

Intel's SL Architecture

Other Books in the Intel/McGraw-Hill Series

BUNZEL AND MORRIS • Multimedia Applications Development:
Using DVI® Technology

EDELHART • Intel's Official Guide to 386™ Computing
GUREWICH • Communication Systems: Practical Hardware

and Firmware Implementation of LANs
INTEL • i486 Microprocessor Programming Reference Manual
INTEL • Intel386™ Family Binary Compatibility Specification 2

LUTHER • Digital Video in the PC Environment, 2nd edition
MARGULIS • i860 Microprocessor Architecture
RAGSDALE • Parallel Programming

Intel's SL Architecture
Designing Portable Applications

Desmond Yuen

McGraw-Hill, Inc.
New York San Francisco Washington, D.C. Auckland Bogota

Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Yuen, Desmond.
Intel's SL architecture : designing portable applications I

Desmond Yuen.
p. cm.-(lntel/McGraw Hill series)

Includes bibliographical references and index.
ISBN 0-07-911336-2
1. Intel i386SL (Microprocessor) 2. Portable computers-Design

and construction. I. Title. II. Series.
QA76.8.1266Y84 1993
004.165-dc20 92-43722

CIP

Copyright © 1993 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the publisher.

1234567890 DOH/DOH 9876543

ISBN 0-07-072693-0

The sponsoring editor for this book was Neil Levine, and the production
supervisor was Pamela A. Pelton. This book was set in Century Schoolbook by
North Market Street Graphics.

Printed and bound by R. R. Donnelley & Sons Company.

i386, i486, lntel386, lntel486, and lntel387 are trademarks oflntel Corp.
MS-DOS is a registered trademark of Microsoft Corp.
Microsoft Windows is a trademark of Microsoft Corp.
PS/2 is a registered trademark of International Business Machines Corp.
CHM OS and HMOS are patented processes of Intel Corp.

Intel Literature may be obtained from: Intel Corporation, Literature Sales,
P.O. Box 7641, Mt. Prospect, IL 60056-7641 (1-800-548-4725)

LIMITS OF LIAllILITY AND DISCLAIMER OF WARRANTY

The author and publisher have exercised care in preparing this book and the
programs contained in it. They make no representation, however, that the pro­
grams are error-free or suitable for every application to which a reader may
attempt to apply them. The author and publisher make no warranty of any
kind, expressed or implied, including the warranties of merchantability or fit­
ness for a particular purpose, with regard to these programs or the documenta­
tion or theory contained in this book, all of which are provided "as is." The
author and publisher shall not be liable for damages in an amount greater than
the purchase price of this book, or in any event for incidental or consequential
damages in connection with, or arising out of the furnishing, performance, or
use of these programs or the associated descriptions or discussions.

Readers should test any program on their own systems and compare results
with those presented in this book. They should then construct their own test
programs to verify that they fully understand the requisite calling conventions
and data formats for each of the programs. Then they should test the specific
application thoroughly.

To Angelina, Annie, Jimmy, Lisa, and Patricia

Foreword xi
Preface xiii
Acknowledgments xv

Chapter 1. Introduction

Organization of the Book
Basic Concepts
Hardware Platform
Notation
Useful References
Summary

Chapter 2. The History and Future of the SL Architecture

The SL Challenge
The Solution
System Partitioning
Power Management
Notebook Computer Functions
Suspend/Resume
Global Standby
Detailed Design
First Silicon and Debug
First Customer Shipment
General Marketing of the Product
The Success of the SMM Architecture
Support for Product-Specific Functions
Future SL Generations
Conclusion

Chapter 3. SL Architecture Overview

lntel386™ SL CPU and lntel486™ SL CPU
82360SL Peripheral Controller
Register Resources
Summary
References

Contents

2

5

6

6

8

8

11

11

12

12

13

13

14

14

15

15

16

16

16

16

17

17

19

19

28
29
30

30

vii

viii Contents

Chapter 4. System Management Mode 31

System Management Mode Architecture 31
Applications of SMM 36
SMI and RSM Latency 41
Writing an SMM Program 43
Summary 53

Chapter 5. Introduction to Power Management 55

History of Power Management in Personal Computers 55

Overview of the SL Power Management Support 57
Initiation of Power Management Services 58
Local Standby Operation 59
Power Management at the System Level 63
Global Standby 63

Suspend Operation 65
Suspend Requests 65
Warming Timers 67
Enabling Suspend 68
Resume 69
Battery Monitoring 69
Advanced Power Management 69
Summary 70

Chapter 6. Power Management Software 71

Power Management Hardware Initialization 72
Power Management Software Architecture 73
Power Management Timers 73
Serial Port 78
System Management FILO 78
Clearing Status Bits 79
Saving Memory Overlaid by SMRAM 79
Global Standby 80
Math CoProcessor 80
Suspend 81
Save-Restore 81
Shadow Registers 82
BIOS Shadowing 82
Multiple SMls 82
APM Interface 82
Programming Guidelines 84
Summary 84
References 85

Chapter 7. Power Management Techniques 87

The Basics 87
Component Selection 87
Supplying Power 88
Power Management Implementation 93

Power Management Design Considerations 95

Current Drain
Summary
References

Chapter 8. Portable Computer Design

Overview of an SL CPU-Based System
Putting It Together
Design Considerations
Summary
References

Chapter 9. Clock Control

The SL Clock System
Oscillator Design Considerations
Summary
References

Chapter 1 O. lntel386 SL CPU Memory Interfacing

Designing a DRAM Memory System
Designing an SAAM Memory System
External SMRAM Interface
Memory Options
Cache Controller
Summary
References

Chapter 11. lntel486 SL CPU Memory Interfacing

Memory Controller
Designing a DRAM Memory System
Cache Controller
DRAM Considerations for PC Memory Design
Summary
References

Chapter 12. Pl-Bus Interfacing

Pl-Bus Architecture
Pl-Bus Applications
Design Guidelines
Summary
References

Chapter 13. Enhanced Parallel Port

Applications of the Enhanced Parallel Port
Comparison of the ISA Parallel Port and the Enhanced Parallel Port
Hardware Interface
Software Interface
Summary
References

Contents ix

98

103

103

105

105

116

118

118

118

121

121

131

134

134

135

135

144

147

147

149

154

154

155

156

156

170

172

182

182

183

183

188

193

194

194

195

195

196

197

203

206

207

x Contents

Chapter 14. Writing an SL BIOS

What Is the SL BIOS?
Special Feature Set
1/0 Cycle Recovery Time
Reset
Modular Approach
Summary
References

Chapter 15. System Development Tools and Debugging

Hardware Development Tools
Software Development Tools
Create Your Own Tools
Debugging
Debugging Tools
Testing Methodology
Common Errors
What to Do If a System Hangs Up
What If Everything Else Fails?
Development Methodology
Summary
References

Chapter 16. Performance and Potential

Introduction
Common Terminology
lntel386 SL Microprocessor Performance Summary
Impact of System Attributes on Performance
Impact of Power Management on Performance
Performance and Cost
Power Consumption Benchmarks
Interpreting Benchmark Results
Benchmark Collection Methodology
Summary

Chapter 17. The Future

What Next?

Appendix A. List of Vendors

Appendix B. Software Emulation of Hardware Using SMI

Appendix C. lntel386™ SL Microprocessor DRAM Configurations

Appendix D. Schematics for a Complete Notebook Computer Design

Glossary 319

Index 323

209

209

232
234

235
235
236

236

237

237
237

238

238

238

241

243

247
247
247
247
248

249

249

250

251

251

254

255

255

256

256

257

259

259

263

271

273

275

Foreword

This book contains a wealth of technical information about how to design an
Intel486™ SL CPU and Intel386™ SL CPU-based portable computer. It is
designed to help you better exploit the pioneering SL architecture. It provides
concise overviews of the various features of the SL CPU, and the 82360SL
peripheral controller. It also gives a great many examples of how these fea­
tures can be used in your designs, with emphasis on System Management
Mode (SMM), power management, and memory subsystem design. Finally, it
provides many software and hardware design tips to help you avoid some of the
common pitfalls inherent in portable computer design. Before you begin your
portable computer design journey, I would like to give you some insight into the
birth and development of the SL architecture.

The SL architecture was conceived as a product that would help spur the
growth of the portable computer market. When Intel began the SL project,
portables were quite heavy (ranging from 12 to 20 lbs) and had battery lives of
30 minutes to just over 2 hours. Many were also limited in the kind and
amount of software that the users could run. Although the market for portable
computers was growing rapidly, users were clamoring for lighter-weight,
longer-battery-life machines.

Let me offer a personal anecdote that I hope will help you better understand
the demands of the portable computer user. Several years ago, my job required
me to work in two different states with a lot of airplane travel in between. In
an attempt to simplify my life, I decided to get a portable computer so that I
could carry my office with me in electronic format. The idea seemed simple
enough, but in practice it turned into a new kind of nightmare! The weight of
the portable machine I chose gave me a constantly bruised shoulder, and it was
so big that it took up most of my leg room on the plane. Its limited battery life
caused me to constantly seek wall outlets. I also found it cumbersome to open
up the computer, boot the system, and load my application, especially during
short waits in airports. As a result of my experiment with the electronic office,
I was actually getting less work done using this wonderful "productivity
enhancer" than when I was using paper!

Initially, I didn't think that a silicon company like Intel could really impact
any of these problems. But as I started piecing together technical and market­
ing information, I realized that electronics could play a key role in solving all

xi

xii Foreword

of my problems. Hardware support for power management could extend bat­
tery life. Greater component integration could make machines smaller and
lighter. And performance could be improved by using an Intel386 CPU in place
of the 80286 technology.

As I visited our customers and discussed the problems of portable computer
design, I quickly realized that everyone was trying to solve the same problems
and that Intel could offer viable solutions.

Many people were involved in nurturing the concepts that became the SL
architecture. The team included people from both inside and outside of Intel.
Most of the team was composed of silicon and system engineers; however, it
also included people from marketing, fabrication, applications, software devel­
opment, and product validation.

The resulting SL architecture introduced many advances to microprocessor
architectures, including on-chip power management facilities, suspend/resume
capability, high integration, a high-speed Peripheral Interface bus (Pl bus), a
faster parallel pqrt, and support for emerging technologies like Flash Memory.
It also brought 32-bit computing to the portable computer arena, giving PCs
the processing power to run any software package at the required level of per­
formance.

Perhaps the greatest achievement of the SL architecture was the introduc­
tion of System Management Mode. SMM is an environment which provides
system designers-Intel's customers-with the ability to take control of the
system regardless of the software being run. Not only does SMM provide a sim­
ple and robust mechanism for implementing power management facilities in a
portable computer, but it also enables system designers to add other product­
specific features to their machines without having to worry about compatibil­
ity with the operating system and application programs. Portable computer
designers can thus easily "differentiate" their machines by adding features
that offer unique benefits to their users. Our customers continue to find inno­
vative ways of using the SMM "tool box."

I would like to give credit to everyone involved with making the SL architec­
ture a reality. This includes well over a hundred Intel employees, as well as
many of our customers and design partners. Without them our better mouse
trap would simply be collecting dust in a corner of a dark shelf. Worse, I'd still
be looking for a way to protect my bruised shoulder.

DAVE VANNIER

Chief Architect of the SL Architecture and
Co-Architect of the Intel386 Architecture

Preface

Since the introduction of the Intel386 SL Microprocessor Superset, many excit­
ing things have happened in the laptop world. The introduction of the Intel386
SL microprocessor has certainly changed the way people think about laptop
computers.

While working at Intel as an applications engineer, I accumulated a wealth
of knowledge about how to design SL architecture-based products through
working with PC manufacturers and the BIOS vendors. Instead ofletting this
information get lost, I decided to write this book to share the experience and
knowledge I have gained over the years. Hopefully, the information contained
in this book will spur further growth in the PC industry.

This book has been written primarily for system designers and programmers
who are developing products based on the Intel486 SL microprocessor and the
Intel386 SL microprocessor. This book is for anyone who wants to understand
the SL architecture to improve their hardware, BIOS, and support software
designs. The main goal of this book is to show readers how to design innovative
products using the SL architecture.

This book should be of particular interest to readers wishing to use the sys­
tem management mode of the SL processor for better power management.
Even though the concept of power management has been around for a long
time (probably since the day the battery was invented), power management on
PCs is still a myth to many people. One of the goals of this book is to demystify
power management.

I believe that the best way to learn about the SL architecture is to experi­
ment with it. Many examples are given throughout the book to assist readers
in experimenting with the Intel486 SL microprocessor and the Intel386 SL
microprocessor. To make it easier to use this book, the software (including pro­
gram listings) and examples are included on a disk.

It is difficult to master a subject that is continuously evolving. You have to
constantly adapt to changes and take advantage of the new technology.
Instead of trying to catch up with the technology, my advice is to be innovative
and stay ahead of the technology. I hope this book will help many of you to
achieve that goal.

DESMOND YUEN

xiii

Acknowledgments

There are many people at Intel who provided tremendous support on this proj­
ect. Dave Ryan sponsored my book and his confidence in me helped me to take
the initiative to write it. Without Dave's support, this book would not exist.
Dave Vannier, co-architect for the Intel386 microprocessor and grandfather of
the SL architecture, wrote an excellent foreword. Tom Rossi, my boss and my
coach, provided continuous support and encouragement. ·

Pauline Albert, Janet Brownstone, and Barbara Holtz provided continuous
encouragement to keep me going. Janet, my coordinator for the book, has been
very protective and supportive. She took care of a lot of details for me so that I
could concentrate on writing.

Gregg Wyant deserves special thanks for spending a lot of time (including
weekends) working with me on the organization and technical contents of the
book. Bob Albers did a thorough critique of the first draft of the manuscript
and made many valuable suggestions. Simon Ellis, one of the key architects for
the Intel386 SL microprocessor, wrote an excellent chapter on the history of
the SL architecture.

Betsy Jones provided very useful input and suggestions throughout this
project. Darci Worth has done a lot of work with power consumption measure­
ments and some of the information used in the book is based on her work.
Patrick Murray and Phil Cloud were very helpful in checking the accuracy of
the technical contents of the book. Jessie Garcia built the flash disk card for
the PI bus. My thanks to Suresh Marisetty for writing the appendix on hard­
ware emulation using SMI. K. J. Jun reviewed the page proofs for technical
accuracy.

It is extremely hard to find qualified reviewers who can spend time to eval­
uate a book of this magnitude. I am fortunate enough to have many good
technical reviewers who sacrificed their spare time to review my book. I
would like to thank the following people for providing suggestions on the
manuscript. Bill Rallis of SystemSoft Inc. and Dennis Chang of Award Soft­
ware Inc. reviewed the source listing and the chapters related to program­
ming. Scott Schaefer of Micron Technology checked materials related to
DRAM, SRAM, and cache RAM and also put forth extra effort to review in
detail the other chapters as well. Jim Williams of Linear Technology evalu­
ated the power supply material. Paul Cahill of Gates Energy Products

xv

xvi Acknowledgments

checked battery information. Mark Singer and Ed Garcia of Cirrus Logic Inc.
checked chapters on PI bus and graphics-related chapters. Frank Barry
of IBM reviewed the overall organization of the book. David Schwabe did
an excellent job on the copyediting. Special thanks to my acquisition editor
Neil Levine and his production staff at McGraw-Hill for their excellent
support.

Intel's SL Architecture

Chapter

1
Introduction

From the day the personal computer (PC) was invented, people have anxiously
awaited the PC on a chip. Intel took a big step toward this goal with the intro­
duction in 1990 of the SL architecture. This architecture offers two important
features that foster the development of small, lightweight PCs. First, the SL
architecture embraces almost all of the CPU, memory management, system
control, and peripheral control functions required to make a PC. When imple­
mented in silicon using very large scale integration (VLSI) circuitry, the SL
architecture allows a PC to be designed with only a handful of components.

Second, the SL architecture offers several power management features that
allow the design of PCs that can run for many hours on a single battery. The
most important of these features is the system management mode (SMM), a
unique operating mode that allows the CPU to execute system management
software transparently from the operating system and application programs.
In the first implementation of the SL architecture, Intel engineers were able to
pack all the SL circuitry into two components: the Intel386 SL CPU and the
82360SL peripheral controller. (See Figs. 1.1and1.2.)

Using Intel's CMOS IV chip technology, these components provide Intel386
CPU-class computational power, plus all the memory management, system
management, bus control, and peripheral control hardware required to build a
PC. In fact, Intel386 SL CPU-based notebook PCs that use only ten compo­
nents (not counting the memory devices) are already on the market. These
chips also provide a wide range of power management features that have
allowed designers to extend the operating time of battery-powered notebooks
to eight hours or more. (See Fig. 1.3.) In the spring of 1992, Intel introduced a
3.3-volt version of the Intel386 SL CPU, and in the fall of 1992, they introduced
the Intel486 SL CPU.

This book describes the SL architecture and its implementation in the
Intel486 SL CPU, Intel386 SL CPU, and 82360SL peripheral controller com­
ponents. It also discusses a broad selection of system design considerations,
divided into various topic areas. The design tips given in each topic area
include sample circuits and assembly-language routines.

2 Chapter One

Figure 1.1 Die photograph of the Intel386 SL microprocessor.

The intention of this book is to help you understand the operation of the SL
CPU and 82360SL components and learn how to exploit various features of
these components to develop profitable and innovative portable PCs, pen­
based systems, and Personal Application Devices (PADs).

Organization of the Book

Your introduction to the SL architecture begins in Chap. 2 with an insightful
look at the history of the architecture written by Simon Ellis, one of the archi-

Introduction 3

- -

· PA~.AL~~L 110;~ ~

Figure 1.2 Die photograph of the 82360SL peripheral controller.

4 Chapter One

MATH
OPROCESSOR
(OPTIONAIJ

HIGH­
SPEED
CACHE

(OPTIONAIJ

MAIN
S'ISTEM

MEMORY

IDE HARD
DISK DRIVE

KEYBOARD

FLOPPY
DISK

DRIVE

lntel386™ SL
MICROPROCESSOR

82077SL
FLOPPY

DISK
CONTROLLER

~ ~ ~ ~ ~
ISA BACKPLANE

1/0 EXPANSION SLOTS

I I I I I

82360SL 110
SUBSYSTEM

LCD FLAT
PANEL

DISPLAY

COLOR OR
MONO CRT

MONITOR

Figure 1.3 Block diagram of PC system based on the Intel386 SL microprocessor and 82360SL.

tects of the SL architecture. This chapter explains the motivation behind the
"Genesis Project," the Intel code name for the SL development project, and the
reasons for many of the features in the architecture.

Chapter 3 provides a brief overview of the SL architecture. It describes the
underlying design of the architecture and introduces you to the basic compo­
nents of a PC system. The remaining chapters of this book cover system design
considerations and give valuable hardware and software design tips.

Chapter 4 describes the most innovative feature of the SL architecture: the
System Management Mode. The SMM is a special operating mode that allows
the execution of system and power management routines to be isolated from
the operating system and application program to prevent incompatibility with
BIOS routines. This chapter describes the architecture of the SMM and gives
several examples of how it can be used in a PC design.

Chapters 5, 6, and 7 describe the power management features provided in
the SL architecture to reduce power consumption in a battery-operated
portable computer. These features include using the SMM to execute power
management routines; a mechanism for powering down idle peripheral

Introduction 5

devices; the ability to stop the clock to the CPU and other system components;
and the suspend/resume mechanism that enables a system to be powered
down, then powered up again without losing the state of the machine.

Chapter 8 discusses several issues that must be considered in portable com­
puter designs and how the SL architecture addresses these issues.

Chapter 9 describes the clock control facilities and the mechanisms available
to slow or stop various system clocks to reduce power consumption in system
components.

Chapters 10 and 11 describe the memory management facilities of the
Intel486 SL CPU and Intel386 SL CPU. The emphasis in these chapters is on
the facilities provided to reduce the power consumption of memory components
during normal operation and in a number of power-down modes.

Chapter 12 describes a special enhanced version of the ISA bus, called the
peripheral interface bus (Pl bus), which the SL CPUs support. This chapter
also shows how this bus can be used as an interface to a flash disk and a VGA
graphics frame memory.

Chapter 13 describes the ISA-bus interface and ISA peripheral controllers
provided in the 82360SL. It also gives guidelines for interfacing other periph­
eral controllers such as a keyboard controller, floppy-drive controller, and IDE
hard disk controller to the 82360SL.

Chapter 14 describes the 82360SL's enhanced parallel port, a simpler and
faster parallel port interface that shares the same signal lines as the ISA par­
allel port.

Chapter 15 gives guidelines for writing BIOS routines to control various
aspects of system operation in SL CPU-based products of an operating system.

Chapter 16 gives some guidelines for debugging SL architecture-based prod­
ucts. It also shows how to build some of your own debugging tools using the
SMM mode to execute debugging routines.

Chapter 17 describes several mechanisms and issues that affect the perfor­
mance of the SL CPU-based products.

Chapter 18 offers some insights into the future of the SL architecture.

Basic Concepts

Before we start looking at the SL architecture in great detail, it is important to
review some of the fundamental concepts we will be using throughout this book.

System management

System management mode is a special execution mode of the Intel486 SL CPU
and Intel386 SL CPU used to support applications such as power management
software and to ensure compatibility with existing operating systems and
applications software.

Power management

Power management is a mechanism of controlling the power consumption of a
system to extend battery life.

6 Chapter One

Battery management

Battery management involves performing functions like monitoring the bat­
tery temperature and voltage, recharging the battery, and detecting battery­
low condition. Do not get battery management confused with power
management-they are not the same.

Power mode

Power mode is a representation of the power consumption level of a device or
system. An SL CPU-based system can be programmed for local standby, global
standby, or suspend mode to conserve power. (See Table 1.1.)

Hardware Platform

Notation

TABLE 1.1

Mode

Full on

Most of the examples and programs in this book were designed to run on the
SL microprocessor evaluation board. This board was chosen because the con­
figuration jumpers, test points, connectors, ISA-bus expansion slots, and the
breadboarding area on the evaluation board make experimentation easy. The
schematics for the evaluation board are available from your local Intel sales
office.

The following notation and conventions are used throughout this book.

Signal descriptions. # denotes active low signal.

Bit notation. Bits field within a byte or word are shown as a range of decimal
numbers separated by a dash, such as y-x. (Example: Bits [2-0].)

Hexadecimal numbers. Hexadecimal numbers are represented by a string of
hexadecimal digits followed by the character H. A leading zero is added if the
number would otherwise begin with one of the digits A-F. (Example: 38H,
OFFH.)

Summary of Power Modes in a Typical lntel386 SL CPU-based System

Relative power Typical power User overhead Main advantage

Full 8410mW None Full speed
@20MHz operation

Local standby Low 4410mW Low Peripherals
@20MHz disabled

Global standby Medium low 2455mW Moderate to high Code execution
@20MHz stopped

Suspend Lowest 53mW High Long battery
@20MHz life

Introduction 7

Bytes, words, double words. A byte is 8 bits. A word is 16 bits. A double word
(dword) is 32 bits.

Configuration spaces. The following abbreviations are used to represent the
five hidden configuration spaces in the SL architecture:

IBU

OMCU

cu
EBU

INDEX

Internal Bus Unit configuration space

On-board Memory Controller configuration space

Cache controller Unit configuration space

External Bus Unit configuration space

82360SL configuration space

Configuration space addresses. The following format is used to show the con­
figuration space address for registers inside the SL architecture configuration
spaces:

mnemonic (configuration space address, configuration space)

For example:

MCMODE (300H, OMCU)

In this example, MCMODE is the mnemonic for the Memory Controller Mode
Register, 300H is the configuration space address, and OMCU is the configu­
ration space where MCMODE register resides.

Normal 1/0 space addresses. The following format is used to show the address
for registers inside the normal I/O address space:

mnemonic (address)

For example:

CPUPWRMODE (22H)

In this example, CPUPWRMODE is the mnemonic for the CPU Power Mode
register and 22H is the I/O address.

Units of measure. The following units of measure are used throughout the book.

Symbol Unit
A ampere

Kbyte kilobyte

Mbyte megabyte

MHz megahertz

mA milliamp

ms millisecond

8 Chapter One

Symbol Unit
mW milliwatt

ns nanosecond

s second

w watt
µs microsecond

v volt

Useful References

Summary

You will find the following books, papers, and data sheets useful when design­
ing an SL CPU-based product. All of these publications are available from Intel.

The Intel486 SL Microprocessor SuperSet Programmer's Reference Manual,
Order Number 241327-001

The Intel486 SL Microprocessor SuperSet System Design Guide, Order Num­
ber 241326-001

The Intel486 SL Microprocessor SuperSet Data Sheet, Order Number
241325-001

''The lntel486 SL Microprocessor SuperSet Family Product Brief"

"The Intel486 SL Microprocessor Family Overview"

The Intel386 SL Microprocessor SuperSet Programmer's Reference Manual,
Order Number 240815-004

The lntel386 SL Microprocessor SuperSet System Design Guide, Order Num­
ber 240816-002

The lntel386 SL Microprocessor SuperSet Data Sheet, Order Number
240814-005

"The lntel386 SL Microprocessor Family Overview," Order Number
240865-001

"The Intel386 SL Microprocessor SuperSet Family Product Brief," Order
Number 240851-001

"Notebook Market Overview-The New Computers," Order Number
240864-001

The most interesting thing about the lntel386 SL PCU project is how the
architecture evolved along the course of development. The changes are largely
due to changes in the market and feedback from customers. We worked with
the customers to find out what they really needed. The process involved talk­
ing with the notebook computer manufacturers and software vendors. Input
from the alpha and beta sites was key in defining the SL architecture. The end

Introduction 9

result is a highly flexible architecture. Direct input from customers also influ­
enced the design specification process. The most significant thing we have
heard from customers is that they want a better mechanism to handle power
management. In response, the system management mode was implemented.
Not only does system management mode make power management much
more efficient and reliable, it also opens up a world of opportunity for new
applications.

Chapter

2
The History and Future

of the Intel SL Architecture*

The Intel SL research and development program started in the middle of 1988,
at which time Intel established a task force to evaluate the PC marketplace
and determine where we could add value~ At the time, the industry was based
on the 80286 CPU with the Intel386 architecture about to overtake it. The
portable PC market was taking off and was proclaimed by industry observers
to be the fastest growing market segment. Because of this predicted growth
potential, we decided to focus on battery-operated portable computers.

The SL Challenge

Having evolved from desktop designs, the first portable computers contended
with power management and form factor as their chief design challenges. Intel's
development team was driven by three motivating challenges: to make signifi­
cant progress toward the "PC on a chip"; to provide on-board power management
facilities; and to provide a transparent "suspend/resume" capability from any
Intel386 CPU operating mode. (Suspend I resume is the ability to suspend opera­
tion while the computer is powered off, then to resume the exact state from
which the machine was suspended when the computer is powered up again.)

The original PC was made from 180 components, which were reduced to
about 30 by 1988. Intel decided on a target of ten or fewer components.

Our power management research centered around finding ways to add new
power saving functions to an architecture that was originally designed for the
desktop. We believed that the most convenient way to preserve battery life is
to control the power going to the PC subsystem and to provide power only when
necessary. However, this particular power management .technique does not

* The author wishes to gratefully acknowledge that this chapter has been contributed by
Simon Ellis.

11

12 Chapter Two

always maintain strict PC compatibility. The compatibility problem became
even more severe in systems that used the Intel386 CPU architecture. The
Intel386 CPU architecture extended the capabilities of the PC platform by
adding more sophisticated operating modes, such as extended memory man­
agement and paging. As the PC operating system software was developed to
utilize these capabilities, the problem of managing power transparently sud­
denly became more difficult by an order of magnitude.

After deciding which market to address and diagnosing the major problems
in that segment, we began to engage our customer base. Fortunately, most
portable computer manufacturers were already Intel customers and were will­
ing to listen to our proposal. Moreover, most of them were already trying to
solve these very same portable PC design problems in their own ways.

For Intel to provide the solutions, we knew we would have to take a full­
system approach. The problem of PC compatibility was equal to that of the
power management, however, and Intel did not have a proven track record in
the compatibility arena. We understood that we would have to learn more and
to prove that our power management strategy would yield PC-compatible com­
puters before our customers would take us seriously. Intel of course had some
major competencies to offer in other areas. We understood X86 compatibility
and PC performance, and we were able to manufacture high-transistor-count
devices at high volume. In the end, we partnered with one major customer and
began designing the detailed architecture.

The Solution

When we began our design phase, high-volume Intel silicon processes were
capable of integrating one million transistors, and our packaging was in the 196
lead range. The Intel386 CPU core has about 275,000 transistors, giving us
room for some significant integration. We established a two-chip solution that
consisted of the Intel386 SL CPU, containing the CPU and high-performance
devices, and the 82360SL peripheral unit, containing the PC peripherals and
the bulk of the power management logic.

System Partitioning

The Intel386 SL CPU contains about 880,000 transistors. It has a modified
Intel386 CPU core, memory controller, EMS 4.0 mapper, ISA-bus controller,
cache controller, and PC address mapper. Intel's ability to integrate these
devices on a single piece of silicon offers many design benefits. For example,
interfacing between the modules is done in the metal layers on the die. The sig­
nals are not limited in number and do not have to be buffered to drive pins and
high loads. The addresses coming out of the CPU core are available two clocks
earlier than the equivalent stand-alone CPU. These benefits were utilized to
increase performance and reduce the number of cycles. The full cache lookup is
done internally before the cycle and only goes to the memory controller if the
cycle is a cache miss or write.

The History and Future of the Intel SL Architecture 13

The 82360SL is a complete IBM PC-AT-compatible peripheral subsystem
chip that contains: Programmable Interval Timer (PIT), Programmable Inter­
rupt Controller (PIC), DMA (plus, mapper), dual serial ports, enhanced (fast)
parallel port, Real Time Clock plus CMOS (RTC), and the system monitoring
functions for power management.

Power Management

Transparent power management presented a different problem. Chip vendors
offered many partial solutions, including: static CPUs, power management con­
trollers with system event timers and monitors, sleep modes, low-power
devices, and software drivers. None of these solutions addressed the fundamen­
tal problem of how to maintain PC compatibility while power managing the
computer. Existing notebook computers used standard PC resources, such as
Nonmaskable Interrupt (NMI) handlers or TSRs, as interfaces between the
power management software and hardware and the rest of the system. These
notebooks achieved a level of"compatibility by testing." Once systems had been
designed, they had to be extensively tested with many applications to ensure
that applications would not clash with power management code. These systems
were then prey to any changes or new releases of software. The Intel386 CPU
architecture is established as the basis for today's operating systems and appli­
cations. The protected mode programs such as Windows 3.0, UNIX and the var­
ious DOS extenders make the traditional power management approaches even
more difficult to implement.

When Intel started assessing portable computing requirements, it soon
became apparent that the Intel386 CPU architecture itself had to be extended
with a system management mode (SMM). Only with SMM can a system
achieve "compatibility by design" for all operating systems and applications,
including those that use the Intel386 protected modes.

The SL architecture's SMM enables the CPU and peripheral controller to
combine the power management elements, such as static CPU and system
event timers, in a complete solution. Vendors can fine-tune power management
for their boxes. The whole system tradeoff between performance, latency,
weight, and battery life can be also be improved. Once implemented in the
BIOS, the system performance is enhanced and unaffected by operating sys­
tems, applications, and the way the user has set up his or her machine. The
thousands of PC compatibility features have been resolved with the transpar­
ent power management functions such as suspend/resume and are offered as
a foundation whereby PC vendors add to their own special differentiation for a
new class of notebook computers.

Notebook Computer Functions

The next generation of notebook PCs must support power management func­
tions and special utilities for on-the-road operation. They must be simple to
operate, automatic if possible, and foolproof if they are to change the behavior

14 Chapter Two

of the computer user. To maintain strict PC compatibility and utilize the huge
base of existing PC software, these operations must run independently from an
application or operating system. The SMM architecture is ideally suited to
these tasks. It allows these functions to be implemented in such a way that
they are robust, yet transparent to the user.

Suspend/Resume

After we had settled on our SMM design, the implementation of suspend/resume
became much easier. To understand the power of suspend/resume, imagine
a notebook computer user in an airport, working on his or her expense or trip
report and account database while waiting for a plane. The multitask­
ing lntel386 operating system is finely tuned, and provides the necessary
functions to perform these multiple tasks. When the flight is called, the user
closes the lid of his or her notebook, without saving the work or exiting the
applications. A suspend request is immediately initiated, causing a graceful
shutdown of the machine that leaves it in a low power state which could last
30 days or more. After dinner on the plane, the user opens the notebook lid,
and the machine instantly resumes its state prior to the initiation of the sus­
pend (perhaps with the cursor blinking in the"$" column of the expense report
spreadsheet).

The scenario just discussed presents the SL architecture's suspend/resume
functionality in a nutshell. We designed this function to be very simple to ini­
tiate, highly reliable, and very fast. We knew that if there were a 10-second
delay for the suspend to take effect, the function would seldom be used.

Global Standby

Another important feature of the SL power management architecture is global
standby. In global standby mode, a machine that is left idle for a programmable
period of time will shut down to a lower-powered state. The idle state is
detected when the global standby timer count expires. This counter is reset by
system events. When the time-out occurs, a system management interrupt
(SMI) is generated and the CPU is placed in SMM. Power management rou­
tines running in SMM then tum off the display, power down the disk drives,
and stop the CPU clock. Code execution also stops in the middle of the power
management routine. The system is restarted by a STOP _BREAK event (sim­
ilar to system events). The CPU clock is then restarted and power manage­
ment code continues to execute, restoring power to the screen and disk drives
and executing the RSM instruction to exit SMM. We estimated that this mode
would save up to 60 percent of the total system power.

While the system is in global standby, the Auto Power off timer can option­
ally be used to put the machine into the lower-power suspend state. When this
timer expires during a standby, the CPU clock is restored and an SMI is gen­
erated to initiate the suspend sequence.

The History and Future of the Intel SL Architecture 15

Detailed Design

After defining the high-level architecture, our engineering team then had to
engage in the internal design. We had to learn all about the PC platform­
compatibility, function, performance, and how different companies had
extended the architecture over the past 10 years.

We approached compatibility from two different directions: ISA-bus com­
patibility for the more than 1000 plug-in adapters, and software compatibil­
ity for the more than 25,000 available software packages. We knew a lot
about the original IBM AT-339 design; most of the components were designed
by Intel, and we had accurate schematic and BIOS information. The biggest
challenges facing us included third-party vendors' usage of the PC and how
they had extended the platform. To aid us in our ISA-bus design, we decided
to create a "compatibility bible." Six specs had been given to us by various
customers, and we also had the IEEE-996 document. The "bible" was created
by performing extensive experiments on ISA hardware and comparing them
to the specifications and our detailed knowledge of the inner working of the
devices. The programming model was developed in a similar way. Our X86
knowledge gave us most of the information required. This, along with cus­
tomer input and many experiments with applications, enabled us to create
the specifications for our part.

After defining the Intel386 SL architecture, we started to evaluate the
BIOS. To separate the initial powering up of hardware from new software, we
made the chips power up in a default state so that a regular AT BIOS would
boot and work. After that, the configuration and power management software
could be brought up. We worked closely with our partner, a major BIOS ven­
dor, and with internal programming teams to validate our defined program­
ming model.

The silicon development teams were also very active. One of these teams, in
charge of "full-chip" simulation, was developing the capability to simulate the
entire PC platform on our models. The team had to generate models of all
the PC peripherals and system behavior. Their efforts enabled us to boot DOS
on the silicon model. This involved executing the system configuration, POST
tests, system initialization, and BIOS calls. All of this ran on the low-level
transistor model of our product-a task which took our largest mainframe
approximately two weeks to execute.

First Silicon and Debug

After 18 months of definition and development, we finally produced the first
silicon. This was a very exciting time-would our baby work? It took us six
days to get to the point of booting DOS. The part was functional! We were able
to get our test board to work with the first silicon-a miracle! Working on one
platform with some applications is one thing, but getting to a full "worst-case"
design and PC compatibility is another. At the Intel386 SL Microprocessor
introduction in October 1990, we were able to demonstrate a fully transparent

16 Chapter Two

suspend/resume sequence while the board, with less than 10 components, was
running in enhanced 386 mode. We had met our challenge.

First Customer Shipment

Before our first partner could announce and ship product, we had to prove that
the Intel386 SL CPU was compatible, competitive, and functional, and had met
the performance and power expectations in a mass-produced notebook product.
We also had to prove that it could run any of the 25,000 PC applications in any
combination at any time of day. This took some time. For all of the engineers,
this was an important time, and we gained significant PC experience.

General Marketing of the Product

After the introduction of our first partner's notebook PC, we started to engage
with more customers. The Intel386 SL CPU worked, and we had proved that
we could resolve some of the system and compatibility issues. The power man­
agement architecture was a success. We made some changes to the parts to
support the needs of the rest of the PC industry: increasing the operating fre­
quency to 25 MHz and adding more flexible configurations so that the whole
customer base could implement their own specific features.

The Success of the SMM Architecture

The power management architecture was working, but we needed to separate
power management from the system management mode (SMM). (Power man­
agement is just one of the applications for SMM.) Customers were beginning to
use SMM for some other applications. A longer-term strategy and road map for
SMM was thus required.

To distinguish SMM from power management facilities in the Intel386 SL
processor, we decided to make it the sixth operating mode of the extended
Intel386 architecture. This mode will be implemented in all future X86-
compatible CPUs produced at Intel.

Support for Product-Specific Functions

A common request from our customers is to give them the ability to differenti­
ate their boxes. The Intel SL architecture provides this support with more than
120 configuration registers and the flexibility of SMM. There are many, very
different, Intel386 SL CPU-based systems in the market today. The features
and functions of the SL architecture that will be used in a product are up to the
system designer. He or she has to consider several tradeoffs: performance, sys­
tem weight, battery life, features, and peripherals. What the SL architecture
offers to all of these designers is the base of a compatible PC with many exten­
sions and hooks. Product design teams can spend their resources on these new
differentiating features and can rely on the Intel386 SL CPU to provide the
base-compatible platform for all of the available PC applications.

The History and Future of the Intel SL Architecture 17

Future SL Generations

After completing the first generation of SL products, we started to plan for
future products. We believe that the SL SMM and power management archi­
tecture and system partitioning will be good for the next three or four genera­
tions of products.

Performance and battery life are two major areas identified for new develop­
ment. Intel had solutions to both the problems in the next X86 core, as well as
the ability to reduce the core voltage to 3.3 volts. With these two mechanisms
alone, we estimated that we could easily double the system performance
and halve the power consumption. The next X86 core is easily implemented
and keeps the programming interface the same. This keeps binary compatibil­
ity with SL BIOS and power management software. The only changes required
are in the system configuration and setup.

Reducing the supply voltage in CMOS technology has a square proportional­
ity to power. Going from 5 volts to 3.3 volts results in a 60 percent power sav­
ing. The speed of the silicon switching is proportional to the supply voltage.
Both of these facts provided Intel with challenges, including performance to be
reclaimed, reliability issues, and reduced system noise margins. All of this
requires us to tune the silicon process.

In the spring of 1992, Intel announced the low-voltage Intel386 SL CPU
which uses a hybrid voltage design in which any circuit that operates above
8 MHz runs at 3.3 volts, and the rest of the circuitry runs at 5 volts. In the fall
of 1992, Intel announced the Intel486 SL CPU that combines an Intel486 SX
core with 3.3-volt operation.

Conclusion

Working on the design and development of the SL architecture was gratifying
for many reasons. The most gratifying feeling for us derives from witnessing
the success of Intel386 SL-based products and the great strides that have been
taken toward making portable computers more useful, more convenient, and
more reliable.

Chapter

3
SL Architecture Overview

The Intel SL architecture is the first microprocessor architecture to be
designed specifically for notebook computer and hand-held computer applica­
tions. It was designed with two goals in mind:

• To capture as many of the components required to make an ISA-compatible
PC as possible on a few VLSI chips

• To provide power management tools that work transparently to the operat­
ing system and applications programs and that give designers complete con­
trol over power usage by system components

Figure 3.1 shows a block diagram of an ISA-compatible PC, implemented with
the SL architecture. As this diagram illustrates, all you need to build a com­
plete PC in addition to the SL CPU and 82360SL 1/0 are memory chips, a
VGA controller, a floppy disk controller, a keyboard controller, an optional
math coprocessor (MCP), and buffers for optional 1/0 peripherals, such as a
flash disk.

The following sections describe the internal design of the Intel486 SL CPU,
Intel386 SL CPU and the 82360SL peripheral controller. It also describes the
various buses in the system.

lntel386 SL CPU and lntel486 SL CPU

lntel386 SL microprocessor

The Intel386 SL microprocessor is the first processor for portable computers.
The memory controller inside the Intel386 SL CPU contains all the control and
interface logic to drive a 20-Mbyte DRAM memory system or a 32-Mbyte
SRAM memory system and a cache controller to maximize performance. The
memory controller supports common memory options such as shadowing and
memory roll-over. Also, the on-chip hardware implements LIM 4.0-compatible
expanded memory system (EMS). (See Fig. 3.2.)

19

20 Chapter Three

FO; ln;l38;" ;L -,
CPU ONLY

, ____ _ MAIN
MEMORY

: c:l~~:Ri *
'1 I CACHE I I ------

• • lntel386'" SL
CPU OR ~ 82360SL

lntel486'" SL
CPU

XCVER

EXTERNAL EXTERNAL FLOPPY KEYBOARD FLASH r:::-1
_s_M_-R_A_M_ .. R_E_c't_'o_J_~_E c_o_N_~_~s_l_LL_E_R c_o_N_T_R_O_L-LE_R _si_o_s_ ~

Figure 3.1 Block diagram of a portable PC based on the Intel SL architecture.

I
I SA-BUS

EXPANSION
SLOTS

The Intel386 SL microprocessor also contains bus drivers and control cir­
cuitry for two expansion bus interfaces: Industry Standard Architecture (ISA)
bus interface and Peripheral Interlace (Pl) bus interface. The PI-bus interface
shares the same address and data buses with the ISA-bus interlace but has a
much higher performance control interlace. Bus cycles can be programmed to
be directed to either the Pl-bus interface or the ISA-bus interlace.

Low voltage lntel386 SL microprocessor

The low-voltage Intel386 SL microprocessor with "flexible voltage" operation
combines a selectable 3.3- or 5-volt peripheral interface with a 3.3-volt static
CPU and a 3.3-volt memory interface. The selectable voltage feature allows for
pin-for-pin compatibility with both 3.3- and 5-volt peripherals, eliminating the
translation logic typically necessary to connect 5-volt components to a 3.3-volt
CPU. In addition, the "selectable voltage" operation is 100 percent software­
compatible with the standard Intel386 SL processor.

Hardware implementation

The Intel386 SL Microprocessor SL SuperSet is manufactured using Intel's
CHMOS IV process, combining the high perlormance of HMOS with the low
power dissipation of CMOS. Double metal layers and 1.0-micron lithography
allow a chip density of more than one million transistors. The Intel386 SL

CACHE BUS CACHE BUS CACHE BUS
CONTROL ADDRESS DATA

CACHE CONTROL UNIT

• INTEGRATED CACHE TAGS

• POWER MANAGED

• PROGRAMMABLE

MCP
BUS

MCPOPTION

EFI---+ 3~W:KING
MEMORY
CONTROLLER • INTEL386 CPU

ISACLK2---+ gg~~iJ-~CK
lntal386'" PROCESSOR CORE

& SYSTEM MANAGEMENT
•DRAMISRAM
CONTROL

PERIPHERALS
INTERFACE~
BUS CONTROL

•MCPCLOCK
CONTROL

•PROGRAM·

MABLE

INTERNAL BUS UNIT

•SMART HIT BUS CYCLE ROUTING

•SUPPORTS POWER MANAGEMENT

•LIM4.0EMS
SUPPORT

•POWER
•PERFORMS ADDRESS MAPPING MANAGED

•PROGRAMMABLE
•PROGRAM­

t---------------tMABLE

•ROLL-OVER
EXTERNAL BUS UNIT

• NO GLUE, FULL DRIVE ISA-BUS

• OPTIMIZED Pl BUS SUPPORT

• PROGRAMMABLE

ISA-BUS

Figure 3.2 Main building blocks of the Intel386 SL microprocessor.

SL Architecture Overview 21

MEMORY ADDRESS
BUS

~~=:JL
~ :~:ORY DATA

microprocessor is available in a 196-pin plastic Quad Flat Package (PQFP) or
227 lead ceramic Land-Grid Array (LGA) package, a package that is designed
for easy upgrade. The 82360SL 1/0 is available in 196-pin PQFP package and
208-pin SQFP package.

lntel486 SL microprocessor

The Intel486 SL microprocessor is the newest generation of microprocessor for
notebook computers, and offers the highest performance and lowest power con­
sumption. Building on the success of the SL architecture, the Intel486 SL
microprocessor offers 3.3-volt CPU core and memory interface. (See Fig. 3.3.) It
is 100 percent binary compatible with the Intel386 SL microprocessor. The
Intel486 SL CPU provides higher performance by virtue of the reduced clocks
per instruction (CPls) associated with the Intel486 CPU. The Intel486 SL
CPU integrates a fully static Intel486 microprocessor core, cache controller
with 8 Kbytes of internal cache, Floating Point Unit (FPU), on-board memory
controller, and external bus controller. The higher integration allows the sys­
tem designer to create a smaller notebook computer.

The Intel486 SL CPU with FPU provides both integer and floating-point per­
formance improvements over the Intel386 SL CPU and Intel387 SL mobile
math coprocessor combination. Intel486 SL CPU floating-point ~erformance

22 Chapter Three

ISACLK2, EFI

SYSCLK

PWRGOOD

·3.3-VOLT
CLOCK
INPUT

•SYSTEM
RESET
LOGIC

TEST

TCK, TD1, TMS, TRST# - UNIT
•JTAG
BOUNDARY
SCAN

ONCE#, SELFTEST# SUPPORT

MEMORY
ADDRESS

BUS

t
MEMORY

DATA BUS

t
MEMORY CONTROLLER UNIT
• 3.3/5-VOLT INTERFACE
•32-BIT DATA BUS
• BURST MODE SUPPORT

MEMORY
CONTROL
SIGNALS

t

• MEMORY ROLL-OVER AND MC WINDOW

FLOATING
POINT
UNIT

CPU CORE
AND

CACHE

EXTERNAL BUS CONTROLLER UNIT
• ISA-BUS INTERFACE
• P1-BUS INTERFACE

t t
ISA-BUS Pl-BUS

Figure 3.3 Main building blocks of the Intel486 SL microprocessor.

CHIP
SELECTS

UNIT

82360SL
1/0

INTERFACE

ROMCSO#, ROMCS1#
VGACS#, FLSHDCS#

ROM 1618#

TURBO

- SMI#, NMI, INTR, AZOGATE
STPCLK#, REFREQ,
CPURESET, HRQ
OMA 8/16#, SUS-STAT

SMRAMCS#, INTA#, HLDA
HALT#, PERR#, FPUERROR#

will offer an increase of between two to three times the performance of the
Intel386 SL microprocessor and Intel387 SL mobile math coprocessor combi­
nation at equivalent clock speeds.

Power consumption is further reduced by using a lower supply voltage (3.3-
volt) for the majority of the Intel486 SL CPU internal logic. The on-board
DRAM buffers may be selectively powered to support either 3.3- or 5-volt
DRAMs. The ISA-bus and 82360SL peripheral I/O interfaces are powered by 5-
volt. The 5-volt interface to the ISA-bus and 82360SL ensures compatibility of
the Intel486 SL processor with existing ISA-bus peripherals and I/O devices.
The Intel486 SL processor further reduces system power by minimizing off­
chip bus cycles when executing from the cache or floating-point unit.

BIOS and System Setup software written for the Intel386 SL microprocessor
may be easily modified to support the new DRAM memory configurations with­
out impacting applications software. The other existing Intel386 SL micropro­
cessor components are supported without any required modifications. The new
Intel486SL processor features are transparent to applications software run­
ning in existing Intel386 SL microprocessor systems.

Software compatibility

The Intel386 SL microprocessor is binary code compatible with all the Intel386
microprocessors. All the existing programs that are running on an Intel386

SL Architecture Overview 23

ISA PC will run on an Intel386 SL CPU-based machine without recompilation
or reassembly. For programs such as power management software, the proces­
sor provides system management mode, which establishes a protected environ­
ment transparent to the operating systems and applications software. In this
environment, applications software can take advantage of the transparency of
system management mode without having to worry about interference from
operating system and applications software that are running on the system.

Differences between the lntel386 SL microprocessor
and the lntel386 SX microprocessor

The best way to describe the differences between the Intel386 SX CPU and
the Intel386 SL processor is that the Intel386 SX processor is a subset of the
Intel386 SL processor. The following is a list of features that are supported by
the Intel386 SL CPU only.

• The Intel386 SL processor provides direct support for DRAMs and SRAMs.

• The maximum physical memory address space is 32 Mbytes on the Intel386
SL processor.

• Direct hardware support compatible with LIM EMS 4.0 is included in the
Intel386 SL processor.

• Memory options such as EPROM shadowing and memory roll-over are sup­
ported by the Intel386 SL processor.

• System management mode is supported by the Intel386 SL processor.

• A cache controller is embedded inside the Intel386 SL processor which can
support 16, 32, and 64 Kbytes of cache.

• ISA-bus and PI-bus peripherals can interface directly to the Intel386 SL
processor.

• The Intel386 SL CPU is fully static and the clock can be stopped whenever
the HLT instruction is executed or after an I I 0 read to the STP _ CLK register.

• The Intel386 SL CPU supports suspend operation.

• In addition to the component ID, a signature register is available for soft­
ware to identify CPU type and stepping information.

Differences between the lntel486 SL CPU and the lntel386 SL CPU

The Intel486 SL CPU and the Intel386 SL CPU were designed to provide the
highest level of integration and performance at the lowest possible level of
power consumption. The following are the more important features of the CPU:

• It has an integrated memory controller. The Intel386 SL CPU's on-chip
memory management unit supports DRAMs and SRAMs directly and pro­
vides a maximum physical address space of 32 Mbytes. The Intel486 SL
CPU's on-chip memory controller supports up to 64 Mbytes of physical mem­
ory. (SRAM is not supported.)

24 Chapter Three

Core CPU

• Support for LIM EMS 4.0 is provided in the Intel386 SL CPU (not in the
Intel486 SL CPU).

• The SMM is provided to allow execution of power management and other
system management software to be isolated from the operating system and
application programs.

• The memory controller supports EPROM shadowing and memory roll-over.

• An embedded cache controller supports a 16-, 32-, and 64-Kbyte-cache (but
not in the Intel486 SL CPU, where the cache is internal to the CPU and is
fixed at 8 Kbytes).

• ISA bus and PI bus (unique to the SL CPU) provide a direct interface
between the CPU and peripherals.

• Suspend/resume operation is supported (allowing the system to be powered
down and powered up again without losing the state of the machine).

• The SL CPUs are fully static, allowing software to stop the CPU clock with-
out losing the state of the machine.

In addition to the core CPU, the SL CPU consists of five main building blocks:
the internal bus unit, the on-board memory controller unit, the external bus
unit, the cache unit (not in the Intel486 core CPU), and the clock unit.

The core CPU of the Intel486 SL processor is based on the core CPU of the
Intel486 SX processor, and the core CPU of the Intel386 SL is based on the core
of the Intel386 SX processor. The Intel486 SL CPU and the Intel386 SL CPU
provide the same register set and instruction set as in the stand-alone Intel486
SX CPU and Intel386 SX CPU. Like the Intel486 SX CPU, the Intel486 SL
CPU also has 8 Kbytes of internal cache. Any program that runs on the Intel486
SX CPU will run on the Intel486 SL CPU and likewise for the Intel386 SX CPU
and Intel386 SL CPU.

Internal bus unit

The internal bus unit is the router between the CPU core and the other four
CPU units. It directs bus cycles to the external bus unit, the cache unit, and
the on-board memory controller unit. It uses configuration registers to deter­
mine where to send each cycle. These registers control roll-over of memory,
the on-board memory limit, the disabling of memory in 64-Kbyte segments in
the bottom 1-Mbyte memory address space, BIOS shadowing, and caching of
memory-mapped I/O address space.

Normally the internal bus controller sends a bus cycle either to the external
bus unit (ISA-bus or PI-bus) or the on-board memory controller unit (for on­
board memory), and determines whether the cycle should be cached. All cycles
to on-board memory are directed to the on-board memory controller. The inter­
nal bus unit determines the size of the on-board memory space by inspecting
the OMLCR register. This register specifies the on-board memory limit in 512-

Clock unit

SL Architecture Overview 25

Kbyte blocks (the minimum block of memory that can be addressed in a single
bank by the on-board memory controller unit). A value of zero for the limit indi­
cates that accesses above 512 Kbytes are to off-board memory.

The clock unit provides clock signals and clock control for the CPU. The clock
source for the clock units comes from two oscillator inputs: the External Fre­
quency Input (EFI) and the ISA clock (ISACLK2). The EFI provides the basis
for the CPU clock (CPUCLK). This clock has a maximum rate ofEFl/2, but can
be programmed for slower speeds or stopped. When the clock is stopped, the
static design of the CPU allows it to maintain its state without being refreshed.
The programmable MCP clock (NPXCLK) is derived from the CPUCLK.

The ISACLK2 provides the basis for the system clock (SYSCLK) that clocks
the system bus. The SYSCLK is an ISA-type clock and is required to be 8 MHz
in SL CPU-based systems.

On-board memory controller unit

The on-board memory controller unit supports both DRAM and SRAM
(lntel386 SL CPU only) subsystems. When configured for DRAM mode, the
DRAM controller inside the memory controller unit controls how the CPU
interfaces to the DRAMs. The prime functions of the DRAM controller are
address and refresh generation. The refresh logic inside the memory con­
troller provides refresh to the DRAMs during normal operation as well as dur­
ing suspend. Please note that ISA-bus refresh is not performed by the memory
controller.

When programmed for SRAM mode, the SRAM controller inside the
Intel386 SL CPU controls the interface between the processor and the SRAMs.
The SRAM controller is responsible for generating the control signals for
the data transceivers and wait state to support SRAM of different speeds. The
memory controller works in conjunction with the cache controller. When the
cache controller is enabled, the memory controller is activated only during
CPU write cycles or cache-miss read cycles to conserve power. When the cache
controller is disabled, all memory accesses occur to the memory controller.

On-board memory bus

Addresses, data, and memory control signals are transmitted on the on-board
memory bus. This bus supports DRAMs or SRAMs. In the Intel386 SL proces­
sor, the address bus for the DRAM interface is multiplexed. The address bus
and data bus for the SRAM interface are multiplexed together. The DRAM and
SRAM interfaces share the CMUX interface (CMUX[0:13]) in the Intel386SL
processor. The definitions of the CMUX signals are described in Table 3.1.

Cache controller unit

The cache controller unit (Intel386 SL CPU only) consists of the cache inter­
face module and the Intel387SL math coprocessor (MCP) interface module.

26 Chapter Three

TABLE 3.1 On-Board Memory Bus Signals
for lntel386 SL CPU

Signal name

CMUXO
CMUXl
CMUX2
CMUX3
CMUX4
CMUX5
CMUX6
CMUX7
CMUX8
CMUX9
CMUXlO
CMUXll
CMUX12
CMUX13

DRAM mode

CASL3#
CASH3#
CASL2#
CASH2#
CASLl#
CASH!#
CASLO#
CASHO#
RAS3#
RAS2#
RASl#
RASO#
PARL
PARH

SRAMmode

DIR
LE
DEN3#
DEN2#
DENl#
DENl#
DENO#
DENO#
CE3#
CE2#
CEl#
CEO#
OLE#
OHE#

The cache interface module controls how the cache controller interfaces to the
cache SRAM. The 8 Kbytes of cache inside the Intel486 SL CPU is part of
the CPU core.

Cache memory bus

The cache memory bus is a 16-bit bus which can address up to 64 Kbytes of
cache memory. The bus interface consists of data and control signals. The con­
trol signals include Cache Write Enable (CWE#), Cache Output Enable
(COE#), Cache Chip Select High (CCSH#), and Cache Chip Select Low
(CCSL#).

Math coprocessor {MCP) interface module

MCP bus

The MCP interface module provides an interface between the CPU core and
the MCP. This interface includes a register that allows the CPU to slow or stop
the clock to the MCP if a static MCP such as the Intel387 SL is used.

The MCP bus provides a direct path between the MCP and the CPU core. It
shares the same address bus and data bus with the cache memory bus. Eight
additional control and clock signals are provided in the MCP bus: BUSY#,
ERROR#, NPXRDY#, NPXADS#, NPXW/R#, NPXRESET, NPXCLK, and
PEREQ.

External bus unit

The external bus unit consists of the system bus (ISA-bus) controller, the PI­
bus controller, and byte-swapping logic for the data bus. The external bus
interface is programmable.

SL Architecture Overview 27

System bus

Pl bus

Xbus

The system bus is a 16-bit parallel memory and 1/0 bus. It is compatible with
the standard ISA bus found in ISA-compatible PCs, and conforms with the
IEEE P996 standard. Unlike some implementations of the ISA bus (such as
the Intel386 SL CPU), the drive capability of the system bus is programmable
in the Intel486 SL CPU. The ISA-bus clock speed is fixed at 8 MHz to maintain
compatibility with existing ISA-bus peripherals.

The system bus is an extension of the CPU's local processor bus, with a max­
imum memory address space of 16 Mbytes (24 address lines). Memory accesses
above 16 Mbytes wrap around to the beginning of memory.

Three buses are derived from the system bus: the peripheral interface bus
(PI bus), the X bus, and the expansion bus.

The PI bus is a high-speed, asynchronous bus for interfacing with peripherals
such as a flash disk or a high-speed VGA graphics frame memory. It is like a
decoded local bus and is derived from the ISA bus. The PI bus shares address
and data signals of the system bus. It also provides special support for a VGA
graphics controller interface and a flash disk interface. Chapter 12 contains a
thorough description of PI bus.

The X bus is a buffered version of the system bus to support devices such as the
keyboard controller, floppy disk controller, flash BIOS, external real-time
clock, and EPROMs. The buffers are always enabled, with the direction of data
transmission controlled by the XDIR signal. The X bus provides an 8-bit data
bus (16-bit for 16-bit flash BIOS) and a 17-bit address bus. High or low system
bus data bytes can be directed to the X-bus data bus through byte swapping.

Expansion bus

The expansion bus is an extension of the system bus to support ISA-bus expan­
sion slots in the system. This bus provides the complete set of signals com­
monly found in the ISA bus of an ISA-compatible PC. It can support any
standard ISA-bus card, including memory boards, video controllers, fax/
modems, and ethernet interface boards. The bus clock rate is fixed at
8 MHz by the SYSCLK signal. The 82360SL also provides a separate OSC
clock signal for this bus.

System management mode (SMM)

The SL architecture introduced a new operating mode for microprocessors: the
system management mode (SMM). The SMM provides a separate execution
environment for system and power management routines that is transparent
to the operating system and application programs. A special system manage-

28 Chapter Three

ment interrupt (SMI) activates the SMM. Upon receipt of an SMI, the CPU
temporarily suspends execution of its current operating system or application
program, enters the SMM, and begins executing SMM routines located in a
dedicated System Management RAM (SMRAM) address space. When the CPU
exits the SMM (with an RSM) instruction, the CPU resumes executing the
operating system or application program where it left off when the SMI
occurred.

The SMM is the main component in the various power management facili­
ties that the SL CPU and 82360SL provide. It is also available to designers to
handle other system management tasks when it is important to prevent con­
flict with the operating system or application program. The SMM is described
in detail in Chap. 4.

82360SL Peripheral Controller

The 82360SL peripheral controller contains dedicated logic to interface with
the Intel486 SL or Intel386 SL CPU and a complete set of standard ISA­
compatible peripheral controllers, including two serial port controllers, one
parallel port, two programmable interrupt timers, two interrupt controllers,
and two DMA controllers. It also provides interfaces for a keyboard controller,
a floppy drive controller, and an IDE hard disk. The software and hardware
interfaces to the peripherals embedded inside the 82360SL are identical to
those for the discrete components commonly found in an ISA system. (See
Fig. 3.4.)

Power management hardware

One of the highlights of the 82360SL is its comprehensive set of power man­
agement features. The power management facilities are tightly coupled with
SMM of the SL CPU to provide a robust and efficient mechanism for managing
the power consumption of a battery-powered PC. The power management
mechanism includes facilities for powering down idle peripheral devices, slow­
ing or stopping the clock to system components, and suspend/resume opera­
tion. Chapters 5, 6, and 7 describe the power management features of the SL
CPU in detail.

IDE interface

The IDE (Integrated Drive Electronics) interface is a simple, hard disk drive
interface that consists of 40 signals. This interface allows an IDE hard disk
drive to be connected to the system with a simple adapter card containing a
minimum of logic. The IDE interface uses a register-based command status
protocol standardized by the DOS operating system and BIOS.

The IDE interface is derived from the system bus; therefore, bus cycles for
the IDE interface are the same as the system bus. For example, an 8-bit IDE
access requires 6 SYSCLKS, and 16-bit IDE access requires 3 SYSCLKS. Zero
wait state operation is not supported on the IDE interface. The IDE bus shares

IRQ 8

CLOCKS

SMI

SYSTEM MANAGEMENT
OUTPUT CONTROL

POWER STATUS

NMI

61H

92H

CONTROL
GENERATOR

82360SL
IRQ 0 INTR

TIMER
COUNTERS
(2x82C54)

SYSTEM
MANAGEMENT

UNIT

SMI SOURCES

1/0 DECODE LOGIC &
EXTERNAL BUFFER CONTROL

ADDRESS DATA CONTROL

Figure 3.4 Main building blocks of the 82360 SL.

SL Architecture Overview 29

IRQ INTA

DRAM REFRESH
& OMA

ARBITRATION

ADDRESS MANAGER
(FDC, HOC, KBC,
EXTERNAL RTC

INTERFACES)

COMA

COMB

REFRESH

REFREQ

FDC
HOC
KBC
XTRC

DRQ

TC

DACK

some signal lines with the system bus, plus it has several signals that are
unique to it. Table 3.2 shows the IDE bus signals.

Parallel and serial ports

The 82360SL provides controllers for an ISA parallel port and two RS-232C
serial ports. The parallel port provides a standard ISA parallel port interface
and a second interface for an enhanced parallel port that is unique to the
82360SL. Both ISA devices and faster peripheral devices can operate at the
same time on the parallel port. The enhanced parallel port is asynchronous, so
it is able to handle much faster data transfers than is possible with the ISA
interface. Chapter 14 describes the enhanced parallel port in detail.

Register Resources

The SL architecture offers a rich set of registers. These registers are divided
into three groups: CPU registers, ISA system registers, and system configura­
tion registers. The CPU registers include those registers normally found in a
stand-alone Intel486 SX or Intel386 SX CPU. ISA-system registers provide
access to the I/O ports typically found in a standard ISA system.

30 Chapter Three

TABLE 3.2 IDE Bus Signals

Shared ISA-bus signals Unique to IDE bus

Reset
IOW
IOR
IOCHRDY
IRQ
SA[0:2J
SD[0:6]
XD7
SD[8:15J
Ground
IOCS16

CSO (1FOH-1F7H)
CSl (3F6H and 3F7H)
DASP(LED)
PDIAG (slave drive)

Summary

The system configuration registers are unique to the SL processors. These
registers are located in normal 1/0 address space, internal bus unit configura­
tion space, on-board memory controller unit space, external bus unit space,
cache unit configuration space, or 82360SL configuration space. Some of these
registers have specific functions (e.g., controlling the power management hard­
ware in the system); others are available to system designers to control prod­
uct specific features.

In this chapter we started out by looking at the SL architecture from the sys­
tem level. We then looked at the internal architecture of the SL processors and
the 82360SL. A good understanding of the SL architecture will be important
later when we discuss how to design portable applications.

References

Quinnell, R., "Bus-Driver ICs," EDN, February 1992, pp. 78-86.
"ISA Bus Specification and Application Notes," Intel Corporation, January 1990.

Chapter

4
System Management Mode

For the past few years, many people have accused the PC industry of becoming
stagnant and lacking innovative products. This is definitely not the case with
the Intel486 SL CPU and Intel386 SL CPU and 82360SL. The creation of SMM
mode offers innovative PC designers a whole new world of opportunities.

The system management mode (SMM) is a unique operating mode of the SL
architecture that lets the CPU execute code transparently from the operating
system and application software. Hardware, the operating system, and appli­
cation software can interact directly with the SMM software. To a programmer,
SMM is similar to real-address mode in the Intel x86 family of microproces­
sors. This chapter explains what SMM is and how to use it.

System Management Mode Architecture

The SMM is one of five operating modes in the SL architecture (real mode, pro­
tected mode, virtual mode, and ICE mode are the other four modes). As shown
in Fig. 4.1, the basic components of the SMM architecture are System Man­
agement Interrupt (SMI) to invoke SMM, a unique address space for storage
and execution of SMM routines, and a new instruction called RSM (opcode
OFAAh) to exit from SMM. Unlike the other four execution modes, SMM sup­
ports collaboration between system resources and the CPU. (See Fig. 4.2.)
When the system hardware requires service from the SMM program, it sends

SL

MICROPROCESSOR

SMI

AND RSM

INSTRUCTION

MICROCODES

SMRAMCS

SMI

Figure 4.1 System management mode architecture.

~ENABLED

_.ss;.;-DISABLED

31

32 Chapter Four

APPLICATION

OPERATING SYSTEM

BIOS

INTERFACE TO SYSTEM MANAGEMENT MODE

Figure 4.2 Collaboration between
system management mode and
system resources.

an SMI to the CPU. The CPU then enters the SMM, executes an SMM routine
to service the request, and exits SMM.

The following sections describe the implementation of the SMM architecture
in the SL CPU.

Entering the SMM

External or internal hardware can invoke the SMM by signaling an SMI. An
SMI can be signaled directly by asserting the SMI# pin. Logic in the SL CPU
and 82360SL chips also asserts the SMI# signal internally. The SMI# signal is
a falling-edge-triggered signal and is recognized only on instruction execution
boundaries. While in SMM, the CPU ignores all SMis until the RSM instruc­
tion is executed.

The SL CPU assigns a priority to each type of interrupt or exception.
Table 4.1 shows the priorities of the different interrupts and exceptions. The
shutdown exception has the highest priority and the 1/0 lock has the lowest

TABLE 4.1 SL Microprocessor Interrupt and Exception Priorities

Priority

1
2
3
4
5
6
7
8
9

10
11
12
13

Intel486 SL CPU

Shutdown
Double fault
S_unit violation
Page fault
Divide by zero error
System management interrupt (SMI)
Stop clock
Single step
Debug exceptions
Ice break
Nonmaskable interrupt (NMI}
External interrupts via INTR pin
1/0 lock

lntel386 SL CPU

Shutdown
Double fault
S_unit violation
Page fault
Divide by zero error
System management interrupt (SMI)
Single step
Debug exceptions
Ice break
Nonmaskable interrupt (NMI)
External interrupts via INTR pin
1/0 lock

System Management Mode 33

priority. The SMI cannot preempt any interrupts or exceptions with a higher
priority.

Allowing the CPU to service external interrupts while in SMM can cause the
system to hang up. To protect against this problem, the CPU blocks external
interrupts generated via the INTR signal after entering SMM. As a result of
this action, software routines running in SMM cannot depend on interrupt­
driven features. For example, a timing loop that depends on an interrupt from
the real-time clock will not work inside SMM.

If the STI instruction is executed while in SMM, this protection against
external interrupts is overridden, and the CPU will respond to external inter­
rupts. To avoid hanging up the system in SMM, you should thus guard against
using the STI instruction while in SMM.

System management RAM address space

The SL CPU provides a separate memory address space, called the System
Management RAM (SMRAM) address space, for storage and execution of SMM
software routines. The SMRAM is distinct from the physical memory address
space to ensure that software running in SMM does not conflict with the oper­
ating system or application software. The SMRAM can be located in either
on-board (main memory controlled by the CPU) or off-board memory (memory
controlled by the SMRAMCS# signal). The size of the SMRAM can be 32 or
64 Kbytes if off-board memory is used and 64 Kbytes if on-board memory is
used. After SMM is enabled, the SMRAM address space is mapped to the phys­
ical address space from 30000H to 3FFFFH (64 Kbytes) or from 38000H to
3FFFFH (32 Kbytes).

Once the CPU recognizes an SMI, it enables the SMRAM. The microcode
handling the SMI saves the CPU state in the Processor State Area (PSA) in a
stacklike fashion beginning with physical address 3FFFFH and ending at
3FEOOH. The organization of the PSA is shown in Table 4.2.

Address formation

Unlike real-address mode, the CPU can access or jump anywhere within the
4 Gbyte logical address space in SMM. The CPU can indirectly access or per­
form a near jump anywhere within the 4-Gbyte logical address space. In SMM,
address generation is the same as in real-address mode, without the 64-Kbyte
limit. The value loaded into the selector register is shifted four bits and added
to the effective address. The effective address can also be generated indirectly
using a 32-bit register. The selector is limited to 16 bits. If a call is made, only
16 bits are pushed for a return.

Processor state after entering SMM

After the CPU enters the SMM and saves its state in the PSA, it sets several
registers to predefined values. These values are sufficient to allow program

34 Chapter Four

TABLE 4.2 Processor State Area (PSA) Map

Address

3FFFCH
3FFF8H
3FFF4H
3FFFOH
3FFECH
3FFE8H
3FFE4H
3FFEOH
3FFDCH
3FFD8H
3FFD4H
3FFDOH
3FFCCH
3FFC8H
3FFC4H
3FFCOH
3FFBCH
3FFB8H
3FFB4H
3FFBOH
3FFACH
3FFA8H
3FFA7H-3FF04H
3FF02H
3FFOOH
3FEFCH

3FEFBH-3FEOOH

CRO
CR3
EFLAGS
EIP
EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX
DR6
DR7

Registers

TR (upper word reserved)
LDTR (upper word reserved)
GS (upper word reserved)
FS (upper word reserved)
DS (upper word reserved)
SS (upper word reserved)
CS (upper word reserved)
ES (upper word reserved)
Reserved
Halt auto restart slot
1/0 instruction restart slot
SMM signature (SOOOOH for the lntel486 SL CPU

and lOOOOH for the lntel386 SL CPU)
Reserved

TABLE 4.3 Predefined Register Values in SMM for SL CPU

Selector

cs
DS
ES
FS
GS
SS

Base

30000H
OH
OH
OH
OH
OH

Limit

4 Gbytes
4 Gbytes
4Gbytes
4 Gbytes
4Gbytes
4Gbytes

execution, but additional initialization may be needed. Table 4.3 shows the
predefined values set in the registers. In addition, the PE bit in the CRO regis­
ter and the DR7 register is cleared.

Debug registers

Upon entering SMM, the CPU automatically saves registers DR6 and DR7 in
SMRAM, and these registers should not be modified. Debug registers DR[0:5]

System Management Mode 35

are not saved automatically, and they should be saved by power management
(or SMM) software before going into suspend.

Location of first instruction

After entering SMM, the PE bit in the CRO register is automatically cleared and
CS:IP is initialized to 3000H:8000H, causing instruction execution to start at
physical address 38000H. Therefore, all SMM software must be written such
that the first instruction is located at 3000H:8000H when SMM is enabled.

Entering and leaving SMM

As previously mentioned, SMM is entered by asserting the SMI# signal. After
an SMI is recognized, the CPU enables the SMRAM address space, saves the
CPU state in the PSA, enables SMM, and starts executing instructions at sys­
tem address 38000H. The SMI# pin will remain asserted until the software
running in SMM exits SMM. With the SL CPU and 82360SL chips, an SMI can
be generated by either hardware or software.

