IAPX 86,88,186
MICROPROCESSORS
PART |

WORKSHOP NOTEBOOK
VERSION 2.0 JUNE 1984

© Intel Corporation 1984

Y/
Y
186

Order No. 210976-002

© INTEL CORPORATION 1983, 1984

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specitications before placing your order.
The toliowing are trademarks of intel Corporation and may only be used to identify Intel Products

BXP, CREDIT, i, ICE, PICE, ICS. iDBP, iDIS. iLBX, im, iMMX,
Insite, INTEL, intgl, Intelevision. intellec, inteligent Identifier™,
inteIBOS, intgligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe. MULTIBUS, Muitichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS. iRMX, iSBC. MCS, or UPI and a numerica! suffix.

IAPX 86,88,186
MICROPROCESSORS
PART |

&6
1/

(© Intel Corporation 1984 I " 6

Order No. 210976002

WORKSHOP NOTEBOOK
VERSION 2.0 JUNE 1984

TABLE OF CONTENTS

THE iAPX 86 PRODUCT FAMILY
- Products
- Nomenclature
- Course Contents

INTRODUCTION TO MICROPROCESSORS
- Registers
- Number Systems
- Flags

INTRODUCTION TO SEGMENTATION
- Segments
- Segment Registers
- Physical Addresses
- Segment Usage

. INTRODUCTION TO THE iAPX 86, 88 INSTRUCTION SET
- Creating a Segment

Assume Statement

MOV and XCHG

IN and QUT

Shift and Rotate

MORE INSTRUCTIONS
- HLT
- JMP
- LOOP

SOFTWARE DEVELOPMENT
- Series III Development System
- File Utilities
- AEDIT

ARITHMETIC, LOGICAL AND CONDITIONAL INSTRUCTIONS
- ADD, SUB, MUL, DIV and CMpP
- Conditional Jumps
- AND, OR, XOR, NOT and TEST

DEFINING AND ACCESSING DATA
- Defining Data
- Initializing Segment Registers
- Addressing Modes

PROGRAM DEVELOPMENT
- DEBUG-86
- ASM86
- SUBMIT Files

10 BASIC CPU DESIGN AND TIMING
- Minimum Mode
- Maximum Mode
- Instruction Queue
- 8086, 8088, 8284A, 8288, 8286 and 8282

11 PROCEDURES
- Procedure Definition
- Stack Creation and Usage
- Parameter Passing
- Example

12 PROGRAMMING WITH MULTIPLE SEGMENTS
- Multiple Code Segments
Procedure Declaration
Multiple Data Segments
Segment Override Instruction Prefix
Forward References

13 INTERRUPTS
- iAPX 86, 88 Interrupt System
- Creating an Interrupt Routine
- 8259A Programmable Interrupt Control Unit
- Programming the 8259A

14 MEMORY AND I/0 INTERFACING
- Memory Organizations
- Speed Requirements
- Address Decoding

15 PROGRAMMING TECHNIQUES
- JMP Table (Indirect Jumps)
- Block Move (String Instructions)
- Table Look-up (XLATB)

16 MODULAR PROGRAMMING
- PUBLIC Declarative
- EXTRN Declarative
- Combining Segments
- LINK86
- LOC86

17 INTRODUCTION TO THE iAPX 186, 188 MICROPROCESSORS
- Description
- Enhancements
- New Instructions

- Peripherals

18 MULTIBUS SYSTEM INTERFACE
- Design Considerations
Hardware Interface to the Multibus
Bus Arbitration
Lock Instructions Prefix
Byte Swap Buffer

19 MULTI AND COPROCESSING
- 8087 Numeric Data Processor
- 8089 I/0 Processor
- 80130 Operating System

20 {APX 186, 188 HARDWARE INTERFACE
- Bus Interface
- Clock Generator
- Internal Peripherals Interface
- Differences

21 THE iAPX 286 and iAPX 386 MICROPROCESSORS
- Description
- Enhancements

APPENDICES
A Lab Exercises
B Lab Solutions
C Class Exercise Solutions
D Daily Quizzes
E Unpack Decimal Arithmetic Instructions
F ICE 86

PHwWwN =

oy O

= O o

11
12
13
14

15
16
17

18
19

21

iAPX 86, 88, 186 MICROPROCESSORS

WORKSHOP_SCHEDULE

CHAPTER Day One

THE iAPX 86 PRODUCT FAMILY
INTRODUCTION TO MICROPROCESSORS
INTRODUCTION TO SEGMENTATION
INTRODUCTION TO THE iAPX 86, 88
INSTRUCTION SET

MORE INSTRUCTIONS

SOFTWARE DEVELOPMENT

Day Two

ARITHMETIC, LOGICAL AND
CONDITIONAL INSTRUCTIONS
DEFINING AND ACCESSING DATA
PROGRAM DEVELOPMENT

BASIC CPU DESIGN AND TIMING

Day Three

PROCEDURES

PROGRAMMING WITH MULTIPLE SEGMENTS
INTERRUPTS

MEMORY AND I/O INTERFACING

Day Four

PROGRAMMING TECHNIQUES

MODULAR PROGRAMMING

INTRODUCTION TO THE iAPX 186, 188
MICROPROCESSORS

(optional) ICE 86

Day Five

MULTI AND COPROCESSING

MULTIBUS SYSTEM INTERFACE

iAPX 186, 188 HARDWARE INTERFACE
The {APX 286 and iAPX 386
MICROPROCESSORS

Lab

Lab 1 -
Using the Series III
Development System

Optional AEDIT
Basic Lab

Lab 2 -
Defining and
Accessing Data

Lab 3 -

Using Procedures
(Linking with PL/M),
Multiple Segments,
and Interrupts

Lab 4 -
Modular Programming

Optional Lab -
ICE Demo

Labs are shown for information only. A1l labs are self
paced and as a result are not scheduled or assigned.

DAY 1 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

** DEFINE THE TERMINOLOGY USED TO DESCRIBE THE iAPX 86,88,186,188
FAMILY OF PRODUCTS

* DEFINE THE THREE BASIC COMPONENTS OF EVERY MICROPROCESSOR
DESIGN AND THE BUSSES THAT CONNECT THEM

* MATCH THE CPU POINTER REGISTERS WITH THE TYPE OF MEMORY THEY
ARE USED TO ACCESS

* DEFINE TYPICAL SEGMENT REGISTER USE

% USE THE ASSEMBLER DIRECTIVES REQUIRED TO DEFINE A SEGMENT

% CREATE, ASSEMBLE, AND EXECUTE A PROGRAM USING THE
SERIES 11l DEVELOPMENT SYSTEM

CHAPTER 1
THE iAPX 86 PRODUCT FAMILY

¢ PRODUCTS
e NOMENCLATURE
e COURSE CONTENTS

(GENERATIONS OF MICROPROCESSOR SYSTEMS \

L IAPX 386 3
1000 |
500 |—
200 —
100 IAPX 88
w iAPX 88
Q
Z
<
=
@
[e]
u
[+ 4
w
a
w
2
-
<
-l
w
[+ 4
10 r
1
|] {]] 4 | 1

1872 1974 1977 1978 1979 1982 1984

1-1

4)

IAPX 86 PRODUCT FAMILY

SOFTWARE

HIGH
] GH LEVEL LANGUAGES

@ PASCAL 86 (APPLICATIONS)
. PLM 86 (SYSTEMS IMPLEMENTATION, APPLICATIONS)
FORTRAN 86 (APPLICATIONS, MATH)
C 86 (SYSTEM IMPLEMENTATION, APPLICATIONS)

ASSEMBLY LANGUAGE

ASM 86 (*HIGH LEVEL" ASSEMBLER)

SYSTEM SOFTWARE

IRMX 86 OPERATING SYSTEM (FULL FUNCTION)

IRMX 88 EXECUTIVE (SMALL,FAST)

iIMMX 800 MESSAGE EXCHANGE SOFTWARE (MULTIPROCESSOR COMM.)
XENIX OPERATING SYSTEM (FULL FUNCTION)

- J

1-2

DEVELOPMENT SUPPORT \

SERIES Il DEVELOPMENT SYSTEM
(8085 PROCESSOR ONLY, PLM86, ASM86)

SERIES Il DEVELOPMENT SYSTEM

(8086 AND 8085 PROCESSORS, FORTRAN 86, PLM886,
ASM86,DEBUG-86, PASCAL 86, C886)

SERIES 1V DEVELOPMENT SYSTEM
(8086 AND 8085 PROCESSORS, ENHANCED HUMAN
INTERFACE)

ICE86 ICE86A
(IN CIRCUIT EMULATOR, POWERFUL SOFTWARE AND
HARDWARE DEBUGGING TOOL, USED WITH SERIES 1l OR IH)
121CE J
(INTEGRATED INSTRUMENTATION AND IN-CIRCUIT EMULATION

SYSTEM FOR 8086, 80186, 80286, USED WITH
SERIES Iil OR V)

LINK86, LOC86, LIB86

R (UTILITIES PROGRAMS THAT SUPPORT MODULAR
o PROGRAMMING, RUN ON SERIES 1l OR SERIES 1)
© iSBC 957B PACKAGE
i (DOWNLOAD AND DEBUG FOR iSBC86 BOARDS)
1-3
iAPX 86 PRODUCT FAMILY \
HARDWARE

SINGLE BOARD COMPUTERS

iSBC 86/30 BOARD (8MHz 8086, 128K RAM, FULL FUNCTION)
iSBC 86/12A BOARD (5MHz 8086, 32K RAM , FULL FUNCTION)
iISBC 86/05 BOARD (8MHz 8086, 86/12A COMPATIBLE , 8K RAM)
iISBC 88/40 BOARD (5MHz 8088,ANALOG 10, PROCESS CONTROL)

PLUS OVER 40 ADDITIONAL 10 AND MEMORY EXPANSION BOARDS

' PROCESSORS
. . iAPX 86 (GENERAL 16 BIT DATA PROCESSOR)
' t iAPX 88 (iAPX 86 WITH 8 BIT EXTERNAL DATA BUS)
E E iAPX 186 (HIGHER HARDWARE INTEGRATION)
' : iAPX 188 (iAPX 186 WITH 8 BIT EXTERNAL DATA BUS)
iAPX 286

(HIGHER SOFTWARE INTEGRATION)

8089 I10P (HIGH SPEED DMA AND 10)

* PROCESSOR EXTENSIONS

NUMERICS COPROCESSOR (8087, HIGH SPEED MATH)
K‘ OPERATING SYSTEM EXTENSION (80130 FAST OPERATING SYSTEM NUCLEU))

- s o
— e ———
ey

1-4

/ iIAPX 86, iAPX 88 MODEL NUMBERS

N

-

iAPX 86
CPU IAP)O(OSGG/ 10
SIMILAR FOR
IAPX 86/11
CPU & IOP 8088 iAPX 88,
8089 IAPX 1886,
iIAPX 86/20 i
CPU & 8087 NPX 8086 APX 188
8087
IAPX 86/21
8088
CPU & 8087 NPX & IOP e
8089
iAPX 868/30
CPU 80130 OSP 80886
80130
1-5
/ iAPX 86 PRODUCT FAMILY
SOFTWARE
PLM 86 Asm 86 * IRMX 86
PASCAL 86 IRMX 88
FORTRAN 86 IMMX 800
HARDWARE
ISBC 86/12A iAPX 88" 8087
iISBC 86/05 * iAPX 88 sose™
iSBC 88/40 IAPX 188 * 80130
IAPX 188*
IAPX 286 *
DEVELOPMENT SUPPORT
SERiES I * ICcE a8 1?ice
SERIES m* LINK 86 * SDK 86
SERIES IV LOC 86%* 957 B
LiB 86
* = COVERED IN THIS COURSE

1-6

-

FOR MORE INFORMATION...

ALL INTEL PRODUCTS ARE DESCRIBED IN

- MICROPROCESSOR AND PERIPHERAL HANDBOOK
- MEMORY COMPONENTS HANDBOOK
- OEM SYSTEMS HANDBOOK

AVAILABLE COURSES
~ INTEL WORKSHOPS CATALOG

1-7

CHAPTER 2
INTRODUCTION TO MICROPROCESSORS

e REGISTERS
® NUMBER SYSTEMS
® FLAGS

- MICROCOMPUTER SYSTEM \

~FUNCTIONAL SECTIONS-

1 L4
U ADDRESS BUS U

MEMORY INPUT/OUTPUT
(2) ()

CPU
MODULE

I Il

DATA BUS

CONTROL BUS o
1 OPERATIONS 2 PROGRAMS, 3 EXTERNAL
\ DECISIONS STACK, DATA COMMUNICATION /
2-1

4)

BUS FUNCTIONS

ADDRESS BUS

20 BITS UNI-DIRECTIONAL (OUTPUT ONLY)
MEMORY ADDRESS 0 TO 22° (1,048,576)
/0 ADDRESS 0 TO 2'® (85,536)

DATA BUS

16 BITS BI~DIRECTIONAL (READ/WRITE)
THUS MEMORY AND 1/0 DATA WIDTH 8 OR 16 BITS

CONTROL BUS

INCLUDES THREE CONTROL LINES
M/10 =1/0 OR MEMORY SELECTOR
RD=READ
WR=WRITE

2-2

iIAPX 86,88 CPU PROGRAMMING MODEL

~

16 0
7 0 7 o]
-
AX AH AL
BX BH BL
BYTE
cx CH cL
DX DH DL
WORD<
sP
BP
8|
DI
) W,
P
FLAGS
* POINTER REGISTER /
2-3
INSTRUCTION POINTER
MEMORY
1 INSTRUGTION
Ve
P » INSTRUCTION
e -~
r'd
S - -
.- INSTRUCTION
P (16) = _
‘ AN INSTRUGTION
N ~
~
N
N A INSTRUCTION
AN
RN INSTRUCTION

N

2-4

STACK POINTER

TOP OF STACK

STACK POINTER (16)

/ (To8)

CONTAINS ADDRESS
OF TOP OF STACK

WRITE READ

LO

DATA WORD

DATA WORD

DATA WORD

DATA WORD

DATA WORD

DATA WORD

RAM

HI

MEMORY

2-5

16

DATA POINTERS

BX, SI, DI OR BP

EXAMPLES

MOV CX, 0005

MOV BX], CX
MOV AX, [Si]

/ DATA

T

DATA

DATA

DATA

2-6

TYPICAL MEMORY USAGE

CPU MEMORY
INSTRUCTION STORAGE AREA
P >
INSTRUCTION ROM/PROM/EPROM/RAM
POINTER
STACK AREA
SP
RAM
STACK
POINTER
VARIABLE STORAGE AREA
DATA RAM
POINTER
2-7
NUMBER SYSTEMS
HEX BINARY DECIMAL
0 0000 0
1 0001 1
2 o010 2
3 0011 3
4 0100 4
§ 0101 5
8 0110 6
7 0111 7
8 1000 8 21H = 00100001 B
9 1001 9
A 1010 10 96H = 10010110 B
B 1011 "
c 1100 12 42H = 01000010B
D 1101 13
E 1110 14
F 111 16

SIGNED:

UNSIGNED:

N

TWOQO'S COMPLEMENT ARITHMETIC
SIGNED vs UNSIGNED BINARY NUMBERS

-128 TO +127

0 - 255

/

2-9

/

EXAMPLE OF TWO’S COMPLEMEMT:

BINARY

DECIMAL

1000 0000
1000 0001

11111111
0000 0000
0000 0001

0111 1110
0111 1111

- 128
- 127

TWO’S COMPLEMENT NUMBER REPRESENTATION

~

FLAG WORD

STATUS
FLAGS

g

tmeauun-} CONTROL

ENABLE FLAGS
DIRECTION

STATUS
OVERFLOW] FLAG

2-11

ov

)

FLAG OPERATIONS

AC.

CARRY

OPERAND 1

OPERAND 2

RESULT
(OPERAND 1)

FOR MORE INFORMATION ...

INTRODUCTION TO MICROCOMPUTERS AND THE 8086
~ CHAPTER 1 AND 2, iAPX 86/88, 186/188 USER'S MANUAL

REGISTERS AND FLAGS

- CHAPTER 3, iAPX 86/88, 186/188 USER’'S MANUAL
- APPENDIX B, ASM86 LANGUAGE REFERENCE MANUAL

SIGNED BINARY NUMBERS
PAGES 3-22,23, iAPX 86/88, 186/188 USER'S MANUAL

CHAPTER 3
INTRODUCTION TO SEGMENTATION

e SEGMENTS

e SEGMENT REGISTERS
e PHYSICAL ADDRESSES
e SEGMENT USAGE

/ iAPX 86,88 MEMORY TERMINOLOGY \

CODE
» MEMORY IS USED TO STORE THREE TYPES
OF INFORMATION.

x THE 8086 VIEWS MEMORY AS A GROUP

OF SEGMENTS.
DATA

* A SEGMENT IS A LOGICAL UNIT OF MEMORY.

» SEGMENTS CANNOT BE GREATER THAN
64K LONG. STACK

N — Y

3-1

(SEGMENT REGISTERS AND SEGMENTATION \
CODE
os on * THE CPU HAS 4 SEGMENT REGISTERS.
Es THE SEGMENT REGISTER POINTS TO

THE BEGINNING OF A SEGMENT.

FFFFF H

3-2

s

SEGMENT REGISTERS AND SEGMENTATION

00000H
CODE
CS: 0000
01000H
DS: 0100 DATA
ES: 03CF
CFOH
§8; FFOO 03
15
EXTRA
FFOOOH
STACK
FFFFFH
3-3
SEGMENTATION

* SEGMENTED ADDRESSING HAS MANY ADVANTAGES
OVER LINEAR ADDRESSING.

1) REGISTER SIZE

2) DYNAMIC CODE RELOCATION
3) MEMORY MANAGEMENT

* SEGMENTS ARE DEFINED BY APPLICATION

3-4

-

SEGMENTS ARE DEFINED BY APPLICATION \

A FEW EXAMPLES

D8 >

D8 o

DATA DATA 1

8s STACK 1

8TACK

cs L

CODE 1

CODE 2

SIMPLE PROGRAM c8-~- po— DATA 2
< 64K CODE 88 ~— .
< 684K DATA 8TACK 2
< 84K STACK MORE CODE c8 ~——
CODE 2
(OUR MODEL)

TWO PROGRAMS (TASKS)
SHARING ONE PROCESSOR

J

3-5

ACCESSING MEMORY IN A SEGMENT \

* TO ACCESS A PARTICULAR BYTE (OR WORD) IN A SEGMENT, THE
CPU USES AN OFFSET

* THE OFFSET OF A BYTE (OR A WORD) IS THE DISTANCE IN BYTES
FROM THE BEGINNING OR BASE OF THE SEGMENT

* THIS BASE ADDRESS IS SUPPLIED BY THE SEGMENT REGISTER

SEGMENT REQGISTER

I
OFFSET

| TR

3-6

ﬁ

\-

USING THE SEGMENT REGISTER CONTENTS

18

OFFSET
ADDRESS

OFFSET

e

18]

\

s

——

SELECTED
SEGMENT cs 0000
REGISTER
a8 0000
DS 0000
C8,88,08,E8
ORNONE FOR ES 0000
VO ,INY
\ /|
! [SEQMENT
' . REQISTER
| L ' ADDER
. . [oo:d
! | . orros
! 18 °
19 [} ——
PHYSICAL —o 02686 PHYSICAL
l ADDRESS - ADDRESS
LATCH 19
3-7

/

cs 0020

FETCHING INSTRUCTIONS

* INSTRUCTIONS ARE ALWAYS FETCHED WITH RESPECT TO THE CS REGISTER.

\

—» 00200H

ADD AX,10

‘——»00268H MOV AX,BX

~

\

3-8

-

ACCESSING THE STACK

* THE STACK IS ALWAYS REFERENCED WITH RESPECT TO THE
STACK SEGMENT REGISTER.

88 0000

»00000H

8P 0100

e & o o o o o

—»oowonL

3-9

(

ACCESSING DATA

* THE OFFSET VALUE CAN BE OBTAINED IN MANY WAYS.
DATA IS TYPICALLY FETCHED WITH RESPECT TO THE DATA

* SEGMENT REGISTER. \

DS 0840

-3 05400H

OFFSET 0080

e e o o @ o @

——»05450H

\

CLASS EXERCISE 3.1

ASSUME AN INSTRUCTION IS LOCATED AT A PHYSICAL ADDRESS OF 05820H.

e
1. WHAT REGISTER(S) WOULD THE CPU USE TO FETCH THIS INSTRUCTION? (* | :

[
N~

2. NAME THREE COMBINATIONS OF VALUES THAT THE CPU COULD USE
TO FETCH THAT SAME INSTRUCTION.

ASSUME A WORD OF DATA IS LOCATED AT AN OFFSET OF 210H FROM A
SEGMENT BEGINNING AT PHYSICAL ADDRESS 00020H.

3. WHAT REGISTER(S) WOULD THE CPU TYPICALLY USE TO READ
THIS DATA?

4. WHAT I8 THE PHYSICAL ADDRESS OF THE DATA?
6. WHAT WOULD BE THE VALUE IN THE SEGMENT REGISTER?

o /

(REVIEW (FILL IN REGISTER NAMES) \

STACK

DATA

i CODE

N -

FOR MORE INFORMATION ...

PHYSICAL ADDRESS GENERATION
- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

SEGMENTATION CONCEPTS

- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL
- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

CHAPTER 4
INTRODUCTION TO THE iAPX 86.88 INSTRUCTION SET

o CREATING A SEGMENT
e LABELS AND SYMBOLS
e ASSUME STATEMENT

e MOV,XCHG

e IN,OUT

e SHIFT,ROTATE

INSTRUCTIONS ARE CONTAINED IN SEGMENTS.

HOW DO YOU CREATE A SEGMENT ?

J

4-1

a SEGMENT DECLARATIVE

A SEGMENT IS DEFINED IN ASSEMBLY LANGUAGE WITH A SEGMENT

* DECLARATIVE.

C_CODE

C_CODE

C_CODE

\ #* ALL OFFSETS ARE CALCULATED FROM THE SEGMENT DECLARATIVE. /

SEGMENT

~

4-2

IDENTIFIERS

ASM86 FEATURES

UPPER AND LOWER CASE ALPHA CHARACTERS (A-Z, a-z)
NUMERIC CHARACTERS (0-9)
3 SPECIAL CHARACTERS (7,@,-.)
« ALL IDENTIFIERS MUST BEGIN WITH AN ALPHA CHARACTER OR
ONE OF THE 3 SPECIAL CHARACTERS
« FIRST 31 CHARACTERS ARE SIGNIFICANT

NUMERIC CONSTANTS

D
H
Qor O
B

DECIMAL
HEXIDECIMAL

OCTAL
BINARY

= DEFAULT BASE IS DECIMAL
= ALL NUMERIC CONSTANTS MUST BEGIN WITH A DIGIT

— EITHER TABS OR SPACES CAN BE USED AS DELIMITERS
— CERTAIN NAMES HAVE PREDEFINED MEANINGS AND CANNOT
BE USED AS IDENTIFIERS

4-3

-

THE ASSUME DECLARATIVE ASSOCIATES A SEGMENT REGISTER WITH A

ASSUME DECLARATIVE

SEGMENT NAME

THE ASSUME DOES NOT GENERATE ANY CODE

CODE _1 SEGMENT
ASSUME C8:CODE.1

[ERARNRRNI

CODE _1

m
F 4
o
-]

MORE ON THIS LATER!

~

4-4

INSTRUCTIONS

BYTE OR WORD OPERATIONS USE THE SAME MNEMONIC.

BOTH OPERANDS MUST BE THE SAME LENGTH, BYTE
OR WORD.

EXAMPLES:
MOV AL, BL H LEGAL -BOTH BYTE
MOV AX, BX H LEGAL -BOTH WORD
MOV BX, AL H ILLEGAL -ONE BYTE ,ONE WORD

4-5

MOV XCHG

* MOV BYTES OR WORDS BETWEEN REGISTERS AS WELL AS
BETWEEN REGISTERS AND MEMORY

MOV DESTINATION, SOURCE - TRANSFER BYTE OR WORD FROM
SOURCE TO DESTINATION

XCHG OP1, OP2 -EXCHANGE BYTE OR WORD, OP1-+— OP2

EXAMPLES
MOV AX, BX
XCH@ BL, BH
XCHG 8I, DI
MoV CX, [8(

4-6

_

IMMEDIATE DATA

* MANY INSTRUCTIONS CAN USE IMMEDIATE DATA

MOV AX, 2346H

MOV

BL, 123D

* EQU STATEMENTS ARE USEFUL WITH IMMEDIATE DATA

DAYS_IN_YEAR EQU 3865

mnu

MOV

CX, DAYS_IN_YEAR

% EQU IS NOT AN INSTRUCTION AND DOES NOT ALLOCATE ANY MEMORY

/

CPU

PORT# =0 TO 255

4-7
IN, OUT
AL 4 IN AL, PORT#
- [~ DATA__- BYTE OUT PORT#, AL
CPU
AX IN AX, PORT#
[Nwwm
~DATA_ 1 WORD OUT PORT#, AX
PORT

4-8

I/0 OPERATION DIRECT PORT

CPU I\
ADDRESS BUS

DECODE

roaic P

L

‘WR

— d LATCH
M/10
pe

DATA BUS

BX

AX

MOV AL, 00000100B
OUT 20H, AL

[co&kocoooo |

4-9

ANOTHER WAY.....

OR
(HOW DO YOU GET 64K |10 ADDRESSES)

4-10

\

N

IN, OUT
MOV DX, PORT#
IN AL, DX
BYTE OUT DX, AL
PORT
IN AX, DX
—'____/\
:j\MA> WORD OUT DX' AX
\\ DX PORT
PORT+# 0 TO 65,535
4-11
70 OPERATION N\
(INDIRECT PORT)
—
ADDRESS BUS JB D CORE b— 8
O
l) O
o (
— O
we 9 —9 LATCH O
AX M/i0
40 et
DATA BUS
MOV AL,04H
MOV DX,20H
OUT DX,AL

BY USING THE DX REGISTER TO POINT TO 10 THE CPU CAN ACCESS y
TQ 64K DIFFERENT 1/Q PORTS.

BY POWERS OF TWO

SHIFT LOGICAL RIGHT

Q0 — > DESTINATION

4 SHIFT INSTRUCTIONS

* ARITHMETIC SHIFTS CAN BE USED TO MULTIPLY OR DIVIDE NUMBERS

SHIFT ARITHMETIC RIGHT
(SIGN BIT SHIFTED iN) DESTINATION

CF

SHIFT LEFT

CF | DESTINATION

CF

j———- 0

\

SHR

SAR

SHL/SAL

J

4-13

ROTATE INSTRUCTIONS

DESTROYING THE BITS

ROTATE RIGHT

> DESTINATION

ROTATE RIGHT THROUGH CARRY

L’ DESTINATION

CF

|

ROTATE LEFT

CF |« DESTINATION

ROTATE LEFT THROUGH CARRY

\ CF DESTINATION

ROR

RCR

ROL

RCL

~N

* ROTATE INSTRUCTIONS ARE USED TO MANIPULATE BITS WITHOUT

* THE CARRY FLAG CAN BE INCLUDED OR EXCLUDED IN THE OPERATION

4-14

/ SHIFT AND ROTATE FORMS W

* TYPE OF OPERAND DETERMINES BYTE OR WORD

* SINGLE BIT FORM:

SHL AX,1 :SHIFT LEFT LOGICAL
:ONE BIT
ROR BL,1 :ROTATE RIGHT

* VARIABLE BIT FORM:

MOV CL,4 :SET UP THE SHIFT
:COUNT

SAR AX,CL :SHIFT CL TIMES

* ONLY THE CL REGISTER MAY BE USED TO HOLD THE VARIABLE
SHIFT COUNT

\ * CL IS UNAFFECTED j

4-15

4)

CLASS EXERCISE 4.1

RITE A SEQUENCE OF INSTRUCTIONS THAT WILL INPUT AN UNSIGNED
5£TE FROM PORT ¢FFF8H, AND MULTIPLY THE BYTE BY 8. ALLOW THE

ULTIPLY TO EXTEND INTO 16 BITS. THE PROGRAM SHOULD THEN OUTPUT
THE WORD RESULT TO PORT 8H.

4-16

FOR MORE INFORMATION ...

ASSEMBLY LANGUAGE INSTRUCTIONS
-CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL
-CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

SEGMENT DECLARATIVE
-CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...
IN THIS COURSE WE DO NOT COVER THE BIT ENCODING OF MACHINE
INSTRUCTIONS. DUE TO THE MANY ADDRESSING MODES AVAILABLE IN
THE 8@86, AND THE DESIRE TO MINIMIZE CODE SIZE, INSTRUCTION
ENCODING IS MORE DIFFICULT TO UNDERSTAND THAN IN MANY PREVIOUS
8-BIT MACHINES (SUCH AS THE 8085). INFORMATION IS AVAILABLE IN

-CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL
—~APPENDIX E, ASM 86 LANGUAGE REFERENCE MANUAL

4-17

CHAPTER 5
MORE INSTRUCTIONS

o HLT
e JMP

¢ LOOP

HLT INSTRUCTION

MY_SEG SEGMENT
ASSUME CS: MY_SEG

frrrrrerint

s ST
MY_SEG ENDS --~

5-1

JMP INSTRUCTION

MY_SEG SEGMENT
ASSUME CS:MY_SEQG

START:

IIIII!I'

JMP START
MY_SEG ENDS

5-2

JMP INSTRUCTION
JMP +128 BYTE DISPLACEMENT (*SHORT" JUMP, 2 BYTE INSTRUCTION)

JMP $32K BYTE DISPLACEMENT (*NEAR” JUMP ,3 BYTE INSTRUCTION)

JMP ANY SEGMENT, ANY OFFSET (*FAR" JUMP , 56 BYTE INSTRUCTION)
(DISCUSSED LATER)

LET THE ASSEMBLER GIVE YOU THE CORRECT FORM!

k Y,

5-3

ﬁ DISPLACEMENTS AND OFFSETS \

~ THE DISPLACEMENT OF A BYTE (OR WORD) 1S THE DISTANCE IN BYTES
*ROM THAT BYTE (OR WORD) TO ANOTHER BYTE (OR WORD).

s+ THE OFFSET OF A BYTE (OR WORD) IS THE DISTANCE IN BYTES FROM
THE BEGINNING OF THE SEGMENT.

C_CODE —>»

OFFSET

DISPLACEMENT

|

5-4

A

QUESTION

HOW CAN | EXECUTE MY PROGRAM 10 TIMES THEN STOP?

ANSWER

USE A PROGRAM LOOP.

5-5

e

LOOP INSTRUCTION

A SPECIAL JUMP INSTRUCTION THAT DECREMENTS THE CX REGISTER

AND JUMPS IF CX#0

MY_SEG

START:
AGAIN:

MY_SEG

SEGMENT
ASSUME CS: MY_SEG

MOV CX,10

INENE

LOOP AGAIN
HLT
ENDS

~

5-6

LOOP INSTRUCTION

MY_ SEQ SEGQGMENT
ASSUME C8;MY_SEQG
START: MOV cX,10

——————» AGAIN:

CX=CX-1

HLT

MY__8EQ
ENDS

5-7

LOOP INSTRUCTION
ALSO USEFUL FOR DELAYS

IIIIOV CX,0FFFFH
SELF: LOOP SELF

} TAKES =0.2 SECONDS @ 5MHZ

HOW LONG WOULD THESE TAKE?

- MOV CX,0FFFFH

MOV CX,0FFFFH OUTER : MOV DX, CX

SELF: LOOP SELF MOV CX,0FFFFH
SELFZ: LOOP SELFZ INNER: LOOP INNER
- MOV CX,DX

LOOP OUTER

5-8

STOPPING THE ASSEMBLER

NAME DEMO -~ - == = — = = - ﬁ
MY_SEQG SEGMENT

ASSUME CS: MY_SEQG

START: MOV CX,10 ;;EXECUTE PROGRAM
AGAIN : _ ;10 TIMES

LOOP AGAIN

JMP $
MY_SEG ENDS

END START ------- c—:\‘)

5-9

CLASS EXERCISE 5.1

1. Why doesn't the end statement make the CPU stop execution?

2. Which of the following are proper ASM86 identifiers? What is wrong
Wwith the others?

. BEGIN

. ?ALPHA

. HALT

?_ a

"ELEPHANT'

STIMES

GROUPT

LOOP_

TOTAL$AMOUNT

. NOW_IS_THE_TIME_FOR_ALL_GOOD_MEN

LM SO Q00D

FOR MORE INFORMATION ...

ASSEMBLY LANGUAGE INSTRUCTIONS
- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL
- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

ASSEMBLER DIRECTIVES (E.G. NAME, END)
- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...
THE LOOP INSTRUCTION IS ALSO AVAILABLE AS A CONDITIONAL
INSTRUCTION.
LOOPE/LOOPZ
LOOPNE/LOOPNZ

SEE CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

CHAPTER 6
SOFTWARE DEVELOPMENT

e SERIES Il DEVELOPMENT SYSTEM
e FILE UTILITIES
e AEDIT TEXT EDITOR

SOFTWARE DEVELOPMENT \
(SERIES | | | DEVELOPMENT SYSTEM)

I === r---i
; ' | source | ! ' | oeeecT | ! Lmkes ! gg.}:s'::'JT
! AeDIT :_’ FILE “’: AsMes +>1 me [awp l‘“’ FILE [~®RUN
)
o asm| o NOEXT

6-1

INITIALIZING ISIS-I

1) POWER ON COMPLETE SYSTEM
(MDS, DISK DRIVES)

2) INSERT SYSTEM DISKETTE INTO DRIVE 0
(DRIVE 0 IS THE DRIVE ON THE RIGHT)

3) PRESS RESET ON FRONT PANEL

6-2

SERIES | 1 | ENVIRONMENT
INTERRUPT 1 RESET
V)
S:ESI;IsE—lsill \ SERES-i |11
8085 BASED \/ 8086~ BASED
|

LOCATE 86

18181 i

UTILITES
COPY, DIR,
DELETE...

PROGRAMS

6-3

*LISTS ISIS DISKETTE FILES

DIRECTORY COMMAND

DIR 0 [I]
1 .
% EXAMPLE
DR I
DIRECTORY OF :F0:86P1.002
NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 26 3200 IF
ISIS .TO 24 2944 IF
ISIS .BIN 94 11756 SIF
| ISIS .0VD 11 1279 SIF
cCoPY 69 8489 WS
DELETE 39 4824 WS
IDISK 63 7895 WS
RUN 214 26804 WS
AEDIT 214 26775 WS
LINK86.86 608 76512 WS
DEMO .A86 14 1586
‘ LARGE .LIB 49 6029 W
cI .0BJ 7 763 W
RUN .0vo 78 9724 W
TEST .LAB 3 212
3290

3290/4004 BLOCKS USED

NAME LEXT
ISIS .MAP
ISIS .LAB
ISIS .CLI
ATTRIB
CREDIT

DIR

RENAME
SUBMIT
ASM86 .86
LOC86 .86
CREDIT.HLP
RUN .MAC
co .0BJ
AEDIT .MAC

BLKS LENGTH
5 512

54 6784
25 2984
40 4909
156 19470
55 6815
20 2346
39 4821
1056 132988
292 36652
25 2985

2 9

6 561

2 5

ATTR
IF
IF

6-4

4

* FILE NAME CONVENTIONS:

ISIS 1l NOTES

:DEVICE:FILENAME.EXTENSION

2 CHARACTERS/ 1 TO 8 CHARACTERS \1 TO 3 CHARACTERS

OPTIONAL

OPTIONAL

:FO: INDICATES DRIVE 0

:F1: INDICATES DRIVE 1
IF NO DEVICE IS SPECIFIED :FO: IS USED

*FOR EASE OF ENTRY OF COMMAND LINES, AND OTHER INPUT:

(RUBOUT)

(CNTL-X)
(CNTL-8)
(CNTL-Q)

DELETES THE PREVIOUS
CHARACTER ENTERED

DELETES THE ENTIRE LINE

STOPS OUTPUT PROCESS
RESTARTS OUTPUT PROCESS

6-5

COPY COMMAND

COPY ISISFILENAME ,ISISFILENAME ... TO ISISFILENAME

COPY :F1:LAB1.LST TO :LP:

COPY :F1:LAB1.ASM TO :F1:LAB4.ASM

6-6

N

| DELETE COMMAND \

DELETES ISIS DISKETTE FILES FROM THE DIRECTORY

DELETE ISISFILENAME

-DELETE LAB1.LST DELETES LAB1.LST FILE FROM DISK IN DRIVE O

-DELETE :F1:LAB1.LST DELETES LAB1.LST FILE FROM DISK PRESENTLY
IN DRIVE 1

~DELETE :F1:LAB?.LST DELETES LAB1.LST

LAB2LST FROM DISK IN DRIVE 1
LAB3.LST

LABA.LST

DELETE :F1:LAB1.* DELETES LAB1.LST

LAB1.0BJ FROM DISK IN DRIVE 1
LAB1.ASM

SOFTWARE DEVELOPMENT N\
(SERIES | | | DEVELOPMENT SYSTEM)

r=="1
) . BOUND
OBJECT LINK88 OBJECT
FLE ’: Bnp FP| FLE [PRUN
o8| : NOEXT

6-8

AEDIT

SERIES II/II/IV TEXT EDITOR

)

\.

6-9
(FILE CREATION \
LABI.ASM
DATA
/ KEYBOARD FLOW INITIAL
- AEDIT ——
¢ /S CREATION
LABI.ASM
oLD BACK-
FILE - upP LABI.BAK
FILE
EDITING
AEDIT ANOLD
FiLE
KEYBOARD
/ o / LABI.ASM
WHEN EDITING AN OLD FILE A BACKUP FiLE IS CREATED

OF THE OLD FILE UPON EXITING AEDIT.

)

6-10

AEDIT IS CALLED FROM ISIS BY ENTERING:

AEDIT FILENAME

WHERE FILENAME 1S THE NEW FILE TO BE CREATED OR AN
EXISTING FILE TO BE UPDATED.

EXAMPLE :
-AEDIT :F1:LAB1.ASM

IS MENU DRIVEN

INITIAL SCREEN

EOF MARKER"i/;‘_
CURSOR
TEXT AREA = —
MESSAGE LINE = 1818~1l AEDIT V1.0
PROMPT LINE ___F%—gngn Biock Detate Executs Find -lind Get —more-
ems——

e TO GET NEXT MENU:

TAB

THE MENUS

MENU 1
TAB Amin Block Delets Execute Find dind Get ~more-
smm——
MENU 2]
TAB | ;._x—— nsert Jump Macro Other Quit Replace —more--
MENU 3
TAB :r:p;:l Se1 Tag View Xchange —more--

o TO INVOKE A COMMAND, KEY THE FIRST LETTER OF THE COMMAND,

e TO ABORT A COMMAND, TYPE CNTL-C

INSERTING NEW TEXT

Hex | Insert Jump Macro

e TO INSERT TEXT, TYPE 1

INSERTION

KEYSTROKES SCREEN

1 , o EOF

\cunson

MESSAGE LINE —> [insert]
R
6-15
INSERTION
KEYSTROKES SCREEN
Now Is the time RET Now Is the time

EOF

for all good mend for all good mend _._/
®— CURSOR

CORRECTING MISTAKES

KEYSTROKES SCREEN
RUBOUT
Now is the time
for all good men:_
Dnsert]
I
6-17
ENDING INSERTION
KEYSTROKES SCREEN
ESC Now is the time

tor all good moni

MENU Again Block Delete Execute

CURSOR CONTROL \

D= =

'

o ARROW KEYS MOVE CURSOR ONE SPACE OR LINE FOR EDITING

6-19
CURSOR MOVEMENT AND PAGING
[.._.) W [HOME ~ MOVES CURSOR TO END OF LINE
_J -

[«_W (HOME MOVES CURSOR TO BEGINNING OF LINE

PAGES DOWN

‘(._
e’
I

lO
;
mJ

PAGES UP

)

—-

___J
I
o]
4
m

—,

1

6-20

DELETING TEXT

DELETES CHARACTER AT CURSOR

@ DELETES LINE ON WHICH CURSOR IS POSITIONED

E] UNDO-RESTORES DELETED CHARACTERS

THESE ALSO WORK DURING INSERTION

ENDING AN EDITING SESSION

KEYSTROKESI

mdump Macro Other { Quit

Replace

QuIT \

MENU PROMPT LINE

ABORT EXIT INIT UPDATE WRITE

SUBCOMMANDS :
A - ABORT ALL CHANGES LOST. RETURN TO OPERATING SYSTEM,
E - EXIT FILE IS UPDATED, RETURN TO OPERATING SYSTEM
I - INIT STARTS NEW EDITING SESSION, DOES NOT RETURN TO
OPERATING SYSTEM,
U - UPDATE UPDATES FILE, DOES NOT RETURN TO OPERATING SYSTEM.

W - WRITE PROMPTS YOU FOR QUTPUT FILENAME. DOES NOT RETURN

TO OPERATING SYSTEM, 4")

EXIT

KEYSTROKES

Init Update Write

6-24

r !

! ! | sounce
i AEDIT H» e

' |

T . ASM

SOFTWARE DEVELOPMENT)
(SERIES | | | DEVELOPMENT SYSTEM)

DEVELOPMENT STEPS

-AEDIT :F1:LAB 1.ASM
]

-RUN ASMS86 :F1:LAB1.ASM
-COPY :F1.LAB1.LST TO .LP:
-RUN LINK86 :F1:LAB1.0BJ BIND
-RUN :F1:.LAB1.

CREATES FILE

ASSEMBLE FILE - CREATE .LST AND .OBJ FILE
PRINT .LST FILE LOOK AT ERRORS, IF ANY
CREATE "RUN TIME LOCATED" FILE

EXECUTE PROGRAM IN DEVELOPMENT SYSTEM

_

FOR MORE INFORMATION. . .

1SI1S-1 | COMMANDS AND ERROR MESSAGES

—-INTELLEC SERIES 1l MICROCOMPUTER DEVELOPMENT SYSTEM
CONSOLE OPERATING INSTRUCTIONS POCKET REFERENCE

AEDIT TEXT EDITOR

- AEDIT TEXT EDITOR POCKET REFERENCE

AEDIT HAS MANY ADVANCED COMMANDS THAT ARE NOT COVERED IN THIS
COURSE. INFORMATION IS AVAILABLE IN THE AEDIT TEXT EDITOR

USER’'S GUIDE AND THE AEDIT LAB IN APPENDIX A.

DAY 2 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

WRITE EXECUTABLE PROGRAMS USING THE ARITHMETIC, LOGIC, AND
CONDITIONAL INSTRUCTIONS

% ALLOCATE MEMORY SPACE AND INITIALIZE THAT DATA USING THE
ASM86 DIRECTIVES

¥ DEBUG YOUR PROGRAMS USING THE SERIES Ill DEBUGGER

¥ WRITE A SUBMIT FILE TO "AUTOMATE" PROGRAM DEVELOPMENT

* DIFFERENTIATE BETWEEN THE MINIMUM MODE AND MAXIMUM MODE OF
OPERATION OF THE iAPX 86,88

% DEFINE THE STATE OF THE 8086 AFTER IT IS RESET

% RECOGNIZE THE SYMBOLS USED IN INTEL TIMING DIAGRAMS

CHAPTER 7
ARITHMETIC, LOGICAL AND CONDITIONAL INSTRUCTIONS

e ADD, SUB, MUL, DIV, CMP
e CONDITIONAL JUMPS
e AND, OR, XOR, NOT, TEST

LOGICAL INSTRUCTIONS X

EXAMPLES

1001 1111 source
AND 0000 1111 destination
0000 1111 destination RESULT

1001 1111 source

OR 0000 1111 destination
1001 1111 destination RESULT

1001 1111 source
XOR 0000 1111 destination
1001 0000 destination RESULT

1001 1111 source
TEST 0000 1111 destination
NO CHANGE destination (LOGIC 'AND")

NO REGISTERS CHANGED
FLAGS REFLECT RESULT

\ NOT (PRODUCES 1’8 COMPLIMENT) j

7-1

\

LOGICAL INSTRUCTIONS

* THE AND INSTRUCTION IS USED TO CLEAR BITS
AND BX,1 i MASK OUT ALL BITS BUT BIT 0

* THE TEST INSTRUCTION IS USED TO TEST BITS

TEST CL,2 i TEST BIT 1 ("AND’ CL WITH 00000010B)
JZ NOTSET

* THE OR INSTRUCTION IS USED TO SET BITS
OR DX,8000H i SET THE MOST SIGNIFICANT BIT TO 1

* THE XOR INSTRUCTION COMPLEMENTS BITS

XOR CX, 8000H i COMPLEMENT HIGH ORDER BIT
XOR DX,DX s SET DX TO O

* THE NOT INSTRUCTION COMPLEMENTS ALL BITS
NOT AX i COMPLEMENT THE AX REGISTER)

7-2

ADDITION

ADD DESTINATION, SOURCE
ADC DESTINATION, SOURCE
INC DESTINATION

DESTINATION = MEMORY OR REGISTER
SOURCE = MEMORY ,REGISTER OR IMMEDIATE DATA

*NO MEMORY TO MEMORY

EXAMPLES ADD Si,2
INC BL
ADD BX,DL i ILLEGAL

7-3

ADDING TWO 32-BIT NUMBERS

cY CY

[o] (1

7N
0010001101110011 1011101101100101
0001001110001000 1110001100011100

0011011011111100 1001111010000001

7-4

SUBTRACTION

SuB DESTINATION, SOURCE
SBB DESTINATION, SOURCE

DEC DESTINATION

NEG DESTINATION ;FORMS 2'8 COMPLIMENT

CMP DESTINATION, SOURCE YONLY FLAGS ARE AFFECTED

EXAMPLES
SuB CL,20
DEC DL

7-5

MULTIPLICATION
(ALWAYS USES ACCUMULATOR)

8 BIT

REQISTER
AX AL OR MEMORY
— x
16 BIT
REQISTER
DX AX AX OR MEMORY

7-6

MULTIPLICATION

— UNSIGNED OPERATIONS
MUL SOURCE

— SIGNED OPERATIONS

IMUL SOURCE ¥

EXAMPLES:
MUL BL ;AX= AL®BL
IMUL DX iDX,AX=AX%#DX

% CAN BE IMMEDIATE DATA ON 186 BUT NOT 80886

7-7

DIVISION
8 BIT

REGISTER
AL AX OR MEMORY
AH

REMAINDER
16 BIT
REGISTER
AX DX AX OR MEMORY

DX

REMAINDER

\.

DIVISION \

— UNSIGNED

DIV SOURCE *
— SIGNED

IDIV SOURCE *
- ALSO -

- TO EXTEND SIGN BIT OF AL REGISTER INTO AH
CcBw

— TO EXTEND SIGN BIT OF OF AX REGISTER INTO DX
cwbD

QUESTION: CBW AND CWD ARE USED WITH SIGNED NUMBERS.
HOW DO YOU ACHIEVE THE SAME RESULT WITH UNSIGNED
NUMBERS?

* CANNOT BE IMMEDIATE DATA

y

CLASS EXERCISE 7.1 \

AN 8 BIT FARENHEIT TEMPERATURE IN THE RANGE OF 40° TO 200° IS INPUT
FROM THE SWITCHES (PORT 0). WRITE A PROGRAM TO CONVERT THE
TEMPERATURE TO CELSIUS AND OUT THE CONVERTED TEMPERATURE TO
THE LIGHTS (PORT 1).

