I

8080/8085
FLOATING-POINT
ARITHMETIC LIBRARY
USER’S MANUAL

Manual Order Number: 9800452B

Copyright © 1977, 1978 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

——

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE LIBRARY MANAGER PROMPT
INSITE MCS RMX
INTEL MEGACHASSIS UPI
INTELLEC MICROMAP #SCOPE

iSBC MULTIBUS

PREFACE

This manual describes Intel’s 8080/8085 Floating-Point Arithmetic Library (FPAL) and
its use. The FPAL extends the capabilities of programs written for the 8080 and 8085
microcomputers. You can incorporate various floating-point operations into your |
8080/8085 assembly-language or PL/M-80 program using simple procedure calls.

The manual includes programming examples in both languages, but assumes you already
know how to use at least one of them. Programming information can be found in the
following manuals.

8080/8085 Assembly Language:
8080/8085 Assembly Language Programming Manual 9800301
ISIS-II 8080/8085 Assembler Operator’s Manual 9800292

PL/M-80:
PL/M-80 Programming Manual
ISIS-II PL/M-80 Compiler Operator’s Manual 9800300

CONTENTS

PREFACE
CHAPTER 1
INTRODUCTION
Whatis FPAL? 1-1
Single-Precision Numbers 1-1
Integer Format. 1-2
Floating-Point Format 1-2
CHAPTER 2
FLOATING-POINT RECORD PROCEDURES
FSET — Initialize Floating-Point Record 2-1
FRESET — Reset Error-Handling Procedure.. 2-2
FLOAD — Load FAC From Memory. 2-3
FSTOR — Store Number into Memory From FAC. . 2-3
FSTAT — Access Status Information. 24
FERROR — Access Error Information. 2-4
CHAPTER 3
ARITHMETIC PROCEDURES
FADD — Floating-Point Addition. 3-1
FSUB — Floating-Point Subtraction 32
FMUL — Floating-Point Multiplication 32
FDIV — Floating-Point Division. 3-3
FQFD2B — Decimal-to-Binary Conversion 33
FQFB2D — Binary-to-Decimal Conversion 34
FIXSD — Floating-Point to Integer Conversion 3-5
FLTDS — Integer to Floating-Point Conversion. . . . 3-6
FCMPR — Floating-Point Number Comparison 3-6
FZTST — Compare FACtoZero 3-6
FNEG — Change Sign of FAC 37
FCLR — Clear FACtoZero. 37
FABS — Absolute Value. 3-8
Sample Programs., 3-8
8080 Assembly-Language Example........... 3-8
PL/M-80Example 39
CHAPTER 4
ERROR HANDLING
Error-Handling Operation 4-1
FERHND — Default Error Handler. 4-1
Error During Arithmetic Operation. 4-1
Error During FQFD2B Operation. 4-1
Error During FQFB2D Operation. 4-2
Error During FIXSD Operation 42
Error During FCMPR Operation. 4-2
Error During FZTST, FNEG, or FABS Operation . 4-2
OtherCallsto FERHND. 4-2
Sample User Error Handlers. 4-3
Assembly-Language Example. e 4-3
PL/M-80 Example 4-4

CHAPTER 5
INTERFACETO FPAL 5-1
APPENDIX A
FLOATING-POINT RECORD FORMAT
StatusFieldc.. A-1
Error-Handler Address Field A-2
ErrorField. i A2
Floating-Point Accumulator A2
APPENDIX B
DEFINITIONS
Floating-PointZero'. B-1
Invalid Numbers B-1
Single-Precision Format B-1
Rounding. i B-2
Exponent Wraparound B-2
APPENDIX C
SUMMARY OF FPAL PROCEDURES
BasicOperation. C-1
ErrorHandling C-2
Procedure Sizes C3
Procedure Timing C-5
ILLUSTRATIONS

Figure Title Page
2-1 Registers B,C Format for FSET. 22
3-1 Control Block Format. 34
A-1 Floating-Point Record Format A-l
A-2 Floating-Point Number Format in Memory . . A-2
A-3 Integer FormatinMemory............. A3

TABLES

Table Title Page
C-1 FPAL Procedure Operation. C-1
C-2 FPAL Error-Handling Summary C-2
C-3 FPAL Procedure Sizes C-3

CHAPTER 1
INTRODUCTION

What is FPAL?

The Floating-Point Arithmetic Library (FPAL) contains basic floating-point subroutines
and functions (referred to generically as ‘procedures’). The operations provided are
addition, subtraction, multiplication, division, value comparison, conversion between
decimal and binary floating-point number representations, and conversion between
floating-point and 32-bit signed integer formats. All operations are single precision
(positive number range approximates 1.2x 1038 to 3.4x 1038). The single-precision
format is described below and in Appendix B.

In addition to these operations, a number of procedures are provided to deal with the
Floating-Point Record (FPR). This is a reserved, 18-byte work area used to collect status
and error information, and as an accumulator for intermediate results. The procedures
supporting the FPR perform FPR initialization, change error-recovery options, check the
contents of FPR fields, and pass numbers between the FPR and memory.

The FPAL also includes a default error-handler subroutine. This subroutine is called when
an invalid number is used in a floating-point operation or if overflow, underflow, or
division by zero are not handled by an arithmetic subroutine. You may also write your
own error handler, so long as it conforms to the formats described in this manual.

The FPAL can be used by assembly language or PL/M programs. The FPAL procedures
reside in an ISIS-II library (FPAL.LIB) in object code form. They are self contained and
can be used in component, OEM-board, or Intellec Microcomputer Development System
environments.

In general, the following steps must be observed to use the floating-point library:
1. An area of memory must be reserved for the Floating-Point Record (FPR).

2. The names of the FPAL procedures you plan to use must be declared to be ‘external’
(using the EXTRN directive in the ISIS-II 8080/8085 assembly language or the
EXTERNAL attribute in PL/M-80).

3. FPAL procedure references must be imbedded in your source code where appropriate.

The FPAL procedure used by your program must be linked to your object file.
All FPAL procedures are reentrant and conform to PL/M-80 linkage conventions.
If you plan to reference FPAL procedures in your program, your program cannot use
symbols that are reserved for FPAL. To avoid using these symbols inadvertently, do not
use symbolic names beginning with a ‘commercial at’ sign (@) or names whose second
character is ‘Q’ or ‘?’.

Single-Precision Numbers

FPAL procedures operate on single-precision binary numbers, either in a 32-bit integer
format or in a 32-bit floating-point format.

1-1

Introduction

1-2

8080/8085 FPAL

Integer Format

The integer format recognized by the FPAL is a positive or negative (two’s complement)
32-bit binary number. The approximate range of this format is:

Decimal Hexadecimal
+2.147 x 10° 7FFFFFFF
+0 00000000

-1 FFFFFFFF
-2.147x 10° 80000000

Floating-Point Format

As an introduction to the single-precision floating-point format, consider the following
representations of very small and very large decimal numbers. The decimal number base
is used here to simplify the example.

Fixed-Point Scientific Notation
6,373,000,000 6.373E+9 (6.373 x 109)
0.00074 7.4E-4 (7.4 x 10%)

The numbers in the two columns are equivalent. In the second column, the decimal point
has been ‘floated.” The exponent ‘E’ indicates the number of positions the decimal point
was moved to the right or left to produce the abbreviated form shown. The numbers
could have been written just as easily as ‘6373E+6’ or ‘74E-5."

The 32-bit, binary floating-point format recognized by FPAL consists of three fields:

sign exponent fraction

1 bit 8 bits 23 bits

The ‘sign’ field contains a zero if the number is non-negative and a one if the number is
negative.

The ‘exponent’ field corresponds to the ‘E’ notation in the example above and indicates
the number of bit positions the integer form of the number must be shifted to put it in
the form ‘l.nnn" The value in the exponent field is offset by 27 - 1 (or 127).