An SMM revision identifier, located at 3FEFCH in the SMRAM address
space, indicates the SMM version and the extensions that the CPU supports.
The lower word of the SMM revision identifier indicates the version of the base
SMM architecture; the upper word indicates the extensions available. The I/O
trap extension bit (bit 16) of the SMM identifier indicates whether or not the
CPU supports the I/O trap restart mechanism. If this bit is set, the I/O trap
restart mechanism is supported.

The only way to exit SMM is to execute the RSM instruction. Executing the
RSM instruction restores the CPU registers to their original states using infor­
mation stored in the PSA, disables the SMRAM address space, and deasserts
the SMI# signal. The RSM instruction should never be executed outside SMM.
Doing so will cause an invalid opcode trap.

The RSM instruction has two options associated with it, which can be
enabled or disabled by writing to the PSA.

The first option enables the SMM program to return to the halt state through
the use of the halt auto restart slot if the SMI occurred when the CPU was in
the halt state. The halt auto restart slot is located at 03FF02H in the SMRAM
address space; it is 16 bits wide. If the halt state bit (bit 0) is set prior to execu­
tion of the RSM instruction, the CPU automatically reenters the halt state; oth­
erwise, the CPU continues execution just after the interrupted halt instruction.

The second option enables the I/O instruction that caused the SMI to be
reexecuted. The I/O trap restart slot located at 3FFOOH in the SMRAM
address space determines if the I/O instruction is to be reexecuted. If the slot
is set to OFFH, the RSM instruction automatically executes the I/O instruction
after exiting SMM; if the slot is set to OH, the I/O instruction is not reexecuted.
Upon entering SMM, the CPU automatically initializes the I/O trap restart
slot to OH. Your software should set the I/O trap restart slot to OFFH only if the
SMI was caused by an I/O trap.

36 Chapter Four

Blocking CPU reset

CPU reset is one of the few interrupts that has a higher priority than the SMI.
Except for CPU reset caused by shutdown and PWRGOOD, the CPU reset sig­
nal should be blocked while in SMM. Otherwise, the integrity of the system
might be lost.

After entering SMM, the SMI# signal remains low (asserted) until bit 0 of
the SMI_MARK register (OF9H) is cleared (normally done right before the
RSM instruction is executed). The SMI# signal can be used to block the CPU
reset signal.

Exit from SMM

Upon exiting SMM, program execution always returns to the program that
was interrupted by the SMI. However, program execution can be passed to a
program different than the interrupted program. For a program running in
real mode, the CPU can be directed to go to a different program by modifying
the instruction pointer in the PSA to point to the beginning of another pro­
gram. Upon exiting from SMM, the CPU will then jump to the new program
instead of returning to the interrupted program.

The CPU can also be directed to go into protected mode upon exit from SMM.
However, before going into protected mode, the selectors for the different seg­
ment registers must be modified, or a system crash will occur. One way around
this problem is to exit SMM without going back to the interrupted program.
This can be done by having the SMM program generate a CPU reset prior to
reenabling CPU. The CPU reset will then force the CPU to exit SMM without
returning to the original application.

To differentiate the CPU reset from other CPU resets generated by the sys­
tem, your SMM program can write to the shutdown byte in the CMOS RAM or
a memory location in SMRAM to indicate that the CPU reset was caused by
the SMM program. By examining the shutdown byte, the reset routine can
redirect control to another program to enter protected mode.

Applications of SMM

One of the main reasons that Intel developed the SMM was to provide
a method of executing power management software that did not interfere
with the execution of the operating system or application programs. The
SMM, however, is a very versatile mode that can be used for many applica­
tions. The use of the SMM for power management is described in detail in
Chaps. 5, 6, and 7. The following two examples show how SMM can be used
in designing new applications. The functions performed in each application
are different; yet, as you will see, both applications make use of the trans­
parent property of SMM. Software and hardware components are required in
both examples.

System Management Mode 37

A debugger using SMM

The SMM has proved very useful for debugging system designs based on the
SL CPU. Often, when a system malfunctions, it hangs up, making it difficult to
locate the cause of the problem without a logic analyzer or an in-circuit emula­
tor (ICE). Using SMM, we can often determine the state of the CPU or a
peripheral even when the system is hung.

One way to break out of a hung condition is to generate an SMI to force the
CPU into SMM. You can then use a debugger program written to run in SMM
to examine the registers and isolate problems in the CPU and system periph­
erals. Chapter 16 gives additional examples of how a debugger running in
SMM can be used for system debugging.

For the debugger to run in SMM, the debugger program must be loaded in
SMRAM, which can be located in main memory or external memory. One ben­
efit of locating the SMRAM in external memory is that the debugger program
can still function, even when main memory is corrupted. In addition, the exter­
nal memory is backed up by battery. Thus, in the event that there is a power
failure, the external memory will still be active.

The program that loads the debugger into the SMRAM must initialize the
CPU before it starts loading to inform the CPU whether it is using main or
external memory. Then the loader must enable SMRAM by setting bit 3 of the
OMDCR register. After SMRAM is enabled, the debugger program can be
copied to the 3000:0000H address space.

Once the debugger is loaded into SMRAM, any trigger (software or hard­
ware) can theoretically be used to invoke the SMM and run the debugger. The
SL CPU evaluation board provides an external SMI switch for generating
SMis. This switch is connected to the external SMI pin (EXT_SMI# on the
82360SL). Before this switch can be used to invoke the debugger, the debugger
loading program must enable the external SMI pin (EXT_SMI#) as a trigger
for the SMI and initialize the timer associated with the pin. Once the circuit is
enabled, you can force the CPU into SMM and run the debugger anytime,
merely by activating the switch (pressing the button). Figure 4.3 shows an
example of this circuit.

The debugger can be a stand-alone program or it can be included as part of
the system's SMM program. If the debugger is to be a stand-alone program, its
first instruction must be located at 3000:8000H. To include the debugger pro­
gram as part of the SMM program, the SMM program must pass control to the
debugger program when a debug trigger is invoked (e.g., external SMI).

Advantages of using SMM for debugging. A debugger running in SMM offers sev­
eral benefits over traditional software debuggers and ICEs, as described here:

• The debugger can be invoked in any CPU operating mode (i.e., protected, vir­
tual, or real mode).

• You can often still use the debugger, even if the system has crashed and the
CPU is hung.

38 Chapter Four

EXTERNAL
SM-RAM

SMRAMCS#

MICRo~5cESSOR SMI# 82360SL EXTSMI#

.,_ ___ "'640K

ON-BOARD
MEMORY

NOTE:
DEBUGGER CAN BE STORED IN
INTERNAL OR EXTERNAL SM-RAM

____ ,.OK

Figure 4.3 Using SMM for debugging.

• Unlike debuggers running on the same target system that will not function
if the main memory is corrupted, a debugger running under SMM can still
function if the program is stored in external memory.

• While in SMM, the entire memory address space appears as linear memory
and the debugger can address up to 4 Gbytes of memory address space.

• With an ICE, the CPU is not running in real time. Instructions execution is
done through a host system. The delay introduced by the host system can be
a problem when debugging a real-time application. A debugger running in
SMM runs on the same CPU in the target system and does not introduce
delays in the system.

• Software timers can be set up inside the debugger to interrupt the applica­
tion at a specific time.

• The debugger can be triggered by software as well as hardware. For exam­
ple, the debugger can be invoked by the program that the programmer is try­
ing to debug. Instead of inserting a breakpoint into the program, a software
SMI call can be added to a program to invoke the debugger.

Features of a debugger using SMM

The following list gives the features that should be included in a debugger
designed to run in SMM.

• Display registers inside an SL CPU configuration space

• Display memory contents

System Management Mode 39

• Display interrupt vector locations

• Display BIOS data area

• Edit memory and register contents

• Break-point I/O and memory accesses (read or write)

• Single-step execution

• Ability of the debugger and the loading program to be stored in ROM as well
as disk files

Note: The debugger can output data to either a monitor screen or a printer.

A fail-safe backup mechanism running in SMM

Losing data during a power outage can be a nightmare for a computer user who
does not have an uninterruptible power supply. A cost-effective solution to this
problem is to provide the computer system with a small backup battery that
can keep the system active long enough for the CPU to back up all volatile data
to a permanent storage device before powering down the system. After power
is back to normal, the system can be powered up and the data and machine
state can be restored to the state it was in prior to the power failure.

The SMM provides a convenient mechanism for running a fail-safe data
backup program. A monitor circuit can be designed that generates an SMI
whenever a power failure is detected. The SMI can then be used to activate the
backup battery and invoke the fail-safe backup program, which runs in SMM.
Figure 4.4 shows such a circuit.

The backup program might work as follows. When the monitor circuit
detects a power failure, it generates a fail-safe SMI, interrupts the CPU, and
runs the backup program in SMM. The backup program generates a warning
beep and a message to warn the user about the power failure and to ask the
user to complete processing within one minute. When one minute is over, the
service routine sets the fail-safe status bit. The state of the fail-safe status bit
will indicate to the CPU, upon reset, whether it is coming from a power failure
or a cold boot. When system power returns, a CPU reset is generated. This CPU
reset can then be used to initiate a system restore routine that uses the backup
data to restore the system to its operating state before the power failure.

When developing such a backup program, one design problem you will
encounter is where and how to save the machine state data. The typical mem­
ory size for a notebook computer is about 4 Mbytes, making it more practical
and economical to save it on the hard disk than on another permanent mem­
ory storage device. If you choose to save the state data in a file on the hard
disk, the backup program will be operating-system-dependent. In addition,
saving the data to a file storage area accessible to the operating system might
corrupt the data on the hard disk. This problem can be solved by reserving
some tracks on the hard disk for backing up data during a power failure. Every
BIOS on an ISA-compatible computer has a hard disk drive parameter table.
Software interrupt 41H points to the beginning of this table. Any operating

40 Chapter Four

+5V
Vee...__. ______ - - '"\ I - - - - - -

INPUT ~

Jo.1µF
3 15

Vee BATT ON _r ._+,___+---1VBATT

'::" 3V
BATIERY

NO
CONNECTION

9 PFI

LO WU NE

6

MAXIM

MAX691
MAX693
MAX695

14

SYSTEM STATUS
INDICATORS

Your 2

CE OUT .-1-2----'

CMOS
RAM

c""E IN ..,a..___ADDRESS , .. _...._ _ ___,
DECODE

wo1M---------1vo

PFC> 0-------+• sM1

AO-A15

RESET 15 RESET
RESET

~ Jo.1µF
SL

MICROPROCESSOR

OlHER SYSTEM
RESET SOURCES

Figure 4.4 Power-fail detection circuit. (Courtesy of Maxim Integrated Products.)

system that runs on the system uses this table when partitioning and format­
ting the hard disk.

Before the hard disk is formatted by the operating system, a special hard
disk format program can be used to alter the hard disk parameter table to
reduce the number of tracks available to the operating system. Figure 4.5
shows a block diagram of such an arrangement. Once the hard disk parameter
table has been modified, the interrupt vector for software interrupt 41H must
be changed to point to a modified table.

The modified hard disk parameter table will show fewer cylinders than the
hard disk actually has. After the operating system has formatted the hard disk
using the modified table, the applications software and operating system will
use only the cylinders indicated by the modified table. Since the operating sys­
tem has no knowledge of this separate storage area on the hard disk, the
backup software can save the data to the hard disk without the need to know
which operating system is running on the system. Also, saving the state of the
system in a separate area on the hard disk protects the rest of the data on the
hard disk.

The original hard disk parameter is stored in a location known only to the
program that is doing the disk saving during a 0-volt suspend (described in
Chaps. 5 and 6). The disk saving program will use the original and modified

ZERO-VOLT
SUSPEND

SOFlWARE

OPERATING
SYSTEM

--.---1 ORIGINAL HARD DISK
PARAMETERS TABLE

MODIFIED HARD DISK
----1 PARAMETERS TABLE

TRANSPARENT DISK SAVE

Figure 4.5 Fail-safe system backup to reserved tracks of a hard disk.

System Management Mode 41

HARD DISK

tables to determine where in the special disk partition to save the data. The
disk saving program is normally included in the SMM program.

Advantages of using transparent disk save

The advantages of transparent disk save over saving data to a file are as follows:

• Data can be saved to the hard disk faster by using the transparent disk save
method than by using BIOS or DOS function calls.

• Since transparent disk saves do not have to use the same format that is used
by the operating system to save data, they can save more data in less space.

• Transparent disk save is independent of operating system.

• The data saved during 0-volt suspend is stored in an area separated from the
operating system's file storage area. Therefore, there is no chance that there
is insufficient space to save the system's state during 0-volt suspend.

• While doing a disk save to a file, something could happen to corrupt the hard
disk. For example, the battery might run low before the file is completely
saved to the hard disk. With transparent disk save, the hard disk will not be
corrupted even if all the data has not been saved.

SMI and RSM Latency

While it is true that the SMM environment is transparent to operating sys­
tems and application software, the time the CPU takes to go in and out of SMM

42 Chapter Four

might have an effect on system operation. In a design that switches in and out
of SMM frequently, care must be taken to ensure that the SMI and RSM laten­
cies do not interfere with the normal system operations. The time that elapses
after the SMI# signal is asserted and before the first instruction is executed is
called the SM! latency. RSM latency is the time the CPU takes to execute the
RSM instruction.

The formula for determining worst-case SMI latency clock count for the
Intel386 SL processor is:

SMI clock count (EFI/2) = 225 + 2 (bytes needed to fill prefetch queue)
+ 44(2(2 + WS)) + 9(2(1+WS))+4

The formula for determining worst-case RSM latency clock count for the
Intel386 SL processor is:

RSM clock count (EFI/2) = 177 + 44(2(2 + WS)) + 10(2(1 + WS))

In these formulas, WS stands for number of wait states.
As these formulas show, the SMI latency and RSM latency vary according to

several factors. Typical value should be much less than what is predicted using
these formulas. The SMI latency depends on the CPU clock speed, the number
of memory wait states, and the number of bytes needed to fill the prefetch
queue. The CPU clock speed is controlled by the EFI input and the slow CPU
clock field in the CPUPWRMODE register (22h). The memory wait state is
dependent on the page mode selected if DRAM is used, and the number of wait
states selected in the MCSRAMWS register (303h, OMCU) if SRAM is used.
The number of bytes needed to fill the prefetch queue varies from 1 to 12.
Table 4.4 shows examples of SMI latency according to the page mode and CPU
clock rate.

The formula for determining latency clock count for the Intel486 SL CPU is:

SMI latency clock count= (number of clocks to execute microcode)
+(number of clocks to fill prefetch queue)
+ (number of double word memory write cycles
* number of clocks per double word memory write
cycle)= 200 +(one 3-2-2-2 burst cycle)+ (59 * 2)

= 200 + 9 + 118 = 327 CPU clocks

TABLE 4.4 SMI Latency Measured under Different DRAM
Page Modes and CPU Clock Rates for the lntel386 SL CPU

Page mode
High-speed
Fast
Normal

CPU clock rate
25MHz 20MHz
SMI latency in microseconds

15 18
16 19.50
18 23.50

System Management Mode 43

This calculation assumes no wait state. It also assumes that the processor is at
an instruction boundary so an SMI can start immediately. There are 59 double
word writes and 9 two-byte writes to memory during an SMI.

The formula for determining the clock count of an RSM instruction that has
been prefetched and decoded by the Intel486 SL CPU is:

RSM clock count = (number of clocks to execute microcode)
+ (number of double word memory read cycles
* number of clocks per double word memory read cycle)
+ (number of word memory write cycles
* number of clocks per word memory write cycle)

= 262 + (57 * 2) + (2 * 2)
=380

This formula assumes no wait state.

Writing an SMM Program

One of the best ways to learn about SMM programming is to create a simple
program. In this chapter is a step-by-step guide for the development of an
SMM program called "Hello." Hello displays the message 'Hello, SMM!' while
another program is running.

Building an SMM program

An SMM program can be stored in a binary file or an optional ROM. In either
case, a program or a routine is needed to load the SMM program into the
SMRAM. Since not everyone has access to an EPROM programmer, the SMM
program described here is written as a binary file.

The programming language used here is Microsoft Assembler. The same pro­
gram can be written in C language.

Steps in creating an SMM program

Figure 4.6 shows the process of creating an SMM program. As you can see,
the SMM program consists of three parts: the loader program (INIT.ASM),
which loads the SMM program into the SMRAM; the kernel (KERNAL.ASM),
which directs the SMI requests to the individual SMI service routines;
and the SMI routines (in this example, SUSPEND.ASM, GSTDBY.ASM,
LSTDBY.ASM, LTRP.ASM, AND MISC.ASM), which service the SMI
requests.

Loading the SMM program

The INIT.ASM program reads the SMM program binary file and stores the file
in the SMRAM. The program also initializes the SMM hardware. Even though
the SMRAM address space is between 30000H and 3FFFFH, the SMM entry

44 Chapter Four

c=p
~
I !NIT.EXE I
Figure 4.6 Building an SMM program.

point is always at 38000H. Therefore, the entry point of the SMM program
must also start at 38000H.

Initialization

The SMM hardware must be initialized before the SL CPU can accept any SMI
requests. The global power management enable bit must be enabled for any
SMI to take effect. Listing 4.1 shows code to activate external SMI.

Listing 4.1 Code in INIT.ASM Program to Activate the External SMI Mechanism

code SEGMENT
ASSUME CS:code, DS:code
ORG lOOH

include superset.inc
EXTRN open_omcu:near, close_386sl :near, open_360sl :near, write_360sl :near
EXTRN close_360sl :near, open_ibu:near,close_cpupwrmode:near
EXTRN read_360s l : near
: Open SM file
entry:

mov
mov

ah, 3Dh
al , OOH

mov dx, offset SmFile
Int 2lh

;open file function
;read only

jnc open_smmprog ;if no error, then we are done here!
jmp abort

;Read the SM file. and close it
open_smmprog:

mov
push
push
push
push
mov
mov
int

Mark SmSeg
ca 11
mov
mov
mov
out
ca 11

Handle, ax
ax
bx
ex
dx
dx, off set
ah, 09h
2lh

as write-only
open_ibu
ax. 30Ah
dx, ax
ax, OFFFFH
dx. ax
close_386sl

version

memory

read in system management file
mov ax, SmSeg
mov ds, ax
xor
mov
mov
mov
Int
jc
sub
jc

Mark SmSeg
ca 11
mov
mov

dx, dx
ex, 8000H
bx, cs:Handle
ah, 3 FH
21h
rd sm exit
ax, 8000H
rd_sm_exit

as read-only memory
open_ibu
ax, 30Ah
dx, ax

mov ax, 05555h
out
ca 11

verify file
xor
mov
mov
int
cmp
jne
cl c
jmp

bad sm exit:
stc
mov
mov
int

rd sm exit:
pus hf

dx, ax
close_386sl

read
dx, dx
ex, 1
ah. 3FH
21h
ax, 0
bad sm exit

rd sm ex it

dx. offset filerr
ah. 09h
21h

System Management Mode 45

;save the handle

;ds:dx =SM memory buffer
;read half of SM image
;file handle

;read file

;error occurred, exit
;test for complete read
;error occurred, exit

;read one byte to verify full file read
;read file

46 Chapter Four

mov
mov
mov
mov
int
po pf
pop
pop
pop
pop
ca 11
mov
mov
mov
out
ca 11

ax, cs
ds, ax
bx, Handle
ah, 3Eh
2lh

dx
ex
bx
ax
open_omcu
ax, MC SM RAM
dx, ax
al , 06h
dx, al
close_386sl

;restore ds

;close file function

select SmSeg as the on-board
memory segment

System management hardware initialization
call open_360sl
mov bl, SM_REO_CNTRL ; enable external SMI

exit:

call read_360sl
or al. OcOH
mov bh. al
call write_360sl
call close_360sl

mov
int

ax. 4COOH
21H

; terminate program

OPTIONAL STACK - CAUTION - MUST USE FUNCTION 4CH IF LOCAL STACK
IS USED

Handle dw
SmFile db
filerr db
version db

db
db
db

SmSeg EQU

code ENDS

'kernel .bin' ,0
'Error: Cannot open file "KERNEL.BIN"',cr,lf,'$'
er. l f
'System Management Kernel Version 0.01' ,er, lf
'System Management Kernel Installed.',cr,lf
cr,lf,'$'

OE800H

; end code segment
END entry

Creating the kernel

The kernel is basically a traffic director. It filters out the SMI requests and
passes them on to the appropriate SMI service routines. When an SMI service

STARTS
EXECUTION
AT 38000H

PROCESS
SMI

.,.~1----- RE-ENABLE
CPU RESET

CLEAR
SM I-MARK

BIT

CLEAR
SMl-CLR

BIT

EXECUTE RSM
INSTRUCTION

RE-ENABLE
SMI

System Management Mode 47

Figure 4.7 SMI processing flow
diagram.

routine is complete, program control is passed back to the kernel. After all the
SMI requests are serviced, the kernel executes a routine and passes program
control back to the application program that was interrupted. Figure 4. 7 shows
how the kernel services an SMI request.

The example SMM program in Listing 4.2 displays the 'Hello, SMM!' mes­
sage on the screen whenever the external SMI button on the SL evaluation
board is pushed. When the external SMI triggers an SMI, program control goes
to the kernel, which is executing in SMM. After verifying that the SMI was
indeed caused by the external SMI button, the kernel calls the external SMI
service routine.

48 Chapter Four

Listing 4.2 Simple Kernel Program

KERNEL.ASM: System management kernel for the SL SUPERSET.

This file contains the source code for a sample SL
SUPERSET system management software.

This handler demonstrates the usage of the SL SUPERSET
system management capabilities for system management.

·--.
Include files

. -- - - - - - - - - - - - - - - -- - - - - - - -- -- - - -- -- -- - - - - --- - - - - - -- - - - -- - - - - - ---- --.
Include superset. inc
code segment byte PUBLIC 'code'

assume cs:code
ORG 0

ORIGIN EOU $

start:
jmp kernel

db "System Management Kernel", 00

Equates

IFDEF DEBUG
er EOU OAH ; used in debugging messages
If EOU OOH
ENDI F
EXTRN open_cpupwrmode:near, close_cpupwrmode:near, open_ibu:near
EXTRN open_omcu:near, open_ebu:near, open_ccu:near, close_386sl:near
EXTRN open_360sl :near, read_360sl :near, write_360sl:near, close_360sl :near
Stack dw 800 dup (?)

Topofstack dw ?
scrnbuff dw 2000 DUP (0)
he 11 o db 'H' , 7, 'e' , 7 , '1 ' , 7 , ' 1 ' , 7 , 'o' , 7, ' , ' , 7, 's' , 7, 'M' , 7, 'M' , 7, ' ! ' , 7
videobuff equ ObOOOH
. - - - - - - - - - - - - -- - - -- -- -- - - -- - -- - - - - - -- - - - - - - - - - - -.

Request processing jump table

REOTAB LABEL WORD
INIT dw 0 ; O - initialization

System Management Mode 49

SM-RAM Entry Point

·--.

Kernel Routine

Algorithm: Determine what caused the SMI by reading
the status registers and pass control to the system
management request handler

kernel:
;determines what caused an SMI

mov al, MASK_NMI ; disable NMI
out CMOS_! NDEX, al
mov ax, cs
mov ds, ax
mov es, ax
mov SS, ax
mov sp, Topofstack
call open_360sl
mov bl' SM_REO_STS
call read_360sl ; read SM request reg
call close_360sl
shl al, 1 ; is SMI caused by external
shl al , 1
jnc exit_smi
ca 11 exec_ext_SMI

exit smi:
;terminate SMI service routine

call open_360sl
xor bh, bh
mov bl, SMI_CLR
call write_360sl: re-enable SMI
mov bl, SMI_MARK
call write_360sl: re-enable CPU reset
call close_360sl

mov al, UNMASK_NMI ; re-enable NMI
out CMOS_INDEX, al
db OFH, OAAh : execute RSM instr

SMI

. -- - - - - - - - - - - - - - - - - - -- - - - -.
System Management Request Handler

exec_ext_smi proc near ; external smi request
ca 11 open_360s l
mov bl • SM_REO_STS : clear extsmi request bit

50 Chapter Four

ca 11 read_360sl
and al, Obfh
mov bh. al
call write_360s 1
call close_360sl
ca 11 scrn_mes
mov al, Oeeh
out 80H, a 1
ret

exec_ext_smi endp
scrn_mes proc near
.386

pushad
cld

display the 'Hello, SMM' message
post code to diag card

;save video memory into temporary buffer
1 ea di. scrnbuff
mov ax, 3800H
mov es, ax
xor s i. Si
mov ax, videobuff
mov ds, ax
mov ex, ?DOH
rep movsw

clear screen
mov ax, videobuff
mov es, ax
xor di. di
mov ex, ?DOH
xor ax, ax

els:
mov es:[diJ. ax
inc di
inc di
1 oop els

move message into screen
mov ax, vi deobuff
mov es. ax
xor di. di
mov ax, 3800H
mov ds, ax
mov s i . offset hello
mov ex, 10
rep movsw

; 3 seconds delay
mov bx, OlOH

delay:
mov ex, Offffh

delayl:
aad

System Management Mode 51

loop delayl
sub bx, 1
cmp bx, 0
jnz delay

restore video screen
mov ax, 3800H
mov ds. ax
lea si. scrnbuff
mov ax, videobuff
mov es, ax
xor di. di
mov ex. ?DOH
rep movsw
po pad
ret

scrn_mes endp

END OF POWER MANAGEMENT HANDLER

·--.
code ends

end

SMI service routines

Each SMI service routine is responsible for servicing a particular SMI request.
Upon completion of a service routine, program control is returned to the ker­
nel. Listing 4.2 has only a single external SMI service routine, because the
external SMI is the only SMI enabled. This service routine performs the fol­
lowing functions:

1. The current screen is saved into a temporary buffer and the screen is
cleared.

2. The message 'Hello, SMM!' is displayed at the top left comer of the screen.

3. After a 3-second pause, the screen is restored to its original display.

4. The external SMI request status bit is cleared. (Please note that the system
will remain in SMM if any status bit is not cleared when exiting SMM.)

5. Program control returns to the kernel.

Exit from SMM

Before executing the RSM instruction to exit SMM, the SMM kernel must per­
form several tasks. SMI and CPU reset are disabled while inside SMM. They
must be reenabled before exit from SMM. SMI is reenabled by doing a dummy
write to the SMI_CLR register (OBDH, INDEX) and CPURESET is reenabled

52 Chapter Four

by clearing the SMI_MARK bit (bit 0) of the SMI_MARK register (OF9H,
INDEX). The SMI_MARK bit should be set before doing a dummy 110 read to
the SMI_ CLR register. If the order is reversed, another SMI can come in before
the RSM instruction is complete.

Generating the SMM program
Listing 4.3 Shows MAKE Files for Assembling the INIT.ASM and KERNEL.ASM Programs.

·---.
init.obj: init.asm superset.inc

masm i nit;
cfgspace.obj: cfgspace.asm superset.inc

masm cfgspace;
init.exe: init.obj cfgspace.obj

link init + cfgspace,,init/map,;
del init.com
exe2bin init init.com

·---.
kernel.obj: kernel.asm superset.inc

masm kernel ;
cfgspace.obj: cfgspace.asm superset.inc

masm cfgspace;
kernel .exe: kernel .obj cfgspace.obj

link kernel+ cfgspace,,kernel/map,;
del kernel .bin
exe2bin kernel kernel .bin

·---.
Programming guidelines

To ensure complete transparency with application software, your SMM pro­
gram should not:

• Rely on system BIOS function calls

• Rely on operating system function calls

• Write data outside the SMRAM area

• Execute any software interrupts

• Leave external interrupt requests disabled for a long time

• Enable interrupts by executing an "STI" instruction

Time slicing

While inside SMM, all the interrupt requests are blocked. If the system
remains in SMM for a long time and the interrupt requests are not serviced,
problems can occur. Therefore, the time it takes to process an SMI request
must be minimized to prevent SMM from interfering with normal system
operations.

Summary

System Management Mode 53

One way to limit the latency in servicing an SMI request is to break down a
large task into several smaller jobs and execute them one at a time at pro­
grammed intervals. For example, instead of sending a large block of data to a
device at one time, the large block of data can be broken into several smaller
blocks and output to the device over a period of time.

When an SMI request occurs, the routine servicing the request can break up
the task into several smaller jobs. The jobs can be spooled in the main memory
or a mass storage device such as hard disk. The software SMI timer can then
be programmed to generate software SMI at regular intervals. Once pro­
grammed, the software SMI timer will generate a software SMI request when­
ever the timer expires. Upon detecting the software SMI request (by
examining the SM_REQ_STS register), the software SMI request routine will
retrieve the first job in the queue, execute the job, and exit from SMM. The pro­
cess will continue until all the jobs are executed. After all the jobs are com­
plete, the software SMI timer is disabled.

Currently, there is only one software SMI timer in the 82360SL available for
time slicing. In the case of multiple SMI requests, the tasks must be spooled
first and serviced on a first-come first-serve basis. The kernel in the SMRAM
will service each task as previously described. Upon completion, the kernel will
look for tasks waiting in the queue.

The earliest power management architectures were plagued by compatibility
problems. System management mode solved the problem by isolating power
management from the rest of the system. As SMM is now a universal require­
ment for power management on notebook computers, we should be looking at
new ways to take advantage of the transparent property of SMM. The discus­
sion in this chapter provides a good foundation for how to use SMM. Combined
with your creativeness, I have no doubt that SMM will find its way into many
different applications.

Chapter

5
Introduction to Power Management

In portable computer design, power management refers to the techniques and
mechanisms used in a product to conserve power for the purpose of extending
battery life. Power management is not a new subject. It is commonly employed
in embedded applications. But, until a couple of years ago, the term power
management was almost unheard of in the computer industry. The emergence
of laptop computers brought power management to the forefront of PC design
because the efficient use of power is critical in products such as laptop, note­
book, and palmtop computers where battery capacity is limited.

This chapter and the next two chapters ("Power Management Software" and
"Power Management Techniques") describe the power management facilities
available with the SL architecture, and show ways to exploit these features to
maximize battery life in portable computers. The concepts and techniques dis­
cussed in these chapters can be used in either Intel486 SL CPU- or Intel386 SL
CPU-based products.

History of Power Management in Personal Computers

Before beginning a detailed discussion of the SL power management facilities,
an historic perspective of power management in PCs will help in understand­
ing the reasoning behind the SL power management architecture.

First-generation power management

AB with any kind of evolution, the first generation of power management in PCs
was primitive. Efforts to conserve power were generally limited to CPU clock
control and a switch to power everything off. The power management hardware
on these machines produced little power saving and had many problems.

The software controlling the first-generation power management hardware
often conflicted with the operating system and application programs, leading
to system crashes and data corruption. The root of this problem was in the
implementation of the power management hardware. The nonmaskable inter-

55

56 Chapter Five

rupt (NMI) was used to perform functions like servicing a standby button,
turning off power to a peripheral, and slowing or stopping the CPU clock. This
mechanism saves power, but causes compatibility problems, because the soft­
ware servicing the NMI is not isolated from the operating system and applica­
tions software. After it finishes servicing a power management request, the
NMI handler might restore the system to its previous state incorrectly and
cause the system to crash or allow the application to access a powered-down
device and cause the application to crash. Those kinds of problems often lim­
ited the OEMs (Original Equipment Manufacturers) of these portable comput­
ers to a single proprietary operating system and left users frustrated. OEMs
are also forced to develop many versions of power management drivers to
accommodate different operating environments.

Second-generation power management

The introduction of the SL architecture's system management mode (SMM),
first implemented in the Intel386 SL CPU, ushered in a new, advanced gener­
ation of power management technology that permits battery life in portable
computers to be extended without interfering with the operating system and
applications software. As discussed in Chap. 3, the SMM is transparent to the
operating system and applications software and requires no special software
drivers.

The SMM offers several useful power management facilities, including:

• A transparent system management interrupt (SMI) to the system to invoke
power management service routines

• A unique address space for storing and executing power management ser­
vice routines

• An RSM instruction to restore the system to the state it was in prior to
entering SMM

To complement the SMM, the SL CPU and the 82360SL peripheral con­
troller offer additional power management mechanisms that allow a system to:

• Detect idle 1/0 devices and power them down; then power them up again
when they are needed

• Shut down power to all the system devices and turn off the clock to the CPU
and 82360SL; then restore the clock and power without losing the machine
state when the system is needed again

• Save the state of the system in nonvolatile memory and turn off power to all
system devices, including the CPU and 82360SL; then restore the power,
clock, and machine state when the system is needed again

These powerful resources give you a great deal of flexibility in designing
your power management system. The power management software can be
written independent of BIOS and operating systems. Software can dynami-

Introduction to Power Management 57

cally control the CPU clock speed and the distribution of power to different
parts of the system (memory, peripherals, etc.) based on a particular system
profile. Using this second-generation power management technology, you can
now build a new class of portable computers that allow users to work longer
and more productively on a single battery charge.

Overview of the SL Power Management Support

LONGER
BATIERY

LIFE

The power management support provided with the SL CPU and 80360SL is
available at five different levels of operation:

• Full on

• Local standby

• Global standby

• 5-volt (or 3.3-volt) suspend

• 0-volt suspend

Figure 5.1 shows the relationship between these operating levels and how they
affect the system power consumption and battery life.

Even at the full on operating level with the CPU operating at full clock speed
and most of the peripheral devices active, the SL CPU and 82360SL offer much
more efficient use of power than is found in standard desktop components. For
example, the memory controller in the CPU has been optimized for low power
consumption in the following ways:

• Separate RAS# and CAS# signals for each byte of each DRAM bank are acti­
vated only when they are accessed.

GLOBAL
STANDBY

LOCAL
STANDBY

FULL ON

HIGHER
POWER

CONSUMPTION

Figure 5.1 Relationship of the power management operating levels to system power
consumption and battery life.

58 Chapter Five

• Three DRAM page modes are supported to eliminate unnecessary clock cycles.

• The refresh rate can be programmed to take advantage ofDRAMs that sup-
port extended refresh for further power saving.

• An on-chip cache controller reduces accesses to the DRAMs.

Also, the functional partitioning of the SL CPU reduces system pin count to
minimize ITL buffers and power consumption. The tight coupling of the SL
CPU and 82360SL reduces the number of off-chip communications and the
extra power they require.

The local standby level of operation uses timers and 110 monitors in the
82360SL to monitor the operation of 1/0 peripherals and to power down
devices that remain idle for preselected periods of time. Peripherals that are
seldom used (such as the floppy disk drive) can thus be powered down most of
the time to conserve the power they would ordinarily use even when they are
in an idle state.

In the global standby level of operation, the clock to the CPU is stopped and,
optionally, all the 1/0 devices are powered down. The main system components
are still powered on, however, and can be returned to normal operation by nor­
mal system events. This operating state is possible because all the Intel SL
components are fully static devices, meaning that the clocks for the CPU core,
math coprocessor, DMA controller, and keyboard controller can be stopped
without disrupting the machine state.

In the 5-volt and 3.3-volt suspend level of operation, all the 1/0 devices,
including the oscillators, are powered down, with only the CPU and 82360SL
remaining powered on. The Intel486 SL microprocessor and the low voltage
Intel386 SL microprocessor have a 3.3-volt suspend mode, because they can
run at 3.3 volts V cc during suspend.

In 0-volt suspend operation, all devices in the system are powered off except
the real-time clock and the resume logic in the 82360SL. Here, the system
state is saved in a nonvolatile storage device and can be restored when the sys­
tem is activated again. This level of operation offers the lowest power con­
sumption and greatly increases battery life when the system is idle for long
periods of time.

The remainder of this chapter discusses the various aspects of the SL archi­
tecture, the SL CPU, and the 82360SL that support these levels of power man­
agement operation.

Initiation of Power Management Services

When using the SL CPU and 82360SL power management facilities, the sys­
tem is generally set up for power management when the system is initially
powered up. Thereafter, power management services are generally requested
and executed in the following manner:

1. A system event occurs (such as the expiration of a timer or the occurrence of
an 1/0 trap) that requires servicing by a power management routine.

Introduction to Power Management 59

2. An SMI is sent to the CPU.

3. The CPU suspends execution of the current operating system or applica­
tions software function and goes into the SMM.

4. The CPU performs the selected power management routine.

5. At the end of the power management routine, an RSM instruction is exe­
cuted and the CPU resumes execution of the operating system or applica­
tions software function where it left off.

Generally the occurrence of the system event and the generation of the SMI
happens within the 82360SL and is invisible to the rest of the system hard­
ware and software. However, system hardware and software can explicitly
generate SMis for the purpose of executing a power management routine.

System hardware can generate an SMI in either of the following ways:

• When the SRBTN# and BATTLOW# pins are pulled low, an SMI is gener­
ated within 128 to 256 ms.

• When the EXTSMI# pin is pulled low, an SMI is generated within 1 to 2.1
ms. The EXTSMI# pin must be held low for at least 2 SYSCLKS for the SMI
to be recognized.

Software can explicitly generate an SMI in the following ways:

• An SMI is generated by setting the software SMI enable bit (bit 0) in to the
SM_REQ_CNTRL register. Then, when the software SMI timer expires, an
SMI is generated.

• Whenever an automatic SMI (ASMI) port is written to, an SMI is generated
immediately (within 2 to 3 SYSCLKS). The ASMI control and status ports
can be defined to reside anywhere within the 64 Kbytes 110 address space.

A software-generated SMI can be used for time slicing. An ASMI offers a
useful interface between operating systems and application software and the
system hardware.

Note: Because of internal arbitration, a minimum of 18 SYSCLKs are
inserted between successive SMls. No SMI is generated if CPURESET signal
is active. The falling edge of the SMI signal triggers an SMI.

Local Standby Operation

In a typical system, not all the devices are utilized 100 percent of the time.
For example, a system generally makes heavy use of its hard disk, but rarely
uses the floppy drive. When a device is idle, it still consumes power. Thus, it
makes sense to turn idle devices off to conserve power when they are not
being used.

The 82360SL contains programmable hardware to power off 1/0 devices
when they are idle and power them on again when they are needed. In this
local standby mode of operation, the 82360SL can monitor up to six 1/0 devices

60 Chapter Five

RE-LOAD
TIMERS

110
ACCESSES

GENERATES
110 TRAP

___..

LOCAL
STANDBY
TIMERS

3
]

DEVICE
MONITOR

_1

~
LOCAL TRAP

SMI
lURNS

DEVICES
ON/OFF

I
SMOUT PINS r-.1 DEVICES I
SMI RE-START LAST

110 INSTRUCTION

Figure 5.2 Local standby hardware.

at a time. Figure 5.2 shows a block diagram of the 82360SL hardware to sup­
port local standby.

Local standby works as follows:

1. The 82360SL is set to trap the 1/0 addresses used to access an 110 device.

2. Each time an 1/0 access is made to the device, a countdown timer is
reloaded.

3. If the timer expires before another 1/0 access occurs, an SMI is generated
and the expired timer is noted in an 82360SL register.

4. The CPU switches to SMM and executes a power management routine to
determine which device is idle. It then asserts one of the SM OUT pins on the
82360SL to turn off power to the 1/0 device.

5. The next time an 1/0 access to the device is trapped, the 82360SL sends
another SMI to the CPU.

6. The power management software then deasserts the SMOUT pin to turn the
device on again and performs the necessary actions to restore the device's
registers and service the 1/0 request.

The details of the mechanism are described in the following sections.

1/0 access detection

Each 1/0 device has a set of 1/0 ports for interfacing with the system. 1/0
accesses to the device are monitored by setting the base address and address
range of the 1/0 ports in a pair of trap address registers. The 82360SL provides
six pairs of trap address registers for monitoring access to six 1/0 devices. The
low byte of the base address is stored in the TRP _ADRL_DEVx register and
the high byte of the base address is stored in the TRP _ADRH_DEVx register

Introduction to Power Management 61

(where xis 0 ... 5). An I/O trap is enabled by setting the DEVx_TRP _EN bit
(bit 7) in the TRP _ADR_MSK_DEVx register. By default, only address bits
SA[0:9] are used for trapping accesses to devices that use 10-bit address decod­
ing of I/O addresses. For devices that use full 16-bit address decoding, the
16_IO_DEC bit (bit 5) in the TRP _ADR_MSK_DEVx register must be set to
one. When the 16_IO_DEC bit is zero, address bits SA[10:15] are not decoded.

The I/O address range field allows trapping of addresses beyond the I/O
base address programmed in the trap address registers. The I/O address
range is controlled by the device I/O range mask field (bits [0-3]) in the
TRP _ADR_MSK_DEVx registers. The four mask bits allow a maximum of 16
I/O addresses to be trapped.

It is a common misconception that the I/O base address and the I/O address
range must be set to match the base address and address range of the device.
For some devices, many of the I/O ports are not used after initialization. There­
fore, these I/O addresses are not very useful for idle detection. In this case, it
makes more sense to use the I/O port addresses that are always accessed by
the system as trapping addresses. For best results, always select an I/O base
address and I/O address range based on usage.

Idle detection timers

When a device receives no I/O requests for a preselected time period, the de­
vice is said to be idle. The inactivity period is measured by six local standby
timers in the 82360SL. The count for these timers is programmed by the
LSTDBY_TMR_DEVx registers. The time-out period is dependent on the type
of device being monitored, software, and user profile. Each count in the timer
equals to 4.096 seconds. Therefore, the maximum time-out period is about 17
minutes. Typically, the time-out period ranges from 1 to 5 minutes.

Sometimes an application requires that all I/O devices be active. To force all
the I/O devices to be active if any one device is active, set the DEVx_ACTIVE
bit (bit 7) in the TRP _ADR_MSK_DEVx register to one. After setting this bit,
any access to the corresponding I/O device causes all the local standby timers
to be reloaded with their respective count.

Power control

When a local standby timer expires, an SMI is generated. At the same time,
the LSTDBY_REQ bit (bit 3) of the SM_REQ_STS register (OB7H, INDEX) is
set and one of the six DEVx_STDBYREQ bits in the LSTDBY_STS register
(OBAH, INDEX) is set. Once the power management software determines
which timer caused the SMI, the corresponding I/O device is powered off. The
82360SL provides six SMOUTx control pins for powering devices on and off.

Save and restore

If an I/O device is to be powered off, software might be required to save the
state of the device prior to switching the power off. The state of a device is nor-

62 Chapter Five

mally saved by reading the contents of its 1/0 ports and saving it in the mem­
ory. However, not all the device registers are readable and writable. For
example, some registers in the interrupt controller are write-only and some
registers in the serial port controllers are read-only.

To solve this problem, the 82360SL provides 53 shadow registers which con­
tain the last value written to some of the write-only registers in the system.
These registers can be used to restore some of the 1/0 device registers during
power on.

Some devices have their own mechanism for saving and restoring state infor­
mation. The Intel387 SL mobile math coprocessor, for instance, has instruc­
tions for saving and restoring its state prior to being powered down. This kind
of mechanism makes saving and restoring a device's state much more efficient
and can save you a lot of programming effort.

1/0 trapping

After powering off an idle device, the power management software enables the
trap for the device to detect an 1/0 access to the device. When an access is
detected, another SMI is generated. The power management software then
determines which device received the 1/0 request and powers on the device
again (deasserts the SMOUT pin or sends a software command to the device to
put it in an active state). The power management software may also restore
the state of write-only registers in the device at this time.

When an 1/0 access is trapped, the processor still executes the 1/0 instruc­
tion that caused the trap. However, writing to or reading from a powered-down
device can cause the application or system to crash. To alleviate this problem,
the SL CPU provides a feature called "auto restart of 1/0 instruction" which
allows reexecution of the last 1/0 instruction after the device has been powered
on again. The auto restart feature is enabled by writing OFFH to the auto
restart 1/0 instruction slot inside the SM-RAM. When the auto restart feature
is selected, the RSM instruction's microcode will reexecute the last 1/0 instruc­
tion before passing control back to the application software.

Alternate methods of powering down 1/0 devices

Many new devices have built-in power management mechanisms, which are
normally invoked by issuing a software command to the device. In some cases,
it will be more efficient to use the built-in power management support pro­
vided by the device than to power down the device using the local standby
mechanism. For example, it might make sense to power down the hard disk
during 5-volt suspend, but not during local standby or global standby.

Returning a hard disk from its power-down state to its active state consumes
a lot of power. Most of the power is consumed by the motor when it is spinning
up. In an active system (CPU is still running), the hard disk will be placed in
and out of local standby frequently. Therefore, the most efficient way to save
power during local standby is to put the hard disk in a low-power state without
having to spin up the hard disk each time a disk access request is made. How-

Introduction to Power Management 63

ever, the hard disk will not be accessed during suspend, so powering off the
hard disk at this time will yield maximum power saving.

Power Management at the System Level

Power management through local standby deals with the power requirements
of individual 1/0 devices, but it does not address the power management of the
core system components. To support power management for these core system
components, the SL architecture provides three power management levels:
global standby, 5- or 3.3-volt suspend, and 0-volt suspend. The differences
between the three levels of support lie in the amount of power saved and the
time it takes to move between the different levels. (3.3-volt suspend is sup­
ported by the Intel486 SL CPU and the Low Voltage Intel386 SL CPU.)

Table 5.1 compares the system operation for the various levels of power man­
agement. The sections following describe these power management levels in
greater detail.

Global Standby

At the global standby level of power management support, the 82360SL uses a
set of programmable system events to detect system idleness. These system
events include such things as the receipt of an interrupt, a parity error, a
modem ring, or activity on an I/O channel. The system events are enabled by
setting the SYS_EVNT_EN bit (bit 0) of the SYS_EVNT_CFG2 register (OB5H,
INDEX). The global standby timer is then tied into these system events. Fig­
ure 5.3 shows the relationship between the system events and the global
standby mechanism.

When a system event occurs, the global standby timer is reloaded automati­
cally. If there is no system activity (as defined by the system events), the global
standby timer will time out. When the global standby timer expires, the
82360SL generates an SMI and sets the GSTDBY_REQ bit (bit 2) in the
SM_REQ_STS register (OB7H, INDEX). After the power management soft­
ware determines that the SMI was generated by a global standby request, the
software sets the SYS_IN_STDBY bit in the SM_REQ_STS register (which
allows the power management software to find out if the system was in global
standby during resume), enables stop break events, and stops the CPU clock.
Individual devices can be powered off or put into a low-power state.

TABLE 5.1 Comparison between the Different Levels
of Power Management Support

CPU clock
EFI
CPU
Transition time
Power saving

Global standby

stopped
on
on
fast
low

5-volt suspend (or 3.3-volt)

off
off
on
medium
medium

0-volt suspend

off
off
off
slow
high

64 Chapter Five

IRQ[0:15] IRQ[0:15]

MODEM RING MODEM RING

NMI

1/0 CHANNEL
CHECK

GLOBAL
STANDBY

TIMER

ASSERT
STPCLK
SIGNAL

: OPTIONAL
HS/COUNT

STPCLK
SIGNAL

DE-ASSERT
STPCLK

AUTO POWER -- 4S/COUNT
OFF TIMER

NMI

1/0 CHANNEL
CHECK

HARDWARE
SUSPEND
EVENTS

AUTO POWER
OFF SUSPEND -128ms/COUNT
ARNING TIME

HARDWARE
SUSPEND
EVENTS

INTR

: SMI

I

SUSPEND INTR

SYSTEM EVENTS STOP BREAK
EVENTS

Figure 5.3 Global standby mechanism.

The system is put into global standby mode by doing a dummy I/O read to
the STPCLK register (OFDH, INDEX). A dummy read to the STPCLK register
causes the STPCLK pin to be asserted to stop the CPU clock inside the SL
CPU. Unlike the HLT instruction, the STPCLK register allows the software to
resume execution with the next instruction after the I/O read instruction.

Note: The CPU clock is automatically stopped upon detection of a halt
bus cycle.

When the SYS_IN_STDBY bit is set to one, the system is in global standby
mode and all local standby requests, suspend requests, and further global
standby requests (the global standby timer will continue to reload and count
down) are blocked. If the auto power off feature is enabled, setting the
SYS_IN_STDBY bit will also enable the auto power-off timer and the auto
power-off suspend warning timer. Also, while in global standby, the CPU
remains in SMM.

Introduction to Power Management 65

System and stop break events selection

To determine when to bring the system out of global standby, the 82360SL
detects stop-break events. System events and stop-break events are the same
set of events; however, the 82360SL uses them differently. System events are
used to detect system idleness. The stop-break events are used to take the sys­
tem out of global standby. Stop-break events are enabled only after the global
standby timer expires. System events and stop-break events are positive edge
triggered.

The three types of suspend requests are ORed together to generate the
HW _SUSRQ system event and stop-break event.

Exit from global standby

When a stop-break event occurs, the 82360SL exits global standby automati-
. cally. Upon exit from global standby, instruction execution starts at the
instruction right after the I/O read to the STPCLK register and no SMI is gen­
erated. Returning control to the power management software (which is execut­
ing in SMM) after exiting from global standby ensures that no interrupt can
occur to access a powered-down device.

A commonly asked question is, "Should the devices be returned to the states
they were in before global standby or be put back to active state." Architec­
turally, it is logical to put the devices back to the states they were in before
global standby. However, no harm can be done by putting the device back to full
on state.

In some cases, it might be beneficial to put the devices back to full on state.
A good example is the LCD panel. Assume that the LCD panel was off before
going into global standby and the user hit a key on the keyboard to bring the
system out of global standby. If the LCD panel remains in the off state, the user
cannot tell if the system is already out of global standby.

Suspend Operation

Suspend, as the name suggests, means everything in the system is placed on
hold for a period of time. If a system is going to be inactive for along time,
putting everything inside the system in a low-power state can extend the
battery life even longer. The 82360SL offers two mechanisms for extending
battery life when the system is going to be inactive for a long time: 5-volt suspend
(or 3.3-volt suspend for lntel486 SL CPU-based systems) and 0-volt suspend.
The major difference between 5-volt suspend and 0-volt suspend is that the V cc
to the SL CPU and 82360SL is off during 0-volt suspend. Figure 5.4 shows the
relationship of events in the two suspend levels of power management.

Suspend Requests

Suspend can be generated automatically or by the user through one of these
mechanisms: auto power off, the suspend/resume button, the battery-low pin,

66 Chapter Five

AUTO ~

POWER OFF 1--

BATTERY
I-- ...--i

MODEM
LOW RING

SUSPEND/ SUSPEND/
RESUME SUSPEND RESUME

~ RESUME
BU1TON BU1TON

SOFTWARE RTC
I"-

...__
CALENDAR SMI

EVENT

EXTERNAL
I--SMI

Figure 5.4 Suspend/resume events.

a software-generated SMI, or an externally generated SMI. We ·Nill discuss
these five sources of suspend requests first and then examine 5-volt and 0-volt
suspend states.

Auto power off

The auto power-off feature ties in with global standby. After the system is in
global standby for a long period of time, the auto power-off mechanism allows the
system automatically to go into a suspend state for further power conservation.

As mentioned earlier in this chapter, the auto power-off timer and the auto
power-off suspend warning timer are enabled when the SYS_IN_STDBY bit is
set to one. Also at this time, the auto power-off timer is loaded and starts
counting. (The timer count for the auto power-off timer is stored in the auto
power-off timer registers, APWR_TMRL (OFlH, INDEX) and APWR_TMRH
(OF2H, INDEX), and the timer count for the auto power-off suspend warning
timer is stored in the auto power-off suspend warning timer register,
SUS_ WRN_TMR_APWR (0F4H, INDEX).) Each count in the auto power-off
timer represents 4.096 seconds and each count in the auto power-off suspend
warning timer represents 128 ms.

The auto power-off suspend warning timer will be loaded when the auto
power-off timer expires. If a system event occurs while either the auto power­
off timer or the auto power-off suspend warning timer is running, both timers

Introduction to Power Management 67

are loaded with their initial count and stopped. When the auto power-off
suspend warning timer expires, an SMI is generated and the HW _SUSREQ
bit (bit 1) in the SM_REQ_STS register (OB7H, INDEX) and the
APWR_OFF _SUSREQ bit (bit 0) in the SPND_STS register (OBSH, INDEX)
are set to one. The power management software will then put the system in a
suspend state.

Suspend/resume button

The suspend/resume button input to the 82360SL is intended for user-initiated
suspend requests. It is not required that the suspend/resume button input be
connected to a button. The suspend/resume button input can also be driven by
a lid-closing switch or the keyboard controller. A falling edge on the
suspend/resume button input triggers a suspend request. Asserting the sus­
pend/resume button pin causes the suspend/resume button suspend warning
timer to load its initial count and start counting. When the timer expires, an
SMI is generated, the HW _SUSREQ bit (bit 1) in the SM_REQ_STS register
(OB7H, INDEX) and the SRBTN_SUSREQ bit (bit 2) in the SPND_STS regis­
ter (OBSH, INDEX) are set to one. The power management software then puts
the system in a suspend state.

An internal flip-flop is set after the suspend/resume button pin is asserted.
The flip-flop will continue to generate SMis unless it is cleared. The flip-flop is
cleared by setting the HW _SUSREQ_EN bit (bit 1) in the SM_REQ_CNTRL
register (OB6H, INDEX) to zero. To avoid getting an extra SMI, the HW_SUS­
REQ_EN bit must be cleared before going into suspend.

Battery low

A battery-low signal is provided for the 82360SL to detect a battery-low condi­
tion. If the BATT_LOW _MSK is not set, assertion of the BATTLOW# signal in
the 82360SL will cause the battery-low suspend warning timer to load its ini­
tial COlJ.nt and start counting. When the timer expires, an SMI is generated, the
HW _SUSREQ bit (bit 1) in the SM_REQ_STS register (0B7H, INDEX) and
the BATT_LOW_SUSREQ bit (bit 1) in the SPND_STS register are set. Again,
the generation of the SMI causes the power management software to place the
system in a suspend state.

Software and external SMls

Since the power management software is used to actually place the system in
a suspend state, a software-generated SMI or an externally generated SMI can
also be used to initiate placing the system in a suspend state. Suspend warn­
ing timers are also provided for types of suspend requests.

Warning Timers

The 82360SL provides five suspend warning timers, which you can look at as
delay timers. Instead of putting the system in suspend right away, these timers

68 Chapter Five

allow the system to complete its current operation before a suspend is carried
out. For example, the system might be writing data to the floppy disk when the
user pushes the suspend/resume button. Optionally, a warning beep can also
be generated to warn the user that the system is going to suspend operation.

Each timer count represents 128 ms, except for software and external SMI
suspend warning timers where each count represents 1 ms. If a system event
occurs while a warning timer is counting down, the warning timer is reloaded.

Enabling Suspend

Suspend can be enabled in either of these ways:

• If suspend refresh is enabled, suspend is also enabled.

• If suspend refresh is not used, suspend can be enabled by setting the
SUS_STAT bit in the SPND_STS register. Setting the SUS_STAT bit will
also change the state of the SUS_STAT# pin to low. Any device whose power
plane is connected to the SUS_STAT# pin will get switched off.

5-volt and 3.3-volt suspend

The term 5-volt suspend is derived from the fact that the 5-volt V cc input for
the Intel386 SL CPU and the 82360SL remains powered during suspend. With
a DRAM system, extra power saving can be achieved using the suspend refresh
feature provided by the Intel386 SL CPU. When suspend refresh is enabled, 5-
volt suspend is automatically enabled. After suspend refresh is enabled, mem­
ory is not accessible until normal refresh is reenabled. For suspend refresh, the
refresh request is generated by the real-time clock.

During 5-volt suspend, the Intel386 SL CPU and the 82360SL are placed in
a low-power state to conserve power. This low-power state is achieved by stop­
ping the clock to the devices. Because these devices are static devices, their
registers maintain their states even though they are not being clocked.

With the Intel486 SL CPU and the Low Voltage Intel386 SL CPU, 3.3-volt
suspend is used, because the Vee during suspend for these devices is 3.3-volt.
The operation of 3.3-volt suspend is similar to 5-volt suspend.

0-volt suspend

0-volt suspend is similar to 5- or 3.3-volt suspend except that the Vee to the SL
CPU and 82360SL is turned off. Since the processor and the 82360SL are pow­
ered off, suspend refresh cannot be supported. Therefore, the state of the CPU
and the 82360SL, along with the main memory (DRAM system only), must be
saved. A nonvolatile storage device with storage space big enough to save the
main memory plus all the registers is required. Normally, the hard disk is used
to save the state of the machine. Enabling and disabling of 0-volt suspend is
essentially the same as with 5- or 3.3-volt suspend.

The SUS_STAT#, COMAR!#, and COMBRI# buffers in the 82360SL are iso­
lated from the 5-volt Vee during suspend to prevent current drain from the
real-time clock battery. When the OV _SUS_EN bit (bit 2) is set to one in the

Resume

Introduction to Power Management 69

STP _BRK_CFG2 register, the 3-volt well signals and pull-up resistors will be
enabled during suspend.

Exiting out of a suspend state is called a resume. Note that resume is different
from the RSM instruction. Resume is a process which brings the system out of
suspend state. RSM is an instruction which is executed by the SMM program
to restore the system to its original state before going into SMM. Three mech­
anisms are supported to bring the system out of suspend: suspend/resume but­
ton, modem ring, and real-time clock's calendar event.

During suspend, the resume state machine is clocked by the real-time clock.
Thus, the pulse width for the SRBTN# and COM[A:B]RI signals have to be at
least 1 RTCCLKfor it to be recognized. The system cannot resume ifthe battery­
low pin remains active (i.e., battery is still low).

A resume event causes the CPURESET and RESETDRV signals to be
asserted. To allow enough time for the devices to power on and reset properly,
the CPURESET signal is extended to 120 ms during resume. Except for the
CPURESET, SMOUTx, and REFREQ signals, all output buffers are isolated
until the CPURESET signal goes inactive.

After the reset vector routine in the BIOS determines that the CPU reset
was caused by a resume event, a software SMI is generated to enter the SMM.
The power management software then restores the system to the state it was
in before the suspend. The SL CPU and the 82360SL are reset by the PWR­
GOOD signal upon a resume from 0-volt suspend.

Battery Monitoring

BATTLOW# is an input signal to the 82360SL indicating that the battery is
low. During normal operation, assertion of the BATTLOW# will activate the
battery-low suspend warning timer. When the timer expires, an SMI is gener­
ated and the SMM software puts the system in suspend state. The battery
should be recharged during suspend. If the BATTLOW# remains active during
suspend, the system is prevented from resuming.

Setting the BATT_LOW _MSK bit (bit 0) in the RESUME_MASK register
(OBCH, INDEX) allows the system to resume even ifthe BATTLOW# signal is
active. For the BATT_LOW _MSK bit to take effect, it must be set to one before
the BATTLOW# signal goes active. However, allowing a system to resume
when the battery is low might cause the system to crash.

The BATTDEAD# signal is like the battery-dead signal for the real-time
clock. When replacing the battery, this BATTDEAD# signal will reset the real­
time clock and the resume logic. This signal has nothing to do with battery
monitoring.

Advanced Power Management

Even though the SL architecture has taken a giant step toward providing facil­
ities for highly efficient power management in portable computers, several

70 Chapter Five

Summary

problems still exist. For example, it is sometimes difficult to determine if the
CPU is idle without the help of the operating system. This is particularly true
when the CPU is performing extensive computation and user interaction is not
required.

Also, in a PC system, the operating system keeps track of the system time by
updating the system time data area whenever the real-time clock generates an
interrupt. If system operation is suspended, the system cannot update the sys­
tem time every time a real-time clock interrupt occurs. After the system is in
suspend for a long time, the system time will be inaccurate. This situation is
sometimes called time warp.

Another difficult problem with power management is how to handle add-on
hardware which does not come with the system. After you power down the add­
on hardware, how do you restore it to its original state later on?

To help solve these types of power management problems, Intel and
Microsoft jointly developed the Advanced Power Management (APM) interface
to provide a convenient interface between the operating system and the power
management hardware. The purpose of the interface is to maximize power sav­
ing by using the operating system in conjunction with the Intel386 2SL pro­
cessor's power management hardware to detect idle conditions in the system.
It also performs other power management tasks such as updating the system
time when the system is suspended and handling power management for add­
on hardware.

Chapter 5 describes how SL power management software can communicate
with the operating system through the APM interface.

Welcome to the world of power management. In the next two chapters, we will
look at how to design software and hardware to use the power management
features described in this chapter.

Chapter

6
PowerManagementSoftwara

As described in Chap. 5, the Intel SL architecture offers a rich set of power
management facilities that solve many problems encountered when designing
a power management system for a portable computer. At first glance, writing
power management software to run on the SL architecture might seem com­
plex, but in fact it is no more difficult than writing control software for any
peripheral controller. One simplifying factor is that the system management
mode (SMM) of the SL architecture allows power management software to exe­
cute independently from the operating system. This software independence not
only eliminates the need to have a separate driver for each operating system
that runs on the system, but also cuts down on the cost of developing power
management software.

This chapter describes the rudiments of writing power management soft­
ware for SL CPU-based products. It also includes several examples of power
management routines.

How the SL architecture solves the problem of power management software*
The concept behind power management is to turn off devices when not in use, yet
still provide instant on capability when the device is required. This tends to gain
power; for example, even the simplest device like a COM port can use up to 15 min­
utes' worth of power over the life of the battery.

The SL architecture provides universal device power management by having
built-in timers which monitor a device and automatically generate an SMI when
the device isn't busy. The SMI handler can then turn off the device and set another
SMI when the device is ready to activate. Another feature of the SL that has
become standard is the suspend feature. Suspend allows the user to return to the
application from a power-off condition. The SL architecture is well thought out to
do suspend. The architecture doesn't just deal with the CPU, but also has provision
to save the state of the system with the help of the shadow registers. This gives the

* Contributed by Bill Rallis of SystemSoft.

71

72 Chapter Six

machine the ability to turn power off completely (complete battery drain) and yet
still recover after power has restored.

Power Management Hardware Initialization

Upon initial power up, the power management hardware in the SL CPU and
82360SL chips is disabled. Before you can use the power management hard­
ware, you must enable and initialize it as follows:

1. Initialize each of the power management features individually. Which fea­
ture should be enabled is a system-dependent issue. Some systems use up all
six of the local standby timers and some need only four. Figure 6.1 shows how
the power management hardware in the SL CPU and 82360SL is initialized.

2. Set the global power management enable bit to enable the power manage­
ment facilities.

Once the power management hardware has been enabled and initialized, it
operates without further software control until it is disabled. Please refer to
the program disk included with the book for a typical routine for enabling and
initializing the power management hardware in the SL CPU and 82360SL.
The actual design of the power management hardware initialization routine
depends on the design of the computer system.

LOCAL I-+ GLOBAL f-+I SUSPEND 1-+I SYSTEM
STANDBY STANDBY MANAGEMENT

l 1 l l
SET TRAP SELECT INITIALIZE

ADDRESS SYSTEM SUSPEND INITIALIZE

AND RANGE EVENTS WARNING SM_REQ_CNTRL

TIMERS

j_ j_ j_
INITIALIZE

SELECT ENABLE

TIMER COUNT
STOP BREAK WARNING

EVENTS BEEP

I I
ENABLE INITIALIZE
LOCAL GLOBAL

STANDBY STANDBY
TIMERS TIMER

1
INITIALIZE

AUTO POWER
OFF TIMER

Figure 6.1 Power management hardware initialization.

Power Management Software 73

Power Management Software Architecture

Even though the power management hardware in the SL architecture is well
defined, it has a lot of room for flexibility for software. There are many ways to
write software to work with the power management hardware inside the SL
architecture. Much of it will depend on programming preferences and the
hardware platform. Figure 6.2 shows the structure of a typical power manage­
ment software.

No matter how your power management software is written, there are some
design considerations you should be concerned with. Your code should be opti­
mized in such a way that many low-level calls can be used for several high­
level functions. For example, many of the routines in the local standby module
can also be used by the global standby and suspend functions. Not only is your
code size reduced, but your code will also be easier to debug and will run faster.

Many power management features in the SL architecture are pro­
grammable. Therefore, how the power management software is written can
affect the power consumption of the system. For example, the clocks to the
DMA controllers can be programmed to stop. You should always be on the look­
out for software-controlled power management features that can further
reduce the power consumption in your system.

In the following sections, we will look at some of the design issues in writing
power management software.

Power Management Timers

The 82360SL contains 13 timers that the power management hardware uses
to determine when to check if the system as a whole and the individual
I/O devices are idle. These timers include six local standby timers
(LSTDBY_TMR_DEV[O ... 5]); the global standby timer (GSTDBY_TMR); the
auto power-off timer (APWR_TMR); and the five suspend warning timers for
the suspend/resume button (SUS_ WRN_TMR_SRBTN), battery-low detec-

GLOBAL STANDBY t--
MODULE

LOCAL STANDBY I--I-- MODULE

SUSPEND ~
DEVICE DRIVER

MODULE t-- LIBRARY

t-- LOCAL TRAP
t--MODULE

RESUME
MODULE

I--

Figure 6.2 Typical power management structure.

74 Chapter Six

tion (SUS_ WRN_TMR_BAT), auto power-off (SUS_ WRN_TMR_APWR), the
software SMI (SUS_ WRN_TMR_SSMI), and the external SMI
(SUS_ WRN_TMR_ESMI). Table 6.1 lists these timers and gives their individ­
ual resolution, accuracy, and maximum value. All these timers generate an
SMI when they expire.

Initializing the six local standby timers requires three steps:

1. Load the timer count for each timer into its corresponding local standby
timer register.

2. Load the 1/0 base address and address range for 1/0 access trapping into the
address trap registers.

3. Set the timer enable bits in the STDBY_TMR_CNTRL register to enable the
timers.

Initializing the global standby timer requires only the loading of the timer
count into the global standby timer registers, GSTDBY_TMRL and GSTD­
BY_TMRH. Whenever a system event occurs, the global standby timer gets
reloaded. If the auto power-off option is selected, the APWR_TMRL and
APWR_ TMRH registers should be loaded with the correct timer count.

The five suspend warning timers behave like buffers to provide sufficient
time for the 1/0 operations to complete before initiating a suspend operation.
To initialize the suspend warning timers, you merely load the timer count into
the corresponding suspend warning timer register.

The warning beep option can be enabled if desired by setting the
HWBTWRNBP_EN bit (bit 5) in the SM_REQ_CNTRL register to one. The
warning be(:)p option causes a warning tone to be generated every two seconds
as the suspend warning timer counts down. The warning tone is generated by
counter 2 in timer controller 2. The suspend warning timers are reloaded every
time a system event occurs.

Timer resolution

When programming the power management timers, it is important to know
the accuracy of the timer (shown in Table 6.1). Due to internal synchroniza-

TABLE 6.1 Summary of All Power Management Timers

Timer Resolution Accuracy Maximum value

LSTDBY_TMR_DEV[0 .. 5] 4s 4-8 s 1048 s
GSTDBY_TMR 4s 4-8 s 268,431 s
APWR_TMR 4s 4-8 s 268,431 s
SUS_ WRN_TMR_SRBTN 128ms 128-256ms 33 s
SUS_ WRN_TMR_BAT 128ms 128-256ms 33 s
SUS_ WRN_TMR_APWR 128ms 128-256 33 s
SUS_ WRN_TMR_SSMI lms l-2ms 255ms
SUS_ WRN_TMR_ESMI lms l-2ms 255ms

Power Management Software 75

tion, an SMI is not generated when the SMI# pin is asserted until an extra
count has elapsed after the timer has expired.

Hardware control of 1/0 devices for power management

Power to an I/O device can be controlled through hardware or software com­
mands. For hardware control, the 82360SL provides six SMOUT[O ... 5] pins.
The 82360SL drives these pins high to initiate a power down of a device and
low to reactivate the device. Listing 6.1 demonstrates how to change the state
of the SMOUT pins. When reactivating a device with an SMOUT pin, you
should allow time for the powered down device to get ready before making an
I/O access.

Listing 6.1 Routine for Changing the State of SMOUT Pins

NAME SMOUT.ASM. Program to set the state of a
smout pin.

Usage SMOUT STATE PIN #

PAGE 60, 70
Include superset.inc
blank EQU 20H ; space
code SEGMENT

ASSUME cs:code, ds:code
EXTRN open_360sl :near, close_360sl :near, read_360sl :near,
write_360sl :near;

ORG 5DH
paraml LABEL BYTE

ORG 6DH
param2 LABEL BYTE

ORG lOOH
start:

first parameter

second parameter

; get first parameter
MOV al . [paramlJ
CMP al , blank anything?
JZ help
CMP al , '0. low?
JA up
MOV FLAG, 0
MOV bx, offset ZERO
JMP pin

up: MOV bx, offset ONE
MOV FLAG, 1
JMP pin

help: MOV ah, 09H

76 Chapter Six

PUSH ds
PUSH SS

POP ds
MOV dx, OFFSET HELP_MES
INT 21H
POP ds
JMP done

: get second parameter
pin: MOV al , [param2J

CMP al , blank ; anything?
JZ help
CMP al , ·o. pin O?
JA pinl
MOV al, ss:[bx]
MOV BIT_MASK, al
JMP send

pinl: CMP al, '1' pin 1?
JA pin2
MOV al, ss: [BX+l]
MOV BIT_MASK, al
JMP send

pin2: CMP al , • 2. pin 2?
JA pin3
MOV al, ss: [BX+2]
MOV BIT_MASK, al
JMP send

pin3: CMP al , • 3. pin 3?
JA pin4
MOV al , ss:[BX+3]
MOV BIT_MASK, al
JMP send

pin4: CMP al , '4' pin 4?
JA pin5
MOV al, SS: [BX+4]
MOV BIT_MASK, al
JMP send

pin5: CMP al , • 5. pin 5?
JA help
MOV al . ss: [BX+5]
MOV BIT_MASK, al

set smout pin
send:

call open_360sl
mov bl, OFEh
call read_360sl
CMP FLAG, 0
JZ set
OR al, BIT_MASK
JMP write

set: AND al, BIT_MASK
write:MOV bh, al

done:

mov
ca 11
ca 11

MDV
INT

bl, OFEH
write_360sl
close_360sl

AX, 4COOH
21H ; terminate program

DATA AREA

ONE DB OlH, 02H, 04H, 08H, lOH, 20H

Power Management Software 77

ZERO DB OFEH, OFDH, OFBH, OF7H, OEFH, ODFH
BIT_MASK DB ?
FLAG DB ?
HELP_MES DB 'USAGE: SMOUT - STATE coll), PIN ff (0 .. 5)$'
code ENDS

END start

Software control of 110 devices for power management

Many of the new 1/0 devices provide embedded power management hardware
that can be activated and controlled through software. This built-in power
management hardware is similar to that found in the 82360SL, and commonly
supports standby and power-save modes. Typically, a device goes into a low­
power or power-off state upon receiving a power-down command from the CPU
or when an internal timer has expired.

Many of the new hard disk drives provide this type of power management
hardware and firmware. Here, the drive can be explicitly placed in either a
standby or power-save mode by issuing it a software command.

The drives also include internal countdown timers that power down the
drive if accesses have not been received for a preselected period of time. The
timer count for the timer is stored inside the sector count register on the hard
disk. Before enabling the standby or power-save mode, the sector count regis­
ter must be loaded with the desired timer count. After the timer is enabled,
each disk access causes the timer to be reloaded. If the timer expires before a
disk access occurs, the drive enters one of its power-savings modes.

The following listing gives an example of how to initialize the power man­
agement hardware in a hard disk drive.

; initialize timer count for standby mode
mov dx, 1F2H points to sector count register
mov al , 3CH set to 5 mins, 5 s/count
out dx, al
mov dx, 1F7H points to command register
mov al . OE3H enable standby mode and timer
out dx, al

After power to the hard disk has been restored, the hard disk can be reinitial­
ized by sending a software reset command to the hard disk to ensure that the

78 Chapter Six

hard disk is back to normal operation. The hard disk is reset automatically
during resume by the RESETDRV pulse generated by the 82360SL 1/0.