USE THE FORMULA:
CELSIUS = ((FAREN.-32)x 5)/9 J

7-10

CONDITIONAL JUMPS

* CONDITIONAL JUMPS ARE USED TO TEST ONE OR MORE FLAGS

e ALL CONDITIONAL JUMPS ARE SHORT JUMPS

* THERE IS ONE SET OF JUMPS FOR USE WITH SIGNED NUMBERS
AND ONE SET OF JUMPS FOR USE WITH UNSIGNED NUMBERS

CONDITIONAL JUMPS FOR SIGNED OPERATIONS

INSTRUCTION

JL OR JNGE

JLE OR .JNG

JNL OR JGE

JNLE OR JG

JOo

Js

JNO

JNS

CONDITION

(SF XOR OF) =1

((SF XOR OF) OR ZF)=1

(SF XOR OF)=0

((SF XOR OF) OR ZF)=0

INTERPRETATION

"LESS" OR "NOT GREATER“OR EQUAL"

‘LESS OR EQUAL" OR “NOT GREATER"

“NOT LESS" OR “GREATER OR EQUAL’

"NOT LESS"OREQUAL" OR "GREATER"

"OVERFLOW"

“SIGN"

"NOT OVERFLOW"

*NOT SIGN"

(CONDITIONAL JUMPS FOR UNSIGNED OPERATIONS \

INSTRUCTION CONDITION INTERPRETATION
JB OR JNAE OR JC CF=1 “BELOW" OR "NOT ABOVE"OR*EQUAL"
JBE OR JNA (CF OR ZF)=1 “BELOW OR EQUAL" OR "“NOT ABOVE’
JNB OR JAE OR JNC CF=0 "NOT BELOW” OR "ABOVE OR EQUAL"
JNBE OR JA (CF OR ZF)=0 "NOT BELOW"OR’EQUAL" OR "ABOVE"

- Y,

(CONDITIONAL JUMPS FOR SIGNED AND UNSIGNED OPERATIOND

INSTRUCTION CONDITION INTERPRETATION
JE OR J2 ZF=1 "EQUAL" OR "ZERO*
JP OR JPE PF=1 "PARITY" OR PARITY EVEN*
JNE OR JNZ ZF=0 "NOT EQUAL" OR “NOT ZERO"
JNP OR JPO PF=0 “NOT PARITY” OR “PARITY ODD"
Jcxz CX=0 "CX REGISTER IS ZERO"

CLASS EXERCISE 7.2 \

SUPPOSE WE HAVE AN 10 DEVICE WHICH HAS A STATUS PORT (PORT 10)
AND A DATA PORT (PORT 11).

7

0
10 [vhiv] STATUS PORT

7 o

1 | | oata poRT

WRITE A PROGRAM SEQUENCE THAT REPEATEDLY INPUTS FROM THE
STATUS PORT UNTIL THE READY BIT BECOMES 1, THEN INPUTS FROM

THE DATA PORT. IF THE UNSIGNED NUMBER OBTAINED IS LARGER
THAN 43 THEN JUMP TO A LABEL CALLED ERROR.

J

FOR MORE INFORMATION \

. .0

ASSEMBLY LANGUAGE INSTRUCTIONS
- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL
- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

MULTIPRECISION ARITHMETIC

- APPENDIX G (EXAMPLES 6 & 7) ASM86 LANGUAGE
REFERENCE MANUAL

RELATED TOPICS
THE 8486 PROVIDES A FULL SET OF ADJUST OPERATORS TO ALLOW
FOUR FUNCTION ARITHMETIC ON BINARY CODED DECIMAL (BCD)
OPERANDS. SEE APPENDIX E IN THE WORKSHOP NOTEBOOK,
AND CHAPTER 8 N THE ASM86 LANGUAGE REFERENCE MANUAL .

CHAPTER 8
DEFINING AND ACCESSING DATA

e DEFINING DATA
e INITIALIZING SEGMENT REGISTERS
® ADDRESSING MODES

DATA DEFINITIONS

ASSEMBLER DECLARATIVES ASSIGN STORAGE SPACE

DB - DEFINE BYTE
DW - DEFINE WORD
DD - DEFINE DOUBLE WORD

DQ - DEFINE QUAD WORD
DT - DEFINE TEN BYTES

) 8¢i87 DATA TYPES

EXAMPLES:
BYTE1 DB 3 ;INITIALIZED BYTE
BYTE2 DB ? JUNINITIALIZED BYTE
BYTE3 DB 8,7,8 ;3 INITIALIZED BYTES
STRING DB 'MESSAGE' ;7 INITIALIZED BYTES
ARRAY DB 1@ DUP(@) ;1986 ZEROED BYTES
WORD1 DW g3dgH ;00 g3
;(LOW) (HIGH)
8-1
MEMORY ALLOCATION
ANGLE DW 17
TEMP DB 7
BARRAY DB 100 DUP (7?7)
ANGLE
Low
7 hian
TEMP
BARRAY BARRAY [0]
BARRAY (1]
8ARRAY [2]

t eee

BARRAY [98]
BARRAY [96]

DATA DEFINITION

* DATA IS TYPICALLY DEFINED IN A DATA SEGMENT

DATA_3 SEGMENT

XYz DB ?

ALPHA DW ?
MESSAGE D8 10 DUP (?)
DATA_1 ENDS

WHAT IS THE OFFSET OF THE FIRST BYTE IN MESSAGE?

WHY WOULD WE WANT DATA IN A SEPARATE SEGMENT FROM THE CODE?

ATTRIBUTES OF VARIABLES

* FOR EVERY DATA DEFINITION (VARIABLE), THE ASSEMBLER KEEPS TRACK
OF THREE ATTRIBUTES.

~ SEGMENT
- OFFSET
- TYPE

* THE ASSEMBLER USES THESE ATTRIBUTES TO GENERATE THE CORRECT
INSTRUCTION FORM.

EXAMPLE:

DATA_1 SEGMENT
xyz LY ?
YYyy DW ?
DATA.t ENDS
CODE_1 SEGMENT
:
.
NG XYZ {BYTE OPERATION
NG YYY ;WORD OPERATION

WHAT ARE THE OFFSET8 OF XYZ AND YYY?

-

N

CLASS EXERCISE 8.1
WRITE THE ASSEMBLER DIRECTIVES OR INSTRUCTIONS THAT WOULD:

1. DEFINE WAREA AS A WORD VARIABLE AND INITIALIZE IT TO 2000H.
2. DEFINE BAREA AS A BYTE VARIABLE AND DON'T INITIALIZE IT.

3. SET BAREA TO 10.

4. LOGICALLY 'AND’ WAREA WITH 40H.

5. CHECK THE MSB (BIT 15) OF WAREA FOR A 1.

8-5
GENERATING ADDRESSES \
ADDRESS = SEGMENT + OFFSET

BASE

B

REGISTER INSTRUCTION

¢ THE ASSEMBLER DECIDES WHICH SEGMENT REGISTER TO USE.

WHICH SEGMENT REGISTER 1S NORMALLY USED TO ACCESS DATA?
HOW DOES THE ASSEMBLER KNOW WHICH SEGMENT REGISTER IT CAN USE?

ASSUME DECLARATIVE \

* THE ASSUME DECLARATIVE TELLS THE ASSEMBLER WHICH SEGMENT REGISTER
IS SUPPLYING VALUE FOR THE INSTRUCTION'S DATA ACCESS.

EXAMPLE

DATA1 SEGMENT

xyz DB ?

DATA_1 ENDS

CODE_1 SEGMENT
ASSUME DS:DATA_1,C8:CODE 1
MoV XYZ,10H

CODE_1 ENDS

XYZ IS IN THE SEGMENT DATA_1. WHICH SEGMENT REGISTER IS POINTING AT
DATA_1? THE ASSUME TELLS THE ASSEMBLER DS.

\. J

8-7

a)

INITIALIZING SEGMENT REGISTERS

¥ THE ASSUME DECLARATIVE IS JUST A PROMISE TO THE ASSEMBLER.
IT DOES NOT INITIALIZE THE SEGMENT REGISTER.

- TO WHAT VALUE SHOULD DS BE SET?

~ HOW DOES THE SEGMENT REGISTER GET INITIALIZED?

DATA_1 SEGMENT
XYz DB ?

DATA_1 ENDS
o
CODE_1 SEGMENT
ASSUME DS8:DATA_1,C8:CODE_1

iTHERE I8 NO MOVE IMMEDIATE TO THE
ySEGMENT REGISTER

?

8-8

TOTAL SOLUTION

8086/8087/8088 MACRO ASSEMBLER DEMOL 09/01/80 PAGE 1
LoC 0BJ LINE SOURCE
1 NAME DEMOL
2
e 3 DATA_l SEGMENT
0000 27 4 XYz DB ?
——— 5 DATA_1 ENDS
6
7
-—- 8 CODE_1 SEGMENT
9 ASSUME CS:CODE_1,DS:DATA_L
10
0000 B8-~-- R 11 START: MOV AX,DATA_1
0003 8EDS 12 MOV DS, AX
13
0005 C606000010 14 MOV XYZ, 106 ;MOV 10H INTO MEMORY
15 $LOCATION DS:XYZ
——— 16 CODE_1 ENDS
17
18 END START

8-9

ADDRESSING MODES

* THE 8088 PROVIDES SEVERAL WAYS TO ACCESS MEMORY
- DIRECT
- INDIRECT
- INDEXED
~ BASED
- BASED INDEXED
- BASED INDEXED AND DISPLACEMENT

* THESE ADDRESSING MODES ARE PROVIDED TO SUPPORT DIFFERENT TYPES
OF DATA STRUCTURES.

%* DIFFERENT ADDRESSING MODES ARE THE DIFFERENT WAYS AN INSTRUCTION
CAN SPECIFY AN OFFSET:

OFFSET = [YARIABLE NAMB + E:')% + [Bg' + [BISPLACEMENT

8-10

ADDRESSING MODES

MOV AX, MVAR DIRECT OFFSET =VARIABLE NAME

MOV AX, BX INDIRECT OFFSET=BX]

MOV AX, MVAR [Bil INDEXED OFFSET=VARIABLE NAME + [8(]
MOV AX, BX+ 5 BASED OFFSET=[BX] + DISPLACEMENT
MoV AX, BA b1 BASED INDEXED OFFSET=[BX + DI

MOV AX, BP+8I + 15] BASED INDEXED OFFSET=[Bfl+B(+ DISPLACEMENT
AND
DISPLACEMENT

OFFSET = [YARIABLE NAMB + E::%] + [E;g + [DISPLACEMENT]

8-11

(ADDRESSING SIMPLE VARIABLES

* TO ACCESS A SINGLE SIMPLE VARIABLE, THE NAME OF THE VARIABLE I8 USED.

EXAMPLE:

LOC O0BJ LINE SOURCE
1 NAME DEMO1
2

-——— 3 DATA_l SEGMENT

0000 ?? 4 XYZ DB ?

0001 0020 5 BETA DW 2000H

-—— 6 DATA_l ENDS
7
8

———— 9 CODE_1 SEGMENT
10 ASSUME CS:CODE_1,DS:DATA_1
11

0000 B8-——-~ R 12 START: MOV AX,DATA_1

0003 8EDS 13 MOV DS, AX
14

0005 C606000010 15 MOV XYZ, 10H MOV 10H INTO MEMORY LOCATION
16 1DS:XYZ
17

000A 20060000 18 AND XYZ,AL ;AND LOCATION DS:XYZ WITH AL
19

000E 8B1E0100 20 MOV BX,BETA MOV CONTENTS OF BETA INTO BX
21
22

——— 23 CODE_l ENDS

* OFFSET = VARIABLE NAME

\

ARRAYS \

* THE 8086,88 HARDWARE AND ASSEMBLER SUPPORT THE REPRESENTATION
OF SINGLE DIMENSIONED ARRAYS.

#* AN ARRAY IS A COLLECTION OF OBJECTS ALL OF THE SAME TYPE
EXAMPLE: A BYTE ARRAY V

IN MEMORY::
L]
L
ADDRESS
L]
*
V(o) IN ABSEMBLY LANGUAGE
ven
DATA_1 SEGMENT
v(2)
v o8 10 DUP ()
v(a)
v DATA_1 ENDS
v(e)
v(e)
w(7)
v(e)
V(o)
8-13

ACCESSING ARRAYS

THE ELEMENTS OF THE ARRAY ARE ACCESSED BY USING AN
INDEX (SUBSCRIPT)
EXAMPLE:
MOV ALV 41 iFETCH THE BEGOND
OR ;BYTE OF V
MOV AL, V[1]

V(o)
v(1)
v(2)
v(3)
v(4) . INDEX
v(s)
v(e)
wn
v(s)
v(g)

L

* OFFSET = VARIABLE NAME + [DISPLACEMENT)

ACCESSING ARRAYS (INDEXED ADDRESSING)

* IN GENERAL V[i] REPRESENTS THE Ith ELEMENT OF THE ARRAY.
THE INDEX (SUBSCRIPT) CAN BE IN AN INDEX REGISTER OR A
BASE REGISTER

EXAMPLE: TO ACCESS V(8]
MoV 81,8
MOV AL, V[Si] ;(BX,BP,S!, OR DI ONLY)

v(o) v
v({1)
v(2)
v{(3)
v(4) [s1]
v(s)
v(s)
W

v(s) -

v(9)

* OFFSET = VARIABLE NAME + [sI]

* ALL INDEXING IS ON A BYTE LEVEL

\

EXAMPLE

PROBLEM

AN 8 BIT VALUE REPRESENTING A TEMPERATURE IN THE RANGE 0° TO
50°C IS IN A MEMORY LOCATION SYMBOLICALLY CALLED “CTEMP". IT IS
TO BE CONVERTED TO FAHRENHEIT USING A TABLE OF FAHRENHEIT
TEMPERATURE VALUES STORED IN ROM MEMORY STARTING AT A
LOCATION SYMBOLICALLY CALLED “CTABLE". THE FIRST TABLE ENTRY
IS THE TEMPERATURE VALUE CORRESPONDING TO 0°C, EACH
SUCCESIVE ENTRY CORRESPONDS TO AN INTEGRAL CELSIUS DEGREE
19,29,....50°C. THE CONVERTED VALUE IS TO BE STORED AT A BYTE
LOCATION CALLED “FTEMP".

EXAMPLE

* IN MEMORY "CTABLE" APPEARS

CTABLE (0)
CTABLE (1)
CTABLE (2)

CTABLE (50)

32°

33°

35°

122

EXAMPLE

SOLUTION

THE VALUE IN CTEMP DEFINES WHERE IN CTABLE THE CORRESPONDING
FAHRENHEIT VALUE CAN BE FOUND. THE VALUE IN CTEMP IS LOADED
INTO AN INDEX REGISTER AND IS USED AS AN INDEX INTO CTABLE.
CTABLE INDEXED BY THE REGISTER IS STORED INTO FTEMP.

CTABLE —»

]
l .CTEMP I

‘{r FTEMP I

~

8-18

8086/8087/B088 MACRO ASSEMBLER LESSON_4 09/01/80 PAGE 1
LOC OBJ LINE SOURCE

1 NAME LESSON_4

2
- 3 DATA_1 SEGMENT
0000 ?? 4 CTEMP DB ?
0001 ?? 5 FTEMP DB ?
——— 6 DATA_1 ENDS

7
———- 8 CODE_1 SEGMENT

9 ASSUME CS:CODE_1,DS:DATA_1
0000 20 10 CTABLE DB 32,33,35,. . .
0001 21
0002 23
0003 7A 11 D8 122 ;FARENHEIT TEMPERATURES

12

13
0004 BB---- R 14 START: MOV AX,DATA_l
0007 BEDS 15 MoV DS, AX

16

17

18
0009 32FF 19 XOR BH,BH JCLEAR UPPER BYTE OF BX
000B BALE0000 20 MOV BL,CTEMP ;GET CELCIUS TEMP. INTO BX
000F 2E8A07 21 MOV AL,CTABLE[BX] ;GET CONVERTED TEMP INTO AL
0012 A20100 22 MOV FTEMP, AL

23

24
———— 25 CODE_1 ENDS

26 END START

8-19

CLASS EXERCISE 8.2

¥ ASSUME THERE IS AN ARRAY OF EMPLOYEE PAYSCALES. ASSUME THERE
ARE 100 EMPLOYEES AND 1 BYTE IS NEEDED TO REPRESENT EACH
EMPLOYEE'S PAYSCALE. WRITE A PROGRAM THAT ADDS 50 DOLLARS
TO EACH EMPLOYEE'S PAYSCALE. USE THE NECESSARY DECLARATIVES
TO SET ASIDE MEMORY FOR THE ARRAY AND TO WRITE THE PROGRAM.

8-20

FOR MORE INFORMATION . . .

DEFINING DATA
- CHAPTER 3, ASM86 LANGUAGE REFERENCE MANUAL

ACCESSING DATA AND ADDRESSING MODES

- CHAPTER 3, iAPX 86/88, 186/188 USER’'S MANUAL
-~ CHAPTER 4, ASM86 LANGUAGE REFERENCE MANUAL

ASSUME DECLARATIVE
- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...

ASM86 LETS YOU DEFINE VERY COMPLEX DATA ITEMS USING STRUCTURES
(A COLLECTION OF DISSIMILAR DATA ITEMS) AND RECORDS (VARIABLE BIT
LENGTH FIELDS). USING "HIGH LEVEL" DATA ITEMS SUCH AS STRUCTURES
AND RECORDS WILL IMPROVE THE DOCUMENTATION AND RELIABILITY OF
YOUR PROGRAMS. READ CHAPTER 3 OF THE ASM86 LANGUAGE REFERENCE
MANUAL. CODE EXAMPLES ARE IN CHAPTER 3 OF THE iAPX 86/88, 186/188

USER’S MANUAL.

CHAPTER 9
PROGRAM DEVELOPMENT II

e DEBUG-86
e ASM86
® SUBMIT FILES

SERIES lll ENVIRONMENT

INTERRUPT 1 RESET

V)

15181
SERIES-II
8085 BASED

—

LiINK 86
SERIES-1II

8088 ~-BASED | —
'J‘ LOCATE 86

8086
PROGRAMS

AEDIT

1S18-11
UTILITIES
COPY, DIR,
DELETE ...

9-1

SERIES |iIl DEBUGGER

¥ ALLOWS SYMBOLIC DEBUGGING OF 8086,88 PROGRAMS
* DOWNLOADS YOUR 86,88 PROGRAM FROM A DISK FILE
* ALLOWS REAL-TIME EXECUTION OF PROGRAMS

% ALLOWS SINGLE STEP EXECUTION OF PROGRAMS

* DISPLAY AND ALTERATION OF 86,88 REGISTERS,
MEMORY LOCATIONS, AND I/0 PORTS

¥ DISASSEMBLE PROGRAMS IN MEMORY

9-2

/ * SAMPLE PROGRAM TO BE EXECUTED/DEBUGGED USING DEBUG-86 \

8086/87/88/186 MACRO ASSEMBLER DEMO 10:06:11 12/27/83 PAGE 1

SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DEMO
OBJECT MODULE PLACED IN :F1:DEMO.OBJ
ASSEMBLER INVOKED BY: ASM86.86 :F1:DEMO.ASM DEBUG SYMBOLS

LOC 0BJ LINE SOURCE
1 NAME DEMO
2
_— 3 DATA SEGMENT
0000 0100 4 WVAR DW 1
0002 (10 5 ARRAY DB 10 DUP(?)
22
)
——— 6 DATA ENDS
?
———— 8 CODE SEGMENT
9 ASSUME CS:CODE,DS:DATA
10
0000 B8=~-~ R 11 START: MOV AX,DATA ;INITIALIZE DS
0003 BEDS 12 MOV DS, AX
0005 33F6 13 XOR SI,sI ;ARRAY POINTER
0007 B90OAOO 14 MOV CX,LENGTH ARRAY
000A 8B160000 15 MOV DX,WVAR {GET ADDRESS OF PORT
000E EC 16 AGAIN: 1IN AL,DX $INPUT THE VALUE
000F 884402 17 MOV ARRAY[SII],AL :AND SAVE IN ARRAY
0012 46 18 INC SI
0013 E2F9 19 LOOP AGAIN ;DO IT 10 TIMES
0015 EBE9 20 JMP START {REPEAT
— 21 CODE ENDS
k 22 END START j

9-3

USING THE SERIES Il DEBUGGER

* TO INVOKE THE SERIES 11l DEBUGGER

1. POWER ON DEVELOPMENT SYSTEM

2. INVOKE 18IS~
-INSERT SYSTEM DiSK INTO DRIVE 0

-PRESS RESET ON MDS FRONT PANEL ISIS
WILL SIGN ON

1SI1S~il V x.y.

3. ON DEVELOPMENT SYSTEM TYPE:
RUN DEBUG
DEBUGGER WILL SIGN ON:

DEBUG 8086 V x.y.
*

9-4

4)
USING THE DEBUGGER

* THE SERIES |il DEBUGGER CAN EXECUTE/DEBUG ABSOLUTE (LOCATED)

86,88 OBJECT CODE OR LOAD TIME LOCATABLE (LINKED WITH “BIND")
86,88 OBJECT CODE

-EXAMPLE: TO LOAD DEMO PROGRAM AND ITS SYMBOLS FROM
DRIVE 1 OF MDS:

* LOAD :F1:DEMO

9-5

(USING THE DEBUGGER \

* DISPLAY COMMANDS

~TO DISPLAY ALL REGISTERS:

* REQISTERS

RAX=0000H RBX=0000H RCX=0000H RDX=0000H SP=4000H BP=4E60H S{=0000H DI=0000H
CS=0483H DS=0000H 8S=0000H ES=0000H RF=0200H IP=0000H

-TO DISPLAY/CHANGE ONE REGISTER USE THE NAME SPECIFIED
IN THE DISPLAY.

* RAX
RAX=0000H

* SP=100
* RBX=60

9-6

USING THE DEBUGGER

* DISPLAY COMMANDS

~TO DISPLAY/CHANGE MEMORY USE THE TYPE (BYTE,WORD) WITH
AN ADDRESS OR SYMBOLIC NAME.

* BYTE .ARRAY
BYT 0481:0002H~FBH

* WORD .WVAR
WOR 0481:0000H=0001H

* BYT .ARRAY LENGTH 10T
BYT 0481:0002H=FBH B8H E3H OFH 50H B8H ECH ODH 60H E8H

% BYTE .ARRAY=FF,00.FF,00.FF,00.FF.00,FF.00

% BYTE .ARRAY TO .ARRAY+0
BYT 0481:0002H=FFH OOH FFH OOH FFH OOH FFH OOH FFH OOH

_/

9-7

e \

USING THE DEBUGGER
* DISPLAY COMMANDS

-~ TO DISPLAY INSTRUCTIONS USE THE DISSASSEMBLER WITH AN
ADDRESS OR SYMBOLIC NAME.

*ASM .START LENGTH 17

ADDR PREFIX MNEMONIC OPERANDS COMMENTS
O0L483:0000H MOV AX,0481H

0483:0003H MOV D3, AX

0483:0005H XOR SI,SI

0483:0007H MoV CX,000AH

O483:000AH MOV DX,WORD PTR [0000H]

0483:000EH IN AL, DX

0483:000FH MoV BYTE PTR [SII[+02H],AL

0483:0012H INC SI

0u483:0013H LOOP $-05H ySHORT
0483:0015H JMP $-15H ySHORT
®ASM CS:IP TO CS:IP+16

ADDR PREFIX MNEMONIC OPERANDS COMMENTS
0483:0000H MOV AX,0u481H

0483:0003H MoV DS, AX

0483:0005H XOR SI,sI

0483:0007H MoV CX,000AH

0483:000AH MOV DX,WORD PTR [0000H]

0483:000EH IN AL,DX

0483:000FH MOV BYTE PTR [SI1({+02H],AL

0483:0012H INC SI

O483:0013H LOoOP $~05H +SHORT
\ 0483:0015H JMP $-15H +SHORT /

9-8

USING THE DEBUGGER

DISPLAY COMMANDS
— TO DISPLAY/CHANGE 1/0 PORTS

* PORT 0
POR 0000H=565H

* PORT 0 LENGTH 2
POR 0000H=55H 01H

* WPORT 1000
WPO 1000H=00FFH

* PORT O=FF

9-9

e)

USING THE DEBUGGER
* PROGRAM EXECUTION COMMANDS

~ TO EXECUTE THE PROGRAM WITH NO BREAKPOINTS USE THE

GO COMMAND * GO FROM .START FOREYER
- TO STOP THE PROGRAM USE THE CNTRL-D KEY. THE NEXT INSTRUCTION
IS DISPLAYED
0483:0012H INC s

PROCESSING ABORTED
*

- TO EXECUTE FROM THE BEGINNING UNTIL THE OUT INSTRUCTION IS

EXECUTED: THE DEBUGGER DISPLAYS THE INSTRUCTION AT THE
‘BREAKPOINT
*@0 FROM .START TILL .AGAIN

0483:000EH IN AL ,DX
*

- TO EXECUTE UP TO THE INSTRUCTION AT LABEL START
* GO TILL .START

0483:0000H MOV AX,0481H
*

NG _J

g A

USING THE DEBUGGER

PROGRAM EXECUTION COMMANDS

~TO EXECUTE ONE INSTRUCTION AND SEE THE NEXT INSTRUCTION.

* STEP FROM .AGAIN
0483:000FH MoV BYTE PTR [8I1][+ o2H] ,AL

*

-TO EXECUTE THAT INSTRUCTION AND DISPLAY THE NEXT.

* STEP

0483:0012H INC SI
*

THERE ARE ADVANCED COMMANDS THAT YOU CAN USE
AFTER MASTERING THESE.

N J

4)

USING THE DEBUGGER

* FINISHING UP

-TO EXIT THE DEBUGGER TYPE:

EXIT
OR
CNTRL-C

* ONCE A PROGRAM IS DEBUGGED , IT CAN BE LOADED AND EXECUTED BY
TYPING:

RUN :DRIVENUMBER: FILENAME.

* THE DEBUGGER CAN BE INVOKED DURING EXECUTION BY TYPING CNTRL-D.
THE DEBUGGER CAN BE ABORTED BY TYPING CNTRL-C.

_ J

SERIES Il ENVIRONMENT

INTERRUPT 1 RESET
—~RUN
isis-n L Tl
SERIES~II
8085 BASED
AEDIT

ISI1S-1I

UTILITIES
coPY, DIR,
DELETE ...

SERIES-II
8086-BASED

LINK 86

CNTL-D

LOCATE 86

80886
PROGRAMS

OBJECT (FILENAME)
NOOBJECT

PRINT(FILENAME)
NOPRINT

PAGING/NOPAGING

SYMBOLS/NOSYMBOLS

ERRORPRINT(FILENAME)

DEBUG/NODEBUG

~RUN ASM86 :F1:LAB.ASM OPTIONS

PRIMARY CONTROLS

®Qy
NOOJ

*pR
NOPR

% pI/NOPI
SB/NOSB *
EP/NOEP X

DB/NODB *

* DEFAULT

8086/8088 ASSEMBLER CONTROLS

CONTROL CREATION AND DESTINATION OF .OBJ FILE
NO .0BJ FILE

CONTROL CREATION AND DESTINATION OF .LST FILE
NO .LST FILE

PAGINATE/DON'T PAGINATE LISTING
APPEND/DON'T APPEND SYMBOL TABLE TO LISTING

SEND ERRORS TO DEVICE SPECIFIED/DON'T REPORT ERRORS

APPEND/DON’T APPEND SYMBOL TABLE TO OBJECT FILE

8086/8088 ASSEMBLER CONTROLS (CONT'D)

GENERAL CONTROLS

LIST‘/NOLIST * L INCLUDE ALL LINES FOLLOWING IN LISTING FILE
NOLIi SUSPEND LISTING
EJECT EJ FORCE A FORM FEED (OVERRIDDEN BY NO PAGING)
INCLUDE (FILENAME) I1C (FILENAME) LINES FROM SPECIFIED FILE ARE INCLUDED IN SOURCE FILE
%* DEFAULT

- Y,

4)

8086/8088 ASSEMBLER CONTROLS (CONT'D)

CONTROLS CAN BE SPECIFIED EITHER:
* AT INVOCATION

- RUN ASM86 :FIIEXMPL.ASM DEBUG SYMBOLS PRINT(:LP:)

OR

e IMBEDDED IN SOURCE FILE

$DEBUG SYMBOLS = PRIMARY CONTROLS MUST
NAME EXAMPLE BE ON FIRST LINE OF
MUST BE IN SOURCE FILE
COLUMN 1 $INCLUDE(:FI:EQUS.SRC)
$EJECT

CODE SEGMENT

-

* ASM86 HAS SOME BUILT-IN OPERATORS TO AID IN PROGRAMMING

ASSEMBLER FEATURES

(THEY MAKE A PROGRAM MORE READABLE AND RELIABLE)

TYPE - RETURNS TYPE OF DATA DEFINITION

D8 1 BYTE
Dw 2 BYTES
DD 4 BYTES

LENGTH - RETURNS NUMBER OF UNITS
SIZE - RETURNS NUMBER OF BYTES

~

EXAMPLE
ARRAY DW 100 DUP(?)
ADD SI,TYPE ARRAY ;ADJUST S! TO NEXT ELEMENT
MOV CX,LENGTH ARRAY ;LOADS CX WITH 100
MOV D1, SiZE ARRAY ;LOADS SI WITH 200
9-17

SERIES Il DEVELOPMENT STEPS

AEDIT :F1:LAB1.ASM

RUN DEBUG

* | OAD :F1:LAB1

COPY :F1:LAB1.LST TO :LP:

COMPOSE SOURCE PROGRAM

RUN ASM86 :F1:LAB1.ASM DEBUG ASSEMBLE PROGRAM

COPY ASSEMBLER OUTPUT
LIST FILE TO THE PRINTER

RUN LINK86 :F1:LAB1.0BJ BIND PRODUCE LOAD TIME LOCATABLE CODE

FOR EXECUTION ON SERIES 1l

INVOKE DEBUGGER

LOAD PROGRAM AND DEBUG

9-18

YOU WILL PROBABLY HAVE TO EXECUTE
SOME OF THESE STEPS A FEW TIMES
BEFORE YOUR PROGRAM EXECUTES
AS YOU WANT IT.

WOULDN'T IT BE NICE IF YOU DIDN'T HAVE TO TYPE
ALL THOSE COMMANDS EACH TIME?

SUBMIT FILES

ISIS Il LETS YOU PUT COMMANDS IN A DISK FILE
TO BE EXECUTED AUTOMATICALLY.

9-20

FOR EXAMPLE

WE COULD USE AEDIT TO CREATE A SUBMIT FILE CALLED :FI:SBMT.CSD

RUN ASM86 :F1:LAB1.ASM DB PR(:LP:)

RUN LINK86 :F1:LAB1.0BJ BIND

4)

THIS WOULD GIVE US THE COMMANDS REQUIRED TO:

- ASSEMBLE OUR PROGRAM
~ DUMP THE LISTING TO THE LINE PRINTER
- MAKE IT "RUN TIME LOCATED”

9-22

IF THERE WERE ERRORS IN THE ASSEMBLY, WE WOULD LIKE
TO TAKE CONTROL. EDIT THE FILE AND ASSEMELE IT AGAIN

BEFORE LINKING.

TO TURN CONTROL OF THE SYSTEM OVER TO THE CONSOLE
IN A SUBMIT FILE, ADD +E (CTRL-E) COMMAND TO THE

SUBMIT FILE.

IN AEDIT COMMAND MODE
1) POSITION CURSOR
2) TYPEH 195 <CR>

~N

:FI.SBMT.CSD (CONT'D)

RUN ASM86 :FI:LAB1.ASM DB PR(:LP:)
+E «—

RUN LINK86 :FIl:LAB1.0BJ BIND

ALLOWS YOU TOQ EDIT YOUR MISTAKE
AND RETYPE THE ASM868 COMMAND IF
THERE WAS AN ERROR. TO GET BACK
TO SUBMIT FILE, TYPE A 4 E WHICH WiILL

EXECUTE THE LINK86 COMMAND.

9-24

INVOKING A SUBMIT FILE

IF THE SUBMIT FILE WAS THE DEFAULT .CSD EXTENSION,

ENTER:

- SUBMIT :FI:SBMT

9-25

PASSING PARAMETERS

USE % N(WHERE N=@ TO 9) IN THE SUBMIT FILE

RUN ASM86 1%0:%1.ASM DB SB
RUN LINK86 :%0:% 1.0BJ BIND

EXAMPLES:
SUBMIT :F1:SBMT (F1,LABS5)

SUBMIT :F1:SBMT (F2,LAB3)

9-26

CLASS EXERCISE 9.1

WRITE SUBMIT FILE WHICH WILL:

A ASSEMBLE A PROGRAM WHOSE SOURCE IS CALLED PROSB.LEM ON A DISK IN DRIVE 1
B ADD A SYMBOL TABLE TO THE LISTING

C ADD A SYMBOL TABLE TO THE OBJECT FILE

D PUT THE LIST FILE ON THE DISK IN DRIVE 1 UNDER THE NAME LISTIN.G

E PRODUCE A "RUN-TIME LOCATABLE® PROGRAM

FOR MORE INFORMATION ...

DEBUG - 86
- CHAPTER 6, INTELLEC SERIES IIl M.D.S. CONSOLE OPERATING INSTRUCTIONS

ASM86 (CONTROLS AND OPTIONS)

~ CHAPTER 3, ASM86 MACRO ASSEMBLER OPERATING INSTRUCTIONS
ASM86 ERRORS AND RECOVERY

—~ APPENDIX A, ASM88 MACRO ASSEMBLER OPERATING INSTRUCTIONS

RESERVED WORDS (ASM86)
- APPENDIX C, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS...

ASM86 SUPPORTS USER DEFINED TEXT MACROS INCLUDING CONDITIONAL ASSEMBLY.
SEE CHAPTER 7 OF THE ASM88 LANGUAGE REFERENCE MANUAL.

IT IS POSSIBLE TO MODIFY THE OPERATION OF THE ASSEMBLER TO CHANGE
MNEMONICS, DEFAULT CONDITIONS, ETC. THIS ADVANCED TOPIC IS DISCUSSED
IN APPENDIX A OF THE ASM86 LANGUAGE REFERENCE MANUAL.

CHAPTER 10
BASIC CPU DESIGN AND TIMING

¢ MINIMUM MODE

e MAXIMUM MODE

® INSTRUCTION QUEUE

® 8086, 8088, 8284A, 8288, 8286, 8282

THE iAPX 86,88 SYSTEM

* FLEXIBLE PROCESSOR SYSTEM
-~ TWO OPERATING MODES
~ ARCHITECTURE SUPPORTS MULTIPROCESSING AND COPROCESSING
—~ MEGABYTE MEMORY ADDRESS SPACE
~16 BIT DATA BUS (8 OR 16 BIT DATA)

~ INSTRUCTION PREFETCH QUEUE

o J

10-1

(iIAPX 86,88 ARCHITECTURE (MINIMUM MODE) \

e MINIMUM MODE DESIGNED FOR SMALL SYSTEMS
¢ CONTROL SIGNALS TO MEMORY AND IO SUPPLIED DIRECTLY BY CPU

¢ USED IN SINGLE PROCESSOR SYSTEMS ONLY

—~§4ﬁ
MIN/MAX

8284A CPU

> CONTROL BUS

N . Y

/ iAPX 86,88 ARCHITECTURE (MAXIMUM MODE) x

* MAXIMUM MODE DESIGNED FOR LARGE SYSTEMS

* 8288 BUS CONTROLLER DECODES STATUS SIGNALS TO
GENERATE CONTROL SIGNALS

» CPU USES CONTROL PINS FREED BY 8288 TO COORDINATE
OTHER PROCESSORS

8288

- BUFFERED
8284A STATUS | Bus _j CONTROL BUS
cLocK cPU CONTROLLER

DRIVER
MIN/MAX H

10-3

<

a A

8086, 88 CPU SET AND BUS STRUCTURE
MINIMUM AND MAXIMUM MODE

ADDRESS

e,

8086 - 5 MHZ

8282 8086-4 - 4 MHZ

82844 ALE —»1 | atcHES 8086-2 - 8 MHZ
8086, 88 8086-1 - 10 MHZ

|

ADDRESS/DATA

~]

)

10-4

8086, 88 BASIC BUS CYCLE

AD

T2 T3 Tw
/ \ / /) VAR VAR |
CLK
M/10 A -
C ELZ)ET:XEA IN OR OUT)y :: Do
ALE——_'—/———\

10-5

8284A CLOCK GENERATOR

* GENERATES SYSTEM CLOCK FOR 8086/8088

¥ USES CRYSTAL OR TTL SIGNAL FOR FREQUENCY SOURCE

* PROVIDES LOCAL READY AND MULTIBUS READY SYNCHRONIZATION

¥ GENERATES SYSTEM RESET OUTPUT FROM SCHMITT TRIGGER INPUT

8284A BLOCK DIAGRAM

XTAL
OSCILLATOR

ol

B

G} RESEY
cK

FIC

EF)

CSYNC

+3
SYNC

+2 [PCLK

SYNC

I

RDY1

RDY2Z

AEN2

[j2>—+mx

CKi

|

RESET CAPTURE LOGIC

CLOCK GENERATOR
33% DUTY CYCLE

READY SYNCHRONIZER

/

-

EF1/08C I
CLK k /

PCLK 4
r
A
-
RDY
L
T
AEN i
T
K
A
READY

— fj
~ qL S ¢§ ~& \J... f

D al-» peaoy] GUARANTEES SETUP
FF1 FF2 REQUIREMENTS FOR 8086
ASYNC
10-7
8284A TIMING

J

o

RESET

RESET-SUPPLIED BY 8284A CLOCK GENERATOR

FLAGS «——— 0
CS <«———— FFFF
IP,DS,SS,ES <«— 0

808e, 88

+6V
8284A
RES »| RESET

-

10-9

4 READY

¢ READY IS SYNCHRONIZED WITH THE CPU BY THE CLOCK GENERATOR
¢ READY IS USED TO EXTEND A BUS CYCLE BY ONE OR MORE CLOCK CYCLES

o INCREASES THE AMOUNT OF TIME THAT CPU GIVES MEMORY TO RESPOND WITH
OR ACCEPT DATA

e THE USER MUST DESIGN THE HARDWARE WHICH DECODES THE BUS ADDRESS AND
DETERMINES IF “WAIT STATES" ARE REQUIRED.

e THE 8284A HAS 2 RDY-AEN INPUTS WHICH ALLOWS YOU TO DEVELOP TWO
DIFFERENT WAIT STATE PERIODS.

8086,88
8284A
»{ READY
RDY
AEN

10-10

74126

SINGLE WAIT STATE GENERATOR

= +5
F:g:ﬂ DECODER 8284A
KN I AW
D—s |
— - 741304 _orffgam RDY1
€S2 CLK — K
FROM DECODER CLR AEN2
1KQu READY
ALE ‘{>Q—_j % __L_ RDY2
5
10-11
BUS CYCLE WITH WAIT STATES
Ty Ta T3 Ta 174 Ty T3 Tw Ta
TR SR A AN B A Y AN U A Y A WY A Y A Y |

ALE __—/"'—"\

/T 1\

2 A\
RDYA \ WA{T /READ]
READY. \ _/

10-12

8086

PIN DIAGRAM (MINIMUM MODE)

Vece GND
| T
_CLK = DT/R
d N
RESET DE
" =~ ALE
_READY | > BHE/S7
> A19/86
INTR >
> A18/86
NME e A17/84
HOLD -» [~ A16/83
TEST - 8086
ADO-AD1S
—————»
L~ WR
> RD
Vee [~ MIid
— ™ INTA
MIN/MAX HLDA
10-13

™

8086 SYSTEM (MINIMUM MODE)

Vee
8284A CLOCK MNMX |+ Vee
GENERATOR W CLK M)
RES |--lreapy iNTA 4
|-={RESET Ab T 4
ROY WwR .
oo _ 1 _ |
r | o1 |
: waAIT : DEN :
STATE ——
| GENERATOR | 8086 CPU i
L N ALE sT8 I
—_—— 68 |
8282
ADp-ADys LATCH ADDR H
Avs-Arg 20R3 | -
BHE — 4
L | ’
—_— |
I__| | |
—lr | |
L~ —Joe |
- E
8286) I 1 s
TRANSCEIVER | [DATA N
@ Iy, T ’
| BFE w |
OPTIONAL CsOn €S0, WEOD CE O€ cs RD WR
FOR INCREASED
DATA BUS DRIVE 2142 RAM () 2716-2 PROM (2) MCS.80
PERIPHERAL
@ @
1Kx8 | 1KxB 2Kn8 | 2Kx8

10-14

/ 8086 SIGNAL DESCRIPTION (CONTROL SIGNALS) \

DT/R - CONTROLS DIRECTION OF DATA THROUGH TRANSCEIVER
DEN - OUTPUT ENABLE FOR TRANSCEIVER

RD,WR - INDICATES A READ OR WRITE CYCLE TO/FROM MEMORY OR 1/0

M/10 - INDICATE WHETHER READ OR WRITE IS TO MEMORY OR 1/0

8086, 88

10-15

(READ TIMING MINIMUM MODE \

Ty Ty T, Tw T Ty OF

J—+_/ﬁ P . .4

M/IO v

ALE 1 J:::

*P16740% Xavoress ayg-agl Froat_ IXoaTA i b1s-0, Y

RD \ _/

DT/R \ //-._.__________

DEN \ /

10-16

4)
HOLD AND HLDA

-HOLD FORCES THE CPU TO RELEASE CONTROL OF THE BUSSES
AFTER THE CURRENT BUS CYCLE

-HLDA INDICATES THAT THE CPU HAS TRI-STATED THE BUSSES

*HOLD AND HLDA ARE USED BY DMA DEVICES TO "BORROW" BUS CYCLES
FOR THEIR DATA TRANSFERS

80886, 88

HOLD HLDA
k J

10-17

(8088 PIN DIAGRAM (MINIMUM MODE))
Vee GND

cLK ! DT/R

RESET DEN
-BEADY | : :-a'L:

INTR -] -~ A19/86

- C ies

HOLD - >~ A18/83

Test | 8088

B

AB-A18

ADO-AD7

WR
RD
10/M
INTA
HLDA

Vce
b [

DIFFERENCES IN PINOUT FROM 8086: _ _
e NO BHE PIN: S50 ALONG WITH 10/M AND DT/R PROVIDE MACHINE CYCLE STATUS
IN MIN MODE _
e PIN 28 IS 10/M RATHER THAN M/IO TO BE COMPATIBLE WITH THE 8085
\ o A8 — A15 NOT MULTIPLEXED WITH DATA /

LKL R B

10-18

8088 MULTIPLEXED BUS

01 Iy

18Ry

|

p
<l

o—}

I

[3

o
o

b4 CE PORI
7]
_ PORT
[¢] 8
8158
ALE pony
DATA c
ADOR
N
1OM TIMER
reser OVT
Ag-Asw ADDR * iow
RO
ADy — ADy ADDR/DATA ALE
cLK PORT
b CE A
8088 c > A3io
READY 8355 8755A
e < Mecis
- D ALE —_ ' -
1OM pont
Reser Ao — reser 8
X2 _
cLx — WA l—
READY [1e%] — iOR
s P
RESET ¢ Vss Vee Voo PR
WR
RO
CE,
8185
ALE
k; § cE.
ba a, A,

¢ .

Vss o Vee

10-19

MIN/MAX

8086, 88

MIN/MAX

r—

MIN/MAX SELECTION

MINIMUM OR MAXIMUM CONFIGURATION
STRAPPING OPTION THAT ALTERS THE
FUNCTIONS OF 8 OF THE CPU PINS

AS FOLLOWS:

MINIMUM
WR
iNTA
ALE
M/T0
DT/R
DEN
HLDA
HOLD

MAXIMUM

LOCK
as;,

[=]
»

0

[3 9 2 &

D

[2]

~
-

10-20

/ 8086 PIN OUT (MAXIMUM MODE)

Vee GND
1 Li
CLK (X))
RESET (80)
—(Qso0)
READY l— BRE/S7
—>A19/88
INTR — |—A18/85
NMI > A17/84
(FG/ET0) =sl [~ A16/83
TESY —
8086
ADO-AD15
— (LOCK)
— RO
[— (82)
— (Qs1)
MIN/MAX I l— (FGQ/GT1)
10-21

4 8088 PIN OUT (MAXIMUM MODE)

Vce GND
1
_Ck] e (3T)
RESET - (50)
> =~ (Qs0)
_READY _| - 880
— |~ At19/s8
le A18/S5
NM
I — l> A17/54
(m/mo)ﬁ = A16/83
TEST — 8088
AB-A15
ADO-AD7
|= (COCK)
|~ AD
L~ (82)
[~ (Qs1)
MIN/M‘AS([' j» (RQ/GTY)

10-22

8086 SYSTEM (MAXIMUM MODE)

pnal ‘

i .
02044 MN/AY J=—GND CLx MWBE -
€LOCK = < e y
GENERATOR [*[CLX S0 S0 W
[.4] || READY 5 s AMWC [—N.C.
— hid iy .
|1 RESET 5 §; smws TORC $
BUS ___ .
AOY DEN cypLp JOWC 4
AGND soas e] AIOWC |—N.C.

r—i_ﬂ CPU

ALE INTA]
l WAIT '
| ST | CORR [— N m—
| GENERATOR l

L 1 s18
GND N OF 4202)
ADp-ADys LATCH 555R —
s K ABORIOATA 5 on BD! i
E»—— — 3
BHE =
—
| T
._Do.. OF
8286 . \
TRANSCEIVER DATA H
@ N
L N BHE \l

€Son €S0 WE

op CE OE [+ RD WR
2142 RAM (8 2718-2 PROM {2} MCS-80
PERIPHERAL
@ 2
1Kx8 1 1Kx8 2K x8 | 2K x8 |

10-23

a |)

8086 SIGNAL DESCRIPTION (MAXIMUM MODE)

Sy, S4, Sg = STATUS LINES THAT INFORM THE 8288 OF THE TYPE OF
BUS CYCLE THAT THE 8076 IS RUNNING

$2 818y SIGNAL
= 0o 0 o INTA
8086, 68 |} —2 » 0o o0 1 1/0 READ
Sy o 1 o 1/0 WRITE
———
5 0 1 1 HALT
EEE——
1 0 o CODE ACCESS
1 0 1 READ MEMORY
1 1 o WRITE MEMORY
1011 PASSIVE

10-24

-

CLK

Ta

/7

/)

8288 TIMING

a

Tw

/)

So. S1' S

N

ADDRESS/DATA

ALE

MRDC, IORG, INTA

/

ADDRESS
VALID

WRITE DATA VALJD

Y\

AMWC, ATOWC

MWTC, IOWC

SOME MEMORIES.

\

THE AMWG, ATOWC ARE PROVIDED TO GENERATE LONGER STROBES REQUIRED BY

THEY SHOULD NOT BE USED WITH DEVICES THAT LATCH DATA

ON THE LEADING EDGE OF THE STROBE SINCE DATA 1S NOT GUARANTEED TO BE

QALID AT THAT TIME.