The ‘fraction’ field contains the 23 bits to the right of the most significant bit of the
integer form of the number. A ‘1’ bit is assumed at the left of the fraction if the exponent
is nonzero and the binary point is between the assumed bit and the first explicit fraction

bit.

Example:
Integer Floating-Point

00000001 (hexadecimal) 0 011111110000 . ..0000

sign exp fraction
or, in hexadecimal: 3F800000

8080/8085 FPAL

The following lists make additional comparisons between decimal, binary integer, and
binary floating-point representations. To save space, the internal binary representation is
shown in hexadecimal form.

Decimal Binary Integer Binary Floating-Point
0 00000000 (hex) 00000000 (hex)
1 00000001 3F800000
-1 FFFFFFFF BF800000
255 000000FF 437F0000
-255 FFFFFF01 C37F0000
1.07 x 10° 7FFFFF80 (note 1) 4B7FFFFF
*3.37 x 1038 7F7FFFFF (note 2)
*1.17 x 10-38 00800000 (note 3)

40490FDB ()
7FFFFFFF (+infinity)
FFFFFFFF (-infinity)

*approximately

NOTES

1. This is the largest number that can be converted to floating-point without losing
accuracy. The precision of FPAL’s floating-point format is slightly less than eight
decimal digits.

This is the largest number in the single-precision floating-point format.

3. This is the smallest positive number in the single-precision floating-point format.

Introduction

1-3

CHAPTER 2
FLOATING-POINT RECORD PROCEDURES

If you plan to use FPAL procedures, you must allocate 18 contiguous bytes of memory
for the Floating-Point Record (FPR). The FPR format is described in detail in Appendix A.
In general, it is divided into four fields:

e Status field (1 byte).

e Error-Handler Address field (2 bytes). This is the address of the error recovery
subroutine.

¢ Error field (2 bytes).

e Floating-Point Accumulator, or FAC. This consists of a fraction field (11 bytes) and
an exponent field (2 bytes).

The remainder of this chapter describes the procedures used to initialize and access FPR
fields. These procedures are:

FSET A subroutine to initialize the FPR.
FRESET A subroutine to reset the error-handling procedures and flags.

FLOAD A subroutine to load a floating-point number from memory into the
Floating-Point Accumulator (FAC) field of the FPR.

FSTOR A subroutine to store a floating-point number from the FAC into
memory.

FSTAT A byte function that places the Status field of the FPR into the 8080’s
accumulator.

FERROR An address function that places the Error field of the FPR into 8080
registers H and L.

The Floating-Point Record may be initialized and modified only by the procedures
described here. The FSET initialization subroutine must be called before any other
procedures are used; otherwise, the results are undefined.

These procedures save all 8080 registers, unless results are returned in the registers.

FSET—Initialize Floating-Point Record

This subroutine completes initialization of the FPR. To initialize the FPR, you must:
1. Push the address of the FPR onto the 8080 stack;

2. Load register B with the error-handler indicator;load register C with the initial value
for the Error field;

3. Load registers D and E with the address of a user-defined error-handler subroutine,
if necessary (see below);

4. Call FSET.

2-1

Floating-Point Record Procedures 8080/8085 FPAL

Before FSET is called, registers B and C should contain initial values as shown in Figure
2-1. The shaded bits shown in this figure are reserved for FPAL use and should always
be set to zero. Ones in these bit fields currently cause undefined results.

7 REG B 0 7 REG C
IE |oE|UE | ZE| DE

Figure 2-1. Registers B, C Format for FSET

The EH bit (register B) is interpreted as follows:
EH=0 The default error handler (FERHND) is to be used;

EH=1 Your own error handler is to be used and its address must be found in
registers D and E.

If EH = 0, registers D and E are ignored. If EH = 1, FSET loads the contents of registers
D and E into the Error-Handler Address field of the FPR.

NOTE

FSET always links an error handler named FERHND,
whether you specify your own error-handling sub-
routine or not. If your own subroutine has the same
name as the default subroutine, your error handler
must appear before FPAL in the link list to ensure
that your FERHND is linked instead of FPAL’s.

LINK MYPROG.OBJ, FERHND.OBJ, FPAL.LIB . ..

FSET also clears the FAC and Status fields to zero and loads the contents of register C
into the low-order byte of the Error field. See Appendix A for a detailed explanation of
the register C bits.

Examples:

The following 8080 assembly-language sequence initializes the FPR and sets all bits in
the Error field to zero. The example also assumes you are using the default error handler.

LXI B,FPR ; REGS B,C POINT TO FPR

PUSH B ; PUSH FPR ADDRESS ONTO STACK

LXI B,0 ; USE DEFAULT ERROR HANDLER AND SET
; REG C (ERROR FIELD) TO ZEROS

CALL FSET ; INITIALIZE FPR

In PL/M-80, the same operations can be done with the statement
CALL FSET(.FPR,0,0);

FRESET—Reset Error-Handling Procedure

This subroutine is used to change the contents of the Error field or to specify that a
different error handler be used. A common use of FRESET is to reset the five error flags
in bits 3-7 of the Error field’s low-order byte.

FRESET uses registers B and C in the same way as FSET (Figure 2-1). If bit 0 of register

B is one, registers D and E must contain the address of your error handler. The shaded
bits in Figure 2-1 should always be set to zero.

2-2

8080/8085 FPAL Floating-Point Record Procedures

The FAC and Status Fields are not affected by FRESET.
Examples:
The following 8080 assembly-language sequence clears the Error field mask bits to zero

and specifies a user-defined error handler whose symbolic address is ERRORI. (Registers
B and C are initialized separately to show clearly the specification of the error handler.)

LXI B,FPR ; REGS B,C POINT TO FPR

PUSH B ; PUSH FPR ADDRESS ONTO STACK

MVI B,1 ; USE ERROR HANDLER ADDRESSED IN D,E
MVI Co0 ; CLEAR ERROR FIELD TO ZEROS

LXI D,ERROR1 ;POINTER TO ROUTINE ERRORI1

CALL FRESET ; LOAD ERROR-RECOVERY INFORMATION

PL/M-80 statements to perform the same operation would be:

DECLARE ERRORSFLAG LITERALLY ‘0000000100000000B’; I
CALL FRESET(.FPR,ERROR$FLAG,.ERROR1);

FLOAD—Load FAC from Memory

This subroutine loads a floating-point number from memory into the floating-point
accumulator. FLOAD assumes that registers B and C contain the address of the FPR and
that registers D and E address the low-order byte of the 32-bit number in memory.

Examples:

The following 8080 assembly-language sequence loads a number, whose symbolic address
is AUGEND, into the FAC.

LXI B,FPR ; REGS B,C POINT TO FPR
LXI D,AUGEND ; REGS D,E POINT TO ‘AUGEND’
CALL FLOAD ; LOAD AND UNPACK ‘AUGEND’

In PL/M-80, the same number is loaded by
CALL FLOAD(.FPR,. AUGEND);

FSTOR—Store Number into Memory from FAC

This subroutine stores the floating-point number in the FAC into memory. FSTOR
assumes that registers B and C contain the address of the FPR and that registers D and E
contain the address of the low-order byte of a 32-bit memory location.

Examples:

This 8080 assembly-language example stores the contents of the FAC into the memory
location addressed by RESULT.

LXI B,FPR ; REGS B,C POINT TO FPR
LXI D,RESULT ;REGS D.E POINT TO ‘RESULT’
CALL FSTOR ; STORE FAC CONTENTS

The store is done in PL/M-80 by
CALL FSTOR(.FPR,.RESULT);

2-3

Floating-Point Record Procedures

24

FSTAT—Access Status Information

This function is called to access the contents of the FPR’s Status field. FSTAT assumes
the address of the FPR has been loaded into the B and C registers. When FSTAT is called,
the contents of the Status field (one byte) are returned in the 8080 accumulator (register
A).