Serial Port

Some mouse devices use the RTS pin on the serial port as V cc· A problem can
occur during suspend when the serial port is powered down or three-stated.
After the mouse is powered down, it will require reinitialization during resume.
Since not all the mouse hardware is the same, you might have to consult the
mouse's manufacturer data book to find out how to reinitialize the mouse.

System Management FILO

To aid system programmers in dealing with saving and restoring the state of a
device, the SL CPU provides a System Management FILO (first in, last out
register). This System Management FILO (SMFILO) is like a read-only stack
that stores information about the 1/0 cycles executed prior to entering SMM.
The SMFILO can be accessed from inside or outside SMM.

The SMFILO is 36 bits wide and consists of an address word, a data word,
and a 4-bit status field. The address word contains the 1/0 address of the bus
cycle and is always an even address (the Intel386 SL CPU has a 16-bit data
bus), and the data word contains the data for the bus cycle. The status field
consists of the W/R# bit (write or read cycle), the BLE# bit (even address),
BHE# bit (odd address), and the Valid bit (is the information valid). The
address field always contains an even address. Therefore, the BLE# bit and the
BHE# bit must be used to determine if the access is for an odd or an even
address.

Bus cycle information stored inside the SMFILO can be retrieved by reading
(must be a 16-bit read) the SMFILO register (702H, IBU). The first access to
the SMFILO register returns the 1/0 address; the next read returns the data;
and the following read returns the status field. The SMFILO can be accessed
continuously until the valid bit returned is zero (i.e., the bus cycle is not valid),
which indicates that the bottom of the stack has been reached.

The listing below gives code for deciphering information from the SMFILO
on the Intel386 SL processor.

example on reading information from the SMFILO
ca 11 open_ibu
mov dx, SMFILO
in ax, dx read I/O address
cmp ax, 3f8H is it COMl data register
jz error
in ax, dx read I/O data
test ax, 80H is bit 8 set
jz error
in ax, dx read status word

test
jz
test
jz
test
jz
jmp

error:
stc

exit:
ret
ca 11

ax, OlH i s
error
ax, 08H was
error
ax, 04H was
error
exit

; set carry flag

close_386sl

Power Management Software 79

data va 1 id

it a write cycle

it the low byte

The SMFILO mechanism on the Intel486 SL processor is similar to the
Intel386 SL processor except that 32-bit cycle must be used to access the
SMFILO.

Clearing Status Bits

All the status bits have to be cleared before exiting from the SMM; otherwise,
the SMI# output in the 82360SL will remain asserted. There are six status bits
associated with the local standby timers in the LSTDBY_STS register. Instead
of clearing them one at a time (i.e., writing a zero to the corresponding bit), it
is quicker to clear them all at once after all the local standby requests have
been completed.

Saving Memory Overlaid by SMRAM

While inside the SMM, the memory overlaid by SM-RAM can be accessed only
by using the EMS memory mechanism. The alternative is to exit SMM and
save the memory overlaid by SM-RAM. The normal way to exit SMM is to exe­
cute the RSM instruction, which causes execution control to go back to the pro­
gram that was interrupted by SMI#.

The other way to exit SMM is to generate a CPU reset after the CPU RESET
is reenabled. A CPU reset can be generated either by using the special fea­
ture's FASTCPURESET register (and toggling the FASTCPU RESET bit in
PORT92H), or by issuing a CPURESET command to the keyboard controller.
The listing below gives sample code for exiting the SMM by generating a
CPURESET.

; ; exit from SMM without returning to application that was interrupted
xo r al . al
mov dx, SMI_MARK
out dx, al clear SMI MARK bit

; ; assuming special feature set is already enabled
mov dx, FASTCPURESET
in dx, al ; generates CPU reset

80 Chapter Six

Global Standby

In global standby, the clock to the CPU is normally stopped and all the power­
hungry devices are powered off. The SL CPU supports a stop clock feature
that prevents powered down devices from being accessed after the CPU clock
is re-started. If the stop break event feature is enabled, executing the HLT
instruction or doing a dummy 1/0 read to the STP _CLK register (OFDH,
INDEX) will automatically stop the CPU clock. The HLT signal is also used by
shutdown. Some of the power management software implementations also
wake up periodically to service system requests such as refresh and real-time
clock interrupt.

Math CoProcessor

The Intel386 SL CPU supports a stop clock option that can be used to stop an
Intel math coprocessor (MCP), providing that the MCP is a static type, such as
the Intel387 SL mobile math coprocessor. To use this option, the power man­
agement software should detect the presence of a static math coprocessor
before enabling the stop clock option. The MCPTYPE routine shown in the list­
ing below includes a routine for detecting and identifying an MCP. Bit 8 of the
device word register specifies whether the device is static (1 =Yes, 0 =No). The
device word register can be read by executing the FSTDW (opcode 9B DF El)
instruction. The FSTDW instruction should be executed right after the FINIT
instruction before the status word has changed. On devices without the device
word, the status word (you will get OOOOH) will be transferred.

; ; determine if
mcptype proc

fi nit

MCP installed is static

fstdw ax get device word
test ax, 80H is bit eight set
jnz exit
stc

exit:
ret

mcptype endp

mcp is non-static

The stop clock option is enabled by setting bit 14 in the OMDCR register
(302H, IBU) and selecting the stop clock option in the idle MCP clock field
(bits[ll-13] in the CPUPWRMODE register. The MCP has built-in support
for save-restore through the FSAVE and FRSTOR instructions. The listing
below (extracted from the Intel 80286 and 80287 Programmer's Reference
Manual) gives an example of how to use the FSAVE and FRSTOR instructions
to save and restore the state of the MCP.

; save and restore of MCP state
save_mcp proc

setup stack pointer
c 1 i

Suspend

push bp
mov bp, sp
mov bp_image, bp
sub sp, 94

save mcp state
fnsave [bp-94]
fwait
sti
ret

save_mcp endp
res_mcp proc

mov bp, bp_image
mov byte ptr [bp-92], Oh
frstor [bp-94]

deallocate stack
mov sp, bp
pop bp
ret

res_mcp endp

Power Management Software 81

Software should also check for the presence of an MCP in the system before
doing any save and restore of the MCP; otherwise, the system will hang up.
One way to find out if a math coprocessor is present is to examine the equip­
ment list status word stored in the BIOS data area at location 40:10H. If bit
1 of the status word is set, a math coprocessor is present.

There are two ways to enable suspend:

• Enable suspend refresh.

• Set the SUS_STAT bit in the SPND_STS register (OBSH, INDEX).

Suspend refresh mechanism is provided for enabling suspend in a DRAM sys­
tem that is using 5- and 3-volt suspend facilities. The SUS_STAT bit mecha­
nism is for enabling suspend in an SRAM system and for use with the 0-volt
suspend facilities. For a description of suspend refresh enabling mechanism,
please refer to Chap. 10.

On some systems, pushing the suspend/resume button when the system is
not in SMM will cause the system to go into suspend immediately after SMM
is enabled. To prevent this unwanted suspend operation, the SMM software
should reset the SM_REQ_STS register before going into SMM.

Save-Restore

Two options are available for handling suspend and resume for the video sub­
system. In the evaluation board, the video subsystem enters standby mode
(remains powered) during suspend, and the RESETDRV signal to the video
subsystem is blocked during resume. The second option is, if the video sub-

82 Chapter Six

system is to be powered off during suspend, the software needs to save all the
VGA registers and the video memory before the subsystem is powered off.
Many of the new video BI OS's have functions that call for saving and restoring
the state of the entire VGA subsystem. The status of the keyboard shift flags is
stored in system memory at address 17H in segment 40H. Software can use
this status byte to save and restore the keyboard status during a suspend. The
status of gate A20 should also be saved and restored for suspend/resume.

Shadow Registers

To minimize logic, many registers inside the standard peripheral controllers
are write-only registers. Software cannot read back what has been written to
these registers. If these peripheral controllers are powered down, the power
management software cannot save the contents of these registers for restora­
tion during resume. The SL architecture solved the problem of saving the con­
tents of write-only registers with a unique feature called register shadowing.
Fifty-three read-only shadow registers are provided by the 82360SL I/O to
keep track of the contents of these write-only registers inside the standard ISA
peripheral controllers.

Every time a write-only register is written, the corresponding shadow regis­
ter is also updated. These shadow registers reside inside the 82360SL I/O space.
They can be accessed like any register inside the 82360SL configuration using
the CFGINDEX and CFGDATA registers. Table 6.2 is a list of these registers.

BIOS Shadowing

After a CPU reset, the first instruction fetch always goes to the ROM. IfBIOS
shadowing is enabled and suspend refresh is enabled during suspend, the
BIOS will not be able to execute BIOS code after a resume reset because the
memory is still in suspend refresh (i.e., not active; normal refresh is not run­
ning). Therefore, BIOS shadowing should be turned off before going to sus­
pend, and reenabled before resume.

Since the power management software is stored inside the SM-RAM, it is
recommended that software perform a checksum on the SM-RAM on a resume
reset before executing SMI code to ensure the integrity of the SM-RAM.

After a resume reset, a software SMI should be used to reenter the SMI
handler.

Multiple SMls

To prevent further generation of SMis during suspend/resume, software should
disable all the system management features in the suspend/resume code.

APM Interface

If you are using the Intel/Microsoft Advanced Power Management (APM) inter­
face in your design, the operating system communicates with the SL CPU by

Power Management Software 83

TABLE6.2 The 82360SL Shadow Registers

Register name Mnemonic Index Default

DMA Channel 0 Base Address SHDMAOBA OOH XXH
DMA Channel 0 Count SHDMAOWC OlH XXH
DMA Channel 1 Base Address SHDMAlBA 02H XXH
DMA Channel 1 Count SHDMAlWC 03H XXH
DMA Channel 2 Base Address SHDMA2BA 04H XXH
DMA Channel 2 Count SHDMA2WC 05H XXH
DMA Channel 3 Base Address SHDMA3BA 06H XXH
DMA Channel 3 Count SHDMA3WC 07H XXH
DMA Channel 0 Mode SHDMAOMOD 08H XXH
DMA Channel 1 Mode SHDMAlMOD 09H XXH
DMA Channel 2 Mode SHDMA2MOD OAH XXH
DMA Channel 3 Mode SHDMA3MOD OBH XXH
DMA Controller 1 Mask Register SHDMAMSKl OFH XXH
Timer 2 Counter 0 Count Low SHT2CHOCL lOH XXH
Timer 2 Counter 0 Count High SHT2CHOCH llH XXH
Timer 2 Counter 1 Count Low SHT2CH1CL 12H XXH
Timer 2 Counter 1 Count High SHT2CH1CH 13H XXH
Timer 2 Counter 2 Count Low SHT2CH2CL 14H XXH
Timer 2 Counter 2 Count High SHT2CH2CH 15H XXH
PIC 1 ICWl SHINTllCWl 22H XXH
PIC 1 ICW2 SHINT11CW2 23H XXH
PIC 1ICW3 SHINT11CW3 24H XXH
PIC 1 ICW4 SHINT11CW4 25H XXH
PIC 1 OCW2 SHINT10CW2 27H XXH
PIC 1 OCW3 SHINT10CW3 28H XXH
NMI Mask and RTC Index SHNMIMASK 2EH XXH
Timer 1 Counter 0 Count Low SHTlCHOCL 40H XXH
Timer 1 Counter 0 Count High SHTlCHOCH 41H XXH
Timer 1 Counter 1 Count Low SHTlCHlCL 42H XXH
Timer 1 Counter 1 Count High SHTlCHlCH 43H XXH
Timer 1 Counter 2 Count Low SHT1CH2CL 44H XXH
Timer 1 Counter 2 Count High SHT1CH2CH 45H XXH
DMA Channel 4 Base Address SHDMA4BA 90H XXH
DMA Channel 4 Count SHDMA4WC 91H XXH
DMA Channel 5 Base Address SHDMA5BA 92H XXH
DMA Channel 5 Count SHDMA5WC 93H XXH
DMA Channel 6 Base Address SHDMA6BA 94H XXH
DMA Channel 6 Count SHDMA6WC 95H XXH
DMA Channel 7 Base Address SHDMA7BA 96H XXH
DMA Channel 7 Count SHDMA7WC 97H XXH
DMA Channel 4 Mode SHDMA4MOD 98H XXH
DMA Channel 5 Mode SHDMA5MOD 99H XXH
DMA Channel 6 Mode SHDMA6MOD 9AH XXH
DMA Channel 7 Mode SHDMA7MOD 9BH XXH
DMA Controller 2 Mask Register SHDMAMSK2 9FH XXH
PIC21CW1 SHINT2ICW1 OA2H XXH
PIC21CW2 SHINT21CW2 OA3H XXH
PIC21CW3 SHINT2ICW3 OA4H XXH
PIC21CW4 SHINT21CW4 OA5H XXH
PIC20CW2 SHINT20CW2 OA7H XXH
PIC2 OCW3 SHINT20CW3 OASH XXH

84 Chapter Six

means of a software SMI. A software SMI can be generated using either the
automatic SMI mechanism (ASMI) or the software SMI suspend warning timer.

Using the ASMI mechanism, an SMI is generated by writing to a pro­
grammable 1/0 port called the ASMI register. The address of the ASMI register
is defined by the ASMI_ADDRL (84H, INDEX) and ASMI_ADDRH (85H,
INDEX) registers. The ASMI_ADDRL register contains address bits SA[l-7]
of the 1/0 port, and ASMI_ADDRH contains address bits SA[S-15] of the 1/0
port. The ASMI mechanism is enabled by setting the EN_ASMI bit (bit 2) of
the SYS_EVNT_CFGR2 register. Using the software SMI suspend warning
timer (SUS_ WRN_TMR_SMI), an SMI is generated by initializing the timer
and then enabling the software SMI enable bit (bit 0) in the SM_REQ_CNTRL
register (OB6H, INDEX). After the timer has expired, an SMI is generated. If
the software SMI enable remains set, a software SMI will occur at regular
intervals as defined by the software warning timer. This mechanism is useful
in allowing the SMM program to regain control of the system.

The last 32 bytes of extended CMOS RAM inside the 82360SL I/O are
reserved for use by APM. Please refer to the APM specification for a descrip­
tion of the usage of the CMOS RAM.

Programming Guidelines

Summary

• Interrupt requests will be serviced if an STI instruction is executed within
the SMI handler. To preserve system integrity, the SMI handler should not
execute any STI instructions.

• System management features (except for suspend) should be disabled during
system reset and cold boot to eliminate latency due to SMis.

• All of the system event inputs are AND'ed with their enable signals. The
resulting signals are all routed into an OR gate and a "one-shot," which
reloads the warning and global time-out counters. If an enable signal and
system event remains high, then the one-shot input remains high and gen­
erates only a single reload pulse. If an edge-triggered interrupt is selected as
a system event and is disabled by the operating system or an application pro­
gram, the interrupt line is likely to go high and block all future events. The
global standby timer will then expire and generate a standby request.

An example of this situation is the hard disk interrupt request (IRQ14). In
response to a power management command, the hard disk controller gener­
ates a task-complete interrupt. If this interrupt is not cleared by doing a
dummy read to the fixed disk status register, it will prevent the system
events logic from reloading the system management timers.

This chapter provides a good overview of how you can write your own power
management software. Since it would be too much to cover all the code power

Power Management Software 85

management software here, sample code is provided on the disk accompanying
this book to supplement this chapter.

For many of us, power management is still unfamiliar territory. The reason
is that there are many different pieces of hardware out there in the PC world.
We are dealing with compatibility issues-not design issues. To handle the
vast domain of hardware out there, my advice is to make use of existing soft­
ware modules as much as possible. For example, many component manufac­
turers provide sample source code to show how to enable power management
on their devices. In some cases, it might require that you become familiar with
the hardware by reading the data book or the user guide. It is no easy job, but
it will be satisfying when it is working.

References

"APM Specification Version 1.0," Intel Corporation/Microsoft Corporation.

Chapter

7
Power Management Techniques

The techniques for lowering power consumption in a portable computer are
well understood. But implementing these techniques is another matter. The
SL architecture enables you to implement power management mechanisms
with virtually all the components in a system-from the LCD display screen to
the disk drives to active ICs. Or, you can concentrate on a few power-hungry
components. The most common approach to power management is reducing
clock rates and using power-down modes. This chapter describes the method­
ology of implementing power management and deals with problems associated
with power management.

The Basics

The objective of power management is to extend battery life. There are several
factors that can affect battery life besides power management-power con­
sumption of components, efficiency of the power supply, and the type of battery
used. In the following sections, we can see how careful selection of components,
power supply regulator circuit, and battery will result in longer battery life.

Component Selection

Power consumption is like spending money. You can quickly empty your wallet
if you spend all your money on expensive goods. Selecting the right compo­
nents for a system can make a big difference in power consumption. In order to
pick the right part for your system you must know how much current each
component draws in a system.

Figure 7 .1 shows the components of a typical portable computer and the typ­
ical power consumption of each component. This figure clearly illustrates that
the LCD display is far and away the biggest power hog. However, other than
using the most efficient LCD displays available and providing the ability to
automatically shut off the display after a user-selected period of inactivity, you
cannot do much about the LCD power drain while a user is actively using his

87

88 Chapter Seven

DRAMS
1320mw

KNOW WHERE YOUR POWER GOES

a:

u1!
~i!
I&~ s;

LCD PANEL & BACKUGHT

3096mw

a:

cg~ 82360SL

g~~ 1/0
250mw

0
CJ

CACHE HARD DISK
SRAM DRIVE
144mw 878mw

FLOPPY DISK
DRIVE
72mw

Figure 7.1 -Relative power consumption of typical portable computer components (5-volt).

or her computer. Your efforts to conserve power will thus be concentrated on
the other components in the system, trying to make them run as efficiently as
possible when the system is actively in use.

Supplying Power

A portable computer can be powered in any of three ways: an AC adapter, a bat­
tery pack, or an automobile cigarette lighter. (See Fig. 7.2.) The AC adapter and
the automobile adapter will run the machine and charge the machine at the
same time. Portable computer design requires power supplies with the highest
efficiencies under all operating conditions. One approach to designing an effi­
cient power supply is to estimate the loading on the power supplies under dif­
ferent power modes. Ideally, the efficiency of the power supply should be held
constant down to very low loads. Typically, switching regulators are used for
full-on load as it can withstand power surges ranging from 20 to 40 percent
above the full-on load. For low-power modes, linear regulators are used.

DC-DC converter

DC-DC converter is a switching regulator which generates stepped-up or
stepped-down outputs. The efficiency of the DC-DC converter has a direct
effect on battery life. The rate at which a battery is discharged depends on the
load current. High-load current can shorten the battery life. Also, in a battery­
operated environment, battery voltage will drop steadily over a period of time.
Therefore, it is desirable to have a high-efficiency DC-DC converter that covers

Power Management Techniques 89

~ +3.3V

1---+ +5V

AC ADAPTER t--

1-+1 -5V

~ AUXILLARY (OPTIONAL)

BATTERY I-

4

r.I I
L...-+

DC-DC LCD
BATTERY • CONVERTER -5V TO -26V

BATTERY 1--+I +12V ,___
CHARGER (OPTIONAL)

'--+I -12V
(OPTIONAL)

Figure 7.2 Typical power supply system for a portable computer.

a wide range of battery voltage. There are many off-the-shelf DC-DC convert­
ers from which to choose-for example, LT1073 and LTll 73 from Linear Tech­
nology. Figure 7.3 shows a DC-DC converter design using the LT1073. Most
DC-DC converter circuits have an efficiency of over 80 percent. Selection of a
converter is usually based on load current, input voltage, quiescent current,
form factor, and heat dissipation.

Power supply for flexible voltage system

The lntel486 SL CPU and low-voltage Intel386 SL processor operate with
3.3- and 5-volt. To reap full benefits of a mixed 3.3/5-volt system, power sup­
plies must be optimized to deliver power to the system in a highly efficient
manner at full-on and powered-down modes. Figure 7.4 shows a typical power
supply for a mixed 3.3/5-volt system.

Sequencing of power supplies is required in a mixed 3.3/5-volt system. The
5-volt power supply must be guaranteed to reach nominal voltage at the same
time or before the 3.3-volt power supply reaches nominal value. If one power

90 Chapter Seven

212mV
REFERENCE

GND

FB

AD

BLOCK/ERROR AMP

ILIM SW1

OSCILLATOR

SW2

Figure 7.3 DC-DC converter design using the LT1073. (Courtesy of Linear
Technology Corporation.)

HARD DISK FLOPPY LCD
DRIVE DISPLAY

[5-VOLT l FULL-ON POWER l I I
SWITCHER j - - -

-- -- _..._

I I I

l 5-VOLT L SUSPEND lntel486™ SL 82360SL VGA
LINEAR I POWER MICROPROCESSOR 1/0 CONTROLLER

l 1 SUSPEND POWER 3.3 v
LINEAR J

DRAMS

[3.3 V DMDEl
DOWN j FULL·ON POWER

Figure 7.4 Power supply for a mixed 3.3/5-volt system.

supply experiences a delay or failure, buffers in the powered-up parts of the
system can generate large amounts ofleak.age current into powered-down com­
ponents, which will cause the power supply to overheat and components to fail.

Power sequencing

AB mentioned before, sequencing of power supplies is required in a mixed
3.3/5-volt system. Power sequencing is required during power up and power
down. During power up, the 5-volt power supply must reach nominal value (4.5
volts) before the 3.3-volt power supply reaches 3 volts. With power down, the
sequencing order is reversed-the 3.3-volt power supply will be turned off
before the 5-volt power supply is turned off. Remember the power sequencing
requirement: 5-volt power supply should be turned on first and off last. Figure
7 .5 depicts the power sequencing scheme.

VCC3

vccs

PWRGOOD

CPU RESET

RES ETD RV

3.3V

ov
5v

Ov
5v

Ov
5v

Power Management Techniques 91

r---:--~--------------~- ' ' ' ' -------------~-~:----~-------------:-- ---
': i :·. ·. 1 i

SUS-STAT# ~ fil=LI•••••••••••LTI=••••••i.' __ :_:_:
Ov

MAIN-SWITCH
I I I I -------------------------:-------·-------------:--------,---------------------...-

RESUME
EVENT

SUS

_______ , ______________

REFRESH
(SELF)

-------.--------

BATTDEAD#

1~DON'T
~CARE

' ' ' --------------------------;-------,------------1-------1------------------

Figure 7.5 Power sequencing for a mixed 3.3/5-volt system.

Battery selection

Batteries come in a variety of shapes, sizes, and materials. Choosing the right
type of battery for a portable computer design can be frustrating. A good
understanding of how batteries work can help in picking the battery with the
best performance and longest battery life for your application. Working closely
with a battery manufacturer who provides application design assistance will
also simplify the battery selection process. As a rule of thumb, you can get
15-20 watt-hours of energy for every pound of battery.

The internal resistance in a battery can have substantial impact on battery
life. An electrolytic bypass capacitor can sometimes be used to reduce the
effects of a battery's internal resistance.

What's the best type of battery for my application?*

Choosing a battery type means knowing something about batteries and how they'll
be used in your equipment. Batteries are commonly classed as either primary or
secondary. Primary cells include the disposable varieties such as carbon-zinc, alka­
line, and lithium cells that can't be recharged.

Secondary cells include the varieties based on either nickel-cadmium (NiCd) or
lead-acid cell chemistries, that are rechargeable several times without degradation.

* Contributed by Mark Dewey of Gates Energy Products.

92 Chapter Seven

So first, consider your equipment. Specific questions include: What is the drain
rate? How often will the equipment be used? And, finally, is recharging feasible?

Voltage and capacity. The battery pack for a portable computer normally con­
sists of multiple cells. The way these cells are connected determines the volt­
age and the capacity of the battery pack. (Battery capacity is measured in
amperes per hour.) The cells can be connected in series or in parallel. In a
series-connected battery, the positive terminal of one cell is connected to the
negative terminal of the next cell and so on. The voltage is the sum of the indi­
vidual cell voltages. The capacity of the battery is the same as the capacity of
the individual cell.

A parallel-connected battery is constructed by connecting the positive termi­
nal from one cell to the positive terminal on the next cell and similarly for the
negative terminals. Unlike a series-connected battery, the battery voltage for
the parallel-connected battery is the same as the voltage of the individual cell.
The capacity of the battery is the sum of the capacities of the individual cells.

Nickel-cadmium. Despite recent developments in nickel metal hydride tech­
nology, the nickel-cadmium (NiCd) battery is still the most popular battery for
portable computers. All the NiCd batteries use the same chemistry and differ
primarily in construction and refinements of the active materials and electrode
construction. The positive-electrode active material is nickel hydroxide and the
negative-electrode active material is cadmium hydroxide. The nominal voltage
for a NiCd cell is about 1.2 volts.

NiCd batteries have excellent storage time (charged or discharged). Capac­
ity loss due to self-discharge is about one percent per day. Cell parameters for
NiCd batteries can easily be modified to match application requirements. For
example, the NiCd batteries can be fine-tuned for capacity, high current, high
temperature performance, high temperature charging, or fast charging.

Nickel metal hydride. Nickel metal hydride (NIMH) batteries have a higher
energy density than the NiCd batteries and provide a longer battery life. The
disadvantage of NIMH batteries is that they take longer to recharge than the
NiCd batteries. The positive-electrode active material is nickel hydroxide and
the negative-electrode active material is a metal alloy matrix. Alloy choice is
either nickel/rare earth mixture (i.e., LaNi) or titanium/zirconium combination.

Battery monitoring

The charging speed of NiCd batteries is dependent on the application. Nor­
mally, it will take four to five hours. Using fast charging, recharging can be
done in less than two hours. Charge termination is required with fast charg­
ing. Otherwise, the batteries and the system can be damaged.

Termination of fast charging is controlled by the battery charger (typically,
this is implemented with a microcontroller such as the 80C51SL.) By monitor­
ing the time, temperature, voltage, or a combination, the battery charger can
terminate fast charging at a predetermined cutoff point. The cutoff point is

Battery life

Power Management Techniques 93

determined by the battery specification from the battery manufacturers. For
example, if the cutoff point is set at 80° (i.e., when the temperature reaches
80°) the battery automatically terminates charging.

A number of factors such as the user profile, depth of discharge, amount of
overcharge, ambient temperature, and mechanical environment determine the
battery life of a battery pack. Battery life is measured in hours. Battery life for
a particular system can be calculated as follows:

Battery life (total energy)= (Q * Vhatt)l(Y2 * C * F)

where Q = battery capacity in amperes per hour
Vhatt = battery voltage
V =Vee
F = frequency
C = capacitance

Power Management Implementation

The most difficult task for any beginner in designing a portable computer is
figuring out how to implement power management. We faced the same prob­
lem during the course of development of the Intel386 SL microprocessor. This
is because there are many ways to implement power management. Also, dif­
ferent machines will have different hardware. In other words, each power
mode will have a different meaning on different machine.

It is more logical and simpler to define the state of all the components under
each power mode than to define a power mode for every device. Therefore, a
power management table was created in the programmer's reference manual
to describe the state of the hardware during different power management
states. Table 7.1 shows a typical power management table similar to the pro­
grammer's reference manual.

The power management table carries important information about your sys­
tem. Using this table, you can identify power-hungry devices, implement power
management strategy based on system configuration selected, and calculate
total power consumption and battery life based on different configurations.

Power management techniques

While the machine is fully active, your power savings is going to come largely
from your choice of components. Three common techniques are normally used
to further reduce power consumption of active components:

• Clock control

• Efficient memory subsystem design

• Activity monitoring

94 Chapter Seven

TABLE 7.1 Power Management Table

Suspend Global standby Local standby

i386SL CPU CLK off cpu clock stopped optional
i386SLCPU suspended on on
82360SL suspended on on
MCP off on on
MCPCLK off EFl/16 EFl/16
Main memory on on on
Refresh rate SUS ref normal normal
Cache controller off off on
Cache memory off off on
ROM off on on
KBDROM on on on
80C51SL powerdown mode on on
KBD (external) off on on
CL 610/620-C suspended suspended standby
Video memory ref slow ref slow ref standby
Video memory on on on
RAMDAC off idle idle
LCD display off off off
Backlight off off off
CPU access 610/620 off off on
PCM CIA off on on
Modem off standby standby
Key mouse off on on
External PS/2
Mouse off on on
Floppy drive off standby standby
82077SL off powerdown mode powerdown mode
82077SLOSC off off off
Hard disk off standby standby
Serial port buffer off off on
EFIOSC off on on
ISA-bus REF off off off
ISA-bus OSC off off off
DMAclock stopped stopped on
KBD CLK (360SL) off off off
RTCCLK on on on
COM[A .. Bl OSC off on on

Clock control. The CPU is the most active component in the system. There­
fore, reducing the clock speed can save a lot of power. Experiment shows
that dividing the clock speed by half gives the best performance and power
consumption. Finer speed control does not provide better power consump­
tion. Reducing the clock speed for peripherals will also reduce power
consumption.

Memory. Memory is frequently accessed by the system. Switching between
memory banks can consume a lot of power. One technique to minimize loss of
power is to use RAS as bank select. Only bank selected with RAS will be
accessed; other banks are in standby. Based on experimental data, power con-

Power Management Techniques 95

-------§
~-~ - ·SLOPE = 4.8µa/1µs

~--~ - • SLOPE = 4.0ma/1ms

t:;;;;:;:;;;;;;;;;;;~~-1

70 100 200 300 500 700 1K 2K SK 7K 10K

Figure 7.6 Relationship between power consumption and RAS pulse width. (Courtesy of
Micron Technology.)

sumption increases as pulse width increases. Figure 7.6 shows how power
consumption increases with RAS pulse width.

In an ISA-bus system, the DRAM subsystem has to be refreshed every 15.6 µs.
DRAM refresh consumes power. The less often the DRAM controller refreshes
the memory, the more power it will save. Many of the new DRAMs on the mar­
ket support extend refresh and self-refresh to provide better power saving.
Therefore, the DRAM controller should be programmed to take advantage
these features.

Activity monitoring. Some peripherals, such as the floppy disk drive or a
fax/modem board (or chip), are seldom used, even when the system is fully
active. A simple way to save power is to use the local standby feature of the
82360SL to turn these components off when they are not in use. The power
management hardware inside the 82360SL determines if the system or the
device is idle by monitoring changes to control signals such as interrupts and
trapping access to I/O or memory addresses.

Power Management Design Considerations

In the previous sections and the previous chapters, we have looked at the dif­
ferent techniques of conserving power.

Oscillators and clocks

The Intel386 SL processor and the 82360SL are fully static devices. Crystals
and oscillators can be powered down to reduce power consumption during sus­
pend. Typically, oscillators for the EFI, ISACLK2, ISA bus's OSC signals, and
crystal for the serial controllers are powered down in suspend to conserve

96 Chapter Seven

power. The crystal oscillator for the real-time clock is the only oscillator that
remains powered in suspend.

Except for EFI, ISACLK2, and real-time clock, all the other oscillators can
be turned off in global standby. The oscillator for the EFI signal in a DRAM
system should not be powered off in global standby. DRAM refresh will stop if
the EFI signal is disabled. In addition, the DMA controller clock (internal to
the 82360SL 110), the keyboard controller clock, and the OSC clock can be
stopped by programming to reduce power. See Chap. 9 for programming
example.

The power management hardware and software should take into considera­
tion the time it takes to power down the oscillators and for the clock to stabi­
lize after the oscillator is powered up again.

0-volt suspend consideration

As mentioned before, with a 0-volt suspend, everything is powered down
except for the resume logic powered by the real-time clock's backup battery.
The 82360SL differentiates between a complete power down and 0-volt sus­
pend is through the PWRGOOD and SUS_ STAT signals.

Hardware control

Table 7.2 shows the usage of the SMOUT pins in the Intel386 SL microproces­
sor evaluation board. The listing below shows how the SMOUT pins can be pro­
grammed to turn off power to different devices. SMOUT pins were three-stated
during suspend to conserve power.

Software command

Most of the new devices in the market have built-in power management sup­
port. Some of these features are automatic and some of them are pro­
grammable. They are usually software commands that are generated by the
host to put the device in different power modes.

Getting the best out of both worlds

The critical factors in determining whether to use hardware or software com­
mand to control the power consumption of a device are: actual power saving,

TABLE 7.2 SMOUT Pin Assignment

PIN

SMOUTO
SMOUTl
SMOUT2
SMOUT3
SMOUT4
SMOUT5

Assignment

Floppy drive power
COMA RS-232C buffer
COMB RS-232C buffer
Hard disk power
Parallel port
Flash Vpp control

Hard disk

Power Management Techniques 97

time it takes to power a device on and off, board space, how much work it
takes to save and restore a device, and cost of the device. Let's use hard disk
as an example to look at the tradeoffs of hardware control versus software
commands.

To decide which method to employ, you have to understand how the device
functions and how it consumes power. Hard disk is a mechanical device and
there is always a finite amount of time involved in bringing up the motor to
access the data. In other words, you will have to wait for the motor to get ready
before you can access the data after the hard disk is powered up again. And
don't forget, every time the motor spins, it consumes power.

Typically, when an application is running and power management is
enabled, the hard disk will go in and out of local standby quite frequently.
Thus, it makes more sense to use software command to put the hard disk in a
power-save mode to reduce both the wait time and the power consumed by the
motor when it spins up as the hard disk wakes up. When the system is inac­
tive for a long time (during global standby and suspend), it is more effective to
use the SMOUT pin than software command since it can save more power.
Powering down the hard disk completely will save more power than putting
the hard disk in power-save mode using software command over a long period
of time.

Power consumption of hard disk is very user-dependent. For example, data is
always swapped in and out of the hard disk under Microsoft Windows envi­
ronment. Thus, a Microsoft Windows user will use up more power than a DOS
user because of the frequent access to the hard disk. If the drive is spun down
frequently, overall power consumption might be higher than without power
management. Tables 7.3 and 7.4 show the time it takes for the hard disk to
recover from different modes and how much power is consumed.

TABLE 7.3 Recovery Time for Different Power
Saving Modes (Courtesy of Integral Corporation)

Transition

Sleep mode to ready
Power off to ready

Recovery time

1.5 s
5s

TABLE 7.4 Power Consumption to Exit from Different
Power Modes (Courtesy of Integral Corporation)

Transition

Sleep mode to standby
Power off to ready

Power consumption

35mW
lOOOmW

98 Chapter Seven

Current Drain

As one might say, "always expect the unexpected"-and leakage current quali­
fies. Leakage current can cause current drain which will shorten the battery
life. For the rest of this chapter we are going to talk about how to identify the
source of leakage current. What we are really looking at is how current flows
between the output of one component and the input of another. A component
can either source current or sink it. When the output of component A is high,
it supplies Irn to the input of component B, which acts as resistance to ground.
Thus, output of component A is acting as a source of current for component B's
input. (See Fig. 7.7(a).)

In Fig. 7.7(b), the input of component Bis like a resistance tied to Vee. When
output of component A goes low, current 11L will flow in from the input of com­
ponent B back through the output resistance of component A to ground.

Measurement techniques

A current probe or an ammeter is normally used for current measurement. A
current probe clamps around the conductor carrying the current. There are

(a) CURRENT SOURCING

+Vee

A ~ VoH
B

l1H 1
~

DRIVING DEVICE SUPPLIES CURRENT
TO THE LOAD DEVICE IN HIGH STATE

(b) CURRENT SINKING
+Vee

A
VoL J B

f llL

_.

DRIVING DEVICE RECEIVES CURRENT
FROM THE LOAD DEVICE IN LOW STATE

Figure 7.7 Current sourcing and sinking.

Power Management Techniques 99

two kinds of current probes: current transformers, which measure AC current
only, and Hall-Effect probes, which measure AC or DC current. The output of
a current transformer is 1 mA per amp. The output of a Hall-Effect probe is 1
mV per amp, AC or DC.

Variations in voltage can have significant effect when measuring currents
below 10 mA. Instead of an ammeter, a Hall probe could be used to avoid intru­
sive characteristics. When taking Ice measurements, be aware of any varia­
tions in the voltage of the power plane. When measuring component Ice, verify
that only the current consumed by the component is measured.

When using an ammeter, a variable power supply can be connected to com­
pensate for the voltage drop introduced by this instrument. When measuring
system Ice, connect instrument directly to the battery leads to insure that
all paths are included. If there are no test points for taking current mea­
surement, break points must be created by cutting traces or unsoldering the
circuit.

SL Superset Signals

Leakage current is one of the most notorious causes of excessive power drain
during global standby and suspend. A good understanding of all the SL Super­
Set signals can help in locating the source of leakage current. The state of all
the signals in the SL SuperSet for different power states is described in the
Intel486 SL CPU and Intel386 SL CPU data books.

Avoid connecting to powered-down devices. If it is necessary to connect to
powered-down devices, ensure that any signals at 5 V do not overload off
devices. Consider adding a buffer on the line. Whenever possible, select a low­
power device with internal buffering.

Enabled input signals. During suspend, some of the signals are still active.
Tables 7 .6 and 7. 7 show a list of signals that are active during suspend. If con­
nected improperly, these signals can cause current drain. In general, you

TABLE 7.5 Active Output Signals during Suspend

Source Active output signals

lntel386 SL processor SMRAMCS#, Refresh, CMUX[O:ll], MA[O:lO], WHE#, WLE#
82360SL 1/0 Refreq, RTCX2, SUS_STAT#, COMX2, CX2, EXTRTCRW#, EXTRTCAS, EXTRTCDS

TABLE 7.6 Enabled Signals on the lntel386 SL Processor

Termination

Pull-down
Pull-up
No termination

CPURESET
SUS_STAT#

Signal

EFI, ISACLK2, PWRGOOD, REFREQ

100 Chapter Seven

TABLE 7.7 Enabled Signals on the 82360SL 1/0

Termination Signal

Pull-down
Pull-up

IRQ8#

No termination
BA'ITDEAD#, BATTLOW#, COMAR.I#, COMBRI#, PWRGOOD, RTCEN#, RTCRESET#
RTCXl, SRBTN#

should avoid connecting signals that are active during suspend to powered­
down devices. Signals with internal pull-downs should not be connected to an
active pull-up. Signals with internal pull-ups should not be connected to
ground. Signals without termination may require an external pull-down ifthe
devices driving them are powered down.

Bushold circuitry. To avoid high current conditions caused by floating inputs
to peripheral CMOS devices and to eliminate the need for pull-up/down
resistors, "bus-hold" circuitry has been used on all three-state lntel386
SL microprocessor outputs. (See Fig. 7.8 for a description of the bushold
circuit.)

The bushold circuit will maintain the last valid logic state if no driving
source is present (i.e., an unconnected pin or a driving source which goes to a
high impedance state). To overdrive the bushold circuits, an external driver
must be capable of supplying the maximum "bus-hold overdrive" sink or source
current at valid input voltage levels. Since this bushold circuitry is active and
not a "resistive"-type element, the associated power supply current is negligi­
ble and power dissipation is significantly reduced when compared to the use of
passive pull-up resistors.

During suspend, a bushold circuit is not flipped if the voltage on its line is at
invalid level. To ensure that busholds flip during suspend, a sufficient path to
ground must be provided. Do not connect bushold signals to planes floating
above 1 volt. Avoid using pull-ups on bushold signals ifthe terminating device
to which they are connected is off.

The following signals in Intel386 SL processor contain bushold circuitry:
BALE, CA[1:15], CCSH#, CCSL#, CMUX[12:14], COE#, CWE#, HALT#,
HLDS, INTA#, LA[l 7:23], MD[0:15], NPXADS#, NPXCLK, NPXRESET#,
NPXW/R#, PCMD#, PERR#, PMl/0#, PSTART#, PW/R#, ROMCSO#, SA[0:19],
SBHE#, SYSCLK, VGACS#; without refresh: CMUX[O:ll], MA[O:lO], WHE#,
WLE#. There is no bushold circuitry in the 82360SL 1/0.

Three-stated signals. Three-stated signals should not be left floating if they
are connected to powered-on devices. These lines must be pulled high or low, as
appropriate. Alternatively, buffers should be added to prevent signals from
floating during suspend. Table 7 .8 contains a list of signals that are three­
stated during suspend.

Resistors. The 82360SL has pull-up resistors on some of its input pins to hold
unconnected inputs at a stable level. During suspend, these pull-up resistors

- - -I

Figure 7.8 Bushold circuitries.

- -1

INPUT
PROTECTION

CIRCUITRY

PULL·UP/PUIJ...DOWN

PULL-UP

Power Management Techniques 101

are isolated from the internal nodes and cause the internal nodes to float.
These internal nodes will get discharged gradually and become low after a cer­
tain period of time. Upon resume, the pull-up resistors become effective again
and cause a transition from low to high. False interrupts can be generated
(IRQ 5, 7, 3, and 4).

To avoid pseudo-transition of signals, ensure that pull-up resistors do not
provide indirect paths between a powered-on plane and an off device. Also, do
not connect active pull-up resistors to bushold lines, as the resistors will pre­
vent the bushold signals from toggling. Avoid connecting in series with a resis­
tor to ground.

102 Chapter Seven

TABLE 7.8 Three-Stated Signals

Source Three-stated signals

Common A20GATE, DMA.8/16#, ERROR#, HRQ, INTR, IOCHRDY, IOCS16#, IOR#, IOW#,
MASTER#, MEMR#, MEMW#, NMI, ONCE#, SMI#, SD[0:7], STPCLK#,
ZEROWS#

Intel386 SL processor
82360SLl/O

BUSY#, MEMCS16#, NPXRDY#, PEREQ, PRDY#, ROM16/8, SD[8:15], TURBO
AEN, BALE, BATTWARN#, C8042CS#, COMXl, CXl, DACK[0:3,5:7], EXTSMI#,
FLPCS#, HALT#, HD7, HDCS[O:l]#, HDENH#, HDENL#, HLDA, IMUXO, INTA#,
IOCHCHK#, IRQ[l,3:7,9:12,14,15], KBDA20, KBDCLK, LA[17:23], OSC, PERR#
RC#, REFRESH#, RESETDRV, SA[0:16], SBHE#, SMEMR#, SMEMW#,
SMOUT[0:5], SMRAMCS#, SPKR, SYSCLK, TC, TIM2CLK2, TIM20UT2, XD7,
XDEN#, XDIR, serial port signals (except COM[A:B]RI#), all parallel port signals

Diodes and LEDS. Diodes are used commonly in ESD structures. Current
drain occurs when a powered device is driving a powered-down device. When
the output of the driver is high, the input voltage to the power down will exceed
V cc by more than the threshold voltage causing the ESD protection structure
to conduct. If a diode is used for isolation, make sure that the diode does not
create unexpected paths once power planes turn off. The other alternative is to
put in current-limiting resistors. The major drawbacks with current-limiting
resistors are higher power dissipation and lower drive capability.

Power plane isolation. What is a power plane? A power plane is basically
a power line to a host of devices. When a power plane is switched off, all
the devices connected to it are turned off. Power plane design is system­
dependent.

Avoid connecting active pull-ups to the input or output of a device which has
been switched off. Be wary of any voltage on floating power plane. This usually
indicates insufficient isolation and can prevent busholds from toggling.

Optimization of power plane. To check isolation, mark the power plane of each
device and then trace the path of each signal. Carefully trace paths of signals
which are used extensively in the design. Active pull-ups can be internal or
external. By marking the power plane of each device, paths with alternating
power plane connections can be identified. Signals used extensively tend to be
those signals connected to devices with a high density of inputs and outputs
(e.g., VGA and keyboard controller).

Examples

The first case has an active pull-up connected to the output of a powered­
down device while the second case addresses the opposite situation. The
most desirable solution is to change power plane connections such that they
are homogeneous along the path. This solution usually does not require
additional or specialized components. Sometimes changing power planes is
not an option. In these cases, additional buffering should be considered as a
solution. The second example uses a three-state buffer ('125 or '126) to
resolve the power-plane isolation problem. (See Fig. 7.9.)

Power Management Techniques 103

Vcc:SV Vcc:SV

(a) CHANGING POWER PLANE

ENABLE

(b) BUFFERING POWER PLANE

Figure 7.9 Power plane optimization.

Summary

When considering how to further isolate power planes, some compromises
may be necessary. Ideally, all paths from an active power plane to a powered­
down plane should be eliminated. In reality, the best isolation is achieved by
eliminating the least resistive paths. Some paths which connect different
power planes may be resistive enough that the power consumption is negligi­
ble compared with the target power consumption for the system.

In this chapter, we have discussed the common techniques used in power man­
agement. System power consumption can be lowered by careful selection of
low-power components, elimination of current leakage paths, and battery
management.

References

"The ABCs ofDMMs," John Fluke Mfg. Co., Inc.
"An Introduction to Batteries," Gates Energy Products.
Buchanan, J., CMOS /TTL Digital Systems Design McGraw-Hill Publishing Company, Inc., 1990.
Hill, W., and P. Horowitz, The Art of Electronics, Cambridge University Press, 1989, pp. 917-986.
"Careful Power-Supply Design Extends Battery Life in Portable Systems," Maxim Engineering

Journal, vol. 3.

Chapter

8
Portable Computer Design

The challenge in portable computer design is to manage the tradeoff between
battery life and functionality. Although portable system designers are getting
better and better at coping with the complexity of power management and sys­
tem integration, portable computer users continue to ask for longer battery
life, smaller form factors, higher performance, and better expansion capability.
The SL architecture has solved many design problems and resulted in a new
standard for portable computers that offers both increased functions and
longer battery life.

This chapter describes the design and implementation of a 32-bit portable
computer using the SL CPU and 82360SL peripheral controller. The goal of
this design is low power consumption, high performance, and expansion capa­
bility with a small form factor. As of this writing, the Intel386 SL CPU is being
used in more than 66 OEM designs for laptop, notebook, pen-based, and palm­
top computers. The Intel486 SL CPU is soon to be introduced by Intel and
promises to be a popular CPU for these same types of applications.

Overview of an SL CPU-based System

Figure 8.1 shows a portable computer design that uses either an Intel486
SL CPU or an Intel386 SL CPU, an 82360SL I/O, an Intel387 SL mobile math
coprocessor, an 82077SL floppy drive controller, a 28F001BX flash memory,
and an 82365SL PCMCIA card controller, plus memory devices and additional
peripheral control devices. Using this example design, we will discuss how to
design a portable computer using the SL CPU and 82360SL. For each part of
the system, both hardware and software considerations will be discussed.

DRAM interface

As we have discussed in the previous chapters, the DRAM interface on the
Intel486 SL CPU and Intel386 SL CPU allows DRAMs to be connected directly

105

106 Chapter Eight

CACHE
MEMORY

MAIN
MEMORY

MEMORY BUS

82360SL
10

IDE
INTERFACE

SYSTEM BUS
VGA

CONTROLLER

ISA-BUS
EXPANSION

SLOTS

EXTERNAL
SM-RAM

KEYBOARD
CONTROLLER

SYSTEM
BIOS

Figure 8.1 The Intel386 SL microprocessor SL superset bus architecture.

to the CPU without any additional glue logic. Configuration of the memory is
completely programmable. For further information about designing a memory
system, refer to Chap. 10 ("Intel386 SL CPU Memory Interfacing") and Chap.
11 ("Intel486 SL CPU Memory Interfacing'').

Cache interface

To keep up with higher processor speeds, faster memory is needed. But build­
ing a system with high-speed memory is very expensive. The cache memory
architecture of the Intel386 SL CPU combines the speed of expensive SRAM
devices and the cost-effectiveness of slower DRAM devices. Indirectly, the
cache controller also reduces the number of accesses to main memory, which in
tum reduces the power consumption of main memory. (For further information
about designing a cache memory, refer to Chap. 10.)

Flash BIOS

Flash memory has made it easy to upgrade firmware in portable computers.
The Intel blocked flash memory further expanded the versatility offered by
standard flash memory by dividing the flash memory into a hardware protected
8-Kbyte "boot block" and three separate programmable blocks: two 4-Kbyte
parameter blocks and one 112-Kbyte code block. Reprogramming one block does
not affect code stored in the other blocks. Thus, data integrity is ensured.

SL

Portable Computer Design 107

As more and more hardware is integrated into the portable computer, the
size of the firmware which controls the hardware is also growing at a tremen­
dous rate. Unlike a standard ISA system which only supports 128 Kbytes of
BIOS space, the SL CPU supports up to 256 Kbytes of BIOS space. Software
can use the additional 128 Kbytes to support hardware such as PCMCIA cards,
a digitizer for a pen-based portable computer, or both.

Hardware considerations. Figure 8.2 shows the direct interface between the
Intel 28F001BX-T flash memory and the SL CPU and 82360SL. In addition to
providing the direct interface, the CPU also provides a FLASH BIOS Write
Enable bit to prevent accidental write to the flash memory. When the BIOS is
shadowed in the main memory for faster execution speed, the flash memory
can be powered down to cut power consumption. Power-down mode is entered
through low voltage on the PWD# pin.

The SL CPU supports 8-bit as well as 16-bit ROM access; the ROM8#/16 pin
determines which type of access is used. ROMCSO# is asserted when the
OFOOOO-OFFFFFH address space is accessed through the ISA sliding window,
because the decoding is done inside the EBU.

Software considerations. System configuration on an SL CPU-based system is
completely under software control, thus making blocked memory particularly
well suited for reconfiguring the system. The two 4-Kbyte parameter blocks of
a blocked flash memory can be used to store the setup parameters, such as
memory configuration, drive types, and display type.

MICROPROCESSOR

ROM CS#

MEMRD#

MEMWR#

SA[0:16]

....-

....-

SD[0:16] l
ROM16/8 -----

XDEN#~

XDIR ~

XD7 ~

82360SL 1/0

X-BUS
TRANSCEIVER

G DIR

~ J

CE#
,.. OE#
,.. WE#

A[0:16]

....,.. DQ[0:7]
~

28F001BX·T

Figure 8.2 Intel 28F001BX-T flash memory interface to the SL CPU.

108 Chapter Eight

lntel387 SL Mobile Math Coprocessor

The Intel387 SL mobile math coprocessor (MCP) provides high perfor­
mance floating point capabilities for Intel386 SL CPU-based portable sys­
tems. The Intel387 SL Mobile MCP is designed for low power and fully static
operation.

Hardware considerations. Figure 8.3 shows the MCP interface to the Intel386
SL CPU. The MCP interface is fully ISA-compatible. The CPU provides the
MCP clock (NPXCLK). The NPXCLK is automatically divided or stopped when
the MCP is idle to conserve power. The NPXCLK input to the MCP can be tied
high to minimize power consumption when it is idle.

Software considerations. The MCP can be powered off completely for maximum
power saving during suspend. Typically, power to the MCP is turned off by
asserting the SUS_STAT pin on the 82360SL during suspend. Two MCP
instructions are also available for saving and restoring data when the MCP is
powered down. The SL CPU handles MCP errors the same way it does for a
standard ISA system. NPXRESET should be asserted only during power on or
during resume. Therefore, a dummy write to port OFlH does not generate
NPXRESET.

Clock system

The SL CPU and 82360SL require two external oscillators and three external
crystal-controlled clock generators to provide clock sources for the various sys-

CA2 CMD03
C0[0:15] D[0:15]

NPX CLK CPUCLK2
NPXRESET RESET

NPXADS# ADS#
NPXW/R# W/R#
NPXRDY- i:= READY#

READ YO#

lntel386™ SL
MICROPROCESSOR

PEREQ PEREQ

BUSY# BUSY#

ERROR# ERROR#

lntel387™ SL
MATH

COPROCESSOR

ERROR# 1.-.-...J
82360SL l/O

Figure 8.3 Math CoProcessor interface.

Portable Computer Design 109

tern clocks. Chapter 9 ("Clock Control") gives a detailed discussion of the clock
architecture.

Hardware considerations. Care should be taken in the design of the real-time
clock (RTC) circuit, since the reliability of this clock is critical to system opera­
tion. The 82360SL provides an internal oscillator circuit to generate this clock.
All you need to add is an external crystal-controlled clock source. You can also
use an external oscillator circuit to provide the RTC.

The TURBO pin on the SL CPU offers a means of reducing the speed of the
CPU clock (CPUCLK). You can design circuitry to assert this pin through a
TURBO button or a unique key sequence.

Software considerations. The power management facilities of the SL CPU and
82360SL allow you to slow down and/or stop all of the system clocks to reduce
power consumption. Control of clock speed is handled through software and
internal power management facilities as described in Chap. 6 ("Power Man­
agement Software") and Chap. 9.

Power management facilities

Chapters 5 through 7 describe the wide range of power management facilities
provided in the SL CPU and 82360SL. You can take advantage of a few of the
power management options offered or use all of them, depending on the target
market for your system. When all the power management features are used,
you can design a notebook-class computer with an effective battery life of eight
hours or more.

Developing an effective power management system requires smooth interac­
tion between software and hardware. The design of a power manage­
ment system is thus one area where software and hardware engineers must be
in close communication. The most important decisions you will make together
involve the selection of the levels of power conservation techniques you will use.

The SL CPU and 82360 offer four levels of power management: local standby
(for powering down selected peripherals), global standby (for reducing power
consumption in system components), 5-volt (or 3.3-volt) suspend/resume, and
0-volt suspend/resume. These power management levels are described in
detail in Chap. 5 ("Introduction to Power Management").

80C51 SL keyboard controller

The Intel 80C51SL is a low-power keyboard controller with a direct interface
to the 82360SL. (See Fig. 8.4.)

Hardware considerations. The 82360SL provides the C8042CS and RESET­
DRV signals to select and reset the 80C51SL, respectively. The keyboard clock
for the 80C51SL is generated by an external crystal oscillator network. Instead
of using a TURBO switch, turbo mode can be implemented using the keyboard.
The TURBO pin on the SL CPU can be connected to the 80C51SL. Every time

110 Chapter Eight

SA2

IOR#
IOR#

SL
MICROPROCESSOR

.....

.....-

.....
XDEN# I'

XDIR

82360SL 1/0

X07
IRQ1, 12

RC#
RESETDRV

KBDA20
EXTSMI#
SRBTN#

.....-

::
.....-

.....-
~

A[1:7]

G DIR

J I

...... LVR#

RD#

.....- 08[0:6]

80C51SL

...... 07
IRQ1, 12

......
RST

...... GATEA20
C51EXTSMI

-+ C51SRBTN

Figure 8.4 Intel 80C51SL keyboard controller interface to the 82360SL.

the 80C51SL detects a predefined key sequence, it will either assert or
deassert the TURBO signal to select turbo or de-turbo mode, respectively.

Software considerations. The 80C51SL provides several power management
facilities that complement those found in the SL CPU and 82360SL. For exam­
ple, through software the 80C51SL can be placed in IDLE mode in between
keystrokes or when the keyboard is inactive to reduce power consumption sub­
stantially. The 80C51SL also supports a POWER DOWN mode. In POWER
DOWN mode, the oscillator for the 80C51SL is stopped to reduce power con­
sumption to less than 1 percent of the normal power consumption.

VGA controller/Pl bus

The example system design in Fig. 8.1 uses a Cirrus Logic CL-GD6440 high­
performance, low-power LCD/CRT VGA graphics controller, which is fully com­
patible with ISA standard. High performance is achieved by taking advantage
of the PI-bus interface.

Hardware considerations. Figure 8.5 shows how the VGA controller interfaces
to the SL CPU. The CPU generates the chip select for the VGA controller inter­
nally. Thus, no external decoding logic is required.

The PI bus is based on the CPU clock which runs at a much higher rate than
the ISA bus (8 MHz). The PI bus can support a very large secondary graphics
frame buffer. Extra I/O addresses which can be used for compatibility reasons
are provided by the PI bus. Chapter 12 ("PI-Bus Interfacing") describes the
PI bus in detail and gives an example of using the PI bus to support a video­
graphics frame buffer.

VOLTAGE
SWITCHES

LCD
FLAT

PANEL

----PANEL DATA P[8:0 __ ..

DATA
ADDR,
CNTRL FRAD[7:4]

VIDEO MEMORY
CMOS DRAM

Figure 8.5 Cirrus Logic CL-GD6440 VGA controller interface to the
SL CPU.

Portable Computer Design 111

Even though the ISA address space is 16 Mbytes, the start address for the
secondary graphics buffer can be set above 16 Mbytes address space. When
the graphics buffer is set above the 16 Mbytes of address space, access to the
buffer is wrapped around within the 16-Mbyte ISA address space.

The secondary graphics buffer cannot share the same address space with on­
board memory. On-board memory must be disabled before the secondary
graphics buffer can be accessed. No VGACS# signal is generated for accessing
the secondary graphics buffer.

Software considerations. The CL-GD6440 uses the power management fea­
tures of the 82360SL to maximize power saving, and it provides direct support
for the suspend feature on the 82360SL.

The LOVGA and HIVGA bits in the ROMCS_DEC register (2FH, INDEX)
are used to enable the XDIR and XDEN signals whenever there is video-ROM
access. The LOVGA and HIVGA bits in the EBClCR register are used for acti­
vating the ROMCSO# and ROMCSl# signals.

VGACS# is activated on the ISA bus when the VGA controller is located on
the ISA bus. The VGACS# signal is not generated when the OAOOOOH­
OBFFFFH address space is accessed through the ISA-sliding window. This is
because the decoding is in the internal bus unit and not in the external bus unit.

The REFREQ signal or clock output from the real-time clock (RTC) can be
used to refresh the video RAM during suspend.

IDE hard disk drive

The 82360SL provides an Integrated Drive Electronics (IDE) interface to an
IDE hard disk drive controller. This interface consists of an IDE bus and con­
trol registers in the 82360SL.

Hardware considerations. The IDE interface allows a disk drive to be con­
nected to the system with a simple adapter card that contains a minimum of

112 Chapter Eight

logic. The IDE bus is derived from the ISA bus and uses the same bus cycles as
the ISA bus. For example, an 8-bit IDE access requires 6 SYSCLK cycles and a
16-bit IDE access requires 3 SYSCLK cycles. The IDE interface does not sup­
port zero wait state operation.

The IDE bus shares some signal lines with the system bus and also has sev­
eral unique signals. (Table 3.2 in Chap. 3 shows the IDE bus signals.)

Software considerations. The IDE interface uses a register-based command
status protocol standardized by the DOS operating system and BIOS.

82077SL floppy drive and controller

The Intel 82077SL is a low-power floppy drive controller fully compatible with
the ISA standard. This controller connects directly to the 82360SL with no
need for support logic.

Hardware considerations. Figure 8.6 shows the hardware interface between
the floppy drive controller and the 82360SL. The 82360SL provides all the
decode logic necessary for the interface.

You can also connect the 82077SL to the SD bus or X bus. To connect the
floppy drive controller to the SD bus, the decode logic and X-bus interface for
the floppy drive can be disabled by software.

Software considerations. The controller supports intelligent power man­
agement. When the controller is idle, it will enter power-down mode auto­
matically.

IOW# WR#

IOR# RD#

lntel386™ SL
MICROPROCESSOR

X-bus TRANSCEIVER

XD[0:6]
SD[0:6] A[1:7] 8[1:7] ~ D8[0:6]

DIR G

XDIR J J 82077SL

XDEN#

82360SL 110

RESETDRV
..._

RESET
FLPCS# .:: CS#

XD7 D87
DRQ2- DRQ

DACK2#- ,DACK#
IRQ6 INT

Figure 8.6 Interface to 82077SL.

Portable Computer Design 113

When the 82360SL detects that the 82077SL is idle, it can power down the
82077SL through a software command. The PD pin on the 82077SL indicates
that the 82077SL is in power-down state. If an external oscillator is used, it can
be used to disable the external oscillator's output for the 82077SL.

Parallel port

The 82360SL provides a complete ISA parallel port interface. The parallel
port supports three different modes of operation-standard parallel port,
PS/2-compatible parallel port, and enhanced parallel port. The enhanced par­
allel port interface is described in Chap. 13.

Hardware considerations. The parallel port interface pins on the 82360SL can
be connected directly to a standard 25-pin D-shell parallel port connector. The
82360SL provides enough drive current to support any standard ISA parallel
port device.

Software considerations. The parallel port on the 82360SL defaults to stan­
dard parallel port mode after power up. PS/2-compatible mode is enabled by
enabling PS/2 feature set. (See Chap. 14, "Writing an SL BIOS.")

Serial ports (RS-232C interface)

The 82360SL provides two RS-232C-style serial communication ports. They
can be used for any typical RS-232C interface applications, such as a
fax/modem interface, mouse port, or LAN adapter.

Hardware considerations. The serial port interface pins on the 82360SL can be
connected directly to an external RS-232C port or be routed internally to a
fax/modem or LAN adapter.

82365SL ExCA backplane controller chip

The Intel 82365SL is the first PCMCIA card controller that supports
PCMCIA 2.0/JEIDA standards for portable computers. The 82365SL pro­
vides the expansion capability that is normally missing in a portable com­
puter. For example, devices such as fax/modem, ethernet, and flash memory
disk can be accessed through the 82365SL. It can directly support two stan­
dard 68-pin slots and is capable of supporting up to eight interchangeable
slots by cascading up to four controllers. Several ExCA peripherals are cur­
rently on the market, including flash memory cards, DRAM cards, modems,
LAN adapters, and hard disks. More ExCA peripherals will be available in
the future.

Hardware considerations. Figure 8. 7 shows the PCM CIA card controller inter­
face to the SL CPU and the 82360SL I/O. Power management support on the
82365SL works directly with the 82360SL. The PCMCIA device can request

114 Chapter Eight

SBHE#
SVSCLK

ZEROWS#

SD[0:7]

""'- SA[0:16]

LA[17:2~
......-

SL_ BALE
MICROPROCESSOR IOCHRDY 82365SL_

IOCS16# PCIC

IOR# -"" IORC#

IOW# IOWC#
MEMCS16#

MEMR#
MEMW#

IRQ[15, 14, 12:9, 7, 6:2]

RESETDRV
AEN -""

EXTSMI# INTR#

COM(A,B)RI# R1-0UT#

82360SL 1/0

Figure 8.7 Intel 82365SL PCMCIA card controller interface to the SL CPU
and 82360SL.

power management service through the INTR# pin which goes directly to the
EXTSMI# pin on the 82360SL.

The 82365SL increases the memory address space of an SL CPU-based system
to 64 Mbytes. It provides a mechanism to map portions of the 64-Mbyte attribute
memory spaces on the PC card onto the smaller 16-Mbyte ISA system address
space, making more memory available for system and application software.

SMM resources

The SMM provides a convenient mechanism for controlling system functions
independently from the operating system and applications program. For exam­
ple, all of the SL CPU and 82360SL power management facilities access the

Portable Computer Design 115

SMM to execute power management routines. The SMM can also be used to
control product-specific features. Chapter 4 ("System Management Mode")
describes the SMM in detail.

Hardware considerations. Custom hardware in the system can initiate SMM
routines by asserting the system management interrupt pin (SMI#) on the
SL CPU.

Software considerations. A software SMI can also be initiated by writing to the
SM_REQ_CNTRL register (OB6H, INDEX). The SMM software executes from
its own address space and memory (SMRAM) and is able to access all system
facilities without interfering with the operating system or application program.

Exiting from SMM is accomplished with the RSM instruction. Chapter 4 gives
examples of the use ofSMM for custom applications and includes code samples.

Mixed 3.3/5-volt system design

Although high integration and power management have extended battery life
dramatically, lowering operating voltage to 3.3-volt promises even longer bat­
tery life. Portable computers based on the Intel486 SL CPU or the low-voltage
Intel386 SL CPU will conserve more power by operating at 3.3-volt. Operating
at 3.3-volt can save as much as 60 percent of the logic power. Moving to 3.3-volt
also reduces heat and electric field stresses.

Since 3.3-volt components are not widely available, the designers at Intel
opted for the mixed 3.3/5-volt approach. Until more 3.3-volt devices and
peripherals hit the market, you will not be able to reap the full benefits of run­
ning at a lower voltage. With the hybrid approach, you can take advantage
of the power saving of running at 3.3-volt immediately and migrate to a full
3.3-volt system as more 3.3-volt peripherals become available.

In the meantime, there are issues you must deal with in designing a mixed
3.3/5-volt system.

Hardware considerations. The interface between 3.3-volt and 5-volt compo­
nents is a critical design issue. As shown in Fig. 8.8, when the output signal is
1.2 volts, the circuit behaves like a forward-biased diode. The 3.3-volt compo­
nent generates leakage into the 5-volt component, which can damage the com­
ponent, lower the guard band for noise immunity, drain more power, and heat
up the component.

Buffers are required to translate signals running between 3.3- and 5-volt
components to correct voltage. Adding buffers will increase cost, board space,
and power consumption. To minimize the number of buffers, you must deter­
mine which signals must be translated and how many buffers are needed. In
the case of the Intel486 SL CPU and the low-voltage Intel386 SL CPU, the
translation buffers for the memory and ISA-bus interface are built-in, elimi­
nating the need for glue logic in these areas.

116 Chapter Eight

COMPONENT
OPERATING

AT 5V

LEAKAGE
CURRENT

1+----1:1110

V 8> 1.2V

COMPONENT
OPERATING

AT 3.3V

T CIRCUIT BEHAVIOR CAN LOOK LIKE FORWARD-BIASED DIODE

T HIGH DANGER OF COMPONENT DAMAGE

T POWER CONSUMPTION HIGHER

T NOISE IMMUNITY LESS

Figure 8.8 Leakage between 3.3-volt and 5·volt components. (Courtesy of
Cirrus Logic, Inc.)

Because of the recharacterization of 5-volt components into 3.3-volt compo­
nents and the timing delays introduced by translation buffers, not all 3.3-volt
components meet the specification for their 5-volt counterparts. Therefore, do
not assume that the AC and DC specifications are the same as those for the
5-volt components. You will need to read the specifications for all the compo­
nents and ensure that they work with each other.

Putting It Together

When designing the circuitry for a portable computer, you should also consider
flexible circuits, component packaging, thermal specifications, and noise control.

Flexible circuits

The lightness and bendable properties of flexible circuits make them particu­
larly well suited for portable computers. A flexible circuit is essentially a bend­
able printed circuit board. It has been used extensively in portable computers
for things such as connectors for the LCD panel, floppy drive, and hard disk. As
portable computers get smaller and lighter, more and more electronic compo­
nents will be built on flexible circuits.

Some considerations must be taken in selecting materials for building flexi­
ble circuits. As the designer, you must select material that will yield the best
performance and the lowest power consumption and noise level.

Component packaging

"More in less" is the best way to sum up today's packaging technology. The
growth of the portable computer market coupled with the advance in surface
mount technology has driven the packaging technology to a much higher inte­
gration level. For example, many manufacturers have redesigned their prod­
ucts to include external components such as resistors and capacitors in their

Portable Computer Design 117

chips. At the same time, they also shrink their products into a much smaller
footprint. Through a careful selection of components, a substantial saving in
space can be achieved. Therefore, you should always find out what packaging
options are available when looking at component data sheets.

Thermal specifications

Heat levels are critical for correct operation of any system, especially portable
computers where space is limited. Portable computers usually do not have a
fan. Therefore, it is important that the ambient temperature does not exceed
the manufacturer's maximum rating. Ambient temperature is the tempera­
ture of the air surrounding the component. For the SL CPU and the 82360SL
110, the ambient temperature can be determined by using the values of ther­
mal resistance between the junction and case, eic• and the thermal resistance
between junction and ambient eja in the following equations:

where

Tc = Ta + P*[8ia - Sic]

Ta = Ambient temperature in degrees Celsius
Tc = Case temperature in degrees Celsius

eic = Package thermal resistance between junction and case
eia = Package thermal resistance between junction and ambient
1j =Junction temperature (heat at the surface of the component)
P = Power consumption in watts

Values for 8ja and ejc are given in Table 8.1 for the 196-lead PQFP lntel386 SL
CPU and the 82360SL 1/0.

Noise control

Electromagnetic interference (EMI) is a common problem in portable computer
design because of the use of high-impact plastic enclosures. Design for low EMI
should begin early in the development process so that circuit design, PCB lay­
out, and shielding can be designed all along the way for reduced noise. These
design considerations are particularly critical when you are attempting to
design an FCC Class B level of system.

TABLE 8.1 Thermal Resistances (C/W) 0/c and 0 1a

Package
196LPQFP

0;,CIW
6

eja (C/W) versus airflow-ft/min (m/sec)

0
(0)
23

200
(1.01)

19

400
(2.03)

16

600
(3.04)
13.5

118 Chapter Eight

Design Considerations

Summary

The following are some additional design considerations you should note when
designing a portable computer:

• When designing a multilayer motherboard, the more layers you use, the
smaller the motherboard can be. Debugging a multilayer motherboard, how­
ever, is more difficult. You will not be able to get to all the signals below the
first layer.

• Unless cost is an issue, keeping the chip count to a minimum will reduce
board size and heat dissipation. Always use LSI to reduce chip count.

• Use CMOS devices whenever possible to reduce power consumption and
heat dissipation.

• Check power requirements of components to ensure that the power supply
does not get overloaded.

• When laying out the motherboard, make sure all the signals are properly
grounded. Thermal relief should be added to provide good electrical contact.

• Use the thinnest and smallest package whenever possible to reduce board
space and provide more vertical clearance.

• Include spare chip locations for adding workarounds.

• Test points and status displays are always helpful in debugging.

• Do not have more than one or two 7 4LS loads per bus signal.

• Include one bypass capacitor of 0.01 to 0.1 microfarad for every one to four
chips. Capacitors should be electrically close to the IC.

Power consumption or battery life has always been the major focus of portable
computer design. Very often, design issues such as performance, expansion
capability, and form factors are not getting enough attention. This chapter dis­
cusses the importance of these design considerations and how to design a
portable computer with these issues in mind.

There are many ways to design a portable computer and the key to design­
ing it is integration. As a system designer, you must ensure that the hardware
and software work with each other seamlessly. The materials covered in this
chapter might not cover everything you need to know about designing a
portable computer; however, there should be enough information to get you
started.

References

Ginsberg, L., Printed Circuits Design, McGraw-Hill, Inc., 1990.
Intel386 SL Microprocessor SuperSet Data Sheet, Intel Corporation (order no. 240814-003).
Intel386 SL Microprocessor SuperSet Programmer's Reference Manual, Intel Corporation (order

no. 240815-003).

Portable Computer Design 119

Intel386 SL Microprocessor SuperSet System Design Guide, Intel Corporation (order no. 240816-
003).

"lntel386 SL Microprocessor SuperSet Family Product Brief," Intel Corporation (order no. 240851-
002).

"Pseudo-Static RAM Application Note," Toshiba America Electronic Components, Inc.
"Cache Tutorial," Intel Corporation (order no. 296543-002).
"82077SL Data Sheet," Intel Corporation (order no. 290410-001).
Dipert, B., and D. Verner, "Designing an Updatable BIOS Using Flash Memory," Intel Corporation

(order no. 292077-002).
"82365SL Data Sheet," Intel Corporation (order no. 290423-001).

Chapter

9
Clock Control

Most of the power used by the CPU, coprocessors, and other integrated circuit
components in a computer system is AC power (clock sensitive), as opposed to
DC power. The amount of power that these components use is directly related
to the clock speed at which the components are operating. For example, run­
ning the lntel486 SL CPU at a 20-MHz clock speed requires twice as much
power as it does to run it at 10 MHz. To design a portable computer with
extended battery life, part of your power management system design should
thus include mechanisms to reduce clock speed or even stop the clock to system
components when the system is idle.

This chapter examines the clock-system architecture of the Intel486 SL
CPU, Intel386 SL CPU, and 82360SL 1/0 and shows how this architecture can
be used to reduce system power consumption. Design considerations for clock­
generating circuitry are also examined.

