system design could connect any signal to an INC pin without affecting the operation of the processor. However, the
purpose of a specific INC pin should be understood before it is used. If not, the system design will sacrifice the ability to
implement a jumperless (single socket) flexible motherboard.

3. NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to Vg or Vgg or to any
other signal can result in component malfunction or incompatibility with future steppings of the Intel486 processors.
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Table 3-4. Pin Assignment for 208-L.ead SQFP Package of the IntelIDX2™ Processor

Intel486™ PROCESSOR FAMILY

Pin # Description Pin# Description Pin# Description Pin# Description
1 Vss 53 Vss 105 Vss 157 Vss
2 Vee 54 Vce 106 Vce 158 A24
3 Voo 55 Vss 107 Vss 159 A23
4 PCHK # 56 Vee 108 D16 160 A22
5 BRDY # 57 Vss 109 DP2 161 A21
6 BOFF # 58 SRESET 110 Vss 162 Vee
7 BS16# 59 SMIACT # 111 Veo 163 Vee
8 | BS8# 60 | Voo 112 | D15 164 | A20
9 | Ve 61 Vss 113 | D14 165 | A19

10 Vss 62 Voo 114 | Vee 166 | A18
11 INC(2) 63 INC 115 | Vss 167 | TMS
12 RDY # 64 INC 116 D13 168 TDI

13 KEN # 65 SMI # 117 D12 169 Vee
14 | Voo 66 | FERR# 118 | D1 170 | Vss
15 | Ves 67 | NC®) 119 | D10 171 | A17
16 | HOLD 68 | TDO 120 | Vss 172 | Ve
17 AHOLD 69 Vee 121 Vece 173 A16
18 | ToK 70 | INC 122 | Veg 174 | A15
19 Voo 71 INC 123 | D9 175 | Vss
20 | Voo 72 | IGNNE# 124 | D8 176 | Voo
21 Vss 73 STPCLK# 125 DP1 177 A4
22 | Voo 74 | D31 126 | D7 178 | A13
23 Vee 75 D30 127 NC 179 Vee
24 CLK 76 Vss 128 Vce 180 A12
25 | Voo 77 | Voo 129 | D6 181 | Ves
26 HLDA 78 D29 130 D5 182 Al1
27 | W/R# 79 | D28 131 | Veo 183 | Vgg
28 Vss 80 Vce 132 Vss 184 Vss
29 Vce 81 Vss 133 Vco 185 Veo
30 BREQ 82 Voo 134 | Ve 186 | A10
31 BEO# 83 D27 135 Vss 187 A9
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intgl.

Table 3-4. Pin Assignment for 208-Lead SQFP Package of the IntelDX2™ Processor (Continued)

Pin# Description Pin# Description Pin# Description Pin# Description
32 BE1# 84 D26 136 Vee 188 Vee
33 BE2# 85 D25 137 Vee 189 Vss
34 BE3# 86 Vee 138 Vss 190 A8

35 | Vge 87 D24 139 | Vee 191 | Ve

36 Vss 88 Vss 140 D4 192 A7
37 M/10# 89 Vee 141 D3 193 A6
38 Vee 90 DP3 142 D2 194 UP#
39 D/C# 91 D23 143 D1 195 A5
40 PWT 92 D22 144 Do 196 A4
41 PCD 93 D21 145 DPO 197 A3
42 Vece 94 Vss 146 Vss 198 Vee

43 Vss 95 Vee 147 A31 199 Vss
44 Vee 96 NC 148 A30 200 Voo
45 Vee 97 Vss 149 A29 201 Vss
46 EADS # 98 Vee 150 Vee 202 A2
47 A20M # 99 D20 151 A28 203 ADS #
48 RESET 100 D19 152 A27 204 BLAST #
49 FLUSH# 101 D18 153 | A26 205 | Vee
50 INTR 102 Vce 154 A25 ~ 206 PLOCK #
51 NMI 1083 D17 155 Vee 207 LOCK #
52 Vss 104 Vss 156 Vss 208 Vss

NOTES:

1. This pin location is for the Vccs pin on the IntelDX4™ processor. For compatibility with 3.3V processors that have 5V
safe input buffers (i.e., IntelDX4 processors), this pin should be connected to a Vg trace, not to the Vgc plane. See
section 3.2, “Quick Pin Reference,” for a description of the Vgcs pin on the IntelDX4 processor.

2. INC. Internal No Connect. These pins are not connected to any internal pad in Intel486 processors and OverDrive proces-
sors. However, new signals are defined for the location of the INC pins in the Intel486 processor proliferations. All INC
pins defined by Intel have a specific use for jumperless single socket compatibility with current and future processors. A
system design could connect any signal to an INC pin without affecting the operation of the processor. However, the
purpose of a specific INC pin should be understood before it is used. If not, the system design will sacrifice the ability to

implement a jumperless (single socket) flexible motherboard.

3. NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to Vg or Vgg or to any
other signal can result in component malfunction or incompatibility with future steppings of the Intel486 processors.
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Figure 3-7. Package Diagram for 196-Lead PQFP Package of the Intel486™ DX Processor
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Table 3-5. Pinout Differences for 196-Lead PQFP Package

e | v | o | mausosx | Frotous | bowroust | noissox
Processor(3) Processor Processor(3) | Processor

75 INC(1) INC STPCLK # INC INC STPCLK #
77 NC(@) INC INC IGNNE # IGNNE # IGNNE #
81 NC INC INC - FERR # FERR # FERR#
85 INC INC SMI# INC INC SMI#
92 INC INC SMIACT # INC INC SMIACT #
94 INC INC SRESET INC INC SRESET

127 INC CLKSEL NC NC CLKSEL NC

NOTES:

1. INC. Internal No Connect. These pins are not connected to any internal pad in Intel486™ processors and OverDrive™
processors. However, new signals are defined for the location of the INC pins in the Intel486 processor proliferations. All
INC pins defined by Intel have a specific use for jumperless single socket compatibility with current and future processors.
A system design could connect any signal to an INC pin without affecting the operation of the processor. However, the
purpose of a specific INC pin should be understood before it is used. If not, the system design will sacrifice the ability to
implement a jumperless (single socket) flexible motherboard.

2. NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to Vgc or Vgg or to any
other signal can result in component malfunction or incompatibility with future steppings of the Intel486 processors.

3. Previous versions of the Intel486 processor family do not implement SL Technology and are not described in this data

sheet.
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Table 3-6. Pin Assignments for Intel486™ DX Processor 196-Lead PQFP Package

Pin# Description Pin# Description Pin# Description Pin# Description
1 Vss 50 Vss 99 Vss 148 Vss
2 A21 51 D21 100 NMI 149 NC
3 A22 52 NC 101 INTR 150 A3
4 A23 53 D22 102 FLUSH # 151 NC
5 A24 54 Vee 103 RESET 152 A4
6 Vee 55 D23 104 A20M # 153 NC
7 A25 56 NC 105 EADS # 154 A5
8 A26 57 DP3 106 PCD 165 NC
9 A27 58 Vss 107 Vee 156 UP#

10 A28 59 D24 108 PWT 157 NC
11 Vss 60 NC 109 | Vss 158 | A6
12 A29 61 D25 110 D/C# 159 A7
13 A30 62 Vee 111 M/I0# 160 NC
14 A31 63 D26 112 Ve 161 A8
15 NC 64 NC 113 BE3# 162 NC
16 DPO 65 D27 114 Vss 163 A9
17 DO 66 Vss 115 BE2# 164 Vee
18 D1 67 D28 116 BE1# 165 A10
19 Vce 68 NC 117 BEO# 166 NC
20 D2 69 D29 118 BREQ 167 Vss
21 Vss 70 Vece 119 Vee 168 Vss
22 Vss 7 D30 120 W/R# 169 NC
23 D3 72 NC 121 Vss 170 Vee
24 Vee 73 NC 122 HLDA 171 NC
25 D4 74 D31 123 CLK 172 A1
26 D5 75 STPCLK # 124 NC 173 NC
27 D6 76 NC 125 Vee 174 A12
28 Vee 77 IGNNE # 126 Vss 175 Vee
29 D7 78 NC 127 NC 176 A13
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Table 3-6. Pin Assignments for I‘ntel486TM DX Processor 196-Lead PQFP Package (Continued)

Pin# Description Pin# Description Pin# Description Pin# Description
30 DP1 79 | NC 128 TCK 177 Vss
31 D8 80 TDO 129 | AHOLD 178 | A4
32 D9 81 FERR# 130 | HOLD 179 | Voe
33 Vss 82 NC 181 | Vgo 180 | A5
34 NC 83 NC 132 | KEN# 181 | A16
35 D10 84 | Ve 133 | RDY# 182 | Vss
36 Vee 85 SMI# 134 | NC 183 | A17
37 | D11 86 Vss 135 | BS8# 184 | Vcc
38 D12 87 NC 136 | BS16# 185 | TDI
39 D13 88 NC 137 | BOFF# 186 | NC
40 Vss 89 NC 138 | BRDY# 187 | TMS
41 D14 90 NC 139 | PCHK# 188 | NC
42 D15 o1 NC 140 | NC 189 | A8
43 DP2 92 SMIACT # 141 Vss 190 | NC
44 D16 93 Vee 142 | LOCK# 191 | A19
45 D17 94 | SRESET 143 | PLOCK# 192 | NC
46 D18 95 Vss 144 | BLAST# 193 | A20
47 D19 96 Vss 145 | ADS# 194 | Vsg
48 D20 97 NC 146 | A2 195 | NC
49 Vee 98 Ve 147 Vco 196 Ve
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3.2 Quick Pin Reference

The following is a brief pin description. For detailed signal descriptions refer to section 9.2, ““Signal Descrip-

tion.”

Table 3-7. Intel486™ Processor Pin Descriptions

Symbol Type

Name and Function

CLK |

CLocK provides the fundamental timing and the internal operating frequency for the
Intel486 processor. All external timing parameters are specified with respect to the
rising edge of CLK.

ADDRESS BUS

A31-A4 I1/0 | The Address Lines. A31-A2, together with the byte enables signals. BEO # —

A2-A3 0 BE3#, define the physical area of memory or input/output space accessed.
Address lines A31-A4 are used to drive addresses into the processor to perform
cache line invalidations. Input signals must meet setup and hold times tp5 and to3.
A31-A2 are not driven during bus or address hold.

BEO-3# (0] The Byte Enable signals indicate active bytes during read and write cycles. During
the first cycle of a cache fill, the external system should assume that all byte enables
are active. BE3# applies to D24-D31, BE2# applies to D16-D23, BE1# applies to
D8-D15 and BEO # applies to DO-D7. BEO # -BE3 # are active LOW and are not
driven during bus hold.

DATA BUS

D31~-D0 1/0 | The Data Lines, DO-D7, define the least significant byte of the data bus while lines
D24-D31 define the most significant byte of the data bus. These signals must meet
setup and hold times tp5 and to3 for proper operation on reads. These pins are
driven during the second and subsequent clocks of write cycles.

DATA PARITY

DP0O-DP3 1/0

There is one Data Parity pin for each byte of the data bus. Data parity is generated
on all write data cycles with the same timing as the data driven by the Intel486
processor. Even parity information must be driven back into the processor on the
data parity pins with the same timing as read information to insure that the correct
parity check status is indicated by the Intel486 processor. The signals read on these
pins do not affect program execution.

Input signals must meet setup and hold times tp2 and tp3. DPO-DP3 should be
connected to Vg through a pull-up resistor in systems that do not use parity. DPO-
DP3 are active HIGH and are driven during the second and subsequent clocks of
write cycles.

PCHK# 0]

Parity Status is driven on the PCHK # pin the clock after ready for read operations.
The parity status is for data sampled at the end of the previous clock. A parity error
is indicated by PCHK # being LOW. Parity status is only checked for enabled bytes
as indicated by the byte enable and bus size signals. PCHK # is valid only in the
clock immediately after read data is returned to the processor. At all other times
PCHK # is inactive (HIGH). PCHK # is never floated.
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Table 3-7. Intel486™ Processor Pin Descriptions (Continued)

Symbol l Type [ Name and Function
BUS CYCLE DEFINITION
M/IO # (0] The memory/input-output, data/control and write/read lines are the primary bus
D/C# (0] definition signals. These signals are driven valid as the ADS # signal is asserted.
W/R# © M/I0 # D/C# W/R# Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 1/0 Read
0 1 1 1/0 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
address bus. Refer to section 10.2.11, “Special Bus Cycles,” for a description of the
special bus cycles.

LOCK # (0] The Bus Lock pin indicates that the current bus cycle is locked. The Intel486
processor will not allow a bus hold when LOCK # is asserted (but address holds are
allowed). LOCK# goes active in the first clock of the first locked bus cycle and goes
inactive after the last clock of the last locked bus cycle. The last locked cycle ends
when ready is returned. LOCK # is active LOW and is not driven during bus hold.
Locked read cycles will not be transformed into cache fill cycles if KEN # is returned
active.

PLOCK # o} The Pseudo-Lock pin indicates that the current bus transaction requires more than
: one bus cycle to complete. For the Intel486 processor, examples of such operations
are segment table descriptor reads (64 bits), in addition to cache line fills (128 bits).

For Intel486 processors with on-chip FPU, floating point long reads and write
(64 bits) also require more than one bus cycle to complete.

The Intel486 processor will drive PLOCK # active until the addresses for the last bus
cycle of the transaction have been driven regardless of whether RDY # or BRDY #
have been returned. Normally PLOCK # and BLAST # are inverse of each other.
However during the first bus cycle of a 64-bit floating point write (for Intel486
processors with on-chip FPU), both PLOCK # and BLAST # will be asserted.

PLOCK # is a function of the BS8 #, BS16# and KEN # inputs. PLOCK # should be
sampled only in the clock ready is returned. PLOCK # is active LOW and is not
driven during bus hold.
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Table 3-7. Intel486™ Processor Pin Descriptions (Continued)

Symbol I Type l Name and Function
BUS CONTROL
ADS # o} The Address Status output indicates that a valid bus cycle definition and address

are available on the cycle definition lines and address bus. ADS# is driven active in
the same clock as the addresses are driven. ADS # is active LOW and is not driven
during bus hold.

RDY # | The Non-burst Ready input indicates that the current bus cycle is complete. RDY #
indicates that the external system has presented valid data on the data pins in
response to a read or that the external system has accepted data from the Intel486
processor in response to a write. RDY # is ignored when the bus is idle and at the
end of the first clock of the bus cycle.

RDY # is active during address hold. Data can be returned to the processor while
AHOLD is active.

RDY # is active LOW, and is not provided with an internal pull-up resistor. RDY # 2
must satisfy setup and hold times t1g and t17 for proper chip operation.

BURST CONTROL

BRDY # 1 The Burst Ready input performs the same function during a burst cycle that RDY #
performs during a non-burst cycle. BRDY # indicates that the external system has
presented valid data in response to a read or that the external system has accepted
data in response to a write. BRDY # is ignored when the bus is idle and at the end of
the first clock in a bus cycle.

BRDY # is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the processor when BRDY # is
sampled active. If RDY # is returned simultaneously with BRDY #, BRDY # is
ignored and the burst cycle is prematurely aborted.

BRDY # is active LOW and is provided with a small pull-up resistor. BRDY # must
satisfy the setup and hold times t1g and t17.

BLAST # O The Burst Last signal indicates that the next time BRDY # is returned the burst bus
cycle is complete. BLAST # is active for both burst and non-burst bus cycles.
BLAST # is active LOW and is not driven during bus hold.

INTERRUPTS

RESET | The Reset input forces the Intel486 processor to begin execution at a known state.
The processor cannot begin execution of instructions until at least 1 ms after Vgg
and CLK have reached their proper DC and AC specifications. The RESET pin
should remain active during this time to insure proper processor operation. RESET is
active HIGH. RESET is asynchronous but must meet setup and hold times tog and
t21 for recognition in any specific clock.
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Table 3-7. Intel486™ Processor Pin Descriptions (Continued)

symbol | Type |

Name and Function

INTERRUPTS (Continued)

INTR

The Maskable Interrupt indicates that an external interrupt has been generated. If
the internal interrupt flag is set in EFLAGS, active interrupt processing will be
initiated. The Intel486 processor will generate two locked interrupt acknowledge bus
cycles in response to the INTR pin going active. INTR must remain active until the
interrupt acknowledges have been performed to assure that the interrupt is
recognized.

INTR is active HIGH and is not provided with an internal pull-down resistor. INTR is
asynchronous, but must meet setup and hold times tpg and to4 for recognition in any
specific clock.

The Non-Maskable Interrupt request signal indicates that an external non-
maskable interrupt has been generated. NMI is rising edge sensitive. NMI must be
held LOW for at least four CLK periods before this rising edge. NMl is not provided
with an internal pull-down resistor. NMI is asynchronous, but must meet setup and
hold times to and t24 for recognition in any specific clock.

SRESET

The Soft Reset pin duplicates all the functionality of the RESET pin with the
following two exceptions:

1. The SMBASE register will retain its previous value.

2. f UP# (l) is asserted, SRESET will not have an effect on the host processor.

For soft resets, SRESET should remain active for at least 15 CLK periods. SRESET
is active HIGH. SRESET is asynchronous but must meet setup and hold times tog
and tp for recognition in any specific clock.

SMi#

The System Management Interrupt input is used to invoke the System
Management Mode (SMM). SMI# is a falling edge triggered signal which forces the
processor into SMM at the completion of the current instruction. SMI# is recognized
on an instruction boundary and at each iteration for repeat string instructions. SMI #
does not break LOCKed bus cycles and cannot interrupt a currently executing SMM.
The processor will latch the falling edge of one pending SMI# signal while the
processor is executing an existing SMI#. The nested SMI# will not be recognized
until after the execution of a Resume (RSM) instruction.

SMIACT #

The System Management Interrupt ACTive is an active low output, indicating that
the processor is operating in SMM. It is asserted when the processor begins to
execute the SMI# state save sequence and will remain active LOW until the
processor executes the last state restore cycle out of SMRAM.

STPCLK #

The SToP CLocK request input signal indicates a request has been made to turn
off the CLK input. When the processor recognizes a STPCLK #, the processor will
stop execution on the next instruction boundary, unless superseded by a higher
priority interrupt, empty all internal pipelines and the write buffers and generate a
Stop Grant acknowledge bus cycle. STPCLK # is active LOW and is provided with
an internal pull-up resistor. STPCLK # is an asynchronous signal, but must
remain active until the processor issues the Stop Grant bus cycle. STPCLK #
may be de-asserted at any time after the processor has issued the Stop Grant
bus cycle.
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Table 3-7. Intel486™ Processor Pin Descriptions (Continued)

Symbol ‘ Type T Name and Function
BUS ARBITRATION
BREQ (0] The Bus Request signal indicates that the Intel486 processor has internally

generated a bus request. BREQ is generated whether or not the Intel486 processor
is driving the bus. BREQ is active HIGH and is never floated.

HOLD | The Bus Hold request allows another bus master complete control of the processor
bus. In response to HOLD going active the intel486 processor will float most of its
output and input/output pins. HLDA will be asserted after completing the current bus
cycle, burst cycle or sequence of locked cycles. The Intel486 processor will remain
in this state until HOLD is de-asserted. HOLD is active high and is not provided with
an internal pull-down resistor. HOLD must satisfy setup and hold times t1g and t1g
for proper operation.

HLDA (0] Hold Acknowledge goes active in response to a hold request presented on the
HOLD pin. HLDA indicates that the Intel486 processor has given the bus to another

local bus master. HLDA is driven active in the same clock that the Intel486 2

processor floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is

active HIGH and remains driven during bus hold.

BOFF # | The Backoff input forces the Intel486 processor to float its bus in the next clock.
The processor will float all pins normally floated during bus hold but HLDA will not be
asserted in response to BOFF #. BOFF # has higher priority than RDY # or BRDY #;
if both are returned in the same clock, BOFF # takes effect. The processor remains
in bus hold until BOFF # is negated. If a bus cycle was in progress when BOFF #
was asserted the cycle will be restarted. BOFF # is active LOW and must meet
setup and hold times t1g and t1g for proper operation.

CACHE INVALIDATION

AHOLD | The Address Hold request allows another bus master access to the processor’s
address bus for a cache invalidation cycle. The Intel486 processor will stop driving
its address bus in the clock following AHOLD going active. Only the address bus will
be floated during address hold, the remainder of the bus will remain active. AHOLD
is active HIGH and is provided with a small internal pull-down resistor. For proper
operation AHOLD must meet setup and hold times tyg and tyg.

EADS# | This signal indicates that a val/id External Address has been driven onto the
Intel486 processor address pins. This address will be used to perform an internal
cache invalidation cycle. EADS # is active LOW and is provided with an internal pull-
up resistor. EADS # must satisfy setup and hold times t12 and t43 for proper
operation.

CACHE CONTROL

KEN # | The Cache Enable pin is used to determine whether the current cycle is cacheable.
When the Intel486 processor generates a cycle that can be cached and KEN # is
active one clock before RDY # or BRDY # during the first transfer of the cycle, the
cycle will become a cache line fill cycle. Returning KEN# active one clock before
RDY # during the last read in the cache line fill will cause the line to be placed in the
on-chip cache. KEN # is active LOW and is provided with a small internal pull-up
resistor. KEN# must satisfy setup and hold times t14 and t45 for proper operation.

FLUSH # | The Cache Flush input forces the Intel486 processor to flush its entire internal
cache. FLUSH # is active low and need only be asserted for one clock. FLUSH # is
asynchronous but setup and hold times tog and to4 must be met for recognition in
any specific clock.
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Table 3-7. Intel486™ Processor Pin Descriptions (Continued)

Symbol LType [

Name and Function

PAGE CACHEABILITY

PWT
PCD

(o]
o

The Page Write-Through and Page Cache Disable pins reflect the state of the
page attribute bits, PWT and PCD, in the page table entry, page directory entry or
control register 3 (CR3) when paging is enabled. If paging is disabled, the processor
ignores the PCD and PWT bits and assumes they are zero for the purpose of
caching and driving PCD and PWT pins. PWT and PCD have the same timing as the
cycle definition pins (M/10#, D/C#, and W/R#). PWT and PCD are active HIGH
and are not driven during bus hold. PCD is masked by the cache disable bit (CD) in
Control Register 0.

BUS SIZE CONTROL

BS16#
BS8#

|
|

The Bus Size 16 and Bus Size 8 pins (bus sizing pins) cause the Intel486 processor
to run multiple bus cycles to complete a request from devices that cannot-provide or
accept 32 bits of data in a single cycle. The bus sizing pins are sampled every clock.
The state of these pins in the clock before ready is used by the Intel486 processor to
determine the bus size. These signals are active LOW and are provided with internal
pull-up resistors. These inputs must satisfy setup and hold times t14 and t45 for
proper operation.

ADDRESS MASK

A20M #

When the Address Bit 20 Mask pin is asserted, the Intel486 processor masks
physical address bit 20 (A20) before performing a lookup to the internal cache or
driving a memory cycle on the bus. A20M# emulates the address wraparound at
one Mbyte, which occurs on the 8086 processor. A20M # is active LOW and should
be asserted only when the processor is in real mode. This pin is asynchronous but
should meet setup and hold times tog and to¢ for recognition in any specific clock.
For proper operation, A20M # should be sampled high at the falling edge of RESET.

TEST ACCESS PORT

TCK

Test ClocK is an input to the Intel486 processor and provides the clocking function
required by the JTAG Boundary scan feature. TCK is used to clock state information
and data into component on the rising edge of TCK on TMS and TDI, respectively.
Data is clocked out of the part on the falling edge of TCK and TDO. TCK is provided
with an internal pull-up resistor.

TDI

Test Data Input is the serial input used to shift JTAG instructions and data into
component. TDI is sampled on the rising edge of TCK, during the SHIFT-IR and
SHIFT-DR TAP controller states. During all other tap controller states, TDl is a
“don’t care.” TDI is provided with an internal pull-up resistor.

TDO

Test Data Output is the serial output used to shift JTAG instructions and data out of
the component. TDO is driven on the falling edge of TCK during the SHIFT-IR and
SHIFT-DR TAP controller states. At all other times TDO is driven to the high
impedance state.

™S

Test Mode Select is decoded by the JTAG TAP (Tap Access Port) to select the
operation of the test logic. TMS is sampled on the rising edge of TCK. To guarantee
deterministic behavior of the TAP controller TMS is provided with an internal puil-up
resistor.
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Table 3-7. Intel486™ Processor Pin Descriptions (Continued)

Symbol L TypeJ Name and Function

PERFORMANCE UPGRADE SUPPORT

UP#

The Upgrade Present input detects the presence of the upgrade processor, then
powers down the core, and tri-states all outputs of the original processor, so that the
original processor consumes very low current. UP # is active LOW and sampled at
all times, including after power-up and during reset.

NUMERIC ERROR REPORTING FOR INTEL486 DX, INTELDX2™, AND INTELDX4™ PROCESSORS

FERR#

0

The Floating point ERRor pin is driven active when a floating point error occurs.
FERR # is similar to the ERROR # pin on the Intel387™ Math CoProcessor.
FERR# is included for compatibility with systems using DOS type floating point error
reporting. FERR # will not go active if FP errors are masked in FPU register. FERR #
is active LOW, and is not floated during bus hold.

IGNNE #

When the IGNore Numeric Error pin is asserted the processor will ignore a numeric
error and continue executing non-control floating point instructions, but FERR # will
still be activated by the processor. When IGNNE # is de-asserted the processor will
freeze on a non-control floating point instruction, if a previous floating point
instruction caused an error. IGNNE # has no effect when the NE bit in control
register O is set. IGNNE # is active LOW and is provided with a small internal pull-up
resistor. IGNNE # is asynchronous but setup and hold times tyg and to4 must be met
to insure recognition on any specific clock.

WRITE-BAC

K ENHANCED INTELDX2 PROCESSOR SIGNAL PINS

CACHE #

0]

The CACHE # output indicates internal cacheability on read cycles and burst write-
back on write cycles. CACHE # is asserted for cacheable reads, cacheable code
fetches and write-backs. It is driven inactive for non-cacheable reads, 1/0 cycles,
special cycles, and write-through cycles.

FLUSH #

Cache FLUSH # is an existing pin that operates differently if the processor is
configured as Enhanced Bus mode (write-back). FLUSH # will cause the processor
to write back all modified lines and flush (invalidate) the cache. FLUSH # is
asynchronous, but must meet setup and hold times tog and to1 for recognition in any
specific clock.

HITM #

The Hit/Miss to a Modified Line pin is a cache coherency protocol pin that is
driven only in Enhanced Bus mode. When a snoop cycie is run, HITM # indicates
that the processor contains the snooped line and that the line has been modified.
Assertion of HITM # implies that the line will be written back in its entirety, unless the
processor is already in the process of doing a replacement write-back of the same
line.

INV

The Invalidation Request pin is a cache coherency protocol pin that is used only in
the Enhanced Bus mode. It is sampled by the processor on EADS # -driven snoop
cycles. Itis necessary to assert this pin to get the effect of the processor invalidate
cycle on write-through-only lines. INV also invalidates the write-back lines. However,
if the snooped line is modified, the line will be written back and then invalidated. INV
must satisfy setup and hold times t1» and t43 for proper operation.
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Table 3-7. Intel486™ Processor Pin Descriptions (Continued)

Symbol l Type i

Name and Function

WRITE-BACK ENHANCED INTELDX2 PROCESSOR SIGNAL PINS (Continued)

PLOCK #

(0]

In the Enhanced bus mode, Pseudo-Lock Output is always driven inactive. In this
mode, a 64-bit data read (caused by an FP operand access or a segment descriptor
read) is treated as a multiple cycle read request, which may be a burst or a non-burst
access based on whether BRDY # or RDY # is returned by the system. Because
only write-back cycles (caused by Snoop write-back or replacement write-back) are
write burstable, a 64-bit write will be driven out as two non-burst bus cycles.
BLAST # is asserted during both writes. Refer to the Bus Functional Description
section 10.3 for details on Pseudo-Locked bus cycles.

SRESET

For the Write-Back Enhanced IntelDX2 processor, Soft RESET operates similar to
other Intel486 processors. On SRESET, the internal SMRAM base register retains
its previous value, does not flush, write-back or disable the internal cache. Because
SRESET is treated as an interrupt, it is possible to have a bus cycle while SRESET is
asserted. SRESET is serviced only on an instruction boundary. SRESET is
asynchronous but must meet setup and hold times tog and to1 for recognition in any
specific clock.

WB/WT #

The Write-Back/Write-Through pin enables Enhanced Bus mode (write-back
cache). It also defines a cached line as write-through or write-back. For cache
configuration, WB/WT # must be valid during RESET and be active for at least two
clocks before and two clocks after RESET is de-asserted. To define write-back or
write-through configuration of a line, WB/WT # is sampled in the same clock as the
first RDY # or BRDY # is returned during a line fill (allocation) cycle.

INTELDX4 PROCESSOR CLKMUL, VCC5, AND VOLDET

CLKMUL

The CLocK MULtiplier input, defined during device RESET, defines the ratio of
internal core frequency to external bus frequency. If sampled low, the core
frequency operates at twice the external bus frequency (speed doubled mode). If
driven high or left floating, speed triple mode is selected. CLKMUL has an intérnal
pull-up speed to Vgc and may be left floating in designs that select speed tripled
clock mode.

Vees

The 5V reference voltage input is the reference voltage for the 5V-tolerant 1/0
buffers. This signal should be connected to +5V £5% for use with 5V logic. If all
inputs are from 3V logic, this pin should be connected to 3.3V.

VOLDET

A VOLtage DETect signal allows external system logic to distinguish between a 5V
Intel486 processor and the 3.3V IntelDX4 processor. This signal is active low for a
3.3V IntelDX4 processor. This pin is available only on the PGA version of the
IntelDX4 processor.
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Table 3-8. Output Pins

Intel486™ PROCESSOR FAMILY

Table 3-9. Input/Output Pins(1)

Name Active Level | When Floated Name Active Level When Floated
BREQ HIGH D31-D0 HIGH/LOW | Bus Hold
HLDA HIGH DP3-DPO HIGH Bus Hold
BE3#-BEO# LOW Bus Hold A31-A4 HIGH/LOW | Bus, Address Hold
PWT, PCD HIGH/LOW | Bus Hold NOTE:
W/R#, HIGH/LOW | Bus Hold 1. All input/output signals are floated when UP# is assert-
M/IO#,D/C# ed.
LOCK# Low Bus Hold Table 3-10. Test Pins
Z;C;(;K# tgx 232 :::: Name Igz:;:tr Sampled/Driven On
BLAST # LOW Bus Hold TCK Input N/A
PCHK # LOW TDI Input Rising Edge of TCK
FERR#(1) LOW TDO Output Falling Edge of TCK
A3-A2 N/A Bus, Address Hold T™MS Input Rising Edge of TCK
SMIACT #(2) LOW NOTE:
CACHE#(3) LOW Bus, Address Hold 1. The test pins are not present on the Intel486 SX™ proc-
essor in the PGA package.
HITM#(3) LOW Bus, Address Hold
VOLDET(4) LOW
NOTES:

1. Present on the Intel486™ DX, InteIDX2™, and
IntelDX4™™ processors only.

2. Not present in the 50-MHz Intel486 DX processor.

3. Present on the Write-Back Enhanced InteIDX2 proces-
sor only.

4. Present on the IntelDX4 processor only.
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Table 3-11. Input Pins

intgl.

o oo P
Pull-Down
CLK,
CLK2(1)
RESET HIGH Asynchronous
SRESET- HIGH - Asynchronous Pull-Down
HOLD HIGH Synchronous
AHOLD HIGH Synchronous Pull-Down
EADS # LOW Synchronous Pull-Up
BOFF # LOW Synchronous Pull-Up
FLUSH # LOW Asynchronous Pull-Up
A20M # LoOwW Asynchronous Pull-Up
BS16#, LOW Synchronous Pull-Up
BS8#
KEN # LOW Synchronous Pull-Up
RDY # LOW Synchronous
BRDY # LOW Synchronous Pull-Up
INTR HIGH Asynchronous
NMi HIGH Asynchronous
IGNNE #(2) LOW Asynchronous Pull-Up
SMI#@) LOW Asynchronous Pull-Up
STPCLK(@ # LOW Asynchronous Pull-Up
UP# LOW Pull-Up
TCK4) HIGH Pull-Up
TDI4) HIGH Pull-Up
TMS#4) HIGH Pull-Up
INV(5) HIGH Synchronous Pull-Up
WB/WT #(5) HIGH/ Synchronous Pull-Down
LOW

CLKMUL #(6) N/A Pull-Up

NOTES:

1. CLK2 is present on 2X clock mode Intel486™ SX and Intel486 DX processors.
2. Present on the Intel486 DX, IntelDX2™, and IntelDX4™™ processors only.

3. Not present in the 50-MHz Intel486 DX processor.

4. The test pins are not present on the Intel486 SX processor in the PGA package.
5. Present on the Write-Back Enhanced IntelDX2 processor only.

6. Present on the IntelDX4 processor only.
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4.0 ARCHITECTURAL OVERVIEW

4.1 Introduction

The Intel486 processor family is a 32-bit architecture
with on-chip memory management, floating point,
and cache memory units. Figure 4-1 is a block dia-
gram of the Intel486 processor family. The Intel486
processor contains all the features of the Intel386™
processor with enhancements to increase perform-
ance.

The Intel486 processor instruction set includes the
complete Intel386 processor instruction set along
with extensions to serve new applications and in-
crease performance. The on-chip memory manage-
ment unit (MMU) is completely compatible with the
Intel386 processor MMU. Software written for previ-
ous members of the Intel architecture family will run
on the Intel486 processor without any modifications.

On-chip cache memory allows frequently used data
and code to be stored on-chip reducing accesses to
the external bus. RISC design techniques reduce in-
struction cycle times. A burst bus feature enables
fast cache fills.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical address space by
providing easy data and code relocatibility and effi-
cient sharing of global resources. The paging mech-
anism operates beneath segmentation and is trans-
parent to the segmentation process. Paging is op-
tional and can be disabled by system software. Each
segment can be divided into one or more 4-Kbyte
segments. To implement a virtual memory system,
full restartability for all page and segment faults is
supported.

Memory is organized into one or more variable
length segments, each up to four Gbytes (232 bytes)
in size. A segment can have attributes associated
with it which include its location, size, type (i.e.,
stack, code or data), and protection characteristics.
Each task on an Intel486 processor can have a max-
imum of 16,381 segments and each are up to four
Gbytes in size. Thus, each task has a maximum of
64 terabytes (trillion bytes) of virtual memory.

Intel486™ PROCESSOR FAMILY

The segmentation unit provides four levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of software integrity.

The Intel486 processor has two modes of operation:
Real Address Mode (Real Mode) and Protected
Mode Virtual Address Mode (Protected Mode). In
Real Mode the Intel486 processor operates as a
very fast 8086. Real Mode is required primarily to set
up the Intel486 processor for Protected Mode oper-
ation. Protected Mode provides access to the so-
phisticated memory management paging and privi-
lege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each Virtual 8086 task behaves with
8086 semantics, allowing 8086 processor software
(an application program or an entire operating sys-
tem) to execute.

System Management Mode (SMM) provides the sys-
tem designer with a means of adding new software
controlled features to their computer products that
always operate transparently to the Operating Sys-
tem (OS) and software applications. SMM is intend-
ed for use only by system firmware, not by applica-
tions software or general purpose systems software.

The on-chip cache is 16 Kbytes in size for the
IntelDX4 processor and 8 Kbytes in size for all other
members of the Intel486 processor family. It is 4-
way set associative and follows a write-through poli-
cy. The on-chip cache includes features to provide
flexibility in external memory system design. Individ-
ual pages can be designated as cacheable or non-
cacheable by software or hardware. The cache can
also be enabled and disabled by software or hard-
ware. The Write-Back Enhanced IntelDX2 processor
can be set to use an on-chip write-back cache poli-
cy.

The Intel486 processor also has features that facili-
tate high-performance hardware designs. The 1X
bus clock input eases high-frequency board-level
designs. The clock multiplier on IntelSX2, IntelDX2,
and IntelDX4 processors improves execution per-
formance without increasing board design complexi-
ty. The clock multiplier enhances all operations op-
erating out of the cache and/or not blocked by ex-
ternal bus accesses. The burst bus feature enables
fast cache fills.
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Figure 4-1. Intel486™ Processor Block Diagram

4.1.1 INTEL486 DX, INTELDX2™, AND
INTELDX4™ PROCESSOR ON-CHIP
FLOATING POINT UNIT

The Intel486 DX, IntelDX2, and IntelDX4 processors
incorporate the basic Intel486 processor 32-bit ar-
chitecture with on-chip memory management and
cache memory units. They also have an on-chip
floating point unit (FPU) that operates in parallel with
the arithmetic and logic unit. The FPU provides arith-
metic instructions for a variety of numeric data types
and executes numerous built-in transcendental func-
tions (e.g., tangent, sine, cosine, and log functions).
The floating point unit fully conforms to the ANSI/
|IEEE standard 754-1985 for floating point arithmetic.

All software written for the Intel386 processor,
Intel387 math coprocessor and previous members
of the 86/87 architectural family will run on these
processors without any modifications.
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4.1.2 UPGRADE POWER DOWN MODE

Upgrade Power Down Mode on the Intel486 proces-
sor is initiated by the Intel OverDrive processor using
the UP# (upgrade present) pin. Upon sensing the
presence of the Intel OverDrive Processor, the
Intel486 processor tri-states its outputs and enters
the “Upgrade Power Down Mode,” lowering its pow-
er consumption. The UP# pin of the Intel486 proc-
essor is driven active (low) by the UP# pin of the
Intel OverDrive processor.

4.2 Register Set

The Intel486 processor register set can be split into
the following categories:

® Base Architecture Registers
General Purpose Registers
Instruction Pointer -
Flags Register

Segment Registers
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e Systems Level Registers

— Control Registers

— System Address Registers
® Debug and Test Registers

The base architecture and floating point registers
(see below) are accessible by the applications pro-
gram. The system level registers can only be ac-
cessed at privilege level 0 and used by system level
programs. The debug and test registers also can
only be accessed at privilege level 0.

4.2.1 FLOATING POINT REGISTERS

In addition to the registers listed above, the Intel486
DX, IntelDX2, and IntelDX4 processors also have
the following:

¢ Floating Point Registers
— Data Registers
— Tag Word
— Status Word
— Instruction and Data Pointers
— Control Word

4.2.2 BASE ARCHITECTURE REGISTERS

Figure 4-2 shows the Intel486 processor base archi-
tecture registers. The contents of these registers are
task-specific and are automatically loaded with a
new context upon a task switch operation.

The base architecture includes six directly accessi-
ble descriptors, each specifying a segment up to 4
Gbytes in size. The descriptors are indicated by the
selector values placed in the intel486 processor
segment registers. Various selector values can be
loaded as a program executes.

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

NOTE:
In register descriptions, “set” means ‘“set to
1,” and “reset” means ‘reset to 0.”

Intel486™ PROCESSOR FAMILY

General Purpose Registers
31 241 23 1615 Bl 7 0
AH As( AL EAX

BH BX BL | EBX
CH CX CL |ECX
DH DX DL | EDX

ESI

‘EDI

EBP

ESP

Segment Registers
15 0

CS  Code Segment

ss Stack Segment
DS

ES

Data Segments
Fs

GS

Instruction Pointer
31 16I 15 o]

I | P —l EIP

Flags Register

I |

FLAGS j EFLAGS
242202-9

Figure 4-2. Base Architecture Registers

4.2.2,1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 4-2. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, DX, S|, DI,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa-
rately.
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Finally, 8-bit operations can individually access the
lower byte (bits 0-7) and the highest byte (bits 8-
15) of the general purpose registers AX, BX, CX and
DX. The lowest bytes are named AL, BL, CL and DL
respectively. The higher bytes are named AH, BH,
CH and DH respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

4.2.2.2 Instruction Pointer

The instruction pointer shown in Figure 4-2 is a 32-
bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0-15) of the EIP contain the 16-bit
instruction pointer named IP, which is used for 16-bit
addressing.

intal.

The flags register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS control certain operations and indicate
status of the Intel486 processor. The lower 16 bits
(bit 0-15) of EFLAGS contain the 16-bit register
named FLAGS, which is most useful when executing
8086 and 80286 processor code. EFLAGS is shown
in Figure 4-3.

4.2.2.3 Flags Register

EFLAGS bits 1, 3, 5, 15 and 22-31 are defined as
“Intel Reserved.” When these bits are stored during
interrupt processing or with a PUSHF instruction
(push flags onto stack), a one is stored in bit 1 and
zeros in bits 3, 5, 15 and 22-31.

FLAGS
N

3322222222221111r111111
10987654321098765432109876543210

Y

Interrupt Enable

VIVia[v|r].In|1or o]o] 1 e
EFLAGS ',',,':CM T| L |FIF|F e
' W X 3
Identification Flag————j 1 T ™ i Carry Flag
Virtual Interrupt Pending —————— Parity Flag
Virtual Interrupt Flag Auxiliary lag
Alignment Check Zero Flag
Virtual Mode Sign Flag
Resume Flag Trap Flag
Nested Task Flag
I/O Privilege Level
Overflow
Direction Flag

indicates Intel Reserved; Do not define. -

NOTE:
See section 4.2.7 “Compatibility.”

242202-10

Figure 4-3. Flag Registers
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VIF

AC
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(dentification Flag, bit 21)

The ability of a program to set and clear the ID
flag indicates that the processor supports the
CPUID instruction. (Refer to section 13, “In-
struction Set Summary,” and Appendix B,
“Feature Determination: CPUID Instruction.”)

(Virtual Interrupt Pending Flag, bit 20)

The VIP flag together with the VIF enable
each applications program in a multitasking
environment to have virtualized versions of
the system’s IF flag. For more on the use of
this flag in virtual-8086 mode and in protected
mode. (Refer to Appendix A, “Advanced Fea-
tures.”)

(Virtual Interrupt Flag, bit 19)

The VIF is a virtual image of IF (the interrupt
flag) used with VIP. For more on the use of
this flag in virtual-8086 mode and in protected
mode. (Refer to Appendix A, “Advanced Fea-
tures.”)

(Alignment Check, bit 18)

The AC bit is defined in the upper 16 bits of
the register. It enables the generation of fauits
if a memory reference is to a misaligned ad-
dress. Alignment faults are enabled when AC
is set to 1. A misaligned address is a word
access an odd address, a dword access to an
address that is not on a dword boundary, or
an 8-byte reference to an address that is not
on a 64-bit word boundary. (See section
10.1.5, “Operand Alignment.”)

Alignment faults are only generated by pro-
grams running at privilege level 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS), are implicitly level O references even if
the instructions causing the references are
executed at level 3. Alignment faults are re-
ported through interrupt 17, with an error code
of 0. Table 4-1 gives the alignment required
for the Intel486 processor data types.
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Table 4-1. Data Type Alignment Requirements

Alignment
Memory Access (Byte Boundary)
Word 2
Dword 4
Single Precision 4
Real
Double Precision 8
Real
Extended Precision 8
Real
Selector 2
48-Bit Segmented
Pointer
32-Bit Flat Pointer
32-Bit Segmented 2
Pointer
48-Bit “Pseudo- 4
Descriptor”
FSTENV/FLDENV 4/2 (On Operand Size)
Save Area
FSAVE/FRSTOR 4/2 (On Operand Size)
Save Area
Bit String 4

IMPLEMENTATION NOTE:

Several instructions on the Intel486 proces-
sor generate misaligned references, even if
their memory address is aligned. For exam-
ple, on the Intel486 processor, the SGDT/
SIDT (store global/interrupt descriptor table)
instruction reads/writes two bytes, and then
reads/writes four bytes from a “‘pseudo-de-
scriptor” at the given address. The Intel486
processor will generate misaligned refer-
ences unless the address is on a 2 mod 4
boundary. The FSAVE and FRSTOR instruc-
tions (floating point save and restore state)
will generate misaligned references for one-
half of the register save/restore cycles. The
Intel486 processor will not cause any AC
faults if the effective address given in the in-
struction has the proper alignment.
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VM

RF

NT

2-48

(Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode with-
in Protected Mode. If set while the Intel486
processor is in Protected Mode, the Intel486
processor will switch to Virtual 8086 opera-
tion, handling segment loads as the 8086
processor does, but generating exception
13 faults on privileged opcodes. The VM bit
can be set only in Protected Mode, by the
IRET instruction (if current privilege level =
0) and by task switches at any privilege lev-
el. The VM bit is unaffected by POPF.
PUSHF always pushes a 0 in this bit, even if
executing in Virtual 8086 Mode. The
EFLAGS image pushed during interrupt pro-
cessing or saved during task switches will
contain a 1 in this bit if the interrupted code
was executing as a Virtual 8086 Task.

(Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint
processing. When RF is set, it causes any
debug fault to be ignored on the next in-
struction. RF is then automatically reset at
the successful completion of every instruc-
tion (no faults are signaled) except the IRET
instruction, the POPF instruction, (and JMP,
CALL, and INT instructions causing a task
switch). These instructions set RF to the val-
ue specified by the memory image. For ex-
ample, at the end of the breakpoint service
routine, the IRET instruction can pop an
EFLAG image having the RF bit set and re-
sume the program’s execution at the break-
point address without generating another
breakpoint fault on the same location.

(Nested Task, bit 14)

The flag applies to Protected Mode. NT is
set to indicate that the execution of this task
is within another task. If set, it indicates that
the current nested task’s Task State Seg-
ment (TSS) has a valid back link to the previ-
ous task’s TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

IOPL

OF

DF

TF
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(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum
CPL (current privilege level) value permitted
to execute 1/0 instructions without generat-
ing an exception 13 fault or consulting the
1/0 Permission Bitmap. It also indicates the
maximum CPL value allowing alteration of
the IF (INTR Enable Flag) bit when new val-
ues are popped into the EFLAG register.
POPF and IRET instruction can alter the
IOPL field when executed at CPL = 0. Task
switches can always alter the IOPL field,
when the new flag image is Ioaded from the
incoming task’s TSS.

(Overflow Flag, bit 11)

is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did
not result in a carry/borrow out of the high-
order bit, or vice-versa. For 8-, 16-, 32-bit
operations, OF is set according to overflow
at bit 7, 15, 31, respectively.

(Direction Flag, bit 10)

DF defines whether ESI and/or EDI regis-
ters post decrement or post increment dur-
ing the string instructions. Post increment
occurs if DF is reset. Post decrement occurs
if DF is set.

(INTR Enable Flag, bit 9)

IF flag, when set, allows recognition of ex-
ternal interrupts signaled on the INTR pin.
When IF is reset, external interrupts signaled
on the INTR are not recognized. IOPL indi-
cates the maximum CPL value allowing al-
teration of the IF bit when new values are
popped into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of exception 1
trap when single-stepping through code.
When TF is set, the Intel486 processor gen-
erates an exception 1 trap after the next in-
struction is executed. When TF is reset, ex-
ception 1 traps occur only as a function of
the breakpoint addresses loaded into debug
registers DRO-DR3.
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SF (Sign Flag, bit 7) 4.2.2.4 Segment Registers

SF is set if the high-order bit of the result is . . )
set, it is reset otherwise. For 8-, 16-, 32-bit Six 16-bit segment registers hold segment selector

operations, SF reflects the state of bit 7, 15, values identifying the currently addressable memory

31 respectively. segments. In protected mode, each segment may

] range in size from one byte up to the entire linear

ZF (Zero Flag, bit 6) and physical address space of the machine, 4
ZF is set if all bits of the result are 0. Other- Gbytes (232 bytes). In real address mode, the maxi-
wise, it is reset. ; mum segment size is fixed at 64 Kbytes (216 bytes).

F Auxiliary Carry Flag, bit 4 . .

A iy ars'(. 4 .g ) R The six addressable segments are defined by the
The Auxiliary Flag is used to simplify the ad-  gegment registers CS, SS, DS, ES, FS and GS. The
dition and subtraction of packed BCD quan-  ggjgctor in CS indicates the current code segment;
tities. AF is set if the operation resulted ina g selector in SS indicates the current stack seg-

carry out of bit 3 (addition) or a borrow into ment: the selectors in DS, ES, FS and GS indicate
bit 3 (subtraction). Otherwise, AF is reset. the current data segments.

AF is affected by carry out of, or borrow into
bit 3 only, regardless of overall operand
length: 8, 16 or 32 bits. 4.2.2,5 Segment Descriptor Cache Registers 2

PF (Parity Flags, bit 2) The segment descriptor cache registers are not pro-
PF is set if the low-order eight bits of the grammer visible, yet it is very useful to understand
operation contains an even number of *“1’s” their content. A programmer invisible descriptor
(even parity). PF is reset if the low-order  cache register is associated with each programmer-
eight bits have odd parity. PF is a functionof  visible segment register, as shown by Figure 4-4.
only the low-order eight bits, regardless of Each descriptor cache register holds a 32-bit base
operand size. address, a 32-bit segment limit, and the other neces-

CF (Carry Flag, bit 0) sary segment attributes.

CF is set if the operation resulted in a carry
out of (addition), or a borrow into (subtrac-
tion) the high-order bit. Otherwise, CF is re-
set. For 8-, 16- or 32-bit operations, CF is
set according to carry/borrow at bit 7, 15 or
31, respectively.

Segment Registers Descriptor Registers (Loaded Automatically)
7\ 7\

4 N\ 4

15 0 Physical Base Address Segment Limit Other Segment Attributes from Descriptor
Selector CS— -
Selector S§— - -
Selector DS— -|=|—
Selector ES— =
Selector FS — - =i
Selector GS— -={—

242202-11

Figure 4-4. Intel486™ Processor Segment Registers and Associated Descriptor Cache Registers
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When a selector value is loaded into a segment reg-
ister, the associated descriptor cache register is au-
tomatically updated with the correct information. In
Real Mode, only the base address is updated direct-
ly (by shifting the selector value four bits to the left),
because the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor cache register associated with the seg-
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad-
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

intel.

4.2.3 SYSTEM LEVEL REGISTERS

Figure 4-5 illustrates the system level registers,
which are the control operation of the on-chip
cache, the on-chip floating point unit (on the Intel486
DX, IntelDX2, and IntelDX4 processors) and the seg-
mentation and paging mechanisms. These registers
are only accessible to programs running at privilege
level 0, the highest privilege level.

The system level registers include three control reg-
isters and four segmentation base registers. The
three control registers are CR0O, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg-
mentation base registers are the Global Descriptor
Table Register (GDTR), the Interrupt Descriptor Ta-
ble Register (IDTR), the Local Descriptor Table Reg-
ister (LDTR) and the Task State Segment Register
(TR).

31 ) 24123 1615 817 0
CRO
Page Fault Linear Address Register CR2
Page Directory Base Register l CR3
CR4
a7 32-Bit Linear Base Address 1515  Limit 0
GDTR Selector
IDTR Selector
System Segment Registers Descriptor Registers (Loaded Automatically)
7\ 7\
' N\ 4 )
15 0 32-Bit Linear Base Address 20-Bit Segment Limit Attributes
TR Selector
LDTR Selector
242202-12

Figure 4-5. System Level Registers
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0
TIE|M|P
'[s|m|p|e|CRO
/
indicates Intel Reserved; Do not define.
242202-13
NOTE:
See Section 4.2.7 “Compatibility”.
Figure 4-6. Control Register 0
4.2.3.1 Control Registers L4 On'Chip Cache Control Modes: CD, NW
(Table 4-3)
Control Register 0 (CRO) e On-Chip Floating Point Unit: NE, TS, EM, TS (Ta-

CRO, shown in Figure 4-6, contains 10 bits for con-
trol and status purposes. The function of the bits in

bles 4-4, 4-5, and 4-6). (Also applies for Intel486
SX and IntelSX2 processors.)

CRO can be categorized as follows: * Alignment Check Control: AM
e Intel486 Processor Operating Modes: PG, PE * Supervisor Write Protect: WP
(Table 4-2)

Table 4-2. Intel486™ Processor Operating Modes

PG

PE

Mode

REAL Mode. Exact 8086 processor semantics, with 32-bit extensions available with prefixes.

Protected Mode. Exact 80286 processor semantics, plus 32-bit extensions through both prefixes
and “default” prefix setting associated with code segment descriptors. Also, a sub-mode is
defined to support a virtual 8086 processor within the context of the extended 80286 processor
protection model.

UNDEFINED. Loading CRO with this combination of PG and PE bits will raise a GP fault with error
code 0.

Paged Protected Mode. All the facilities of Protected mode, with paging enabled underneath
segmentation.

Table 4-3. On-Chip Cache Control Modes

cD

NwW

Operating Mode

Cache fills disabled, write-through and invalidates disabled.

Cache fills disabled, write-through and invalidates enabled.

INVALID. If CRO is loaded with this configuration of bits, a GP fault with error code is raised.

olo|—=]|—

O|= O |—=

Cache fills enabled, write-through and invalidates enabled.
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The low-order 16 bits of CRO are also known as the
Machine Status Word (MSW), for compatibility with
the 80286 processor protected mode. LMSW and
SMSW (load and store MSW) instructions are taken
as special aliases of the load and store CRO opera-
tions, where only the low-order 16 bits of CRO are
involved. The LMSW and SMSW instructions in the
Intel486 processor work in an identical fashion to
the LMSW and SMSW instructions in the 80286
processor (i.e., they only operate on the low-order
16 bits of CRO and ignores the new bits). New
Intel486 processor operating systems should use
the MOV CRO, Reg instruction.

NOTE:
All Intel386 and Intel486 processor CRO bits,
except for ET and NE, are upwardly compati-
ble with the 80286 processor, because they
are in register bits not defined in the 80286
processor. For strict compatibility with the
80286 processor, the load machine status
word (LMSW) instruction is defined to not
change the ET or NE bits.

The defined CRO bits are described below.

PG (Paging Enable, bit 31)
PG bit is used to indicate whether paging is
enabled (PG=1) or disabled (PG=0). (See
Table 4-2.)

CcD (Cache Disable, bit 30)

The CD bit is used to enable the on-chip
cache. When. CD=1, the cache will not be
filled on cache misses. When CD=0, cache
fills may be performed on misses. (See Ta-
ble 4-3.)

The state of the CD bit, the cache enable
input pin (KEN#), and the relevant page
cache disable (PCD) bit determine if a line
read in response to a cache miss will be
installed in the cache. A line is installed in
the cache only if CD=0 and KEN# and
PCD are both zero. The relevant PCD bit
comes from either the page table entry,
page directory entry or control register 3.
(Refer to section 7.6, “Page Cacheability.”)

CD is set to one after RESET.
NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write-
throughs and write-invalidate cycles
(NW=0).
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When NW=0, all writes, including cache
hits, are sent out to the pins. Invalidate cy-
cles are enabled when NW=0. During an
invalidate cycle a line will be removed from
the cache if the invalidate address hits in
the cache. (See Table 4-3.)

When NW=1, write-throughs and write-in-
validate cycles are disabled. A write will not
be sent to the pins if the write hits in the
cache. With NW=1 the only write cycles
that reach the external bus are cache miss-
es. Write hits with NW =1 will never update
main memory. Invalidate cycles are ignored
when NW=1.

(Alignment Mask, bit 18)

The AM bit controls whether the alignment
check (AC) bit in the flag register (EFLAGS)
can allow an alignment fault. AM=0 dis-
ables the AC bit. AM=1 enables the AC bit.
AM=0 is the Intel386 processor compatible
mode.

Intel386 processor software may load incor-
rect data into the AC bit in the EFLAGS reg-
ister. Setting AM=0 will prevent AC faults
from occurring before the Intel486 proces-
sor has created the AC interrupt service
routine.

(Write Protect, bit 16)

WP protects read-only pages from supervi-
sor write access. The Intel386 processor al-
lows a read-only page to be written from
privilege levels 0-2. The Intel486 processor
are compatible with the Intel386 processor
when WP=0. WP=1 forces a fault on a
write to a read-only page from any privilege
level. Operating systems with Copy-on-
Write features can be supported with the
WP bit. (Refer to section 6.4.3 “Page Level
Protection (R/W, U/S Bits).”)

NOTE:

Refer to Tables 4-4, 4-5, and 4-6 for values
and interpolation of NE, EM, TS, and MP
bits, in addition to the sections below.

NE

(Numerics Exception, bit 5)

Intel486 SX and IntelSX2 Processor NE
Bit

For Intel486 SX and IntelSX2 processors,
interrupt 7 will be generated upon encoun-
tering any floating point instruction regard-
less of the value of the NE bit. It is recom-
mended that NE =1 for normal operation of
the Intel486 processor.
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Intel486 DX, IntelDX2 and IntelDX4
Processor NE Bit

For Intel486 DX, IntelDX2, and IntelDX4
processors, the NE bit controls whether un-
masked floating point exceptions (UFPE)
are handled through interrupt vector 16
(NE=1) or through an external interrupt
(NE=0). NE=0 (default at reset) supports
the DOS operating system error reporting
scheme from the 8087, Intel287 and
Intel387 math coprocessors. In DOS sys-
tems, math coprocessor errors are reported
via external interrupt vector 13. DOS uses
interrupt vector 16 for an operating system
call. (Refer to sections 9.2.15, “Numeric Er-
ror Reporting (FERR#, IGNNE#),” and
10.2.14 “Floating Point Error Handling.”)

Fot any UFPE, the floating point error out-
put pin (FERR #) will be driven active.

For NE=0, the Intel486 DX, IntelDX2 and
IntelDX4 processors work in conjunction
with the ignore numeric error input
(IGNNE#) and the FERR# output pins.
When a UFPE occurs and the IGNNE # in-
put is inactive, the Intel486 DX, IntelDX2,
and IntelDX4 processors freeze immediate-
ly before executing the next floating point
instruction. An external interrupt controller
will supply an interrupt vector when FERR #
is driven active. The UFPE is ignored if
IGNNE # is active and floating point execu-
tion continues.

NOTE:

EM
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Device Not Available (DNA) fault (trap vec-
tor 7). With MP=0, the value of TS bitis a
don't care for the WAIT instructions, i.e.,
these instructions will not generate trap 7.

Intel486 DX, IntelDX2, and IntelDX4
Processor TS Bit

For Inteld86 DX, IntelDX2, and IntelDX4
processors, the TS bit is set whenever a
task switch operation is performed. Execu-
tion of floating point instructions with TS=1
will cause a Device Not Available (DNA)
fault (trap vector 7). If TS=1 and MP=1
(monitor coprocessor in CR0), a WAIT in-
struction will cause a DNA fault. )

(Emulate Coprocessor, bit 2)

Intel486 SX and IntelSX2
Processor EM Bit

For Intel486 SX and IntelSX2 processors,
the EM bit should be set to one. This will
cause the Intel486 SX and IntelSX2 proces-
sors to trap via interrupt vector 7 (Device
Not Available) to a software exception han-
dler whenever it encounters a floating point
instruction. If EM bit is 0 for the Intel486 SX
and IntelSX2 processors, the system will
hang. (See Tables 4-4 and 4-5.)

Intel486 DX, IntelDX2, and IntelDX4
Processor EM Bit

For the Intel486 DX, IntelDX2, and IntelDX4
processors, the EM bit determines whether
floating point instructions are trapped
(EM=1) or executed. If EM=1, all floating
point instructions will cause fault 7.

The freeze does not take place if the next
instruction is one of the control instructions
FNCLEX, FNINIT,. FNSAVE, FNSTENYV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI,
FNDISI and FNSETPM. The freeze does oc-
cur if the next instruction is WAIT.

For NE=1, any UFPE will result in a soft-
ware interrupt 16, immediately before exe-
cuting the next non-control floating point or
WAIT instruction. The ignore numeric error
input (IGNNE #) signal will be ignored.

(Task Switch, bit 3)

Intel486 SX and IntelSX2

Processor TS Bit

For Intel486 SX and IntelSX2 processors,

the TS bit is set whenever a task switch op-

eration is performed. Execution of floating
point instructions with TS=1 will cause a

If EM=0, the on-chip floating point will be
used.

NOTE:
WAIT instructions are not affected by the
state of EM. (See Tables 4-4 and 4-6.)

MP (Monitor Coprocessor, bit 1)

Intel486 SX and IntelSX2
Processor MP Bit

For Intel486 SX and IntelSX2 processors,
the MP bit must be set to zero (MP=0). The
MP bit is used in conjunction with the TS bit
to determine if WAIT instructions should
trap. For MP=0, the value of TS is a don’t
care for these type of instructions. (See Ta-
bles 4-4 and 4-5.)
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Intel486 DX, IntelDX2, and IntelDX4
Processor MP Bit

For the Intel486 DX, IntelDX2, and IntelDX4
processors, the MP is used in conjunction
with the TS bit to determine if WAIT instruc-
tions cause fault 7. (See Table 4-6.) The TS
bit is set to 1 on task switches by the
Intel486 DX, IntelDX2, and IntelDX4 proces-
sors. Floating point instructions are not af-
fected by the state of the MP bit. It is rec-
ommended that the MP bit be set to one for
normal processor operation.

PE

n
intal.
(Protection-Enable, bit 0)

The PE bit enables the segment based pro-
tection mechanism if PE=1 protection is
enabled. When PE=0 the Intel486 proces-
sor operates in REAL mode, with segment
based protection disabled, and addresses
formed as in an 8086 processor. (Refer to
Table 4-2.) .

Table 4-4. Recommended Values of NE, EM, TS, and MP Bits in CRO
Register for Intel486™ SX and IntelSX2™ Processors

CRO Bit Instruction Type
NE EM TS MP FP WAIT
1 1 0 0 Trap7 Execute
1 1 Trap7 Execute

Table 4-5. Recommended Values of the Floating Point Related Bits for All Intel486™ Processors

CRO Bit Intel486 SX and IntelSX2™™ Intel486 DX, IntelDX2™™, and IntelDX4T™
Processors Processors

EM 1 0

MP 0 1

NE 1 0, for DOS Systems

1, for User-Defined Exception Handler
Table 4-6. Interpretation of Different Combinations of the
EM, TS and MP Bits for All Intel486™ Processors
CRO Bit ' Instruction Type

EM TS MP Fioating Point Wait
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Exception 7 Execute
0 1 1 Exception 7 Exception 7
1 0 0 Exception 7 Execute
1 0 1 Exception 7 Execute
1 1 0 Exception 7 Execute
1 1 1 Exception 7 Exception 7

NOTE:

For Intel486 DX, IntelDX2™ and InteIDX4™ processors, if MP=1 and TS=1, the processor will generate a trap 7 so that
the system software can save the floating point status of the old task.
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31

Page Fault Linear Address Register

CR2

31

Page Directory Base Register

12 43 0

CR3

indicates Intel Reserved; Do not define.

NOTE:
See section 4.2.7, “Compatibility.”

CR4

242202-14

Control Register 1 (CR1)
CR1 is reserved for use in future Intel processors.
Control Register 2 (CR2)

CR2, shown in Figure 4-7, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fauit.