Examples:

In 8080 assembly language, the Status field is loaded by

LXI B,FPR ; REGS B,C POINT TO FPR
CALL FSTAT ; STATUS FIELD LOADED IN REG A

or, in PL/M-80,
DECLARE STATFUN BYTE;

STATFUN = FSTAT(.FPR);
FERROR—Access Error Information
This function is called to access the contents of the FPR’s Error field. It assumes the
address of the FPR has been loaded into the B and C registers. FERROR returns the
Error field contents (two bytes) to registers H and L.

Examples:

This 8080 assembly-language example loads the contents of the Status and Error fields
into the accumulator (register A) and into registers H and L, respectively.

ILXI B,FPR ; REGS B,C POINT TO FPR
CALL FSTAT ; STATUS FIELD LOADED INTO REG A
CALL FERROR ; ERROR INFO TO REGS H,L

In PL/M-80, the corresponding operations would be:

DECLARE STATFUN BYTE,
ERRFUN ADDRESS;

STATFUN = FSTAT(.FPR);
ERRFUN = FERROR(.FPR);

8080/8085 FPAL

CHAPTER 3
ARITHMETIC PROCEDURES

This chapter describes the FPAL procedures for performing floating-point ‘arithmetic.’
These procedures are:

FADD A subroutine to add floating-point numbers.
FSUB A subroutine to do floating-point subtraction.
FMUL A subroutine to multiply floating-point numbers.
FDIV A subroutine to do floating-point division.

FQFD2B A subroutine to convert a decimal floating-point number to binary.
FQFB2D A subroutine to convert a binary floating-point number to decimal.
FIXSD A subroutine to convert a floating-point number to an integer.
FLTDS A subroutine to convert an integer to a floating-point number.
FCMPR A byte function to compare floating-point numbers.

FZTST A byte function to compare the FAC to zero.

FNEG A subroutine to negate (change) the sign of the FAC.
FCLR A subroutine to clear the FAC to zero.
FABS A subroutine to set the FAC to its absolute value.

All of these subroutines assumre that the B-C register pair contains the address of the FPR.
If a second operand, stored in memory, is needed to perform an operation, the address of
that operand’s low-order byte is supplied in the D-E register pair. FCMPR and FZTST
return their results to register A; FIXSD stores a fixed-point number into memory;
FQFB2D stores a decimal floating-point number into memory; the other subroutines l
leave their results in the FAC.

These procedures, with the exception of FQFD2B and FQFB2D, save all 8080 registers |
(except those registers receiving results from the arithmetic operation called).

Appendix C summarizes all FPAL procedures and the error conditions they can return. |
Error handling is described in detail in Chapter 4.

NOTE

The FPR initialization subroutine (FSET) must be
called before any of the arithmetic procedures can I
be used; otherwise, the results are undefined.

FADD—Floating-Point Addition

This subroutine adds a floating-point number in memory to the number in the Floating-
Point Accumulator and leaves the sum in the FAC. FADD assumes that registers B and C
contain the address of the FPR and that registers D and E address the low-order byte of
the number in memory.

3-1

Arithmetic Procedures

Examples:
8080 assembly language:
LXI B,FPR ; REGS B,C POINT TO FPR
LXI D,AUGEND ;REGS D,E POINT TO ‘AUGEND’
CALL FLOAD ; LOAD ‘AUGEND’ INTO FAC
LXI D,ADDEND ; REGS D.E POINT TO ‘ADDEND’
CALL FADD ; ADD AUGEND AND ADDEND
LXI D,SUM ; REGS D,E POINT TO ‘SUM’
CALL FSTOR ; STORE RESULT IN ‘SUM’
PL/M-80:
CALL FLOAD(.FPR,. AUGEND);
CALL FADD(.FPR,. ADDEND);
CALL FSTOR(.FPR,.SUM);

FSUB—Floating-Point Subtraction

This subroutine subtracts a floating-point number in memory from the number in the
Floating-Point Accumulator and leaves the result in the FAC. FSUB assumes that
registers B and C contain the address of the FPR and that registers D and E address the
low-order byte of the number in memory.

Examples:

8080 assembly language:
LXI B,FPR ; REGS B,C POINT TO FPR
LXI DMINEND ; REGS D.E POINT TO MINUEND
CALL FLOAD ; MINUEND LOADED INTO FAC
LXI D,SBHEND ; REGS D.E POINT TO SUBTRAHEND
CALL FSUB ; SUBTRACT SUBTRAHEND FROM MINUEND
LXI D,RESULT ;REGS D.E POINT TO ‘RESULT’
CALL FSTOR ; STORE RESULT

PL/M-80:
CALL FLOAD(.FPR, MINUEND);
CALL FSUB(.FPR,.SUBTRAHEND);
CALL FSTOR(.FPR,.RESULT);

FMUL—Floating-Point Multiplication

This subroutine multiplies the number in the Floating-Point Accumulator by a floating-
point number in memory and leaves the product in the FAC. FMUL assumes that
registers B and C contain the address of the FPR and that registers D and E address the
low-order byte of the number in memory.

Examples:

8080 assembly language:
LXI B,FPR ; REGS B,C POINT TO FPR
LXI DMPCAND ;REGS D,E POINT TO MULTIPLICAND
CALL FLOAD ; MULTIPLICAND LOADED INTO FAC
LXI DMPLIER ;REGS D.E POINT TO MULTIPLIER
CALL FMUL ; PERFORM MULTIPLICATION
LXI D,PRODUCT ; REGS D,E POINT TO ‘PRODUCT’
CALL FSTOR ; STORE PRODUCT

8080/8085 FPAL

8080/8085 FPAL

PL/M-80:

CALL
CALL
CALL

Arithmetic Procedures

FLOAD(.FPR, MULTIPLICAND);
FMUL(.FPR, MULTIPLIER);
FSTOR(.FPR,.PRODUCT);

FDIV—Floating-Point Division

This subroutine divides the number in the Floating-Point Accumulator by a floating-point
number in memory and leaves the quotient in the FAC. FDIV assumes that registers B
and C contain the address of the FPR and that registers D and E address the low-order
byte of the number in memory.

Examples:

8080 assembly language:

LXI
LXI
CALL
LXI
CALL
LXI
CALL

PL/M-80:

CALL
CALL
CALL

B,FPR ; REGS B,C POINT TO FPR
D,DVDEND ; REGS D,E POINT TO DIVIDEND
FLOAD ; DIVIDEND LOADED INTO FAC
D,DIVSOR ;REGS D,E POINT TO DIVISOR
FDIV ; PERFORM DIVISION
D,QUOTNT ;REGS D.E POINT TO ‘QUOTNT’
FSTOR ; STORE QUOTIENT

FLOAD(.FPR,.DIVIDEND);
FDIV(.FPR,.DIVISOR);
FSTOR(.FPR,.QUOTIENT);

FQFD2B—Decimal to Binary Conversion

This subroutine converts a decimal floating-point number in memory to a binary floating-
point number and loads it into the FAC. FQFD2B assumes that registers B and C contain
the address of the FPR and that registers D and E point to a 6-byte control block in
memory. The control block, in tum, points to the decimal number to be converted.
Before calling FQFD2B you must define the control area and have the necessary informa-
tion loaded into it.

The formats of the control block and decimal number are shown in Figure 3-1. In this

figure,
SIGN

SCALE
LENGTH
ADDRESS

Dl...Dn

is the ASCII representation of ‘+’ or ‘-’; FQFD2B assumes a “+’ unless
‘-’ is specified;

is a 16-bit, two’s complement integer considered to be the exponent
of ten;

is an unsigned byte integer specifying the number of digits in the
decimal number;

is a 16-bit address pointing to the first byte of the decimal number to
be converted;

are ASCII representations of decimal digits and ‘n’ is the same as
LENGTH.

The value of the number represented by this record is:

SIGN(D;D; . .. Dp)*10SCALE
Zero is represented by setting all digits to zero or by setting LENGTH to zero.