_J

10-25

-

8086, 88 CPU BLOCK DIAGRAM

e TWO INDEPENDENT UNITS: EU AND BIU
e BIU READS DATA AND INSTRUCTIONS
e EU EXECUTES INSTRUCTIONS

¢ SPEEDS EXECUTION BY OVERLAPPING INSTRUCTION FETCHES WITH EXECUTION

CLOCK AND

SYSTEM CONTROL

CONTROL AND TIMING

BUS CONTROL

EXECUTION

BUS

UNIT <::> INTERFACE

(EV) uNIT
(BIV)

MULTIPLEXED

ADDRESS/DATA

~

J

10-26

4)

INSTRUCTION PREFETCH QUEUE

< > <::> ADDRESS DATA

DATA BUS

INTERFACE

i | | UNIT
N—

EXECUTION
UNIT

QUEUE

\—— | QUEVE | N
[]) GONTROL

INSTRUCTIONS

DATA ACCESSES HAVE PRIORITY OVER INSTRUCTION FETCHES

e QUEUE "FLUSHES" AUTOMATICALLY ON JMP

* QUEUE IS 6 BYTES IN 8086, 4 BYTES IN 8088

INVISIBLE TO USER (ALMOST)

10-27

4)

PROGRAM TIMING

e IT IS NOT PRACTICAL TO CALCULATE EXACT PROGRAM EXECUTION TIME
—EXECUTION TIME CAN BE MEASURED WITH A TIMER SUCH
AS PROVIDED ON ICE86

—PROBABLE WORST CASE CAN BE ESTIMATED BY ASSUMING
A MINIMUM INSTRUCTION TIME OF 4 CLOCK CYCLES

10-28

OUR DESIGN EXAMPLE

iSBC 86/05 SINGLE BOARD COMPUTER

8 MHZ 8086 CPU

8K BYTES STATIC RAM (EXPANDABLE)
SOCKETS FOR 32K BYTES ROM (EXPANDABLE)
1 SERIAL 10 PORT , 3 PARALLEL 10 PORTS

2 iSBX CONNECTORS

MULTIBUS COMPATIBLE

FLEXIBLE DESIGN

10-29

0€-01

iISBC 86/05 SCHEMATIC
PAGE 2

u29
BRI R5T/ [T]sna.a
0N BOARD RDY 18504
BUS AEN/| CLK o
SHA l A i A
‘v est |59
Jlem 1 e c
2z c3 Lock / ra "
220K | L:i
k] . LocK BHE/S]
" —
[Y4 L
] 10 Q g o -] ™ ““"gﬁs A9/ T
a] us E£10 & ™ » by P a8/ss &n 2
rsv L TaLs123 EADY 1 AlT/54 |
= W — A0fse v 0]
R 5 _:l 3 -] AN.I$ ©/53 P
bl : UYL . L
p2.2p AU RESEY ﬁhnsn F Em—
)
P12y EAEE 2| 230 ;4 12
oM BD ADR/ kY Ra/GVI i 1]
s Ei" LO:‘/ x| Ra/évs o
suqlk TV - 9 2
v vz eofg— 2
v - 7]
$ ok . VI-2 Z,(, 2
pioia T/ 9x ’,\5 2ogser sl i
4 b
4
MLsoe ——— g TesT 2 2
18 1w y 13
"t s ea 00 I_AL-AEL@W a
| I 9 \ 52 L ADY - ADIS
29 < cri 26321 Y26 o, @] 20
100K INAtas uit ™) [|sn 2.4
B0 RESET/ 21— (2 1% rm DV ECEE
P2-% RESIN
c »‘lamu U 32/ Frlena
0 sg{reor zassTi! 3 ch 1
= pfovme " a0t 108
029224 oy PROCESSOR SECTIOM
7 oz}t
swalF TeESt/
PR by INTR
[NIVE]
swo [H]

CLASS EXERCISE 10.1

1.) IS THIS 8086 IN MINIMUM MODE OR MAXIMUM MODE?
2.) AS CONFIGURED WHAT SPEED WILL THIS 8086 RUN AT?

3.) THERE IS A JUMPER SHOWN AS E181-E182 JUST TO THE
LEFT OF THE 8284A. WHAT EFFECT WILL THE REMOVAL
OF THIS JUMPER HAVE?

10-31

FOR MORE INFORMATION. . .

8086 CPU SET AND OPERATION
~AP-67, 8086 SYSTEM DESIGN APPLICATION NOTE

iSBC 86/05 SINGLE BOARD COMPUTER
-iSBC 86/05 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL

10-32

DAY THREE OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

* LIST THE PERIPHERALS AND THEIR FUNCTIONS THAT ARE INCLUDED
IN THE iAPX 186,188

* DESCRIBE THE OPERATION OF THE ADDED INSTRUCTIONS TO
THE iAPX 186,188

% WRITE A PROCEDURE USING THE PROPER ASSEMBLER DIRECTIVES

% WRITE A PROCEDURE THAT COULD BE CALLED FROM A PL/M PROGRAM
WHICH REQUIRES PARAMETERS

% WRITE THE CHANGES REQUIRED TO ELIMINATE FORWARD
REFERENCING ERRORS IN A MULTIPLE SEGMENTED PROGRAM

% WRITE AN INTERRUPT SERVICE ROUTINE AND THE ASSEMBLER
DIRECTIVES REQUIRED TO CREATE THE PROPER INTERRUPT POINTER

TABLE ENTRY

CHAPTER 11
PROCEDURES

« PROCEDURES DEFINITION

* STACK CREATION AND USAGE

* PARAMETER PASSING
* EXAMPLE

PROCEDURES

% SECTIONS OF A PROGRAM THAT ARE CALLED AND RETURNED FROM

MAIN PROGRAM PROCEDURE
PROC_1 PROC

RET
CALL PROC_1 PROC.1 ENDP

* THE CALL INSTRUCTION WRITES THE RETURN ADDRESS (THE ADDRESS
OF THE NEXT INSTRUCTION) INTO THE STACK.

* THE RET INSTRUCTION READS THE RETURN ADDRESS FROM THE STACK.

\. J

11-1

g D

STACK OPERATION

* REMEMBER THAT STACK IS ALWAYS REFERENCED WITH RESPECT
TO THE STACK SEGMENT REGISTER

88 — 3l Lo

STACK

HI

(

* A STACK SEGMENT IS LIKE A DATA SEGMENT WITH A POINTER TO

STACK INITIALIZATION

THE TOP OF THE SEGMENT

\

_/

STACK_2 SEGMENT

DwW 100 DUP(?)
TOP_OF_STACK LABEL WORD
STACK.2 ENDS
CODE.A SEGMENT

ASSUME CS: CODE_A, 88: STACK.2

MOV AX, STACK_ 2

MOV 88, AX

LEA 8P, TOP_OF_STACK
CODE-A ENDS

11-3

STACK OPERATION WITH CALL AND RET

cs

PROC1

PROC 1

CALL

pROC (2)
rer [3)
ENDP
(D sp 18 8ET UP INITIALLY.
(@ cALL INsTRUCTION WRITES
RETURN ADDRESS TO STAGK
AND TRANSFERS TO PROCA.
PROGC1

©®

@ RET INSTRUCTION READS
RETURN ADDRESS FROM STACK

INTO IP AND THUS TRANSFERS
TO INSTRUCTION AFTER CALL.

IP+3 @

P —>
IP+3 — 3
8s >
8P-2 ——]
SP ——

\

PUSH AND POP INSTRUCTIONS

¢ PUSH
- WRITES A WORD VALUE INTO THE 8TACK
SYNTAX
PUSH MEMORY OR REGISTER

® POP
- READS A WORD VALUE FROM THE STACK

SYNTAX
POP MEMORY OR REGISTER

* PUSH CAN BE IMMEDIATE ON 186

N Y

4)

COMMUNICATING WITH A PROCEDURE

* PARAMETERS
PARAMETERS MAY BE PASSED:

- REGISTERS
MOV AX, PARM_1
CALL PROC_1

~ MEMORY
MOV PARM_1,30
CALL PROC_1

- 8TACK
PUSH PARM_1
CALL PROC_1

* FUNCTIONS, (PROCEDURES THAT RETURN A SINGLE VALUE) MAY USE A
REGISTER OR A MEMORY LOCATION TO HOLD THE RETURN VALUE

_ _/

NAME

PRO SEGMENT

ASSUME

;INPUTS: AL -

;
OUTPUTS: None
;CALLS:

DELAY PROC

LOOP_:

EXIT:
DELAY
PRO

.

;FUNCTION: Delay

PROCEDURE EXAMPLE

% DELAY ROUTINE - EXPECTS A BYTE VALUE IN THE AL REGISTER. THIS NUMBER IS
THE NUMBER OF 100 MICROSECOND DELAYS THIS PROCEDURE WILL PRODUCE.

DEMO

CS:PRO

8 bit integer denoting number of
100 microsecond delay periods required.

Nothing
;DESTROYS: AL, CL, FLAGS

AL, AL ;Check for 0 delay
EXIT y1f 0 - quit
CL,78H ;Count for 100 us

CcL,CL ;Delay 100 us
AL ;Adjust iteration counter
LOOP_ ;Do again if non-zero
;Else go back to calling routine

% THE ABOVE METHOD WORKS WELL FOR PASSING A SINGLE VALUE.
HOW WOULD AN ARRAY BE PASSED TO A PROCEDURE?

f

% TO GET THE OFFSET OF

DATA
BUFFER
DATA
CODE

COMMUNICATING WITH A PROCEDURE

AN ARRAY (OR ANY VARIABLE) INTO A

REGISTER , THE LEA INSTRUCTION IS USED.

SEGMENT
DB
ENDS

100 DUP(?)

SEGMENT
ASSUME CS:CODE,DS:DATA

MOV CX, LENGTH BUFFER
LEA BX, BUFFER
CALL OUTPROC

\

H*- WHEN PASSING AN ARRAY (OR EVEN A LARGE NUMBER OF DIFFERENT
VALUES) TO A PROCEDURE, THE ADDRESS OF THE ARRAY IS USED.

11-8

/ COMMUNICATING WITH PROCEDURES \
(BASED ADDRESSING)

* THE PROCEDURE CAN THEN USE THE ADDRESS IN THE REGISTER TO
ACCESS THE ARRAY.

CRT EQU 0FFH
OUTPROC PROC
JCXZ EXIT ;CHECK FOR CX SETUP
MORE: MoV AL, [BX] ;MOV CONTENTS OF BUFFER POINTED TO
:BY BX INTO AL
ouT CRT, AL
INC BX ; INCREMENT BX TO POINT TO NEXT LOCATION

; IN BUFFER
LOOP MORE

EXIT: RET

OUTPROC ENDP

[BX] [Di]
Brl| T (sl

% NOTE THAT THIS PROCEDURE CAN BE USED TO OUTPUT THE)
\ CONTENTS OF ANY BUFFER.

REMEMBER - OFFSET =

e R

EXAMPLE
PARAMETER PASSING ON THE STACK

PROBLEM

A PROCEDURE IS REQUIRED FOR A PL/M PROGRAM TO CONVERT A TEMPERATURE FROM
ONE UNIT OF MEASURE TO ANOTHER USING A TABLE OF CONVERSION VALUES. THE
TEMPERATURE VALUE, TABLE ADDRESS, AND TABLE LENGTH ARE PARAMETERS PASSED
IN THE STACK FROM THE CALLING PROGRAM. ALLOCATION OF STACK SPACE IS
HANDLED BY THE CALLING PROGRAM AND THE ITEMS ARE PUSHED ONTO THE STACK IN
THE FOLLOWING ORDER:

TMPIN TEMPERATURE 1st WORD
N TABLE LENGTH 2nd WORD
TBLADR TABLE ADDRESS 3rd WORD

THE PROCEDURE SHOULD SAVE THE BP REGISTER VALUE, BUT ALL OTHER REGISTERS
ARE AVAILABLE. UPON EXIT FROM THE PROCEDURE THE RESULTANT VALUE SHOULD
BE LEFT IN THE ACCUMULATOR, AND ALL PARAMETERS DELETED FROM THE STACK.

11-10

THIS 1S AN EXAMPLE OF WHAT IS CALLED A TYPED PROCEDURE IN PL/M
AND IT WOULD BE CALLED WITH A STATEMENT LIKE THIS:

TEMPOUT = CONVERT (TEMPIN, N, TBLADR);

PL/M EXPECTS THIS PROCEDURE TO RETURN A VALUE IN THE AL REGISTER

11-11

TABLE OF CONVERSION VALUES
* TABLE LOCATED SOMEWHERE IN MEMORY.

TABLE (0) T —;2_— T
(1 33
(2) 35
(50) 122

11-12

STACK "FRAME" WITH PARAMETERS AFTER CALL

SP——

LOW MEMORY

RETURN ADDR

TBLADR

TMPIN

HI MEMORY

11-13

STACK "FRAME" WITH PARAMETERS AFTER ENTRY

LOW MEMORY

SP— 5

RETURN ADDR

TBLADR

N

TMPIN

— |

HI MEMORY

[8P] +
(BP] +
[eP] +
[6P] +

INITIALIZED BY

/ PROCEDURE

SAVED BP <——[BP:|/

o o &~ N

11-14

q1-11

EXAMPLE

SOLUTION:

8086/8087/8088 MACRO ASSEMBLER DMO

LOC OBJ LINE SOURCE
1 NAME DMO
-——- 2 CODE SEGMENT
3 ASSUME CS:CODE
4
5
6
0000 7 CONVERT PROC
0000 55 8 PUSH BP
0001 8BEC 9 MOV BP,SP
10
0003 8B5E04 11 MoV BX, [BP+4]
0006 BB7E06 12 MOV DI, [BP+6]
0009 8B7608 13 MOV SI1, [BP+8]
14
000C 3BF7 15 CMP §1,DI
000E 7206 16 JB INRANG
0010 8A41FF 17 MOV AL, [BX+DI-1]
18
0013 EBO0390 19 JMP EXIT
0016 8a00 20 INRANG: MOV AL, [BX+SI]
0018 5D 21 EXIT: POP BP
0019 C20600 22 RET 6
23 CONVERT ENDP
24
25
26 CODE ENDS
28 END

09/01/80 PAGE 1

;SEE DIAGRAM

;BX <-- TBLADR

;DI <-- LENGTH OF TABLE

s3SI <-- TMPIN

;CHECK IF TMPIN > LENGTH OF TABLE

; IF NOT IN RANGE USE GREATEST
;VALUE IN TABLE (LENGTH OF TABLE-1)

;:USE SI TO POINT TO TEMP. VALUE

DISCUSSION x

STEP1 SAVES THE VALUE FROM THE CALLING PROGRAM'S BP REGISTER ONTO THE STACK
AND LOADS BP (STEP 2) WITH THE CURRENT SP VALUE. THIS ESTABLISHES A BASE
REGISTER (BP) WHICH WILL BE USED FOR ADDRESSING THE PARAMETERS BEING PASSED.
DURING EXECUTION OF THE MOVE INSTRUCTION (STEP 3) THE DISPLACEMENT VALUE (4)
WILL BE ADDED TO THE CONTENTS OF THE BP REGISTER AND AN EFFECTIVE ADDRESS
GENERATED EQUIVALENT TO BP+4. SIMILARLY, INDEX REGISTER DI IS LOADED WITH THE
SECOND PARAMETER (N) WHEN BP+6 IS ACCESSED IN STEP 4,

THE PROGRAM FIRST CHECKS THE TEMPERATURE TO SEE IF IT IS WITHIN THE RANGE OF
VALUES IN THE TABLE. IF IT ISN'T, THE PROCEDURE CONVERTS IT INTO THE HIGHEST
TEMPERATURE IN THE TABLE.

REGARDLESS OF WHETHER THE TEMPERATURE IS WITHIN RANGE OR NOT, THE CONVERTED
VALUE IS RETURNED IN AL. THE BP IS THEN RESTORED AND THE RET INSTRUCTION IS
EXECUTED. THE RET ALSO ADJUSTS THE SP BY 6, THUS REMOVING THE PARAMETERS
FROM THE STACK.

NOTE THAT THE PROCEDURE USES BP TO FETCH PARAMETERS OFF THE STACK. THE CPU.
WHEN USING BP AS A POINTER, DEFAULTS TO USING THE SS AS THE SEGMENT REGISTER.
ANY OTHER POINTER REGISTER COULD BE USED, BUT WOULD REQUIRE AN EXPLICIT
SEGMENT OVERIDE.

J

11-16

CLASS EXERCISE 11.1

WRITE AN ASSEMBLY LANGUAGE PROGRAM TO CALL THE
CONVERT PROCEDURE. SET UP A STACK SEGMENT AND
INITIALIZE THE REGISTERS TO POINT TO IT. SET UP

A DATA SEGMENT WITH VARIABLES FOR THE TEMPERATURE

TO CONVERT, THE CONVERSION TABLE, AND A PLACE TO STORE
THE CONVERTED TEMPERATURE.

11-17

FOR MORE INFORMATION ...

ASSEMBLY LANGUAGE INSTRUCTIONS

- CHAPTER 3, iAPX 86/88, 186/188 USER’'S MANUAL
- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

PARAMETER PASSING (EXAMPLES)
- PAGE 3-171, iAPX 86/88, 186/188 USER’'S MANUAL

- APPENDIX G (EXAMPLES 3,4,5) ASM86 LANGUAGE
REFERENGCE MANUAL

11-18

CHAPTER 12
PROGRAMMING WITH MULTIPLE SEGMENTS

MULTIPLE CODE SEGMENTS

PROCEDURE DECLARATION

MULTIPLE DATA SEGMENTS

SEGMENT OVERRIDE INSTRUCTION PREFIX
FORWARD REFERENCES

ONE CODE SEGMENT
NEAR, SHORT JUMP

(REVIEW)
CODE1 SEGMENT
ASSUME CS:CODE1
ABC: _____
JMP ABC <————— SHORT JUMP___ BYTE INSTRUCTION
— DISPLACEMENT + BYTES
= - BYTES
JMP ABC < NEAR JUMP __ BYTE INSTRUCTION
DISPLACEMENT + BYTES
- BYTES
CODE1 ENDS
12-1
INTERSEGMENT FAR JUMP
CODE1 SEGMENT

ASSUME CS:CODE1

FAR JUMP 5 BYTE INSTRUCTION
LOADS CS, LOADS IP

[
=
v
>

CODE2 ENDS

ABC: —
CODE1 ENDS
CODE2 SEGMENT

ASSUME C8:CODE2

OPCODE

L NEW IP —

-— NEW C8 —

=

ONE CODE SEGMENT
NEAR CALL,RET
(REVIEW)

CODE1
ASSUME

HAL

HAL
START :

CODE1

SEGMENT
C8:CODE1

PROC

RET
ENDP

LL HAL

i e

ENDS

<" PROCEDURE DECLARATION

<" NEAR RETURN
RESTORES ___ REGISTER
FROM TOP OF STACK

<" NEAR CALL__ BYTE INSTRUCTION
SAVES __REGISTER
ON TOP OF STACK

JUMPS* __BYTES
- _-BYTES

12-3

INTERSEGMENT FAR CALL,RET

CODE1 SEGMENT
ASSUME C8:CODE1
HAL

PROC FAR

RET
ENDP

HAL

CALL

HAL

CODE1 ENDS

l«——— PROCEDURE DECLARATION , TYPE FAR

«—— FAR RETURN
RESTORES IP AND CS FROM STACK

FAR CALL 5 BYTE INSTRUCTION

CODE2 SEGMENT
ASSUME CS8:CODE2

CALL HAL

1CODE2 ENDS

SAVES CS AND IP ON TOP OF STACK
LOADS NEW CS AND NEW IP

/

OPCODE

— NEW IP —

— NEW C8 ——

PROCEDURE DECLARATION

THE PROCEDURE DECLARATION DEFINES WHETHER
THE PROGRAM OR SUBROUTINE. HAS ATTRIBUTE
NEAR OR FAR.

THIS TELLS THE ASSEMBLER TO GENERATE FAR
OR HEAR CALLS AND RETURNS,

EXAMPLE :

XYZ PROC {NEAR/FAR }

i

RET
XYZ ENDP

ONE DATA SEGMENT
REVIEW

D8 —

DATA1 SEGMENT

VAR1 DW ?

DATA1 ENDS

CS—>»

CODE1 SEGMENT

ASSUME CS:CODE1
ASSUME DS:DATA1
MOV AX ,DATA1
MOV DS8,AX

MOV VAR1,12H «— DATA REFERENCE

CODE1 ENDS

USES DS SEGMENT REGISTER

J/

SEGMENT OVERRIDE INSTRUCTION PREFIX

DATA IS NORMALLY ACCESSED USING THE DS SEGMENT REGISTER

DATA CAN BE ACCESSED WITH ANY SEGMENT REGISTER BY
USING A ONE BYTE INSTRUCTION PREFIX

ASM86 GENERATES SEGMENT OVERRIDE PREFIXES
AUTOMATICALLY, USING THE ASSUME STATEMENT

12-7

8-¢1

LOC

0000

0000

0002
0005

0007

OBJ

??

0020

Y p—
8ED8

2E8BOE000CO

BAOE0000

ACCESSING CONSTANT DATA

LINE

LoNaaunbswN -

SOURCE
NAME
DATA
ALPHA
DATA
CODE
BETA

START:

CODE

SAMPLE

SEGMENT

DB
ENDS

SEGMENT

?

ASSUME CS:CODE,DS:DATA

DW

MOV
MOV

MOV

MOV

ENDS
END

2000H

AX,DATA
DS, AX

CX,BETA +CS OVERRIDE

CL,ALPHA :NO OVERRIDE NECESSARY

START

6-21

LOC

0000
0000

0oBJ

??

??27?7°

B8--——
8EDS
Y ph—
BECO

268BOE000O

O)F. BAOE0000

LINE

WD SRR WN -~

USING MULTIPLE DATA SEGMENTS

SOURCE
NAME
DATA
ALPHA
DATA
DATA_2
BETA
DATA 2

CODE

START :

CODE

SAMPLE2

SEGMENT
DB ?
ENDS

SEGMENT
DW, ?
ENDS

SEGMENT
ASSUME CS:CODE, DS tDATA,ES:DATA_2

MOV AX, DATA
MOV DS, AX

MOV AX,DATA 2

MoV ES,AX

MOV CX,BETA sASSEMBLER CAUSES ES OVERRIDE
MOV CL,ALPHA sNO OVERRIDE NECESSARY

ENDS

END START

ADDRESSING DATA USING DS AND ES

ALL DATA THAT BELONGS TO ONE CODE SEGMENT SHOULD BE ADDRESSED USING THE
DS REGISTER

ANY DATA THAT IS SHARED BETWEEN CODE SEGMENTS (EACH HAVING LOCAL DATA)
SHOULD BE ADDRESSED USING ES

THIS ALLOWS THE PROGRAM TO ACCESS LOCAL DATA MANY TIMES WITH NO PENALTY
IN CODE SIZE

SHARED DATA WILL BE ACCESSED A FEW TIMES WITH A ONE BYTE ES OVERRIDE
PREFIX

12-10

11-21

LOC

0000

0000
0002

0000
0003
0005
0008
000A
000E

0012

OoBJ

(100
??

22722
?2?

;1 J—
BEDS
BB-——-
BECO
8BOE0000
8AOE0 200

26880E0000

LINE

o N et

EXAMPLE

SEGMENT
DB 100 puP (?)

ENDS

SEGMENT
DW ?
DB ?
ENDS

ASSUME CS:CODE, DS : LOCAL_DATA, ES:SHARED DATA

SOURCE
NAME SAMPLE3
SHARED_DATA
BUFFER
SHARED DATA
LOCAL_DATA
BETA
ALPHA
LOCAL_DATA
CODE SEGMENT
START: MOV
MOV
MoV
MOV
MOV
MoV
MOV
CODE ENDS
END

AX,LOCAL_DATA

DS, AX

AX, SHARED_DATA

ES, AX

CX,BETA 3NO OVERRIDE

CL, ALPHA 3NO OVERRIDE NECESSARY

BUFFER, CL ;ASSEMBLER CAUSE ES OVERRIDE

START

¢1-21

EXPLICIT SEGMENT OVERRIDE

% ALLOWS YOU TO EXPLICITLY SPECIFY SEGMENT REGISTER USE
WHEN ASSEMBLER DOESN'T HAVE ENOUGH INFORMATION

PRO

LOWEST
HIGHEST
CONVERT_VALUE

NAME SAMPLE
SEGMENT

ASSUME CS:PRO
EQU 61H
EQU TAH
EQU 20H

sTHIS PROCEDURE WILL CONVERT ALL OF THE LOWER CASE ASCII
sCHARS IN THE BUFFER POINTED TO BY THE ES:3SI REGISTER PAIR

:TO UPPER CASE.

THE CX REGISTER CONTAINS THE BYTE COUNT.

;a=61H, z=7AH, A=41H, Z=5AH

UPPER
NEXT:

MOVE_PTR:

UPPER
PRO

PROC FAR
MOV AL,ES:[SI]

CMP AL,LOWEST

JB MOVE PTR

CMP AL,HIGHEST

JA MOVE PTR

SUB AL,CONVERT VALUE
MOV ES:[srl.aL™

INC SI

LOOP NEXT

RET

ENDP

ENDS

FORWARD REFERENCING

* ASMS86 IS A TWO PASS ASSEMBLER

PASS 1
ALLOCATE SPACE AND ASSIGN OFFSETS FOR EVERY INSTRUCTION.

PASS 2
FILL IN OPCODES AND INSTRUCTION FIELDS.

* DURING PASS 1, IF AN INSTRUCTION REFERENCES A LABEL OR A VARIABLE
NOT YET ENCOUNTERED, (FORWARD REFERENCE), ASM86 WILL TAKE A
GUESS AT THE CORRECT LENGTH FOR THAT INSTRUCTION.

¢ ASM86 CAN MAKE INCORRECT GUESSES |

12-13

FORWARD REFERENCES

THE JMP AND CALL INSTRUCTIONS DEFAULT TO NEAR (WITHIN SEGMENT)

DATA REFERENCES TO DATA IN A SEGMENT DEFINED LATER DEFAULTS TO USING THE
DS REGISTER

12-14

G1-21

LOC OBJ LINE

0000 9A9090

#%% ERROR #3, LINE #4, (PASS
0003 2EBB 1690

#%#% ERROR #3, LINE #5, (PASS

0007 FY4
0008 27277

0000
0000 00
0001 CcB

ASSEMBLY COMPLETE, 2 ERRORS FOUND

1
2
3
4

FORWARD

SOURCE

CODE1
START:

REFERENCING ERRORS

NAME SAMPLES
SEGMENT

ASSUME CS:CODE1
CALL WIZZY

sForward Reference to a FAR procedure,

2) INSTRUCTION SIZE BIGGER THAN PASS 1 ESTIMATE

sForward Reference to a variable not

5
2) INSTRUCTION SIZE BIGGER THAN PASS 1 ESTIMATE

MOV DX,VAR1
HLT
VAR1 DW ?
CODE1 ENDS
CODE2 SEGMENT
ASSUME CS:CODE2
WIZZY PROC FAR
NOP
RET
WIZZY ENDP
CODE2 ENDS
END START

I3

’

accessible using DS register,

91-21

Loc

0000
0005

000A
000B

0000
0000
0001

- o g

OBJ

9A0000~v~-
2E8B160B00

F4
22?7

90
CB

LINE

WO~ VMW

gy
MO

SOURCE

CODE1
START:

VAR1
CODE1

CODE2

WIZZY

WIZZY
CODE2

ASSEMBLY COMPLETE, NO ERRORS FOUND

ONE SOLUTION

NAME SAMPLE6
SEGMENT

ASSUME CS:CODE1l

CALL FAR PTR WIZZY
MOV DX,CS:VAR1
HLT

DW ?

ENDS

SEGMENT

ASSUME CS:CODE2
PROC FAR

NOP

RET

ENDP

ENDS

END START

sForward Reference using PTR operator
;Forward Reference using explicit

2

segment override,

-

\

PTR OPERATORS

* THE PTR OPERATORS EXPLICITLY SPECIFY AN INSTRUCTION TYPE

NEAR PTR
FAR PTR
BYTE PTR

WORD PTR
DWORD PTR

EXAMPLES: JMP FAR PTR THERE
INC WORD PTR [Di]

NOTE: THERE IS ALSO A “SHORT" OPERATOR WHICH ACTS LIKE A PTR OPERATOR
WITHOUT THE PTR e.g. JMP SHORT XYZ

12-17

81-¢1

LOC OBJ

0000
0000 90
0001 CB

0000 7777

0002 9A0000wrv~
0007 2E8B160000
000C F4

"peee

ASSEMBLY COMPLETE, NO ERRORS FQUND

BETTER SOLUTION

SOURCE

NAME SAMPLE?
CODE2 SEGMENT

ASSUME CS:CODE2
WIZZY PROC FAR

NOP

RET
WIZZY ENDP
CODE2 ENDS

CODE1 SEGMENT
ASSUME CS:CODE1l

VARl DW ?

START; CALL WIZZY
MOV DX,VAR1
HLT

CODE1 ENDS
END START

;No Forward Reference, no problems.

/ PROGRAMMING MODEL

— EQUATES |

DATA SEGMENT(S)
* YOU CAN CHANGE THE ORDER OF

SEGMENTS AT LOCATE TIME. THIS STACK SEGMENT
IS JUST FOR THE SAKE OF ASSEMBLER. A

CODE SEGMENT(S)
WITH PROCEDURE(S)
-

MAIN _\
CODE SEGMENT
CONSTANTS

[PROCEDURES]

MAIN PROGRAE]

12-19

FOR MORE INFORMATION ...

SEGMENTATION AND ASSUME USAGE

- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

FORWARD REFERENCING

- PAGE 1-3, ASM86 LANGUAGE REFERENCE MANUAL

SEGMENT OVERRIDES AND PTR OPERATOR

- CHAPTER 4, ASM86 LANGUAGE REFERENCE MANUAL

12-20

CHAPTER 13
INTERRUPTS

iAPX 86,88 INTERRUPT SYSTEM
CREATING AN INTERRUPT ROUTINE
8259A PRIORITY INTERRUPT CONTROL UNIT

PROGRAMMING THE 8259A

PROGRAMMED INPUT/OUTPUT

START DEVICE AND POLL FOR COMPLETION

PROGRAM

EXECUTION

START
DEVICE

INPUT STATUS <—m——y
POLL AND WAIT

UNTIL DEVICE READY
.
¢

INTERRUPT INPUT/OUTPUT

PROGRAM EXECUTION

. INTERRUPT SERVICE
ROUTINE
[]
[] [
[] []
INTERRUPT | — — — — — — _ >
° ®
[]
[]
T .
[]
¢ RET

¢ INTERRUPTS ARE ASYNCHRONOUS EXTERNAL EVENTS

J

13-2

AUTOMATIC
UPON

DETECTING

INTERRUPT

IRET

INTERRUPT SEQUENCE

(o CURRENT INSTRUCTION FINISHES EXECUTION
o FLAGS ARE PUSHED ON THE STACK

® IF AND TF ARE CLEARED (DISABLES MASKABLE INTERRUPTS
AND SINGLE STEP)

o SAVE OLD CS ON THE STACK
¢ SAVE OLD IP ON THE STACK

\. o READ NEW CS AND IP FROM INTERRUPT VECTOR TABLE

SERVICE ROUTINE

(o FAR RETURN (POPS IP AND CS FROM STACK)

o POP FLAGS

INTERRUPT PROCESSING (RESPONSE) TIME - 61 CLOCKS
DOES NOT INCLUDE :

1. COMPLETION OF CURRENT INSTRUCTION
2. SAVING REGISTER DATA

3. ANY WAIT STATES

8086,88
NTERRUPT VECTOR TABLE

N P o —0 TABLE STARTS AT ABSOLUTE
"0 o, _ ADDRESS 0 IN MEMORY SPACE.
| ®,]
TYPE 1
| (o1 1 —
P2 v
€t g DEDICATED POINTERS
. P]
265 0: DIVIDE ERROR
L — S s — 1023 1: SINGLE STEP -~ TF
2: NON-MASKABLE INTERRUPT
3: BREAKPOINT TRAP
4: OVERFLOW TRAP
5-31: RESERVED BY INTEL

J

13-4

iAPX 186,188 PRE-ASSIGNED INTERRUPT TYPES \

Vector
Interrupt Name Type (Decimal) Comments
Type 0 0 Divide error trap
Type 1 1 Single step trap
NMI 2 Non-maskable interrupt
Type 3 3 Breakpoint trap
INTO 4 Trap on overflow
Array bounds trap 5 BOUND instruction trap
Unused op trap 6 Invalid op-code trap
ESCAPE op trap 7 Supports 8087 emulation
Timer 0 8 Internal h/w interrupt
Timer 1 18 Internal h/w interrupt
Timer 2 19 Internal h/w interrupt
DMA 0 10 Internal h/w interrupt
DMA 1 11 Internal h/w interrupt
Reserved 9 *Reserved*
INTO 12 External interrupt 0
INT1 13 External interrupt 1
INT2/INTAO 14 External interrupt 2
INT3/INTA1 15 External interrupt 3 J
13-5
INTERNAL INTERRUPTS
TYPE CAUSED BY...
DIVIDE ERROR 0 QUOTIENT LARGER THAN DESTINATION

SINGLE STEP

iAPX 186,188 ONLY

ARRAY BOUNDS TRAP

UNUSED OPCODE TRAP

ESCAPE OPCODE TRAP

1

MOST INSTRUCTIONS IF TF IS SET

BOUND INSTRUCTION IF ARRAY INDEX
1S OUTSIDE BOUNDARY

CPU DIRECTED TO EXECUTE AN UNUSED
OPCODE

CPU DIRECTED TO EXECUTE ESC OPCODE
AND ESC TRAP SET IN RELOCATION REG

_/

SOFTWARE INTERRUPTS

INT N WHERE © <N 255

INT 3 SPECIAL ONE BYTE INSTRUCTION TO
REPLACE OPCODE FOR SOFTWARE
BREAKPOINTS

INTO TYPE 4 INTERRUPT IF OVERFLOW FLAG
IS SET, OTHERWISE NEXT INSTRUCTION

SYSTEM CALLS ADVANTAGES

e HARDWARE INDEPENDENCE

o RELOCATABLE CODE

e EFFICIENT USE OF THE SYSTEM

¢ MULTITASK SUPPORT

e LESS CODE REDUNDANCY

r

YOUR PROGRAM

EXAMPLE SYSTEM CALL OPERATION

INTERRUPT OPERATING
_VECTOR TABLE SYSTEM

INT 52H 0014AH| SEG

00000H
_TERMINAL

READ_KEY

iR EY [o] H|OFFSET READ_KEY
EAD K oo148n :\/\ reabkev: e .. TELETYPE

A
A
AY
AY

IRET *,PARALLEL

00BEFH ,——~___| KEYBOARD

RETURN CHARACTER
IN AL REGISTER

PROBLEM:

HOW WOULD YOU WRITE THE CODE TO ASK THE
OPERATING SYSTEM TO READ A KEY FROM THE
KEYBOARD?

SOLUTION:

INT 52H ; CALL TO OPERATING SYSTEMS READ_KEY
CMP AL,@DH; CHARACTER RETURNED IN AL

13-10

saoae/aoes

HARDWARE INTERRUPTS

NMI

INTR

INTA

INTERRUPT

CONTROL
UNIT

INTA EXTERNAL HARDWARE MUST SUPPLY

NMI - NON-MASKABLE INTERRUPT
EDGE TRIGGERED
INVOKES TYPE 2 INTERRUPT

INTR - MASKABLE INTERRUPT REQUEST (IF)
AND LEVEL TRIGGERED

INTERRUPT TYPE NUMBER

COMMUNICATIONS WITH EXTERNAL
HARDWARE SET UP BY INTA

13-11

IRO

IR7 —

INTERRUPT PROCESSING

-]

82650A

IAPX 86,88

VECTOR TABLE

INTERRUPT

SERVICE
/ ROUTINE
INT-PTR

13-12

[

e AEILITY TO INDIVIDUALLY MASK INTERRUPTS.

8259A PROGRAMMABLE INTERRUPT CONTROLLER

PROVIDES UP TO 8 PRIORITIZED INTERRUPTS WITH FIXED OR
ROTATING PRIORITY SCHEMES.

e EXPANDABLE TO 64 INTERRUPTS WITH PRIORITY MODES
DEFINABLE IN GROUPS OF 8.

e SUPPLIES INTERRUPT TYPE NUMBER IN RESPONSE TO
INTERRUPT ACKNOWLEDGE.

\

13-13

SELECTION OR {§T’IE-E -

DATA BUS

’ INTERRUPT
CONTROL
LINES
/__./_/\
L -t
ron(o A CONTROL 100
H svrren |\ ﬁ' -
/
CPU INTERFACE < .T]l l Ili
" —f-d ‘J'—m
w—|.d meaw - m
whire " Irennoer] - 2
Lo ﬁ 'l::‘llcl C: nr'uonm*t atovest [—1- m
A o SOLVE ::: :;:::
.
~ “"'_:‘ 1 1
case
MASTER/SLAVE Cagcane) e
COMMUNICATIONS | ' ouPaRATon*—
cas2
MASTER/SLAVE eremaL ous

i BUFFER ENABLE

EXTERNAL
INTERRUPT
REQUESTS

_/

13-14

1RO

8259A OPERATION

IRR 18R
IR0
— IMRO _
—{] !
—pl
— 1RO]
. . PRIORITY
| : ||
) . . RESOLVER
— * 1R7 1
i —
HOLD CLEAR
{ EOI
INTR > LOOKS AT CURRENT REQUESTS AND
ALSO ANY INTERRUPTS IN-SERVICE.
IF REQUESTING LEVEL HAS HIGHEST
L PRIORITY, IT IS PUT IN-SERVICE
I—NTA————:_._I—I_I_[_= AND AN INTERRUPT REQUEST IS SENT
1 1 TO CPU,
: :FREEZE
[I

13-15

INITIALIZATION AND CONTROL

e TO USE THE 8259A, IT MUST BE INITIALIZED. THIS IS DONE
USING 3 OR 4 INITIALIZATION COMMAND WORDS (ICW 1-ICW4).

e ONCE INITIALIZED, THE 8258A'S OPERATION CAN BE
CONTROLLED OR MODIFIED WITH ANY ONE OF THREE
OPERATIONAL COMMAND WORDS (OCW 1-OCW3).

13-16

INITIALIZATION SEQUENCE

ICW1

.

ICwW2

IN
CASCADE
MODE

NO

ICW3

ICw4

READY TO ACCEPT
INTERRUPT REQUESTS

13-17

ICW1 AND ICW2

ICW1
0 0 0 0o 1 [LTIM| O |SNGL] 1
1 = SINGLE
0 = CASCADE MODE
1=LEVEL TRIGGERED INPUT
0= EDGE TRIGGERED INPUT
ICW2
Ao D Dg Ds Dy Dy D, Dy Dy
1 T7 | T6 T8 T4 T3 0 0]

T7 - T3 OF MODE

INTERRUPT TYPE

13-18

INTERRUPT TYPE SELECTION

F'IITG‘TE[T‘ITSI X | X‘ XJ
\/w‘*/—\/—\)
8 M8Bs OF INSERTED
INTERRUPT TYPE AUTOMATICALLY,
RELATIVE TO IR
LEVEL CAUSING
INTERRUPT

EXAMPLE:
ASSUME INTERRUPT TYPES 32-36

rT7J TelTG IT4[T3[XT X l X I‘/ USE THIS A8 ICW2

1RO o 0 t 0 0 0 0 O
IR1 o 0 t o o o0 o 1
IR2 o 0o + 0 o o 1 O
1IR3 o 0 1 0 0 o 1 1
IR4 o o 1+ 0 0 t 0 O
IR8 o o 1 o o 1 o0 1
iRe o 0 1+ o 0 1 1 O
IRT o 0 1 0o O 1t 1 1
13-19

ICW3 j

USED IN CASCADE MODE ONLY

THE MASTER AND EACH SLAVE DEVICE HAVE DIFFERENT ICW3s.

ICW3 (MASTER DEVICE)
Ag D; Dg Dy Dy, Dy Dy Dy D,

8 8
1 7 88684 838281 80

1=1R INPUT HAS A SLAVE

0=1R INPUT DOES NOT HAVE

A SLAVE
IGW3 (SLAVE DEVICE)
Ag D; Dg Dy DygDg D, D, D,
1 w_{w |
x| x| x| x| x 2™ 1"
SLAVE D
ol1l2[34lsle]7
oj1[o] [0l 1]0o]1
ofof1]1otol1]"
ofojofo 4] 0]y

13-20

/f"

SET UP OF

ICW3

ICW3 = 1
iR1 INTR
INTR -——
SLAVE
MASTER IR2
ID= 1
ICW3 = 2
ICW3 = 6 CW3 =
INTR
SLAVE
ID= 2
13-21
Ao D., D Ds D‘ Ds D2 D1 Do
1 o o SFNIJ BUF | M8 |AEOI 1
1 AUTO EO!
0 NORMAL EOI
USE NORMAL EOI.
° X NON BUFFERED MODE WILL HAVE NO PROBLEMS THAT WAY,
1 O | BUFFERED MODE SLAVE \
1 1 | BUFFERED MODE MASTER DETERMINES FUNCTION OF SP/EN
1 SPECIAL FULLY NESTED
MODE

© FULLY NESTED MODE

13-22

FULLY NESTED MODE

® ENTERED BY DEFAULT UPON INITIALIZATION

HIGHEST -~ IRO
IR1
IR2
IR3
IR4
IR5
IR6
LOWEST — IR7

e |F AN INTERRUPT LEVEL IS IN SERVICE, FURTHER INTERRUPTS
FROM THAT LEVEL AND ALL LOWER PRIORITY LEVELS ARE
INHIBITED UNTIL AN EOI IS ISSUED.

13-23

MASTER/SLAVE CONFIGURATION

1

N
1T [

! l ‘ ! } SHOULD BE IN SPECIAL
L o FULLY NESTED MODE.

“—— PERMITS NESTING OF
INTERRUPTS ON SINGLE
IR INPUT.

, IF NECESSARY,

| MASTER PLACES |

! SLAVE ID I

| ON CAS0-2 '
N
|

|

|

!

|

INTA _———\ /._\ F
X

SLAVE ID

><_.__..-

NON-BUFFERED MODE

N

A 1
ADDR/DATA 3 ADDRESS) ADDRESS BUS
8086 M Y1 LATCHES
ALE sTB
INTA INTR

'> DATA BUS
]i:I Y

INT
__s269A |+, RO
INTA .
«—— IRT7
+ 5 _~AA~—SP

* SP IDENTIFIES 8259A AS MASTER OR SLAVE DEVICE

13-25

BUFFERED MODE

A
ADDR/DATA J> ADDRESS) ADDRESS BUS
8086 N v LATCHES
STB
DATA BUS
INTR \) DATA BUS
TRANS -
CEIVERS
— — g oE
§0-52
gl I A
8288 8259A :
DEN L_ EN *
—_ — NS
INTA INTA INT

—

N USED TO CONTROL LOCAL DATA BUS

13-26

OPERATIONAL COMMAND WORDS \

OCW1 AND OCW2
ocwi
Ay D7 DgDygbD, Dy Dy by Dy

(1] [ir o [[s o e []

INTERRUPT MASK

1 MASK BET
0 MASK RESET

ocw2
Ay D; Dy DgDy,Dab, D, Dy

[o] [eJotJeof o To T I

1R LEVEL TO BE ACTED UPON
oj1]2|3|4|6]0]7
o|j1jol1jo0]|1jo]|?
AL ARRBRELALIRER!
ojojojo|rftft]1
o[o] 1] now sPEGIFIC EOt COMMAND]END OF INTERRUPT
ol 'SPECIFIC EO! COMMAND
1{0] 1{ ROTATE ON NON SPECIFIC EOl COMMAND } AUTOMATIC
1|/0| 0| ROTATE IN AUTOMATIC EO! MODE (8ET) ROTATION
0[0|0] ROTATE IN AUTOMATIC EOI MODE (CLEAR)
1] 1] t|*ROTATE IN 8PECIFIC EOI COMMAND SPECIFIC
1] 1| O|"SET PRIORITY COMMAND ROTATION
6{ 1] 0] No oprERATION *L0.L2 ARE USED)
13-27
ROTATING PRIORITIES
BEFORE AFTER
HIGHEST— IRO HIGHEST—— IR4
IR1 IRS
:22 LEVEL 3 SPEGIFIED :';3
I IN ROTATE COMMAND o
IRS IR1
IR6 IR2
LOWEST —» IR7 LOWEST ——» IR3

13-28

|

{ PORT ADDRESS 4@H,41H

4 oCW3
ocwa
Ag D, Dg Dg D, Dg4 020‘00
0 X [ESMMSMM| © 1 P RR | RIS READ REGISTER COMMAND
L X 0 1
0 1 1
READ READ
NO IR REQ |[IS REG
ACTION |[ON NEXT|ON NEXT
RDPULSE{RD PULSE
1 POLL COMMAND
0 NO POLL COMMAND
SPECIAL MASK MODE
X 0 1
0 1 1
No SRPEESCIi:L SPSEE(;rI\L
’
ACTION MASK MASK
13-29
(HARDWARE SET UP FOR SAMPLE PROGRAM
D ADDRESS BUS
J CONTROL BUS FROM 8088
) DATA BUS
OC-S A DO-7 INTA IINT €3 |A0 DO-7 INTA [INT
|
| SLAVE 8259A CAS 9 | MASTER 8259A

CAS 1_| PORT ADDRESS 30H,31H

cas2_|

[SPER|T[85[4[3]2]1]0
ND

‘[S‘P/EN{7|6|5 4|3|2|1|o

vCC

TIMER

13-

30

1€-€1

SETTING UP TIMER INTERRUPT

INT VECTOR SEGMENT AT O
ORG 28H*4

TIMER_INT_IP DW 2

TIMER _INT_CS DW ?

INT_VECTOR ENDS

INTERRUPTS SEGMENT
ASSUME CS:INTERRUPTS

TIMER: STI ;ENABLE INTERRUPTS
PUSH AX

:PUSH OTHER REGISTERS USED IN INTERRUPT
sHANDLE THE TIMER INTERRUPT
;POP REGISTERS IN REVERSE ORDER OF PUSH

MOV AL,60H 3;SPECIFIC EOI FOR SLAVE
OUT LOH,AL
MOV AL,ODH ;COMMAND TO READ ISR
OUT LOH,AL
IN AL,L0H ;READ ISR
CMP AL,O :CHECK TO SEE IF EMPTY
INZ EXIT :DON'T SEND EOI TO MASTER
MOV AL,64H ;SPECIFIC EOI FOR MASTER
OUT 30H,AL

EXIT: POP AX
IRET

INTERRUPTS ENDS

3SET UP POINTER TO INTERRUPT

2E-¢1

SETTING UP POINTER TO INTERRUPT

MAIN SEGMENT
ASSUME

INIT: CLI
MOV
MOV
MOV
MOV

CS:MAIN,ES:INT_VECTOR

AX,INT_VECTOR
ES,AX

TIMER_INT IP,OFFSET TIMER
TIMER_INT CS,SEG TIMER

3INITIALIZE TIMER AND OTHER PERIPHERALS

s INITIALIZE MASTER 8259A AND SLAVE 82594

EE-E1

INITIALIZING MASTER 8259A AND SLAVE 8259A

3INITIALIZE THE MASTER

MOV
OouT
MOV
ouT
MOV
ouT
MOV
ouT

sINITIALIZE

MOV
ouT
MOV
OUT
MOV
OUT
MOV
OUT
STT

THE

AL,11H
30H, AL
AL,20H
31H,AL
AL,10H
31H,AL
AL,11H
31H, AL

SLAVE

AL,11H
4oH,AL
AL,28H
41H,AL
AL,OUH
41H,AL
AL,01H
41nH,AL

;ICW1 -
3 ICW2 -
3ICW3 —~

;ICWL -~

b

sTCWL -
3ICW2 -
3ICW3 -
STCWl -

3
: ENABLE

;REST OF MAIN PROGRAM CODE GOES

MAIN ENDS

END

INIT

CASCADE MODE, EDGE TRIGGER
INTERRUPT TYPES 32 -39
MASTER HAS ONE SLAVE ON IRH

SPECIAL FULLY NESTED MODE,
NON-BUFFERED, NORMAL EOI

CASCADE MODE, EDGE TRIGGER
INTERRUPT TYPES 40 - U7

SLAVE ID IS 4

CONNECTED TO MASTER IR4
FULLY NESTED MODE,
NON~BUFFERED, NORMAI EOI
INTERRUPTS

HERE

CLASS EXERCISE 13.1

ASSUME THAT YOU HAVE A PROGRAM THAT CONTAINS
THE INSTRUCTION

DIV BL

SINCE YOU DO NOT DO ANY RANGE CHECKING BEFORE THE
OPERATION, THERE {S A POSSIBILITY OF A DIVIDE ERROR.
WRITE AN INTERRUPT PROCEDURE FOR THE D!VIDE ERROR
INTERRUPT THAT LOADS THE AH REGISTER WITH FFH AND

THE AL REGISTER WITH OOH AND THEN RETURN. ALSO
WRITE THE INSTRUCTIONS TO CREATE THE POINTER.