Control Register 3 (CR3)

CR3, shown in Figure 4-7, contains the physical
base address of the page directory table. The page
directory is always page aligned (4 Kbyte-aligned).
This alignment is enforced by only storing bits
12-31 in CR3.

in the Intel486 processor, CR3 contains two bits,
page write-through (PWT) (bit 3) and page cache
disable (PCD) (bit 4). The page table entry (PTE) and
page directory entry (PDE) also contain PWT and
PCD bits. PWT and PCD control page cacheability.
When a page is accessed in external memory, the

Figure 4-7. Control Registers 2, 3 and 4

state of PWT and PCD are driven out on the PWT
and PCD pins. The source of PWT and PCD can be
CR3, the PTE or the PDE. PWT and PCD are
sourced from CR3 when the PDE is being updated.
When paging is disabled (PG = 0 in CRO0), PCD and
PWT are assumed to be 0, regardless of their state
in CR3.

A task switch through a task state segment (TSS)
which changes the values in CR3, or an explicit load
into CR3 with any value, will invalidate all cached
page table entries in the translation lookaside buffer
(TLB).

The page directory base address in CR3 is a physi-
cal address. The page directory can be paged out
while its associated task is suspended, but the oper-
ating system must ensure that the page directory is
resident in physical memory before the task is dis-
patched. The entry in the TSS for CR3 has a physi-
cal address, with no provision for a present bit. This
means that the page directory for a task must be
resident in physical memory. The CR3 image in a
TSS must point to this area, before the task can be
dispatched through its TSS.
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Control Register 4 (CR4)

CR4, shown in Figure 4-7, contains bits that enable
virtual mode extensions and protected mode virtual
interrupts.

VME (Virtual-8086 Mode Extensions, bit 0 of CR4)

Setting this bit to 1 enables support for a virtual in-
terrupt flag in virtual-8086 mode. This feature can
improve the performance of virtual-8086 applica-
~ tions by eliminating the overhead of faulting to a vir-
tual-8086 monitor for emulation of certain opera-
tions. (Refer to Appendix A, “Advanced Features.”)

PVI (Protected-Mode Virtual Interrupts, bit 1 of CR4)

*Setting this bit to 1 enables support for a virtual in-
terrupt flag in protected mode. This feature can en-
able some programs designed for execution at privi-
_ lege level 0 to execute at privilege level 3. (Refer to
Appendix A, “Advanced Features.”)

PSE (Page Size Extensions, bit 4 of CR4)

Setting this bit to 1 enables 4-Mbyte pages. (Refer to
Appendix A, “Advanced Features.”)

NOTE:

Features described in CR4 (VME, PVi, and
PSE) in the CPUID Feature Flag should be
qualified with the CPUID instruction. The
CPUID instruction and CPUID Feature Flag
are specific to particular models in the
Intel486 processor family. (Refer to Appendix
B, “Feature Determination.”)

4.2.3.2 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286,
Intel386, and Intel486 processors’ protection model.
These tables or segments are: GDT (Global Descrip-
tor Table), IDT (Interrupt Descriptor Table), LDT (Lo-
cal Descriptor Table), TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers, illustrated in Figure 4-5.
These registers are named GDTR, IDTR, LDTR and
TR respectively. Section 6, “Protected Mode Archi-
tecture,” describes how to use these registers.
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System Address Registers: GDTR and IDTR

The GDTR and IDTR hold the 32-bit linear-base ad-
dress and 16-bit limit of the GDT and IDT, respec-
tively.

Because the GDT and IDT segments are global to
all tasks in the system, the GDT and IDT are defined
by 32-bit linear addresses (subject to page transla-
tion if paging is enabled) and 16-bit limit values.

System Segment Registers: LDTR and TR

The LDTR and TR hold the 16-bit selector for the
LDT descriptor and the TSS descriptor, respectively.

Because the LDT and TSS segments are task spe-
cific segments, the LDT and TSS are defined by se-
lector values stored in the system segment regis-
ters.

NOTE:
A programmer-invisible segment descriptor
register is associated with each system seg-
ment register.

4.2.4 FLOATING POINT REGISTERS

Figure 4-8 shows the floating point register set. The
on-chip FPU contains eight data registers, a tag
word, a control register, a status register, an instruc-
tion pointer and a data pointer.

The operation of the Intel486 DX, IntelDX2, and
IntelDX4 processor on-chip floating point unit is ex-
actly the same as the Intel387 math coprocessor.
Software written for the Intel387 math coprocessor
will run on the on-chip floating pomt unit (FPU) with-
out any modifications.

4.2.4.1 Floating Point Data Registers

Floating .point computations use the Intel486 DX,
IntelDX2, and IntelDX4 processor FPU data regis-
ters. These eight 80-bit registers provide the equiva-
lent capacity of twenty 32-bit registers. Each of the
eight data registers is divided into “fields” corre-
sponding to the FPU’s extended-precision data type.
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Tag Field
79 78 64 63 0 1 0
Ro| Sign | Exponent Significand
R1
R2
R3
R4
R5
Ré
R7
15 0 47 0
Control Register Instruction Pointer
Status Register Data Pointer
Tag Word
242202-15

Figure 4-8. Floating Point Registers

The FPU’s register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis-
ters. The TOP field in the status word identifies the
current top-of-stack register. A “push” operation
decrements TOP by one and loads a value into the
new top register. A “pop”’ operation stores the value
from the current top register and then increments
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TOP by one. Like other Intel486 DX, IntelDX2, and
IntelDX4 processor stacks in memory, the FPU reg-
ister stack grows “down” toward lower-addressed
registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

4.2.4.2 Floating Point Tag Word

The tag word marks the content of each numeric
data register, as shown in Figure 4-9. Each two-bit
tag represents one of the eight data registers. The
principal function of the tag word is to optimize the
FPU’s performance and stack handling by making it
possible to distinguish between empty and non-
empty register locations. It also enables exception
handlers to check the contents of a stack location
without the need to perform complex decoding of
the actual data.

4.2.4.3 Floating Point Status Word

The 16-bit status word reflects the overall state of
the FPU. The status word is shown in Figure 4-10
and is located in the status register.

15

0

l Tag (7) r Tag (6) | Tag (5) l Tag (4) r Tag (3) l Tag (2) I Tag (1) [ Tag (0) I

NOTE:

field refers to logical top of stack.

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

TAG VALUES:
00 = Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 = Empty

242202-16

Figure 4-9. Floating Point Tag Word
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BUSY

TOP OF STACK POINTER
CONDITION CODE

(2]
(2]
(2]
wm
w
o
o
N
o

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS:
PRECISION

UNDERFLOW

OVERFLOW

ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

242202-17
ES is set if any unmasked exception bit is set; cleared otherwise. ,
See Table 4-7 for interpretation of condition code.
TOP values:
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
L]
L]
L]
111 = Register 7 is Top of Stack
For definitions of exceptions, refer to the section entitled “Exception Handling”.
NOTES:
The B bit (Busy, bit 15) is included for 8087 compatibility. The B bit reflects the contents of the ES bit (bit 7 of the status
word).

Bits 13-11 (TOP) point to the FPU register that is the current top-of-stack.

The four numeric condition code bits, CO-C3, are similar to the flags in EFLAGS. Instructions that perform arithmetic
operations update C0-C3 to reflect the outcome. The effects of these instructions on the condition codes are summa-
rized in Table 4-7 through Table 4-10.

Figure 4-10. Floating Point Status Word
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Table 4-7. Floating Point Condition Code Interpretation

Instruction CO (S) l C3(2) C1(A) C2(C)

FPREM, FPREM1 Three least significant bits of quotient (See Table 4-8.) Reduction
0 = complete
2 | o Q1 or O/U# 1 = incomplete
FCOM, FCOMP, Result of comparison (see Zero or O/U# Operand is not
FCOMPP, FTST, FUCOM, | Table 4-9) comparable
FUCOMP, FUCOMPP,
FICOM, FICOMP
FXAM Operand class (see Sign or O/U# Operand class
Table 4-10)

FCHS, FABS, FXCH, UNDEFINED Zero or O/U# UNDEFINED

FINCTOP, FDECTOP,
Constant loads, FXTRACT,
FLD, FILD, FBLD, FSTP
(ext real)

FIST, FBSTP, FRNDINT, UNDEFINED Roundup or O/U # UNDEFINED
FST, FSTP, FADD, FMUL,
FDIV, FDIVR, FSUB,

FSUBR, FSCALE, FSQRT,
FPATAN, F2XM1, FYL2X,

FYL2XP1
FPTAN, FSIN, FCOS, UNDEFINED Roundup or O/U #, Reduction
FSINCOS ifC2 =1 0 = complete
1 = incomplete
FLDENV, FRSTOR Each bit loaded from memory
FINIT Clears these bits
FLDCW, FSTENV, UNDEFINED
FSTCW, FSTSW, FCLEX,
‘| FSAVE

NOTES:

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit distinguishes between
stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is complete. When
reduction is incomplete the value at the top of the stack is a partial remainder, which can be used as input to
further reduction. For FPTAN, FSIN, FCOS, and FSINCOS, the reduction bit is set if the operand at the top of
the stack is too large. In this case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the instruction was

upward.
UNDEFINED Do not rely on finding any specific value in these bits. (See Section 4.2.7, “Compatibility.”)
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Table 4-8. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after FPREM and FPREM1
c2 c3 . C1 co .
1 X X X Incomplete Reduction:
further interaction required for complete reduction
Q1 Qo Q2 Q MODs8
0 0 0 0
0 1 0 1
1 0 0 2 Complete Reduction:
0 1 1 0 3 C0, C3, and C1 contain the three
0 0 1 4 least-significant bits of the quotient
0 1 1 5
1 0 1 6
1 1 1 7
Table 4-9. Condition Code Resulting from Comparison
Order c3 c2 co
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1
Table 4-10. Condition Code Defining Operand Class
C3 Cc2 C1 co Value at TOP
0 0 0 0 + Unsupported
0 0 0 1 + NaN
0 0 1 0 — Unsupported
0 0 1 1 — NaN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 — Normal
0 1 1 1 — Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 -0
1 0 1 1 — Empty
1 1 0 0 + Denormal
1 1 1 0 — Denormal
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Bit 7 is the error summary (ES) status bit. The ES bit
is set if any unmasked exception bit (bits 0-5 in the
status word) is set; ES is clear otherwise. The
FERR # (floating point error) signal is asserted when
ES is set.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow. When SF is set, bit 9 (C1) distinguishes be-
tween stack overflow (C1=1) and underflow
(C1=0).

Table 4-11 shows the six exception flags in bits 0-5
of the status word. Bits 0-5 are set to indicate that
the FPU has detected an exception while executing
an instruction.

The six exception flags in the status word can be
individually masked by mask bits in the FPU control
word. Table 4-11 lists the exception conditions, and
their causes in order of precedence. Table 4-11 also
shows the action taken by the FPU if the corre-
sponding exception flag is masked.

An exception that is not masked by the control word
will cause three things to happen: the corresponding
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exception flag in the status word will be set, the ES
bit in the status word will be set and the FERR #
output signal will be asserted. When the Intel486
DX, IntelDX2, or IntelDX4 processor attempts to ex-
ecute another floating point or WAIT instruction, ex-
ception 16 occurs or an external interrupt happens if
the NE=1 in control register 0. The exception condi-
tion must be resolved via an interrupt service rou-
tine. The FPU saves the address of the floating point
instruction that caused the exception and the ad-
dress of any memory operand required by that in-
struction in the instruction and data pointers. (See
section 4.2.4.4, “Instruction and Data Pointers.”)

Note that when a new value is loaded into the status
word by the FLDENV (load environment) or
FRSTOR (restore state) instruction, the value of ES
(bit 7) and its reflection in the B bit (bit 15) are not
derived from the values loaded from memory. The
values of ES and B are dependent upon the values
of the exception flags in the status word and their
corresponding masks in the control word. If ES is set
in such a case, the FERR# output of the Intel486
DX, IntelDX2, or IntelDX4 processor is activated im-
mediately.

Table 4-11. FPU Exceptions

overflow/underflow (SF is also set).

: Default Action
Exception Cause (if exception is masked)
Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN,
Operation indeterminate form (0* <, 0/0, (+ %) + (—°), etc.), or stack | integer indefinite, or BCD

indefinite

Denormalized

At least one of the operands is denormalized, i.e., it has the

Normal processing

the specified format, and, if underflow exception is masked,
denormalization causes loss of accuracy.

Operand smallest exponent but a non-zero significand. continues

Zero Divisor The divisor is zero while the dividend is a non-infinite, non-zero | Resultis o
number. .

Overflow The result is too large in magnitude to fit in the specified Result is largest finite
format. value or

Underflow The true result is non-zero but too small to be represented in Result is denormalized or

zero

Inexact Result
(Precision)

The true result is not exactly representable in the specified
format (e.g., 1/3); the result is rounded according to the
rounding mode.

Normal processing
continues
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4.2.4.4 Instruction and Data Pointers

Because the FPU operates in parallel with the ALU
(in the intel486 DX, IntelDX2 and IntelDX4' proces-
sors the arithmetic and logic unit (ALU) consists of
the base architecture registers), any errors detected
by the FPU may be reported after the ALU has exe-
cuted the floating point instruction that caused it. To
allow identification of the failing numeric instruction,
the Intel486 DX, IntelDX2, and IntelDX4 processors
contain two pointer registers that supply the address
of the failing numeric instruction and the address of
its numeric memory operand (if appropriate).

The instruction and data pointers are provided for
user-written error handiers. These registers are ac-
cessed by the FLDENV (load environment),
FSTENV (store environment), FSAVE (save state)
and FRSTOR (restore state) instructions. Whenever
the Intel486 DX, IntelDX2, and IntelDX4 processors
decode a new floating point instruction, it saves the
instruction (including any prefixes that may be
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present), the address of the operand (if present) and
the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Intel486 DX, IntelDX2, and IntelDX4 processors
(protected mode or real-address mode) and depend-
ing on the operand-size attribute in effect (32-bit op-
erand or 16-bit operand). When the Intel486 DX,
IntelDX2, or IntelDX4 processor is in the virtual-86
mode, the real address mode formats are used. The
four formats are shown in Figure 4-11 through Figure
4-14. The floating point instructions FLDENV,
FSTENV, FSAVE and FRSTOR are used to transfer
these values to and from memory. Note that the val-
ue of the data pointer is undefined if the prior float-
ing point instruction did not have a memory operand.

NOTE:
The operand size attribute is the D bit in a
segment descriptor.
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3

32-Bit Protected Mode Format

23 15 7 0
L 1
Intel Reserved Control Word 0
Intel Réserved $tatu51‘ Word 4
Intel Reserved Tag \‘Nord 8
) 1P Offset : c
0000 OPCODE 10..0 cs s;lector 10
. Data-Operand Offset : 14
Intel R;Lserved Operand'Selector 18
t t
242202-18

Figure 4-11. Protected Mode FPU Instructions and Data Pointer Image in Memory, 32-Bit Format

31

23

32-Bit Real Address Mode Format

15 7 0
| 1
intel Reserved Conm:l! Word 0
Intel Réserved Status_r Word 4
Intel Reserved Tag \:Nord 8
Intel R;served Instruction F:’ointer 15.0 c
0000 I Instruction Pointer 31..16 l 0 I : OPCODE 10..0 10
Intel Rgserved Operand P;)inter 15..0 14
0000 I Operar;d 31.16 ! 0000 ) 00000000 18
t t t
242202-19

Figure 4-12. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format
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16-Bit Protected Mode Format 16-Bit Real Address Mode and
Virtual-8086 Mode Format
15 7 0
Control Word 0 15 7 0
+ ]
Status Word 2 Control Word 0
1
Tag \‘Nord 4 Status Word 2
P Offset 6 Tag Word 4
4 t
CcS Selector 8 Instruction Pointer 15..0 6
t P19.16 |0 ) i
Operand Offset A 1P19.16 [ [ gpcoos 10.0 8
4 0
Operand Selector c Operand Pc;lnter 15.0 A
} DP19.16|0|000 00000000|¢
242202-20 t
242202-21
Figure 4-13. Protected Mode FPU Instruction and

Data Pointer Image in Memory, 16-Bit Format Figure 4-14. Real Mode FPU Instruction and Data
. Pointer Image in Memory, 16-Bit Format

RESERVED
RESERVED®
ROUNDING CONTROL
PRECISION CONTROL

M MM
L1 ] ] |
RESERVED
* “Q" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
EXCEPTION MASKS : CONTROL WORD (CW). PROGRAMS
PRECISION MUST IGNORE THIS BIT.
UNDERFLOW
OVERFLOW
ZERO DIVIDE

DENORMALIZED OPERAND
INVALID OPERATION

242202-22
Precision Control Rounding Control
00-24 bits (single precision) 00-Round to nearest or even
01-(reserved) 01-Round down (toward -o0)

10-53 bits (double precision) 10-Round up (toward + o)
11-64 bits (extended precision) 11-Chop (truncate toward zero)

NOTE:
See section 4.2.7 “Compatibility,” for RESERVED bits.

Figure 4-15. FPU Control Word
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4.2.4.5 FPU Control Word

The FPU provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 4-15 shows the for-
mat and encoding of fields in the control word.

The low-order byte of the FPU control word config-
ures the FPU error and exception masking. Bits 0-5
of the control word contain individual masks for each
of the six exceptions that the FPU recognizes.

The high-order byte of the control word configures
the FPU operating mode, including precision and
rounding.

RC (Rounding Control, bits 10-11)

RC bits provide for directed rounding and true
chop, as well as the unbiased round to nearest
even mode specified in the {EEE standard.
Rounding control affects only those instructions
that perform rounding at the end of the opera-
tion (and thus can generate a precision excep-
tion); namely, FST, FSTP, FIST, all arithmetic
instructions  (except FPREM, FPREM1,
FXTRACT, FABS and FCHS), and all transcen-
dental instructions.

PC (Precision Control, bits 8-9)

PC bits can be used to set the FPU internal op-
erating precision of the significand at less than
the default of 64 bits (extended precision). This
can be useful in providing compatibility with ear-
ly generation arithmetic processors of smaller
precision. PC affects only the instructions ADD,
SUB, DIV, MUL, and SQRT. For all other instruc-
tions, either the precision is determined by the
opcode or extended precision is used.

4.2.5 DEBUG AND TEST REGISTERS

4.2.5.1 Debug Registers

The six programmer accessible debug registers (Fig-
ure 4-16) provide on-chip support for debugging. De-
bug registers DR0-3 specify the four linear break-
points. The Debug control register DR7, is used to
set the breakpoints and the Debug Status Register,
DR6, displays the current state of the breakpoints.
The use of the Debug registers is described in sec-
tion 12, “Debugging Support.”
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Debug Registers
Linear Breakpoint Address 0 DRO
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3
Intel Reserved, Do Not Define DR4
Intel Reserved, Do Not Define DR5
Breakpoint Status DR6
Breakpoint Control DR7
Test Registers
Cache Test Data TR3
Cache Test Status TR4
Cache Test Control TRS
TLB Test Control TR6
TLB Test Status TR7
TLB = Translation Lookaside Buffer
242202-23

Figure 4-16. Debug and Test Registers

4.2.5.2 Test Registers

The Intel486 processor contains five test registers.
The test registers are shown in Figure 4-16. TR6 and
TR7 are used to control the testing of the translation
look- aside buffer. TR3, TR4 and TR5 are used for
testing the on-chip cache. The use of the test regis-
ters is discussed in section 11, “Testability.”

4.2.6 REGISTER ACCESSIBILITY

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 4-12 summarizes these differences. (See section
6, “Protected Mode Architecture.”)

4.2.6.1 FPU Register Usage
In addition to the differences listed in Table 4-12,

Table 4-13 summarizes the differences for the on-
chip FPU.

2-65




Intel486™ PROCESSOR FAMILY

Table 4-12. Register Usage

intgl.

1. IOPL: The PUSHF and POPF instructions are made I/0O Privilege Level sensitive in Virtual 8086 Mode.
2. PL = 0: The registers can be accessed only when the current privilege level is zero.

Table 4-13. FPU Register Usage Differences

Usein p Usein Use in
Register Real Mode Protected Mode Virtual 8086 Mode
Load Store Load Store Load Store
" | General Registers Yes Yes Yes Yes Yes Yes
Segment Register Yes Yes Yes Yes Yes Yes
Flag Register Yes Yes Yes Yes IOPL(1) IOPL
Control Registers Yes Yes PL = 0@ PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes _PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Registers Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=10 PL=0 No No
NOTES: .

Usein Usein Usein
Register Real Mode Protected Mode Virtual 8086 Mode
Load - Store Load Store Load Store
FPU Data Registers Yes Yes Yes Yes Yes Yes
FPU Control Registers Yes Yes Yes Yes Yes Yes
FPU Status Registers Yes Yes Yes Yes Yes Yes
FPU Instruction Pointer Yes Yes Yes Yes Yes Yes
FPU Data Pointer Yes Yes Yes Yes Yes Yes
4.2.7 COMPATIBILITY 2. Do not depend on the states of any un-

VERY IMPORTANT NOTE:

COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions,
note certain Intel4d86 processor register
bits are Intel reserved. When reserved
bits are called out, treat them as fully un-
defined. This is essential for your soft-
ware compatibility with future proces-
sors! Follow the guidelines below:

1. Do not depend on the states of any un-
defined bits when testing the values of
defined register bits. Mask them out

when testing.
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3.

defined bits when storing them to mem-
ory or another register.
Do not depend on the ability to retain

information written into any undefined
bits.

. When loading registers, always load the

undefined bits as zeros.

. However, registers that have been pre-

viously stored may be reloaded without
masking.
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Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Intel486 processor handling of
these bits. Depending on undefined values risks
making your software incompatible with future
processors that define usages for the Intel486
processor-undefined bits. AVOID ANY SOFT-
WARE DEPENDENCE UPON THE STATE OF UN-
DEFINED INTEL486 PROCESSOR REGISTER
BITS.

4.3 Instruction Set

The Intel486 processor instruction set can be divid-
ed into the following categories of operations:
e Data Transfer

e Arithmetic

o Shift/Rotate

e String Manipulation

¢ Bit Manipulation

e Control Transfer

* High Level Language Support

e Operating System Support

e Processor Control

The Intel486 processor instructions are listed in sec-
tion 13, “Instruction Set Summary.”

All Intel486 processor instructions operate on either
0, 1, 2 or 3 operands; where an operand resides in a
register, in the instruction itself or in memory. Most
zero operand instructions (e.g., CLI, STI) take only
one byte. One operand instructions generally are
two bytes long. The average instruction is 3.2-bytes
long. Because the Intel486 processor has a 32-byte
instruction queue, an average of 10 instructions will
be prefetched. The use of two operands permits the
following types of common instructions:

* Register to Register
e Memory to Register
¢ Memory to Memory
* Immediate to Register
® Register to Memory
¢ Immediate to Memory

Intel486™ PROCESSOR FAMILY

The operands can be either 8-, 16-, or 32-bits long.
As a general rule, when executing 32-bit code, oper-
ands are 8 or 32 bits; when executing existing 80286
or 8086 processor code (16-bit code), operands are
8 or 16 bits. Prefixes can be added to all instructions
that override the default length of the operands (i.e.,
use 32-bit operands for 16-bit code, or 16-bit oper-
ands for 32-bit code).

4.3.1 FLOATING POINT INSTRUCTIONS

In addition to the instructions listed above, the
Intel486, IntelDX2, and IntelDX4 processors have
the following floating point instructions. Note that all
floating point unit instruction mnemonics begin with
an F.

® Floating Point
® Floating Point Control

4.4 Memory Organization

Memory on the Intel486 processor is divided up into
8-bit quantities (bytes), 16-bit quantities (words), and
32-bit quantities (dwords). Words are stored in two
consecutive bytes in memory with the low-order byte
at the lowest address, the high order byte at the high
address. Dwords are stored in four consecutive
bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest ad-
dress. The address of a word or dword is the byte
address of the low-order byte.

In addition to these basic data types, the Intel486
processor supports two larger units of memory:
pages and segments. Memory can be divided up
into one or more variable-length segments, which
can be swapped to disk or shared between pro-
grams. Memory can also be organized into one or
more 4-Kbyte pages. Both segmentation and paging
can be combined, gaining the advantages of both
systems. The Intel486 processor supports both
pages and segments in order to provide maximum
flexibility to the system designer. Segmentation and
paging are complementary. Segmentation is useful
for organizing memory in logical modules, and as
such is a tool for the application programmer, while
pages are useful for the system programmer for
managing the physical memory of a system.
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4.4.1 ADDRESS SPACES

The Intel486 processor has three distinct address
spaces: logical, linear, and physical. A logical ad-
dress (also known as a virtual address) consists of
a selector and an offset. A selector is the contents
of a segment register. An offset is formed by sum-
ming all of the addressing components (BASE,
INDEX, DISPLACEMENT) discussed in section 4.6.3
“32-Bit Memory Addressing Modes,” into an effec-
tive address. Because each task on the Intel486
processor has a maximum of 16K (214 -1) selectors,
and offsets can be 4 Gbytes (232 bits), this gives a
total of 246 bits or 64 terabytes of logical address
space per task. The programmer sees this virtual
address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The

intal.

paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e., the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

Figure 4-17 shows the relationship between the vari-
ous address spaces.

Effective Add Cal
Index
Base Displacement
31 0
Scale :
Physical
1,2,3,4 Me
BE3#-BEO#
+ A31-A2
Effective
32, Address
15 3 2 0 Logical or Segmentation 32, PagingUnit | ,32
R ‘gﬂ“ﬂ Address Unit Li:far' (Optional Use) !f':!sical
Sel ': " Descriptor A
Index
Segment Register
242202-24
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4.4.2 SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the Intel486 processor, segments
are variable sized blocks of linear addresses which
have certain attributes associated with them. There
are two main types of segments: code and data. The
segments are of variable size and can be as small
as 1 byte or as large as 4 Gbytes (232 bytes).

In order to provide compact instruction encoding,
and increase Intel486 processor performance, in-
structions do not need to explicitly specify which
segment register is used. A default segment register
is automatically chosen according to the rules of Ta-
ble 4-14. In general, data references use the selec-
tor contained in the DS register; Stack references
use the SS register and Instruction fetches use the
CS register. The contents of the Instruction Pointer
provide the offset. Special segment override prefix-
es allow the explicit use of a given segment register,
and override the implicit rules listed in Table 4-14.
The override prefixes also allow the use of the ES,
FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a 4-Gbyte linear address
space. This creates a system where the virtual ad-
dress space is the same as the linear address
space. Further details of segmentation are dis-
cussed in section 6.0, “Protected Mode Architec-
ture.”

4.5 1/0 Space

The Intel486 processor has two distinct physical ad-
dress spaces: Memory and 1/O. Generally, peripher-
als are placed in 1/0 space although the Intel486
processor also supports memory-mapped peripher-
als. The 1/0 space consists of 64 Kbytes, it can be
divided into 64K 8-bit ports, 32K 186-bit ports, or 16K
32-bit ports, or any combination of ports which add
up to less than 64 Kbytes. The 64K |/O address
space refers to physical memory rather than linear
address, because 1/0 instructions do not go through
the segmentation or paging hardware. The M/IO#
pin acts as an additional address line thus allowing
the system designer to easily determine which ad-
dress space the processor is accessing.
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Table 4-14. Segment Register Selection Rules

Implied | Segment
Type of Memory (Default) | Override
Reference Segment | Prefixes
Use Possible
Code Fetch Cs None
Destination of PUSH, SS None
PUSHF, INT, CALL,
PUSHA Instructions
Source of POP, POPA, SS None
POPF, IRET, RET
instructions
Destination of STOS, ES None
MOVS, REP STOS, REP
MOVS Instructions (Dl is
Base Register)
Other Data References,
with Effective Address
using Base Register of:
[EAX] DS
[EBX] DS
[ECX] DS
[EDX] DS Al
[ESI] DS
[EDI] DS
[EBP] SS
[ESP] SS

The |/0 ports are accessed via the IN and OQUT 1/0
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The I/0 in-
structions cause the M/IO# pin to be driven low.

I1/0 port addresses 00F8H through O0OFFH are re-
served for use by Intel.

1/0 instruction code is cacheable.
1/0 data is not cacheable.

1/0 transfers (data or code) can be bursted.

2-69




Intel486™ PROCESSOR FAMILY

4.6 Addressing Modes

4.6.1 ADDRESSING MODES OVERVIEW

The Intel486 processor provides a total of 11 ad-
dressing modes for instructions to specify operands.
The addressing modes are optimized to allow the
efficient execution of high-level languages such as C
and FORTRAN, and they cover the vast majority of
data references needed by high-level languages.

4.6.2 REGISTER AND IMMEDIATE MODES

The following two addressing modes provide for in-

structions that operate on register or immediate op-
erands:

¢ Register Operand Mode: The operand is locat-
ed in one of the 8-, 16- or 32-bit general registers.

¢ immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

4.6.3 32-BIT MEMORY ADDRESSING MODES

The remaining modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

- o DISPLACEMENT: An 8-, or 32-bit inmediate val-
ue, following the instruction.

e BASE: The contents of any general purpose reg-
ister. The base registers are generally used by
compilers to point to the start of the local variable
area.

¢ INDEX: The contents of any general purpose reg-
ister except for ESP. The index registers are used
to access the elements of an array, or a string of
characters.

e SCALE: The index register’s value can be multi-
plied by a scale factor, either 1, 2, 4 or 8. Scaled
index mode is especially useful for accessing ar-
rays or structures.

- Combinations of these 4 components make up the 9

additional addressing modes. There is no perform-
ance penalty for using any of these addressing
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combinations, because the effective address calcu-
lation is pipelined with the execution of other instruc-
tions. The one exception is the simultaneous use of
Base and Index components, which requires one ad-
ditional clock.

As shown in Figure 4-18, the effective address (EA)
of an operand is calculated according to the follow-
ing formula:

EA = Base Reg + (Index Reg * Scaling) +
Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement. ‘
Example: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.

Example: MOV [ECX], EDX

Based Mode: A BASE register’s contents is added
to a DISPLACEMENT to form the operand’s offset.

Example: MOV ECX, [EAX+24]

Index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operand’s offset.

Example: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register's contents
is multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operand’s offset.
Example: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE
register is added to the contents of an INDEX regis-
ter to form the effective address of an operand.
Example: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an

INDEX register is multiplied by a SCALING factor
and the result is added to the contents of a BASE

register to obtain the operand’s offset.

Exampie: MOV ECX, [EDX*8] [EAX]
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SEGMENT REGISTER

SELECTOR

SCALE
1,2,4,0R 8
v
_’CD‘_____‘ DISPLACEMENT
(IN INSTRUCTION)
EFFECTIVE
ADDRESS SEGMENT
LIMIT
LINEAR
DESCRIPTOR REGISTERS L) ADDRESS
@—’ TARGET ADDRESS
A
SELECTED
SEGMENT
CCESS RIGHTS DS
ACCESS RIGHTS €S
LIMIT /
BASE ADDRESS jpf———md = = = = = = »
SEGMENT BASE ADDRESS
242202-25

I BASE REGISTER l
INDEX REGISTER

Figure 4-18. Addressing Mode Calculations

Based Index Mode with Displacement: The con-
tents of an INDEX Register and a BASE register’s
contents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

Example: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement:
The contents of an INDEX register are multiplied by
a SCALING factor, the result is added to the con-
tents of a BASE register and a DISPLACEMENT to
form the operand’s offset.

MOV LOCALTABLE[EDI*4]

Example: EAX,

[EBP +80]

4.6.4 DIFFERENCES BETWEEN 16- AND 32-BIT
ADDRESSES

In order to provide software compatibility with 80286
and 8086 processors, the Intel486 processor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the
instructions it is executing by examining the D bit in
the CS segment Descriptor. If the D bit is 0 then all
operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the default size for operands and ad-
dresses is 16-bits.

Regardless of the default precision of the operands

or addresses, the Intel486 processor is able to exe-
cute either 16- or 32-bit instructions. This is
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specified via the use of override prefixes. Two prefix-
es, the Operand Size Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are auto-
matically added by Intel assemblers.

Example: The Intel486 processor is executing in
Real Mode and the programmer needs to access
the EAX registers. The assembler code for this
might be MOV EAX, 32-bit MEMORYOP, ASM486
Macro Assembler automatically determines that an
Operand Size Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an
Address Length Prefix because, with D=0, the de-
fault addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel486 processor addressing modes.

When executing 32-bit code, the Intel486 processor

uses either 8-, or 32-bit displacements, and any reg-

ister can be used as base or index registers. When
~ éxecuting 16-bit code, the displacements are either

8, or 16 bits, and the base and index register con-

form to the 80286 processor model. Table 4-15 illus-

trates the differences.

Table 4-15. BASE and INDEX Registers for
16- and 32-Bit Addresses

16-Bit 32-Bit
Addressing | Addressing
BASE REGISTER BX,BP Any 32-bit GP
Register
INDEX REGISTER SI,DI ‘Any 32-bit GP
Register Except
ESP
SCALE FACTOR none 1,2,4,8
DISPLACEMENT | 0, 8, 16 bits 0, 8, 32 bits
2-72
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4.7 Data Formats

4.7.1 DATA TYPES

The Intel486 processor can support a wide-variety of
data types. In the following descriptions, the proces-
sor consists of the base architecture registers.

4.7.1.1 Unsigned Data Types
Byte: Unsigned 8-bit quantity
Word:  Unsigned 16-bit quantity
Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and
the most significant bit is 7.

4.7.1.2 Signed Data Types

All signed data types assume 2's complement nota-
tion. The signed data types contain two fields, a sign
bit and a magnitude. The sign bit is the most signifi-
cant bit (MSB). The number is negative if the sign bit
is 1. If the sign bit is 0, the number is positive. The
magnitude field consists of the remaining bits in the
number. (Refer to Figure 4-19.)

8-bit Integer:  Signed 8-bit quantity

16-bit Integer:  Signed 16-bit quantity
32-bit Integer:  Signed 32-bit quantity
64-bit Integer:  Signed 64-bit quantity

The integer core of the Intel486 processors only
support 8-, 16- and 32-bit integers. (See section
4.7.1.4, “Floating Point Data Types.”)

4.7.1.3 BCD Data Types

The Intel486 processor supports packed and un-
packed binary coded decimal (BCD) data types. A
packed BCD data type contains two digits per byte,
the lower digit is in bits 0-3 and the upper digit in
bits 4-7. An unpacked BCD data type contains 1
digit per byte stored in bits 0-3.

The Intel486 processor supports 8-bit packed and
unpacked BCD data types. (Refer to Figure 4-19.)
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4.7.1.4 Floating Point Data Types

In addition to the base registers, the Intel486 DX,
IntelDX2, and IntelDX4 processors’ on-chip floating
point unit consists of the floating point registers. The
floating point unit data type contain three fields: sign,
significand and exponent. The sign field is one bit
and is the MSB of the floating point number. The
number is negative if the sign bit is 1. If the sign bit is
0, the number is positive. The significand gives the
significant bits of the number. The exponent field
contains the power of 2 needed to scale the signifi-
cand. (Refer to Figure 4-19.)

Only the FPU supports floating point data types.
Single Precision Real: 23-bit significand and
8-bit exponent. 32 bits
total.

52-bit significand and
11-bit exponent. 64 bits
total.

64-bit significand and
15-bit exponent. 80 bits
total. .

Double Precision Real:

Extended Precision Real:

Floating Point Unsigned Data Types

The on-chip FPU does not support unsigned data
types. (Refer to Figure 4-19.)

Floating Point Signed Data Types

The on-chip FPU only supports 16-, 32- and 64-bit
integers.

Intel486™ PROCESSOR FAMILY

Floating Point BCD Data Types

The on-chip FPU only supports 80-bit packed BCD
data types.

4.7.1.5 String Data Types
A string data type is a contiguous sequence of bits,
bytes, words or dwords. A string may contain be-

tween 1 byte and 4 Gbytes. (Refer to Figure 4-20.)

String data types are only supported by the CPU
section of the Intel486 processor.

Byte String: Contiguous sequence of bytes.
Word String:  Contiguous sequence of words.
Dword String:  Contiguous sequence of dwords.
Bit String: A set of contiguous bits. In the In-

tel486 processor bit strings can be
up to 4-gigabits long.

4.7.1.6 ASCII Data Types

The Intel486 processor supports ASCIl (American
Standard Code for Information Interchange) strings
and can perform arithmetic operations (such as ad-
dition and division) on ASCII data. The Intel486 proc-
essor can only operate on ASCII data. (Refer to Fig-
ure 4-20.)
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Supported by Supported by
Base Registers N S/ FPU Least Significant Byte ‘
Data Format | Range (Precisioni7 o[z o[z o[z o[z ofr oz oz ofr o o
) : -
' ; ! 7 [+]
Byte ' 0-255 [Bbits |
:. i 15 0
Word ' 0-64K |16bits 7
s |
i [ 31 0
Dword | 04G 1 32 bits !
i
| | 7 o0
8-Bit Integer | 102 i8bits Twos
: | Sign Bit
| 15 0
16-Bit Integer X| 10*  :16bits Twos [
: Fsignsit
' 31
32-Bit Integer X{ 10°  i32bis S emart ||
f i $sign 8
§ | v 63 0
64-Bit Integer X} 10 |64 bits Comploment |_i
| Tssgn Bit
| I 7 0
8-Bit Unpacked BCD : 0-9 |1Digit O BCD i por Byte | ‘
. i |
! | i ’ 7
8-Bit Packed BCD : 09 ! 2 Digits Two BCD Digits per Byte
: P 72
80-Bit Packed BCD X[£10%'® 118 Digits | | toneres
| | f 31 23 0
Single Precision Real X|£10%38 ‘ 24bits | | loiased Exp.] significand
i . : Sign Bit
; 63 52 0
Double Precision Real X |£103% i 53 bits " | oiased Exp.| Sigrificand
! ' sign 8t¥
| :
; ' 79 63 0
Extended Precision Real | |X1+10:%% '6abits | | Basssbw. 1 Sigrifcand
’ ’ $sign Bt
242202-26
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String Data Types
Address AsN - At A
Byte N 1
String |7 of* "k [
As2N+1  As2N Rk As+3 As2 A+t A
T T T
w{ REIN P EEN E
String }is 0 15 (13 0
A+4N+3 A+aN+2 A+ aN+1 A+ aN A+ 7 A+6 A+5 A+ 4 A+3 As+2 A+l A
Dword T T T T T T T T T
C N 1 0
String |31 of * * "la 0 |31 0
A + 268,435,455 A - 268,435,456
3 A+3 As2 A+t A A-1 A-2 A-3 : N
Bit
String 7 0|7 0 7 0|7 0l7 07 ..10}7 o}z 0 {7 0 7 0 {7 0
¥ ¥ ory
+2,147,483,647 7 40 -2,147,483,648

ASCII Data Types

=]
Character

. 242202-27
Figure 4-20. String and ASCII Data Types
Least Significant Byte
Data Format{ HEEEEEREEN
47 31 0
48-Bit Pointer |selector|  Ofset |
31 0
32-Bit Pointer
242202-28
Figure 4-21. Pointer Data Types
4.7.1.7 Pointer Data Types support the following two types of pointers (see Fig-
ure 4-21): )
A pointer data type contains a value that gives the e 48-bit Pointer:  16-bit selector and 32-bit offset

d f iece of data. Intel486 processors
address of a pi P « 32.bit Pointer:  32-bit offset
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4.7.2 LITTLE ENDIAN vs. BIG ENDIAN DATA
FORMATS

The Intel486 processors, as well as all other mem-
bers of the Intel architecture, use the “little-endian”
method for storing data types that are larger than
one byte. Words are stored in two consecutive bytes
in memory with the low-order byte at the lowest ad-
dress and the high order byte at the high address.
Dwords are stored in four consecutive bytes in mem-
ory with the low-order byte at the lowest address
and the high order byte at the highest address. The
address of a word or dword data item is the byte
address of the low-order byte.

Figure 4-22 illustrates the differences between the
big-endian and little-endian formats for dwords. The

32 bits of data are shown with the low order bit num- -

bered bit 0 and the high order bit numbered 32. Big-
endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored
with the high-order bits in the highest addressed

byte. >

The Intel486 processor has the following two in-
structions that can convert 16- or 32-bit data be-
tween the two byte orderings:

¢ BSWAP (byte swap) handles 4-byte values
® XCHG (exchange) handles 2-byte values

m+3 m+2 m+1 m
31 24 23 16 15 8 7 0

Dword in Little-Endian Memory Format

m m+1 m+2 m+3
31 24 23 16 15 8 7 0

L | I I ]

Dword in Big-Endian Memory Format
242202-29

Figure 4-22. Big vs. Little Endian Memory Format
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4.8.1 INTERRUPTS AND EXCEPTIONS

4.8 Interrupts

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are -
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the Intel486 processors treat software
interrupts as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 4.8.3,
“Maskable Interrupt,” and 4.8.4, “Non-Maskable In-
terrupt,” discuss the differences between Maskable
and Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts,
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system when the processor referenced a
page or a segment that was not present. The operat-
ing system would fetch the page or segment from
disk, and then the Intel486 processor would restart
the instruction. Traps are exceptions that are report-
ed immediately after the execution of the instruction -
that caused the problem. User defined interrupts are
examples of traps. Aborts are exceptions that do
not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report severe errors, such as a hardware
error or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Tables 4-16 and 4-17 summarize
the possible interrupts for Intel486 processors and
shows where the return address points.
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Intel486 processors can handie up to 256 different
interrupts and/or exceptions. In order to service the
" interrupts, a table with up to 256 interrupt vectors
must be defined. The interrupt vectors are simply
pointers to the appropriate interrupt service routine.
In Real Mode (see section 5.0, “Real Mode Archi-
tecture”), the vectors are 4-byte quantities, a Code
Segment plus a 16-bit offset; in Protected Mode, the
interrupt vectors are 8-byte quantities, which are put
in an Interrupt Descriptor Table. (See section
6.2.3.4, “Interrupt Descriptor Table.”) Of the 256
possible interrupts, 32 are reserved for use by Intel,
the remaining 224 are free to be used by the system
designer.

4.8.2 INTERRUPT PROCESSING

When an interrupt occurs, the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the Intel486 processor which identifies the
appropriate entry in the interrupt table. The table
contains the starting address of the interrupt service
routine. Then, the user supplied interrupt service
routine is executed. Finally, when an IRET instruc-
tion is executed the old Intel486 processor state is
restored and program execution resumes at the ap-
propriate instruction.

The 8-bit interrupt vector is supplied to the Intel486
processor in several different ways: exceptions sup-
ply the interrupt vector internally; software INT

Intel486™ PROCESSOR FAMILY

instructions contain or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maska-
ble hardware interrupts are assigned to interrupt
vector 2. .

4.8.3 MASKABLE INTERRUPT

Maskable interrupts are the most common way used
by the Intel486 processor to respond to asynchro-
nous external hardware events. A hardware interrupt
occurs when the INTR is pulled high and the Inter-
rupt Flag bit (IF) is enabled. The Intel486 processor
only responds to interrupts between instructions,
(REPeat String instructions, have an “interrupt win-
dow,” between memory moves, which allows inter-
rupts during long string moves). When an interrupt
occurs, the Intel486 processor reads an 8-bit vector
supplied by the hardware which identifies the source
of the interrupt, (one of 224 user defined interrupts).
The exact nature of the interrupt sequence is dis-
cussed in section 10.2.10, “Interrupt Acknowledge.”

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed, the
original state of the IF is restored.
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Table 4-16. Interrupt Vector Assignments

intel.

Function I;:‘e":;’:: Instructi;: ct:::ig:n Cause P?:?rtl‘t‘::: lg:t:;is:g Type
Instruction
Divide Error 0 DIV, IDIV YES FAULT
Debug Exception 1 Any instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any illegal instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any instruction that can ABORT
generate an exception
Intel Reserved 9
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 1 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Page Fault 14 Any Memory Access or Code YES FAULT
Fetch
Intel Reserved 15
Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT
Intel Reserved 18-31
Two Byte Interrupt 0-255 INT n NO TRAP
*Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.
Table 4-17. FPU Interrupt Vector Assignments
- Interrupt Instruction Whic.h Can R?turn Addre§s
Function Number Cause Exception Points to Feultmg Type
) Instruction
Floating Point Error 16 Floating Point, WAIT YES FAULT
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4.8.4 NON-MASKABLE INTERRUPT

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine or SMI# to
activate a power saving mode. When the NMI input
is pulled high, it causes an interrupt with an internally
supplied vector value of 2. Unlike a normal hardware
interrupt, no interrupt acknowledgment sequence is
performed for an NMI.

While executing the NMI servicing procedure, the
Intel486 processor will not service further NMI re-
quests until an interrupt return (IRET) instruction is
executed or the processor is reset (RSM in the case
of SMI#). If NMI occurs while currently servicing an
NM|, its presence will be saved for servicing after
executing the first IRET instruction. The IF bit is
cleared at the beginning of an NMI interrupt to inhibit
further INTR interrupts.

4.8.5 SOFTWARE INTERRUPTS

A third type of interrupt/exception for the Intel486
processor is the software interrupt. An INT n instruc-
tion causes the processor to execute the interrupt
service routine pointed to by the nth vector in the
interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in section 12.2, “Single-
Step Trap.”

4.8.6 INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input or SMI# input) are rec-
ognized at instruction boundaries. When more than
one interrupt or external event are both recognized
at the same instruction boundary, the Intel486 proc-
essor invokes the highest priority routine first. (See
list below.) If, after the NMI service routine has been
invoked, maskable interrupts are still enabled, then
the Intel486 processor will invoke the appropriate
interrupt service routine.

Intel486™ PROCESSOR FAMILY

Priority for Servicing External Events for All
Intel486 Processors Except the Write-Back En-
hanced IntelDX2 Processor

1. RESET/SRESET
2. FLUSH#

3. SMi#

4. NMI

5. INTR

6. STPCLK #

NOTE:
STPCLK# will be recognized while in an in-
terrupt service routine or an SMM handler.

For the Write-Back Enhanced IntelDX2 processor,
the priority of servicing external events is modified
from the standard Intel486 processor. The list below
shows the priority for write-back enhanced mode.

Priority for Servicing External Events for the
Write-Back Enhanced IntelDX2 Processor

1. RESET

. FLUSH#
. SRESET

. SMI#
NMI

. INTR

. STPCLK#

N oA ®ON

Exceptions are internally-generated events. Excep-
tions are detected by the Intel486 processor if, in the
course of executing an instruction, the Intel486 proc-
essor detects a problematic condition. The IntelDX4
processor then immediately invokes the appropriate
exception service routine. The state of the Intel486
processor is such that the instruction causing the
exception can be restarted. If the exception service
routine has taken care of the problematic condition,
the instruction will execute without causing the same
exception.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two “not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.
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As the Intel486 processor executes instructions, it
follows a consistent cycle in checking for excep-
tions. Consider the case of the Intel486 processor
having just completed an instruction. It then per-
forms the checks listed in Table 4-18 before reach-
ing the point where the next instruction is complet-

intal.

ed. This cycle is repeated as each instruction is exe-
cuted, and occurs in parallel with instruction decod-
ing and execution. Checking for EM, TS, or FPU er-
ror status only occurs for processors with on-chip
floating point units.

Table 4-18. Sequence of Exception Checking

Sequence Description

1 Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or
Data Breakpoints set in the Debug Registers).

2 Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the
Debug Registers for the next instruction).

3 Check for external NMI and INTR. _
Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions
11 or 13).

5 Check for Page Faults that prevented fetching the entire next instruction (exception 14).

at CPL=0).

Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and attempting to execute an instruction for Protected
Mode only (see section 6.5.4, “Protection and I/0 Permission Bitmap”); or exception 13 if
instruction is longer than 15 bytes, or privilege violation in Protected Mode (i.e., not at IOPL or

If WAIT opcode, check if TS=1 and MP =1 (exception 7 if both are 1). ‘

If opcode for Floating Point Unit, check if EM=1 or TS=1 (exception 7 if either are 1).

asserted).

If opcode for Floating Point Unit (FPU), check FPU error status (exception 16 if error status is

(exceptions 11, 12, 13).

10 Check in the following order for each memory reference required by the instruction:
a. Check for Segmentation Faults that prevent transferring the entire memory quantity

b. Check for Page Faults that prévent transferring the entire memory quantity (exception 14).

NOTE:

The order stated supports the concept of the paging mechanism being “underneath” the segmentation mechanism. There-
fore, for any given code or data reference in memory, segmentation exceptions are generated before paging exceptions are

generated.
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4.8.7 INSTRUCTION RESTART

The Intel486 processor fully supports restarting all
instructions after faults. If an exception is detected in

the instruction to be executed (exception categories

4 through 10 in Table 4-18), the Intel486 processor
invokes the appropriate exception service routine.

The Intel486 processor is in a state that permits re-
start of the instruction, for all cases except the fol-
lowing. An instruction causes a task switch to a task
whose Task State Segment is partially “not pres-
ent.” (An entirely “not present” TSS is restartable.)
Partially present TSSs can be avoided either by
keeping the TSSs of such tasks present in memory,
or by aligning TSS segments to reside entirely within
a single 4K page (for TSS segments of 4 Kbytes or
less).

NOTE:
Such cases are easily avoided by proper de-
sign of the operating system.
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4.8.8 DOUBLE FAULT

A Double Fault (exception 8) results when the
Intel486 processor attempts to invoke an exception
service routine for the segment exceptions (10, 11,
12 or 13), but in the process of doing so, detects an
exception other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the Intel486 processor attempts to invoke the
Page Fault (exception 14) service routine, and de-
tects an exception other than a second Page Fault.
In any functional system, the entire Page Fault serv-
ice routine must remain “present” in memory.

When a Double Fault occurs, the Intel486 processor
invokes the exception service routine for exception
8.

4.8.9 FLOATING POINT INTERRUPT VECTORS

Several interrupt vectors of the Intel486 DX,
IntelDX2, and IntelDX4 processors are used to re-
port exceptional conditions while executing numeric
programs in either real or protected mode. Table 4-
19 shows these interrupts and their causes.

Table 4-19. Interrupt Vectors Used by FPU

Interrupt Number

Cause of Interrupt

7 A Floating Point instruction was encountered when EM or TS of the Intel486 DX,
IntelDX2, and IntelDX4 processor control register zero (CRO) was set. EM = 1
indicates that software emulation of the instruction is required. When TS is set, either a
Floating Point or WAIT instruction causes interrupt 7. This indicates that the current
FPU context may not belong to the current task.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at
the Floating Point instruction that caused the exception, including any prefixes. The
FPU has not executed this instruction; the instruction pointer and data pointer register
refer to a previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer
and data pointer registers. Only Floating Point and WAIT instructions can cause this
interrupt. The Intel486 DX, intelDX2, and IntelDX4 processors return address pushed
onto the stack of the exception handler points to a WAIT or Floating Point instruction
(including prefixes). This instruction can be restarted after clearing the exception
condition in the FPU. The FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE
instructions can not cause this interrupt.
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5.0 REAL MODE ARCHITECTURE

5.1 Introduction

When the Intel486 processor is reset or powered up,
it is initialized in Real Mode. Real Mode has the
same base architecture as the 8086 processor, ex-
cept that it allows access to the 32-bit register set of
the Intel486 processor. The Intel486 processor ad-
dressing mechanism, memory size and interrupt
handling are identical to those of Real Mode on the
80286 processor.

All of the Intel486 processor instructions are avail-
able in Real Mode (except those instructions listed
in section 6.5.4, “Protection and I/0 Permission Bit-
map”). The default operand size in Real Mode is 16
bits, as in the 8086 processor. In order to use the
32-bit registers and addressing modes, override pre-
fixes must be used. Also, the segment size on the
Intel486 processor in Real Mode is 64 Kbytes, forc-
ing 32-bit effective addresses to have a value less
than O00OFFFFH. The primary purpose of Real
Mode is to enable Protected Mode Operation.

The LOCK prefix on the Intel486 processor, even in
Real Mode, is more restrictive than on the 80286
processor. This is due to the addition of paging on
the Intel486 processor in Protected Mode and Virtu-
al 8086 Mode. Paging makes it impossible to guar-
antee that repeated string instructions can be
LOCKed. The Intel486 processor can not require
that all pages holding the string be physically pres-
ent in memory. Hence, a Page Fault (exception 14)
might have to be taken during the repeated string
instruction. Therefore, the LOCK prefix can not be
supported during repeated string instructions.

Table 5-1 lists the only instruction forms where the
LOCK prefix is legal on the Intel486 processor.

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Because, on the Intel486 processor, repeated string
instructions are not LOCKable, it is not possible to
LOCK the bus for a long period of time. Therefore,
the LOCK prefix is not IOPL-sensitive on the
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Intel486 processor. The LOCK prefix can be used at
any privilege level, but only on the instruction forms
listed above.
Table 5-1. Instruction Forms Where LOCK
Prefix Is Legal

Opcode (DS:t?rsa:;ze)
BIT Test and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem
CHG Mem, Reg

ADD, OR, ADC, SBB, AND, | Mem, Reg/immed

SUB, XOR
NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg

5.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. (See Figure 5-1.) Thus, only address
lines A2-A19 are active. (Exception, after RESET
address lines A20-A31 are high during CS-relative
memory cycles until an intersegment jump or call is
executed. See section 9.5, “Reset and Initializa-
tion”.)

15

=)

OFFSET

il

19
l SEGMENT | |
SELECTOR 0000

—p : ’—} MEMORY OPERAND

SELECTED
[ 64K SEGMENT

MAX LIMIT
FIXED AT 64K IN
REAL MODE

SEGMENT BASE

242202-30

Figure 5-1. Real Address Mode Addressing

Because paging is not allowed in Real Mode, the
linear addresses are the same as the physical ad-
dresses. Physical addresses are formed in Real
Mode by adding the contents of the appropriate seg-
ment register, which is shifted left by four bits to an

_effective address. This addition results in a physi-
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cal address from 00000000H to 0010FFEFH. This is
compatible with 80286 Real Mode. Because seg-
ment registers are shifted left by 4 bits, Real Mode
segments always start on 16-byte boundaries.

All segments in Real Mode are exactly 64-Kbytes
long, and may be read, written, or executed. The
Intel486 processor will generate an exception 13 if a
data operand or instruction fetch occurs past the
end of a segment (i.e., if an operand has an offset
greater than FFFFH, for example, a word with a low
byte at FFFFH and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes, an-
other segment can be overlaid on top of the unused
portion of the previous segment. This allows the pro-
grammer to minimize the amount of physical memo-
ry needed for a program.

5.3 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

5.4 Interrupts

Many of the exceptions shown in Table 4-16 and
discussed in section 4.8.3, “Maskable Interrupt,” are
not applicable to Real Mode operation, in particular
exceptions 10, 11, 14, 17, which do not happen in
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Real Mode. Other exceptions have slightly different
meanings in Real Mode; Table 5-2 identifies these
exceptions.

5.5 Shutdown and Halt

The HALT instruction stops program execution and
prevents the Intel486 processor from using the local
bus until restarted. Either NMI, INTR with interrupts
enabled (IF=1), or RESET will force the Intel486
processor out of halt. If interrupted, the saved CS:IP
will point to the next instruction after the HLT.

As in the case of protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mode, shutdown can oc-
cur under two conditions, as follows:

* An interrupt or an exception occurs (exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e., there is not an in-
terrupt handler for the interrupt).

e A CALL, INT or PUSH instruction attempts to
wrap around the stack segment when SP is not
even (i.e., pushing a value on the stack when SP
= 0001 resulting in a stack segment greater than
FFFFH).

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
Intel486 processor is unable to execute the NMi and
executes another shutdown cycle. In this case, the
Intel486 processor remains in the shutdown and can
only exit via the RESET input.

Table 5-2. Exceptions with Different Meanings in Real Mode (see Table 4-17)

. Interrupt . Return Address
Function Number Related Instructions Location
Interrupt table limit too small 8 INT Vector is not within table limit Before Instruction
CS, DS, ES, FS, GS Segment 13 Word memory reference beyond offset = | Before Instruction
overrun exception FFFFH.
An attempt to execute past the end of CS
segment.

SS Segment overrun exception 12

Stack Reference beyond offset = FFFFH

Before Instruction
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6.0 PROTECTED MODE
ARCHITECTURE

The complete capabilities of the Intel486 processor
are unlocked when the Intel486 processor operates
in Protected Virtual Address Mode (Protected
Mode). Protected Mode vastly increases the linear
address space to four Gbytes (232 bytes) and allows
the running of virtual memory programs of almost
unlimited size (64 terabytes or 246 bytes). In addition
Protected Mode allows the Intel486 processor to run
all of the existing 8086, 80286 and Intel386 proces-
sor software, while providing a sophisticated memo-
ry management and a hardware-assisted protection
mechanism. Protected Mode allows the use of addi-
tional instructions especially optimized for support-
ing multitasking operating systems. The base archi-
tecture of the Intel486 processor remains the same,
the registers, instructions, and addressing modes
described in the previous sections are retained. The
main difference between Protected Mode and Real
Mode from a programmer’s view is the increased
address space and a different addressing mecha-
nism.

intgl.

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

6.1 Addressing Mechanism

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table. (See Figure 6-1.) The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel486 processor. As such, paging
operates beneath segmentation. The paging mecha-
nism translates the protected linear address which
comes from the segmentation unit into a physical
address. Figure 6-2 shows the complete Intel486
processor addressing mechanism with paging en-
abled.

48/32 BIT POINTER

SELECTOR OFFSET

SEGMENT LIMIT

47/31 31/15 0

s (D)—

MEMORY OPERAND

ACCESS RIGHTS
LIMIT
BASE ADDRESS

SEGMENT
DESCRIPTOR

UP TO SELECTED
4G BYTES SEGMENT

SEGMENT BASE
ADDRESS

242202-31

Figure 6-1. Protected Mode Addressing
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48 Bit Pointer
Physical Address
AL Aaakbiviabh
Segment I Offset ! 4K Bytes
15 31
—
! 4K Bytes
- Intel4g6™ !
. Access Rights | Processor | Physical 4K Bytes
Limit | Paging | Address Memory O . )
—_— N : ry Operand Physical Page:
| Base Address [-ahb@—b Mechanism Page Frame 4K Bytes
Linear ;
Segment Address | Address
Descriptor ! 4K Bytes
4K Bytes
I
i 4K Bytes
]
242202-32

Figure 6-2. Paging and Segmentation

6.2 Segmentation

6.2.1 SEGMENTATION INTRODUCTION

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8-byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

6.2.2 TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Priviiege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requester Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Because smaller privilege level values indicate
greater privilege, EPL is the numerical maximum of
RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.
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6.2.3 DESCRIPTOR TABLES

6.2.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments
which are used in an Intel486 processor system.
(See Figure 6-3.) There are three types of tables on
the Intel486 processor which hold descriptors: the
Global Descriptor Table, Local Descriptor Table, and
the Interrupt Descriptor Table. All of the tables are
variable length memory arrays. They can range in
size between 8 bytes and 64 Kbytes. Each table can
hold up to 8192 8-byte descriptors. The upper 13
bits of a selector are used as an index into the de-
scriptor table. The tables have registers associated
with them which hold the 32-bit linear base address,
and the 16-bit limit of each table.

Each of the tables has a register associated with it,
the GDTR, LDTR, and the IDTR (see Figure 6-3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

i
1
15 0 15 o
[ ] 1
LDT DESCR H H
LDTR SELECTOR ! LDT LIMIT !
[} ]
1 LDT BASE 1
+ | unear appReEss |}
15 0 4 '
1 32 1
IDT LIMIT 1 PROGRAM INVISIBLE 1
: AUTOMATICALLY LOADED :
DT BASE )} FROM LDT DESCRIPTOR
IDTR | "NEAR ADDRESS | ®==============s
31 0
15 0
GDT LIMIT
GDT BASE
ODTR | |INEAR ADDRESS
31 0
242202-33

Figure 6-3. Descriptor Table Registers
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6.2.3.2 Global Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the -
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e., interrupt and trap
descriptors). Every Intel486 processor system con-
tains a GDT. Generally the GDT contains code and
data segments used by the operating systems and

“task state segments, and descriptors for the LDTs in

a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

6.2.3.3 Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to ail tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

6.2.3.4 Interrupt Descriptor Table

The third table needed for Intel486 processor sys-
tems is the Interrupt Descriptor Table. (See Figure 6-
4.) The IDT contains the descriptors which point to
the location of up to 256 interrupt service routines.
The IDT may contain only task gates, interrupt
gates, and trap gates. The IDT should be at least
256 bytes in size in order to hold the descriptors for
the 32 Intel Reserved Interrupts. Every interrupt
used by a system must have an entry in the IDT. The
IDT entries are referenced via INT instructions, ex-
ternal interrupt vectors, and exceptions. (See sec-
tion 4.8, “Interrupts.”)



A ~
A MEMORY

GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #n-1
" INTERRUPT
. ‘ DESCRIPTOR
CPU . TABLE
()
bl o GATE FOR
or o LA INTERRUPT #1 g §
GATE FOR 2>
INTERRUPT #0 3 g w
IDT BASE § g 5
° z
3 :: <

"
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Figure 6-4. Interrupt Descriptor Table
Register Use

6.2.4 DESCRIPTORS

6.2.4.1 Descriptor Attribute Bits

The object to which the segment selector points to
is called a descriptor. Descriptors are eight-byte
quantities that contain attributes about a given re-
gion of linear address space (i.e., a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. All segments on the
Intel486 processor have three attribute fields in
common: the P bit, the DPL bit, and the S bit. The
Present P bit is 1 if the segment is loaded in physical
memory. If P=0, any attempt to access this seg-
ment will cause a not present exception (exception
11). The Descriptor Privilege Level DPL is a two-bit
field that specifies the protection level 0-3 associat-
ed with a segment.

The Intel486 processor has two main categories of
segments: system segments and non-system seg-
ments (for code and data). The segment S bit in the
segment descriptor determines if a given segment is
a system segment or a code or data segment. If the
S bit is 1, the segment is either a code or data seg-
ment. If it is O, the segment is a system segment.

Intel486™ PROCESSOR FAMILY

6.2.4.2 Intel486 Processor Code, Data
Descriptors (S=1)

Figure 6-5 shows the general format of a code and
data descriptor and Table 6-1 illustrates how the bits
in the Access Rights Byte are interpreted. The Ac-
cess Rights Bytes is bits 24-31 associated with the
segment limit.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Intel486 processor segments can be
one megabyte long with byte granularity (G=0) or
four gigabytes with page granularity (G=1), (i.e., 220
pages each page is 4 Kbytes in length). The granu-
larity is totally unrelated to paging. An Intel486 proc-
essor system can consist of segments with byte
granularity, and page granularity, whether or not
paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases.
Aliases are writeable data segments which
occupy the same range of linear address
space as the code segment.