33

Arithmetic Procedures

34

CONTROL BLOCK DECIMAL NUMBER
Dn
ADDRESS
I 1
LENGTH
D2
SCALE D1
REGSD,E | SIGN
POINTER
Figure 3-1. Control Block Format
Examples:
8080 assembly language:
DSIGN: DS 1 ; DEFINE CONTROL
DSCALE: DS 2 ; BLOCK
DLNGTH: DS 1
2

DADDR: DS

; PROGRAM MUST SCAN DECIMAL NUMBER AND LOAD NECESSARY
; INFORMATION IN CONTROL BLOCK

>

LXI B, FPR ; REGS B,C POINT TO FPR
LXI D,DSIGN ; REGS D,E POINT TO CONTROL BLOCK
CALL FQFD2B ; CONVERSION DONE, RESULT STORED
;IN FAC
PL/M-80:
DECLARE CONTROL STRUCTURE(
SIGN BYTE,
SCALE ADDRESS,
SLENGTH BYTE,
STRINGSPTR ADDRESS),
STRING (m) BYTE;

/*WHERE m IS GREATER THAN OR EQUAL TO CONTROL.SLENGTH*/

/*PROGRAM MUST SCAN DECIMAL NUMBER AND LOAD NECESSARY*/
/¥*INFORMATION INTO CONTROL BLOCK*/

CALL FQFD2B(.FPR, .CONTROL);

FQFB2D—Binary to Decimal Conversion

This subroutine converts a binary floating-point number in the FAC to a decimal floating-
point number and stores the result in memory. FQFB2D assumes that registers B and C
contain the address of the FPR and that registers D and E point to a control block in
memory. The control block has the format shown in Figure 3-1 and points, in tum, to the

8080/8085 FPAL

8080/8085 FPAL Arithmetic Procedures

memory location where the converted number is to be stored. At the time FQFB2D is
called, you must also specify the contents of the LENGTH and ADDRESS fields of the
control block.

The LENGTH field specification determines the precision of the result. The first digit
(Dj) is nonzero unless the FAC contains zero.

Example:

8080 assembly language:
; DEFINE STORAGE AS IN THE FQFD2B EXAMPLE ABOVE

DLNGTH SET 10 ; LENGTH FIELD SPECIFIED
DADDR SET FOC8H ; ADDRESS FIELD SPECIFIED
LXI B,FPR ; REGS B,C POINT TO FPR
ILXI D, DSIGN ;REGS D,E POINT TO CONTROL BLOCK
CALL FQFB2D ;CONVERSION DONE, RESULT STORED
; INMEMORY

PL/M-80:

/*DECLARE CONTROL BLOCK STRUCTURE AS IN THE*/
/*FQFD2B EXAMPLE ABOVE*/

/*ASSIGN POINTER TO SOME STRING ARRAY*/
CONTROL.STRINGSPTR = .STRING;

/*ASSIGN VALUE FOR LENGTH OF STRING*/
CONTROL.SLENGTH = 10;

CALL FQFB2D(.FPR,.CONTROL);

FIXSD—Floating-Point to Integer Conversion

This subroutine converts the floating-point (real) number in the FAC to a fixed-point
(integer) number and stores the result in memory. This conversion is done with truncation
(for example, 1.9 is converted to 1 and -1.9 is converted to —1). FIXSD assumes that
registers B and C contain the address of the FPR and that registers D and E address the
low-order byte of a 4-byte storage location. The resulting integer is stored in this location
in two’s complement format. See Appendix A, Figure A-3.

Examples:

8080 assembly language:

LXI B,FPR : REGS B,C POINT TO FPR

LXI D,FLTNUM ; REGS D,E POINT TO ‘FLTNUM’

CALL FLOAD : LOAD FLOATING-POINT NUMBER

LXI D,FIXNUM ; ADDRESS FOR STORING RESULT

CALL FIXSD : DO CONVERSION AND STORE RESULT
PL/M-80:

CALL FLOAD(.FPR, FPSNUMBERSADDRESS);

CALL FIXSD(.FPR, INTEGER$SADDRESS);

3-5

Arithmetic Procedures

3-6

FLTDS—Integer to Floating-Point Conversion

This subroutine converts a fixed-point number (32-bit signed integer) in memory to a
floating-point number and loads. the result into the Floating-Point Accumulator. Conver-
sion is done using unbiased rounding (see Appendix B). FLTDS assumes that registers B
and C point to the FPR and that registers D and E address the low-order byte of a 32-bit
two’s complement integer.

Examples:
8080 assembly language:
LXI B,FPR ; REGS B,C POINT TO FPR
LXI D,FIXNUM ;REGS D.E POINT TO INTEGER
CALL FLTDS ; CONVERT INTEGER TO FLOATING-POINT
; AND LOAD INTO FAC
PL/M-80:
CALL FLTDS(.FPR,.INTEGERSADDRESS);

FCMPR—Floating-Point Number Comparison

This function compares a number in the Floating-Point Accumulator to a floating-point
number in memory. The resulting Status field settings are returned to the 8080 accumu-
lator (register A). FCMPR assumes the B and C registers point to the FPR and that
registers D and E address the low-order byte of the number in memory.

If the comparison is successful, one of the following bit patterns is set in the Status field
and loaded into register A. (‘U’ means the bit is undefined and reserved for FPAL use.)

100UU000 FAC = number in memory
01000000 FAC > number in memory
001UU000 FAC <number in memory

Examples:
8080 assembly language:

LXI B,FPR ; REGS B,C POINT TO FPR

LXI D,FACNUM ;REGS D,E POINT TO ‘FACNUM’

CALL FLOAD ; LOAD ‘FACNUM’ INTO FAC

LXI DMEMNUM ; REGS D.E POINT TO ‘MEMNUM’

CALL FCMPR ; NUMBERS COMPARED, STATUS TO REG A
PL/M-80:

CALL FLOAD(.FPR,.FACSNUMBER$ADDR);

STAT = FCMPR(.FPR, MEMORY $NUMBERS$SADDR);

FZTST—Compare FAC to Zero

This function compares the number in the Floating-Point Accumulator to zero and
returns the Status field to the 8080 accumulator (register A). FZTST assumes that
registers B and C address the FPR.

8080/8085 FPAL

8080/8085 FPAL Arithmetic Procedures

If the comparison is successful, one of the following bit pattems is set in the Status field
and returned to register A. (‘U’ means the bit is undefined and reserved for FPAL use.)

100UU000 FAC =0
010UU000 FAC>0
001UU000 FAC<O

Examples:
8080 assembly language:

LXI B,FPR ; REGS B,C POINT TO FPR

LXI D,TSTNUM ; REGS D,E POINT TO TEST NUMBER

CALL FLOAD ; LOAD TEST NUMBER INTO FAC

CALL FZTST ;: COMPARE NUMBER TO 0, STATUS TO REG A
PL/M-80:

CALL FLOAD(.FPR,.TESTSNUMBERSADDR);

STAT = FZTST(.FPR);

FNEG—Change Sign of FAC

This subroutine negates (complements) the sign bit of the FAC if the contents of the
FAC are nonzero. A ‘1’ bit is changed to ‘0’ and vice-versa. If the number in the FAC is
zero, no action is taken. FNEG assumes that registers B and C address the FPR.
Examples:

8080 assembly language:

LXI B,FPR ; REGS B,C POINT TO FPR
LXI D,NEGNUM ; REGS D,E ADDRESS NUMBER WHOSE SIGN
;IS TO BE NEGATED
CALL FLOAD . LOAD ‘NEGNUM’
CALL FNEG ; NEGATE SIGN OF ‘NEGNUM’
PL/M-80:
CALL FLOAD(.FPR, NEGATESNUMBER$SADDR);
CALL FNEG(.FPR);

FCLR—Clear FAC to Zero

This subroutine clears the FAC by loading it with a floating-point zero (see Appendix B).
FCLR assumes the B and C registers point to the FPR.