13-34

FOR MORE INFORMATION ...

INTERRUPT STRUCTURE
- PAGE 4-6, iAPX 86/88, 186/188 USER’'S MANUAL

PROGRAMMING THE 8259A (EXAMPLES)
- PAGE 3-186, iAPX 86/88, 186/188 USER’'S MANUAL

13-35

CHAPTER 14
MEMORY AND 10 INTERFACING

e MEMORY ORGANIZATION
e SPEED REQUIREMENTS
e ADDRESS DECODING

8086 MEMORY ORGANIZATION
TO THE PROGRAMMER:

1 MBYTE CAN BE ADDRESSED AS

1 M BYTES OF MEMORY
512 K WORDS OF MEMORY

NO CONSTRAINTS ON BYTE OR WORD MEMORY ACCESSES.
(WORDS CAN BE ON ODD OR EVEN BOUNDARIES)

14-1

4 8086 MEMORY ORGANIZATION)
15 0
7= >0,7 0
% MEMORY ORGANIZED IN 1
TWO BANKS
% ALL ODD ADDRESSES IN
ONE BANK- EVEN ADDRESSES ALIGNED
IN OTHER WORD
¥ BYTE ACCESS IN EITHER BANK . NON-
o2 ALIGNED
WORDS d
£ WORD
% ALIGNED WORD CAN BE
ACCESSED IN ONE BUS CYCLE 10
12
* NON~ALIGNED WORD REQUIRES | 15—
N /-*_1
TWO BUS GYCLES] FFFFA
FFFFD FFFFC
] FFFFF FFFFE
oDD EVEN

14-2

8086 MEMORY INTERFACING

£oh

8284

M/10, RD, WR

ALE
AO-A19, BHE
8282

100

STANDARD ROM,
PROM, EPROM,
RAM, I/0

14-3

STANDARD MEMORY INTERFACE N\

AO-A19 BHE ::>

A1-A19 A1-A19
BHE AO

Ccs CcS

CPU
MODULE

ODD BANK EVEN BANK

v

D8-D15 ::>

< IR VS

/\

BANK SELECTED BY [CONNECTED TO

EVEN AO DO-D7

obDD BHE D8~D156 }

14-4

/ "BANK SELECTION \

AO-A2 BHE >
A1-A2 A1-A2
BHE 1 AO o
3 2
CPU
MODULE s 4
7 ODD BANK A EVEN BANK
< D8-D15 (HI) {} >
< DO-D7 (LO) >
ADDRESS | A2 | A1 | a0 |BHE |UE
BYTE@O
K BYTE&1 /
14-5
[THE 8086 WILL INTERNALLY TRANSFER \

A BYTE FROM ONE SIDE OF ITS DATA BUS TO THE OTHER IF IT NEEDS TO.

e.g. !N ORDER TO MOVE A BYTE OF DATA FROM AN ODD ADDRESS
INTO THE CL REGISTER

AO-A19 BHE >

A1-A19 A1-A19
BHE AQ

U Lo
= >

ODD BANK EVEN BANK

D8-D15

/\

| all

AO-A2 BHE >
<> A1-A2 <> A1-A2
BHE AO
1 0
3 2
cPU
MsB LS8
MODULE
7 ODD BANK 6 EVEN BANK
A i} {}
< D8-D1 [
~ 5 (HI) U
/1
DO-D7 LO >
Ko (LO)

WHAT IS REQUIRED TO WRITE A WORD FROM MEMORY ADDRESS 4?

-

- A

IS THIS AN ALIGNED WORD? J

14-7

~

AO-A2 -BHE >

<>A1 ~A2 <> A1-A2
AO

3 2
CPU
MODULE LsB 4
ODD BANK wse | EVEN BANK

57

<\ D8-D15 (H1) >
<\‘ DO-D7 (LO) >

WHAT IS REQUIRED TO WRITE A WORD FROM MEMORY ADDRESS 57

k IS THIS AN ALIGNED WORD?

~

14-8

STATIC RAM INTERFACE

A17-A18
- BHE A1-A13 A1-A13 A1-A13 A1-A13
ATATATA
o[16[16114
) 7 — A 00‘ 13 13 13
+— A1 A —\/v
A2 P _l—c CE cE L CE CE
8205 [WR—dq we — [9 WE WE [WE
£1 X RD —9 OE —| +d o€ OE —| ¥ OE
E2 b 8K x 8 8K x 8 8K x 8 8K x 8
Ea Ozp
2186 2188 2188 2186
1 »2 »3

m
-
TO 00

35|

))Li
K—] T[

-]
G— °i>2

< D8-D16 >

PROM MEMORY INTERFACING

CURRENT PROM DEVICES

SINGLE 5VOLT POWER REQUIREMENTS
LOW POWER STANDBY MODE
CE/ AND OE/ SELECT LINES

2758 1024 BYTES
2716 2048 BYTES
2732,2732A 4096 BYTES
2764 8192 BYTES
27128 16384 BYTES
27256 32768 BYTES

14-10

ROM

INTERFACE

A1-A14

A1-A14

A1-A14

A1-A14

A19| |A18 A1T7 A18

A0 Oy

A2

T T U0

7.

3.

13

OE

16K x 8
27128

g2 97

82068
o EQ
_‘ ‘[—1 E1

CE

OE

16K x 8
27128

CE

OE

16K x 8
27128

OE

16K x 8
27128

w
i

08-018

14-11

I/0 DEVICE SELECTION

\

IN/JOUT PORTS CAN TRANSMIT BYTES (8 BiTS) OR WORDS (16 BITS).

BYTE I/O PORTS CAN COMMUNICATE ON THE LOW (D0-D7) DATA

BUS LINES OR THE HI (D8-D15) DATA BUS LINES.

EVEN ADDRESSED 10 PORTS TRANSFER DATA ON LOW (D0-D7) DATA

BUS LINES.

ODD ADDRESSED 1/0 PORTS TRANSFER DATA ON HI (D8~-D15) DATA

BUS LINES.

WARNING: CARE MUST BE EXERCISED THAT EACH REGISTER WITHIN
AN 8 BIT PERIPHERAL CHIP IS ADDRESSED BY ALL EVEN

OR ALL ODD ADDRESSES.

J

14-12

8086 1/0 INTERFACE

Ag - Aqg 1BHE
‘>ADDRESS
LATCH BUS
BHE Aq Ao Aq
8086 Dg - D7
A
s .
™ DB - D15
ﬂ \A 4 Ly
€S Ao Cs Ao
8 BIT 8 BIT
PORT PORT
obD 1 0 EVEN
ADDRESS 3 2 ADDRESS

\ DO NOT CONNECT “AO” LINE ON PERIPHERAL TO AO LINE OF ADDRESS BUS.

J

14-13

-

MEMORY SPEED REQUIREMENTS

PROCESSOR MEMORY
¢ ALLOWS MEMORY AND 10 A SPECIFIC AMOUNT o REQUIRES FINITE PERIOD OF TIME TO RESPOND
OF TIME TO RESPOND WITH DATA AFTER IT WITH DATA TO A VALID ADDRESS (Tacc)

{SSUES AN ADDRESS
(MEMORY ACCESS TIME-Tad)

e MEMORY ACCESS TIME IS PROPORTIONAL TO
CLOCK SPEED

“\

14-14

~

CALCULATING PROCESSOR REQUIREMENTS

Tad=3 %Tclcl-Tclav-Tdvcl (PROCESSOR ACCESS TIME)
WHERE

Tclcl = CLOCK PERIOD

Tclav = TIME PERIOD FROM CLOCK TO ADDRESS VALID
Tdvel = SET UP TIME FOR DATA IN

FOR A MINIMUM MODE 8086

5 MHZ 8086

Tclcl = 200 nsec
Tclav = 110 nsec
Tdvcl = 30 nsec

8 MHZ 8086-2

Tclel = 125 nsec
Tclav = 60 nsec

Tdvecl = 20 nsec
Tad =

Tad =

\—

14-15

-

PROCESSOR REQUIREMENTS

CLK / N

Tclcl >

|

ADO-AD1s >< AO-A15 >———-(DATA IN

— Tclav -— l«—— Tdvcl ——-|

Tad

14-16

4)

MEMORY TIMING

ADDRESS BUS >(ADDRESS X

DATA BUS DATA

Tacc !

14-17

(BUS CONFIGURATIONS
(MINIMUM MODE)

8086 MINIMUM MODE 8086 MINIMUM MODE
(MUL.TIPLEXED BUS) (BUFFERED BUS)
A\ —— 8282 ||
8 8282 sogs | > '
ocee | "‘V'—ATCH Jj LATCHl|[—
RAM RAM
EPROM/ROM EFROM/ROM
|| 8286 .
TRANS-) v
CEIVER

14-18

BUS CONFIGURATIONS
(MAXIMUM MODE)

8086 MAXIMUM MODE 8086 MAXIMUM MODE
(BUFFERED BUS) (DOUBLED BUFFERED BUS)
)
1
I
N 8288 8288 1
) BUS BuUS BUFFER
CONTROLLER P:::CONTROLLEN 7
|
8088 8088 :
== =
1
8282 8282 BUFFER
LATCH LATCH
L [J
X 1
RAM | RAM
]
EPROM/ROM _ ! EPROM/ROM
8286] 8288 || TRANS
] TRANS- TRANS- - |
ceveR || CEIVER |\ CE'VER
I
1
14-19

-

WAIT STATES

8086

RAM
EPROM/ROM

8286
TRANS-
CEIVER

IN ANY SYSTEM YOU MUST CONSIDER ANY DELAYS ENCOUNTERED
BY BOTH THE ADDRESS OR THE DATA ON THE "ROUND TRIP”.

J

14-20

SYSTEM TIMING FACTORS

% ANY BUFFERS, LATCHES AND DECODE LOGIC IN THE 8086
SYSTEM MUST BE CONSIDERED IN THE TIMING ANALYSIS

DELAY TIMES:
8282/8286 NON INVERTING 30 NSEC
8283/8287 INVERTING 22 NSEC
8205/LOGIC 18 NSEC

% THESE DELAY TIMES MUST BE SUBTRACTED FROM
THE CPU ACCESS TIME.

14-21

ARE WAIT STATES NEEDED?

IF THE SYSTEM ARCHITECTURE JUST DOES NOT ALLOW THE CPU TO SEE
DATA WITHIN ITS REQUIRED Tad YOU CAN EXTEND THE BUS CYCLE WITH A
WAIT STATE (OR MULTIPLE WAIT STATES).

TO DETERMINE HOW MANY WAIT STATES:

Tdelay ~ TOTAL PROPAGATION DELAY FOR
ALL BUFFER, TRANSCIEVERS, AND LATCHES
IN ADDRESS AND DATA PATHS

EVAULATE
Tad-Tacc-Tdelay*

POSITIVE NEGATIVE

- NO
WAIT STATES
REQUIRED

SOLVE FOR N
N*Tcicl)|RESULT|

14-22

/ 8086 AND 8088 WAIT STATE CHART
5MHZ

MEMORY MATRIX
NO WAITS STATES

MODE MIN MODE MAX MODE
MULTIPLEXED DOUBLE
BUS BUS BUFFERED BUFFERED BUFFERED
STATIC 2114-3 2114-3 2114-3 2114-3
RAM
2141-5 2141-5 2141-5 2141-5
2147 2147 2147 2147
2168 2168 2168 2168
EEPROM 2816 2816 2816 2816
EPROM 2716-2 2716-2 2716-2 2732A
2732A 2732A 2732A
2764 2764 2764 2764
DYNAMIC 2118-7 2118-7 2118-7 2118-7
RAM
2164 2164 2164 2164
14-23

iSBC 86/05 DESIGN EXAMPLE

S0-82

SCONTROL
SIGNALS
8086-2 ALE v
BMHZ !
ADDRESS
- 8282 '>
o=
(748373) 11 T ofoney | [
RAM ROM bD
(4) 2168'S| @ |even| ADDRESS
(4K x 8) SOCKETS DECODING
obp
(PROMS)
EVEN
) cs cS cS
8253 B261A 8265A 8259A
TIMERS usarT || ParaLLEL] [INTERRUPT
CON—
] TROLLER
6268
L] DATA B) S) N I I_»>

— '

14-24

ADDRESS DECODING

EXAMPLE USING BIPOLAR PROMS

+5

L
ADDRESS] 'y 3828A
l nd
— es3 i—J\) LOW BANK
cs4 ——— che seLects
A0 cs1
cs2
N +5
*5VL 3628A :
—pose —’> HIGH BANK
M/0 Cs4 ' GHIP SELECTS
BHE ——d cs2
JL——O cs1
ADVANTAGES DISADVANTAGES
HIGHLY FLEXIBLE DESIGN ALLOWS:
DIFFERENT MEMORY COMPONENTS HIGHER COST (?)
FIELD MODIFICATIONS REDUCED ACCESS TIME

EASY UPGRADE TO NEW MEMORY DEVICES

14-25

CLASS EXERCISE 14.1

WHAT IS THE FIRST ADDRESS OF THE FIRST LOCATION IN THE
2186 #4 ON PAGE 14-97

WHY DO WE NEED ONLY ONE ADDRESS DECODER IN A ROM MEMORY
AS SHOWN ON PAGE 14-11? WHAT MAKES THIS POSSIBLE?

CAN AN 8088 READ A WORD PORT?

POES A 5MHZ 8086 CPU IN MINMODE BUFFERED SYSTEM REQUIRE

WAIT STATES TO ACCESS A 2764 EPROM? WHAT IF IT WERE AN
8MHZ 80867 (2764 Tacc = 250 nsec)

IF A WAIT STATE IS REQUIRED, WHICH CHIP ACTUALLY GENERATES
THE WAIT STATE?

14-26

FOR MORE INFORMATION ...

MEMORY INTERFACING AND ADDRESS DECODING
- AP-87, 80868 SYSTEM DESIGN
AVAILABLE MEMORY COMPONENTS

~ MEMORY COMPONENTS HANDBOOK

RELATED TOPICS ...

IN SOME SYSTEMS THE TIMING OF THE MEMORY STROBES (RD,WR) MIGHT
ALSO BE A CONCERN. AP-67 COVERS THIS CONSIDERATION (Toe) IN DETAIL.

14-27

DAY 4 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL.:

¥ IMPLEMENT AN ENCRYPTOR IN SOFTWARE USING THE XLATB INSTRUCTION

¥ MOVE A BLOCK OF MEMORY USING THE STRING MOVE INSTRUCTIONS

¥ ADD THE PROPER ASSEMBLER DIRECTIVES TO A MODULE SO THAT IT CAN
REFERENCE AND USE AN EXISTING PIECE OF SOFTWARE

% EMULATE ON PAPER AN 8086 INTERFACED TO MEMORY, GENERATING THE
PROPER SIGNALS TO ACCESS A BYTE OR A WORD ON ANY BOUNDARY

% DETERMINE WHETHER A PARTICULAR SYSTEM WILL REQUIRE WAIT STATES
GIVEN THE SYSTEM CONFIGURATION AND THE DEVICE SPECIFICATIONS

% OPTIONALLY DEBUG USING ICE-86

CHAPTER 15
PROGRAMMING TECHNIQUES

e JUMP TABLE (INDIRECT JUMPS)
® BLOCK MOVE (STRING INSTRUCTIONS)
® TABLE LOOK-UP (XLATB INSTRUCTION)

JUMP TABLE
(INDIRECT JUMPS)

PROBLEM

A PROGRAM IS TO BE WRITTEN THAT READS THE VALUE OF AN 8 BIT
INPUT PORT AND TRANSFERS TO ONE OF A SET OF ROUTINES DEPENDING
ON THE VALUE READ. FIVE PROCESSING ROUTINES ARE PROVIDED AS
WELL AS ONE ERROR ROUTINE. IF THE VALUE READ IS IN THE RANGE

OF 0 ... 4 THEN THE PROGRAM SHOULD TRANSFER TO ROUTINE O ...
ROUTINE 4. IF THE INPUT VALUE IS OUT OF RANGE, GREATER THAN 4,

THE PROGRAM SHOULD TRANSFER TO THE ERROR ROUTINE.

¢-§1

LOC

0BJ

0000

0006
0008

0010
0012
0014
0016
0019
001A

001C
001C
001E
001E
0020
0020
0022
0022
oo2u
0024

1C00
1E00
2000
2200
2400
E400
3C04
TT70A
32E4
8BF8
D1ET
2EFF25
Fu
EBFD

EBFB
EBF9

EBF7

ASSEMBLY CODE

LINE SOURCE

1 NAME

2

3 PORT EQU

n

5 CODE SEGMENT

6 ASSUME

7 TABLE DW

8 &

9 START: IN
10 CMP
11 JA
12 XOR
13 MOV
14 SHL
15 JMP
16 EXIT: HLT
17 ERROR: JMP
18
19 ROUTINEO:

20 JMP
21 ROUTINE1:
22 JMP
23 ROUTINEZ:
24 JMP
25 ROUTINES3:
26 JMP
27 ROUTINEY:
28 JMP
29 CODE ENDS

30 END

JUMP_TABLE

0OH

CS:CODE
ROUTINEO,ROUTINE1,ROUTINE2,
ROUTINE3, ROUTINEY
AL,PORT

AL, Y4

ERROR

AH, AH

DI,AX

DI, 1

TABLE[DI]

EXIT

EXIT
EXIT
EXIT
EXIT
EXIT

START

SOLUTION

A TABLE 1S CONSTRUCTED; EACH ENTRY IN THE TABLE

IS THE ADDRESS OF ONE OF THE PROCESSING ROUTINES.
THE FIRST ENTRY IN THE TABLE IS THE ADDRESS OF
ROUTINEO, THE SECOND THE ADDRESS OF ROUTINEL,
AN INDIRECT JUMP INSTRUCTION WITH INDEXED ADDRESSING
WILL UTILIZE THE TABLE.

STEPS

. INPUT VALUE FROM PORT INTO AL

2. CHECK VALUE TO SEE IF IT IS OUT OF BOUNDS.
IF SO TRANSFER TO THE ERROR ROUTINE.

3, ASSUME THAT DI WILL BE USED AS THE INDEX
REGISTER FOR THE INDIRECT JUMP. SET AH
TO ZERO TO MAKE A WORD VALUE

4, MOV AX T0 DI

DOUBLE DI FOR WORD INDEXING

6. JUMP INDIRECT TO THE PROPER ROUTINE

i

JMP INSTRUCTION ADDRESSING
(INDIRECT JUMPS)

e INDIRECT JUMPS USE AN ADDRESS WHICH IS IN A REGISTER OR A
MEMORY LLOCATION.

e INDIRECT JUMPS CAN USE ANY OF THE 8086,88 ADDRESSING MODES.
e ALL JUMP INSTRUCTIONS USE THE SAME MNEMONIC.
EXAMPLES:

JMP CX
JMP WORD PTR [BX]

BLOCK MOVE
(STRING INSTRUCTIONS)

PROBLEM

MANIPULATING LARGE BLOCKS OF MEMORY IS A COMMON AND TIME-CONSUMING
TASK OF COMPUTERS. WRITE A PROGRAM THAT MOVES A BLOCK OF DATA FROM
ONE MEMORY LOCATION TO ANOTHER. THE CODE SHOULD BE EFFICIENT AND FAST.

(MOTIVATION FOR STRING OPERATORS

*

WORD BLOCK MOVE WITHOUT STRING OPERATORS

DATA SEGMENT
SOURCE DW 100 pup (?)
DESTINATION DW 100 pup (7)
DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA
MOV AX, DATA
MOV DS, AX

LEA SI, SOURCE
LEA DI, DESTINATION
MOV CX, LENGTH SOURCE

BLOCK: MOV AX, [8i] ; 12 MICROSECONDS PER WORD
mov i, Ax
ADD S, 2

ADD DI, 2
LOOP BLOCK

15-6

STRING INSTRUCTIONS

BYTE AND WORD ORIENTED ONE BYTE INSTRUCTIONS

USE DS:SI AS SOURCE POINTER
AUTOMATICALLY INCREMENTS/DECREMENTS
USE ES:DI AS DESTINATION POINTER

USE DIRECTION FLAG BIT

DF = U PROCEEDS TO HIGHER MEMORY ADDRESS
DF = PROCEEDS TO LOWER MEMORY ADDRESS

ADDITIONAL INSTRUCTION

$TD
CLD
15-7
STRING INSTRUCTION
MOVSB i[DI] = [SI]
MOVSW iSl<-81+1 (+2 FOR WORD)
iDI<-DI+1 (+2 FOR WORD)
ES—— j———— DS
o] — "' RN — [51]

™~ ~_|

ASSUMING DF=0

CMPSB
CMPSW

SCASB
SCASW

LODSB
LODSW

STOSB
STOSW

OTHER STRING INSTRUCTIONS

COMPARE TWO BLOCKS OF MEMORY

SCAN FOR AN ITEM IN MEMORY

LOAD AX/AL WITH STRING ITEM

STOREAX/AL IN MEMORY

NOTE: THESE INSTRUCTIONS PERFORM ONE BYTE OR WORD OPERATION ONLY.

J

REPEAT INSTRUCTION PREFIX

* ONE BYTE INSTRUCTION PLACED BEFORE STRING INSTRUCTION TO FORM
BLOCK STRING OPERATIONS

* FOR STRING INSTRUCTIONS THAT DO NOT AFFECT THE FLAGS:

MOVS
REP STOS
LODS

* FOR STRING INSTRUCTIONS THAT DO AFFECT THE FLAGS:

=~ REPNZ, REPNE

- REPZ, REPE CMPS
SCAS

\

15-10

OPERATION OF THE
REP PREFIX

r—-———7 1 S1/01, CX
| ofrevious = [ANDDF woulD
INSTRUCTIONS TYPICALLY BE

INITIALIZED HERE

L__I__J

REPEAT
PREFIX

ABSENT

NORMAL
SYSTEM
INTERRUPTY
SERVICE

PENDING

NOTPENDING

-

DECREMENT
Ccxevy

STRING DF DELTA

BYTE [} 1

A BYTE 1 -1

/| worp (] 2

WORD 1 -2

/

ADJUST PREFIX 1
$i/o REPE | o
BY DELTA RePz | 1
REPNE | o
REPNZ| ¢

7

/

PRESENT REPEAT

PREFIX

15-11

e 2

EXAMPLES OF BLOCK OPERATIONS

BLOCK MOVE

DATA SEGMENT

SOURCE DW 100 DUP(?)

DESTINATION DW 100 DUP(?)

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS: DATA, ES: DATA
MOV AX, DATA
MOV DS, AX
MoV ES, AX
CLD
LEA Si, SOURCE
LEA DI, DESTINATION
MoV CX, LENGTH SOURCE

REP MOVSW ;3.4 MICROSECONDS PER
sWORD

\ J

15-12

TABLE LOOK UP
(XLATB INSTRUCTION)

PROBLEM
ASSUME WE HAVE A TEMPERATURE SENSOR ATTACHED TO AN 8 BIT ACCURACY

ANALOG TO DIGITAL CONVERTER. THIS CONVERTER IS ATTACHED TO PORT 12

OF OUR 8086 SYSTEM. UNFORTUNATELY, THE SENSOR DOES NOT PRODUCE A
LINEAR OUTPUT

WE WANT TO WRITE A PROCEDURE THAT INPUTS FROM THIS PORT AND QUICKLY
CONVERTS THE INPUTTED VALUE TO THE CORRECT TEMPERATURE VALUE.

SOLUTION

USE A CONVERSION TABLE AND "LOOK-UP* THE CORRECT VALUE.

15-13

TABLE LOOK-UP

CONVERSION TABLE
SENSOR RESPONSE

0 [
200} .
------- 7(100,137) s0 96

1

100 - - .(so.ols)

ACTUAL ! !
TEMPERATURE ! ' 100 137
Lo :

° 50 100 200 260
INPUTTED VALUE

OFFSET INTO TABLE = VALUE READ

DATA IN TABLE = CORRECT TEMPERTURE

15-14

G1-G1

-—
O O~V ZWN =

0000 1E 11

0001 53 12
0002 B8wwm- R 13
0005 3EDS 14
0007 8D1£0000 15

16
000B E40C 17
000D D7 18
000E 5B 19
000F 1F 20
0010 CB 21

22
—_ 23

24

ASSEMBLY COMPLETE, NO ERRORS FOUND

TABLE LOOK-UP

SOURCE

SENSOR
DATA1
TABLE
DATA Y
CODE1

INPUT

AGAIN:

INPUT
CODE1

NAME TABLE LOOKUP

EQU 127
SEGMENT
DB 0,2,4,6,8,10,12,14,16,18,20,23,25
DB 27,29,30,32,34,35 ;0tC.
ENDS
SEGMENT
ASSUME CS:CODE1,DS:DATA1
PROC FAR
PUSH D5 ;Save registers except AX
PUSH BX
MOV AX,DATA1 ;Initialize segment register
MOV DS, AX
LEA BX, TABLE ;Th2 XLAT inst. requires BX to
; point to the lookup table.
IN AL, SENSOR ;Get input from sensor.
XLATB ;Linearized result is now in AL
POP BX
POP DS
RET
ENDP
ENDS
END

\
SOLUTION

THE XLATB INSTRUCTION USES THE AL REGISTER AS AN INDEX INTO
A BYTE TABLE. THE BYTE ACCESSED IS PUT IN THE AL REGISTER.

AH AL "
BX

/
_/7/

\/

\ XLAT IS USEFUL FOR MANY CONVERSIONS E.G., ASCIl TO EBCDIC j

N OO s N = 0O

15-16

CLASS EXERCISE 15.1

WRITE A PROCEDURE THAT WILL ENCRYPT THE CONTENTS OF A BUFFER
WHICH CONTAINS NUMBERS IN HEX ASCIl FORMAT SO THAT:

30H - ASCIl 0 BECOMES AN ASCII &
31H - LA " . ”
32H- * .) -
338H- "
34H-
35H~-
36H-
37H-
38H -
39H -

a
O ® NG A ON
L]
L]
L]
D 2O WO Ny s O

USE THE XLAT B INSTRUCTION. ASSUME THAT WHEN THE PROCEDURE 1S
CALLED THE ES AND S! REGISTERS CONTAIN THE ADDRESS OF THE

BUFFER AND THE CX REGISTER CONTAINS THE NUMBER OF THE CHARACTERS
IN THE BUFFER.

J

15-17

FOR MORE INFORMATION . ..

BRANCH TABLE (EXAMPLE)
~ APPENDIX G, ASM86 LANGUAGE REFERENCE MANUAL

STRING AND XLATB INSTRUCTIONS
—- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

-~ CHAPTER 3, iAPX 86/88, 186/188 USER’'S MANUAL

STRING AND XLATB INSTRUCTIONS (EXAMPLES)

= PAGE 3-191, IAPX 86/88, 186/188 USER'S MANUAL

RELATED TOPICS ...

THERE ARE MORE 8086 INSTRUCTIONS THAT ARE NOT DISCUSSED IN THIS
WORKSHOP. IT WOULD BE A GOOD IDEA TO LEAF THROUGH THE COMPLETE
LIST IN CHAPTER 6 OF THE ASM86 LANGUAGE REFERENGE MANUAL.

15-18

CHAPTER 16
MODULAR PROGRAMMING

PUBLIC DECLARATIVE
EXTRN DECLARATIVE
COMBINING SEGMENTS
e LINK86

e LOC86

WHAT IS MODULAR PROGRAMMING?

30K
PROGRAM

2K 2K s s s s 0 o 0 2K

¢« PROBLEM IS BROKEN INTO MANAGEABLE PARTS.

* MODULES ARE DEVELOPED CONCURRENTLY.

k e EASIER TO DEBUG AND MAINTAIN. J

16-1

4)

SOFTWARE DEVELOPMENT PROCESS

oascy
SOUACE [MANS- | -
bt -1 e wopiny

r DR |
1
W[s — s r==== r-——3
| wirn | suacure !
1 s s0UND 0ERvO eacure
- L g oo B
r"_—“l [| O |
. | apircy
e r., U5k] o \'_ -5 R [
Il_ J | e | ! ABsOLUTE | !
——= e bo] OBESL i oo o) QNS o ones |
[=——= | iy i | HODULE i 1
| 1 onmcy [[E—| | IR |
ol Sl R
Lol

| sosn |
wiNA |
HEX
LoADER |

I

[|

\ J

LINKAGE

THE LINK86 PROGRAM COMBINES RELOCATABLE OBJECT FILES TO ACT AS IF

THEY WERE CREATED AT ONE TIME. ALL REFERENCES BETWEEN MODULES
ARE RESOLVED.

LINK86 ALLOWS A PROGRAM TO BE BROKEN UP INTO MODULES SO THAT THE
ENTIRE PROGRAM DOES NOT HAVE TO BE RETRANSLATED EVERY TIME CHANGES
ARE MADE.

RELOCATION

THE ABILITY TO ASSIGN MEMORY ADDRESSES TO A PROGRAM. AFTER IT HAS
BEEN TRANSLATED.

ASM86 AND PLM86 MARK SOME ADDRESSES AS BEING RELOCATABLE. THE
ADDRESSES WILL BE CONVERTED TO ABSOLUTE ADDRESSES BY THE
LOC86 PROGRAM.

THE QUESTION;
HOW TO REFERENCE LABELS AND VARIABLES IN OTHER
ASSEMBLED MODULES ?

NAME MOD_A
SEGA SEGMENT

ASSUME CS:SEGA
:,

CALL PROCA

.

SEGA ENDS
| END

NAME MOD_B

SEGB

PROCA

PROCA
SEGB

SEGMENT
ASSUME CS1ISEGB

PROC FAR

PROCA 1S UNDEFINED IN THE SEGA MODULE. THE TWO MODULES
WOULD HAVE TO BE REASSEMBLED TOGETHER TO ALLOW THE

REFERENCE TO PROCA

16-5

"HE ANSHER:

BY USING PUBLIC AND EXTRN DECLARATIVES WITH THE TWO MODULES

LINKB6 CAN RESOLVE EXTERNAL REFERENCES

NAME MOD_A
EXTRN PROCA:FAR

SEGA SEGMENT
ASSUME CS:iSEGA

i

CALL PROCA

SEGA ENDS
END

NAME MOD.B

PUBLIC PROCA

SEGB SEGMENT

ASSUME CS:SEGB
PROCA PROC FAR
PROCA ENDP
SEGB ENDS

END

16-6

PUBLIC AND EXTERNAL DECLARATIVES

PUBLIC MAKES A NAME AVAILABLE TO OTHER MODULES.

EXTRN MAKES NAMES DEFINED ELSEWHERE USABLE IN THIS MODULE.

EXAMPLES:
PUBLIC XYZ, WP, ERS
EXTRN F00: BYTE *

ATTRIBUTES
NEAR, FAR
BYTE, WORD, DWORD
ABS

8-91

MAIN PROGRAM

8086,/8087,/8088 MACRO ASSEMBLER DEMO 09/01/80 PAGE 1
I LOC OBJ LINE SOURCE
1 ;THIS ROUTINE INPUTS AND OUTPUTS TO THE I/O BOX OF THE MDS.
2 ;IT USES AN EXTERNAL DELAY ROUTINE TO DELAY 1 SECOND
3 ;BETWEEN A INPUT AND A SUBSEQUENT OUTPUT.
4
5 NAME DEMO
6
7 $tMUST DECLARE TYPE OF EXTRN
8
— 9 STACK SEGMENT
0000 (10 10 oW 10 pUP (?)
2?27
)
0014 11 TOP EQU THIS WORD
— 12 STACK ENDS
13
—— 14 CODE SEGMENT
15 ASSUME CS :CODE, SS:STACK
2710 16 SECOND EQU 10000 ; DELAY PARAMETER FOR 1 SECOND
17
0000 BB-——- R 18 START: MOV AX,STACK
0003 BEDO 19 MOV SS,AX
0005 8D261400 20 LEA SP, TOP
0009 BA1027 21 MOV DX, SECOND
E400 22 LOOP_:
2 ;PUSH DELAY ONTO STACK

6-91

SUB PROGRAM

8086,/8087/8088 MACRO ASSEMBLER DEMO2 09/01/80 PAGE

LOC OBJ LINE SOURCE
1 ;THIS IS THE DELAY ROUTINE. THE ROUTINE WILL DELAY N*
2 ;100 MICRO SECONDS. N IS PASSED IN ON THE STACK.
3
4
5
6 s DECLARE DELAY AS A GLOBAL NAME
7
———— 8
9
0000 10 $FAR PROC.; PARAMETER AT BP+6
0000 51 11 $SAVE CX, NOW PARAMETER AT BP+8
0001 50 12 $}SAVE AX, NOW PARAMETER AT BP+10
0002 55 13
0003 BBEC 14 MOV BP,SP
0005 8B460A 15 MOV AX, {BP+10] sGET "N" OFF STACK.
0008 0BCO 16 OR AX, AX $CHECK FOR 0
000A 7407 17 JZ EXIT sIF 0, QUIT PROCEDURE
000C B178 18 LOOP_: MOV CL, 78R ;TIME DELAY FOR 100 MICRO SECOND
000E D2E9 19 SHR CL,CL
0010 48 20 DEC AX
0011 75F9 21 JNZ LOOP __
0013 sp 22 EXIT: POP BP
0014 58 23 POP AX
0015 59 24 POP CcX

CA0200 25 RET 2

26 DELAY ENDP
27 PRO ENDS
28 END

COMBINING SEGMENTS

8EG A
__________________ 1
""""" l
______________ -
_______ .J [|
—————————— - ! !
"""""" | | |
________ MOD 1 N 00—2* MOD 3' MOD 4* MOD 6*
») SEGQG A SEGQ A SEG A SEGQ A SEG A
ONE
LOGICAL
SEGMENT

USES NEAR CALLS AND JMPS

MANY MODULES

ONE PHYSICAL SEGMENT

16-10

G)MBINING LOGICAL SEGMENTS INTO A PHYSICAL SEGMEN\T

SEGA SEGHENT PUBLIC
ASSUME €S : SEGA
SEGA ENDS
END
SEGA SEGMENT PUBLIC
ASSUME €S :SEGA
SEGA ENDS
END

16-11

PLACEMENT OF SEGMENTS WITH PUBLICS

S —

SEGA FroM
MODULE #1

SEGA FroM
MODULE #2

“______————ALL OFFSETS MUST
BE ADJUSTED

ALL REFERENCES ARE WITHIN ONE PHYSICAL SEGMENT; MEAR

JUMPS AND CALLS CAN BE USED,

16-12

£€1-91

8086/8087/3388 MACRO ASSEMBLER

LOC OBJ LINE
1
2
3
4
5
6
7
8
———— 9
0000 (10 10

?2?7?7?

)

0014 11
———— 12
13
——— 14
15
2710 16
17
0000 B8---- R i8
0003 BEDO 19
0005 8D261400 20
0009 BA1027 21
000C E400 22
000E 52 23

MAIN PROGRAM

DEMO 09/01/80 PAGE 1

SOURCE

;THIS IS THE SAME ROUTINE AS SHOWN EARLIER.
1 IT NOW CONTAINS A PUBLIC CODE SEGMENT SO THAT
; NEAR CALLS AND JUMPS CAN BE USED.

;MUST DECLARE TYPE OF EXTRN

STACK SEGMENT
DW 10 pupP (?)

TOP RQU THIS WORD
STACK ENDS

ASSUME CS : CODE, SS :STACK

SECOND EQU 10000 JDELAY PARAMETER FOR 1 SECOND
START: MOV AX, STACK

MOV SS,AX

LEA SP, TOP

MOV DX, SECOND
LOOP_: 1IN AL, 0

PUSH e ;PUSH DELAY ONTO STACK

y1-91

8086/8087/8088 MACRO ASSEMBLER

LOC O0BJ

0000

0000 51
0001 50
0002 55
0003 8BEC
0005 8B4608
0008 OBCO
000A 7407
000C B178
000E D2E9
0010 48
0011 75F9
0013 Sp
0014 58
0015 59
0016 C20200

LINE

VORI ANEWN -

SUB PROGRAM

DEMO2 09/01/80 PAGE 1
SOURCE

;THIS IS THE DELAY ROUTINE. THE ROUTINE WILL DELAY N*
;100 MICRO SECONDS. N IS PASSED ON THE STACK.

NAME DEMO2

;DELAY IS A PUBLIC NAME
3sBOTH SEGMENTS SHARE SAME NAME

sNEAR PROC.; PARAMETER AT BP+4

PUSH cxX) ;SAVE CX, NOW PARAMETER AT BP+6
PUSH AX ;SAVE AX, NOW PARAMETER AT BP+8
PUSH BP
MOV BP,SP
MOV AX, [BP4+8] ;GET "N" OFF STACK FOR DELAY
OR AX,AX s:CHECK FOR 0
Jz EXIT ;IF 0, QUIT PROCEDURE
LOOP_: MOV CL,78H ;TIME DELAY FOR 100 MICRO SECOND
SHR CL,CL
DEC AX
JINZ LOOP _
EXIT: POP BP
POP AX
POP cx
RET 2

s

_

REFERENCING EXTERNAL DATA (ONE ITEM)

DATA

BUFFER
WBUFFER
DATA

CODE

BEGIN:

CODE

NAME MOD1
SEGMENT

PUBLIC BUFFER, WBUFFER

DB 100 DUP(?)

DW 100 DUP(?)

ENDS

END

NAME MOD2

EXTRN BUFFER:BYTE

SEGMENT

ASSUME CS:CODE,DS: SEG BUFFER
MOV AX,SEG BUFFER

MoV DS, AX

MoV AL, BUFFERISI]

ENDS

END BEGIN

16-15

-

REFERENCING EXTERNAL DATA (MULIPLE ITEMS)

DATA

BUFFER
WBUFFER
DATA

DATA

DATA
CODE

BEGIN:

CODE

NAME MOD1

SEGMENT PUBLIC

PUBLIC BUFFER, WBUFFER
DB 100 DUP (?)

DW 100 DUP(?)

ENDS

END

NAME MOD3

SEGMENT PUBLIC

EXTRN BUFFER:BYTE, WBUFFER: WORD
ENDS

SEGMENT

ASSUME CS:CODE,DS:DATA
MoV AX,DATA

MOV DS, AX

MOV AL, BUFFERISI]
MoV WBUFFER, DX

ENDS

END BEGIN

16-16

\.

DEVELOPMENT CYCLE WITH LINK86 AND LOC86

LINKSS /LOCBS
INPUTS outPuTs/ INPUT
LINKSS L
COMMAND COMMAND
AND
ARSOLUTE CONTROLS CONTROLS
MODULES BOUND LOCATED
oA ABSOLUTE
LINKED 0BJECT
OBJECT { MODULE
MODULE
RELOCATABLE
MODULES || Linkes
. ERROR EAROR
. MESSAGES MESSAGES
PUBLIC SYMBOL
BLic avua /—\ /-‘§
REFERENCES
' DIAGNOSTIC DIAGNOSTIC
INFORMATION (NFORMATION
LIBRARIES

L

16-17

r

LINK86 SYNTAX

~RUN LINK86 FILENAME,FILENAME[,...][TO FILENAME|[NO MAP]

[PRINT (FILENAME]]
[@mo [ORDER(SEGMENTS(SEGNAME)...]]

CONSOLE
NESSAGES
BOUND
»| osiect
MODULE
INVOCATION
LINE CONTROLS
PRINT FILE
——— WITHSYMBOL
' ABLE “.MP1
:——I 8IND
OBJECY ! — —— e — s s e s e e s e ot .
QoL |1 uwee | —- WO BIND
L
L —2 LINKED
OBJECT
MODULE
*LNK®
CONSOLE
MESSAGES PRINT
»| CFite
“MP1"

16-18

-

LOC86 SYNTAX

~RUN LOC86 FILENAME [TO FILENAME [PRINT (FILENAME)]

No MAR]

[ADDRESSES(SEGMENTS(segment G..23
[ORDER(SEGMENTS(segment [,..] J]
[BOOTSTRAR]

BTART]

[MAME (MODNAME]]

[INITCODE [{ADDRESS)]]

INVOCATION
LINE CONTHOLS

L
I ABSOLUTE
SOl |——| 1ocee ——| “onitci
“0puLE MODULE
T |
PRINY
FILE
WEILE
CONSOLE
MESBAGES
16-19

USING LINK86 AND LOCS86

THE PROBLEM:

* MESSAG.OBJ 1S A PROGRAM THAT USES THE ROUTINES IN
READ,.OBJ anp PRINT.0BJ To INPUT AND OUTPUT
CHARACTER(S) .

* MESSAG.0BJ CONTAINS THE FOLLOWING SEGMENTS;
STACK, CODE AND DATA.

* THE SEGMENTS ARE TO BE LOCATED WITH THE STACK SEGMENT
AT 200H, THE cODE SEGMENT AT 300H AND THE REMAINING
SEGMENTS FOLLOWING IN ANY ARBITRARY ORDER.

16-20

THE SOLUTION:

RUN! LINKS6 MESSAG.OBJ,READ.OBJ,PRINT,0BJ

RUN LOC86 MEssAG.LNK ADDRESSES(SEGMENTS(sTack(2001),cope(3001)))

1. RUN IS NECESSARY FOR SERIES 111 ONLY,

16-21

CLASS EXERCISE 16.1

ADD THE ASSEMBLER DIRECTIVES THAT ARE NECESSARY FOR THESE
TWO MODULES TO BE LINKED TOGETHER

NAME MODA NAME MODB
DATA SEGMENT 8_CODE SEGMENT
USEFUL_DATA e ? ASSUME CS:B_CODE
DATA ENDS
A_CODE SEGMENT
ASSUME C8:A_CODE MoV AL, USEFUL DATA
HANDY PROC FAR -
MOV AX, 0 CALL HANDY
RET
HANDY ENDP
A_CODE ENDS B_CODE ENDS
END END

16-22

FOR MORE INFORMATION ...

LINK8®6

- iAPX 86,88 FAMILY UTILITIES USER’S GUIDE
LOCS86

- iAPX 86,88 FAMILY UTILITIES POCKET REFERENCE CARD
COMBINING SEGMENTS , PUBLIC AND EXTRN DECLARATIVE

- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...

LIB86 IS A UTILITY PROGRAM TO MANAGE COLLECTIONS OF DEBUGGED MODULES.
(SEE THE iAPX 86,88 FAMILY USER’S GUIDE)

THERE ARE OTHER WAYS OF COMBINING AND MANIPULATING SEGMENTS DURING
ASSEMBLY, LINK, AND LOCATE. CLASSES AND GROUPS ARE TWO SUCH FACILITIES
PROVIDED BY ASM86. CLASSES ARE A WAY OF LOCATING A GROUP OF SEGMENTS
AT SOME PHYSICAL ADDRESS.THIS IS MOST OFTEN USED TO SEGREGATE ROM~-BASED
SEGMENTS FROM RAM-BASED SEGMENTS. GROUPS ARE A WAY OF COMBINING
DIFFERENT LOGICAL SEGMENTS INTO ONE PHYSICAL SEGMENT. IT WORKS
SIMILARLY TO THE PUBLIC SEGMENT COMBINE TYPE EXCEPT THAT THE COMBINING
SEGMENTS MAY HAVE DIFFERENT NAMES. SEE CHAPTER 2 OF THE ASM86 LANGUAGE
REFERENCE MANUAL.

16-23

_/

CHAPTER 17

INTRODUCTION TO THE iAPX 186, 188 MICROPROCESSOR

e DESCRIPTION
e ENHANCEMENTS
e NEW INSTRUCTIONS

e PERIPHERALS

TYPICAL iAPX 86,88 SYSTEM

READY
LOGIC

READY

IAPX
86,88

DECODE

LOGIC

-

ADDRESS BUS

vl

U

o

A

13

INTERRUPT DMA SYSTEM S8YSTEM
CONTROLLER TIMER CONTROLLER MEMORY)
K DATA BUS

>

)

SAME SYSTEM USING THE iAPX 186, 188
ADDRESS BUS
PCS
cs 6/
\/ Y
iAPX 186
SYSTEM SYSTEM
MEMORY 170
DATA BUS

>

~

iAPX 186 BLOCK DIAGRAM

“A CPU BOARD ON A SINGLE SILICON CHIP"

A0H
YYyY v oy
INTER-
clock |»| cpu s TIMERS
INTERNAL BUS
4
Yy
cufrmsl.s sgré'():r
LOGIC

A [

Yy 1

|

hV4

N Z
A4

Combines 10 of the most common IAPX 86 system
components into one

17-3

_

REGISTER BLOCK
T e

| Ax Ay A

I ex| By B,

:cx (A T

l [V DII Dy

| [

| ap

| 8t

|]

i

i P

: STATUS

| cs

| 83

: DS

" £8

O,
| conTROL BLOCK POINTER |

iAPX 186 PERIPHERAL INITIALIZATION

0O On-chip peripherals are controlled via a block of 16-bit regislers
0O The block uses 258 byles of address space
0O Reglsters are memory or /O mapped
0O Perlpherals are located at the lop of /O space afler reset (0FF00H — OFFFFH)

0 256 byle block Is relocalable anywhere In the 1 megabyle memory
space or 84K /O space after inllializallon

7 MEMORY OR /O MAPPED

15

DMA CONTROL

CIHHP SELECT CONTROL

TIMER
CONTROL

INTERRUPT
CONYROL

258 BYTES

/ IAPX 186,188 INTERRUPT CONTROL UNIT BLOCK DIAGRAM \

TIMER TIMER TIMER DMA DMA
0 1 2 0 1 INTO INT1 INT2 INT3 NMI
' | |
TIMER | INTERRUPT
CONTROL REG. REQUEST REG.
DMA 0 B INTERRUPT
CONTROL REG. - MASK REG.
DMA 1 _ .| IN-SERVICE
CONTROL REG. - REG.
EXT. INPUT 0 :> ":,Lfg:#? P PRIORITY
CONTROL REG. RESOLVER MASK REG.
EXT. INPUT 1 | INTERRUPT
CONTROL REG. STATUS REG.
EXT. INPUT 2 VEGTOR
CONTROL REG. GENERA-
EXT. INPUT 3 TION
CONTROL REG. LOGIC
INTERRUPT
REQUEST TO
PROCESSOR N
< ADDRESS/DATA >
(VvV j
17-5
(iAPX 186,188 INTERRUPT CONTROL UNIT \

ACCEPTS INTERRUPTS FROM INTERNAL SOURCES (DMA, TIMERS) AND
FROM 5 EXTERNAL PINS (NMI + 4 INTERRUPT PINS)

PROVIDES FULLY NESTED, SPECIAL FULLY NESTED FEATURES OF
THE 8259A

EXPANDABLE TO 128 EXTERNAL INTERRUPTS BY CASCADING
MULTIPLE 8259A’S

- iAPX 186 CAN BE CONFIGURED TO SUPPORT TWO MASTER 8259A'S

EIGHT DISTINCT PRIORITY LEVELS

PROGRAMMABLE PRIORITY LEVEL FOR EACH INTERRUPT SOURCE

LEVEL OR EDGE TRIGGERED PROGRAMMABLE MODES FOR EACH
EXTERNAL INTERRUPT SOURCE.