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Intel486 proces-
sor assuming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See section 6.3, “Protection.”)
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31 Byte
. - Address
Segment Base 15..0 Segment Limit 15..0 0
Base 31.24 oo fofm| Jm PO |S] e Al e +4
] [
242202-35
BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1=Present, 0=Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor 0= System Descriptor, 1=Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1=Segment length is page granular, 0=Segment length is byte granular
D Default Operation Size (recognized in colde segment descriptors only)
1=232-bit segment, 0= 16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS
NOTE:

In a maximum-size segment (i.e., a segment with G =1 and segment limit 19...0= FFFFFH) the lowest 12 bits of the
segment base should be zero (i.e., segment base 11...000=000H).

Figure 6-5 Segment Descriptors

Table 6-1. Access Rights Byte Definition for Code and Data Descriptions

B.". Name Function
Position
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exits, base and
limit are not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL) '
4 Segment S=1 Code or Data (includes stacks) segment descriptor.
Descriptor (S) S=0 System Segment Descriptor or Gate Descriptor.
f Dat: Segment (S = 1,E = 0)
3 Executable (E) E=0 Descriptor type is data segment:
2 Expansion ED =) Expand up segment, offsets must be < limit.
Direction (ED) ED =1 Expand down segment, offsets must be > limit.
1 Writeable (W) W=0 Data segment may not be written into. |
W=1 Data segment may be written into.
If Cod Segment (S = 1,E = 1)
3 Executable (E) E=1 Descriptor type is code segment:
2 Conforming (C) C=1 Code segment may only be executed when CPL >
DPL and CPL remains unchanged.
1 Readable (R) R=0 Code segment may not be read.
R=1 Code segment may be read.
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment
register or used by selector test instructions.
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Segments identified as data segments (E=0, S=1)
are used for two types of Intel486 processor seg-
ments: stack and data segments. The expansion di-
rection (ED) bit specifies if a segment expands
downward (stack) or upward (data). If a segment is a
stack segment all offsets must be greater than the
segment limit. On a data segment all offsets must be
less than or equal to the limit. In other words, stack
segments start at the base linear address plus the
maximum segment limit and grow down to the base
linear address plus the limit. On the other hand, data
segments start at the base linear address and ex-
pand to the base linear address plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W=1.

The B bit controls the size of the stack pointer regis-
ter. If B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

Intel486™ PROCESSOR FAMlLY

6.2.4.3 System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 6-6
shows the general format of system segment de-
scriptors, and the various types of system segments.
Intel486 processor system descriptors contain a
32-bit base linear address and a 20-bit segment lim-
it. 80286 system descriptors have a 24-bit base ad-
dress and a 16-bit segment limit. 80286 system de-
scriptors are identified by the upper 16 bits being all
zero.

6.2.4.4 LDT Descriptors (S=0, TYPE=2)

LDT descriptors (S=0, TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Because the instruction to load the LDTR is
only available at privilege level 0, the DPL field is
ignored. LDT descriptors are only allowed in the
Global Descriptor Table (GDT).

31 16 Byte
Address
Segment Base 15...0 Segment Limit 15...0 0
Base 31..24 Glofojo| ,5mt orL | o Type Base 23..16 +4
| | 1 1
242202-36
Type Defines 8 Invalid
0 Invalid 9 Available Intel486 processor TSS
1 Available 80286 TSS A Undefined (Intel Reserved)
2 LDT B Busy intel486 processor TSS
3 Busy 80286 TSS C Intel486 processor call gate
4 80286 call gate D Undefined (Intel Reserved)
5 Task Gate (for 80286, Intel486™ processor E Intel486 processor
task) F Intel486 processor
6 80286 interrupt gate
7 80286 trap gate
Figure 6-6. System Segment Descriptors
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6.2.4.5 TSS Descriptors
(=0, TYPE=1,3,9,B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS inturnis a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e.; on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains an
80286 processor TSS or an Intel486 processor TSS.
The Task Register (TR) contains the selector which
points to the current Task State Segment.

6.2.4.6 Gate Descriptors
(=0, TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of
gate descriptors are call gates, task gates, inter-
rupt gates; and trap gates. Gates provide a level

intal.

of indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. It
also allows system designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see section 6.3, “Protec-
tion”), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify in-
terrupt service routines.

Figure 6-7 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

gates, and 16-bit quantities for 80286 gates.
DESTINATION 16-bit

31 24 16 8 5 o  Byte
Address
Selector Offset 15...0 0
Word
Offset 31...16 DPL | O Type ojojo C“ount +4
-0
1 .
242202-37
Gate Descriptor Fields
Name Value Description
Type 4 80286 call gate
5 Task gate (for 80286 or Intel486 processor task)
6 80286 interrupt gate
7 80286 trap gate
C Intel486™ processor call gate
E Intel486 processor interrupt gate
F Intel486 processor trap gate
P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to
copy from caller's stack to the called procedure’s stack. The parameters are 32-bit quantities for Intel486 processor

Selector to the target code segment

SELECTOR selector or
) Selector to the target task state segment for task gate
DESTINATION offset  Entry point within the target code segment
OFFSET 16-bit 80286
32-bit Intel486 processor
Figure 6-7. Gate Descriptor Formats
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Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit), while the trap gate does not.

Task gates are used to switch tasks. Task gates
may only refer to a task state segment. (See section
6.3.6, “Task Switching.”) Therefore, only the desti-
nation selector portion of a task gate descriptor is
used, and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task. (See section 6.3,
“Protection.””) The S field, bit 4 of the access rights
byte, must be 0 to indicate a system control descrip-
tor. The type field specifies the descriptor type as
indicated in Figure 6-7.

6.2.4.7 Differences Between Intel486 Processor
and 80286 Descriptors

In order to provide operating system compatibility
between 80286 and Intel4d86 processors, the

Intel486™ PROCESSOR FAMILY

Intel486 processor supports all of the 80286 seg-
ment descriptors. Figure 6-8 shows the general for-
mat of an 80286 system segment descriptor. The
only differences between 80286 and Intel486 proc-
essor descriptor formats are that the values of the
type fields, and the limit and base address fields
have been expanded for the Intel486 processor. The
80286 system segment descriptors contained a
24-bit base address and 16-bit limit, while the In-
tel486 processor system segment descriptors have
a 32-bit base address, a 20-bit limit field, and a gran-
ularity bit.

By supporting 80286 system segments the Intel486
processor is able to execute 80286 application pro-
grams on an Intel486 processor operating system.
This is possible because the Intel486 processor au-
tomatically understands which descriptors are
80286-style descriptors and which descriptors are
Intel486 processor-style descriptors. In particular, if
the upper word of a descriptor is zero, then that de-
scriptor is an 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Intel486 processor descriptors is the
interpretation of the word count field of call gates
and the B bit. The word count field specifies the
number of 16-bit quantities to copy for 80286 call
gates and 32-bit quantities for Intel486 processor
call gates. The B bit controls the size of PUSHes
when using a call gate; if B=0 PUSHes are 16 bits,
if B=1 PUSHes are 32 bits.

31 Byte
Address
Segment Base 15...0 Segment Limit 15...0 0
el Reserved oPL |s Type Base 23..16 +4
] L1 1
242202-38
BASE  Base Address of the segment
LIMIT  The length of the segment
P Present Bit: 1=Present, 0= Not Present
DPL Descriptor Privilege Level 0-3
S System Descriptor: 0= System, 1= User
TYPE  Type of Segment
Figure 6-8. 80286 Code and Data Segment Descriptors
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6.2.4.8 Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (Tl), Descriptor
Entry Index (Index), and Requester (the selector’s)
Privilege Level (RPL) as shown in Figure 6-9. The TI
bits select one of two memory-based tables of de-
scriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

6.2.4.9 Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
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descriptor cache are not visible to the programmer.
Because descriptor caches only change when a
segment register is changed, programs that modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

6.2.4.10 Segment Descriptor Register Settings

The contents of the segment descriptor cache vary
depending on the mode the Intel486 processor is
operating in. When operating in Real Address Mode,
the segment base, limit, and other attributes within
the segment cache registers are defined as shown
in Figure 6-10. For compatibility with the 8086 archi-
tecture, the base is set to sixteen times the current
selector value, the limit is fixed at 0000FFFFH, and
the attributes are fixed so as to indicate the segment
is present and fully usable. In Real Address Mode,
the internal “privilege level” is always fixed to the
highest level, level 0, so I/0 and other privileged
opcodes may be executed.

SELECTOR

15 43210
SEGMENT Tl
REGISTER Jojo —-——o Jof1f1]+
INDEX TABLE
INDICATOR
TI=1 TI=01
N N
A DESCRIPTOR A
NUMBER A
-/
6
5
4
3
2 2
1 1
0 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE

242202-39

Figure 6-9. Example Descriptor Selection
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SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 - BIT BASE 32-BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)

CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE !
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED !
PRIVILEGE LEVEL
PRESENT

BASE LIMIT + v
cs 16X CURRENT CS SELECTOR' 0000FFFFH |Y|o|Y|BlU|Y[Y[Y[-|N
SS 16X CURRENT SS SELECTOR 0000FFFFH (Y[ o[ Y|BU|Y|Y[N[W]-
DS 16X CURRENT DS SELECTOR 0000FFFFH |Y{oO[Y[BU|Y|Y[N|-]-
ES 16X CURRENT ES SELECTOR 0000FFFFH |Y|o|Y[B|U|Y|Y[N|-]-
FS 16X CURRENT FS SELECTOR 0000FFFFH [Y|o|Y]|Blu|Y|Y|N]-]|-
GS 16X CURRENT GS SELECTOR 0000FFFFH [Y|o|Y|BJU|Y|Y|N]|-]|~-

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (i.e., interseg-
ment CALL, or intersegment JMP, or INT). (See Figure 6-12 for an example.)

does not apply to that segment cache register

Key:

Y =yes D = expand down

N = no B = byte granularity

0 = privilege level0 P = page granularity

1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level3 — =

U = expand up

242202-40

Figure 6-10. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes Are Fixed)

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 6-11.
In Protected Mode, each of these fields are defined
according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-
ment register.

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other

attributes within the segment cache registers are de-
fined as shown in Figure 6-12. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at
0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.
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SEGMENT
32 - BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

32 - BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

DESCRIPTOR CACHE REGISTER CONTENTS

SELECTOR LOAD INTO
SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING

STACK SIZE

EXECUTABLE
WRITEABLE

READABLE

EXPANSION DIRECTION

GRANULARITY

ACCESSED
PRIVILEGE LEVEL
PRESENT

BASE LIMIT v !
CS | BASE PER SEG DESCR | LIMIT PER SEG DESCR pld|d]d]d]d|N]|Y]-]d
SS_| BASE PER SEG DESCR__ | LIMIT PER SEG DESCR pldld]d]d]|r [w[N]d]~
DS | BASE PER SEG DESCR | LIMIT PER SEG DESCR plaldldda]d]a[N]=-]~
ES_ | BASE PER SEG DESCR | LIMIT PER SEG DESCR plald]d]d]d]d[N]-]~
FS_ | BASE PER SEG DESCR | LIMIT PER SEG DESCR pidid|d[d]d]d[N]-]-
GS | BASE PER SEG DESCR | LIMIT PER SEG DESCR pldldld]d]d[d[N]=]-

Key:

Y = fixed yes

N = fixed no

d = per segment descriptor

p = per segment descriptor; descriptor must indicate “present” to avoid exception 11

(exception 12 in case of SS)
= per segment descriptor, but descriptor must indicate “readable” to avoid exception 13
(special case for SS)
w = per segment descriptor, but descriptor must indicate “writeable” to avoid exception 13
(special case for SS)
— = does not apply to that segment cache register

-

242202-41

Figure 6-11. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)
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SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 - BIT BASE 32 - BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT .
BASE LIMIT v J
cs 16X CURRENT CS SELECTOR 0000FFFFH |Y[3|Y|B|U|Y|Y|Y[-|N
SS 16X CURRENT SS SELECTOR 0000FFFFH [y [3fy[BlulY]Y[N]Ww]-
DS 16X CURRENT DS SELECTOR 0000FFFFH  [Y[3[Y[BJu[Y[Y[N]-T-
ES 16X CURRENT ES SELECTOR 0000FFFFH  |Y[3[Y|BJUfY|Y|N]|-]-
FS 16X CURRENT FS SELECTOR 0000FFFFH Y3 |Y|B|U[Y|Y|N|-]|-
GS 16X CURRENT GS SELECTOR 0000FFFFH  |Y|3[YiBlU[Y|YINI-]|-
"""""""""""""""""""""""" 242202-42
Key:
Y = yes D = expand down
N = no B =byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 — = does not apply to that segment cache register
U = expand up

Figure 6-12. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

6.3 Protection

6.3.1 PROTECTION CONCEPTS

The Intel486 processor has four levels of protection
which are optimized to support the needs of a muilti-
tasking operating system to isolate and protect user
programs from each other and the operating system.
The privilege levels control the use of privileged in-
structions, I/0 instructions, and access to segments
and segment descriptors. Unlike traditional proces-
sor-based systems where this protection is achieved
only through the use of complex external hardware
and software the Intel486 processor provides the

protection as part of its integrated Memory Manage-
ment Unit. The Intel486 processor offers an addi-
tional type of protection on a page basis, when pag-
ing is enabled (See section 6.4.3, “Page Level Pro-
tection.”)

The four-level hierarchical privilege system is illus-
trated in Figure 6-13. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the intel486 processor paging
mechanism. The privilege levels (PL) are numbered
0 through 3. Level 0 is the most privileged or trusted
level.
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Figure 6-13. Four-Level Hierarchical Protection

6.3.2 RULES OF PRIVILEGE

The Intel486 processor controls access to both data
and procedures between levels of a task, according
to the following rules.

e Data stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

e A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

6.3.3 PRIVILEGE LEVELS

6.3.3.1 Task Privilege

At any point in time, a task on the Intel486 processor
always executes at one of the four privilege levels.
The Current Privilege Level (CPL) specifies the
task’s privilege level. A task’s CPL may only be
changed by control transfers through gate descrip-
tors to a code segment with a different privilege lev-
el. (See section 6.3.4, “Privilege Level Transfers.”)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task’s CPL to be set to
1 until the operating system routine was finished.
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The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector’s RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e., nu-
merically larger) level of a task’s CPL and a selec-
tor’s RPL. Thus, if selector’'s RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardless of the task’s CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Because the originator of a selec-
tor can specify any RPL value, the Adjust RPL
(ARPL) instruction is provided to force the RPL bits
to the originator’s CPL.

6.3.3.2 Selector Privilege (RPL)

6.3.3.3 1/0 Privilege and 1/0 Permission Bitmap

The 1/0 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 1/0 instructions can be unconditionally per-
formed. 1/0 instructions can be unconditionally per-
formed when CPL > IOPL. (The I/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL > |OPL, and the current task is associat-
ed with a 286 TSS, attempted 1/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with an Intel486 processor
TSS, the I/0 Permission Bitmap (part of an Intel486
processor TSS) is consulted on whether 1/0 to the
port is allowed, or an exception 13 fault is to be gen-
erated instead. For diagrams of the 1/0 Permission
Bitmap, refer to Figure 6-14 and Figure 6-15. For
further information on how the I/0 Permission Bit-
map is used in Protected Mode or in Virtual 8086
Mode, refer to section 6.5.4, “Protection and 1/0
Permission Bitmap.”

The 170 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “IOPL-sensitive” instructions and they are
CLI and STI. (Note that the LOCK prefix is not |OPL-
sensitive on the Intel486 processor.)
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242202-44

Figure 6-14. Intel486™ Processor TSS and TSS Registers
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1/0 Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

Figure 6-15. Sample 1/0 Permission Bit Map

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL > IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POPed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

6.3.3.4 Privilege Validation

. The Intel486 processor provides several instructions
to speed pointer testing and help maintain system
integrity by verifying that the selector value refers to
an appropriate segment. Table 6-2 summarizes the
selector validation procedures available for the In-
tel486 processor.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a ““bad” pointer which.corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

6.3.3.5 Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Table 6-2. Pointer Test Instructions

Instruction | Operands Function

ARPL Selector, ‘| Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric
Register maximum of current selector RPL value and the RPL value in the register. Set

zero flag if selector RPL was changed.
VERR Selector VERIfy for Read: sets the zero flag if the segment referred to by the selector can
) be read. / ‘
VERW Selector VERiIfy for Write: sets the zero flag if the segment referred to by the selector can
: be written.

LSL Register, Load Segment Limit: reads the segment limit into the register if privilege rules
Selector and descriptor type allow. Set zero flag if successful.

LAR Register, Load Access Rights: reads the descriptor access rights byte into the register if
Selector privilege rules allow. Set zero flag if successful.
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Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Intel486 processor makes pro-
tection validation checks. Selectors loaded in the
DS, ES, FS, GS registers must refer only to data
segments or readable code segments. The data ac-
cess rules are specified in section 6.3.2, “Rules of
Privilege.” The only exception to those rules is read-
able conforming code segments which can be ac-
cessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

Intel486™ PROCESSOR FAMILY

6.3.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 6-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g., JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

Table 6-3. Descriptor Types Used for Control Transfer

. Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege CALL Call Gate GDT/LDT
level
Interrupt within task may change CPL Interrupt Instruction, Trap or Interrupt | IDT
Exception, External Gate
Interrupt
Intersegment to a lower privilege level (changes | RET, IRET(1) Code Segment | GDT/LDT
task CPL) CALL, JMP Task State GDT
Segment
Task Switch CALL, JMP Task Gate GDT/LDT
IRET(2) Task Gate DT
Interrupt Instruction,
Exception, External
Interrupt
NOTES:
1. NT (Nested Task bit of flag register) = 0
2. NT (Nested Task bit of flag register) = 1
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The privilege rules require that:

e Privilege level transitions can only occur via
gates.

@ JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

e CALLs can be made to a non-conforming code
segment with the same privilege or viaa gate to a
more privileged level.

e |nterrupts handled within the task obey the same
privilege rules as CALLs.

e Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

e Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL
must be of equal or greater privilege than the
gate’s DPL.

® The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

e Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

e Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment. (See section 6.3.6, “Task Switch-
ing.”) During a JMP or CALL control transfer, the
new stack pointer is loaded into the SS and ESP
registers and the previous stack pointer is pushed
onto the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.
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Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Because the operat-
ing system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform 1/0).

6.3.5 CALL GATES

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor’'s DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Intel486 processor call gate
is activated, the following actions occur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed

4. Copy Word Count 32-bit parameters from the old
stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex-
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e., the
IF bit is set to 0), and Trap gates leave the interrupt
status unchanged.

6.3.6 TASK SWITCHING

A very important attribute of any multitasking/multi-
user operating system is its ability to rapidly switch
between tasks or processes. The Intel486 processor
directly supports this operation by providing a task
switch instruction in hardware. The Intel486 proces-
sor task switch operation saves the entire state of
the machine {all of the registers, address space, and
a link to the previous task), loads a new execution
state, performs protection checks, and commences
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execution in the new task, in about 10 microsec-
onds. Like transfer of control via gates, the task
switch operation is invoked by executing an inter-
segment JMP or CALL instruction which refers to a
Task State Segment (TSS), or a task gate descriptor
in the GDT or LDT. An INT n instruction, exception,
trap, or external interrupt may also invoke the task
switch operation if there is a task gate descriptor in
‘the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
6-14) containing the entire Intel486 processor exe-
cution state while a task gate descriptor contains a
TSS selector. The Intel486 processor supports both
80286 and Intel486 processor style TSSs. Figure 6-
16 shows an 80286 TSS. The limit of an Intel486
processor TSS must be greater than 0064H (002BH
for an 80286 TSS), and can be as large as 4 Gbytes.
In the additional TSS space, the operating system is
free to store additional information such as the rea-
son the task is inactive, time the task has spent run-
ning, and open files belong to the task.

15 0
BACK LINK SELECTOR TO TSS 0
SP FOR CPL 0 2
SS FOR CPL 0 4
SP FOR CPL 1 6 | INITIAL
STACKS
SS FOR CPL 1 8 | For CPL 0, 1,2
SP FOR CPL 2 A
SS FOR CPL 2 ¢
IP (ENTRY POINT) £)
FLAGS 10
AX 12
cx 14
DX 16
BX 18
CURRENT
SP 1A } TASK
P 1 | STATE
si IE
DI 20
E£S SELECTOR 22
CS SELECTOR 24
SS SELECTOR 26
DS SELECTOR 28
TASK'S LDT SELECTOR 2A
Jn AVAILABLE H
v w
242202-46

Figure 6-16. 80286 TSS
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Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Intel486 processor called the Task State Segment
Register (TR). This register contains a selector refer-
ring to the task state segment descriptor that de-
fines the current TSS. A hidden base and limit regis-
ter associated with TR are loaded whenever TR is
loaded with a new selector. Returning from a task is
accomplished by the IRET instruction. When IRET is
executed, control is returned to the task which was
interrupted. The current executing task’s state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status .
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when
NT = 1, IRET performs a task switch operation
back to the previous task. The NT bit is set or reset
in the following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Intel486 processor task state segment is
marked busy by changing the descriptor type field
from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer-
ences a busy task state segment causes an excep-
tion 13. .

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch. (See section 6.5, “Virtual 8086
Environment.”)

The T bit in the Intel486 processor TSS indicates
that the processor should generate a debug excep-
tion when switching to a task. If T = 1, upon entry to
a new task, a debug exception 1 will be generated.
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6.3.6.1 Floating Point Task Switching

The FPU'’s state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CRO) helps deal with the FPU’s state in a multi-
tasking environment. Whenever the Intel OverDrive
processors switch tasks, they set the TS bit. The
Intel OverDrive processors detect the first use of a
processor extension instruction after a task switch
and causes the processor extension not available
exception 7. The exception handler for exception 7
may then decide whether to save the state of the
FPU. A processor extension not present exception
(7) will occur when attempting to execute a Floating
Point or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.,
TS = 1and MP = 1).

6.3.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Because the Intel486 processor begins executing in
Real Mode immediately after RESET it is necessary
to initialize the system tables and registers with the
appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256-bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 6-17 shows the
tables and Figure 6-18 the descriptors needed for a
simple Protected Mode Intel486 processor system.
It has a single code and single data/stack segment
each four-Gbytes long and a single privilege level
PL = 0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the Intel486 processor in Pro-
tected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.
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Figure 6-17. Simple Protected System

An alternate approach to entering Protected Mode
which is especially appropriate for multitasking oper-
ating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. Be-
cause a task switch saves the state of the current
task in a task state segment, the Task State Seg- .
ment Register should be initialized to point to a valid
TSS descriptor.

6.4 Paging

6.4.1 PAGING CONCEPTS

Paging is another type of memory management use-
ful for virtual memory multitasking operating
systems. Unlike segmentation which modularizes
programs and data into variable length segments,
paging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.
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Figure 6-18. GDT Descriptors for Simple System

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

6.4.2 PAGING ORGANIZATION

6.4.2.1 Page Mechanism

The Intel486 processor uses two levels of tables to
translate the linear address (from the segmentation
unit) into a physical address. There are three com-
ponents to the paging mechanism of the Intel486
processor: the page directory, the page tables, and
the page itself (page frame). All memory-resident el-
ements of the Intel486 processor paging mechanism
are the same size, namely, 4 Kbytes. A uniform size
for all of the elements simplifies memory allocation
and reallocation schemes, because there is no prob-
lem with memory fragmentation. Figure 6-19 shows
how the paging mechanism works.

6.4.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are

always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3 reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS that
changes the value of CRO. (See section 6.4.5,
“Translation Lookaside Buffer.”)

6.4.2.3 Page Directory

The Page Directory is 4-Kbytes long and allows up
to 1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next ievel of ta-
bies, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 6-20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

6.4.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page. (See Figure 6-21.) Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.
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Figure 6-19. Paging Mechanism
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Figure 6-21. Page Table Entry (Points to Page)
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6.4.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation,
if P = 0 the entry cannot be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the Intel486 proc-
essor for both types of entries before a read or write
access occurs to an address covered by the entry.
The D (Dirty) bit 6 is set to 1 before a write to an
address covered by that page table entry occurs.
The D bit is undefined for Page Directory Entries.
When the P, A and D bits are updated by the In-
tel486 processor, a Read-Modify-Write cycle is gen-
erated which locks the bus and prevents conflicts
with other processors or peripherals. Software which
modifies these bits should use the LOCK prefix to
ensure the integrity of the page tables in multimaster
systems.

The 3 bits marked OS Reserved in Figure 6-20 and
Figure 6-21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm such as
Least Recently Used.
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The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

6.4.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The Intel486 processor provides a set of protection
attributes for paging systems. The paging mecha-
nism distinguishes between two levels of protection:
User which corresponds to level 3 of the segmenta-
tion based protection, and supervisor which encom-
passes all of the other protection levels (0, 1, 2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The In-
tel386 processor does not contain the WP bit. The
WP bit has been added to the Intel486 processor to
protect read-only pages from supervisor write ac-
cesses. The Intel386 processor allows a read-only
page to be written from protection levels 0, 1 or 2.
WP =0 is the Intel386 processor compatible mode.
When WP =0, the supervisor can write to a read-
only page as defined by the U/S and R/W bits.
When WP=1, supervisor access to a read-only
page (R/W=0) will cause a page fault (exception
14).

Table 6-4 shows the affect of the WP, U/S and R/W
bits on accessing memory. When WP =0, the super-
visor can write to pages regardless of the state of
the R/W bit. When WP =1 and R/W=0, the super-
visor cannot write to a read-only page. A user at-
tempt to access a supervisor only page (U/S=0) or
to write to a read-only page will cause a page fault
(exception 14).

Table 6-4. Page Level Protection Attributes

u/s R/W WP User Access Supervisor Access
0 0 0 None Read/Write/Execute
0 1 0 None Read/Write/Execute
1 0 0 Read/Execute Read/Write/Execute
1 1 0 Read/Write/Execute Read/Write/Execute
0 0 1 None Read/Execute
0 1 1 None Read/Write/Execute
1 0 1 Read/Execute Read/Execute
1 1 1 Read/Write/Execute Read/Write/Execute
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The R/W and U/S bits provide protection from user
access on a page by page basis because the bits
are contained in the Page Table Entry and the Page
Directory Table. The U/S and R/W bits in the first-
level Page Directory Table apply to all entries in the
page table pointed to by that directory entry. The
U/S and R/W bits in the second-level Page Table
Entry apply only to the page described by that entry.
The most restrictive of the U/S and R/W bits from
the Page Directory Table and the Page Table Entry
are used to address a page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 (user read/execute) and the
U/S and R/W bits for the Page Table Entry were 01
(no user access at all), the access rights for the
page would be 01, the numerically smaller of the
two.

Note that a given segment can be easily made read-
only for level 0, 1 or 2 via use of segmented protec-
tion mechanisms. (Section 6.3, “Protection”.)

6.4.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

See section 7.6, “Page Cacheability,” for a detailed
description of page cacheability and the PWT and
PCD bits.

6.4.5 TRANSLATION LOOKASIDE BUFFER

The Intel486 processor paging hardware is designed
to support demand paged virtual memory systems.
However, performance would degrade substantially
if the Intel486 processor was required to access two
levels of tables for every memory reference. To
solve this problem, the Intel486 processor keeps a
cache of the most recently accessed pages. This
cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-en-
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the Intel486
processor. The 32-entry TLB coupled with a 4K
page size, results in coverage of 128 Kbytes of
memory addresses. For many common multitasking
systems, the TLB will have a hit rate of about 98%.
This means that the Intel486 processor will only
have to access the two-level page structure on 2%
of all memory references. Figure 6-22 illustrates how
the TLB complements the Intel486 processor’s pag-
ing mechanism.

2-106

intal.

32 ENTRIES

PHYSICAL
MEMORY
TRANSLATION
| LOOKASIDE
BUFFER HIT

LINEAR
ADDRESS

MISS

31 0

O—

PAGE PAGE
DIRECTORY TABLE

@ 98% HIT RATE

242202-50

Figure 6-22. Translation Lookaside Buffer

Reading a new entry into the TLB (TLB refresh) is a
two step process handled by the Intel486 processor
hardware. The sequence of data cycles to perform a
TLB refresh are the following:

1. Read the correct Page Directory Entry, as pointed
to by the page base register and the upper 10 bits
of the linear address. The page base register is in
control register 3.

a. Optionally perform a locked read/write to set
the accessed bit in the directory entry. The di-
rectory entry will actually get read twice if the
Intel486 processor needs to set any of the bits
in the entry. If the page directory entry changes
between the first and second reads, the data
returned for the second read will be used.

2. Read the correct entry in the Page Table and
place the entry in the TLB.

a. Optionally perform a locked read/write to set
the accessed and/or dirty bit in the page table
entry. Again, note that the page table entry will
actually get read twice if the Intel486 processor
needs to set any of the bits in the entry. Like
the directory entry, if the data changes be-
tween the first and second read the data re-
turned for the second read will be used.

Note that the directory entry must always be read
into the Intel486 processor, because directory en-
tries are never placed in the paging TLB. Page faults
can be signaled from either the page directory read
or the page table read. Page directory and page ta-
ble entries may be placed in the Intel486 processor
on-chip cache just like normal data.
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6.4.6 PAGING OPERATION

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e.,, a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

However, if the page table entry is not in the TLB,
the Intel486 processor will read the appropriate
Page Directory Entry. If P = 1 on the Page Directory
Entry indicating that the page table is in memory,
then the Intel486 processor will read the appropriate
Page Table Entry and set the Access bit. If P = 1 on
the Page Table Entry indicating that the page is in
memory, the Intel486 processor will update the Ac-
cess and Dirty bits as needed and fetch the oper-
and. The upper 20 bits of the linear address, read
from the page table, will be stored in the TLB for
future accesses. However, if P = 0 for either the
Page Directory Entry or the Page Table Entry, then
the Intel486 processor will generate a page fault, an
Exception 14.

The Intel486 processor will also generate an excep-
tion 14 page fault if the memory reference violated
the page protection attributes (i.e., U/S or R/W)
(e.g., trying to write to a read-only page). CR2 will
hold the linear address which caused the page fault.
If a second page fault occurs, while the Intel486
processor is attempting to enter the service routine
for the first, then the Intel486 processor will invoke
the page fault (exception 14) handler a second time,
rather than the double fault (exception 8) handler.
Because Exception 14 is classified as a fault, CS:
EIP will point to the instruction causing the page
fault. The 16-bit error code pushed as part of the
page fault handler will contain status bits which.indi-
cate the cause of the page fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault. The
upper portion of Figure 6-23 shows the format of the
page-fault error code and the interpretation of the
bits.
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15 3210
u
(SARVARVERVERVERVARVARVERVERVARVE RVERVE RV) WIiP
s|R
u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write
NOTES:

*Descriptor table access will fault with U/S =
0, even if the program is executing at level 3.
U: UNDEFINED

U/S: The U/S bit indicates whether the access
causing the fault occurred when the Intel486
processor was executing in User Mode (U/S =
1) or in Supervisor mode (U/S = 0).

W/R: The W/R bit indicates whether the ac-
cess causing the fault was a Read (W/R = 0)
or a Write (W/R = 1).

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a
page level protection violation (P = 1).

Figure 6-23. Page Fault System Information

NOTE:
Even though the bits in the error code (U/S,
W/R, and P) have similar names as the bits
in the Page Directory/Table Entries, the in-
terpretation of the error code bits is different.
Figure 6-23 indicates what type of access
caused the page fault.

6.4.7 OPERATING SYSTEM RESPONSIBILITIES

The Intel486 processor takes care of the page ad-
dress translation process, relieving the burden from

- an operating system in a demand-paged system.

The operating system is responsible for setting
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up the initial page tables, and handling any page
faults. The operating system also is required to inval-
idate (i.e., flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed. '

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

6.5 Virtual 8086 Environment

6.5.1 EXECUTING 8086 PROGRAMS

The Intel486 processor allows the execution of 8086
application programs in both Real Mode and in the
Virtual 8086 Mode (Virtual Mode). Of the two meth-
ods, Virtual 8086 Mode offers the system designer
the most flexibility. The Virtual 8086 Mode allows the
execution of 8086 applications, while still allowing
the system designer to take full advantage of the
Intel486 processor protection mechanism. In partic-
ular, the Intel486 processor allows the simultaneous
execution of 8086 operating systems and its applica-
tions, and an Intel486 processor operating system
and both 80286 and Intel486 processor applications.
Thus, in a multi-user Intel486 processor computer,
one person could be running an MS-DOS* spread-
sheet, another person using MS-DOS*, and a third
person could be running multiple UNIX utilities and
applications. Each person in this scenario would be-
lieve that he had the computer completely to him-
self. Figure 6-24 illustrates this concept.
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6.5.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between Intel486 proc-
essor Real and Protected modes is -how the seg-
ment selectors are interpreted. When the Intel486
processor is executing in Virtual 8086 Mode the seg-
ment registers are used in an identical fashion to

‘Real Mode. The contents of the segment register is
shifted left 4 bits and added to the offset to form the .

segment base linear address.

The Intel486 processor allows the operating system
to specify which programs use the 8086 style ad-
dress mechanism, and which programs use Protect-
ed Mode addressing, on a per task basis. Through
the use of paging, the one megabyte address space
of the Virtual Mode task can be mapped to any-
where in the 4-Gbyte linear address space of the
Intel486 processor. Like Real Mode, Virtual Mode
effective addresses (i.e., segment offsets) that ex-
ceed 64 Kbyte will cause an exception 13. However,
these restrictions should not prove to be important,
because most tasks running in Virtual 8086 Mode
will simply be existing 8086 application programs.

6.5.3 PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one Mbyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum
4-Gbyte physical address space of the Intel486
processor. In addition, because CR3 (the Page Di-
rectory Base Register) is loaded by a task switch,
each Virtual Mode task can use a different mapping
scheme to map pages to different physical locations.
Finally, the paging hardware allows the sharing of
the 8086 operating system code between multiple
8086 applications. Figure 6-24 shows how the
Intel486 processor paging hardware enables multi-
ple 8086 programs to run under a virtual memory
demand paged system.
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Figure 6-24. Virtual 8086 Environment Memory Management

6.5.4 PROTECTION AND 1/0 PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec-
tion checks defined in Protected Mode. (This is dif-
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Therefore, at-
tempting to execute these instructions in Virtual
8086 Mode (or anytime CPL > 0) causes an excep-
tion 13 fault:

LIDT; MOV DRn,reg; MOV reg,DRn;
LGDT ; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn,reg; MOV reg,CRn.
CLTS;
HLT ;
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Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR ;
LSL; VERW ;
ARPL.

The instructions that are IOPL-sensitive in Protected
Mode are:

IN; STI;
OUT ; CLI
INS;

OUTS ;

REP INS;

- REP OUTS;

In Virtual 8086 Mode, a slightly different set of in-
structions are made IOPL-sensitive. The following in-
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode OCCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren’t
IOPL sensitive in Protected Mode either).

Note that the 1/0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the 170 instructions be-
come automatically sensitive to the 1/0 Permission
Bitmap contained in the Intel486 processor Task
State Segment. The I/0 Permission Bitmap, auto-
matically used by the Intel486 processor in Virtual
8086 Mode, is illustrated by Figure 6-14 and Figure
6-15.

The I/0 Permission Bitmap can be viewed as a
0-64 Kbit string, which begins in memory at offset
Bit__Map__Offset in the current TSS. Bit_Map__
Offset must be < DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
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offsets < FFFFH from the TSS base. The 16-bit
pointer Bit__Map__Offset (15:0) is found in the word

beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 6-14.

Each bit in the 1/0 Permission Bitmap corresponds
to a single byte-wide /0 port, as illustrated in Figure
6-14. If a bit is 0, 1/0 to the corresponding byte-wide
port can occur without generating an exception. Oth-
erwise the 1/0 instruction causes an exception 13
fault. Because every byte-wide 1/0 port must be pro-
tectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide 1/0 to be permitted. If all the referenced
bits are 0, the 1/0 will be allowed. If any referenced
bits are 1, the attempted 1/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the 170
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the Bit__Map__Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K 1/0 space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not
required, while allowing the fully general case if de-
sired.

Example of Bitmap for 1/0 Ports 0-255: Setting
the TSS limit to {bit_Map__Offset + 31 + 1**}
[** see note below] will allow a 32-byte bitmap for
the 170 ports #0-255, plus a terminator byte of all
1’s [** see note below]. This allows the 1/0 bitmap
to control I/0 Permission to 1/0 port 0-255 while
causing an exception 13 fault on attempted 1/0 to
any 1/0 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE:

Beyond the last byte of I1/0 mapping infor-
mation in the 1/0 Permission Bitmap must
be a byte containing all 1’s. The byte of all
1’s must be within the limit of the Intel486
processor TSS segment (see Figure 6-14).

6.5.5 INTERRUPT HANDLING

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Intel486 processor op-
erating system. The Intel486 processor operating
system determines if the interrupt comes from a
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Protected Mode application or from a Virtual Mode

program by examining the VM bit in the EFLAGS
image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack. ’

The Intel486 processor operating system in turn
handles the exception or interrupt and then returns
control to the 8086 program. The Intel486 processor
operating system may choose to let the 8086 oper-
ating system handle the interrupt or it may emulate
the function of the interrupt handler. For example,
many 8086 operating system calls are accessed by
PUSHing parameters on the stack, and then execut-
ing an INT n instruction. If the IOPL is set to O then
all INT n instructions will be intercepted by the in-
tel486 processor operating system. The Intel486
processor operating system could emulate the 8086
operating system’s call. Figure 6-25 shows how the
Intel486 processor operating system could intercept
an 8086 operating system’s call to “Open a File.”

An Intel486 processor operating system can provide
a Virtual 8086 Environment which is totally transpar-
ent to the application software via intercepting and
then emulating 8086 operating system’s calls, and
intercepting IN and OUT instructions.

6.5.6 ENTERING AND LEAVING VIRTUAL 8086
MODE

Virtual 8086 mode is entered by executing an IRET
instruction (at CPL=0), or Task Switch (at any CPL)
to an Intel486 processor task whose Intel486 proc-
essor TSS has a FLAGS image containing a 1 in the
VM bit position while the intel486 processor is exe-
cuting in Protected Mode. That is, one way to enter
Virtual 8086 mode is to switch to a task with an In-
tel486 processor TSS that has a 1 in the VM bit in
the EFLAGS image. The other way is to execute a
32-bit IRET instruction at privilege level 0, where the
stack has a 1 in the VM bit in the EFLAGS image.
POPF does not affect the VM bit, even if the Intel486
processor is in Protected Mode or level 0, and so
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cannot be used to enter Virtual 8086 Mode. PUSHF
always pushes a 0 in the VM bit, even if the Intel486
processor is in Virtual 8086 Mode, so that a program
cannot tell if it is executing in REAL mode, or in Vir-
tual 8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level O, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM=1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe-
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to Intel486
processor protected mode occurs only on receipt of
an interrupt or exception (such as due to a sensitive
instruction). In Virtual 8086 mode, all interrupts and
exceptions vector through the protected mode IDT,
and enter an interrupt handler in protected Intel486
processor mode. That is, as part of interrupt pro-
cessing, the VM bit is cleared.

Because the matching IRET must occur from level 0O,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg-
ments, or through segments with DPL>0, will raise a
GP fault with the CS selector as the error code.

6.5.6.1 Task Switches To and From Virtual 8086
Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new Intel486 proces-
sor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with an Intel486 processor TSS. All of the pro-
grammer visible state, including the FLAGS register
with the VM bit set to 1, is stored in the TSS.

The segment registers in the TSS will contain 8086
segment base values rather than selectors.
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- Figure 6-25. Virtual 8086 Environment Interrupt and Call Handling

A task switch into a task described by an Intel486
processor TSS will have an additional check to de-
termine if the incoming task should be resumed in
virtual 8086 mode. Tasks described by 80286 format
TSSs cannot be resumed in virtual 8086 mode, so
no check is required there (the FLAGS image. in

80286 format TSS has only the low order 16 FLAGS.

bits). Before loading the segment register images
from an Intel486 processor TSS, the FLAGS image
is loaded, so that the segment registers are loaded
from the TSS image as 8086 segment base values.
The task is now ready to resume in virtual 8086 exe-
cution mode.

6.5.6.2 Transitions Through Trap and Interrupt
Gates, and IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
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to enter as part of executing an IRET instruction.
The transition out must use an Intel486 processor
Trap Gate (Type 14), or Intel486 processor Interrupt
Gate (Type 15), which must point to a non-conform-
ing level 0 segment (DPL=0) in order to permit the
trap handler to IRET back to the Virtual 8086 pro-
gram. The Gate must point to a non-conforming lev-
el 0 segment to perform a level switch to level 0 so
that the matching IRET can change the VM bit. In-
tel486 processor gates must be used, because
80286 gates save only the low 16 bits of the FLAGS
register, so that the VM bit will not be saved on tran-
sitions through the 80286 gates. Also, the 16-bit
IRET (presumably) used to terminate the 80286 in-
terrupt handler will pop only the lower 16 bits from
FLAGS, and will not affect the VM bit. The action
taken for an Intel486 processor Trap or Interrupt
gate if an interrupt occurs while the task is executing
in virtual 8086 mode is given by the following se-
quence.
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1. Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF also.

2. Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so IRET can return). This pro-
cess involves a stack switch to the stack given in
the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a

later step. The segment register load of SS will be -

done as a Protected Mode segment load, be-
cause the. VM bit was turned off above.

3. Push the 8086 segment register values onto the
new stack, in the order: GS, FS, DS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0). '

4. Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP regis-
ter saved above.

5. Push the 32-bit FLAGS register saved in step 1.

6. Push the old 8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected Intel486 processor mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don’t care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e., push all registers in
prolog, pop all in epilog) regardless of whether or not
a ‘native’ mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis-
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex-
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto
the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.
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The IRET instruction will perform the inverse of the
above sequence. Only the extended Intel486 proc-
essor IRET instruction (operand size=32) can be
used, and must be executed at level 0 to change the
VM bit to 1. ‘

1. If the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the in-
terrupted task which is to be resumed. Otherwise,
continue with the following sequence.

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac-
tive in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM =0, this CS load is done as a protected mode
segment load. If VM =1, this will be done as an
8086 segment load.

4. ESP register by 4 to bypass the FLAGS image
which was “popped” in step 1.

5. If VM =1, load segment registers ES, DS, FS, and
GS from memory locations SS:[ESP- 8],
SS:[ESP+12], SS:[ESP + 16], " and
SS:[ESP+ 201, respectively, where the new value
of ESP stored in step 4 is used. Because VM =1,
these are done as 8086 segment register loads.
Else if VM =0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routine.
Null out invalid selectors to trap if an attempt is
made to access through them.

6.1f (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM=0, SS is loaded as a
protected mode segment register load. If VM =1,
an 8086 segment register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the Intel486 processor resumes
the interrupted routine in Protected mode of Virtu-
al 8086 mode.
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7.0 ON-CHIP CACHE

All members of the Intel486 processor family, except
the IntelDX4 processor, contain an on-chip 8-Kbyte
cache. (See section 7.1.2, “IntelDX4 Processor On-
Chip Cache,” for the IntelDX4 processor cache or-
ganization.) The cache is software transparent to
maintain binary compatibility with previous genera-
tions of the Intel Architecture.

The on-chip cache has been designed for maximum

flexibility and performance. The cache has several

 operating modes offering flexibility during program
execution and debugging. Memory areas can be de-
fined as non-cacheable by software and external
hardware. Protocols for cache line invalidations and

" replacement are implemented in hardware, easing
system design.

intal.

The on-chip cache is a unified code and data cache.
The cache is used for both instruction and data ac-
cesses and acts on physical addresses. (See sec-
tion 7.1.2 for IntelDX4 processor details).

7.1 Cache Organization

The cache organization is 4-way set associative and
each line is 16-bytes wide. The eight Kbytes of
cache memory are logically organized as 128 sets,
each containing four lines.

The cache memory is physically split into four
2-Kbyte blocks, each containing 128 lines. (See Fig-
ure .7-1.) There are 128 21-bit tags associated with
each 2-Kbyte block. There is a valid bit for each line
in the cache. Each line in the cache is either valid or
not valid. There are no provisions for partially valid
lines.

IntelDX4™ Processor Only

All Other Intel486™ Processors

3LRU .I. 4 Valid__,
¢ Bits Bits

T

256
Sets

v

—-I 2?;3“ «—  («-16-Byte Line Size—bl —ﬁ| 2};3" — ’*‘1 6-Byte Line Size—9)
7 ¥ ¥ ¥
256 256 128 128
Tags 4K Bytes Sets Tags 2K Bytes Sets
¥
4AK Bytes 2K Bytes
4K Bytes 2K Bytes
4K Bytes 2K Bytes

3LRU .l. 4 Valid
- Bits Bits
¥
128
Sets
v
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Figure 7-1. On-Chip Cache Physical Organization
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For all Intel486 processors except the Write-Back
Enhanced IntelDX2, the on-chip cache is write-
through only. All writes will drive an external write
bus cycle in addition to writing the information to the
internal cache if the write was a cache hit. A write to
an address not contained in the internal cache will

only be written to external memory. Cache alloca-
tions are not made on write misses.

The Write-Back Enhanced IntelDX2 processor sup-
ports two modes of operation with respect to internal
cache configurations: Standard Bus Mode (write-
through cache) and Enhanced Bus Mode (write-
back cache). Standard Bus Mode operation for the
Write-Back Enhanced IntelDX2 is the same as the
write-through cache for all other Intel486 proces-
sors. (See section 7.1.1, “Write-Back Enhanced
IntelDX2 Processor Cache” and other write-back en-
hanced sections below for write-back cache infor-
mation.)

7.1.1 WRITE-BACK ENHANCED INTELDX2
PROCESSOR CACHE

The Write-Back Enhanced IntelDX2 processor im-
plements a unified cache, with a total cache size of 8
Kbytes. The processor’s on-chip cache supports a
modified MESI (modified/exclusive/shared/invalid)
write-back cache consistency protocol.

The Write-Back Enhanced IntelDX2 processor inter-
nal cache is configurable as write-back or write-
through on a line by line basis, provided the cache is
enabled for write-back operation. The cache is en-
abled for write-back operation by driving the WB/
WT# pin to a high state for at least two clocks be-
fore and two clocks after the falling edge of the RE-
SET. Cache write-back and invalidations can be ini-
tiated by hardware or software. Protocols for cache
consistency and line replacement are implemented
in hardware to ease system design.

Once the cache configuration is selected, the
Write-Back Enhanced IntelDX2 processor will
continue to operate in the selected configura-
tion and can only be changed to a different configu-
ration by starting the RESET process again. Asser-
tion of SRESET will not change the operating mode
of the processor. WB/WT# has an internal pull
down; If WB/WT# is unconnected, the processor
will be in Standard Bus Mode, i.e., the on-chip cache
is write-through. Table 7-1 lists the two modes of
operation and the differences between the two
modes.
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Unless specifically noted, the following sections
apply to the Write-Back Enhanced IntelDX2 in
standard Bus Mode (Write-Through Cache) and
all other Intel486 processors.

7.1.2 INTELDX4 PROCESSOR CACHE

The IntelDX4 processor contains a 16-Kbyte write-
through cache. The 16 Kbytes of cache memory are
logically organized as 256 sets, each containing four
lines.

The cache memory is physically split into four
4-Kbyte blocks, each containing 256 lines. (See Fig-
ure 7-1.) There are 256 20-bit tags associated with
each 2-Kbyte block. i

All other details listed in section 7.1 for the 8-Kbyte
on-chip cache also apply to the IntelDX4 on-chip
cache. .

7.2 Cache Control

Control of the cache is provided by the CD and NW
bits in CRO. CD enables and disables the cache. NW
controls memory write-through and invalidates.

The CD and NW bits define four operating modes of
the on-chip cache as given in Table 7-2. These
modes provide flexibility in how the on-chip cache is
used.

CD=1, NW=1

The cache is completely disabled by setting
CD=1 and NW=1 and then flushing the
cache. This mode may be useful for debug-
ging programs where it is important to see
all memory cycles at the pins. Writes that hit
in the cache will not appear on the external
bus.

It is possible to use the on-chip cache as
fast static RAM by “pre-loading” certain
memory areas into the cache and then set-
ting CD=1 and NW=1. Pre-loading can be
done by careful choice of memory refer-
ences with the cache turned on or by use of
the testability functions. (See section 11.2,
“On-Chip Cache Testing.”) When the cache
is turned off, the memory mapped by the
cache is “frozen” into the cache because
fills and invalidates are disabled.
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Table 7-1. Write-Back Enhanced IntelDX2™ Processor WB/WT # Initialization

State of WB/WT #
at Falling Edge of
RESET

Effect on Write-Back Enhanced IntelDX2™ Processor Operation

WB/WT# = LOW

Processor is in Standard Bus Mode (Write-Through Cache)
1.

2.

3.
4.

When FLUSH # is asserted, the internal cache will be invalidated in one system
CLK.

No Special FLUSH# Acknowledge Cycles appear on the bus after the assertion of
the FLUSH # pin.

All write-back specific inputs are ignored (INV, WB/WT #)

SRESET does not clear the SMBASE register. It behaves much like a RESET
(invalidating the on-chip cache and resetting the CRO register, for example).
SRESET is NOT an interrupt.

WB/WT# = HIGH

Processor is in Enhanced Bus Mode (Write-Back Cache)
1.

. The special FLUSH# Acknowledge Cycles will appear on the bus after the

. WB/WT # is a sampled on a line by line basis to determine the state of a line to be
. The WB/WT # and INV inputs are no longer ignored. HITM# and CACHE # will be

. PLOCK # is always driven inactive.
. SRESET is an interrupt. SRESET does not reset the SMBASE register or flush the

Write backs will be performed when a cache flush is requested (via the FLUSH #
pin or the WBINVD instruction). The system must watch for the FLUSH # special
cycles to determine the end of the flush.

assertion of the FLUSH # and after all the cache write backs (if any) are completed
on the bus.

allocated in the cache (as a Write Through (S state) or as Write Back (E state)).
driven during appropriate bus cycles.
on-chip cache. The CRO register gets the same values as after RESET with the

exception of the CD and NW bits. These two bits retain their previous status. (See
section 9.2.18.4, “Soft Reset (SRESET)” and Table 3-7 for details on SRESET for

write-back enhanced mode.)

Table 7-2. Cache Operating Modes

CD=1, NW=0

Cache fills are disabled but write-throughs
and invalidates are enabled. This mode is
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the same as if the KEN# pin was
strapped HIGH disabling cache fills.

CcD NwW Operating Mode Write-throughs and invalidates may still
s i e occur to keep the cache valid. This mode
1 1 f}:’ache:lls gl§abllg:, tw rite is useful if the software must disable the
rough and invalidates cache for a short period of time, and then
disabled re-enable it without flushing the original
1 0 Cache fills disabled, write- contents.
through and invalidates CD=0, Nw=1
enabled Invalid. If CRO is loaded with this bit con-
0 1 INVALID. If CRO is loaded flguratrog,ea fCi()engI:al Prortectlon fault with
with this configuration of bits, error code of U will oceur.
a GP fault with error code of 0 CD=0, NW=0
is raised. This is the normal operating mode.
0 0 Cache fills enabled, write- Completely disabling the cache is a two-step pro-
through and invalidates cess. First, CD and NW must be set to 1, and then
enabled the cache must be flushed. If the cache is not

flushed, cache hits on reads will still occur and data
will be read from the cache.
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7.2.1 WRITE-BACK ENHANCED INTELDX2
PROCESSOR CACHE CONTROL AND
OPERATING MODES

The Write-Back Enhanced IntelDX2 processor re-
tains the usage of CR0.CD and CRO.NW, in which
the 1,1 state forces a cache-off condition after RE-
SET, and the 0,0 state is the normal run state. Table
7-3 defines these control bits when the cache is en-
abled for write-back operation. Table 7-3 is also val-
id when the cache is in write-back mode and some
lines are in a write-through state.

CD=1, NW=1

The 1,1 state is best used when no lines
are allocated, which occurs naturally after
RESET (but not SRESET), but must be
forced (e.g., by instruction WBINVD) if en-
tered during normal operation. In these
cases, the Write-Back Enhanced IntelDX2
processor will operate as if it had no
cache at all.

If the 1,1 state is exited, lines that are allo-
cated as write back will be written back
upon a snoop hit or replacement cycle.
Lines that were ailocated as write-through
(and later modified while in the 1,1 state)
will never appear on the bus.

NW=0

The only difference from the normal 0,0
“run” state is that new line fills (and the
line replacements that result from capaci-
ty limitations) do not occur. This causes
the contents of the cache to be locked in,
unless lines are invalidated using snoops.

CD=1,
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7.3 Cache Line Fills

Any area of memory can be cached in the Intel486
processor. Non-cacheable portions of memory can
be defined by the external system or by software.
The external system can inform the Intel486 proces-
sor that a memory address is non-cacheable by re-
turning the KEN# pin inactive during a memory ac-
cess. (Refer to section 10.2.3, “Cacheable Cycles.”)
Software can prevent certain pages from being
cached by setting the PCD bit in the page table en-
try.

A read request can be generated from program op-
eration or by an instruction pre-fetch. The data will
be supplied from the on-chip cache if a cache hit
occurs on the read address. If the address is not in
the cache, a read request for the data is generated
on the external bus.

If the read request is to a cacheable portion of mem-
ory, the Intel486 processor initiates a cache line fill.
During a line fill a 16-byte line is read into the In-
tel486 processor. Cache line fills will only be gener-
ated for read misses. Write misses will never cause
a line in the internal cache to be allocated. If a cache
hit occurs on a write, the line will be updated. Cache
line fills can be performed over 8- and 16-bit buses
using the dynamic bus sizing feature. Refer to sec-
tion 10.1.2, “Dynamic Data Bus Sizing” for a de-
scription of dynamic bus sizing and section 10.2.3,
“Cacheable Cycles” for further information on
cacheable cycles. ‘

Table 7-3. Write-Back Enhanced InteIDX2™ Processor Write-Back Cache Operating Modes

CRO READ WRITE
1

CD, NW READ HIT MISS WRITE HIT(1) MISS Snoops
1,1 read cache read bus write cache write bus not
(state after reset) (no fill) (no write-through) . accepted
1,0 read cache read bus write cache, write bus if S write bus normal

(no fill) operation
0,1 This is a fault-protected disallowed state. A GP(0) will occur if an attempt is made to
load CRO with this state.

0,0 read cache read bus, write cache, write bus if S write bus normal
(state DURING line fill operation
normal operation)

NOTE:
1. Normal MESI state transitions occur on write hits in all legal states.
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7.4 Cache Line Invalidations

The Intel486 processor contain both a hardware and
software mechanism for invalidating lines in its inter-
nal cache. Cache line invalidations are needed to
keep the Intel486 processor cache contents consist-
ent with external memory.

Refer to section 10.2.8, “Invalidate Cycles” for fur-
ther information on cache line invalidations.

7.4.1 WRITE-BACK ENHANCED INTELDX2
PROCESSOR SNOOP CYCLES AND
WRITE-BACK MODE INVALIDATION

In Enhanced bus mode, the Write-Back Enhanced
IntelDX2 processor performs invalidations differently
than other Intel486 processors. Snoop Cycles are
initiated by the system to determine if a line is pres-
ent in the cache, and what the state is. Snoop cycles
may further be classified as Inquire cycles or Invali-
date cycles. Inquire cycles are driven to the Write-
Back Enhanced InteIDX2 processor when another
bus master initiates a memory read cycle, to deter-
mine if the processor cache contains the latest data.
- If the snooped line is in the Write-Back Enhanced
IntelDX2 processor cache and has the most recent
information, the processor must schedule a write
back of the data. Inquire cycles are driven with
INV = “0”. Invalidate cycles are driven to the Write-
Back Enhanced IntelDX2 processor when the other
bus master initiates a memory write cycle to deter-
mine if the Write-Back Enhanced IntelDX2 proces-
sor cache contains the snooped line. The Invalidate
cycles are driven with INV = “1”, so that if the
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snooped line is in the on-chip cache, the line is inval-
idated. Snoop cycles are described in detail in the
“Bus Functional Description” section.

The Write-Back Enhanced IntelDX2 processor has
control mechanisms (including snooping) for writing
back the modified write-back lines and invalidating
the cache. There are special bus cycles associated
with write-backs and invalidation. All of the Write-
Back Enhanced IntelDX2 processor special cycles
require acknowledgment by RDY # or BRDY #. Dur-
ing the special cycles, the addresses shown in the
Table 7-4 are driven onto the address bus and the
data bus is left undefined.

7.5 Cache Replacement

When a line needs to be placed in its internal cache
the Intel486 processor first checks to see if there is
a non-valid line in the set that can be replaced. If all
four lines in the set are valid, a pseudo least-recent-
ly-used mechanism is used to determine which line
should be replaced.

A valid bit is associated with each line in the cache.
When a line needs to be placed in a set, the four
valid bits are checked to see if there is a non-valid
line that can be replaced. If a non-valid line is found,
that line is marked for replacement.

The four lines in the set are labeled 10, I1, 12, and I3.
The order in which the valid bits are checked during
an invalidation is 10, 11, 12 and 13. All valid bits are
cleared when the processor is reset or when the
cache is flushed.

Table 7-4. Encoding of the Special Cycles for Write-Back Cache

Cycle Name M/10 # D/C# W/R# BE3+#-BEO0# Ad4-A2
Write-Back™ 0 0 1 0111 000
First Flush Ack Cycle* 0 o] 1 0111 001
Flush* 0 0 1 1101 000
Second Flush Ack Cycle* 0 0 1 1101 001
Shutdown 0 0 1 1110 000
HALT 0 0 1 1011 000
Stop Grant Ack Cycle 0 0 1 1011 100

* For the Write-Back Enhanced IntelDX2 processor only. FLUSH is present on all Intel486 processors, but differs for Stan-

dard Mode. Refer to appropriate sections.
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Replacement in the cache is handled by a pseudo
least recently used (LRU) mechanism when all four
lines in a set are valid. Three bits, BO, B1 and B2,
are defined for each of the 128 sets in the cache.
These bits are called the LRU bits. The LRU bits are
updated for every hit or replace in the cache.

If the most recent access to the set was to 10 or 11,
BO is set to 1. BO is set to O if the most recent ac-
cess was to 12 or I3. If the most recent access to
10:11 was to 10, B1 is set to 1, else B1 is set to 0. If
the most recent access to 12:13 was to 12, B2 is set to
1, else B2 is set to 0.

The pseudo LRU mechanism works in the following
manner. When a line must be replaced, the cache
will first select which of 10:11 and 12:I13 was least re-
cently used. Then the cache will determine which of
the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure
7-2.

Al four lines

inthe setvalid?  .No_,, Replace

’ non-valid iine
Yes

B0 =07?

Yes: I0or i1 No:i2ori3
least recently least recently
used used

B1=0? B2 =07

Ye/\io Ye/\ﬂo

Replace Replace Replace Replace
10 11 12 13

242202-54

Figure 7-2. On-Chip Cache .
Replacement Strategy

7.6 Page Cacheability

Two bits for cache control, PWT and PCD, are de-
fined in the page table and page directory entries.
The state of these bits are driven out on the PWT
and PCD pins during memory access cycles.
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The PWT bit controls the write policy for second lev-
el caches used with the Intei486 processor. Setting
PWT=1 defines a write-through policy for the cur-
rent page while PWT=0 defines the possibility of
write-back. The state of PWT is ignored internally by
the Intel486 processor for on-chip cache in write
through mode.

The PCD bit controls cacheability on a page by page
basis. The PCD bit is internally AND’ed with the
KEN# signal to control cacheability on a cycle by
cycle basis (see Figure 7-3). PCD=0 enables cach-
ing while PCD =1 forbids it. Note that cache filis are
enabled when PCD=0 AND KEN# =0. This logical
AND is implemented physically with a NOR gate.

The state of the PCD bit in the page table entry is
driven on the PCD pin when a page in external mem-
ory is accessed. The state of the PCD pin informs
the external system of the cacheability of the re-
quested information. The external system then re-
turns KEN #.telling the Intel486 processor if the area
is cacheable. The Intel486 processor initiates a
cache line fill if PCD and KEN# indicate that the
requested information is cacheable.

The PCD bit is OR’ed with the CD (cache disable) bit
in control register 0 to determine the state of the
PCD pin. If CD=1, the Intel486 processor forces the
PCD pin HIGH. If CD=0, the PCD pin is driven with
the value for the page table entry/directory. (See
Figure 7-3.)

The PWT and PCD bits for a bus cycle are obtained
from either CR3, the page directory or page table
entry. These bits are assumed to be zero during real
mode, whenever paging is disabled, or for cycles
that bypass paging, (I/O references, interrupt ac-
knowledge and HALT cycles).

When paging is enabled, the bits from the page table
entry are cached in the TLB, and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles, PWT and PCD are taken
from the page table entry. During TLB refresh cycles
where the page table and directory entries are read,
the PWT and PCD bits must be obtained elsewhere.
During page table updates the bits are obtained from
the page directory. When the page directory is up-
dated the bits are obtained from CR3. PCD and PWT
bits are initialized to zero at reset, but can be modi-
fied by level 0 software.
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Figure 7-3. Page Cacheability

7.6.1 Write-Back Enhanced IntelDX2
PROCESSOR PAGE CACHEABILITY

In Write-Back Enhanced IntelDX2 processor-based
system, both the processor and the system hard-
ware must determine the cacheability and the con-
figuration (write-back or write-through) on a line by
line basis. The system hardware’s cacheability is de-
termined by KEN# and the configuration by
WB/WT #. The processor’s indication of cacheabili-
ty is determined by PCD and the configuration by
PWT. The PWT bit controls the write policy for the
second level caches used with the Write-Back En-
hanced IntelDX2 processor. Setting PWT to 1 de-
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fines a write-through policy for the current page;
while clearing PWT to 0 defines a write-back policy
for the current page.

7.7 Cache Flushing

The on-chip cache can be flushed by external hard-
ware or by software instructions. Flushing the cache
clears all valid bits for all lines in the cache. The
cache is flushed when external hardware.asserts the
FLUSH# pin.



-
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The FLUSH# pin needs to be asserted for one
clock if driven synchronously or for two clocks if driv-
en asynchronously. FLUSH# is asynchronous, but
setup and hold times must be met for recognition in
a particular cycle. FLUSH# should be de-asserted
before the cache flush is complete. Failure to de-as-
sert the pin will cause execution to stop as the proc-
essor will be repeatedly flushing the cache. If exter-
nal hardware activates flush in response to an 1/0
write, FLUSH# must be asserted for at least two
clocks prior to ready being returned for the 1/0 write.
This ensures that the flush completes before the
processor begins execution of the instruction follow-
ing the OUT instruction.

The instructions INVD and WBINVD cause the on-
chip cache to be flushed. External caches connect-
ed to the Intel486 processor are signaled to flush
their contents when these instructions are executed.