The SL Clock System

The lntel486 SL CPU, Intel386 SL CPU, and 82360SL require five input clock
signals and generate four output clock signals. Figure 9.1 shows a block dia­
gram of these clock inputs and outputs.

The function of each input clock signal is as follows:

• External frequency input (EFI). Clocks the core of the Intel486 SL CPU
and Intel386 SL CPU. It is two times the CPU clock rate (50-MHz EFI for 25-
MHz CPU operation).

• ISA clock (ISACLK2). Clocks the ISA-bus interface. It is two times the
ISA-bus clock rate (16-MHz ISACLK2 for an 8-MHz ISA-bus clock).

• Crystal oscillator input (CXl) and output (CX2). Provides clock source for
generation of the ISA-bus OSC signal.

• Communications crystal oscillator input (COMXJ) and output (COMX2).
Provides clock source for internal 82360SL oscillator that generates clock for
serial communications port.

121

122 Chapter Nine

KBDCLK

SL CPU

SYSCLK

14.31818MHz

82360 SL

RTCX1

OK-100K

osc

KEYBOARD
CONTROLLER

~ 30pF

1.8432MHz

JlopF

~10-22pf

Figure 9.1 Block diagram of SL CPU and 82360SL clocks.

EFI clock

• Real-time clock crystal oscillator input (RTCX1) and output (RTCX2). Pro­
vides clock source for internal 82360SL oscillator that generates clocks for
the real-time clock and the power management state machines.

The functions of the output clocks are as follows:

• System clock (SYSCLK). This SL CPU output clock is the ISA-bus system
clock. It is one half the frequency of the ISACLK2 clock.

• Math coprocessor clock (NPXCLK). This Intel386 SL CPU output clock is
the input clock to the math coprocessor (MCP). The frequency of this clock
can be varied under program control.

• Oscillator (OSC). This 82360SL output clock is the ISA-bus oscillator
clock. It is derived from an internal oscillator that is controlled by the CXl
and CX2 signals.

• Keyboard clock (KBDCLK). The 82360SL output clock is the clock input to
the keyboard controller. This clock is derived from the SYSCLK.

The use of these clocks and their configuration for power management is
described in the following sections.

From the EFI clock, the SL CPU generates two internal clocks: the internal
CPU clock (CPUCLK) and the internal processor clock (PCLK)'. The CPU uses

Clock Control 123

these clocks to control its internal operation. Fields in the CPUPWRMODE
register control the frequency of the CPUCLK; the maximum CPUCLK fre­
quency is one-half the EFI clock rate. The PCLK is derived from the CPUCLK
and is half the frequency of the CPUCLK. The PCLK determines the internal
phase of the Intel386 SL processor. The NPXCLK output is also derived from
the EFI (Intel386 SL CPU only).

A 20-kilohm pull-down resistor is needed for the EFI input (Intel386 SL
CPU only) to maintain the voltage below the input low voltage in suspend. The
EFI input is not isolated during suspend. If the oscillator is powered off during
suspend, the Intel386 SL processor may drain power.

Controlling the CPUCLK for power management

To reduce the power consumed by the SL CPU when it is in an idle state, the
speed of the CPUCLK can be reduced or the clock can be stopped. Because the
SL CPU is a static device, it can be stopped without losing its state informa­
tion. The software to change the speed of the CPU clock is generally executed
in SMM as part of the suspend power management mechanism, described in
Chap. 5.

The following three mechanisms can be used to control the CPUCLK speed:

• The SL CPU turbo pin

• The fast and slow CPU clock fields in the CPUPWRMODE register (22H)

• The special feature set's SLOW CPU register

These features cannot be active at the same time, so a priority scheme must be
used if you are going to use more than one of these mechanisms. Table 9.1
shows the priorities of these mechanisms.

When a bus master device (e.g., DMA controller) has control of the bus, the
CPU clock always follows the slow CPU clock field (bits [10-9]) in the CPU­
PWRMODE register. During non-bus master cycles, the SFS's SLOWCPU reg­

. ister, the turbo pin, and the FAST CPU clock field in the CPUPWRMODE
register determine the CPUCLK speed.

The SLOWCPU register and the turbo pin control the de-turbo select bit (bit
15) of the CPUPWRMODE register. When the special feature set is enabled,
any dummy write to the SLOWCPU register will place the CPU in de-turbo
mode. The SLOWCPU register feature is the quickest way to slow down the
CPU clock. If the SLOW CPU feature is not enabled, the CPU will go into de-

TABLE 9.1 Priorities of Mechanisms
for Slowing Down CPU Clock

Mechanism

Slow CPU clock field in CPUPWRMODE register
SLOW CPU register
Turbo pin
Fast CPU clock field in CPUPWRMODE register

Priority

1 (highest)
2
3
4

124 Chapter Nine

turbo mode when the turbo pin is asserted low. If neither the SLOWCPU fea­
ture nor the turbo pin are active, the CPU clock follows the fast CPU clock field
(bits [5-4]) in the CPUPWRMODE register.

Listing 9.1

•---.

NAME SPEED.ASM. Program to change the speed of the CPU.

Usage SPEED DIVISOR

·---.
PAGE

Include

blank EOU 20H
FULL EOU OOH
HALF EOU lOH
FOURTH EOU 20H
EIGHTH EOU 30H

code SEGMENT

superset.inc

space
full speed
divide by 2
divide by 4
divide by 8

ASSUME cs:code, ds:code

EXTRN open_cpupwrmode:near, close_cpupwrmode:near

ORG 5DH
paraml LABEL BYTE ; divisor

ORG lOOH

start:

; get divisor

call open_cpupwrmode
MDV AL, [paramlJ
CMP AL, blank anything?
JZ help
CMP AL, '1' divide by l?
JA two
MDV BITMASK, FULL
JMP set

two: CMP AL. '2' divide by 2?
JA three
MOV BITMASK, HALF
JMP set

three: CMP AL. '4. divide by 4?
JA four
MDV BITMASK, FOURTH
JMP set

four: CMP AL, '8' ; divide by 8?
JA help

Stop clock

MDV BITMASK, EIGHTH
set: IN AL, 22H

OR AL, BITMASK
OUT 22H. AL
JMP done

help: MDV AH, 09H
PUSH OS
PUSH SS
POP OS
MDV DX, OFFSET HELP_MES
INT 21H
POP OS

done:
ca 11 close_cpupwrmode
MDV AX, 4COOH
INT 21H ; terminate program

DATA AREA

HELP_MES
BITMASK

code ENDS

DB 'USAGE: SPEED - DIVISOR (1/2/4/8)$'
DB ?

END start

Clock Control 125

The CPU clock can also be stopped automatically by executing an HLT instruc­
tion or doing a dummy I/O read to the STP _CLK register (OFDH, INDEX)
when the stop-break event feature is enabled. The stop-break event feature is
enabled by setting bit 0 of the STP _BRK_CFG2 register (OB2H, INDEX).

NPXCLK output

The NPXCLK output drives the clock input of the Intel387 SL mobile math
coprocessor. During access to the MCP, the NPXCLK runs at the same speed
as the CPUCLK. When the MCP is idle, the NPXCLK output can be slowed
down or stopped automatically to conserve power. Please note that when the
MCP is active, its operating frequency is the same as the CPU operating fre­
quency.

The MCP idle field (bits [13-11]) inside the CPUPWRMODE register control
the MCP clock when it is idling. The idle MCP clock can be programmed to
EFI/2, EFI/4, EFI/8, EFI/16, or stopped. If the stop clock is selected, the MCP
stop clock enable bit (bit 14) in the OMDCR register must be set to one for it to
take effect. Otherwise, the idle MCP clock will default to EFI/16 instead. The
stop clock option should not be enabled unless a static MCP (such as the
Intel387 SL Mobile MCP) is installed. Listing 9.2 gives an example of how
the MCP idle clock feature can be programmed.

126 Chapter Nine

Listing 9.2 Controlling the MCP Idle Clock

·---.

MCPSPEED.ASM: Program to change the speed of the CPU.

Usage MCPSPEED DIVISOR

blank EQU 20H space
FULL EQU OOH full speed
HALF EQU lOH divide by 2
FOURTH EQU 20H divide by 4
EIGHTH EQU 30H divide by 8

code SEGMENT
ASSUME cs:code, ds:code

ORG 5Dh
paraml LABEL BYTE ; divisor

ORG lOOh

start:

enable MCP stop clock feature

call open_ibu
mov ax, OMDCR
mov dx, ax
in ax, dx
or ax, 4000h
out dx, ax
ca 11 close_386sl

set mcp clock to full speed

call open_cpupwrmode ; open CPUPWRMODE register
in al , 23h
and al, Oc7h

get divisor

push ax
mov al, [paramlJ
cmp al, blank anything?
jz help
cmp al , '0' stop cpu clock
ja one
pop ax
or al , OFFh
jmp set

one: cmp al , '1' divide by l?
ja two
pop ax

two:

four:

six:

jmp
cmp
ja
pop
or
jmp
cmp
ja
pop
or
jmp
cmp
ja
pop
or
jmp

eight: cmp
j a
pop
or
jmp

set:

set
al , '2'
four
ax
al , OCFh
set
al , '4'
six
ax
al . OD7h
set
al . '6.
eight
ax
al , OE7h
set
al . '8'
help
ax
al . ODFh
set

out 23h, al
jmp done

help: mov ah, 09H

divide by 2?

divide by 4?

divide by 16?

divide by 8?

mov dx, OFFSET HELP_MES
int 21h

done:

Clock Control 127

call close_cpupwrmode ; close CPUPWRMODE register

HELP_MES
BITMASK

mov ax. 4COOh
int 21h ; terminate program

DATA AREA

DB 'USAGE: SPEED - DIVISOR (0/1/2/4/6/8)$'
DB ?

code ENDS
END start

A new instruction called FSTSG AX has been added to the lntel387 SL for
stepping identification. After executing the FSTSG AX instruction, the signa­
ture register for the i387 SL Mobile will be stored in the AX register. This
instruction can also be used to detect the presence of the i387 SL. The FSTSG
instruction should be executed right after an FINIT instruction, before the sta­
tus word has been changed. If the status word in the i387 SX has been changed,
random data will appear in the status word. A i387 SX will return the status
word OOOOH, whereas the i387SL will return the signature register 23XX.

128 Chapter Nine

ISACLK2 input

The SL CPU uses the ISACLK2 (16 MHz) input to derive the SYSCLK (8 MHz)
and to synchronize the ISA-BUS generation logic. The ISACLK2 must have a
60/40 duty cycle or better.

To maintain a synchronized state between the internal clocks of the CPU,
the clock frequency ratio between the EFI and ISACLK2 inputs must be main­
tained at a minimum ratio of 2 to 1 (Intel386 SL CPU only). The ratio can be
greater than 2 to 1 but cannot be less. For example, if the EFI input frequency
is 50 MHz, then the ISACLK2 frequency must be 25 MHz or less. If the
ISACLK2 frequency is set at 16 MHz (its typical rate), then the EFI input
frequency must be 32 MHz or greater.

Note: The clock input for ISACLK2 should always be 16 MHz. The clock
inputs for many peripherals inside the 82360SL are derived from SYSCLK, so
changing the clock speed for ISACLK2 can cause the system to malfunction.

System clock

The SYSCLK clocks the ISA bus and the devices on the ISA bus, which include
the DMA controllers, interrupt controllers, keyboard controller, and serial
controller (when MIDI interface option is enabled). The SYSCLK also clocks
internal logic in the 82360SL, including the system management interrupt
generation logic, power management logic, and internal arbitration logic.

To be compatible with the standard ISA system, the SYSCLK on an SL CPU­
based system is always fixed at 8 MHz. (Since the SYSCLK is one-half the
ISACLK2, the ISACLK2 must be 16 MHz.) The internal logic inside the SL
CPU always assumes that the SYSCLK is running at 8 MHz. Therefore, do not
alter the SYSCLK speed, even though running the ISA bus at a higher clock
rate will increase performance.

Keyboard controller clock

The 82360SL provides the KBDCLK signal (derived from the SYSCLK) as
an interface to devices such as the 80C42 keyboard controller. The rate of
the KBDCLK is controlled by the KC_CLK_SEL field in the KC_CLK_CNTRL
register (OFCH, INDEX) and can be programmed to SYSCLK, SYSCLK/2,
SYSCLK/4, or stopped. The keyboard is stopped automatically during suspend.

OMA controller clock

The 82360SL provides two internal DMA controllers that are clocked by an
internal DMA clock. The DMA clock is derived from SYSCLK and can be pro­
grammed for a rate of SYSCLK or SYSCLK/2 through the DMASEL bit (bit 1)
in the CFGRl register (60H, INDEX). If the DMASEL bit is zero, the DMA con­
troller clock will operate at 4 MHz (assuming an SYSCLK rate of 8 MHz).

If the DMA controller is idle, the DMA clock can be stopped to conserve
power. The stop clock feature for the DMA controller is controlled by the
DMAl_STP (bit O) and the DMA2_STP bit (bit 1) of the DMA_STP _CLK regis­
ter (2DH, INDEX). Table 9.2 shows the functions of these bits.

Clock Control 129

TABLE 9.2 Function of DMA1_STP and DMA2_STP Bits in DMA_STP _CLK Register

DMAl_STP DMA2_STP Function

x
0
1

0
1
1

Clocks for the two DMA controllers are enabled.
Clock to DMA controller 1 is disabled; clock to DMA controller 2 is enabled.
Clocks to both DMA controllers are disabled.

Real-time clock

The 82360SL provides an internal real-time clock (RTC) that duplicates the
functions of a time-of-day clock and calendar. Other than the EFI and the
SYSCLK, the RTC is the most important clock signal in the system. When
the system is in suspend, the RTC is the only clock that is still running. Dur­
ing suspend, the RTC is used to generate refresh requests to the SL CPU to ini­
tiate suspend refresh of DRAMs and to clock the resume state machine to
detect resume events. Figure 9.2 shows the power and clock-generation inter­
face to the RTC.

Battery backup. Since the RTC must run continuously (even during power
down or 0-volt suspend), it requires battery backup. The 82360SL provides a
separate V cc input for the RTC (RTCVCC). During normal and 5-volt suspend
operation, RTCVCC should be connected to a 5-volt system power source. Dur­
ing 0-volt suspend or power off, RTCVCC should be connected to a 3- to 5-volt
battery. The RTC can operate between 2.5 and 5 volts. When running from the
battery backup source, a Schottky diode in the battery power circuit will mini­
mize the voltage drop in the supply.

During suspend, the backup battery for the RTC is also used for powering
the resume logic inside the 82360SL. The backup battery should thus be of suf­
ficient capacity to power both RTC and the resume logic functions.

BATTDEAD# and RTCRESET#. The 82360SL provides a BATTDEAD# pin that
is identical to the PS (Power Sense) signal in a standard MC146818 RTC. The
BATTDEAD# signal controls the valid RAM and time (VRT) bit in Register D.
A logic low at the BATTDEAD# pin resets the VRT bit. The VRT bit is normally
used by BIOS to determine if data is valid after power up.

Figure 9.2 Clock interface to RTC.

82360SL

110 RTCRESET

BATTDEAD

RTCPWR

:Csopt

--

130 Chapter Nine

The BATTDEAD and RTCRESET# pins are connected to the backup battery.
Figure 9.2 shows how the RTCRESET# and BATTDEAD pins are connected
together. If the battery is disconnected, the RTC (including the resume state
machine) is reset and the VRT bit is set to zero. These signals are not affected
by power off. The RTCRESET# pin should be tied to the RTCVCC signal to pre­
vent current drain.

Extended CMOS RAM. The RTC also provides 128 bytes of standard CMOS
RAM and another 128 bytes of extended CMOS RAM. Unlike the standard
CMOS RAM which requires setting the index address for every access, the
extended CMOS RAM has an internal latch that allows data to be accessed any
time after the index address is set.

The 1/0 ports for accessing the standard and extended CMOS RAM are also
different. The standard CMOS RAM is accessed using 1/0 port addresses 70H
and 71H, and extended CMOS RAM is accessed through 1/0 ports 7 4H and 76H.

Serial controller clock

OSCclock

The COMXl and COMX2 clock inputs to the 82360SL provide a 1.8432-MHz
clock source for an internal oscillator. This oscillator generates a clock for the
82360SL's internal serial controllers. Figure 9.3 shows a typical circuit to drive
the COMXl and COMX2 pins. The resistor and capacitor values shown in this
figure are typical for a 1.8432-MHz operation. The typical input capacitance of
the clock inputs are 15 pF and the output capacitance is 20 pF.

The serial controller can be programmed to operate at :? MHz to support an
MIDI interface. When the MIDI interface option is enabled, the clock is gener­
ated by the SYSCLK rather than COMXl and COMX2 pins. A maximum baud
rate of 56,000 can be achieved with the MIDI interface option.

The CXl and CX2 inputs to the 82360SL provide a 14.31818-MHz clock source
for an internal oscillator. Figure 9.4 shows a typical circuit to drive the CXl

COMX1

Rxz
r----'.__~_._-C~-ICOMX2

1.5k0

82360SL

110

Figure 9.3 Crystal oscillator network for the serial controller clock.

Clock Control 131

30pf IC1 014.318 MHz
82360SL

110 --

Figure 9.4 Crystal oscillator network for the OSC clock.

and CX2 pins. This clock source is divided by 12 and fed into the internal
82C54 timers.

The CXl clock source is also used to produce the ISA-bus clock (OSC). OSC
is the same frequency as the CXl input with approximately a 50 percent duty
cycle. The OSC clock is not synchronous with either the SYSCLK or any other
signals on the ISA bus, so it must not be used in applications which require
synchronization to the bus. This particular frequency was chosen because it
allows a low-cost crystal from the color television industry to be used in the
clock generation circuitry.

Oscillator Design Considerations

The preceding description of the SL clock architecture shows the clock require­
ments for an SL CPU-based system. The following sections give some guide­
lines for selecting crystals and designing clock source circuitry for the on-chip
oscillators in the 82360SL.

On-chip oscillators

The RTC, serial controller clocks, and OSC clock are all generated from inter­
nal oscillators in the 82360SL. These oscillators all need a clock source that is
generally provided by a crystal- (or ceramic resonator-) controlled circuit that
is connected to clock source pins on the 82360SL. Figures 9.2 through 9.4 show
the suggested circuits to generate these clock sources.

Crystal selection

Typically, crystal selection is based on stability, operating temperature, size,
and price. When designing a low-power portable computer, you should also
take input voltage, current consumption, output type (TTL level or CMOS),
and packaging into consideration. Some manufacturers provide custom service
if you cannot find an off-the-shelf oscillator or crystal that meets your needs.

Table 9.3 shows the specifications for the crystals required for the clock
source circuits in Figs. 9.2 through 9.4. The parameters given in this table
refer to the equivalent circuit shown in Figure 9.5. The R1-L1-C1 branch is

132 Chapter Nine

---10-1 --
SYMBOL

Figure 9.5 Equivalent circuit for a crystal.

called the motivational arm of the crystal. The values given in Table 9.3 are for
parallel resonant crystals. The shunt capacitance of the crystal is called C0•

Crystal specifications

Unless the frequency is critical, any fundamental-mode crystal of medium or
better quality can be used. The crystal resistance can affect the start-up time
and amplitude of the clock output. Therefore, the crystal resistance must be
minimized. Alternatively, using the right values for the capacitors in the
clock generation circuit can generally offset the effects of the crystal resis­
tance. Generally, specifications of load capacitance and shunt capacitance
are not important, unless your frequency tolerance is tighter than about 0.1
percent.

Oscillator frequency

TABLE 9.3

The oscillation frequency is determined 99.5 percent by the crystal and up to
about 0.5 percent by the circuit external to the crystal. The on-chip amplifier
has little effect on the frequency, which is as it should be, since the amplifier
parameters are temperature- and process-dependent.

The influence of the on-chip amplifier on the frequency is by means of its
input and output (pin-to-ground) capacitances, which parallel oscillator capac­
itors CXl and CX2, and the crystal lead (XTALl and XTAL2) pin-to-pin capac­
itance, which parallels the crystal. The input and pin-to-pin capacitances are
about 7 pF each. Internal phase deviations from the nominal 180 degrees can
be modeled as an output capacitance of 25 to 30 pF. These deviations from the
ideal have less effect in the positive reactance oscillator (with the inverting
amplifier) than in a comparable series resonant oscillator (with the noninvert-

Crystal Specifications for RTC, Serial Controller Clock, and OSC Clock

Frequency R1ohms C1pF L1mH CopF Qk CLpF

32.768 KHz (RTC) 50 .003 8245.5 1.7 30 10-20
1.8432 MHz (COM[A:B]) 100 .012 .65 4 70 15-40
14.31818 MHz (OSC) 12 .028 4.4 7 35 15-30

Clock Control 133

ing amplifier) for two reasons: first, the effect of the output capacitance is less­
ened, if not swamped, by the off-chip capacitor; second, the positive reactance
oscillator is less sensitive, frequency-wise, to such phase errors.

Selection of CX1 and CX2

Normally, the capacitances for CXl and CX2 are selected based on the type of
crystal used, start-up time, and frequency tolerance. In a notebook environ­
ment in which the oscillator is powered up and down frequently, the start-up
time is more critical than frequency stability. The accuracy of the oscillator fre­
quency is also important. For example, the real-time clock is used for keeping
track of time, generation of suspend refresh, and clock for the resume logic.
Therefore, your oscillator design should have a short start-up time and a sta­
ble frequency.

Fine-tuning of both start-up time and frequency stability can be achieved by
adjusting the values for Cxl and Cx2 (which are typically equal and at least 20
pF). Increasing the capacitances improves frequency stability, but also
increases the start-up time. The capacitances should not be too high. Other­
wise, the oscillator will not start up at all.

Capacitances between 20 and 100 pF is generally sufficient if the on-chip
amplifier is a simple inverter. To prevent the oscillator from running in a relax­
ation mode, smaller values of Cxl must be used (5 to 30pF) if the on-chip
amplifier is a Schmitt Trigger.

RTC oscillator

The RTC requires a 32.768-KHz clock input. An external oscillator or a paral­
lel resonant crystal can be used as a clock source. Figure 9.2 shows a typical
crystal oscillator connection. The circuit consists of a 32.768-KHz crystal (case
temp spec-90 C), two resistors, and two capacitors.

Resistor Rl (470 kilohms) is a bias resistor which guarantees linear opera­
tion of the on-chip inverter. Resistor R2 and capacitor C2 (47 pF) form a volt­
age divider to prevent the crystal from being overdriven. Internal phase
deviation is introduced by capacitor C2.

This oscillator is very sensitive to the resistance of resistor R2. A voltage
increase due to a decrease in value of R2 can cause frequency instability. The
change in frequency can cause symptoms such as real-time clock running twice
as fast.

RTCXl and RTCX2 can be driven together or RTCXl can be grounded and
RTCX2 driven alone. For the second method, the driving source must be capa­
ble of sinking some current when RTCX2 is being driven low.

To minimize board space and power consumption in a notebook computer, it
is desirable to use the on-chip oscillator to clock other chips in the system-for
example, to supply the clock for video DRAM refresh. A buffer is generally
required at the clock output which clocks other chips. Using a TTL buffer puts
too much load on the on-chip amplifier for reliable start-up. A fast, TTL-level­
compatible CMOS buffer (such as the 74HC04) is preferred over the TTL
buffer.

134 Chapter Nine

TABLE 9.4 Timing Specifications for External Oscillators

Clock

RTC
COM[A:B]
osc

tr (max)/ns

20
20
10

tf(max)/ns

20
20
10

thi (min)/ns

1200
200

20

tlo (min)/ns

1200
200

20

External oscillator specification

External oscillators can be used in place of any of the three 82360SL on-chip
oscillators. When an external oscillator is used, the timing specification in Table
9.4 must be observed. Please note that the logic levels are not TTL-compatible.

Placement of components

At a high frequency, crosstalk can occur through capacitive coupling between
the oscillator components and PCB traces carrying digital signals with fast
transition times, which can cause a miscount in the internal clock-generating
circuitry. Crosstalk can be minimized by placing the oscillator components
close to the chip with short traces to the XTALl, XTAL2, and VSS pins.

Troubleshooting oscillator problems

Summary

Most of the time, oscillator problems are caused by the PCB layout. For exam­
ple, long PCB traces and placing the oscillator components in an area where
there is a lot of signal transitions can cause capacitive coupling and inductive
coupling between the oscillator circuitry and other signals. Capacitive coupling
can be reduced by surrounding the oscillator components with "quiet" traces
(e.g., VCC and ground). Minimizing the areas of the loops formed by the oscil­
lator components in the PCB layout can alleviate inductive coupling.

As explained in this chapter, clock control plays an important role in system
design as well as in power management. If the clock input circuit is designed
improperly, many problems can arise. The discussion in this chapter should
provide enough information to allow you to manage the different clocks effi­
ciently on an SL CPU-based system to increase performance and reduce power
consumption.

References

Williamson, Tom, "Oscillators for Microcontrollers," Intel Corporation, 1983.
Svatek, Patrick, "User Consideration For MC146818 Real Time Clock Applications," Motorola

Semiconductor Inc., 1990.
"MC146818 Real-Time Clock Plus RAM Data Sheet," Motorola Semiconductor Inc.
"NS16450 Universal Asynchronous Receiver/Transmitter with FIFOs Data Sheet," National

Semiconductor Corporation.

Chapter

10
lntel386 SL CPU Memory Interfacing

The Intel386 SL CPU offers a very flexible memory architecture. The built-in
memory controller supports a dynamic RAM (DRAM) or a static RAM (SRAM)
memory system. Coupled with the internal cache controller, an Intel386 SL
CPU-based system provides maximum memory performance at a reasonable
cost. The memory controller architecture has been designed for maximum
power saving without sacrificing any performance. It supports common mem­
ory options such as shadowing and memory roll-over. Also, on-chip hardware
implements a LIM 4.0-compatible expanded memory system (EMS).

Designing a DRAM Memory System

The DRAM interface on the Intel386 SL CPU is the simplest. DRAMs can be
connected directly to the processor without any additional glue logic. Figure
10.1 shows the direct interface between the Intel386 SL CPU and a 4-Mbyte
two-bank DRAM card. The processor supports standard SIMM memory
upgrades as well as user-installable DRAM cards. Built-in hardware supports
LIM 4.0 EMS standard using on-board memory.

Page mode

Typically, the performance and power consumption of a DRAM memory sys­
tem is determined by the following memory options: interleaving, page mode,
memory refresh, DRAM type, and bank size. Most of these options are pro­
grammable on the Intel386 SL CPU, making it easy to design a memory sys­
tem that offers high performance and low power consumption. In the following
sections, we are going to look at how each of these options can affect perfor­
mance and power consumption of a DRAM memory system.

DRAM access time is controlled by row access and column access. With page
mode, memory access within the same page can happen very quickly because
the row address strobe (RAS#) maintains the same row address from the pre­
vious memory access.

135

136 Chapter Ten

MA (0:9)

WE#

RASA#

CASL#

CASH#

RASB#

-- 1M X 9

I 1M X 4 I
I 1M X 4 I
I 1M X 1 I

I 1M X 4 ll_
.______, I 1M x 4 I

I 1M X 1 I
1M X 9

1M X 9

I 1M X 4 I
I 1M X 41

I 1M x 1 I
J _.
J •
1 •

_f I 1M x 4 I
I 1M X 41

I 1M x 1 I
1M X 9

0(0:8)

0(9:17)

Figure 10.1 Direct interface between a 4-Mbyte double bank DRAM card and
the lntel386 SL CPU.

Wait states

The Intel386 SL CPU supports three page modes: normal (Pl mode), fast (F2
mode), and high-speed (Fl mode). The differences between these three modes
are in the number of CPU clocks that the RAS and CAS signals keep active. All
1- and 4-Mbyte DRAMs have a latched address buffer and support fast page
mode. Table 10. l shows a comparison of the different page modes. The operat­
ing current of the DRAMs under different page modes is about the same.

The DRAM controller differs from most standard DRAM controllers in that
each RAS# of each bank is kept in an inactive state so that DRAM banks are in
stand-by power mode when not in use. If the bank changes or the CPU goes
into idle, the currently selected bank will become inactive. RASx# and CASx#
signals are generated only for memory banks that are populated.

The RAS# for each bank is kept in an inactive state so that DRAM banks are
in stand-by power mode when not in use. RASx# and CASx# signals are gen­
erated only for memory banks that are populated.

Wait states for the different types of DRAM cycles are generated by delaying
generation of RAS after RAS address is valid. Table 10.3 shows the number of
wait states for the different types of DRAM accesses for each DRAM mode. The
first number is the number of wait states inserted for pipelined cycles and the

TABLE 10.1 Comparison of Three Page Modes
in lntel386 SL CPU

Page mode Normal Fast High-speed

Performance (MIPS) 3.229 3.572 4.116

lntel386 SL CPU Memory Interfacing 137

TABLE 10.2 Page Sizes Commonly Used
for Different DRAM Sizes

DRAM size

256 Kbytes
512 Kbytes
1 Mbyte
4Mbytes

Page size

0.5 Kbyte
1 Kbyte
2 Kbytes
8 Kbytes

TABLE 10.3 Wait States Inserted for Different Types of DRAM Cycles
for Each DRAM Mode

Mode Bank miss Bank hit-page hit Bank hit-page miss

High-speed, Fl
Fast, F2
Normal, Pl

0/1
112
1/2

OINA
OINA
l/NA

2/NA
3/NA
3/NA

second number is for non-pipeline cycles. Notation NA means that cycle com­
bination is not possible. Number of wait states is represented in terms of CPU
clocks. After an idle cycle, one wait state is required for precharge.

Memory refresh

The Intel386 SL CPU supports two types of on-board memory refresh: normal
(CAS before RAS) and suspend. During normal operation, refreshing is done by
doing a read operation by the CAS# falling edge before RAS# in the period
defined by the internal refresh address generator. (See Fig. 10.2.) To prevent

REFREQ ____/ 'c \,. ____ _

::--_.t-~___,':-M--'cHR _AS-_) t-------· ---
RAS1#

CAS1#

RAS2#

CAS2#

RAS3#

CAS3#

MD

Figure 10.2 Normal refresh with staggered refresh.

138 Chapter Ten

current surges, multiple banks are refreshed in a staggered sequential order
starting with bank 0.

Memory refresh for on-board memory is different from memory refresh on
the ISA bus. On-board memory refresh is done by the Intel386 SL CPU and
ISA-bus refresh is generated by the 82360SL I/O. ISA-bus refresh can be dis­
abled by writing a one to the REFDIS bit (bit 0) of the CFGRl register.

Suspend refresh is enabled during suspend to conserve power. The suspend
refresh mechanism is similar to CAS before RAS refresh except that the CAS#
signal is always active. (See Fig. 10.3.) The most common problem with sus­
pend refresh is the enabling sequence. If suspend refresh is not enabled cor­
rectly, integrity will be lost.

The following steps are recommended for enabling suspend refresh:

1. Set the suspend rate in the MCRF register (301H, OMCU). This is normally
done during system initialization.

2. Open the 82360SL configuration space and set register index to point to
SUS_REF register (OFFH, INDEX).

3. Open the internal bus unit configuration space.

4. Write 82H to 1/0 address 25H.

5. Execute a HALT instruction immediately to stop code execution. If code exe­
cution continues after suspend refresh is enabled, memory will be corrupted.

Listing 10.1 gives sample assembly code for enabling suspend refresh.

Listing 10.1 Sample Code to Enable Suspend Refresh

call open_360sl ; open 360sl config space
mov al , Offh set index to SUS REF
out 24h, al
call open_ibu ; open i b.u space
mov al • 82h
out 25h, al set bits 1 and 7
hlt ; stop code execution

After suspend refresh is enabled, suspend refresh is triggered on the rising or
falling edge of the refresh request (REFREQ) signal.

Extending the refresh rate reduces power consumption and increases system
performance. With the Intel386 SL CPU, the DRAM refresh rate is pro­
grammable. The frequency of refreshing is dependent on the type of DRAM.
DRAM data sheets show DRAM refresh requirements as the number ofrefresh
cycles necessary and the maximum period to run the cycles. The divisor value
is equal to the maximum period to run the cycles divided by 4. Using a refresh
rate out of specification can result in data corruption. Therefore, consult the
data sheet before setting the memory refresh rate.

Address multiplexing

DRAM interfaces have multiplexed addressing. In order to access a DRAM,
both the row and column addresses are provided on common address pins. The

...
~

SYSCLK

HRQ

HLDA

REFREQ

REFRESH#

CASx[3:1]#

RASx#

NORMAL REFRESH

Figure 10.3 Suspend refresh cycles .

SYSCLK STOPPED DURING SUSPEND

NOT SAMPLED BY CPU

BUS HOLD CIRCUIT KEEPS THIS SIGNAL INACTIVE

32 KHz RTCCLK FREQUENCY

NOT SAMPLED BY CPU

SUSPEND REFRESH

140 Chapter Ten

TABLE 10.4 Multiplexing of 256-Kbyte DRAM

Case* Row address Column address

MA 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0
31 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1
32,33 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
34 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

21 19 20 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
35,36 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

TABLE 10.5 Multiplexing of 512-Kbyte DRAM

Case* Row address Column address

MA 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0
1 20 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1
2,3 20 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
4 20 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

21 19 20 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
5,6 20 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1
7,8 20 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

9 20 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1
22 21 19 20 23 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

TABLE 10.6 Multiplexing of 1-Mbyte DRAMt

Case* Row address Column address

MA 10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0
10 20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
11, 12, 19 21 19 20 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
13,20,21 21 19 20 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1

20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
14, 15,28 20 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1

22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1
16, 17, 23, 24, 21 19 20 12 18 17 16 15 14 16 10 9 8 7 6 5 4 3 2 1
29,30 22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

18 20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
22 21 19 20 23 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

22 21 19 20 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
21 19 20 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1

25,26 20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

27 19 11 12 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1
22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

*See App. C for a complete list of DRAM configurations.
t Note: MAlO becomes A23 during autoscan, which allows access to the entire physical memory address space.

lntel386 SL CPU Memory Interfacing 141

DRAM configurations determine how the addresses are multiplexed onto the
memory address. Tables 10.4 through 10.6 show how the multiplexing changes
with different base configurations. These tables are useful when debugging
with a logic analyzer. Please note that the local address lines do not come out
in ascending order on the memory address bus.

Memory autoscan

To simplify memory sizing, the Intel386 SL CPU allows memory banks to be
enabled individually for memory sizing. The automatic memory-sizing mecha­
nism is called memory autoscan. Memory autoscan is enabled by setting bit 0
of the Memory Auto Scan Register, MCAS (302H, OMCU). Once memory
autoscan is enabled for a memory bank, the size of the corresponding memory
bank can be determined by writing selective memory patterns to different
boundaries and reading back the data returned from the different address
boundaries. Memory banks are enabled by writing to bits [2-1] of the MCAS
register.

Based on the memory configuration supported by the lntel386 SL CPU, the
following algorithm can be used to determine the memory bank size. Since
the maximum bank size is 8 Mbytes, the on-board memory limit should be set
to anything above 8 Mbytes (16 Mbytes in this example). Before any memory
sizing occurs, a simple read/write test should be run to find out if the memory
bank is populated. Since the memory data bus latches data written to it, a pat­
tern longer than a word must be written. For example, data such as "AA AA 55
55" can be written to address OH and read back from address OH. If the data
returned is not equal to "AA AA 55 55," the memory bank is empty.

Since a memory bank can be 512 K.bytes, 1 Mbyte, 2 Mbytes, and 8 Mbytes
in size, an autoscan routine can write a specific pattern to address boundaries
OH, 0200000H, and OSOOOOOH selectively. How the data wraps around is
dependent on the number of row address lines of the memory installed. Since
1 Mbyte and 2 Mbytes have the same number of RAS address lines, the column
address lines should be used instead. Writing to address boundaries OH and
0400H and reading the data returned allows the autoscan routine to determine
whether the memory installed is 1 Mbyte or 2 Mbytes. Listing 10.2 shows
sample code for the autoscan algorithm described previously.

Listing 10.2 Sample Code for Autosizing of Memory

mov ax, lBH
mov es, ax
mov fs, ax
mov ax, lOH
mov ds, ax
ca 11 open_ibu
mov dx, 301H set on-board memory limit to 16 Mbytes
mov al , 05FH
out dx, al
ca 11 open_omcu use lower case

I

142 Chapter Ten

mov
mov
out
call
write
mov
mov
mov
mov
mov
mov

; read
mov
mov
add
mov
mov
mov
add
mov
mov
mov
add

dx, 302H
al, OlH
dx, al
close_386sl

enable autoscan for bank zero

test pattern to memory address boundary
ed i , OH
byte ptr es:[ediJ, OAH
edi, 200000H
byte ptr es:[edi], OBH
ed i , OAOOOOOH
byte ptr es:[ediJ, OCH

back data from memory address boundary
edi, OH
al, byte ptr es:[edi]
al, 37H
cl , al
ed i , 200000H
al, byte ptr es:[ediJ
al, 37H
bl, al
edi, OAOOOOOH
al, byte ptr es:[edi]
al, 37H

; output test results to screen
mov edi , OB8000H
mov byte ptr es:[ediJ. cl
add ed i . 2
mov byte ptr es:[ediJ."
add edi , 2
mov byte pt r es:[ediJ. bl
add edi , 2
mov byte ptr es: [edi J."
add edi , 2
mov byte ptr es:[ediJ. al
add edi , 2
call open_omcu
mov dx, 302H disable autoscan
mov al , OOH
out dx, al
call close_386sl

Parity checking

Parity checking is enabled by setting the even parity checking enable bit (bit 2) in
the MCMODE register (300H, OMCU) and clearing the parity check enable bit
(bit 2) in port 61H. Parity checking is disabled if the even parity checking enable
bit in MCMODE register is zero or the parity check enable bit in port 61H is one.
The memory address that caused the parity error can be located by reading the
MCPELA and MCPELB registers. Do not enable parity checking if memory does
not support parity checking. Doing so will cause the system to malfunction.

lntel386 SL CPU Memory Interfacing 143

DRAM selection

The selection of DRAM devices for a memory system is a very important design
decision. Careful selection of DRAM devices can result in better performance
and lower power consumption. The following factors should be considered
when selecting DRAMs: speed, chip organization, power consumption, type of
refresh, and operating voltage.

Faster DRAMs are required at higher frequency and for the high-speed page
mode. Speed is especially important in a cacheless machine. Picking the right
chip organization can increase performance and reduce board space. As wide­
word parts (x8, x9, x16, and x18 DRAMs) become more available, it makes
sense to use them in place of xl DRAMs. For example, a single-chip main mem­
ory system can be built using one 4Mx16 DRAM chip.

A DRAM's power consumption is affected by the mode of operation, refresh
time, and operating voltage. The standby current has a big impact on battery
life when the system is in standby mode. In standby mode, most of the system
current is consumed by refresh cycles. Therefore, using DRAMs with extended­
refresh or self-refresh support (such as the LPDRAM offered by Micron
Technology) can reduce power drain substantially. More drastic reduction
in power consumption can be achieved by lowering the operating voltage to
3.3 volts.

Table 10. 7 shows how power consumption varies with DRAM density.

Design guidelines

• Ringing is a common problem in DRAM memory systems. It can be solved by
using damping resistors.

• Use correct values of bypass capacitors to eliminate noise.

• CAS# and RAS# signals are only generated for populated banks.

• All DRAM cycles are the same irrespective of the CPU clock. DRAM speed is
irrelevant in slow clock mode.

• The WLE# and WHE# signals are independently controlled for high and low
bytes.

Programming the DRAM interface

The DRAM interface must be initialized correctly before it can be used for stor­
ing data. The first initialization step is to set the memory controller mode to
DRAM. If the DRAM supports parity checking, even parity checking should be

TABLE 10.7 Current Consumed in Relation to DRAM Density

DRAM type

1 Mbyte Xl, X4
4 Mbytes Xl, X4
1MbyteX16

Fast page mode

45mA
50mA
70mA

Random

65mA
lOOmA
85mA

144 Chapter Ten

enabled. Next, DRAM refresh should be selected. Finally, select a page mode
that will give the best performance for your design.

After the memory controller is initialized for DRAM, memory sizing should
then be done to determine the individual bank size and total amount of on­
board memory. When autoscan is complete, the memory controller bank size
register, MCBS (306H, OMCU) and the on-board memory limit register,
OMLCR (301H, IBU) should be written to set the bank size and on-board mem­
ory limit. Access al:>ove the on-board memory limit where no on-board memory
exists will wrap around to ISA bus. Listing 10.3 gives sample code for initial­
ization of a DRAM interface.

Listing 10.3 Code for Initialization of a DRAM Interface

initialization of the DRAM interface
call open_ibu
mov ax, mem_size ; set on-board memory limit
mov dx, OMLCR
out dx, al
call open_omcu
mov dx, MCBS set bank size
mov ax, bank_size
out dx, ax
mov al . OlH set page mode to high speed page mode
mov dx, MCDRAMMD
out dx, al
mov dx, MCRF set normal and suspend refresh rate
mov al. 22H
out dx, al
mov dx, MCMODE enable DRAM mode and even parity checking
mov al , 05H
out dx, al
ca 11 close_386sl

Designing an SRAM Memory System

The Intel386 SL CPU can also be programmed to support SRAM. Unlike
DRAM, SRAM does not require refreshing and address multiplexing. Thus
SRAM offers higher performance and lower power consumption than DRAM.
On the other hand, SRAM costs more and takes up more board space than
DRAM. Table 10.8 compares the performance of a SRAM and DRAM memory
system.

TABLE 10.8 Comparison of SRAM and DRAM Memory Systems

Memory mode SRAM (4 Mbytes) DRAM (4 Mbytes)

Performance (MIPS) 3.836 4.213

lntel386 SL CPU Memory Interfacing 145

When configured for SRAMs, the controller supports a very low power mem­
ory subsystem. When the cache controller is enabled, the SRAM memory sub­
system provides performance equivalent to that of a DRAM system with a
cache, but the SRAM system uses only half the power of the DRAM/cache sys­
tem and one-third the power of the DRAM-only solution.

Up to four banks of SRAM are supported, but capacitive loading restrictions
may require the use of additional buffers and transceivers depending on the
size and type of memory used. The memory controller provides support for up
to four data transceivers when used in the SRAM mode. Some SRAM control
signals might also require buffering. Table 10.9 shows the address multiplex­
ing for an SRAM memory system.

SRAM wait states

To guarantee the address access time for SRAMs of slower speed, several
wait states can be inserted. Wait state generation is controlled by bits [0-1] of
the memory controller SRAM wait state register, MCSRAMWS (303H,
OMCU). Table 10.10 shows the effect of wait state on performance and power
consumption.

Programming the SRAM interface

TABLE 10.9

Case

MA
256 Kbytes
512 Kbytes
1 Mbyte
2 Mbytes
4Mbytes
8 Mbytes
SCAN

The initialization of the SRAM interface is almost the same as the DRAM
interface except for the memory controller initialization. The memory con­
troller mode must set to SRAM mode to enable the SRAM interface. Once
SRAM mode is selected, the number of SRAM wait states can then be set. It is
recommended that you use a high number of wait states when bringing up a
SRAM system. After the system is fully debugged, you can reduce the number
of wait states to improve system performance. The rest of the initialization is

SRAM Address Multiplexing

Row address Column address

10 9 8 7 6 5 4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0
11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1

19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
20 19 11 12 18 17 16 15 14 13 10 9 8 7 6 5 4 3 2 1
21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1

22 21 19 20 12 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1
23 21 19 20 12 18 17 16 15 14 13

TABLE 10.10 Effect of Wait States in an SRAM System

Wait state SRAM(2WS) SRAM(3WS)

Performance 3.836 3.670

146 Chapter Ten

the same as the DRAM interface. Listing 10.4 gives sample code for enabling
the SRAM interface.

Listing 10.4 Sample Code for Enabling SRAM Interface

initialize and enable SRAM interface
call open_ibu ; open IBU space
mov ax, mem_size; set on-board memory limit
mov dx, OMLCR
out dx, al
call open_omcu
mov ax, bank_size
mov dx. MCBS
out dx, ax
mov al,01
mov dx, MCSRAMWS
out dx. al
xor al, al
mov dx, MCMODE
out dx, al
call close_386sl

open OMCU space
set bank size

set # of wait state to 3

enable SRAM mode

close all SL configuration spaces

Designing a PSRAM memory system

SRAM consumes less power than DRAM but costs more and is not available in
as high a density as DRAM. A less expensive alternative to SRAM is pseudo­
static RAM (PSRAM). PSRAM uses the DRAM cell structure and has a built­
in refresh control circuit. Only a refresh request is required at appropriate
intervals.

LE

MA[0:10)

SL
MICROPROCESSOR

CE[0:3)#

W[L:H)E#
O[L:H]E#

MD[0:15)

lntel386™ SL
Microprocessor

r---.....
A[11:17]

--..

A[1:10~

--

Figure 10.4 Interface to PSRAM.

--..
....
....
....

A[10:16)

A[0:9)

RFSH#

CE#
R/W#
OE#

D

1Mbyte of 128Kx8
$RAM Chips

i... REFREQ

82360SL 1/0

lntel386 SL CPU Memory Interfacing 147

Figure 10.4 shows a PSRAM interface for the Intel386 SL CPU. Unlike
DRAM, SRAM does not require refreshing and address multiplexing. The
interface to PSRAM is identical to SRAM. The 82360SL provides the refresh
request (REFREQ), which eliminates the need for extra logic.

External SMRAM Interface

The system management mode (SMM) executes code from a dedicated memory
(SMRAM) to isolate SMM routines from the operating system or application
programs. If external SMRAM is used, the SMRAM interface uses MEMW#,
MEMR#, and SMRAMCS# for control signals, XD bus for data, and SA bus for
address. Figure 10.5 shows a design for an external SMRAM. The external
SMRAM can be 32 Kbytes or 64 Kbytes. SMRAM is not cached to avoid cache
coherency problems.

Memory Options

SYSTEM

The Intel386 SL CPU interfaces directly to either DRAM or SRAM memory
devices with total capacity from 512 Kbytes to 32 Mbytes. The main memory
can be configured for shadowing, EMS memory, roll-over memory, and system
management RAM.

When enabled, the memory controller allows the user to take advantage of
several features: BIOS shadowing, roll-over address mapping, and hardware
support for the LIM 4.0 EMS expanded memory specification. These options
give the flexibility of remapping normally unused memory into areas that pro­
vide the user with additional performance or application memory.

ADDRESS ~16 SA[15:0>
I
? <=X=D[?=:O]~.zt:'====s====X~ATA

32K x 8
OR

64K x 8

- - 6E cs R/W
l;Y

SMRAMCS# J
MEMW#

MEMR#

Figure 10.5 External SMRAM interface.

148 Chapter Ten

Memory roll-over

Typically, off-board memory such as flash BIOS (from OEOOOOH or OFOOOOH­
OFFFFFH), graphics/user ROM (from COOOOH-DFFFFH) and video memory
reside between 640 Kbytes to 1 Mbyte. These off-board memory locations cre­
ate inaccessible regions of local on-board DRAM memory, thereby wasting
some physical DRAM.

The memory roll-over option in the Intel386 SL CPU allows the system to
reclaim on-board memory that is mapped out by off-board memory residing in
the same memory address space. The memory roll-over feature takes on-board
memory residing on 64 Kbyte aligned addresses between OAOOOOH-OFFFFFH
and makes it accessible "on top" of the physical memory on a 512 Kbyte aligned
address. If the system has 64 Mbytes of physical on-board DRAM, the roll-over
memory is addressed above 64 Mbytes. When a block of memory is marked as
"rolled" up, accesses directed to the area originally occupied in that address
range will be directed off-board to the ISA bus. Noncontiguous blocks of mem­
ory that are "rolled" will appear as contiguous memory to the programmer. The
OMRBCR register (300H, IBU) specifies which 64 Kbyte segment of on-board
memory within the address range between 640 Kbytes and 1 Mbyte is
remapped to the roll-over base address (top of physical memory) specified by
the OMBRCR register.

EMS memory

High-performance hardware LIM 4.0 EMS support is built in to the Intel386
SL CPU. The EMS hardware must be enabled by exercising an unlocking
sequence. Listing 10.5 gives sample code for enabling the EMS mapper. The
programming interface is compatible with the LIM 4.0 EMS specification. For
programming information on expanded memory, please refer to the LIM 4.0
EMS specification.

Listing 10.5 Code for Enabling an EMS Mapper

The EMSBASE address is configurable.
enabling EMS Mapper
cli ; disable interrupts
mov dx, 30h
mov al, 2Ah set index to 64
out dx, al
mov dx, 2Ch points to EMS DATA register
mov al, 4Ah
out dx, al
mov al, 69h
out dx, al
mov al,6Dh
out dx, al
sti ; enable interrupts

lntel386 SL CPU Memory Interfacing 149

Cache Controller

The cache memory architecture combines the speed of expensive SRAM and
the cost-effectiveness of slower DRAM. The cache controller supports memory
sizes of 16, 32, and 64 Kbytes. Three types of memory caching are supported:
direct-mapped, two-way associative, and four-way associative. The cache con­
troller employs a write-through cache in which every memory write causes the
system to write to main memory, whether or not the addressed location is
stored in the cache.

When the cache is full, new entries have to replace the old ones. The cache
controller uses the LRU (Least Recently Used) replacement algorithm to deter­
mine which entry to remove. This algorithm picks the cache entry that has
been least used by the CPU. All cache cycles require two CPU clock (CPUCLK)
cycles.

Cache memory interface

If the cache memory option is not used, the address and data signals on the
cache memory bus can be treated as no-connect signals. Do not use pull-up
resistors on the CCSH# and CCSL# signals. Figure 10.6 shows the interface
between the Intel386 SL CPU and the cache RAM.

Configuring the cache controller

The cache size and mapping should be set in the CCR register (300H, CCU)
before enabling the cache controller. The cache controller is enabled by setting
bit 7 of the OMLCR register (301H, IBU).

CCSH# ~ CE#

CWE# WE#

COE# OE# ~

CA[1:15) A(0:14)

CA[8:15) 0(8:15)

32K XB SAAM
lntel386™ SL

MICROPROCESSOR

CCSL# CE#

I+ WE#

L.....+ OE# ... A[0:14)

C0[0:7] 0[0:7)

32K XB SAAM

Figure 10.6 Interface to cache RAM.

150 Chapter Ten

Cache autoslzlng

The cache size in a system can be determined by performing selective writes to
different address boundaries and reading data back from these locations. List­
ing 10.6 gives example code that determines the cache size automatically.

Listing 10.6 Code for Autosizlng the Cache

·--.
EXAMPLE.ASM: This file contains routines for cache
auto-sizing on the Intel386 SL CPU.

·---.
include superset.inc

;-------------- INITIALIZATION ------------------------------------
code SEGMENT
ASSUME cs:code. ds:code, es:code, ss:code

ORG lOOH
EXTRN open_ibu:near, open_ccu:near, close_386sl :near
start:

disable all interrupts
cli
mov
out

;disable hardware interrupts
ax, 008fh ;turn off NMI, clear shutdown byte

jmp
jmp

xchg
out
jmp

jmp
mov
out
jmp

?Oh. al
$+2
$+2

ah. al
71h. al
$+2

$+2
al, OFFh
21h. al
$+2

$+2
4lh. al
$+2

$+2

;disable the master PIC

;disable the slave PIC
jmp

out
jmp

jmp
except
call
mov

for 512K-576K, mark all other memory areas as non-cacheable
open_ibu
ax, NCACR

mov dx, ax
mov ax. 02FFH
out dx, ax

; 0-640k as non-cacheable

; set on-board memory limit to 1024K
mov ax, OMLCR
mov dx, ax
mov al. 41H

lntel386 SL CPU Memory Interfacing 151

out dx, a 1
mark 576K to 1024K as non-cacheable
mov ax, NCBCR ; a to d segments
mov
mov
out
mov

dx. ax
ax. '{)FFFOH
dx, ax
ax, NCCCR

mov dx, ax
mov al,OFFH
out dx, al
call close_386sl

e to f segments

setup cache controller for 64K and direct mapping
cal 1 open_ccu
mov dx, CCR
mov al ,0
out dx. al
call close_386sl
disable cache controller
call open_ibu
mov dx, OMLCR
in a 1 • dx
and al. 07FH
out dx. al
call close_386sl
enable cache controller
call open_ibu
mov dx, OMLCR
in al,dx
or al. 080H
out dx, al
call close_386sl
setup for cache autosizing
mov ax, 08000H
mov es, ax

.386
mov
mov
out
test
mov
mov
mov

es i . OOlOH
a 1 . 06h
80h. a 1

for 16K of cache
ax. 05555H
es:[esiJ. ax
ax, OFOOFH

mov es:[esi+2J,ax

dummy cache cycles

mov ax, 05555H ; write to address boundary
mov es:[esi]. ax
mov ax, OFOOFH
mov es:[esi+2J,ax
cmp es:[esi], 05555H
jne nocache

chk32k:

152 Chapter Ten

mov al . 07h
out 80h, al

; test for 32K of cache
mov ax, OAAAAH
mov es:[esi+lOOOHJ, ax
mov ax, OFOOFH
mov es:[esi+l002HJ, ax
cmp es: [esi+lOOOHJ. OAAAAH
je isl6

isl6: cmp es:[esiJ. OAAAAH
je Kl6

; test for 64K of cache
mov ax, OA5A5H
mov es:[esi+2000HJ. ax
mov ax, OFOOFH
mov es:[esi+2002HJ. ax
cmp es:[esi+2000HJ. OA5A5H
je is32

is32: cmp es: [esi J. OA5A5H
je K32

K64:
call en_ int
mov dx, off set kbyte64
mov ah, 09h
int 2lh
jmp exit

K32:
call en_ int
mov dx, offset kbyte32
mov ah, 09h
int 2lh
jmp exit

K16:
call en_ int
mov dx, offset kbyte16
mov ah, 09h
int 2lh
jmp exit

nocache:
call en_ int
mov dx, offset cacheless
mov ah, 09h
int 2lh

exit:
mov ax, 4COOH terminate program
int 21H

en_int proc near
:re-enable interrupts

push ax
mov ax, OOOfh
out ?Oh. al

;turn on NMI, clear shutdown byte

jmp
jmp

xchg
out

jmp

$+2
$+2
ah. a 1

71h. al
$+2
$+2

lntel386 SL CPU Memory Interfacing 153

jmp
mov
out
pop

al. OOh ;enable keyboard and timer at master PIC
21 h, al

st i
ret

en_int endp

ax

; Data Area

·--.
Kbyte64 DB '64 Kbyte of cache installed', • $.

Kbyte32 DB '32 Kbyte of cache installed', '$.
Kbytel6 DB '16 Kbyte of cache installed', '$.
cacheless DB 'no cache present$'
code ENDS ; end code segment

END start

Cache coherency during simultaneous memory writes

In a write-through cache system, like that used in the Intel386 SL CPU, cache
coherency refers to the state in which the contents of the cache match the con­
tents of main memory. Loss of cache coherency can result in program failure
and erroneous results.

A potential threat to cache coherency is the occurrence of simultaneous
memory writes. For example, a system can be performing DMA transfers or
bus master writes to memory while the CPU continues to execute code.

The cache controller actually detects when a DMA transfer occurs and
checks each address written to determine if it is in the cache. If found in the
cache, the controller invalidates that location only, not the entire contents of
the cache.

Cacheability

The following registers affect the cacheability of the on-board memory:
OMLCR, ISAWINDOW, OMS[A:fJCR, OMRBCR, OMBRCR, NC[A:G]CR,
GAACR, and GABCR. ISA-bus memory can also be cached.

Cache flushing

Cache flushing refers to the process of clearing the entire contents of the cache
to maintain cache coherency. With the Intel386 SL CPU, the following actions
can cause a cache flush:

154 Chapter Ten

Summary

• Toggling the cache enable bit in the OMLCR register

• Any write to the EMS_CNTRL_REG register

• Writing to any EMS page registers

Even if all the EMS windows are set as noncacheable, any write to the EMS
control register or page registers still flushes the cache tags. Cache tags are
always flushed on a resume reset.

We have looked at the various memory options provided by the Intel386 SL
processor and the different parameters that can affect the performance as well
as the power consumption of the system. The memory controller inside the
lntel386 SL CPU is highly optimized and the memory interface requires no
glue logic. The only thing you have to watch for is making the right selection of
memory devices.

References
Armbrust, S., and T. Forgeon, "Memory in the Hot Seat," PC TECH Journal, February 1988,

pp. 84-95.
Hennessy, J. L., and D. A. Patterson, Computer Architecture: A Quantitative Approach, Morgan

Kaufmann Publishers, Inc., 1990.
Wilson, R., "DRAM Vendors Address Increasing Specialization," Computer Design, December

1991, pp. 63-70.
"Cache Tutorial," Intel Corporation (order no. 296543-002).
Smith, A., "Bibliography and Readings on CPU Cache Memories and Related Topics," Computer

Architecture News 14, January 1986.

Chapter

11
lntel486 SL CPU Memory Interfacing

Except for a few programming features, the memory controller in the Intel486
SL CPU is a completely new design from that in the Intel386 SL CPU. This
new design allows the Intel486 SL CPU's memory controller to take full advan­
tage of the performance of the Intel486 CPU core, while offering extremely low
power consumption. The memory interface supports a 32-bit wide data bus and
burst-mode accesses for maximum performance. It also supports 3.3-volt
DRAMs (as well as 5-volt DRAMs) to further reduce power consumption.

The Intel486 SL CPU's memory controller offers more flexibility in configur­
ing memory than does the Intel386 SL CPU's memory controller. With the
Intel486 SL CPU, DRAM bank size, speed, and configuration can be pro­
grammed independently, allowing linear upgrades of memory. The Intel486 SL
CPU's memory controller also offers the following features that differ from
those in the Intel386 SL CPU:

• Early address/status and internal address pipelining are provided to decode
"on-board" versus "off-board" bus cycles earlier for enhanced performance.

• The output buffer strength for DRAM and the ISA bus is programmable.

• 3.3- or 5-volt selectable buffers are provided to support both 5-volt DRAMs
and the newer 3.3-volt DRAMs in the same machine.

• Hardware EMS, SRAM mode, or memory interleaving are not supported.

• The ISA-bus memory is noncacheable.

• Shadow registers control cacheability of memory between 0 and 1 Mbyte.

Because of this new design, memory configuration and control software
designed for the Intel386 SL CPU are not compatible with the lntel486 SL
CPU. This chapter describes the Intel486 SL CPU's memory controller facili­
ties and gives guidelines for designing a memory subsystem. (Refer to Chap. 10
for memory interfacing information for the Intel386 SL CPU.)

155

156 Chapter Eleven

Memory Controller

Figure 11.1 shows a functional diagram of the Intel486 SL.memory controller.
The memory controller is responsible for the following functions: output con­
trol (generation of row address strobe RASx# and column address strobe CAS#
signals), parity generation, address multiplexing, address mapping (memory
roll-over, SMRAM, and bank decoding), refresh, and configuration registers.

Designing a DRAM Memory System

r---i

The lntel486 SL CPU's memory controller supports a total of 64 Mbytes of
DRAM without any buffering. A maximum of five memory banks can be.
installed, with each memory bank supporting up to 64 Mbytes of DRAM.
Within each of these memory banks, the memory controller can support many
DRAM configurations, including memory cards. Given that so many different
memory configurations are possible, it is difficult to describe each of them here.

Since 4-Mbyte DRAMs are becoming popular, we will use the 4-Mbyte con­
figuration as an example. Figure 11.2 shows how to connect 4-Mbyte x 4
DRAMs to the Intel486 SL CPU. The DRAMs are connected directly to the
CPU. (Damping resistors may be required on some of the memory signals in
some designs.)

The Intel486 SL CPU provides five RAS# signals (one for each 32-bit bank),
each of which is equivalent to a bank select: RASO# is for physical bank 0,
RASl# is for physical bank 1, RAS2# is for physical bank 2, RAS3# is for phys­
ical bank 3, and RAS4# is for physical bank 4. The CPU provides 20 CAS# sig-

~ONFIGURATION PARITY PD REGISTERS REGISTRATION [0:4]

TIMER
CONTROL

REFRESH
CONTROL ,

MAIN
CONTROL

ADDRESS
MAPPING

- ROLL-OVER
• SM-RAM
• SHADOWING

OUTPUT
CONTROL ...-

J
ADDRESS

MULTIPLEXING

M EMORY
ONTROL c

.. D [0:31]

A [0:12]

Figure 11.1 Functional block diagram of the Intel486 SL CPU's memory controller.

MA [0:12]

RASX#

14M

14M

I 1M

f M

14M

l1M

lnte1486 SL CPU Memory Interfacing

EM 41 x 41
x WEO#

WE1#

41 14M 41
CASXO#

x CASX1# x

x 1 I x

MD [0:7]/PDO

MD [8:15]/PD1

41 14M 41 x x WE2#
WE3#

41 14M 41
CASX2#

x CASX3# x

x 1 I I 1M x 11

•••• MD [16:23]/PD2

............. MD [24:31]/PD3

X = MEMORY BANK 0, 1, 2, 3, 4, OR 5
INTERFACING X4 DRAMS Wl1H 1HE lntel486™ SL MICROPROCESSOR

157

Figure 11.2 Interfacing 4-Mbyte x 4 DRAMs.

nals, four each for each of the five banks. CASxO# corresponds to MD[0:7],
CASxl# corresponds to D[8:15], CASx2# corresponds to MD[16:23], and
CASx3# corresponds to MD[24:31] (where x = 0 to 4).

Four write enables WE[3:0]# are mapped to each byte in the same manner
as the CAS# signals. The additional WEC# is used by some DRAM SIMMs and
JEIDA/JEDEC DRAM memory cards. The CAS# and WE# signals can be
equated to the internal Intel486 CPU core's byte enables (BE[0-3]#). A physi­
cal DRAM bank is mapped to a physical bank by connecting the DRAM bank
signals to the appropriate RAS# and CAS# signals.

Memory controller initialization

The memory controller in the Intel486 SL CPU is highly programmable, allow­
ing it to support almost any type of DRAM. The following DRAM parameters
are programmable in the Intel486 SL CPU:

• Buffer strength for memory output signals

• Type of burst mode

• Refresh rate for normal and suspend refreshes

• RAS and CAS timings

• Type of address multiplexing

• CAS, RAS, or WE 'OR'ing options

158 Chapter Eleven

• Bank size

• Operating voltage (3.3- or 5-volt)

These parameters should be initialized after a power-on reset to ensure correct
operation of the DRAM interface. Otherwise, damage can occur to the system.

3.3-volt or 5-volt

The DRAM controller can interface with DRAMs running at 3.3 or 5 volts. To
interface with either 3.3- or 5-volt DRAMs correctly, the buffer strength needs
to be adjusted according to the operating voltage of the DRAMs. The memory
Vee bit (bit 31) in the MCBUFFAregister (710H, OMCU) must be programmed
to inform the DRAM controller of the DRAM voltage type. The memory V cc bit
should be cleared if the DRAMs are running at 3.3 volts and set if they are run­
ning at 5 volts. The memory V cc bit should be initialized after power-up and
cannot be changed dynamically. Changing the memory V cc bit after the system
has been booted up may cause damage to the system.

DRAM configuration

Each memory bank that the lntel486 SL CPU supports must be configured
individually. Associated with each bank is a 32-bit configuration register called
the MCBANKx register. The MCBANK configuration registers are divided into
six fields. The programming of MCBANKO corresponds to physical DRAM
bank 0, that ofMCBANKl to DRAM bank 1, and so forth. The functions of the
register fields are as follows:

• The first field (bits [0:7]) of each register specifies the DRAM bank size in 1
Mbyte increments.

• The second field (bits [8-15]) specifies the DRAM bank CAS timing parameters.

• The third field (bits [16:19]) specifies the DRAM bank RAS timing parameters.

• The fourth field specifies the row/column address multiplexing to accommo- ·
date different DRAM densities and addressing modes.

• The fifth field (bits [20-23]) control the CAS and WE multiplexing to support
different DRAM internal organizations.

• The sixth field (bit 24) enables a battery backup self-refresh mode on a per
bank basis.

Memory bank size

Each of the five DRAM banks can support from 1 to 64 Mbytes in 1-Mbyte
increments. The DRAM bank size is individually programmable, allowing any
mix of banks without restrictions on mixing DRAM size or physical location.
Physical DRAM banks can be totally or partially disabled, allowing logical
DRAM banks to be mapped to physical DRAM banks on a "per bank" basis.

lntel486 SL CPU Memory Interfacing 159

The bank size is controlled by an 8-bit field consisting of the Top of Bank
(TOB) bits[5:0] and the boundary field enable/disable (bit 7). Physical banks of
memory can be "mapped out or disabled" using the boundary field enable/
disable bit. When bit 7 of any MCBANK register is zero, any access to the asso­
ciated physical DRAM bank is inhibited. The TOB bits of the next sequential
DRAM bank that is populated are programmed with bit 7 set to one.

RAS and CAS control

RASX#

CASX#

MA [0:12]

To support a wide variety of DRAMs, the RAS precharge, RAS to CAS delay,
and CAS pulse-width timing are programmable on a "per bank" basis to sup­
port DRAM access times from 50 to 100 ns. RAS precharge time is the time it
takes for the DRAMs to recharge its internal amplifiers and reset its internal
machines to prepare for the next cycle. RAS to CAS delay is the time it takes
for the CAS to go active after RAS is active. (See Fig. 11.3.) Slower DRAM
banks do not penalize the performance of faster DRAM banks since each
bank's timing is individually programmable.

The RAS and CAS timing parameter field is subdivided into four smaller
fields: CAS pulse width (bits 8 and 9), burst mow (bits 10 and 11), RAS to CAS
delay (bits 12 and 13), and RAS precharge time (bits 14 and 15). Table 11.1
shows the timing selected for the various settings of the timing parameter
fields.

The CAS access time field dictates the number of CPU clock cycles (CPU­
CLK) for which the CAS will remain active for a valid read or write. The burst­
mode field selects the burst mode supported by the memory controller. RAS to
CAS access time specifies the RAS to CAS delay in CPUCLK cycle increments.
The RAS precharge timer defines the number of CPUCLK cycles that RAS
must remain inactive before it is allowed to be driven active. Table 11.2 shows
some sample settings of these fields for various DRAM speeds.

, ____ ./
'-/

----------><~ __ :g_r_R__,~><~-----
MD [0:31] '~LID DATA>---

• 7R•~t~~RcD~~c~

RAS RAS CAS
PRECHARGE TO CAS PULSEWIDTH

TIME DECAY

Figure 11.3 DRAM timing control.

160 Chapter Eleven

TABLE 11.1 RAS and CAS Timing Parameter Fields

Burst mode RAS to CAS delay RAS precharge time
Bits CAS pulse width bits [8-9] bits [10-11] bits [12-13] bits [14-15]

0,0 1 CPU clock NormalCAS 1 CPU clock 1 CPU clock
0, 1 2 CPU clocks NIA 2 CPU clocks 2 CPU clocks
1, 0 3 CPU clocks FastCAS 3 CPU clocks 3 CPU clocks
1, 1 4 CPU clocks NIA 4 CPU clocks 4 CPU clocks

TABLE 11.2 Sample RAS/CAS Timing Parameter Field Configurations

DRAM speed CAS pulse width Burst mode RAS to CAS delay RAS precharge time

50ns
60 ns
70ns
80 ns

lOOns

1 CPU clock FastCAS 1 CPU clock 2 CPU clocks
1 CPU clock NormalCAS 2 CPU clocks 2 CPU clocks
1 CPU clock Normal CAS 2 CPU clocks 2 CPU clocks
1 CPU clock NormalCAS 2 CPU clocks 2 CPU clocks
1 CPU clock NIA 2 CPU clocks 2 CPU clocks

Note: The timing of the RAS and CAS signals is dependent on the CPUCLK
speed. For example, one CPUCLK cycle is 40 ns for a 25-MHz CPUCLK and 50
ns for a 20-MHz CPUCLK. You should refer to the DRAM manufacturer's data
sheet to ensure that whatever is programmed into the RAS and CAS timing
field meets the DRAM specification. For fast burst mode, the CAS pulse width
parameter is ignored by the memory controller.

The burst cycle

Like the Intel486 SX CPU, the lntel486 SL CPU also supports burst bus cycle
features with a new type of memory transfer cycle called burst mode. During
burst mode transfer, the Intel486 SL CPU can shift data in or out every clock
rather than every other clock. The fastest burst cycle requires two clocks for
the first data transfer and one clock for subsequent data transfers.

The CPU can generate a burst cycle if, and only if, two events occur. First,
the CPU must request a cycle that is longer in bytes than the data bus can
accommodate. Second, the BRDY# signal (internal to the Intel486 SL CPU)
must be activated to terminate the cycle. When these two events occur, a burst
cycle takes place.

The Intel486 SL CPU supports two types of burst cycles: normal CAS and
fast CAS. A normal CAS burst cycle is the same as a multiple page hit bus
cycle, except that only one internal Intel486 SL CPU ADS# is provided in the
first access. The memory controller automatically generates the remaining
multiplexed memory addresses for the remaining dword (double word) burst
transfers. A fast CAS burst cycle latches data into the internal Intel486 SL
CPU earlier than does the normal CAS cycle, and looks like a very fast page hit
on the memory bus.

The burst mode bits (bits [10-11]) of the MCBANKx register determine what
type of burst mode is supported. Program bits [10,11) to (0,0) select normal
CAS mode and (1,0) select fast CAS mode.

lntel486 SL CPU Memory Interfacing 161

Address multiplexing

The row address multiplex control field (bits [16-19]) of the MCBANK:x regis­
ter controls the Intel486 SL CPU's internal address mapping. This field speci­
fies the number of row address and column address bits for the DRAMs
installed. Table 11.3 shows the decoding of the row address multiplexer control
field.

Some DRAM cards require OR'ing of the WEx# and CASx# signals. The
write enable OR'ing control field (bits [20-21]) of the MCBANK:x register con­
trols the OR'ing of the WE[0:3]# and WEC# signals. The decoding of this field
is shown in Table 11.4.

The CAS OR'ing control bit (bit 22) controls the OR'ing of the CAS signals.
When this bit is zero, one CAS per byte is driven. When this bit is one, CASxO#
and CASxl# are internally OR'ed and only CASxO# is driven for 16-bit (16
asymmetric DRAM) lower word write accesses, and CASx2# and CASx3# are
OR'ed and only CASx2# is driven for 16-bit (16 asymmetric DRAM) upper word
write accesses.

Row and column address mapping

Table 11.5 shows how the row addresses are mapped to the memory address
bus. The bold numbers indicate that the address line is driven but is not used
by the DRAM. Note that the local address lines do not come out in ascending
order on the memory address bus.

TABLE 11.3 Decoding of the Row Address
Multiplex Control Field

Row address x column address Bits [16-18]

9x9
OOH 10 x9

10x10
11x10 OlH
12 x 10

11x11
12x11 03H
13x11

12x12 07H

12 x 8 08H

TABLE 11.4 Decoding of the Write Enable OR'ing Control Field

Bits (21, 20)

0,0

0, 1
1,0
1, 1

Function

WEO# driven for MD[0-7], WEl# for MD[B-15], WE2# for MD[16-23], WE3# for MD[24-31],
WEC# disabled

WEO# driven for MD[0-15], WE2# for MD[16-23], WEl#, WE3#, and WEC# disabled
WEC# driven for MD[0-31], WEO#, WEl#, WE2#, and WE3# disabled
Reserved

162 Chapter Eleven

TABLE 11.5 Row Address Mapping

Row address

DRAM depth Row/column 12 11 10 9 8 7 6 5 4 3 2 1 0

256Kbytes
512 Kbytes
lMbyte
1 Mbyte
2 Mbytes
4Mbytes
4Mbytes
8Mbytes
16Mbytes
16Mbytes

9x9 25 23 22 20 19 18 17 16 15 14 13 12 11
10x9 25 23 22 20 19 18 17 16 15 14 13 12 11
12 x8 25 21 10 20 19 18 17 16 15 14 13 12 11
!Ox 10 25 23 22 20 19 18 17 16 15 14 13 12 21
11x10 25 23 22 20 19 18 17 16 15 14 13 12 21
12x10 25 24 22 20 19 18 17 16 15 14 13 12 21
11x11 25 24 22 20 19 18 17 16 15 14 13 23 21
12x 11 25 24 22 20 19 18 17 16 15 14 13 23 21
13x11 25 24 22 20 19 18 17 16 15 14 13 23 21
12x12 25 24 22 20 19 18 17 16 15 16 25 23 21

Table 11.6 shows how a column address is mapped to the memory address bus.
The bold numbers are address lines not used by the DRAM. Note that the local
address lines do not come out in ascending order on the memory address bus.