- /

r

iAPX 186,188 TIMER/COUNTER BLOCK DIAGRAM

O AD Ty [DMA
iN | hout iNn A hout —> REQ.
i T [T 1)
INT. > INT. INT.
REQ. REQ. REQ.
T20UT
r Y
TmMERo | . | TIMER1
MAX COUNT VALUE MAX COUNT VALUE TIMER 2
A A
MAX COUNT VALUE MAX COUNT VALUE MAX COUNT VALUE
MODE/CONTROL MODE/CONTROL MODE/CONTROL
CcLOCK —i} J{E @
) ADDRESS/DATA BUS 3
ALL 16 BIT REGISTERS

(

iAPX 186 TIMER FEATURES

3 INDEPENDENT 16-BIT PROGRAMMABLE TIMER/COUNTERS

(64K MAX COUNT)

TIMERS COUNT UP
TIMER REGISTERS MAY BE READ OR WRITTEN AT ANY TIME
TIMERS CAN INTERRUPT ON TERMINAL COUNT VIA INTERNAL

INTERRUPT CONTROLLER

TIMERS CAN HALT OR CONTINUE ON TERMINAL COUNT

TIMER 0 AND TIMER 1 OPTIONS:
- ALTERNATE COUNT BETWEEN INTERNAL MAX COUNT REGISTERS
- RETRIGGER ON EXTERNAL EVENT
~ COUNT INTERNAL CLOCK/EXTERNAL PULSES

TIMER 2 OPTIONS:

~ CLOCK COUNTER (REAL-TIME CLOCK, TIME DELAY)
- CLOCK PRESCALER FOR OTHER TWO TIMERS
~ DMA REQUEST SOURCE

MAXIMUM CLOCK RATE: 2 MHz (1/4 CPU CLOCK FREQUENCY)

_/

17-8

\

CHIP SELECT/READY GENERATION BLOCK DIAGRAM

:-Ready T Upp; ;le-mow ES

1
: d ' '® [
" Bits ; Base address : from FFFFF down |—7£1—~>

Range: 1K to 256K (1K, 2K, 4K, ..., 256K)_l

| IR Wuhpuieg il uks g Al B Sy

rReady T Mid range memory CS -:

" Bits N Base address : 4X selected range i / NS
| Range: from 2K to 128K | 4 N

L . 1 AContigous memory pages_ _ _ _ _ d

MRoady | Lower memoryCS 1 o~

: Bits Base address : from 0 up : —ﬁ%—b (Ko}
L) Range: 1K to 256K (1K, 2K, 4K, ..., 256K) -

-
]] . !
; Bits Base address : any 1K byle boundary | ——74—>7 ()Jrcs

L ! Range: 128 Bytes for each peripheral 3

:'n;'a}iy - ’:
IGenemtlon i
ILoglc

L(Wall states) _:

_J

17-9

iAPX 186,188 CHIP SELECT/READY GENERATION LOGIC

e PROVIDES CHIP SELECT AND WAIT STATES FOR
UP TO 6 MEMORY BANKS

e PROVIDES CHIP SELECT AND WAIT STATES FOR UP TO
7 PERIPHERAL DEVICES

e 0-3 WAIT STATES CAN BE PROGRAMMED FOR EACH RANGE

17-10

f

iAPX 186, 188 DMA CONTROLLER BLOCK DIAGRAM

\

ADDER CONTROL
DDER/SUBTRACTOR |
20 BIT ADDER/SUBTR: Loaic TIMER REQUEST
l pRa1
@ REQUEST -
SELECTION |

]'mmsrsn COUNTERCH. 1 |« Loaic "RED
DEST. ADRS. POINTER CH. 1

SRC. ADRS. POINTERCH. 1 DMA I
CONTROL

Jmmsren COUNTER CH.0 b
DEST. ADRS, POINTER CH. 0}«
SAC. ADRS. POINTER CH. 0 |«

1

CHANNEL CONTROL WORD 1
CHANNEL CONTROL WORD 0

17-11

IAPX 186, 188 DMA CONTROLLER FEATURES

TWO INDEPENDENT HIGH-SPEED CHANNELS

SUPPORTS ALL COMBINATIONS OF TRANSFER MODES

- MEMORY-TO-MEMORY
- MEMORY TO-1/0
~ 1/0-TO-MEMORY
- V0-TO-1/0
BYTE OR WORD TRANSFERS
= WORDS CAN BE TRANSFERRED TO/FROM ODD OR EVEN ADDRESSES

20-BIT SOURCE AND DESTINATION POINTER FOR EACH CHANNEL
- CAN BE INCREMENTED/DECREMENTED INDEPENDENTLY DURING TRANSFER

16-BIT TRANSFER COUNTER

- PROGRAMMABLE TERMINATE AND/OR INTERRUPT RBQUEST
WHEN COUNTER REACHES 0

TWO BUS CYCLE TRANSFER

DMA REQUESTS CAN BE GENERATED BY TIMER 2

2MBYTE/SECOND MAXIMUM TRANSFER RATE

_

17-12

iAPX 186, 188 RELATIVE PERFORMANCE
(8 MHz STANDARD CLOCK RATE)

Instruction 8086 (5MHz) | 8086-2 (BMHz)
MOV REG TO MEM 2.0-2.9X 1.2-1.8X
ADD MEM TO REG 2.0-2.9X 1.2-1.8X
MUL REG 16 >5.4X >3.4X
DIV REG 16 >6.1X >3.8X
MULTIPLE (4-BITS)
SHIFT/ROTATE MEMORY 3.1-3.7X 1.95-2.3X
CONDITIONAL JUMP 1.9X 1.2X
BLOCK MOVE 3.4X 21X
(100 BYTES)

OVERALL: 2x PERFORMANCE OF 5 MHz iAPX 86
1.3x PERFORMANCE OF 8 MHz iAPX 86

NOTE: SAME COMPARISONS APPLY TO iAPX 188 and iAPX 88

17-13

iAPX 186, 188 CPU ENHANCEMENTS

EFFECTIVE ADDRESS CALCULATIONS(EA)

- CALCULATION OF BASE + DISPLACEMENT + INDEX
- 3 - 6X FASTER IN THE iAPX 186,188

16-BIT INTEGER MULTIPLY AND DIVIDE HARDWARE
~3X THE 8MHz iAPX 86, 88

STRING MOVE
- 2X THE 8MHz iAPX 86,88

TRAP ON UNUSED OPCODES

—- PRE-DEFINED INTERRUPT VECTOR

MULTIPLE-BIT SHIFT/ROTATE SPEED-UP

~ 1.6 - 2.56X THE 8MHz iAPX 86,88

NEW INSTRUCTIONS

17-14

COMPATIBILITY WITH iAPX 86,88

e OBJECT CODE COMPATIBLE WITH THE iAPX 86,88

¢ LANGUAGES

- ASM, PL/M, PASCAL AND FORTRAN INCORPORATE 186 CONTROL
TO SUPPORT ENHANCED INSTRUCTION SET.

¢ DEVELOPMENT SYSTEMS
~ SERIES Il

- INTEGRATED INSTRUMENTATION IN-CIRCUIT EMULATION (I2ICE)

17-15

NEW iAPX 186, 188 INSTRUCTIONS

* SHIFT/ROTATE IMMEDIATE

= SHIFT OR ROTATE BY AN 8-BIT UNSIGNED IMMEDIATE OPERAND

SHL AX, 12
ROR BL, 4
SAR DX, 3
RCR XYz, 2

17-16

~

e MULTIPLY IMMEDIATE (iMUL)

~ IMMEDIATE SIGNED 16-BIT MULTIPLICATION WITH 16-BIT RESULT

- IMMEDIATE OPERAND CAN BE A 16-BIT INTEGER OR A SIGNED
EXTENDED 8-8IT INTEGER

- USEFUL WHEN PROCESSING AN ARRAY INDEX

REG16 <— REG/MEM 16 * IMMED 8/16

IMUL BX, Si, 5 ;BX= Sl *5
IMUL S|, -200 ;Sl=8l* =200
IMUL D|, XYZ,20 DI=XYZ * 20

17-17

PUSH IMMEDIATE (PUSH)

- PUSHES AN IMMEDIATE 16-BIT VALUE OR A SIGNED EXTENDED 8-BIT
VALUE ONTO THE STACK

PUSH 50 :PLACE 50 ON THE TOP
;OF THE STACK

o PUSH ALL/POP ALL (PUSHA/POPA)

~ PUSHES/POPS Aitt 8 GENERAL PURPOSE REGISTERS
ONTO/OFF THE STACK

INT_SRV: PUSHA :SAVE REGISTERS
.
L
POPA :RESTORE REGISTERS
IRET

17-18

* BLOCK 170 (INS,0UTS)

-~ MOVES A STRING OF BYTES OR WORDS BETWEEN MEMORY AND AN

1/0 PORT
INS ouTS
MEMORY MEMORY
ox—[i70 BEvicEy ™ T ~—oi _
St — -~ *{1/0 DEVICE |<+— DX

DI ~—1/0{DX]
DI<—DI +/- INCR*

170[DX}{s1)

INSB (BYTE TRANSFER)
} SieSI +/- INCR¥

OUTSB (BYTE TRANSFER) }
INSW (WORD TRANSFER)

OUTSW (WORD TRANSFER)

*4r- INCR: + WHEN DF = 0 (CLD) INCR: 1 FOR BYTE TRANSFERS
~ WHEN DF =1 (STD) 2 FOR WORD TRANSFERS

_ Y,

17-19

HIGH LEVEL LANGUAGE SUPPORT \

e CHECK ARRAY BOUNDS (BOUND)

- CHECKS AN ARRAY INDEX REGISTER AGAINST THE ARRAY BOUNDS
WHICH ARE STORED IN A 2 WORD MEMORY BLOCK

* ENTER PROCEDURE (ENTER)

- SAVES STACK FRAME POINTERS FROM CALLING PROCEDURE AND
SETS UP NEW STACK FRAME FOR CURRENT PROCEDURE

« LEAVE PROCEDURE (LEAVE)

- RESTORES CALLER'S STACK FRAME UPON PROCEDURE EXIT

17-20

FOR MORE INFORMATION...

INTRODUCTION TO THE iAPX 186/188
- CHAPTER 5, iAPX 86/88, 186/188 USER’S MANUAL
- AP-186, INTRODUCTION TO THE 80186 MICROPROCESSOR

17-21

DAY 5 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

* DEFINE MULTIPROCESSING AND COPROCESSING

* DESCRIBE THE SIGNALS USED TO INTERFACE TO THE MULTIBUS

* DESCRIBE THE SIGNALS USED TO INTERFACE AN 80186 TO
EXTERNAL HARDWARE

* DESCRIBE THE BASIC FUNCTIONS OF THE iAPX 286 AND iAPX 386

CHAPTER 18
MULTIBUS SYSTEM INTERFACE

DESIGN CONSIDERATIONS
HARDWARE INTERFACE TO THE MULTIBUS

BUS ARBITRATION

LOCK INSTRUCTION PREFIX
BYTE SWAP BUFFER

FUNCTIONAL PARTITIONING SUPPORTS MULTIPROCESSING:

CRT
TERMINAL

8061

—

SYSTEM
INTERFACE

5

LOCAL
MEMORY

8086

E[§

8087

SYSTEM
INTERFACE

SYSTEM BUS

HARD DISK

=1y

8089

SYSTEM
INTERFACE

MODEM

=

1L

SYSTEM
MEMORY

\

MULTI PROCESSOR

¥ REFERS TO SYSTEM CONTAINING MORE THAN ONE CPU

WHERE ONE CPU IS USUALLY THE “MAIN® CPU AND OTHER
CPU’'S PERFORM SPECIAL TASKS

¥ EACH CPU HAS ITS OWN PROGRAM AND OPERATES

INDEPENDENTLY

% EACH CPU HAS ACCESS TO GLOBAL RESOURCES

CO-PROCESSORS

SPECIAL CASE OF MULTIPROCESSING

SPECIAL PURPOSE PROCESSORS THAT ENHANCE THE HARDWARE
CAPABILITIES OF THE 8086

SHARE COMMON PROGRAM WITH HOST PROCESSOR EXECUTING
CERTAIN INSTRUCTIONS

OPERATE IN A LOCAL CONFIGURATION WITH THE 8086
(SHARE COMMON DATA, ADDRESS, AND CONTROL BUSSES)

NUMERIC PROCESSOR EXTENSION

COPROQCESSOR
INTEGRAL PART OF THE iAPX 86 AND iAPX 88 ARCHITECTURE
68 NUMERIC INSTRUCTIONS

MULTIPLE AND MIXED MODE DATA TYPE CAPABILITIES
(INTEGER, REAL, BCD)

FULL IMPLEMENTATION OF THE IEEE FLOATING POINT STANDARD
AUTOMATIC EXCEPTION DETECTION AND RECOVERY
COMPLETE HARDWARE/SOFTWARE TRANSPARENCY

EIGHT 80-BIT INTERNAL REGISTERS

G-81

IAPX 86/20, 88/20 ARCHITECTURE

IAPX 86/20, 88/20

iIAPX 86110, 88/10 NOP

11 FILE:] ' " STACK: o

AX l Rt EXPONENT SIGNIFICAND
[13 ! R2
cx l n3
ox : R4
] RS
[+] ' Re
ap : nr
| 1d Re

i

R h)

4 : NDP STATUS
FLAGS l NDP MOOE

—— e ———y

THE 8087 CAN BE VIEWED AS AN ARCHITECTURAL
EXTENSION OF AN 8086/8088.

TO USE THE 8087, ADDITIONAL OPCODES AND OPERANDS
ARE INCLUDED IN THE 8086/8088 INSTRUCTION SET.

9-81

DATA FORMATS FOR MEMORY OPERANDS

WORD INTEGER

SHORT INTEGER

LONG INTEGER

PACKED DECIMAL

SHORT REAL

LONG REAL

TEMPORARY REAL

~a——— INCREASING SIGNIFICANCE

(TWO'S
s| MAGNITUDE | G o\iptemEnT
15 0

(TWO'S
S MAGNITUDE COMPLEMENT)
N 0
(TWO'
° MAGNITUDE COMPLEMENT)
63 °
sl x MAGNITUDE
dy, Ay, 015, dia, 013,642,811, 040, b , dg , d; , ds , d5 dy ,d3, d;, 0y, dy
79 72 5
BIASED
S1 EXPONENT SIGNIFICAND
k1] 23 0
s
BIASED
S| exPONENT SIGNIFICAND
63 52 0
1s
BIASED

§ EXPONENT) SIGNIFICAND
4] 64 63° °

IAPX 86/20, 88/20 INTERCONNECT

r— - =

INT '_—._..> INTR
8258A
P

ic 8086/8088 VN
| CLk ey |

o AT sons
QS0 QS1 TEST 4 FAMILY MULTIMASTER
R 5US H SYSTEM
Al INTERFACE 8us

QS0 QS1 BUSY COMPONENTS
RG/GTO

"

8284
CLOCK
GENERATOR

c ck &EI

=
y

-
-

r—————»—l

MULTIMASTER LOCAL BUS

Y----

0P

1
i

cLx 8oss N -
|
f— |

l
o4

18-7

iIAPX 86/20 iAPX 88/20 ARCHITECTURE

* HOST CPU MUST BE IN MAX MODE TO PROVIDE INTERFACE

* RQ/GT, QS0-QS1, TEST LINES USED FOR COMMUNICATION
AND SYNCRONIZATION

18-8

r

QUEUE STATUS LINES

QS1, QSp -QUEUE STATUS LINES: INDICATE THE

STATUS AS FOLLOWS:

INSTRUCTION QUEUE

NO OPERATION

FIRST BYTE OF OPCODE

EMPTY THE QUEUE
SUBSEQUENT BYTE

~

J

8086 QS1 QSo STATUS

0 0

QSQ
0 1

QS84
1 0
1 1
18-9

TEST PIN

~

TEST -USED BY WAIT INSTRUCTION TO SYNCHRONIZE PROCESSORS
IF TEST PIN IS LOW, EXECUTE CONTINUES
IF TEST PIN IS HIGH, CPU ENTERS AN IDLE STATE

8086

18-10

8087 CO-PROCESSOR OPERATION

8087
NUMERT CAL END
DATA PROCESSOR

Y TEST
<

CONTINUE

8086 UNTIL 8087

RESULT WAIT
IS NEEDED
18-11
(REQUEST/GRANT LINES \
F—!b/G_To -REQUEST GRANT: BIDIRECTIONAL HANDSHAKE LINES
F_!(—DIG_T ALLOWS UP TO TWO SEPERATE DEVICES CONTROL
1 OF THE BUSSES

8086

18-12

-

EXECUTION TIME FOR SELECTED iAPX 86/20 INSTRUCTIONS

APPROXIMATE EXECUTION
TIME (us)
INSTRUCTION
IAPX 86/20 | IAPX 86/10

(5MHz CLOCK) | EMULATION
ADDISUBTRACT MAGNITUDE 1418 1,600
MULTIPLY (SINGLE PRECISION) 18 1,600
MULTIPLY (DOUBLE PRECISION) 27 2,100
DIVIDE 39 3,200
COMPARE 10 1,300
LOAD (SINGLE PRECISION) 9 1,700
STORE (SINGLE PRECISION) 17 1,200
SQUARE ROOT 36 19,600
TANGENT 110 13,000
EXPONENTIATION 130 17,100

N

18-13

8089 10 PROCESSOR
% THE 1/0 PROCESSOR CONTROLS ALL I/O IN THE SYSTEM
% BOTH PROCESSORS OPERATE IN PARALLEL

* SYSTEM THROUGHPUT IS ENHANCED

a2e9
MULTIMASTER
INTERFACE

SHARED
RESOURCES

8280
MULTIMASTER
INTERFACE

4o
PROCESSOR

18-14

1/0 PROCESSOR FEATURES

e 2 INDEPENDENT CHANNELS

e 1 MEGABYTE SYSTEM SPACE, 64K 1/0 SPACE

¢ 2 LOGICAL BUSSES CAN BE TREATED AS 8 OR 16
OR BOTH TO MATCH PERIPHERALS TO SYSTEM

OR LOCAL BUS

CHANNEL PROGRAM STORE CAN BE ON SYSTEM

e INSTRUCTION SET TAILORED FOR I/0 FUNCTIONS

18-15

/0 PROCESSOR BLOCK DIAGRAM

HOST CPU

SYSTEM BUS

cPu
“CHANNEL 1°

|
DMA

CcPU
“CHANNEL 2°

<:><O O Oﬂ@

<

LOCAL O BUS AND MEMORY

>

CHANNEL 1

PROGRAM

CHANNEL 2 PERIPHERALS
PROGRAM

INFORMATION FLOWS
THROUGH IOP

INSTRUCTIONS APPLY TO
1/0 OR SYSTEM

2 LOGICAL BUSES

2 CHANNELS
2 REGISTER SETS
2 INSTRUCTION POINTERS

18-16

8086
OR

8088
CPU

RQ/GNT

LOCAL CONFIGURATION
MINIMUM BOARD SPACE AND COST

[

RQ/GNT

8089
I0P

DMQ2 DMQ1
EXT2 EXT1

BUS
a-‘ CONTROLLER

SYSTEM
MEMORY

1L

LATCHES/ -

TRANSCEIVERS

18

P1

PERIPHERAL PERIPHERAL

P2

18-17

-

‘ w0 DEVICES |

REMOTE CONFIGURATION ALLOWS

PARALLEL PROCESSING

LOCAL 8US

g

o

0

op

KCEIVER
LATCH

sl

US CONT

BUS ARB

8088
CcPy

NCEIVER XCEIVER
LATCH LATCH

——)
<~z _/ ~Z

BUS CONY sae

L 1

G

/

MULTIBUS™ SYSTEM BUS

MULTIBUS CONTROL

SYSTEM ROM,
AAM

MULTIBUS CONTROL

18-18

DMA FUNCTIONS

e MEMORY TO MEMORY, I/O TO I/O IN ADDITION TO
MEMORY TO 110

e MASKED/COMPARE FOR DATA PATTERN AS TRANSFER
OCCURS
— 8-BIT MASK, 8-BIT COMPARE

e TRANSLATE DURING TRANSFER
— BYTE TRANSLATED THROUGH 256-BYTE LOOKUP TABLE

e VERSATILE TERMINATION CONDITIONS
— BYTE COUNT EXPIRED (UP TO 64K)
— EXTERNAL SOURCE
— MASKEDI/COMPARE PASSES OR FAILS

k — SINGLE BYTE

18-19

(8089 PERFORMANCE
5 MHz 8 MHz
DMA TRANSFER 1.25 Mbyte 2.0 Mbyte

(16 BIT TRANSFERS)

DMA BYTE SEARCH 0.6125/0.833 Mbyte 1.0/1.33 Mbyte
8 BIT/16 BIT SOURCE

DMA BYTE TRANSLATE 0.333 Mbyte 0.533 Mbyte
DMA BYTE SEARCH AND TRANSLATE 0.333 Mbyte 0.533 Mbyte
DMA RESPONSE (LATENCY) 1.0/2.2lus 0.625/1.375 us

SINGLE CHANNEL/DUAL CHANNEL

_

18-20

OPERATING SYSTEM FIRMWARE COMPONENT

* 16kbyte CONTROL STORE
* PROGRAMMABLE INTERRUPT CONTROLLER MANAGED BY OS SOFTWARE

¥ 3 PROGRAMMABLE TIMERS

SYSTEM (8254 RATE GEN MODE)
DELAY (8254 COUNT MODE)
BAUD (8254 SQUARE WAVE MODE)

18-21

80130 FEATURES
HARDWARE SOFTWARE

(1 128 K-bit kernal control store (0 Task management
L1 Programmable interrupt [l Intertask communication

controller and synchronization
L1 System timer 00 Mutual exclusion control
L1 Delay timer O Interrupt management
[J Baud-rate generator 0 Free memory management/

system partitioning

_ _/

18-22

TYPICAL SYSTEM USING
OPERATING SYSTEM PROCESSOR

8284A

]

€2-81

CONTROL :

BHE
A9
L d

. [aooReSs/oata
L

ADDRESS > .
®

AD

e | Ko -

e

A4

S o

e
\ INTERRUPT REQUESTS
T

FOR MORE INFORMATION ...

8087 MATH COPROCESSOR
- CHAPTER 6, iAPX 86/88, 186/188 USER’S MANUAL

- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

8089 1/0 PROCESSOR

- CHAPTER 7, iAPX 86/88, 186/188 USER'S MANUAL

80130 OPERATING SYSTEM FIRMWARE COMPONENT

- CHAPTER 8, iAPX 86/88, 186/188 USER’S MANUAL

RELATED TOPICS ...

ICEB6A SUPPORTS THE 8087 FOR DEBUGGING PURPOSES. SEE THE ICE86A
OPERATOR’S MANUAL. AN ICE86 CAN BE UPGRADED TO AN ICE86A.

RBF89 (REAL-TIME BREAKPOINT FACILITY) IS A DEBUGGING TOOL FOR THE
8089 AND WORKS IN CONJUNCTION WITH ICE86(A).

18-24

CHAPTER 19
MULTI AND COPROCESSOR

e 8087 NUMERIC DATA PROCESSOR
e 8089 1/0 PROCESSOR
e 80130 OPERATING SYSTEM

-

WHAT IS THE MULTIBUS SYSTEM INTERFACE? \

PROCESSOR
BOARDS

MEMORY
‘oo BOARDS cess

PN
g

MULTIBUS INTERFACE

I0 BOARDS ’ cece

¢ 16 MEGABYTE ADDRESS SPACE

¢ |EEE STANDARD (IEEE 796)

¢ INDUSTRY STANDARD * OVER 40 VENDORS OF MULTIBUS BOARDS
k * OVER 40 BOARDS AVAILABLE FROM INTEI)

19-1

a)

WHY USE THE MULTIBUS SYSTEM INTERFACE?

MODULARIZE HARDWARE/DISTRIBUTED PROCESSING
SHORTEN DESIGN TIME

REDUCE COST OF DESIGN AND TEST

FLEXIBLE

+« SYSTEM CAN BE QUICKLY RECONFIGURED
« EASY TO ADD MORE PROCESSING POWER, MEMORY OR IO
* SIMPLIFIES REPAIR

(MODULARIZE HARDWARE/DISTRIBUTED: PROCESSING \

ACCOUNTING FACTORY . FACTORY
CONTROL 1 CONTROL 2
------- 1
| ;
PROCESSOR PROCESSOR I FUTURE
1

MULTIBUS INTERFACE

P
A P4

SHARED
MEMORY

HARDWARE MODULES CAN BE DEVELOPED INDEPENDENTLY
CONCURRENT PROCESSING ACHIEVES HIGHE.R THROUGHPUT
PROCESSORS COMMUNICATE THROUGH SHARED MEMORY

HARDWARE MODULES CAN BE REUSED IN FUTURE DESIGNS

INTEL XYZ CO.
PROCESSOR GRAPHICS CUSTOM 10
BOARD CONTROLLER

MADE BY
YURE COMPANY

A
{ MULTIBUS INTERFACE)
N

INTEL
MEMORY
BOARD

* CONFIGURE SYSTEM COMPLETELY FROM AVAILABLE BOARDS
OR

k * DESIGN CUSTOM 10 BOARDS FOR YOUR APPLICATION W,

19-4

[MAKE/BUY COMPARISON I

CROSSOVER POINT

cosT

PERBOARD [~~~ — \P'\

1K-3K
L TOTAL NUMBER OF BOARDS)

19-5

TYPES OF BUS MASTERS \
BASIC MASTER WITH MASTER WITH
MASTER RESIDENT BUS DUAL-PORTED RAM
r————- N I [I

BUS
EXCHANGE

Lo - L___~

I

I

|

|

BUS |

EXCHANGE |
I

I

I

J d

L w1 Dua -ﬂ MEMORY
MULTIBUS

NOT VERY iSBC 86/05 BOARD iSBC 86/12A BOARD
COMMON

MEMORY

I I
I I
| I
I I
[aus |
! I
I I
I |
I I

WHY WOULD THE BASIC MASTER NOT BE VERY COMMON? J

LOCAL

BUS INTERFACE
(REVIEW)

MULTIMASTER
LOCAL 8US

8288
BUS
CONTROLLER

8282/83
LATCHES

8288/87
TRANSCEIVERS

I I CONTROL LINES

ADDRESS LINES

DATA LINES

e —— 9 !

| 1 i
82509A

! PROGRAMMABLE | g 'NTERRUPT LINES)

i INTERRUPT II ‘I —

| CONTROLLER |

L

T

LOCAL (PRIVATE)
I/0 AND MEMORY

19-7

8259A

MULTIMASTER

SYSTEM BUS INTERFACE

INTERRUPT LINES

BuUsS
ARBITER

ARBITRATION LINES

|
lerocrammaBLE
™1 INTERRUPT
| conTroLLen |
— - 8289

8288
BuUs
CONTROLLER

| CONTROL LINES '

08282/83
LATCHES

ADDRESS LINES

LOCAL BUS

8288/67
TRANSCEIVERS

DATA LINES '

\

J

SYSTEM BUS
GLOBAL RESOURCES

19-8

6-61

BASIC MASTER

[r————=——— e — m— ——————————————
|<JL LOCAL BUS
=

] é»:
: 5 8086

I8 e 5
! : I B 33
|
b JdL JL] |
|
| BE 5] L{z CE] E B FL i g%
: 8287 8283 —% 8288 8289 8284

s u & x 2]
| | [eEREER i
l I L

L- TS —i_—{$ l +—_ ______ J

BUS CONTROL

8289 RESB PIN TIED LOW (NO RESIDENT BUS)

ALL MEMORY AND IY0 CYCLES REQUIRE MULTIBUS ACCESS

P Yo Ye N o

ONLY WHEN 8289 G
CONTROLLER (8288) AN

NTROL OF BUS DOES iT EN

DDRESS LATCHES (8283,S)

ABLE BUS

MASTER WITH RESIDENT BUS \

¢v<|:c
RESB
8284 8086/ 8280 ARBITRATION 3
cLock 8088 Bus M
GENERATOR cPU ARBITER LINES
[: 4 R
I K SYSB/RESH
2 m
Fl H
a288 : § 8asa
CONTROL LINES 3 CONTROL LINES
(BUS BUs ﬁ
i CONTROLLER CONTROLLER
PROM or [) MULTIMASTER
DECODER f SYSTEM BUS
RESIDENT
aus S ADDRESS LINES| 8282/83 8282/83 ADDRESS LINES
LATCHES LATCHES
DATA LINES | szssrer 8286/87 DATA LINES
L M vacevens| TRANSCEIVERS]
I I

* 8289 RESB PIN TIED HIGH (RESIDENT BUS PRESENT)

+ ADDRESS DECODING SELECTS THE SYSTEM BUS OR RESIDENT BUS
VIA 8289 PIN SYSB/RESB.)

19-10

-

== =71
! I
_— e e — e m PROCESSING
r ": MODULE |
R I
| |
| ervare
| | meEmoRy " e PUBLIC
| | °-3'] | MEMORY
| —= — _IEml | sus | BUS
- _ _ %=z .h INTERFACE PROCESSOR INTERFACE
! TES orovP 1 orour)
' prvare T ____
| I vo ﬁ' I PUBLIC
| I | o
] s
o
=
w
PROCESSING |’u‘:
>
|u:

HOW CAN WE PREVENT TWO MASTERS FROM ACCESSING THE BUS AT THE SAME TIME?

BUS ARBITRATION

MODULE
PROCESSING

MODULE

J

19-11

/

NOTE:

\THERE IS A MAXIMUM OF 3 MASTERS WHEN USING THE SERIAL PRIORITY RESOLVING TECHNIQUE)

\

SERIAL PRIORITY RESOLVING

HIGHEST PRIORITY

<
) %(/ BPAN
BUS ‘———*—_L
ARBITER |. . =
B:TE BPRO -
"] BPRN
/ BUS
/L ARleTER BFRG
’] / BPRN
/ BUS «
ARBITE _
K a R | orro
CBRG : BUSY

e A MASTER CAN TAKE THE BUS WHEN
BPRN IS LOW (BUS PRIORITY IN)
NO HIGHER PRIORITY MASTER NEEDS THE BUS
BUSY IS HIGH
THE BUS ISN'T BEING USED NOW

19-12

SERIAL PRIORITY RESOLVING)

HIGHEST PRIORITY

e

MR
A

BPRAN
BUS]
ARBITE 4
1“ BPRO -
"] BPRN
BUS -
/ E/I ARB;TER SPRG
’] BPAN
/ BUS -
ARBITER
] "TER | mpmo
CBRGQ ¢ BUSY

e A MASTER REQUESTS THE BUS BY DRIVING
BPRO HIGH (BUS PRIORITY OUT)
ALL LOWER PRIORITY MASTERS GET OFF THE BUS
CBRQ LOW (COMMON BUS REQUEST)
IF A HIGHER PRIORITY MASTER HAS THE BUS AND DOES NOT
NEED IT, RELEASE THE BUS. /

19-13

SERIAL PRIORITY RESOLVING N\

HIGHEST PRIORITY

O S
ARBBL:gER 1

1

2

BUS -

ARBITER
3 BPRO

Ej ARBBUI?'ER ‘m
T
J

N N
3

CBRQ BUSY

e A MASTER WILL RELEASE THE BUS WHEN
BPRN GOES HIGH
OR A HIGHER PRIORITY MASTER WANTS THE BUS
CBRQ GOES LOW AND CURRENT MASTER IS NOT USING BUS
THE ARBITER NORMALLY DOES NOT SURRENDER THE SYSTEM BUS,
UNLESS ANOTHER ARBITER IS REQUESTING ITS USE.

19-14

G1-61

PARALLEL PRIORITY RESOLVING TECHNIQUE

o

8uUS Em
ARB'ITER m

v L L =

{75 e oo || 7oy]
W L — -
/ (_) ARB;TER 5FAN
(-1 8us m
] (j AR!:TER e
CAAO | 8usy
ADVANTAGES

e CAN HANDLE ANY NUMBER OF MASTERS

e ALLOWS COMPLEX PRIORITY ASSIGNMENT (E.G., ROUND ROBIN,
ROTATING, ETC.)

DISADVANTAGE

. e REQUIRES EXTRA , USER-SUPPLIED HARDWARE.

_

MUTUAL EXCLUSION PROBLEM

8086
*1

8086
+*2

N

MESSAGE
BUFFER

MEMORY

PROBLEM:

8086 #2 STARTS READING MESSAGE

8086 #1 STARTS UPDATING MESSAGE BEFORE #2 IS FINISHED

8086 #2 GETS INVALID MESSAGE
SOLUTION:

USE ONE SHARED MEMORY LOCATION AS A FLAG (SEMAPHOR

MULTIBUS INTERFACE j>

WHICH INDICATES IF MESSAGE AREA IS BEING USED.

E)I

_/

19-16

USING A SEMAPHORE WITH THE LOCK INSTRUCTION PREFIX

8088
+1

8088
2

A
(MULTIBUS INTERFACE)

‘uw5393ﬂb

SEMA4

1=MESSAGE AREA IS BEING USED

MESSAGE

0-MESSAGE AREA IS NOT BEING USED

LOOP1: MOV AL,1

{ — LOCK XCHG SEMA4 AL “GET AND SET SEMA4 WITHOUT
CMP AL, 1 » RELEASING THE BUS
LOOP1 i TRY AGAIN IF SEMA4 WAS SET

JE

; ACCESS MESSAGE

MOV SEMA4,0 +RELEASE MESSAGE AREA

19-17

\.

LOCKING THE MULTIBUS

8086

LOCK

§0-~82

e THE 8086 WILL ASSERT ITS LOCK PIN DURING ANY INSTRUCTION

| f—

8289
ARBITER

LOCK) MULTIBUS CONTROL

PRECEDED BY A LOCK PREFIX.

* THE 8289 WILL NOT RELEASE THE BUS AS LONG AS ITS LOCK

PIN IS ASSERTED

J

19-18

-

SHARING RESOURCES

BETWEEN 8 AND 16 BiT BOARDS

8 BIT
16 BIT
8085
iSBC
8086 DUALPORT| 80/30
RAM BOARD

>

N
MULTIBUS INTERFACE >
v

PROBLEM: THE 8086 TRANSFERS ODD ADDRESSED BYTES ON
THE UPPER 8 DATA LINES. THE 8085 TRANSFERS
ALL DATA ON THE LOWER 8 DATA LINES.

SOLUTION: USE BYTE-SWAP BUFFER SO THAT ALL BYTE TRANSFERS
ON THE MULTIBUS INTERFACE USE THE LOWER 8 DATA
LINES.

19-19

-

BYTE SWAP BUFFER

— MULTIBUS TRANSFER
16-BIT DEVICE MULTIBUS BRE A0 oS
LOW, EVEN
H Lo
Do-D7
— D8-D16
00-D7
Lo " 8-8IT
Do-D7
HIGH, ODD
BYTES . D8-D18
T oo
|
I Lo Lo 16-81T
DO-D15
|
HIGH, ODD !
BYTES | D8-D18

e ALL INTEL MEMORY BOARDS AND 16 BIT PROCESSOR BOARDS HAVE
BYTE-SWAP BUFFERS

e INTEL 8 AND 16 BIT BOARDS ARE COMPATIBLE

e TO BE COMPATIBLE WITH INTEL BOARDS, USER BOARDS SHOULD HAVE
BYTE-SWAP BUFFERS

J

19-20

CLASS EXERCISE 19.1

DIRECTIONS: EACH ITEM IN THE FOLLOWING PROBLEM REPRESENTS A STEP
THAT WOULD BE REQUIRED IN A MULTIBUS SYSTEM AS SHOWN ON PAGE 16-13
WITH 3 BUS MASTERS IF BUS MASTER 3(BM3) WAS CURRENTLY CONTROLLING
THE MULTIBUS AND BM2 WANTED ACGESS TO THE MULTIBUS. IN THE SPACE
PROVIDED, NUMBER EACH ITEM SO THEY OCCUR IN THE PROPER ORDER. THE
FIRST STEP HAS BEEN NUMBERED CORRECTLY AS AN EXAMPLE.

— BM3 DRIVES BUSY HIGH

— - BM2 ISSUES CBRQ LOW

1 BM2 DRIVES BPRO HIGH

— BM2 TAKES OVER BUS, DRIVES BUSY LOW
BM3 SEES CBRQ LOW

— BM3 SEES BPRN HIGH

19-21

FOR MORE INFORMATION . ..

MULTIBUS ARCHITECTURE

- CHAPTER 4, iAPX 86/88, 186/188 USER’S MANUAL

8289 BUS ARBITER

- CHAPTER 4, iAPX 86/88, 186/188 USER’'S MANUAL

LOCK PIN OPERATION

- CHAPTER 4, iAPX 86/88, 186/188 USER'S MANUAL

19-22

CHAPTER 20
iAPX 186,188 HARDWARE INTERFACE

e BUS INTERFACE
e CLOCK GENERATOR
e INTERNAL PERIPHERALS INTERFACE

o DIFFERENCES

BUS INTERFACING

TMR IN TMR OUT TMR IN TMF: ouT
1

)I)12 CLKTOUT VIC GID DTD oplm I T l T
RES ——p
CLOCK EXECUTION DMA
RESET-«—| | GENERATOR AL oNIT uNIT TIMER UNIT
SRDY — GENERAL
REGISTERS

NS ‘l h T
T BUSJ\} J

INTAT
CHIP-SELECT INTERRUPT
UNIT CONTROL INT2/
UNIT INTAD
|- INT 1
le—-INTO

gy T

MCS9-3 UCS LCS pPCS9-6 NM1

80186 BUS SIGNALS

ADDRESS/DATA ADO - AD15
ADDRESS/STATUS A16/S3 - A19/S6, BHE/S7
CO-PROCESSOR CONTROL TEST

LOCAL BUS ARBITRATION HOLD, HLDA

LOCAL BUS CONTROL ALE , RD, WR, DT/R, DEN
MULTI-MASTER BUS LOCK

STATUS INFORMATION SO - 82

0-82

READ CYCLE

T T2 T3 Tw T4

WA NV WV NV W

\
/ !
—

ADDRESS/
DATA LINES

ol

r
XADDRESS) J< DATA IN >(
AY

DT/R _\ /——— __

|

o
(2]
o

|

4
o
»

l

,l-
0
R

€

[

80186 CONTROL SIGNAL DIFFERENCES

PROVIDES BOTH LOCAL BUS SIGNALS AND STATUS OUTPUTS
NO SEPARATE I/0 AND MEMORY READ AND WRITE SIGNALS.
THE WR SIGNAL IS AN EARLY WRITE SIGNAL

ALE GOES ACTIVE A CLOCK PHASE EARLIER

QUEUE STATUS IS PROVIDED IF RD IS TIED TO GROUND
QUEUE STATUS IS AVAILABLE A CLOCK PHASE EARLIER
HOLD/HLDA IS PROVIDED RATHER THAN RQ/GT

83 - S6 PROVIDE DIFFERENT INFORMATION THAN 8086

THE OUTPUT DRIVERS WILL DRIVE DOUBLE THE LOAD

(THE 80186 PROVIDES BOTH LOCAL BUS SIGNALS \
AND SYSTEM BUS SIGNALS

80186 8288
— S0-S2 »{50-52
> i
< RD -
< ALE LOCK
LOCAL -« DT/_R- SYSTEM
MEMORY ==x
AND DEN RESOURCES
77¢) LCS UCS PCS
{ 8280
—»150~82
D . |sysB/),
=~ > RESB
h >{[OCK

L)

20-5

4)

GENERATING SEPARATE I/0 AND MEMORY READ SIGNALS

LATCH

Q AN B
ALE sT8 ’ — 170 READ

S —
—) MEMORY READ
RD 1

\ _/

[SYNTHESIZING DELAYED WRITE ON 80186 \

WR 11>CP
——

CLKOUT

DELAYED
WRITE

' ‘ ' , (DATA VALID ON LEADING EDGE)
. T2 P T8 T4

I
i

ADO-AD1S ADDRESS: >< WRITE

i
— i
WR —,\
i

DATA

§
1
>< , ADDRESS
i
i
/ 1
1
:
I s
) 4
1 / 1
i !) .
!]
! | ' /

DELAYED
WRITE

-

4 A

80186 QUEUE STATUS MODE

b Tn L Tn ' Tn X !
CLOCK ‘__L
ouT i 1 !] 1
i i i [!
80186 ; ; >< \ >< ;)
Qs { i i 1 A
! i) ! l
8086 ! 1 : 1 {
as XX
[8so1se

Q80 -¢——]ALE

20-8

S5

S6

S3 - S6 STATUS SIGNAL DIFFERENCES

8086

S3 - S4 SEGMENT REGISTER USED

INTERRUPT ENABLE FLAG
CONDITION

LOwW

80186

Low

Low

LOW IF CPU BUS CYCLE
HIGH IF DMA BUS CYCLE

CLOCK GENERATOR

b

Vee GND DRQZ DRQ1

TMR IN TMR OUT TMR IN TMF} ouT

Lt

DT/R <—r
DEN ~—
RD ~——|
WR -—;
ALE ~¢—]
HOLD ——»

ALY UNIT

GENERAL
REGISTERS

EXECUTION DMA
UNIT

TIMER UNIT

]

i

HLDA ~¢——

INTERNAL BUS
‘l e J\ l
BUS INTERFACE CHIP-SELECT INTERRUPT
UNIT UNIT CONTROL
UNIT
SEGMENT
REGISTERS
QUEUE

iNT3/
INTAY

INT2/
INTAQ

|——— INT 1

|———INT@

!

IRV

AD16 A19/56

LOCK TEST S8-S2BHE AD®- A18/63- MCS9-3

Pyl T

Ucs LCS pcse-6 NM1

20-10

80186 INTERNAL CLOCK GENERATOR

o GENERATES A MAIN CLOCK FOR INTEGRATED COMPONENTS
AND SYSTEM

e CAN USE A CRYSTAL OR EXTERNAL FREQUENCY SOURCE
o GENERATES A SYNCHRONIZED SYSTEM RESET

e PROVIDES A SYNCHRONOUS AND AN ASYNCHRONOUS READY INPUT

_ _J

20-11

- A

80186 CLOCK GENERATOR BLOCK DIAGRAM

X CPU CLOCK
1 =™ =" CRYSTAL AND

0scC.

Y

ol
n

> CLOCKOUT

ARDY

> READY

GENERATION
SRDY -

5 CPU
READY

RESET il
CIRCUIT

RES

CPU RESET
|———3=~ AND
RESET OUTPUT

_ Y,

20-12

80186 AND 8284A CLOCK DIFFERENCES

NO OSCILLATOR OUTPUT IS AVAILABLE FROM THE 80186
THE 80186 DOES NOT PROVIDE A PCLK OUTPUT

THE 80186 CLOCKOUT HAS A 50% DUTY CYCLE CLOCK AND THE
8284A CLK OUTPUT HAS A 33% DUTY CYCLE

THE CRYSTAL OR EXTERNAL OSCILLATOR USED BY THE 80186 IS
TWICE THE CPU CLOCK FREQUENCY WHILE ON THE 8284A IT IS THREE
TIMES THE CPU CLOCK FREQUENCY

20-13

EFFECT OF RESET

SAME EFFECT AS IN THE 8086 PLUS EFFECTS THE INTERNAL
PERIPHERALS AS FOLLOWS

RELOCATION REGISTER = 20FFH

INTERNAL PERIPHERALS ARE ADDRESSED AT THE VERY TOP
(FFOOH TO FFFFH) OF THE 1/0 SPACE

UMCS = FFFBH

UCS LINE WILL PROVIDE A CHIP SELECT FOR THE UPPER 1K
BLOCK OF MEMORY WITH THREE WAIT STATES WITH EXTERNAL

READY CONSIDERED

THE REST OF THE INTERNAL PERIPHERALS ARE RESET AND ARE
INACTIVE UNTIL PROGRAMMED

20-14

READY SIGNALS

SYSTEM CONSISTS OF TWO BUSSES - A LOCAL BUS AND A SYSTEM BUS

THE SYSTEM BUS IS ASYNCHRONOUS AND NORMALLY NOT READY

THE LOCAL BUS OPERATES SYNCHRONOUS TO THE PROCESSOR

ARDY WOULD BE USED FOR THE SYSTEM BUS

SRDY AND/OR THE 80186 CHIP SELECT LINES WITH THE
PROGRAMMABLE WAIT STATES WOULD BE USED FOR THE LOCAL BUS

\

20-15

MULTIMASTER BUS INTERFACE

16 MHz
Vee x x2 =
Ucs
RD RESET
ROM \<:_—
RES I
I 82820R
= . 8283
- LATCH
STB OF
sT8 Ot FL&\&
ALE = _
LCS T €s
BHE
WR
ADO-AD19 > 28208 D ADDRESS
LATCH
sv8__ OF |
l_lga QE__
80188 S8 OF
NMI 1
8286 OR
HoLD 9287 DATA BUS
= TRANSCEIVER \r—
¥
L g’%— J MULTI-
MASTER
i SYSTEM
BUS
DTR &
CLKOUT —»loLk
ALE az:f"
§0-§2 BUS BUS CONTROL
§8-52 CONTROLLER COMMANDS
CEN o
108 AEN
=
§5-52 AEN
8289
. BU
CLK \RBiTER CE—'\‘/ MULTIBUS
ARBITRATION
FESH SYSB/AESB
pcsi 0B
LOCK OCK RESB -8V
SRDY|—» GND

20-16

X1 X2 CLKOUT Vee GND

L

T

DMA CONTROLLER INTERFACE

T

TMR IN TMR'OUT TM1R IN TMF: ouT

L

AES — |
cLoCK EXECUTION
RESET-«—| | GENERATOR ALU UNIT TIMER UNIT
SRDY ——» GENERAL
REGISTERS
ARDY | ﬁ
INTERNAL BUS
. ‘l//7 <{\/; INT3/
- > NTAT
DEN -¢—— BUS INTERFACE CHIP-SELECT INTERRUPT
o uNIT UNIT CONTROL INT2/
-——] UNIT i
INTAD
WR ~¢—— SEGMENT
ALE REGISTERS
~—— le——INTY
HOLD —»-1
QUEUE
HLDA l--———INT@

podb o Il

15 Al8/60

k LOCK TEST S¢-~82 BHE :gﬂ‘ A16/83~ MC89-3 UCS LCS PCS90-6

T

Y

20-17

80186

ALE

PCS0

DRQO

5| ADDR.