WBINVD will also cause an external write-back
cache to write back dirty lines before flushing its
contents. The external cache is signaled using the
bus cycle definition pins and the byte enables (refer
to section 9.2.6 “Bus Cycle Definition” for the bus
cycle definition pins and section 10.2.11 “Special
Bus Cycles” for special bus cycles). Refer to the
Intel486™ Processor Programmers Reference Man-
ual for detailed instruction definitions.

The results of the INVD and-WBINVD instructions
are identical for the operation of the non-write-back
enhanced Intel486 processor on-chip cache be-
cause the cache is write-through.

7.7.1 WRITE-BACK ENHANCED INTELDX2
PROCESSOR CACHE FLUSHING

The on-chip cache can be flushed by external hard-
ware or by software instructions.

Flushing the cache through hardware is accom-
plished by driving the FLUSH# pin low. This causes
the cache to write back all modified lines in the
cache and mark the state bits invalid. The First Flush
Acknowledge cycle is driven by the Write-Back En-
hanced InteiDX2 processor followed by the Second
Flush Acknowledge cycle after all write-backs and
invalidations are complete. The two special cycles
are issued even if there are no dirty lines to write
back.
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The INVD and WBINVD instructions cause the on-
chip cache to be invalidated. WBINVD causes the
modified lines in the internal cache to be written
back, and all lines to be marked invalid. After execu-
tion of the WBINVD instruc-tion, the Write-back and
Flush special cycles are driven to indicate to any
external cache that it should write back and invali-
date its contents. These two special cycles are is-
sued even if there are no dirty lines to be written
back. INVD causes all lines in the cache to be invali-
dated, so modified lines in the cache are not written
back. The Flush special cycle is driven after the
INVD instruction is executed to indicate to any exter-
nal cache that it should invalidate its contents. Care
should be taken when using the INVD instruction to
avoid creating cache consistency problems.

NOTE:
It is recommended to use the WBINVD in-
struction instead of the INVD instruction if
the on-chip cache is configured in the write-
back mode.

The assertion of the RESET pin invalidates the en-
tire cache without writing back the modified lines. No
special cycles are issued after the invalidation is
complete.

Snoop cycles with invalidation (INV=1) cause the
Write-Back Enhanced IntelDX2 processor to invali-
date an individual cache line. If the snooped line is a
modified line, then the processor schedules a write-
back cycle. Inquire cycles with no-invalidation cause
the Write-Back Enhanced IntelDX2 processor to
only write-back the line, if the inquired line is in
M-state, and not invalidate the line.

SRESET, STPCLK#, INTR, NMI and SMI# are rec-
ognized and latched, but not serviced during the full-
cache, modified-line write-backs, caused either by
WBINVD instruction or the FLUSH#. However,
BOFF#, AHOLD and HOLD are recognized
DURING the full-cache, modified-line write-backs.

7.8 Write-Back Enhanced IntelDX2
Processor Write-Back Cache
Architecture

This section describes additional features pertaining

to the write-back mode of the Write-Back Enhanced
IntelDX2 processor.
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7.8.1 WRITE-BACK CACHE COHERENCY
PROTOCOL

The Write-Back Enhanced IntelDX2 processor
cache protocol supports a cache line in one of the
following four states:

e whether a line is valid and defined as write-back
during allocation (E-state),

e if it is valid and defined as write-through during
allocation (S-state),

e if it has been modified (M-state),

o if it is invalid (I-state).

These four states are the M (Modified line), E (write-
back line), S (write-through line) and the I (Invalid
line) states and the protocol is re-ferred to as the
“Modified MESI protocol.” A definition of the states
is given below:

M - Modified:  An M-state line is modified (different

from main memory) and can be ac-

cessed (read/written to) without
sending a cycle out on the bus.

An E-state line is a ‘“‘write-back”
line, but the line is not modified (i.e.,
it is coherent with main memory).
An E-state line can be accessed
(read/written to) without generating
a bus cycle and a write to an E-state
line will cause the line to become
modified.

An S-state line is a “write-through”
line, and is coherent with main
memory. A read hit to an S-state
line will not generate bus activity,
but a write hit to an S-state line will
generate a write-through cycle on
the bus. A write to an S-state line
will update the cache and the main
memory.

This state indicates that the line is
not in the cache. A read to this line
will be a miss and may cause the
Write-Back Enhanced IntelDX2
processor to execute a line fill (fetch
the whole line into the cache from

E - Exclusive:

S - Shared:

| - Invalid:
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main memory). A write to an invalid
line will cause the Write-Back En-
hanced IntelDX2 processor to exe-
cute a write-through cycle on the
bus.

Every line in the Write-Back Enhanced IntelDX2
processor cache is assigned a state dependent on
both Write-Back Enhanced IntelDX2 processor gen-
erated activities and activities generated by the sys-
tem hardware. As the Write-Back Enhanced In-
telDX2 processor is targeted for uniprocessor sys-
tems, a subset of MESI protocol, namely MEI, is
used in the Write-Back Enhanced IntelDX2 proces-
sor to maintain cache coherency.

With the modified MESI protocol, it is assumed that
in a uniprocessor system lines are defined as write-
back or write-through at allocation time. This proper-
ty associated with a line is never altered. The lines
allocated as write-through go to S-state and remain
in S-state. A cache line that is allocated as write-
back never enters the S-state. The WB/WT# pin is
sampled during line allocation and is used strictly to
characterize a line as write-back or write-through.

7.8.1.1 State Transition Tables

State transi-tions are caused by processor-generat-
ed transactions (memory reads/writes) and by a set
of external input signals and internally-generated
variables. The Write-Back Enhanced IntelDX2 proc-
essor also drives certain pins as a consequence of
the Cache Consistency Protocol.

Read Cycles

Table 7-5 shows the state transitions for lines in the
cache during unlocked read cycles.

Write Cycles
The state transitions of cache lines during Write-

Back Enhanced IntelDX2 processor-generated write
cycles are described in Table 7-6.
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Table 7-5. Cache State Transitions for Write-Back Enhanced IntelDX2™
Processor Initiated Unlocked Read Cycles

Present State Pin Activity Next State Description
M n/a M Read hit; data is provided to processor core by
cache. No bus cycle is generated.
E n/a E Read hit; data is pro-vided to processor core by
cache. No bus cycle is generated.
S n/a S Read hit; Data is pro-vided to the processor by the
cache. No bus cycle is generated.
| CACHE # low E Data item does not exist in cache (MISS). A line
AND fill cycle (read) will be gen-erated by the Write-Back
KEN# low Enhanced IntelDX2T processor. This state
AND transition will occur if WB/WT # is sampled high
WB/WT# high with first BRDY #.
AND
PWT low
| CACHE # low S Same as previous read miss case except that
AND WB/WT # is sampled low with first BRDY # or PWT
KEN# low is high.
AND
(WB/WT# low
OR PWT high)
| CACHE # high | KEN# pin inactive; the line is not intended to be
OR cached in the Write-Back Enhanced IntelDX2
KEN# high processor.
NOTES:

Locked accesses to the cache will cause the accessed line to transition to the Invalid state.

PCD can also be used by the processor to determine the cacheability, but using the CACHE # pin is recommended. The
transition from | to E or S states (based on WB/WT#) occurs only if KEN# is sampled low one clock prior to the first
BRDY # and then one clock prior to the last BRDY #, and the cycle is transformed into a line fill cycle. If KEN# is sampled
high, the line is not cached and remains in the | state.

Table 7-6. Cache State Transitions for Write-Back Enhanced IntelDX2™™
Processor-Initiated Write Cycles

Present Pin Next Description
State | Activity | State P

M n/a M Write hit; update cache. No bus cycle generated to update memory.

E n/a M Write hit; update cache only. No bus cycle generated; line is now modified.

S n/a S Write hit; cache updated with write data item. A write-through cycle is
generated on the bus to update memory. Subsequent writes to E-state or
M-state lines are held up until this write-through cycle is completed.

| n/a | Write miss; a write-through cycle is generated on the bus to update external
memory. No allocation is done. Subsequent writes to the E or M lines are
blocked until the write-miss is completed.
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Note that even though memory writes are buffered
while 1/0 writes are not, these writes appear at the
pins in the same order as they were generated by
the processor. Write-Back cycles caused by the re-
placement of M-state lines are buffered, while Write-
Backs due to Snoop hit to M-state lines are not buff-
ered.

Cache Consistency Cycles (Snoop Cycles)

The purpose of Snoop cycles is to check whether
the address being presented by another bus master
is con-tained within the cache of the Write-Back En-
hanced IntelDX2 processor. Snoop cycles may be
initiated with or without an invalidation request (INV
= 1 or 0). If a snoop cycle is initiated with INV = 0
(usually during memory read cycles by another mas-
ter), it is referred to as an Inquire cycle. If a snoop
cycle is initiated with INV = 1 (usually during memo-
ry write cycles), it is referred to as an Invalidate cy-
cle. If the address hits a modified line in the cache,
the HITM# pin is asserted, and the modified line is
written back onto the bus. Table 7-7 describes state
transitions for Snoop cycles.

-

7.8.2 DETECTING ON-CHIP WRITE-BACK
CACHE OF THE WRITE-BACK ENHANCED
INTELDX2 PROCESSOR

The write-back policy of the on-chip cache of the
Write-Back Enhanced IntelDX2 processor may be
detected by software or hardware. The software

mechanism makes use of the CPUID instruction.:

(See Appendix B, “Feature Determination,” for use
of the CPUID instruction.) The hardware mechanism
makes use of a write-back related output signal from
the processor.

intgl.

A software mechanism to determine if a given proc-
essor has write-back support for the on-chip cache
should drive the WB/WT # pin to “1”” during RESET.
This pin will be sampled by the processor during the
falling edge of the RESET. Execute the CPUID in-
struction, which returns the model number in the
EAX register, EAX[7:4]. If the model number re-
turned is 7 (Write-Back Enhanced IntelDX2 proces-
sor) and the family number is 4, the on-chip cache
supports the write-back policy. If the model number
returned is in the range O through 6 or 8, the on-chip
cache only supports the write-through policy.

The following pseudo code/steps give an example
of the initialization BIOS that can be used to detect
the presence of the write-back on-chip cache:

® Boot Address Cold start
® Load Segment Registers and null IDTR

e Execute CPUID instruction and determine the
Family ID and Model ID.

e Compare the Family ID to 4 and the Model ID
returned to 7. When the Family ID is 4, and the
model ID is 7, the processor supports on-chip
write-back caching. If the Family ID does not
match 7, the processor only supports on-chip
write-through caching.

The hardware mechanism involves using the HITM #
signal. For the Write-Back Enhanced IntelDX2 proc-
essor, this signal is driven inactive (high) during
RESET. The chipset can sample this output on the
falling edge of RESET. If HITM# is sampled high on
the falling edge of RESET, the processor supports
on-chip write-back cache configuration. For those
processors that do not support internal write-back
caching, this signal is an INC, and this output is not
driven.

Table 7-7. Cache State Transitions During Snoop Cycles

Present | Next State | Next State _—
state | INV=1 | INV=0 Description

M | E Snoop hit to a modified line indicated by HITM# pin low. Write-Back
Enhanced IntelDX2 Processor schedules the write back of the
modified line to memory. The state of the line changes to E provided
INV = 0 and changes to | if INV = 1.

E | E Snoop hit, no bus cycle generated. State remains unaltered if
INV = 0, and changes to | if INV = 1. There is no external indication
of this snoop hit.

S | S Snoop hit, no bus cycle generated. State remains unaltered if
INV = 0, and changes to | if INV = 1. There is no external indication
of this snoop hit.

| | | Address not in cache.
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8.0 SYSTEM MANAGEMENT MODE
(SMM) ARCHITECTURES

8.1 SMM Overview

The Intel486 processor supports four modes: Real,
Virtual-86, Protected, and System Management
Mode (SMM). As an operating mode, SMM has a
distinct processor environment, interface and hard-
ware/software features.

SMM provides system designers with a means of
adding new software-controlled features to comput-
er products that operate transparently to the operat-
ing system and software applications. SMM is
intended for use only by system firmware, not by
applications software or general purpose systems
software.

The SMM architectural extension consists of the fol-
lowing elements:

1. System Management Interrupt (SMI#) hardware
interface.

2. Dedicated and secure memory space (SMRAM)
for SMi# handler code and processor state (con-
text) data with a status signal for the system to
decode access to that memory space, SMIACT #.
(The SMBASE address is relocatable and could
also be relocated to non-cacheable address
space.)

3. Resume (RSM) instruction, for exiting the System
Management Mode.

4. Special Features such as |/O-Restart, for trans-
parent power management of 1/O peripherals,
and Auto HALT Restart.

8.2 Terminology

The following terms are used throughout the discus-
sion of System Management Mode.

SMM: System Management Mode. This is the oper-
ating environment that the processor (system) en-
ters when the System Management Interrupt is be-
ing serviced.

SMi #: System Management Interrupt. This is part of
the SMM interface. When SMI# is asserted (SMI#
pin asserted low) it causes the processor to invoke
SMM. The SMI# pin is the only means of enter-
ing SMM.
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SMM handler: System Management Mode handler.
This is the code that will be executed when the proc-
essor is in SMM. An example application that this
code might implement is a power management con-
trol or a system control function.

RSM: Resume instruction. This instruction is used by
the SMM handler to exit the SMM and return to the
interrupted operating system or application process.

SMRAM: This is the physical memory dedicated to
SMM. The SMM handler code and related data re-
side in this memory. This memory is also used by the
processor to store its context before executing the
SMM handler. The operating system and applica-
tions do not have access to this memory space.

SMBASE: Control register that contains the address
of the SMRAM space.

Context: This term refers to the processor state.
The SMM discussion refers to the context, or proc-
essor state, just before the processor invokes SMM.
The context normally consists of the processor reg-
isters that fully represent the processor state.

Context Switch: A context switch is the process of
either saving or restoring the context. The SMM dis-
cussion refers to the context switch as the process
of saving/restoring the context while invoking/
exiting SMM, respectively.

8.3 System Management Interrupt
Processing

The system interrupts the normal program execution
and invokes SMM by generating a System Manage-
ment Interrupt (SMI#) to the processor. The proces-
sor will service the SMI# by executing the following
sequence (see Figure 8-1):

1. The processor asserts the SMIACT # signal, indi-
cating to the system that it should enable the
SMRAM.

2. The processor saves its state (context) to
SMRAM, starting at default address location
3FFFFH, proceeding downward in a stack-like
fashion.

3. The processor switches to the System Manage-
ment Mode processor environment (a pseudo-
real mode).
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SMI#
v
[Instr [ instr | Instr . | Instr | Instr
#1  #2 #3 #4 #5
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| State Save | SMI Handler  RSM |State Restore !
] !
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1 1
1 1
SMI# " "
T ! !
SMIACT# ) R —
ﬂ
| 7’ ’ 1
/
Active during bus cycles in SMM
242202-56
Figure 8-1. Basic SMi# Interrupt Service

4. The processor will then jump to the default abso-
lute address of 38000H in SMRAM to execute the
SMi# handler. This SMI# handler performs the
system management activities. CPU SMIACT#

5. The SMI# handler will then execute the RSM in- SMI
struction which restores the processors context SMi# Interface
from. SMRAM, de-asserts the SMIACT# signal,
and then returns control to the previously inter-
rupted program execution. 242202-57

NOTE:
The above sequence is valid for the default
SMBASE value only. See the following sec-
tions for a description of the SMBASE regis-
ter and SMBASE relocation.

The System Management Interrupt hardware inter-
face consists of the SMI# interrupt request input
and the SMIACT # output used by the system to de-
code the SMRAM.
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Figure 8-2. Basic SMi# Hardware Interface

8.3.1 SYSTEM MANAGEMENT INTERRUPT
(SMI#)

SMi# is a falling-edge triggered, non-maskable in-
terrupt request signal. SMI# is an asynchronous sig-
nal, but setup and hold times, tog and ts1, must be
met in order to guarantee recognition on a specific
clock. The SMI# input need not remain active until
the interrupt is actually serviced. The SMI# input
only needs to remain active for a single clock if the
required setup and hold times are met. SMI# will
also work correctly if it is held active for an arbitrary
number of clocks.
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The SMI# input must be held inactive for at least
four external clocks after it is asserted to reset the
edge triggered logic. A subsequent SMI# might not
be recognized if the SMI# input is not held inactive
for at least four clocks after being asserted.

SMi#, like NMI, is not affected by the IF bit in the
EFLAGS register and is recognized on an instruction
boundary. An SMI# will not break locked bus cycles.
The SMI# has a higher priority than NMI and is not
masked during an NMI. In order for SMI# to be rec-
ognized with respect to SRESET, SMi# should not
be asserted until two (2) clocks after SRESET be-
comes inactive.

After the SMI# interrupt is recognized, the SMi#
signal will be masked internally until the RSM in-
struction is executed and the interrupt service rou-
tine is complete. Masking the SMI# prevents recur-
sive SMi# calls. SMI# must be de-asserted for at
least 4 clocks to reset the edge triggered logic. If
another SMi# occurs while the SMI# is masked,
the pending SMI# will be recognized and executed
on the next instruction boundary after the current
SMI# completes. This instruction boundary occurs
before execution of the next instruction in the inter-
rupted application code, resulting in back to back
SMM handlers. Only one SMI# can be pending
while SMI# is masked.
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The SMI # signal is synchronized internally and must
be asserted at least three (3) CLK periods prior to
asserting the RDY # signal in order to guarantee
recognition on a specific instruction boundary. This
is important for servicing an 1/0 trap with an SMI#
handler. (See Figure 8-3.)

8.3.2 SMi# ACTIVE (SMIACT #)

SMIACT # indicates that the processor is operating
in System Management Mode. The processor as-
serts SMIACT# in response to an SMI# interrupt
request on the SMI# pin. SMIACT # is driven active
after the processor has completed all pending write
cycles (including emptying the write buffers), and be-
fore the first access to SMRAM when the processor
saves (writes) its state (or context) to SMRAM.
SMIACT # remains active until the last access to
SMRAM when the processor restores (reads) its
state from SMRAM. The SMIACT # signal does not
float in response to HOLD. The SMIACT # signal is
used by the system logic to decode SMRAM (See
Figure 8-2).

The number of CLKs required to complete the SMM
state save and restore is very dependent on-system
memory performance. The values listed in Table 8-1
assume 0 wait-state memory writes (2 CLK cycles),
2-1-1-1 burst read cycles, and 0 wait-state non-burst
reads (2 CLK cycles). Additionally, it is assumed that
the data read during the SMM state restore se-
quence is not cacheable.

N/

BRDY#

A: Setup time for recognition on /O instruction boundary

242202-58

Figure 8-3. SMI# Timing for Servicing an I/0 Trap
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Figure 8-4 and Table 8-1 can be used for latency
calculations. As shown, the minimum time required
to enter an SMI# handler routine for the Intel486 DX
processor (from the completion of the mterrupted in-
struction) is given by:

Latency to beginning of SMi# handler =
A + B + C = 153 CLKs

intal.

and the minimum time required to return to the inter-
rupted application (following the final SMM instruc-
tion before RSM) is given by:

Latency to continue interrupted application =

E + F + G = 243 CLKs

CLK

SMI#

ADSH#

‘ , , | .
BROY# —\ | [ — N\ N T
: : ' : ' I ) l: : : 1 ' : ) "l GI <+ :
SMIACTH e ‘ G o ﬁ !
1 | ! ' ; ! : e f:( I | |
[ : 1 : ' i '4_____‘_ \ ! 02 3 :' ; : :
I U
: i -~ - . ! |

! State SMM  State Norma

e _ _Seve Hadler Restors . Stale e

Normal State System Management Mode Normal State

1242202-59

Figure 8-4. Intel486™ Processor SMIACT # Timing
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Table 8-1. Intel486™ Processor SMIACT # Timing

Intel486 SX | IntelSX2TM | ntei486 DX | IntelDX2™ | IntelDX4T™ IntelDX4
Processor | Processor | Processor | Processor | Processor 3X | Processor 2X

A:Last RDY # from non- |2 CLK 1CLK 2CLK 1CLK 1 CLK 1 CLK
SMM transfer to minimum minimum | minimum minimum | minimum minimum
SMIACT # assertion

B:SMIACT # assertion to |40 CLK 20 CLK 40 CLK 20 CLK 13 CLK 20 CLK
first ADS# for SMM | minimum minimum | minimum minimum | minimum minimum
state save

C:SMM state save Approx Approx. Approx. Approx. Approx. Approx.
(dependent on 139 CLKs [|139CLKs [139CLKs |139CLKs |139 CLKs 139 CLKs
memory performance)

D:SMM handler User User User User User User

determined |determined | determined |determined |determined determined

E:SMM state restore Approx. Approx. Approx. Approx. Approx. Approx. 2
(dependent on 236 CLKs [236 CLKs (236 CLKs [236 CLKs |[236 CLKs 236 CLKs
memory performance)

F:Last RDY # from SMM |4 CLK 2 CLK 4 CLK 2 CLK 1CLK 1CLK
transfer to de- minimum minimum | minimum minimum | minimum minimum
assertion of SMIACT #

G: SMIACT # de- 20 CLK 10 CLK 20 CLK 10 CLK 6 CLK 10 CLK
assertion to first non- | minimum minimum | minimum minimum minimum minimum
SMM ADS #

8.3.3 SMRAM will jump to the address location 38000H to begin

executing the SMi# handler. The system logic can

The Intel486 processor uses the SMRAM space for
state save and state restore operations during an
SMI# and RSM. The SMI# handler, which also re-
sides in SMRAM, uses the SMRAM space to store
code, data and stacks. In addition, the SMI# han-
dier can use the SMRAM for system management
information such as the system configuration, con-
figuration of a powered-down device, and system
designer-specific information.

The processor asserts the SMIACT # output to indi-
cate to the memory controller that it is operating in
System Management Mode. The system logic
should ensure that only the processor has access to
this area. Alternate bus masters or DMA devices try-
ing to access the SMRAM space when SMIACT # is
active should be directed to system RAM in the re-
spective area.

The system logic is minimally required to decode the
physical memory address range from 38000H-
3FFFFH as SMRAM area. The processor will save
its state to the state save area from 3FFFFH down-
ward to 3FEOOH. After saving its state the processor

choose to decode a larger area of SMRAM as need-
ed. The size of this SMRAM can be between
32 Kbytes and 4 Gbytes.

The system logic should provide a manual method
for switching the SMRAM into system memory

space when the processor is not in SMM. This will-

enable initialization of the SMRAM space (i.e., load-
ing SMI# handler) before executing the SMi# han-
dler during SMM. (See Figure 8-5.)

8.3.3.1 SMRAM State Save Map

When the SMI# is recognized on an instruction
boundary, the processor core first sets the
SMIACT # signal LOW indicating to the system logic
that accesses are now being made to the system-
defined SMRAM areas. The processor then writes
its state to the state save area in the SMRAM. The
state save area starts at CS Base + [8000H +
7FFFH]. The default CS Base is 30000H, therefore
the default state save area is at 3FFFFH. In this
case, the CS Base can also be referred to as the
SMBASE.
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If SMBASE Relocation is enabled, then the SMRAM
addresses can change. The following formula is

intel.

Table 8-2. SMRAM State Save Map

. Register . .
used to determine the relocated addresses where o?,set Register Writeable?
the context is saved. The context will reside at CS -

Base + [8000H + Register Offset], where the de- 7FFC CRO NO
fault initial CS Base is 30000H and the Register Off- 7FF8 CR3 NO
set is listed in the SMRAM state save map (Table 7FF4 EFLAGS YES
8-2). Reserved spaces will be used to accommodate
new registers in future processors. The state save 7FFO EIP YES
area starts at 7FFFH and continues downward in a 7FEC EDI , YES
stack-like fashion. 7FE8 ES| YES
Some of the registers in the SMRAM state save area 7FE4 EBP YES
may be read and changed by the SMi# handler, 7FEO ESP YES
with" the changed values restored to the processor 7FDC EBX YES
registers by the RSM instruction. Some register im- 5
ages are read-only, and must not be modified (modi- 7FD8 EDX YES
fying these registers will result in unpredictable be- 7FD4 ECX YES
havior). The values stored in the areas marked re- 7EDO EAX YES
served may change in future processors. An SMM o0
handler should not rely on any values stored in an 7F DRé NO
area that is marked as reserved. 7FC8 DR7 NO
7FC4 TR* NO
7FCO LDTR* NO
System memory
b i d P *
aosesses redirects 7FBC GS NO
7FB8 FS* NO
7FB4 Ds* NO
Processor accesses System memory
to system address ___| N accesses not 7FBO SS* NO
space used for redirected to
loading SMRAM SMRAM 7FAC cs* NO
Normal 7FA8 ES* NO
memory
space 7FA7-7F98 Reserved NO
7F94 IDT Base NO
242202-60 7F93-7F8C Reserved NO
Figure 8-5. Redirecting System Memory 7Fe8 GDT Base NO
Addresses to SMRAM 7F87-7F04 Reserved NO
7F02 Auto HALT Restart YES
Slot (Word)
7F00 1/0 Trap Restart Slot YES
(Word)
7EFC SMM Revision NO
Identifier (Dword)
7EF8 SMBASE Siot (Dword) YES
7EF7-7E00 Reserved NO
NOTES:
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Modifying a value that is marked as not writeable will result
in unpredictable behavior.

Words are stored in two consecutive bytes in memory with
the low-order byte at the lowest address and the high-order
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The following registers are saved and restored (in
areas of the state save that are marked reserved),

but are not visible to the system software program-
mer:

CR1, CR2 and CR4, hidden descriptor registers for
CS, DS, ES, FS, GS, and SS.

If an SMI# request is issued for the purpose of pow-
ering down the processor, the values of all reserved
locations in the SMM state save must be saved to
non-volatile memory.

The following registers are not automatically saved
and restored by SMi# and RSM:

DR5-DRO, TR7-TR3, FPU registers: STn, FCS,
FSW, tag word, FP instruction pointer, FP opcode,
and operand pointer.

For all SMi# requests except for suspend/resume,
these registers do not have to be saved because
their contents will not change. However, during a
power down suspend/resume, a resume reset will
clear these registers back to their default values. In
this case, the suspend SMI# handler should read
these registers directly to save them and restore
them during the power up resume. Anytime the
SMI# handler changes these registers in the proc-
essor, it must also save and restore them.

8.3.4 EXIT FROM SMM

The RSM instruction is only available to the SMI#
handler. The opcode of the instruction is OFAAH.
Execution of this instruction while the processor is
executing outside of SMM will cause an invalid op-
code error. The last instruction of the SMI# handler
will be the RSM instruction.

The RSM instruction restores the state save image
from SMRAM back to the processor, then returns
control back to the interrupted program execution.
There are three SMM features that can be enabled
by writing to control “slots” in the SMRAM state
save area.

Auto HALT Restart. It is possible for the SMI# re-
quest to interrupt the HALT state. The SMI# handier
can tell the RSM instruction to return control to the
HALT instruction or to return control to the instruc-
tion following the HALT instruction by appropriately
setting the Auto HALT Restart slot. The default op-
eration is to restart the HALT instruction.
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1/0 Trap Restart. If the SMI# interrupt was gener-
ated on an 1/0 access to a powered-down device,
the SMi# handler can tell the RSM instruction to re-
execute that I/0 instruction by setting the 1/0 Trap
Restart slot.

SMBASE Relocation. The system can relocate the
SMRAM by setting the SMBASE Relocation slot in
the state save area. The RSM instruction will set the
SMBASE in the processor based on the value in the
SMBASE relocation slot. The SMBASE must be 32K
aligned.

For further details on these SMM features, see sec-
tion 8.5. '

If the processor detects invalid state information, it
enters the shutdown state. This happens only in the
following situations:

® The value stored in the SMBASE slot is not a
32-Kbyte-aligned address.

e A reserved bit of CR4 is set to 1.

® A combination of bits in CRO is illegal; namely,
(PG=1 and PE=0) or (NW=1 and CD=0).

In shutdown mode, the processor stops executing
instructions until an NMl interrupt is received or reset
initialization is invoked. The processor generates a
special bus cycle to indicate it has entered shutdown
mode.

NOTE:
INTR and SMI# will also bring the processor
out of a shutdown that is encountered due to
invalid state information from SMM execu-
tion. Make sure that INTR and SMI# are not
asserted if SMM routines are written such
that a shutdown occurs.

8.4 System Management Mode
Programming Model

8.4.1 ENTERING SYSTEM MANAGEMENT MODE

SMM is one of the major operating modes, on a level
with Protected mode, Real address mode or virtual-
86 mode. Figure 8-6 shows how the processor can
enter SMM from any of the three modes and then
return.
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SMi¥
Resetor RSM -

PE=1
PE=Q SMI¥
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~ RSM
VM=0 VM=1

Reset

RASM

Virtual - 86 Mode SMis

242202-61

NOTE:
Reset could occur by asserting the RESET or SRESET
pin.

Figure 8-6. Transition to and from System
Management Mode

The external signal SMI# causes the processor to
switch to SMM. The RSM instruction exits SMM.
SMM is transparent to applications programs and
operating systems because of the following:

e The only way to enter SMM is via a type of non-
maskable interrupt triggered by an external sig-
nal.

¢ The processor begins executing SMM code from
a separate address space, referred to earlier as
system management RAM (SMRAM).

e Upon entry into SMM, the processor saves the
register state of the interrupted program in a part
of SMRAM called the SMM context save space.

e All interrupts normally handled by the operating
system or by applications are disabled upon entry
into SMM

e A special instruction, RSM, restores processor
registers from the SMM context save space and
returns control to the interrupted program.

SMM is similar to Real address mode in that there
are no privilege levels or address mapping. An SMM
program can execute all I/0 and other system in-
structions and can address up to four Gbytes of
memory.

8.4.2 PROCESSOR ENVIRONMENT

When an SMI# signal is recognized on an instruc-
tion execution boundary, the processor waits for all
stores to complete, including emptying of the write
buffers. The final write cycle is complete when the
system returns RDY# or BRDY#. The processor
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then drives SMIACT # active, saves its register state
to SMRAM space, and begins to execute the SMM
handler.

SMI# has greater priority than debug exceptions
and external interrupts. This means that if more than
one of these conditions occur at an instruction
boundary, only the SMI# processing occurs, not a
debug exception or external interrupt. Subsequent
SMIi# requests are not acknowledged while the
processor is in SMM. The first SMI# interrupt re-
quest that occurs while the processor is in SMM is
latched, and serviced when the processor exits
SMM with the RSM instruction. Only one SMI# will
be latched by the processor while it is in SMM.

When the processor invokes SMM, the processor
core registers are initialized as shown in Table 8-3.

Table 8-3. SMM Initial Processor

Core Register Settings
Register Contents
General Purpose Registers Unpredictable
EFLAGS 00000002H
EIP 00008000H
CS Selector 3000H
CS Base SMM Base
(default 30000H)
DS, ES, FS, GS, 0000H
SS Selectors
DS, ES, FS, GS, 000000000H
SS Bases
DS, ES, FS, GS, OFFFFFFFFH
SS Limits
CRO Bits 0,2,3 & 31 cleared
(PE, EM, TS & PG);
others are unmodified
DR6 Unpredictable
DR7 00000000H

The following is a summary of the key features in the
SMM environment:

1. Real mode style address calculation
2. 4-Gbyte limit checking
3. IF flag is cleared
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4. NMI is disabled

5. TF flag in EFLAGS is cleared; single step traps
are disabled

6. DR7 is cleared, except for bits 12 and 13; debug
traps are disabled.

7. The RSM instruction no longer generates an in-
valid opcode error

8. Default 16-bit opcode, register and stack use.

All bus arbitration (HOLD, AHOLD, BOFF #) inputs
and bus sizing (BS8#, BS16#) inputs operate nor-
mally while the processor is in SMM.

8.4.2.1 Write-Back Enhanced IntelDX2
Processor Environment

When the Write-Back Enhanced IntelDX2 processor
is in Enhanced Bus Mode, SMI# has greater priority
than debug exceptions and external interrupts, ex-
cept for FLUSH# and SRESET. (See section 4.8.6.)

8.4.3 EXECUTING SYSTEM MANAGEMENT
MODE HANDLER

The processor begins execution of the SMM handler
at offset 8000H in the CS segment. The CS Base is
initially 30000H. However, the CS Base can be
changed by using the SMM Base relocation feature.

When the SMM handler is invoked, the processors
PE and PG bits in CRO are reset to 0. The processor
is in an environment similar to Real mode, but with-
out the 64-Kbyte limit checking. However, the de-
fault operand size and the default address size are
set to 16 bits.

The EM bit is cleared so that no exceptions are gen-
erated. (If the SMM was entered from Protected
mode, the Real mode interrupt and exception sup-
port is not available.) The SMI# handler should not
use floating point unit instructions until the FPU is
properly detected (within the SMI# handler) and the
exception support is initialized.

Because the segment bases (other than CS) are
cleared to 0 and the segment limits are set to 4
Gbytes, the address space may be treated as a sin-
gle flat 4-Gbyte linear space that is unsegmented.
The processor is still in Real mode and when a seg-
ment selector is loaded with a 16-bit value, that val-
ue is then shifted left by 4 bits and loaded into the
segment base cache. The limits and attributes are
not modified.
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In SMM, the processor can access or jump any-
where within the 4-Gbyte logical address space. The
processor can also indirectly access or perform a
near jump anywhere within the 4-Gbyte logical ad-
dress space.

8.4.3.1 Exceptions and Interrupts within System
Management Mode

When the processor enters SMM, it disables INTR
interrupts, debug and single-step traps by clearing
the EFLAGS, DR6 and DR?7 registers. This is done
to prevent a debug application from accidentally
breaking into an SMM handler. This is necessary be-
cause the SMM handler operates from a distinct ad-
dress space (SMRAM), and hence, the debug trap
will not represent the normal system memory space.

If an SMM handler wishes to use the debug trap
feature of the processor to debug SMM handler
code, it must first ensure that an SMM compliant
debug handler is available. The SMM handler must
also ensure DRO-DR3 is saved to be restored later.
The debug registers DRO-DR3 and DR7 must then
be initialized with the appropriate values.

If the processor wishes to use the single step fea-
ture of the processor, it must ensure that an SMM
compliant single step handler is available and then
set the trap flag in the EFLAGS register.

If the system design requires the processor to re-
spond to hardware INTR requests while in SMM, it
must ensure that an SMM compliant interrupt han-
dler is available and then set the interrupt flag in the
EFLAGS register (using the STI instruction). Soft-
ware interrupts are not blocked upon entry to SMM,
and the system software designer must provide an
SMM compliant interrupt handler before attempting
to execute any software interrupt instructions. Note
that in SMM mode, the interrupt vector table has the
same properties and location as the Real mode vec-
tor table.

NMI interrupts are blocked upon entry to the SMM
handler. If an NMI request occurs during the SMM
handler, it is latched and serviced after the proces-
sor exits SMM. Only one NMI request will be latched
during the SMM handler. If an NMI request is pend-
ing when the processor executes the RSM instruc-
tion, the NMI is serviced before the next instruction
of the interrupted code sequence.
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Although NMI requests are blocked when the proc-
essor enters SMM, they may be enabled through

software by executing an IRET instruction. If the |

SMM handler requires the use of NMI interrupts, it
should invoke a dummy interrupt service routine for
the purpose of executing an IRET instruction. Once
an IRET instruction is executed, NM! interrupt re-
quests are serviced in the same ‘“real mod” manner
in which they are handled outside of SMM.

8.5 SMM Features

8.5.1 SMM REVISION IDENTIFIER

The SMM revision identifier is used to indicate the
version of SMM and the SMM extensions that are
supported by the processor. The SMM revision iden-
tifier is written during SMM entry and can be exam-
ined in SMRAM space at Register Offset 7EFCH.
The lower word of the SMM revision identifier refers
to the version of the base SMM architecture. The
upper word of the SMM revision identifier refers to
the extensions available. (See Figure 8-7.)

Register Offset
7EFCH
SMBASE Relocation —J
SMM Revision Level
I/0 Trap with Restart
' 242202-62

Figure 8-7. SMM Revision Identifier
Table 8-4. Bit Values for SMM Revision Identifier

Bits | Value Comments

16 0 Processor does not support 1/0

: Trap Restart

16 1 Processor supports |/0 Trap
Restart

17 0 Processor does not support
SMBASE relocation

17 1 Processor supports SMBASE
relocation
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Bit 16 of the SMM revision identifier is used to indi-
cate to the SMM handler that this processor sup-
ports the SMM 1/0 trap extension. If this bit is high,
then this processor supports the SMM 1/0 trap ex-
tension. If this bit is low, then this processor does

not support 1/0 trapping using the 1/0 trap slot
mechanism. (See Table 8-4.)

Bit 17 of this slot indicates whether the processor
supports relocation of the SMM jump vector and the
SMRAM base address. (See Table 8-4.)

The Intel486 processor supports both the 1/0 Trap
Restart and the SMBASE relocation features.

8.5.2 AUTO HALT RESTART

The Auto HALT Restart slot at register offset (word
location) 7F02H in SMRAM indicates to the SMM
handler that the SMI# interrupted the processor
during a HALT state (bit O of slot 7FO2H is set to 1 if
the previous instruction was a HALT). If the SMI#
did not interrupt the processor in a HALT state, then
the SMI# microcode will set bit 0 of the Auto HALT
Restart slot to a value of 0. If the previous instruction
was a HALT, the SMM handler can choose to either
set or reset bit 0. If this bit is set to 1, the RSM micro
code execution will force the processor to re-enter
the HALT state. If this bit is set to 0 when the RSM
instruction is executed, the processor will continue
execution with the instruction just after the interrupt-
ed HALT instruction. Note that if the interrupted in-
struction was not a HALT instruction (bit 0 is setto 0
in the Auto HALT Restart slot upon SMM entry), set-
ting bit 0 to 1 will cause unpredictable behavior
when the RSM instruction is executed. (See Figure
8-8 and Table 8-5.)

Register Offset
7F02H

‘_‘ Auto HALT
Restart
242202-63

Figure 8-8. Auto HALT Restart
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Table 8-5. Bit Values for Auto HALT Restart
15 0
Value of | Value of Register Offset
Bit 0 at Bit 0 at Comments 7F00h
Entry Exit t__ 1/0 Instruction
0 0 Returns to next instruction Restart Slot
in interrupted program. 242202-64
0 1 Unpredictable Figure 8-9. 1/0 Instruction Restart
1 0 Returns to next instruction .,
after HALT Table 8-6 /0 Instruction Restart Value
1 1 Returns to HALT state Valueat | Value
Entry at Exit Comments
If the HALT instruction is restarted, the processor 00H 00H Do not restart trapped 1/ o
will generate a memory access to fetch the HALT instruction
instruction (if it is not in the internal cache), and exe-
cute a HALT bus cycle. O0H OFFH | Restart trapped I/0
instruction

8.5.3 1/0 INSTRUCTION RESTART

The 1/0 instruction restart slot (register offset
7F00H in SMRAM) gives the SMM handler the op-
tion of causing the RSM instruction to automatically
re-execute the interrupted 1/0O instruction. When the
RSM instruction is executed, if the 1/0 instruction
restart slot contains the value OFFH, then the proc-
essor will automatically re-execute the 1/0 instruc-
tion that the SMI# trapped. If the 1/0 instruction re-
start slot contains the value 00H when the RSM in-
struction is executed, then the processor will not re-
execute the I/0 instruction. The processor automati-
cally initializes the 1/0 instruction restart slot to 00H
during SMM entry. The 1/0 instruction restart slot
should be written only when the processor has gen-
erated an SMI# on an |/O instruction boundary.
Processor operation is unpredictable when the 1/0
instruction restart slot is set when the processor is
servicing an SMI# that originated on a non-1/0 in-
struction boundary. (See Figure 8-9 and Table 8-6.)

If the system executes back-to-back SMi# re-
quests, the second SMM handler must not set
the 1/0 instruction restart slot (see section 8.6.6
“Nested SMI#s and 1/0 Restart”).

8.5.4 SMM BASE RELOCATION

The Intel486 processor provides a control register,
SMBASE. The address space used as SMRAM can
be modified by changing the SMBASE register be-
fore exiting an SMi# handler routine. SMBASE can
be changed to any 32K aligned value (values that
are not 32K aligned will cause the processor to enter
the shutdown state when executing the RSM in-
struction). SMBASE is set to the default value of
30000H on RESET, but is not changed on SRESET.
If the SMBASE register is changed during an SMM
handler, all subsequent SMi# requests will initiate a
state save at the new SMBASE. (See Figure 8-10.)
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31 0

Register Offset
7EF8H

J
tl—————— SMMBase

242202-65
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If the modified SMBASE slot does not contain a
32-Kbyte aligned value, the RSM microcode will
cause the processor to enter the shutdown state.

Figure 8-10. SMM Base Location

The SMBASE slot in the SMM state save area is a
feature used to indicate and change the SMi# jump
vector location and the SMRAM save area. When bit
17 of the SMM Revision Identifier is set then this
feature exists and the SMRAM base and conse-
quently the jump vector are as indicated by the SMM
Base slot. During the execution of the RSM instruc-
tion, the processor will read this slot and initialize the
processor to use the new SMBASE during the next
SMI#. During an SMI#, the processor will do its
context save to the new SMRAM area pointed to by
the SMBASE, store the current SMBASE in the
SMM Base slot (offset 7EF8H), and then start exe-
cution of the new jump vector based on the current
SMBASE.

The SMBASE must be a 32-Kbyte aligned, 32-bit in-
teger that indicates a base address for the SMRAM
context save area and the SMi# jump vector. For
example when the processor first powers up, the
minimum SMRAM area is from 38000H-3FFFFH.
The default SMBASE is 30000H. Hence the starting
address of the jump vector is calculated by:

SMBASE + 8000H

While the starting address for the SMRAM state
save area is calculated by:

SMM Base + [8000H + 7FFFH]

Hence, when this feature is enabled, the SMRAM
register map is addressed according to the above
formulas. (See Figure 8-11.)

To change the SMRAM base address and SMM
jump vector location, the SMM handier should modi-
fy the SMBASE slot. Upon executing an RSM in-
struction, the processor will read the SMBASE slot
and store it internally. Upon recognition of the next
SMi# request, the processor will use the new
SMBASE slot for the SMRAM dump and SMi# jump
vector. ’
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‘ SMRAM
SMBASE + 8000H
+ 7FFFH Start of State Save
SMBASE + 8000H SMM Handler Entry
SMBASE
242202-66

Figure 8-11. SMRAM Usage

8.6 SMM System Design
Considerations

8.6.1 SMRAM INTERFACE

The hardware designed to control the SMRAM
space must follow these guidelines:

1. A provision should be made to allow for initializa-
tion of SMRAM space during system boot up. This
initialization of SMRAM space must happen
before the first occurrence of an SMI# interrupt.
Initializing the SMRAM space must include instal-
lation of an SMM handler, and may include instal-
lation of related data structures necessary for par-
ticular SMM applications. The memory controller
providing the interface to the SMRAM should pro-
vide a means for the initialization code to manual-
ly open the SMRAM space.

2. A minimum inital SMRAM address space of
38000H-3FFFFH should be decoded by the mem-
ory controller.

3. Alternate bus masters (such as DMA controllers)
should not be allowed to access SMRAM space.
Only the processor, either through SMI# or dur-
ing initialization, should be allowed access to
SMRAM.

4.In order to implement a zero-volt suspend func-
tion, the system must have access to all of normal
system memory from within an SMM handler
routine. If the SMRAM is going to overlay normal
system memory, there must be a method of ac-
cessing any system memory that is located under-
neath SMRAM.
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There are two potential schemes for locating the
SMRAM, either overlaid to an address space on top
of normal system memory, or placed in a distinct
address space. (See Figure 8-12.) When SMRAM is
overlaid on the top of normal system memory, the
processor output signal SMIACT # must be used to
distinguish SMRAM from main system memory. Ad-
ditionally, if the overlaid normal memory is cache-
able, both the processor internal cache and any sec-
ond level caches must be empty before the first read
of an SMM handler routine. If the SMM memory is
cacheable, the caches must be empty before the
first read of normal memory following an SMM han-
dler routine. This is done by flushing the caches, and
is required to maintain cache coherency. When the
default SMRAM location is used, SMRAM is overlaid
on top of system main memory (at 38000H through
3FFFFH).

If SMRAM is located in its own distinct memory
space, which can be completely decoded with only
the processor address signals, it is said to be non-
overlaid. In this case, there are no new requirements
for maintaining cache coherency.

Normal
Memory
N%’é,"&'y Shadowed Region
Normal
Memory
h{on ovegatm (ca Ox 2 r:1
no need to
flush caches) be fl shed)
242202-67

Figure 8-12. SMRAM Location
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8.6.2 CACHE FLUSHES

The processor does not unconditionally flush its
cache before entering SMM (this option is left to the
system designer). If SMRAM is shadowed in a
cacheable memory area that is visible to the applica-
tion or operating system, it is necessary for the sys-
tem to empty both the processor cache and any
second level cache before entering SMM. That is, if
SMRAM is in the same physical address location as
the normal cacheable memory space, then an SMM
read may hit the cache which would contain normal
memory space code/data. If the SMM memory is
cacheable, the normal read cycles after SMM may
hit the cache, which may contain SMM code/data. In
this case the cache should be empty before the first
memory read cycle during SMM and before the first
normal cycle after exiting SMM. (See Figure 8-13.)

The FLUSH# and KEN# signals can be used to
ensure cache coherency when switching between
normal and SMM modes. Cache flushing during
SMM entry is accomplished by asserting the
FLUSH# pin when SMI# is driven active. Cache
flushing during SMM exit is accomplished by assert-
ing the FLUSH# pin after the SMIACT # pin is de-
asserted (within 1 CLK). To guarantee this behavior,
the constraints on setup and hold timings on the in-
teraction of FLUSH# and SMIACT # as specified for
a processor should be followed.

If the SMRAM area is overlaid over normal memory
and if the system designer does not want to flush
the caches upon leaving SMM then references to
the SMRAM area should not be cached. It is the
obligation of the system designer to ensure that the
KEN# pin is sampled inactive during all references
to the SMRAM area. Figures 8-14 and 8-15 illustrate
a cached and non-cached SMM using FLUSH# and
KEN#.

2-137




. Intel486™ PROCESSOR FAMILY

© SMi#

instr { nste { nstr| [ims] ]
#Mo#2 3! # #5
1 N
! | state Save SMM Handler  |State Resume}
SMi# —| I i
SMIACT# RSM —
Flush Cache Gache must GG omust
242202-68
Figure 8-13. FLUSH# Mechanism during SMM
State SMM State Normal
. Save Handler Resume Cycle
SMi# —u
SMIACT# ;_____
FLUSH# ; , (
<P\
24220269
Figure 8-14. Cached SMM
State SMM State  Normal
Save Handler Resume
SMi# \ r
SMIACT# RSM \ ;__
K =74 ~
FLUSH#
\M
242202-70
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Figure 8-15. Non-Cached SMM
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8.6.2.1 Write-Back Enhanced IntelDX2
Processor System Management Mode
and Cache Flushing

Regardless of the on-chip cache mode (i.e., either
write-through or write-back) it is recommended that
SMRAM be non-overlaid. This provides the greatest
freedom for caching of both SMRAM and normal
memory, provides a simplified memory controller de-
sign, and eliminates the performance penalty of
flushing.

In general, cache flushing is not required when the
SMRAM and normal memory are not overlaid. Table
8-7 gives the cache flushing requirements for enter-
ing and exiting SMM, when the SMRAM is not over-
laid with normal memory space.

SMRAM can not be cached as write-back lines. If
SMRAM is cached, it should be cached only as
write-through lines. This is because dirty lines can
not be written back to SMRAM upon exit from SMM.
The de-assertion of SMIACT # signals that the proc-
essor is exiting SMM, and is used to assert
FLUSH#. By the time the write back of dirty lines
occurs, SMIACT # would already be inactive, so the
SMRAM can no longer be decoded. When the
SMRAM is cached as write-through, this problem will
not occur.

Table 8-7. Cache Flushing
(Non-Overlaid SMRAM)

Normal
Memory SMRAM FLUSH Entering SMM
Cacheable
Cacheable
No No No
No WT No
WT No No
WB No No, but Snoop WBs
must go to Normal
Memory Space.
WT WT No
WB WT No, but Snoop and
Replacement WBs
must go to normal
memory space.

Coherency requirements must be met when the nor-
mal memory is cached in write-back mode. In this
case, the snoop and replacement write-backs that
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occur during SMM must go to normal memory, even
though SMIACT # is active. This requirement is com-
patible with SMM security requirements, because
these write backs can not decode the SMRAM, and
the memory system must be able to handle this situ-
ation properly.

If SMRAM is overlaid with normal memory space,
additional system design features are needed to en-
sure that cache coherency is maintained. Table 8-8
lists the cache flushing requirements for entering
and exiting the SMM when the SMRAM is overlaid
with normal memory space. )

Table 8-8. Cache Flushing (Overlaid SMRAM)

Memory | SMRAM | goicring | Exiing
Cacheable SMM SMM
No No No "No
No WT No Yes
WT or WB No Yes No
WT or WB WT Yes Yes

If SMI# and FLUSH# are asserted together, the
Write-Back Enhanced IntelDX2 processor guaran-
tees that the FLUSH# will be recognized first, fol-
lowed by the SMI#. If the cache is configured in the
write-back mode, the modified lines will be written
back to the normal user space, followed by the two
special cycles. The SMi# will then be recognized
and the transition to SMM will occur, as shown in
Figure 8-16.

Cache flushing during SMM exit is accomplished by
asserting the FLUSH # pin after the SMIACT # pin is
de-asserted (within 1 CLK). To guarantee this be-
havior, the constraints on setup and hold timings on
the interaction of FLUSH# and SMIACT # as speci-
fied for the Write-Back Enhanced IntelDX2 proces-
sor should be followed.

The WBINVD instruction should not be used to flush
the cache when exiting SMM. Instead, the FLUSH #
pin should be asserted after the SMIACT # pin is de-
asserted (within 1 CLK). The cache coherency re-
quirements associated with SMM and write-through
vs. write-back caches apply to second level cache
control designs as well. The appropriate second lev-
el cache flushing is also required upon entering and
exiting the SMM.

2-139




intel486™ PROCESSOR FAMILY

Write -
Back State SMM State Normal
Flush Cache Cycles Save Handler Resume Cycle
SMI# \ _/
RSM ‘
SMIACT#
\ N\ ;
A C
FLUSH#
|/ ~
Cache must be empty Cache must
be empty
242202-71

Figure 8-16. Write-Back Enhanced IntelDX2™ Processor Cache Flushing for
"~ Overlaid SMRAM upon Entry and Exit of Cached SMM

Snoops During SMM

Snoops cycles are allowed during SMM. However,
because the SMRAM is always cached as a write-
through, there can never be a snoop hit to a modi-
fied line in the SMRAM address space. Consequent-
ly, if there is a snoop hit to a modified line, it will
correspond to the normal address space. In this
case, even though SMIACT # is asserted, the mem-
ory controller must drive the snoop write-back cycle
to the normal memory space and not to the SMRAM
address space.

If the overlaid normal memory is cacheable,

FLUSH# must be asserted when entering SMM,
causing all modified lines of normal memory to be
written back. As a result, there can not be a snoop
hit to a modified line in the cacheable normal memo-
ry space that is overlaid with the SMRAM space.

If the overlaid normal memory is not cacheable, no
flushing is necessary when entering SMM. If normal
memory is not overlaid with SMRAM, no flushing is
required upon entering SMM and it is possible that a
snoop can hit a modified line cached from anywhere
in normal memory space while the processor is in
SMM.
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8.6.3 A20M# PIN AND SMBASE RELOCATION

Systems based on a PC-compatible architecture
contain a feature that enables the processor ad-
dress bit A20 to be forced to 0. This limits physical
memory to a maximum of 1 Mbyte, and is provided
to ensure compatibility with those programs that re-
lied on the physical address wrap around functionali-
ty of the 8088 processor. The A20M# pin on In-
teld86 processors provides this function. When
A20M # is active, all external bus cycles will drive
A20M # low, and all internal cache accesses will be
performed with A20M# low.

The A20M# pin is recognized while the processor is
in SMM. The functionality of the A20M# input must
be recognized in the following two instances:

1. 1f the SMM handler needs to access system
memory space above 1 Mbyte (for example, when
saving memory to disk for a zero-volt suspend),
the A20M# pin must be de-asserted before the
memory above 1 Mbyte is addressed.

2. If SMRAM has been relocated to address space
above 1 Mbyte, and A20M# is active upon enter-
ing SMM, the processor will attempt to access
SMRAM at the relocated address, but with A20
low. This could cause the system to crash, be-
cause there would be no valid SMM interrupt han-
dler at the accessed location.
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In order to account for the above two situations, the
system designer must ensure that A20M # is de-as-
serted on entry to SMM. A20M# must be driven in-
active before the first cycle of the SMM state save,
and must be returned to its original level after the
last cycle of the SMM state restore. This can be

done by blocking the assertion of A20M# whenever
SMIACT # is active.

8.6.4 PROCESSOR RESET DURING SMM

The system designer should take into account the
following restrictions while implementing the proces-
sor RESET logic.

1. When running software written for the 80286
processor a processor SRESET is used to switch
the processor from Protected mode to Real
mode. Note that SRESET has a higher interrupt
priority than SMIACT #. When the processor is in
SMM, the SRESET to the processor during SMM
should be blocked until the processor exits SMM.
SRESET must be blocked beginning from the
time when SMIi# is driven active and ending at
least 20 CLK cycles after SMIACT # is de-assert-
ed. Be careful not to block the global system
RESET, which may be necessary to recover from
a system crash.

2. During execution of the RSM instruction to exit
SMM, there is a small time window between the
de-assertion of SMIACT# and the completion of
the RSM microcode. If SRESET is asserted dur-
ing this window, it is possible that the SMRAM
space will be violated. The system designer must
guarantee that SRESET is blocked until at least
20 processor clock cycles after SMIACT# has
been driven inactive.

3. Any request for a processor SRESET for the pur-
pose of switching the processor from Protected
mode to Real mode must be acknowledged after
the processor has exited SMM. In order to main-
tain software transparency, the system logic must
latch any SRESET signals that are blocked during
SMM.

8.6.5 SMM AND SECOND LEVEL WRITE
BUFFERS

Before an Intel486 processor enters SMM, it emp-
ties its internal write buffers. This is necessary so
that the data in the write buffers is written to normal
memory space, not SMM space. Once the proces-
sor is ready to begin writing an SMM state save to
SMRAM, it asserts the SMIACT # signal. SMIACT #
may be driven active by the processor before the
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system memory controller has had an opportunity to
empty the second level write buffers.

To prevent the data from these second level write
buffers from being written to the wrong location, the
system memory controller needs to direct the mem-
ory write cycles to either SMM space or normal
memory space. This can be accomplished by saving
the status of SMIACT # along with the address for
each word in the write buffers.

8.6.6 NESTED SMI#s AND 1/0 RESTART

Special care must be taken when executing an SMM
handler for the purpose of restarting an 1/0 instruc-
tion. When the processor executes a RSM instruc-
tion with the 1/0 restart slot set, the restored EIP is
modified to point to the instruction immediately pre-
ceding the SMI# request, so that the /0 instruction
can be re-executed. If a new SMI# request is re-
ceived while the processor is executing an SMM
handler, the processor will service this SMI# re-
quest before restarting the original 1/0 instruction. If
the 1/0 restart slot is set when the processor exe-
cutes the RSM instruction for the second SMM han-
dler, the RSM microcode will decrement the
restored EIP again. EIP now points to an address
different from the originally interrupted instruction,
and the processor will begin execution of the inter-
rupted application code at an incorrect entry point.

To prevent this from occurring, the SMM handler
routine must not set the 1/0 restart slot during
the second of two consecutive SMM handlers.

8.7 SMM Software Considerations

8.7.1 SMM CODE CONSIDERATIONS

The default operand size and the default address
size are 16 bits; however, operand-size override and
address-size override prefixes can be used as need-
ed to directly access data anywhere within the
4-Gbyte logical address space.

With operand-size override prefixes, the SMM han-
dler can use jumps, calls, and returns, to transfer
control to any location within the 4-Gbyte space.
Note, however, the following restrictions:

¢ Any control transfer that does not have an oper-
and-size override prefix truncates EIP to 16 low-
order bits.

2-141




Intel486™ PROCESSOR FAMILY

® Due to the Real mode style of base-address for-
mation, a far jump or call cannot transfer control
to a segment with a base address of more than
20 bits (one megabyte).

8.7.2 EXCEPTION HANDLING

Upon entry into SMM, external interrupts that require
handlers are disabled (the IF bit in the EFLAGS is
cleared). This is necessary because, while the proc-
essor is in SMM, it is running in a separate memory
space. Consequently the vectors stored in the inter-
rupt descriptor table (IDT) for the prior mode are not
applicable. Before allowing exception handling (or
software interrupts), the SMM program must initial-
ize new interrupt and exception vectors. The inter-
rupt vector table for SMM has the same format as
for Real mode. Until the interrupt vector table is cor-
rectly initialized, the SMM handler must not generate
an exception (or software interrupt). Even though
hardware interrupts are disabled, exceptions and
software interrupts can still occur. Only a correctly
written SMM handler can prevent internal excep-
tions. When new exception vectors are initialized, in-
ternal exceptions can be serviced. The following are
the restrictions:

1. Due to the Real mode style of base address for-
mation, an interrupt or exception cannot transfer
control to a segment with a base address of more
that 20 bits.

2. An interrupt or exception cannot transfer control
to a segment offset of more than 16 bits
(64 Kbytes).

3. If exceptions or interrupts are allowed to occur,
only the low order 16 bits of the return address
(EIP) are pushed onto the stack. If the offset of
the interrupted procedure is greater than
64 Kbytes, it is not possible for the interrupt/
exception handler to return control to that proce-
dure. (One work-around could be to perform soft-
ware adjustment of the return address on the
stack.)
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4. The SMBASE Relocation feature affects the way
the processor will return from an mterrupt or ex-
ception during an SMI# handler.

8.7.3 HALT DURING SMM

HALT should not be executed during SMM, unless
interrupts have been enabled (see section 8.7.2.
‘Exception Handling‘). Interrupts are disabled in
SMM and INTR, NMI, and SMI# are the only events
that take the processor out of HALT.

8.7.4 RELOCATING SMRAM TO AN ADDRESS
ABOVE ONE MEGABYTE

Within SMM (or Real mode), the segment base reg-
isters can only be updated by changing the segment
register. The segment registers contain only 16 bits,
which allows only 20 bits to be used for a segment
base address (the segment register is shifted left
four bits to determine the segment base address). If
SMRAM is relocated to an address above one
megabyte, the segment registers can no longer be
initialized to point to SMRAM.

These areas can still be accessed by using address
override prefixes to generate an offset to the correct
address. For example, if the SMBASE has been re-
located immediately below 16M, the DS and ES reg-
isters are still initialized to 0000 0000H. We can still
access data in SMRAM by using 32-bit displacement
registers:

mov esi, OOFFxxxxH ;64K segment
simmediately
sbelow 16M
mov ax,ds:[esi]
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9.0 HARDWARE INTERFACE

9.1 Introduction

The Intel486 processor has separate parallel buses
for data and addresses. The bidirectional data bus is
32 bits in width. The address bus consists of two
components: 30 address lines (A2-A31) and 4-byte
enable lines (BEO# -BE3#). The address lines form
the upper 30 bits of the address and the byte en-
ables select individual bytes within a 4-byte location.
The address lines are bidirectional for use in cache
line invalidations. (See Figure 9-1.)

The Intel486 processor’s burst bus mechanism en-
ables high-speed cache fills from external memory.
Burst cycles can strobe data into the processor at a
rate of one item every clock. Non-burst cycles have
a maximum rate of one item every two clocks. Burst
cycles are not limited to cache fills: all read bus cy-
cles requiring more than a single data cycle can be
bursted. The Write-Back Enhanced IntelDX2™™
processor can also burst write cycles.

During bus hold, the Intel486 processor relinquishes
control of the local bus by floating its address, data
and control buses. The Intel486 processor has an
address hold feature in addition to bus hold. During
address hold, only the address bus is floated, the
data and control buses can remain active. Address
hold is used for cache line invaiidations.

The Intel486 supports the IEEE 1149.1 boundary
scan.

This section provides a brief description of the In-
tel486 processor input and output signals arranged
by functional groups. The # symbol at the end of a
signal name indicates that the active or asserted
state occurs when the signal is at a low voltage.
When a # is not present after the signal name, the
signal is active at high voltage level. The term
“ready” is used to indicate that the cycle is terminat-
ed with RDY # or BRDY #.
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This section and section 10, “Bus Operation,” de-
scribe bus cycles and data cycles. A bus cycle is at
least two-clocks long and begins with ADS# active
in the first clock and RDY # and/or BRDY # active in

" the last clock. Data is transferred to or from the In-

tel486 processor during a data cycle. A bus cycle
contains one or more data cycles.

9.2 Signal Descriptions

9.2.1 CLOCK (CLK)

CLK provides the fundamental timing and the inter-
nal operating frequency for the Intel486 processor.
All external timing parameters are specified with re-
spect to the rising edge of CLK.

The Intel486 processor can operate over a wide fre-
quency range, however the CLK frequency cannot
change rapidly while RESET is inactive. The CLK
frequency must be stable for proper chip operation

. because a single edge of CLK is used internally to

generate two phases. CLK only needs TTL levels for
proper operation. Figure 9-2 illustrates the CLK
waveform.

9.2.2 INTELDX4 PROCESSOR CLOCK
MULTIPLIER SELECTABLE INPUT
(CLKMUL)

The IntelDX4 processor differs from the IntelDX2
processor in that it provides for two internal clock
multiplier ratios: speed doubled mode and speed tri-
pled mode. Speed doubled mode is identical to the
IntelDX2 processor mode of operation where the in-
ternal core is operating at twice the external bus fre-
quency. Selecting speed tripled mode causes the in-
ternal core frequency to operate at three times the
external bus frequency. The IntelDX4 processor de-
termines the desired clock multiplier ratio by sam-
pling the status of the CLKMUL input during cold
(power on) processor resets. The clock multiplier
ratio cannot be changed during warm resets.
Also, SRESET cannot be used to select the clock
multiplier ratio.
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1.5V

242202-73
tx = input setup times
ty = input hold times, output float, valid and hold times

Figure 9-2. CLK Waveform

To determine which clock muiltiplier is desired, the
IntelDX4 processor samples the status of CLKMUL
while RESET is active. If the CLKMUL input is driven
low during RESET, the frequency of the core will be
twice the external bus frequency (speed doubled
mode). If driven high or left floating, speed tripled
mode is selected. (See Table 9-1.) In order to allow
maximum flexibility, CLKMUL can be jumper-config-
urable to either Vg (speed tripled mode) or Vgg
(speed doubled mode). (See Figure 9-3.)