Examples:

8080 assembly language:

LXI B,FPR : REGS B,C POINT TO FPR

CALL FCLR : THE FAC IS ZEROED
PL/M-80:

CALL FCLR(.FPR);

3-7

Arithmetic Procedures

3-8

FABS—Absolute Value

This subroutine sets the floating-point number in the FAC to its absolute value, that is,
the sign bit is set to zero. FABS assumes the B and C registers address the FPR.

Examples:
8080 assembly language:
LXI B,FPR ; REGS B,C POINT TO FPR
CALL FABS ; SIGN BIT SET TO ZERO
PL/M-80:
CALL FABS(.FPR);

Sample Programs
8080 Assembly-Language Example

The following assembly-language example computes the weighted inner product
IP = (A1*B1+A2*B2+A3*B3)/C1

Al, A2, A3, Bl, B2, B3, and C1 represent addresses of floating-point numbers, FPR is
the address of the Floating-Point Register and IP is the address where the result is to be
stored.

First, we must reserve storage for the FPR and floating-point operands used in the
equation. This is done with the ‘DS’ assembler directive.

FPR: DS 18

Al: DS 4
B1: DS 4
A2: DS 4
B2: DS 4
A3: DS 4
B3: DS 4
Cl: DS 4
IP: DS 4

Next, we must declare the FPAL subroutines to be external using the ‘EXTRN’ directive.
EXTRN FSET,FLOAD,FMUL,FADD,FDIV,FSTOR

8080/8085 FPAL

8080/8085 FPAL

Arithmetic Procedures

The equation is then computed by the following sequence of loads and calls. Remember
that FSET must be called before all other subroutines.

LXI
PUSH
LXI
CALL
LXI
LXI
CALL
LXI
CALL
LXI
CALL

LXI
CALL
LXI
CALL
LXI
CALL
CALL
LXI
CALL
LXI
CALL
LXI
CALL

LXI
CALL

LXI
CALL

B,FPR : B,C POINTS AT THE FPR

B

B,0 : DEFAULT ERROR HANDLER TO BE USED

FSET - FPR IS INITIALIZED

B,FPR - POINTERS TO FPR AND Al ARE LOADED

D,Al

FLOAD : A1 IS LOADED INTO THE FAC

D,B1 : POINTER TO B1 IS LOADED

FMUL - A1*B1 IS FORMED IN THE FAC

D,IP - POINTER TO IP IS LOADED

FSTOR - A1*B1 STORED IN LOCATION ADDRESSED
:BY IP

D,A2

FLOAD - A2 IS LOADED INTO THE FAC

D,B2

FMUL - A2*B2 IS FORMED IN THE FAC

D,IP

FADD - A1*B1 + A2*B2 IS FORMED IN THE FAC

FSTOR . A1*B1 + A2*B2 IS STORED IN IP

D,A3

FLOAD - A3 IS LOADED INTO THE FAC

D,B3

FMUL - A3*B3 IS FORMED IN THE FAC

D,IP

FADD - A1*B1 + A2*B2 + A3*B3 IS FORMED IN
: THE FAC

DCl1

FDIV :(A1*B1 + A2*B2 + A3*B3)/C1 IS FORMED
; IN THE FAC

D,IP

FSTOR :(A1*B1 + A2*B2 + A3*B3)/C1 IS STORED
:IN IP

This example assumes the default error handler (FERHND) is to be used. At the end of
the computation, you can check to see whether any errors occurred by executing the
following code sequence:

CALL

MOV
ANI
INZ

FERROR ; THE CUMULATIVE ERROR INDICATORS ARE

; RETURNED IN H,L
AL
11111000B ;MASK OFF THE OPTION BITS
HELP ; AT LEAST ONE ERROR OCCURRED

PL/M-80 Example

The following PL/M-80 example computes the same weighted inner product as the
assembly-language example:

IP = (A1*B1 + A2*B2 + A3*B3)/C1

Al, A2, A3, B1, B2, B3, and C1 represent addresses of floating-point numbers, FPR is
the address of the Floating-Point Register and IP is the address where the result is to be

stored.

39

Arithmetic Procedures 8080/8085 FPAL

3-10

We must first declare the FPAL subroutines used to be external procedures and reserve
the FPR memory area as an array. Declaring the operators to be arrays too ensures that
they will occupy contiguous locations in memory, thus allowing use of the dot operator
in calling the subroutines. For the sake of illustration, the FSTAT function is also
included in this example.

/*DEFINE EXTERNAL PROCEDURES*/

FSET: PROCEDURE (FA,0P1,0P2) EXTERNAL;
DECLARE(FA,OP1,0P2) ADDRESS;
END FSET;
FADD: PROCEDURE(FA,0A) EXTERNAL;
DECLARE(FA,0A) ADDRESS;
END FADD;
FDIV: PROCEDURE(FA,0A) EXTERNAL;
DECLARE(FA,0A) ADDRESS;
END FDIV;
FMUL: PROCEDURE(FA,0A) EXTERNAL;
DECLARE(FA,0A) ADDRESS;
END FMUL;
FLOAD: PROCEDURE(FA,0A) EXTERNAL;
DECLARE(FA,0A) ADDRESS;
END FLOAD;
FSTOR: PROCEDURE(FA,0A) EXTERNAL;
DECLARE(FA,0A) ADDRESS;
END FSTOR;
FSTAT: PROCEDURE(FA) BYTE EXTERNAL;
DECLARE(FA) ADDRESS;
END FSTAT;
/*DECLARE BYTE ARRAYS*/
DECLARE FPR(18) BYTE,
Al(4) BYTE,
A2(4) BYTE,
A3(4) BYTE,
B1(4) BYTE,
B2(4) BYTE,
B3(4) BYTE,
C1(4) BYTE,
IP(4) BYTE,

STATUS BYTE;

8080/8085 FPAL

/*IP COMPUTED BY FOLLOWING CALLS*/
/*FSET MUST BE CALLED FIRST*/

CALL FSET(.FPR,0,0); /*USE FERHND*/
CALL FLOAD(.FPR,.A1);
CALL FMUL(.FPR,.B1);
CALL FSTOR(.FPR,.IP);
CALL FLOAD(.FPR,.A2);
CALL FMUL(.FPR,.B2);
CALL FADD(.FPR,.IP);
CALL FSTOR(.FPR,.IP);
CALL FLOAD(.FPR,.A3);
CALL FMUL(.FPR,.B3);
CALL FADD(.FPR,.IP);
CALL FDIV(.FPR,.C1);
CALL FSTOR(.FPR,.IP);
/*RETURN STATUS FIELD*/

STATUS = FSTAT(.FPR);

Arithmetic Procedures

3-11

CHAPTER 4
ERROR HANDLING

Error-Handling Operation

When an error occurs during an FPAL operation, the following steps are taken:
1. The address of the FPR is pushed onto the 8080 stack.

2. A code is placed in the B-C register pair indicating which procedure was executing
when the error was detected.

3. The error code bits in the FPR’s Status field are set to indicate the type of error
detected.

The appropriate cumulative error bit in the FPR’s Error field is set.
5. The error-handler subroutine is called.

The bit settings mentioned in steps 2, 3, and 4 are listed in Appendix C.

If the executing procedure required a second operand, that operand’s address is in the
D-E register pair. Otherwise, the D-E register pair is ignored.

FERHND—Default Error Handler

This subroutine is the error handler supplied as part of the floating-point library. You
may also write your own error handler and load its address using the FSET or FRESET
subroutines (Chapter 2).

The operations performed by FERHND vary depending on which procedure was
executing.