Refresh modes

TABLE 11.6

The Intel486 SL CPU's memory controller supports three types of refresh
modes: normal refresh, suspend refresh, and self-refresh. Normal refresh is for
use during normal system operation. Suspend refresh is for use during a 3.3-
or 5-volt suspend, when the clock is stopped to the CPU and 82360SL but they
remain powered. Self-refresh is for use during 3.3- or 5-volt suspend with low­
power DRAMs that support self-refresh.

Normal refresh. With normal refresh, The 82360SL furnishes the DRAM
refresh request (REFREQ). The REFREQ occurs at a programmed interval
determined by the 82C54 programmable interval timer in the 82360SL (typi­
cally 15.6 ms). A REFREQ has a higher priority than a DMA or a BUS MAS­
TER request. For each REFREQ, the Intel486 SL CPU's memory controller
performs a CAS before RAS refresh.

Column Address Mapping

Column address

DRAM depth Row/column 12 11 10 9 8 7 6 5 4 3 2 1 0

256 Kbytes 9x9 13 12 11 10 9 8 7 6 5 4 3 2
512 Kbytes 10x9 13 12 11 10 9 8 7 6 5 4 3 2
1 Mbyte 12 x8 13 12 11 10 9 8 7 6 5 4 3 2
1 Mbyte !Ox 10 13 12 11 10 9 8 7 6 5 4 3 2
2Mbytes 11x10 18 12 11 10 9 8 7 6 5 4 3 2
4Mbytes 12x10 13 12 11 10 9 8 7 6 5 4 3 2
4Mbytes 11x11 13 12 11 10 9 8 7 6 5 4 3 2
8 Mbytes 12x 11 18 12 11 10 9 8 7 6 5 4 3 2
16Mbytes 13x11 13 12 11 10 9 8 7 6 5 4 3 2
16Mbytes 12x 12 13 12 11 10 9 8 7 6 5 4 3 2

lntel486 SL CPU Memory Interfacing 163

To support DRAMs with longer refresh times, the Intel486 SL CPU provides
programmable refresh rate. The refresh rate is controlled by the normal
refresh rate field (bits [7-4]) of the memory controller refresh configuration reg­
ister, MCRF (704H, OMCU). Table 10.7 shows the bit encoding for the normal
refresh rate field. The Intel486 SL CPU's memory controller uses the MCRF
register to determine when a REFREQ should or should not result in a refresh
cycle being performed.

The Intel486 SL CPU ignores a REFREQ based on the normal refresh rate
field in the MCRF register. The REFREQ generates a hold request in the
Intel486 SL CPU. The CPU then returns an HLDA to the 82360SL to acknowl­
edge the REFREQ. The Intel486 SL CPU provides an internal ready immedi­
ately after a HOLD/HLDA bus cycle if the refresh request is to be ignored.

Suspend refresh. The suspend refresh mechanism for the Intel486 SL CPU is
similar to that of the Intel386 SL CPU. The only difference is that the Intel486
SL CPU supports a refresh rate of ISA-bus refresh rate divided by 128. The
enabling mechanism is the same as with the Intel386 SL CPU (as described in
Chap. 10).

Self-refresh. Most newer DRAMs support a lower-power refresh mode called
self-refresh. Self-refresh is a special case of CAS before RAS refresh in which
the DRAMs are capable of generating their own refresh request and refresh
address. The battery backed-up (BBU) self-refresh DRAMs must provide their
own battery power. The Intel486 SL CPU supports self-refresh during 5-volt
suspend.

Entering self-refresh appears as an extended CAS before RAS refresh. WE#
is HIGH when CAS# is first driven LOW. WE# must be high to prevent the
DRAM from entering a test mode. If CAS# and RAS# are both held low for a
predetermined time period (typically greater than 16 ms), DRAMs supporting
BBU self-refresh will begin generating their own refresh requests and refresh
addresses.

Once a DRAM enters self-refresh mode, the Intel486 SL CPU's memory con­
troller can ignore refresh requests. When in self-refresh mode, the CAS# and

TABLE 11.7 Encoding of the Normal Refresh Rate
Field in the MCRF Register

Bits [7,6,5,4]

0,0,0,0
0,0,0,1
0,0,1,0
0,0,1,1
0,1,0,0
0,1,0,l
0,1,1,0
0,1,1,1
l,x,x,x

Normal refresh rate

ISA-bus refresh rate divided by 1
ISA-bus refresh rate divided by 2
ISA-bus refresh rate divided by 4
ISA-bus refresh rate divided by 8
ISA-bus refresh rate divided by 16
ISA-bus refresh rate divided by 32
ISA-bus refresh rate divided by 64
ISA-bus refresh rate divided by 128
Reserved

164 Chapter Eleven

RAS# must remain low (CAS# is held low with a pull-down), WE# and OE# are
high and the MA lines are three-stated. The DRAM automatically exits self­
refresh mode when CAS# and RAS# go high.

The self-refresh enabling mechanism is the same as suspend refresh except
that the self-refresh enable bit (bit 24) in the MCBANKx registers has to be set
to one before enabling suspend refresh. The suspend refresh rate has no effect
on self-refresh. Self-refresh is automatically disabled after a resume reset.
The REFNORM bit (bit 0) of the MCRF register (704H, OMCU) should be
examined before accessing the DRAMs to find out if the DRAM is out of self­
refresh mode.

Memory sizing and enabling

An autoscan algorithm can be used to determine the amount of on-board mem­
ory present on a per bank basis. Before doing any memory sizing, enable the
protected mode so that the program can test all the row address bits. Also,
memory options such as cache, memory roll-over, BIOS shadowing, and
SMRAM must be disabled.

The first step in the autoscan algorithm is to set the on-board memory limit
to 64 Mbytes by programming the TOB bits in the corresponding MCBANKx
and OMLCR registers, and then enabling the memory bank. Before performing
the address aliasing test, the autoscan routine must determine whether CAS
OR'ing or WE OR'ing are required and determine the RAS/CAS timing for the
DRAMs being used. Typically, this information is stored inside a BIOS param­
eter table or the BIOS setup program.

The next step is to verify if physical memory is present. To do this, the
autoscan routine writes a double word test pattern to absolute address OH and
a different double word test pattern to absolute address 04H. It then reads
back from address OH to determine if a memory bank is populated. If popu­
lated, the data returned from a double word read to address OH should be the
same as that written to that address.

If physical memory is present, the autoscan routine can start sizing the
memory. The autoscan algorithm determines the bank size by detecting the
number ofrow and column address bits present. Table 11.8 shows the different
multiplexing configurations supported by the Intel486 SL CPU and the corre­
sponding bank size for each configuration.

The row address testing starts with the largest possible number of row
address bits, working from left to right on the row address. In each test, a mul­
tiplexing configuration is chosen such that the leftmost bit to be tested does
not appear anywhere else in the map. A simple 32-bit read/write test can be
performed on absolute address OH at the location which toggles the leftmost
row address bit. If the DRAM installed does not have that many row address
bits, it will alias to absolute address OH. If the write to the location that tog­
gles the leftmost row address bit does not alias, then the row size is deter­
mined. Otherwise, it selects another multiplexing configuration and performs
the same test.

lntel486 SL CPU Memory Interfacing 165

TABLE 11.8 Multiplexing and Bank Size Configurations

DRAM density Row/column addresses Mux cntrl field TOB field

256Kbytes
512 Kbytes

1 Mbyte
1 Mbyte
2Mbytes

4Mbytes
4 Mbytes
SMbytes

16Mbytes
16 Mbytes

9x9 OOH 1H
10 x9 2H

12 xs 4H
10x10 OlH 4H
11x10 SH

12x10 lOH
11x11 03H lOH
12x11 20H

13x11 07H 40H
12x12 OSH 40H

A multiplexing configuration is then chosen to test the column address bits.
The location chosen for a column address test must be such that the address
does not appear in the row map (i.e., the row address bits are all zeros). Then,
by doing the same kind 32-bit read/write test to toggle the leftmost bit of the
column address, the number of column address bits can be determined.

Listing 11.1 gives an example of an autoscan algorithm for memory sizing.
Note that this algorithm is merely one way of doing memory sizing. Other algo­
rithms can also be used.

Listing 11.1 Example of How to Autoscan Memory

;;disable cache, memory roll-over, BIOS shadowing, and SM-RAM
;;set bank size to 64 Mbytes and enable memory bank
write 7FH to OMLCR register
write 3FH to the TOB field

test for presence of physical memory
do a read/write test at location OH and 04H
if data read back from OH equals to data written

physical memory is present
;; enable protected mode and selects the multiplexing configuration
with the largest number of row address bits
write 03H to bits[16:18J of the MCBANKx register
write double word test patterns to OH and 800000H
if there is no alias# of row address bits equals to 13 bits
else

write double word test patterns to OH and 400000H
if there is no alias# of row address bits equals to 12 bits
else

write double word test patterns to OH and 200000H
if there is no alias# of row address bits equals to 11 bits

write OOH to bits[16:18J of the MCBANKx register
write double word test patterns to OH and lOOOOOH
if there is no alias# of row address bits equals to 10 bits
else

166 Chapter Eleven

of row address bits equals to 9 bits
;; selectsawhe multiplexing configuration with the largest number of
column address bits and has the same number of row address bit found
in the row address test
if# of row address bits equals to 13

column address must equal to 11 bits
if# of row address bits equals to 12 ;column address could be 12,
11, 10, or8
write 08H to bits[16-18J
write double word test patterns to 0 H and 800H
if there is no alias# of column address bits equals to 12
else

write 03H to bits[16-18]
write double word test patterns to OH and 400H if there is no

alias# of column address bits equals to 11
else

write OlH to bits [16-18]
write double word test patterns to OH and 200H

if there is no alias# of column address bits equals to 10
else
#of column address bits equals to 8
if# of row address bits equals to 11

;column address could be 11 or 10
write 03H to bits[16-18J
write double word test patterns to OH and 400H
if there is no alias# of column address bits equals to 11
else

#of column address bits equals to 10
if# of row address bits equals to 10 column address could be
10, or 9
write OlH to bits[16-18J
if there is no alias# of columr, address bits equals to 10
else

#of column address bits equals to 9
if# of row address bits equals to 9 ; column address must be 9

#of column address bits equals to 9
;; set bank size and mux configuration based on number of row and
column address bits found

Memory controller output buffer control

For maximum power-saving, the drive capability (the maximum capacitive
loads which the buffer can directly drive in picofarads) of the memory inter­
face is programmable. If the buffer drive is too weak, it cannot drive the data
into the memory chips. On the other hand, ifthe buffer strength is too strong,
it will cause transient current (overshoot and undershoot can cause excessive
current drain) during power up. The memory buffer strength can also affect
the rise and fall time of the memory signals.

lntel486 SL CPU Memory Interfacing 167

The output strength of the memory interface is controlled by either a 2- or
a 3-bit field in the MCBUFF[A:B] registers. MCBUFFA (710H, OMCU) is a
32-bit register and MCBUFFB (714H, OMCU) is an 8-bit register. The mem­
ory buffers are divided into five different groups: CAS# for each bank, mem­
ory address, common write enable, RAS for each bank, and memory data and
parity. The decoding of the CAS #buffer strength field is shown in Table 11.9.
Each load in this table equals 34 picofarads (pF).

The CAS# buffer field (bit [0-9]) in the MCBUFFA register controls the
buffer strength of the CAS[0:4] signals. Each of the five pairs of2-bit fields cor­
responds to one bank of memory. The default buffer strength for the CAS sig­
nals is 5 loads.

The MA buffer strength field (bits [10-12]) of the MCBUFFA register is a 3-
bit field which controls the buffer strength of the on-board memory address
bus. The default buffer strength for the MA signals is 3 loads. Buffer strength
for the WECxx signals is controlled by the WEC buffer strength field (bits
[13:15]) of the MCBUFFA register. The default buffer strength for the WECxx
signals is 3 loads.

The RAS# buffer field (bit [16-25]) in the MCBUFFA register controls the
buffer strength of the RAS[0:4] signals. Each of the five pairs of2-bit fields cor­
responds to one bank of memory. The default buffer strength for the RAS sig­
nals is 5 loads.

The buffer strength for the memory and parity data bits is determined by the
MD/PD buffer strength field (bits[28-30]) in the MCBUFFA register. The
default buffer strength for the MD/PD signals is 3 loads.

The buffer strength for the MA[0:12] signals is controlled by the memory
address buffer strength field (bits [10-12]) of the MCBUFFA register. The
decoding of this field is the same as the CAS buffer field.

Normally, the write enable common (WEC#) is a buffered signal on DRAM
cards. In the case where the WEC# signal is not buffered, the write enable com­
mon buffer strength field (bits [13-15]) can be used. The decoding of this field
is the same as CAS buff er field.

The buffer strength for the WEx# signals is controlled by the write enable
buffer strength field (bits [5-7]) of the MCBUFF register. The decoding of this
field is the same as CAS buffer field.

TABLE 11.9 Decoding of CAS# Buffer Strength Field

Buffer strength Bits (7 ,6,5) MSB,LSB

lload 0,0,0 0,0
Three-state 0,0,1
2 loads 0,1,0 0,1
3 loads 0,1,1
4 loads 1,0,0 1,0
5 loads 1,0,1
6 loads 1,1,0 1,1
7 loads 1,1,1

168 Chapter Eleven

Note: The buffer strengths for 3.3- and 5-volt DRAMs are different. The
MCBUFF[A:B] registers must be programmed according to the operating volt­
age to ensure correct operation.

Parity checking

The Intel486 SL CPU's memory controller provides even parity support for
DRAMs. Parity support features include identification of high and low bytes
and automatic even parity generation/checking. Any time a parity error is
detected, the memory controller latches and stores the bank number and
byte or bytes of the faulty memory location. The address for parity error can
be determined by a memory test. Parity checking is enabled by setting the
even parity checking enable bit (bit 15) of the MCPARITY register (708H,
OMCU).

A 16-bit register, the Memory Controller Parity Control Configuration regis­
ter MCPARITY (708H, OMCU), is used to locate the memory address that gen­
erated the parity error. When a parity error occurs, this register contains the
parity status. This parity status is kept until it is explicitly cleared, by first
resetting and then setting the even parity enable bit. With the Intel486 SL
CPU, any memory bank can be disabled and mapped out. If the BIOS detects
a parity error on a given bank, the corresponding bank may be disabled and
mapped out. Parity checking should be disabled if the DRAMs installed do not
support parity checking.

Memory roll-over

Memory roll-over is controlled by the MCROLL register (700H, OMCU), which
is equivalent to the OMBRCR and OMRBCR registers. The MCROLL register
is a 16-bit register in the Intel486 SL CPU's memory controller 110 space. It is
divided into two fields: the memory rollover block field and memory rollover
base field. The first field (MCROLL bits [0-6]) is a 7-bit field that is function­
ally equivalent to the OMRBCR register, and the second field (MCROLL bits
[8-13]) is functionally equivalent to the OMBRCR register. One bit in both
fields of the MCROLL register must be set for roll-over to be enabled. The
memory rollover block field specifies which on-board memory in the range of
640-1024 Kbytes is to be remapped to the address specified by the memory
roll-over base field.

System management RAM

The Intel486 SL CPU provides a flexible mechanism for allocating of on-board
memory for system management RAM (SMRAM). Any 64-Kbyte memory seg­
ment within the first 1 Mbyte of address space can be designated for SMRAM.
Writing a one to a bit in the MCSMRAM register enables the corresponding 64-
K-byte segment as on-boaJ:"d SMRAM.

lntel486 SL CPU Memory Interfacing 169

On-board memory-sliding window

With the Intel386 SL CPU, extended memory above 1 Mbyte can be accessed
in real mode using the built-in LIM 4.0 EMS hardware. EMS is not supported
in Intel486 SL CPU. Instead, a mechanism called a memory controller window
is provided to allow access to memory above 1 Mbyte in real mode. The opera­
tion of the memory controller window is similar to EMS mapping. Any 64-
Kbyte segment in the first 1 Mbyte of address space can be selected as the
window to map into memory above 1 Mbyte.

The on-board memory-sliding window is also available in protected mode.
The access mechanism to the on-board memory~sliding window is identical to
the EMS mechanism. When this window is enabled, any 64-Kbyte memory
block above 1 Mbyte can be accessed through one of the sixteen 64-Kbyte win­
dows located below 1 Mbyte, according to the base address and window field in
the MCWINDOW register (70EH, OMCU). The base address field (bits [0-9])
contains the upper address bits for the 64-Kbyte memory block above 1 Mbyte
that is remapped to one of the sixteen 64 Kbyte windows. Table 11.10 shows
the encoding of this base address field. The window field (bits [11-14]) specifies
which of the sixteen 64-Kbyte memory space windows is to be used to access
the 64 Kbytes of memory above 1 Mbyte.

Highest priority is given to the onboard SMRAM area. If SMRAM is enabled,
then the Intel486 SL CPU automatically directs CPU accesses within the
address range of the SMRAM window (30000H-3FFFFH) to the SMRAM (on­
board or off-board). When SMRAM is enabled by an SMI or by setting bit 3 of
the OMDCR register, any DMA or external bus master accesses to the 30000H-
3FFFFH memory address range are automatically directed to the correct on­
board system memory locations.

Memory mapping priority

The memory controller does not provide arbitration for memory allocation. In
other words, a segment assigned for memory roll-over can be reassigned for
BIOS shadowing. Therefore, it is possible to create a conflict in memory map­
ping if the memory controller is programmed incorrectly. The memory controller
does provide a memory mapping priority scheme, however, which assigns prior­
ities to the roll-over, shadowing, and memory mapped 1/0 features. Table 11.11
shows the priorities of these features, with 1 being the highest priority.

Highest priority is given to the on-board SMRAM area. If SMRAM is
enabled, the Intel486 SL CPU automatically directs CPU accesses within the
address range of the SMRAM window (30000H-3FFFFH) to the SMRAM (on-

TABLE 11.10 Encoding of the Base Address Field of the MCWINDOW Register

BitO Bit 1 Bit2 Bit3 Bit4 Bit5 Bit 6 Bit 7 Bit 8 Bit 9A16

A16 A17 A18 A19 A20 A21 A22 A23 A24 A25

170 Chapter Eleven

TABLE 11.11 Priorities Assigned
to Memory Options

Priority

1 (highest)
2
3
4

Memory option

On-board SMRAM area
Memory mapped 1/0
Shadowing
Roll-over

board or off-board). When SMRAM is enabled by an SMI or by setting bit 3 of
the OMDCR register, any DMA or external bus master accesses to the 30000H-
3FFFFH memory address range are automatically directed to the correct on­
board system memory locations.

Memory mapped 1/0 has the next highest priority. When a section of mem­
ory is enabled as memory mapped 110, the internal bus controller always sends
accesses to that memory to the external bus controller. Such accesses are then
redirected to the PI bus or the ISA bus. Roll-over has the next highest priority,
and shadowing has the lowest priority. Conflicts arising from incorrect pro­
gramming of memory control hardware are resolved based on this priority
scheme. These priorities apply to memory cycles that qualify for more than one
simultaneous mapping. They do not apply to accessing the same memory block
on different memory cycles. For example, if a memory block is used for shad­
owing and is also programmed for memory roll-over, the memory block will still
be accessible separately through either type of cycle.

DRAM selection

Some considerations must be given in selecting 3.3-volt DRAMs to match the
CPU requirements. The voltage limits for the 3.3-volt Vee in the Intel486 SL
CPU is ±0.3 volts. Most DRAMs will support voltage limits between ±5 and ±1
percent. Care must be taken to ensure that the DRAM interface operates
within the operating voltage limits. Since 3.3-volt DRAM is still relatively new,
the availability of 3.3-volt DRAM is still limited. Some of the 3.3-volt DRAMs
are actually 5-volt DRAMs recharacterized to run at 3.3 volts. These DRAMs
will only work at a lower speed. Running at a lower DRAM speed will cause a
drop in system performance. For DRAMs that are recharacterized to work at
3.3 volts, the noise immunity guardbands will be reduced. Figure 11.4 shows
the difference in power consumption between 3.3- and 5-volt DRAMs.

To assist you in DRAM selection, an application note written by Scott Schae­
fer of Micron Technology, an expert in memory devices, is included at the end
of the chapter.

Cache Controller

Like the Intel486 DX CPU, the Intel486 SL CPU supports an 8-Kbyte internal
cache. A second-level cache is not supported. The internal cache is enabled by
setting bit 7 of the OMLCR register (301H, IBU) and writing a zero to the CD
and NW bits of the CRO register.

OPERATING
CURRENT

(mA)

BBU
CURRENT

(uA)

STANDBY
CURRENT

(uA)

lntel486 SL CPU Memory Interfacing 171

Figure 11.4 DRAM power consumption comparison. (Courtesy of Micron
Technology, Inc.)

Cacheability

Except for the cache write-protect feature provided by the BIOS shadowing
registers, cacheability control in the Intel486 SL CPU is quite different from
that in the Intel386 SL CPU. With the Intel486 SL CPU, cacheability is con­
trolled by the OMS[A:F]CR, OMDCR, OMLCR, C[A:D]CR, MCROLL, GAACR,
GABCR, ISAWINDOW, and MIO[A:D]CR registers. After power up, the entire
Intel486 SL CPU's physical address space is noncacheable. The ten 64-Kbyte
memory segments in the address space between 0 and 640 Kbytes can be made
noncacheable by disabling the corresponding memory segment through pro­
gramming of the OMDCR. Memory between 640 Kbytes and 1 Mbyte can be
disabled by programming the OMS[A:F]CR registers.

Four memory mapped I/O configuration registers (MIO[A:D]CR) are pro­
vided to maintain cache coherency with memory mapped I/O devices. Each reg­
ister can define a 4-, 8-, 16-, or 32-Kbyte block of a memory segment within the
16-Mbyte ISA-address space as noncacheable.

Cache flushing

Cache is flushed as the result of any of the following actions:

• Toggling the cache enable bit in the OMLCR register

• Setting both the CD and NW bits in the CRO register

• Executing either an INVD or a WBINVD instruction

172 Chapter Eleven

DRAM Considerations for PC Memory Design*

Introduction. The demand for DRAM memory in personal computers (PCs)
has been mainly for desktop personal computers. When designing main mem­
ory, PC designers have primarily focused on three requirements: availability,
cost, and speed.

The new and growing field of laptop and notebook personal computers has
introduced seven additional issues:

• Parity

• Lower power (extended refresh)

• Self-refresh

• Package size

• Operating current

• 3.3V operating voltage

• IC DRAM cards (88-pin)

The first three issues (availability, cost, and speed) are well understood. To
help memory designers choose the best solution for their designs, either a
portable or a desktop system, this paper discusses these additional issues.

Offerings. To design main memory, four basic offerings of DRAM are available
or will be available in the near future:

1. 256Kx 4

2. 1Megx4

3. 512Kx 8

4. 256Kx 16

(plus 256K x 1 for parity)

(plus 1Megx1 for parity)

(512K x 9 for parity)

(256K x 18 for parity)

The first two offerings are referred to as "standard DRAM," and the second
two are referred to as "wide DRAM." Generally, standard DRAMs are more
readily available and have more sources. Wide DRAM development is
usually a generation behind standard DRAM and is not expected to catch
up until third-generation 16-Meg DRAMs and first-generation 64 Meg
DRAMs.

Parity (or no parity). There is a growing trend to build laptop, notebook, and
low-end desktop PCs without parity. Within a few years, all parity-based sys­
tems may switch to either nonparity-based systems (as in most PCs) or to error
detection and correction (EDAC) based systems (high-end PCs).

* Contributed by Scott Schaefer, Marketing Applications Engineer for Micron Technology.

lntel486 SL CPU Memory Interfacing 173

Some of the reasons for this trend away from parity are listed below:

1. Parity does not significantly improve reliability.

2. DRAMs from a quality manufacturer now have very low soft error rates
(SERs).

3. Parity increases memory costs 10 to 15 percent.

4. Some chipsets allow turning off the parity bit.

5. Parity requires extra board space as well as previous generation devices or
less available parity chips.

6. Some software does not use parity.

The most important of these factors is the memory system's reliability. In the
early days of semiconductor DRAM memories, the high SER of 4K and 16K
DRAMs, coupled with the high cost of implementing EDAC (8-bit buses), made
implementing parity critical. DRAM manufacturers, however, have signifi­
cantly improved SER during the last five generations (Fig. 11.6). For example,
the SER on a 16K DRAM was approximately 1 to 5 FITs per bit, whereas the
SER on a 4 Meg DRAM is closer to 0.0002 to 0.0004 FITs per bit-a 10,000x
improvement! (FIT is a Failure in Time where time is 1 billion device hours.)

Taking these industry SER averages and applying them to a 2MB, 16-bit­
wide memory system, meaningful benchmarks for PCs can be obtained. Most
systems measure errors in mean time between failures (MTBF). Applying the
SER numbers from the previous figure, the improvement in MTBF for a typi­
cal 2MB, 16-bit-wide memory system can be demonstrated (Fig. 11. 7).

PARITY

Figure 11.5 Trend away from parity.

174 Chapter Eleven

FITS
PER
BIT

16K

HISTORICAL INDUSTRY SER IN DRAMS

64K 256K 1 MEG 4MEG 16MEG

DRAM DENSITY

Figure 11.6 Historical DRAM SER.

Typical MTBF Due to Solt Errors

10

100
System
Hours

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000
16K 64K 256K 1 MEG 4 MEG 16 MEG

DRAM DENSITY

Figure 11.7 MTBF for 2-Mbyte memory system.

lntel486 SL CPU Memory Interfacing 175

It is obvious why parity was instituted in the 16K DRAM days. A memory
system made up from 16K DRAMs would experience a SER hit every 60 to 70
hours! Because of this, it has been standard operating procedure to design in
parity. But changes are ahead. System designers are starting to ask, "Why?"
Using today's high-quality 4 Meg DRAMs rather than yesterday's 16K DRAMs
extends the MTBF from around 60 hours to an MTBF of 30 to 35 years on a
2MB by 16-bit-wide memory system.

Another way to look at this same data is to calculate the number of SER hits
a user would see after 10 years of continuous use (Fig. 11.8). As expected, the
SER is negligible after 10 years of continuous use when using today's high­
quality DRAMs.

It is important to note that the SER and MTBF must be carefully calculated
for any given system and its application. The DRAM's SER is dependent on Vee
(power supply voltage), operating speed (cycle rate), and memory configura­
tion. For example, taking the previous 2MB example and doubling it to 4MB,
the SER will either increase slightly or double. If the width of the memory sys­
tem is increased to 32 bits, the SER would double since all DRAM bits are
active. If, on the other hand, the memory is interleaved and the bus remains 16
bits wide, the SER increases only slightly. This is because the bank not being
accessed is in standby mode and is much less susceptible to SER hits (the
faster the cycle rate, the more susceptible a DRAM is to SER).

Although the need for parity would appear to be greater for wider buses, the
additional cost to implement EDAC, rather than parity, decreases substan­
tially as the bus width increases. In fact, the DRAM memory cost is the same
for a 64-bit-wide bus (Table 11.12). Besides detecting two errors for a given
word, EDAC will also correct any single-bit error.

Number
of

Errors

Soft Errors Over 10 Years of Continuous Use

16K 64K 256K 1 MEG 4 MEG 16 MEG

Figure 11.8 2-Mbyte memory system SER.

176 Chapter Eleven

TABLE 11.12 Parity and EDAC Overhead

Extra bits required Bus width increase

Bus size (bits) Parity EDAC Parity EDAC

8
16
32
64

1 5
2 6
4 8
8 8

12.5%
12.5%
12.5%
12.5%

62.5%
37.5%
25%
12.5%

Most applications with buses no more than 32 bits wide do not require par­
ity, whereas applications using bus widths of 64 bits or more, and some 32-bit,
generally require some kind of bit-checking for errors. The choice is usually
EDAC rather than parity.

Table 11.13 summarizes which DRAM would be the optimum choice, consid­
ering price, performance, and space. It takes into account the typical PC which
ships with a minimum of 4MB of memory. A 256K x 16 or 512K x 8 DRAM
could be a better alternative than a 1 Meg x 4 DRAM, should the memory sys­
tem's depth be equal to or less than 512K deep. This is typically the case with
wider buses. The 64-bit bus choice of 512K x 8 DRAMs would change to 1 Meg
x 4 should the total memory size increase from 4MB to SMB.

Low power, extended refresh. A low-power, extended refresh DRAM (LP­
DRAM) has a reduced CMOS standby current limit (typically from 1 mA to 200
µA) and an Bx longer refresh interval (from 15 µs per row to 125 µs per row).
The extended refresh offers a Battery Backup (BBU) mode, which is a low cur­
rent, data retention cycle. Each of the four DRAM options in the technical note
have low power, extended refresh versions available.

On a per-bit basis, the 1 Meg x 4 generally offers the best standby and
refresh power savings compared to the other three DRAM organizations. The
DRAM standby current is important in battery-operated systems since
DRAMs usually draw a large percentage (50 to 70 percent) of the total system
current when the system is in sleep or suspend mode.

Self-refresh. The self-refresh feature is built into some DRAMs and usually
indicated by an LL or S suffix. This feature performs a BBU mode refresh, with
the exception that no external clocking is required; that is, the DRAM will
refresh itself via its own internal refresh clock (Fig. 11.9).

TABLE 11.13 Selection for Error Checking

Error checking 8

Non-parity 1Mx4
Parity 512Kx9
EDAC na

Bus size (bits)

16 32

1Mx4 1Mx4
1Mx4 1Mx4
na 1Mx4

64

512 Kx 8
512 Kx 8
512 Kx 8

s

RAS VIH -
VIL

CAS V1H
VIL

DO V10H--:
V10L-

WE V1H--;
VIL -

NOTES:

1RP tRAss (not RAS) I NOTE 1 I
I I 11 • ... - , '•I

'cHD

twRP

r
1. Once 1RASSmin is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once 1RPS is satisfied, a complete burst refresh of all rows should be executed, although providing

distributed refreshes at the specified refresh rate is acceptable, provided CBR refreshes are utilized.

Figure 11.9 Self-refresh operation.

vv-

178 Chapter Eleven

Control of self-refresh is defined by JEDEC and de facto standard timing
specifications: tRA.SS = 100 µs, tRPS"" 200 ns and tCHS ""-70 ns. Some DRAMs
include tCHD, which is 600 µs.

Package size. Conserving board space is always an important design consider­
ation, especially for laptop and notebook computers. Functionally, DRAMs
require more board space than most other devices. The size between the four
options in small outline J-lead package (SOJ) vary greatly. The 256K x 4 DRAM
uses the same package as the 1 Meg x 4 DRAM; however, four times as many
devices are required. The 512K x 8 DRAM requires approximately 50 percent
more area than a 1 Meg x 4 DRAM. The 256K x 16 requires approximately 110
percent more area than a 1 Meg x 4 DRAM and 44 percent more area than a
512K x 8. Actual sized outlines are shown in Fig. 11.10 for comparison.

These are also available in a thin small outline gull-lead package (TSOP). The
length and width of a TSOP is the same as the corresponding SOJ package
(same board area) except the x16 width TSOP is reduced because of a smaller
lead pitch (50 mil to 32 mil). The TSOP's key attraction is that it is one-third the
thickness of the SOJ (4 7 mils compared to 142 mils), as illustrated in Fig. 11.11.

Laptop, notebooks and other compact designs which have height or layout
restrictions can usually justify the current cost premium required to use
TSOPs. However, any price premium associated with TSOPs will be short lived
and is expected to disappear by mid 1993. Additionally, in TSOP, the x16 does
not impose a board space penalty compared to a x8 TSOP. Table 11.14 lists the
dimensions (length and width) for the various packages.

Operating current. Operating current is usually of less importance in system
design. When a PC is in the active mode, the DRAM's portion of current draw
is minimal compared to the total system current consumption, typically from 4
to 6 percent. Wider DRAMs generally offer lower operating currents (10 to 20
percent) in most applications since fewer devices are active for a given access,
but generally not enough to outweigh the cost increase, board space increase,
and performance reduction they impose.

3.3 volts. Laptop and notebook personal computers and BBU systems are also
starting to employ 3.3V DRAMs. A low-voltage (3.3V) DRAM consumes
approximately half the power of a 5V version. The choice of whether to use 5V
or 3.3V DRAMs is dictated by the voltage platform selected, which is deter-

Figure 11.10 Package-size comparisons.

SOJ

~ TSOP
~

Figure 11.11 Thickness
comparison.

TABLE 11.14

Device type

1Megx4
512 Kx 8
256Kx16

lntel486 SL CPU Memory Interfacing 179

Package Dimensions (in mils)

SOJ TSOP
Width Length Width Length

340 679 367 677
445 729 467 727
445 1029 467 727

mined by the CPU and chipset specifications. Once the voltage range is
selected, the considerations discussed in this technical note apply for either 5V
or 3.3V DRAMs.

IC DRAM card. The 88-pin IC DRAM card is JEDEC, JEIDA, and PCMCIA
standard. Other than multichip modules, it is the most efficient form of pack­
aging DRAM memory. With 4 Meg DRAMs, up to 8MB of memory in either x16,
x18, x32, x36 or x40 widths is obtainable in a small form factor: 3.37 x 2.13 x
0.13 inches.

The primary demand for these cards comes from laptop and notebook sys­
tems. But when the price ofTSOPs matches those of the SOJ, the prudent PC
designer will convert from modules and mounting to the IC DRAM card for
both base and upgrade memory. Many benefits will be realized, such as
reduced manufacturing costs, "sealed" systems, secondary upgrade markets
and improved delivery response times.

Future features. Many new features will be available in the near future. Some
of the more important features may be EDO (extended data out) and SYNC
(synchronous) DRAMs. The EDO DRAM is a FAST-PAGE DRAM with the
exception that the data Inputs/Outputs (DQ) are not controlled by CAS but
rather by OE exclusively.

The key advantage with EDO is a faster PAGE-MODE READ cycle-up to
50 percent faster. Since CAS does not three-state the DQs, tCAS can be made a
minimum and CAS precharge can occur while the output data is being latched.
EDO is considered as a possible bridge for performance increase until SYNC
DRAMs are a reality.

The SYNC DRAM is a radical change from the standard DRAM. Rather than
being dependent on time delays, the SYNC DRAM's inputs will all be clocked
in on the positive edge of the system clock. The SYNC DRAM is expected to

Figure 11.12 IC DRAM card.

180 Chapter Eleven

v .. ©§ 45 Vss
DQO
DQl

46 0018

DQ2

11

47 0019

DQ3
.. DQ20

DQ4
49 0021

oas 50 0022

DQB
51 0023

5.0VVcc • 52 0024
53 0025 007 10
54 DQ26

3.3VVcc 11 ss OE
008 12 08

AD 13
56 Vos

A2 14

H
57 At

5.0VVcc 15
56 A3

A4 16
.. A5

3.3VVCC 17
60 A7

A6 16
61 A9

A6 19
62 A11

A10 20 8g 63 v ..
64 A13

A12 21

II
6S RASl

RASO 22
CASO 23

66 CAli2

CAS1 24
67 Yss
68 CAS3

3.3VVoc 25 .. ilAS3
RAS2 26

10 we
5.0VVcc 'ZT

PD2 28
71 PD1

PD4 29 80 72 P03

PD6 30 o§ 73 v ..
0006 31

74 PD5

0037 32

81
75 P07

DQ17 33
76 PDS

009 34
77 0038

3.3VVoo 35

11

76 0039

0010 36
79 DQ35

5.0VVcc 37
90 0027

DQ11 38 81 0028

0012 39
62 0029

0013 40 83 0030

0014 41
94 0031 Figure 11.13 33-pin IC DRAM Oo 85 0032

DQ15 42

8§ .. 0033 card connector . 0016 43
87 0034 v .. 44
88 v ..

provide the speed performance required for 66-, 75-, and 100-MHz systems.
Future SYNC DRAM will achieve speeds beyond 100 MHz. The SYNC DRAM
will most likely have internal dual banks and burst capabilities for very high
speed data rates, as fast as 15 to 10 ns per access.

Summary. The 1 Meg x 4 DRAM is today's best choice for main memory in lap­
top, notebook and desktop personal computers. Table 11.15 summarizes and
compares the issues involved in selecting DRAMs for PC memories.

TABLE 11.15 2-Meg, 16-Bit-Wide Memory

Parameters 1Megx4 256Kx4 512Kx8 256Kx 16 Units

Number of devices required 4 16 4 4 Devices

Availability (market volume) 20 160 2 1 Relative to

Base price 1.0 1.0 1.151 1.22 1Megx4
Costs Low-power adder 5 5 5 5 %ofbase

TSOPadder 10 40 10 10 % of base

Minimum speed (typical) 70 70 80 80 ns@5V
BBUICC3 Maximum spec 1.2 4.8 1.6 1.6 mA@5V

Typical 0.6 1.3 1.2 1.2 mA@5V

Minimum board space used 6 24 9 13 cm2
Active ICC3 Maximum spec 340 260 200 140 mA@5V

Typical 200 160 170 120 mA@5V

NOTES: 1. A parity version (x9) would be 1.3 times a 1 Meg x 4.
2. A parity version (x18) would be 1.35 times a 1 Meg x 4.
3. Parity versions (x9/x18) typically have higher currents, approximately 10 percent more.

RAS
V1H
VIL

CAS V1H
VIL

ADDA VIH
VIL 11/J!. ROW

Egg V10H - OPEN I ~ ~
v10L • Ul\11\ • Ul\11'\ n . U/'\I,.. ,,..

non- EOO VIOH _ ----------·-~)('j(~-yi\"Qi5""1
DQ VIOL OPEN }-----___.:~\.)\)~

Figure 11.14 EDO versus non-EDO (fast-page mode) DRAMs.

...
~

182 Chapter Eleven

Summary

Wider DRAMs are best suited to systems which require shallow and wide
arrays. The 256K x 16 is a good choice for high-end video graphics and printer
buffers requiring up to 256K deep and 16 or more bits wide. The 512K x 8 is
usually a good choice for 8-bit systems requiring more than 256KB but less
than 1 Meg of memory, such as high-end disk drives.

Most PC systems do not require the burden of parity when using 1 or 4 Meg
DRAMs. High-end systems should use EDAC for the best reliability.

As you can see, the DRAM controller inside the Intel486 SL is highly versa­
tile. However, you must not get carried away by the flexibility of the DRAM
controller. You must assume the responsibility of programming the DRAM inter­
face correctly. If in doubt, you should consult the DRAM manufacturer's
data sheet.

References
lntel486 DX Programmer's Reference Manual, Intel Corporation.
Yuen, D., Intel486 SL Microprocessor Software Writers Guide, Intel Corporation, 1992.

Chapter

12
Pl-Bus Interfacing

The PI bus in the SL CPU is an inexpensive yet high-performance system
expansion bus. It is similar to the ISA bus. In fact, the PI bus and the ISA bus
share the same address and data signals, making it easy to connect ISA-bus
peripherals to the PI bus. The main benefit of the PI bus is that it runs off the
CPU clock signal (CPUCLK), so it is much faster than the ISA bus (which is
limited to 8 MHz in an SL CPU-based system). The PI bus also eliminates the
decoding and synchronization delays associated with the ISA bus. Since the PI
bus is a normally not-ready bus, fully interlocking capability (i.e., the cycle is
not terminated until the device responds) is provided automatically.

Two candidates for connection to the PI bus are a flash disk and a VGA
graphics frame buffer, because they can benefit from the PI bus's faster clock
speed. This chapter describes the PI-bus architecture and shows how a flash
disk and VGA memory can be interfaced with the PI bus.

Pl-Bus Architecture

The PI bus consists of three groups of signals: address, data, and control. Fig­
ure 12.l shows the connection of these signal lines to a PI-bus device. The PI
bus and the ISA bus share the address and data signals and one of the control
signals. Other control signals are specific to the PI bus.

The address signals are divided into two groups: system address and local
address. The system address signals (SA[0 .. 19]) provide 20-bit addressing on
the PI bus. The local address signals (LA[l 7 .. 23]) provide 24-bit addressing
on the PI bus. Both groups of address signals are output during PI-bus cycles
and float during external bus master cycles.

The system data signals (SD[0 .. 15]) provide a 16-bit data path between the
CPU and the peripherals connected to the PI bus. The PI bus and ISA bus
share the system bus high-enable (SBHE#) control signal. This active low Sig­
nal indicates data transfer on the upper byte of the data bus (SD[8:15]). Table
12.1 lists the control signals that are specific to the PI bus.

183

184 Chapter Twelve

..... SA[0:19]

LA[17:23) -- ...
SD[15:0] _..

~

SBHE#

PST ART# --
SL

PCMD#

MICROPROCESSOR
Pl-BUS DEVICE

PROV# _..

PMIO# --
PW/R#

FLSHDCS#[CMUX14) _..

Figure 12.1 PI-bus interface to peripheral devices.

As previously mentioned, the PI bus runs off the CPU clock (CPUCLK),
which can be slowed down by software or the turbo pin. Thus, the interface to
the PI bus has to be synchronous.

Comparison of the Pl bus and the ISA bus

The PI bus and the ISA bus are similar in that they have the same address and
data signals. Figure 12.2 shows the typical applications that can be ported

TABLE 12.1 Pl-Bus Control Signals

Signal Description

PSTART# PI-bus START is an output signal which indicates the start of a Pl-bus cycle. The address bus
(SA[0:19] and LA[l 7:23]), command signals (PM/IO# and PW/R#), and chip selects (VGACS#
and FLSHDCS#) are valid.

PCMD# PI-bus ComManD is an output signal which indicates that valid data is on the data bus
(SD[0:15]) during a write cycle or that the SL CPU is ready for data during a read. This
signal must be used as output enable during PI-bus read cycles. During PI-bus write cycles,
the rising edge of this signal can be used to latch data in external devices.

PRDY# PI-bus ReaDY is an input to the SL processor to terminate a PI-bus cycle. The PI bus is
normally not ready and a bus cycle will continue until PRDY# is asserted low. PRDY# must
be asserted until the rising edge of PCMD# to guarantee recognition and cycle termination.
If PRDY# activation is not recognized within a programmed time interval, a time-out
counter will terminate the cycle.

PM/IO# PI-bus Memory or I/O is an output to indicate the type of cycle currently executing on the PI
bus. A memory cycle is indicated by PM/IO# high, while an I/O cycle is indicated by PM/IO#
low.

PW/R# PI-bus Write or Read is an output which indicates the type of access currently executing on
the PI bus. A high indicates a write access and a low indicates a read access.

Pl-Bus Interfacing 185

r---- FLASH
DISK

SL
MICROPROCESSOR

VGA 1-- SUBSYSTEM

INTERRUPT
CONTROLLER

MEMORY ...____., MAPPED
1/0 DEVICES

Figure 12.2 Typical applications of PI bus.

from ISA bus to PI bus. The major difference between the two buses is in the
way bus cycles are decoded.

The PI bus uses a simpler cycle-decoding mechanism than the ISA bus,
which requires only two signals, PM/IO# and PW/R#. These signals are equiv­
alent to the SMEMW, MEMW, SMEMR, MEMR, IOR, and IOW signals on the
ISA bus. The PSTART# signal of the PI bus is similar to the BALE signal on
the ISA bus, which functions as an address latch. Unlike BALE, PSTART#
occurs in every PI-bus cycle. Table 12.2 summarizes the differences between
the PI-bus and ISA-bus cycle control signals and commands.

Another difference between the PI bus and the ISA bus is that the PI bus is
a normally not-ready bus. A PI-bus cycle is not terminated until the PRDY#
signal is asserted by the device, whereas, with an ISA-bus cycle, the IOCHRDY
normally indicates ready. The shortest Pl-bus cycle requires at least one wait
state, which completes in three CPU clocks.

Pl-bus address space

Because the PI bus shares the same memory and address bus with the ISA
bus, the PI bus can access up to 16 Mbytes of memory address space and 64
Kbytes of 1/0 address space. In addition, a unique 1/0 address space from
900H-9FFH is also available for Pl-bus devices. Three different mapping
mechanisms control the PI-bus address space: flash disk interface, graphics
frame buffer, and noncacheable configuration registers. Despite their names,

TABLE 12.2 Comparison of Pl-Bus and ISA-Bus Cycle Control Signals

Signal type

Cycle type
Cycle type
Address latch
Data enable
Wait state generation

PI-bus

PM/IO#
PW/R#
PSTART#
PCMD#
PRDY#

ISA-bus

SMEMW, MEMW, SMEMR, MEMR,
IOW,IOR

BALE
Commands
IOCHRDY

186 Chapter Twelve

the flash disk interface and graphics frame buffer features can also be used by
other Pl-bus devices.

With the flash disk interface and the noncacheable configuration registers,
Pl-bus devices can access the entire 16 Mbytes of memory address space. Using
the graphics frame buffer, a Pl-bus VGA controller can use the memory
address space between OAOOOOH and OBFFFFH for the primary graphics
frame buffer and any memory address space above 1 Mbyte for the secondary
graphics frame buffer.

Pl-bus operation

The PI bus supports 16-bit read, 16-bit write, 8-bit read, 8-bit write, and exter­
nal bus master cycles. Read and write cycles are modified on accesses to odd
addresses. The PI-bus signals are internally referenced to the CPUCLK. Since
CPUCLK can be slowed down to reduce power consumption, PI-bus timing is
asynchronous.

As shown in Fig. 12.3, a Pl-bus cycle is initiated by asserting the PM/IO#,
PW/R#, VGACS# (for VGA access), and FLSHCS# (for flash disk) signals.
These signals remain active until the access is complete. The PSTART# is then
asserted indicating that the address on the bus is valid and the states of
the PM/IO# and PW/R# signals are valid. The bus owner then deasserts the
PSTART# signal and asserts the PCMD# signal. The PCMD# signal remains
active until PRDY# signal is sampled low (active).

For a write cycle, data driven onto the data bus by the bus owner remains
valid until the PCMD# signal is inactive (rising edge of PCMD#). For a read
cycle, the bus owner latches data from the data bus when PRDY# signal is
active (low) and deasserts the PCMD# signal.

PM/10#, PW/R# ::x
FLSHCS#, VGACS# -------x~--------­
SA[1:16], LA[23:17] ---.... ,,,.------- ,,,.--------

SAO, SBHE# x x ______ _
PSTART# ----.... ,"' __ /

PCMD# ---------._ __

SD[15:0]
____________ .,_ __ _,

SD[15:0] ______ >Gii@lllltK~--WR-l_TE_D_AT_A __)E
Figure 12.3 Pl-bus cycle operations.

Pl-Bus Interfacing 187

16-bit access to an 8-bit device

The SL CPU can execute either 8-bit or 16-bit PI-bus cycles. When accessing
an 8-bit device, hardware in the CPU automatically swaps high bytes and low
bytes. Table 12.3 summarizes this byte-swapping mechanism. In this table, b
indicates a byte transfer and w indicates a word transfer. l, m, h, and x indicate
low order, middle order, high order, and don't care, respectively.

Pl-bus cycle termination

A Pl-bus cycle is terminated either by asserting the PRDY# signal or by the
expiration of the Pl-bus watchdog timer. The watchdog timer runs off the CPU­
CLK for bus cycles initiated by the CPU and off the SYSCLK for external bus
master cycles. When the timer expires, it causes the current Pl-bus cycle toter­
minate automatically, optionally generating an NMI.

The timer count for time-out is dependent on the number of wait states. The
minimum number of timer counts required can be calculated using the for­
mula below:

minimum number of CPU clocks to complete the memory or 1/0 access
+ the number of wait states added

The timer count for the watchdog timer is stored in the EBC2CR register
(700H, EBU) in the Intel386 SL processor. Bits [0-13] of the EBC2CR register
are used in setting up the timer count for the watchdog timer. Thus, the maxi­
mum time-out period is 213• For the lntel486 SL processor, the timer count is
stored in the IBCTOUT register (708H, IBU). Bits [5-13] of the IBCTOUT reg­
ister are used for programming the timer count. When the watchdog timer in
the Intel486 SL CPU expires, it terminates the ISA-bus as well as Pl-bus cycles.

The NMI option is enabled by setting the watchdog timer NMI enable bit (bit
15) of the EBC2CR register or the IBCTOUT register. A "l" in the watchdog
timer NMI flag bit (bit 14) of the EBC2CR then causes an NMI to be generated
upon expiration of the watchdog timer.

Bus master and OMA operation

A bus master cycle is initiated when a bus master addresses a section of
memory-mapped 1/0 space that has been assigned to the PI bus. When a

TABLE 12.3 Byte-Swapping Mechanism When Accessing an 8-Bit Device

Byte length of logical operand

1 2 4

Physical byte address
(low order bits) xx 00 01 10 11 00 01 10 11

1 b w lb w hb lw hb hw mw
Transfer cycle 2 hb lb hw lb lb hb

3 mw lb

b-byte, w-word, lb-lower byte, hb-higher byte, lw-lower word, hw-higher word, mw-middle word

188 Chapter Twelve

bus master has control of the PI bus, all cycle timing is based on the
SYSCLK.

During a bus master cycle, the bus master drives the Pl-bus address and
data lines. The SL CPU translates the MEMR# and MEMW# signals on the
ISA bus into PW/R# and PM/IO# signals on the PI bus. The CPU drives
IOCHRDY on the ISA bus as an inversion of the PRDY# signal on the PI bus.

DMA transfers can occur between 8-bit 1/0 and Pl-bus memory, but DMA
transfers on the PI bus between on-board memory and VGA palette memory
are not supported.

Advanced decoding of ISA-bus cycles

As shown in Table 12.4, the PI bus can be used for advanced decoding of the
next ISA-bus cycle. On the falling edge of BALE, PM/IO# and PW/R# can be
sampled to determine the type ofISA-bus cycle that is about to occur. This infor­
mation can be used to generate early ISA-bus control signals. During HALT
and shutdown, the PM/IO# and PW/R# signals are held at logic-high level.

Pl-Bus Applications

As described earlier in this chapter, two applications of the PI-bus are as an
interface to a flash disk and as an interface to a VGA graphics frame buffer. To
support these applications, the SL CPU provides enabling pins for these func­
tions (FLSHCS# and VGACS#). These pins are not reserved for flash disk and
VGA applications. They can be used by other devices connected to the Pl-bus.

Flash disk interface

The SL CPU provides special hardware support to allow a flash disk device to
take advantage of the PI-bus. The flash disk interface is enabled by setting
the flash disk enable bit (bit 7) of the CPUPWRMODE register (22H). After the
flash disk interface is enabled, any 1/0 accesses in the range of900H-9FFH are
directed to Pl-bus. Therefore, 1/0 accesses to the Pl-bus will not interfere with
ISA-bus activity.

Memory on the flash disk is accessed through the 64-Kbyte ISA-sliding win­
dow. The ISA-sliding window is normally used for accessing extended memory
above 1 Mbyte on the ISA bus. Enabling the flash disk interface overrides the
ISA-sliding window. Memory accesses to memory address space ODOOOOH­
ODFFFFH are remapped according to the setting in the ISA-sliding window
register (OBOOH, EBU). FLASH DISK enable overrides ISA-sliding window.

TABLE 12.4 Decoding ISA-Bus Cycles with Pl-Bus Signals

Type of ISA-bus cycle PM/IO# PW/R#

Memory read 1 0
Memory write 1 1
110 read 0 0
110 write 0 1

Pl-Bus Interfacing 189

Figure 12.4 shows an example of how to design a simple flash disk interface
using the PI bus. The access to the flash disk is controlled by four signals:
FLSHCS#, PCMD#, PM/IO#, and PW/R#. The read and write commands to the
flash disk are generated by decoding the PCMD#, PM/IO#, and PW/R# signals.
(See PAL equation below.) The chip select to the flash disk (FLSHCS#) is con­
trolled by a pin on the SL CPU. To minimize glue logic, the Pl-bus watchdog
timer can be used to terminate a flash disk access cycle. Listing 12.1 shows the
steps for initializing and accessing the flash disk interface.

PAL equation for flash disk interface

PINS 1 2 3 4 5 6 7 8 9 10
/PCMD PWR NC NC NC NC NC NC GND
PINS 11 12 13 14 15 16 17 18 19 20
NC /WE /OE NC NC NC NC VCC

EQUATIONS
/WE /PCMD * PWR
/OE = PCMD * /PWR

Listing 12.1 Code for Initializing and Accessing a Flash Disk through the Pl Bus

·--.
FLASH.ASM: Example on how to enable FLASH disk interface

·---.
include superset.inc

;-------------- INITIALIZATION -----------------------------------­
code SEGMENT
ASSUME cs:code, ds:code, es:code, ss:code

ORG lOOH
EXTRN open_ebu:near, open_ibu:near, close_386sl :near
start:

setup PI-bus watchdog timer

cl i
call open_ibu
mov dx, EBC2CR
mov ax, OOOFH
out dx, ax
call close_386SL
setup Flash disk interface
call open_ebu
mov dx, ISAWINDOW
mov ax, 8040H
out dx, ax
call close_386SL

enable ISA window, set starting address
to 4 MB

enable Flash disk interface
call open_cpupwrmode

190 Chapter Twelve

PCMD#

PM/10#

PW/R#

__!_
_L
_L

I 1

12

13

SA[0 .. 14]

FLSHCS#

SA[1 .• 15]

PAL14L4

o..z ~
~ t!!-

20
Vee

GND

-::h!!O

+5V ..

Figure 12.4 Flash disk interface to the PI bus.

10

9

8

7

s
5

4

3

25

24

21

23

2

2S

1

28

20

AO

A1

A2

A3

A4

AS DO -11 SD[0 .. 7]
AS D1 12

A7 D2 1.a.
AB D3 _15_

A9 D4 1S_

A10 D5 _.1I_

A11 DS 18

A12 D7 19

A13

A14

Vee WE#

CS# OE# t----i
GND

~ -

AO

A1

A2

A3

A4
SD[B •• 15]

AS DB
AS 09
A7 010
AB 011
A9 012
A10 013
A11 014
A12 015
A13

A14

Vee WE#

OE# t--
GND

-J:.i6

Pl-Bus Interfacing 191

mov dx, CPUPWRMODE
in ax, dx
or ax. OOOBH set flash disk enable bit
out dx. ax

·call close_cpupwrmode
move memory from BODO segment to AOOOO segment
push ds

es
si
di
ex
ax, OBBOOH
ds, ax
ax, ODOOOH
es, ax
ax, ax
s i . ax
di . ax
ex. 07FFFH

push
push
push
push
mov
mov
mov
mov
xor
mov
mov
mov
rep
pop
pop
pop
pop
pop
sti
mov
int

movsw
ex
di
Si
es
ds

ax. 4COOH
21H

code ENDS
END

VGA graphics frame buffer

terminate program

end code segment
entry

In a graphics-intensive environment such as Microsoft Windows, the perfor­
mance of the graphics hardware is an important factor in the overall per­
formance of the system. To help improve VGA performance in an SL CPU­
based system, the SL CPU provides several hardware facilities to allow VGA
graphics hardware to access a VGA graphics frame buffer through the PI bus,
thus taking advantage of the PI bus's high data transfer rate.

The PI bus supports a 128-Kbyte (OAOOOOH-OBFFFFH) primary graphics
frame buffer and a very large secondary graphics frame buffer. The GAACR
register (311, IBU) assigns 16-Kbyte blocks of memory in the primary frame
buffer to the ISA bus or PI bus.

The GABCR register (312H, IBU) defines a secondary graphics frame buffer.
The size of the secondary graphics frame buffer is determined by the block size
field (bits [6-7]) and the large block bit (bit 10) of the GABCR register. Table 12.5
shows the encoding of these size bits for the secondary graphics frame buffer.

The starting address of the secondary graphics frame buffer is programmed
by the starting address field (bits [0-10]) in the GABCR register. The starting

192 Chapter Twelve

TABLE 12.5 Size of Secondary Graphics Frame
Buffer Set by Bits in Register GABCR

Bit 7

0
0
1
1
0
0
1
1

Bit 6

0
1
0
1
0
1
0
1

Bit 10

0
0
0
0
1
1
1
1

Buffer size

128 Kbytes
256Kbytes
512 Kbytes
1 Mbyte
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes

address must be aligned on a 1-, 2-, 4-, or 8-Mbyte boundary. When bit 8 of the
GABCR register is zero, all cycles to the secondary graphics frame buffer are
directed to the PI bus. If bit 15 of the GABCR register is zero, all I/O accesses
to the VGA controller can be directed to the PI bus. Listing 12.2 shows how to
enable PI-bus access to a VGA graphics frame buffer.

Listing 12.2 Code to Enable Access to VGA Graphics Frame Buffer through Pl Bus

PIBUS.ASM: Example on how to enable PI-bus access to the
graphics frame buffer

include superset.inc

·-------------- INITIALIZATION-----------------------------------­
code SEGMENT
ASSUME cs:code, ds:code, es:code, ss:code

ORG lOOH
EXTRN open_ebu:near, open_ibu:near, close_386sl :near
start:

setup PI-bus watchdog timer

cl i
ca 11 open_ebu enable watchdog timer to
mov dx, EBC2CR
mov ax, OOOFH terminate PI-bus cycle
out dx, ax
ca 11 close_386SL
setup graphics frame buffer address
ca 11 open_ibu
mov dx, GAACR
mov al , OFH direct accesses to ADDO segment to PI-bus
out dx, al

Pl-Bus Interfacing 193

call close_386SL
mov memory from BODO segment to AOOOO segment
push ds
push es
push si
push di
push ex
mov ax, OBBOOH
mov ds, ax
mov ax, OAOOOH
mov es, ax
xor ax, ax
mov s i . ax
mov di . ax
mov ex, 07FFFH
rep movsw
pop ex
pop di
pop si
pop es
pop ds
st i
mov ax, 4COOH terminate program
int 21H

code ENDS end code segment
END entry

Memory mapped 1/0

The PI bus can also be used to access memory mapped I/O devices. The SL CPU
provides four 16-bit noncacheable configuration registers (NC[D:G]CR) for use
by memory mapped I/O devices on the PI bus. The four registers are identical,
and each register is comprised of four programmable fields:

• Bits [0-9] store the starting address (address bits SA[15-24]) of the memory
mapped I/O device.

• Bits [10-11] control the size of the block, which can be either 4, 8, 16, or 32
Kbytes.

• Bit 12 specifies which bus the memory mapped I/O device is on and must be
zero for PI-bus device.

• Bit 13 enables the memory mapped I/O window when it is set to one.

Design Guidelines

The following design guidelines give additional information you should be
aware of when you design a system that uses the PI-bus interface.

• PI-bus ready (PRDY) signal is floating and should not be left floating.

194 Chapter TWelve

Summary

• During HALT and shutdown conditions, PM/IO# and PW/R# are held at a
high logic level.

• PI bus and ISA bus are mutually exclusive.

• On the falling edge of the BALE signal, the PM/IO# and PM/R# signals are
sampled to determine the type of ISA-bus cycle that is about to occur. These
signals are not included in the timing specification.

• If the device is not fast enough to respond with valid data before the valid
address, data latch is required for PI-bus interface.

As the CPU clock speed continues to double every year, the performance gap
between the CPU and the 110 devices has increased. Running slow 110 devices
with a high-performance CPU is a waste of CPU time. One way to improve the
speed of the 1/0 devices is to have a faster bus.

Over the years, many new bus standards were invented to boost the speed of
110 devices. But they all suffered the same problem-incompatibility with the
ISA bus. Given the large number oflSA-bus 1/0 devices in the market today, it
will be a big loss of investment for users to switch over to a new bus standard.

The PI bus runs at the same speed as the CPU clock, and it shares the same
address and data bus with the ISA bus. Therefore, Pl-bus peripherals can
operate in step with the CPU and coexist with ISA-bus peripherals without
any conflict. Existing ISA-bus devices can be easily modified to take advantage
of the high-performance of the PI bus. The discussion in this chapter serves as
the foundation for designing Pl-bus peripherals that take full advantage of the
CPU's performance.

As the CPU clock speed continues to double every year, the performance gap
between the CPU and the 110 devices has increased. Running slow 110 devices
with a high-performance CPU is a waste of CPU time. One way to improve the
speed of the 110 devices is to have a faster bus.

Over the years, many new bus standards were invented to boost the speed of
110 devices. But they all suffered the same problem-incompatibility with the
ISA bus. Given the large number oflSA-bus 110 devices in the market today, it
will be a big loss of investment for users to switch over to a new bus standard.

The PI bus runs at the same speed as the CPU clock, and it shares the same
address and data bus with the ISA bus. Therefore, PI-bus peripherals can
operate in step with the CPU and coexist with ISA-bus peripherals without
any conflict. Existing ISA-bus devices can be easily modified to take advantage
of the high performance of the PI bus. The discussion in this chapter serves as
the foundation for designing PI-bus peripherals that take full advantage of the
CPU's performance.

References
Ed Garcia, "Using the Intel386 SL Microprocessor PI-Bus with the CL-GD6410," Cirrus Logic,

Inc., 1991.

Chapter

13
Enhanced Parallel Port

With more people today choosing notebook computers as their primary com­
puter, users are demanding many of the same features found on the desk­
top computers for their notebooks. However, due to the compact nature of
notebook computers, their expansion capability is limited. One way to expand
a notebook computer is to connect expansion devices to the parallel port.

Virtually every notebook computer has a built-in parallel port. However, the
standard ISA parallel port is slow and cannot support multiple devices. The
new enhanced parallel port on the SL CPU provides a high-performance par­
allel port that can support multiple external devices.*

Applications of the Enhanced Parallel Port

The 82360SL parallel port interface can be programmed to support a standard
ISA unidirectional parallel port, a PS/2-compatible bidirectional parallel port,
or an enhanced parallel port. Because configuration of the interface is pro­
grammable, the interface can be changed automatically to accommodate sev­
eral devices connected to the same parallel port connector.

The interface to the enhanced parallel port (shown in Fig. 13.1) is extremely
simple. Only five control signals are required. Devices such as network cards,
hard drives, and tape backup drives are ideal candidates for enhanced parallel
port. Using the enhanced parallel port, the Xircom adapters achieved a tenfold
increase in performance.

The fact that the parallel port is external to the machine makes it very easy
for the users to hook up peripherals to the system. There are already many
devices available that connect to the parallel port. These devices often run
slowly only because the transfer rate of the standard ISA parallel port is slow.
The high-speed capability of the enhanced parallel port will make the parallel
port an even more attractive option for I/O expansion.

* This fast parallel port was implemented based on the enhanced parallel port specification
jointly developed by Dirk Gates and Ken Kiba of Xircon and Clark Buxton and Robert Kohtz of
Zenith Data Systems.

195

196 Chapter Thirteen

LPTSlROBE# WRITE#

LPTD[0:7]
.... AD[0:7]

LPTACK# INlR#

LPTBUSY WAIT#

LPTAFXD DSTRB#

SLCTIN ADSTRB#

82360SL 1/0 NETWORK
ADAPTER

Figure 13.1 Control signals for the 82360SL Enhanced Parallel
Port.

Comparison of the ISA Parallel Port
and the Enhanced Parallel Port

The enhanced parallel port interface improves performance over that of the
ISA parallel port by making data strobe generation automatic and by replacing
open collector drivers with faster CMOS drivers. Table 13.1 summarizes these
enhancements. While the standard ISA parallel port can transfer data at a
maximum rate of 150 Kbytes/sec, the enhanced parallel port as implemented
on the 82360SL provides data throughput of up to 2 Mbytes/s.

The enhanced parallel port employs the same 25-pin D-Type connector as
does the ISA parallel port. After power up, the parallel port on the 82360SL
functions like a standard ISA parallel port. When the enhanced parallel port is
enabled (as described later in this chapter), five of the control pins (pins 1, 10,
11, 14, and 17) are given alternative functions. Table 13.2 shows the differ­
ences in pinout between the standard ISA-compatible parallel port and the
enhanced parallel port.

TABLE 13.1 Differences Between ISA Parallel Port
and Enhanced Parallel Port

Features

Data strobe generation
Data strobe control
Data type
Driver type

ISA parallel port

By software
By software loop

8-bit
Open collector

Enhanced parallel port

Automatic
Not required

8-bit
CMOS

Enhanced Parallel Port 197

TABLE 13.2 Pinout of a 25-pin 'D'-Type Connector

Pin

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15,
16
17
18
19
20
21
22
23
24
25

ISA parallel port

LPTSTROBE#
LPTDO
LPTDl
LPTD2
LPTD3
LPTD4
LPTD5
LPTD6
LPTD7
LPTACK#
LPTBUSY
PE#
SLCT#
LPTAFDXT#
ERROR
!NIT
SLCTIN
GND
GND
GND
GND
GND
GND
GND
GND

Enhanced parallel port

WRITE#
LPTDO
LPTDl
LPTD2
LPTD3
LPTD4
LPTD5
LPTD6
LPTD7
INTR#
WAIT#
PE#
SLCT#
DSTRB#
ERROR
!NIT
ADSTRB#
GND
GND
GND
GND
GND
GND
GND
GND

Hardware Interface

The enhanced parallel port uses the same standard 25-pin D-shell connector as
is commonly used for ISA parallel port implementation. Figure 13.2 shows the
enhanced parallel port signal assignments for the parallel port connector. All
the interface logic is embedded inside the 82360SL. Thus, no external interface
circuitry is required to use the enhanced parallel port feature. A WAIT# line is
provided for asynchronous devices that may require more time to react to I/O

WRITE#
DSTRB# 14. 2. FPPADO

15. 3. FPPAD1
16. 4. FPPAD2

ADSTB# 17. 5. FPPAD3
18. 6. FPPAD4
19. 7. FPPAD5
20. 8. FPPAD6

GND 21. 9. FPPAD7
22. 10. INTR#
23. 11. WAIT# Figure 13.2 Pinout of the con-
24. 12. nector when Enhanced Parallel

Port is enabled.

198 Chapter Thirteen

requests. This line pulls IOCHRDY on the ISA-bus inactive, causing the sys­
tem to add wait states.

Signal descriptions

Table 13.3 describes signals on the enhanced parallel port. Care should be
taken not to assert the WAIT# pin for too long, as it will prevent memory on the
ISA bus from being refreshed. The INTR# pin is the same as the ACK# pin in
standard ISA parallel port. A device can use the INTR# signal to request ser­
vice from the host. IRQ5 or IRQ7 can be used to generate interrupt requests to
the host system. The signals that are not used by the enhanced parallel port
are still available when enhanced parallel port is enabled and can be used the
same way as in standard ISA mode.

Read and write cycles

During a write cycle, data is transferred from the 82360SL to the device
attached to the parallel port. During a read cycle, data or address is trans­
ferred from the device on the parallel port to the 82360SL. Figure 13.3 shows
the bus cycle for data read. Figure 13.4 shows the bus cycle for address read.

There are two kinds of write cycles: address write and data write. Figure
13.4 shows the bus cycle for data write. Figure 13.5 shows the bus cycle for
address write. An address write cycle is started by writing to the auto
address strobe port on the enhanced parallel port. When the address port on
the enhanced parallel port is written to, the ADSTRB# signal and WRITE#
signals are asserted and the address is driven onto LPTD address and
data lines. The cycle is terminated after four SYSCLKs (500 ns) ifthe WAIT#
signal is not asserted by the ext~rnal device. When the WAIT# signal is
asserted, the IOCHRDY signal is pulled down to extend the I/O cycle.

TABLE 13.3 Description of the Enhanced Parallel Port Signals

Symbol

WRITE#

DSTRB#

LPTD[0 .. 7]

ADSTRB#

WAIT#

INTR#

Name and function

WRITE is an output that signals the device to latch data present on the data bus.

Data STRoBe indicates that valid data is present and is used to latch data during write
cycles or enable buffers during read cycles.

Enhanced Parallel Port Address and Data bus outputs addresses or data during write cycles
and inputs addresses or data during read cycles.

Address STRoBe indicates a valid address is present and is used to latch data during write
cycles or to enable buffers during read cycles.

WAIT is an input which indicates that the device is not ready and pulls the IOCHRDY sig­
nal inactive on the ISA bus to lengthen 1/0 cycles.

INTerrupt Request is a maskable input (enabled by setting bit 4 of the output handshake
register X7 AH) to generate interrupt requests on the ISA bus.