Table 9-1. Clock Multiplier Selection

External | Internal
CL':?UL Clock Clock Clock
Multiplier Freq. Freq.
RESET (MHz2) (MHz2)
Vg or 3 25 75
Not Driven 33 100
Vss 2 50 100

IntelDX4
Processor
Vee Ve
3x % 3x-l-
CLKMUL I
2x_L
242202-74

Figure 9-3. Voltage Detect (VOLDET) Sense Pin

The clock multiplier selection method is fully back-
ward compatible with Intel486 processor-based sys-
tem designs. The CLKMUL signal occupies a pin
which is labeled as an ‘INC* on other Intel486 proc-
essors. Therefore, this pin is not driven in other In-
tel486 processor system designs. The IntelDX4
processor contains an internal pull-up resistor on the
CLKMUL signal. As shown in Table 9-1, when
CLKMUL is not driven, the internal core frequency
defaults to speed tripled mode.

The internal pull-up resistor on the CLKMUL pin is
disabled while the IntelDX4 processor is in the Stop
Grant or Stop Clock modes. This prevents a low lev-
el DC current path from drawing current while in the
Stop Grant or Stop Clock states on a system with
CLKMUL connected to Vgs.

9.2.3 ADDRESS BUS (A31-A2, BEO#-BE3#)

A31-A2 and BEO#-BE3# form the address bus
and provide physical memory and I/O port address-
es. The Intel486 processor is capable of addressing
4 gigabytes of physical memory space (00000000H
through FFFFFFFFH), and 64 Kbytes of I/0 address
space (00000000H through O000FFFFH). A31-A2
identify addresses to a 4-byte location. BEO# -
BE3# identify which bytes within the 4-byte location
are involved in the current transfer.
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Addresses are driven back into the Intel486 proces-
sor over A31-A4 during cache line invalidations.
The address lines are active HIGH. When used as
inputs into the processor, A31-A4 must meet the
setup and hold times, tos and tp3. A31-A2 are not
driven during bus or address hold.

The byte enable outputs, BEO# -BE3#, determine
which bytes must be driven valid for read and write
cycles to external memory.

e BE3# applies to D24-D31
e BE2# applies to D16-D23
e BE1# applies to D8-D15
e BEO# applies to DO-D7

BEO#-BE3# can be decoded to generate A0, A1
and BHE# signals used in 8- and 16-bit systems
(see Table 10-5). BEO# —-BE3 # are active LOW and
are not driven during bus hold.

9.2.4 DATA LINES (D31-D0)

The bidirectional lines, D31-D0, form the data bus
for the Intel486 processor DO-D7 define the least
significant byte and D24-D31 the most significant
byte. Data transfers to 8- or 16-bit devices are possi-
ble using the data bus sizing feature controlled by
the BS8# or BS16# input pins. D31-D0 are active
HIGH. For reads, D31-D0 must meet the setup and
hold times, too and t23. D31-DO0 are not driven dur-
ing read cycles and bus hold.

9.2.5 PARITY
Data Parity Input/Outputs (DPO-DP3)

DPO-DP3 are the data parity pins for the processor.
There is one pin for each byte of the data bus. Even
parity is generated or checked by the parity genera-
tors/checkers. Even parity means that there are an
even number of HIGH inputs on the eight corre-
sponding data bus pins and parity pin.

Data parity is generated on all write data cycles with
the same timing as the data driven by the Intel486
processor. Even parity- information must be driven
back to the Inteld486 processor on these pins with
the same timing as read information to insure that
the correct parity check status is indicated by the
Intel486 processor.

The values read on these pins do not affect program

execution. It is the responsibility of the system to
take appropriate actions if a parity error occurs.
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Input signals on DPO-DP3 must meet setup and
hold times tp5 and to3 for proper operation.

Parity Status Output (PCHK #)

Parity status is driven on the PCHK # pin, and a pari-
ty error is indicated by this pin being LOW. PCHK #
is driven the clock after ready for read operations to
indicate the parity status for the data sampled at the
end of the previous clock. Parity is checked during
code reads, memory reads and 1/0 reads. Parity is
not checked during interrupt acknowledge cycles.
PCHK# only checks the parity status for enabled
bytes as indicated by the byte enable and bus size
signals. It is valid only in the clock immediately after
read data is returned to the Intel486 processor. At all
other times it is inactive (HIGH). PCHK# is never
floated.

Driving PCHK # is the only effect that bad input pari-

. ty has on the Intel486 processor. The Intel486 proc-

essor will not vector to a bus error interrupt when
bad data parity is returned. In systems that will not
employ parity, PCHK# can be ignored. In systems
not using parity, DPO-DP3 should be connected to
Ve through a pull-up resistor.

9.2.6 BUS CYCLE DEFINITION
M/I0#, D/C#, W/R# Outputs

M/IO#, D/C# and W/R# are the primary bus cycle
definition signals. They are driven valid as the ADS #
signal is asserted. M/I0O# distinguishes between
memory and 1/O cycles, D/C# distinguishes be-
tween data and control cycles and W/R# distin-
guishes between write and read cycles.

Bus cycle definitions as a function of M/I0#, D/C#
and W/R# are given in Table 9-2. Note there is a
difference between the Intel486 processor and In-
tel386™ processor bus cycle definitions. The halt
bus cycle type has been moved to location 001 in
the Intel486 processor from location 101 in the In-
tel386 processor. Location 101 is now reserved and
will never be generated by the Intel486 processor.

Special bus cycles are discussed in section 10.2.11,
“Special Bus Cycles”.
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Table 9-2. ADS # Initiated Bus Cycle Definitions

M/I0O# | D/C# | W/R# | Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 1/0 Read
0 1 1 170 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

Bus Lock Output (LOCK #)

LOCK# indicates that the Intel486 processor is run-
ning a read-modify-write cycle where the external
bus must not be relinquished between the read and
write cycles. Read-modify-write cycles are used to
implement memory-based semaphores. Multiple
reads or writes can be locked.

When LOCK# is asserted, the current bus cycle is
locked and the Intel486 processor should be al-
lowed exclusive access to the system bus. LOCK #
goes active in the first clock of the first locked bus
cycle and goes inactive after ready is returned indi-
cating the last locked bus cycle.

The Intel486 processor will not acknowledge bus
hold when LOCK# is asserted (though it will allow
an address hold). LOCK # is active LOW and is float-
ed during bus hold. Locked read cycles will not be
transformed into cache fill cycles if KEN# is- re-
turned active. Refer to section 10.2.6, “Locked Cy-
cles,” for a detailed discussion of Locked bus cy-
cles.

Pseudo-Lock Output (PLOCK #)

The pseudo-lock feature allows atomic reads and
writes of memory operands greater than 32 bits.
These operands require more than one cycle to
transfer. The Intel486 processor asserts PLOCK #
during segment table descriptor reads (64 bits) and
cache line fills (128 bits).

When PLOCK # is asserted no other master will be
given control of the bus between cycles. A bus hold
request (HOLD) is not acknowledged during pseudo-
locked reads and writes, with one exception. During
non-cacheable non-bursted code prefetches, HOLD
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is recognized on memory cycle boundaries even
though PLOCK# is asserted. The Intel486 proces-
sor will drive PLOCK # active until the addresses for
the last bus cycle of the transaction have been driv-
en regardless of whether BRDY # or RDY # are re-
turned.

A pseudo-locked transfer is meaningful only if the
memory operand is aligned and if its completely con-
tained within a single cache line.

Because PLOCK# is a function of the bus size and
KEN# inputs, PLOCK# should be sampled only in
the clock ready is returned. This pin is active LOW
and is not driven during bus hold. Refer to section
10.2.7, “Pseudo-Locked Cycles.”

9.2.6.1 PLOCK# Floating Point Considerations

For processors with an on-chip FPU, the following
must be noted for PLOCK # operation. A 64-bit float-
ing point number must be aligned to an 8-byte
boundary to guarantee an atomic access. Normally
PLOCK# and BLAST# are inverse of each other.
However, during the first cycle of a 64-bit floating
point write, both PLOCK# and BLAST # will be as-
serted. Intel486 processors with on-chip FPUs also
assert PLOCK# during floating point long reads and
writes (64 bits), segmentable description reads (64
bits) and code line fills (128 bits).

9.2.7 BUS CONTROL

The bus control signals allow the Intel486 processor
to indicate when a bus cycle has begun, and allow
other system hardware to control burst cycles, data
bus width and bus cycle termination.

Address Status Output (ADS #)

The ADS# output indicates that the address and
bus cycle definition signals are valid. This signal will
go active in the first clock of a bus cycle and go
inactive in the second and subsequent clocks of the
cycle. ADS# is also inactive when the bus is idle.

ADS# is used by the external bus circuitry as the
indication that the Intel486 processor has started a
bus cycle. The external circuit must sample the bus
cycle definition pins on the next rising edge of the
clock after ADS # is driven active.

ADS# is active LOW and is not driven during bus
hold.
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Non-burst Ready Input (RDY #)

RDY# indicates that the current bus cycle is com-
plete. In response to a read, RDY # indicates that
the external system has presented valid data on the
data pins. In response to a write request, RDY # indi-
cates that the external system has accepted the In-
tel486 processor data. RDY # is ignored when the
bus is idle and at the end of the first clock of the bus
cycle. Because RDY# is sampled during address
hold, data can be returned to the processor when
AHOLD is active.

RDY # is active LOW, and is not provided with an
internal pull-up resistor. This input must satisfy setup
and hold times tg and t17 for proper chip operation.

9.2.8 BURST CONTROL.
Burst Ready Input (BRDY #)

BRDY # performs the same function during a burst
cycle that RDY # performs during a non-burst cycle.
BRDY # indicates that the external system has pre-
sented valid data on the data pins in response to a
read or that the external system has accepted the
Intel486 processor data in response to a write.
BRDY # is ignored when the bus is idle and at the
end of the first clock in a bus cycle.

During a burst cycle, BRDY # will be sampled each
clock, and if active, the data presented on the data
bus pins will be strobed into the Intel486 processor.
ADS# is negated during the second through last
data cycles in the burst, but address lines A2-A3
and byte enables will change to reflect the next data
item expected by the Intel486 processor.

If RDY# is returned simultaneously with BRDY #,
BRDY # is ignored and the burst cycle is premature-
ly aborted. An additional complete bus cycle will be
initiated after an aborted burst cycle if the cache line
fill was not complete. BRDY # is treated as a normal
ready for the last data cycle in a burst transfer or for
non-burstable cycles. Refer to section 10.2.2, “Multi-
ple and Burst Cycle Bus Transfers,” for burst cycle
timing.

BRDY # is active LOW and is provided with a small

internal pull-up resistor. BRDY# must satisfy the
_setup and hold times t1g and t47.
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BLAST # indicates that the next time BRDY # is re-
turned it will be treated as a normal RDY #, terminat-
ing the line fill or other multiple-data-cycle transfer.
BLAST# is active for all bus cycles regardless of
whether they are cacheable or not. This pin is active
LOW and is not driven during bus hold.

Burst Last Output (BLAST #)

9.2.9 INTERRUPT SIGNALS

The interrupt signals can interrupt or suspend exe-
cution of the processor’s current instruction stream.

Reset Input (RESET)

The RESET input must be used at power-up to ini-
tialize the processor. The Reset input forces the
processor to begin execution at a known state. The
processor cannot begin execution of instructions un-
til at least 1 ms after Vo and CLK have reached
their proper DC and AC specifications. The RESET
pin should remain active during this time to ensure
proper processor operation. However, for warm
boot-ups RESET should remain active for at least 15
CLK periods. RESET is active HIGH. RESET is asyn-
chronous but must meet setup and hold times tpg
and tp4 for recognition in any specific clock.

RESET will reset SMBASE to the default value of
30000H. If SMBASE relocation is not used, the RE-
SET signal can be used as the only reset. (See sec-
tion 8, ““System Management Mode Architecture.”)

The Intel486 processor will be placed in the PoWer
Down Mode if UP# is sampled active at the falling
edge of RESET. >~

Soft Reset Input (SRESET)

The SRESET (Soft RESET) input, has the same
functions as RESET, but does not change the
SMBASE, and UP# is not sampled on the falling
edge of SRESET. If SMBASE relocation is used by
the system, the soft resets should be handled using
the SRESET input. The SRESET signal should not
be used for the cold boot-up power-on reset.

The SRESET input pin is provided to save the status
of SMBASE during Intel 286 processor-compatible
mode change. SRESET leaves the location of
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SMBASE intact while resetting other units, including
the on-chip cache. (See section 9.2.18.4, “Soft Re-
set,” for Write-Back Enhanced IntelDX2 processor
differences.) For compatibility, the system should
use SRESET to flush the on-chip cache. The
FLUSH# input pin should be used to flush the on-
chip cache. SRESET should not be used to initiate
test modes.

System Management Interrupt Request Input
(SMI#)

SMI# is the system management mode interrupt re-
quest signal. The SMI# request is acknowledged by
the SMIACT # signal. After the SMI# interrupt is rec-
ognized, the SMI# signal will be masked internally
until the RSM instruction is executed and the inter-
rupt service routine is complete. SMI# is falling-
edge sensitive after internal synchronization.

The SMI# input must be held inactive for at least
four clocks after it is asserted to reset the edge trig-
gered logic. SMI# is provided with a pull-up resistor
to maintain compatibility with designs which do not
use this feature. SMI# is an asynchronous signal,
but setup and hold times, tog and tz4, must be met in
order to guarantee recognition on a specific clock.

System Management Mode Active Output
(SMIACT #)

SMIACT # indicates that the processor is operating
in System Management Mode. The processor as-
serts SMIACT # in response to an SMI interrupt re-
quest on the SMI# pin. SMIACT # is driven active
after the processor has completed all pending write
cycles (including emptying the write buffers), and be-
fore the first access to SMRAM when the processor
saves (writes) its state (or context) to SMRAM.
SMIACT# remains active until the last access to
SMRAM when the processor restores (reads) its
state from SMRAM. The SMIACT # signal does not
float in response to HOLD. The SMIACT # signal is
used by the system logic to decode SMRAM.

Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been
generated. Interrupt processing is initiated if the IF
flag is active in the EFLAGS register.

The Intel486 processor will generate two locked in-
terrupt acknowledge bus cycles in response to as-
serting the INTR pin. An 8-bit interrupt number will
be latched from an external interrupt controller at
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the end of the second interrupt acknowledge cycle.
INTR must remain active until the interrupt acknowl-
edges have been performed to assure program in-
terruption. Refer to section 10.2.10, “Interrupt Ac-
knowledge,” for a detailed discussion of interrupt ac-
knowledge cycles.

The INTR pin is active HIGH and is not provided with
an internal pull-down resistor. INTR is asynchro-
nous, but the INTR setup and hold times, top and ta1,
must be met to assure recognition on any specific
clock.

Non-maskable Interrupt Request Input (NMI)

NMI is the non-maskable interrupt request signal.
Asserting NMI causes an interrupt with an internally
supplied vector value of 2. External interrupt ac-
knowledge cycles are not generated because the
NMI interrupt vector is internally generated. When
NMI processing begins, the NMI signal will be
masked internally until the IRET instruction is exe-
cuted.

NMI is rising edge sensitive after internal synchroni-
zation. NMI must be held LOW for at least four CLK
periods before this rising edge for proper operation.
NMl is not provided with an internal pull-down resis-
tor. NMl is asynchronous but setup and hold times,
to0 and tp1 must be met to assure recognition on any
specific clock.

Stop Clock Interrupt Request Input (STPCLK #)

The Intel486 processor provides an interrupt mecha-
nism, STPCLK#, that allows system hardware to
control the power consumption of the processor by
stopping the internal clock (output of the PLL) to the
processor core in a controlled manner. This low-
power state is called the Stop Grant state. In addi-
tion, the STPCLK# interrupt allows the system to
change the input frequency within the specified
range or completely stop the CLK input frequency
(input to the PLL). If the CLK input is completely
stopped, the processor enters into the Stop Clock
state-the lowest power state. If the frequency is
changed or stopped, the Intei486 processor will not
return to the Stop Grant state until the CLK input has
been running at a constant frequency for the time
period necessary to stabilize the PLL (minimum of
1 ms).

The Intel486 processor will generate a Stop Grant

bus cycle in response to the STPCLK # interrupt re-
quest. STPCLK# is active LOW and is provided
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with an internal pull-up resistor. STPCLK# is an
asynchronous signal, but must remain active until
the processor issues the Stop Grant bus cycle. (Re-
fer to section 10.2.11.3, “Stop Grant Indication Cy-
cle.”)

9.2.10 BUS ARBITRATION SIGNALS

This section describes the mechanism by which the
processor relinquishes control of its local bus when
requested by another bus master.

Bus Request Output (BREQ)

The Intel486 processor asserts BREQ whenever a
bus cycle is pending internally. Thus, BREQ is al-
ways asserted in the first clock of a bus cycle, along
with ADS #. Furthermore, if the Intel486 processor is
currently not driving the bus (due to HOLD, AHOLD,
or BOFF#), BREQ is asserted in the same clock
that ADS # would have been asserted if the Intel486
processor were driving the bus. After the first clock
of the bus cycle, BREQ may change state. It will be
asserted if additional cycles are necessary to com-
plete a transfer (via BS8#, BS16#, KEN#), or if
more cycles are pending internally. However, if no
additional cycles are necessary to complete the cur-
rent transfer, BREQ can be negated before ready
comes back for the current cycle. External logic can
use the BREQ signal to arbitrate among multiple
processars. This pin is driven regardless of the state
of bus hold or address hold. BREQ is active HIGH
and is never floated. During a hold state, internal
events may cause BREQ to be de-asserted prior to
any bus cycles.

Bus Hold Request Input (HOLD)

HOLD allows another bus master complete control
of the Intel486 processor bus. The Intel486 proces-
sor will respond to an active HOLD signal by assert-
ing HLDA and placing most of its output and input/
output pins in a high impedance state (floated) after
completing its current bus cycle, burst cycle, or se-
quence of locked cycles. In addition, if the Intel486
processor receives a HOLD request while perform-
ing a code fetch, and that cycle is backed off
(BOFF #), the Intel486 processor will recognize

HOLD before restarting the cycle. The code fetch

can be non-cacheable or cacheable and non-burst-
ed or bursted. The BREQ, HLDA, PCHK# and

FERR# pins are not floated during bus hold. The

Intel486. processor will maintain its bus in this state
until the HOLD is de-asserted. Refer to section
10.2.9, “Bus Hold,” for timing diagrams for bus hoid
cycles and HOLD request acknowledge during
BOFF #.
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Unlike the Intel386 processor, the Intel486 proces-
sor will recognize HOLD during reset. Pull-up resis-
tors are not provided for the outputs that are floated
in response to HOLD. HOLD is active HIGH and is
not provided with an internal pull-down resistor.

HOLD must satisfy setup and hold times tyg and t1g
for proper chip operation.

Bus Hold Acknowledge Output (HLDA)

HLDA indicates that the Intel486 processor has giv-
en the bus to another local bus master. HLDA goes
active in response to a hold request presented on
the HOLD pin. HLDA is driven active in the same
clock that the Intel486 processor floats its bus.

HLDA will be driven inactive when leaving bus hold

and the Intel486 processor will resume driving the
bus. The Intel486 processor will not cease internal
activity during bus hold because the internal cache
will satisfy the majority of bus requests. HLDA is ac-
tive HIGH and remains driven during bus hold.

Backoff input (BOFF #)

Asserting the BOFF # input forces the Intel486 proc-
essor to release control of its bus in the next clock.
The pins floated are exactly the same as in re-
sponse to HOLD. The response to BOFF# differs
from the response to HOLD in two ways: First, the
bus is floated immediately in response to BOFF #
while the Intel486 processor completes the current
bus cycle before floating its bus in response to
HOLD. Second the Intel486 processor does not as-
sert HLDA in response to BOFF #.

The Intel486 processor remains in bus hold until
BOFF# is negated. Upon negation, the Intel486
processor restarts the bus cycle aborted when
BOFF # was asserted. To the internal execution en-
gine the effect of BOFF # is the same as inserting a
few wait states to the original cycle. Refer to section
10.2.12, ‘Bus Cycle Restart,’ for a description of bus
cycle restart.

Any data returned to the Intel486 processor while
BOFF# is asserted is ignored. BOFF# has higher
priority than RDY # or BRDY #. If both BOFF # and
ready are returned in the same clock, BOFF # takes
effect. If BOFF # is asserted while the bus is idle, the
Intel486 processor will float its bus in the next clock.
BOFF# is active LOW and must meet setup and
hold times t1g and t1g for proper chip operation.
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9.2.11 CACHE INVALIDATION

The AHOLD and EADS# inputs are used during
cache invalidation cycles. AHOLD conditions the In-
tel486 processor address lines, A4—A31, to accept
an address input. EADS# indicates that an external
address is actually valid on the address inputs. Acti-
vating EADS# will cause the Intel486 processor to
read the external address bus and perform an inter-
nal cache invalidation cycle to the address indicat-
ed. Refer to section 10.2.8, “Invalidate Cycle,” or
cache invalidation cycle timing.

Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows anoth-
er bus master access to the Intel486 processor ad-
dress bus for performing an internal cache invalida-
tion cycle. Asserting AHOLD will force the intel486
processor to stop driving its address bus in the next
clock. While AHOLD is active only the address bus
will be floated, the remainder of the bus can remain
active. For example, data can be returned for a pre-
viously specified bus cycle when AHOLD is active.
The Intel486 processor will not initiate another bus
cycle during address hold. Because the Intel486
processor floats its bus immediately in response to
AHOLD, an address hold acknowledge is not re-
quired. If AHOLD is asserted while a bus cycle is in
progress, and no readies are returned during the
time AHOLD is asserted, the Intel486 processor will
redrive the same address (that it originally sent out)
once AHOLD is negated.

AHOLD is recognized during reset. Because the en-
tire cache is invalidated by reset, any invalidation
cycles run during reset will be unnecessary. AHOLD
is active HIGH and is provided with a small internal
pull-down resistor. It must satisfy the setup and hold
times t1g and t1g for proper chip operation. AHOLD
also determines whether or not the built in self test
features of the Intel486 processor will be exercised
on assertion of RESET. (See section 11.1, “Built-In
Self Test.”)

External Address Valid Input (EADS #)

EADS # indicates that a valid external address has
been driven onto the Intel486 processor address
pins. This address will be used to perform an internal
cache invalidation cycle. The external address will
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be checked with the current cache contents. If the
address specified matches any areas in the cache,
that area will immediately be invalidated.

An invalidation cycle may be run by asserting
EADS# regardless of the state of AHOLD, HOLD
and BOFF #. EADS # is active LOW and is provided
with an internal pull-up resistor. EADS # must satisfy
the setup and hold times t12 and t43 for proper chip
operation.

9.2.12 CACHE CONTROL
Cache Enable Input (KEN#)

KEN# is the cache enable pin. KEN# is used to
determine whether the data being returned by the
current cycle is cacheable. When KEN# is active }§
and the Intel486 processor generates a cycle that
can be cached (most any memory read cycle), the
cycle will be transformed into a cache line fill cycle.

A cache line is 16 bytes long. During the first cycle of
a cache line fill the byte-enable pins should be ig-
nored and data should be returned as if all four byte
enables were asserted. The Intel486 processor will
run between 4 and 16 contiguous bus cycles to fill
the line depending on the bus data width selected by
BS8# and BS16#. Refer to section 10.2.3, “Cache-
able Cycles,” for a description of cache line fill cy-
cles.

The KEN# input is active LOW and is provided with
a small internal pull-up resistor. It must satisfy the
setup and hold times ty4 and ty5 for proper chip op-
eration.

Cache Flush Input (FLUSH#)

The FLUSH # input forces the Intel486 processor to
flush its entire internal cache. FLUSH# is active
LOW and need only be asserted for one ciock.
FLUSH# is asynchronous but setup and hold times
top and tp1 must be met for recognition on any spe-
cific clock.

FLUSH# also determines whether or not the tri-
state test mode of the Intel486 processor will be in-
voked on assertion of RESET. (See section 11.4,
“Tri-State Output Test Mode.”)
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9.2.13 PAGE CACHEABILITY (PWT, PCD)

The PWT and PCD output signals correspond to two
user attribute bits in the page table entry. When pag-
ing is enabled, PWT and PCD correspond to bits 3
and 4 of the page table entry respectively. For cy-
cles that are not paged when paging is enabled (for
example 1/0 cycles) PWT and PCD correspond to
bits 3 and 4 in control register 3. When paging is
disabled, the Intel486 processor ignores the PCD
and PWT bits and assumes they are zero for the
purpose of caching and driving PCD and PWT.

PCD is masked by the CD (cache disable) bit in con-
trol register 0 (CR0). When CD=1 (cache line fills
disabled) the Intel486 processor forces PCD HIGH.
When CD=0, PCD is driven with the value of the
page table entry/directory.

The purpose of PCD is to provide a cacheable/non-
cacheable indication on a page by page basis. The
Intel486 processor will not perform a cache fill to
any page in which bit 4 of the page table entry is set.
PWT corresponds to the write-back bit and can be
used by an external cache to provide this functionali-
ty. PCD and PWT bits are assigned to be zero during
real mode or whenever paging is disabled. Refer to
section 7.6, ‘Page Cacheability,’ for a discussion of
non-cacheable pages.

PCD and PWT have the same timing as the cycle
definition pins (M/I0#, D/C#, W/R#). PCD and
PWT are active HIGH and are not driven during bus
hold.

NOTE:
The PWT and PCD bits function differently in
the write-back mode of the Write-Back En-
hanced IntelDX2 processor. (See section
7.6.1)

9.2.14 UPGRADE PRESENT (UP#)

The Upgrade Present input detects the presence of
the upgrade processor, then powers down the core,
and tri-states all outputs of the original processor, so
that the original processor consumes very low cur-
rent. This state is known as Upgrade Power Down
Mode. UP# is active LOW and sampled at all times,
including after power-up and during reset.
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9.2.15 NUMERIC ERROR REPORTING (FERR #,

IGNNE #)

To allow PC-type floating point error reporting, In-
tel486 DX, IntelDX2, and IntelDX4 processors pro-

vide two pins, FERR# and IGNNE #.

Floating Point Error Output (FERR #)

The processor asserts FERR# whenever an un-
masked floating point error is encountered. FERR #
is similar to the ERROR# pin on the Intel387 math
coprocessor. FERR# can be used by external logic
for PC-type floating point error reporting in systems
with an Intel486 DX, IntelDX2, or IntelDX4 proces-
sor. FERR # is active LOW and is not floated during
bus hold.

In some cases, FERR # is asserted when the next
floating point instruction is encountered. In other
cases, it is asserted before the next floating point
instruction is encountered, depending on the execu-
tion state of the instruction that caused the excep-
tion.

The following class of floating point exceptions drive
FERR# at the time the exception occurs (i.e., before
encountering the next floating point instruction):

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSCALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

. 2. Any exceptions on store instructions (including in-

teger store instructions).

The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction:

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions, FSQRT,
FSCALE, FPREM(1), FXTRACT, FBLD, and
FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

Ignore Numeric Error Input (IGNNE #)

Intel486 DX, IntelDX2, and IntelDX4 processors will
ignore a numeric error and continue executing non-
control floating point instructions when IGNNE # is
asserted, and FERR# is still activated. When de-
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asserted, the processor will freeze on a non-control
floating point instruction if a previous instruction

caused an error. IGNNE# has no effect when the
NE bit in control register 0 is set.

The IGNNE # input is active LOW and provided with
a small internal pull-up resistor. This input is asyn-
chronous, but must meet setup and hold times tgg
and tp1 to insure recognition on any specific clock.

9.2.16 BUS SIZE CONTROL (BS16#, BS8 #)

The BS16# and BS8# inputs allow external 16- and
8-bit buses to be supported with a small number of
external components. The Intel486 processor sam-
ples these pins every clock. The value sampled in
the clock before ready determines the bus size.
When asserting BS16# or BS8# only 16 or 8 bits of
the data bus need be valid. If both BS16# and
BS8# are asserted, an 8-bit bus width is selected.

When BS16# or BS8+# are asserted, the Intel486
processor will convert a larger data request to the
appropriate number of smaller transfers. The byte
enables will also be modified appropriately for the
bus size selected.

BS16# and BS8# are active LOW and are provided
with small internal pull-up resistors. BS16# and
BS8# must satisfy the setup and hold times t14 and
t15 for proper chip operation.

9.2.17 ADDRESS BIT 20 MASK (A20M #)

Asserting the A20M# input causes the Intel486
processor to mask physical address bit 20 before
performing a lookup in the internal cache and before
driving a memory cycle to the outside world. When
A20M # is asserted, the Intel486 processor emu-
lates the 1-Mbyte address wraparound that occurs
on the 8086. A20M# is active LOW and must be
asserted only when the processor is in real mode.
The A20M# is not defined in Protected Mode.
A20M# is asynchronous but should meet setup and
hold times tyg and tp4 for recognition in any specific
clock. For correct operation of the chip, A20M#
should not be active at the falling edge of RESET.

A20M# exhibits a minimum 4 clock latency, from
time of assertion to masking of the A20 bit. A20M #
is ignored during cache invalidation cycles. 1/0
writes require A20M# to be asserted a minimum of
2 clocks prior to RDY being returned for the 1/0
write. This insures recognition of the address mask
before the Intel486 processor begins execution of
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the instruction following OUT. If A20M# is asserted
after the ADS# of a data cycle, the A20 address
signal is not masked during this cycle but is masked
in the next cycle. During a prefetch (cacheable or
not), if A20M # is asserted after the first ADS#, A20
is not masked for the duration of the prefetch; even
if BS16# or BS8# is asserted.

9.2.18 WRITE-BACK ENHANCED INTELDX2
PROCESSOR SIGNALS AND OTHER
ENHANCED BUS FEATURES

This section describes the pins that interface with
the system to support the Enhanced Bus mode
write-back features at system level.

9.2.18.1 Cacheability (CACHE #)

The CACHE # output indicates the internal cachea-
bility on read cycles and a burst write-back on write
cycles. CACHE # is asserted for cacheable reads,
cacheable code fetches and write-backs. It is driven
inactive for non-cacheable reads, special cycles, 1/0
cycles and write-through cycles. This is different
from the PCD (page cache disable) pin. The opera-
tional differences between CACHE# and PCD are
listed in Table 9-3. See Table 9-4 for operational
differences between CACHE# and other Intel486
processor signals.

Table 9-3. Differences between
CACHE # and PCD

Bus Operation CACHE # PCD
All reads (1) same as same as
PCD(3) PCD(3)

Replacement write-back low low

Snoop-forced write-back low low
S-state write-through high same as
PCD(3)
I-state write-through (2) high same as
PCD(3)

NOTES:

1. Includes line fills and non-cacheable reads. During
locked read cycles CACHE # is inactive. The non-cache-
able reads may or may not be burst.

2. Due to the non-allocate on write policy, this includes
both cacheable and non-cacheable writes. PCD will dis-
tinguish between the two, but CACHE # does not.

3. This behavior is the same as the existing specification of
the Intel486 processor in write-through mode.
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Table 9-4. Write-Back Enhanced IntelDX2™™
Processor CACHE # vs. Other intel486™

Processor Signals
Pin .
Symbol Relation To This Signal
ADS # CACHE # is driven to valid state with
ADS#
RDY #, CACHE # is de-asserted with the first
BRDY# | RDY# or BRDY #
HLDA, CACHE # floats under these signals.
BOFF # :
KEN # The combination of CACHE # and
KEN# determines if a read miss is
converted into a cache line fill.

9.2.18.2 Cache Flush (FLUSH #)

FLUSH# is an existing pin that operates diffgrently if
the processor is configured as Enhanced Bus mode
(write-back). In Enhanced Bus mode, it acts similar
to the WBINVD instruction. In Enhanced Bus mode,
FLUSH# is treated as an interrupt. It is sampled at
each clock, but is recognized only on instruction
boundary. Pending writes are completed before
FLUSH# is serviced, and all prefetching is stopped.

Depending on the number of modified lines in the

cache, the flush could take up to a minimum of 1280
bus Clocks or 2560 processor clocks and a maxi-
mum of 5000+ bus clocks to scan the cache, per-
form the write backs, invalidate the cache and run
two special cycles. After all modified lines are written
back to memory, two special bus cycles, “First Flush
ACK Cycle” and “Second Flush ACK Cycle,” are
issued, in that order. These cycles differ from the
special cycles issued after WBINVD only in that
A2=1 (address line 2 = 1). SRESET, STPCLK#,
INTR, NMI and SMI# are not recognized during a
flush write-back, while BOFF#, AHOLD and HOLD
are recognized.

FLUSH# may be asserted just for a single clock, or
may be retained asserted, but should be de-assert-
ed at or prior to the RDY # returned from the “First
Flush ACK” special bus cycle. If asserted during
INVD or WBINVD, FLUSH# will be recognized. If
asserted simultaneously with SMI#, then SMI# is
recognized after FLUSH# is serviced.

FLUSH# may be driven at any time. If driven during

SRESET, it must be held for one clock after
SRESET is de-asserted to be recognized.
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9.2.18.3 Hit/Miss to a Modified Line (HITM#)

HITM# is a cache coherency protocol pin that is
driven only in Enhanced Bus mode. When a snoop
cycle is run by the system (with INV = “0” or INV =
“1”), HITM# indicates if the processor contains the
snooped line in the M-state. Assertion of HITM# in-
dicates that the line will be written back in total, un-
less the processor is already in the process of doing
a replacement write-back of the same line.

HITM# will be valid on the bus two system clocks
after EADS# is asserted on the bus. If asserted,
HITM# remains asserted until the last RDY# or
BRDY # of the snoop write-back cycle is returned. It
will be de-asserted before the next following ADS #.
(See Table 9-5.)

Table 9-5. HITM # vs. Other Intel486™ Signals

Pin . .
Symbol Relation To This Signal
EADS # HITM# is asserted due to an EADS #-
driven snoop, provided the snooped
line is in the M-state in the cache.
HLDA, HITM# does not float under these
BOFF# | signals.
ADS #, The beginning of a snoop write-back
CACHE# | cycle is identified by the assertion of
ADS#, CACHE #, and HITM#.

9.2.18.4 Soft Reset (SRESET)

When in Enhanced Bus mode, SRESET has the fol-
lowing differences: SRESET, unlike RESET, does
not cause AHOLD, A20M#, FLUSH#, UP#, and
WB/WT# pins to be sampled (i.e., special test
modes and on-chip cache configuration can not be
accessed with SRESET.)

On SRESET, the internal SMRAM base register re-
tains its previous value and the processor does not
flush, write-back or disable the internal cache.
CRO0.CD and CRO.NW retain previous values, CR0.4
is set to ‘1, and the remaining bits are cleared. Be-
cause SRESET is treated as an interrupt, it is possi-
ble to have a bus cycle while SRESET is asserted. A
bus cycle could be due to an on-going instruction,
emptying the write buffers of the processor, or
snoop write-back cycles if there is a snoop hit to an
M-state line while SRESET is asserted.
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NOTE:

For both Standard Bus mode and Enhanced
Bus mode:

e SMI# must be blocked during SRESET. It must
also be blocked for a minimum of 2 clocks after
SRESET is de-asserted. :

e SRESET must be blocked during SMI#. It must
also be blocked for a minimum of 20 clocks after
SMIACT # i§ de-asserted.

9.2.18.5 Invalidation Request (INV)

INV is a cache coherency protocol pin that is used
only in Enhanced Bus mode. It is sampled by the
processor on EADS#-driven snoop cycles. It is
necessary to assert this pin to simulate the stan-
dard mode processor invalidate cycle on write-
through-only lines. INV also invalidates the write-
back lines. However, if the snooped line is in the M-
state, the line will be written back and then invalidat-
ed.

INV is sampled when EADS # is asserted. If INV is
not asserted with EADS #, the snoop cycle will have

no effect on a write-through-only line or a line allo-

cated as write-back, but not yet modified. If the line
is write-back and modified, it will be written back to
memory, but will not be de-allocated (invalidated)
from the internal cache. The address of the snooped
cache line is provided on the address bus. (See Ta-
ble 9-6.)

Table 9-6. INV vs. Other Intel486™ Signals

Pin . -
Symbol Relation To This Signal
EADS# | EADS# determines when INV is
sampled.
A31-A4 | The address of the snooped cache line
is provided on these pins.

9.2.18.6 Write-Back/Write-Through (WB/WT #)

WB/WT # enables Enhanced Bus mode (write-back
cache). It also allows the system to define a cached
line as write-through or write-back

WB/WT # is sampled at the falling edge of RESET
to determine if Enhanced Bus mode is enabled
(WB/WT # must be driven for two clocks before and
two clocks after RESET for recognition by the proc-
essor). If sampled low or floated, the Write-Back
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Enhanced IntelDX2 processor operates in the In-
tel486 processor standard mode. For write-through
only operation, i.e. standard mode, WB/WT# does
not need to be connected.

In Enhanced Bus mode, WB/WT# allows the sys-
tem-hardware to force any allocated line to be treat-
ed as write-through or write-back. As with cacheabil-
ity, both the processor and the external system must
agree that a line may be treated as write-back for
the internal cache to be allocated as write-back. The
default is always write-through. The processor’s in-
dication of write-back vs. write-through is from
the PWT pin, in which function and timing are the
same as in the standard mode Intel486 proces-
sor.

To define write-back or write-through configuration
of a line, WB/WT # is sampled in the same clock as
the first RDY# or BRDY # is returned during a line
fill (allocation) cycle. (See Table 9-7.)

Table 9-7. WB/WT # vs. Other Intel486™

Processor Signals
Pin "
Symbol Relation to This Signal
RDY #, WB/WT # is sampled with the first
BRDY# |RDY# or BRDY #

PWT The combination of WB/WT # and
PWT determine if the Write-Back
Enhanced IntelDX2™ processor will
treat the line as WB.

PCD, The state of WB/WT # does not matter
CACHE#, | if PCD, CACHE # or KEN # define the

KEN # line to be non-cacheable.

W/R# WB/WT # is significant only on read fill
cycles.

RESET WB/WT # is sampled on the falling

edge of RESET to define the cache
configuration.

9.2.18.7 Pseudo-Lock Output (PLOCK #)

In the Enhanced bus mode, PLOCK # is always driv-
en inactive. In this mode, a 64-bit data read (caused
by an FP operand access or a segment descriptor
read) is treated as a multiple cycle read request,
which may be a burst or a non-burst access based
on whether BRDY # or RDY # is returned by the sys-
tem. Because only write-back cycles (caused by
Snoop write-back or replacement write-back) are
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burstable, a 64-bit write will be driven out as two
non-burst bus cycles. BLAST# is asserted during
both writes. Refer to section 10.2, “Bus Functional
Description” for details on Pseudo-Locked bus cy-
cles. :

9.2.19 INTELDX4 PROCESSOR VOLTAGE
DETECT SENSE OUTPUT (VOLDET)

A voltage detect sense pin (VOLDET) has been add-
ed to the IntelDX4 processor PGA package. This pin
allows external system logic to distinguish between
a 5V Intel486 DX or IntelDX2 processor and the 3.3V
IntelDX4 processor. The pin passively indicates to
external logic whether the installed PGA processor
requires 5V (in the case of the Intel486 DX or In-
telDX2 processor) or 3.3V (in the case of the In-
telDX4 processor). Pin S4 has been defined as the
VOLDET pin because this pin is defined as an INC
pin on the Intel486 DX and IntelDX2 processor. This
pin is only provided in PGA package.

To utilize this feature, a weak, external pull-up resis-
tor should be connected to the VOLDET pin. This
pin samples high (logic 1) if the installed processor is
a 5V Intel486 DX or IntelDX2 processor. This pin
samples low (logic 0) if a IntelDX4 processor is in-
stalled. Upon sampling the logic level of this pin, ex-
ternal logic can then enable the proper Vg level to
the processor. In power sensitive applications, an
active element is preferred for the pull-up device be-
cause it could be disabled after sampling, thereby
eliminating the resulting DC current path when the
installed processor is the IntelDX4 processor.

Figure 9-4 shows a logical representation of the
Voltage Detect sense mechanism.

This pin can remain not connected for those system
designs that do not wish to utilize this voltage detect
feature.

9.2.20 BOUNDARY SCAN TEST SIGNALS

The folloWing boundary scan test signals are avail-
able on all Intel486 processors except the Intel486
SX processor in PGA packages.
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Figure 9-4. Voltage Detect (VOLDET) Sense Pin
Test Clock (TCK)

TCK is an input to the Intel486 processor and pro-
vides the clocking function required by the JTAG
boundary scan feature. TCK is used to clock state
information and data into and out of the component.
State select information and data are clocked into
the component on the rising edge of TCK on TMS
and TDI, respectively. Data is clocked out of the part
on the falling edge of TCK on TDO.

In addition to using TCK as a free running clock, it
may be stopped in a low, O, state, indefinitely as
described in IEEE 1149.1. While TCK is stopped in
the low state, the boundary scan latches retain their
state.

When boundary scan is not used, TCK should be
tied high or left as a NC. (This is important during
power up to avoid the possibility of glitches on the
TCK which could prematurely initiate boundary scan
operations.) TCK is supplied with an internal pull-up
resistor.

TCK is a clock signal and is used as a reference for
sampling other JTAG signals. On the rising edge of
TCK, TMS and TD! are sampled. On the falling edge
of TCK, TDO is driven.

Test Mode Select (TMS)

TMS is decoded by the JTAG TAP (Tap Access
Port) to select the operation of the test logic, as de-
scribed in section 11.5.4, “Test Access Port Control-
ler.”
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To guarantee deterministic behavior of the TAP con-
troller TMS is provided with an internal pull-up resis-
tor. If boundary scan is not used, TMS may be tied
high or left unconnected. TMS is sampled on the

rising edge of TCK. TMS is used to select the inter-
nal TAP states required to load boundary scan in-

structions to data on TDI. For proper initialization of -

the JTAG logic, TMS should be driven high, “1,” for
at least four TCK cycles following the rising edge of
RESET.

Test Data Input (TDI)

TDl is the serial input used to shift JTAG instructions
and data into the component. The shifting of instruc-
tions and data occurs during the SHIFT-IR and
SHIFT-DR TAP controller states, respectively.
These states are selected using the TMS signal as
described in section 11.5.4, “Test Access Port Con-
troller.”

An internal pull-up resistor is provided on TDI to en-
sure a known logic state if an open circuit occurs on
the TDI path. Note that when ““1” is continuously
shifted into the instruction register, the BYPASS in-
struction is selected. TDI is sampled on the rising
edge of TCK, during the SHIFT-IR and the
SHIFT-DR states. During all other TAP controller
states, TDI is a “don’t care.” TDI is only sampled
when TMS and TCK have been used to select the
SHIFT-IR or SHIFT-DR states in the TAP controller.
For proper initialization of JTAG logic, TDI should be
driven high, “1,” for at least four TCK cycles follow-
ing the rising edge of RESET.

Test Data Output (TDO)

TDO is the serial output used to shift JTAG instruc-
tions and data out of the component. The shifting of
instructions and data occurs during the SHIFT-IR
and SHIFT-DR TAP controller states, respectively.
These states are selected using the TMS signal as
described in section 11.5.4, “Test Access Port Con-
troller”. When not in SHIFT-IR or SHIFT-DR state,
TDO is driven to a high impedance state to allow
connecting TDO of different devices in parallel. TDO
is driven on the falling edge of TCK during the
SHIFT-IR and SHIFT-DR TAP controller states. At
all other times TDO is driven to the high impedance
state. TDO is only driven when TMS and TCK have
been used to select the SHIFT-IR or SHIFT-DR
states in the TAP controller.
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9.3 Interrupt and Non-Maskable
Interrupt Interface

The Intel486 processor provides four asynchronous
interrupt inputs: INTR (interrupt request), NMI (non-
maskable interrupt input), SMi# (system manage-
ment interrupt) and STPCLK# (stop clock interrupt).
This section describes the hardware interface be-
tween the instruction execution unit and the pins.
For a description of the algorithmic response to in-
terrupts refer to section 4.7.6, “Interrupts”. For inter-
rupt timings refer to section 10.2.10, “Interrupt Ac-
knowledge”.

9.3.1 INTERRUPT LOGIC

The Intel486 processor contains a two-clock syn-
chronizer on the interrupt line. An interrupt request
will reach the internal instruction execution unit two
clocks after the INTR pin is asserted, if proper setup
is provided to the first stage of the synchronizer.

There is no special logic in the interrupt path other
than the synchronizer. The INTR signal is level sen-
sitive and must remain active for the instruction exe-
cution unit to recognize it. The interrupt will not be
serviced by the Intel486 processor if the INTR signal
does not remain active.

The instruction execution unit will look at the state of
the synchronized interrupt signal at specific clocks
during the execution of instructions (if interrupts are
enabled). These specific clocks are at instruction
boundaries, or iteration boundaries in the case of
string move instructions. Interrupts will only be ac-
cepted at these boundaries.

An interrupt must be presented to the Intel486 proc-
essor INTR pin three clocks before the end of an
instruction for the interrupt to be acknowledged. Pre-
senting the interrupt 3 clocks before the end of an
instruction allows the interrupt to pass through the
two clock synchronizer leaving one clock to prevent
the initiation of the next sequential instruction and to
begin interrupt service. If the interrupt is not received
in time to prevent the next instruction, it will be ac-
cepted at the end of next instruction, assuming INTR
is still held active.

The longest latency between when an interrupt re-
quest is presented on the INTR pin and when the
interrupt service begins is: longest instruction used
+ the two clocks for synchronization + one clock
required to vector into the interrupt service micro-
code.
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9.3.2 NMI LOGIC

The NMiI pin has a synchronizer like that used on the
INTR line. Other than the synchronizer, the NMI log-
ic is different from that of the maskable interrupt.

NMI is edge triggered as opposed to the level trig-
gered INTR signal. The rising edge of the NMI signal
is used to generate the interrupt request. The NMI
input need not remain active until the interrupt is ac-
tually serviced. The NMI pin only needs to remain
active for a single clock if the required setup and
hold times are met. NMI will operate properly if it is
held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four
clocks after it is asserted to reset the edge triggered
logic. A subsequent NMI may not be generated if the
NMI is not held inactive for at least four clocks after
being asserted.

The NMI input is internally masked whenever the
NMI routine is entered. The NMI input will remain
masked until an IRET (return from interrupt) instruc-
tion is executed. Masking the NMI signal prevents
‘recursive NMI calls. If another NMI occurs while the
NMI is masked off, the pending NMI will be executed
after the current NMI is done. Only one NMI can be
pending while NMI is masked.

9.3.3 SMi# LOGIC

SMi# is edge triggered like NMI, but the interrupt
request is generated on the falling-edge. SMI# is an
asynchronous signal, but setup and hold times, tyg
and to1, must be met in order to guarantee recogni-
tion on a specific clock. The SMi# input need not
remain active until the interrupt is actually serviced.
The SMIi# input only needs to remain active for a
single clock if the required setup and hold times are
met. SMI# will also work correctly if it is held active
for an arbitrary number of clocks.

The SMI# input must be held inactive for at least
four clocks after it is asserted to reset the edge trig-
gered logic. A subsequent SMI# might not be recog-
nized if the SMI# input is not held inactive for at
least four clocks after-being asserted.

SMI#, like NMI, is not affected by the IF bit in the

EFLAGS register and is recognized on an instruction
boundary. An SMI# will not break locked bus cycles.
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The SMI# has a higher priority than NM! and is not
masked during an NMI.

After the SMI# interrupt is recognized, the SMI#
signal will be masked internally until the RSM
instruction is executed and the interrupt service rou-
tine is complete. Masking the SMI# prevents recur-
sive SMI# calls. The SM|# input must be de-assert-
ed for at least 4 clocks to reset the edge triggered
logic. If another SMI# occurs while the SMI# is
masked, the pending SMI# will be recognized and
executed on the next instruction boundary after the
current SMI# completes. This instruction boundary
occurs before execution of the next instruction in the
interrupted application code, resulting in back to
back SMM handlers. Only one SMi# can be pend-
ing while SMI# is masked. i

The SMi# signal is synchronized internally and
should be asserted at least three (3) CLK periods
prior to asserting the RDY # signal in order to guar-
antee recognition on a specific instruction boundary.
This is important for servicing an I/0 trap with an
SMI# handler.

9.3.4 STPCLK# LOGIC

STPCLK# is level triggered and active LOW.
STPCLK# is an asynchronous signal, but must re-
main active until the processor issues the Stop
Grant bus cycle. STPCLK# may be de-asserted at
any time after the processor has issued the Stop
Grant bus cycle. When the processor enters the
Stop Grant state, the internal pull-up resistor of
STPCLK#, CLKMUL (for IntelDX4 processor), and
UP# are disabled so that the processor power con-
sumption is reduced. The STPCLK# input must be
driven high (not floated) in order to exit the Stop
Grant state. STPCLK # must be de-asserted for a
minimum of 5 clocks after RDY# or BRDY # is
returned active for the Stop Grant Bus Cycle be-
fore being asserted again.

When the processor recognizes a STPCLK# inter-
rupt, the processor will stop execution on the next
instruction boundary (unless superseded by a higher
priority interrupt), stop the pre-fetch unit, empty all
internal pipelines and the write buffers, generate a
Stop Grant bus cycle, and then stop the internal
clock. At this point the processor is in the Stop Grant
state.
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The processor cannot respond to a STPCLK# re-
quest from an HLDA state because it cannot empty

the write buffers and, therefore, cannot generate a
Stop Grant cycle.

The rising edge of STPCLK# will tell the processor
that it can return to program execution at the instruc-
tion following the interrupted instruction.

Unlike the normal interrupts, INTR and NMI, the
STPCLK# interrupt does not initiate acknowledge
cycles or interrupt table reads. Among external inter-
rupts, the STPCLK# order of priority is shown in
section 4.7.6.

9.4 Write Buffers

The Intel486 processor contains four write buffers to
enhance the performance of consecutive writes to
memory. The buffers can be filled at a rate of one
write per clock until all four buffers are filled.

When all four buffers are empty and the bus is idle, a
write request will propagate directly to the external
bus bypassing the write buffers. If the bus is not
available at the time the write is generated internally,
the write will be placed in the write buffers and prop-
agate to the bus as soon as the bus becomes avail-
able. The write is stored in the on-chip cache imme-
diately if the write is a cache hit.

Writes will be driven onto the external bus in the
same order in which they are received by the write
buffers. Under certain conditions a memory read will
go onto the external bus before the memory writes
pending in the buffer even though the writes oc-
curred earlier in the program execution.

A memory read will only be reordered in front of all
writes in the buffers under the following conditions: If
all writes pending in the buffers are cache hits and
the read is a cache miss. Under these conditions the
Intel486 processor will not read from an external
memory location that needs to be updated by one of
the pending writes.

Reordering of a read with the writes pending in the
buffers can only occur once before all the buffers
are emptied. Reordering read once only maintains
cache consistency. Consider the following example:
The processor writes to location X. Location X is in
the internal cache, so it is updated there immediate-
ly. However, the bus is busy so the write out to main
memory is buffered (see Figure 9-5). At this point,
any reads to location X would be cache hits and
most up-to-date data would be read.

Intel486™ PROCESSOR FAMILY

Intel486™ Write Main
Processor Cache Buffer Memory
w
x| New x | New X |New Data X
Data X Data X Y |[NewDataY
z
242202-76

Figure 9-5. Reordering of a Reads
with Write Buffers

The next instruction causes a read to location Y.
Location Y is not in the cache (a cache miss). Be-
cause the write in the write buffer is a cache hit, the
read is reordered. When location Y is read, it is put
into the cache. The possibility exists that location Y
will replace location X in the cache. If this is true,
location X would no longer be cached (see Figure
9-6).

Intel486™ Write Main
Processor Cache Buffer Memory
w
X v | x| New X1 oatax
Data Data X Y a
b4
242202-77

Figure 9-6. Reordering of a Reads
with Write Buffers

Cache consistency has been maintained up to this
point. If a subsequent read is to location X (now a
cache miss) and it was reordered in front of the buff-
ered write to location X, stale data would be read.
This is why only 1 read is allowed to be reordered.
Once a read is reordered, all the writes in the write
buffer are flagged as cache misses to ensure that no
more reads are reordered. Because one of the con-
ditions to reorder a read is that all writes in the write
buffer must be cache hits, no more reordering is al-
lowed until all of those flagged writes propagate to
the bus. Similarly, if an invalidation cycle is run all
entries in the write buffer are flagged as cache miss-
es.
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For multiple processor systems and/or systems us-
ing DMA techniques, such as bus snooping, locked
semaphores should be used to maintain cache con-
sistency.

9.4.1 WRITE BUFFERS AND 1/0 CYCLES

Input/Output (I/0) cycles must be handled in a dif-
ferent manner by the write buffers.

1/0 reads are never reordered in front of buffered
memory writes. This insures that the Intel486 proc-
essor will update all memory locations before read-
ing status from an 1/0 device.

The Intel486 processor never buffers single 1/0
writes. When processing an OUT instruction, internal
execution stops until the I/O write actually com-
pletes on the external bus. This allows time for the
external system to drive an invalidate into the In-

tel486 processor or to mask interrupts before the .

processor progresses to the -instruction following
OUT. REP OUTS instructions will be buffered.

A read cycle must be explicitly generated to a non-
cacheable location in memory to guarantee that a
read bus cycle is performed. This read will not be
allowed to proceed to the bus until after the 1/0
write has completed because 1/0O writes are not
buffered. The 1/0 device will have time to recover to
accept another write during the read cycle.

9.4.2 WRITE BUFFERS IMPLICATIONS ON
LOCKED BUS CYCLES

Locked bus cycles are used for read-modify-write
accesses to memory. During a read-modify-write ac-
cess, a memory base variable is read, modified and
then written back to the same memory location. It is
important that no other bus cycles, generated by
other bus masters or by the Intel486 processor itself,
be allowed on the exiernal bus between the read
and write portion of the locked sequence.

During a locked read cycle, the Intel486 processor
will always access external memory, it will never
look for the location in the on-chip cache, but for
‘write cycles, data is written in the internal cache (if
cache hit) and in the external memory. All data
pending in the Intel486 processor’s write buffers will
be written to memory before a locked cycle is al-
lowed to proceed to the external bus.

The Intel486 processor will assert the LOCK# pin

after the write buffers are emptied during a locked
bus cycle. With the LOCK# pin asserted, the
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processor will read the data, operate on the data
and place the results in a write buffer. The contents

~ of the write buffer will then be written to external

memory. LOCK# will become inactive after the write
part of the locked cycle.

9.5 Reset and Initialization

The Intel486 processor has a built in self test (BIST)
that can be run during reset. BIST is invoked if the
AHOLD pin is asserted for 1 clock before and 1
clock after RESET is de-asserted. RESET must be
active for 15 clocks with or without BIST being en-
abled. To ensure proper results, neither FLUSH#
nor SRESET can be asserted while BIST is execut-
ing. Refer to section 11.0, “Processor Testability,”
for information on Intel486 processor testability.

The Intel486 processor registers have the values
shown in Table 9-8 after RESET is performed. The
EAX register contains information on the success or
failure of the BIST if the self test is executed. The
DX register always contains a component identifier
at the conclusion of RESET. The upper byte of DX
(DH) will contain 04 and the lower byte (DL) will con-
tain the revision identifier. (See Table 9-9.)

RESET forces the Intel486 processor to terminate
all execution and local bus activity. No instruction or
bus activity will occur as long as RESET is active.

All entries in the cache are invalidated by RESET.

9.5.1 FLOATING POINT REGISTER VALUES

In addition to the register values listed above, in-
tel486 DX, intelDX2, and IntelDX4 processors have
the floating point register values shown in Table
9-10.

The floating point registers are initialized as if the
FINIT/FNINIT (initialize processor) instruction was
executed if the BIST was performed. If the BIST is
not executed, the floating point registers are un-
changed.

The Intel486 processor will start executing instruc-
tions at location FFFFFFFOH after RESET. When
the first Inter Segment Jump or Call is executed, ad-
dress lines A20-A31 will drop LOW for CS-relative
memory cycles, and the Intel486 processor will only
execute instructions in the lower one Mbyte of physi-
cal memory. This allows the system designer to use
a ROM at the top of physical memory to initialize the
system and take care of RESETs.
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Table 9-8. Register Values after Reset

Intel486™ PROCESSOR FAMILY

Table 9-10. Floating Point Values after Reset

Table 9-9. Intel486™ Processor Revision ID

Product COm%):?nt ID ngv(ils)ilgn
Intel486 SX Processor 04 2x
IntelSX2™ Processor 04 5x
Intel486™ DX 04 Ox
Processor 1x
IntelDX2™™ Processor 04 3x
Write-Back Enhanced 04 7x
IntelDX2 Processor
IntelDX4™ Processor 04 8x

Initial Value Initial Value Initial Value Initial Value
Register (BIST) (No BIST) Register (BIST) (No BIST)
EAX Zero (Pass) Undefined cw 037Fh Unchanged
ECX Undefined Undefined SW 0000h Unchanged
EDX 0400 + 0400 + T™W FFFFh Unchanged
Revision ID Revision ID FIP 00000000h Unchanged
EBX Undefined Undefined FEA 00000000h Unchanged
ESP Undefined Undefined FCs 0000h Unchanged
EBP Undefined Undefined FDS 0000h Unchanged
ESI Undefined Undefined FOP 000h Unchanged
EDI Undefined Undefined FSTACK | Undefined Unchanged
EFLAGS 00000002h 00000002h
EIP OFFFoh OFFFOh 9.5.2 PIN STATE DURING RESET
ES 0ooon 0000h The Intel486 processor recognizes and can respond
cs FOOOh* FOOOh* to HOLD, AHOLD, and BOFF # requests regardless
ss 0000h 0000h of the state of RESET. Thus, even though the proc-
essor is in reset, it can still float its bus in response
DS 0000h 0000h to any of these requests.
FS 0000h 0000h While in reset, the Intel486 processor bus is in the
GS 0000h 0000h state shown in Figure 9-7 if the HOLD, AHOLD and
— BOFF # requests are inactive. The figure shows the
IDTR Base = 0, Base = 0, bus state for the Intel486 processor. Note that the
Limit = 3FFh Limit = 3FFh address (A31-A2, BE3#-BEO#) and cycle defini-
tion (M/IO#, D/C#, W/R#) pins are undefined
CRO 60000010h 60000010h from the time reset is asserted up to the start of the
DR7 00000000h 00000000h first bus cycle. All undefined pins (except FERR#)

assume known values at the beginning of the first
bus cycle. The first bus cycle is always a code fetch
to address FFFFFFFOH.
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BEO-BE3#, PWT, PCD

CLK
~217 CLK f no self-test —y

~2% CLK H seif-test ~———p

RESET

AHOLD

FLUSH#
(Syng

w7 O
ADSH V74

sREQ ‘ AN\

A31-Ad, MIO¥, BLAST UNDEFINED /// §

A3, A2, PLOCK UNDEFINED A\ \
DICH, WIRH

PCHK# [ Z/ /

LOCK#

D31-00. YY)

D31-DO,

HLDA (5)

SMIACT# 74/
WBWT# [// @ A\\Y

1. RESET is an asynchronous input. t,, must be met only to guarantee recognition on a specific clock edge.

2a. When A20M# is driven synchronously, it must be driven high (inactive) for the CLK edge prior to the falling edge of
RESET to ensure proper operation. A20M# setup and hold times must be met.

2b. When A20M# is driven asynchronously, it should be driven low (active) for two CLKs prior to and two CLKs after the
falling edge of RESET to ensure proper operation.

3a. When FLUSH# is driven synchronously, it must be driven low (high) for the CLK edge prior to the falling edge of
RESET to invoke the 3-state Output Test Mode. All outputs are guaranteed 3-stated within 10 CLKs of RESETR being
deasserted. FLUSH# setup and hold times must be met.

3b. When FLUSH# is driven asynchronously, it must be driven low (active) for two CLKs period prior to and two CLKs
after the falling edge of RESET to invoke the 3-state Output Test Mode. All outputs are guaranteed 3-stated within 10
CLKs of RESET being deasserted.

4. AHOLD should be driven high (active) for the CLK edge prior to the falling edge of RESET to invoke the Built-In-Self-
Test (BIST). AHOLD setup and hold times must be met.

5. Hold is recognized normaily during RESET. On power-up HLDA is indeterminate until RESET is recognized by the
processor.

6. 15 CLKs RESET pulse width for warm resets. Power-up resets require RESET to be asserted for at least 1 ms after
Vec and CLK are stable.

7. WB/WT# should be driven high for at least one CLK before falling edge of RESET and at least one CLK after falling
@dge of RESET to enable the Enhanced Bus Mode. The Standard Bus Mode will be enabled if WB/WT# is sampled
low or left floating at the falling edge of RESET.

8. The system may sample HITM# to detect the presence of the Enhanced Bus Mode. If HITM# is HIGH for one CLK

after reset is inactive, the Enhanced Bus Mode is present.

242202-78
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Figure 9-7. Pin States during RESET
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9.5.2.1 Controlling the CLK Signal in the
Processor during Power On

The power on requirements of the Intel486 proces-
sor with regards to allowable CLK input during the
power on sequence have never been specified.
Clocking the processor before Vcc has reached its
normal operating level can cause unpredictable re-
sults on Intel486 processors. While Intel will main-
tain original clock and power specifications (none),
this section reflects what Intel considers to be a
good clock design.

Intel strongly recommends that system designers
ensure that a clock signal is not presented to the
Intel486 processor until Vcc has stabilized at its nor-
mal operating level. This design recommendation
can easily be met by gating the clock signal with a
POWERGOOD signal. The POWERGOOD signal
should reflect the status of Vcc at the Intel486 proc-
essor (which may be different from the power supply
status in designs that provide power to the proces-
sor through the use of a voltage regulator or con-
verter).

Most clock synthesizers and some clock oscillators
contain on-board gating logic. If external gating logic
is implemented, it should be done on the original
clock signal output from the clock oscillator/synthe-
sizer. Gating the clock to the processor indepen-
dently of the clock to the rest of the motherboard will
cause clock skew, which may violate processor or
chipset timing requirements. If the clock signal to the
motherboard is enabled with a POWERGOOD sig-
nal, it is also important to verify that the motherboard
logic does not require a clock input prior to this
POWERGOOD signal. Some chipsets also gate the
clock to the processor only after a POWERGOOD
signal, which inherently meets the requirements of
this design note. Designs should implement this de-
sign note, so as to maintain maximum flexibility with
all Intel486 processor steppings.