Error During Arithmetic Operation

If FERHND was called during one of the four basic arithmetic operations (FADD, FSUB,
FMUL, FDIV) one of the following situations occurs:

e If underflow is indicated, the FAC is set to zero and the Status field is set to
“UUUUU000; where ‘U’ means the bit setting is undefined.

e If overflowisindicated, the FAC is set to the largest or smallest representable number
(if the correct result was positive or negative, respectively). The Status field is set to
‘Uuuuuo000.”

e If division by zero was attempted, the FAC is set to an invalid number representing
an ‘indefinite’ result. The ‘s’ bit is zero, all exponent bits are one, and all fraction bits
are zero. The Status field is set to ‘UUUUU101.

e If an invalid operand was encountered, no operation is performed and FERHND
returns to the calling subroutine.

e If none of these conditions holds, FERHND simply returns to the calling subroutine.

Error During FQFD2B Operation

The FQFD2B procedure does not check for valid ASCII representations in the input
operand. If invalid data is used, no error conditions are reported but the result is
undefined.

4-1

Error Handling

4.2

Overflow or underflow may occur during the conversion. In this case the error is regarded
as an arithmetic error and the error is handled as described in the preceding section.

Error During FQFB2D Operation

As in the case of FQFD2B, overflow or underflow errors may result from an arithmetic
operation within the conversion procedure. These errors are handled by the arithmetic
procedure involved.

If the FAC contains an invalid quantity when FQFB2D is called, this procedure stores
an asterisk (*) in the SIGN position of the decimal representation (see Figure 3-1) and in
digit positions Dy through Dp. One of the following codes is stored in the first digit
position (Dyp):

+ if the FAC contains +INF

- if the FAC contains -INF

? if the FAC contains IND

0 if the FAC contains -0

* if the FAC contains any other invalid quantity.

‘INF’ and ‘IND’ are defined in Appendix B.

Error During FIXSD Operation

If FERHND is called by FIXSD, one of the following occurs:

e Ifoverflowisindicated (number in FAC too large to be converted to a 32-bit integer),
the result is set to the largest positive or negative integer (if the number in the FAC
is positive or negative, respectively). The FPR remains unchanged except that the
Status field is set to “UUUUU000.’

e If the number in the FAC is invalid, FERHND simply returns. The integer stored by
FIXSD is undefined.

Error During FCMPR Operation
If FERHND is called by FCMPR, at least one of the operands must be invalid. If the

operands are identical invalid bit pattems, the Status field is set to ‘100UU101.” Otherwise,
the Status field is ‘000UU101.

Error During FZTST, FNEG, or FABS Operation

If the calling procedure is FZTST, FNEG, or FABS, no operation is performed and the
error handler simply returmns.

Other Calls to FERHND

If FERHND is called from somewhere other than the floating-point procedures listed
above, the result is undefined.

8080/8085 FPAL

8080/8085 FPAL Error Handling

Sample User Error Handlers

If you write your own error handler and use FPAL arithmetic subroutines, be aware that
your error handler may be called recursively. Since FPAL does not have its own stack,
you must allocate 40 bytes of your own program stack for each level of recursion
foreseen.

If you are writing your error handler in PL/M, it must be written and called with three
parameters (although the last parameter may actually be a dummy).

Assembly-Language Example

The following is an example of a reentrant error-recovery routine (ERREC). If the calling
program is FADD, FSUB, FMUL, or FDIV, and if the error condition is underflow, the
result is set to zero. Otherwise, the error-recovery routine returns.

The address of the low-order byte of the Floating-Point Record is assumed to be on the
stack and the B-C register pair is assumed to contain the code indicating which procedure
called ERREC. If the procedure required two operands, the second operand’s address is
assumed to be in the D-E register pair.

NAME ERREC

CSEG

PUBLIC ERREC
EXTRN FCLR, FSTAT

; SAVE THE REGISTER CONTENTS

5

PUSH PSW
PUSH B
PUSH H

;MOVE THE ERROR CODE TO ‘A’ LOAD THE POINTER TO THE FPR INTO
; B,C AND MOVE THE RETURN ADDRESS TO WHERE THE POINTER WAS

5

MOV AC
PUSH D
LXI H,38
DAD SP
MOV EM
INX H
MOV DM
INX H
MOV CcM
INX H
MOV BM
MOV M,D
DCX H
MOV M,E
POP D

; THE CODE SETTINGS IN ‘A’ DESIGNATE WHICH PROCEDURE CALLED 1
; THE ERROR RECOVERY ROUTINE

b

4.3

Error Handling 8080/8085 FPAL

44

FADD
FSUB
FMUL
FDIV
FIXSD
FCMPR
FZTST
FNEG
FABS

L
1 T T T I 1

VOO WA WN =

;IFA=1,2,3,4 AND IF THE ERROR CONDITION IS UNDERFLOW
; SET THE RESULT TO ZERO. OTHERWISE, SIMPLY RETURN.

>

e U W W wE ws W U ws we

CPI 5

INC DONE
CALL FSTAT
ANI 00000111B
CPI 4

INZ DONE
CALL FCLR

>

; RESTORE REGISTERS AND STACK

"DONE: POP H

POP B
POP PSW
INX SP
INX SP
RET

END

PL/M-80 Example

The following code tells the FPAL that a user routine (USERSERROR) is to be called
when an error is detected and loads the address of the error routine into the FPR. If the
calling procedure required two operands, the second operand’s address is passed as the
third parameter of USERSERROR.

DECLARE ERRORSFLAG LITERALLY ‘0000000100000000B’;
CALL FSET(.FPR,ERRORS$FLAG,.USERSERROR);

The remainder of this example is code needed to print a message indicating which
I procedure was running when the error occurred.

8080/8085 FPAL Error Handling

WRITE PROCEDURE (AFT,BUFFER,COUNT,STATUS) EXTERNAL;
DECLARE (AFT,BUFFER,COUNT,STATUS) ADDRESS;
END WRITE;

USERS$SERROR: PROCEDURE (FPR,ERROR,ADDR);
DECLARE (FPR,ERROR,ADDR,STATUS) ADDRESS; I

: DO CASE ERROR;
CALL WRITE (0,.(‘FADD ERROR *),11, STATUS);
CALL WRITE (0,.(‘FSUB ERROR °),11,.STATUS);
CALL WRITE (0,.(‘FMUL ERROR °),11,.STATUS);
CALL WRITE (0,.(‘FDIV ERROR *),11, STATUS);
CALL WRITE (0,.(‘FIXSD ERROR *),12,.STATUS);
CALL WRITE (0,.(‘FCMPR ERROR *),12, STATUS);
CALL WRITE (0,.(‘FZTST ERROR °),12,.STATUS);
CALL WRITE (0,.(‘FNEG ERROR *),11,.STATUS);
CALL WRITE (0,.(‘FABS ERROR °),11,.STATUS);

END;

END USERSERROR;

4.5

CHAPTER 5
INTERFACE TO FPAL

The FPAL procedures reside in object module form in the library FPAL.LIB on the
ISIS-II system diskette. You need only declare the names of the FPAL procedures you
use to be ‘external’ and call them when they are needed. When you have completed
program development, you must link the necessary floating-point procedure to your
object module.

FPAL procedure names are declared to be external using the EXTRN directive in
assembly language or the EXTERNAL attribute in PL/M. The simplest way to do this is
to create a file containing external declarations for the FPAL procedures you will be
using, then incorporate this file into your source program using the INCLUDE control
in the 8080/8085 assembler or PL/M-80 compiler. For example, you might imbed the
INCLUDE control in your source code as follows:

$INCLUDE(:F1:FPEXTN.SRC)

Since the FPAL procedures reside in an ISIS-II library, they can be linked quite easily
by linking the entire library. The linker then scans your program and links only those
procedures you need (those that satisfy external references). Linking is done at the
ISIS-II command level following successful assembly/compilation to produce a relocatable
8080 object module. The ISIS-II system library and PL/M-80 library must be linked also.