LATCH

86‘__—__4 >np__1
q

(USING DMA REQUEST AND SENDING AN ACKNOWLEDGE

A

DMA DEVICE
DMA
ACKNOWLEDGE

CHIP SEL

DMA REQUEST

20-18

CHIP SELECTS

TMR IN TMRDOUT TM}: IN TMF: ouT

f£ X2 CLKOUT vee GND DRQP DRQ1 T l T
AES
cLoCK EXECUTION DMA
R R UNIT
ESET «——1 | GENERATO! ALU uNIT TIMER UNIT
SRDY ——»-| GENERAL
REGISTERS
ARDY — | } /}
INTERNAL 8us
DT/R <¢— e ::th
DEN ~&—— BUS INTERFACE INTERRUPT
AD ~——| UNIT CONTROL INT2/
UNIT INTA
WA ~——] SEGMENT
ALE ~——] REGISTERS
lt—— INT1
HOLD —»
QUEUE
HLDA ~¢—|

|

A18/563-

LOCK TEST $¢-S2 BHE ADO- M
\ AD1S A19/58
20-19
USING 80186 CHIP SELECTS
AD - A19, BHE
A1 - A13 A1 - A13

— AO-A12 AO-A12 ~—™N Dbram

c
- O CE —q CE CLK

- OF OE ————q WR

AN AN __ dam
PCTL

CLKOUT ,

$o
s1 AACK

s1
§2 ! L >:ﬂov
Ccs
D0=07
D8-D1%

20-20

TIMER UNIT

)I X2 CLKOUT vee GID DRQP DRQ
RES —— |
cLocK EXECUTION DMA
T
RESET-«—| | GENERATOR AU uNIT UNI
SRDY——] GENERAL
REGISTERS
ARDY ——» -
INTERNAL
{/7
o ~—> RrAT
DEN ~—— BUS INTERFACE CHIP-SELECT INTERRUPT
RD & uNIT UNIT CONTROL INT2/
UNIT i_N_T_A—i
WR-— SEGMENT
ALE REGISTERS
[——INT1
HOLD ——»
QUEUE
HLDA <— ——INT®

g

LOCK TEST $¢-62 BHE AD®-

A16/53~

AD16 A10/58

4

MCS9-3 UCS LCS PCs9-8

—_—

NMI

20-21

INTERRUPT CONTROLLER

TMR IN TMR QUT TMR IN TMR OUT

_

xlt X2 CLKOUT v«ic GID DRQP 05101 I } i T
RES ——
cLocK EXECUTION DMA
RESET <«——| | GENERATOR UNIT
ALY uNIT TIMER UNIT
SRDY ——» GENERAL
REGISTERS
ARDY — ﬁ
INTERNAL BUS
1 Y,

DT/R ~t— \/

DEN <¢—— BUS INTERFACE CHIP-SELECT

RO ~——] UNIT UNIT

WR ——] SEGMENT

ALE REGISTERS
HOLD —]

QUEUE
HLDA ~——
LOCK TEST S@-S2 BHE ADO- A18/63- MCS9~3 UCS LCS PCSp-6
DiS A19/66

20-22

(t"

NON-iRMX86 DIRECT INPUT MODE AND CASCADE MODE

80186 OTHER ARDY
INTO =
INT 2 |- 10
EXTERNAL
8259A-2 INTERRUPTS
INT 1| INT e
_ 8
INT3 »-(INTA
ADQ-AD7|. »DO~-D7
+ 5V
RD »iRD T
WR »|WR §P
cs
A
PCSA
20-23
iRMX86 MODE
8259A |Rg|——
80186 L
INTZ | INT I
T - {INTA I
INT2 IR 7
CAS# CAS1 CAS2
8205
b—QE1 Ag
ALE QE2
s Al
+ovV
E3 A2
INT1 L 67
INT3

20-24

iRMX86 MODE INTERFACE TO 80130

80186
ALE ADDR
LATCH -~ AO-A15
3A8-A10
186 80130 y
ADO~-AD 15} e »{ADO-AD15
CLK — G LK
MMCS2 —3»MEMCS 48 /7 INTERRUPT
OO n o | —— IRO- ¢ R
_F:CS_S 3 "S_CS_IR7 / 7/ EQUESTS
s0-82 7 »50-52
BHE »-| BHE
INT
INTO []
INT3
+5
8205 T
- E2 E3
INT2 »E1
k INT1 7 -
20-25
80186/80188 BLOCK DIAGRAM
TMR IN TMR OUT TMR IN TMR OUT
)11 X2 CLKTOUT Vic GID DR[E DFlQ1 I 7 l 1T
RES ——»| -
CLOGK EXECUTION DMA
RESET-¢——| | GENERATOR ALU UNIT UNIT TIMER UNIT
SROY -—= GENERAL
REGISTERS
ARDY —94 /\ ﬁ
INTERNAL BUS
DT/R<—| i/ {} ¢y INT3/
DEN <¢—— BUS INTERFACE CHIP-SELECT INTERRUPT INTA
RD ¢ UNIT UNIT coz;ﬁpL INT2/
WR4—— SEGMENT INTA9
ALE ~¢——] REGISTERS
hag— INT 1
HOLD —|
QUEUE
HLDA ~¢——| ——INT@

_

'

P UL Gyl

MCS@-3 UCS LCS PCS9-8

LOCK TEST S@-S2BHE AD®-

AD16

A18/63-
Al19/66

NMI1

20-26

80186/80188 DIFFERENCES

80186 HAS A 6 BYTE QUEUE AND THE 80188 HAS A 4 BYTE QUEUE.

AD8 - AD15 ON THE 80186 ARE TRANSFORMED TO A8 - A15 ON THE
80188 AND ARE VALID THROUGHOUT THE BUS CYCLE.

BHE/S7 IS ALWAYS DEFINED HIGH BY THE 80188.
THE DMA CONTROLLER ONLY PERFORMS BYTE TRANSFERS.
EXECUTION TIMES FOR MEMORY ACCESSES ON THE 80188 ARE

INCREASED BECAUSE OF 8-BIT EXTERNAL DATA BUS. INTERNAL
DATA BUS IS STILL 16-BITS.

20-27

TYPICAL iAPX 186, 188 COMPUTER \
SYSTEM

18 MHz

M

Vee
ocs
. 32:2232“) ADDRESS "ggz‘
RESET AES ADO- —
ADIS—— > LATCH
T ALE —»|STB OF
= ST8_OE
80186 : i
D -
WR —
~y PROGRAM
MTS5-3 >
EF‘E' .
SRDY > +5V
ARDY
NMI—
HOLD|— -
'—.L- —> LOW RAM
TS —
TMRIN 0 }—» 4+ 5V (}
TMR OUT 0 ¥
CLOCK
8286 OR - =
8287 > Q'
~DITRANSCEIVER >oe-o7 gy’
T OF SE'?‘;AL TERMINAL
DTR L]
pCSO >
A1 -
A2
INTO | i
y

DISK
INTERFACE K:) DISK
INT1 HARDWARE
PCS >
DRQO

® BHE NOT IMPLEMENTED ON iAPX 188

20-28

iIAPX 186,188 PINOUT

ToP BOTTOM
o
.‘1’:1
<Oz _o- S ae3EHR
folEsss i fralil
g%%|§|‘:‘§z EUZEERCIRE

50 2 ucs

51 Lcs
g s2 BCSEA2

ARDY PCSS/AL
I cLKOUT pesa
RESET PCS3

X2 PCS2

X1] pesi
] Vss ¥ss
=} ALE/QSO PCS0
M ABASMD {J RES
| WRQs1 TMR OUT 1
B BHE TMR OUT 0
] L. A19/56 TMRIN 1
Q AtwSs [C]TMRINO
] AY7iS4 DRQ1
i3 A4S 3] DRQO

1A00ANONOO0OG OO

25282883 5-0288538
Pmuo.nmax/ FEY 3 Y €28
2<2<2<2<>_§<‘<§<§<

20-29

FOR MORE INFORMATION

INTRODUCTION TO THE 80186 MICROPROCESSOR
AP-186

20-30

CHAPTER 21

THE iAPX 286 AND iAPX 386 MICROPROCESSORS

e DESCRIPTION
®* ENHANCEMENTS

IAPX 286 MICROSYSTEM SOLUTION

TWO OPERATION MODES TO MATCH YOUR NEEDS:

e REAL ADDRESS MODE

—PROGRAM ENVIRONMENT IDENTICALTO iAPX 86, 186

—HIGHEST-PERFORMANCE SYSTEM (6 TIMES iAPX 86)
—LARGEST BASE OF AVAILABLE SOFTWARE (iAPX 88, 86, 186)

® PROTECTED VIRTUAL ADDRESS MODE

—SAME PERFORMANCE AS REAL MODE PLUS NEW FEATURES:
VIRTUAL MEMORY
SOFTWARE PROTECTION
PERFORMANCE BOOST FOR PROTECTED O.5.

—SIMPLE MIGRATION PATH FOR LARGE BASE OF APPLICATIONS
SOFTWARE

_/

~

\

IAPX 286 REAL ADDRESS MODE

® OPERATES EXACTLY AS iAPX 86 (PLUS UP TO 6 TIMES
PERFORMANCE)

® 1 MBYTE ADDRESS SPACE
® EXECUTES SAME iAPX 86 INSTRUCTION SET (BASIC SET)

® HAS ALL iAPX 186 INSTRUCTION EXTENSIONS

® SEGMENTATION SAME AS iAPX 86

® FULLY SOFTWARE COMPATIBLE WITH iAPX 86 AND iAPX 186
INCLUDING ADVANCED NUMERICS

~

iAPX 286 PROTECTED VIRTUAL MODE)

SATISFIES SYSTEM REQUIREMENTS

e ADVANCED MEMORY MANAGEMENT WITH NO PERFORMANCE
PENALTY
—16 MBYTE PHYSICAL ADDRESS
—1 BILLION BYTE VIRTUAL ADDRESS/TASK
—VIRTUAL MEMORY SUPPORT—INSTRUCTION RESTART

® ADVANCED PROTECTION MECHANISM
—AUTOMATIC INTEGRITY CHECKS (CODE AND DATA TYPING,
SIZE, AND PRIVILEGE)

—TASK ISOLATION CONTROL (USER/USER ISOLATION AND
SHARING)

—MULTILEVEL PROTECTION—UP TO 4 LEVELS—(USER/O.S.
ISOLATION AND ACCESS CONTROL)

e OPERATING SYSTEM PERFORMANCE ENHANCEMENTS
—MULTITASKING (INTEGRATED TASK SWITCH)
—ABILITY TO PROVIDE DIRECT ACCESS TO 0.S. FUNCTIONS

e EXECUTES SAME BASIC iAPX 86 AND iAPX 186 INSTRUCTION SET
INCLUDING ADVANCED NUMERICS J

21-3

\

MEMORY PROTECTION

~mme———— . ~——~Level 0 {most privileged)

—Level 1

—Level 2

{‘*— Level 3 (least privileged)

Privilege Level Isolation
ask C

Task Isolation

PIPELINED ARCHITECTURE

ADDRESS
UNIT

A

EXECUTION
UNIT

————— -

INSTR. INSTRUCTION CODE
UNIT

QUEUE QUEUE

BUS
UNIT

LOCAL

A

INHIBIT CODE PREFETCHER /

ADVANCE NOTIFICATION OF DATA NEED

DATA

BUS

\—

INSTRUCTION)™ 1234H BASE x 16

ACCESSING MEMORY

REAL ADDRESS MODE

ADDRESSING

SEGMENT
MECHANISM

BASE

OFFSET

CONTENTS AND SEGMENT ADDRESS

R e

e RELATIVELY SIMPLE ADDRESSING MECHANISM
e DIRECT RELATIONSHIP BETWEEN SEGMENT REGISTER

M12

>

340H]

345H]

/

(INSTRUCTION) __,_:j,_,_l

ACCESSING MEMORY

PVAM

SEGMENT
SELECTOR

OFFSET

ADDRESSING
MECHANISM

—L

—-

e MORE SOPHISTICATED ADDRESSING MECHANISM

e UTILIZES MEMORY MANAGEMENT AND
PROTECTION MECHANISMS

e ADDRESS STILL CONSISTS OF 32 bit QUANTITY
SELECTOR: OFFSET
e 24 bit ADDRESS SUPPORTS 16Mb MEMORY

(INSTRUCTION),

PVAM ADDRESSING MECHANISM

SEGMENT
SELECTOR

_

OFFSET

SEGMENT
DESCRIPTOR

BASE

DESCRIPTOR
TABLE

g M

e SEGMENT SELECTOR "SELECTS" A PARTICULAR
DESCRIPTOR FROM A DESCRIPTOR TABLE

e DESCRIPTOR PROVIDES SEGMENT BASE AND LIMIT

= J

LIMIT

21-8

DESCRIPTOR REGISTER LOADING

e DESCRIPTORS ARE AUTOMATICALLY LOADED WHENEVER
A SEGMENT REGISTER IS LOADED.

¢ NO NEW INSTRUCTIONS ARE NEEDED.

EXAMPLES: MOV DS, AX :2.5 USEC
POP ES
JMP SELECTOR, OFFSET
CALL SELECTOR, OFFSET
RET
LDS SI, POINTER VARIABLE

¢ THESE ARE THE ONLY TYPES OF INSTRUCTIONS THAT AFFECT
THE PERFORMANCE OF REAL ADDRESS MODE VERSUS PVAM

-

BEYOND
286
PERFORMANCE

21-10

iAPX 386

e EVOLUTION OF THE iAPX 86 FAMILY TO THE FUTURE
-~ IMPROVED PERFORMANCE

= INCREASED FUNCTIONALITY

~ PRESERVATION OF 86, 186 AND 286
SOFTWARE INVESTMENT

21-11

iIAPX 386 FUNCTIONALITY

e FULL 32 BIT ADDRESS AND DATA
e 286 MODEL PROTECTED SEGMENTATION PLUS OPTIONAL PAGING

o INSTRUCTION SET ENHANCEMENTS
~ BIT OPERATIONS, POINTER OPERATIONS, ETC

e EXTENDED NUMERICS COPROCESSOR (80387)
- INCREASED PERFORMANCE
- ENHANCED TRIGONOMETRICS

e IMPROVED SYSTEM RELIABILITY

21-12

~

ARCHITECTURE PLANNED FOR EVOLUTION

1ST GENERATION 2ND GENERATION 3RD GENERATION

386
4

/

8086

8088

21-13

APPENDIX A

LAB EXERCISES

LAB 1

When you finish this lab you will be able to:
* Write a simple but complete assembly language program
using an editor
* Use ASM86 to create object code from a ‘text file
* Use LINK86 to make a run time locatable file
* Execute the program using the SERIES III development
system

PROBLEM (part 1) a
This lab requires an INTELLEC SERIES III MICROCOMPUTER
DEVELOPMENT SYSTEM with an attached I/0 box containing
LED's and switches. You are to write a program that will
input the value on the switches wired to port 1, and then
output this value to the LED's attached to port #. The
program should do this continuously.

When you have a written solution, continue.with the 1lab.
PREPARING THE USER DISKETTE

If you are using the network, follow the directions given
by your instructor, skip this section and go to CREATING A
SOURCE FILE.

Your instructor has two floppy diskettes that you will use
for all the labs during the week. One of the diskettes 1is
a system diskette that has the ISIS-II operating system on
it. To use the Development System, you must first boot up
the system with a system diskette. To boot the system,
first power on everything and then place the diskette
marked SYSTEM DISKETTE into drive @ of the development
system (this is the right hand slot of the drive unit).
Place the diskette into the drive such that the label is to
the left or facing upwards (it depends on how the disk slot
is orientated). Now press the button marked RESET. The
system should sign on:

ISIS-ITI V x.y

The "-" tells you that you are in ISIS and that any ISIS
command may now be entered.

Now place the other diskette into drive 1. This is your
diskette that you will use for the entire week. First
initialize the diskette in drive 1 with an ISIS command
named IDISK. This command is used typically only once to
initialize a new diskette. The command formats the

A-1

LAB 1

diskette to make it compatible with ISIS and "erases™
everything that was on the diskette previously (so only use
the IDISK command once this week). To format your diskette
enter the IDISK command exactly as it appears below
followed by return.

IDISK :F1:MYDISK

The ":F1:" tells ISIS that you want drive 1 (drive @ is
accessed by :F@:). The name is arbitrary. The return key
enters the command. Once the command is done, ISIS will
return with a "=-"., If you make a mistake while typing, use

the key labeled "Rubout" to delete the last character you
entered.

CREATING A SOURCE FILE

Now you are ready to create a disk file of your program
using an editor. If you wish to use AEDIT and you are
unfamiliar with it, go to the optional AEDIT Basics lab in
this appendix.

To invoke AEDIT, type:
AEDIT :F1:LAB1.ASM

While you are creating this file, it would be good practice
to keep your AEDIT Pocket Reference card with you to help
you with unfamiliar commands. You should also use the Tab
key to make orderly columns in your program.

Once you have your program entered, you are ready to
assemble it. This is accomplished by typing:

RUN ASM86 :F1:LAB1.ASM SYMBOLS

where
RUN is a program that invokes the 8@86 processor
in the development system (ISIS uses the 8@85
processor).
ASM86 is the program that you want the 8@86

processor to execute (the assembler).
:F1:LAB1.ASM is what you want the assembler to assemble.
SYMBOLS is a control telling the assembler that you

would like a table of all the symbols used in

your program. This symbol table will be
attached to the program listing.

A-2

LAB 1

When the assembler is done, it will return control to

ISIS. It will also create two new files on the floppy disk
in drive 1. One of these files contains 8@886 object code
to be executed on an 8@86 processor. The other file
contains the program listing which gives useful information
about the program including any errors the assembler

found. Write the names of these two files:

tF1:
tF1:

If you cannot remember the names of these files, you can
find them by looking at the directory of drive 1. Type:

DIR 1
Copy the listing file to the line printer by typing:
COPY :F1: TO :LP:

or substitute the printing device given by your instructor
to use instead of :LP:.

If the assembler found any errors, now is the time to
correct them by changing your source file using AEDIT.

You should be able to identify most of the items in the
listing. Try to answer these questions.

How many bytes long is the program?

What is the offset of the last instruction in the
program?

How many bytes long is this last instruction?

DON'T PROCEED TO THE NEXT SECTION UNTIL YOU HAVE ASSEMBLED
YOUR PROGRAM WITH NO ERRORS!

A-3

LAB 1

LOADING AND RUNNING YOUR PROGRAM

As we saw in the last section, the assembler produced an
object file called :F1:LAB1.0BJ. This file contains
relocatable object code. It does not contain any absolute
addresses. It must be assigned an address before it can be
executed. To assign an address to a program, it is run
through a "locater". The locater assigns absolute
addresses to the segments in a file.

The SERIES III development system, however, is designed to
accept run time locatable code. Thus the code is assigned
an address as it is being loaded into RAM memory from the
disk. This saves several steps (and time) during program
debugging (eventually the program will need to be located
before it can be used with an in-circuit emulator or burned
into PROMs). To assign run time locatable addresses to
your program, we use the linker with a BIND option. This
option allows the program to be run on the SERIES III
development system. Type:

RUN LINK86 :F1:LAB1.0BJ BIND

The LINK86 program produces two new files, :F1:LAB1 and
:F1:LAB1.MP1.

The file :F1:LAB1.MP1 is a map of the output of the

linker. You may want to copy it to the line printer, but
for such a small program as this one it won't give you much
useful information. :F1:LAB1 is the run time locatable
object file.

To run your program type:
RUN :F1:LAB1.

The period after LAB1 is required. If you don't include
it, the RUN program will look for a file called :F1:LAB1.86
and not find it. Most 8886 object code programs to be run
on the SERIES III have an extension of .86. You may want
to look at the directory of your system disk to verify
this. By including the period after your file name, you
tell the RUN program not to look for the .86 extension.

Verify that your program works correctly. If it does not,
study your listing or ask your instructor for help.
Tomorrow you will learn techniques for debugging your
programs while they are running in the development system.
Remember, you can abort your program execution at any time
and return to ISIS by entering Ctrl-C (press and hold the
Ctrl key and then type a C).

A-4

LAB 1

Note: If a HLT instruction is included in your program, you
might get some unexpected results. This is due to the way
that the HLT instruction works and the way that the SERIES
ITI works. The main use of the HLT instruction is to wait
for a hardware interrupt. After an interrupt, the
processor continues execution with the instruction after
the HLT instruction. The SERIES III normally interrupts
the 8@86 processor every 58 msec. When interrupted, the
8386 checks to see if any keys had been hit at the
keyboard. These interrupts are invisible to you unless you
use a HLT instruction to end your program. If you do end
with a HLT instruction, the 8886 will execute whatever
follows the HLT instruction as soon as it returns from the
interrupt routine. The solution is to not use a HLT
instruction for ending your program or to use a JMP
instruction directly after the HLT which jumps to the HLT
instruction.

PROBLEM (part 2)

Write a program that will rotate a pattern of one 1lit LED
on the LED's of port @#. The program should delay about 1
second between each rotate.

PROBLEM (part 3)

Use the program written in part 2, but make the delay a
variable that 1is specified by the switch setting on port

1. You may find it difficult to write a 'bug free' program
using only the instructions covered so far in class. If
you have problems, speak to the instructor or you may want
to look at the solution given. Try your own solution
first!!

REVIEW:

In this lab, you have learned how to use the instructions
taught in Day 1 of the workshop and some of the ISIS
commands discussed in class. You have learned how to
create, assemble, link and execute your program using the
SERIES III development system. The development steps taken
in this lab were:

AEDIT :F1:LAB1.ASM

RUN ASM86 :F1:LAB1.ASM SYMBOLS
COPY :F1:LAB1.LST TO :LP:

RUN LINK86 :F1:LAB1.0BJ BIND
RUN :F1:LAB1.

A-5

LAB 2

When you finish this lab you will be able to:

* Define and access a data array
* Debug using DEBUG-86 symbolic debugger

PROBLEM (part 1)

Using the flow chart in the following text, write a program
that will continuously search a 5@ byte array called BUFFER
for the ASCII code for return (@DH). If a return is found,
the program should output F@H (for FOund) to port © LEDs
and continue looking from the beginning of the buffer.

If a return is not found, the program should output @FH to
the LEDs and start looking again from the beginning of the
buffer.

When writing your program, don't worry about putting a
return in the buffer. We will do this later using the
debugger. Use START: as the program label for the first
instruction in your progranm.

(START)d
Y

INITIALIZE
CX=LENGTH OF BUFFER
BX=0

(FOUND)
OUTPUT »

BUFFER |:BX] ='CR'? oFoHN

BX=BX+1
CX=CX~-1

(NOT FOUND)I

OuUTPUT
OFH .

LAB 2

When you have your program written, you will have to
prepare it for execution as you did in Lab 1. Enter your
program on a disk file using AEDIT and assemble it using
ASM86. Don't forget to use the DEBUG and SYMBOLS options
for the assembler as shown below.

RUN ASM86 :F1:LAB2.ASM SYMBOLS DEBUG

The DEBUG option attaches a copy of the symbol table to the
object file. When you load your object file into RAM
memory, DEBUG-86 will remember the symbol names and their
values. This allows you to use symbolic names to reference
parts of your program. You should get a copy of the
listing for the DEBUG session that follows.

Remember, the SYMBOLS option attaches a copy of the symbol
table to the program listing so that you can look at it.

Prepare your object file for loading with:
RUN LINK86 :F1:LAB2.0BJ BIND
USING THE SERIES III DEBUGGER

At this point, you are ready to execute your program.
However, instead of just running your program and hoping
that it works correctly, your should use DEBUG-86 to
analyze its operation and find any errors that you might
have made.

To invoke the SERIES III Debugger, type:
RUN DEBUG

The debugger will sign on:
EEBUG 8386 V x.y

The asterisk prompt ,"*¥", tells you that you are in the
debugger and only DEBUG-86 commands are valid (you can
still use Rubout). The DEBUG-86 commands are shown in the
Intellec Series III Microcomputer Development System Pocket

Reference Card with a full explanation in the Intellec
Series II1 Microcomputer Development System Console
Operating Instructions manual Chapter 6.

To load the program into memory type:

LOAD :F1:LAB2

A-7

LAB 2

This command will load both your program and all of the
symbols that you declared in your program. The symbols
Wwill only get loaded if the DEBUG option was used when you
assembled your program. The loader will also initialize
the CS and IP registers to point to the first instruction
in your program. Do not put a period at the end! DEBUG-86
only looks for the filename specified. Before executing
the program, check to see where in memory the program was
loaded. How can you tell where the program was loaded?
(hint--lo0k at the registers.) Type:

REGISTER

The debugger will display all the registers and flags.

Where is the program located?

To see if the program was loaded correctly, display
memory. The memory display commands use an address range
which can be specified in several ways. Type:

BYTE CS:8 TO CS:29

Compare this memory dump to the object code given in the
listing. Do they match? An easier way to determine if the
program was loaded correctly would be to disassemble the
object code in memory. To do this, type:

ASM CS:8 TO CS:20

This command, like the BYTE (display memory) command,
requires an address range. The LENGTH keyword can also be
used in specifying address ranges. To try it, type:

ASM CS:IP LENGTH 25

Note: You may see an XCHG AX,AX when you dissemble your
program. This is not an error. XCHG AX,AX is the way the
assembler generates a NOP (no operation) instruction. It
is possible for the assembler to allocate one extra byte
for a JMP instruction if the destination of the jump is
defined later in the program. This extra byte is filled
with a NOP. More on this later.

Before running the program, you should know whether or not
a return character is in the buffer. But where is the
buffer? One way of finding out the address of the buffer
is to look it up in the symbol table. Type:

SYMBOLS

A-8

LAB 2

You should see all the symbols in your program including
segment names. However, we can also use symbol names
directly. To display the buffer, try:

BYT .BUFFER LENGTH 50T

You must use a period in front of every symbol name. This
is to differentiate symbol names from DEBUG-86 commands in
case they happen to be the same. The T in 58T indicates
base ten. The default base is hex.

Fill the buffer with all zeroes by typing:
BYT .BUFFER LEN 50T = @

Now execute the program sing the GO command:
GO

The GO command defaults to using the current CS:IP value as
a starting address. If CS:IP were not correct, you could
have typed:

GO FROM .START

Is the program working correctly? To stop execution, press
and hold the Ctrl key and type D (Ctrl-D). Ctrl-D brings
you back into the debugger. The program stops executing
and the next instruction to be executed is displayed. To
place a return (@DH) in the buffer and see if your program
finds it, type:

BYT .BUFFER+16T = @DH

This will place a @DH in the eleventh byte in the buffer.
Display the buffer again to see if it is there. Now
execute the program from the beginning to see if it works.
If your program doesn't work, there are several commands to
help you find out why.

Breakpoints can be used to stop execution at a certain
place in your program. They are very useful for finding
out if a program is executing correctly. If you had a
program label called FOUNDIT and you wanted to see if your
program ever reached this statement, you could type:

GO FROM .START TILL .FOUNDIT

A-9

LAB 2

To single step the program, use the step command. To
single step the first instruction, type:

STEP FROM .START

An address could have been used (STEP FROM 485:8). The
debugger displays the next instruction to be executed. To
step again type:

STEP

The ports on the I/0 box can be directly controlled with
the debugger. To read the value of the switches on port @,
type:

PORT @
To turn on the LEDs on port 1, type:

PORT 1 = FF

The debugger has several advanced commands that are useful
during debugging. One of these allows any number of
DEBUG-86 commands to be repeated indefinitely. To use this
command to repeatedly single step and display the registers
after every instruction, type:

REPEAT
STEP
REGISTER
END

Abort with Ctrl-D. Use these commands until you feel

comfortable with them. If you have extra time, you should

try some of the other DEBUG-86 commands that were not
discussed here.

To exit the debugger and return to ISIS, type:
EXIT
or
Ctrl-C.
PROBLEM: (optional)
Modify the previous lab to count the number of returns in

the buffer. You should use a variable in memory to hold
this count. After going through the entire buffer, output

A-10

LAB 2

the count to the LEDs on port #. If the count is zero,
output a value of FFH. Have this repeat continuously. Use
DEBUG-86 to add returns to your buffer. The following
steps may assist you in development:

INITIALIZE CX = LENGTH OF BUFFER, BX = @, COUNT = @
IF BUFFER[BX] = @DH THEN COUNT = COUNT + 1

BX = BX + 1, CX = CX - 1

IF CX DOES NOT EQUAL ZERO GO TO STEP 2

IF COUNT = @ THEN OUTPUT @FFH OTHERWISE OUTPUT COUNT
6) GO TO STEP 1

Ul =W -
— s e N

REVIEW:

In this lab, you have learned how to use the instructions
taught in Day 2 of the workshop and how to define and
access data. You have learned how to debug your program
using the SERIES III development system and DEBUG-86.

The DEBUG-86 commands used in this lab were:

RUN DEBUG Activates DEBUG-86.

LOAD Loads your program code into 8886
memory.

REGISTER Display the contents of user registers.

BYTE Display and change the contents of byte
memory locations.

ASM Display the contents of memory locations
in 8086 Assembly language mnemonics.

SYMBOLS Displays symbols and their values.

GO Causes execution of your program until
breakpoint conditions are met.

STEP Causes execution of a single program
instruction.

PORT Display and change contents of a byte
I1/0 port.

REPEAT Causes looping of a command.

EXIT Exits DEBUG-86 (or use Ctrl-C).

A-11

LAB 3

When you finish this lab you will be able to:

Use and declare procedures in ASM86

Break up your code into separate segments
Pass parameters to a procedure

Create and initialize a stack

Optionally, create an interrupt routine

¥ ¥k X Ak W

PROBLEM (part 1)

In the first part of this lab, you will create a simple
typewriter program that inputs characters from the
development system keyboard and outputs them to the CRT.
For this part of the lab, you will use two procedures

provided on your system disk. These procedures are
labelled CI and CO.

CI is a procedure that inputs one character from the
keyboard and returns its ASCII value in the AL register.
It will wait until a key has been hit.

CO is a procedure that outputs one character to the CRT.
The character to be output (the parameter) should be passed
on the stack. CO will clean up the stack.

CI and CO have already been written for you and the object
code is contained in two files on your system disk called
CI.OBJ and CO.0BJ. We have provided these to save you the
time and effort of writing them on your own. CI and CO are
actually written in PL/M-86, a high level language. The
listings are given in the lab solutions section.

Write your program as if CI and CO were declared in your
own source program. They will actually be added later when
you use LINK86 to bind your program. This is modular
programming which will be covered later in the course.

Use the following steps to help you write your program:

1) CREATE A STACK
2) INITIALIZE ANY NECESSARY REGISTERS

3) CALL CI
4) CALL CO (Don't forget to pass the character on the
stack)

5) JUMP TO STEP 3

A-12

LAB 3

Because you are using the procedures CI and CO and you
don't declare them anywhere in your program, the assembler
will give you an error. To prevent this, you should tell
the assembler that the procedures CI and CO are defined
"external" to the module. To do this, place the following
statement at the very beginning of your program (it must be
outside of any segment).

EXTRN CO:FAR,CI:FAR
When you are ready to link your program, use the command:
RUN LINK86 :F1:LAB3.0BJ,CO0.0BJ,CI.OBJ,LARGE.LIB BIND

This will include the CI and CO routines. LARGE.LIB is a
collection of programs that enables an 8@86 program to
access I/0 devices on the development system.

-==Good luck---

PROBLEM (part 2)

In this part of the lab, you should make two additions to
the program written for part 1. The firsti is to write a
new procedure called ENCRYPT. Before outputting any
character to the CRT, it should first be passed to the
ENCRYPT procedure. ENCRYPT should transform the ASCII
character in some way that you decide and pass it back to
the main program. An easy example would be to add a one to
the value. This would transform an "A" into a "B","B" into
a "C", ete. An ASCII table is included in the front of
this lab section to help you. Pass this parameter on the
stack to ENCRYPT. Place ENCRYPT in the same segment as the
main program.

Where would be the best place to put the ENCRYPT

procedure in your code segment? (the beginning or the
end)

What would you use to access the parameter passed to
ENCRYPT on the stack?

Also, you probably noticed that carriage returns did not
produce a line feed. Add some code to your main program to
detect carriage returns and to output a carriage return and
a line feed when a carriage return is entered.

A-13

LAB 3

PROBLEM (part 3)

Place ENCRYPT in a separate segment from the main program.
Your program should then contain two segments with one of
them containing your main code and the other containing
only the ENCRYPT procedure.

Where would be the best place to put the ENCRYPT

procedure segment in your program? (the beginning or
the end)

What changes had to be made to make this work?
(procedure type and parameter access changes)

PROBLEM (part 4)
This is a slightly more difficult version of part 2.

Instead of creating an ENCRYPT procedure, write one that
implements a shift-lock feature for the keyboard. The TPWR
key already does this, but we will implement the feature in
software. When the TPWR key is depressed, the Intellec
keyboard produces both upper and lower case characters
depending on the shift key. You should write a procedure
that converts lower case alpha characters to upper case
characters depending on whether the shift-lock has been
set. The shift-lock is defined as the character "{" (7CH)
in the upper right hand corner of the keyboard. After this
key is hit for the first time, all alpha characters output
should be in upper case only. After it is hit again, alpha
characters should be in both upper and lower case. Your
procedure should maintain a software flag to keep track of
whether the lock is set or not.

A-14

LAB 3

OPTIONAL PROBLEM (Interrupts)

You are to implement an interrupt service routine. Your
main program will be required to read the values set on the
port switches then divide the number set on port @ by that
set on port 1. The result (port @/port 1) should be
displayed on the port @ LEDs. This should be done in a
continuous loop.

A divide error may occur. For example, if the port 1
switches were @ then the answer of infinity cannot be
represented. You will have to write an interrupt service
routine for the type @ interrupt to handle this. This
routine should change the state of the port 1 LEDs, delay
for a half a second and then return. While there is a
divide error being generated in the main program, the LEDs
on port 1 will flash, the first interrupt switching them
on, the next switching them off, etc. Use a byte in RAM to
flag the LEDs on/off.

Remember to do the following:

1) Your main program should set up the stack.

2) Your main program should set up the pointer to the
interrupt service routine.

3) The interrupt service routine should save any
registers it uses.

4) Use the correct return at the end of the routine.

If you prefer to use an absolute segment with a pointer to
your interrupt routine in that segment, you may encounter
some problems with DEBUG-86. DEBUG overwrites your pointer
table entry when it loads your program. If you wish to
reload it, type POINTER @ = .(error) where "error" is
whatever you called your service routine.

Do you need to enable interrupts with an STI
instruction?

Why not?
REVIEW:

In this lab, you have learned how to create procedures,
placed them in a separate segment from your main program,
and passed parameters to your procedure. You have created
and initialized the registers to point to your stack. If
you did the optional lab, then you have set up interrupt
pointers and written an interrupt service routine.

A-15

LAB 4

When you finish this lab you will be able to:

* Break up your program into separate modules
* Use a jump table

¥ Encrypt using the XLAT instruction
PROBLEM (part 1)

In this lab, you are going to write a procedure that will
be referenced in another module. Edit the program you
developed in part 3. Remove the segment that contained the
ENCRYPT procedure and make an external reference to the
procedure. Now write a separate module that will only
contain the ENCRYPT procedure. Modify this procedure to
provide a switch selective encryption technique. The
operation of the procedure should be as follows:

The procedure should read the value set on the port 9
switches and use this as an index into a table of offsets
of program labels. Using an indirect jump, the procedure
will jump to one of several different program labels. Each
of these pieces of code will provide a different encryption
technique to alter the character that was sent to the
ENCRYPT procedure. 1If the value on the switches is greater
than the number of encryption techniques you have provided,
the ENCRYPT procedure should return a "*" (2AH) to indicate
a nonvalid switch setting.

This purpose of this lab is to implement a jump table and
to use multiple modules, not to think of many ways of
altering the characters. Two or three simple encryption
techniques will suffice (i.e. increment character,
decrement character, and shift character). Remember to
link these together.

PROBLEM (part 2)

Write another encrypt procedure in a separate module. This
time try writing it using the XLAT instruction for
encrypting your characters. This is a natural for this
instruction., Link this module to your main program instead
of the one you created in part 1.

REVIEW:

In this lab, you have used multiple modules and the
conventions for linking them together. You have also used
the instructions taught in Day 4 of the workshop.

A-16

AEDIT Basics Lab

When you finish this lab you will be able to:

Invoke the editor

Insert text to make a file

Position the cursor to make corrections

Correct mistakes by deleting and exchanging characters
Move and copy blocks of text

Exit the editor and save your file

L

In this lab, you will be learning the basic AEDIT commands
SO you can create your program files. If you have any
problems or errors occur, please see your instructor. You
will be editing a file called TEST.LAB. This file is on
your system disk. Power up your system following the steps
taught in class. To use this file, copy it to your user
disk with the following command: (<CR> indicates the return
key)

COPY TEST.LAB TO :F1: <CR> i

To edit this file, you invoke AEDIT by typing the following
line:

AEDIT :F1:TEST.LAB <CR>

AEDIT displays a menu on the bottom of the screen which
should look like this:

~=-—- system id AEDIT V x.y
Again Block Delete Execute Find -find Get -- more --

At the end of the text you should see a vertical bar "}"
which is the EOF mark. This marks the end of the text
file. If this was a new file it would appear at the top of
the screen. As you type in text it will move and continue
to mark the end of the file. ;

The solid non-blinking block is the cursor. This marks
where you are at in the file.

When you begin a session, AEDIT is in the command mode.

The menu at the bottom of the screen shows you what options
you have. Press the Tab key (If the terminal you are using
does not have a Tab key, press and hold the Ctrl key and
then type the I key). Pressing the Tab key will show the
other options available in the command mode. Pressing Tab
repeatedly will show all the options and wrap around to the
beginning of the menu. Several of the commands also have
subcommand menus as you will see later.

A-17

AEDIT Basics Lab

The Insert command is used to type in new text in front of
the current cursor position. To enter any command, you
type the first letter of the command. Press the I key.
You should see "[insert]" at the bottom of the screen to
indicate that you are now in the insert mode. Now type in
a word but misspell it. To correct your error, press the
RUBOUT key. Each time you press the RUBOUT key, it backs
the cursor one column and erases that character. Once the

offending character is erased, simply type in the new
characters.

Delete the characters you just typed by holding down the
Ctrl key and typing the X key. This is the DELETE LEFT
command and deletes the text on a line from the cursor to
the beginning of the line. At this point, the text should
be the same as shown below.

When you type ussing an edior you may often

make a mistoke that you have to correct.

AEDIT will allow you to correct the the

problem, get rid of bad stuff, and make your life easy.
This is the first line.

The arrow keys move the cursor up, down, right, or left.

If you type the HOME key after one of the arrow keys, then
you can move rapidly to the beginning or end of a line or
page forward and backwards through a file. Press the right
arrow key followed by the HOME key. Notice the cursor
moved to the end of the line. Press the left arrow key
followed by the HOME key. This took the cursor to the
beginning of the line.

The fourth word in the first line, "ussing", is misspelled.
Press the right arrow key to move the cursor to the first
"s" in "ussing". To delete the "s", hold down the Ctrl key
and type an F. This is the DELETE CHAR command which
deletes the character under the cursor.

The sixth word in the first line, "edior", is missing a
"t", Move the cursor to the "o" in "edior"™. Now type a
"t", While in the insert mode, you can insert characters
anywhere in your text.

Press the Esc key. This takes you out of the insert mode
and back to the command mode. Another method to go back to
the command level is to use a Control C. Control C aborts
the command and all corrections made are lost.

A-18

AEDIT Basics Lab

The third word on the second line "mistoke" is spelled
wrong. Move the cursor to the "o" in "mistoke". Since we
wish to change the character "o" for an "a", press X for
Xchange mode. Xchange allows you to overtype characters.
If you make a mistake, press the RUBOUT key, and the old
character is returned as long as you don't press Esc,
return, or a cursor movement key. Press an "a" to correct
"mistoke", and then press the Esc key to get back to the
command mode.,

The third line contains "the the" at the end of the line.
Since the second "the" is at the end of the line, you can
delete from there to the end of the line. To get rid of
the second "the", move the cursor to the space in front it.
Press and hold the Ctrl key and type an A. This command,
DELETE RIGHT, deletes all characters to the right of the
cursor to the end of the line.

Control A (DELETE RIGHT), Control X (DELETE LEFT) and
Control Z (DELETE LINE) can also be restored. The command
to do this is the Undo command which is Ctrl U. Undo is
able to restore up to 100 characters deleted by the last
Control A, X, or Z at the current cursor position. Press
Ctrl and type a U. Notice the "the" you just deleted has
reappeared. Now delete it again.

Now you will be deleting characters in the middle of a
line. 1If you wished to delete ", get rid of bad stuff,",
you would first block or delimit this section. Move the
cursor to the comma in front of "get" and type a B for
Block. Notice when you did this an "@" has taken the place
of the cursor. Now move the cursor to one character past
the last character you want in the block. In this case,
you would move it to the space after "stuff,". Notice an
"@" moved with your cursor and marks the end of the block.

When you pressed B for Block, you may have noticed that the
menu has changed to show Block's subcommands. Since you
wish to delete, type a D for Delete. Notice that
everything from under the first "@" up to the last "@" was
deleted.

The Block command gives you the ability to move and copy
text from one part of your file to another. The fifth line
which reads "This is the first line." should be moved to
the first line. Move the cursor to the first character of
the fifth line and type a B for Block. Now type the down
arrow key. This will block the line. To move the line,
you would first delete it, move the cursor to where you
want to move it, and then get the line back. Type a D for
the block subcommand Delete. This has deleted the line and

A-19

AEDIT Basiecs Lab

placed it in a buffer. Now move the cursor to the
beginning of the text by typing an up arrow and then HOME.
Now you want to get the text you deleted. Type a G for the
Get command. The Get command will prompt:

Input file:

on the bottom of the screen. To get the buffer which holds
the deleted line, type a return or the Esc key. Notice the
line has been retrieved and has been inserted before the
0ld cursor position.

Now let's copy the entire text file. Move the cursor to
the beginning of the file if your cursor isn't already
there. Now type a B for Block. Move the cursor to the EOF
mark by typing a down arrow followed by HOME. Since you
are about to copy, type a B for Buffer. This will place
the blocked text in the buffer without deleting it. Now
get the contents of the block buffer by typing G for the
Get command. Answer Get's prompt with a return to get the
buffer. Notice the six lines are repeated on the screen.
Type G again and answer Get's prompt with a return. Notice
the same six lines are repeated. Once text is in the
buffer you can get it several times. Get the buffer three
more times.

To look at the text that is scrolled off the screen, type a
down arrow several times. Notice that when you are at the
bottom of the screen the screen scrolls up one line every
time you type a down arrow. A faster way to look at the
next page is to use the HOME key. Type the HOME key.

Since the last arrow key typed was the Down arrow key, this
should have taken you to the next page or screenfull of
text. Typing HOME again should take you to the next page of
text or the EOF marker, if this was the last page of text.
To look at the previous page of text, you could type the Up
arrow key several times or type the Up arrow key followed
by the HOME key. Type the HOME key again. Repeated typing
of HOME will take the cursor to the beginning of the text.
Go from the beginning to the end of the text several times
to get comfortable with the operation.

Now that you are finished editing this file, you are ready
to end the editing session. Type Q for the Quit command.
The bottom of the screen should look like this:

---- Editing :F1:TEST.LAB
Abort Exit Init Update Write

Notice that Quit has several subcommands that you can
choose from. Abort returns to the operating system with

A-20

AEDIT Basics Lab

all changes lost. If any changes were made, it will ask
you "all changes lost (y or [n])" to make sure. Exit will
write out the new file and return to the operating system.
Init allows you to edit another file without leaving AEDIT.
Update updates your file without leaving AEDIT. Write
prompts for an output file name and then it writes your
file to the named file without leaving AEDIT. Any legal
filename can be used even :LP:. If you did not specify a
filename at the beginning of the session, only Abort, Init,
and Write are available. Since you want to save the file
and leave AEDIT, type E for Exit. Now your file has been
written to the disk and you should have the operating

system prompt. See if your file has been written by typing
DIR 1<CR>.

You should have two files TEST.LAB and TEST.BAK. When you
edit an old file and exit, AEDIT first changes the name of
your old file, TEST.LAB, to TEST.BAK before saving the
changed file. This way you still have the o0ld file in case
the new one didn't work. To use AEDIT on the old file, use
the ISIS RENAME command. For example:

RENAME :F1:TEST.BAK TO :F1:TEST1.LAB

The AEDIT commands can be found in the AEDIT Text Editor
Pocket Reference and in the AEDIT Text Editor User's Guide.
AEDIT has several other advanced commands that you may wish
to use. Refer to these guides to look at these commands.
The commands you have seen in this lab session are the most
frequent ones that you will use to do most of your editing.

A-21

Review:

AEDIT Basies Lab

The AEDIT commands that we have learned are:

Cursor Movement commands:

Arrow keys
Right arrow-HOME
Left arrow-HOME

Down arrow-HOME
Up arrow-HOME

Delete commands:

Ctrl-X
Ctrl-A
Ctrl-2Z
Ctrl-U
Ctrl-F
RUBOUT

Menu commands:

Insert
Xchange
Block

Buffer
Delete
Get
Quit
Abort
Exit
Init
Update
Write

Esc
Ctrl-C

Moves cursor right, left, up, or down.
Move cursor to end of line.

Move cursor to the beginning of the
line.

Move cursor to the next page.

Move cursor to previous page.

Delete all characters left of the cursor
to the beginning of the line.

Delete all characters right of the
cursor to the end of the line.

Delete line.

Undo a Ctrl-A, X, or Z.

Delete character under cursor.

Delete the preceeding character.

Insert text before cursor.

Type over characters under cursor.
Allows you to delimit a block of
characters with the following
Subcommands:

Store delimitted block in buffer.
Delete delimitted block and store it in
the buffer.

If responded to with a return, gets the
contents of the block buffer.

Ends the editing session with the
following subcommands:

Quit with all changes lost.

Write new file to disk and quit.

Edit a new file without returning to the
operating system.

Update your file without returning to
the operating system.

Writes contents of file to the named
file without returning to the operating
system.

Takes you back to the command mode.
Aborts the command and returns you to
the command mode.