9.5.2.2 FERR# Pin State During Reset for
Intel486 DX, IntelDX2, and IntelDX4
Processors

FERR # reflects the state of the ES (error summary
status) bit in the floating point unit status word. The
ES bit is initialized whenever the floating point unit
state is initialized. The floating point unit's status
word register can be initialized by BIST or by execut-
ing FINIT/FNINIT instruction. Thus, after reset and

Intel486™ PROCESSOR FAMILY

before executing the first FINIT or FNINIT instruc-
tion, the values of the FERR# and the numeric
status word register bits 0-7 depends on whether or
not BIST is performed. Table 9-11 shows the state
of FERR# signal after reset and before the execu-
tion of the FINIT/FNINIT instruction.

Table 9-11. FERR # Pin State after Reset and
before FP Instructions

BIST . FPU Status Word
Performed | TCNR* PiN | pogister Bits 0-7
YES Inactive (High) Inactive (Low)
NO Undefined Undefined
(Low or High) (Low or High)

After the first FINIT or FNINIT instruction, FERR #
pin and the FPU status word register bits (07) will be
inactive irrespective of the Built-In Self-Test (BIST).

9.5.2.3 Power Down Mode (Upgrade Processor
Support)

The Power Down Mode on the Intel486 processor,
when initiated by the upgrade processor, reduces
the power consumption of the Intel486 processor
(see Table 17-3 DC Specifications), as well as
forces all of its output signals to be tri-stated. The
UP# pin on the Intel486 processor is used for en-
abling the Power Down Mode.

Once the UP# pin is driven active by the upgrade
processor upon power-up, the Intel486 processor’s
bus is floated immediately. The Intel486 processor
enters the Power Down Mode when the UP# pin is
sampled asserted in the clock before the falling
edge of RESET. The UP# pin has no effect on the
power down status, except during this edge. The
Intel486 processor then remains in the Power Down
Mode until the next time the RESET signal is activat-
ed. For warm resets, with the upgrade processor in
the system, the Intel486 processor will remain tri-
stated and re-enter the Power Down Mode once
RESET is de-asserted. Similarly for power-up resets,
if the upgrade processor is not taken out of the sys-
tem, the Intel486 processor will tri-state its outputs
upon sensing the UP # pin active and enter the Pow-
er Down Mode after the falling edge of RESET.
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9.6 Clock Control

The Intel486 processor provides an interrupt mecha-
nism (STPCLK#) that allows system hardware to
control the power consumption of the processor by
stopping the internal clock (output of the PLL) to the
processor core in a controlled manner. This low-
power state is called the Stop Grant state. In addi-
tion, the STPCLK# interrupt allows the system to
change the input frequency within the specified
range or completely stop the CLK input frequency
(input to the PLL). If the CLK input is completely
stopped, the processor enters into the Stop Clock
statethe lowest power state.

There are two targets for the low-power mode sup-
ply current:

e ~20-100 mA in the Stop Grant state (fast
wake-up, frequency-and voltage-dependent), and

e ~100-1000 pA in the full Stop Clock state
(slow wake-up, voltage-dependent).

See section 9.6.4.2 and 9.6.4.3, for a detailed de-
scription of the Stop Grant and Stop Clock states.

9.6.1 STOP GRANT BUS CYCLE

A special Stop Grant bus cycle will be driven to the
bus after the processor recognizes the STPCLK#
interrupt. The definition of this bus cycle is the same
as the HALT cycle definition for the standard
Intel486 processor, with the exception that the Stop
Grant bus cycle drives the value 0000 0010H on the
address pins. The system hardware must acknowl-
edge this cycle by returning RDY # or BRDY #. The
processor will not enter the Stop Grant state un-
til either RDY # or BRDY # has been returned.

The Stop Grant bus cycle is defined as follows:

M/I0O# = 0,D/C# = 0, W/R# = 1, Address Bus
= 0000 0010H (A4 = 1), BE3#-BEO# = 1011,
Data bus = undefined

The latency between a STPCLK# request and the
Stop Grant bus cycle is dependent on the current
instruction, the amount of data in the processor write
buffers,-and the system memory performance. (See
Figure 9-8.)
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9.6.2 PIN STATE DURING STOP GRANT

During the Stop Grant state, most output and input/
output signals of the processor will maintain their
previous condition (the level they held when entering
the Stop Grant state). The data and data parity sig-
nals will be tri-stated. In response to HOLD being
driven active during the Stop Grant state (when the
CLK input is running), the processor will generate
HLDA and tri-state all output and input/output sig-
nals that are tri-stated during the HOLD/HLDA state.
After HOLD is de-asserted all signals will return to
their prior state before the HOLD/HLDA sequence.

In order to achieve the lowest possible power con-
sumption during the Stop Grant state, the system
designer must ensure the input signals with pull-up
resistors are not driven LOW and the input signals
with pull-down resistors are not driven HIGH. (See
Table 3-11 in the Quick Pin Reference section for
signals with internal pull-up and pull-down resistors.)

All inputs, except the data bus pins must be driven to
the power supply rails to ensure the lowest possible
current consumption during Stop Grant or Stop
Clock modes. For compatibility with future proces- °
sors, data pins should be driven low to achieve the
lowest possible power consumption. Pull-down re-
sistors/bus keepers are needed to minimize leakage
current. .

If HOLD is asserted during the Stop Grant state, all
pins that are normally floated during HLDA will still
be floated by the processor. The floated pins should
be driven to a low level. (See Table 9-12.)

9.6.3 WRITE-BACK ENHANCED INTELDX2 PIN
STATE DURING STOP GRANT SPECIFICS

During the Stop Grant state, most output signals of
the processor will maintain their previous condition,
which is the level they held when entering the Stop
Grant state. The data bus and data parity signals
also maintain their previous state. In response to
HOLD being driven active during the Stop Grant
state when the CLK input is running, the Write-Back
Enhanced IntelDX2 processor will generate HLDA
and tri-state all output and input/output signals that
are tri-stated during the HOLD/HLDA state. After
HOLD is de-asserted all signals will return to the
state they were in prior to the HOLD/HLDA se-
quence.
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Figure 9-8. Stop Clock Protocol

Table 9-12. Pin State during Stop

Grant Bus State
Signal Type State

A3-A2 o Previous state
A31-A4 1/0 Previous state
D31-DO 170 Floated
BE3#-BEO# o} Previous state
DP3-DPO ~1/0 | Floated
W/R#,D/C#, M/I0O# (o] Previous state
ADS # (0] Inactive
LOCK#, PLOCK # (0] Inactive
BREQ o Previous state
HLDA (0] As per HOLD
BLAST # o Previous state
FERR# o Previous state
PCD, PWT o Previous state
PCHK # o} Previous state
PWT, PCD (0] Previous state
SMIACT # o} Previous state

All inputs should be driven to the power supply rails
to ensure the lowest possible current consumption
during the Stop Grant or Stop Clock states. (See
Table 9-13.)

The Write-Back Enhanced IntelDX2 processor has
bus keepers features. The data bus and data parity
pins have bus keepers that maintain the previous
state while in the Stop Grant state. External resistors
are no longer required, which prevents excess cur-
rent during the Stop Grant state. (If external resistors
are present, they should be strong enough to “flip”
the bus hold circuitry and eliminate potential DC
paths. Alternately, “weak” resistors may also be
added to prevent excessive current flow.) See sec-
tion 17.3.3, “External Resistors Recommended to
Minimize Leakage Currents,” for external register
values.

In order to obtain the lowest possible power con-
sumption during the Stop Grant state, system
designers must ensure that the input signals with
pull-up resistors are not driven LOW, and the input
signals with pull-down resistors are not driven HIGH.
(See the Table 3-11 for signals with internal pull-up
and pull-down resisters).
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Table 9-13. Write-Back Enhanced IntelDX2™ Pin
State during Stop Grant Bus Cycle

Signal Type State
A3-A2 o} Previous state
A31-A4 . I1/0 | Previous state
D31-DO 1/0 | Previous state
BE3#-BEO# (0] Previous state
DP3-DPO 1/0 | Previous state
W/R#,D/C#,M/I0# (o] Previous state
ADS # (@] Inactive (high)
LOCK #, PLOCK # (o} Inactive (high)
BREQ o Previous state
HLDA (0] As per HOLD
BLAST # o} Previous state
FERR # (0] Previous state
PCHK # o Previous state
PWT, PCD o} Previous state
CACHE # o Inactive(1) (high)
HITM# (0] Inactive(1) (high)
SMIACT # (0] Previous state
NOTES:

1. For the case of snoop cycles (via EADS#) during Stop
Grant state, both HITM# and CACHE# may go active
depending on the snoop hit in the internal cache.

During Stop Grant state, AHOLD, HOLD, BOFF# and
EADS# are serviced normally.

9.6.4 CLOCK CONTROL STATE DIAGRAM

The following state descriptions and diagram show
the state transitions during a Stop Clock cycle for
the Intel486 processor. (Refer to Figure 9-9 for a
Stop Clock state diagram.) Refer to section 9.6.5 for
Write-Back Enhanced IntelDX2 processor Clock
State specifics.

9.6.4.1 Normal State

This is the normal operating state of the processor.
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The Stop Grant state provides a fast wake-up state
that can be entered by simply asserting the external
STPCLK# interrupt pin. Once the Stop Grant bus
cycle has been placed on the bus, and either RDY #
or BRDY # is returned, the processor is in this state
(depending on the CLK input frequency). The proc-

9.6.4.2 Stop Grant State

‘essor returns to the normal execution state 10-20

clock periods after STPCLK# has been de-assert-
ed.

While in the Stop Grant state, the pull-up resistors
on STPCLK#, CLKMUL (for the IntelDX4 processor)
and UP# are disabled internally. The system must
continue to drive these inputs to the state they were
in immediately before the processor entered the
Stop Grant state. For minimum processor power
consumption, all other input pins should be driven to
their inactive level while the processor is in the Stop
Grant state.

A RESET or SRESET will bring the processor from
the Stop Grant state to the Normal state. The proc-
essor will recognize the inputs required for cache
invalidation’s (HOLD, AHOLD, BOFF # and EADS #)
as explained later in this section. The processor will
not recognize any other inputs while in the Stop
Grant state. Input signals to the processor will not be
recognized until 1 CLK after STPCLK # is de-assert-
ed (see Figure 9-10).

While in the Stop Grant state, the processor will not
recognize transitions on the interrupt signals (SMi#,
NMI, and INTR). Driving an active edge on either
SMI# or NMI will not guarantee recognition and
service of the interrupt request following exit from
the Stop Grant state. However, if one of the interrupt
signals (SMI#, NMI, or INTR) is driven active while
the processor is in the Stop Grant state, and held
active for at least one CLK after STPCLK # is de-as-
serted, the corresponding interrupt will be serviced.
The Intel486 processor requires INTR to be held ac-
tive until the processor issues an interrupt acknowl-
edge cycle in order to guarantee recognition. (See
Figure 9-10).

When the processor is in the Stop Grant state, the
system is allowed to stop or change the CLK input.
When the CLK input to the processor is stopped (or
changed), the Intel486 processor requires the CLK
input to be held at a constant frequency for a mini-
mum of 1 ms before de-asserting STPCLK#. This
1-ms time period is necessary so that the PLL can
stabilize, and it must be met before the processor
will return to the Stop Grant state.
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5 Stop Clock Snoop State

HALT asserted and
4 Auto HALT HALT Bus cycle 1 Normal State
Power Down State generated
————————— Normal Execution
CLK Running .
20mA - 100mA INTR, NMI, SMI#,
A " RESET, SRESET A
STPCLK# asserted and
STPCLK# de-asserted and Stop Grant Bus cycle
EADS# HALT Bus cycle generated generated
STPCLK# asserted and
Stop Grant Bus cycle generated
4 Y A 4

EADS#

2 Stop Grant State

One Clock Powerup

Clock Running

Perform Cache Invalidation

(input to PLL)

* The system can change the input frequency within the specified range or completely stop the CLK input frequency

\ 4

Icc - 20mA - 100mA

Start CLK

Stop CLK + PLL Startup Latency

3 Stop Clock State

Internal Powerdown

CLK Changed *
Icc - 100uA - 100uA

242202-80

Figure 9-9. Intel486™ Processor Family Stop Clock State Machine

The processor will generate a Stop Grant bus cycle
only when entering that state from the Normal or the
Auto HALT Power Down state. When the processor
enters the Stop Grant state from the Stop Clock
state or the Stop Clock Snoop state, the processor
will not generate a Stop Grant bus cycle.

9.6.4.3 Stop Clock State
Stop Clock state is entered from the Stop Grant

state by stopping the CLK input (either logic high or
logic low). None of the processor input signals

should change state while the CLK input is stopped.
Any transition on an input signal (with the exception
of INTR, NMI and SMI#) before the processor has
returned to the Stop Grant state will result in unpre-
dictable behavior. If INTR is driven active while the
CLK input is stopped, and held active until the proc-
essor issues an interrupt acknowledge bus cycle, it
will be serviced in the normal manner. The system
design must ensure the processor is in the correct
state prior to asserting cache invalidation or interrupt
signals to the processor.
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Figure 9-10. Recognition of Inputs when Exiting Stop Grant State

The processor will return to the Stop Grant state
after the CLK input has been running at a constant
frequency for a period of time equal to the PLL start-
up latency (see section 9.6.4.2). The CLK input can
be restarted to any frequency between the minimum
and maximum frequency listed in the AC timing
specifications.

9.6.4.4 Auto HALT Power Down State

The execution of a HALT instruction will also cause
the processor to automatically enter the Auto HALT
Power Down state. The processor will issue a nor-
mal HALT bus cycle before entering this state. The
processor will transition to the Normal state on the
occurrence of INTR, NMI, SMI#, RESET, or
SRESET.

The system can generate a STPCLK# while the
processor is in the Auto HALT Power Down state.
The processor will generate a Stop Grant bus cycle
when it enters the Stop Grant state from the HALT
state.

When the system de-asserts the STPCLK# inter-
rupt, the processor will return execution to the HALT
state. The processor will generate a new HALT bus
~ cycle when it re-enters the HALT state from the Stop
Grant state.
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9.6.4.5 Stop Clock Snoop State (Cache
Invalidations)

When the processor is in the Stop Grant state or the
Auto HALT Power Down state, the processor will
recognize HOLD, AHOLD, BOFF# and EADS# for
cache invalidation. When the system asserts HOLD,
AHOLD, or BOFF #, the processor will float the bus
accordingly. When the system then asserts EADS #,
the processor will transparently enter the Stop
Clock Snoop state and will power up for 1 full core
clock in order to perform the required cache snoop
cycle. It will then re-freeze the clock to the proces-
sor core and return to the previous state. The proc-
essor does not generate a bus cycle when it returns
to the previous state.

A FLUSH# event during the Stop Grant state or the
Auto HALT Power Down state will be latched and
acted upon by asserting the internal FLUSH # signal
for one clock upon re-entering the Normal state.
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9.6.4.6 Auto Idle Power Down State

When the chip is known to be truly idle and waiting
for a RDY # or BRDY # from a memory or |/O bus
cycle read, the Intel486 processor will reduce its
core clock rate to be equal to the external CLK fre-
quency without affecting performance. When any
RDY # or BRDY # is asserted, the part will return to
clocking the core at the specified multiplier of the
external CLK frequency. This functionality is trans-
parent to software and external hardware.

9.6.5 WRITE-BACK ENHANCED INTELDX2
PROCESSOR CLOCK CONTROL STATE
DIAGRAM

Figure 9-11 (state diagram) shows the state tran-
sitions during Stop Clock for the Write-Back En-
hanced InteiDX2 processor. '

Intel486™ PROCESSOR FAMILY

NOTE:
The Stop Clock State Machine in the Stan-
dard bus configuration is identical to that of
other Intel486 processors. (See section
9.6.4, "Clock Control State Diagram”.)

Normal StateThis is the normal operating state of
the processor. When the processor is executing pro-
gram/instruction and the STPCLK# pin is not as-
serted, the processor is said to be in it's normal
state.

——p| 4 Auto HALT Hait | 1 Normal State RESET
Power Down State
CLK Running Normal Execution
Halt Bus Cycle Generated INTR, NM, SMI#, All Clocks Running
lcc approximately 100uA RESET, SRESET
STPCLK#
EADS# STPCLK# de-asserted asserted STPCLK# asserted
and Stop Grant Bus
cycle generated
STPCLK# asserted
> v
5 Stop Clock Snoop State | eapse 2 Stop Grant State
Clock Powerup R Clock Running
Write Through: Cache Invalidation v Icc approximately 20 - 50mA
Write back: Write, Invalidation
Start CLK
Stop CLK + PLL Startup Latency
FLUSH#
6 Auto HALT Power 3 Stop Clock State
Down Flush State Internal Powerdown
F';;i:” Write through: Cache Invalidation C"Le':"smp';::'
Write back: Writeback, Invalidation .
N ' I 1 A
2 flush Ack. cycles cc approximately 100u
242202-82
Figure 9-11. Write-Back Enhanced IntelDX2™ Processor Stop Clock State
Machine (Enhanced Bus Configuration)
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9.6.5.2 Stop Grant State

For minimum processor power consumption, all oth-
er input pins should be driven to their inactive level
while the processor is in the Stop Grant state ex-
cepting data bus, data parity, WB/WT# and INV
pins. WB/WT # should be driven low and INV shoul
be driven high. :

In both the Standard mode and Enhanced mode
states, the following conditions exist:

e A RESET, SRESET or de-assertion of STPCLK #
will bring the processor from the Stop Grant state
to the Normal state.

e While in the Stop Grant state, the processor will
not recognize transitions on the interrupt signals
(SMI#, NMI, and INTR). This means SMI#, NM|,
INTR are not Stop Break events. The external
logic should de-assert STPCLK# before issuing
interrupts or if an interrupt is asserted it should be
kept asserted for at least 1 clock after STPCLK #
is removed. (Note that the Write-Back Enhanced
IntelDX2 processor requires that INTR must be
held active until the processor issues an interrupt
acknowledge cycle in order to guarantee recogni-
tion).

e FLUSH# is not a Stop Break event. But if
FLUSH# is asserted during the Stop Grant state,
it is latched by the Write-Back Enhanced
IntelDX2 processor and serviced later when
STPCLK# is deasserted.

e The processor will latch and respond to the in-
puts BOFF #, EADS#, AHOLD, and HOLD. The
processor will not recognize any other inputs
while in the Stop Grant state except FLUSH#.
Other input signals to the processor will not be
recognized until the CLK following the CLK in
which STPCLK# is de-asserted. (See Figure 9-
11)

e The processor will generate a Stop Grant bus cy-
cle only when entering that state from the Normal
‘or the Auto HALT Power Down state. The Stop
Grant bus cycle is not generated when the proc-
essor enters the Stop Grant state from the Stop

. Clock state or the Stop Clock Snoop state.

e The processor will not enter the Stop Grant state
until all the pending writes are completed, all
pending interrupts are serviced and the proces-
sor is idle.
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Stop Clock StateStop Clock state is the lowest pow-
er consumption mode in the processor, because it
allows removal of the external clock. It also has the
longest latency for returning to normal state. The
Stop Clock state is entered from the Stop Grant
state by stopping the CLK input. In the Stop Clock
state, total processor power consumption drops to
100 uA, which is approximately 200-250 times low-
er than the Stop Grant state. None of the processor
input signals should change state while the CLK in-
put is stopped. Any transition on an input signal be-
fore the processor has returned to the Stop Grant
state will result in unpredictable behavior. If INTR is
driven active, it must be held active until the proces-
sor issues an interrupt acknowledge cycle.

9.6.5.3 Stop Clock State

In the Stop Clock state, the processor is dormant. It
does not respond to any transitions on any of the
input pins including snoops, flushes and interrupts. It
is recommended that this mode only be entered if
the processor cache is coherent with main memory
and the processor is not processing any interrupts. If
this mode is entered with a dirty cache, no alternate
master cycles can be allowed while the processor is
in the Stop Clock state.

The processor will return to the Stop Grant state
after the CLK input has been running at a constant
frequency for a period of time equal to the PLL start-
up latency. The CLK input can be restarted to any
frequency between the minimum and maximum fre-
quency listed in the AC timing specifications.

In Enhanced Bus Mode

If the processor is taken into the Stop Clock state
with a dirty cache, alternate bus master cycles are
not allowed while the processor remains in the Stop
Clock state. In order to take the processor into the
Stop Clock state with a clean cache, the cache must
be flushed. During the time the cache is being
flushed, the system must block interrupts to the
processor. With all interrupts other than STPCLK#
blocked, the processor does not write into the cache
during the time from the completion of the flush and
time it enters the Stop Grant state. This is necessary
for the cache to be coherent. To ensure this, the
system should drive KEN# inactive from the time
the flush starts until the Stop Grant cycle is issued.
The system can then put the processor in the Stop
Clock state by stopping the CLOCK.
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If the processor is already in the Stop Grant state
and entering the Stop Clock state is desired, the sys-
tem must de-assert STPCLK# before flushing the
cache in order to ensure the cache coherency. The
5-clock de-assertion specification for STPCLK#
must also be met before the above sequence can
occur.

9.6.5.4 Auto HALT Power Down State

Upon execution of a HALT instruction, the processor
will automatically enter a low power state, called the
Auto HALT Power Down state. The processor will
issue a normal HALT bus cycle when entering this
state. Because interrupts are HALT break events,
the processor will transition to the Normal state on
the occurrence of INTR, NMI, SMi# or RESET
(SRESET is also a HALT break event). If there is a
FLUSH# while the processor is in this state, the
FLUSH # will be serviced by transitioning to the Stop
Clock Flush state. After the FLUSH# is completed,
the processor returns back to the Auto HALT Power
Down state.

The system can generate a STPCLK# while the
processor is in the Auto HALT Power Down state.
The processor will then generate a Stop Grant bus
cycle and enter the Stop Grant state from the Auto
HALT Power Down state. When the system de-as-
serts the STPCLK# interrupt, the processor will re-
turn to the Auto HALT Power Down state. The proc-
essor will not generate a new HALT bus cycle when
it re-enters the Auto HALT Power Down state from
the Stop Grant state.

9.6.6 STOP CLOCK SNOOP STATE (CACHE
INVALIDATIONS)

When the processor is in the Stop Grant state or the
Auto HALT Power Down state, the processor will

Intel486™ PROCESSOR FAMILY

recognize HOLD, AHOLD, BOFF #, and EADS# for
cache invalidation. When the system asserts HOLD,
AHOLD, or BOFF #, the processor will float the bus
accordingly. When the system asserts EADS#, the
processor will transparently enter the Stop Clock
Snoop state and will power up in order to perform
the required cache snoop cycle and write-back cy-
cles. It will then refreeze the CLK to the processor
core and return to the previous state (i.e., either the
Stop Grant state or the Auto HALT Power Down
state). The processor does not generate a bus cycle
when it returns to the previous state.

9.6.6.1 Auto HALT Power Down Flush State
(Cache Flush) for the Write-Back
Enhanced IntelDX2

If the processor is in either Standard or Enhanced
mode and a FLUSH# event occurs during Auto
HALT Power Down state, the processor will tran-
sition to the Auto HALT Power Down Flush state. If
the on-chip cache is configured as a write-back
cache, the CLK to the processor core is turned on
until all the dirty lines are written back, the cache is
invalidated, and the two flush acknowledge cycles
are completed. If the on-chip cache is configured as
a write-through cache, the CLK to the processor
core is turned on until the cache is invalidated. The
processor then refreezes the CLK and returns to the
previous state (i.e., the Auto HALT Power Down
state). Auto HALT Power Down Flush state is en-
tered only from the Auto HALT Power Down state
and not from the Stop Grant state.

i

9.6.7 SUPPLY CURRENT MODEL FOR STOP
CLOCK MODES AND TRANSITIONS

Figures 9-12 and 9-13 illustrate the effect of different

Stop Clock state transitions on the supply current of
the Intel486 processor.
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Figure 9-12. Supply Current Model for Stop Clock Modes and Transitions for the Intel486™ Processor
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Figure 9-13. Supply Current Model for Stop Clock Modes and Transitions for the IntelDX4™ Processor
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10.0 BUS OPERATION

All Inteld86 processors operate in Standard Bus
(write-through) mode. However, when the internal
cache of the Write-Back Enhanced IntelDX2™ proc-
essor is configured in write-back mode, the proces-
sor bus operates in the Enhanced Bus mode, which
is described in section 10.3. When the internal
cache of the Write-Back Enhanced IntelDX2
processor is configured in write-through mode,
the processor bus operates in Standard Bus
mode, identical to the other Intel486 processors
in Standard Bus mode.

10.1 Data Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
doubleword lengths may be transferred without re-
strictions on physical address alignment. Data may
be accessed at any byte boundary but two or three
cycles may be required for unaligned data transfers.
(See section 10.1.2, “Dynamic Data Bus Sizing,”
and section 10.1.5, “Operand Alignment.”)

The Intel486 processor address signals are split into
two components. High-order address bits are provid-
ed by the address lines, A2-A31. The byte enables,
BEO# -BE3#, form the low-order address and pro-
vide linear selects for the four bytes of the 32-bit
address bus.

The byte enable outputs are asserted when their as-
sociated data bus bytes are involved with the pres-

ent bus cycle, as listed in Table 10-1. Byte enable’

Intel486™ PROCESSOR FAMILY

separating two or three asserted byte enables will
never occur (see Table 10-5). All other byte enable
patterns are possible.

Table 10-1. Byte Enables and Associated Data

and Operand Bytes

Byte
Enable Associated Data Bus Signals
Signal

BEO# D0-D7 (byte 0-least significant)
BE1# | D8-D15 (byte 1)

BE2# | D16-D23 (byte 2)

BE3# D24-D31  (byte 3—most significant)

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary. Use
of the byte enables to create A0 and A1 is shown in
Table 10-2. The byte enables can also be decoded
to generate BLE# (byte low enable) and BHE #
(byte high enable). These signals are needed to ad-
dress 16-bit memory systems. (See section 10.1.3,
“Interfacing with 8-, 16-, and 32-Bit Memories.”)

10.1.1 MEMORY AND 1I/0 SPACES

Bus cycles may access physical memory space or |/
O space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
Physical memory addresses range from 00000000H
to FFFFFFFFH (4 gigabytes). |/0 addresses range
from 00000000H to 0000FFFFH (64 Kbytes) for pro-
grammed |/0. (See Figure 10-1.)

patterns that have a negated byte enable
Table 10-2. Generating AO-A31 from BEO# -BE3# and A2-A31
Intel486™ Processor Address Signals
A31 A2 BE3# BE2# BE1# BEO#
Physical Base Address

A31 A2 Al A0

A31 A2 0 0 X X X Low

A31 A2 0 1 X X Low High

A31 A2 1 0 X Low High High

A31 A2 1 1 Low High High High
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Figure 10-1. Physical Memory and I/0 Spaces

10.1.1.1 Memory and I/0 Space Organization

The Intel486 processor datapath to memory and in-
put/output (1/0) spaces can be 32-, 16- or 8-bits
wide. The byte enable signals, BEO# -BE3 #, allow

byte granularity when addressing any memory or I/0

structure whether 8, 16 or 32 bits wide.

The Intel486 processor includes bus control pins,
BS16# and BS8#, which allow direct connection to
16- and 8-bit memories and I/0 devices. Cycles to
32-, 16- and 8-bit may occur in any sequence, since
the BS8# and BS16+# signals are sampled during
each bus cycle.

32-bit wide memory and |I/O spaces are organized
as arrays of physical 4-byte words. Each memory or
1/0 4-byte word has four individually addressable
bytes at consecutive byte addresses (see Figure 10-
2). The lowest addressed byte is associated with
data signals DO-D7; the highest-addressed byte
with D24-D31. Physical 4-byte words begin at ad-
dresses divisible by four.
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32-Bit Wide Organization
FFFFFFFFH FFFFFFFCH
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00000001H 00000000H

BHEN# BLE#
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Figure 10-2. Physical Memory and
170 Space Organization

16-bit memories are organized as arrays of physical
2-byte words. Physical 2-byte words begin at ad-
dresses divisible by two. The byte enables BEO# —
BE3 #, must be decoded to A1, BLE# and BHE # to
address 16-bit memories. (See section 10.1.3, “In-
terfacing with 8-, 16- and 32-Bit Memories.”)

To address 8-bit memories, the two low order ad-
dress bits AO and A1, must be decoded from BEO # ~
BE3#. The same logic can be used for 8- and 16-bit
memories, because the decoding logic for BLE#
and AO are the same. (See section 10.1.3, “Interfac-
ing with 8-, 16-, and 32-Bit Memories.”)

10.1.2 DYNAMIC DATA BUS SIZING

Dynamic data bus sizing is a feature allowing proc-
essor connection to 32-, 16- or 8-bit buses for mem-
ory or 1/0. The Intel486 processor may connect to
all three bus sizes. Transfers to or from 32-, 16- or 8-
bit devices are supported by dynamically determin-
ing the bus width during each bus cycle. Address
decoding circuitry may assert BS16# for 16-bit de-.
vices, or BS8# for 8-bit devices during each bus
cycle. BS8+# and BS16+# must be negated when ad-
dressing 32-bit devices. An 8-bit bus width is select-
ed if both BS16# and BS8# are asserted.
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BS16# and BS8# force the Intel486 processor to
run additional bus cycles to complete requests larg-
er than 16- or 8 bits. A 32-bit transfer will be convert-
ed into two 16-bit transfers (or 3 transfers if the data
is misaligned) when BS16# is asserted. Asserting
BS8# will convert a 32-bit transfer into four 8-bit
transfers.

Extra cycles forced by BS16# or BS8# should be
viewed as independent bus cycles. BS16# or BS8 #
must be driven active during each of the extra cycles
unless the addressed device has the ability to
change the number of bytes it can return between
cycles.

The Intel486 processor will drive the byte enables
appropriately during extra cycles forced by BS8#
and BS16+#. A2-A31 will not change if accesses are
to a 32-bit aligned area. Table 10-3 shows the set of
byte enables that will be generated on the next cycle
for each of the valid possibilities of the byte enables
on the current cycle.

Intel486™ PROCESSOR FAMILY

The dynamic bus sizing feature of the Intel486 proc-
essor is significantly different than that of the In-
tel386 processor. Unlike the Intel386 processor, the
Intel486 processor requires that data bytes be driv-
en on the addressed data pins. The simplest exam-
ple of this function is a 32-bit aligned, BS16# read.
When the Intel486 processor reads the two high or-
der bytes, they must be driven on the data bus pins
D16-D31. The Intel486 processor expects the two
low order bytes on D0O-D15. The Intel386 processor
expects both the high and low order bytes on DO-
D15. The Intel386 processor always reads or writes
data on the lower 16 bits of the data bus when
BS16+# is asserted.

The external system must contain buffers to enable
the Intel486 processor to read and write data on the
appropriate data bus pins. Table 10-4 shows the
data bus lines to which the Intel486 processor ex-
pects data to be returned for each valid combination
of byte enables and bus sizing options.

Table 10-3. Next Byte Enable Values for BSn# Cycles

Current Next with BS8 # Next with BS16 #
BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO#
1 1 1 0 n n n n n n n n
1 1 0 0 1 1 0 1 n n n n
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 n n n n n n n n
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 n n n n n n n n
0 0 1 1 0 1 1 1 n n n n
0 1 1 1 n n n n n n n n
NOTE:

“n” means that another bus cycle will not be required to satisfy the request.

Table 10-4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BEO # w/o BS8#/BS16# w BS8# w BS16#
1 1 1 0 D7-Do D7-DO D7-Do0
1 1 0 0 D15-D0 D7-D0 D15-D0
1 0 0 0 D23-D0 D7-D0 D15-D0
0 0 0 0 D31-DO D7-Do0 D15-DO
1 1 0 1 D15-D8 D15-D8 D15-D8
1 0 0 1 D23-D8 D15-D8 D15-D8
0 0 0 1 D31-D8 D15-D8 D15-D8
1 0 1 1 D23-D16 D23-D16 D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 D31-D24 D31-D24
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Valid data will only be driven onto data bus pins cor-

responding to active byte enables during write cy- .

cles. Other pins in the data bus will be driven but
they will not contain valid data. Unlike the Intel386
processor, the Intel486 processor will not duplicate
write data onto parts of the data bus for which the
corresponding byte enable is negated.

10.1.3 INTERFACING WITH 8-, 16- AND 32-BIT
MEMORIES

In 32-bit physical memories, such as the one shown
in Figure 10-3, each 4-byte word begins at a byte
address that is a multiple of four. A2-A31 are used
as a 4-byte word select. BEO # -BE3 # select individ-
ual bytes within the 4-byte word. BS8# and BS16#
~ are negated for all bus cycles involving the 32-bit
array.

16- and 8-bit memories require external byte swap-
ping logic for routing data to the appropriate data
lines and logic for generating BHE#, BLE# and Af.
In systems where mixed memory widths are used,
extra address decoding logic is necessary to assert
BS16# or BS8#.

intal.

32 ) Data Bus (D0-D31)

»
P

Inte48e™ 4 32-Bit

Processor Memory

Address Bus
(BEO#-BE3#, A2-A31
Tass# Tssw#
"HIGH" *HIGH*
242202-87

Figure 10-3. Intel486™ Processor
with 32-Bit Memory

Figure 10-4 shows the Intel486 processor address
bus interface to 32-, 16- and 8-bit memories. To ad-
dress 16-bit memories the byte enables must be de-
coded to produce A1, BHE# and BLE# (AO0). For 8-
bit wide memories the byte enables must be decod-
ed to produce A0 and A1. The same byte select
logic can be used in 16- and 8-bit systems, because
BLE # is exactly the same as A0. (See Table 10-5.)

BEO#-BE3# can be decoded as shown in Table
10-5 to generate A1, BHE# and BLE#. The byte
select logic necessary to generate BHE # and BLE #
is shown in Figure 10-5.

3 Address Bus (A31-A2 BEO#-BE3#)
g\::cl?ses; o ( ) 32-Bit Memory
BS8# BS16#
Address A31-A2
BHE#, BLE#, A1 16-Bit Memory
BEO#-BE3# Byte
Select Logic
A0 (BLE#), A1
A31-A2 8-Bit Memory
242202-88

Figure 10-4. Addressing 16- and 8-Bit Memories
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Table 10-5. Generating A1, BHE # and BLE # for Addressing 16-Bit Devices

Intel486™ Processor 8-, 16-Bit Bus Signals Comments
BE3# BE2# BE1# BEO # A1 BHE # BLE # (A0)
H* H* H* H* X X X x—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* X X X x-not contiguous bytes
L* H* L* H* X X X x-not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L H H H L L
L* L* H* L* X X X x-not contiguous bytes
L L L H L L H
L L L L L L L
BLE # asserted when DO-D7 of 16-bit bus is active.
BHE # asserted when D8-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.
Key:
x = don’t care H = high voltage level L = low voltage level
* = anon-occurring pattern of Byte Enables; either none are asserted or the pattern has Byte Enables
asserted for non-contiguous bytes

Combinations of BEO# -BE3# that never occur are

BEO# Al those in which two or three asserted byte enables
BE1# DO—DO——— are separated by one or more negated byte enables.
These combinations are “don’t care” conditions in

242202-M1 the decoder. A decoder can use the non-occurring
BE1# BEO# ~-BE3# combinations to its best advantage.
BHE#
BE3# DO_DO_ Figure 10-6 shows an Intel486 processor data bus
242202-M2 interface to 16- and 8-bit wide memories. External
byte swapping logic is needed on the data lines so
BEO# that data is supplied to and received from the In-

tel486 processor on the correct data pins (see Table

BLE# (OR AO) 10-4)

242202-89

Figure 10-5. Logic to Generate A1, BHE #
and BLE # for 16-Bit Buses
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o DO-D7 . 4 a
™ D8-D15_~_ 4 ) .
ot et s
| ¢—D24-D31 4 > emory
BS8#
BS16# Byte
(A2-A31, BEO#-BE3#) sxtap 16 16-Bit
Logic Memory
Y
\ 4
Address Byte 2 8 8-Bit
Swap
Decode Logic Memory
242202-90

Figure 10-6. Data Bus Interface to 16- and 8-Bit Memories

10.1.4 DYNAMIC BUS SIZING DURING CACHE
LINE FILLS

BS8# and BS16# can be driven during cache line
fills. The Intel486 processor will generate enough 8-
or 16-bit cycles to fill the cache line. This can be up
to sixteen 8-bit cycles.

The external system should assume that all byte en-
ables are active for the first cycle of a cache line fill.
The Intel486 processor will generate proper byte en-
ables for subsequent cycles in the line fill. Table 10-
6 shows the appropriate AO (BLE#), A1 and BHE #
for the various combinations of the Intel486 proces-
sor byte enables on both the first and subsequent
cycles of the cache line fill. The “*”’ marks all combi-
nations of byte enables that will be generated by the
Intel486 processor during a cache line fill.

10.1.5 OPERAND ALIGNMENT

Physical 4-byte words begin at addresses that are
multiples of four. It is possible to transfer a logical
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operand that spans more than one physical 4-byte
word of memory or 1/0 at the expense of extra cy-
cles. Examples are 4-byte operands beginning at ad-
dresses that are not evenly divisible by 4, or 2-byte
words split between two physical 4-byte words.
These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 10-7 de-
scribes the transfer cycles generated for all combi-
nations of logical operand lengths, alignment, and
data bus sizing. When multiple cycles are required to
transfer a multibyte logical operand, the highest-or-
der bytes are transferred first. For example, when
the processor does a 4-byte unaligned read begin-
ning at location x11 in the 4-byte aligned space, the
three high order bytes are read in the first bus cycle.
The low byte is read in a subsequent bus cycle.
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Table 10-6. Generating A0, A1 and BHE # from the Intel486™ Processor Byte Enables

First Cache Fill Cycle Any Other Cycle
BE3# BE2# BE1# BEO# A0 A1 BHE # AO A1 BHE #
1 1 1 0 0 0 0 0 0 1
1 1 0 0 0 0 - 0 0 0 0
1 0 0 0 0 0 0 0 0 0
*0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0
*0 0 0 1 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 1
*0 0 1 1 0 0 0 0 1 0
*0 1 1 1 0- 0 0 1 1 0

Table 10-7. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand
1 2 4
Physical Byte Address in XX 00 01 10 11 00 01 10 11
Memory (Low Order Bits)
Transfer Cycles over 32-Bit b w w w hb d hb hw h3
Bus b 13 w Ib
Transfer Cycles over 16-Bit b w b T w hb w T hb hw mw
Bus hbt Ib hw Ibt Iw hbt
(T = BS# 16 asserted) mwt Ib
Transfer Cycies over 8-Bit b Ib ¥ b % b i hb b hb mhb § | mib %
Bus hb i hbi hb % Ib mib Ib hbi | mhbi
(f = BS8# Asserted) mhbi | mbi | Ibf hb
hbi [ mhbi | mibi kb
KEY:
b = byte transfer h = high-order portion |
w = 2-byte transfer | = low-order portion 4-Byte Operand r o T mib T mhb l hb 1
3 = 3-byte transfer m = mid-order portion T T
d = 4-byte transfer byte with byte with
lowest address highest

The function of unaligned transfers with dynamic
bus sizing is not obvious. When the external systems
asserts BS16# or BS8# forcing extra cycles, low-
order bytes or words are transferred first (opposite
to the example above). When the Intel486 processor
requests a 4-byte read and the external system as-
serts BS16+#, the lower 2 bytes are read first fol-
lowed by the upper 2 bytes.

In the unaligned transfer described above, the proc-
essor requested three bytes on the first cycle. If the
external system asserted BS16# during this 3-byte
transfer, the lower word is transferred first

address

followed by the upper byte. In the final cycle the low-
er byte of the 4-byte operand is transferred as in the
32-bit example above.

10.2 Bus Functional Description

The Intel486 processor supports a wide variety of
bus transfers to meet the needs of high performance
systems. Bus transfers can be single cycle or multi-
ple cycle, burst or non-burst, cacheable or non-
cacheable, 8-, 16- or 32-bit, and pseudo-locked. To
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support multiprocessing systems there are cache in-
validation cycles and locked cycles.

This section begins with basic non-cacheable non-
burst single cycle transfers. It moves on to multiple
cycle transfers and introduces the burst mode.
Cacheability is introduced in section 10.2.3, “Cache-
able Cycles.” The remaining sections describe
locked, pseudo-locked, invalidate, bus hold and in-
terrupt cycles.

Bus cycles and data cycles are discussed in this
section. A bus cycle.is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the Intel486 processor during a data cycle. A bus
cycle contains one or more data cycles.

Refer to section 10.2.13, “Bus States,” for a de-
scription of the bus states shown in the timing dia-
grams.

intel.

10.2.1 NON-CACHEABLE NON-BURST SINGLE
CYCLE

10.2.1.1 No Wait States

The fastest non-burst bus cycle that the Intel486
processor supports is two clocks long. These cycles
are called 2-2 cycles because reads and writes take
two cycles each. The first “2” refers to reads and
the second to writes.

For example, if a wait state needs to be added to the
write, the cycle would be called 2-3.

Basic two clock read and write cycles are shown in
Figure 10-7. The Intel486 processor initiates a cycle
by asserting the address status signal (ADS#) at the
rising edge of the first clock. The ADS# output indi-
cates that a valid bus cycle definition and address is
available on the cycle definition lines and address
bus.

T, T, T2, T, T, T2, T, T2
] 1 ] ) ] ] 1

CLK | ! | ! : ! | ! :

1 ! ! , | : ! ! |
I - ' - ' '

ADs# V0 N O 0 N WO 0 O W 0
A2-A31 ' X ' ! X ! ;
o . . , N :
DiC# LA X N S O
BEO-3# i ' 1 ] ' ] X
' ' 1 :
! 1 1
X ,
] ]

I
"
I
i
1
i
1
i
I

! | ! ' I |
ROY#  KXCOOOCOCCOUCRORORRAOUON, | /RKOCOUREOOIOON, | /KRR | /ROy | /X
1 ! ) [ 1
[N N

' , ' |
BLAST# X\ ! C\ /
[ § ' ! ' }
1 [l ' [l [}
DATA : :r {+) : { %+ ) : () : { %% y—
1 1 [} ' 1 i i .
PCHK# : r : ; : :
| ' | ! \

L

i
|
1
1 [
'

WRITE

g

READ WRITE

242202-91
* To Processor
** From Processor

Figure 10-7. Basic 2-2 Bus Cycle
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The non-burst ready input (RDY #) is returned by the
external system in the second clock. RDY# indi-
cates that the external system has presented valid
data on the data pins in response to a read or the
external system has accepted data in response to a
write.

The Intel486 processor samples RDY # at the end
of the second clock. The cycle is complete if RDY #
is active (LOW) when sampled. Note that RDY # is
ignored at the end of the first clock of the bus cycle.

The burst last signal (BLAST #) is asserted (LOW)
by the Intel486 processor during the second clock of
the first cycle in all bus transfers illustrated in Figure
10-7. This indicates that each transfer is complete
after a single cycle. The Intel486 processor asserts
BLAST # in the last cycle of a bus transfer.

Intel486™ PROCESSOR FAMILY

The timing of the parity check output (PCHK#) is
shown in Figure 10-7. The Intel486 processor drives
the PCHK# output one clock after ready terminates
a read cycle. PCHK# indicates the parity status for
the data sampled at the end of the previous clock.
The PCHK# signal can be used by the external sys-
tem. The Intel486 processor does nothing in re-
sponse to the PCHK # output.

10.2.1.2 Inserting Wait States

The external system can insert wait states into the
basic 2-2 cycle by driving RDY # inactive at the end
of the second clock. RDY # must be driven inactive
to insert a wait state. Figure 10-8 illustrates a simple
non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to
an Intel486 processor bus cycle by maintaining
RDY # inactive.

CLK Y |

ADS#

A2-A31

—
~
—
~N
-4

[

M/IO#
D/C#

>

BEO-3#

X j
' 1
WIR# \ : :

-

rova YOOI AT M A

| 1 1
- ] ) ]
BLAST# . ] : \ A \ ! | /
: 1 ] 1 ' 1 1
1 : X /—"\ : '
DATA ' * 1 kd
! \ : -/ \
! ' READ ! ! ' WRITE ! !
242202-92
* To Processor
** From Processor
Figure 10-8. Basic 3-3 Bus Cycle
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The burst ready input (BRDY #) must be driven inac-
tive on all clock edges where RDY # is driven inac-
tive for proper operation of these simple non-burst
cycles.

10.2.2 MULTIPLE AND BURST CYCLE BUS
TRANSFERS

Multiple cycle bus transfers can be caused by inter-
nal requests from the Intel486 processor or by the
external memory system. An internal request for a
128-bit pre-fetch must take more than one cycle. In-
ternal requests for unaligned data may also require
multiple bus cycles. A cache line fill requires multiple
cycles to complete.

The external system can cause a multiple cycle
transfer when it can only supply 8- or 16-bits per
cycle.

Only multiple cycle transfers caused by internal re-
quests are considered in this section. Cacheable cy-
cles and 8- and 16-bit transfers are covered in sec-
tion 10.2.3, “Cacheable Cycles” and section 10.2.5,
“8- and 16-Bit Cycles.”

Internal Requests from Intel4d86 DX, IntelDX2,
and IntelDX4 Processors

An internal request by an Intel486 DX, IntelDX2, or
IntelDX4 processor for a 64-bit floating point load
must take more than one internal cycle.

10.2.2.1 Burst Cycles

The Intel486 processor can accept burst cycles for
any bus requests that require more than a single
data cycle. During burst cycles, a new data item is
strobed into the Intel486 processor every clock rath-
er than every other clock as in non-burst cycles. The
fastest burst cycle requires 2 clocks for the first data
item with subsequent data items returned every
clock.

The Intel486 processor is capable of bursting a max-
imum of 32 bits during a write. Burst writes can only
occur if BS8# or BS16# is asserted. For example,
the Intel486 processor can burst write four 8-bit op-
erands or two 16-bit operands in a single burst cycle.
But the Intel486 processor cannot burst multiple 32-
bit writes in a single burst cycle.

Burst cycles begin with the Intel486 processor driv-

ing out an address and asserting ADS # in the same
manner as non-burst cycles. The Intel486 processor
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indicates that it is willing to perform a burst cycle by
holding the burst last signal (BLAST#) inactive in
the second clock of the cycle. The external system

indicates its willingness to do a burst cycle by return-
ing the burst ready signal (BRDY #) active.

The addresses of the data items in a burst cycle will
all fall within the same 16-byte aligned area (corre-
sponding to an internal Intel486 processor cache
line). A 16-byte aligned area begins at location
XXXXXXX0 and ends at location XXXXXXXF. During
a burst cycle, only BEO-3#, Ay, and Az may
change. A4-Agzq, M/I0#, D/C#, and W/R# will re-
main stable throughout a burst. Given the first ad-
dress in a burst, external hardware can easily calcu-
late the address of subsequent transfers in advance.
An external memory system can be designed to
quickly fill the Intel486 processor internal cache
lines.

Burst cycles are not limited to cache line fills. Any
multiple cycle read request by the Intel486 proces-
sor can be converted into a burst cycle. The Intel486
processor will only burst the number of bytes need-
ed to complete a transfer.

For example, the Intel486 DX, IntelDX2, Write-Back
Enhanced IntelDX2 or IntelDX4 processor will burst
eight bytes for a 64-bit floating point non-cacheable
read.

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # (non-burst ready) in the first cycle
of a transfer. For cycles that cannot be burst, such
as interrupt acknowledge and halt, BRDY # has the
same effect as RDY#. BRDY # is ignored if both
BRDY # and RDY # are returned in the same clock.
Memory areas and peripheral devices that cannot

. perform bursting must terminate cycles with RDY #.

10.2.2.2 Terminating Multiple and Burst Cycle
Transfers

The Intel486 processor drives BLAST # inactive for
all but the last cycle in a multiple cycle transfer.
BLAST # is driven inactive in the first cycle to inform
the external system that the transfer could take ad-
ditional cycles. BLAST # is driven active in the last
cycle of the transfer indicating that the next time
BRDY # or RDY # is returned the transfer is com-
plete.

BLAST # is not valid in the first clock of a bus cycle.
It should be sampled only in the second and subse-
quent clocks when RDY # or BRDY # is returned.
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The number of cycles in a transfer is a function of
several factors including the number of bytes the
Intel486 processor needs to complete an internal re-
quest (1, 2, 4, 8, or 16), the state of the bus size
inputs (BS8# and BS16#), the state of the cache
enable input (KEN#) and alignment of the data to
be transferred.

When the Intel486 processor initiates a request it
knows how many bytes will be transferred and if the
data is aligned. The external system must indicate
whether the data is cacheable (if the transfer is a
read) and the width of the bus by returning the state

of the KEN#, BS8# and BS16# inputs one clock -

before RDY # or BRDY # is returned. The Intel486
processor determines how many cycles a transfer
will take based on its internal information and inputs
from the external system.

BLAST # is not valid in the first clock of a bus cycle
because the Intel486 processor cannot determine
the number of cycles a transfer will take until the
external system returns KEN#, BS8+# and BS16#.
BLAST # should only be sampled in the second and
subsequent clocks of a cycle when the external sys-
tem returns RDY # or BRDY #.

The system may terminate a burst cycle by returning
RDY # instead of BRDY #. BLAST # will remain de-
asserted until the last transfer. However, any trans-
fers required to complete a cache line fill will follow
the burst order, e.g., if burst order was 4, 0, C, 8 and
RDY # was returned at after 0, the next transfers will
be from C and 8.

10.2.2.3 Non-Cacheable, Non-Burst, Multiple
Cycle Transfers

Figure 10-9 illustrates a 2 cycle non-burst, non-
cacheable multiple cycle read. This transfer is simply

Iintel486™ PROCESSOR FAMILY

a sequence of two single cycle transfers. The
Intel486 processor indicates to the external system
that this is a multiple cycle transfer by driving
BLAST # inactive during the second clock of the first
cycle. The external system returns RDY # active in-
dicating that it will not burst the data. The external
system also indicates that the data is not cacheable
by returning KEN# inactive one clock before it re-
turns RDY # active. When the Intel486 processor
samples RDY # active it ignores BRDY #.

Each cycle in the transfer begins when ADS# is
driven active and the cycle is complete when the
external system returns RDY # active.

The Intel486 processor indicates the last cycle of
the transfer by driving BLAST# active. The next
RDY # returned by the external system terminates
the transfer.

10.2.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # in the first cycle of the transfer.
This is illustrated in Figure 10-10.

There are several features to note in the burst read.
ADS# is only driven active during the first cycle of
the transfer. RDY# must be driven inactive when
BRDY # is returned active.

BLAST # behaves exactly as it does in the non-burst
read. BLAST # is driven inactive in the second clock
of the first cycle of the transfer indicating more cy-
cles to follow. In the last cycle, BLAST# is driven
active telling the external memory system to end the
burst after returning the next BRDY #.
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Figure 10-9. Non-Cacheable, Non-Burst, Multible-Cycle Transfers
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Figure 10-10. Non-Cacheable Burst Cycle
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10.2.3 CACHEABLE CYCLES

Any memory read can become a cache fill operation.
The external memory system can allow a read re-
quest to fill a cache line by returning KEN# active
one clock before RDY # or BRDY # during the first
cycle of the transfer on the external bus. Once
KEN# is asserted and the remaining three require-
ments described below are met, the Intel486 proc-
essor will fetch an entire cache line regardless of the
state of KEN#. KEN# must be returned active in
the last cycle of the transfer for the data to be writ-
ten into the internal cache. The Intel486 processor
will only convert memory reads or prefetches into a
cache fill.

KEN# is ignored during write or I/0 cycles. Memory
writes will only be stored in the on-chip cache if
there is a cache hit. 1/0 space is never cached in
the internal cache.

To transform a read or a prefetch into a cache line
fill the following conditions must be met:

1. The KEN# pin must be asserted one clock prior
to RDY # or BRDY # being returned for the first
data cycle.

2. The cycle must be of the type that can be internal-
ly cached. (Locked reads, |/0 reads, and interrupt
acknowledge cycles are never cached).

3. The page table entry must have the page cache
disable bit (PCD) set to 0. To cache a page table
entry, the page directory must have PCD=0. To
cache reads or prefetches when paging is dis-
abled, or to cache the page directory entry, con-
trol register 3 (CR3) must have PCD=0.

4. The cache disable (CD) bit in control register 0
(CRO0) must be clear.

Intel486™ PROCESSOR FAMILY

External hardware can determine when the Intel486
processor has transformed a read or prefetch into a
cache fill by examining the KEN#, M/IO#, D/C#,
W/R#, LOCK#, and PCD pins. These pins convey
to the system the outcome of conditions 1-3 in the
above list. In addition, the Intel486 processor drives
PCD high whenever the CD bit in CRO is set, so that
external hardware can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

10.2.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte
enables should be ignored. In a non-cacheable
memory read, the byte enables indicate the bytes
actually required by the memory or code fetch.

The Intel486 processor expects to receive valid data
on its entire bus (32 bits) in the first cycle of a cache
line fill. Data should be returned with the assumption
that all the byte enable pins are driven active. How-
ever if BS8# is asserted only one byte need be re-
turned on data lines DO-D7. Similarly if BS16# is
asserted two bytes should be returned on DO-D15.

The Intel486 processor will generate the addresses
and byte enables for all subsequent cycles in the
line fill. The order in which data is read during a line
fill depends on the address of the first item read.
Byte ordering is discussed in section 10.2.4, “Burst
Mode Details.”
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10.2.3.2 Non-Burst Cacheable Cycles

Figure 10-11 shows a non-burst cacheable cycle.
The cycle becomes a cache fill when the Intel486
processor samples KEN# active at the end of the
first clock. The Intel486 processor drives BLAST #
inactive in the second clock in response to KEN #.
BLAST # is driven inactive because a cache fill re-
quires 3 additional cycles to complete. BLAST # re-
mains inactive until the last transfer in the cache line
fill. KEN# must be returned active in the last cycle
of the transfer for the data to be wntten into the
internal cache.

Note that this cycle would be a single bus cycle if
KEN# was not sampled active at the end of the first

a
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clock. The subsequent three reads would not have
happened since a cache fill was not requested.

The BLAST# output is invalid in the first clock of a
cycle. BLAST# may be active during the first clock
due to earlier inputs. Ignore BLAST # until the sec-
ond clock.

During the first cycle of the cache line fill the exter-
nal system should treat the byte enables as if they
are all active. In subsequent cycles in the burst, the
Intel486 processor drives the address lines and byte
enables. (See section 10.2.4.2, “Burst and Cache
Line Fill Order?) .
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Figure 10-11. Non-Burst, Cacheable Cycles
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10.2.3.3 Burst Cacheable Cycles

Figure 10-12 illustrates a burst mode cache fill. As in
Figure 10-11, the transfer becomes a cache line fill
when the external system returns KEN# active at
the end of the first clock in the cycle.

Intel486™ PROCESSOR FAMILY

The external system informs the Intel486 processor
that it will burst the line in by driving BRDY # active
at the end of the first cycle in the transfer.

Note that during a burst cycle, ADS# is only driven
with the first address.

BROY#
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Figure 10-12. Burst Cacheable Cycle
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10.2.3.4 Effect of Changing KEN# during a
Cache Line Fill

KEN# can change multiple times as long as it ar-
rives at its final value in the clock before RDY # or
BRDY# is returned. This is illustrated in Figure
10-13. Note that the timing of BLAST# follows that
of KEN# by one clock. The Intel486 processor sam-
ples KEN# every clock and uses the value returned
in the clock before ready to determine if a bus cycle

L]

intel.
would be a cache line fill. Similarly, it uses the value
of KEN# in the last cycle before early RDY # to load
the line just retrieved from memory into the cache.

KEN# is sampled every clock and it must satisfy
setup and hold time.

KEN# can also change multiple times before a burst
cycle, as long as it arrives at its final value one clock
before ready is returned active.
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Figure 10-13. Effect of Changing KEN #
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10.2.4 BURST MODE DETAILS chip when either RDY # or BRDY # are active. Driv-
ing BRDY # and RDY # inactive adds a wait state to
the transfer. A burst cycle where two clocks are re-

10.2.4.1 Adding Wait States to Burst Cycles quired for every burst item is shown in Figure 10-14.

Burst cycles need not return data on every clock.
The Intel486 processor will only strobe data into the

Ti T T2 12 12 ' T2 12 T2 T2 '
| I ' 1 ' ' 1 ' |
CLK | il 1 1 r ' 1 '
' ' ' [ l ' 1
! ' l | | [ ' | !
' T T T -r T
ADS# ' i i i i | ' ' ]
1 | Il 1 1 ' [l 1
] ' 1 1 1 1 1 1
A4-A31, - 1 ] ' ] ' 1 | !
M/i0#, 1 ] ' ' | ) | 1 \
p/c#, | | ' ' 1 ' [ '
w/Rw ! | ' ' ' [ ' ' |
L
A2-A3, ' ' ' ' ' 1 ' )
BEO-3# Il 1 1 | ] ' ' |
| -r r -T " T T

1 ' 1

R4 o oo ANV VIRYY O RNV VIAN 0 AV Y

'
1

erove - SOOMOCNOCNAONNN A0 00007 T ¢ A0 U0,

' '
i
'

KEN# E u
7

t
i
I
I
1

|

®

242202-98

BLAST#

|
-
I
1

DATA

B e EeET

'
'
'
'
|
T
'
'
'
L
[
1

* To Processor

Figure 10-14. Slow Burst Cycle
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10.2.4.2 Burst and Cache Line Fill Order ' Table 10-8. Burst Order

. (Both Read and Write Bursts)
The burst order used by the Intel486 processor is

shown in Table.10-8. This burst order is followed by First Second Third Fourth
any burst cycle (cache or not), cache line fill (burst Addr. Addr. Addr. Addr.

ode prefetch.
or not) or ¢ p P 2 B c

The ‘Intel486 processor presents each request for
data in an order determined by the first address in

104 the next three addresses in the burst will be

4 0 C 8
the transfer. For example, if the first address was 8 c 0 4
C 8 4 0

100, 10C and 108. An example of burst address se-
quencing is shown in Figure 10-15.
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Figure 10-15. Burst Cycle Showing Order of Addresses
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The sequences shown in Table 10-8 accommodate
systems with 64-bit buses as well as systems with
32-bit data buses. The sequence applies to all
bursts, regardless of whether the purpose of the
burst is to fill a cache line, do a 64-bit read, or do a
pre-fetch. If either BS8# or BS16# is returned ac-
tive, the Intel486 processor completes the transfer
of the current 32-bit word before progressing to the
next 32-bit word. For example, a BS16# burst to
address 4 has the following order: 4-6-0-2-C-E-8-A.

10.2.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond
with burst cycles in the order defined in Table 10-8.
To support these systems the Intel486 processor al-
lows a burst cycle to be interrupted at any time. The
Intel486 processor will automatically generate

Intel486™ PROCESSOR FAMILY

another normal bus cycle after being interrupted to
complete the data transfer. This is called an inter-
rupted burst cycle. The gxternal system can respond
to an interrupted burst cycle with another burst cy-
cle. ‘

The external system can interrupt a burst cycle by
returning RDY # instead of BRDY #. RDY # can be
returned after any number of data cycles terminated
with BRDY #.

An example of an interrupted burst cycle is shown in
Figure 10-16. The Intel486 processor immediately
drives ADS# active to initiate a new bus cycle after
RDY # is returned active. BLAST# driven inactive
one clock after ADS# begins the second bus cycle
indicating that the transfer is not complete.
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awove YONOCOONNOMNNN ¢ A0O0nonmunumoiom | AL « A

KEN# ; \ | / | ! l \ E / :

BLasT T T\ 7 &\ [
DATA l % @—@ E \/3} @
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* To Processor
Figure 10-16. Interrupted Burst Cycle
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KEN# need not be returned active in the first data
cycle of the second part of the transfer in Figure
10-16. The cycle had been converted to a cache fill
in the first part of the transfer and the Intel486 proc-
essor expects the cache fill to be completed. Note
that the first half and second half of the transfer in
Figure 10-16 are each two cycle burst transfers.

The order in which the Intel486 processor requests
operands during an interrupted burst transfer is de-
termined by Table 10-7. Mixing RDY # and BRDY #
does not change the order in which operand ad-
dresses are requested by the Intel486 processor.

An example of the order in which the Intel486 proc-
essor requests operands during a cycle in which

]

intel.
the external system mixes RDY# and BRDY# is
shown in Figure 10-17. The Intel486 processor ini-
tially requests a transfer beginning at location 104.
The transfer becomes a cache line fill when the ex-
ternal system returns KEN # active. The first cycle of
the cache fill transfers the contents of location 104
and is terminated with RDY #. The Intel486 proces-
sor drives out a new request (by asserting ADS #) to
address 100. If the external system terminates the
sécond cycle with BRDY #, the Intel486 processor
will next request/expect address 10C. The correct
order is determined by the first cycle in the transfer,
which may not be the first cycle in the burst if the
system mixes RDY # with BRDY #.

A S S S
cLK ' 4 | | ' | |
o T
N
SO S G i e o W
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* To Processor

242202-A1

Figure 10-17. Interrupted Burst Cycle with Unobvious Order of Addresses
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10.2.5 8- AND 16-BIT CYCLES

The Intel486 processor supports both 16- and 8-bit
external buses through the BS16# and BS8# in-
puts. BS16# and BS8# allow the external system to
specify, on a cycle by cycle basis, whether the ad-
dressed component can supply 8, 16 or 32 bits.
BS16# and BS8+# can be used in burst cycles as
well as non-burst cycles. If both BS16# and BS8 #
are returned active for any bus cycle, the intel486
processor will respond as if only BS8 # were active.

The timing of BS16# and BS8# is the same as that
of KEN#. BS16# and BS8# must be driven active
before the first RDY# or BRDY # is driven active.
Driving the BS16# and BS8# active can force the

Iintel486™ PROCESSOR FAMILY

Intel486 processor to run additional cycles to com-
plete what would have been only a single 32-bit cy-
cle. BS8# and BS16# may change the state of
BLAST# when they force subsequent cycles from
the transfer.

Figure 10-18. shows an example in which BS8#
forces the intel486 processor to run two extra cycles
to complete a transfer. The Intel486 processor is-
sues a request for 24 bits of information. The exter-
nal system drives BS8# active indicating that only
eight bits of data can be supplied per cycle. The
Intel486 processor issues two extra cycles to com-
plete the transfer.
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Figure 10-18. 8-Bit Bus Size Cycle
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Extra cycles forced by the BS16# and BS8# should
be viewed as independent bus cycles. BS16# and
BS8# should be driven active for each additional
cycle unless the addressed device has the ability to
change the number of bytes it can return between
cycles. The Intel486 processor will drive BLAST #
inactive until the last cycle before the transfer is
complete.

Refer to section 10.1.2, “Dynamic Data Bus Sizing,”
for the sequencing of addresses while BS8# or
BS16# are active. : .

intgl.