...
:g

nAStrb
(R/nW)

(nSelectln)

EPP Data Read and Tennlnation

. . . '
::: ::: : '"---

Ac~,:~eq ~n~~f1Hd'.~~t4s'.~lt~

Data(8:1)

nDStrb
(HostBusy)
(nAutoFd)

nWrite
(HostClk)
(nStrobe)

lntr
(PtrClk)
(nAck)

nWalt
(PtrBusy)

(Busy)

~~~~~~~~-c:( Data Byte >~:~..;.,~~~~~~~~~ ...... ~~;..-~~~~~~ 

:: ::: :~ 

____ / : :\ :~ 

"?n8::~~11 ~1~1i"~~if1Hr1i~ 

,:;:~1 ~~;dfiJnHr~\uir&~ 

nReset \__} 

I TH I ~ostu;.,-.,,,,nse time I 
EPP Idle 

Phase 

67 ll5 

I TEL 

Tp I Minimum setup or 
pulse width 

fELI EPP ion,y,,::sponse I 
Figure 13.3 EPP data read cycle. 

5JI 

I TH 

EPP Data Read 
Phase 

63 66 

I TES 

I i:8 I Peripherel sholf I 
response time 

60 

I 

I 
68 69 

Too I TER I Yoo 
I I 

EPP Idle Tennlnatlon Compatlblllty 
Phase I Phase I Mode 

TL Peripheral long 
response time 

h I EPP short I 1 ·ES response time 

IToollnfinite response tlmel 

f ERi :i: r:,s;:h ... I 



N 
0 
0 

nAStrb 
(R/nW) 

(nSeleclln) 

AckDataReq 
(PError) 

Data(8:1) 

nDStrb 
(HostBusy) 
(nAutoFd) 

nWrite 
(HostClk) 
(nStrobe) 

lntr 
(PtrClk) 
(nAck) 

nWait 
(PtrBusy) 

(Busy) 

nDataAvail 
(nFault) 

XFlag 
(Select) 

nReset 

I TH I Host response time I 

EPP Address Read 

\ I 
E§???ss;~~::§~~?;&~~~~'~id}ilis&~~~~~~~ 
--------------..._-1:( Address Byte )\;.:_..;__ ________ _ 

~"™w~~~~;;;~-ii~~11 

k~~sh~~R~e~~e~:s~afil~s~~~~~ 

Minimum setup or 
pulse width 

ELI EPP lo~fm':sponse 

EPP Idle 
Phase 

Ts 

64 65 58 
I 

TEL 

Peripheral short 
response time 

EPP Address Read 
Phase 

~g ~6 sjl 
I I 

TES 

Peripheral long 
response time 

EPP short 
response time 

EPP Idle 
Phase 

Too !Infinite response time 

Figure 13.4 EPP address read cycle. 



"' ~ 

nAStrb 
(RlnW) 

(nSelectln) 

EPP Data Write and Idle 

Ac~~~~eq ~~r+v+~?i+i;B[t~~~~ 

Data(8:1) 

nDStrb 
(HostBusy) 
(nAutoFd) 

nWrite 
(HostClk) 
(nStrobe) 

lntr 
(PtrClk) 
(nAck) 

nWait 
(PlrBusy) 

(Busy) 

----------<( --- : Data Byte ) ; (., ____ _ 

\ I 

"?:::~~in ~~~~~~+He~'.s?a}u?;~~~~S~~N 
XFlag 

(Select) 

nReset 

I TH I Host ~sp;~se~e] 

62 

Too I 
E.PP Idle I 

Phase 

Tp Minimum setup or 
pulse width 

I E.PP long response 
EL time 

Figure 13.5 EPP data write cycle. 

TEL 

Ts 

58 

I TH 

E.PP Data Write 
Phase 

Peripheral short 
response time 

., "· ..... · ..... 
ndefined Status Bi~<·-..<:<~ 

63 60 61 

I TES I Too 

I 
E.PP Idle 

Phase 

Peripheral long 
response time 

E.PP short 
response time 

' ................ "· 

62 

I 
I E.PP Data Write 

Phase 

Too !Infinite response time 



II> 
0 
II> 

nAStrb 
~nW) 

(n lectln) 

AckDataReq 
(PError) 

Data(8:1) 

nDStrb 
(HostBusy) 
(nAutoFd) 

nWrite 
!HostClkj 
nStrobe 

lntr 
(PtrClk) 
(nAck) 

nWait 
(PlrBusy) 

(Busy) 

nDataAvail 
(nFault) 

XAag 
(Select) 

nReset 

I TH I Host response time I 

EPP Address Write 

: : I : : : : : : \ : : J 
-·: ...... :-.---. 
~ : : \ : : : ~Hef+t'.sHu?'.e~ 

n Ext; Recjuest Value 0100 000 > k Ad~ress Byt~ : *""----
\ : : l ... 

_J·· ·\ j··. \:: ::/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

~: ::1: :~®® 
~: ::/:\ __ 
~ -~--.- ----.- ~~;+;~~+ri~~ 

: Peipl1eral Wiii user EPP mode 

~'W : : : : ~~?~!•rte~ ,s!B~ur,e11~w 

~~v.· .. . . . . . . . . . . . . . . . . . . . . . . ~~- ....... . 
0 1. 4 5 6 1~ 56 58 59 60 61 

Too I l> I Tp I TL 

~ ~ 

ITH I Tp I Tp 

57 

TEL TH I TES I Too 

CoTa'!lllty I 
Minimum setup or 

pulse width 

LI Minimum setup or 
E pulse width 

Neaotiation 
1'hase 

Ts 

TL 

Peripheral short 
response time 

Too 

FitSt Idle 
Phase 

EPP Addtess Write 
Phase 

Peripheral long 
response time 

Minimum setup or 
pulse width 

EPP Idle 
Phase 

[fnnn&response t/mel 

Figure 13.6 EPP address write cycle. 



Enhanced Parallel Port 203 

A data write cycle is initiated by writing to one of the four auto data strobe 
ports. When the data port is written to, the DSTRB# and WRITE# signals 
are asserted and the data is driven onto the LPTD lines. Like the address write 
cycle, the cycle is terminated in four SYSCLKs ifthe device does not assert the 
WAIT# signal to extend the I/O cycle. 

When one of the data ports on the enhanced parallel port is read, a read cycle 
is started and the DSTRB# signal is asserted. When the external device recog­
nizes that the DSTRB# signal is active and WRITE# signal is inactive, it must 
then place the data on the data bus. The 82360SL will latch the data from the 
LPTD lines after four SYSCLKs ifthe WAIT# signal is not active. The external 
device can extend the I/O cycle by asserting the WAIT# signal. 

Design guidelines 

• The control signals for the enhanced parallel port are CMOS drivers, but 
they are TTL-level-compatible. 

• The address strobe signal is for generating a device ID or a user definable 
command. 

• The INTR# pin is used by an external device to request service from the host. 
The INTR# input is connected to either IRQ 5 or 7 (programmable) on the 
ISA bus. 

• Unlike the LPTBUSY pin in standard ISA parallel port, the WAIT# pin is 
active low. The WAIT# input is connected to the IOCHRDY signal on the ISA 
bus to generate wait state. 

Software Interface 

Software uses the following registers in the 82360SL to enable, initialize, and 
perform writes and reads with the enhanced parallel port: 

• FPP _CNTL-enhanced parallel port configuration register 

• SFS_ENABLE-special feature set enable register 

• SFR-special feature register 

• CFGR2-system configuration register 2 

• special feature index register 

• special feature set data register 

Initialization 

After power up, the parallel port defaults to ISA mode. The enhanced parallel 
port feature has to be enabled and initialized before the parallel port can be 
used in enhanced parallel port mode. The enhanced parallel port is part of 
the special feature set. The enhanced parallel port configuration register 
(FPP _CNTL), which is a special feature index register, is used to configure the 
parallel port for enhanced parallel port operation. 



204 Chapter Thirteen 

To enable the FPP _CNTL register, perform the following steps: 

• Set the SFCPUEN bit of the SFR register and the SFIO_EN bit of the 
CFGR2 (61H, INDEX) register. 

• Do a dummy 8-bit write to the SFS_ENABLE register (OFBH). 

• Write an 02H to the special feature index register (OAEH). 

Table 13.4 shows the functions of the bits in the FFP _CNTL register. 
To enable the enhanced parallel port, set bit 7 of the FPP _CNTL register. 

Bits 4 and 5 select LPTl or LPT2 for the port. Setting bit 6 enabled the port for 
bidirectional data transfers when data is read or written to the standard data 
port (110 address 278H ifLPT2 is selected or 378H if LPTl is selected). 

Table 13.5 shows the functions of the bits for the output handshake port 
(X7 AH) after the enhanced parallel port is enabled. 

The parallel port control register must be initialized correctly before doing 
any data transfer on the enhanced parallel port. 

1/0 address map 

Table 13.6 shows the I/O address map for the enhanced parallel port. This map 
is the same as the one for the standard ISA parallel port except for the addition 
of an address port and four data ports. Any write to the address port generates 
an address strobe. The four data ports are similar to the parallel port data reg-

TABLE 13.4 Function of Bits in FFP _CNTL Register 

Bits Description 

Bits [3-0] Not used 

Bits [5-4] Bits (5,4) Description 

0,0 
0, 1 
1,0 
1, 1 

parallel port disabled 
parallel port set to LPTl, IRQ7 
parallel port set to LPT2, IRQ5 
reserved 

Bit 6 Set to enable extended mode 

Bit 7 Set to enable enhanced parallel port mode 

TABLE 13.5 Functions of Output Handshake Port Bits When Enhanced Parallel Port Is Enabled 

Bits 

Bit 0 
Bit 1 
Bit2 
Bit3 
Bit4 
Bit5 

Bits [6-7] 

Description 

Must be set to 0 in order for the WRITE# line to function properly. 
Must be set to 0 in order for the data strobe to function properly. 
Will function the same as the standard port INIT line. 
Must be set to 0 for the address strobe to function properly. 
Will function as an active high interrupt enable the same as the standard port. 
Will function the same as the PS/2 compatible port and isolate the standard data port buffer 

when set high. In order for bit 5 to function, the configuration bit must be set to extended 
mode by setting bit 6. 

Not used. 



TABLE 13.6 

Address 

3(2)78H 
3(2)79H 
3(2)7AH 
3(2)7AH 
3(2)7BH 
3(2)7CH 
3(2)7DH 
3(2)7EH 
3(2)7FH 

Enhanced Parallel Port 205 

1/0 Address Map for the Enhanced Parallel Port 

Description Mode 

Parallel port data register (SPP) Write 
Parallel port status register (SPP) Read 
Loopback handshakes register (SPP) Read 
Output handshakes register (SPP) Write 
Auto address strobe register (EPP) Read/write 
Auto data strobe register (EPP) Read/write 
Auto data strobe register (EPP) Read/write 
Auto data strobe register (EPP) Read/write 
Auto data strobe register (EPP) Read/write 

ister. The 82360SL supports an 8-bit I/O cycle only. Any read or write to any of 
the data ports generates a data strobe. 

After the enhanced parallel port is enabled, the parallel port can still sup­
port a standard ISA parallel port device. The pinout of the parallel port 
changes only when the auto address strobe and auto data strobe registers are 
written to it. The enabling and disabling of the enhanced parallel port can be 
implemented as BIOS function calls or included in a device driver. Listing 13.1 
can be used as a reference for implementing these functions. 

Listing 13.1 Sample Code for Enabling and Disabling Enhanced Parallel Port 

PAGE 60, 132 ;WIDE LISTING 

FPP.ASM: This file contains routines to demonstrate 
the enhanced parallel port feature. 

Revision History: 

Copyright (©) by Intel Corporation 1991. All rights reserved 

0 ;FALSE COMPARE FALSE EQU 
TRUE EQU OFFFFH ;TRUE compare & mask 
include superset.inc 

;-------------- INITIALIZATION-----------------------------------­
code SEGMENT 
ASSUME cs:code, ds:code, es:code, ss:code 

ORG lOOH 
EXTRN enable_sfs:near, disable_sfs:near 
start: 

call enable_fpp 
jmp exit 

enable_fpp proc near 



206 Chapter Thirteen 

;enable enhanced parallel port mode 
push ax 
call enable_sfs 
mov al, FPP_CNTL selects FPP CNTL register 
out SFS_INDEX, al 
mov al, ODOh 
out SFS_DATA, al ; selects lptl. irq7. extended mode 
mov al, lOh; initialize the control register 
mov dx, 37ah 
out dx, al 
pop ax 
ret 

enable_fpp endp 
disable_fpp proc near 
;disable enhanced parallel port mode 

push ax 
mov dx, SFS_INDEX selects FPP_CNTL register 
mov al , FPP _CNTL 
out dx, al 
mov dx, SFS_DATA disable enhanced parallel port 
mov al. OOh 
out dx. al 
pop ax 
ret 

disable_fpp endp 
exit: 

mov ax, 4COOH ; terminate program 
int 21H 

·------------------------------------------------------------------. 
Data Area 

code ENDS 
END start 

; end code segment 

Software loop comparison 

Summary 

Once enhanced parallel port mode is enabled, the host can start transferring 
data to the device. Unlike standard parallel port, data transfer with enhanced 
parallel port is easy. (See Table 13. 7 .) Data is transferred by writing or reading 
the data directly to or from the EPP data port. No wait loop and polling are 
required. 

As of this writing, the enhanced parallel port has already become an industry 
standard; it is now part of IEEE P1284 standard. EPP is supported by many 
chipset manufacturers, and many companies are coming out with peripherals 
that will work with EPP, such as network adapters, hard disks, and tape 



Enhanced Parallel Port 207 

TABLE 13.7 Steps Performed to Transfer Data 

1 
2 
3 
4 
5 
6 
7 

SPP software loop 

Output register address to data port 
Output strobe to control port 
Fetch register data 
Output register data to data port 
Output strobe to control port 
Input (device-ready) from status port 
loop to 3 

1 
2 

EPP software loop 

Output address to EPP address port 
Output data to EPP data port 

backup drives. As the chairman of the EPP committee, it has been a great 
experience for me to be directly involved in defining the EPP standard. 

References 

Intel386™ SL Microprocessor SuperSet Data Book, 1991 (order no. 240814-003). 
Intel386™ SL Microprocessor SuperSet Programmer's Reference Manual, 1991 (order no. 240815-

003). 
Intel386™ SL Microprocessor SuperSet System's Design Guide, 1991 (order no. 240816-003). 
Enhanced Parallel Port Specification, Xircom, Inc., January 1991. 





Chapter 

14 
Writing an SL BIOS 

What Is the SL BIOS? 

The term SL BIOS refers to the basic 110 system (BIOS) commonly provided 
for an Intel486 SL CPU- or Intel386 SL CPU-based system. Ordinarily, the SL 
BIOS comprises the standard ISA system BIOS, VGA BIOS, and keyboard 
BIOS, plus the setup program and the system initialization and power man­
agement software. Figure 14.1 shows a diagram of the relationship of these 
BIOS modules. Depending on the hardware configuration, the SL BIOS might 
also include battery control, PCMCIA socket service, and penbase support 
software. 

Notebook machines built around the Intel486 SL CPU and Intel386 SL CPU 
often use highly integrated designs and require the same level of integration in 
the SL BIOS. Because each of these machines has its own unique features, 
integrating all the different pieces of firmware into a compact SL BIOS is no 
easy task. However, by using a modular design approach, the effort required to 
develop an integrated SL BIOS can be minimized. 

Differences in SL BIOS for lntel486 SL CPU and lntel386 SL CPU 

The information in this chapter comes from our work in helping Intel cus­
tomers design and write SL BIOS's for the Intel386 SL CPU. However, the 
principles are essentially the same for writing an SL BIOS for the Intel486 SL 
CPU. In fact, if you have already written an SL BIOS for the Intel386 SL CPU, 
it is relatively easy to modify it to run on the lntel486 SL CPU. Where.appro­
priate, hints are given in this chapter on how to modify an SL BIOS designed 
for the Intel386 SL CPU so that it will run on the Intel486 SL CPU. 

System BIOS 

Except for system initialization, the system BIOS for the Intel486 SL CPU and 
Intel386 SL CPU is almost the same as for a standard Intel386 ISA system 
BIOS. The Intel386 SL CPU is designed so that it can be booted from a generic 

209 



210 Chapter Fourteen 

lntel386'11 SL 
MICROPROCESSOR 

INITIALIZATION 

~ STANDARD i----
ISA BIOS 

SETUP PCMCIA POWER 
PROGRAM i--- SOCKET ~ MANAGEMENT 

SERVICE SOFTWARE 

VGA BIOS 

KEYBOARD 
BIOS 

Figure 14.1 Modules in a typical SL BIOS. 

lntel386 PC AT BIOS without any modification. The fastest way to create a 
system BIOS for an SL CPU-based system is to have the reset-handling rou­
tine in the system BIOS pass control to the system initialization program. 
After the initialization program has finished setting up the CPU, it then 
passes control to the standard ISA BIOS routines in the system BIOS. A sys­
tem BIOS (not including the initialization code) written for the Intel386 SL 
CPU should run on the Intel486 SL CPU without modification. 

To help you customize your BIOS, many of the BIOS vendors offer: a FLASH 
BIOS utility to allow users to upgrade their BIOS on the fly; a BIOS setup pro­
gram to change system parameters dynamically; and a BIOS edit program to 
change the default values of the CPU and 82360SL registers during system 
initialization. 

System lnltlalizatlon 

A system initialization program called SYSINIT.ASM is located on the com­
panion disk which is included with this book. This program, an example of how 
to initialize an Intel486 SL CPU- or Intel386 SL CPU-based system, includes 
the following initialization steps: 

• Initialize the memory controller. 

• Initialize the cache controller. 



Writing an SL BIOS 211 

• Initialize the DMA controller. 

• Initialize the keyboard controller. 

• Initialize the power management hardware. 

• Download the SMM program to SMRAM. 

If you are writing system initialization code for a Intel486 SL CPU-based 
system by modifying existing code designed for Intel386 SL CPU-based sys­
tem, you need to make the following changes: 

• Because the memory controller for the Intel486 SL CPU and the Intel386 SL 
CPU are completely different, you must write all new initialization code for 
the Intel486 SL CPU memory controller. 

• Since the Intel486 SL CPU does not support an external cache, you need to 
remove the external cache initialization code for the Intel486 SL CPU and 
add code to enable the internal cache. 

• Because the cacheability mechanism for the two CPUs is completely differ­
ent, you must provide a new code for the Intel486 SL CPU; this will enable 
caching of various sections of physical memory. 

• The two 16-bit roll-over registers in the Intel386 SL CPU have been com­
bined into a single 32-bit register, called the MCROLL register in the 
Intel486 SL CPU. 

• The Intel486 SL CPU does not provide on-chip expanded memory system 
(EMS) support. If you want to use EMS in an Intel486 SL CPU-based sys­
tem, you need to include a software EMS driver and modify the EMS initial­
ization code for the Intel386 SL CPU. 

The Intel486 SL CPU allows you to program the buffer strength of some of the 
ISA-bus signals; you can do this within the initialization code. 

Setup program 

Traditionally, the system setup information such as the hard disk type, floppy 
drive type, and amount of memory is stored in a 128-byte CMOS RAM inside 
the real-time clock. In an Intel SL CPU-based system, the CMOS RAM is con­
tained in the 82360SL. Also, this CMOS RAM has been enlarged to 256 bytes 
to accommodate the additional setup data needed for the configuration regis­
ters in the Intel486 SL CPU, Intel386 SL CPU, and the 82360SL. (The config­
uration registers are discussed in the next section.) 

Table 14.1 shows the typical partitioning of the CMOS RAM for an Intel486 
SL CPU or Intel386 SL CPU. In addition to storing the standard setup infor­
mation, it also stores setup information for setup options like the power man­
agement hardware, CPU clock speed, and DRAM page mode. 

The first 128 bytes of CMOS RAM is generally referred to as standard 
CMOS RAM while the other 128 bytes of CMOS RAM is called the extended 



212 Chapter Fourteen 

TABLE 14.1 Partitioning of Setup Information in CMOS RAM 

OOH 
OlH 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
OEH 
OFH 
lOH 
UH 
12H 
13H 
14H 
15H 
16H 
17H 
18H 
19H 
lAH 
1BH-2DH 
2EH 
2FH 
30H 
31H 
32H 
33H 
34H-3FH 
40H-7FH 

Location 

Seconds 
Seconds alarm 
Minutes 
Minutes alarm 
Hours 
Hours alarm 
Day of week 
Date of month 
Month 
Year 

Function 

Status register A 
Status register B 
Status register C 
Status register D 
Diagnostic byte 
Shutdown byte 
Floppy drive type 
Reserved 
Hard disk drive type 
Reserved 
Equipment byte 
Base memory, low byte 
Base memory, high byte 
Expansion memory, low byte 
Expansion memory, high byte 
Hard disk drive type, drive C 
Hard disk drive type, drive D 
Reserved 
CMOS checksum, high byte 
CMOS checksum, low byte 
Actual memory above 1 Mbyte, low byte 
Actual memory above 1 Mbyte, high byte 
Century byte 
Information status flag byte 
Reserved 
OEM defined 

OH-5FH (Extended CMOS RAM) 
60H-7FH (Extended CMOS RAM) 

OEM defined 
APM 

CMOS RAM. The standard CMOS RAM is accessed using the same index 
mechanism as on a standard ISA system through an index register (port 70H) 
and data register (port 71H). You must write to the index register (port 70H) 
first, before accessing the data register; otherwise, invalid data will be written 
or read. This access sequence is necessary because the contents of the index 
register is flushed after every access to protect CMOS data from being over­
written accidentally. 

The extra 128 bytes of CMOS RAM is accessed through ports 74H and 76H. 
Port 74H is the address port and port 76H is the data port. This second index 
and data port is needed because bit 7 of 1/0 port 70H is used for disabling NMI 
generation. Therefore, there are only enough bits to address 128 bytes of 



Writing an SL BIOS 213 

CMOS RAM. With the extended CMOS RAM, the address is latched after the 
index register has been written to. 

Listing 14.2 gives an example of code to access setup data in standard and 
extended CMOS RAM. 

Listing 14.2 Accessing Setup Data in CMOS RAM 

CMOS.ASM: Routines that access the CMOS RAM 

Include Superset.inc 
code segment public 'code' 

assume cs: code 
PUBLIC read_xcmos, write_xcmos, read_cmos, write_cmos 

·-------------------------------------------------------------. 
read_xcmos: get extended CMOS port value 
Input : bl = index of an extended CMOS port 
Output : al = data read 

read_xcmos proc near 
mov al, MASK_NMI disable NMI 
out CMOS_ INDEX, al 
jmp $+2 

jmp $+2 
mov 
out 

jmp 

al, bl ; point to the index 
XCMOS_INDEX,al 

$+2 
jmp $+2 

in 
xchg 
jmp 

al ,XCMDS_DATA read the data 
ah, al 
$+2 

jmp $+2 
mov 
out 

al, UNMASK_NMI 
CMOS_ INDEX, al 

xchg ah, al 
ret 

read_xcmos endp 

enable NMI 

write_xcmos: write new value into an extended CMOS port 

Input : bl = index of an extended CMOS port 
bh = data to be written 

Output : None. 



214 Chapter Fourteen 

write_xcmos 
mov 

proc near 
al, MASK_NMI 
CMOS_I NDEX, al 
$+2 

out 
jmp 
jmp 

mov 
out 

jmp 
jmp 

mov 
out 

jmp 

$+2 
al , bl 
XCMOS_I NDEX, al 

$+2 
$+2 

al , bh 
XCMOS_DATA, al 

$+2 
jmp $+2 
mov 
out 
ret 

al, UNMASK_NMI 
CMOS_ INDEX, al 

write_xcmos endp 

disable NMI 

point to the index 

; get data to be written 
write to extended CMOS PORT 

enable NMI 

·-------------------------------------------------------------
' 

read_cmos: get CMOS port value 
Input : bl = index of a CMOS port 
Output : al = data read 

read_cmos proc near 
mov al, MASK_NMI ; disable NMI 
out CMOS_INDEX, al 
jmp $+2 
jmp $+2 

mov al , bl point to the index 
out CMOS_INDEX,al 

jmp $+2 
jmp $+2 

in al ,CMOS_DATA read the data 
jmp $+2 
jmp $+2 
xchg ah, al 
mov al , UNMASK NMI enable NMI 
out CMOS_INDEX, al 
xchg ah, al 
ret 

read_cmos endp 

write cmos: write new value into a CMOS port 

Input : bl = index of a CMOS port 



bh =data to be written 
Output : None. 

Writing an SL BIOS 215 

·-------------------------------------------------------------. 
write_cmos 

mov 
out 
jmp 
jmp 

proc near 
al, MASK_NMI ; disable NMI 
CMOS_I NDEX, al 

mov 
out 

jmp 
jmp 

mov 
out 

jmp 

$+2 
$+2 

al . bl 
CMOS_INDEX. al 

$+2 
$+2 

al . bh 
CMOS_DATA. al 

$+2 
jmp $+2 
mov 
out 
ret 

al, UNMASK NMI 
CMOS_INDEX, al 

write_cmos endp 

code ends 
end 

point to the index 

; get data to be written 
write to standard CMOS PORT 

enable NMI 

For system security, the 82360SL also supports the PSx compatible password 
security feature, which prevents unauthorized access to the system. The PSx 
feature is enabled by setting bit 3 in port 92H to one. Once this bit is set, the 
data in the CMOS RAM from bytes 38H to 3FH is locked. A read to these CMOS 
locations will return the address of the byte read and not the actual contents. 

Register resource 

A unique, common feature of the Intel486 SL CPU, Intel386 SL CPU, and 
82360SL is that they are highly programmable. Instead ofrequiring hundreds 
of jumpers on the motherboard to configure the hardware, you can configure 
the CPU and 82360SL by writing to the extension registers in the different 
configuration spaces. The extension registers also allow the system configura­
tion to be changed on the fly. 

The SL CPU and 82360SL registers are divided into three groups: CPU reg­
isters, ISA system registers, and SL extension registers. The CPU registers are 
those registers normally found in an lntel486 SX CPU or Intel386 SX CPU. 
The ISA system registers are the 1/0 ports normally found in a standard ISA 
system. The SL extension registers are configuration registers unique to the 
Intel486 SL CPU, Intel386 SL CPU, and 82360SL. These registers are located 
in normal I/O address space, internal bus unit configuration space, on-board 
memory controller unit space, external bus unit space, cache unit configura­
tion space, or in the 82360SL configuration space. (Please refer to Fig. 14.2.) 



216 Chapter Fourteen 

CPU 
REGISTERS 

INTERNAL 
BUS UNIT 

NORMAL 1/0 
ADDRESS 

SPACE 

ON· BOARD 
MEMORY 

CONTROLLER 
UNIT 

EXTERNAL r-::::-1 
__ B_u_s_uN_rr __ L::...J 

lntel386™ SL MICROPROCESSOR 

82360SL 
CONFIGURATION 

SPACE 

Is. 00 ~1 

82360SL 1/0 

Figure 14.2 Register resources for the SL architecture. 

Access to the unit configuration spaces 

The Intel386 SL CPU has four unit configuration spaces and the Intel486 SL 
CPU has three unit configuration spaces (cache configuration space is not sup­
ported), only one of which can be active at a time. Access to these configuration 
spaces is controlled by the unit enable bit (bit 1) and the unit ID field (bits 
[2-3]) in the CPUPWRMODE register (22H). 

The CPUPWRMODE register is a 16-bit register that is normally hidden. It 
is unlocked by executing the unlocking sequence given in Listing 14.3. 

Listing 14.3 Unlocking Sequence for CPUPWRMODE Register 

cli disable interrupts 
mov ax, BOOOh 
out 23h, al byte write to 23h with MSB = 0 
xchg ah, al 
out 22h, al byte write to 22h with MSB = 1 
out 22h, ax word write to 22h with MSB = 0 
st i re-enable interrupts 

The unlock status bit (bit 0) of the CPUPWRMODE register will be set after 
the unlocking sequence is executed. After the CPUPWRMODE register is 
unlocked, a unit configuration space is enabled by writing the corresponding 
unit ID into the unit ID field and setting the unit enable bit. The unit enable 
bit and the unit ID field can be written simultaneously. 

Note: Interrupts should be disabled before executing the unlocking 
sequence. If the CPU is interrupted in the middle of the unlocking sequence, 
the unlocking sequence will be broken. 



Writing an SL BIOS 217 

Access to the 82360SL configuration space 

The 82360SL configuration space is inside the 82360SL 1/0. Access to registers 
inside the 82360SL configuration space is through an index addressing mech­
anism similar to that used to access the CMOS RAM. Before any access can be 
made, the 82360SL configuration space must be unlocked by executing an 
unlocking sequence. The unlocking sequence consists of four consecutive 1/0 
reads to the following addresses: OFC23H, OF023H, OC023H, and 0023H. 
Interrupts should be disabled prior to executing the unlocking sequence. 

After the 82360SL configuration space is unlocked (a read to CFGSTAT reg­
ister at 23H will return 7FH), registers can be accessed using the configuration 
index register, CFGINDEX(24H) and configuration data register, CFG­
DATA(25H). To access any register, the index of the register must be written to 
the CFGINDEX register first. Data can then be read, or written, through the 
CFGDATA register. 

The sample code in Listing 14.4 contains function calls to access registers in 
the different configuration spaces. The sample code is used by other programs 
throughout the book. 

Listing 14.4 Code for Accessing the SL Extension Registers 

·------------------------------------------------------------------. 
CFGSPACE.ASM: This file contains routines for accessing 
the SL SUPERSET extension registers. 

·-----------------------------------------------------------------. 
Include superset.inc 

code segment byte public 'code' 
assume cs:code 

PUBLIC open_cpupwrmode, close_cpupwrmode, open_ibu, open_omcu 
PUBLIC open_ebu, open_ccu, close_386sl. open_360sl 
PUBLIC read_360sl. write_360sl. close_360sl 
·-------------------------------------------------------------. 

open_cpupwrmode: open CPUPWRMODE register 

Input: None 

Output: carry flag set if not opened 

·-------------------------------------------------------------. 
open_cpupwrmode proc near 

push ax 
mov ax. 8000h ; execute unlocking sequence 
out 23h. al 
xchg ah. al 
out 22h. al 
out 22h. ax 



218 Chapter Fourteen 

in . 
and 

al, 22h 
a 1 , 01 

jnz open_cpu_exit 
stc 

open_cpu_exit: 
pop ax 
ret 

open_cpupwrmode endp 

is it opened? 

·-------------------------------------------------------------, 

close_cpupwrmode: lock CPUPWRMODE register 

Input: None 

Output: None 

·-------------------------------------------------------------, 

close_cpupwrmode proc near 
push ax 
in al, 23h 
or al, Olh set lock bit 
out 23h, al 
in al, 22h 
and al, 01 is it closed 
jz close_cpu_exit 
stc 

cl ose_cpu_ex it: 
pop ax 
ret 

close_cpupwrmode endp 
·-------------------------------------------------------------, 

open_ibu: open IBU configuration space 

Input: None 

Output: None 

·-------------------------------------------------------------, 
open_ibu proc near 

call open_cpupwrmode 
push ax 
in al,22h 
or al, OAh enable IBU 
and al, OFBh 
out 22h, al 
pop ax 
call close_cpupwrmode 
ret 

open_ibu endp 



Writing an SL BIOS 219 

·-------------------------------------------------------------. 
open_omcu: open OMCU configuration space 

Input: None 

Output: None 

·-------------------------------------------------------------. 
open_omcu proc near 
call open_cpupwrmode 
push ax 
in al, 22h 
or al. 02h enable OMCU 
and al,OF3h 
out 22h. al 
pop ax 
call close_cpupwrmode 
ret 

open_omcu endp 

open_ebu: open EBU configuration space 

Input: None 

Output: None 

·-------------------------------------------------------------. 
open_ebu proc near 

call open_cpupwrmode 
push ax 
in al, 22h 
or al, OEh; enable EBU 
out 22h. al 
pop ax 
call close_cpupwrmode 
ret 

open_ebu endp 
·-------------------------------------------------------------. 

open_ccu: open CCU configuration space 

Input: None 

Output: None 

·-------------------------------------------------------------. 



220 Chapter Fourteen 

open_ccu proc near 
call open_cpupwrmode 
push ax 
in al, 22h 
or al, 06h enable CCU 
and al. OF7h 
out 22h, al 
pop ax 
call close_cpupwrmode 
ret 

open_ccu endp 

·-------------------------------------------------------------
' 

cl ose_386sl: close all configuration spaces on 386SL 

Input: None 

Output: None 

·-------------------------------------------------------------. 
cl ose_386sl proc near 

push ax 
. in al, 22h is CPUPWRMODE unlocked 
and al, Olh 
jnz 
call 

en 
open_cpupwrmode 

en: 
and 
out 
call 
pop 
ret 

in al, 22h 
al, OFDH ; disable all configuration 
22h, al ; spaces 
close_cpupwrmode 
ax 

close_386sl endp 
·-------------------------------------------------------------. 

open_360sl: open 360SL configuration space 

Input: None 

Output: None 

·-------------------------------------------------------------. 
open_360sl proc near 

push dx 
push ax 
mov dx. OFC23h 
in al,dx 
mov dx, OF023h 
in a 1 • dx 



Writing an SL BIOS 221 

mov dx, OC023h 
in al , dx 
mov dx, 0023h 
in al , dx 
pop ax 
pop dx 
ret 

open_360sl endp 

·-------------------------------------------------------------
' 

;close_360sl: close 360SL configuration space 

: Input: None 

:Output: None 

·-------------------------------------------------------------
' 

cl ose_360sl proc near 
push ax 
mov al, IDXLCK 
out CFGINDEX, al 
mov al, Olh 
out CFGDATA, al 
pop ax 
ret 

close_360sl endp 
code ends 

end 

Setting up a calendar event 

When an Intel SL-based system is in suspend mode, it can resume prior oper­
ation by pressing the suspend/resume button, a modem ring, or a calendar 
event. The calendar event is generated by the real-time clock alarm. Listing 
14.5 gives an example of how to set up a calendar event for resume. 

Listing 14.5 Code for Setting Up a Calendar Event 

mov bl ' OlH : set seconds 
mov bh, cal - sec 
call write_cmos 

mov bl ' 03H set minutes 
mov bh, cal_min 
ca 11 wri te_cmos 
mov bl ' 05H set hours 
mov bh, cal_hour 
call write_cmos 
mov bl ' OBh get current value in REG B 
ca 11 read_cmos 
and al , 04h set alarm interrupt enable bit 



222 Chapter Fourteen 

mov 
ca 11 
in 
and 
out 

bh. al 
write_cmos 
al, OAlh 
al, OFEh 
OAlh, al 

read 2nd PIC 
enable RTC interrupt 

Keyboard BIOS 

VGA BIOS 

The most common keyboard controllers are the 80C42 and 80C51SL. If the 
80C42 is used, the keyboard BIOS should be the same as the standard key­
board BIOS used in a ISA system. Unlike the 80C42, the 80C51SL has more 
pins and contains an analog interface, which allows it to perform additional 
functions, such as battery monitoring and interfacing to the SMM control logic 
on the 82360SL. 

A keyboard BIOS for the 80C51SL keyboard typically supports the ISA­
compatible keyboard interface, a scanner interface for matrix keyboards, the 
turbo mode, a PSx-compatible mouse, and power management features. The 
features supported by the 80C51SL keyboard BIOS are largely determined by 
the hardware configuration. For example, the keyboard BIOS can control the 
CPU speed if the 80C51SL is connected to the turbo pin on the Intel486 SL 
CPU or on the lntel386 SL CPU. 

Power management is the most interesting aspect of the 80C51SL keyboard 
BIOS. By putting the 80C51SL in IDLE mode between keystrokes or when the 
keyboard is inactive, power consumption can be reduced substantially. 

The 80C51SL keyboard controller supports a POWER DOWN mode. In 
POWER DOWN mode, the oscillator for the 80C51SL is stopped to reduce 
power consumption to less than 1 percent of normal. A power down can be ini­
tiated either from the power management software running in SMM or from a 
keyboard BIOS routine. The 80C51SL is fully static. While in POWER DOWN 
mode, all the registers and signals will remain in the same state prior to enter­
ing POWER DOWN mode. 

The external SMI pin on the 82360SL is a general purpose pin for hardware 
to enable SMM. The keyboard BIOS can access this pin through the keyboard 
controller to invoke the setup program stored inside SMRAM to configure the 
system at any time, even in a protected mode environment. 

The most challenging part of the VGA BIOS is the support for LCD panels and 
power management. The difference between a standard VGA BIOS and a VGA 
BIOS for a notebook system lies in the added support for LCD display and 
power management. 

Architectural support for VGA 

The SL architecture offers several features to increase the performance and 
expandability of a VGA subsystem. The VGA BIOS can be relocated from the 



Writing an SL BIOS 223 

OCOOOOH segment to the OEOOOOH segment. The relocation of the VGA BIOS 
allows it to be stored in the same ROM that contains the system BIOS, which 
in turn reduces the chip count and board space. Listing 14.6 shows how the 
VGA BIOS can be relocated to OEOOOOH segment. 

Listing 14.6 Code for Relocating the VGA BIOS 

program to redirect accesses to OCOOOOH-OC?FFFH to OEOOOOH-OE?FFFH 
call open_ebu ; enable VGA remapping in SL CPU 
mov dx, EBClCR 
in ax, dx 
or ax. 030h 
out dx, ax 
ca 11 close_386sl 
ca 11 open_360sl enable VGA remapping in the 82360SL 
mov bl ' ROMCS_DEC 
ca 11 read_360sl 
or al , 03h 
mov bh, al 
ca 11 write_360sl 
ca 11 close_360sl 

Normally, the graphics frame buffer sits between OAOOOOH and OBFFFFH in 
the system address space. The SL architecture supports a second graphics 
frame buffer. The second graphics frame buffer can be as large as 8 Mbytes. 
The larger graphics frame buffer can be used to increase graphics resolution 
and to speed up graphics operations. 

As discussed in Chap. 12, placing the VGA subsystem on the PI bus can dra­
matically improve performance. 

Power management for the VGA subsystem 

The VGA controller can also provide power management for the VGA subsys­
tem. The LCD display is still the biggest power hog on any notebook system. 
The common approach to conserve power is to control the backlight for the 
LCD panel. Other power-saving measures may include extended refresh for 
video DRAM, and putting the VGA subsystem in low-power modes. 

In standby mode, the backlight is turned off. The video memory and VGA 
registers are still accessible. Suspend mode is similar to standby mode, except 
that the video memory and VGA registers are not accessible. The most effec­
tive-and also the most difficult-method to implement suspend is to power off 
the entire VGA system. This requires saving the entire state of the VGA sys­
tem (including video memory). 

Interrupts are disabled in SMM. To work with the power management soft­
ware under SMM, the VGA BIOS must be re-entrant. To make the VGA BIOS 
re-entrant, INTlOH function calls must be written such that the address of the 
INTlOH entry is at a fixed location. 



224 Chapter Fourteen 

VGA BIOS setup 

The VGA BIOS setup program typically controls the LCD display and power 
management on the VGA subsystem. It allows the users to configure features 
like the timing parameters for the LCD panel, gray scales, frame buffer size, 
and power management timers. 

SMM software 

SMM software is the program that is executed by the processor when the CPU 
is running in SMM. Commonly, it is used for power management. While it is 
not necessary for the SMM software to reside in flash memory with the system 
and VGA BIOS's, it makes sense to do it that way for portability reasons and 
cost saving. With the SMM program stored inside the BIOS, there is no need to 
create a different driver for each different operating system in order to load the 
SMM program into SMRAM. 

Power management support 

With the SL architecture, power management software can come in many fla­
vors, depending on the hardware configuration. Power management software 
normally includes power management hardware initialization, handling of 
power management service requests, and interfaces to the other parts of the 
system. 

Post codes are values written to an 1/0 address port that are then shown on 
a two-digit display to assist in debugging efforts and to indicate how far the 
code has executed. Post codes should be used for different power management 
operations. If possible, use a diagnostic port different from 80H to avoid confu­
sion with the standard post codes. 

BIOS integration 

The Intel486 SL CPU and lntel386 SL CPU support both 8- and 16-bit BIOS 
interfaces. It is generally more practical to use the 8-bit BIOS interface (in 
terms of cost and reduction of board space) for the following reasons. The 16-
bit interface gives better performance than the 8-bit interface, but it also takes 
up more space and consumes more power. A 16-bit interface requires two 8-bit 
flash memory chips while the 8-bit interface requires only one. Furthermore, it 
is common practice to shadow the BIOS after system initialization to improve 
performance. 

As more and more hardware is integrated into a portable computer, the size 
of the firmware also grows. On a standard ISA system, only 128 Kbytes of 
BIOS space are available. The system BIOS, setup program, power manage­
ment software, and VGA BIOS use most of this space. Thus, there is not much 
room for adding other firmware. 

To accommodate additional firmware, the Intel486 SL CPU and Intel386 SL 
CPU support up to 256 Kbytes of BIOS space. Firmware can use the extra 128 
Kbytes to support a PCMCIA card and/or a digitizer for a pen-based computer. 



Writing an SL BIOS 225 

The sample code in Listing 14. 7 shows how to enable the full 256 Kbytes of 
BIOS space. 

If the 256 Kbytes BIOS space feature is enabled, the VGA BIOS remapping 
mechanism will not be available. Therefore, the VGA BIOS must be located 
between OCOOOOH and OCFFFFH. 

Listing 14.7 Example of How to Enable the Full 256 Kbytes of Flash BIOS Space 

en_256k_BIOS proc near 
call open_360sl 
mov bl, ROMCSDEC 
call read_360SL 
or al. 04h; set ROM256KEN bit 
mov bh, al 
call write_360SL 
call close_360sl 

call open_ebu 
mov dx. ISAWINDOW 
in ax, dx 
or ax, 4000h set BIOS256KEN bit 
out dx. ax 
mov dx, EBClCR set no of EPROM banks 
in ax, dx 
and ax, ODFFFh one EPROM bank 
out dx, ax 
call close_386sl 

en_256K_BIOS endp 

Flash BIOS programming 

During the development cyde, firmware has to be updated from time to time. 
Using flash memory instead of EPROM makes code updates much easier and 
faster. Flash memory can be reprogrammed in a system even if it has been sur­
face mounted to the motherboard. Thus, flash memory is particularly well 
suited for portable computers and embedded applications. 

Access to flash memory 

When Vpp is high, a command register controls access to the flash memory and 
a status register verifies that access has been obtained. Vpp need not be high 
to read the intelligent identifier and status register. The command register 
itself does not occupy an addressable memory location. This register is a latch 
used to store the command, address, and data needed to execute the command. 

Every flash memory has a component identifier. The component identifier 
can be accessed by writing a read identifier command (90H) to the command 
register at OH. Subsequent reads to address OH return the manufacturer code 
and reads to address OlH return the device code. After the component identi­
fier is read, the operation can be terminated by writing the read array com­
mand (OFFH) to the command register. 



226 Chapter Fourteen 

SHADOW 
FLASH BIOS 
IN MEMORY 

IDENTIFY 
FLASH 

MEMORY 
TYPE 

READ NEW 
FLASH BIOS 

FILE 

ERASE 
FLASH 
BIOS 

UPDAlC 
FLASH 
BIOS 

REBOOT 
SYSlCM 

Flash memory update 

Figure 14.3 Flash BIOS update. 

To protect the flash BIOS from accidentally being overwritten, the flash BIOS 
is normally read-only in an SL CPU-based system. (See Figure 14.3.) The flash 
BIOS can become writable by setting the flash BIOS write enable bit (bit 14) of 
the EBClCR register (300H, EBU) to one. Listing 14.8 shows how to read and 
write flash memory. 

Listing 14.8 Reading and Writing the Flash BIOS Memory 

write_only 
push 
push 
ca 11 

mov 
mov 
out 
mov 

proc near 
ax 
dx 
open_ibu 
dx, 308H 
ax, 05555H 
dx, ax 
dx, 30AH 

write cycles go to ISA-bus CROM) 
read cycles go to on-board memory 



Writing an SL BIOS 227 

out dx, ax 
mov dx, 30CH 
out dx, ax 
mov dx, 30EH 
out dx, ax 
ca 11 close_386sl 
ca 11 open_ebu enable flash BIOS write 
mov dx, 300h 
in ax, dx 
or ah, 40H 
out dx, ax 
ca 11 close_386sl 

pop dx 
pop ax 
ret 

write_only endp 

read_only proc near 

push ax 
push dx 

ca 11 open_ibu 
mov dx, 308H 
mov ax, OAAAAH write cycles to on-board memory 
out dx, ax read cycles to ISA-bus (ROM) 
mov dx, 30AH 
out dx, ax 
mov dx, 30CH 
out dx, ax 
mov dx, 30EH 
out dx, ax 

ca 11 close_386sl 

ca 11 open_ebu disable flash BIOS write 

mov dx, 300h 

in ax, dx 

and ah, OBFH 

out dx, ax 

ca 11 close_386sl 
pop dx 
pop ax 
ret 

read_only endp 

On the SL evaluation board, the SMOUT5 pin controls the Vpp pin to the 
flash BIOS. The routines in Listing 14.9 show how the SMOUT5 pin can be 
toggled to disable and enable Vpp. Please note that some time delay is inserted 
to allow the voltage level on the Vpp to settle down. 



228 Chapter Fourteen 

Listing 14.9 Code to Enable and Disable Vpp for the Flash BIOS Memory 

vpp_on proc near 
push ax 
push bx 
push ex 
push dx 

cl i 
ca 11 open_360sl enable Vpp 

bl, SMOUT_CNTRL 
read_360sl 

mov 
ca 11 
and 
mov 
ca 11 

al, ODFH set SMOUT5 bit to zero 

ca 11 
sti 

bh, a 1 
write_360sl 
close_360sl 

;wait for voltage level to stabilize 

mov ex. 500 
call delay insert 100 µs delay 
pop dx 
pop ex 
pop bx 
pop ax 
ret 

vpp_on endp 

vpp_off 
push 
push 
push 
push 

cl i 
ca 11 
mov 
ca 11 

or 
mov 
ca 11 

ca 11 
sti 

proc near 
ax 
bx 
ex 
dx 

open_360sl 
bl, SMOUT_CNTRL 
read_360sl 

al , 20H 
bh. al 
write_360sl 

close_360sl 

wait for power pin to settle 

mov 
ca 11 
pop 

ex. 500 
delay 

dx 
pop ex 
pop bx 
pop ax 
ret 

vpp_off endp 

disable SMOUT5 

set SMOUT5 bit to zero 

insert 100 µs delay 



Writing an SL BIOS 229 

Flash BIOS mapping 

The mapping of the flash BIOS into the system memory can be confusing. AB 
shown in Figure 14.4, the top of the flash BIOS should be mapped to segment 
OFOOOOH of the address space; that is, the system BIOS should be located at 
the top of the flash memory. If a 256-Kbyte flash memory chip is used, the flash 
BIOS will take up the address space from OCOOOOH to OFFFFFH, and VGA 
BIOS relocation should be disabled. 

BIOS parameters editor 

The SL processor has a rich set of configuration registers that make hardware 
configuration extremely simple. During product development, there is often a 
need to modify or fine-tune the default settings of these registers. Therefore, it 
is useful to keep the default settings in a table inside the BIOS at a fixed loca­
tion. This technique lets you use an editor to modify the parameter table with­
out having to touch the source code. Therefore, quick experiments can be tried 
without the overhead in modifying the source code and recompiling. 

Setup screen 

OFFFFFH 

OFOOOOH 

OEOOOOH 

ODOOOOH 

OCOOOOH 

Normally, the BIOS setup screen is used only to specify the type of floppy drive 
and hard disk being used. Things have changed with the introduction of the SL 
architecture. The SL architecture is designed to be highly programmable to 

SYSTEM 
BIOS 

-------
SMM 

PROGRAM 

VGA 
BIOS 

SYSTEM 
ADDRESS 

MAP 

• --,. 

SYSTEM 
BIOS 

-------
SMM 

PROGRAM 

VGA 
BIOS 

FLASH 
MEMORY 
ADDRESS 

MAP 

03FFFFH 

OH 

Figure 14.4 Mapping of the flash BIOS into system memory. 



230 Chapter Fourteen 

allow OEMs and end users to configure their systems for highest performance 
and lowest power consumption. The easiest and quickest way to change 
the system configuration without doing any programming is to go through 
the setup screen. The setup screen also comes in handy when you are debug­
ging systems. Options can be provided in the setup screen to disable on­
board peripherals and change I/O addresses and interrupts to isolate 
problems. 

Software delay loop 

BIOS time-of-day count provides a convenient way of regulating a timing loop. 
The count in this register is stored as a 32-bit number starting at OH:046CH. 
On an ISA system, channel 0 of the 82C54 timer is programmed by the BIOS 
to increment this value about 18.2 times per second. With each timing pulse, 
the 82C54 generates an interrupt via INT8H to the CPU and the increments 
the count by 1. 

A program can use the BIOS function call INT lAH to retrieve the lower. two 
of the four bytes and store them in the DX register. The program can later use 
this value to determine when a specified number of ticks has occurred. Listing 
14.10 shows how a software delay loop can be implemented with this tech­
nique. This loop is not tied to the CPU's processing speed. 

Listing 14.10 Code for a Software Delay Loop 

soft_loop PROC near 
delay: 

mov ah. 0 
int lAh 
add dx, 100 
mov ex, dx 

d_loop: 
int lAh 
emp dx, ex 
jne d_loop 
ret 

soft_loop endp 

Since external interrupts are disabled inside SMM, this kind of software loop 
should not be used inside SMM. 

The other way of writing a CPU speed-independent delay loop is by polling 
the refresh bit (bit 4) in PORT 61H. The refresh bit toggles every 30 microsec­
onds and has a better resolution than the timer tick (45 milliseconds). 

Test for presence of an Intel SL CPU 

Listing 14.11 gives BIOS code that reads the CPU's signature register to deter­
mine if it is an Intel486 SL CPU or an Intel386 SL CPU. The information in 
this register provides CPU identification and stepping information. 



Listing 14.11 Code for Identifying the CPU 

include superset.inc 

Writing an SL BIOS 231 

· - - - - - - - - - - - - - - INITIAL I ZA TI 0 N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
code SEGMENT 
ASSUME cs:code, ds:code, es:code, ss:code 

ORG lOOH 
EXTRN open_omcu:near, open_360sl :near, close_360sl :near, 
close 386sl :near 
start: 

ca 11 open_360sl ; execute unlock sequence for 82360SL 
mov dx, 23h; I/O configuration space 
in al,dx 
and al, Olh 
jz 
ca 11 
ca 11 
mov 
in 
ca 11 
cmp 
jne 

not_sl 
close_360sl 
open_omcu 
dx, SIGNATURE 
ax, dx 
close_386sl 
ah, 43h 
not sl 

not SL based system 

examine the SIGNATURE register 

i 386sl : 
mov 
mov 
int 
jmp 

dx, offset is386sl 

not_s l : 
mov 
mov 
int 

ah, 
2lh 
exit 

dx, 
ah, 
2lh 

09h 

offset notsl 
09h 

exit: 
mov 
int 

ax, 4COOH 
21H 

; terminate program 

·-------------
' 

Data Area 

·-----------------------
' 
is386sl DB 
notsl 
code 

END 

DB 
ENDS 
start 

Stepping identification 

'Intel386 SL microprocessor found.', '$' 
'SL microprocessor not found.', '$' 

; end code segment 

An alternate way of determining the stepping of the CPU is to look at the 
marking on the chip. As shown in the following example, the first line indicates 



232 Chapter Fourteen 

the type and speed of the CPU. The second line provides the lot number of the 
CPU, which is like a date code. The last line is the s-spec (step identification) 
number. 

80386SL - 25i 
i1272135-ES 
iSA SXE90 

Special Feature Set 

The special feature set (SFS) is a group of unique features that allows the pro­
grammer to improve the performance of the system BIOS, as well as providing 
a convenient interface for operating systems and applications software. One of 
SFS's acknowledged attributes is that after it is enabled, the features are 
invoked by either a dummy 1/0 write or read. Doing a dummy read or write is 
much more efficient than reading the contents of a register, setting a bit, and 
then writing the data back to the register. The SFS consists of a 4-Kbyte 
scratchpad RAM and four registers: FASTA20GATE, FASTCPURESET, 
SLOWCPU, and FASTCPU. 

Scratchpad RAM 

The 4-Kbyte scratchpad RAM is located between OFOOOOH and OFlOOOH. 
Access to the scratchpad RAM is enabled by doing a dummy 1/0 write to the 
SFS ENABLE register (OFBH). The scratchpad RAM is disabled by doing a 
dummy 110 write to SFS DISABLE register (OF9H). The BIOS typically uses 
the scratchpad RAM for temporary storage of data. Application software 
should not access this area, at the risk of causing a system malfunction. 

FASTA20GATE 

The conventional method of toggling the A20 GATE using the keyboard is slow. 
This can be a problem in switching frequently between protected and real 
mode. The SFS contains a FASTA20GATE register to allow quick switching 
between protected and real mode. A20 GATE is enabled by doing an 1/0 write 
to 1/0 address OEEH. An 1/0 read to I/O address OEEH disables the A20 GATE. 

FASTCPURESET 

A fast CPU reset is generated by doing a dummy I/O read to the FASTCPURE­
SET register at 1/0 port address OEFH. 

SLOWCPU and FASTCPU 

A dummy write to the SLOWCPU register (OF4H) puts the CPU in de-turbo 
mode; a dummy write to the FASTCPU register (OF5H) puts the CPU in 
turbo mode. The CPU clock speed in de-turbo mode is determined by the de­
turbo select bit (bit 15) in the CPUPWRMODE register (22H). The CPU clock 
speed is EFI/2 when bit 15 is zero and EFI/4 when bit 15 is one. 



Writing an SL BIOS 233 

Enabling and disabling the SFS 

The FASTA20GATE and FASTCPURESET registers are inside the 82360SL 
VO and the SLOWCPU and FASTCPU registers are inside the Intel486 SL 
CPU and Intel386 SL CPU. If you enable the SFS in the CPU only, you will not 
be able to access the FASTA20GATE and the FASTCPURESET registers. 

To enable the SFS in the CPU, set the SFCPUEN bit (bit 0) in the SFR reg­
ister (705H, lbu) to one. To enable the SFS in the 82360SL, set the SFIO_EN 
bit (bit 3) in the CFGR2 (61H, INDEX) to one. After these bits are set, the SFS 
ENABLE (OFBH) and SFS DISABLE (OF9H) registers become visible. A 
dummy write to the SFS ENABLE register will enable access to the SFS. The 
SFS is disabled by setting bit 0 of the SFS DISABLE register to one. 

Listing 14.12 contains routines for accessing the SFS. 

Listing 14.12 Code for Accessing the SFS 

·------------------------------------------------------------------. 
SFS.ASM: This file contains routines for accessing 
the SFS. 

·-----------------------------------------------------------------. 
Include superset.inc 
code segment byte public 'code' 

assume cs:code 
EXTRN open_ibu:near, close_386sl :near, open_360sl :near. 
close 360sl :near 
PUBLIC enable_sfs, disable_sfs 

enable sfs: enable special features set 

Input: None 

Output: carry flag set if not opened 

enable_sfs proc near 
push ax 
call open_ibu 
mov dx, SFR 
mov al. Olh 
out dx, al ; set SFCPUEN bit 
call close_386sl 
call open_360sl 
mov al, CFGR2 
out CFGINDEX. al 
in al, CFGDATA 
or al, 08h; set SFIO_EN bit 
out CFGDATA. al 
call close_360sl 



234 Chapter Fourteen 

out SFS_ENABLE, al 
mov dx, SFS_INDEX 
mov al , OD Oh 
out dx, al 
in al , dx 
cmp al , ODDh 
jz sfs_open 
stc 

sfs_open: 
pop ax 
ret 

enable_sfs endp 

dummy write to enable SFS 
read/write test to index register 

SFS is enabled 

·-------------------------------------------------------------. 
disable_sfs: disable special features set 

Input: None 

Output: None 

·-------------------------------------------------------------. 
disable_sfs proc near 

push ax 
out SFS_DISABLE, al 
mov dx, SFS_INDEX 
mov al, ODDh 
out dx, al 
in al,dx 
cmp al, ODDh 
jnz 
stc 

sfs_close: 

sfs_close 

pop ax 
ret 

disable_sfs endp 
code ends 

end 

dummy write to disable SFS 
read/write test to index register 

SFS is closed 

VO Cycle Recovery Time 

The 110 cycle recovery time is the delay that the CPU automatically inserts 
between back-to-back 1/0 cycles. This recovery time is programmable on the 
Intel486 SL CPU and Intel386 SL CPU. For 8-bit back-to-back 1/0 cycles, the 
1/0 cycle recovery time feature is enabled by setting bit 12 of the EBClCR reg­
ister (300H, EBU); the minimum 1/0 cycle recovery time is programmed by the 
1/0 cycle recovery time field (bits [9-11]) of the EBClCR register. For 16-bit 
back-to-back 1/0 cycles, the 1/0 cycle recovery time feature is enabled by set­
ting bit 8 of the EBClCR register and bits [6-7] in the EBClCR register control 
to the minimum 1/0 cycle recovery time. 



Reset 

Writing an SL BIOS 235 

The I/O cycle recovery time does not increase as the number of SYSCLKs in 
the I/O cycle recovery time field increases. The number of SYSCLKs selected is 
the minimum delay the CPU will insert between back-to-back I/O cycles. It 
does not imply that the CPU will generate this many SYSCLKs for all the 
back-to-back I/O cycles. 

The pulse width of the CPURESET signal is programmable and the genera­
tion of the CPURESET signal can be delayed. The CPURESET pulse-width 
timer sets the width of the CPURESET signal. Timer counts for the pulse­
width timer are stored inside the CRST_PULSE register (OF8H, INDEX). 
Each count represents 0.5 microsecond and the default value is OEH (7 
microsecond). 

When using either the SFS or PS/2 fast CPU reset feature to generate a 
CPURESET signal, it is sometimes desirable to delay the generation of the 
CPURESET signal. The CPURESET delay timer inside the 82360SL chip gen­
erates the delay. The CRST_TMR register contains the timer count for this 
delay timer. The resolution of this timer is 1 microsecond and the default timer 
count value is 07H (7 microseconds). 

To ensure that the Intel386 SL CPU is initialized properly, the CPURESET 
signal must be active for at least 18 CPU clocks or 80 CPU clocks (if processor 
self-test is enabled) after power up. The SYSCLK must be active during system 
reset so that the synchronous logic inside the 82360SL also gets reset. 

Modular Approach 

A good rule of thumb in developing firmware for Intel486 SL CPU- or Intel386 
SL CPU-based machines is to adopt a modular approach. Large software mod­
ules should be broken down into smaller building blocks and all routines 
should be kept as short as possible. 

Keep all the common modules in the same place and separate the hardware­
dependent modules from the common routines. A BIOS written in modular 
fashion makes it easy to update the BIOS and locate problems. 

What should a programmer watch for in programming the SL Architecture?* 
• SMM is a powerful tool because it can interrupt any application at any time. If 

used incorrectly, software incompatibility can occur. 

• Every time the SFS is enabled, a 4-Kbyte scratchpad RAM is opened at OFOOOH 
of the BIOS address space. If the programmer accesses the SFS in real or SMM 
mode and does not close the SFS, BIOS routines overlaid by the scratchpad RAM 
will not be accessible, potentially causing a system crash if the BIOS needs to 
execute code in that area. 

* Contributed by Bill Rallis of SystemSoft. 



236 Chapter Fourteen 

Summary 

• The ISA-sliding window is designed to access memory in the ISA bus and can­
not be used to access system memory controlled by the on-board memory con­
troller. Pointing the ISA window to the on-board memory can cause bad data. 

• When doing a software SMI to enter SMM, it is advisable to wait for the software 
SMI request bit to clear by polling the SM_REQ_STS register (OB7H, INDEX) to 
ensure the software SMI has completed before continuing into the code that may 
assume this software SMI is complete. 

When the Intel386 SL CPU was introduced, no one had any idea about what an 
SL BIOS should look like or how to test it. Some designers had a difficult time 
designing an SL BIOS, for two major reasons: first, SMM was a new concept to 
most designers; and second, PC designers were used to the idea that the system 
BIOS, VGA BIOS, and power management BIOS are separate pieces of soft­
ware-and they had difficulty integrating these elements into a single BIOS. 

Designers looked to Intel for guidance. A BIOS specification was created to 
help the BIOS writers. This BIOS specification was designed to pack more 
firmware into a single ROM, and is a good reference for writing your own 
BIOS. The BIOS specification can be obtained from your local Intel sales office. 

References 

System BIOS for IBM PC I XT I AT Computers and Compatibles, Phoenix Technologies, 1989. 
Dipert, D., and D. Verner, "Designing an Updatable BIOS Using Flash Memory," Intel Corporation, 

1991. 



Chapter 

15 
System Development Tools 

and Debugging 

One of the keys to smooth, efficient product development is to make use of 
existing tools as much as possible. This chapter identifies all the tools you need 
to design and debug an Intel486 SL CPU- or Intel386 SL CPU-based portable 
computer. Following the discussion of tools is a series of techniques and hints 
that will help you to complete your design quickly. 

Hardware Development Tools 

There are many different motherboard design tools in the market, and they 
vary in price and selection of features. OrCAD is one inexpensive and popular 
design package that runs on a PC. OrCAD offers a complete set of schematic 
capture, simulation, and PCB layout tools. A set of symbols for the Intel SL 
components in OrCAD format is included in the disk that comes with this book. 
In addition, you will need equipment such as an oscilloscope, logic analyzer, 
logic probe, and multimeter. 

Software Development Tools 

To create software for the Intel486 SL CPU and Intel386 SL CPU, you can use 
any DOS-based application development tools you are familiar with. A pro­
gram can be created using any high-level language. The most popular lan­
guages are assembly and C. With assembly language, you need an assembler. 
And if you prefer to use C, you need a C compiler. A good text editor, such as 
the Brief editor, always helps in writing programs. 

After your program is compiled or assembled, you need to use a linker to pro­
duce the binary executable files. A program maintainer simplifies the task of 
updating and generating the programs. There are good program maintainers 
on the market. I find the Microsoft MAKE program sufficient for my program­
ming needs. 

237 



238 Chapter Fifteen 

Assuming your program does not always work the first time, a debugger 
such as SoftICE or Microsoft's CodeView will always help in code tracking. If 
performance is important, you should consider getting an optimization tool 
such as the Microsoft Profiler. The Profiler will tell you the relative amount of 
time it takes for your program's code segments to execute. 

If you are going to develop a BIOS, you should have an EPROM programmer. 
If you are using flash memory for your BIOS, a BIOS update utility program 
can save you a lot of time in BIOS modifications. 

Create Your Own Tools 

Unless you really have to, you should not consider building your own tools. It 
is more productive to use existing tools than to create your own tools. However, 
there are times when you have no choice. For example, there are many new 
configuration registers in the Intel486 SL CPU and Intel386 SL CPU, and 
access to these registers requires an unlocking sequence. Therefore, tools such 
as a utility to edit the contents of the SL extension registers and a library that 
contains all the common routines for the lntel486 SL CPU and/or the lntel386 
SL CPU will be very useful. 

Debugging 

Most of the unpleasant surprises that can delay product development occur 
during the debugging phase. Finding and fixing errors can be very time­
consuming. The following sections discuss the techniques that I find helpful for 
debugging problems. One thing that always amuses me is how the subject of 
debugging is treated in many books. Many of them stop abruptly at the point 
where the system starts executing instructions out of the ROM and do not 
delve any further into debugging problems. This shortcoming is unfortunate, 
because 99 percent of all bugs occur after you begin executing code from ROM. 

This is especially true for the very highly integrated notebook computer 
environment. Because of the high integration, debugging requires knowledge 
of every part of the system. I will make an attempt here to look at debugging 
at a more in-depth level. However, debugging is a very broad subject. Rather 
than trying to cover every aspect of debugging, I will concentrate on materials 
pertaining to the Intel486 SL CPU and lntel386 SL CPU only. 

Debugging Tools 

To debug a design efficiently, you need to have the right tools. Many forms of 
debugging tools are available for the Intel SL components. On the less expen­
sive side, you might choose a logic probe, logic pulser, monitor ROM, ROM 
emulator, diagnostic card, and register monitor program. At the high end, you 
might choose a logic analyzer and an in-circuit emulator (ICE). Each of these 
tools has its own merits, depending on your needs and budget. 



System Development Tools and Debugging 239 

Logic probe and logic pulser 

A logic probe and logic pulser are easy to use and can be carried around. Since 
we are dealing with digital electronics most of the time, a logic probe will serve 
most of our needs. 

I have found a logic pulser especially useful in debugging SMI-related prob­
lems. For example, what should you do when you push the suspend/resume 
button and nothing happens? When the button is pressed, a pulse is generated 
at the SRBTN# input of the 82360SL, and the 82360SL in turn asserts the 
SMI# input on the SL CPU. What I would normally do here is use the logic 
pulser to inject a pulse directly at the SRBTN# input of the 82360SL and the 
SMI# input of the CPU to see ifthe system will go into SMM. 

ROM emulator 

A ROM emulator consists of a probe that connects to the ROM socket on the 
target system, a serial port to communicate with the host, and a loader pro­
gram to download the ROM monitor code to the target system. Typically, a 
ROM emulator provides debugging features such as letting you set break­
points on individual instructions, set data breakpoints, and single-step a pro­
gram. With a ROM emulator, a new BIOS can be downloaded to the target 
system on the fly, making it easier to make changes in the BIOS. Also, you can 
use the time it would normally take to burn a ROM for other development 
activities. 

A ROM emulator does not have all the capabilities of an ICE, but it also does 
not suffer from some of the limitations of an ICE. For instance, the transmis­
sion line effects of ICE cabling can slow down the execution speed of the target 
system. This can be a major problem in a high-speed computer system. A ROM 
emulator, on the other hand, resides on the target system and makes use of the 
processor running on the system. Therefore, the ROM emulator allows the pro­
cessor to run at full speed. Some ROM emulators can even be used with source­
level debuggers to provide better debugging capability. 

ROM monitor 

Very often, a register is modified at different locations in your code by different 
routines. Such occurrences can make debugging difficult. A monitor ROM 
comes in handy in these situations. To use the ROM monitor, you need a 
ROM that goes to the target system, a debug program that runs on the host 
system, and a null modem cable that connects the target system to the host. 

The target system must be powered first, before the host can establish the 
connection. After power up, the ROM monitor will initialize only the interrupt 
controller, timer, DMA controller, and the serial port. None of the SL CPU 
extension registers is modified. Once the target system is running, the debug­
ger on the host can be activated. 

If you are familiar with the DOS debug program, you should have no prob­
lem using the ROM monitor debugger. As with the DOS debug program, you 
can use the ROM monitor debugger to edit and display memory, input and out-



240 Chapter Fifteen 

put data to the 1/0 ports, and dump the contents of all the CPU registers. It 
also contains macros for doing memory tests. 

Logic analyzer 

The most time-consuming part of using a logic analyzer is setting it up. There­
fore, it pays to have setup files for different parts of the system. For example, 
setup files can be created for all the buses on the SL CPU. Having standard 
test points on your prototype board for hooking up to the logic analyzer is very 
helpful. Keep in mind that you see only HIGHs and LOWs on the logic ana­
lyzer. There are times you might need an oscilloscope to examine a waveform 
closely, especially when you are dealing with power-control circuitry. 

The Intel SL components are CMOS parts. Therefore, be careful when mak­
ing measurements of the capacitance and resistance of the logic analyzer 
probes. This caution applies to oscilloscope probes as well. To see how the probe 
can affect your measurements, think about what happens when you attach a 
probe to a circuit. The output resistance of the circuit forms an RC circuit with 
the probe's resistance and capacitance. The RC circuit will slow the rise time of 
any signal transitions. Thus, you should be careful in probe selection. A probe 
resistance of 100 kilohms is adequate for most of the CMOS circuits. For high­
speed circuits where probe capacitance is critical, you might consider using a 
high-impedance probe. 

Diagnostic card 

Sometimes when the BIOS fails to initialize the system, it is helpful to find out 
where it is going wrong. On a standard ISA system, test codes inside the BIOS 
are written to 1/0 port 80H during system initialization and can be displayed on 
a diagnostic card. There are many variations of diagnostic cards out in the mar­
ket. Some of them even allow you to single-step the BIOS (for example, the 
debug card manufactured by AMI). I prefer the ones that allow you to use a dif­
ferent 1/0 port for displaying the test codes. This is especially helpful if you are 
writing your own software. Using a different 1/0 port separates your test codes 
from the standard BIOS test codes and makes it easier to locate problems. 

ICE486SL and ICE386SL 

An Intel ICE486SL or ICE386SL offers the advantage of an integrated devel­
opment environment. You can assemble your code and run it on the target CPU 
all from a PC or development system. The ability to plug the ICE probe into 
your target circuit while being able to control and monitor code execution from 
the host system gives you a great deal of flexibility in debugging your programs 
and the system. 

Note: When using an ICE486SL or an ICE386SL, the ONCE pin is a no­
connect signal used to disable all the input and output buffers in the SL CPU. 



Isolator 

System Development Tools and Debugging 241 

An isolator is a DIP-switch device that allows isolation of IC pins quickly and 
easily. It eliminates the need for cuts and jumpers. 

Isolating the problem 

Before I move on to discuss some of the techniques I use to isolate problems, I 
would like to point out that doing it right in the beginning can save a lot of time 
in debugging. It always helps to do several design reviews with a group of peo­
ple before building the prototype. Many common errors can be caught in a 
design review. 

The hardest part of debugging is isolating problems. Sometimes the debug­
ging of a problem becomes so difficult that you need a test plan just for that 
problem. For example, an Intel customer reported a global standby problem 
whenever the keyboard generated a system event. However, since a keyboard 
interrupt is not the only system event, a simple test plan was designed that 
called for disabling all the other system events (except for the keyboard inter­
rupt) and rerunning the test. 

For initial debugging, enable as few options as possible to make it easier to 
isolate problems. For example, the cache controller, IDE controller, and floppy 
drive controller can be disabled during initial debugging. You should try to 
bring up the screen as soon as possible. Once the screen is up, you can display 
data to the screen. 

When powering up a board for the first time, I recommend running the sys­
tem at a slower speed. If the system does not appear to be doing anything, you 
should verify that the EFI clock is running. Next, find out if the CPU is fetch­
ing instructions from the ROM. The quickest way to find out what the system 
is doing is to hook up the system to the ICE. If an ICE is not available, a diag­
nostic card or a logic analyzer can then be used to determine what the system 
is doing. The test code displayed on the diagnostic card can help you determine 
where the system is stopping. The logic analyzer can trap the opcodes coming 
out of the ROM. By translating the opcodes into instructions, you can figure 
out what the system is doing. 

Keeping track of the errors can be a big help at a later date ifthe same prob­
lems resurface. I usually recommend that you log everything you find in a 
notebook or a database so that you can refer to it later. 

Testing Methodology 

Laying out all the steps for bringing up a system in a test plan can save you a 
tremendous amount of time. A test plan usually outlines all the steps required 
to bring up a system and also the sizes of the resources that are required. This 
test plan also helps you ensure that you have procured all the test equipment 
you will need in advance and have written all the test programs to check the 
hardware. 



242 Chapter Fifteen 

Milestones are usually included in the test plan to monitor the progress. The 
milestones are guidelines for bringing up the system incrementally. Below is a 
list of typical milestones: 

1. Fetching instructions out of ROM 

2. Booting DOS 

3. Running Windows 

4. Devices going in and out of local standby 

5. System entering and exiting global standby 

6. Suspending and resuming the system 

During testing, it is recommended that you change one thing at a time only. 
Changing several things at the same time will make it difficult for you to nar­
row down the cause of the problem. 

In terms of testing, specific test programs can be written to validate differ­