A-22

APPENDIX B

LAB SOLUTIONS

8286/87/60/186 MACRO RSSEMBLER LABIA

SERIES-111 8886/87/88/186 MACRO ASSEMBLER V2. RSSEMBLY OF MODULE LABIA
OBJECT MDDULE PLACED IN :F2:LRBIA.0BJ
ASSEMBLEN INVOKED BY: :F3:ASMB6.86 :F2:LABIA,ASM

LoC OBJ LINE SCURCE
! NAME LABIA
2
o092 3 LEDS EQU e ;LED PORT
o681 4 SWITCH EQU 1 1SWITCH PORT
3
- b CODE GEGMENT
7 ASSUME CS:CODE
a8
@200 £4ot 9 START: IN AL, SWITCH
sz £6oR i@ out LEDS, AL
@224 EBFA i Jup START
ie
- 13 CODE ENDS
14 END STRRT

ASSEMBLY COMPLETE, NO ERRORS FOUND

B-1

8@d6/87/88/186 MACRC ASSEMBLER

LAB1_PART2

SERIES-II1 B@A6/87/88/:186 WACRO ASSEMBLER V2.® ASSEMBLY OF MODULE LAB1_PARTZ
OBJECT MODULE PLACED IN :F2:LAB1B.0BJ

ASSEMBLER INVOKED BY:

Lo OBJ

800
0081
2221

2900 Boei
eadz £6ee

0004 530500
0ea7 8gD1
28289 BIFFFF
@eaC EcFt
82RE BBCA
0013 E2FS

#012 Deca
2314 EBEC

LINE

Smmummawm.—‘

s O Pt ot Jok et et g P el bk
%F‘meﬂmu»wmh—

sF3:A5MB6. B6 :F2:LAB1B.ASM SYMBOLS DEBUG

SOURCE
NAME LABI_PART2
LEDS EW 8
SWITCH E 1
PATTERN EQU OIH
CODE SEGMENT
AGSUNE CS:CODE
GTART: MOV AL, PATTERN
ABAIN: OUT LEDS,AL
MV CX,5
OUTER: MV DX,CX
MV CX,OFFFFH
INER: LOOP INNER
WV CX DX
LOOP OUTER
RR ALl
MP ABAIN
CODE ENDS
END START

B-2

sLED PATTERN

;OUTPUT PATTERN

+3 TIMES FOR 1 SEC
$SRAVE IT FOR LATER
1.2 SEC DELRY

16ET IT BACK
170 DO IT 5 TIMES

tROTATE PATTERN
+REPEAT

B8286/87/88/186 MACRO ASSEMBLER LABI_PART3

GERIES-III 8086/87/88/186 MACRO ASSEMBLER V2,@ ASSEMBLY OF MODULE LAB!_PART3
OBJECT MODULE PLACED IN :F2:LABIC.OBJ
ASSEMBLER INVOKED BY: :F3:ASMB6.86 :F2:LABIC.ACM SYMBOLS DEBUG

Loc 08J LINE SOURCE
I NAME LAB! PART3
2
2000 3 LS EQW @
o001 b GWITCH EB 1t
0001 5 PATTERN EGU MM sLED PATTERN
6
—_ 7 CODE SEGMENT
8 ASSUME CS:CODE
0000 5081 9 START: MOV AL, PATTERN
3002 EGHD 10 RAGAIN: OUT LEDS,AL sOUTPUT PATTERN
0084 BADB 1 MV BLAL 1SAVE PATTERN
12
2096 E401 13 IN ALSWITCH sDELAY TIME IS SET BY
2008 B42D 14 MV AH,0 : SWITCHES
908A ABCA 15 MV CXAX
P00C E30B 16 JLXI CONTIN +IF CX 15 IERD, THEN
17 1SKIP DELAY. OTHERWISE
18 sDELAY WOULD BE TOO LONG
Q00E BBD! 19 OUTER: MV DX,CX 1SAVE IT FOR LATER
10 BIFFFF 22 MV CX,0FFFFH 1.2 SEC DELAY
2013 E2FE 21 IMER: LOOP INNER
2015 8BCA 2 Wy CX, DX 16ET IT BACK
0917 EZFS 3 LOGP OUTER +T0 D0 IT 5 TIMES
2%
2019 8AC3 25 CONTIN: MV ALBL sPUT PATTERN BACK
201B Dec8 26 R ALt sROTATE PATTERN
991D EBE3 27 4P AGRIN +REPEAT
— 28 CODE ENDS
29 END START

B-3

8086/87/88/186 MACRO ASSEMBLER

LAB2

SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.@ RSSEMBLY OF MODULE LAB2
OBJECT MODULE PLACED IN :F2:LAB2.0BJ

RSSEMBLER INVOKED BY:

LoC 0BJ

eean
eere

o0 (50
7

0299 BA--—
883 8eDE
8005 B9
8088 33DB
9007 Ba3FAD
828D 7409
G3aF 43
2010 E2F8

@212 beer
0814 E6d@
@216 EBED

0818 Bore
801R E6OD
@21C EBE7

LIN

— RO R~ B O

. b

ig
13
14
15
16
17
18
19

21
22
a3
24

27
28
3
33

33

tF3:A5MB6. 86 :F2:LAB2. ASM SYMBOLS DEBUG

SOURCE
;THIS PROGRAM IMPLEMENTS THE FLOWCHART GIVEN IN LAB 2

NAE LAB?
R EQU @DH

FOUND EQ ereH
NFOUND EGU @

;CARRIAGE RETURN
;LED PATTERN IF CR IS FOUND
;LED PATTERN IF CR IS NOT FOUND

LD EW @ sLED PORT
DATR SEGMENT

BUFFER DB S8 DUP (7)

DATA ENDS

CODE SEGMENT

ASSLME CS:CODE, DS:DATA

START: MOV AX, DATA {INITIALIZE DS SEGMENT

MOV DS, RX
RGAIN: WOV CX,LENGTH BUFFER ;LOAD CX FOR LODP COUNT
XOR BX, BX ;INITIARLIZE INDEX
CHECK: CMp BUFFERLBX], CR ;CHECK CONTENTS (F BUFFER FOR @DH
JE FNDIT 1JMP IF CR WAS FOUND
IND BX ;BUNP INDEX
LOOP CHECK ;D0 IT ABAIN

IF THE CPU FALLS OUT OF THE LOOP TO THIS LOCATION THEN

F
A CR WAS NOT FOUND

ND: MV AL NFOUND :SIGNAL OPERATOR THAT CR
0T LED,AL : WAS NOT FOUND
MD BGAIN

+1F THE CPU JUMPS HERE THEN A CR WAS FOUND

FNDIT: MOV AL,FOUND ;SIGNAL OPERATOR THAT CR
T LEDAL s WAS FOUND
M ABAIN

CODE ENDS
END START

B8385/87/88/186 WACROD ASSEMBLER

LAB2_PART2

SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.@ RSSEMBLY OF MODULE LAB2_PARTE
OBJECT MDDULE PLACED IN :F2:LABeB. OBJ

ASSEMBLER INVOKED BY:

Loc 0BJ

eeeD

ddae 7?
el (50

2808 B4-—-
@293 8EDS

8ees BI3200
2288 3308

0000 CoO600MR

800F B07FR10D
8013 7504
0815 FECC002
8219 43

@81A E2F3

201C 803EQ0RR2
o8t 7407

8823 AR08
@826 E60R
2228 EBDB

@32A BOFF
e#cC E6O0
G2k EBDS

LINE

WD~ O h B

R RERDEREEIFGRaRmES

BEARHRPUREEER

SOURCE

CR
LEDS
NO_CR
DATA
COUNT
BUFFER
DATA

CODE

START:

AGRIN:

NONEND:

CODE

tF3:ASMB6. 86 :F2:LAB2B, ASH SYMBOLS DEBUG

NWE LAB2_PART2
EW el
@

B OFFH

GEBNENT

B9

0B 58 DUP(
ENDS

SEGMENT

ASSUME CS:CODE, DS:DATA
MV AX,DATA

WV DS,AX

WV CX,LENGTH BUFFER
XOR BX,BX

MV COUNT,O

NP BUFFERIBXI,CR
N NFIND

IN COINT

N B

LOOP CHECK

CHD COUNT,®

E NN

MOV AL, COUNT

o7 LEDS,AL

M AGAIN

MV ALNOCR

0T LEDS,AL

MP AGAIN

ENDS

END START

B-5

:CARRIAGE RETURN
sPORT FOR LEDS
:LED PATTERN IF CR NOT FOUND

{INITIALIZE DS

$SET CX WITH LOOP COUNT
{INITIALIZE INDEX
sINITIARLIZE COUNT

;LOOK FOR CR

+IF NO CR THEN DON'T COUNT IT
:ELSE COUNT IT

:BUMP INDEX

yIF COUNT IS ZERD
s THEN PUT OUT NONE FOUND CODE

jELSE PUT OUT NUMBER OF CR

;THIS IS WHERE WE PUT OUT
; NONE FOUND CODE

8@86/87/88/186 MACRO ASSEMBLER LAB3_PART 1

SERIES-11I 8086/87/88/186 MACRO ASSEMBLER V2. ASSEMBLY OF MODULE LAB3_PART i
OBJECT MODULE PLACED IN :F2:LAB3A.0BJ
ASSEMBLER INVOKED BY: :F3:RSMBG.86 :F2:LAB3A.ASKH SYMBOLS DEBUG

LOC OBJ LIN SOURCE
1 ; THIS PROGRAM WILL USE TWO EXTERNAL PROCEDURES TO ECHD CHARACTERS
2 ; FROM THE KEYBOARD AND THE CRT OF THE SERIES III, CI IS ONE
3 ; OF THESE PROCEDURES. CI INPUTS 1 CHARACTER FROM THE KEVEOARD AND
4 ; RETURNS IT IN THE AL REGISTER TO THE CALLING ROUTINE. CO
S 3 1S THE OTHER PROCEDURE. CO OUTPUTS A CHARACTER TO THE CAT. CO
6 ; EXPECTS THE CHARACTER ON THE STACK. THEREFORE, THE CALLING ROUTINE
7 3 MUST PUSH THE CHARACTER ONTO THE STACK BEFORE CALLING COD.
8
9 5 THESE ARE THE EXTERNALS FOR CI AND CD
18 EXTRN CI:FAR,CO:FAR
11
1z NWME LAB3 PART 1

— 13 STACK GEGMENT

000 (100 14 W 108 DUR(Y)

77
) ,
a0ca {5 TP EM THIS WORD

— 16 STACK ENDS
17

- 18 CODE SEGMENT
19 ASSUME CS:CODE, SS:STACK

2000 Ba-— R 20 START: MOV AX,STACK sINITIALIZE THE

2003 8EDR 21 WV SS,AX s STACK SEGMENT AND

0005 BD2ECAR0 22 LER P, TOP ; STACK POINTER REBISTERS.
23

009 SA0B0--— 2 AGAIN: CALL CI 1GET CHARACTER FROM THE KEYBOARD

000F 50 25 PUSH AX :PLACE CHARACTER ONN THE STACK

B00F 9DR—— € 26 CALL €D sDUTPUT 1T TO THE CRT

0014 EBF3 27 M0 AGRIN

—— 28 CODE ENDS
29 END START

B-6

6286/87/88/186 MACRD ASSEMBLER LAB3_PART 2

SERIES-II1 8886/87/88/186 MACRO ASSEMBLER Ve.@ ASSEMBLY OF MODULE LAB3_PART 2
OBJECT MODULE PLACED IN :F2:LAB3B.OBJ
ASSEMBLER INVOKED BY: :F3:ASMB6.86 :F2:LAB3B.ASM SYMBOLS DEBUG

LOC OBJ LIN SOURCE
{ ; THIS PROGRAM IS THE SOLUTION TO LAB3 PART 2 OF THE WORKSHOP.
2 3 IT INPUTS CHARACTERS FROM THE KEYBOARD, ENCRYPTS THEM (ADD
3 3 ONE TO THE ASCIT VALUE) AND THEN OUTPUTS THE RESLLT TO THE
4 ; CRT. THE PROGRAM ALSD DETECTS WHEN A CR IS INPUT, AND INSERT A LF.
5
3 EXTRN CO:FAR,CI:FAR
7
8 NWE LAB3_PART 2
9
2000 1@ CR EW e
200R 1 F EW o
12
— {3 STACK SEGMENT
3000 (100 14 W 100 DUP(Y)
7977
)
20cs 15 TOS LABEL WORD
— 16 STACK ENDS
17
— 18 CODE SEGMENT
19 ASSUME CS:CODE, 55:5TACK
20
2000 21 ENCRYPT PROC
2 ; THIS IS A SIMPLE ENCRYPTOR PROCEDURE. ENCRYPT EXPECTS
23 ; TO RECEIVE AN ASCII CHARACTER AS A PARAMETER ON THE STACK.
24 3 IT INCREMENTS THE ASCII VALUE BY ONE AND RETURNS THE
25 3 ENCRYPTED CHARACTER IN THE AL REGISTER.
2%
2000 55 27 PSH BP 1SAVE BP
0001 8BEC 28 WV BA,SP +USE AS REFERENCE IN STACK
2003 BBAGY4 2 MV AX, (BP+A] 1BET CHARACTER
06 FECO 0 I A s INCREMENT IT AND LERVE IT
2008 5D 3t PP BP : INAL
2009 C20°00 R RET 2 :DELETES PARAMETER FROM STACK
33 ENCRYPT ENDP
3%
000C BA—- 35 START: MOV AX,STACK s INITIALIZE STACK
B00F 8EDD 3 MV SS,AX
2011 BORECAPE 37 LR SP,TOS
3015 A 38 AGAIN: CAL CI sBET CHARACTER FROM KEYBOARD
Q214 3CED 39 P ALCR ;15 IS CARRIABE RETURN?
001C 740C 40 E CRF +1F YES THEN OUTPUT CR/LF
Q01E 50 4 PSH AX sPASS CHAR. ON STACK
001F EBDEFF 42 CALL ENCRYPT s TRANGFORN 1T
9022 50 43 MSH AX
0023 0RO 4 CAL CD ;0UTPUT CHAR ON SCREEN
2028 EBED 45 MP ABAIN
56
47 ;¥E SHOULD ONLY BE EXECUTING CRLF IF A CARRIAGE RETURN WS INPUT
48 3 CRLF DUTPUTS A CARRIABE RETURN AND LINE FEED

B-7

8086/87/88/186 MACRD ASSEMBLER

Loc 0BJ LIN
8a2A BeaD 49
82t 50 5

20D 9he00s-— E)
8332 BeeA

2934 50 a3
0035 9noead— E 34
@2:2A EBDI 39

LAB3_PART 2

SOURCE

CRLF:

COpE

AL, CR
AX

AX

RGAIN

START

;OUTRUT A CRARIAGE RETURN

;OUTPUT A LINE FEED
;60 BACK TO GET NEXT CHAR.

8086/87/88/186 MACROD ASSEMBLER LAB3_PART 3

SERIES-II1 8@86/87/88/186 MACRD ASSEMBLER V2.@ RSSEMBLY OF MODULE LAB3_PART_3
OBJECT MODULE PLACED IN :F2:LAB3C.OBJ
ASSEMBLER INVOKED BY: :F3:ASMB6.B6 :F2:LAB3C.ASK SYMBOLS DEBUG

LOC 0BJ LIN SDURCE
1 ; THIS PROBRAM IS THE SCLUTION TO LAB3 PART 3 OF THE WORKSHOP.
2 ; IT DOES THE SAME AS PART 2 EXCEPT THE PROCEDUSE IS IN
3 ; ANOTHER SEBMENT
4
5 EXTRN CO:FAR,CI:FAR
3
7 NWE LAB3_PART 3
8
0000 9 CR EM @DH
000A 8 LF EN oM
11
— 12 STACK SEGMENT
000 (100 13 W 108 DUR(Y)
717
)
ooca 14 T0S LRBEL WORD
— 15 STACK ENDS
16
— 17 PRD SEBMENT
18 ASSUME CS:CODE, S5:STACK
19
0000 20 ENCRYPT PROC FAR
21 ; THIS IS THE SAME PROCEDURE AS PART 2 EXCEPT THE PROCEDURE
22 5 IS IN ANDTHER SEGMENT AND IS FAR AND THE PARANETER IS NOW
23 3 SIX BYTES FROM THE TOP OF THE STACK
24
8008 55 25 MISH BP 1SAVE BP
@091 8BEC 26 MV BP,SP sUSE AS REFERENCE IN STACK
2003 8B4606 27 WV AX, [BP+E) 16ET CHARACTER
2006 FECO 28 N A s INCREMENT 1T AND LEAVE IT
2008 5D 29 PP BP ; IN AL
2023 CA20D 30 T2 +DELETES PARAMETER FROM STACK
31 ENCRYRT ENDP
— P RD ENDS
33
— 3% CODE SEGMENT
3 AGSUME C5:0ODE, SS:STACK
%
2008 BA—- R 37 START: MOV AX,STACK +INITIRLIZE STACK
0003 8ED0 38 MV SS,AX
8005 AD26CE00 39 LER SR,T0S
0009 908M—— 4 AGAIN: CALL CI 1BET CHARACTER FROM KEYBOARD
000E 38D 4 o ALCR +15 1S CARRIAGE RETURN?
2010 740 42 E CRF 1IF YES THEN OLTPLT CR/LF
2012 50 43 MSH AX 1PASS CHAR., ON STACK
0013 9A0BBE-—— R 44 2 ENCRYPT s TRANSFORY 1T
2018 50 45 PUSH X
19 90000 46 CAL O ;OUTPUT CHAR ON SCREEN
Q0LE £BEY §7 M ABAIN

B-9

8886/87/88/186 WACRD ASSEMBLER LAB3_PART 3

LoC 0BJ LINE SOURCE
49 jWE SHOULD ONLY BE EXECUTING CRLF IF A CARRIAGE RETURN WAS INPUT
5 5 CRLF DUTRUTS A CARRIAGE RETURN AND LINE FEED
@320 BaRD a1 CRLF: MOV AL, CR
egc2 50 2 PUSH AX
8823 9noeed—-- E 33 CAL (€0 ;OUTRUT A CARRIAGE RETURN
6828 Boon 4 MOV AL, LF
gach 5@ 5] PUSH AX
0328 9ROA0—- E 36 CRLL CO ;OUTPUT A LINE FEED
9330 EBD7 &Y} JHp AGAIN ;60 BACK TO BET NEXT CHAR.
— 38 CODE ENDS
39 END START

B-10

8086/87/088/186 WACRD RSSEMBLER

LAB3_PART 3

SERIES-III 8886/87/88/186 MACRO ASSEMBLER V2.Q ASSEMBLY OF MODULE LAB3_PART 3
OBJECT MODULE PLACED IN :F2:LARB3D.0BJ

ASSEMBLER INVOKED BY:

LoC 0BJ

808D

07C

eeed (100
"

o001 55
@802 dBEC
8084 8B4604
8097 3C7C
2209 7508

2908 2E883p000000

0211 Bodd
0213 EB1390

@16 2EFoO6000080

801C 740R
81E 3C60
8928 7206

LINE

5 W~ S G PO

— bt s b= et P s
o~ oYL o YO —

ELFSELA LS YRHRHRREDR

:F3:RCMB6. 86 :F2:LAB3D. ASM SYMBOLS DEBUG

SOURCE

i THIS PROGRAM IS THE SOLUTION TO LAB3 PART 4 OF THE WORKSHOP.

3 IT INPUTS CHARACTERS FROM THE KEYBORRD, AND OUTRUTS THEM 10

; THE CRT. IT ALSD IMPLEMENTS R SHIFT LOCK FEATURE. BY TYPING

; AN UPPER CASE BACK SLAGH "\" ALL SUBSEQUENT LOWER CASE ALPHA CHARACTERS
; WILL BE CONVERTED TO UPPER CASE. TYPING THE UPPER CASE BACK SLASH

i RGAIN RETURNS THE OUTPUT TD UPPER AND LOWER CASE AGAIN.

EXTRN CO:FAR, CI:FAR

NUE LAB3_PART 3

CR EQU eDH
LF EU oA
LOCK_KEY ERJ 7CH 3SHIFT LOCK KEY (RSCID)
NLLL EQU @8H ;NULL ASCIT CHARACTER
STACK SEGMENT

W 190 DUR(Y)

TOS LABEL WORD

STACK ENDS
CODE SEGMENT
ASSUME CS:CODE, 5:STACK
SHFTFLG DB @ ;MEMORY LOCATION WHICH INDICATES
s IF SHIFT LOCK 1S CURRENTLY SET
SHIFT PROC

$SHIFT IS A PROCEDURE THAT WILL CHANGE LOWER CAS ALPHA
;CHARACTERS TO UPPER CAGE DEPENDENT ON WHETHER A SHIFT LOCK
jHRS BEEN SET OR NOT. SHIFT IS ALSO RESPONSIBLE FOR DETECTING
;THE SHIFT LOCK KEY (RSCIT 7CH, UPPER CASE BACK SLASH) AND
;TOBGLING A MEMORY BRSED FLAG WHICH INDICATES IF THE SHIFT IS
sCURRENTLY LOCKED OR NOT. NOTE: THIS LOCK ONLY AFFECTS ALPHA
;CHARACTERS AND S NOT THE SAME RS LOCKS FOUND ON A COMMON
;TYPEWRITER. SHIFT EXPECTS AN RSCI! CHARACTER TO BE PASSED
;0N THE STRCK, AND WILL RETURN & CHARRCTER IN THE AL REGISTER.

MSH B
MV BP,SP ;USE BP TO REFERENCE STACK
MV AX, (BP+4] JBET INPUT CHARACTER
% ALLOCKMEY LOOK FOR SHIFT LOCK
N TST +IF HIT, THEN
XOR SHFTFLG,80H ;TOBGLE SHIFT FLAG
MV AL ML +AND DON'T OUTPUT ANYTHING
Mmoo DOE

TST: TEST GHFTFLG,B0H LODK AT SHIFT FLAG STATUS
1 e +IF CLEAR, RETURN THE UNALTERED CHRR.
NP AL, BOH +IF SET, LOOK
B DN :FOR LOMER CASE

8885/87/88/186 MACRO ASSEMBLER

LoC 0BJ

a2 3C7A
a4 7782
8826 2020
L R))
0829 C20c%

eeC Ba~——
0acF 8EDO
0231 802600
8835 9n000——
0234 3C0D
03C 748C
03t 50

8a3F EBBFFF
0042 50

8843 9R0000——
0048 EBEB

04A BAAD
824C 50
004D 9n0008—--
8252 BoRA
e234 50
8053 9A000e-—
@25A EBDI

LIN

CSLRGFTERZTERIRBYEREILE S

LAB3_PART 3
SOURCE

Cup
JA

SHIFT ENDP

START: MOV

AGAIN: CALL

Jnp

AL, ThH

Bp

AY, STACK
85, AX
89,7 0.8
CI

AL,CR
CRLF

AX

SHIFT

AX

co

ABAIN

ALPHA CHARACTERS
{IF FOUND, THEN
{MAKE INTO UPPER CASE.

;INITIALIZE STACK

+BET CHARACTER FROM KEYBOARD

115 IS CARRIAGE RETURN?

+IF YES THEN OUTPUT CR/LF

sPASS CHAR. ON STACK

:CONVERT 70 UPPER CRSE IF SHIFT LOCKED

:0UTPUT CHAR ON SCREEN

{WE SHOULD ONLY BE EXECUTING CRLF IF R CARRIAGE RETURN WRS INPUT
; CRLF OUTRUTS A CARRIAGE RETURN AND LINE FEED

CRLF: MOV
PUSH
CALL
v
PUSH
CALL
e
CODE ENDS
END

AL, CR
AX
€0
AL, LF
AX
co
AGAIN

START

B-12

;0UTPUT A CARRIAGE RETURN

:0UTAUT A LINE FEED
180 BACK TO BET NEXT CHAR.

8085/87/88/186 MACRO RSSEMBLER

INTERRUPT_HANDLER

SERIES-II1 B@Ba/87/88/185 MACRD ASSEMBLER Ve.@ RSSEMBLY OF MODULE INTERRUPT_:HQNDLER
OBJECT MODULE PLACED IN :F2:LAB3E.DBJ

. RSSEMBLER INVOKED BY:

LoC OBJ

eaat

ee01

%000 7777
o2 7777

o201 50

geaz 51

8203 2EF6160000
0028 2ERO00RD
eeeC £601

838E BIa300
@11 8BC1
9213 BIFFFF
0916 E2FE
0218 8BC8
821 E2FS

e1C 39

221D 58
@d1E CF

——

20e¢ BA—

LINE

W e~ i PO

18
19

at
ce

23
ch

a1
2B
30
31

k]
33

37
39
&
43
45

§7

:F3:ASMB6. 86 :F2:LAB3E. ASM SYMBOLS DEBUG

SOURCE

;THIS IS THE OPTIONAL EXERCISE TO WRITE AN INTERRUPT HANDLING ROUTINE
3THIS WILL HANDLE THE INTERRUPT FOR DIVIDE ERRCR

NAME INTERRUPT _HANDLER

DIVIDEND EGU 8 ;PORT FOR DIVIDEND

DIVISOR EQU i +PORT FOR DIVISOR

GUOTIENT EQu) {ANSWER OUTPUT HERE

ERROR EW 1 ;OR IF ERROR THESE WILL FLASH

INTERRUPT SEGMENT AT 0

DIV_ERR_IP bW ? jOFFSET TO BE LOADED
DIV_ERR_CS D ? ;SEGMENT TO BE LOADED
INTERRUPT ENDS

STACK SEGMENT
Dw 100 Dup (7

100 (ABEL WORD
STACK ENDS
DIVIDE SEGMENT
ASSUME CS:DIVIDE
ALARM BB @ sHOLDS PATTERN 7O LEDS
DIVIDE_ERROR: PUSH AX ;SAVE REGISTERS USED
MSH CX
NOT ALARM sCOMPLEMENT LED PATTERN
MV AL, ALARM sGET THE FLASH VALUE
OUT ERROR,AL +AND SEND IT OUT
MV CX,3 sDELAY ABOUT .5 SEC
OUTER: MV AX,CX
WV CX,QFFFFH
INVER: LOOP INVER
WV CX,AX
LOOP OUTER
P CX +GET BACK REGISTERS
P A
IRET sAND RETURN
DIVIDE ENDS
MAIN SEGMENT

ASSURE CS:MAIN, DS: INTERRUPT, S5:5TACK

START: mov AX, STRCK INITIALIZE STRCK

- m .

80886/87/88/186 WACRO ASSEMBLER

Loc 0BJ LINE

2003 8EDY
0025 8D6Choa
9029 Badeos
006C 8ED8

828 C70600000100
0014 C7060200——- R

FOETERITLSSRANALTIB2E S

921R E401

8e1C 8ADS

ik E400

8820 324 67

8322 F&F3 68

8024 E600 69

926 EBF2 70

— n
4

INTERRUPT_HANDLER
SOURCE
MV SS,AX
LEA 5P, TOP
NV AX, INTERRUPT
MV DS,AX sHAVE DS POINT TO LOAD VECTOR TRBLE

;THESE NEXT TWO INSTRUCTIONS WILL MAKE THE VECTOR POINT TO THE INTERRUPT
tROUTINE TO HANDLE A DIVIDE ERROR

MV DIV_ERR_IP,OFFSET DIVIDE_ERROR
MV DIV_ERRCS,DIVIDE

{THIS PART OF THE PROGRAM WILL INPUT THE DIVIDEND AND DIVISOR AND DIVIDE.
yTHE RESULT OF THE DIVISION WILL BE OUTRUT TO THE PORT @ LEDS. THIS WILL
;BE DONE CONTINUOUSLY.

AGAIN: IN ALDIVISOR 3BET VALUE TO DIVIDE BY
WV BLAL sAND SAVE IT
IN AL,DIVIDEND ;GET WHAT TO DIVIDE BY
XOR AH,PH sAND CONVERT IT TO A WORD
DV B
OUT OUOTIENT,AL ;OUTPUT DIVISION RESULT TO LEDS
M PGAIN :D0 THIS CONTINUDUSLY
MAIN ENDS
END START

B-14

8086/87/BA/186 MACRD ASSEMBLER LAB4_PART_{ MAIN

iNDX-G41 (V2.1) 8@86/87/B8/186 MACRD ASSEMBLER V2.8 ASSEMBLY OF MODULE Lﬂﬁ#_F‘RRT_l_MREN
OBJECT MODULE PLACED IN :F1:LABAAL.0BJ
ASSEMBLER INVOKED BY: /SW/RGMB6 :F1:LAB4AL.ASM SB DB

LOC 0BJ LIN SOURCE
 ; THIS PROGRAM IS THE SOLUTION TO LAB4 PART 1 OF THE WORKSHOP.
2 3 IT DOES THE SAME AS LAB 3 PART 3 EXCEPT THE PROCEDURE IS IN
3 ; ANOTHER MODULE
4
5 EXTRN CO:FAR, CI:FAR, ENCRYPT:FAR
6
7 NWE LAB4 PART 1 MAIN
8
0000 3 CR EQU @D
2004 0 LF EW o
11
— 12 STACK SEGMENT
2000 (100 13 W 100 DUP(Y)
177
)
00C8 14 T0S LABEL WORD
-— 15 STACK ENDS
16
17
— 1§ CODE GEGMENT
19 ASSUME CS:CODE, SS:5TACK
2
0000 BE—- R 21 START: MOV AX,STACK +INITIALIZE STACK
2003 BEDD 22 WV SS,AX
8005 8D26C800 23 LEA SP,TOS
0009 90008——- 26 PGAIN: CALL LI +BET CHARACTER FROM KEYBOARD
000F 3C0D 25 P ALCR 119 15 CARRIAGE RETURN?
0010 7408 26 E CRF +1F YES THEN OUTPUT CR/LF
9012 0 27 PUSH X 1PASS CHAR, ON STACK
W13 90008—- 28 CALL ENCRYPT s TRANGFORM 1T
0018 50 29 MSH A
0019 30000—- 30 CRL 0 :0UTPUT CHAR ON SCREEN
Q01E EBEY 3 M ABAIN
?
33 ;WE SHOULD ONLY BE EXECUTING CRLF IF A CARRIAGE RETURN WAS INPUT
3% 5 CRLF DUTPUTS A CARRIAGE RETURN AND LINE FEED
820 BAOD 33 CRF: MV ALCR
0022 0 3% PUSH X
W23 9A0000— 37 CALL Co ;0UTRUT A CARRIAGE RETURN
2828 BOOA 38 NV ALLF
0%2R 50 19 PUSH X
0028 SROO-— 40 CALL O ;OUTPUT A LINE FEED
0030 EBD7 4 M AGAIN 160 BACK TO BET NEXT CHAR.
— ® CODE ENDS
43 END START

B-15

8886/87/88/186 MACRO ASSEMBLER

LAB4_PART {_SUB

SERIES-II1 8086/87/68/186 MACRO ASSEMBLER V2.@ ASSEMBLY OF MODULE LAB4 PART 1 _SUB
OBJECT MODULE PLACED IN :F2:LRB4A2.0BJ

ASSEMBLER INVOKED BY:

Lac oBJ

2ee 1Fed
8es2 2300
0084 2700

0086 39
00d7 8BEC
2009 E400
exep 3Cee
aeep 770A
BOF 32E4
811 8pre
0813 8B46G6
8016 2EFF24

8919 Been
. H R
801C Chaces

@a1F FECO
ed21 EBFA

023 FECA
8025 EBF4

827 9402
8829 EBFO

LINE

S O m~NoOYU B WO -

e

ZELREYRHEEREEE

SOURCE

NAME

SHITCHES

:F3:ASMB6. 86 :F2:LABAAZ, ASM SYMBOLS DEBUG

LAB4_PART 1 SUB

EGU)

PUBLIC ENCRYPT

PRO SEGMENT

ASSUME CS:PRO

TABLE W

ENCRYPT PROC

PLUS_t, MINUS_1,PLUS 2 ;JUMP TABLE

FAR

; THIS PROCEDURE WILL ENCRYPT THE CHARACTERS ACCORDING TO THE
y VALUE RERD FROM PORT @,

PUSH
MoV
IN
Chp
JA
XOR
MOV
MoV
JMp
ERROR: MOV
EXIT: POP
RET
pLUS 1
MINUS 1:
PLUs_2:
ENCRYPT ENDP
PRO ENDS
END

BP 1SAVE BP

BP, 5P sUSE AS REFERENCE IN STACK
AL,SWITCHES ;FIND OUT WHICH ONE

AL,2 1SEE IF OUT OF RANGE

ERROR sYES THEN EXIT

AH, A +OTHERWISE CONVERT TO WORD
§1,AX $PUT IT IN AN INDEX REGISTER
AX, [BP+6] sGET CHARACTER

TABLELSI] +AND ENCRYPT IT

AL'H s ILLEGAL CHARACTER

B CINAL

2 :DELETES PARAMETER FROM STACK
N A + INCREMENT CHARACTER
Mmpo EXIT

DL A sDECREMENT CHARACTER
M EXIT

D AL2 :ADD 2 TO CHARACTER
M EXIT

B-16

8086/87/88/186 WACRD ASSEMBLER LABA_PART 2 SUB

SERIES-I11 8086/67/88/186 MACRO ASSEMPLER Ve.@ ASSEMBLY OF MODULE LAB4_ PRRT 2_SuB
OBJECT MODULE PLACED IN :F2:LAB4B.0BJ
ASSEMBLER INVOKED BY: :F3:ASM86.86 :F2:LAB4B.ASM SYMBOLS DEBUG

LOC 0BJ LIN SOURCE
{ NAE LAB4_PART_ 2 SUB
2
3 PUBLIC ENCRYPT
4
— 5 TRANS GEBMENT
900 (65 6 TABLE DB 4IH DUP ('¥) ;ONLY LETTERS ENCRYPTED
2n
) i
9041 SASISESTIETI5A 7 DB 'ZYXWUTSROPONMLKJIHGFEDCBA"
535251 504F4EAD
4CAB4R4TABATAS
4544434241
5B (5 8 DB 6DUP ('#)
2
)
9061 SASI5ASTI6TT5E 9 DB 'ZYXWUTSRAPONMLKJIHGFEDCBA'
535251584FAEAD
4CABARATAB4TAE
4544434241
9078 (5 10 BB 5DUP ('#)
2
)
——- 11 TRANS ENDS
12
— 13 PRO SEGMENT
14 AGSLME CS:PRO, DS:TRANS
15
0000 16 ENCRYPT PROC FAR
17 ; THIS PROCEDURE WILL ENCRYPT THE CHARACTERS ACCORDING TO THE
18 3 VALUE READ FROM PORT 0,
19
0000 55) PUSH BP 15AVE BP
9001 BBEC 21 MV BP,5P sUSE AS REFERENCE IN STACK
9083 1E 2 MSH DS 1SAVE DS AND BX SINCE WE ARE USING THEM
0004 53 23 PUSH BX
0005 BA-—- R 24 MV AX TRANS
0004 8ED8 25 MV DS,AX
0007 8D1EGA00 26 LEA B, TRBLE
000F B8B4G 27 MV AX, [BP46] +6ET CHARACTER
@11 07 28 XLATB ;CONVERT THE CHARACTER AND LEAVE IT IN AL
012 5B 29 PP BX sBET BACK THE REGISTERS
0013 IF 0 PP DS
9914 5D 3 PP BP
0015 CAG200 R RET 2 ;DELETES PARRMETER FROM STACK
33
3% ENCRYPT ENDP
—_ I PR ENDS
% END

B-17

CO and ClI
/* */

/* THIS PROGRAM DOES THE CONSOLE OUTPUT FROM THE SERIES III
IT IS BEING LINKED WITH AN ASSEMBLY LANGUAGE ROUTINE THAT
EXPECTS IT IN LARGE MODEL. THIS PROGRAM USES SYSTEM CALLS
TO DO THE OUTPUTTING TO THE CONSOLE.*/

/* THESE ARE THE DECLARATIONS FOR THE EXTERNAL PROCEDURES
THAT IMPLEMENT THE CONSOLE OUTPUT FUNCTIONS.*/

COMOD: DO;
DECLARE FLAG BYTE INITIAL (OFFH);

DQSCREATE: PROCEDURE (PATHSPNTR,EXCPSPTR) WORD EXTERNAL;
DECLARE PATHSPNTR POINTER, EXCPSPTR POINTER;
END;

DQSOPEN: PROCEDURE (CONN, ACCESS, NUMSBUF, EXCPSPTR) EXTERNAL;
DECLARE CONN WORD, ACCESS BYTE, NUMSBUF BYTE,
EXCPSPTR POINTER;
END;

DQSWRITE: PROCEDURE (CONN, BUFF$PTR, COUNT, EXCP$PTR) EXTERNAL;
DECLARE CONN WORD, BUFF$SPTR POINTER, COUNT WORD,
EXCPSPTR POINTER;
END;

CO: PROCEDURE (CHAR) PUBLIC;
DECLARE CHAR BYTE;
DECLARE CONN WORD, ERR WORD;

/* WE SHOULD ONLY MAKE ONE CONNECTION AND ONE OPEN ON CO. THEREFORE
WE MUST CHECK FIRST TO SEE IF THIS IS THE FIRST TIME THIS ROUTINE HAS
BEEN CALLED.*/

IF FLAG THEN
DO;
FLAG=0;
CONN=DQSCREATE (@(4,":C0:”), QERR):;
CALL DQSOPEN (CONN, 2, 0,QERR):
END;
CALL DQSWRITE (CONN, @CHAR,1l,RQERR);
END CO;
END COMOD:;

B-18

CO and Cl
/* */

/*THIS PROGRAM IS WRITTEN FOR USE WITH AN ASSEMBLY LANGUAGE

PROGRAM. THIS PROGRAM DOES THE INPUTTING OF CHARACTERS FROM THE SERIES
III. IT USES SYSTEMS CALLS AND MUST BE LINKED WITH THE SYSTEM
LIBRARIES. THIS PROGRAM IS BEING LINKED WITH AN ASSEMBLY LANGUAGE
ROUTINE THAT EXPECTS THIS ROUTINE IN LARGE MODEL. */

CIMOD: DO;
/*THIS FLAG IS USED BY THE PROCEDURE TO TELL IF ITS BEING CALLED
FOR THE FIRST TIME OR SOME TIME AFTER THE FIRST CALL.*/

DECLARE FLAG BYTE INITIAL (OFFH);
CO: PROCEDURE (CHAR) EXTERNAL;
DECLARE CHAR BYTE;

END;

/* THESE ARE THE DECLARATIONS FOR THE EXTERNAL SYSTEM CALLS NECESSARY
FOR CONSOLE INPUT.*/
DQSATTACH: PROCEDURE (PNTR, EXCPSPTR) WORD EXTERNAL;
DECLARE PNTR POINTER,EXCPSPTR POINTER;
END;

DQSREAD: PROCEDURE (CONN,BUFS$PNTR, COUNT, EXCPSPTR) WORD EXTERNAL;
DECLARE CONN WORD, BUFSPNTR POINTER, COUNT WORD,
EXCPSPTR POINTER;
N END;

DQSSPECIAL: PROCEDURE (TYPE, PARAMSPTR, EXCPSPTR) EXTERNAL;
DECLARE TYPE BYTE, PARAMSPTR POINTER, EXCP$SPTR POINTER;
END;

DQSOPEN: PROCEDURE (CONN,ACCESS,NUM$BUFF,EXCP$SPTR) EXTERNAL;
DECLARE CONN WORD, ACCESS BYTE, NUM$BUFF BYTE,
EXCPSPTR POINTER;
END;

B-19

CO and ClI
/* */

CI: PROCEDURE BYTE PUBLIC;
DECLARE CONN WORD, ERR WORD,
ACTUAL WORD, BUFFER (80) BYTE,

I BYTE, SIGNON (*) BYTE DATA (1BH,45H,0AH,0AH,0AH, “COMMUNICATION LINK
ESTABLISHED. ,0DH, 0AH) ;

/* THIS IS THE MAIN ROUTINE. FIRST WE MUST ATTACH CI TO GET

A CONNECTION. THE SYSTEM CALL OPEN IS USED TO OPEN THE CONSOLE
AND THEN WE USE A SYSTEM CALL (DQSPECIAL) TO MAKE

THE CONSOLE INPUT TRANSPARENT. FINALLY WE DO A READ FROM

THE KEYBOARD TO READ IN THE CHARACTER.*/

/*WE SHOULD ONLY MAKE A CONNECTION/OPEN ONCE. THEREFORE WE MUST
CHECK TO SEE IF THIS IS THE FIRST TIME THAT THIS PROCEDURE IS
CALLED. 1IF FLAG IS FF (TRUE), THEN THIS IS THE FIRST TIME. */

IF FLAG THEN
DO;
FLAG=00;
CONN= DQSATTACH (@(4,°:CI:”),Q@ERR);
CALL DQSOPEN (CONN,1l,0,QERR);
CALL DQSSPECIAL (1,@CONN,QERR); /*THE FIRST PARAM SPECIFIES

TRANSPARENT MODE*/
/*OUTPUT A SIGNON MESSAGE*/

DO I=0 TO LAST(SIGNON):;
CALL CO (SIGNON(I));
END;
END:
ACTUAL=DQSREAD (CONN,@BUFFER(C),1,€ERR); /* THE 1 SPECIFIES THE
THE NUMBER OF BYTES TO
INPUT*/
RETURN BUFFER(Q);
END CI;
END CIMOD;

B-20

APPENDIX C

CLASS EXERCISE SOLUTIONS

Y

-
rd

i B s

CLASE EXERCISE SOLUTIONS

©ar et e 208} waese

C3s IP
Any combination of XXXX and YYYY sca that when

they are added as shown they will result in
O%iE20H,

& XXXX
P + L YYYY
05320
05, and BX, BP, SI, or OI
O0Z30H
OO02H

REVIEW (FILL IN REGISTER NAMES)

RS AR 4 4 0 K s Bns M AR el ks h S84 A SAES VRS Btk A e I s LA Bbes nLs) [R 0
! | |
+ | |
st - - it o0 - |]
i | I STACK
- 00 st s eune soroe - [, l |
! 1 |
e e 3 | |
| |
| | |
+ | |
00 e s st i S - |]
| BX, BF, SI, DI | I DATA |
[— - | }
| | i

S U F. F F F F

C-1

CLASE EXERCISE SOLUTIONE

4,1 MOy OX, OFFFFEH
IN Al., X
MOy AH, O
MGV Cl.,3 or SHL AX,1
SHL. AX, 1
SHL AX, 1

s aE e

SHL AX, CL
oL &, AX

.1 1. The ENIY statement is an assembler directive,
It never gets encoded and as a result it never
gets executed.

2. Goon a3, b, -, d, g4 h, and |
EAL
e ~- ' is an illegal character
f - starts with a number
i —~ 4 is an illegal character

7.1 NAME CLams EXERCISE 7 1

SWITCHES Bl Q
LITES EGI) 1

ConE BEGMENT
ASSLUME G CODE

ZTART: IN Al SWITOHES

SR AL, 32

MOV B, &

MLIL. EL

MOy Bl.,?

Y BL.

auT LITES, AL
JME START

0 N
ENI STARY

C-2

'7.2

NAME

STATUS_PCRT

DATA_FORT
ROY

FCILL

HANDSHAKE :

ERROR:

POLL

1. WAREA
2. BAREA

2. MOV
4, ANLI
S TES
NAME:
FPAYRCHL.L
FAYSCALE
FAYROLL
FAYRAISE

INIT:
AGAIN:

PAYRAISE

0
10

EXERCISE SOLUTIONS

e b o] . o

CILASS_EXERCISE 7 2

Eci 10

EQU 11

EQU 0000000 1B
SEGMENT

SHUME CS: POLL.

IN AL, STATUS_FORT
TEST AL, ROY

JZ HANLISHAKE

IN AL, CIATA_PCORT
CMP AL, 43

JA ERRCR

HILT

HILT

ENDS

END! HANDSHAKE
Li 2000H

D ?

BAREA, 10

WAREA, 40H

WAREA, BO00H

CLASS EXERCISE & o

SEGMENT

)] 100 DUP{?)

ENDIS

SEGMENT

SSUME. CS: PAYRAISE, DIS: FAYROLL.
MOy AX, PAYROLL

Moy 0o, AX

XOR =21, 51

MOy CX, 100

ALD PAYSCALELDZT1], S0
INC Sl

LG AGAIN

HL.T

ENDS

ENI INIT

c-3

CLASE EXES

18k SOLUTIONS

2.1 RUN AZM26 :F1:FROBLLEM SB DE PRO:FL:LISTIN.G)
RLIN LINKZ4 :F1:FROR.ORI BIND

10.1 . MAX maode
. 3 Mhz

The CFU will run at 5% Mhz rather than & Mhz

G2 o e

11.1 NAME CLASS_EXERCISE 12 1

STACK SEGMENT

HCY 100 DLF(?)
O = L.ABEL. WORD
TACK ENIDS

DATA SEGMENT

CTEMP D 7

TABLE Dk 51 DUF(7)
FTEMP R 7

DATA ENDIE

CODE SEGMENT
AZGUME CS5: CODE, DS DATA, S8 STACK

CONVERT PRCIC
RET &
CONVERT ENLH

INIT: MY AX, TIATA
MOV 05, AX
MY AX, STACK
MOV 35, AX
LEA SF,T O S

CALLEROC : PUSH CTEMP
MCV AX,LENGTH TABLE
FUSH AX
LEA AX, TABLE
PUSEH AX
CALL CONVERT
MO FTEMP, Al
HLT

SO ENDS
ENI INIT

c-4

)

CLAS

i

EXERCISE SOLUTIONS

NAME CLASS_EXERCISE 14 1
INTERRUPT SEGMENT AT ©
DIV ERR _IF DW ?
BIV_ERR C5 LW ?
INTERRUPT ENDS
ERROR SEGMENT
DIV_ERROR: MOV AX, OFFQOH
IRET
ERROR ENLDS
MAIN SEGMENT
ASSUME CS:MAIN, DS: INTERRUPT
BTART: MV AX, INTERRLMPT
MOV DR, AX
MOV DIV_ERR _IP,OFFSET DIV _ERROR
MOV DIV_ERR C5,ERROR
0y EL
MAIN ENLS
END START
1. 04001+
2. a) There is no bank selection using AQ and
RHE

b We do not have to worry about writing
extranecus data to the unwantsd bank
since we never write tao a ROM.

O3
L]

Yes, but it will take two bus cycles
4, a) no
b) TALI -~ Tace ~ Tdelay = ?
295 - 2Wm0 - &0 = 7
~ 18 =

¥Yere oane wait state

C-5

CLASS EXERCISE SCOLUTIONS

o s s

15.1 NAME CLASS_EXERCISE 15 1
DATA SEGMENT
TABLE DB 'S047263916'
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS: DATA
ENCRYPT PROC
JCXZ EXIT
PUSH DS
FUSH BX
MOV BX, DATA
MOV DS, BX
I.EA BX, TABIE
AGAIN: MOV AL, ES: [SI]
3B AL, 30H
XLATE
MOV ES:[511,AL
INC S1
LOOP AGAIN
POP BX
PR s
EXIT: RET
ENCRYF'T ENDF
INIT= [———
CODE ENDS
ENI INIT
16.1
NAME MODA | NAME MODB
PUBLIC USEFUL_DATA,HANDY | EXTRN USEFUL DATA: BYTE
I EXTRN HANDIY:FAR
DATA SEGMENT | B_CODE SEGMENT
USEFUL_DATA DR 7 | ASSUME CS:B _COLDE
DATA ENDS I & D5:5EG USEFUL_DATA
I
A_CODE SEGMENT | MOV AX,SEG USEFUL TIATA
ABSUME C5:A_CODE | MOV DS, AX
I MOV AL, LISEFLL_DIATA
HANDY PROC FAR b e ~
MOV AX, 0 I CALL HANDY
RET | B_CODE ENDS
HANDY ENDP | END
A CODE ENDS |
END |

CLASE EXERCISE SCLUTIONZ

19,1 i

EME DRIVES BUSY HIGH

BMZ ISSUES CERG HIGH

BMZ DRIVES BPRO HIGH o

EMZ TAKES OVER BUSY, DRIVES BUSY LOW
EMZ SEES CERG LOW

BME SEES BFRN HIGH

H
i

S T IO I O I
¥ H

§
i

1
H
i

c-7

APPENDIX D

DAILY QUIZZES

Quiz #1

1. Match the pointer with the appropriate memory area:

PU MEMORY
! ! !)
: : : STACK !
1P : ! !
: : | RAM :
| 1 | 1
[| ! !
] [}] }
1 | [} |
i i i INSTRUCTIONS i
i sP ! ! :
l i i ROM/PROM/EPROM/RAM |
: : : i
] [}]]
| | | |
| { | VARIABLES |
i DI | : :
: ! | RAM :
} 1 [} i
i [} 1 !

2. What is the state (1,0) of the zero flag after the CPU
executes the following arithmetic operations?

SFH 5FH 5FH
-5FH -4FH -6FH

3. Which SEG REG and offset REG would the CPU use to
generate an address for the following types of memory
access?

SEG OFFSET

Op code fetch

Stack access

Data access

Daily Quiz Tuesday
D-1

4, Where does the CPU get immediate data?

5. What is wrong with the following 8@86 instructions and
what can be done to make them work?

IN AL,@FFFFH

SAR AX,5

Daily Quiz Tuesday

D-2

1. Match the following:
TEST
CMP
NOT
NEG
ADC
CBwW

CWwD

= D

a0 oo

Quiz #2

2's complement

Used for multi-word addition
"Non~destructive" AND

Used when dividing one signed
word by another

1's complement
"Non-destructive" subtract
Used when dividing one signed
byte by another

2. For every data definition (variable), the assembler
keeps track of what three attributes?

3. Fill in the spaces to represent the condition of the
registers in an 8086 CPU after being reset.

FLAGS

Ccs

Ip,DS,SS,ES

AX,BX,CX,DX

4, What address will the 8886 CPU begin execution after

being reset

TRUE - FALSE (circle one)

T F 5. In the MIN mode,
control bus signals.

the CPU is the source of the

T F 6. DIV 35H is a valid instruction.