Example:
-LINK :F1:MYPROG.OBJ,FPAL.LIB,SYSTEM.LIB,PLM80.LIB TO :F1:MYPROG.LNK

You can also specify individually the FPAL procedures you want linked from FPAL.LIB.
If you choose to let the linker satisfy external references, you should be sure you do not
have external declarations for procedures you don’t use. For example, you would not
want to create an ‘include’ file containing external declarations for all FPAL procedures
unless you plan to specify individual ‘modules’ at the time you link FPAL.LIB, or intend
to use all of them.

5-1

APPENDIX A
FLOATING-POINT RECORD FORMAT

The Floating-Point Record is allocated as shown in Figure A-1.

S

EXPONENT FIELD
eg| ezl egles | ea| ez | e2] et

f23 | f22 | f21 | f20 | f19 | f18 | f17 | f16

-POIN
RO ATOR | [115 [f1a [13| 12| 111 | fro| o | 78

ACTION FIELD
f71f6]| fs]| fa]fza]|f2] f1]fo ::1R1 BCYTTES) L

ERROR FIELD

ERROR-HANDLER
ADDRESS FIELD

LOW ADDRESS
(POINTER) El1G|L

EC | EC STATUS FIELD

Figure A-1. Floating-Point Record Format

Status Field

Six bits are currently defined in the Status field. The setting of these bits depends on the
floating-point function performed. The undefined bits are reserved for FPAL use. |

The E, G, and L bits act as flags following a comparison (FCMPR, FZTST). A number in
the FAC is compared to a second number and

1 if the FAC = second operand,
1 if the FAC > second operand,
1 if the FAC < second operand.

E
G
L

Floating-Point Record Format

A2

The three EC (error condition) bits indicate whether an error just occurred. The type of
error can be determined from these bit settings as follows:

Error Code Interpretation
000 No error
001 Attempted division by zero
010 Domain error (e.g.,v/ -1)
011 Overflow
100 Underflow
101 Invalid number in FAC
110 Invalid number in memory
111 Currently undefined

Error-Handler Address Field

The Error-Handler Address field contains the address of the error-handler subroutine.
This may be the FPAL’s default error handler, FERHND (described in Chapter 4), or a
routine of your own. In either case, the address is loaded into this field by either the
initialization subroutine (FSET) or the reset subroutine (FRESET).

Error Field

The bits in the Error field are used to accumulate error statistics. Only five bits of this
field are used currently.

If any of the IE, OF, UE, ZE or DE bits is set, the error described below has occurred
at least once since the last time the respective bit was set to zero (by the FSET or
FRESET subroutine).

Bit Interpretation

IE Invalid operand

OE Overflow error

UE Underflow error

ZE Attempted division by zero
DE Domain error

The remaining three bits of the low-address byte are currently unused. Setting any of
these bits to one causes undefined results.

Floating-Point Accumulator

The Fraction and Exponent fields shown in Figure A-1 actually contain an unpacked
version of the format assumed for 32-bit floating-point numbers in memory (Figure A-2).
The f33 (normalization) bit shown in Figure A-1 is implied in the packed format; f3=0
if the Exponent field is zero and otherwise f33 = 1. In both figures, ‘s’ is the ‘sign’ bit.

HIGH ADDRESS S eg| e7] ec | es | ea | e3] e2

e1 | f22 | f21] f20| f19| f18| f17 | f16

fi5] f14 | f13] f12| f11 | f10] fo | f8

LOW ADDRESS
(POINTER) f21fe]| fs| faj f3 | f2o | f1]| fo

Figure A-2. Floating-Point Number Format in Memory

8080/8085 FPAL

8080/8085 FPAL Floating-Point Record Format

Two FPAL subroutines operate on 32-bit integers. FIXSD converts a floating-point
number in the FAC to an integer in memory. FLTDS converts an integer in memory into
a floating-point number in the FAC. The format of the 32-bit two’s complement integer
stored in memory is shown in Figure A-3. In this figure, i35 (the high-order bit) is the sign
bit.

HIGH ADDRESS | i32

LOW ADDRESS I
(POINTER)

Figure A-3. Integer Format in Memory

A3

APPENDIX B
DEFINITIONS

This appendix defines terms used elsewhere in the manual along with the formulas used
for rounding values and decoding exponent wraparound.

Floating-Point Zero

The word with all bits equal to zero is defined as the unique floating-point zero. No other
form for floating-point zero is provided by the FPAL.

Invalid Numbers
All bit patterns are valid except those described here.

The first set of invalids are those whose exponent field is set to all ones. This set is used
for infinities, indefinites, pointers, etc. Infinities are defined as:

+INF ‘s’ bit = 0; all other bits =1
~INF all bits=1

The indefinite form is:
IND ‘s’ = 0; exponent bits all = 1; fraction bits =0

A second set of bit patterns is currently defined as invalid. These are numbers whose
exponent field is zero with at least one other bit set to one.

Single-Precision Format

Single-precision formats in the Floating-Point Accumulator and 8080 memory are as
shown in Figures A-1 and A-2. The three fields within these formats are:

s Sign bit. Sign-magnitude representation where s=0 means positive and
s=1 means negative.
e Exponent bits. The exponent is offset by 27 — 1. All zeros and all

ones in the exponent field are currently reserved for the floating-point
zero and the invalid numbers described above.

f Fraction bits. When the exponent is nonzero, a one bit is assumed at
the left of the fraction; the binary point is between the assumed bit and
the explicit fraction bit.

The number base for the FPAL is binary. The value of a given binary representation
(where ‘s’ is the sign bit, ‘¢’ is a binary exponent value, and ‘f’ is a binary fraction value)
can be formulated as:

(-1)% - pe-@7-1) (1.+.9) where e # 0 and e # FF

Definitions

8080/8085 FPAL

Rounding

If rounding is required to produce the final result of a floating-point operation (which
does not include FQFD2B and FQFB2D), ‘unbiased’ rounding is used. With this type of
rounding, the result is rounded up or down depending on whether the first bit beyond the
last bit being retained is 1 or 0. In the ambiguous case where the true result is exactly
midway between two floating-point numbers, the nearest ‘even’ number is returned (that
is, the last bit retained is forced to a zero). Therefore, if no error occurs, the result is the
floating-point number closest to the true result.

Exponent Wraparound

When overflow or underflow occurs during FPAL operations, the correct fraction results
but the exponent is ‘wrapped around.” This is consistent with the FPAL development
philosophy that no information should be lost and that you, the user, should be able to
decide what you want to do when an overflow/underflow exception occurs.

A ‘wrapped around’ exponent is defined to be ey, where the true (offset) exponent e;
can be derived from ey, by considering an expanded range of exponents and

on overflow er=eyw+(3.26-2)

on underflow e;=ey - (3.26-2)

APPENDIX C
SUMMARY OF FPAL PROCEDURES

Basic Operation

Table C-1 summarizes the input prerequisites of each FPAL procedure and the output
returned. FERHND is not listed since it is called by other procedures, not by the user.
Remember that FSET must be called before any other procedure.