ent parts of the design. However, the most robust test is to use commercial 
application software. 

Power management testing 

Designers often encounter the most problems when trying to bring up the 
power management system. Many of these problems boil down to how you 
expect power management to work. In many instances, no single rule of thumb 
describes how the power management system should work. Having a good 
power management test plan will help you to discover holes in your power 
management scheme. 

Coming up with a power management test plan is not easy with the SL CPU, 
since you have many power management options at your disposal. A sample 
test plan for power management testing can be obtained from your local Intel 
sales office. Some of the tests might not be relevant to your system, but at least 
it gives you some idea of how to devise your own test plan. 

Memory testing 

The memory interface to the SL processor is very straightforward. Since the 
memory controller is embedded inside the processor, the address multiplexing 
tables in Chaps. 10 and 11 must be used to determine which address is being 
accessed by the CPU. Whenever there is a problem, always start with the slow­
est memory access. 

One of the most common problems with memory interfacing is a floating 
data bus. A good way to find out if the memory or data bus is floating is to do 
continuous reads from the same location and see if the data changes. To deter­
mine whether an address or data bit got stuck at a certain level, specific pat­
tern tests can be developed. 

When doing memory tests, keep in mind that the bus-keeper on the memory 
bus always holds the last value written to the data bus. For instance, if you 
write "OAA55H" to an unpopulated memory bank, you will get "OAA55H" 



Test points 

System Development Tools and Debugging 243 

back. Therefore, to determine if a bank is populated, you must do a double 
word read/write test. Writing "OAABBCCDDH" to an unpopulated bank will 
return data invalid data "OXXXXCCDDH". 

Most of the devices in a notebook computer are small and dense. For example, 
the SL CPU and the 82360SL use 196-pin packages. For debugging, it will be 
much easier to use test points instead of trying to connect probes directly to the 
components. However, board space is limited on a notebook computer, making 
it difficult to add test points. An alternative is to use vias. Vias are used to con­
nect surface-mounted components to the conductor layers. The size of the via 
should match the aspect ratio. Vias should not be located too close to the com­
ponents, in order to prevent draining of solder from the component. Another 
alternative is using test adapters that can mount on top of the SL CPU and the 
82360SL. 

Common Errors 

It is always a good practice to check for common errors before diving into the 
problem. Learning from someone else's mistakes can save you countless hours 
in debugging. Common errors can be categorized into three groups: 

1. Logic/conceptual errors 

2. Noise, electrical, and physical errors 

3. Manufacturing errors-poor soldering, layout errors, wiring errors, and 
faulty devices 

In the following sections, we will discuss some useful concepts that will help 
you solve some of the most common errors. 

PWRGOOD signal 

The PWRGOOD signal is an active high input to the Intel486 SL, the Intel386 
SL CPU, and the 82360SL. The power supply circuitry generates this signal to 
indicate that the power to the system is good. When the PWRGOOD signal 
goes low, the CPU and the 82360SL are reset globally, causing the 82360SL to 
generate a CPURESET and a RESETDRV to reset the system. PWRGOOD 
should be low for at least one EFI clock cycle to be recognized. 

Floating inputs 

Floating inputs can cause a device to malfunction and increase system noise 
levels. It is especially important not to allow unused inputs on CMOS devices 
to float. Open inputs on CMOS devices may cause the device to overheat and 
destroy the device. All unused inputs should be tied to a valid logic level. 

For most TTL devices (except standard TTL and S logic families), unused 
inputs can be tied directly to Vee or ground. However, a pull-down or pull-up 



244 Chapter Fifteen 

resistor may be required in some cases. If a pull-up or pull-down resistor is 
needed, the resistance must be sized to ensure that input level requirements 
are met. 

All unused inputs on a CMOS device should be pulled low or high, as 
required, for proper operation. For most CMOS and TTL applications, a 1-
kilohm pull-up resistor is normally sufficient. With TTL and CMOS devices, 
logic high input current is very low (20 mA for TTL devices and 1 mA for 
CMOS devices). To minimize board space and component count, many unused 
inputs (should be limited to less than 10) can be pulled up with the same pull­
up resistor. 

Real-time clock 

Windows 

The real-time clock may be a small part on an ISA computer, but it is definitely 
a star in an SL CPU-based system. The suspend mechanism on CPU relies 
heavily on the real-time clock. It is the only clock that is running during sus­
pend. All the logic that is active is clocked by the real-time clock oscillator. 

Understanding how the application software works is always beneficial in iso­
lating the problem. The Microsoft Windows environment is often used to verify 
that power management is working. Many people are intimidated by problems 
associated with Windows; however, understanding a few aspects of Windows 
operation can make it a useful test tool. 

Windows is an operating environment that runs on top of a copy of MS-DOS 
(Version 3.0 or later). When Windows is running in enhanced mode, the Virtual 
DOS Machine Manager (VDMM) is loaded into extended memory. The VDMM 
runs in virtual 8086 mode and manages the virtual tasks created by Windows. 
It also emulates LIM 4.0 EMS memory using the Intel386 processor's paging 
capability, which eliminates the need for EMS hardware and an EMS driver. 
Each virtual task created by Windows is called a virtual machine. 

The initial virtual machine contains a copy of the Windows program running 
on top of DOS. When a DOS application is started, a new virtual machine is 
created. After a copy of DOS, the ROM BIOS data area, and other data struc­
tures are loaded in the new virtual machine, the application can be loaded into 
the virtual machine. 

Windows' standard mode is intended for use with 80286 machines. The 80286 
microprocessor has no provision for returning to real mode from protected mode 
because it will defeat the protection mechanisms. To allow the Windows pro­
gram to return to real mode, the Windows program writes to the shutdown byte 
in the CMOS RAM, sends a CPU reset command to the keyboard controller, and 
halts the CPU. The CPU reset command causes the keyboard controller to reset 
the CPU and execute the reset routine in the BIOS. The reset routine will then 
examine the CMOS RAM. When it sees the flag, it restores the contents of the 
CPU and pass control to the application program. 



System Development Tools and Debugging 245 

TABLE 15.1 Sources of a CPU Reset 

Sources of CPU reset Actions 

Cold boot Execution starts at OFFFFOH. All POST tests and initializations are executed. All 
peripherals are reset by the RESETDRV signal. 

Hardware reset Execution starts at OFFFFOH. All POST tests and initializations are executed. All 
peripherals are reset by the RESETDRV signal. 

Warm boot 

Resume 

CPU reset 

Execution starts at POST tests entry point. Except for POST test and initialization 
for memory above 64 Kbytes, all other POST tests and initialization are executed. 

Execution starts at OFFFFOH. System enters SMM through software SMI. 

In an SL CPU-based system, four types of system events can generate a CPU 
reset: cold boot, hardware reset, warm boot, and resume. Table 15.1 shows the 
actions that are taken for each of these reset events. A cold boot is what we nor­
mally call power on, and the CPU reset is generated by the PWRGOOD signal. 
A hardware reset can be generated by a hardware switch or by a special key 
sequence. The entire system is initialized during a cold boot and a hardware 
reset. A warm boot is invoked by typing the CNTRL-ALT-DEL key sequence, 
and only part of the system is initialized. Resume is initiated by a resume 
event (suspend/resume button, modem ring, or calendar event). 

In an SL CPU-based system, the 82360SL generates the CPU RESET. Gen­
erating the CPU reset signal through the 82360SL ensures that CPU reset will 
not occur while the CPU is in SMM. 

System management interrupt 

On a standard SL CPU-based system, the 82360SL acts like a traffic director 
for system management interrupts (SMis). The 82360SL functions as a gate 
that filters all the incoming SMI requests, plus those generated inside the 
82360SL, and passes them on to the CPU. 

SMI generation is not instantaneous, because all SMI requests go through 
some sort of arbitration inside the 82360SL before they get passed on to the 
CPU. Table 15.2 shows the delay due to internal arbitration for the different 
SMI requests. 

For some SMI requests, an SMI is not generated until the suspend warning 
timer has expired. For example, pushing the suspend/resume trigger button 
will not generate an SMI until the suspend warning timer for suspend/resume 
requests expires. 

TABLE 15.2 Delays for Various Types of SMI Requests 

SMI request 

External SMI 
Suspend/resume button 
Battery low 
ASMI 

Minimum delay 

lms 
128ms 
128ms 
2 SYSCLKs 

Maximum delay 

2.1 ms 
256ms 
256ms 
3 SYSCLKs 



246 Chapter Fifteen 

How often a register is sampled 

Whenever a bit is set or cleared, the actual changing of the bit's state does not 
always happen immediately. Because of internal synchronization, a delay is 
normally inserted before the bit is actually changed. The length of this delay 
depends on the sampling rate, which in turn depends on the clock rate. 

Signal path 

When running at a fast clock rate, the length of a signal line must be limited to 
a point where it will cause a significant voltage drop. During layout phase, you 
should ensure that all signal paths are within limit. 

Table 15.3 shows the maximum signal line lengths in millimeters and inches 
for various logic families. 

Signal terminations 

In a high-speed memory interface, ringing can happen if signals are not prop­
erly terminated. Table 15.4 shows the typical damping resistance require­
ments for the various memory control signals in an SL CPU-based system. The 
recommended characteristic impedance for boards is 50 ohms. Lower values 
are better, since higher values increase the amount of ringing. 

The buffers for MEMR#, MEMW#, IOR#, and IOW# are designed to drive 
240 picofarads, sink 24 milliamperes, and provide a maximum delay of 19 
nanoseconds. If there are no series damping resistors, under the worst-case 
conditions the ringing takes 20 nanoseconds to die down, which means the pin 
timing will be off by a large margin. For the SYSCLK signal, the maximum 
amplitude is 1.2 volts under worst-case if no series damping resistor is used. 

TABLE 15.3 Maximum Allowable Signal Line Lengths 

Logic family Signal line length, mm (in) 

Low-power Schottky (LS) 
Schottky (S) 
Advanced LS (ALS) 
Advanced Schottky TTL 
Advanced Schottky (AS) 
Advanced CMOS technology 
Emitter-coupled logic (ECL) 

760 (30) 
280 (11) 
280 (11) 
200 (8) 
150 (6) 
200 (8) 
150 (6) 

TABLE 15.4 Damping Resistor Requirement for Different Memory Signals (lntel386 SL CPU) 

Signals 

MA[lO:Ol and RAS [3:0] 
MEMR#, MEMW#, IOR#, IOW#, and SYSCLK 
IOCHRDY, IOCS16#, MEMCS16#, WLE#, 
WHE#, BALE, SD[15:0] 

Damping resistor 

22-ohm 
10-ohm 
Recommended but not required 



System Development Tools and Debugging 247 

What to Do If a System Hangs Up 

A lot of things can cause the system to hang up, such as getting in an infinite 
loop, a memory error, or a malfunctioning peripheral. The quickest way to find 
out if a system is still alive is to check if the NumLock key on the keyboard still 
toggles. To see if the system hangs up because of a memory problem, you can 
check the RAS#, CAS#, and refresh signals. If you suspected a peripheral is 
causing the problem, you can replace the peripheral with another one. 

Sometimes, if an SMM program is not written correctly, it can cause the sys­
tem to hang up. One way to find out if the system is hung up inside SMM is to 
examine the SMI# pin on the CPU. If the SMI# is low (active), the system is 
still in SMM. 

What If Everything Else Fails? 

Very often, we will run into situations where we 'have tried everything we can 
think of to solve a problem but the problem still persists. In this kind of situa­
tion, it always helps to discuss the problem with someone. My experience is 
that even talking to someone who doesn't know anything will help. In telling 
someone about your problem, what you are effectively doing is summarizing 
what the problem is and what you have done about it. A lot of times, people 
such as your colleagues can provide useful suggestions for you to try, and 
explanations for the problems. And sometimes, I realize what I have done 
wrong even before I finish describing the problem. 

One thing I would recommend is to try not to spend an excessive amount of 
time on the problem-even when you are under the pressure of a deadline. 
Pushing yourself too hard can work against you. When you are tired, you tend 
to make more errors. It would be better to stay away from the problem for a 
short while and come back with a new perspective. 

Development Methodology 

Summary 

Designing an SL CPU-based system requires a high level of integration 
between hardware and software. To have a better chance of success at inte­
grating the firmware, the software design process should start in parallel with 
the hardware design. This will help the software engineers identify soft­
ware-hardware interaction problems much earlier. 

It takes time to learn how to use new tools. To make your product develop­
ment time more productive, you should use the tools you are familiar with, 
unless you find them insufficient for the task at hand. 

Many people think that debugging a system is much harder than designing a 
system, and there is definitely some truth to it. As portable computer design­
ers, we often have to deal with unfamiliar hardware and software. This is espe­
cially true with power management. What is supposed to be a power-saving 



248 Chapter Fifteen 

feature can turn out to be a problem. For example, powering off the RS232 
buffers for the serial ports during suspend can save power, but doing so will 
also block the modem ring signal from going through the buffers to resume the 
system. 

Debugging an SL CPU-based system does not require elegant tools. Most of 
the problems can be solved with a logic probe and a software debugger. How­
ever, it does require that you have a clear understanding of the SL architec­
ture, which is what this book is about. Much of the discussion in this chapter 
is based on my experience in debugging SL architecture-based systems. Even 
though no two systems are identical, the same debugging technique can still be 
applied to any system. 

References 

Buchanan, J., CMOS /TTL Digital Systems Design, McGraw-Hill Publishing Company. 
Dawson, P. and A. Lantz, "ROM Monitor Tips and Tricks Aid Debugging Effort," EDN Magazine, 

special software supplement, June 1991, pp. 23-29. 
Duncan, R., "Microsoft Windows/386: Creating a Virtual Machine Environment," Microsoft Sys­

tems Journal, September 1987, pp. 1-11. 
Porter, A. "Use the Analytic Approach to Avoid Errors When Probing CMOS Circuits," EDN Mag­

azine, March 1992, pp. 123-128. 
Seidensticker, R., The Well-Tempered Digital Design, Addison-Wesley Publishing Company, 1986. 



Chapter 

16 
Performance and Potential 

Introduction 

The Intel486 SL CPU is based on the Intel486 SX CPU core, and the Intel386 
SL CPU is based on the Intel386 SX CPU core. The SL CPUs thus offer per­
formance similar to that of the SX versions and, in some cases, even better. 
This chapter contains performance data for the 16-, 20-, and 25-MHz versions 
of the Intel386 SL CPU. (At the time this book went to press, performance 
information was not available for the Intel486 SL CPU.) The performance data 
presented here highlights the benefits of various CPU attributes that can 
affect system performance. You can use this information as a general guideline 
for fine-tuning your portable computer designs. 

The benchmark programs used in this chapter measure system performance 
only. Unlike CPU performance benchmarks, which show the performance of 
the CPU only, system performance shows the performance of the various sys­
tem components working together. 

As with any benchmark program, it is relatively easy to tailor a benchmark 
that shows one machine outperforming another. For some of the benchmark 
programs, using a different configuration might yield different results. In the 
process of collecting benchmark data for this chapter, extra effort has been 
made to create the same environment for every machine tested. However, due 
to the compact nature of notebook systems, it is difficult to do an exact "apple 
to apple" comparison using the same hardware configuration for all the sys­
tems benchmarked. 

It is helpful to keep the following questions in mind when comparing the 
performance data in this chapter against results published by others: When 
were the benchmarks run? By whom? Using which hardware and software 
configuration? In addition, a good understanding of the be:q.chmark programs 
can help in interpreting the results correctly. Since DOS is the operating 
system of choice for notebook platform, only DOS benchmark programs 
were used. 

249 



250 Chapter Sixteen 

Common Terminology 

Wait state 

This section discusses some terms commonly used in benchmark reports. Skip 
to the next section if you are familiar with these terms already. 

One thing people always tout when describing performance is the number of 
wait states. In the Intel386 SL CPU, it takes a minimum of two CPU clock 
cycles to complete a memory cycle. Any extra CPU clock cycle added is called a 
wait state. 

To determine the number of wait states that a system is using, testers nor­
mally measure the time it takes to perform a fixed number of memory cycles 
and subtract it from the time it takes if no wait state is inserted. They then 
divide this number by the number of cycles. Below is a formula for calculating 
the number of wait states: 

((time to perform a fixed number of memory cycles) 
- (#of CPU clock cycles* {1/CPU clock speed)) 

+ number of cycles performed 

Since not every memory cycle incurs a wait state, the number of wait states is 
not always an even number. 

Turbo mode 

Battery life 

The term turbo mode is often used when describing the various levels of per­
formance a machine might offer. With the SL CPU, turbo mode refers to a state 
in which the CPU is running at full speed. De-turbo mode means running at 
less than full CPU clock speed. AB explained in Chap. 9, the CPU clock speed 
is controlled through hardware and software, and can be slowed or stopped to 
reduce power consumption. 

Battery life is a reference to the power-saving capability of a system. It is gen­
erally given as the number of hours the machine can operate on a single bat­
tery charge. This number is normally obtained by running a program on the 
machine continuously. Battery life of the system is the number of hours it takes 
to discharge the battery to below the level needed to operate the system. 

The power consumption of the system is measured in watts per hour. 

Power=V 2 * K 

where Vis voltage and K is a constant (K =capacitance * frequency). 
Power consumption can be measured with a current probe or a multimeter, 

and is highly dependent on the operating state of the system. For example, 
the clock speed or the number of disk accesses required can greatly affect the 
power consumption of a system. 



Performance and Potential 251 

lntel386 SL CPU Performance Summary 

The high level of function integration in the Intel386 SL CPU allows a cache 
controller and a memory controller to be included on the chip. These con­
trollers help the lntel386 SL CPU achieve its high performance levels. Pro­
grammable options are also provided on the Intel386 SL CPU for fine-tuning 
system performance. The following are programmable options that can affect 
performance: cache size, cache mapping, DRAM page mode, DRAM refresh 
rate, flash BIOS wait states, and SRAM wait states. These options allow the 
OEMs to balance the tradeoffbetween cost and performance. 

Test results show that notebooks using the Intel386 SL CPU deliver higher 
performance than other notebook PCs in the market. The 25-MHz Intel386 SL 
CPU delivers the highest performance among all the systems tested. The rela­
tive performance of the 25-MHz Intel386 SL CPU is about half that of the 
Intel486 DX CPU at the same clock speed. The 20-MHz lntel386 SL CPU is 
about 20 percent slower than its 25-MHz counterpart. There is a dramatic dif­
ference in performance between the standard part and a cacheless part at the 
same clock speed. The difference can be as much as 40 percent. 

In a comparison of a 20-MHz lntel386 SX-based machine (without a cache) 
and the 20-MHz Intel386 SL CPU-based evaluation board (with cache), the 
controller disabled showed that the performance of the Intel386 SL CPU-based 
system is about 10 percent higher. 

Most DOS benchmark programs are small. Thus, a system with a small 
cache, such as a machine with only 4 Kbytes of cache, can produce results as 
good as an SL evaluation board with a large cache. A larger cache should 
improve system performance measurement when running large benchmark 
programs such as the SPEC benchmark or the Unix benchmark, and real-life 
applications like Microsoft Windows and EXCEL. 

Impact of System Attributes on Performance 

To get a good understanding of how some of the system attributes can affect 
performance, the SL evaluation board was tested using several different sys­
tem configurations. The configuration of the memory system is a critical factor 
in the overall system performance. The cache controller and memory controller 
inside the Intel386 SL CPU have been designed to offer the highest possible 
performance with maximum flexibility. 

The on-chip cache controller supports three different cache sizes: 16-, 32-, 
and 64-Kbyte. You might expect that large caches offer greater performance 
than small caches. However, as mentioned earlier in this chapter, due to the 
small size of the DOS benchmark programs, a large cache often does not result 
in better benchmark performance. Also, adding a 16-Kbyte cache offers a dra­
matic improvement in performance over a system with no cache. 

The cache controller supports three different cache mapping mechanisms: 
direct, two-way, and four-way. Again, due to the small size of the benchmark 
programs, the impact of cache mapping on performance is minor. The cache 
controller has a write poster which will post up to three words before the CPU 



252 Chapter Sixteen 

stops processing. However, only local memory or ISA-bus memory write cycles 
during hold acknowledge are posted. If the write poster is disabled, the overall 
performance drops by about 5 percent. 

Memory paging is a technique to improve system memory performance, and 
the Intel386 SL CPU offers three DRAM page modes. With the cache controller 
enabled, the difference in performance between the different page modes is 
about 2 percent. Thus, designers can use slower and cheaper DRAMs with the 
Intel386 SL CPU and still have a high system throughput. On the other hand, 
the DRAM page mode makes a big difference for cacheless systems. When the 
cache controller is not used, the difference in performance between the differ­
ent page modes is about 13 percent. 

The normal refresh rate and suspend refresh rate on the Intel386 SL CPU 
are programmable to support DRAMs with extended refresh rates. However, 
changing the refresh rate does not affect the performance of the system. This 
is also true for interleaving. The performance of the system is the same with or 
without interleaving. Changing the refresh rate and using interleaving does, 
however, have a big effect on battery life. 

The memory controller supports a DRAM as well as an SRAM interface. 
Using the smallest number of wait states (two), the performance of a SRAM 
system is about 7 percent slower than a DRAM system using the high-speed 
page mode. Adding one wait state to an SRAM system has a 4 percent perfor­
mance penalty. 

Flash BIOS wait states can be implemented to support slower flash memory 
devices. Using wait states for the flash BIOS affects code execution speed 
whenever code is executed out of the flash BIOS (e.g., an application makes a 
BIOS function call). Test results show, however, that adding wait states to the 
flash BIOS have little impact on performance. 

Overall, the Intel386 SL CPU delivers the highest performance with maxi­
mum flexibility to accommodate factors such as cost, power consumption, prod­
uct differentiation, and product size. 

Low on high performance 

A high-performance processor can be slowed down to a crawl by slow 110 traffic. 
The key to high system performance is sustained throughput. System perfor­
mance in an Intel486 SL CPU- or an Intel386 SL CPU-based system can be 
improved dramatic~ly through effective use of the 1/0 support mechanism pro­
vided in the CPU and 82360SL, and through careful selection of peripherals. 

CPU clock speed 

Table 16.1 contains benchmark results for different CPU clock speeds, using a 
20-MHz Intel386 SL CPU-based evaluation system with a 64-Kbyte cache. As 
you can see, CPU performance is directly proportional to clock speed. However, 
CPU performance does not always correlate directly to system performance. 

De-turbo mode was provided not only for power management, but also to 
maintain compatibility with older software. Newer software designs, however, 



Performance and Potential 253 

TABLE 16.1 Power Meter V1 .5 Benchmark Results 
under Different Clock Speeds 

Test EFl/2 EFl/4 EFl/8 

Aggregate (PMU) 210.66 105.08 52.35 
Clock(MHz) 10.77 6.20 3.83 
MIPs 1.986 .997 .499 
Dhrystone (K/s) 2.547 1.278 .639 
Whetstone (K/s) 385.39 202 104.97 
Sieve (s) 1.634 3.283 6.619 
Video Agg (PMU) 1786.3 894 487.l 
Video Char (s) 1.8 3.516 6.382 

generally do not restrict system operation at high CPU speeds. Therefore, you 
rarely need to slow down the CPU to get software to work. 

Listing 9.1 in Chap. 9 gives a short program that changes the clock speed of 
the CPU under software control. 

Math coprocessor 

For numeric-intensive programs such as spreadsheets or CAD programs, a 
math coprocessor (MCP) such as the Intel387 SL mobile math coprocessor can 
improve performance by as much as five times. An MCP is useful only when a 
program is doing a lot of number crunching of real numbers (floating-point 
numbers). For some of the AutoCAD benchmarks, you can see a performance 
increase ranging from 30 percent to 100 percent. 

Peripherals 

Have you ever wondered why machines with the same motherboard often get 
different performance reviews using the same set of benchmark programs? 
One reason for these performance differences is that different peripherals are 
used in the systems. Your choice of peripherals has a strong impact on overall 
system performance. For example, a hard disk drive with a fast access time can 
improve the system performance by as much as 10 percent (over systems that 
use slower drives) in some benchmarks. 

Careful selection of peripherals is thus important in designing a high­
performance system. On the other hand, data throughput for some of the 
devices can be increased by the addition of external hardware. For instance, a 
disk cache can significantly improve the data access time for a hard disk drive. 

Sometimes, even minor changes can improve performance. An example 
(Listing 16.2) gives a few simple lines of code for changing the step rate of a 
floppy drive to improve the disk access time. 

Listing 16.2 Code to Change the Step Rate of a Floppy Drive 

xor 
mov 
mov 
mov 

ax, ax 
ds, ax 
bx, 522 
byte ptr [bx], OEFh 

set data segment at 0 
offset of the disk parameter table 
change step rate to 4 ms 



254 Chapter Sixteen 

OMA clock speed 

ISA bus 

Pl bus 

The DMA controllers are typically used for ISA-bus memory refresh and by the 
floppy drive and network adapters. On a standard ISA-bus system, the clock 
speed for the DMA controller is 4 MHz, which is very slow. With the 82360SL, 
the DMA controller clock can be set to 8 MHz to improve data throughput. 
Increasing the DMA clock speed is done by setting the DMASEL bit (bit 1) in 
the CFGRl register (63H, INDEX) to 1. 

To remain compatible with the industry standard ISA-bus architecture, the 
ISA-bus clock speed is restricted to 8 MHz only. Wait states are normally 
inserted in memory and 1/0 cycles (one wait state for memory cycles and four 
wait states for 1/0 cycles). Higher performance can be achieved if wait states 
are eliminated (that is, using zero wait states for both memory and 1/0 cycles). 
When you have to access the ISA bus, use it efficiently (e.g., always use zero 
wait state transfer and 1/0 string instructions for data transfers). 

If you wish to use one or more peripheral devices that have performance 
greater than is possible with ISA-bus devices but you do not want to abandon 
the ISA bus completely, you should definitely consider using the PI bus. Except 
for a few control signals, the Pl-bus interface is essentially the same as the 
ISA-bus interface, except that the PI bus runs at the CPU clock speed. In an SL 
CPU-based system, Pl-bus peripherals can coexist with ISA-bus peripherals. 

You can achieve significant improvement in performance at a very small cost 
by modifying key peripherals that affect performance of the system to run on 
the PI bus. For example, the performance of the VGA graphics controller is 
critical in graphics-intensive applications such as Microsoft Windows. A VGA 
controller using the PI bus can run anywhere from 30 to 100 percent faster 
than on the ISA bus. 

Impact of Power Management on Performance 

The power management system of an SL CPU-based system does have some 
impact on system performance. Some of this impact is by design. For instance, 
slowing the clock speed of the CPU reduces power consumption at the expense 
of CPU throughput. Running power management software affects performance 
because it uses CPU cycles (even though it is running in SMM). The effect of 
your power management system on overall system performance is thus highly 
dependent on how it is implemented and which benchmarks are being used to 
measure performance. 

Most of the power management operations (e.g., disabling of the serial port 
buffers) take less than a millisecond to execute, so they will have minimal 
impact on performance when the system is working intensely at full CPU 
speed. You probably will not see the difference in performance when running 



Performance and Potential 255 

standard DOS benchmark programs, since they tend to exercise the entire 
machine. With a multitasking environment benchmark, you will probably see 
some difference, but the overall impact on performance will still be small. 

Performance and Cost 

People often say that if you want the best you have to pay more. The question 
is, how much you are willing to pay? In any design, you must evaluate the 
tradeoffs between cost and performance. For example, with the Intel386 SL 
CPU's built-in cache controller, you can use slower and less expensive DRAMs; 
however, the savings in using cheaper DRAMs might be offset by the cost of 
implementing the cache. But, then again, this cost might be justified by the 
overall performance gain from the cache. 

With portable computers, you also have to balance tradeoffs between power 
consumption and cost. For instance, using SRAMs for main memory can lower 
power consumption. However, SRAMs are more expensive than DRAMs and 
not available in high-density packages. For a typical portable machine with 4 
Mbytes of base memory, SRAMs are ordinarily too expensive. But for a hand­
held computer with a small amount of base memory, SRAMs might be a better 
choice than DRAMs, since power consumption is more critical in hand-held 
products. 

Power Consumption Benchmarks 

Power consumption benchmarks are relative new and not well understood. 
Due to a misunderstanding of how power management is supposed to extend 
battery life, many battery-life benchmarks ignore the built-in power manage­
ment capabilities of a system. 

Typically, power consumption benchmarks are obtained by exercising the 
system continuously until the battery goes dead. A more refined power con­
sumption benchmark might use a test script with a typical user profile. For 
example, users always pause when they are typing. During pauses, sophisti­
cated power management systems often slow or stop the CPU clock. Using 
scripts that force periodic pauses in processing are thus better able to measure 
the effectiveness of a power management system. 

Benchmarks can also be created to check out a specific part of a system. For 
example, running Microsoft Windows in enhanced mode is very CPU-intensive. 
Therefore, it can be used as a benchmark for CPU power efficiency. Again, a 
special test script using a typical user profile can be developed to benchmark 
the display system. 

Knowing the relative power consumption efficiency of all the components in 
the system can help you design power consumption benchmarks and under­
stand the results of other benchmarks. For example, the SL CPU can be made 
to operate in several different low-power modes. However, if you look at the 
power consumption of all the peripherals in a system, you will realize that 
the power consumed by the CPU is negligible compared with that of the hard 
disk and LCD panel. 



256 Chapter Sixteen 

Interpreting Benchmark Results 

Power consumption benchmark results are often quoted without giving back­
ground information. Therefore, they can be very misleading, especially for the 
end users. When looking at any power consumption benchmark, you should 
always ask yourself these questions: What functions does the benchmark pro­
gram perform? What is the system configuration of the machines tested? What 
type of battery is used, and what is the capacity of the battery? 

How the benchmark program is written can affect the battery life. For exam­
ple, two different benchmark programs often yield different battery-life num­
bers. Also, since not all the machines are identical, it makes no sense to 
compare a fully loaded machine to a machine with minimal configuration. If a 
machine has two battery packs, it will likely have a longer battery life than 
other machines, regardless of how efficient its power management system is. 

Benchmark Collection Methodology 

The benchmark data quoted in this chapter was obtained on an Intel386 SL 
CPU-based evaluation board. The evaluation board was used for benchmarking 
because it is easy to configure. Since the evaluation board is strictly a vehicle for 
evaluation, no optimization was done to achieve the highest performance possi­
ble. The performance data obtained on the SL evaluation board thus provides 
typical data. It is possible to obtain better performance by changing hardware 
or software configuration. Also, some benchmark programs depend on video 
graphics controller and hard disk performance. 

DOS environments 

All benchmarks were executed under DOS 3.3, DOS 4.01, or DOS 5.0 with the 
same config.sys file, the contents of which are as follows: 

FILES= 30 
BUFFERS = 20 
DEVICE HIMEM.SYS 
DEVICE= SMARTDRV.SYS 2048 512 

Except for the SL system, all the machines tested came with proprietary DOS 
operating systems. Installing a different version of DOS might cause the sys­
tem to malfunction. Therefore, no attempt was made to use the same version 
of DOS on all the systems tested. 

System configurations 

The Intel386 SL CPU evaluation board used for benchmarking has the follow­
ing configuration: 

Intel386 SL CPU-BO stepping 

16/20/25 MHz 



Summary 

Performance and Potential 257 

4 Mbytes of main memory (2 banks, interleaved) 

64-Kbyte write through cache 

16-bit VGA card 

28-ms Prairie 240 IDE drive 

(no MCP installed) 

Except as indicated, all benchmarks were executed with the following BIOS 
configurations: system and video BIOS shadowed, cache configured for four­
way mapping, and DRAM mode set to high-speed page mode. 

Beauty is in the eyes of the beholder and so are benchmark programs. Differ­
ent benchmark programs will give different performance results. There is no 
rigid rule or guideline for interpreting benchmark data. A lot of it is common 
sense. As long as you compare the results to the actual user environment, you 
can always gain a good grasp of what to expect. 





Chapter 

17 
The Future 

We cannot predict precisely how portable computers will evolve. However, we 
can foresee the general direction. Ever since I started working on the Intel386 
SL processor, I have seen an analogy between the evolution of portable com­
puters and the evolution of calculators. It may have something to do with the 
fact that the first microprocessor was used in the calculator. In their early 
days, calculators were bulky and expensive. AB time went by, both the demand 
for calculators and advances in technology drove manufacturers to produce cal­
culators that were cheaper, lighter, and faster. Now, we are acknowledging that 
same trend in the portable computer market. Portable computers are getting 
cheaper, lighter, and more powerful. The future of portable computers will def­
initely bear a close resemblance to the evolution of calculators. 

What Next? 

3.3-volt and 5-volt hybrid system 

Power is equal to V 2/R. So, lowering the operating voltage (V cc) will reduce 
power consumption and in turn extend battery life. Currently, manufacturers 
and Intel are moving toward 3.3-volt technology for components. However, the 
conversion from 5 to 3.3 volts will not happen overnight. Many issues remain 
to be resolved. 

Two of the major problems facing designers of 3.3-volt systems are the lack 
of standardization and the availability of 3.3-volt components. Even though 
the JEDEC standard is available, it does not cover areas such as interfacing to 
a 3.3-volt ISA bus. The lack of standardization has made it hard for chip 
designers to design and test their components, slowing the development of 3.3-
volt components. 

Even though the CPU and memory manufacturers have taken the lead in 
supplying 3.3-volt components, the availability of 3.3-volt parts to build a com­
plete 3.3-volt system is still very limited. To speed up the conversion process, 
most manufacturers have recharacterized 5-volt parts to run at 3.3-volts. The 

259 



260 Chapter Seventeen 

only drawback to this practice is the degradation of performance. After rechar­
acterization, the 5-volt parts will run at a slower speed. 

In the absence of standardization and availability, it is better to take an 
incremental approach. The first and most logical step in migrating to a com­
plete 3.3-volt system is to run everything at 3.3 volts except for the ISA-bus 
peripherals. And this is exactly how the Intel486 SL CPU is designed, as you 
learned in Chap. 16. 

A complete 3.3-volt system 

The Intel486 SL CPU has certainly paved the way toward a complete 3.3-volt 
system. The knowledge which you gained in building a hybrid system using the 
Intel486 SL CPU will definitely help you in moving one step closer to a com­
plete 3.3-volt system. Based on the rate at which manufacturers are currently 
creating 3.3-volt components, we will see many complete 3.3-volt systems 
toward the end of 1993. 

How low is low? !flowering operating voltage from 5 volts to 3.3 volts can save 
substantial power, reducing operating voltage further will save even more 
power. The question is, how low can we go? As we push for higher speed and 
lower power consumption, there is no doubt that the operating voltage will 
decrease again. People have already started talking about moving all the way 
down to 1 volt-which will probably not happen for several years. 

However, we can prepare for yet another voltage migration even though we 
don't know when it is coming. For example, whatever standards are formu­
lated for 3.3-volt components should be flexible enough to be easily extended to 
1-volt components. 

LCD display 

The LCD display market is moving in two directions. As more and more 
portable computer manufacturers are using color LCD panels, they will find 
the means to improve the color display technology as well as to reduce the cost 
of production. On a different front, LCD panel manufacturers are looking for 
ways to reduce power consumption. 

The LCD panel is the most power-hungry device in a system consisting ofliq­
uid crystal display, LCD driver chips, and the backlight. In an average system, 
the LCD display consumes 30 to 40 percent of the total power. 

Battery technology 

Since I have been working with the SL CPU, I have been looking forward to the 
day when portable computers are solar powered (like calculators). With a solar 
powered system, users never have to bother recharging the battery. I do not 
expect solar power to become a feasible source of power for portable computers 
for many years to come. 



The Future 261 

What technology improvements, if any, have occurred that we should be aware of, and is 

there anything better available on the horizon?* 

NiCd manufacturers are continuously seeking to improve product capabilities 
and quality. Increased capacity means longer run times. For many years, battery 
makers have boosted capacity by over 10 percent a year, driving research into new 
electrochemical couples. Rechargeable lithium and Ni-metal hydride cells are 
prominent contenders, with significant increases in energy density over NiCd cells. 

Metal hydride is progressing steadily, and is also equivalent in voltage to NiCd 
cells. Broad acceptance of metal hydride depends on its ability to be successfully 
used in several environments. 

Pen-based computers 

Will pen-based computers universally replace computers with keyboards? 
Probably not anytime soon. The technology is still in its infancy. Pen-based 
computers are still limited to vertical markets such as specific industrial and 
business applications. 

Software collaboration 

With the introduction of Advanced Power Management Specification for DOS 
and Windows, we should expect other operating systems such as UNIX and 
OS/2 to become power aware. 

User psychology 

Is it necessarily true that the lightest portable with the longest battery life is 
the best portable computer? Not always. Frequently, portable computer 
designers have neglected the importance of understanding user needs and psy­
chology. For example, just look at the ergonomics of the track ball in some 
portable computers. Many manufacturers placed the track ball in a location 
that is hard for users to reach. User-friendly features are becoming increas­
ingly important in today's PC market, where there is little differentiation 
between machines. 

Another logical question is, of course, who are the users? Have you ever 
asked a friend, "Would you buy a portable computer for your own use?" Proba­
bly 90 percent of respondents to this question would say, "No." Most of the peo­
ple who are buying portable computers are business users, most of whom 
travel frequently. They buy portable computers so that they can work while 
they travel. 

Frequently, portable computers are designed to serve the needs of these peo­
ple. For example, many portable computers have built-in fax modems or offer 
them as an option. These options allow you to communicate easily with your 
office while you are traveling. Some portable computers even offer a connector 
to hook up with a cellular phone. 

* Contributed by Mark Dewey of Gates Energy Products. 



262 Chapter Seventeen 

So, how do you determine users' needs so that you can design appropriate 
features into your future products? The best way to find out is to become a user 
yourself. The other way is to do some research by reading magazines, market 
research reports, and consumer reports. 

Mainstream computing 

Will portable computers replace desktop computers in the next few years? 
The answer to this question hinges on cost and ease of use. If the price points 
for portable and desktop computers converge, and portable computers become 
as powerful as desktop computers, more people will switch over to portable 
computers. 

Does that mean desktop computers will become history? That is unlikely. 
Instead, we will see many PC manufacturers applying portable computer tech­
nologies to desktop computers, to conserve energy. For example, a few desktop 
computer manufacturers are already experimenting with using Intel SL CPUs 
and other SL components to reduce power usage in desktop machines. 



Manufacturers of DRAMs 

Electronic Designs Inc. 
42 South St. 
Hopkinton, MA 017 48 
(508) 435-6302 
Fax (508) 435-6302 

Fujitsu Microelectronics Inc. 
Integrated Circuits Division 
3545, N. First St. 
San Jose, CA 95134 
(800) 642-7616 
in CA, (408) 922-9000 
Fax (408) 432-9044 

Goldstar Electron America 
3003 N. First St. 
San Jose, CA 95134 
(408) 432-1331 
Fax ( 408) 432-6067 

Hitachi America Ltd. 
Semiconductor and IC Division 
2000, Sierra Point Pkwy. 
Brisbane, CA 94005 
(415) 589-8300 
Fax (415) 583-4207 

Hyundai Electronics America 
166, Baypointe Pkwy. 
San Jose, CA 95134 
(408) 473-9200 
Fax (408) 493-9567 

Appendix 

A 
List of Vendors 

Micron Technology 
2805, E. Columbia Rd. 
Boise, ID 83706 
(208) 368-3900 
Fax (208) 368-4617 

Mitsubishi Electronics America Inc. 
Electronic Devices Group 
1050 E. Arques Ave. 
Sunnyvale, CA 94086 
(408) 730-5900 
Fax ( 408) 7 49-0453 

Motorola Inc. 
3501 Ed Bluestein Blvd. 
MSK13 
Box 6000 
Austin, TX 78762 
(512) 928-6700 
Fax (512) 928-6809 

NMB Technologies 
9730 Independence Ave. 
Chatsworth, CA 91311 
(818) 341-3355 
Fax (818) 341-8207 

Oki Semiconductor 
785N. Mary 
Sunnyvale, CA 94086 
(408) 770-1900 

263 



264 Appendix A 

Panasonic Industrial Co. 
1616, McCandless Dr. 
Milpitas, CA 95035 
(408) 945-5650 
Fax (408) 946-9063 

Samsung Semiconductor 
3725 N. First St. 
San Jose, CA 95134 
(408) 954-7229 
Fax (408) 954-7873 

Sharp Electronics Corp. 
5700 NW Pacific Rim Blvd. 
Camas, WA 98607 
(206) 834-8700 
Fax (206) 834-8611 

Manufacturers of LCD Display 

Cherry Corp. 
3600 Sunset Ave. 
Waukegan, IL 60087 
(708) 360-3513 
Fax (708) 360-3566 

Epson America Inc. 
20770 Madrona Ave. 
Torrance, CA 90503 
(310) 787-6300 
Fax (310) 782-5350 

Fujitsu Microelectronics 
Electronic Components Div. 
3545 North First St. 
San Jose, CA 95134 
(408) 922-8933 
Fax (408) 428-0640 

Hitachi America, Ltd. 
3850 Holcomb Bridge Rd. 
Suite 300 
Norcross, GA 30092 
(404) 409-3000 
Fax (404) 409-3028 

Optrex/Satori 
3830 De Amo Blvd. 
Suite 101 
Torrance, CA 90503 
(310) 214-1791 
Fax (310) 214-8228 

Texas Instruments Inc. 
Semiconductor Group 
Box809066 
Dallas, TX 75380 
(800) 366-5236, Ext. 700 
In Texas (214) 995-6611 Ext. 700 

Toshiba America 
Electronic Components Inc. 
9775 Toledo Bay 
Irvine, CA 92718 
(714) 455-2000 
Fax (714) 859-3963 

Vitelic Semiconductor Corp. 
3910 N. First St. 
San Jose, CA 95134 
(408) 433-6000 
Fax (408) 433-0185 

Planar Systems, Inc. 
1400 North West Compton Dr. 
Beaverton, OR 97006 
(503) 690-1100 
Fax (503) 690-1244 

Plasmaco Inc. 
180 South St. 
Highland, NY 12528 
(914) 883-6800 
Fax (914) 883-6867 



Manufacturers of Power Supplies 

Astec Standard Power 
401 Jones Rd. 
Ocean Side, CA 92054 
(619) 757-1880 
Fax (619) 439-4243 

Coutant-Lambda 
Kingsley-Ave. 
Ilfracombe EX34 SES, UK 
(271) 863781 
Fax(271)864894 

Deltron 
Box 1369 
North Wales, PA 19454 
(215) 699-9261 
Fax (619) 699-2310 

Philips Industrial 
Box 218, 5600 MD Eindhoven, 
The Netherlands 
(40)786280 
Fax(40)785968 

Manufacturers of Hard Disk Drives 

Areal Technology 
2075 Zanker Rd. 
San Jose, CA 95131 
(408) 436-6844 
Fax (408) 436-6844 

Conner Peripherals Inc. 
3081 Zanker Rd. 
San Jose, CA 95134 
(408) 456-4500 
Fax (408) 456-4501 

Fujitsu America Inc. 
3055, Orchard Dr. 
San Jose, CA 95134 
(408) 432-1300 
Fax (408) 432-1318 

Hewlett-Packard Co. 
Disk Mechanisms Div. 
11413 Chinden Blvd. 
Boise, ID 83714 
(208) 323-2332 
Fax (208) 323-3991 

Power-One 
7 40 Calle Plano 
Camarillo, CA 93012 
(805) 987-8741 
Fax (805) 388-0476 

Qualidyne Systems 
3055 Del Sol Blvd. 
San Diego, CA 92154 
(619) 575-1100 
Fax (619) 429-1011 

Uni power 

List of Vendors 265 

2981 Gateway Dr. 
Pompano Beach, FL 33069 
(305) 974-2442 
Fax (305) 971-1837 

Vicor 
23 Frontage Rd. 
Andover, MA 01810 
(508) 470-2900 
Fax (508) 475-6715 

Hitachi America Ltd. 
Computer Div. 
2000 Sierra Point Pkwy. 
Brisbane, CA 94005 
(415) 589-8300 
Fax (415) 583-4207 

IBM Corp. 
3605, Highway 52 N 
Rochester, MN 55901 
(507) 253-1897 

JVC Companies of America 
19900 Beach Blvd., Suite I 
Huntington Beach, CA 92648 
(714) 965-2610 
Fax (714) 968-9071 

Kalor Corp. 
1289 Anvilwood Ave. 
Sunnyvale, CA 94089 
(408) 747-1315 
Fax (408) 747-1319 



266 Appendix A 

Kyocera Electronics Inc. 
Memory Products Div. 
100 Randolph Rd. 
Somerset, NJ 08875 
(201) 563-4333 
Fax (201) 560-8380 

Maxtor Corp. 
211 River Oaks Pkwy. 
San Jose, CA 95134 
(408) 432-1700 
Fax (408) 433-0457 

Microscience International Corp. 
90 Headquarters Dr. 
San Jose, CA 95134 
(408) 433-9898 
Fax(408)954-0989 

NCL America Computer Products Inc. 
1221 Innsbruck Dr. 
Sunnyvale, CA 94089 
(408) 734-1006 
Fax (408) 744-0709 

NEC Technologies 
1414 Massachusetts Ave. 
Boxborough, MA 01719 
(508) 264-8000 
Fax (508) 264-8673 

Quantum Corp. 
1804 McCarthy Blvd. 
Milpitas, CA 95035 
(408) 432-1100 
Fax (408) 943-0689 

Manufacturers of Crystal Oscillators 

AT&T Microelectronics 
555 Union Blvd. 
Allentown, PA 18103 
(215) 439-6011 

Bliley Electric Co. 
Box3428 
Erie, PA 16508 
(814) 838-3571 
Fax (814) 833-2712 

Connor-Winfield Corp. 
1865 Selmarten Rd. 
Aurora, IL 60505 
(708) 851-4722 
Fax (708) 851-5040 

Rodime Inc. 
901 Broken Sound Pkwy. NW 
Boca Raton, FL 33487 
( 407) 994-6200 
Fax ( 407) 997-9390 

Seagate Technology Inc. 
920 Disc Dr. 
Scotts Valley, CA 95066 
(408) 438-6550 
Fax ( 408) 429-6356 

Teac America Inc. 
Data Storage Products Div. 
7733 Telegraph Rd. 
Montebello, CA 90640 
(213) 726-0303 
Fax (213) 727-7621 

Toshiba America Information Systems Inc. 
Disk Products Div. 
97 40 Irvine Blvd. 
Irvine, CA 92713 
(714) 583-3109 
Fax (714) 583-3133 

Western Digital Corp. 
8105 Irvine Center Dr. 
Irvine, CA 92718 
(714) 932-5000 
Fax (714) 932-7502 

Hybrids International Ltd. 
311 N. Lindenwood Dr. 
Olathe, KS 66062 
(913) 764-6400 
Fax (913) 764-6409 

IC Designs 
12020 113th Ave. NE 
Kirkland, WA 98034 
(206) 821-9202 
Fax (206) 823-8898 

K&L Oscillatek 
620 N. Lindenwood Dr. 
Olathe, KS 66062 
(913) 829-1777 
Fax (913) 829-3505 



KDSAmerica 
10901 Granada Ln. 
Overland Park, KS 66211 
(913) 491-6825 
Fax (913) 491-6812 

MF Electronics Corp. 
10 Commerce Dr. 
New Rochelle, NY 10801 
(914) 576-6570 
Fax (914) 491-6812 

M-tron Industries Inc. 
Box630 
Yanton, SD 57078 
(605) 665-9321 
Fax (605) 665-1709 

Murata Erie NA 
1900 W. College Ave. 
State College, PA 16801 
(814) 237-1431 
Fax (814) 238-0490 

Manufacturers of Bus-Driver ICs 

Harris Semiconductor 
Box883 
Melbourne, FL 32902 
(407) 724-3978 
Fax (407) 724-3111 

Hitachi America Ltd. 
Semiconductor and IC Div. 
2000 Sierra Pt. Pkwy. 
Brisbane, CA 94005 
(800) 448-2244 

Integrated Device Technology 
Box 58015 
Santa Clara, CA 95052 
(408) 492-8675 
Fax (408) 492-8362 

Motorola Inc. 
Logic IC Div. 
2200 W. Broadway Rd. 
Mesa, AZ 85202 
(602) 962-2908 
Fax (602) 898-5020 

National Semiconductor Corp. 
333 Western Ave. 
South Portland, ME 04016 
(207) 775-8305 
Fax (207) 775-8745 

List of Vendors 267 

NEL Frequencies Controls Inc. 
357 Beloit St. 
Burlington, WI 53105 
(414) 763-3591 
Fax (414) 763-2881 

Piezo Technology Inc. 
Box 547859 
Orlando, FL 32854 
(407) 298-2000 
Fax (407) 293-2979 

Pletronics Inc. 
9026 Roosevelt Way NE 
Seattle, WA 98115 
(206) 523-9395 
Fax (206) 525-2350 

Vectron Laboratories Inc. 
166 Glover Ave. 
Norwalk, CT 06850 
(203) 853-4433 
Fax (203) 849-1423 

Philips Components/Signetics 
Box3409 
Sunnyvale, CA 94088 
(408) 991-2531 
Fax (408) 991-2265 

Quality Semiconductor Inc. 
851 Martin Ave. 
Santa Clara, CA 95050 
(408) 450-8061 
Fax (408) 496-0591 

Texas Instruments 
8330 LBJ Freeway 
MIS 8323 
Dallas, TX 75265 
(214) 997-5206 
Fax (214) 997-5250 

Toshiba America Electronic 
Components Inc. 

9775 Toledo Way 
Irvine, CA 92718 
(714) 455-2199 
Fax (714) 859-3963 



268 Appendix A 

Manufacturers of Floppy Drives 

Chinon America, Inc. 
615 Hawaii Ave. 
Torrance, CA 90503 
(800) 441-0222 
Fax (310) 533-1727 

Epson America, Inc. 
20770 Madrona Ave. 
Torrance, CA 90509-2842 
(800) 922-8911 
Fax (310) 782-5220 

Fujitsu Computer Products of America 
2904 Orchard Pkwy. 
San Jose, CA 95134 
(800) 626-4686 
Fax (408) 894-1709 

IBM 
Old Orchard Rd. 
Armonk, NY 10504 
(800) 426-2468 

Mitsubishi Electronics America, Inc. 
Information Systems Div. 
5665 Plaza Dr. 
Cypress, CA 90630 
(800) 344-6352 
Fax (714) 236-6171 

Mitsumi Electronics Corp, Inc. 
6210 N. Beltline Rd., Suite 170 
Irving, TX 75063 
(214) 550-7300 
Fax (214) 550-7424 

Manufacturers of DC-DC Converters 

Abbott Electronics Inc. 
2727 S. La Cienega Blvd. 
Los Angeles, CA 90034 
(213) 202-8820 
Fax (213) 836-1027 

Apex Microtechnology Corp. 
5980 N. Shannon Rd. 
Tucson, AZ 857 41 
(602) 690-8680 
Fax (602) 888-3329 

Astec America Inc. 
401 Jones Rd. 
Oceanside, CA 92054 
(619) 757-1800 
Fax(619)439-4243 

NEC Technologies, Inc. 
1414 Massachusetts Ave. 
Boxborough, MA 01719 
(800) 632-4636 
Fax(800)366-0476 

SONY Corporation of America 
Computer Peripheral Products 
655 River Oaks Pkwy. 
San Jose, CA 95134 
(800) 352-7669 
Fax (408) 943-0740 

TEAC America, Inc. 
Data Storage Products Div. 
7733 Telegraph Rd. 
Montebello, CA 90640 
(213) 726-0303 
Fax (213) 727-7652 

Toshiba America Information Systems, Inc. 
Computer Systems Division 
9740 Irvine Blvd. 
Irvine, CA 92713-9724 
(800) 334-3445 
Fax (714) 587-6034 

AT&T Microelectronics 
555 Union Blvd. 
Dept.52AL040420 
Allentown, PA 18103 
(800) 372-2447 
Fax (215) 778-4106 

Burr-Brown Power 
Convertibles 
3450 S. Broadmont Dr., Suite 128 
Tucson, AZ 85713 
(602) 628-8292 
Fax(602)628-1602 



Calex Mfg. Co. Inc. 
2401 Stanwell Dr. 
Concord, CA 94520 
(510) 687-4411 
Fax (510) 687-3333 

Computer Products Inc. 
7 Elkins St. 
South Boston, MA 02127 
(617) 268-1170 
Fax (617) 268-0300 

Conversion Devices Inc. 
15 Jonathan Dr. 
Brockton, MA 02401 
(508) 559-0880 
Fax(508)559-9288 

Datel Inc. 
11 Cabot Blvd. 
Mansfield, MA 02048 
(508) 339-3000 
Fax(508)339-6356 

Engineered Components Co. 
Box 8121 
San Luis Obispo, CA 93403 
(805) 544-3800 
Fax (805) 544-8091 

International Power Sources Inc. 
200 Butterfield Dr. 
Ashland, MA 01721 
(508) 881-7434 
Fax(508)879-8669 

Interpoint Corp. 
Box 97005 
Redmond, WA 98073 
(206) 882-3100 
Fax (206) 882-1900 

Linear Technology Corp. 
1630 McCarthy Blvd. 
Milpitas, CA 95035 
(408) 432-1900 
Fax (408) 434-0507 

List of Vendors 269 

Newport Components Ltd. 
Tanners Dr. 
Blakelands North 
Milton Keyes MK 14 5NA, UK 
(0908) 615232 
Fax(0908)6175465 

Powercube Corp. 
8 Suburban Park Dr. 
Billerica, MA 01821 
(508) 667-9500 
Fax (508) 667-6280 

Power General 
152 Will Dr. 
Canton, MA 02021 
(617) 828-6216 
Fax (617) 828-3215 

RO Associates Inc. 
Box 61419 
Sunnyvale, CA 94088 
(408) 744-1450 
Fax (408) 744-1521 

Sierra West Power Systems 
2615 Missouri Ave., Suite 5 
Las Cruces, NM 88001 
(505) 522-8828 
Fax (505) 522-8828 

Vicar Corp. 
23 Frontage Rd. 
Andover, MA 01810 
(508) 470-2900 
Fax (508) 475-6715 

Wall Industries Inc. 
5 Watson Brook Rd. 
Exeter, NH 03833 
(603) 778-2300 
Fax (603) 778-9797 



270 Appendix A 

Manufacturers of Batteries 

Chelsea/RS Electronics 
34443 Schoolcraft 
Livonia, MI 48150 
(800) 366-7750 

Duracell, Inc. 
OEM Sales and Marketing Div. 
Berkshire Industrial Pk. 
Bethel, CT 06801 

Gates Energy Products 
555 Pointe Drive 
Building Three, Suite 307 
Brea, California 92621 
(714) 529-2117 

BIOS Vendors 

AMI 
1346, Oakbrook Drive, Suite 120 
Norcross, Georgia 30093 
(404) 263-8181 
Fax (404) 263-9381 

Award Software Inc. 
130 Knowles Drive 
Los Gatos, CA 95030-1832 
(408) 370-7979 
Fax (408) 370-3399 

Manufacturers of Test Adapters 

Emulation Technology, Inc. 
2344 Walsh Ave., Building F 
Santa Clara, CA 95051 
(408) 982-0664 
Fax (408) 982-0660 

Sanyo 
12980 Saratoga Ave. 
Saratoga, CA 95070 

Varta Batteries, Inc. 
300 Executive Blvd. 
Elmsford, NY 10523 
(800) 468-2782 

Phoenix Technologies Ltd. 
40 Airport Parkway 
San Jose, CA 95110 
(408) 452-6590 
Fax (408) 452-1985 

System Software 
313 Speen St. 
Natick, MA 01760 
(508) 651-0088 
Fax (508) 651-8188 

Pomona Electronics 
1500 E. Ninth St. 
P.O. Box 2767 
Pomona, CA 91769 
(714) 469-2900 
Fax (714) 629-3517 



Appendix 

B 
Hardware Emulation Using SMI* 

One of the biggest potentials of SMM is the emulation of hardware in soft­
ware. Software emulation of hardware can maximize the utilization of the 
CPU, and reduce the cost of the system as well. An example is the emulation of 
VGA graphics in software when running VGA-compliant applications using 
non-VGA-compatible graphics hardware. 

The SMM architecture can be used to emulate VGA graphics hardware in 
software by making it transparent to the VGA applications. This requires 
some hardware support, where the hardware traps and latches the address 
and data of both the memory and 1/0 cycles. The traps will generate an SMI 
to the CPU. 

In fact, all the accesses to the VGA memory mapped I/O (VGA frame buffer) 
and the I/O registers would appear to finish successfully to the VGA applica­
tions. In its minimal form, the base VGA mode 11 with a single plane can be 
emulated with the help of 64-Kbyte on-board system memory (OAOOOOH­
OAFFFFH). All the reads to the VGA memory would finish successfully to this 
memory space, which in a way emulates a FIFO. Once an access to the VGA 
space is trapped, the SMI handler will translate the VGA accesses to those of 
a non-VGA-compatible frame buffer hardware. Thus, in effect, no secondary 
VGA frame buffer is needed. In most cases, the on-board DRAM of the system 
inside the VGA address space is not rolled over to the high memory areas. 
This unused memory area (64 Kbytes) can be used, without additional cost 
or real estate of the VGA graphics frame buffer, when VGA functionality 
is needed. 

This concept can be extended to emulate a full-blown VGA graphics system 
hardware functionality with additional (but minimal and less expensive hard­
ware) resources. 

* Contributed by Suresh Marisetty, System Architect for Intel Corporation. 

271 





Case Banko Bank 1 

1 lMB lMB 
2 lMB lMB 
3 lMB lMB 
4 lMB lMB 
5 lMB lMB 
6 lMB lMB 
7 lMB lMB 
8 lMB lMB 
9 lMB lMB 

10 2MB 
11 2MB 
12 2MB 
13 2MB 
14 2MB 
15 2MB 
16 2MB 
17 2MB 
18 2MB 
19 2MB 2MB 
20 2MB 2MB 
21 2MB 2MB 
22 2MB 2MB 
23 2MB 2MB 
24 2MB 2MB 
25 2MB 2MB 
26 2MB 2MB 
27 2MB 2MB 
28 2MB 8MB 
29 2MB 8MB 
30 2MB 8MB 
31 0.5MB 0.5MB 
32 0.5MB 0.5MB 
33 0.5MB 0.5MB 
34 0.5MB 0.5MB 
35 0.5MB 0.5MB 
36 0.5MB 0.5MB 

Appendix 

c 
lntel386™ SL Microprocessor 

DRAM Configurations 

Bank2 Bank3 MCBS MCBSEXT Total Interleaving 

32H 2MB 0 & 1 in lower MB 
2MB 9332H 02H 4MB 0 & 1 in lower MB 

2MB OA332H 0302H 4MB 0 & 1 in lower MB 
2MB 2MB 3332H 6MB 0 & 1, 2 & 3 
8MB 9532H 02H lOMB 0 & 1 in lower MB 

8MB OA532H 0502H lOMB 0 & 1 in lower MB 
8MB 2MB OB532H 0302H 12MB 0 & 1 in lower MB 
2MB 8MB 3332H 0502H 12MB 0 & 1 in lower MB 
8MB 8MB 3532H 18MB 0 & 1, 2 &3 

8013H 2MB 
2MB 9313H 4MB 0 & 2 in lower MB 

2MB OA313H 0300H 4MB 0 & 3 in lower MB 
2MB 2MB OB313H 0300H 6MB 2 & 3 in lower MB 
8MB 9513H 10MB 

8MB OA513H 0500H lOMB 
8MB 2MB OB513H 0300H 12MB 0 & 3 in lower MB 
2MB 8MB OB313H 0500H 12MB 0 & 2 in lower MB 
8MB 8MB OB513H 0500H 18MB 2&3above2MB 

33H 4MB 0 & 1 in lower MB 
2MB 9333H 03H 6MB 0 & 1 in lower MB 

2MB OA333H 0303H 6MB 0 & 1 in lower MB 
2MB 2MB 3333H 8MB 0 & 1,2 &3 
8MB 9533H 03H 12MB 0 & 1 in lower MB 

8MB OA533H 0503H 12MB 0 & 1 in lower MB 
8MB 2MB OB533H 0303H 14MB 0 & 1 in lower MB 
2MB 8MB OB333H 0503H 14MB 0 & 1 in lower MB 
8MB 8MB 3533H 20MB 0 & 1,2 & 3 

8033H 05H lOMB 
2MB 9333H 05H 12MB 0 & 2 in lower MB 

2MB OA333H 0305H 12MB 0 & 3 in lower MB 
31H lMB 0 & 1 in lower MB 

2MB 9331H OlH 3MB 0 & 1 in lower MB 
2MB OA331H 0301H 3MB 0 & 1 in lower MB 

2MB 2MB 3133H 5MB 0 & 1 in lower MB 
8MB 9531H OlH 9MB 0 & 1 in lower MB 

8MB OA531H 0501H 9MB 0 & 1 in lower MB 

NOTE: The MCBSEXT bit (bit 15) of the MCBS register (306H, OMCU) is a don't care bit for equal bank size. 

273 





Appendix 

D 
Schematics for a Complete 

Notebook Computer Design* 

* Contributed by Mike Wagner, Intel Corporation. 

275 



... 
al 

1~aaaaaaaaaaaa~ l~l~~iiii1iiiiit 

TM l!IH ll 18 1:i1 l~l~l~I il~i 
cccccccccccccc C CCCCCCCCCCCCC C CCCCCNNNNNEEBP 

il1~¥in~nn~~ i' 01234 s 
~ i~~ttt~tt~ttt ~ ttt~~I~~~~~!~~ 

54 1 ~ 0 311CRWARO JE 

----. _ ROM16/84t 

j_ SUS .STAT*,........, ~E:.rAT 
~G i.i=TE 

"sv TURBO 

s ~~i::r 
SM:C• 

I ~SO• *+ ~=· 
CMUX14 
DMA.8/1641 

-r _uj NMI 

INTR 
HRQ 
HidJA 
INTA41 
HALTO 

~
REFREQ 
SAO 
SA1 
SA2 
SA3 

s ~ 
SA6 

_SA7 __ 3..: SA7 

SAS 35 SAS 
SA9 

SA :!~~ 
SA12 
LA17 

c ~~ ~,.:,;. 
PCMDO 
PRDYO 
PM/J:Ot 
PW/RI 

GSB!fE~~~EI 

LLLLLLSSSSSSSI I 
~A~~~AAAfAtftO ~ 
do12Blsh ••~ • 

~Ti 

04 

3 86 SL.J'QFP 

+SV 

IZPJ:~ M 
OEWOM A s 
fi~~if B~~~lsss 
?iBf ~tftV~t!l 

~!t!Yt 0 
T 

p 
SSS E 

~l~llf f llf lf~i 

MOS 146 ,. 

:l~ ::: 
MD1 

MD10 
MD2 

MD11 
MD3 

MD12 
MD4 

MD14 
MD6 

MD1S 
MD7 

MD13 lu.i_ MC13 

MOS MDS 
CMUX13 k 
~~ k MAO 

MA1 
MA2 
MA3 
MA4 
MA.5 
MA6 
MA7 
MAB 
MA9 

MA.10~ 
WHEI -

"""' CMUX11 
CMUX10 

CMUX9 ~ '"'\I 
CMUXB 
CHUX7 
CMUX6 
CMUXS 
CMtJX4 
CMtJX3 
CMUX2 
CMUX1 
CHUXO 

ltt§§§§tiittttljl 
~ l1 

ililmtilmDi 
~ 

vcc 

+~ 

~ vss 

rntel corporation 

ITitla 
J:NTEL38 6SL M:ICROPROCESSOR 

sizefDOCiiiileiit- NWnber 
B 

9911Sheet 

'REV 



"" ::::! 

BATT~ 
SRBTN . 
l?WR_GOO. 

N/C 
XDENI 
XDIR 
XD7 
SD7 

SD6 SD6 
SD SDS 
SD SD4 
S SD3 
SD SD2 
SD SD1 
S 1 SDO 

;~ 1 
4 ;~i~ 

SA13 
SA12 
SA'.1.1 
SA10 
SAS 
SAS 
SA7 
SAO 
SAS 
SA4 
SA3 
SA2 
SA1 

s 
)! 

ODIIPSBBBESHHS 
NROOWRAAAXUDDP 

i~~f g~~~I!:~~~ 
60iAEOITilt 
ltD RAW*A 

NDlt T ... 

s 
/; 
R 

~ 

RRRRTRTIIREE 
TTTTIEIMRTXX 

ji~~~¥~¥5li~i\'.~ 
1C2NORC01t'ETT 

c ttuvt. sec 
TEK EAD 
2D2 TSS . 

LLLLLLLLLLLLLE 
PPPPPPPPPPPPPR 
TTTTTTTTTTTTTR 
DDDLlDSDIDSPBAO 
7Ei543L2N1LEUCR 

C I C SKlt' I ;; T YiJIJ?TE~~~~ J:l~::~ ~;;~~ ~ 
It LPTAFDlt 

LPTSTROBElt 
PERRlt 

M 

CPUFESET 
NM1 

1NTR 
HRQ 

HLDA 
DMAS/16 
A20GATE 

INTAll 
HALTlt' 

SMill 
REFREQ 

COMBDTRll 
COMBR!lt 

COMBCTSlt 
COMBRXD 

COMBRTSlt 
COMBTXD 

COMBDSRlt' 
COMBDCDlt' 
COMADTRlt 

COMARilt 
COMACTSlt' 

COMARXD 
COMARTSll 

COMATXD 
COMADSRlt 
COMADCDlt 

SMOUTS 
RESE:TDRV 

SMOUT4 
SMOUT3 
SMOUT2 
HDCSO# 
HDCS11t 

HD7 
IRQ9 

D D D D SSAF 
II!IIAM C C MA A A MMSL 

LLLLLRRRRRCE 0 ODECDCDCDOOTPB 

~tttt~~~~~~f i i i8Vf if~?9*¥~i~ 
LPC_Sil 

COMM15 
COMM14 

gg=~g 
COMM1 

" gg~ 
= 

Title 

RTCVCC 

~ 

v~ 

G~ 
vss 

Intel corporation 

82360SL I/O CONTROLLER 

Sl.zel:OocU111eni:.. NUmber 

November 27, _1991[Sheet 



!::l 
Cl) 

7 I ~ 3.: ~ 

'SA .. 

19 

@M_LE 
...-1... R27 2 ISA25 ISA7 BIORlt 1 

R34 
2 IORf ISJM_ IS 26 BALE 

33 33 

R28 R3S 
ISA18 GSBHE* 1 2 SBHEI ISA16 ISA1.0 B:IOW* 1 2 IOW# ISA9 

33 33 

lSA2 OMEMR* R2~ 
"-El<R• ISAO ISA1 """""* 

R3~ 

'"'"'" ISAO 

33 33 

R30 R37 ,.,,,,._ OMEMW* 1 2 MEMW• ISA3 I~ -· 1 2 M~t -1.Sllc3 

33 33 

R31 R38 
rSA8 lll..._OR* 1 2 !OR* ISA6 ISA13 BSMEMR.lt 1 2 SM-"""" ISA12 

33 33 

R32 R39 
IMll. GIOWlt 1 2 IOWM ..llM_ <§AJS ~EMWlt 1 2 SMEMWI ~14 

33 33 

...l§A20 GSYSCLK 
R3~ 

SYSCLK ISA19 ISA22 BOSC R4~ 
BOSOSC I§a...21 

33 33 

'-"""'-'- ~EM 
R4~ 

AEM IS.ai.3 

33 

IM1_7 B~lt 1 R4~ SBHE* I~6 

I~ 
R26 33 = G:S• 

l ,.........., 2 

I R4~ 
33 ISA28 BRE€!ll2.,RV RE~RV ISA27 

v=• 
33 

.. 

Intel corporation 

Title 
DAMPING RESISTORS - ISA BUS si:roc:ument N\llnber J.., 

DO 
Oat ; ovember 27 1991. he t 3 o< 43 

::J[ 



::z: :I 

19 

CFIT> UWJ.4 l<=I 

l C706 T 1SOpF 

""" 
Thi• i• NOT a chip errata 

but is needed to eupport same hard 
drive• :because o:r noimy IRQ14 signals 

Intel corporation 

Titl• 
CPU/IO ERRATA 

si:Iocument Nwnber _t~ 
~te: N . 7 . 4 o< 43 

I I 

~ 



"' co 
0 

19 

19 

<ll 

:I 

+SVSYS 

Nk'XU Nk'X~!.1". 54 r::~LK2 g~ 19 ggo 
L { -;:m ~LK2 g; ~02 

NPXRESETlt sJ RESETIN g~ ~ 
06 CD 

~ NPX7 NPXADS * iS ADS NPfi NPXW/Ri W/R 
STEN 

I I G=~CS1 rn:> CA2 ~~O 

NPXJ NPxRb\iU ~i~i 
I READY 

I 

80387SX 
+SVSYS 

I 

07 co 
g~ ~ 

010 go 
011 CD 
Dl 2 1 CD1 
013 CD1 

gi~ CD 

READYO _57 NPXRDYlt 

PEREQ~ 
E=~~ERROR!t 

NPX3 

E~~6 

vcc 
+SV,!>YS If 
~ 

v~ 
GND 

Intel. corporation 

Title 
S0387SX NPX 

s1;"jocumen:t -NUll\ber 

Date; November 27, __ :;!,_99ITs-heet 

lR"" J_po 



I I 

~ 

I 
D1 

g~~ 
D4 
DS 
o• 
D7 
DB 

CACHEl CACHEO 

n:; 

I~ 

~ 

AO D1 
A1 D2 
A2 D3 
A3 
A4 

D4 

~!i 
DSU 06 CD 

A7 
D7 · 

AB 

08 CD--

A9 
A10 
A11 
A12 
A13 
A14 

"" "" WE 

~ 
+SVSYS 

~ 

~ 
~ 

VSS 

:rntel corporation 

Title 
64JC CACHE SRAM 

Si:elDocUll\ent NUmbe:r 

DSte: Novembe-r 27, 19,11&heet 

lRE\rl 
~o 

43 



~ 

U16 u 0 

• MDO RMA 11 AO 
A1 
A2 
A3 
A4 
AS 
A6 
A7 
AS 
A9 

+SV 

U1 2 
>U<AO H 1'MAO 

AO 
A1 

RMA A2 
A3 

1 A4 
AS 
A6 
A7 . AS 
A9 

+sv 

DO 
D1 
D2 
D3 

iii 
CM 

"" OE 

DO 
D1 
D2 
D3 

CZP 

Titl.e 

~ 
~ 

vss 

Intel corporation 

DRAM - 2MB BANK 0 

Sizaloocument Number 

1::v1 
Date:-- -No~· 27, 1991l§ll..eet 7 of_ ~ 



I I I :::;;: 

19 

u 7 
0 1.1 :;,.~- 6 • RMAO 11 DO DO 

D1 A1 D1 
D2 A2 D2 
D3 A3 D3 

A4 

RMA AS ...... m<AMO 
RMA A6 

RMA A7 caa 
AB "" A9 OE 

+SV +SV I I 19 

U19 
RMAO -'-0 

DO AO DO MD12 
RMA D1 A1 D1 7 

RMA 
D2 

"" RMA A2 D2 
MDl][ 

RMA D3 RMA A3 D3 
A4 

RAS1* AS 
BM: RA§l..I A6 

A7 c..,. ::::a: CAfilll!:I: DRAM3' 

RMA 
AB "" FEf= A9 OE 

OH4'ULZP 
+SV +SV 

vcc 

~ 

... ~ 
vss 

:Intel corporation 

Title 
DRAM - 2MB BANK 1 

B ...:.. 

S 1 zelTOOCument Number l"EVI 

~ 
-• Date: November 27, 19!11)Sheet 

"' fl 



"' co 

""' 

~1v •• 

~-

11 I 
R44 R10 

> 0 2 RMAO ISA36 GWHEM 1 2 WH • PR1'.M6 

47 47 

R45 R18 
MA1 1 2 RMA1 ISA37 GWI..Ell -2 

47 47 

R46 
V\.ilJ 2 RW\2 

47 

R47 R19 
2 RMA3 no 1 2 __IV!,.$11i .P.RAMo 

47 47 

R48 R20 
MA4 1 2 RMA4 CMUX11 1 2 

47 47 

R49 RH 
Nb.s 1 2 RMA5 CMUX7 1 2 CASHO* P~2 

47 47 

MA,6 
RS~ RMA6 CM'CJX6 

R15 ...... 
CASLOM -~ 

47 47 

R5~2_ RMA7 CMUX_..>_ 
Rl~ _Q__ASH1+1 

47 47 

RS R17 
CMtJX4 1 ........... 2 1 I~ l<f I I 

47 

R> 

~ 
47 

.d[:> :> 

H 
Intel Corporation 

Titl.e 
DAMPING RESISTORS - MA &t DRAM 

s1;eeocument NUrnber 1EV", 

PO 

Dj'Ce; ~Tmber:-27 991.Jsheet. 9 .2.L--- 43 



Si 

Y1 
R1 

~16MHZ 

RSS 
100K 

22 

RS4 
30K 

2 O .1uF T.:_ CH 

GND 

+SVSYS 

R11 

22 

~rii· c=n 
_h __ ~1.u'ri1 MHz 1 

C23 C24 r 22PF J 22PF 

l 

2 

<£m 110~ 1 14.31618 MH:Z: J.:. --~ 22 

C25 C26 L 22PF J 22PF 

i 
""" 

R59 
100lt 

+SV 

~ 
r--@i!PJ 

GND 

.... 
:PB N/0 
RESET 

+SVS1 

SLI:Dli: N/0 
SUSPEND/RESUME 

R61 
10K 

+S~ 

+SVSYS 
0 CE5F1 

+5V51 

C28 
1 0.10'UF 

+SVS1 

RS7 
S10K 

CP.6 
1N4148 

+5V51 

USA 

74HCT04 
+SVSYS 

R200 
100K 

:Intel corporation 

Title 

Sizeloocurnen~NWn-ber REVI 

43 



N 

8l 
7 I :I 

lbibfilD BBMEMWI 

l~·· 
........ 

19 
Y""'"'"IN xc .. 

MEMW* > 

<s~ .. 
..JSJ2!) .-£il-- sco 2 A1 B1 1.S 

~ 
xc 

A2 B2 ffi: SC 

VPP~+12VF :m: s~ 
SAO AO ~! :! ~ 
SA 1 

Al 
xc:::J<: 

AS BS [!: = A2 

H: x 0 A6 B6 
SA A3 CQO 

+SVSYS "-1.. R'.I.~ =:I A7 B7 fill£: 
...2.. Rg ~l +SVSYS s A4 CQl x AS BS s AS CQ2 

U. G SA 7 10K XCEN• 10K 
Ji..A 

A6 CQ3 

~IR A7 CQ4 

:H 
CIR 

SA AS DQS xc ~s 
SA A9 OQ6 

SA A10 OQ7 

SA A11 

SA A12 
A13 WE XBUSI![ •. > A14 22 R~SOI 

SA16 
AlS CE 
A16 24 M~I ......I._SAO BIOS 

"" OE xco 2 R10l_ 

I~ · :;~~-~~ M>:MW* ISA3 1.SM_a R10l_ 
xc1 

XD2 2 R1~.1.. 1.SM 

~ X03 
1.SM....2.. R'.l.~l H U A 
R105 1.SM 1 

3 XC4 2 1 
2 +SVSYS 

74HCT86 xos 
1.SM---2_ R11.i_ 

+SVSYS 
SA17 2 o-A-. R'.1.04 '.l..SM 

I~:~ X06 2 1 
J32 

1.SM R'.1.08 
XD7 2 1 

+SVSYS 
'.1..SM 

GND 
GND 

+12VF 

SMOUT3 ~l ~ ~ 
5 6 J3: o-l--i>GND ISA .. VCC 

+SVSYS 
+s~ HCT86 

+SVSYS 

~ 
SMOU't'4 GND 

Inte1 corporation 

W<=· 
Title 

FLASH ROM BIOS 

s1;1ocument Number !EV 00 
Date: November 27 991. Sheet 11 o:r 43 

I 



YS 
110'"2_,__ __ .., 
24 MHz 

2 1 i~PF f C10 ~122PF 

GNO 

~11 

+SVFDD~ 

~ 

:INVE::-i~ I-"'' .. .., MEO 

ME1 $ ME2 
ME3 DSO 
DSO 

+SVSYS 

USD 

74HCT04 
+SVSYS 

+SVFDD 

DS1 $ 
DS2 2 2 2 2 2 HD~~~ 1 HDSEL ~ Rl.16 Rl.12 Rl.14 Rl.15 Rl.~~ 

s;;i~ ~~~ 
1
4.7K 

1
4.7K 

1
4.7K 

1
4.7K 

1
4.7 

WRDATA 
WE 

g~~~~ SK HG 

DRV2 ~GND TRKO 

:E~ []j ~DX 
:ROPATA 4 

~m ~ I 
DRATEO 
DRAT El FOR 82077SL, DO NOT 

INSTALL Cl.1 

DS~CHG 

+SVFDDo-----i 

J:lJ900 vss 
vss 
vss 
vss 
vss 
vss 
VSS 
VSS 
vss 

en 
1112 CONNECT J900 TO PINS 2-3 

ONLY FOR EPSON 1040 DRIVE 

GND--13 

+5~ 

~ GND 
lntel Corporation 

;Title 

SizelDocurnent Number 

Date, NoVeriiber 27. 19_9_1 ]Sheet 
DO 



.., 
IB 

x 
ll 
f 

g 
~ 

+SVSYS 

HD7 

:m 
~~ 

SD1 

~ 
~ 

+SVSYS 

J:CC:S161 

CHANGE R301 TO 2.2K 
FOR CONNOR OR PRAIRIE'l'EK HARD DRIVES 

R301 
10K 

U403B 
74HCT125 
+SVSYS 

t1403C 
74HCT125 
+SVSYS 

U403D 
74HCT125 
+SVSYS 

+SVSYS 

R13S 
100K 

+SVSYS 

R137 
100K 

U403A 
74HCT125 
+SVSYS 

vcc 
+S~ +5'!.,SYS f? 
~ 

~ 
GND 

:CRQ1.4 

:COCS1.641 

R69 
10K 

Title 

Intel corporation 

J:DE HARD DR:CVE BUFFERS 

Size Document NUmber 

B 

Date: Novembe 

IREV'I 



II> 

ill 

UlO"" 

I F I w ~ ~ 
2Jlf1 I I 1~a 1.,...,a ~Ill"------. 

iN41.48 

C3 
1. 0.1.0UF 

ClS 
'1 0.01UF 

GND 

1 
• C18 

10UF 

!41.48 lK 3. 6V L:C'l'HIUM 

">a 2 11 1• 1111--0 C16 
CLlC3 

CD4069UBC 
RTCVCC 

32. 8 KHz 27PF 

,... 
2M 

t1103F 

CD4069UBC 
RTCVCC 

U103E 

CD4069UBC 
RTCVCC 

+S~ 

VDD 
0 llib21QIL) 

""~ vss 

Intel Corporation 

Title 

SiZeJOOCU?ntmt. NUmb"er 

•vember 27 



~ 

+12V< 
+SVSYS 

TS 

t.T1141 

12V-
NC 

RXOUTO 
DRV:lNO 
RXOtJT1 
DRVIN1 
1'JCOtlT2 
DRVIN2 
1'JCOtlT3 
1'JCOtlT4 

""" NC 

+SVSYS 

Title 

1 

··r· 
J6 
SPEAKER 

R22 
33 

1 ~~g~UF 
GND 

+~ 

Llill 6 
-12V 

vcc 
+5~ 

v--@iifil 
GND 

Intel Corporation 

SElU:AL ic SPEAKER DRIVERS 

DO 
:si:e,Doewnent Number 
'Date: Nov&lllbar 27, 1991 ~ 



., 
'.:!1 

~ 

~-

t----i 

R904 
100K 

1 11 

R905 
100K 

PRCO 
PRc"f 
PRC2 

SMOT,.,.-.; >---1Ht-------------"':!9"'!'.2.. __ _J 

< 

~ 

U15 
SYSC~1 

6 CLK2 

LLA23 3 INP1 
IR 1 CLR;t 3 INP2 

SA INP3 
SBHE 7 INP4 

BBMEMWll 

I/0.5 Fg£211 

I/0- 6 MEMCS II ISA29 
I/O. 7 IOCHRDY ISA 
I/0 - 8 CRD PRES PRD 
I/O - 9 5 PCMCI EN" PRD 

I/O • 1° FDWAITll 
I/0- 1 1- MEMWll ISA 

26 I/0.12 s 
25 I/0.1 I/0.13 WRll 

4 I/0.2 I/0.14 FDREGll 

LA23 ij6:~ ij~:i~ IR PRD 

N5C060-55 
+SVSYS 

R906 
100K 

=· 1 
GND<O---<t---;H 

VGACSll LVGACSll 11 10 LVGACS 