BS8+# and BS16# operate during burst cycles in ex-
actly the same manner as non-burst cycles. For ex-
ample, a single non-cacheable read could be trans-
ferred by the Intel486 processor as four 8-bit burst
data cycles. Similarly, a single 32-bit write could be
written as four 8-bit burst data cycles. An example of
a burst write is shown in Figure 10-19. Burst writes
can only occur if BS8# or BS16# is asserted.
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Figure 10-19. Burst Write as a Result of BS8# or BS16 #
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10.2.6 LOCKED CYCLES

Locked cycles are generated in software for any in-
struction that performs a read-modify-write opera-
tion. During a read-modify-write operation the In-
tel486 processor can read and modify a variable in
external memory and be assured that the variable is
not accessed between the read and write.

Locked cycles are automatically generated during
certain bus transfers. The xchg (exchange) instruc-
tion generates a locked cycle when one of its oper-
ands is memory based. Locked cycles are generat-
ed when a segment or page table entry is updated
and during interrupt acknowledge cycles. Locked cy-
cles are also generated when the LOCK instruction
prefix is used with selected instructions.

Locked cycles are implemented in hardware with the
LOCK# pin. When LOCK# is active, the Intel486
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processor is performing a read-modify-write opera-
tion and the external bus should not be relinquished
until the cycle is complete. Multiple reads or writes
can be locked. A locked cycle is shown in Figure
10-20. LOCK # goes active with the address and bus
definition pins at the beginning of the first read cycle
and remains active until RDY # is returned for the
last write cycle. For unaligned 32 bits read-modify-
write operation, the LOCK# remains active for the
entire duration of the multipie cycle. It will go inactive
when RDY # is returned for the last write cycle.

When LOCK# is active, the Intel486 processor will
recognize address hold and backoff but will not rec-
ognize bus hold. It is left to the external system to
properly arbitrate a central bus when the Intel486
processor generates LOCK #.
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Figure 10-20. Locked Bus Cycle
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10.2.7 PSEUDO-LOCKED CYCLES

Pseudo-locked cycles assure that no other master
will be given control of the bus during operand trans-
fers which take more than one bus cycle.

For the Intel486 processor, examples include 64-bit
description loads and cache line fills.

Pseudo-locked transfers are indicated by the
PLOCK# pin. The memory operands must be
aligned for correct operation of a pseudo-locked cy-
cle.

PLOCK# need not be examined during burst reads.
A 64-bit aligned operand can be retrieved in one
burst (note: this is only valid in systems that do not
interrupt bursts).

The system must examine PLOCK# during 64-bit
writes since the Intel486 processor cannot burst
write more than 32 bits. However, burst can be used
within each 32-bit write cycle if BS8# or BS16# is
asserted. BLAST will be de-asserted in response to
BS8+# or BS16+#. A 64-bit write will be driven out as
two non-burst bus cycles. BLAST # is asserted dur-
ing both writes since a burst is not possible.
PLOCK # is asserted during the first write to indicate
that another write follows. This behavior is shown in
Figure 10-21.

intal.

The first cycle of a 64-bit floating point write is the
only case in which both PLOCK# and BLAST # are
asserted. Normally PLOCK# and BLAST# are the
inverse of each other.

During all of the cycles where PLOCK # is asserted,
HOLD is not acknowledged until the cycle com-
pletes. This results in a large HOLD latency, espe-
cially when BS8# or BS16+# is asserted. To reduce
the HOLD latency during these cycles, windows are
available between transfers to allow HOLD to be ac-
knowledged during non-cacheable code prefetches.
PLOCK# will be asserted since BLAST# is negat-
ed, but it is ignored and HOLD is recognized during
the prefetch.

PLOCK# can change several times during a cycle
settling to its final value in the clock ready is re-
turned.

10.2.7.1 Floating Point Read and Write Cycles

For Intel486 DX, IntelDX2, Write-Back Enhanced In-
telDX2, and IntelDX4 processors, 64-bit floating
point read and write cycles are also examples of op-
erand transfers that take more than one bus cycle.
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Figure 10-21. Pseudo Lock Timing
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10.2.8 INVALIDATE CYCLES

Invalidate cycles are needed to keep the Intel486
processor internal cache contents consistent with
external memory. The Intel486 processor contains a
mechanism for listening to writes by other devices to
external memory. When the Intel486 processor finds
a write to a section of external memory contained in
its internal cache, the Intel486 processor’s internal
copy is invalidated.

Invalidations use two pins, address hold request
(AHOLD) and valid external address (EADS#).
There are two steps in an invalidation cycle. First,
the external system asserts the AHOLD input forcing
the Inteld486 processor to immediately relinquish its
address bus. Next, the external system asserts
EADS # indicating that a valid address is on the In-
tel486 processor address bus. Figure 10-22 shows
the fastest possible invalidation cycle. The Intel486
processor recognizes AHOLD on one CLK edge and
floats the address bus in response. To allow the ad-
dress bus to float and avoid contention, EADS # and
the invalidation address should not be driven until
the following CLK edge. The Intel486 processor
reads the address over its address lines. If the In-
tel486 processor finds this address in its internal
cache, the cache entry is invalidated. Note that the
Intel486 processor address bus is input/output, un-
like the Intel386 processor’s bus, which is output
only.

Intel486™ PROCESSOR FAMILY

The Intel486 processor immediately relinquishes its
address bus in the next clock upon assertion of
AHOLD. For example, the bus could be 3 wait states
into a read cycle. If AHOLD is activated, the Intel486
processor will immediately float its address bus be-
fore ready is returned terminating the bus cycle.

When AHOLD is asserted only the address bus is
floated, the data bus can remain active. Data can be
returned for a previously specified bus cycle during
address hold. (See Figure 10-22 and Figure 10-23.)

EADS # is normally asserted when an external mas-
ter drives an address onto the bus. AHOLD need not
be driven for EADS# to generate an internal invali-
date. If EADS# alone is asserted while the Intel486
processor is driving the address bus, it is possible
that the invalidation address will come from the
Intel486 processor itself.

Note that it is also possible to run an invalidation
cycle by asserting EADS # when BOFF # is asserted
or after HLDA has been returned, following the as-
sertion of HOLD.

Running an invalidate cycle prevents the Intel486
processor cache from satisfying other internal re-
quests, so invalidations should be run only when
necessary. The fastest possible invalidate cycle is
shown in Figure 10-22, while a more realistic invali-
dation cycle is shown in Figure 10-23. Both of the
examples take one clock of cache access from the
Intel486 processor.
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Figure 10-22. Fast Internal Cache Invalidation Cycle
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Figure 10-23. Typical Internal Cache Invalidation Cycle
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10.2.8.1 Rate of Invalidate Cycles

The Intel486 processor can accept one invalidate
per clock except in the last clock of a line fill. One
invalidate per clock is possible as long as EADS # is
negated in ONE or BOTH of the following cases:

1. In the clock RDY # or BRDY # is returned for the
last time.

2. In the clock following RDY # or BRDY # being re-
turned for the last time.

This definition allows two system designs. Simple
designs can restrict invalidates to one every other
clock. The simple design need not track bus activity.
Alternatively, systems can request one invalidate
per clock provided that the bus is monitored.

10.2.8.2 Running Invalidate Cycles Concurrently
with Line Fills

Precautions are necessary to avoid caching stale
data in the Intel486 processor cache in a system
with a second level cache. An example of a system
with a second level cache is shown in Figure 10-24.

An external device can be writing to main memory
over the system bus while the Intel486 processor is
retrieving data from the second level cache. The

Intel486™
Processor
Address, Data &
Control Bus
Second Level
Cache
System Bus
External Extemnal Bus
Memory Master
242202-A8

Figure 10-24. System with Second Level Cache
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Intel486 processor will need to invalidate a line in its
internal cache if the external device is writing to a
main memory address also contained in the Intel486
processor cache.

A potential problem exists if the external device is
writing to an address in external memory, and at the
same time the Intel486 processor is reading data
from the same address in the second level cache.
The system must force an invalidation cycle to invali-
date the data that the Intel486 processor has re-
quested during the line fill.

If the system asserts EADS # before the first data in
the line fill is returned to the Intel486 processor, the
system must return data consistent with the new
data in the external memory upon resumption of the
line fill after the invalidation cycle. This is illustrated
by the asserted EADS# signal labeled 1 in Figure
10-25.

If the system asserts EADS# at the same time or
after the first data in the line fill is returned (in the
same clock that the first RDY# or BRDY # is re-
turned or any subsequent clock in the line fill) the
data will be read into the Intel486 processor input
buffers but it will not be stored in the on-chip cache.
This is illustrated by asserted EADS # signal labeled
2 in Figure 10-25. The stale data will be used to
satisfy the request that initiated the cache fill cycle.

10.2.9 BUS HOLD

The Intel486 processor provides a bus hold, hold
acknowledge protocol using the bus hold request
(HOLD) and bus hold acknowledge (HLDA) pins. As-
serting the HOLD input indicates that another bus
master desires control of the Intel486 processor
bus. The Intel486 processor will respond by floating

. its bus and driving HLDA active when the current

bus cycle, or sequence of locked cycles is complete.
An example of a HOLD/HLDA transaction is shown
in Figure 10-26. Unlike the Intel386 processor, the
Intel486 processor can respond to HOLD by floating
its bus and asserting HLDA while RESET is assert-
ed.

Note that HOLD will be recognized during un-aligned
writes (less than or equal to 32-bits) with BLAST #
being active for each write. For greater than 32-bit or
un-aligned write, HOLD# recognition is prevented
by PLOCK# getting asserted. However, HOLD is
recognized during non-cacheable, non-burstable
code prefetches even though PLOCK# is active.
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Figure 10-25. Cache Invalidation Cycle Concurrent with Line Fill

For cacheable and non-bursted or bursted cycles,
HOLD is acknowledged during backoff only if HOLD
and BOFF # are asserted during an active bus cycle
(after ADS # asserted) and before the first RDY # or
BRDY # has been returned (see Figure 10-27). The
order in which HOLD and BOFF # go active is unim-
portant (so long as both are active prior to the
first RDY#/BRDY# returned by the system).

2-200

Figure 10-27 shows the case where HOLD is assert-
ed first; HOLD could be asserted simultaneously or
after BOFF # and still be acknowledged.

The pins floated during bus hold are: BEO# -BE3 #,
PCD, PWT, W/R#, D/C#, M/IO#, LOCK#,
PLOCK#, ADS#, BLAST#, D0-D31, A2-A31,
DPO-DP3.
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Figure 10-26. HOLD/HLDA Cycles
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Figure 10-27. HOLD Request Acknowledged during BOFF #
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10.2.10 INTERRUPT ACKNOWLEDGE

The Intel486 processor generates interrupt acknowl-
edge cycles in response to maskable interrupt re-
quests generated on the interrupt request input
(INTR) pin. Interrupt acknowledge cycles have a

unique cycle type generated on the cycle type pins.

An example of an interrupt acknowledge transaction
is shown in Figure 10-28. Interrupt acknowledge cy-
cles are generated in locked pairs. Data returned
during the first cycle is ignored. The interrupt vector
is returned during the second cycle on the lower 8
bits of the data bus. The Intel486 processor has 256
possible interrupt vectors.

-

intal.
The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3#-BE1+# high, and
BEO# low). The address driven during the second

interrupt acknowledge cycle is 0 (A31-A2 low,
BE3#-BE1# high, BEO# low).

Each of the interrupt acknowledge cycles are termi-
nated when the external system returns RDY # or
BRDY #. Wait states can be added by withholding
RDY # or BRDY #. The Intel486 processor automati-

_cally generates four idle clocks between the first and

second cycles to allow for 8259A recovery time.
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Figure 10-28. Interrupt Acknowledge Cycles
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10.2.11 SPECIAL BUS CYCLES

The Intel486 processor provides special bus cycles
to indicate that certain instructions have been exe-
cuted, or certain conditions have occurred internally.
The special bus cycles in Table 10-9 are defined
when the bus cycle definition pins are in the follow-

Intel486™ PROCESSOR FAMILY

Two of the special cycles indicate halt or shutdown.
Another special cycle is generated when the
Intel486 processor executes an INVD (invalidate
data cache) instruction and could be used to flush
an external cache. The Write Back cycle is generat-
ed when the Intel486 processor executes the
WBINVD (write-back invalidate data cache) instruc-

ing state: M/IO# =0, D/C# =0 and W/R# =1. tion and could be used to synchronize an external
write-back cache.

During these cycles the address bus is driven low
while the data bus is undefined. The external hardware must acknowledge these

special bus cycles by returning RDY # or BRDY #.
Table 10-9. Special Bus Cycle Encoding

Cycle Name M/I0# D/C# W/R# BE3# -BEQ# Ad4-A2
Write-Back(1) 0 0 1 0111 000
First Flush Ack Cycle(1) 0 0 1 0111 001
Flush(1) 0 0 1 1101 000
Second Flush Ack Cycle(!) 0 0 1 1101 001
Shutdown 0 0 1 1110 000
HALT 0 0 1 1011 000
Stop Grant Ack Cycle(?) 0 0 1 1011 001

NOTES:

1. These cycles are specific to the Write-Back Enhanced IntelDX2 processor. (See section 7.4.1, “Snoop Cycles and Write-
Back Invalidation.”) The FLUSH# cycle is applicable to all Intel486 processors. See appropriate sections.
2. See section 9.6.1, “Stop Grant Bus Cycle,” for details.
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Figure 10-29. Restarted Read Cycle
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10.2.11.1 HALT Indication Cycle

The Intel486 processor halts as a result of executing
a HALT instruction. Signaling its entrance into the
HALT state, a HALT indication cycle is performed.
The HALT indication cycle is identified by the bus
definition signals in special bus cycle state and a
byte address of 2. BEO# and BE2# are the only
signals distinguishing HALT indication from shut-
down indication, which drives an address of 0. Dur-
ing the HALT cycle, undefined data is driven on
D0-D31. The HALT indication cycle must be ac-
knowledged by RDY # asserted.

A halted Intel486 processor resumes execution
when INTR (if interrupts are enabled) or NMI or RE-
SET is asserted.

10.2.11.2 Shutdown Indication Cycle

The Intel486 processor shuts down as a result of a
protection fault while attempting to process a double
fault. Signaling its entrance into the shutdown state,
a shutdown indication cycle is performed. The shut-
down indication cycle is identified by the bus

-

intal.
definition signals in special bus cycle state and a
byte address of 0.

10.2.11.3 Stop Grant Indication Cycle

A special Stop Grant bus cycle will be driven to the
bus after the processor recognizes the STPCLK#
interrupt. The definition of this bus cycle is the same
as the HALT cycle definition for the Iintel486 proces-
sor, with the exception that the Stop Grant bus cycle
drives the value 0000 0010H on the address pins.
The system hardware must acknowledge this cycle
by returning RDY # or BRDY #. The processor will
not enter the Stop Grant state until either RDY # or
BRDY # has been returned. (See Figure 10-31.)

The Stop Grant Bus Cycle is defined as follows:

M/IO# = 0,D/C# = 0, W/R# = 1, Address Bus
= 0000 0010H (A4 = 1), BE3#-BEO# = 1011,
Data bus = undefined.

The latency between a STPCLK# request and the
Stop Grant bus cycle is dependent on the current
instruction, the amount of data in the processor write
buffers, and the system memory performance.
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Figure 10-30. Restarted Write Cycle
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Figure 10-31. Stop Grant Bus Cycle

10.2.12 BUS CYCLE RESTART

In a multi-master system another bus master may
require the use of the bus to enable the Intel486
processor to complete its current bus request. In this
situation the Intel486 processor will need to restart
its bus cycle after the other bus master has complet-
ed its bus transaction.

A bus cycle may be restarted if the external system
asserts the backoff (BOFF#) input. The Intel486
processor samples the BOFF # pin every clock. The
Intel486 processor will immediately (in the next
clock) float its address, data and status pins when
BOFF # is asserted (see Figures 10-29 and 10-34).
Any bus cycle in progress when BOFF # is asserted
is aborted and any data returned to the processor is
ignored. The same pins are floated in response to
BOFF # as are floated in response to HOLD. HLDA
is not generated in response to BOFF#. BOFF #
has higher priority than RDY # or BRDY #. If either
RDY # or BRDY # are returned in the same clock as
BOFF #, BOFF # takes effect.

The device asserting BOFF # is free to run any cy-
cles it wants while the Intel486 processor bus is in
its high impedance state. If backoff is requested af-
ter the Intel486 processor has started a cycle, the
new master should wait for memory to return RDY #

or BRDY # before assuming control of the bus. Wait-
ing for ready provides a handshake to insure that the
memory system is ready to accept a new cycle. If
the bus is idle when BOFF # is asserted, the new
master can start its cycle two clocks after issuing
BOFF #.

The external memory can view BOFF # in the same
manner as BLAST #. Asserting BOFF # tells the ex-
ternal memory system that the current cycle is the
last cycle in a transfer.

The bus remains in the high impedance state until
BOFF# is negated. Upon negation, the Intel486
processor restarts its bus cycle by driving out the
address and status and asserting ADS#. The bus
cycle then continues as usual.

Asserting BOFF# during a burst, BS8# or BS16#
cycle will force the Intel486 processor to ignore data
returned for that cycle only. Data from previous cy-
cles will still be valid. For example, if BOFF # is as-
serted on the third BRDY # of a burst, the Intel486
processor assumes the data returned with the first
and second BRDY # is correct and restarts the burst
beginning with the third item. The same rule applies
to transfers broken into multiple cycle by BS8# or
BS16#.
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Asserting BOFF# in the same clock as ADS# will
cause the Intel486 processor to float its bus in the
next clock and leave ADS# floating low. Because
ADS# is floating low, a peripheral may think that a
new bus cycle has begun even-though the cycle was
aborted. There are two possible solutions to this
problem. The first is to have all devices recognize
this condition and ignore ADS# until ready comes
back. The second approach is to use a “two clock”
backoff: in the first clock AHOLD is asserted, and in
the second clock BOFF# is asserted. This

intgl.

guarantees that ADS# will not be floating low. This
is only necessary in systems where BOFF # may be
asserted in the same clock as ADS#. '

10.2.13 BUS STATES
A bus state diagram is shown in Figure 10-32. A de- .

scription of the signals used in the diagram is given
in Table 10-10.

REQUEST PENDING «
HOLD NEGATED e

(RDY# ASSERTED + (BRDY# e BLAST#)ASSERTED)
(HOLD + AHOLD + NO REQUEST) «
BOFF# NEGATED

REQUEST PENDING
(RDY# ASSERTED + (BRDY# o BLAST#)ASSERTED) o
HOLD NEGATED o
AHOLD NEGATED e
BOFF# NEGATED *

AHOLD NEGATED e«
BOFF# NEGATED

Otherwise, ignore HOLD.

*
BOFF# &
ASSERTED F L

* HOLD is only factored into this state transition if Ty was entered while a
non-cacheable, non-bursted, code prefetch was in progress.

BOFF# NEGATED/

BOFF#
NEGATED

/ v.e
BOFF# ASSERTED

AHOLD NEGATED
BOFF# NEGATED
(HOLD NEGATED *)

242202-B6
Figure 10-32. Bus State Diagram
Table 10-10. Bus State Description
State Means
Ti Bus is idle. Address and status signals may be driven to undefined values, or the bus may be floated
to a high impedance state.
T1 First clock cycle of a bus cycle. Valid address and status are driven and ADS# is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is
expected if the cycle is a read. RDY # and BRDY # are sampled.

T1b First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS # is asserted.

Tb Second and subsequent clock cycles of an aborted bus cycle.
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10.2.14 FLOATING POINT ERROR HANDLING

FOR THE INTEL486 DX, INTELDX2,
AND INTELDX4 PROCESSORS

The Intel486 DX, intelDX2, and IntelDX4 processors
provide two options for reporting floating point er-
rors. The simplest method is to raise interrupt 16
whenever an unmasked floating point error occurs.
This option may be enabled by setting the NE bit in
control register 0 (CRO).

The Intel486 DX, IntelDX2, and IntelDX4 processors
also provide the option of allowing external hard-
ware to determine how floating point errors are re-
ported. This option is necessary for compatibility
with the error reporting scheme used in DOS based
systems. The NE bit must be cleared in CRO to en-
able user-defined error reporting. User-defined error
reporting is the default condition because the NE bit
is cleared on reset.

Two pins, floating point error (FERR#) and ignore
numeric error (IGNNE#), are provided to direct the
actions of hardware if user-defined error reporting is
used. The Intel486 DX, IntelDX2, and IntelDX4 proc-
essors assert the FERR# output to indicate that a
floating point error has occurred. FERR# corre-
sponds to the ERROR # pin on the Intel387™ math
coprocessor. However, there is a difference in the
behavior of the two.

In some cases FERR# is asserted when the next
floating point instruction is encountered, and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR# at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSEALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including in-
teger store instructions).
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The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions, FSQRT,
FSCALE, FPREM(1), FXTRACT, FBLD, and
FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

For both sets of exceptions above, the Intel387
math coprocessor asserts ERROR # when the error
occurs and does not wait for the next floating point
instruction to be encountered.

IGNNE# is an input to the Intel486 DX, IntelDX2,
and IntelDX4 processors. When the NE bit in CRO is
cleared, and IGNNE# is asserted, the Intel486 DX,
IntelDX2, and IntelDX4 processors will ignore a user
floating point error and continue executing floating
point instructions. When IGNNE# is negated, the
IGNNE# is an input to these processors that will
freeze on floating point instructions which get errors
(except for the control instructions FNCLEX, FNINIT,
FNSAVE, FNSTENV, FNSTCW, FNSTSW, FNSTSW
AX, FNENI, FNDISI and FNSETPM). IGNNE# may
be asynchronous to the Intel486 DX, IntelDX2, and
IntelDX4 processor clock.

In systems with user-defined error reporting, the
FERR# pin is connected to the interrupt controlier.
When an unmasked floating point error occurs, an
interrupt is raised. If IGNNE # is high at the time of
this interrupt, the Intel486 DX, IntelDX2, and In-
telDX4 processors will freeze (disallowing execution
of a subsequent floating point instruction) until the
interrupt handler is invoked. By driving the IGNNE #
pin low (when clearing the interrupt request), the in-
terrupt handler can allow execution of a floating
point instruction, within the interrupt handler, before
the error condition is cleared (by FNCLEX, FNINIT,
FNSAVE or FNSTENV). If execution of a non-control
floating point instruction, within the floating point in-
terrupt handier, is not needed, the IGNNE # pin can
be tied HIGH.
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10.2.15 INTEL486 DX, INTELDX2, AND
INTELDX4 PROCESSORS FLOATING
POINT ERROR HANDLING IN
AT-COMPATIBLE SYSTEMS

The Intel486 DX, IntelDX2, and IntelDX4 processors
provide special features to allow the implementation
of an AT-compatible numerics error reporting
scheme. These features DO NOT replace the exter-
nal circuit. Logic is still required that decodes the
OUT FO instruction and latches the FERR # signal.
What follows is a description of the use of these
Intel Processor features.

The features provided by the Intel486 DX, IntelDX2,
and IntelDX4 processors are the NE bit in the Ma-
chine Status Register, the IGNNE# pin, and the
FERR# pin.

The NE bit determines the action taken by the
Intel486 DX, IntelDX2, and IntelDX4 processors
when a numerics error is detected. When set this bit
signals that non-DOS compatible error handling will
be implemented. In this mode the Intel486 DX,
IntelDX2, and IntelDX4 processors take a software
exception (16) if a numerics error is detected.

If the NE bit is reset, the Intel486 DX, IntelDX2, and
IntelDX4 processors use the IGNNE# pin to allow
an external circuit to control the time at which non-
control numerics instructions are allowed to execute.
Note that floating point control instructions such as
FNINIT and FNSAVE can be executed during a
floating point error condition regardless of the state
of IGNNE #.
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To process a floating point error in the DOS environ-
ment the following sequence must take place:

1. The error is detected by the Intel486 DX,
IntelDX2, and IntelDX4 processor that activates
the FERR# pin.

2. FERR# is latched so that it can be cleared by the
OUT FO instruction.

3. The latched FERR# signal activates an interrupt
at the interrupt controlier. This interrupt is usually
handled on IRQ13.

4. The Interrupt Service Routine (ISR) handles the
error and then clears the interrupt by executing an
OUT instruction to port FO. The address FO is de-
coded externally to clear the FERR# latch. The
IGNNE# signal is also activated by the decoder
output. .

5. Usually the ISR then executes an FNINIT instruc-
tion or other control instruction before restarting
the program. FNINIT clears the FERR # output.

Figure 10-33 illustrates a sample circuit that will per-
form the function described above. Note that this
circuit has not been tested and is included as an
example of required error handling logic.

Note that the IGNNE# input allows non-control in-
structions to be executed prior- to the time the
FERR# signal is reset by the Intel486 DX, IntelDX2,
and IntelDX4 processors. This function is imple-
mented to allow exact compatibility with the AT im-
plementation. Most programs reinitialize the floating
point unit before continuing after an error is detect-
ed. The floating point unit can be reinitialized using
one of the following four instructions: FCLEX, FINIT,
FSAVE and FSTENV. )
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Figure 10-33. DOS-Compatibie Numerics Error Circuit
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10.3 Enhanced Bus Mode Operation
(Write-Back Mode) for the Write-
Back Enhanced IntelDX2
Processor

This section describes how the processor bus oper-
-ation changes for the Enhanced Bus mode when the
internal cache is configured in write-back mode.

10.3.1 SUMMARY OF BUS DIFFERENCES

The following is a list of the differences between the
Enhanced and Standard Bus modes:

1. Burst write capability is extended to four double-
word burst cycles (for write-back cycles only)

Four new signals: INV, WB/WT#, HITM#, and
CACHE #, have been added to support the write-
back operation of the internal cache. These sig-
nals function the same as the equivalent signals
on the Pentium™ OverDrive™ Processor pins.

3. The SRESET signal has been modified so that it
neither writes back, invalidates, nor disables the
cache. Special test modes are also not initiated
through SRESET.

2.

. ‘
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4. The FLUSH# signal behaves the same as the
WBINVD instruction. Upon assertion, FLUSH #

writes back all modified lines, invalidates the
cache, and issues two special bus cycles.

5. The PLOCK# signal remains inactive in the En-
hanced Bus mode.

10.3.2 BURST CYCLES

Figure 10-34 shows a basic burst read cycle of the
Write-Back Enhanced IntelDX2 processor. In the En-
hanced Bus mode, both PCD and CACHE # are as-
serted if the cycle is internally cacheable. The Write-
Back Enhanced IntelDX2 processor samples KEN #
in the clock before the first BRDY #. If KEN# is re-
turned active by the system, this cycle is trans-
formed into a multiple-transfer cycle. With each data
item returned from external memory, the data is
‘cached’ only if KEN # is returned active again in the
clock before the last BRDY # signal. Data is sam-
pled only in the clock in which BRDY # is returned. If
the data is not sent to the processor every clock, it
causes a “‘slow burst” cycle.
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Figure 10-34. Basic Burst Read Cycle
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10.3.2.1 Non-Cacheable Burst Operation

If CACHE # is asserted on a read cycle, it indicates
that the processor will follow with BLAST# high if
KEN# is returned active. However, the converse is
not true. The Write-Back Enhanced IntelDX2 proc-
essor may elect to read-burst data, which are identi-
fied as non-cacheable by either CACHE # or KEN #.
In this case, BLAST # is also high in the same cycle
as the first BRDY # (in clock four). To improve per-
formance, the memory controller should try to com-
plete the cycle as a burst cycle.

The assertion of CACHE # on a write cycle signifies
a replacement or snoop write-back cycle. These cy-
cles consist of four doubleword transfers (either
bursts or non-burst). The signals KEN# and
WB/WT# are not sampled during write-back cycles
because the processor does not attempt to redefine
the cacheability of the line.

10.3.2.2 Burst Cycle Signal Protocol

The signals from ADS # through BLAST #, which are
shown in Figure 10-34, have the same function and
timing in both Standard and Enhanced Bus modes.
Burst cycles can be up to 16-bytes long (four aligned
doublewords) and can start with any one of the four
doublewords. The sequence of the addresses are
determined by the first address and the sequence
follows the order shown previousiy in Table 10-8.
The burst order for reads is the same as the burst
order for writes. (See section 10.2.4.2, “Burst and
Cache Line Fills.”)

An attempted line fill, which is caused by a read
miss, is indicated by the assertion of CACHE # and
W/R# to low. For a line fill to occur, the system
must assert KEN# twice: one clock prior to the first
BRDY # and one clock prior to last BRDY #. It takes
only one assertion of KEN# to mark the line as non-
cacheable.

Intel486™ PROCESSOR FAMILY

A write-back cycle of a cache line, due to replace-
ment or snoop, is indicated by the assertion of
CACHE # low and W/R# high. KEN# has no effect
during write-back cycles. CACHE # is valid from the
assertion of ADS# through the clock in which the
first RDY # or BRDY # is returned. CACHE # is inac-
tive at all other times. PCD behaves the same in
Enhanced Bus mode as in Standard Bus mode, ex-
cept that it is low during write-back cycles.

The Write-Back Enhanced IntelDX2 processor sam-
ples WB/WT# once, in the same clock as the first
BRDY #. This sampled value of WB/WT# is com-
bined with PWT to bring the line into the internal
cache, either as a write-back line or write-through
line.

10.3.3 CACHE CONSISTENCY CYCLES

The system performs snooping to maintain cache
consistency. Snoop cycles can be performed under
AHOLD, BOFF#, or HOLD, described in Table
10-11.

The snoop cycle begins by checking whether a par-
ticular cache line has been *“cached” and invali-
dates the line based on the state of the INV pin. If
the Write-Back Enhanced IntelDX2 processor is
configured in Enhanced Bus mode, the system must
drive INV high to invalidate a particular cache line.
The Write-Back Enhanced IntelDX2 processor does
not have an output pin to indicate a snoop hit to an
S-state line or an E-state line. However, the Write-
Back Enhanced IntelDX2 processor will invalidate
the line if the system snoop hits an S-state, E-state,
or M-state line, provided INV was driven high during
snooping. If INV is driven low during a snoop, a mod-
ified line will be written back to memory and will re-
main in the cache as a write-back line; a write-
through line also will remain in the cache as a write-
through line.
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Table 10-11. Snoop Cycles under AHOLD, BOFF #, or HOLD

AHOLD

Floats the address bus. ADS # is asserted under AHOLD only to initiate a-snoop write-back cycle.
An ongoing burst cycle is completed under AHOLD. For non-burst cycles, a specific non-burst
transfer (ADS #-RDY # transfer) is completed under AHOLD and fractured before the next
assertion of ADS #. A snoop write-back cycle is reordered ahead of a fractured non-burst cycle
and the non-burst cycle is completed only after the snoop write-back cycle is completed, provided
there are no other snoop write-back cycles scheduled.

BOFF #

Overrides AHOLD and takes effect in the next clock. On-going bus cycles will stop in the clock
following the assertion of BOFF # and resume when BOFF # is de-asserted. A snoop is the only
bus cycle the Write-Back Enhanced IntelDX2™ processor responds to under BOFF #. Snoop
write-back will be reordered ahead of the backed-off cycle. The snoop write-back cycle begins
after BOFF # is de-asserted followed by the backed-off cycle.

HOLD

HOLD is acknowledged only between bus cycles, except for a non-cacheable, non-bursted code
prefetch cycle. In a non-cacheable, non-bursted code prefetch cycle, HOLD is acknowledged
after the system returns RDY #. Once HOLD is active, the processor blocks all bus activities until
the system releases the bus (by de-asserting HOLD).

After asserting AHOLD or BOFF #, the external bus
master driving the snoop cycle must wait for two
clocks before driving the snoop address and assert-
ing EADS#. If snooping is done under HOLD, the
master performing the snoop must wait for at least
one clock cycle before driving the snoop addresses
and asserting EADS#. INV should be driven low
during read operations to minimize invalidations,
and INV should be driven high to invalidate a
cache line during write operations. The Write-
Back Enhanced IntelDX2 processor asserts HITM #
if the cycle hits a modified line in the cache. This
output signal becomes valid two clock periods after
EADS# is valid on the bus. HITM# remains assert-
ed until the modified line is written back and will re-
main asserted until the RDY# or BRDY# of the
snoop cycle is returned. Snoop operations could in-
terrupt an ongoing bus operation in both the Stan-
dard Bus and Enhanced Bus modes. The Write-
Back Enhanced IntelDX2 processor can accept
EADS# in every clock period while in Standard
Bus mode. In Enhanced Bus mode, the Write-
Back Enhanced IntelDX2 processor can accept
EADS # every other clock period or until a snoop
hits an M-state line. The Write-Back Enhanced
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IntelDX2 processor will not accept any further snoop
cycles input until the previous snoop write-back op-
eration is completed.

All write-back cycles adhere to the burst address se-
quence of 0-4-8-C. The CACHE #, PWT, and PCD
output pins are asserted and the KEN# and
WB/WT # input pins are ignored. Write-back cycles
can be either bursted or non-bursted. All write-back
operations write 16 bytes of data to memory corre-
sponding to the modified line that hit during the
snoop. Note that the Write-Back Enhanced In-
telDX2 processor will accept BS8# and BS16#
line-fill cycles, but not on replacement or snoop-
forced write-back cycles.

" 10.3.3.1 Snoop Collision with a Current Cache

Line Operation

The system can also perform snooping concurrent
with a cache access and may colliide with a current
cache bus cycle. Table 10-12 lists some scenarios
and the results of a snoop operation colliding with an
on-going cache fill or replacement cycle.
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Table 10-12. Various Scenarios of a Snoop Write-Back Cycle
Colliding with an On-Going Cache Fill or Replacement Cycle

Arbi- . Snoop to a Different Snoop to the Line Snoop to a Different
tration Tshn;:?: ;Ltr:‘:;::::d Line from the Line That Is Being Line from the Line
Control Being Filled Replaced Being Replaced
AHOLD | Read all line fiil data Complete fill if the Complete replacement | Complete replacement

into cache line buffer. | cycle is bursted. Start | write-back if the cycle | write-back if it is a burst
Update cache only if snoop write-back. is bursteq. I_’_rocessor cyple. Initiate snoop
sr?oop occurred with | If the cycle is non- does not .'P'tfteka but write-back.
INV = “0" bursted, the snoop 22323!3@& icu’m“” If the replacement
No write-back cycle write-back will be the replacement write- write-back is a non-
because the line has reorqereq ahead of back is completed buyst cycle, the snoop
not been modified yet the line fill.. ) wnte-bagk cycle is re-
After the snoop write- If the replacement ordered in front of the
back cycle is cycle is non-pursted, ) replacement cycle:
completed, continue the snoop write-back is | After the snoop write-
with line ﬁ"’ re-ordered ahead of the | back, the replacement
replacement write-back | write-back is continued
cycle. The processor from the interrupt point.
does not continue with
the replacement write-
back cycle.
BOFF # | Stop reading line fill Stop fill Stop replacement Stop replacement
data Wait for BOFF # to go write-back write-back
Wait for BOFF # to go | inactive Wait for BOFF # to go | Wait for BOFF # to be
inactive. Continue inactive de-asserted
read from backed off Initiate snoop write- Initiate snoop write-
point back back
Update cache gn‘yt': Do snoop write-back | Processor does not Continue replacement
Isr:j‘\oloz c‘a%c‘:’urre wit Continue fill from continue replacement | write-back from point of
interrupt point write-back interrupt
HOLD | HOLD is not acknowledged until the current bus cycle (i.e., the line operation) is completed, except

for a non-cacheable, non-bursted code prefetch cycle. Consequently there can be no collision with
the snoop cycles using HOLD, except as mentioned earlier. In this case the snoop write-back is re-
ordered ahead of an on-going non-burst, non-cached code prefetch cycle. After the write-back
cycle is completed, the code prefetch cycle continues from the point of interrupt.
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10.3.3.2 Snoop under AHOLD

Snooping under AHOLD begins by asserting AHOLD

‘to force the Write-Back Enhanced IntelDX2 proces-
sor to float its address bus, as shown in Figure 10-
35. The ADS # for the write-back cycle is guaran-
teed to occur no sooner than the second clock
following the assertion of HITM# (i.e., there is a
dead clock between the assertion of HITM# and
the first ADS# of the snoop write-back cycle.)

When a line is written back, KEN#, WB/WT#,
BS8+#, and BS16+# are ignored, and PWT and PCD
are always low during write-back cycles.

The driven next ADS# for a new cycle can occur
immediately after the last RDY # or BRDY # of the

intal.

write-back cycle. The Write-Back Enhanced In-
telDX2 processor does not guarantee a dead clock
between cycles unless the second cycle is a
snoop-forced write-back cycle. This allows snoop-
forced write-backs to be backed off (BOFF #) when
snooping under AHOLD.

HITM# is guaranteed to remain asserted until the
RDY # or BRDY # corresponding to the last double-
word of the write-back cycle is returned. HITM# will
be de-asserted from the clock edge in which the last
BRDY # or RDY # for the snoop write-back cycle is
returned. The write-back cycle could be a bursted or
non-bursted. In either case, 16 bytes of data corre-
sponding to the modified line that has a snoop hit is
written back.

‘102 3 4is 6’

BLAST#! = 0 AR

CACHE#u . ; \ '; %/
anov#7////////7/7171//////1/1/& 1/77x/77x/77x/‘“—
WRE, : WaE

* To Processor
** Write-back from Processor
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Figure 10-35. Snoop Cycle Invalidating a Modified Line
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Snoop under AHOLD Overlaying a Line-Fill Cycle the clock after AHOLD is asserted, the Write-Back

Enhanced IntelDX2 processor will float the address
The assertion of AHOLD during a line fill is allowed bus (not the Byte Enables). Hence, the memory con-
on the Write-Back Enhanced IntelDX2 processor. In troller must determine burst addresses in this period.

this case, when a snoop cycle is overlaid by an on- The chipset must comprehend the special ordering
going line-fill cycle, the chipset must generate the required by all burst sequences of the Write-Back
burst addresses internally for the line fill to com- Enhanced IntelDX2 processor. HITM# is guaran-
plete, because the address bus will have the valid teed to remain active until the write-back cycle com-
snoop address. The write-back mode is more com- pletes.

plex compared to the write-through mode because
of the possibility of a line being written back. Figure If AHOLD continues to be asserted over the forced

10-36 shows a snoop cycle overlaying a line-fill cy- write-back cycle, the memory controller also must
cle, when the snooped line is not the same as the supply the write-back addresses to the memory. The
line being filled. Write-Back Enhanced IntelDX2 processor always

runs the write-back with an address sequence of
In Figure 10-36, the snoop to an M-state line causes 0-4-8-C.
a snoop write-back cycle. The Write-Back Enhanced
IntelDX2 processor will assert HITM# two clocks af- In general, if the snoop cycle overlays any burst cy-
ter the EADS #, but will delay the snoop write-back cle (not necessarily a line-fill cycle) the snoop write- 2
cycle until the line fill is completed, because the line back will be delayed because of the on-going burst

fill shown in Figure 10-36 is a burst cycle. In this cycle. First, the burst cycle goes to completion and
figure, AHOLD is asserted one clock after ADS#. In only then does the snoop write-back cycle start.
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* To Processor
** Write-back from Processor

Figure 10-36. Snoop Cycle Overlaying a Line-Fill Cycle
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AHOLD Snoop Overlaying a Non-Burst Cycle

When AHOLD overlays a non-burst cycle, snooping
is based on the completion of the current non-burst-
ed transfer (ADS#-RDY# transfer). Figure 10-37
shows a snoop cycle under AHOLD overlaying a
non-burst line-fill cycle. HITM# is asserted two
clocks after EADS #, and the non-burst cycle is'frac-
tured after the RDY # for a specific single transfer is
returned. The snoop write-back cycle is re-ordered
ahead of an on-going non-burst cycle. After the
write-back cycle is completed, the fractured non-
burst cycle will continue. The snoop write-back
ALWAYS precedes the completion of a fractured cy-
cle, regardless of the point at which AHOLD is de-
asserted, and AHOLD must be de-asserted before
the fractured non-burst cycle can complete.

intel.

AHOLD Snoop to the Same Line That Is Being
Filled

A system snoop will not cause a write-back cycle to
occur if the snoop hits a line while the line is being
filled. The processor does not allow a line to be
modified until the fill is completed (and a snoop will
only produce a write-back cycle for a modified line).
Although a snoop to a line that is being filled will not
produce a write-back cycle, the snoop still has an
effect based on the following rules:

1. The processor always snoops the line being filled.

2. In all cases, the processor uses the operand that
triggered the line fill.

3. If the snoop occurs when INV = “1”, the proces-
sor never updates the cache with the fill data.

4. If the snoop occurs when INV = “0”, the proces-
sor loads the line into the internal cache.
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1 m2r

* To Processor
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Figure 10-37. Snoop Cycle Overlaying a Non-Burst Cycle
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Snoop during Replacement Write-Back

If the cache contains valid data during a line fill, one
of the cache lines may be replaced as determined
by the LRU algorithm. If the line being replaced is
modified, this line will be written back to maintain
cache coherency. When a replacement write-back
cycle is in progress, it might be necessary to snoop
the line that is being written back. (See Figure
10-38.)

If the replacement write-back cycle is bursted and
there is a snoop hit to the same line as the line that
is being replaced, the on-going replacement cycle
runs to completion. HITM# is asserted until the line
is written back and the snoop write-back will not be
initiated. In this case, the replacement write-back is
converted to the snoop write-back, and HITM# is
asserted and de-asserted without a specific ADS #
to initiate the write-back cycle.

If there is a snoop hit to a different line from the line
being replaced, and if the replacement write-back

Intel486™ PROCESSOR FAMILY

cycle is bursted, the replacement cycle goes to com-
pletion. Only then is the snoop write-back cycle ini-
tiated.

If the replacement write-back cycle is a non-burst

. cycle, and if there is a snoop hit to the same line as
the line being replaced, it will fracture the replace-
ment write-back cycle after the RDY # for the cur-
rent non-burst transfer is returned. The snoop write-
back cycle will be reordered in front of the fractured
replacement write-back cycle and will be completed
under HITM#. However, after AHOLD is de-assert-
ed the replacement write-back cycle is not complet-
ed.

If there is a snoop hit to the line that is different from
the one being replaced, the non-burst replacement
write-back cycle will be fractured, and the snoop
write-back cycle will be reordered ahead of the re-
placement write-back cycle. After the snoop write-
back is completed, the replacement write-back cycle
will continue.
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Figure 10-38. Snoop to the Line That Is Being Replaced
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10.3.3.3 Snoop under BOFF #

BOFF # is capable of fracturing any transfer, burst or
non-burst. The output pins (see Table 3-8 and Table
3-9) of the Write-Back Enhanced IntelDX2 processor
will be floated in the clock period following the as-
sertion of BOFF #. If the system snoop hits a modi-
fied line using BOFF #, the snoop write-back cycle
will be reordered ahead of the current cycle. BOFF #
must be de-asserted for the processor to perform a
snoop write-back cycle and resume the fractured cy-
cle. The fractured cycle resumes with a new ADS #
and begins with the first uncompleted transfer.
Snoops are permitted under BOFF #, but write-back
cycles will not be started until BOFF # is de-assert-
ed. Consequently, multiple snoop cycles can occur
under a’continuously asserted BOFF #, but only up
to the first asserted HITM#.

Snoop under BOFF # during Cache Line Fill

As shown in Figure 10-39, BOFF# fractured the
second transfer of a non-burst cache line-fill cycle.

= .

intal.
The system begins snooping by driving EADS # and
INV in clock six. The assertion of HITM# in clock
eight indicates that the snoop cycle hit a modified
line and the cache line will be written back to memo-
ry. The assertion of HITM# in clock eight and
CACHE# and ADS# in clock ten identifies the be-
ginning of the snoop write-back cycle. ADS# is
guaranteed to be asserted no sooner than two clock
periods after the assertion of HITM#. Write-back cy-
cles always use the four-doubleword address se-
quence of 0-4-8-C (burst or non-burst). The snoop
write-back cycle begins upon the de-assertion of
BOFF # with HITM# asserted throughout the dura-
tion of the snoop write-back cycle.

If the snoop cycle hits a line that is different from the
line being filled, the cache line fill will resume after
the snoop write-back cycle completes, as shown in
Figure 10-39.
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Figure 10-39. Snoop under BOFF # during a Cache Line-Fill Cycle
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An ADS# is always issued when a cycle resumes
after being fractured by BOFF #. The address of the
fractured data transfer is reissued under this ADS #,
and CACHE # is not issued unless the fractured op-
eration resumes from the first transfer (e.g., first
doubleword). If the system asserts BOFF# and
RDY # simultaneously, as shown in clock four on
Figure 10-39, BOFF# dominates and RDY # is ig-
nored. Consequently, the Write-Back Enhanced
IntelDX2 processor accepts only up to the x4h
doubleword, and the line fill resumes with the xOh
doubleword. ADS# initiates the resumption of the
line-fill operation in clock period 15. HITM# is de-as-
serted in the clock period following the clock period
in which the last RDY # or BRDY # of the write-back
cycle is returned. Hence, HITM# is guaranteed to
be de-asserted before the ADS# of the next cycle.

Figure 10-39 also shows the system returning
RDY # to indicate a non-burst line-fill cycle. Bursted
cache line-fill cycles behave similar to non-bursted
cache line-fill cycles when snooping using BOFF #.
If the system snoop hits the same line as the line

Intel486™ PROCESSOR FAMILY

being filled (burst or non-burst), the Write-Back En-
hanced IntelDX2 processor will not assert HITM #
and will not issue a snoop write-back cycle, because
it did not modify the line, and the line fill resumes
upon the de-assertion of BOFF #. However, the line
fill will be cached only if INV is driven low during the
snoop cycle.

Snoop under BOFF # during Replacement Write-
Back

If the system snoop under BOFF # hits the line that
is currently being replaced (burst or non-burst), the
entire line is written back as a snoop write-back line,
and the replacement write-back cycle is not contin-
ued. However, if the system snoop hits to a different
line than the one currently being replaced, the re-
placement write-back cycle will continue after the
snoop write-back cycle has been completed. Figure
10-40 shows a system snoop hit to the same line as
the one being replaced (non-burst).
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Figure 10-40. Snoop under BOFF # to the Line that is Being Replaced
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10.3.3.4 Snoop under HOLD

HOLD can only fracture a non-cacheable, non-burst-
ed code prefetch cycle. For all other cycles, the
Write-Back Enhanced IntelDX2 processor will not
assert HLDA until the entire current cycle is complet-
ed. If the system snoop hits a modified line under
HLDA during a non-cacheable, non-burstable code
prefetch, the snoop write-back cycle will be reor-
dered ahead of the fractured cycle. The fractured
non-cacheable, non-bursted code prefetch resumes
with an ADS# and begins with the first uncompleted
transfer. Snoops are permitted under HLDA, but
write-back cycles will not occur until HOLD is de-as-
serted. Consequently, multiple snoop cycles are per-
mitted under a continuously asserted HLDA only up
to the first asserted HITM#.

intel.

Snoop under HOLD durirg Cache Line Fill

As shown in Figure 10-41, HOLD (asserted in clock
two) does not fracture the oursted cache line-fill cy-
cle until the line fill is completed (in clock five). Upon
completing the line fill in c ock five, the Write-Back
Enhanced IntelDX2 processor asserts HLDA and
the system begins snoopinj by driving EADS # and
INV in the following clock period. The assertion of
HITM# in clock nine indicates that the snoop cycle
has hit a modified line and the cache line is written
back to memory. The assertion of HITM# in clock
nine and CACHE # and AD3S# in clock 11 identifies
the beginning of the snoop write-back cycle. The
snoop write-back cycle bejins upon the de-asser-
tion of HOLD, and HITM# is asserted throughout

“the duration of the snoop write-back cycle.
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Figure 10-41. Snoop under HOLD during Line Fill
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If HOLD is asserted during a non-cacheable, non-
bursted code prefetch cycle, as shown in Figure
10-42, the Write-Back Enhanced IntelDX2 processor
will issue HLDA in clock seven (which is the clock
period in which the next RDY# is returned).

Intel486™ PROCESSOR FAMILY

If the system snoop hits a modified line, the snoop
write-back cycle will begin after HOLD is released.
After the snoop write-back cycle is completed, an
ADS# is issued and the code prefetch cycle re-
sumes.
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Figure 10-42. Snoop using HOLD during a Non-Cacheable, Non-Burstable Code Prefetch
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Snoop under HOLD during Replacement cycle is run, the processor first determines if the cor-
Write-Back responding line is in the cache. If the line is present

i in the cache, and is in an E or S state, it is invalidat-
Collision of snoop cycles under a HOLD during the ed. If the line is in the M state, the processor does a

replacement write-back cycle can never occur, be- write-back and then invalidates the line. A locked
cause HLDA is asserted only after the replacement cycle to an M, S, or E state line is always forced out
write-back cycle (bursted or non-bursted) is complet- to the bus. If the operand is misaligned across cache
ed. lines, the processor could potentially run two write

back cycles before starting the first locked read. In
this case the sequence of bus cycles is: write back,
10.3.4 LOCKED CYCLES write back, locked read, locked read, locked write

In both Standard and Enhanced Bus modes, the and the final locked write. Note that although a total

Write-Back Enhanced IntelDX2 processor architec- of six cycles are generated, the LOCK# pin will be
ture supports atomic memory access. A programmer active only during the last four cycles, as shown in
can modify the contents of a memory variable and Figure 10-43.

be assured that the variable will not be accessed by
another bus master between the read of the variable
and the update of that variable. This function is pro-
vided for instructions that contain a LOCK prefix,
and also for instructions that implicitly perform
locked read modify write cycles. In hardware, the
LOCK function is implemented through the LOCK #
pin, which indicates to the system that the processor
is performing this sequence of cycles, and that the
processor should be allowed atomic access for the
location accessed during the first locked cycle.

LOCK# will not be de-asserted if AHOLD is assert-
ed in the middle of a locked cycle. LOCK# will re-
main asserted even if there is a snoop write-back
during a locked cycle. LOCK# will be floated if
BOFF# is asserted in the middle of a locked cycle.
However, it will be driven LOW again when the cycle
restarts after BOFF #. Locked read cycles are never
transformed into line fills, even if KEN# is returned
active. If there are back to back locked cycles,
the Write-Back Enhanced IntelDX2 processor
does not insert a dead clock between these two
cycles. HOLD is recognized if there are two back to
back locked cycles, and LOCK# will float when
HLDA is asserted.

A locked operation is a combinétion of one or more
read cycles followed by one or more write cycles
with the LOCK# pin asserted. Before a locked read
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Figure 10-43. Locked Cycles (Back to Back)
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10.3.4.1 Snoop/Lock Collision

If there is a snoop cycle overlaying a locked cycle,
the snoop write-back cycle will fracture the locked
cycle. As shown in Figure 10-44, after the read por-
tion of the locked cycle is completed, the snoop
write-back starts under HITM#. After the write-back

Intel486™ PROCESSOR FAMILY

is completed the locked cycle will continue. But dur-
ing all this time (including the write-back cycle), the
LOCK# signal remains asserted.

Because HOLD is not acknowledged if LOCK# is
asserted, snoop-lock collisions are restricted to
AHOLD and BOFF # snooping.
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Figure 10-44. Snoop Cycle Overlaying a Locked Cycle
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10.3.5 FLUSH OPERATION

The Write-Back Enhanced IntelDX2 processor exe-
cutes a flush operation when the FLUSH# pin is
active, and no outstanding bus cycles, such as a line
fill or write back, are being processed. In the En-
hanced Bus mode, the processor first writes back all
the modified lines to external memory. After the
write-back is completed, two special cycles are gen-
erated, indicating to the external system that the
write-back is done. All lines in the internal cache are
invalidated after all the write back cycles are done.
Depending on the number of modified lines in the
cache, the flush could take a minimum of 1280 bus
clocks (2560 processor clocks) and up to a maxi-
mum of 5000+ bus clocks to scan the cache, per-
form the write backs, invalidate the cache, and

L]
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run the flush acknowledge cycles. FLUSH # is imple-
mented as an interrupt in the Enhanced Bus mode,
and will be recognized only on an instruction bound-
ary. Write-back system designs should look for the
flush acknowledge cycles to recognize the end of
the flush operation. Figure 10-45 shows the flush -
operation of the Write-Back Enhanced IntelDX2
processor, when configured in the Enhanced Bus
mode.

If the processor is in Standard Bus mode, the proc-
essor will not issue special acknowledge cycles in
response to the FLUSH# input, although the inter-
nal cache is invalidated. The invalidation of the
cache in this case, takes only two bus clocks.
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Figure 10-45. Flush Cycle
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10.3.6 PSEUDO LOCKED CYCLES

In Enhanced Bus mode, PLOCK# is always driven
inactive for both burst and non-burst cycles. Hence,
it is possible for other bus masters to gain control of
the bus during operand transfers that take more
than one bus cycle. A 64-bit aligned operand can be
read in one burst cycle or two non-burst cycles if
BS8# and BS16# are not asserted. Figure 10-46
shows a 64-bit floating point operand or Segment
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Descriptor read cycle, which is burst by the system
returning BRDY #.

10.3.6.1 Snoop under AHOLD during Pseudo-
Locked Cycles

AHOLD can fracture a 64-bit transfer if it is a non-
burst cycle. If the 64-bit cycle is burst, as shown in
Figure 10-46, the entire transfer goes to completion
and only then does the snoop write-back cycle start.
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* To Processor
Figure 10-46. Snoop under AHOLD Overlaying Pseudo-Locked Cycle
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10.3.6.2 Snoop under Hold during Pseudo-
Locked Cycles

As shown in Figure 10-47, HOLD will not fracture the
64-bit burst transfer. The Write-Back Enhanced
IntelDX2 processor will not issue HLDA until clock
four. After the 64-bit transfer is completed, the

intal.

Write-Back Enhanced IntelDX2 processor writes
back the modified line to memory (if snoop hits to
modified line). If the 64-bit transfer is non-bursted,
the Write-Back Enhanced IntelIDX2 processor can
issue HLDA in between bus cycles for a 64-bit trans-
fer.
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Figure 10-47. Snoop under HOLD Overlaying Pseudo-Locked Cycle
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10.3.6.3 Snoop under BOFF # Overlaying a
Pseudo-Locked Cycle

BOFF # is capable of fracturing any bus operation.
As shown in Figure 10-48, BOFF # fractured a cur-
rent 64-bit read cycle in clock four. If there is a

Intel486™ PROCESSOR FAMILY

snoop hit under BOFF #, the snoop write-back oper-
ation will begin after BOFF # is de-asserted. The
64-bit write cycle resumes after the snoop write-
back operation completes.
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Figure 10-48. Snoop under BOFF # Overlaying a Pseudo-Locked Cycle
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11.0 TESTABILITY

Testing in the Intel486 processor can be divided into

two categories: Built-in Self Test (BIST) and external
" testing. The BIST tests the non-random logic, con-
trol ROM (CROM), translation lookaside buffer (TLB)
and on-chip cache memory. External tests can be
run on the TLB and the on-chip cache. The Intel486
processor also has a test mode in which all outputs
are tri-stated.

11.1 Built-In Self Test (BIST)

The BIST is initiated by holding the AHOLD (address
hold) HIGH for 1 CLK after RESET goes from HIGH
to LOW, as shown in Figure 9.6. No bus cycles will
be run by the Intel486 processor until the BIST is
concluded. Note that for the Intel486 processor, the
RESET must be active for 15 clocks with or without
BIST enabled for warm resets. SRESET should not
be driven active (i.e., high) when entering or during
BIST. See Table 11-1 for approximate clocks and
maximum completion times for different Intel486
processors.

The results of BIST is stored in the EAX register.
The Intel486 processor has successfully passed the
BIST if the contents of the EAX register are zero. If
the results in EAX are not zero, then the BIST has
detected a flaw in the Intel486 processor. The In-
tel486 processor performs reset and begins normal
operation at the completion of the BIST.

The non-random logic, control ROM, on-chip cache
and translation lookaside buffer (TLB) are tested
during the BIST.

The cache portion of the BIST verifies that the
cache is functional and that it is possible to read and
write to the cache. The BIST manipulates test regis-
ters TR3, TR4 and TR5 while testing the cache.
These test registers are described in section 11.2,
“On-Chip Cache Testing.”

intgl.

The cache testing algorithm writes a value to each
cache entry, reads the value back, and checks that
the correct value was read back. The algorithm may
be repeated more than once for each of the 512
cache entries using different constants. The In-
telDX4 processor has 1024 cache entries. All other
Intel486 processors have 512 cache entries.

The TLB portion of the BIST verifies that the TLB is
functional and that it is possible to read and write to
the TLB. The BIST manipulates test registers TR6
and TR7 while testing the TLB. TR6 and TR7 are
described in section 11.3.2, “TLB Test Registers
TR6 and TR7.”

11.2 On-Chip Cache Testing

The on-chip cache testability hooks are designed to
be accessible during the BIST and for assembly lan-
guage testing of the cache.

The Intel486 processor contains a cache fill buffer
and a cache read buffer. For testability writes, data
must be written to the cache fill buffer before it can
be written to a location in the cache. Data must be -
read from a cache location into the cache read buff-
er before the processor can access the data. The
cache fill and cache read buffer are both 128 bits
wide.

11.2.1 CACHE TESTING REGISTERS TR3, TR4
AND TRS

Figure 11-1 shows the three cache testing registers:
the Cache Data Test Register (TR3), the Cache
Status Test Register (TR4) and the Cache Control
Test Register (TRS5). External access to these regis-
ters is provided through MOV reg, TREG and MOV
TREG, reg instructions.

Table 11-1. Maximum BIST Completion Time

Processor Core Clock Approximate Approximate Time for
Type Freq. Clocks Completions
Intel486™ SX 25 MHz 1.05 million 42 milliseconds
IntelSX2™ 50 MHz 0.6 million 24 milliseconds
Intel486 DX 33 MHz 1.05 million 32 milliseconds
IntelDX2™ 50 MHz 0.6 million 24 milliseconds
IntelDX4™ 75 MHz 1.6 million 22 milliseconds
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31 0
TR3
Data Cache Data
Test Register
31 1110 9 8 7 6 5 4 32 10

TR4
Cache Status
Test Register

© | LRUBIits Valid Bits
Tag T | (usedonly | (used only
> during reads)| during reads|

TRS
Set Select SEenIteth Control | Cache Control
Test Register
242202-D3 2

Figure 11-1. Cache Test Registers (All Intel486™ Processors Except the IntelDX4™ Processor)

31 0
TR3
Data Cache Data
Test Register
31 121110 9 8 7 6 56 4 3 2 1 0
LRU Bits TR4
Tag (used only Cache Status
during reads) Test Register
31 12 11 4 3 2 1 0
TRS
Set Select Entry Control | Cache Control
Select »
Test Register
242202-D4

Figure 11-2. InteIDX4™ Processor Cache Test Registers
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Cache Data Test Register: TR3

The cache fill buffer and the cache read buffer can
only be accessed through TR3. Data to be written to
the cache fill buffer must first be written to TR3. Data
read from the cache read buffer must be loaded into
TR3.

TR3 is 32 bits wide while the cache fill and read
buffers are 128 bits wide. 32 bits of data must be
written to TR3 four times to fill the cache fill buffer.
32 bits of data must be read from TR3 four times to
empty the cache read buffer. The entry select bits in

TR5 determine which 32 bits of data TR3 will access

in the buffers.
Cache Status Test Register: TR4

TR4 handles tag; LRU and valid bit information dur-
ing cache tests. TR4 must be loaded with a tag and
a valid bit before a write to the cache. After a read
from a cache entry, TR4 contains the tag and valid
bit from that entry, and the LRU bits and four valid
bits from the accessed set. Note that the IntelDX4
processor has one less bit in the TR4 TAG field.
(See Figure 11-1.)

Cache Control Test Register: TR5

TR5 specifies which testability operation will be per-
formed and the set and entry within the set which
will be accessed. The set select field determines
which will be accessed. Note that the IntelDX4 proc-
essor has an 8-bit set select field and 256 sets. All
other Intel486 processors have a 7-bit set select
field and 128 sets. (See Figure 11-1.)

The function of the two entry select bits depends on
the state of the control bits. When the fill or read
buffers are being accessed, the entry select bits
point to the 32-bit location in the buffer being ac-
cessed. When a cache location is specified, the en-
try select bits point to one of the four entries in a set.
(Refer to Table 11-2.)

Five testability functions can be performed on the
cache. The two control bits in TR5 specify the oper-
ation to be executed. The five operations are:

1. Write cache fill buffer

2. Perform a cache testability write
3. Perform a cache testability read
4. Read the cache read buffer

5. Perform a cache flush
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Table 11-2 shows the encoding of the two control
bits in TR5 for the cache testability functions. Table
11-2 also shows the functionality of the entry and set
select bits for each control operation.

* The cache tests attempt to use as much of the nor-

mal operating circuitry as possible. Therefore, when
cache tests are being performed, the cache must be
disabled (the CD and NW bits in control register 0
(CRO) must be set to 1 to disable the cache. (See
section 7.0, “On-Chip Cache.”)

11.2.2 CACHE TESTING REGISTERS FOR THE
INTELDX4 PROCESSOR

The cache testing registers for the IntelDX4 proces-
sor differ slightly from the other Intel486 processors.
TR3 in the IntelDX4 processor is identical to other
Intel486 processors. TR4 in the IntelDX4 processor
uses bits 31 to 12 for the Tag field, and bit 11 is
unused. TR5 uses bits 11 to 4 for the Set Select
field. The Test Registers for the IntelDX4 processor
are shown in Figure 11-2.

NOTE:
Software written for the Intel486 processor
for testing the cache using the Test Register
will produce failures due to the changes in
the TAG bits and Set Select bits for the In-
telDX4 processor.

- Rewrite the code to take into account the 20
TAG bits and 8 Set Select bits to address
the larger cache.

11.2.3 CACHE TESTABILITY WRITE

A testability write to the cache is a two step process.
First the cache fill buffer must be loaded with 128
bits of data and TR4 loaded with the tag and valid
bit. Next the contents of the fill buffer are written to a
cache location.

Loading the fill buffer is accomplished by first writing
to the entry select bits in TR5 and setting the control
bits in TR5 to 00. The entry select bits identify one of
four 32-bit locations in the cache fill buffer to put 32
bits of data. Following the write to TR5, TR3 is writ-
ten with 32 bits of data which are immediately
placed in the cache fill buffer. Writing to TR3 initiates
the write to the cache fill buffer. The cache fill buffer
is loaded with 128 bits of data by writing to TR5 and
TR3 four times using a different entry select location
each time.
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Table 11-2. Cache Control Bit Encoding and Effect of Control Bits
on Entry Select and Set Select Functionality

Control Bits | .
Operation Entry Select Bits Function Set Select Bits
Bit 1 Bit 0
0 0 Enable: Fill Buffer Write Select 32-bit location in —
Read Buffer Read fill/read buffer
0 1 Perform Cache Write Select an entry in set Select a set to write to
1 0 Perform Cache Read Select an entry in set Select a set to read from
1 1 Perform Cache Flush — —

TR4 must be loaded with the tag and valid bit (bit 10
in TR4) before the contents of the fill buffer are writ-
ten to a cache location. The IntelDX4 processor
has a 20-bit tag in TR4. All other Intel486 proces-
sors use a 21-bit tag in TR4.