Table C-1. FPAL Procedure Operation |

FPAL B,C D,E Result
Procedure Addresses Addresses | Stored at Operation
FABS FPR — FAC |[FAC| < FAC
FADD FPR MEM FAC FAC < FAC + MEM
FCLR FPR — FAC FAC <0
FCMPR FPR MEM REG A FAC £ MEM
FDIV FPR MEM FAC FAC < FAC/MEM
FERROR | FPR — REGS H,L | REGS H,L < ERROR
FIXSD FPR MEM MEM MEMint < FACfp
FLOAD FPR MEM FAC FAC « MEM
FLTDS FPR MEM FAC FACfp < MEMint
FMUL FPR MEM FAC FAC < FAC - MEM
FNEG FPR — FAC 0«0
otherwise, change sign
of FAC
FQFB2D | MEM Control | MEM MEMdec < FACpin
Block
FQFD2B | FPR Control FAC FACpin <« MEMdec
Block
FRESET B(0) = Error User FPR ERROR « B,C
Handler Bit Error ERR HAND ADDR < D,E
C = Error Field | Handler
Initialization
FSET B(0) = Error User FPR FAC <0
Handler Bit Error ERROR < B,C
C = Error Field | Handler ERR HAND ADDR <« D.E
Initialization STATUS <0
FSTAT FPR — REG A REG A < STATUS
FSTOR FPR MEM MEM MEM <« FAC
FSUB FPR MEM FAC FAC < FAC - MEM
FZTST FPR — REG A FACZ 0

Summary of FPAL Procedures

C-2

8080/8085 FPAL

Error Handling

Table C-2 lists the error codes set by the FPAL procedures. As was described in Chapter 4,
when an error occurs a code is placed in the B-C register pair indicating which procedure
was running when the error was detected, error codes are set in the Status and Error fields
of the FPR, and the error handler is called. The default error handler may perform
additional operations depending on which procedure was executing.

In the case of an invalid number in the FAC, the Status field error bits and the IE bit are
‘preset’ by FLOAD, rather than being set by an arithmetic procedure. The call to
FERHND comes from the arithmetic procedure, however.

Table C-2. FPAL Error-Handling Summary

FPAL

Procedure B,.C Status Error Bit Error Type FERHND Action

FABS 9 uuuuul101 1IE FAC invalid. No operation; FERHND returns.

FADD 1 Uuuuuoil OE Overflow. Set FAC to largest/smallest no.
(overflow positive/negative);
Status = UUUUUO000.

Uuuuu100 UE Underflow. FAC set to 0.

Status set to UUUUUO000.

uuuuulol IE FAC invalid. No operation; FERHND returns.

Uuuuu110 1E Invalid no. in memory. No operation; FERHND returns.
FCLR - - — No error conditions. -
FCMPR 6 000UU101 IE FAC invalid. If operands identical, Status set to

i i 100UU101; otherwise Status is
0 110 lid no. . ’
00UU11 1IE Invalid no. in memory 000UU101.

FDIV 4 Uuuuu0o1 ZE Attempted division by 0. FAC set to invalid number (s=0,
e=1, f=0); Status set to
UUUUU101; IE set.

Others same Others same Same as FADD. Same as FADD.
as FADD. as FADD.

FERROR - —_ — No error conditions. —

FIXSD 5 uuuuuol11 OE FAC no. too large. Set memory to largest/smallest
integer from FAC (overflow posi-
tive/negative); Status = UUUUU000.

uuuuuiol 1IE FAC invalid; integer No operation; FERHND returns.
stored is undefined

FLOAD - uuuuuiol 1IE Number loaded into Not called.

FAC is invalid.
FLTDS - —_ —_ No error conditions. —
FMUL 3 Same as Same as FADD. Same as FADD. Same as FADD.
FADD.

FNEG 8 uuuuulol 1IE FAC invalid. No operation; FERHND returns.

FQFB2D - uuuuulo1 IE FAC invalid. Not called. Decimal record sign and
D, ... Dp set to*

D) set to:
‘+*if FAC = +INF
‘=" if FAC = -INF
2 if FAC = IND
‘0’ if FAC=-0
** all other invalids.
FQFD2B - —_ _ No error conditions. —_—
FRESET - — — None, but if MA, UO or -
0O bits = 1, results are
undefined.

FSET - — — Same as FRESET. -

FSTAT - - - No error conditions. —

FSTOR - - — No error conditions. -

FSUB 2 Same as Same as FADD. Same as FADD. Same as FADD.

FADD.
FZTST 7 Uuuuulol 1E FAC invalid. No operation; FERHND retums.

8080/8085 FPAL Summary of FPAL Procedures

Procedure Sizes
Table C-3 summarizes size information for each FPAL procedure (in bytes). These
absolute figures must be read against the context of FPAL operation as a whole, however,

as detailed in the notes following this table.

Table C-3. FPAL Procedure Sizes

Prlcjz:i]{;re Bytes Su]l?,li.gﬁzi;es
FABS 36 None
FADD/FSUB 463 FCLR, FLOAD, FNEG,
Support Routines
FCLR 21 None
FCMPR 159 Support Routines
FDIV 342 Support Routines
FERHND 227 FCLR, FLOAD
FERROR 10 None
FIXSD 178 None
FLOAD 88 None
FLTDS 139 FCLR, Support Routines
FMUL 404 FCLR, Support Routines
FNEG 43 None
FQFB2D 1585 None
FQFD2B 725 None
FRESET 40 FERHND
FSET 57 FERHND
FSTAT 1 None
FSTOR 35 None
FZTST 56 None
Support Routines 259 None

C-3

Summary of FPAL Procedures

c4

NOTES

FSET must be used. Since it links in FERHND and FERHND links in FCLR and
FLOAD, the total space requirement for FSET is

FSET 57
FERHND 227
FCLR 21
FLOAD _88

393 bytes

Since FRESET links in the same subroutines as FSET, they need not be counted
again if FRESET is specified.

FRESET 40 bytes

A number of arithmetic procedures (FADD, FSUB, FDIV, FMUL, FCMPR, and
FLTDS) link in a set of FPAL support routines. These routines need be linked and
counted only once.

Support Routines 259 bytes

Calling FADD or FSUB causes both subroutines to be linked into your program.
These subroutines link in FCLR, FLOAD, and the support routines — all of which
have been previously counted. In addition, FNEG is linked, so that the additional
space requirement for FADD/FSUB becomes

FADD/FSUB 463
FNEG 43

506 bytes

FDIV and FCMPR link in only the FPAL support routines. FMUL and FLTDS link
in only the support routines and FCLR, both of which are already counted. Thus,
only the absolute count for these procedures need be considered.

FABS, FERROR, FIXSD, FSTAT, FSTOR, and FZTST link in no other procedures
and only their absolute sizes need be considered.

FCLR, FERHND, FLOAD, and FNEG are all linked by other subroutines and
included in those subroutines’ total byte count. They need not be counted again if
referenced separately.

Example:
To compute I = FIXSD(A * B), you must allow space for:
FSET 393
FERHND —_—
FLOAD -
FMUL 404
FCLR —_—
Support Routines 259
FIXSD 178
1234 bytes

8080/8085 FPAL

8080/8085 FPAL

Procedure Timing

When computing execution speeds of FPAL procedures, you must be even more wary
of absolutes than when computing size requirements. We could list the following times
for the basic arithmetic operations:

These figures are only approximations, however, and the actual figure for a given opera-
tion depends on the operands involved. The following examples illustrate this point.

Example 1

Operand 1:
Operand 2:

Example 2

Operand 1:
Operand 2:

Example 3

Operand 1:
Operand 2:

FADD
FSUB
FMUL
FDIV
FCMPR

40000000H
40000000H

Procedure

FADD
FSUB
FMUL
FDIV
FCMPR

41C80000H
41F00000H

Procedure

FADD
FSUB
FMUL
FDIV
FCMPR

41C8FFO00H
41FOFOFFH

Procedure

FADD
FSUB
FMUL
FDIV
FCMPR

Summary of FPAL Procedures

0.7 milliseconds
0.7
1.5
3.6
0.3

Avg. ms

0.69
0.79
1.48
3.79
0.33

Avg. ms

0.70
0.83
1.43
3.60
0.28

Avg. ms

0.66
0.83
1.54
3.60
0.28

C-5

Summary of FPAL Procedures

Example 4

Operand 1: 3FFFFFFFFH
Operand 2: 3FFFFFFFEH

Procedure Avg. ms

FADD 0.65
FSUB 1.62
FMUL 1.66
FDIV 3.61
FCMPR 0.32

NOTE

The only reason FSUB appears to take longer than
FADD in these examples is that all operands are
positive. On the average, both will take the same time
since they are simply different entry points into the
same subroutine.

8080/8085 FPAL