~~~ tt~~~ 
LA 1 LLA21
LA LLA20

<LAr17 .. 231 I f
2

ISAfO .. 3

74HCT04
+SVSYS

Title

GND FCD111
SD 1

SD 4
SD1
FC£2*

SA17
SA1
SA 9
LLA
LLA 1

+SVSYS

+12VFLLA22
RD3

CTL PRD
CTL PRD

FDWAITll

FDR£G;t PRDO
BYD II PRD
BYD II PRD

SD
SD9
SD1

c
GND

snto .. 151 >

PRD[0 .. 101 >
PRCfb .• 21 >

+12VF

~
vcc

+5';_SYS ?
~

G~
Intel corporation

November 27 1991 ISheet 16
2 I 1

~

-·
p

~

"""

R93
10X

1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

+SVSYS

1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

vcc
0 C'EF1
v-@fil

"""
:tntel corpor•tion

Title

sizeloocument NWnber REV'

7 or

~

+~

.,-Eml
-12v

+5~

·~
~

GND

[J\ ~ Ll\117 •
+SV

Title

R901
10K

:Intel Corporation

MODEM r. EXPANSJ:ON J:/0 CONNECTORS

Si zelDacwnElnt N\tiftb•r !REV1
DO

ate= Navember--27· ~

~

SMOUTO - COM1_
SMOtJT1 - HOD LOGIC
SMOUT2 - MODEM
SMOtJT3 - FLIP BJ:OS
SMOUT4 - BOOT BLOCK
SMOTJTS - FLASH VPP
SMOUT6 - INC1
SMOUT7 - J:NC2
HDDPWR - HOD POWER

74HCT04
+SV6YS

H:IGH : POWER, ON
HJ:GH = DISABLE
H:IGH "" POWER ON
LOW• NORMAL
HIGH m POWER ON
LOW 111 POWER ON
HIGH "" POWER ON
HIGH = P¢WER ON
LOW = POWER ON

sus_sTATI - CORE LOGIC HJ:GH ... POWER ON

LT1030

u2a

LT1030

U2C

LT1030

R134

GNO

R133
1M

+SV

Q6
MTD30SSE

1
'• c46

10UF

+12V

L....mm
~

-12v

100K

Q3
MTD3055E

2 ii:~OUF~ ~2 1

R2S
1.00K

R24

1M

C19
1

+12V

0.1.0UF

+SV

~
~

GND

QS
MTD4POS

C1
100F

Title

.!.. C2 110UF
GNO

1

Q102
MTD305SE

.!.. Cl.03 11.0UF
GND

Intel corporation

s1ze,oocument:- Number

a 100
·ovember 27, 1991.lsheet. _19 of 43

N

~

~

+5V51 +5V

'L...millJ 'L.m2J EI" I" f ~ I ~
+5VSYS +5V51A

ONO ~~
R902

+5V~

RSOO

+svsYs~H~
R801 10K

1 2 ~

BAT'IWARNI

IR012

C513

IWDPWR

ALOGO

~ 10
°K IJJJ~r1~J~IJ3IJJJtl:1Mm;1~ g~~;iA

LLLLVLEVVPPPPPPPPVVAAAAAA
EEEESOASD33333333SDVVIIVV

1 KBP
1r/

c61 c62 10.01Ul 0.01UF
~DDDSAISD01234567SDRRNNDG Gl

.~u K£Q.0 1 KSOO 123 ~ ¥ft¥~~~~ f~01D~ AO 7 A2

!C: ::XSO KSOl 01 0 1 CSI C CS

S KSO ~:g~ ~~~r

~-

;~ K~g ~~g~ N aaar r·. ~= llil'!;:wl~iili!·;:~~~~f r:::f~
~s ~ a:g; =~~~ =m'3(KS09 PCOB1 2 C'.1.2 2 C13

KS010 u27 VDD ~1!:~3.H;~==tl ~22PF 1 22PF KS011 RCI
G~~ VSS PCDB2
~~ VDD 80C51SL PCDB3 =m ~:~~ +5VS1 ~g:~ 1411::::=~~===~ ONO

: w S!~~~ GAffii~ ll:i:==:ii!:~~==:-1
~ KS ~=g P27 /L~: -----. +5V51

; ~:i ~~i! ~~~ ~~i~ 2

S KS ~:i~ ~Piiipiiii ~r1~j~i~ KB A f ~~K
K Mso12l's67 AAAAAAAA01/ A

~~ittt~t~~~~ii~~~~i~~~ttt 7
1

C51CSI

. I m n- 111il1~::~ "' ~ l ... ,, .
MAI NON

L.....c.ONO

~~p WJJ' ljfjfy Inte1 corporation

iTitle
80C51SL KEYBOARD CONTROLLER

SiZ.looCUinent- Number

_November 27, 1991 lsheet

IREV

DO

~

I

' <
)

+5V51

+SV51

+12VF
o ... {2v.;. I

'¥ 'T"ii'D

~
"""

Intel Corporation

itl•
l<.EYBOARO FLASH ROM

SiZ•!Document N\lmbar
a DO

ror-"""43

~

+5V51

I~ g12
,.1-J~ 2N7002 ,..J*

Do Not Populate Q12

Q13
2N7002

+ Q13

GND

+5VSYS

+SV

U8F

74HCT04
+SVSYS

U8B

Do Not Populate U9

+5~

+5VSYS

y CTFEJ

+SV

~

~

:rnt•l Corporation

!Title

sizeiooc.U1T1ent N'UD'lber

·ovember _;2~9

IREV!

"o

"' <D .,.

I~

:I I

I

EXTO

I

+svsvso---.----.---------------~

2 ~2 RS R6
10K 10K

l l

KOATA
L.l

,2

KEYC!:&.,.

JS

KEYD~

~ I FBEAD

2
....1= C6 C7

1 47P 1 47PF

GND

+svsYso---.----.---------------~

2 ~2 ~ R62 R63
~ 10K 10K

,l l

.
EliT • KEYBOARD
MINI DJ:N

EXT2

I I "3 ~J7
I, EXT3 :::A I l= l ~~ ..1

+SVSYS

...J!. C2~ C30
~ 47pif 47PF

0 C7FYfJ

~
GND

1

~
EXT. MOUSE:
MINI DIN

Intel Corporation

Title

Size oOC:Ument NWnber
B

Date: ovember 27 1991 She t

1:~1
23 or 43

I\)

"' "'

<xsll[..

BATT T

BATT

KS2
KS

KS•

KS

KS
KS

s
s

KS
KS

K~
s

KS
s

KSU
KS

p

TS

J

KS02 ,-1
KSO 2

3 0 4

so 5 •
0

7

• • KSO 10 KSO 11
12

KSO
13
14

KSO 15 11§9 16
17

'--- 18

~BOARD OUTPUTS

+51YS
~

NORTH L.....- ~
:~H 4
~SU: ~
KSI ~

• 10
11

KSI2 '--- 12

s 13
14

~BOARD INPUTS

LPT14

LP1'13 ..

__L.PT1.2_

LPT11

«= .. _.
LPTS

4

Li'T3

LPT16

LPT2

LPT15

LPT1

LPTO

LPTO

LPT9

LPT10

12_~13 NORTS
ST X1 so X2 y

X3

BATT TEMP .-+ YO

BATT VO 2 Y1
Y2

~~ Y3
INH
A
B

c
+SV51A

K
B
D
3

LPTSLCT

Li'TPE LI""
L'P'T'R?JSY

'"""" u= LPTACKI ::m LPTD7

.~ . ,r"""
LPTDS

'"""" LPTD4 1~
LPTD3 1FIL'
~SLCTJ:Nll

,.....
LPTD2 ~L'
~I.NJ:T* .~
LPTDl. '-m
LPTERRORi ~
LPTOO ::m
LPTAFOI ?
LPTSTROBEll

ALOG
+SVS

ALO GO
2

1

t---
2

1

om

K K
B B
D D
0 1

R77
270K

R2
30K

L24

Title

J2

+S~

v~s J J mlml
VEE OND

Intel Corporation

sIZ&IDOCUrnan~N\lliiber

Date: Nov9inber 27, 1-f9i}Sh••
DO

"' 0
0

19

l>j

FFSET

<

.

7

+SV51

1

2

KBD2

PSTROBE

KBD3

FFS.E'l'

R201
10K

l 4 UlOA

AMUXA __£. D~PQ ...a. MAINON

31 c R .[1!r' -~· 74HCT74
+SV51

GND

~ AMUXB J 11

)1,.-.-·~ +5V51

MAI NON

MAINOti!:

19

~

I~
0 : OFF

1 = ON

+SV51
vcc

0 y
illillJ
~ H GND

Intel corporation

Title

POWER SUPPLY INTER.l"ACE LOGIC

si:rocument NUmber 1.,,
DO

Date: November 27 991 Sheet 25 o! 43
4 I

:I ~ I

1'1

~

+

J MB1

1

2 -"- r>"ll
TT+ +SV

t:=~ 1
GND

19 * i~~01 E~ 2 -12V
+12V

RES~
.

MB •
1 MAI NON fl 10

1 + 11
12

2 I== 13

BATT- BATT- 14
15

AC PRESENT* '-t-- 16
<ACPRES .

+
17

~ I
1B

1 FSTCHRG 19

R100 20

10K 21
VMAXN '-- 22

2 FC 0VE 23

~ AUX~TTERY 24

+svs1o-----i "PowER SUPPLY

"""
2

R94
10K

1

+12V

~
.,-am

-12V

OVERRIDE +SV

~
~

GND

Intel Corporation

Title
POWER St.TPPLY CARD CONNECTOR

s1;1ocurnent N\unber 1'"" DD

Date: November 27 1991 sheet 26 o:C 43
1

g

s

+5VS1

"""

+2.5VREF

R118
2

330X

R11SI
120X

R3

1001(

U21B

LP660AH
PS+S

R53

27 .4K
1'

12
Q4
2N7002

b
R121
348X
1'

U21A

R60

+2.5VREJ'~
LP660AH 27 .4X
PS+5 1'

R117 I
RSS """~

137K
137X 1'
1'

C21

r------i 0. 001UF

R123

+2 .5VREI' 2

~ R907 34.8.K
226X 1'
10

CRSI L10

TJ22A ,-

-,~ LP33SI
PS+5 -

R120

"""' 47K

tJ21C

348K ..

2
- C58 10.01UF

"""
+SV51A

l't.125

47K

CR12
1N4148

[! C5SI

10.01.UF

"""

I 2 "'.:.. • ~ i !Um

l.lll!T'Wlr!!l>m.J-----~- 1 ili~
"""

Pl5+5

o rmr
+2.SVREF

Rl.28
100X ..
R127
11K
1'

R126
100X
1'

+sv~-/

1

+SVS1A

1\130
2701(

T,ig
~ TANTALUM

""" +2.SVREl"

+5V51

R131
47K

""" +2 ·rEF +2.AVR'l!:Fi

·~
+sv1A +!V!iA I

+SVS1

0 t5V$i I

~
"""

Intel Corporation

:Title

Si-ze)Document NUmb•r

te: Novamb 27 o·
DO

e

:.:. C51

11UF

"""

,,

s~:;I 1 7 I
SHUTDOWN

FEEDBK

U40

- X:NP DROPOUT

' .!. C56

133UF

"""

CR6

'
4001

• C47
10UF

+INP REF Ot.JT~ I
FBI-'"''--~~~~~~~-+-~~~~

COMP PNP
COMP NPN GN'D

CU!U'!.ENT LX:M

uri626CNii0

'-~~~~~~~~~~~~~-+----1~~~1 ~
0.10UF

R138
100

mJ ~vee+ vo=8; 1 i ~
I~~ .. :~; eS3

'if""" 33TJF
1 TANTALUM

CR16
1N4148

' - css
10.10UF

GND

e49
1 0.10UF

L37

R139
SOOK ..
R140
SOOK

"

GLill ' ... 2 1 CmmD
FBEAO

2
C60

10.1.0UF

GND

eso
10tJF

2 TANTALUM

Tit.le

~
GND

Intel Corporation

POWER SUPPLY VOLTAGE GEN'ERATJ:ON

SizelcocumeiltN\Unl:ler

'at.e: Noveml:ler 27, 19SJ11Sheet_ ~

DO

"' 0

""

G IG IG R R R
B B B
1 2 3

SDO --+ ~~ ~~
18 CPU DO

SD1 1 CPU D1
SD2

S A3 B3
16 CPU D

SD3 15 CPU D
SD4

A4 B4 14 CPU 4
SD ? AS BS CPU
SD

A6 B6 12 CPU
9 A7 B7

11 c AS BS

DSE.LLll 19
G DIR _..1:

G
R

~

SAO
SA
SA
SA3
SA4
SA
SA6
s

ASEL~

+SVID

CPU_AD [0 •• _l

vcc

~

G~
Corporation

sizefDocument NUmber

I~

~

-~ --~~

CR14 R302

~+SV:rD
1N4148

1 SA16
SA'

l!ll
osc
FS0/CLJC2S
FS1/CLIC28
FS2/CLIC32
FS3/CLICEXT
CLK32K

CPUADDR16
CPUADI>Jt17
CPUADDR18
cs

CPUCYc•
I..ATCHI

S/l•*
ZTS

MCLK
MEHRO
'"""* "'""* BALE
RESET
SBHE*

j-o_+sv:ro

z

i
6 I I

~ nr

J_
:::mi:C:

~
~

AEN
REFRESH I
ASEL*
DSELLI
DSELHI

:r OI:R/CARSELll

CtJRSORI
BLANKO

VSYNC t>E
HSYNC

""""'-1-1 jiNC
DAC i~~LI CAS* Fl i¥

""J!'E"

if ~1 g5: ::ii:~~= ~-
~

RAS21/WE21
BIOS:ENI RAS31/WE31
BI:OSA13 MCS161
BIOSA14 CPURDY
BIOSA15

"'
r.;~u u CPU-ADO !::~ 11~~1~~~11~ ~ g;g:~i ~

g~:~! ~ AAB
CPU-ADS AA6
CPU-AD6 AA7

:~ gE:~; AA8/1:i
t.J 1 CPU-AD1 0 AB2

>u g:g:~i i ~! AAB

~ gE:=: E~
AB8/0E161

~~~ MODO O 
0-..... --"'"'I VCC3 :ggi D 

GNP1 MOD3 
GNP2 MOD4 
GND3 MODS 
GND4 MOD6 

GND GNDS MOO? Gt> 
+sv:ro 

+SVXD 

'R5EE?' PWR000P 1~J29 l OS1F 

1-2 +sv 
2 13 

74HCT04 
+sv:ro 

2-3 : +SVSYS 

~ 
~C200 f 0.10UF 

""" 

.!a.2..-
CPUCYCI 
I..ATCHI 
S/Lf 
ZTS 
MCLIC 
MEMRI 
AEN 

"'""* :rORDI 
BALE 
RESET 
BBHEI 
ctm&ORO 
BLANK I 
VSYNC 
DE 

CPU 0 74 c CPU-ADO 
c CPU-AD1 

CPt1-AD2 
C CPU-AD3 
c CPU-AD4 
c CPU-ADS 
CPO CPt1-AD6 
C CPU-AD7 

CPO-ADS 
CPU CPU-AD9 

CPU-AD10 
CPU-AD11 

CPU CPU-AD12 
c CPU-AD13 
CPO Ci'U-A014 

CP!1-AD1S 

-

O PO/B 

:i~: 
P3/SB/V 
P4/SG/:r 
PS/SR 
P6/FEAT0 
P7/FEAT1 

+sv:ro 
:;

VCC1 
VCC2 
VCC3 

QND1 
QND2 
GND3 
GND4 
GNDS 
QND6 
Q51n" 
+sv:ro 

+SVID 

0 GLfil 

G~ 

FR-ADO 1 30 
P'R-AD1 
FR-AD2 
FR-AD3 

FR-M 
FR-AS 
FR-A6 

~=:;u 
Fl<WEO 

FRRABI FRRAS 
FRCASI 

FROEI 

..L!!.• 
'B 

MOt>~1m 1i m~ 11 ~ 
MODO 
M0D1 
MOD2 
MOD3 
M0D4 
MODS 
MOD6 
MOD7 
M1DO 
M1D1 
M1D2 
M1D3 
M1D4 
M1DS 
M1D6 
M1D7 
M2DO 
M2D1 
M2D2 
M2D3 
M2D4 
M2DS 
M2D6 
M2D7 
M3DO 
M3D1 
M3D2 
M3D3 
M3D4 
M3DS 
M3D6 
M3D7 

Title 

2* :gfi~ ~~ ., . - ·-·-

• 
:rntel Corporation 

Size Document NUmber 
B 

Date: November 27, 1991 Sheet 

IlCil> 

I!G 

I";,': 
30 ct 43 



(,) 

:;: 

+5V<>--J 
J,1J4 

o-2----o+SVID 

+SVSYso--13 

+5V<>--i 
A1J4o 

o-2----o +SVID 

+SVSYSo--13 

U32A 

LH324 
+SVJ:D 

a75 

10K 

+SVID 

U32B 

I..M.324 
+SVI:D 

R7' 
2.2x 

+SVID 

R78 11 
~~~~906 

R76

4 .7X

CR4
1N4l.48

3

' VR1 I I 21.,,.;,. 8 1 lfl 2 I 1 ~+SVID
10K

;~~x ~ !~~

r~
"""

1
I• C32

10UF

GND+----....----1

+SVSYS

·~
+S~

+5~

~
QND

Intel Corpcrat:l.on

!Title
L1!:D CONTROL J:N'I'ERFACE

·s1ze1o0cument-Number
B

~"'I
DO

fi

+SVID

~

NOTE: INSTALL ONLY 1 OF THE 2 OPTIONS LISTED

FOR POWER TO CLOCK DURING SUSPEND (+SV):
+12V

INSTALL R92 0
REMOVE R.82 & CRS R82

620 i:;231B g C35 Ji C37

l g~~~ 12 ;~:LtlM FOR NO CLOCK POWER DURJ:NG SUSPEND (+SVSYS) :

+5VID

!_ c33 J;:. C38
10.047UFJ 2.2UF

i

051.A

74HCT04
+SVJ:D

GND

DCLKO

DCLK3

051.D

74HCT04
+SVID

INSTALL R82 & CRS
REMOVE R920

R920

100

_ C34
1 0.047UF

X1 , I ~AL1
x2 X'l'AL2 OUT m 1 c ~ 11 !Ill ih:~ OP~*!ll :: I I I 1 FS3 veg~~~£ _ . _ .. __ I

J21

STROBE
FREQO
FS4_/FREQ1 R81

100

+SVSYS0--1-----<t----....-----<,_-~

+~

R84
10K

RBS
10K

~~~I ~ ~~: 

RBS 
10K 

+S~ +S~ 

~ 
GND 

L5 

nEAD 

RB> 
100K 

R92 

4.7K R91 

R90 4.7K 

4.7X 

!Title 

Intel corporation 

VIDEO OSCILLATOR & VJ:DEO SELECT 

Sizeroo·eumant Number 

Date,, November 27, 1991.lshaet -- 32 of 



"' al 

~AO I01 

~~"' 
1 A1 ro2 

A3 D2 
A2 I03 

A4 03 
A3 I04 

AS D4 

FB7 

A4 IOS 

A6_ 
AA -· I06 

A7""" FS 

I07 

A8 ~ 
I08 

a! 1 I09 VWE1M uw• 1010 VWE 0 
LWO I011 

1012 VRAS• 
2 RAS 1013 VCASM CAS 1014 

I0'.1.5 FBl_Q_ - OE16i 28 OE :t016 
MT4ci&i54oJ-10 
+5VID 

~ 
AO I01 
A> ro2 

1g I£! I03 

~l I04 
IOS 

AS I06 
A6 I07 
A7 I08 

VWE3* I09 
uwo I010 vw 
LW• I011 

I012 
VRAS* RAS I013 CAS CAS I014 

OE161 !015 
OE I016 
MT4C1664DJ-10 
+SVID 

~ 
v-@ililJ 

vss 

Intel corporation 

!Title 
VIDEO FRAME BUFFER 

sizelo0cum9:ri-t NUlnber 
DO 

Date: November-27, 1:9:911Sheet 3.3. o! 



VGAI![ .. 
+SVID 

[ FPENABL. 

FP L ! 1 C41 4 C44 U37 
2 

p10UP 
1A1 1Y1 

BFPENABL 
L9 VGA4 VDCLK 1A2 1Y2 

BVCK 
FBEAD 1A3 1Y3 

1A4 1Y4 B 

1 ., J1' • GNDo-+ 2A1 2Y1 f-. f-tc BB LANK I 
QND 2A2 2Y2 HSD 

<CPU ·ill 2A3 2Y3 v 2A4 2Y4 
p .. 

VQA7 1G 1 2G ROS 

:~~:;" .. :!. 1K 

l.Jli." 2 

1 ~.1.0UF ! 1 
~ 

t139 C42 • C43 
3 PO DO 

s CPU 0 
p10UF 

GND 

~ P1 D1 
c 

P2 D2 
c 2 

P3 D3 c P4 D4 

it PS DS CPU PO .-2ll--., LCDO P6 g~ 1 
2 A1 B1 18 

P7 c GND p 
A2 :~ 1 

LCD 

f=1 -=- Ea: A3 
OLO IOR p A4 B4 VD OL1 IOG 

~ 
AS BS 

OL2 IOB ::J: A6 B6 2 "!la: GND OL3 
~ 

A7 B7 

1 R97 Jl VREF 
OPA ':I AS BS 

2 1 
COMP !-"'-----' ~ LCD41 19 G 

l 
:tREF #:=; _lC40 130 BBLANKi GND~ SYNC VAA 2 0.1.0UF +SVID~ Dl:R 
BLANK VAA ~5 SETUP VAA .. 

~SAO 17 RSO 
VAA 

"""-0 
SA 

RS1 SENSE 1 ~ 
RS2 471* L DAC1 CPRD4t ' - .. 

DAO CPWR '!Ill: LCD 
c .. DACCWK_ 4.0 CLK .. 

!~~;~ t!!f..5 
R96 LS 

~~ +SVID 2 1 1 2 
VSD ~ 10K FBEAD 

!:::I ~ 
BLFS 

HSD BLCK 1 
1 

L7 ,, BVCK 2 - J26 MS1 CJ: 3 
!li:CD D GN~: 

r· 
FBEAO s LC E BLUE 3 GND~? +SV:tD LO ,,2 1--d, 8 VDO 

GREEN VD . 
1 FSEAD 1 Fo VD 10 . US1C RED VD3 11 

s I'-.. 
GND ~A DB'1S 

LCD 12 

' 2 :R9~_1_ ~ 13 MCLK LCD 14 v 74HCT04 

LCD 15 7S 
~PANEL 

7 +SVIP 
...a_ R99 

+SVSYS 

7S ~ 
GND _A_ R101 vcc 

7S 
+5~ 

ITitl• 
rntel corporation 

~ ~ 
GND 

Siz:e!Doc:ument-N\iinber 
DO 

Date: Novemboar 27, 19_9_':1,_IJS:J:.Hi~~t- 34 of 

~ 



!::1 
0 

C405 
2 1UF 

C704 
F 12 0.10UF 

1 
cso 

2 0.101:.JF 

C406 
2 1UF 

C4071 
2 1UF 

C408 
2 1UF 

~ t: 
2 ~~fgbF 

1 
C701 

2 0.10UF 

cse 
2 o.1otJF 

1 

~ I ~:~6i;F 

~ 

C66 
2 0.101".JF 

1 

~ 1 ~:i~uF 
~ 

~ I ~:~~UF 

~ 

~ J ~~~iiuF 
~ 

Intel Corporation 

OECOUPLING CAPACITORS 

sizelDocument Nuinber 

November 27 '.l._!;'_9_1.]Sh_eet 
2 



I~ 

!:! 

::::0:: 

~ 

~ 

~ 
~ 

386SL 

~ 

(li~~>-~~~~~~~~~--ISACLK2 

s c 

CACHE •• 

386SL.SCH 

==tCA2 
=oco •. 1s1 r ;;;;:::NPX[0 .. 7] 

+ VSYS +SVSYS 

I 

82360SL 

I6A[O •• 37] -;- 1 iI ISA[0 •• 37] 

CPU[O •• 13) r= CPU[O •• 13] 

MA[O •• ,J ~:DMA[0 •• 4] 

PWRGOO ftX8Us [ 0 •• 1] 

CMUX[0 •• 11)'1--1 XD[0 .• 7] 

SA[0 •• 19) T SA[0 .. 19] 

SD[0 •• 15] T SD[0 .. 15] 

LA[17 •• 23] LA[17 •• 23] 

J:RQ[l •• 15] 

~EXTSMI* 
I 1:::: 

111111111 :j~~:~-71 
82360SL.SCH 

r I I ~::.::~;37] 

LPT[0 .• 161 LlJ > 
COMM{0 •• 15] COMM!]: •• W :;> 
HDCTL[O •• 4] l]:.:aJ:: 
SMOUT(O •• SJ I!!:-~ ;> 

BATT[O •• 2] ~-. ;> 
C8042CS...., C Cll:> 

FLPCS...., FLPC@:!:;> 

SPKAll ~ 
AM 

RTCRESETll * 
CX1 

CX2~ ~ 
COMX1 COMld I 

COMX~COMX 
RCO 

RTCVC CC 

.£..___ 

"'SRBTN· 1 

VGACS~ 

m!Ori. .151 IwH l l 
" IRQ14 

DAMPING R£ST6TQRS - MAlCMtJX 

CPUERRAT.SCH I ' I ~ISA[0 .. 37] 
,. -MA[0 •• 9] 

-------------i•CMtJX[O .. 111 

:a: :I 

RMA[0 •• 9':1 ~~· ·:: > 
DRAM[0 .. 7] DR Q. ! > 

Intel corporation 

Title 
CORE PROCESS ING SUBSYSTEM 

size Document NUmber 

B 

Date: November 27, 1991 Sheet 

""]REV 
~ 

43 



~ 

"' 

19 

~ 
____:cJ CSAi 

I 

l ~ rA[0.37) <D'"'':·:':::' :~:: 
Cxp1 . j XD[0 .. 7) 

IELPCSll 

"'· -""'· ___ _.SA( 0 .. 19] 

I I I !ISA[0 .. 37) 
"'----.i..so(o .. 151 

< LA[LA[17 •. 23] 

~ -· 
~ 1-BBMEMW!t 

SMOUTS 

I 

::;: I 

HARD DRIVE BUFFER 

HACTIVEll~ACTIV It 

IRQ14 IR 14 

ATRESETll 

_____ ,..ISA[O .. 37] 

L:~UTS 

GN~ 

i r[O.l9) 
I .:::~:~~::, ~ +5VliD~DD 

+ VSYS ~::...~T~~S ,,.,..= GND GN 

,.,,. .• ,_,tJT[o • ...:lL 

PRC[0 .• 2] PRC{O •• 2] ·----+----+--+-----"""·PRD [ 0 .. 10] 
-------i.soco .. 151 

'9-{:±JJmJ ~-+-----------•IRQ15 

PCMREGS • SCH 

SMOUT [ 6 •• 7] SMOUT 

ATRESET 

+svsvsll--{ill:iil'.i['. 

LVGACS > 

Intel corporation 

Title 
DRIVE CONTROLLERS & MEMORY CARD 

si:er~er 

Date: November 27, 1991 lsheer.:--37 

1REV 
~ 

43 

19 

I~ 



~ 
w 

I 

.l!LDRAH__BANK 0 

<':!\!: 1 ::!D<A[0 .. 9) l JID[Q •• 15) 

+5V 

CACKE[0 •• 3)Ll l'>•tc CACHE SRAM 

:Il 

<':::!::::: =:Jc::~::~:; 
+ +SVSYS 

64KCACHE • SCH 

m; 

n.ASJL 

XD[0 •• 7J~ 
XBUS[0 •• 1)~ ~~· !SA[O .. UJ 

!.:=~==~:~'.SJ UA[O .. 37)•----
+1~ 

~ -BBMEMWI , 
+5VSY; 

ROMBJ:O&.SCH 

:I I 

1MDRAM.SCH 

1M DRAM BANK 1 

~
"""co .. •J 

MD(O •• 15] 

+5V 

2MD!tlt.M.SCH 

:I 

DRAM[0 •• 7Jll 'II 

DRAM[O •• 7) i ' 

J:ntel corporation 

:Title 
MEMORY SUBSYSTEM 

-Eff ze Document N\ll!lber 

B 

Dat ; bar 27 1991 s eet 

181 

"' 
rD~I 

3_8~ 



"' ... 
""' 

1"'1 

KEYBOARO~_~ONNECTORS 

H ,~ a::::;'.:: 
< PT[ f l : LPT[O •• 16] 

+ +SVSYS 

MODEM & EXPANSION I /0 CONNECTORS 

<~'~SA~~-~-~~~~~~~~~~~~~~3~:ISA[O .. 37] 

DMA DMA[O •• 4] 

SA[O •• 191 

S0(0 .. 15] 

<J:LAl'i:I[z;::;J;l!I:>-------------·lLA(17 .. 23] 

«~,:~~~======~=====:t:•COMM[O .. 15] 
f.SVSYS 

SERIAL_ILO & _§_PE~ER 

I I tCOMM[O •• 15] 

SMOUTO SMOUTO 

SMOOT2-

SM0t.JT[6 •• 7] 

AM 

EXT SM I 

FLSHOCS* 

sus_STAT 

SMOUT2 

FLSHDCSM 

SUS STATtl 

+~ 

-:~ 

IExT=AL KEYBOARD & MOUSE c=:::~ 
< EXT[O •• 3)1EXT[O •. 3] GND 

KBMOUSE. SCH 

BA T P 

B VOLTS 

CPUl 

c 

Intel Corporo.tion 

Title 

I/O SUBSYSTEM 

s i:e,DoCUl!lent NUmber 

Date, November 27, 1 !;i"!l,ilSheet ~d 

19 

lei 

I~ 

1"'1 

l""" 
~ 

43 



~ 

It! ~~ZC~F-
~SA[O •• 19) CPU_.AD[O •• 15) 

SD(O •• 15) +SVJ: ...... . LRB[0 .. 3) J 
.. ::> 

VGA CONTROLt&!:.. 

GRBUFFER.6CH i...... ,.ISA(O •• 37} n•<» n••" 

r---ftaco .. 19J VGA.CO •• 7] ..1L 

GU[0 •• 3] CPt1 .. JU)[O •. 15] --- """""® DCLK[0 •• 3] 

CLlt3:Zl< P[O •• 7) CCD_ss>NNECTOR 

"VGACS DAC[O •• 2) VOA FCO FCO HACTI:VE9 

I ATRESETI MC ~DI J---oLco_VEE ~-VE· I~ 
FB[O •• 10) +SVI: FPENABL ~-VDDll J---oLCD_VOD 

AAB[0 •• 15] GN BFPENABL +SVSY . 
FR-A0[0 •• 7] OS r-ftLED[O .• 1.J +SVI • v 

VMD[0 •• 31] SENS ••VII f-<ml 
CIRRUS. SCH -

LCDCONN. SCH 

i...... ,.FR...,.AD[O •• 7] VMD[O •• 31J4 
....._ 

ltSA[O •• 19) FPENAB 
IL :> ....._ ~AAB[O •• 15] +SVI • v BFP 

FB{O •• 10] "'""" 
DAC[O •• 2] OSCJ:LLAT.QR. _BESJ:STORS 

FRAMEBUF. SCH 

P[O •• 7) .... I--"DCLK[O .• 3] +1 . I~ 
LCD_VEEO--~LCD_ VEE CPU_AD[O •• 1.5] _c: I--~MS[0 •• 2] +SV&Y . 
"=-""-jltico_VDD VGA{0 •• 7] CPU_AD(O •• 1.5) +SVI: . 

+SVSYS ~DI L--19osc 
+SVJ:D MS[O •• 2] 

OSCRES.SCH 

ll!!!!!I-~GND SENS 

BT47S .SCH 

Intel corporation 

Titl• 
VJ:DEO SUBSYSTEM 

s1:10<:>c:ument NUmber :rEV DO 

::!: 
Date: No er 27 1. 9 91.Iifi:eet ~ 4 

~ 
en 



!:1 
°' 

1'1 

11 

:I 

80C5_1SL 

< IsA!6 .. 3}J ~ISA[0 .• 37] 

XD XD[O •• 7] 

LED LED[O •• 11 

KBD KBD[0 •• 3] 

EXT EXT[O •• 3] 

KS[O .• 23] 

BATT BATT(O .• 2] 

Bfil;ET. 

PSTRbBEI 

< EXTSMI* 

<m J 

RESET51 

IRQ12 

IRQ1 

+5V 

GNO 

----9> 

80C51SL.SCH 

I 

I 

5jl rg Jl tC51[0 .. 3) 

EADB[O •• 7] I 1KA[a .. 1') 

@l'filrn::t-• +SVSYS 

@:Y]JQ--ll+SV51 

I 

+SV51~ 

G~ 

~::::::::1 ' 'I 
KA{ 8 .. 14].;"", -------· 

S UTTON* s UTTONlt 

SRBTNll SRBTN41 SRB'IN* 

SUS STATll CPU 

ACPR SEN'T* ACl?RES * 
HDD~ _,. ... _._..,..,. .. ...._ 

C8042CS+I C8042CSI I ~ c cs 

KBDA20 KBDA2 0 KBDA RC·~ RC• I = 
Aux_BATT_OlM AUX BATT ON ~ ON I 

:I 

+SVSYS~ 

+SV51~ 
+SVS1~ 

Intel corporation 

Title 

KEYBOARD CONTROL SUBSYSTEM: 

si:elDocument Number 

Date: No~emb_!l!~_-2_7_, 1_~_!11 ISheet 

:> 

li'"" ...l..t>O 
o'f 43 



~ ...., 

POWER CONTROL 

CPUl sus_5TATll 

SMOUTS SMOUTS 

+5~ 

~ ~HDDPWR 
< ACPRESEN'Tit I I + v +12V 

BATT 0.. -12',T -12V 

+5VFD>Dlli-j~ffi!i1 

+SVHDDlt-(tEH@: 

+12V---'"'"'""' 

GNO~ <AUX BATT ON 

<SR BUTTON!! 

< RESET51 

~ 

ISACLK2 

En 
COMX1 

COMX2 

ex' 
CX2 

RTCVCC RTCVCC 

BATTDEADll 

' s 

~ 

PGOO~ PWRGOO 

ATRESETll 

RESETDRV 

RESET51 

SR_BUTTONll 

FFSE 

+SVSY~ 
G~ 

FC_OVERRIDE BATT+ 

'-----lllACPRESENTit VMAI 

=~~-.FSTCHRGit +12vli-j:t:JCB[J 

~------AUX_BATT_ON -12 - V 

MAWON• +5~ 
~-----•MAI NON GND~ 

DCCONN.SCH 

SUPPLY VOLTAGE GENERATION 

~-----STDBYON 

VMArn 

+12V 

-1?.V 

+5~ 
1~ 

+SV51~ 

+2. 5VRE~+2. SVREF 

FFSET MAINON"~ I l 
KBD 0 .. 3 KBD[O .. 3] MAINO"t 

GNO~ 

~--~PSTROBE STDBYO·---------t-' 

~+5V51 G~ 

~--------------~· 

CONTRO 

+2. SVRE 

+5 

BATT_TEMP > 
BATT_VOLTS > 

+ SV51 .. -j3!'filJi: 

GN 

+SY '.I. GN 

~+5V51 

~+SV51A 

PS+5o-----JmPs+s 

=----' 

Title 

+SVHD~ 

+SVFD~ 

+ 12'""'--'"""'"5Vl 

- '2'""'--'--="'"'1 

+2 SVRE 

GN 

Intel Corporation 

sizelDocument NUmber REV 

DO 
43 



!:! 
co 

D:CSX..Jm.:IVES S. CARD VI:DEO SUBSYSTD_ . v s +5VSYS ~VGAC ~VGACS :a • v +5VFDD HACTJ:VEI 

r-;::; 
HACTJ:VE* . +SVHDD A'l'llESETI PWRGOOD . . +12VF :tSA[O •• 37] CLK32K 

+SV 

2 

"""""" GND SA[O •• 19] J:SA[O •• 37] 
SD{O •• 1.5) IRQ[1 •• 15) 

XBUS[0 •• 1] t.A[1.7 •• 23) SA[O •• 19] ATRESE!!ij I-= 
XD{O •• 7) J'JMA(O •• 4] 

T 
SD(O •• 15) LEI>[O •• 1] 

SMOTJT[6 •• 7) J:Rg{1 •• 15] 
VJ:DEOSUB. SCH SMOUT[O •• SJ VGACS• p ~HDCTL[O •• 4) FL PC SI 1-----i 

BBMEMWI 

ORE PROCESS:INO SUBSYSTEM MDro~ ~YST~ J VGACS* """""° FLPCSI """""'=· 

~-.• ~rv ISA[0 •• 37] 
HDCTL[O •• 4] CPU{O •• 1.3] 

~ 
+SVSYS ROMCSO* ROMCSOI H ATRESETI 
+12VF CA[1 •• 15) A[1 •. 151 J:SA[O •• 37] +SVSY + S 
QND CD(O •• 15] CD[O •• 15] 8 =~~~I +svs v 

CACHE[O •• 3) ACHE[O •• 3) SMOUT[0 •• 5) +SVS~~ + V 
SMOUT [ 0 •• 5] RMA[O •• 9) RMA.[0 •• 9] 

l:SACI..l<2 
SMOUT[O •• SJ +SVJ: + 

e~BUS[0 •• 1] 
MD[0 •• 15) MD[O •• 15] :CSACI..K2 !~~~+VD DRAM[O •• 7) 

1='; 
DRAM[O •• 7] EFI EFI D 

XD(O •• 7] &A[O •• 191 COMX1. COMX1. +12 
SD(O •• 15] SA[O •• 19) COMX2 COMX2 ·=~~ ~ I BBMEMW• 

CX1 CX1 

MEMORY.SCH 
SD[O •• 15] CX2 CX2 RTC~ VC 

RTCRESET BATTDEADI 
LA[17 •• 23] 

CLK32 LK32K HDD 
XD[O •• 7] C8042CS BATT[O .. 2] PST~ 

KBDA20 BATT_TEMP SR_BUTTONI I----
XBUS(0 •• 1] RC* BATT_VOLTS RESET51 t---

SRBTN* KBD [ 0 •• 3] AC PRES ENT I t------, 
IRQ[1. .15) BATT[O •• 2) 

~~J DMA[O •• 4) +SVll -=-
0 SUBSYSTEM 

LPT[O •• '16] +SVSY illSYS 
POWERSUP. SCH 

l~o>M[O .. 15] 
+5V51 

SMOUT[O •• SJ CPU[O •• 14) I:: FLSHCCSI RTCVC 
-@!fil" KEYBOARn CONTROL SUBSYST___EM_ SMOUT[6 •• 7] ISA[O .• 37] r;::::: AMP GNqi 

~ 
SA[O •• 19] i-- SPKR 

1r 
SD[O •• 15) .-- EXTSM:II ~ CPU[O •• 13) MA~~ 

+5VSYS LA[17 .• 23] 
COREPROC. SCH 

J:SA[O •• 37) AUXJATT_ 1---
+SVS1A :IRQ(1 •• 15] ~rn::~~l AC~Ws~ I , . +12V DMA[O •• 4] v 

12V LPT[0 •• 16] :CRQ[1 •• 15) SR.....BUTTONI 1---
GND GND COMM[O •• 15] C8042CSI PSTRO 

FLSHDCS# KBJ:>A20 HDD 

"" RC* LEO[O •• 1] 
AM SRB'l'NI 

l!XT[O .. 3] 

SPK EXTSMII 
+SVSY. EXTSM:tl BATT[O •• 2) +5V51 c KS[0 •• 23] 

BATT TEM ~ ''"'';'l ·~!II . KBD(O •• 3] BATT VOLT 

J:OSUB.SCH 
EXT[O •• 3) 

+5 + v 

KEYBOARD. SCH I Intel corporation 

Title 
MUSTANG 3S6SL NOTEBOOK COMPUTER 

sizeloocumant NUmbar 

DO 
ee 1:_ NQVein.l;)er ~Z-7~1TITISheet 



Glossary 

auto power off A feature to turn power off automatically when the system is inactive 
for a long period of time. 

BIOS Basic Input and Output System. System initialization software embedded 
inside nonvolatile memory device such as flash memory. 

bus A group of communication lines for transferring data between the processor and 
the peripherals. 

cache flush An operation which invalidates all cache lines. 

de-turbo mode A mode where the CPU executes at a slower speed. De-turbo mode in 
the SL architecture can be controlled by either hardware or software. 

OMA Direct Memory Access. Data stored in memory is accessed without going 
through the CPU. 

BIOS shadowing A mechanism that copies information from flash memory to the 
RAM for faster code execution speed. 

expanded memory Memory in the CPU memory address space that is accessed 
through a 64-Kbyte memory address window. 

flash memory Nonvolatile memory which augments EPROM functionality with in­
circuit electrical erasure and reprogramming. 

flash BIOS Flash memory used for storing BIOS software to allow easy upgrade. 

global standby A mode where the system removes power to selected power-hungry 
devices and stops the CPU clock to the CPU core inside the SL architecture CPU. 

1/0 cycle recovery time Delay time inserted after the trailing edge of any I/O com-
mand and before the next consecutive I/O command. · 

1/0 trap A mechanism to detect access to an 1/0 port. 

internal bus unit An SL architecture CPU control unit which directs bus cycles 
between the CPU core, the external bus unit, the cache unit, and the on-board memory 
control unit. 

!SA-sliding window A mechanism that allows access to the entire 16-Mbyte of system 
address space on the ISA bus or Pl bus in real mode. 

ISA bus An industry standard bus interface for PC system based on IBM PC AT's 8-
MHz expansion bus. 

LIM EMS Lotus/Intel/Microsoft Expanded Memory Manager Specification. This spec­
ification was developed to provide more memory for applications software running in 
real mode. 

319 



320 Glossary 

local standby A mode in which an idle device controlled by the SL CPU is optionally 
powered down. 

lower memory Memory located below the 1-Mbyte system address space limit. 

MCP Intel387SL math coprocessor. 

on-board memory Memory controlled by the memory controller inside the SL CPU 
which is not the same as ISA-bus memory. 

ONCE A special mode for the SL CPU which is activated by asserting the ONCE# sig­
nal. When asserted, it causes all the outputs on the SL CPU to float. 

parity checking A method of verifying the accuracy of data by adding a binary digit to 
a group of binary digits that indicates parity. 

Pl bus Peripheral Interface bus. A high speed bus which shares the same address and 
data bus with the ISA-bus interface. 

power-on password A PS/2-compatible security option to prevent illegal access to 
system. 

register shadowing A process in which the contents of write-only registers are saved 
to read-only registers so that the write-only registers can be restored to their previous 
states after they are reset. 

resume A process of restoring the system to its previous state prior to suspend. 

RSM A new microprocessor instruction to restore the CPU to its previous state prior 
to entering system management mode. The opcode for this instruction is OFAAH. 

SIGNATURE register A 16-bit register which provides revision number, family code, 
and family member code of the SL CPU. 

SMRAM Memory used for storing system management code. 

special feature set A set of functions for controlling CPU reset, A20 GATE, CPU 
speed, and shadowing. 

SRAM Static Random Access Memory. 

stop break event An event that can cause a stopped CPU clock to restart. 

suspend The lowest power state of the SL architecture required to maintain the 
state of the system. There are three kinds of suspends and they are characterized by 
the state of the Vee to the SL CPU and 82360SL during suspend. In a 5-volt suspend, 
the Vee to the SL CPU and 82360SL remains at 5 volts during suspend. With 3-volt 
suspend, the Vee to the SL CPU and 82360SL is running at 3 volts during suspend. 
When both the SL CPU and the 82360SL are powered down, the system is in a 0-volt 
suspend. Typically, the state of the system is saved to a nonvolatile memory device. 

suspend refresh A special type of slow DRAM refresh to retain data in DRAM during 
suspend. 

system event An event that indicates the system is not idle and keeps the system 
from going into global standby mode. 

suspend/resume button An input pin to the 82360SL which can be used as a button 
to put the system in suspend state or resume from a suspend state. 

tag The part of a cache line which holds the address information used to determine if 
a memory operation is a hit or miss on that cache line. 



Glossary 321 

turbo mode A mode in which CPU is running at full speed. 

wait state The number of additional clock cycles in addition to the minimum number 
of clock cycles to complete a read or write access. 

write through A form of caching in which memory writes load both the cache memory 
and main memory. 





Index 

323 





0-volt suspend, 58, 68, 96 
OWS# 

ISA zero wait state, 254 

3.3-volt suspend, 58, 68 
387 SL math coprocessor, 108 

5-volt suspend, 58, 68 

80C51 SL 
and keyboard controller, 109 

82077 SL 
floppy disk controller, 112 

82360 SL 
configuration space, 25, 30, 

215 
function of, 28 

82365 SL, 113 
82C37 

DMA controllers, 28 
82C54 

programmable interval timers, 
28 

82C59 
programmable interrupt con­

trollers, 28 

A20GATE 
FAST 20 gate, 232 

Address multiplexing, 138, 161 
Alarm 

date and time, 221 
APM,69 
APWR_TMRH, 66 
APWR_TMRL, 66 
Architecture 

SL architecture overview, 19 
ASMI,59 
ASMI_ADRH, 84 
ASMI_ADRL, 84 
Auto power off, 66 
Autoscan 

for memory size, 141, 164 

BAT_LOW_MSK, 67, 69 
BATTDEAD# 

battery dead, 129 
Battery 

backup for RTC, 129 
management, 6 
monitoring, 69, 92 
selection, 91 

Battery life, 93, 250 
BATTLOW# 

battery low, 67 
Benchmark, 249 

BIOS 
8-bit or 16-bit data bus, 224 
editor, 229 
initialization, 210 
keyboard,222 
power management, 224 
setup, 211 
shadowing support, 82 
system, 209 

Buffer strength, 166 
Burst cycle, 160 
Bushold circuitry, 100 
BUSY# 

MCP busy, 108 

C8042CS# 
keyboard chip select, 110 

CA[15:1] 
cache address bus, 149 

Cache 
autosizing, 150 
coherency, 153, 171 
configuration options, 149 
considerations, 172 
flushing, 153, 171 
lntel386 SL CPU, 149 
Intel486 SL CPU, 170 
interface, 106, 149 
unit configuration space, 25, 

30,215 
CAS# 

refresh with staggered refresh 
type, 137 

programming, 159 
CCR register, 137 
CCSH# 

cache chip select high, 149 
CCSL# 

cache chip select low, 149 
CD[15:0] 

cache data bus, 149 
MCP data, 108 

CE[3:0] 
SRAM chip enable, 146 

CFGDATA,82 
CFGINDEX, 82 
CFGR2,203 
Clock unit, 25 
Clocks 

control, 94, 95 
power management, 95 
real-time interface, 129 
signals, 108 

CMOS RAM 
extended, 130 
RTC extended accesses, 212 

CMUX[0:13], 26 
COM[A:B]RI#, 69 
COM[A:B]RTS#, 78 
COMXl 

Index 325 

communications crystal oscil­
lator 

input, 130 
COMX2 

communications crystal oscilla­
tor 

output, 130 
Compatibility, 22 
Component selection, 87 
Configuration logic 

initialization, 215 
Configuration space control 

unit configuration spaces, 
216 

82360 SL configuration space, 
217 

CPU clock speed, 
control, 123 
performance, 252 

CPU reset 
blocking, 36 
pulse width, 235 
source, 245 

CPUPWRMODE, 123, 216 
CRST_TMR register, 235 
Crystal oscillator input (CXl), 

130 
Crystal oscillator output (CX2), 

130 
Current 

drain, 98 
leakage, 100 
measurement, 98 
sinking, 98 
sourcing, 98 

CWE# 
cache write enable, 26, 149 

CXl 
crystal oscillator input, 130 

CX2 
crystal oscillator output, 130 

DACK2# 
floppy disk DMA acknowledge, 

112 
DC-DC converter, 88 
Damping resistor 

recommendation, 143 
Debug 

considerations, 238 
tools, 237 
using SMM, 37 



326 Index 

Design tips 
PI-bus, 194 
RTC, 133 
system, 118 

DEVx_ACTIVE bit, 61 
Development methodology, 24 7 
Diagnostic card, 240 
Direct mapping 

cache options, 149 
DMA controller 

clock speeds, 128 
DMASEL, 128 
DRAM 

3.3-volt or 5-volt, 158 
386 SL design options, 135, 

147 
486 SL design options, 155, 

157 
bank and size support, 141 
fast-page mode support, 136 
high-speed page mode support, 

136 
interface, 105, 136 
selection, 143, 170 

DRQ2 
floppy disk DMA request, 112 

EBClCR, 111, 225 
EBC2CR, 187 
EFI 

external frequency input, 122 
EMI 

and noise control, 117 
EMS 

and cache coherency, 154 
control register, 148 

Enhanced parallel port 
applications, 195 
comparison, 196 
initialization, 203 
1/0 address map, 204 
operation, 197 

Errors, 243 
ERROR# 

MCP error, 100 
Expansion interfaces, 27 
Extended refresh, 176 
External frequency input 

EFI, 122 
External unit configuration 

space, 26, 30, 215 
ExCA, 113 
EXTSMI# 

external system management 
interrupt, 59, 67 

Fail-safe backup, 39 
FASTA20GATE, 232 
FASTCPURESET, 232 
FASTCPU, 232 
Fast-page mode 

DRAM support, 136 
Flash BIOS 

interface, 106 
mapping, 229 
programming, 225 
update, 225 

Flash disk 
interfacing considerations, 188 

Flexible circuits, 116 
Floppy disk 

control design considerations, 
112 

Floating point unit, 21 
FLSHDCS#[CMUX14] 

Pl-bus flash disk chip select, 
189 

FPP _CNTRL register, 204 
FSTDW,80 
FSTSG 

MCP stepping and signature, 
127 

Full-ON 
and power consumption, 57 

GAACR, 191 
GABCR, 191 
Global standby, 58, 63, 80 
GSTDBY_REQ, 63 

Halt signal 
HALT#,64 
HLT instruction, 64 
STPCLK#,64 

Hard disk 
IDE interface, 28 

High-speed page mode 
DRAM support, 136 

HIVGA, 111, 
HW _SUSREQ bit, 67 
HWBATWRNBP _EN, 74 

1/0 access detection, 60 
1/0 cycle recovery time, 234 
1/0 trapping, 62 
IBCTOUT, 187 
ICE386 SL, 240 
ICE486 SL, 240 
Integrated Drive Electronics 

(IDE) 
and hard disk interface, 28, 111 

Idle detection, 61 
Intel386 SL CPU, 19 
Intel486 SL CPU, 21 
Internal bus unit configuration 

space, 24, 30, 215 
INTR 

maskable interrupt inside 
SMM,33 

IRQl 
keyboard interrupt request, 

110 
IRQ14 

hard disk interrupt request, 
84 

IRQ6 
floppy disk interrupt request, 

112 
IRQn 

parallel port interrupt request 
n,203 

ISA bus 
advanced decoding, 188 
interface, 27 
performance, 254 

ISA sliding window 
and flash disk interface, 111, 

188, 189 
ISACLK2 

ISA clock, 28 

KBDA20 
keyboard A20 gate, 110 

KBDCLK 
keyboard clock, 122, 128 

Keyboard 
BIOS, 222 
clock, 122, 128 
controller support, 109 

LA[17:23] 
PI-bus local address bus, 183 

Latency 
SMI and RSM, 41 

LCD display, 223, 260 
LE 

SRAM latch enable, 146 
LIM4.0EMS 

hardware support, 148 
Line termination, 246 
Local standby, 58, 59 
Logic probe, 239 
Logic pulser, 239 
Lotus/Intel/Microsoft (LIM 4.0) 

standard EMS compatible, 
148 



. Low voltage Intel386 SL CPU, 20 
LOVGA, 111 
LPTACK# 

line printer acknowledge, 197 
LPTAFD# 

line printer auto line feed, 197 
LPTBUSY# 

line printer busy, 197 
LPTD[7:0] 

line printer data bus, 197 
LPTDIR 

line printer direction, 197 
LPTERROR# 

line printer error, 197 
LPTINIT# 

line printer initialize, 197 
LPTPE 

line printer paper end, 197 
LPTSLCT 

line printer selected, 197 
LPTSLCTIN# 

line printer select in, 197 
LPTSTROBE# 

line printer strobe, 197 
LRU, least recently used algo­

rithm, 149 
LSTDBY_STS register, 61 

MA[lO:Ol 
DRAM multiplexed memory 

address bus, 139 
SRAM multiplexed memory 

address bus, 145 
Mapping 

direct, 149 
four-way set associative, 149 
priorities, 149 
two-way set associative, 149 

Maskable interrupt 
INTR, 

MASTER# 
Pl-bus master, 187 

Math coprocessor 
clock, 108 
interface, 125 

MC146818 
and RTC design, 129, 134 

MCAS 
memory controller auto scan 

register, 141 
MCBANK, 159, 161 
MCBS 

memory controller bank size 
register, 141 

MCBUFF[A:B], 167 

MCMODE 
for parity generation/checking, 

142 
MCP 

interface features, 26, 108 
performance, 253 
save and restore, 80 

MAPARITY, 168 
MCPEL[A:BJ, 142 
MCRF 

for refresh interval, 138, 163 
MCROLL, 168 
MCWINDOW, 169 
MD[15:0] 

DRAM memory data bus, 137 
SRAM memory data bus, 146 

Memory 
lntel386 SL CPU, 135 
lntel486 SL CPU, 155 
sizing, 141, 164 
testing, 242 

Memory cards, 135, 179 
Memory controller 

drive capability, 166, 167 
Memory mapped 1/0 

noncacheable address areas, 193 
Memory roll-over 

support, 148, 168 
MEMR#,MEMW# 

BIOS access commands mem­
ory, 107 

X-bus memory access com­
mands, 147 

MIDI port interface 
serial port interface features, 

130 
Modem ring 

during suspend, 69 

NC[A:GJCR, 153, 193 
NiCd, 92 
NiMH, 92 
NMI 

nonmaskable interrupt, 32 
Normal 1/0 space, 26 
NPXADS# 

MCP numeric address strobe, 
108 

NPXCLK 
MCP clock, 108 
control, 126 

NPXRDY# 
MCP numeric ready, 108 

NPXRESET 
MCP numeric reset, 108 

Index 327 

NPXW/R# 
MCP numeric write or read, 108 

On-board memory configuration 
space,25,30,215 

On-board memory controller, 25, 
135, 156 

On-board memory sliding win­
dow, 169 

Odd address transfers 
PI-bus 16-bit read and write, 

187 
OHE# 

SRAM output high enable, 
OLE# 

SRAM output low enable, 
OMBRCR 

roll-over memory, 148 
OMDCR, 169 
OMLCR 

and cache flushing, 149, 154, 
170 

OMRBCR 
roll-over memory, 148 

OMSR 
for suspend refresh, 138 

On-board circuit emulation 
(ONCE), 240 

ONCE#,240 
osc 

ISA-bus oscillator, 121 
oscillator, 130 

Oscillator 
design considerations, 131 
troubleshooting, 134 

Output clock signals 
SL SuperSet system, 121 

Packaging, 116 
Page mode 

DRAM support, 135 
Page-miss-bank-hit cycle 

and page-interleaving, 137 
Parallel port 

interface, 113, 197 
operations, 203 
signals, 197 

Parity 
generation/checking, 142, 168 

PCMCIA, 113 
PCMD# 

Pl-bus command, 184 
PEREQ 

MCP processor extension 
request, 108 



328 Index 

Performance 
attributes, 251 
overview, 249 
power management, 254 

Peripherals 
interface bus (Pl-bus), 183 
interface design tips, 194 

PERR# 
parity error, 142, 168 

Pl bus 
address space, 185 
architecture, 27, 183 
cycle termination, 187 
flash disk, 188 
operations, 186 
performance, 254 
signals, 184 
VGA controller, 110 

Pl-bus timeout, 187 
PM/IO# 

PI-bus memory or 1/0, 184 
Port61H 

for parity generation/checking, 
142,230 

Port70H 
and RTC internal bus cycles, 

212 
Port71H 

and RTC internal bus cycles, 
212 

Port74H 
and CMOS RAM access, 212 

Port76H 
and CMOS RAM access, 212 

Power and system 
management, 56 

Power consumption benchmark, 
285 

Power control, 61 
Power down 

power sequencing, 90 
hard disk, 97 
peripheral devices, 97 
software control, 77 
system and device control, 75 

Power good 
PWRGOOD, 69, 243 

Power management 
design considerations, 95 
history, 55 
implementation, 93 
initialization, 58, 72 
overview, 57, 73 
programming guidelines, 84 
resources, 109 

Power management (Cont.): 
software, 71 
techniques, 87, 93 
testing, 242 

Power management timer, 74 
Power mode, 6 
Power plane 

device power-down control, 102 
isolation, 103 

Powersequencing,90 
Power supply, 89 
Power-on reset, 245 
PRDY# 

Pl-bus ready, 184 
Priorities 

memory mapping, 169 
PSRAM,146 
PS TART# 

Pl-bus start, 184 
PW/R# 

Pl-bus write or read, 184 
PWRGOOD 

power good, 69, 243 

RAM 
system management, 147 

RAS# 
refresh with staggered refresh 

type, 138 
programming, 155 

Real-time clock (RTC), 111, 129 
Real-time clock crystal oscillator 

input 
RTCXl, 133 

Real-time clock crystal oscillator 
output 

RTCX2, 133 
REFDIS bit, 138 
REFREQ 

DRAM refresh request, 69, 111, 
138, 147 

Refresh 
DRAM memory cycles, 137, 

162 
ISA-bus control signals, 138 
programmable rate, 138 
request, 138 
self-refresh, 163, 176 
staggered, 137 
suspend, 138, 163 

REFRESH# 
ISA refresh, 138 

Register resources, 29, 115 
Reset 

CPU,69,245 

RESETDRV 
reset drive, 69, 109 

Resistors, 100 
Resume 

control, 92 
Resume reset, 69, 245 
RESUME_MASK, 69 
Roll-over memory 

support, 148, 168 
ROM16/8# 

BIOS ROM 16-bit or 8-bit, 224 
ROMCS_DEC, 225 
ROMCSO# 

BIOS ROM chip select, 107 
ROMCSl#[CMUX14J 

BIOS ROM chip select, 107 
ROM emulator, 239 
ROM monitor, 239 
RS232C 

serial port, 113 
RSM, 42, 35, 31 
RTCRESET# 

internal RTC reset input, 129 
RTCVCC 

RTC input voltage, 129 
RTCXl 

real-time clock crystal oscillator 
input, 133 

RTCX2 
real-time clock crystal oscillator 

output, 133 

SA[19:0] 
Pl-bus system address, 183 
X-bus system address, 

Save and restore, 81 
SBHE# 

PI-bus system bus high enable, 
183 

Scratchpad RAM, 282 
SD[15:0] 

Pl-bus system data bus, 183 
Serial port 

clock input, 130 
Shadow registers, 82 
Size 

cache options, 5-2 
Slow clock cycles 

DRAM memory, 143 
SLOWCPU, 232 
SMFILO 

system management FILO, 
78 

SM-RAM 
external implementation, 147 



SMEMR# 
ISA system memory read, 

185 
SMEMW# 

ISA system memory write, 
185 

SMI# 
system management interrupt, 

31 
system management interrupt 

priority, 32 
debugging, 245 
delay, 245 

SMOUT[5:0) 
system management output, 

61, 75 
SMRAMCS# 

system management RAM chip 
select, 33, 147 

SM_REQ_CNTRL register, 67, 
115 

SM_REQ_STS register, 61, 63, 67 
Software loop 

parallel port, 206 
delay, 230 

Software standby control 
device power down, 96 

Special Feature Set 
enabling and disabling, 233 
overview, 232 

SPND_STS, 67 
SRAM 

interface, 144 
programming, 145 
signal overview, 26 
wait state, 25, 145 

SRBTN# 
suspend/resume button, 59, 67, 

69 
Staggered refresh 

CAS# before RAS#, 137 
Status bits, 79 
Stepping identification, 231 
STI instruction, 33 
Stop-break event registers, 65 

STPCLK# 
stop clock, 64, 125 

SUS_STAT# 
suspend status, 68 

Suspend 
control, 68 
enabling, 68, 81 
initialization, 
operation, 65 
refresh, 68, 138 
requests, 65 
sources, 59 
suspend warning timers, 67 

Suspend/resume button 
implementation, 67, 69 

SUS_ WRN_TMR_SMI, 84 
SUS_ WRN_TMR_SRBTN, 73 
SYSCLK 

ISA-bus system clock, 128 
SYS_IN_STDBY bit, 63 
System 

functional partitioning, 19 
System bus, 27 
System clock 

SYSCLK, 128 
SYS_EVNT_CFG2 register, 63 
System event registers, 65 
System management control 

register, 59, 72 
System management program, 

43-53 
System management interrupt 

operation, 35 
multiple SMis, 82 

System Management Mode 
address formation, 33 
applications, 36 
architecture, 32 
entering, 32 
exiting, 36 
extended limits, 33 
programming guidelines, 52 

System management RAM 
address space, 33, 147 
memory overlaid by SMRAM, 79 

Index 329 

System management request 
status 

register, 61, 63, 67 
System reset 

and PWRGOOD signal, 245 

Testing, 241 
Thermal specification, 117 
Three-stated signals, 100 
Time slicing, 53 
Tools, 237 
TRP _ADR_MSK_DEVx register, 

61 
TRP _ADRH_DEVx register, 60 
TRP _ADRL_DEVx register, 60 
TURBO 

keyboard, 109 
mode, 250 
CPU clock control, 123 

VGA graphics frame buffer, 
191 

VGACS# 
PI-bus VGA chip select, 111 

VGA BIOS 
power management, 223 
remapping, 225 

Wait state, 136, 145, 250 
Warning signals 

battery, 67 
WHE# 

DRAM write high enable, 136, 
143 

SRAM write high enable, 143, 
146 

WLE# 
DRAM write low enable, 136, 

143 
SRAM write low enable, 143, 

146 
Write-through cache, 153 

XDEN#, 111 
XDIR, 111 





ABOUT THE AUTHOR 

Desmond Yuen is a Senior Applications Engineer at Intel 
Corporation. A member of the IEEE, he chaired the IEEE 
P1284 Enhanced Parallel Port subcommittee in 1992. Intel 
has filed three patent applications related to System 
Management Mode based on Mr. Yuen's work. In addition, 
he has written several Intel manuals, including the Intel386 
SL Microprocessor Programmer's Reference Manual and the 
Intel486 SL Microprocessor Programmer's Reference 
Manual. The author has been directly involved with the SL 
architecture and its advanced power management features 
since June 1989, and he has worked extensively with OEM 
manufacturers and software vendors to develop SL 
architecture-based portable computer systems. 

331 





Programming Languages 

INTEL'S 5l- ARCHITECTLJRE 
Here 1s the first complete guide to designing notebook computers based on the most powerful highly 
integrated. and low power lntel486 SL CPU and lnte1386 SL CPU 

lntels SL Architecture presents comprehensive coverage ot systerr internals and progra'Tlm1ng tech­
niques that will help you make the most of these advanced m1croprocessors It is •re t rs: book to tully 
describe Intel s System Managemerit Mode Among the topics covered are how to use •re System 
Milnagement Mode Architecture toors to ex•erd battery I fe nte''iJCing oer1prera 1 s I'.) '"" '''9'1 speed 
Pl bus for better performance using the enhanced parallel port for system expansion w·itrng an SL 
SuperSet BIOS and debugging the SL SuperSet 

An excellent resource for engineers. programmers. and advanced IBM PC users. this 011·oue book 

contains 

Explanations of special features of the SL microprocessors and the best way to 1mplen1en'. them 

Excerpts from experts 1n different fields of portable computing technology 

A handy programmers quick reference tact card 

Sample programs to simplify assembly language :mplementat1oris 

Custom1zat1on approaches for 1mprov1ng system performance 

Tr11s valuable guide also includes a 3 5' disk w 1th ut111ty software for mod1fy1ng registers D'uS sample 
programs that show you how to use System Management Mode and Power Management 

After reading Intel's SL Architecture there's little you don't know about how to build systems 
around the SL-family CPUs. Mr. Yuen has done an exceptional JOb 1n putting together a well­
organ1zed and easily understandable reference book for anyone cons1der1ng the SL family 

- Dave Bursky, Executive Editor West Coas• E!edronic Design lv'ag;ume 

lntels SL Architecture brings together a broad range of 1nformat1on about the SL architec­
ture's capabil1t1es and. most importantly. how to use these capabilities most effectively to 
implement power management and other system features. Covering both the lntel386 SL and 
lntel486 SL processors and the companion I 0 chip this book will be a valuable reference for 
anyone des1gn1ng an SL-based system 

- M icha el Slater, Publisher and Editor :n Ch·ef Mooprocess::-r Repon 

P/N 072693-0 
PART OF 
ISBN 0-07-911336-2 

90000 

9 8007 11336 

McGraw-H ill , Inc. 
Serving the Need for Knowledge 

1221 Avenue of the Americas 
New York. NV 10020 