The contents of the cache fill buffer are written to a
cache location by writing TR5 with a control field of
01 along with the set select and entry select fields.
The set select and entry select field indicate the lo-
cation in the cache to be written. The normal cache
LRU update circuitry updates the internal LRU bits
for the selected set.

Note that a cache testability write can only be done
when the cache is disabled for replaces (the CD bit
is control register 0 is reset to 1). Care must be tak-
en when directly writing to entries in the cache. If the
entry is set to overlap an area of memory that is
being used in external memory, that cache entry
could inadvertently be used instead of the external
memory. This is exactly the type of operation that
one would desire if the cache were to be used as a
high speed RAM. Also, a memory reference (or any
external bus cycle) should not occur in between the
move to TR4 and the move to TR5, in order to avoid
having the value in TR4 change due to the memory
reference.

11.2.4 CACHE TESTABILITY READ

A cache testability read is a two step process. First
the contents of the cache location are read into the
cache read buffer. Next the data is examined by
reading it out of the read bulffer.

Reading the contents of a cache location into the
cache read buffer is initiated by writing TR5 with the
control bits set to 10 and the desired set select and

two-bit entry select. The IntelDX4 processor has a
seven-bit select field. All other Inteld86 proces-
sors have an eight-bit select field. In response to
the write to TR5, TR4 is loaded with the 21-bit tag
field and the single valid bit from the cache entry
read. TR4 is also loaded with the three LRU bits and
four valid bits corresponding to the cache-set that
was accessed. The cache read buffer is filled with
the 128-bit value which was found in the data array
at the specified location.

The contents of the read buffer are examined by
performing four reads of TR3. Before reading TR3
the entry select bits in TR5 must loaded to indicate
which of the four 32-bit words in the read buffer to
transfer into TR3 and the control bits in TR5 must be
loaded with 00. The register read of TR3 will initiate
the transfer of the 32-bit value from the read buffer
to the specified general purpose register.

Note that it is very important that the entire 128-bit
quantity from the read buffer and also the informa-
tion from TR4 be read before any memory refer-
ences are allowed to occur. If memory operations
are allowed to happen, the contents of the read buff-
er will be corrupted. This is because the testability
operations use hardware that is used in normal
memory accesses for the Intel486 processor wheth-
er the cache is enabled or not.

11.2.5 FLUSH CACHE

The control bits in TR5 must be written with 11 to
flush the cache. None of the other bits in TR5 have
any meaning when 11 is written to the control bits.
Flushing the cache will reset the LRU bits and the
valid bits to 0, but will not change the cache tag or
data arrays.
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When the cache is flushed by writing to TR5 the
special bus cycle indicating a cache flush to the ex-
ternal system is not run. (See section 10.2.11, “Spe-
cial Bus Cycles.”) For normal operation, the cache
should be flushed with the instruction INVD (Invali-
date Data Cache) instruction or the WBINVD (Write-
back and Invalidate Data Cache) instruction.

11.2.6 ADDITIONAL CACHE TESTING
FEATURES FOR ENHANCED BUS
(WRITE-BACK) MODE

When in Enhanced Bus (write-back) mode, the
Write-Back Enhanced IntelDX2 cache testing is a
superset of the Standard Bus (write-through) mode.
The additional cache testing features for the Write-
Back Enhanced IntelDX2 processor are summarized
below:

There are two state bits per cache line (VH and VL)
instead of one (V). The assignment of VH and VL
state bits is listed in the Table 11-3.

Table 11-3. State Bit Assignments for the
Write-Back Enhanced IntelDX2\ Processor

State VH, VL
M 1,1
E 0,1
S 1,0
1 0,0
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When the Write-Back Enhanced IntelDX2 processor
is in standard mode, the VH state assignments are

identical to the V state assignments of the IntelDX2
processor, which only support S and | states.

“TR3 is the same as described above for both Stan-
dard and Enhanced Bus modes.
TR4 is the same as described above for the
IntelDX2 processor in Standard Mode. However, in
Enhanced Bus mode, the cache line state bits of all
four lines of the set are no longer available, to avoid
a conflicting definition of state bits for the selected
entry. The entry’s state bits are moved to positions 0
and 1. Bit 10 is reserved for the possible extension
of the tag. The changes to TR4 for Enhanced Bus
mode are shown in Figure 11-3.

TR5 is the same as it is for the IntelDX2 processor in
standard mode. In Enhanced Bus mode, control bit
TR5.SLF (bit 13) is added to allow 1,1 of TR5.CTL
(bits 0 and 1) to perform two different kinds of cache
flushes. When SLF=0, CTL=1,1 performs a single-
clock invalidate of all lines in the cache, which will
not write back M-state lines. In the M state, if
SLF=1, the specific line addressed will be written
back and invalidated. The state of SLF is significant
only when CTL=1,1. The changes to TR5 for En-
hanced Bus mode are shown in Figure 11-4.
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Figure 11-3. TR4 Definition for Standard and Enhanced Bus Modes for the
Write-Back Enhanced IntelIDX2TMProcessor
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Figure 11-4. TR5 Definition for Standard and Enhanced Bus Modes for the
Write-Back Enhanced IntelDX2™ Processor

11.3 Translation Lookaside Buffer
(TLB) Testing

The Intel486 processor TLB testability hooks are
similar to those in the Intel386 processor. The testa-
bility hooks have been enhanced to provide added

- test features and to include new features in the
Intel486 processor. The TLB testability hooks are
designed to be accessible during the BIST and for
assembly language testing of the TLB.

11.3.1 TRANSLATION LOOKASIDE BUFFER
ORGANIZATION

The Intel486 processor TLB is 4-way set associative
and has space for 32 entries. The TLB is logically
split into three blocks shown in Figure 11-5.

The data block is physically split into four arrays,
each with space for eight entries. An entry in the
data block is 22 bits wide containing a 20-bit physi-
cal address and two bits for the page attributes. The
page attributes are the PCD (page cache disable) bit
and the PWT (page write-through) bit. Refer to sec-
tion 7.6, “Page Cacheability,” for a discussion of the
PCD and PWT bits.

The tag block is also split into four arrays, one for
each of the data arrays. A tag entry is 21 bits wide
containing a 17-bit linear address and four protec-
tion bits. The protection bits are valid (V), user/su-
pervisor (U/S), read/write (R/W) and dirty (D).

The third block contains eight three bit quantities
used in the pseudo least recently used (LRU) re-
placement algorithm. These bits are called the LRU
bits. Unlike the on-chip cache, the TLB will replace a
valid line even when there is an invalid line in a set.
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242202-D7

Figure 11-5. TLB Organization

11.3.2 TLB TEST REGISTERS TR6 AND TR7

The two TLB test registers are shown in Figure 11-6.
TR6 is the command test register and TR7 is the
data test register. External access to these registers
is provided through MOV reg, TREG and MOV
TREG,reg instructions.

Command Test Register: TR6
TR6 contains the tag information and control infor-
mation used in a TLB test. Loading TR6 with tag and

control information initiates a TLB write or lookup
test.
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TR6 contains three bit fields, a 20-bit linear address
(bits 12-31), seven bits for the TLB tag protection
bits (bits 5-11) and one bit (bit 0) to define the type
of operation to be performed on the TLB.

The 20-bit linear address forms the-tag information
used in the TLB access. The lower three bits of the
linear address select which of the eight sets are ac-
cessed. The upper 17 bits of the linear address form
the tag stored in the tag array.
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31 121110 9 8 7 6 5 4 0
TR6
Linear Address V |D |D# U UKW TLB Command
Test Register
31 121110 9 8 7 6 5 4321 0
TR7
Physical Address PCDPWT| L2 | L1 |LO TLB Data
LRU Bits Test Register

Replacement Pointer Select (Writes) Replacement Pointer (Writes)
Hit Indication (Lookup)  Hit Location (Lookup)

242202-D8

Figure 11-6. TLB Test Registers
The seven TLB tag protection bits are described be- miss or hit during a TLB lookup operation. The
low. forced miss or hit will occur regardless of the state
V: The valid bit for this TLB entry of the actual bit in the TLB. The meaning of these

airs of bits is given in Table 11-4.
D,.D#:  The dirty bit for/from the TLB entry P g

U,U#:  The user/supervisor bit for/from the TLB The operation bit in TR6 determines if the TLB test
entry operation will be a write or a lookup. The function of

W,W#: The read/write bit for/from the TLB entry the operation bit is given in Table 11-.

Two bits are used to represent the D, U/S and R/W
bits in the TLB tag to permit the option of a forced

Table 11-4. Meaning of a Pair of TR6 Protection Bits

TR6 Protection Bit TR6 Protection Bit# Meaning on Meaning on
(B) (B#) TLB Write Operation TLB Lookup Operation
0 0 Undefined Miss any TLB TAG Bit B
0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit Bif 0
1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit Bif 1
1 1 Undefined Match any TLB TAG Bit B
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Table 11-5. TR6 Operation Bit Encoding

T.RG TLB Operation to Be Performed
Bit0

0 TLB Write

1 TLB Lookup

Data Test Register: TR7

TRY7 contains the information stored or read from the
data block during a TLB test operation. Before a TLB
test write, TR7 contains the physical address and
the page attribute bits to be stored in the entry. After
a TLB test lookup hit, TR7 contains the physical ad-
dress, page attributes, LRU bits and entry location
from the access.

TR7 contains a 20-bit physical address (bits 12-31),
PLD bit (bit 11), PWT bit (bit 10), and three bits for
the LRU bits (bits 7-9). The LRU bits in TR7 are only
used during a TLB lookup test. The functionality of
TR7 bit 4 differs for TLB writes and lookups. The
encoding of bit 4 is defined in Table 11-6 and Table
11-7. Finally, TR7 contains two bits (bits 2-3) to
specify a TLB replacement pointer or the location of
a TLB hit.

Table 11-6. Encoding of Bit 4 of TR7 on Writes

-
intel.
enhancement over TLB testing in the Intel386 proc-

essor is that paging need not be disabled while exe-
cuting testability writes or lookups.

Note that any time one TLB set contains the same
linear address in more than one of its entries, look-
ing up that linear address will give unpredictable re-
sults. Therefore a single linear address should not
be written to one TLB set more than once.

Table 11-7. Encoding of Bit 4 of TR7 on Lookups

;IF: Z Meaning after TLB Lookup Operation
0 TLB Lookup Resulted in a Miss
1 TLB Lookup Resulted in a Hit

TR7 Replacement Pointer Used on TLB
Bit 4 Write
0 Pseudo-LRU Replacement Pointer
1 Data Test Register Bits 3:2

A replacement pointer is used during a TLB write.
The pointer indicates which of the four entries in an
accessed set is to be written. The replacement
pointer can be specified to be the internal LRU bits
or bits 2-3 in TR7. The source of the replacement
pointer is specified by TR7 bit 4. The encoding of bit
4 during a write is given by Table 11-6.

Note that both testability writes and lookups affect
the state of the internal LRU bits regardless of the
replacement pointer used. All TLB write operations
(testability or normal operation) cause the written
entry to become the most recently used. For exam-
ple, during a testability write with the replacement
pointer specified by TR7 bits 2-3, the indicated en-
try is written and that entry becomes the most re-
cently used as specified by the internal LRU bits.

There are two TLB testing operations: write entries
into the TLB, and perform TLB lookups. One major
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11.3.3 TLB WRITE TEST

To perform a TLB write TR7 must be loaded fol-
lowed by a TR6 load. The register operations must
be performed in this order because the TLB opera-
tion is triggered by the write to TR6.

TR7 is loaded with a 20-bit physical address and
values for PCD and PWT to be written to the data
portion of the TLB. In addition, bit 4 of TR7 must be
loaded to indicate whether to use TR7 bits 3-2 or the
internal LRU bits as the replacement pointer on the
TLB write operation. Note that the LRU bits in TR7
are not used in a write test.

TR6 must be written to initiate the TLB write opera-
tion. Bit 0 in TR6 must be reset to zero to indicate a
TLB write. The 20-bit linear address and the seven
page protection bits must also be written in TR6 to
specify the tag portion of the TLB entry. Note that
the three least significant bits of the linear address
specify which of the eight sets in the data block will
be loaded with the physical address data. Thus only
17 of the linear address bits are stored in the tag
array.

11.3.4 TLB LOOKUP TEST

To perform a TLB lookup it is only necessary to write
the proper tags and control information into TR6. Bit
0 in TR6 must be set to 1 to indicate a TLB lookup.
TR6 must be loaded with a 20-bit linear address and
the seven protection bits. To force misses and
matches of the individual protection bits on TLB
lookups, set the seven protection bits as specified in
Table 11-4.
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A TLB lookup operation is initiated by the write to
TR6. TR7 will indicate the result of the lookup opera-
tion following the write to TR6. The hit/miss indica-
tion can be found in TR7 bit 4 (see Table 11-7).

TRY7 will contain the following information if bit 4 indi-
cated that the lookup test resulted in a hit. Bits 2-3
will indicate in which set the match occurred. The 22
most significant bits in TR7 will contain the physical
address and page attributes contained in the entry.
Bits 9-7 will contain the LRU bits associated with
the accessed set. The state of the LRU bits is previ-
ous to their being updated for the current lookup.

If bit 4 in TR7 indicated that the lookup test resulted
in a miss the remaining bits in TR7 are undefined.

Again it should be noted that a TLB testability lookup
operation affects the state of the LRU bits. The LRU
bits will be updated if a hit occurred. The entry which
was hit will become the most recently used.

11.4 Tri-State Output Test Mode

The Intel486 processor provides the ability to float
all its outputs and bidirectional pins, except for the
VOLDET pin in the IntelIDX4 processor. This in-
cludes all pins floated during bus hold as well as
pins which are never floated in normal operation of
the chip (HLDA, BREQ, FERR# and PCHK#).
When the Intel486 processor is in the tri-state output
test mode external testing can be used to test board
connections.

The tri-state test mode is invoked if FLUSH# is
sampled active at the falling edge of RESET.
FLUSH# is an asynchronous signal. When driven,
FLUSH # should be asserted for 2 clocks before and
2 clocks after RESET is de-asserted. If FLUSH# is
driven synchronously, the tri-state output test mode
is initiated by driving FLUSH# so that it is sampled
active in the clock prior to RESET going low and
ensuring that specified setup and hold times are
met. The outputs are guaranteed to tri-state no later
than 10 clocks after RESET goes low (see Figure
9.6). The Intel486 processor remains in the tri-state
test mode until the next RESET.

11.5 Intel486 Processor Boundary
Scan (JTAG)

The Intel486 processor provides additional testabili-
ty features compatible with the IEEE Standard Test
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Access Port and Boundary Scan Architecture (IEEE
Std. 1149.1). (Note that the Intel486 SX processor in
PGA package does not have JTAG capability.) The

- test logic provided allows for testing to insure that

components function correctly, that interconnec-
tions between various components are correct, and
that various components interact correctly on the
printed circuit board.

The boundary scan test logic consists of a boundary
scan register and support logic that are accessed
through a test access port (TAP). The TAP provides
a simple serial interface that makes it possible to
test all signal traces with only a few probes.

The TAP can be controlled via a bus master. The
bus master can be either automatic test equipment
or a component (PLD) that interfaces to the four-pin
test bus.

11.5.1 BOUNDARY SCAN ARCHITECTURE

The boundary scan test logic contains the following
elements:

® Test access port (TAP), consisting of input pins
TMS, TCK, and TDI; and output pin TDO.

® TAP controller, which interprets the inputs on the
test mode select (TMS) line and performs the
corresponding operation. The operations per-
formed by the TAP include controlling the instruc-
tion and data registers within the component.

® |nstruction register (IR), which accepts instruction
codes shifted into the test logic on the test data
input (TDI) pin. The instruction codes are used to
select the specific test operation to be performed
or the test data register to be accessed.

® Test data registers: The Intel486 processor con-
tains three test data registers: Bypass register
(BPR), Device ldentification register (DID), and
Boundary Scan register (BSR).

The instruction and test data registers are separate
shift-register paths connected in parallel and have a
common serial data input and a common serial data
output connected to the TAP signals, TDI and TDO,
respectively.

11.5.2 DATA REGISTERS

The Intel486 processor contains the two required
test data registers; bypass register and boundary
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scan register. In addition, they also have a device
identification register.

Each test data register is serially connected to TDI
and TDO, with TDI connected to the most significant
bit and TDO connected to the least significant bit of
the test data register.

Data is shifted one stage (bit position within the reg-
ister) on each rising edge of the test clock (TCK). In
addition the Intel486 processor contains a runbist
register to support the RUNBIST boundary scan in-
struction.

11.5.2.1 Bypass Register

The Bypass Register is a one-bit shift register that
provides the minimal length path between TDI and
TDO. This path can be selected when no test opera-
tion is being performed by the component to allow
rapid movement of test data to and from other

-
intgl.
components on the board. While the bypass register

is selected data is transferred from TDI to TDO with-
out inversion.

11.5.2.2 Boundary Scan Register

The Boundary Scan Register is a single shift register
path containing the boundary scan cells that are
connected to all input and output pins of the Intel486
processor. Figure 11-7 shows the logical structure of
the boundary scan register. While output cells deter-
mine the value of the signal driven on the corre-
sponding pin, input cells only capture data; they do
not affect the normal operation of the device. Data is
transferred without inversion from TDI to TDO
through the boundary scan register during scanning.
The boundary scan register can be operated by the
EXTEST and SAMPLE instructions. The boundary
scan register order is described in section 11.5.5
“Boundary Scan Register Bits and Bit Orders.”

BOUNDARY SCAN REGISTER

SYSTEM SYSTEM
LOGIC LOGIC
INPUT

TCK

i

_______ —————
'
1
-=n |
1 ]
1 1
. SYSTEM
: oy ::2IRECTIONAL
I
' i_
1
i B/S
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1
1
1
1 SYSTEM
+—> gE/LSL 3-STATE
. OUTPUT
. 1
. 1
1 REYS !
T CELL !
1 I‘ 1
| I - e em wm d
00
242202-D9

Figure 11-7. Logical Structure of Boundary Scan Register
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11.5.2.1 Device Identification Register

The Device |dentification Register contains the man-
ufacturer’s identification code, part number code,
and version code. Table 11-8 lists the codes corre-
sponding to the Intel486 processor.

11.5.2.2 Runbist Register

The Runbist Register is a one bit register used to
report the results of the Intel486 processor BIST
when it is initiated by the RUNBIST instruction. This
register is loaded with a “1” prior to invoking the
BIST and is loaded with “0” upon successful com-
pletion.

11.5.3 INSTRUCTION REGISTER

The Instruction Register (IR) allows instructions to
be serially shifted into the device. The instruction
selects the particular test to be performed, the test
data register to be accessed, or both. The instruc-
tion register is four (4) bits wide. The most significant
bit is connected to TDI and the least significant bit is
connected to TDO. There are no parity bits associat-
ed with the Instruction register. Upon entering the
Capture-IR TAP controller state, the Instruction reg-
ister is loaded with the default instruction “0001,”
SAMPLE/PRELOAD. Instructions are shifted into
the instruction register on the rising edge of TCK
while the TAP controller is in the SHIFT-IR state.

Intel486™ PROCESSOR FAMILY

11.5.3.1 Boundary Scan Instruction Set

The Intel486 processor supports all three mandatory
boundary scan instructions (BYPASS, SAMPLE/
PRELOAD, and EXTEST) along with two optional in-
structions (IDCODE and RUNBIST). Table 11-9 lists
the Intel486 processor boundary scan instruction
codes. The instructions listed as PRIVATE cause
TDO to become enabled in the Shift-DR state and
cause ‘0* to be shifted out of TDO on the rising edge
of TCK. Execution of the PRIVATE instructions will
not cause hazardous operation of the Intel486 proc-
essor.

EXTEST The instruction code is “0000.” The
EXTEST instruction allows testing of cir-
cuitry external to the component package,
typically board interconnects. It does so by
driving the values loaded into the Intel486
processor’s boundary scan register out on
the output pins corresponding to each
boundary scan cell and capturing the val-
ues on Intel486 processor input pins to be
loaded into their corresponding boundary
scan register locations. 1/0 pins are se-
lected as input or output, depending on
the value loaded into their control setting
locations in the boundary scan register.
Values shifted into input latches in the
boundary scan register are never used by
the internal logic of the Intel486 proces-
sor.
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Table 11-8. Boundary Scan Component Identification Codes

intel.

Vee Intel
Processor . MFG ID 1st| Boundary
Version | 1=3.3V | Architecture | Family | Model _

Type 0=5V Type Intel=009H | Bit | Scan ID (Hex)
Intel486™ SX 00* 1 000001 0100 | 00010 | 00000001001 | 1 x8282013H
processor (3.3V)

Intel486 SX OX* 1 000001 0100 | 00010 | 00000001001 | 1 x8282013H
processor

(3.3V, 2X CLK)

Intel486 SX XXXX* 0 000001 0100 | 00010 | 00000001001 | 1 x0282013H
processor (5V)

Intel486 SX OXX* 0 000001 0100 | 00010 { 00000001001 | 1 x0282013H
processor

(5V, 2X CLK)

IntelSX2™ XKX* 0 000001 0100 | 00101 | 00000001001 | 1 x0286013H
processor

Intel486 DX XXXX* 1 000001 0100 | 00001 { 00000001001 | 1 x8281013H
processor (3.3V)

Intel486 DX XXX * 1 000001 0100 | 00001 | 00000001001 | 1 x8281013H
processor

(3.3V, 2X CLK)

Intel486 DX XXXX* 0 000001 0100 | 00001 | 00000001001 | 1 | x0281013H
processor (5V)

Intel486 DX XXOKK* 0 000001 0100 | 00001 | 00000001001 | 1 x0281013H
processor :

(5V, 2X CLK)

IntelDX2T™ X00C* 1 000001 0100 | 00101 | 00000001001 | 1 x8285013H
processor (3.3V)

IntelDX2 processor | 0™ 0 000001 0100 | 00101 | 00000001001| 1 | x0285013H
(5v)

Write-Back XXXX* 1 000001 0100 | 00111 |00000001001| 1 | x8287013H
Enhanced IntelDX2

processor (3.3V)

Write-Back XXXC* 0 000001 0100 | 00111 |00000001001| 1 | x0287013H
Enhanced IntelDX2

processor (5V)

InteIDX4™ XXXx* 1 000001 0100 | 01000 | 00000001001 | 1 x8288013H
processor (3.3V)

NOTE:
*Contact Intel for details
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Table 11-9. Boundary Scan Instruction Codes

Instruction Code Instruction Name
0000 EXTEST
0001 SAMPLE
0010 IDCODE
0011 PRIVATE
0100 PRIVATE
0101 PRIVATE
0110 PRIVATE
0111 PRIVATE
1000 RUNBIST
1001 PRIVATE
1010 PRIVATE
1011 PRIVATE
1100 PRIVATE
1101 PRIVATE
1110. PRIVATE
1111 BYPASS

NOTE:

After using the EXTEST instruction, the In-
tel486 processor must be reset before nor-
mal (non-boundary scan) use.

SAMPLE/ The instruction code is “0001.” The
PRELOAD SAMPLE/PRELOAD has two functions

that it performs. When the TAP control-
ler is in the Capture-DR state, the
SAMPLE/PRELOAD instruction allows
a ‘“‘snap-shot” of the normal operation
of the component without interfering
with that normal operation. The instruc-
tion causes boundary scan register
cells associated with outputs to sample
the value being driven by the Intel486
processor. it causes the cells associat-
ed with inputs to sample the value be-
ing driven into the Intel486 processor.
On both outputs and inputs the sam-
pling occurs on the rising edge of TCK.
When the TAP controller is in the Up-
date-DR state, the SAMPLE/PRELOAD
instruction preloads data to the device

IDODE

BYPASS

RUNBIST
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pins to be driven to the board by exe-
cuting the EXTEST instruction. Data is
preloaded to the pins from the bounda-
ry scan register on the falling edge of
TCK.

The instruction code is “0010.” The
IDCODE instruction selects the device
identification register to be connected
to TDI and TDO, allowing the device
identification code to be shifted out of
the device on TDO. Note that the de-
vice identification register is not altered
by data being shifted in on TDI.

The instruction code is “1111.” The
BYPASS instruction selects the bypass
register to be connected to TDI and
TDO, effectively bypassing the test log-
ic on the Intel486 processor by reduc-
ing the shift length of the device to one
bit. Note that an open circuit fault in the
board level test data path will cause the
bypass register to be selected following
an instruction scan cycle due to the
pull-up resistor on the TDI input. This
has been done to prevent any unwant-
ed interference with the proper opera-
tion of the system logic.

The instruction code is “1000.” The
RUNBIST instruction selects the one
(1) bit runbist register, loads a value of
“1” into the runbist register, and con-
nects it to TDO. It also initiates the built-
in self test (BIST) feature of the
Intel486 processor, which is able to de-
tect approximately 60% of the stuck-at
faults on the Intel486 processor. The
Intel486 processor ac/dc specifications
for Voc and CLK must be met and
RESET must have been asserted at
least once prior to executing the
RUNBIST boundary scan instruction.
After loading the RUNBIST instruction
code in the instruction register, the TAP
controller must be placed in the Run-
Test/Idle state. BIST begins on the first
rising edge of TCK after entering the
Run-Test/Idle state. The TAP controller
must remain in the Run-Test/Idle state
until BIST is completed. It requires 1.2
million clock (CLK) cycles to complete
BIST and report the result to the runbist
register. After completing the 1.2 million
clock (CLK) cycles, the value in the run-
bist register should be shifted out on
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TDO during the Shift-DR state. A value
of “0” being shifted out on TDO indi-
cates BIST successfully completed. A
value of “1” indicates a failure oc-
curred. After executing the RUNBIST
instruction, the Intel486 processor must
be reset prior to normal operation.

11.5.4 TEST ACCESS PORT (TAP)

CONTROLLER

The TAP controller is a synchronous, finite state ma-

chine.

It controls the sequence of operations of

intal.

the test logic. The TAP controller changes state only
in response to the following events:

1. a rising edge of TCK
2. power-up.

The value of the test mode state (TMS) input signal
at a rising edge of TCK controls the sequence of the
state changes. The state diagram for the TAP con-
troller is shown in Figure 11-8. Test designers must
consider the operation of the state machine in order
to design the correct sequence of values to drive on
TMS.

Select-DR-Scan

242202-E0
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11.5.4.1 Test-Logic-Reset State

In this state, the test logic is disabled so that normal
operation of the device can continue unhindered.
This is achieved by initializing the instruction register
such that the IDCODE instruction is loaded. No mat-
ter what the original state of the controller, the con-
troller enters Test-Logic-Reset state when the TMS
input is held high (1) for at least five rising edges of
TCK. The controller remains in this state while TMS
is high. The TAP controller is also forced to enter
this state at power-up.

11.5.4.2 Run-Test/Idle State

A controller state between scan operations. Once
in this state, the controller remains in this state as
long as TMS is held low. In devices supporting the
RUNBIST instruction, the BIST is performed during
this state and the result is reported in the runbist
register. For instruction not causing functions to exe-
cute during this state, no activity occurs in the test
logic. The instruction register and all test data regis-
ters retain their previous state. When TMS is high
and a rising edge is applied to TCK, the controller
moves to the Select-DR state.

11.5.4.3 Select-DR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-DR state, and a scan se-
quence for the selected test data register is initiated.
If TMS is held high and a rising edge is applied to
TCK, the controller moves to the Select-IR-Scan
state.

The instruction does not change in this state.

11.5.4.4 Capture-DR State

In this state, the boundary scan register captures
input pin data if the current instruction is EXTEST or
SAMPLE/PRELOAD. The other test data registers,
which do not have parailel input, are not changed.

The instruction does not change in this state.

When the TAP controlier is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or the Shift-DR state if
TMS is low.
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11.5.4.5 Shift-DR State

In this controller state, the test data register con-
nected between TDI and TDO as a result of the cur-
rent instruction shifts data one stage toward its serial
output on each rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or remains in the Shift-
DR state if TMS is low.

11.5.4.6 Exit1-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.7 Pause-DR State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the test data
register in the serial path between TDI and TDO. An
example of using this state could be to allow a tester
to reload its pin memory from disk during application
of a long test sequence.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-DR
state.

11.5.4.8 Exit2-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-DR state.
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The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.9 Update-DR State

The boundary scan register is provided with a
latched parallel output to prevent changes at the
parallel output while data is shifted in response to
the EXTEST and SAMPLE/PRELOAD instructions.
When the TAP controller is in this state and the
boundary scan register is selected, data is latched
onto the parallel output of this register from the shift-
register path on the falling edge of TCK. The data
held at the latched parallel output does not change
other than in this state.

All test data registers selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.10 Select-IR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous value. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-IR state, and a scan se-
quence for the instruction register is initiated. If TMS
is held high and a rising edge is applied to TCK, the
controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

11.5.4.11 Capture-IR State

In this controller state the shift register contained in
the instruction register loads the fixed value “0001”
on the rising edge of TCK.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state. When
the controller is in this state and a rising edge is
applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or the Shift-IR state if TMS
is held low.

11.5.4.12 Shift-IR State

In this state the shift register contained in the in-
struction register is connected between TDI and
TDO and shifts data one stage towards its serial out-
put on each rising edge of TCK.
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The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or remains in the Shift-IR
state if TMS is held low.

11.5.4.13 Exit1-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.14 Pause-IR State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the instruction
register.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-IR
state.

11.5.4.15 Exit2-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.
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11.5.4.16 Update-IR State

The instruction shifted into the instruction register is
latched onto the parallel output from the shift-regis-
ter path on the falling edge of TCK. Once the new
instruction has been latched, it becomes the current
instruction.

Test data registers selected by the new current in-
struction retain the previous value.

11.5.5 BOUNDARY SCAN REGISTER BITS AND
BIT ORDERS

The boundary scan register contains a cell for each
pin, as well as cells for control of I/0 and tri-state
pins. :

Intel486 SX and IntelSX2 Processor Boundary
Scan Register Bits

The following is the bit order of the Intel486 SX and
IntelSX2 processor boundary scan register (from left
to right and top to bottom. See notes below):

TDO <« A2, A3, A4, A5, UP#, A6, A7, A8, A9,
A10, A11, A12, A13, A14, A15, A16, A17, A18,
A19, A20, A21, A22, A23, A24, A25, A26, A27,
A28, A29, A30, A31, DPO, DO, D1, D2, D3, D4,
Ds, D6, D7, DP1, D8, D9, D10, D11, D12, D13,
D14, D15, DP2, D16, D17, D18, D19, D20,
D21, D22, D23, DP3, D24, D25, D26, D27,
D28, D29, D30, D31, STPCLK#, Reserved,
Reserved, SMi#, SMIACT#, SRESET, NMI,
INTR, FLUSH#, RESET, A20M#, EADS#,
PCD, PWT, D/C#, M/IO#, BE3#, BE2#,
BE1+#, BEO#, BREQ, W/R#, HLDA, CLK, Re-
served, AHOLD, HOLD, KEN#, RDY #, BS8 #,
BS16#, BOFF#, BRDY #, PCHK#, LOCK#,
PLOCK#, BLAST#, ADS#, MISCCTL,
BUSCTL, ABUSCTL, WRTL <« TDI
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Intel486 DX and IntelDX2 Processor Boundary
Scan Register Bits

The following is the bit order of the Intel486 DX and
IntelDX2 processor boundary scan register (from left
to right and top to bottom. See notes below):

TDO <«— A2, A3, A4, A5, UP#, A6, A7, A8, A9,
A10, A11, A12, A13, A14, A15, A16, A17, A18,
A19, A20, A21, A22, A23, A24, A25, A26, A27,
A28, A29, A30, A31, DPO, DO, D1, D2, D3, D4,
Ds, De, D7, DP1, D8, D9, D10, D11, D12, D13,
D14, D15, DP2, D16, D17, D18, D19, D20,
D21, D22, D23, DP3, D24, D25, D26, D27,
D28, D29, D30, D31, STPCLK#, IGNNE#,
FERR#, SMI#, SMIACT#, SRESET, NMI,
INTR, FLUSH#, RESET, A20M#, EADS#,
PCD, PWT, D/C#, M/IO#, BE3#, BE2#,
BE1#, BEO#, BREQ, W/R#, HLDA, CLK, Re-
served, AHOLD, HOLD, KEN#, RDY #, BS8 #,
BS16#, BOFF#, BRDY #, PCHK#, LOCK#,
PLOCK#, BLAST#, ADS#, MISCCTL,
BUSCTL, ABUSCTL, WRTL <« TDI

50-MHz Intel486 DX Processor Boundary Scan
Register Bits

The following is the bit order of the 50-MHz Intel486
DX processor boundary scan register (from left to
right and top to bottom. See notes below):

TDO <« A2, A3, A4, A5, UP#, A6, A7, A8, A9,
A10, A11, A12, A13, A14, A15, A16, A17, A18,
A19, A20, A21, A22, A23, A24, A25, A26, A27,
A28, A29, A30, A31, DPO, DO, D1, D2, D3, D4,
Ds, D6, D7, DP1, D8, D9, D10, D11, D12, D13,
D14, D15, DP2, D16, D17, D18, D19, D20,
D21, D22, D23, DP3, D24, D25, D26, D27,
D28, D29, D30, D31, IGNNE#, FERR#, NMI,
INTR, FLUSH#, RESET, A20M#, EADS#,
PCD, PWT, D/C#, M/IO#, BE3#, BE2#,
BE1#, BEO#, BREQ, W/R#, HLDA, CLK, Re-
served, AHOLD, HOLD, KEN #, RDY #, BS8 #,
BS16#, BOFF#, BRDY #, PCHK#, LOCK#,
PLOCK#, BLAST#, ADS#, MISCCTL,
BUSCTL, ABUSCTL, WRTL <« TDI
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Write-Back Enhanced IntelDX2 Processor

Boundary Scan Register Bits

The following is the bit order of the Write-Back En-
hanced IntelDX2 processor boundary scan register
(from left to right and top to bottom. See notes be-
low):
TDO <« A2, A3, A4, A5, UP#, A6, A7, A8, A9,
" A10, A11, A12, A13, A14, A15, A16, A17, A18,
A19, A20, A21, A22, A23, A24, A25, A26, A27,
A28, A29, A30, A31, DPO, DO, D1, D2, D3, D4,
Ds, D6, D7, DP1, D8, D9, D10, D11, D12, D13,
D14, D15, DP2, D16, D17, D18, D19, D20,
D21, D22, D23, DP3, D24, D25, D26, D27,
D28, D29, D30, D31, STPCLK#, IGNNE#,
INV, CACHE#, FERR#, SMi#, WB/WT#,
HITM#, SMIACT#, SRESET, NMI, INTR,
FLUSH#, RESET, A20M#, EADS#, PCD,
PWT, D/C#, M/IO#, BE3#, BE2#, BE1#,
BEO#, BREQ, W/R#, HLDA, CLK, Reserved,
AHOLD, HOLD, KEN#, RDY#, BS8#,
BS16#, BOFF#, BRDY #, PCHK#, LOCK#,
PLOCK#, BLAST#, ADS#, MISCCTL,
BUSCTL, ABUSCTL, WRTL <« TDI

IntelDX4 Processor Boundary Scan Register Bits

The following is the bit order of the IntelDX4 proces-
sor boundary scan register (from left to right and top
to bottom. See notes below):

TDO <« A2, A3, A4, A5, UP#, A8, A7, A8, A9,
A10, A11, A12, A13, A14, A15, A16, A17, A18,
A19, A20, A21, A22, A23, A24, A25, A26, A27,
A28, A29, A30, A31, DPO, DO, D1, D2, D3, D4,
D5, D6, D7, DP1, D8, D9, D10, D11, D12, D13,
D14, D15, DP2, D16, D17, D18, D19, D20,
D21, D22, D23, DP3, D24, D25, D26, D27,
D28, D29, D30, D31, STPCLK#, IGNNE#,
FERR#, SMI#, SMIACT#, SRESET, NM,
INTR, FLUSH#, RESET, A20M#, EADS#,
PCD, PWT, D/C#, M/IO#, BE3#, BE2#,
BE1#, BEO#, BREQ, W/R#, HLDA, CLK,
AHOLD, HOLD, KEN#, RDY#, CLKMUL,
BS8#, BS16#, BOFF#, BRDY#, PCHK#,

LOCK#, PLOCK#, BLAST#, ADS#,
MISCCTL, BUSCTL, ABUSCTL, WRTL <«
TDI
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NOTES:

“Reserved” corresponds to no connect
“NC” or “INC” signals on the Intel486 proc-
essor.

All the *CTL cells are control cells that are
used to select the direction of bidirectional
pins or tri-state output pins. If ‘1° is loaded
into the control cell (*CTL), the associated
pin(s) are tri-stated or selected as input. The
following lists the control cells and their cor-
responding pins.

1. WRCTL controls the D31-D0 and DP3-
DPO pins.

2. ABUSCTL controls the A31-A2 pins.

3. BUSCTL controls the ADS#, BLAST#,
PLOCK#, LOCK#, WR#, BEO#, BE1#,
BE2#, BE3#, MIO#, DC#, PWT, and
PCD pins.

4. MISCCTL controls the PCHK #, HLDA, and
BREQ pins.

11.5.6 TAP CONTROLLER INITIALIZATION

The TAP controller is automatically initialized when a
device is powered up. In addition, the TAP controller
can be initialized by applying a high signal level on
the TMS input for five TCK periods.

11.5.7 BOUNDARY SCAN DESCRIPTION
LANGUAGE (BSDL) FILES

See Appendix D for an example of a BSDL file for
Intel486 processors.
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12.0 DEBUGGING SUPPORT

The Inteld86 processor provides several features
that simplify the debugging process. The three cate-
gories of on-chip debugging aids are:

1. Code execution breakpoint opcode (0CCH),

2. Single-step capability provided by the TF bit in the
flag register, and

3. Code and data breakpoint capability provided by
the Debug Registers DR0-3, DR6, and DR7.

12.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail-
able for use by software debuggers. The breakpoint
opcode is 0OCCH, and generates an exception 3 trap
when executed. In typical use, a debugger program
can “plant” the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n=3.
The only difference between INT 3 (0CCh) and INT n
is that INT 3 is never IOPL-sensitive, while INT n is
IOPL-sensitive in Protected Mode and Virtual 8086
Mode.

12.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger's stack. It then typically
transfers control to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one
instruction of the user program.

Because exception 1 occurs as a trap (that is, it oc-
curs after the instruction has already executed), the
CS:EIP pushed onto the debugger’s stack points to
the next unexecuted instruction of the program be-
ing debugged. An exception 1 handler, merely by
ending with an IRET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

Intel486™ PROCESSOR FAMILY

12.3 Debug Registers

" The Debug Registers are an advanced debugging

feature of the Intel486 processor. They allow data
access breakpoints as well as code execution
breakpoints. Because the breakpoints are indicated
by on-chip registers, an instruction execution break-
point can be placed in ROM code or in code shared
by several tasks, neither of which can be supported
by the INT3 breakpoint opcode.

The Intel486 processor contains six Debug Regis-
ters, providing the ability to specify up to four distinct
breakpoints addresses, breakpoint control options,
and read breakpoint status. Initially after reset,
breakpoints are in the disabled state. Therefore, no
breakpoints will occur unless the debug registers are
programmed. Breakpoints set up in the Debug Reg-
isters are auto vectored to exception number 1.

12.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DR0-DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DRO-DR3, shown in
Figure 12-1. The breakpoint addresses specified are
32-bit linear addresses. Intel486 processor hard-
ware continuously compares the linear breakpoint
addresses in DR0-DR3 with the linear addresses
generated by executing software (a linear address is
the result of computing the effective address and
adding the 32-bit segment base address). Note that
if paging is not enabled the linear address equals the
physical address. If paging is enabled, the linear ad-
dress is translated to a physical 32-bit address by
the on-chip paging unit. Regardiess of whether pag-
ing is enabled or not, however, the breakpoint regis-
ters hold linear addresses.

12.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure
12-1, allows several debug control functions such as
enabling the breakpoints and setting up other con-
trol options for the breakpoints. The fields within the
Debug Control Register, DR7, are as follows:
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indicates Intel Reserved; Do not define.

NOTE:
See section 4.2.7

31 16 15 0
Breakpoint 0 Linear Address . DRo
Breakpoint 1 Linear Address DR1
Breakpoint 2 Linear Address DR2
Breakpoint 3 Linear Address DR3

DR4

DR5

DRé6

DR7

242202-E1

Figure 12-1. Debug Registers

LENi (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four break-
points. LEN specifies the length of the associated
breakpoint field. The choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-
tion breakpoints must have a length of 1 (LENi =
00). Encoding of the LENi field is as described in
Table 12-1.

The LENi field controls the size of breakpoint field i
by controlling whether all low-order linear address
bits in the breakpoint address register are used to
detect the breakpoint event. Therefore, all break-
point fields are aligned; 2-byte breakpoint fields be-
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

Figure 12-2 is an example of various size breakpoint
fields. Assume the breakpoint linear address in DR2
is 00000005H. In that situation, the Figure 12-2 indi-
cates the region of the breakpoint field for lengths of
1, 2, or 4 bytes.

RWi (memory access qualifier bits)
A 2-bit RW field exists for each of the four break-
points. The 2-bit RW field specifies the type of usage

which must occur in order to activate the associated
breakpoint.
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Table 12-1. LENi Encoding

Usage of Least

LENi Breakpoint Significant Bits in
Encoding Field Width  |Breakpoint Address|
Register i, (i=0-3)

00 1 byte All 32-bits used to
specify a single-byte
breakpoint field.

01 2 bytes A1-A31 used to
specify a two-byte,
word-aligned
breakpoint field. AO
in Breakpoint
Address Register is
not used.

10 |Undefined—do not

use this encoding
1 4 bytes A2-A31 used to

specify a four-byte,
dword-aligned
breakpoint field. AO
and A1 in Breakpoint
Address Register are
not used.
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DR2=00000005H; LEN2 = 00B
31 0

00000008H
00000004H
00000000H

bkpt fid2

DR2=00000005H; LEN2 = 01B

31 0
00000008H
« bkpt fld2 — |00000004H
{ 00000000H

DR2=00000005H; LEN2 = 11B
31 ' 0

00000008H
« bkpt fld2 - 00000004H

J l r 00000000H

242202-E2

Figure 12-2, Size Breakpoint Fields
Table 12-2. RW Encoding

RW . .
Encoding Usage Causing Breakpoint
00 Instruction execution only
01 Data writes only
10 Undefined-do not use this encoding
11 Data reads and writes only

RW encoding 00 is used to set up an instruction
execution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points.
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Note that instruction execution breakpoints are
taken as faults (i.e., before the instruction exe-
cutes), but data breakpoints are taken as traps
(i.e., after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 (write/read). LEN
can = 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i = 0-3). RWi
must = 00 and LEN must = 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The
GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger can have full control over the De-
bug Register resources when required. The GD bit,
when set, causes an exception 1 fault if an instruc-
tion attempts to read or write any Debug Register.
The GD bit is then automatically cleared when the
exception 1 handler is invoked, allowing the excep-
tion 1 handler free access to the debug registers.
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GE and LE (Exact data breakpoint match, global
and local)

The breakpoint mechanism of the Intel486 proces-
sor differs from that of the Intel386 processor. The
Intel486 processor always does exact data break-
point matching, regardless of GE/LE bit settings.
Any data breakpoint trap will be reported exactly af-
ter completion of the instruction that caused the op-
erand transfer. Exact reporting is provided by forcing
the Intel486 processor execution unit to wait for
completion of data operand transfers before begin-
ning execution of the next instruction.

When the Intel486 processor performs a task
switch, the LE bit is cleared. Thus, the LE bit sup-
ports fast task switching out of tasks, that have en-
abled the exact data breakpoint match for their task-
local breakpoints. The LE bit is cleared by the In-
tel486 processor during a task switch, to avoid hav-
ing exact data breakpoint match enabled in the new
task. Note that exact data breakpoint match must be
re-enabled under software control.

The Intel486 processor GE bit is unaffected during a
task switch. The GE bit supports exact data break-
point match that is to remain enabled during all tasks
executing in the system.

Note that instruction execution breakpoints are al-
ways reported exactly.

Gi and Li (breakpoint enable, global and local)

If either Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRI, the length
in LENi and the usage criteria in RWi) is enabled. If
either Gi or Li is set, and the Intel486 processor de-
tects the ith breakpoint condition, then the exception
1 handler is invoked.

When the Intel486 processor performs a task switch
to a new Task State Segment (TSS), all Li bits are
cleared. Thus, the Li bits support fast task switching
out of tasks that use some task-local breakpoint reg-
isters. The Li bits are cleared by the Intel486 proces-
sor during a task switch, to avoid spurious excep-
tions in the new task. Note that the breakpoints must
be re-enabled under software control.
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All Intel486 processor Gi bits are unaffected during a
task switch. The Gi bits support breakpoints that are
active in all tasks executing in the system.

12.3.3 DEBUG STATUS REGISTER (DR6)

A Debug Status Register, DR6 shown in Figure 12-1,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

. DRO Breakpoint fault/trap.

. DR1 Breakpoint fault/trap.
. XDR2 Breakpoint fault/trap.
. XDR3 Breakpoint fault/trap.
. XSingle-step (TF) trap.

. XTask switch trap.

. XFault due to attempted debug register access
when GD=1.

N O oA 0N =

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DR,
are as follows:

Bi (debug fault/trap due to breakpoint 0-3)

Four breakpoint indicator flags, BO-B3, correspond
one-to-one with the breakpoint registers in DRO-
DR3. A flag Bi is set when the condition described
by DRI, LENi, and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected,
the Intel486 processor will invoke the exception 1
handler. The exception is handled as a fault if an
instruction execution breakpoint occurred, or as a
trap if a data breakpoint occurred.



a
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IMPORTANT NOTE:

A flag Bi is set whenever the hardware de-
tects a match condition on enabled break-
point i. Whenever a match is detected on at
least one enabled breakpoint i, the hard-
ware immediately sets all Bi bits correspond-
ing to breakpoint conditions matching at that
instant, whether enabled or not. Therefore,
the exception 1 handler may see that multi-
ple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi
set) are true indications of why the excep-
tion 1 handler was invoked.

BD (debug fault due to attempted register ac-
cess when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)
This bit is set if the exception 1 handler was invoked

due to the TF bit in the flag register being set (for
single-stepping).

Intel486™ PROCESSOR FAMILY

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having an
Intel486 processor TSS with the T bit set. Note the
task switch into the new task occurs normally, but
before the first instruction of the task is executed,
the exception 1 handler is invoked. With respect to
the task switch operation, the operation is consid-
ered to be a trap.

12.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint.
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13.0 INSTRUCTION SET SUMMARY

This section describes the Intel486 processor in-
struction set. Detailed information on the CPUID in-
struction can be found in Appendix B: Feature Deter-
mination. Further details of the instruction encoding
are then provided in section 13.1, which describes
the entire encoding structure and the definition of all
fields occurring within the Intel486 processor in-
structions.

13.1 Instruction Encoding

13.1.1 OVERVIEW

All instruction encodings are subsets of the general
instruction format shown in Figure 13-1. Instructions
consist of one or-two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m”
byte and “scaled index” byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

inte|®

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m .
byte, specifies the address mode to be used. Certain
encodings of the mod r/m byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 13-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 13-1 is a complete list of all fields ap-
pearing in the Intel486 processor instruction set. Fol-
lowing Table 13-1 are detailed tables for each field.

TTTTTTTT|TTTTTTTIT mod TTTrim

ss index base | d32| 16| 8|none data32 | 16|8 | none

7 07
—_

0765320765320
—

opcode "mod r/m" "soi-b” address immediate
displacement data
one or two bytes byte byte
((T representztan) " y (4,2, 1 bytes (4, 2, 1 bytes
opcode bit.) S~ ornone) or none)
register and address
mode specifier
242202-E3

— e

Figure 13-1. General Instruction Format
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" Table 13-1. Fields within Intel486™ Processor Instructions

:::‘de Description NunBﬂI:t:r of
Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits) 1
d Specifies Direction of Data Operation 1
s Specifies if an Immediate Data Field Must be Sign-Extended 1
reg General Register Specifier 3
mod r/m | Address Mode Specifier (Effective Address can be a General Register) 2 for mod;
3forr/m
Ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted or a Condition 4
Negated
NOTE:

Table 13-15 through Table 13-19 show encoding of individual instructions.

13.1.2 32-BIT EXTENSIONS OF THE
INSTRUCTION SET

With the Intel486 processor, the 8086/80186/80286
instruction set is extended in two orthogonal direc-
tions: 32-bit forms of all 16-bit instructions are added
to support the 32-bit data types, and 32-bit address-
ing modes are made available for all instructions ref-
erencing memory. This orthogonal instruction set ex-
tension is accomplished having a Default (D) bit in
the code segment descriptor, and by having 2 prefix-
es to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the In-
tel486 processor when operating in those modes
(for 16-bit default sizes compatible with the 8086/
80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and

effective address size. These prefixes may precede
any opcode bytes and affect only the instruction
they precede. If necessary, one or both of the prefix-
es may be placed before the opcode bytes. The
presence of the Operand Size Prefix and the Effec-
tive Address Prefix will toggle the operand size or
the effective address size, respectively, to the value
“opposite” from the Default setting. For example, if
the default operand size is for 32-bit data operations,
then presence of the Operand Size Prefix toggles
the instruction to 16-bit data operation. As another
example, if the default effective address size is 16
bits, presence of the Effective Address Size prefix
toggles the instruction to use 32-bit effective ad-
dress computations.

These 32-bit extensions are available in all Intel486
processor modes, including the Real Address Mode
or the Virtual 8086 Mode. In these modes the default
is always 16 bits, so prefixes are needed to specify
32-bit operands or addresses. For instructions with
more than one prefix, the order of prefixes is unim-
portant.

Unless specified otherwise, instructions with 8-bit

and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.
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13.1.3 ENCODING OF INTEGER INSTRUCTION
FIELDS

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

13.1.3.1 Encoding of Operand Length (w) Field

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operatlon size, as
shown in the table below.

Table 13-2. Encoding of Operand Length

]
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Table 13-4. Encoding of reg Field when the w
Field Is Present in Instruction

Register Specified by reg Field
during 16-Bit Data Operations:

re Function of w Field
g (whenw = 0) | (whenw = 1)
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

Register Specified by reg Field

() Field during 32-Bit Data Operations
Operand Size Operand Size F - w Fiel
wField | during 16-Bit during 32-Bit reg unction of w Field
Data Operations | Data Operations (whenw = 0) | (whenw = 1)

0 8 Bits 8 Bits 000 AL EAX

. . 001 CL ECX

16 Bits 32 Bits 010 DL EDX

011 BL EBX

13.1.3.2 Encoding of the General Register (reg) 100 AH ESP

Field 101 CH - EBP

. . o . 110 DH ESI

The general register is specified by the reg field, 111 BH EDI
which may appear in the primary opcode bytes, or as

the reg field of the “mod r/m” byte, or as the r/m
field of the “mod r/m” byte.

Table 13-3. Encoding of reg Field when the w
Field Is Not Present in Instruction

Register Register
. ' Selected during | Selected during

regField | " 46.Bit Data 32-Bit Data

Operations Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
110 S| ESI.
111 DI EDI
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13.1.3.3 Encoding of the Segment Register
(sreg) Field

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the Intel486 processor FS and
GS segment registers to be specified.
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Table 13-5. 2-Bit sreg2 Field

2-bit sreg2 Field | Segment Register Selected
00 ES
01 CS
10 Ss
11 DS

Table 13-6. 3-Bit sreg3 Field

3-bit sreg3 Field | Segment Register Selected

000 ES
001 Cs
010 SS
011 DS
100 FS
101 GS
110 do not use
111 do not use

13.1.3.4 Encoding of Address Mode

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the “mod r/
m” byte, and a second byte of addressing informa-
tion, the “s-i-b” (scale-index-base) byte, can be
specified.

Intel486™ PROCESSOR FAMILY

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the “mod r/
m” byte has r/m = 100 and mod = 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the “mod r/m” byte,
also contains three bits (shown as TTT in Figure 13-
1) sometimes used as an extension of the primary
opcode. The three bits, however, may also be used
as a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
“mod r/m” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m” byte is interpreted as a 32-bit addressing
mode specifier.

Tables 13-7, 13-8, and 13-9 define all encodings of

all 16-bit addressing modes and 32-bit addressing
modes.
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Table 13-7. Encoding of 16-Bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[BX+SI] 10000 DS:[BX+ Si+d16]
00 001 DS:[BX+ DI} 10001 DS:[BX+Di+d16]
00010 SS:[BP+SI] 10010 SS:[BP+Si1+d16]
00 011 SS:[BP+DI] 10011 SS:[BP+DI+d16]
00 100 Ds:[Sl] 10100 DS:[SI+d16]
00 101 DS:[DI] 10101 DS:[DI+d16]
00 110 DS:d16 10110 SS:[BP+d16]
00 111 DS:[BX] 10111 DS:[BX+d16]
01 000 DS:[BX+ Sl +d8] 11000 register—see below
01001 DS:[BX+ DI +d8] 11001 register—see below
01010 SS:[BP+SI+d8] 11010 register—see below
01011 SS:[BP+ DI +d8] 11011 register—see below
01100 DS:[SI+d8] 11100 register—see below
01101 DS:[DI+d8] 11101 register—see below
01110 SS:[BP +d8] 11110 register—see below
01111 DS:[BX +d8] 11111 register—see below

Register Specified by r/m during
16-Bit Data Operations

Register Specified by r/m during
32-Bit Data Operations

Function of w Field Function of w Field
mod r/m mod r/m
(whenw=0) | (whenw=1) (whenw=0) | (whenw=1)

11 000 AL AX 11 000 AL ‘ EAX
11001 CL CX 11001 CL ECX
11010 DL DX 11010 DL EDX
11011 BL BX 11011 BL EBX
11100 AH SP 11100 AH ESP
11101 CH BP 11 101 CH EBP
11110 DH SI 11110 DH ESI
11111 BH DI 11111 BH EDI
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Table 13-8. Encoding of 32-Bit Address Mode with “mod r/m” Byte (No “s-i-b” Byte Present)

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[EAX] 10 000 DS:[EAX +d32]
00 001 DS:[ECX] 10 001 DS:[ECX+d32]
00010 DS:[EDX] 10010 DS:[EDX + d32]
00 011 ' DS:[EBX] 10011 DS:[EBX+d32]
00 100 s-i-b is present 10 100 s-i-b is present
00 101 DS:d32 10101 SS:[EBP +d32]
00110 Ds:[ESI] 10 110 DS:[ESI+d32]
00 111 DsS:[EDI} 10 111 DS:[EDI+d32]
01000 DS:[EAX+d8] 11 000 register—see below
01 001 DS:[ECX+d8] 11 001 register—see below
01010 DS:[EDX+d8] 11010 register—see below
01011 DS:[EBX+d8] 11011 register—see below
01100 s-i-b is present 11100 register—see below
01101 SS:[EBP +d8] 11101 register—see below
01110 DS:[ESI+d8] 11110 register—see below
01111 DS:[EDI+d8] 11111 register—see below
Register Specified by reg or r/m Register Specified by reg or r/m
during 16-Bit Data Operations: during 32-Bit Data Operations:
Function of w Field Function of w Field
mod r/m mod r/m
(when w=0) (whenw=1) (whenw=0) | (whenw =1)
11000 AL AX 11 000 AL EAX
11001 CL CX 11 001 CL ECX
11010 DL DX 11010 DL EDX
11011 BL BX 11011 BL EBX
11100 AH SP 11100 AH ESP
11101 CH BP 11101 CH EBP
11110 DH Sl 11110 DH ESI
11111 BH DI 11111 BH EDI
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Table 13-9. Encoding of 32-Bit Address Mode (“mod r/m” Byte and “s-i-b” Byte Present)

mod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index)] 00 - x1
00 001 DS:[ECX+ (scaled index)] 01 x2
00010 DS:[EDX + (scaled index)] 10 x4
00011 DS:[EBX+ (scaled index)] 11 8
00 100 SS:[ESP + (scaled index)] Index Index Register
00 101 DS:[d32 + (scaled index)] 000 EAX
00110 DS:[ESI+ (scaled index)] 001 Eox
00111 DS:[EDI + (scaled index)]
010 EDX
01000 DS:[EAX + (scaled index) + d8] 011 EBX
01001 DS:[ECX + (scaled index) + d8] 100 no index reg**
01010 DS:[EDX + (scaled index) + d8] 101 EBP
01011 DS:[EBX + (scaled index) + d8] 110 Es|
01100 SS:[ESP + (scaled index) + d8] 111 EDI
01 101 SS:[EBP + (scaled index) + d8]
01110 DS:(ESI + (scaled index) + d&] ;\;:rnen: ?\21)? frlgl-leg I(EO, indicating “no index register,” then
01 111 DS:[EDI+ (scaled index) + d8] ss field MUST equal 00. If index is 100 and ss does not
equal 00, the effective address is undefined.
10 000 DS:[EAX + (scaled index) + d32]
10 001 DS:[ECX + (scaled index) + d32]
10010 DS:[EDX + (scaled index) + d32]
10011 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10110 DS:[ESI + (scaled index) + d32]
10 111 DS:[EDI+ (scaled index) +d32]
NOTE:
Mod field in “mod r/m” byte; ss, index, base fields in
“s-i-b” byte.
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13.1.3.5 Encoding of Operation Direction (d)
Field

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

Table 13-10. Encoding of Operation
Direction (d) Field

d Direction of Operation

0 | Register/Memory <— Register “reg” Field
Indicates Source Operand; “mod r/m” or
““mod ss index base” Indicates Destination
Operand

1 Register «— Register/Memory “reg” Field
Indicates Destination Operand; “mod r/m”
or “‘mod ss index base” Indicates Source

Intel486™ PROCESSOR FAMILY

Table 13-12. Encoding of Conditional Test (tttn)

Operand

13.1.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Table 13-11. Encoding of Sign-Extend (s) Field

Field
Mnemonic Condition tttn
(0] Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal |1100
NL/GE Not Less Than/Greater or Equal (1101
LE/NG Less Than or Equal/Greater Than|1110
NLE/G Not Less or Equal/Greater Than |1111

13.1.3.8 Encoding of Control or Debug or Test
Register (eee) Field

For the loading and storing of the Control, Debug

and Test registers.

Table 13-13. Encoding of Control or Debug or

Test Register (eee) Field

eee Code

Reg Name

When Interpreted as Control Register Field:

Effect on Effect on
S Immediate Immediate
Data 8 Data 16|32
0 | None None
Sign-Extend Data 8 to Fill 16-bit None
or 32-bit Destination

13.1.3.7 Encoding of Conditional Test (tttn)
Field

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (n=0) or its negation (n=1),
and ttt giving the condition to test.

000 CRO
010 CR2
011 CR3
When Interpreted as Debug Register Field:
000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7
When Interpreted as Test Register Field:
011 TR3
100 TR4
101 TR5
110 TR6
111 TR7

Do not use any other encoding
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Table 13-14. Encoding of Floating-Point Instruction Fields

In

tel.

Instruction Optional
First Byte Second Byte Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b. disp
2 11011 MF OPA mod oPB r/m s-i-b disp
3 11011 P OPA 1 1 oPB ST()
4 11011 0 1 1 1 1 | oP
5 11011 1 1 1 1 1 OP

15-11 10 9 8 7 6 5 4 3210

13.1.4 ENCODING OF FLOATING POINT
INSTRUCTION FIELDS

Instructions for the FPU assume one of the five
forms shown in the following table. In all cases, in-
structions are at least two bytes long and begin with
the bit pattern 11011B.

OP = Instruction opcode, possible split into
two fields OPA and OPB

Memory Format

00-32-bit real

01-32-bit integer

10-64-bit real

11-16-bit integer

Pop

0-Do not pop stack

1-Pop stack after operation

Destination
0-Destination is ST(0)
1-Destination is ST(i)

R XOR d = 0-Destination (op) Source
R XOR d = 1-Source (op) Destination
ST() = Register stack element /

000 = Stack top
001 = Second stack element
111 = Eighth stack element

mod (Mode field) and r/m (Register/Memory specifi-
er) have the same interpretation as the correspond-
ing fields of the integer instructions.

s-i-b (Scale Index Base) byte and disp (displace-
ment) are optionally present in instructions that have
mod and r/m fields. Their presence depends on the
values of mod and r/m, as for integer instructions.
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13.2 Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 13-15
through Table 13-19 by the processor core clock pe-
riod (e.g., 10 ns for a 100-MHz IntelDX4 processor).

13.2.1 INSTRUCTION CLOCK COUNT
ASSUMPTIONS

The Intel486 processor instruction core clock count
tables give clock counts assuming data and instruc-
tion accesses hit in the cache. The combined in-
struction and data cache hit rate is over 90%.

A cache miss will force the Intel486 processor to run
an external bus cycle. The Intel486 processor 32-bit
burst bus is defined as r-b-w.

Where:

r = The number of bus clocks in the first cycle of a
burst read or the number of clocks per data
cycle in a non-burst read.

The number of bus clocks for the second and
subsequent cycles in a burst read.

w = The number of bus clocks for a write.

b=

The clock counts in the cache miss penalty column
assume a 2-1-2 bus. For slower buses add r-2
clocks to the cache miss penalty for the first dword
accessed. Other factors also affect instruction clock
counts.
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Instruction Clock Count Assumptions

1.

The external bus is available for reads or writes
at all times. Else add bus clocks to reads until the
bus is available.

. Accesses are aligned. Add three core clocks to

each misaligned access.

. Cache fills complete before subsequent access-

es to the same line. If a read misses the cache
during a cache fill due to a previous read or pre-
fetch, the read must wait for the cache fill to com-
plete. If a read or write accesses a cache line still
being filled, it must wait for the fill to complete.

. If an effective address is calculated, the base

register is not the destination register of the pre-
ceding instruction. If the base register is the des-
tination register of the preceding instruction add
1 to the core clock counts shown. Back-to-back
PUSH and POP instructions are not affected by
this rule.

. An effective address calculation uses one base

register and does not use an index register. How-
ever, if the effective address calculation uses an
index register, 1 core clock may be added to the
clock count shown.

. The target of a jump is in the cache. If not, add r

clocks for accessing the destination instruction of
a jump. If the destination instruction is not com-
pletely contained in the first dword read, add a
maximum of 3b bus clocks. If the destination in-
struction is not completely contained in the first
16 byte burst, add a maximum of another r+3b
bus clocks.

10.

11.

12.
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. If no write buffer delay, w bus clocks are added

only in the case in which all write buffers are full.

. Displacement and immediate not used together.

If displacement and immediate used together, 1
core clock may be a