T F 7. You can have more than one ASSUME statement in a

code segment.

Daily Quiz

Wednesday

D-3

8. What are the abbreviations for the following assembler
controls?

NOPRINT

LIST

DEBUG

SYMBOLS

EJECT

Daily Quiz Wednesday

Guiz #3

1. What is the difference between the CALL and JIMFP
instructiocn?

£« Each item in the following problem represents a step in
the response of an HOR4 to an interrupt raguest.

Number each item in the space provided so the steps
cezcur in the corvect order. The first item has been
correctly numbered as a starting point.

IF and TF are cleared

CPU completes execution of current instruction
C% and IF loaded from Interrupt Vector Table
Flags pushed ocnto stack

¢S and IF pushed onto stack

TRUE ~ FALSE {(circle one)
T F 2. You can FPUSH and FOF a 1é6-bit register.
T F 4, You can PUSH and #O0F an S-bit memory location,
T F 5. You can FUSH immediate data in the S0&#,

T F 4. A procedure with a FAR attribute will always
generate a FAR return.

7. What is the physical address for the Interrupt Veoctor
Table entry for a type 10 interrupt?

2. What does the assembler use to determine if it must
generate a segment override prefix?

2. What prevents the RAMs shown on page 14-% froun
responding to an I/0 address such as the one generated
by the instruction IN AL, OFFH?

Daily Buiz D-5 Thursday

Quiz #4
1. Can a string cperation (using the REP prefisx) be

interrupted?

£« Where can you find the definition of an assembler error
code?

£

What directive woauld be used in a madule tao allow it to
zall the FAR proacedure INPUT that is in another module?

4. Is IMUL XYZ,BX,7 a legal &012& instruction?

Daily Quiz D-6 fFr-iday

APPENDIX E

UNPACKED DECIMAL ARITHMETIC
INSTRUCTIONS

PACKED DECIMAL
* BINARY ADDITION AND SUBTRACTION USED
* RESULT IN AL REGISTER ADJUSTED

DAA (DECIMAL ADJUST FOR ADDITION)

ADDS 88 AS REQUIRED

DAS (DECIMAL ADJUST FOR SUBTRACT)

SUBTRACTS 88 AS REQUIRED

DECIMAL ADJUST ADDITION

* PURPOSE: CONVERTS RESULT OF BINARY ADDITION TO BCD VALUE
RULE 1 : IF ALLOW) 9 OR IF A.C., = 1 THEN ADD b
RULE 2 : IF AL 9 0rRIF¢=1 THEN ADD 60

DECIMAL BCD
EXAMPLES o 2010 1001
+ 1 1
30 0010 1010
0110 (RULE 1)
0011 0000
18 0001 1000
+18 0001 1000
38 0011 0000

0110 (RULE 1)
0011 0110

72 0111 0010
+93 1001 0011
165 E] © 0000 0101

0110 0000 (RULE 2)
E] 0110 0101

E-2

(ASCIT) - UNPACKED DECIMAL ARITHMETIC

FORMAT - 1 BCD DIGIT PER BYTE
ZONE DIGIT SET TO ZERO
BINARY ADD AND SUBTRACT USED
ASCIT INSTRUCTIONS:
ADJUST AL LOW DIGIT #6
SET AL HIGH DIGIT TO O

MODIFY AH BY 1 FOR CARRY/BORROW
MODIFIES CARRY FLAG

EXAMPLE

MOV AL, ALPHA
ADD AL, BETA

m ; ALPHA + BETA
OR AL, 30H
AAA ADDS 00 | as RequiReD

AAS SUBTRACTS 06 .[

E-3

UNPACKED DECIMAL ARITHMETIC
* BINARY ADD, SUBTRACT, MULTIPLICATION AND DIVISION USED
* INSTRUCTIONS ADJUST VALUE IN AL REGISTER

* INSTRUCTIONS -
AAA -- ASCIT ADJUST AFTER ADDITION
AAS -- ASCIT ADJUST AFTER SUBTRACTION
AAM -- ASCIT ADJUST AFTER MULTIPLY
AAD -- ASCIT ADJUST BEFORE DIVIDE

E-4

ASCIT ADJUST EXAMPLE

75 XXXX 0101
+76 + XXXX 0110
X B XXX 1011
+ 6 0110
l+1)01 +1 | 0000 0001 AR
AY AL Al AL

E-5

ASCIT ARITHMETIC - ADDITION

OPERATION: C= A+ B ; WHERE A AND B ARE STRINGS OF ASCII
DIGITS, AND C IS TO BE A STRING OF UNPACKED BCD DIGITS.,

HOV BX, STRING_LENGTH - 1
CLC
NEXT: MoV AL, A[BX]
ADC AL, B[BX]
AAA
MOV c[Bxl, AL
DEC BX
JNS NEXT

NOTE: THE uPPER NIBBLE AFTER THE AAA IS SET TO ZERO. ANY CARRY
IS SAVED IN THE CARRY FLAG FOR THE NEXT ADC. THE CARRY IS ALSO
ADDED TO AH, BUT THIS FACT IS NOT UTILIZED IN THE ABOVE CODE,

CLASS PROBLEM

WRITE A PROGRAM SEGMENT THAT WILL PERFORM THE OPERATION
C=A-B . USE THE SAME ASSUMPTIONS AS ABOVE.

E-6

(ASCII) UNPACKED DECIMAL DIVIDE

AAD ASCIT ADJUST DIVIDE

ADJUSTS A DIVIDEND IN AX REGISTER PRIOR TO A DIVIDE
OPERATION TO PROVIDE AN UNPACKED DECIMAL QUOTIENT,

EXAMPLE
MOV AL, ALPHA
AAD
DIV BETA 5 ALPHA/BETA

THE AH REGISTER DATA IS MULTIPLIED BY TEN AND ADDED TO AL
REGISTER., AH IS SET TO ZERO.

THIS PLACES THE BINARY EQUIVALENT OF THE TWO DIGITS FROM
AH, AL INTO AL, IN PREPARATION FOR A BINARY DIVISION.

THE BINARY DIVISION WILL LEAVE THE INTEGER QUOTIENT IN
AL, AND THE INTEGER REMAINDER IN AH,

NOTE: THE REMAINDER IN AH WILL ALWAYS BE SMALLER THAN
" THE DIVISION AND IS IN CORRECT FORM FOR THE
NEXT AAD INSTRUCTION. THE USER MUST BE SURE THAT
THIS CONDITION IS TRUE FOR THE FIRST OPERATION.,

ASCII ARITHMETIC - DIVISION

OPERATION: C= A/ B ;WHERE A IS A STRING OF ASCII DIGITS,
AND B IS A SINGLE ASCIT DIGIT. C IS TO BE A STRING OF
UNPACKED BCD DIGITS,

SETUP: MOV DL, B JGET B
MoV SI, OFFSET A ;POINTER TO A
MOV DI, OFFSET C JPOINTER TO C
MoV CX, LENGTH A ;# OF TIMES TO LOOP
CLD ;AUTO INCREMENT
AND DL, OFH JRID B OF ZONE
XOR AH, AH ;SEED LOOP

NEXT: L.ODS A JGET BYTE
AND AL, OFH JZERO ZONE
AAD ;ADJUST FOR DIVIDE
LIV DL
STOS C JSAVE QUOTENT BYTE
LOOP NEXT

NOTE: THe AAD MULTIPLIES THE REMAINDER FROM THE PREVIOUS
DIVIDE, (sAVED IN AH), BY 10 THEN ADDS THIS VALUE To AL,
AH 1s CLEARED BEFORE ENTERING THE LOoP SO FIRST AAD WORKS
PROPERLY.

E-8

(ASCIT) UNPACKED DECIMAL MULTIPLICATION

THE AAM INSTRUCTION IS USED TO DIVIDE A NUMBER BY 10
AND IS USEFUL IN CONVERTING A BINARY WUMBER < 99 TO
TWO BCD DIGITS.

IN APPLICATION, BINARY MULTIPLICATION IS USED ON 2 BCD
DIGITS TO PRODUCE A BINARY PRODUCT. THE PRODUCT IS
CONVERTED TO DECIMAL USING THE AAM INSTRUCTION. FINALLY,
THE DECIMAL ADDITION CAN BE USED TO COMBINE PRODUCTS OF
MULTIPLICATION,

BINARY MULTIPLICATION

A BCD DIGIT IS A VALID BIMARY NUMBER AND CAN BE USED IN
BINARY MULTIPLICATION.

EXAMPLE :
DECIMAL BCD
9 1001 8CcD = BINARY
f_g * x 1001 BCD = BINARY
81 1010001 BINARY RESULT

¥ BINARY MULTIPLY

CONVERSION TO DECIMAL

TO CONVERT THE BINARY RESULT TO BCD IT IS NECESSARY TO
DO A BINARY DIVIDE BY TEN.

EXAMPLE :
81 = 10 = 8 REMAINDER 1

1000 REMAINDER 0001

1010001 = 1010

THE RESULT INDICATES THE NUMBER OF TENS AND ONES THAT CAN
BE USED AS A TWO DIGIT BCD NUMBER. 31

E-10

ASCIT ARITHMETIC - MULTIPLY

OPERATION: C = A * B ; WHERE A IS A STRING OF ASCII DIGITS,
AND B IS A SINGLE ASCII DIGIT. C IS TO BE A STRING OF
UNPACKED BCD DIGITS.

SETUP: MOV DL, B ;GET SINGLE ASCII pieIT
MOV CX, LENGTH A ;NUMBER OF TIMES TO LOOP
STD JSET UP FOR AUTO DECREMENT
oV SI, OFFSET A + LENGTH A -1
MoV DI, OFFSET C + LENGTH A -1
OV BYTE PTR [DI}, 0 cLear C(1)
AND DL, OFH ;CLEAR ZONE OF B

NEXT: LODS A ;LOAD BYTE FROM A
AND AL, OFH JCLEAR ZONE
MUL DL JMULTIPLY BY B
AAM ;ADJUSTED RESULT IN AX
£DD AL, [DI] 5ACCUMULATE INTO C
AAA ;IN UNPACKED FORMAT
STOS WORD PTR C ;PROPOGATE UPPER DIGIT
INC DI ;POINT TO PROPER DIGIT
LOOP NEXT

NOTE: AAM PLACES THE UPPER DIGIT IN AH. AAA PROPIGATES THE
CARRY FROM THE LOWER NIBBLE BY ADDING THE CARRY TO AH. THE
C STRING 1S ONE BYTE LONGER THAN THE A STRING.

E-11

LOOP1:

— LOOP2:

MULTIPLICATION LOOP
UNPACKED BCD

MULTIPLICAND INDEX S

PARTIAL PRODUCT INDEX DI
MULTIPLIER INDEX BX
MULTIPLIER LENGTH B
MULTIPLICAND LENGTH C

ZERO PARTIAL PRODUCT
MULTIPLIER INDEX BX = 1

DL = O <
INITIALIZE MULTIPLICAND INDEX SI = 1

INITIALIZE PARTIAL PRODUCT INDEX: DI = BX (MULTIPLIER INDEX)
FETCH MULTIPLICAND [SI] TO AL

MULTIPLY MULTIPLIER [BX] # AL —3 AL
ASCII MULTIPLY ADJUST AX

ADD DLTO AL

ASCIT ADD ADJUST AL

ADD PARTIAL PRODUCT [DI] TO AL

ASCI1 ADD ADJUST AL

STORE ALTO PARTIAL PRODUCT [DI]

SAVE DL = AH

i

DI + 1
SI + 1

DI
SI

1l

IF SI < ¢ (MULTIPLICAND LENGTH) TO TO LOOP 2
STORE DL TO PARTIAL PRODUCT [DI]
BX = BX * 1

IF BX < B (MULTIPLIER COUNT) GO TO LOOP 1

E-12

374
x 152

748
1870
374

56848

0
5x4 = 20
> 4
r@
22
5x7 = 35 0
’ x4 = 04
. >4
4
5x3 = 156 0
> 0 1x7 = 07
19 >
1
1x3 = 03
> 1

E-13

APPENDIX F

ICE—-86,88 IN-CIRCUIT EMULATOR

ICE-86,88

#* IN- CIRCUIT EMULATOR ALLOWS HARDWARE AND SOFTWARE DEBUGGING.

% |CE-86 AND ICE-88 COMMANDS ARE IDENTICAL, THE HARDWARE IS NOT

FEATURES INCLUDE:

HARDWARE BREAKPOINTS
TRACE DATA COLLECTION
SYMBOLIC DEBUGGING
MEMORY MAPPING
DEBUGGING MACROS
BUILT IN DISASSEMBLER

\

ICE-86 COMPONENTS AND ENVIRONMENT

ICE-86 SOFTWARE ICE-86 CIRCUIT BOARDS

llmol |-— :—",

CAN BE PLUGGED INTO BUFFER BOX:
USER HARDWARE CONTAINS AN 8086 PROCESSOR

F-1

ICE-86 COMPONENTS \
FM CONTROLLER PCB - 8080 ICE pP, 12KB FIRMWARE ROM, 3KB SCRATCHPAD RAM

86 CONTROLLER PCB - 2KB ICE RAM, 1K x8 MAP RAM, 0.5K DUAL PORT RAM
ICE 86 TRACE PCB - TRACE RAM

ICE-86 BUFFER BOX ASS’Y - 8086uP, GATING AND CONTROL LOGIC

INTELLEC SERIES Il TRIPLE AUXILLIARY CONNECTOR
T CABLE
GROUND CABLE

ICE-86 DISKETTE - ICE88 ICE86,0V5
ICE86,0V0 ICE86,0V8
ICE86,0V1 ICE88,0V7
ICE86,0V2 ICE86,0V8
ICE86,0V3 ICE86,0VE
ICE86,0V4

SERIES Il OR SERIES Il DEVELOPMENT SYSTEM WITH 3 ADJACENT CARD SLOTS
AVAILABLE AND 64KB OF RAM

OPTIONAL.:
SERIAL OR PARALLEL PRINTER

EXPANSION MEMORY (iSBC 16,32 OR64) (SERIES 1l CONTAINS 128K
EXPANSION MEMORY)

® o » ®

~

. INSURE THAT E-1 TO E-2 AND E-7 TO E-8 ARE JUMPERED ON FM CONTROLLER PCB.

. INSTALL “T* CABLE BETWEEN TRACE PCB AND 868 CONTROLLER PCB.
. ATTACH *X" CABLE TO X" CONNECTOR AND ON 88 CONTROLLER PCB.

. CONNECT GROUND CABLE FROM CABLE ASS'Y TO PROTOTYPE HARDWARE GROUND.
. POWER UP DEVELOPMENT SYSTEM AND PROTOTYPE.

ICE-86 INSTALLATION

INSTALL 3 PCB'S IN CHASSIS SO THAT FM CONTROLLER IS ON TOP, TRACE PCB IS
NEXT, AND 86 CONTROLLER PCB IS ON THE BOTTOM.

ATTACH "Y" CABLE TO "Y* CONNECTOR ON FM CONTROLLER PCB.

IF USER HARDWARE !S TO BE USED, REMOVE SOCKET PROTECTOR ASS'Y FROM
UMBILICAL ASS'Y AND INSERT UMBILICAL PLUG INTO PROTOTYPE 8086 SOCKET.

NOTE:

TO PREVENT PIN DAMAGE INSTALL A 40 PIN IC SOCKET ON THE END
OF THE UMBILICAL CORD. THE SOCKET ASS'Y PROTECTOR SHOULD
BE IN PLACE WHENEVER ICE-86 IS NOT CONNECTED TO A PROTOTYPE.

F-2

PRODUCT DEVELOPMENT PHASES USING ICE-86

PHASE 1:

NO PROTOTYPE HARDWARE AVAILABLE-
USE ICE-86 STANDALONE, DEBUG SOME
OR ALL PROGRAM MODULES. PROGRAMS
RESIDE IN ICE AND/OR MDS AND/OR
DISK MEMORY.

PRODUCT DEVELOPMENT PHASES USING ICE-86

PHASE 2:

SKELETON PROTOTYPE HARDWARE AVAILABLE-
DEBUG HARDWARE BY EXECUTING TEST SOFTWARE.
DEBUG SYSTEM WITH PROTOTYPE HARDWARE AND
SOFTWARE. PROGRAMS RESIDE IN PROTOTYPE
AND/OR ICE AND/OR MDS AND/OR DISK MEMORY.
DOWN LOADING OF PROGRAMS DONE BY ICE,
NO NEED TO BURN PROMS.

F-3

PRODUCT DEVELOPMENT PHASES USING ICE-86

PHASE 3:

COMPLETE PROTOTYPE SYSTEM AVAILABLE-
DEBUG FULL HARDWARE AND SOFTWARE
TOGETHER. USE ICE TO DOWNLOAD PROGRAMS.
USE ICE FOR FINAL PRODUCT CHECKOUT.

NOTE:

ICE86 SHOULD NEVER BE USED ON A
PRODUCTION LINE FOR PRODUCTION TESTING!

PROGRAM PREPARATION

BEFORE USING ICE-86, AN ABSOLUTE OBJECT FILE MUST BE CREATED. ALSO,
HARD COPIES OF ALL DIAGNOSTIC INFORMATION SHOULD BE GENERATED.

RUN ASM86:F1:LAB1.A86 DEBUG
RUN LOC86:F1:LAB1.0BJ MAP SYMBOLS INITCODE
COPY:F1:LABILST,:F1:LAB1.MP2 TO :LP:

F-4

PREPARATION OF THE MAIN PROGRAM MODULE

SERIES -1l
NAME EXAMPLE
L]
L
CODE SEQMENT
ASSUME C8:CODE,DS:DATA,88:8TACK
START: MOV AX,DATA
MOV DS,AX
MOV AX,8TACK
MOV 88,AX
LEA 8P, STACK_TOP
INIT 10 MOV DX,USART_CMD_PORT
.
.
END 8TART

¢ SEGMENT REGISTER INITIALIZATION PERFORMED

IN MAIN MODULE,

CODE

START:

SERIES-1I

NAME SERIES 1! EXAMPLE
L]

SEQMENT
ASSUME C8:CODE,DS:DATA,SS:STACK

MOV DX, USART CMD PORT
.
L]
L

END START,DS:DATA,8S:STACK:STACK TOP

o END STATEMENT CREATES SEGMENT REGISTER
INITIALIZATION RECORD. THIS RECORD IS REQUIRED
THE INITCODE FEATURE OF LOC88.

® WHEN USED IN CONJUNGCTION WITH THE OPTIONAL INITCODE
CONTROL ON THE LOC686 INVOCATION LINE. THE LOCATOR
USES THiS INFORMATION TO CREATE A SEGMENT CALLED
7?7 LOCBB_INITCODE WHICH INITIALIZES ALL SPECIFIED
REGISTERS.

INVOKING ICE-86

THE ICE-86 SOFTWARE DRIVER 1S INVOKED FROM ISIS-II.

~-ICE86

ONCE LOADED, CONTROL IS THEN PASSED TO THE SOFTWARE
DRIVER. ICE-86 IS READY TO ACCEPT A COMMAND WHEN THE

ICE PROMPT »iS DISPLAYED.

F-5

PREPARATION OF THE ENVIRONMENT

¢ MEMORY MAPPING
¢ CLOCK SELECTION

¢ READY SELECTION

\

PREPARATION OF THE ENVIRONMENT
MEMORY MAPPING

[GUARDED
b
LOGICAL MEMORY USER
PROGRAM ———————»] MAP L—'———’ ICE
ADDRESS
" INTELLEC
———— DISK
GUARDED

USER [NOVERIFY}
MAP partition = !ct-:éphyslcnl sogment- number| [NOVERIFY

DISKphysical-segment- numbamnovélum

RIFY)

partition »

logical-ssgment-number |10 Ical -segment-number)
logical-segment-number L| Nom logical-segment-iength

F-6

/

ICE-86 MEMORY MAPPING

* ICE-86 DIVIDES THE MEGABYTE OF MEMORY INTO 1024 1K BLOCKS

¥ EACH 1K BLOCK CAN BE MAPPED INTO A PHYSICAL 1K BLOCK

GUARDED
GUARDED
ICE
USER
LOGICAL ——*] ICE PHYSICAL

@ N = O

1023

MAPPING TO USER MEMORY

PROGRAM MEMORY
REFERENCE

\j

MAP =

NO ADDRESS DISPLACEMENT IS ALLOWED
LOGICAL AND PHYSICAL ADDRESS
REFERENCES MUST BE THE SAME.

* MAP 0 LEN 32=USER
* MAP 1000=USER

F-7

MAPPING TO ICE-86 MEMORY

PROGRAM MEMORY 2K
REFERENCE MAP

v
\J

* MAP 0=ICE O

+ MAP 1023=ICE 1

MEMORY MAPPING EXAMPLE \

LOGICAL MEMORY PHYSICAL MEMORY
FFFFFH
0 PROGRAM
AND 1K ROM - ICEO
NTENTS
oFrcooH |22

ANV
Wadhd

VARIABLE
DATA AND 1K RAM —- USER
STACK

3FFH

OH

* MAP 0=USER

* MAP 1023=ICE 0

/

* DISPLAY MAP STATUS COMMAND

Baampte |.
MAPOTOQ
Display:

0007 = USE 80017 = ICE 00007 00027 = INT 0084T 0003 = DIS 00007

Bxample 2.
MAP

Display:

#0007 = UBE 00017 =ICE 00007 00027 =INT 90847 €003 = DIS ©00OT
MY ~DIS 00017 9004T ~DN9 00027 00007 = USE w007 = UBE

0T - 0y

* RESET MAP COMMAND

RESET MAP

PREPARATION OF THE ENVIRONMENT
CLOCK SELECTION

+ CLOCK=INTERNAL iDEFAULT

OR
CLOCK=EXTERNAL

INTERNAL

ICE-86 CLOCK ——O\O—>
CPU CLOCK

-
-

USER CLOCK ———0O "~
EXTERNAL

F-9

/

PREPARATION OF THE ENVIRONMENT
ENABLE/DISABLE READY COMMAND

ENABLE RDY Default

ICE-88 READY ——»
CPU READY
USER READY —_—

DISABLE RDY

ICE~868 READY \
CPU READY
USER READY 4

\

BEFORE LOADING THE PROGRAM, THE PREPARATION OF THE EXECUTION ENVIRONMENT
MUST BE COMPLETED.

LOADING A PROGRAM

* CLOCK=EXTERNAL {SELECT USER CLOCK FOR USE
iBY THE EMULATING PROCESSOR.

* ENABLE RDY ;ENABLE USER READY FOR USE
iBY THE EMULATING PROCESSOR.

WITH THE EXECUTION ENVIRONMENT NOW PREPARED, THE PROGRAM CAN BE LOADED.

* LOAD :F1:LAB1 5LOAD AN ABSOLUTE OBJECT
iFILE

F-10

ICE-86 PROGRAM

GO EMULATION ~
* FULL SPEED, OR NEAR FULL SPEED, PROGRAM EXECUTION.

* DURING EMULATION, ALTHOUGH ICE MONITORS PROGRAM EXECUTION,
THE USER HAS NO INTERACTION WITH THE SYSTEM UNTIL A HALT IN
EMULATION OCCURS.

» A HALT IN EMULATION CAN OCCUR THROUGH A USER DEFINED HARDWARE
BREAKPOINT, OR BY DEPRESSING THE ESCAPE (ESC) KEY ON THE
CONSOLE KEYBOARD.

* AFTER A HALT IN EMULATION, THE USER MAY INTERROGATE THE CURRENT
STATE OF THE SYSTEM, VIEW INFORMATION COLLECTED DURING EMULATION,
AND/OR CHANGE THE STATE OF THE SYSTEM.

EX.
£ GO FROM .START

ICE-86 PROGRAM EXECUTION

STEP EMULATION -

* USER PROGRAM IS EXECUTED BY ICE, ONE INSTRUCTION AT A TIME.

* DURING STEP EMULATION, EFFECTIVE PROGRAM EXECUTION SPEED IS MUCH
SLOWER THAN THAT OF GO EMULATION.

STEP EMULATION PERMITS INTERROGATION AND/OR MODIFICATION OF THE
USER SYSTEM, AFTER THE EXECUTION OF EACH INSTRUCTION.

EX.
*STEP FROM .START

F-11

ICE-86 OPERATION

LOCATION

/iy
ADDRL/

i
4 | READ EXECUTED
INPUT

I} OUTPUT
FETCHED
HALT
ACKNOWLEDGE

VALUE

f

ICE-86 MONITORS THE BUSSES, (ADDRESS AND DATA CONTROL);

EACH FRAME OF A BUS CYCLE IS MONITORED AND CAN BE SAVED.

\

8086 BUS CYCLE TRACING

FRAME 0O FRAME 1

ADO-AD15— -

ALE —y \

|

BUS CYCLE

F-12

/
N

ICE-86 BREAKPOINTS

AND/OR

BRO BR1

ICE-86 HAS TWO BREAKPOINT REGISTERS THAT MAY BE GIVEN VALUES
THROUGH SOFTWARE COMMANDS.

FRAME
INFORMATION
EMULATION
BREAK
BREAKPOINT REGISTER CONTENTS
ICE-86 BREAKPOINTS
ICE-86 BREAKPOINTS ARE OF TWO TYPES:

EXECUTION NON-EXECUTION
~ TAKES INTO ACCOUNT THE QUEUE - BASED ON BUS ACTIVITY ONLY
- TRACKS INSTRUCTION THROUGH QUEUE

SYNTAX: SYNTAX:

EXECUTED READ
WRITTEN
INPUT
OUTPUT
FETCHED
HALT
ACKNOWLEDGED

-

LOADING THE BREAKPOINT REGISTERS

GO FROM .START TILL .PORT 2 OUTPUT OR .PARM1 READ

BRO BR1

\

_
-

LOADING THE BREAKPOINT REGISTERS (CON'T.)

* BRO=.PORT2 OUTPUT
* BR1=.PARM1 READ

* GO FROM START TILL BRO OR BR1

BRO BR1

F-14

AN

THE GO-REGISTER

THE GO-REGISTER(GR) IDENTIFIES THE BREAKPOINT REGISTERS TO BE USED
FOR HALTING EMULATION.

GO FROM .START TILL .PROC1 EXEC
OR

* BRO=.PROC1 EXEC
* GR=TILL BRO
* GO FROM .START

OR

¥ GR=TILL .PROC1 EXEC
* GO FROM .START

INTERROGATION MODE
DISPLAY/CHANGE

REGISTERS FLAGS PINS (READ ONLY)

REG RF HOLD
RBX AFL NMI
RAL TFL IR

SP IFL RDY

#REG

RAX=0888H RBX=#060H RCX=F#8H RDX=#886H SP=0080H BP=#6066H SI=0862H DI=po#8H
CS=@ddaH DS=#PPeH SS=0998H ES=0000H RF=#888H 1P~0B80H

L 4

#RAX=3333

L]

SRCH=FF

L]

SREG

RAX=5555H RBX=#896H RCX=FF@#8H RDX=0860H 6P-8000H BP=#F0FH S1=0086H Di=-808FH
CS*98868H DS=0968H 68=0898H ES=P08OH RF=PBABH 1P=8008H

L]

sIFL=1

L]

sRF
RF=#289H

L
SHOLD
HOL =9

F-15

INTERROGATION MODE (CONT.)
ACCESSING MEMORY AND I/O

#BYTE .BUFFER LEN 14T = 77
*

#+BYTE .BUFFER LEN 16T
BYT AAZA:AA00H=77H 77H 77H 774 77H 77H 774 77H 7701 77H 770 77H 77H 77H 77H 77h

*

#INTEGER .SUM = -9
*

+1SUM

INT 9922:0000H=-0009H
»

#WORD .XYZ

WOR @023:0AP4H=0ZA1H
*

XNz = 0

*
*1XYZ
WOR 20232:0094H=0900H

*
#WFORT ".CONTROL = 9099

*

#PORT FFF9
FOR FFFIH=AAH
*

*FORT FFFE = FF
$WFDRT LLIGHTS = @

*
*WFORT .SWITCHES
WFO FFFEH=AADFH

INTERROGATION MODE (CON'T.)
CODE DISASSEMBLY

+ASH .BTART LEN 20

ADDR PREF1X MNEMONIC OPERANDS COHHENTS
920108101 MoV DX FFEAH

@201 0613H HOV AL y88H

8026190815H ouv DX AL

062616914H Hov AL 39H

paze14818H out DX,AL

982010019H CALL $+006EH § SHORT
09201941CH CALL $+807CH I SHORT
08261801FH HOV HORD PTR [8024H),88686H

60201090254 PUSH WORD PTR [8624H)

0828190294 Hov AL #OH

00201082BN PUSH AX

08261802CH Hov ALy#1H

#92@1092EH PUSH AX

96201082FH CALL $+608TH $ SHORT

F-16

TRACE DATA COLLECTION

/

'ADDR'/'DATA’
BUS DATA
TRACE DATA
ADDR/DATA| BHE BUS STS QsTs QDEPTH DMUX MARK
20 1 3 2 3 2 1

* EACH FRAME OF TRACE DATA CONTAINS 32 BITS OF INFORMATION.

F-17

_/

FRAME 0

TRACE DATA BUFFER
2 FRAMES/MACHINE CYCLE - 511 CYCLE CAPACITY

4

FRAME N[ADDR/DATA| BHE |BUSSTS| QSTS |QDEPTH| DMuX MARK
BHE |BUSSTS| QSTS |QDEPTH| DMUX MARK

FRAME N+ 1|ADDR/DATA

4

FRAME 1022

CONTROLLING TRACE DATA COLLECTION

* ENABLE TRACE

NOTE: BY DEFAULT THE TRACE IS INITIALLY TURNED ON.

* DISABLE TRACE

TRACE DATA CAN ALSO BE COLLECTED CONDITIONALLY

F-18

CONDITIONAL TRACE DATA COLLECTION

ICE-86 HAS TWO TRACE CONTROL REGISTERS THAT MAY BE LOADED
BY SOFTWARE COMMANDS.

ONTRACE
REGISTER

= » TRACE ON

FRAME
INFORMATION

)______

OFFTRACE
REGISTER

= » TRACE OFF

USING THE TRACE CONTROL REGISTERS

* ONTRACE =.DISPLA

Y_DATA FETCHED

* OFFTRACE =.LIGHT_PORT OUTPUT

ENABLE TRACE CONDITIONALLY NOW OFF
OR
* ENABLE TRACE CONDITIONALLY NOW ON

\

S

ONTRACE
REGISTER

;TRACE CONTROL REGISTERS CAN ONLY

;BE LOADED WITH NON-EXECUTION
MATCH CONDITIONS.

OFFTRACE
REGISTER

F-19

DISPLAYING TRACE DATA

8ot TRACE Display Mode Command

TRACE = Irnme

INSTRUCTION
Examples:
TRAGE = FRAME
TRAGE = INSTRUCTION
PRINT Command
1. PRINTALL
2. PRINT{{ +::-|decimal]
Example:
PRINT
PRINT ALL
PRINT +8
PRINT 6
PRINT -0
EXAMPLES
#TRACE
TRA=INS
*
»
#PRINT -3
FRAHE ADDR PREFIX HNEMONIC OPERANDS COMHMENTS
#9978 00217H MoV DXFFFBH
1003 6021AH IN AX+DX
FFFEH-1-82201
10671 6621BH NOT AX
1010 #0210H MOV DX +FFFAN
1615 #0226H out DXsAX

FFFAH-0-FDDFH
L
*

#TRACE = FRAME
L]

]

#PRINT -3
FRANE ADDR BHE/ 8TS OSTS QDEPTH DMUX MARK
f@16¢8 2FFF3H
1817y OFFFAH
181681 2FDDFH
18195 $O224H
19281 2FAFBH

T“eaan
MmTMmoo™m
NDWww

oOD>DODO
LK R R L]

F-20

TRACE BUFFER POINTER

0
TRACE l«———— POINTER
BUFFER
NOTE:
1022 THE PRINT COMMAND FUNCTIONS

RELATIVE TO THE POINTER.

MOVE, OLDEST, and NEWEST Commands

MOVE ([+ ::~|decimal]
OLDES‘
NEWEST
Example:
MOVE

NEWEST

MISCELLANEOUS FEATURES AND COMMANDS

Sel or Display Console Inpul Rsdix Commands

SUFFIX

BUFFIX = ¥::Q::0:T:H
Examples:
BUFFIX

SUFFIX =Y

Sel or Display Console Output Radix Commands

BASE

BASE = V::Q::0:T::H::ASCH
Exsmples:

BASE

BASE = Q

¢ INITIAL RADIX IS HEX FOR BOTH INPUT AND OUTPUT.

F-21

/

EMULATION TIMER

2 MHz (500ns) CLOCK

GO

"EMULATION BREAK® ——————»

CLK

START
EMULATION
TIMER
HITIMER
TIMER

STOP
RESET

FROM clause
CS OR IP MODIFIED
ENABLE/DISABLE TRACE

LOAD Command

LOAD{:dvive:Yhsname | NOCODE
NOSYMBOL
NOLINE

Examples:

LOAD:FO:TEST.VYRY

LOAD:FI:MYPROG NOLINE
LOAD:F2:COUNT. ONE NOCODE NOLINE
LOAD:F3:NEWCOD NOSYMBOL

SAVE Command

BAVE j:drive:PWename NOCODE: partition [partition |*
NOBYMBOL
NOLINE

Exampler:

SAVE:FITEST

BAVE:FO:MYPROQ 0000 TO 6FFF NOLINE
BAVE:F2:COUNT.TWO NOLINE NOSYMBOL
SAVE:FY:NEWBYM NOCODE NOLINE
SAVE:FL.TEST #1 70 430, SUBR#1 70 . SUBR I

LIST Command

o) LdT.devke:

(b) LIST:drive:|fwename
Esempler:

UIST:AP:

LIST:CO:
LIST FYICEFR

F-22

* TO RETURN TO ISIS-II

* EXIT

CLASS EXERCISE 6.1
SET UP THE ICE-86 COMMANDS TO DO THE FOLLOWING:

1. MAP LOGICAL MEMORY 0-32K INTO USER MEMORY

»

2. SELECT THE USER CLOCK

*

3. LOAD THE PROGRAM FILE :F 1:DEMO

*

4. EXAMINE THE SYMBOL TABLE

*

5. BEGIN EMULATION AT .START AND CONTINUE UNTIL .L5 EXECUTED
*

K F-23

CLASS EXERCISE 6.1 (CON'T.)

6. EXAMINE THE REQGISTERS

L

7. EXAMINETHE BYTE MEMORY LOCATION .XYZ

»*

8. CONTINUE EMULATION UNTIL DATA IS INPUT FROM PORT OF8H

*

9. EXAMINE THE CONTENTS OF THE TRACE BUFFER
*

10. SINGLE STEP THROUGH THE NEXT TWO INSTRUCTIONS

*

*

CLASS EXERCISE 6.1 (CON'T.) \

11. EXAMINE THE LAST 6 ENTRIES IN THE TRACE BUFFER

*

12. EXAMINE THE WORD LOCATION .ABC

¥*

13. CONTINUE EMULATION FOREVER
*

14. BREAK EMULATION
*

15. QO BACK TO ISIS-II
*

F-24

CLASS EXERCISE 6.1 (CON'T)

16. MATCH THE PCB WITH THE RELATIVE LOCATION IN WHICH IT SHOULD
BE INSTALLED.

TOP — A 86 CONTROLLER
MIDDLE B FM CONTROLLER PCB
BOTTOM _____ C TRACE PCB

17. WHICH ICE86 PCB CONTAINS THE 8080 MICRO PROCESSOR?

*

WHERE TO FIND MORE INFORMATION...

ICE-86 MICROSYSTEM IN-CIRCUIT EMULATOR OPERATING INSTRUCTIONS

CHAPTER 1 - INTRODUCTION TO ICE-86
CHAPTER 2 - ICE-86 INSTALLATION PRQCEDURES

F-25

GETTING STARTED WITH ICE-86

The purpose of this lab exercise is to use the commands of
the In-Circuit Emulator presented in this appendix. With
these commands, you will be able to load and debug programs
that you have written. The items to be covered during this
lab are as follows:

1. Preparation of the Execution Environment

2. Loading of an Executable Program File

3. GO or "Real-Time" Emulation

y, Implementing User Defined Breakpoints

5. Examining CPU Registers, Memory Locations, and
I/0 Ports

6. Collection and Display of Trace Information

7. Timing a Section of a Program

Before you get started, make sure that you are at a system
which is properly configured. 1In order to perform this 1lab,
you must be at a workstation which contains the following
items:

A, SERIES III Development System
B. ICE 86 connected to an SDK 86

If you have any question or if your ICE unit is not attached
to your SDK 86, ask your instructor for assistance. You
will also need some software. If you do not have the ICE86
software, you should see your instructor.

Once you are situated at a properly configured workstation
Wwith the proper software, you must generate an absolute
program file. For this lab, we are going to borrow a
program that is already written and use it to create an
absolute program file.

There is a file on the system disk which was prepared for
this lab exercise. It is :F@:DEMO.A86. DEMO.A86 is a
source file for a program which is written in 8886 assembly
language. We will use this program in this lab to
demonstrate the features of ICE86.

Copy the source file to your user disk. Once you have the
file on your user disk, you must assemble the source file
into an object module. Make sure you use the DEBUG option
of the assembler. Also, get a hard copy of the list file to
use during this lab session.

ICE-86 DEMO LAB
F-26

By the time it finishes, the assembler will give us a
relocatable object module. Although the assembler produced
a module which is in code that our CPU can execute, we can't
do anything with it until we provide it with some absolute
addresses. We can use LOC86 to do this for us. Enter the
following command:

~RUN LOC86 :F1:DEMO.0OBJ ADDRESSES(SEGMENTS(CODE(2@0H)))&<CR>
>>INITCODE(1@@H)

The "-" and ">>" are prompts from the system. Get a copy of
the listing from the locator which iIs in the file DEMO.LST.
First of all there should not be any errors listed. If
there are, you should match the invocation line at the top
of your listing with the command above to make sure you
don't have a cockpit error. If you have an error on your
listing and the invocation line was 0K, then you should see
your instructor.

This program, as you can see from the assembler listing,
utilizes the LEDs and switches on your SDK 86. The Module
i1s named ICE_DEMO.

Now let's look at the locate command we just entered. As
you can see, we located our program by segments beginning at
address 2@@GH. Then we invoked something called INITCODE and
gave it an address of 10@H. At this time, take a look at
your program listing. In particular look at the END
statement. You will see that the END statement on this
program is more extensive than you would think it needs to
be. This END statement contains the initialization
information for the segment registers used by this module.
The assembler uses this information to create what it calls
an initialization record. Now back to our locator and this
INITCODE business. ICE-86 requires that the INITCODE
control be used. The INITCODE control causes the locator
(LOC86) to create a segment which will initialize the
segment registers and pointer registers in our CPU when our
program is loaded.

Once you have familiarized yourself with the program and the
locate map, you are ready to start the ICE session. Make
sure the ICE-86 System Software is in Drive @ and enter the
following command:

-ICE86

This will load the ICE software driver and invoke the ICE
hardware. If the invocation is successful, ICE will return
an asterisk "*" prompt character.

ICE-86 DEMO LAB
F-27

If you wish to make a record of this ICE session, type the
following:

LIST :F1:ICE.LAB

This will copy everything that goes to the screen to a file
on your user disk called ICE.LAB.

The first thing we must do is prepare the execution
environment for ICE. This consists of mapping memory and
making a clock selection.

Memory mapping is our way of informing ICE the memory it can
use and where it 1is located. Since we will be executing out
of memory on the SDK~86 board, we will map our memory
requirements to the user system., To do this, enter the
following command:

*MAP § LEN 2 = USER

This command identifies the first two 1K blocks in the
8086's logical address space as being located in the user
system (QQ@QCGH - BETFFH).

Next we must make a clock selection. We have a choice of
using a clock supplied by ICE~86 hardware (internal) or one
supplied by user hardware. Since we are executing out of
user memory, it is necessary that we select the user clock.
Enter the folleowing:

*CLOCK = EXTERNAL

At this point, the execution environment has been prepared.
S0 now we can go ahead and load our absolute object file.

*LOAD :F1:DEMO

Now that we have our program loaded into our system, let's
take a look at the CPU registers to see where our C3 and IP
registers are pointing. Enter:

*REG

When we assembled our program we used a switch called
DEBUG. At the time we said that this switch added the
symbol table to our object module. If we want to see what
symbols are available, we can enter:

*SYMBOLS (Remember that you can use Ctrl-S to stop the
display and Ctrl-Q to resume)

ICE-86 DEMO LAB
f-28

As you can see, this will give us a list of all the symbols
associated with the module called "ICE_DEM(C". Let's add a
symbol to the table which will be equal to the address of
the first instruction to be executed. We know that the
CS:IP currently point to that instruction so let's enter:

*DEFINE .BEGIN = CS:IP
Now look at the symbol table again.

¥*SYMBOLS
As we can see we now have a new symbol called .BEGIN.

When you displayed the registers, you may have noticed that
the CS and IP registers contain values of @@#10H and @@@6H.
This translates to an absolute address of @#@1866H. But our
program was located at an address of 2@8@H. What is going on
here? Well, remember that locate command? Remember
something called INITCODE? Our locator created an absolute
segment at the address we specified (180H) and our loader
initialized our CPU so that it would execute this code. If
you look at the map from the Locator, you may notice a
segment was created called ??LOC86_INITCODE. Let's see what
this code is. Enter:

*ASM .BEGIN LEN 19

This code is used to initialize our segment registers and
the stack pointer from the information in our END
statement. SS is loaded from CS:WORD PTR [@@@@3. To see
what this value is, enter:

*WORD CS:#¥

Is this segment value the same as the one on your locate
map?

You may also want to look at the value SP is loaded with and
see if it agrees with the assembly listing and the value DS
is initialized with and check it against the locate map.

The final instruction is to do a FAR JMP to @G@020:8060¢F which
is where we told the locator to place our CODE SEGMENT.

We can begin executing our program by issuing the command:
¥*GO FROM .BEGIN FOREVER
We could have said simply GO FOREVER since CS:IP was

pointing to .BEGIN anyway. The term FOREVER indicates that
the program will continue executing with no breakpoints.

ICE-86 DEMO LAB
F-29

At this time, verify the operation of the program by placing
the switches in various positions and monitoring the
reaction of the LEDs with the program description in the
listing file.

Now that we know the program executes properly, let's
terminate its execution and look at some other ICE
commands. To bring about a random breakpoint, the Escape
key must be struck.

<Esc>

Notice the termination address is printed when emulation
comes to a halt.

Now let's see how we can enter some breakpoints of our own,.
Suppose we wanted to restart this program, but this time we
wanted to stop when the switches of port @FFFQH are in an
illegal setting.

Before you enter the breakpoint, make sure that the command
switches are in a legal configuration (refer to the
listing). As you can see from the listing, the only time
the instruction with the label ILLEGAL _CMD is executed is
when an illegal command is decoded. We can set the
breakpoint for that instruction by entering:

¥*GO FROM .START TILL .ILLEGAL_CMD EXECUTED

You can reference any symbol by referencing it as shown by
this command., Notice the period "." before the symbol

name. Also notice that we were very explicit in saying that
Wwe wanted to break emulation when that instruction was
EXECUTED. If we were not explicit, we would break emulation
when that instruction was fetched regardless of whether it
was executed or not. This is important since our CPU has a
pre-~fetch queue and may fetch the instruction even though it
might never execute it.

Your program should execute until you change the setting of
the command switches to an illegal setting. When this
happens and execution terminates, you can correlate the
address at which the execution terminated as displayed on
the screen with the address of ILLEGAL_CMD on the locate
map. As you can see, the execution terminated with the
CS:IP pointing to the instruction following the one we set
our breakpoint at.

ICE-86 DEMO LAB
F-30

With the system halted there are a few thing you can look
at. If you enter:

*PRINT -20

you can see what the last 20 instructions were executed
before the breakpoint was encountered and what the illegal
switch setting was that caused us to terminate.

If you prefer to see the information in each frame, enter:

*TRACE = FRAME
¥PRINT -25

This will give you frame by frame information
If you enter:

¥REG

you can examine all of the registers.

You may want to look at the Zero flag condition to see that
it is cleared from the previous CMP by entering:

*¥Z7FL

You can examine the controls of the memory location called
.DISPLAY by entering:

¥*BYTE .DISPLAY

In response to this command, ICE 86 gives us the address of
.DISPLAY and displays its contents.

Now change the settings of the command switches to a valid
configuration and enter:

%GO

Once the program begins executing, change the switch
settings to an illegal command setting. What happened?

If you notice, we didn't enter a TILL clause in our last GO
command, As it turns out, ICE86 maintains breakpoints until
they are cleared out. To verify this, enter:

*GR

This causes ICE 86 to display the contents of it GO
REGISTER. As you can see, the GO REGISTER contains the

ICE-86 DEMO LAB
F-31

breakpoint BR@. How can you determine what BR@ contains?
You guessed it...type:

*BRO

If you compare this with your locate map, you should see
that the breakpoint was matched when the instruction
associated with the program label ILLEGAL_CMD was executed.
In order to get the program to execute continuously we have
to change the contents of the GO REG. We can do this two
ways. The first way is to do it implicitly by entering GO
FOREVER which sets the contents of the GO REG to FOREVER and
begins execution. The other way to do it is by explicitly
setting the GO REG to FOREVER by entering:

*GR=FOREVER

Before we execute the program again, let's conditionally
collect trace information for later display. In this
example, we would like to collect information from the time
the instruction at location .START is fetched until a value
is output to .DISPLAY PORT. Enter the following:

®*ONTRACE = .START FETCHED
*OFFTRACE = .DISPLAY PORT OUTPUT

*ENABLE TRACE CONDITIONALLY NOW OFF
%GO

Change the switch settings several times and then strike the
Escape key to abort the process. Now let's look at the
trace buffer to see what was collected. If you are still in
frame information mode enter:

*TRACE = INSTRUCTIONS

and then we will print the entire buffer by entering:

*PRINT ALL

If you wish to stop it at any time press the Escape key.

If you look at the assembler listing, you will notice a
delay was written in starting at the program label .DELAY.
Let's use the ICE-86 built in timer to time this delay and
see how long it takes to execute. Enter the following:

¥*GO FROM .DELAY TILL .START FETCHED

ICE-86 DEMO LAB
F-32

Now we can look at the timer to see how long it took to
execute this piece of our program. Enter

*HTIMER
*TIMER

HTIMER contains the most significant 16 bits of the timer
and TIMER the least significant 16 bits of the timer. To
find out how long this part of our program took to execute,
we would have to multiply the HTIMER value by 65536 add the
TIMER value and then multiply it by the timers clock period
of 500 nsec. Since most of us don't like to do hexadecimal
multiplication, we need these values in decimal. We can do
this two ways. Enter:

®BASE = T
*HTIMER
*TIMER

This changed our output mode to base ten and displays all
our values in decimal. Another method is to evaluate using
the EVAL command. Enter:

*EVAL HTIMER
*EVAL TIMER

This displays these values in all the bases supported by

ICE. To calculate how long this took we now have to take
HTIMER and multiply it by 65536. The following chart may
help.

1 * 65536 = 65536
2 * 65536 = 131872
3 * 65536 = 196608
4 * 65536 = 262144
5 * 65536 = 327680
6 * 65536 = 393216
7 * 65536 = 458752
8 * 65536 = 524288
9 * 65536 = 589824
186 * 65536 = 655368

We then add the TIMER value and multiply this by 588 nsec or
.5 usec. You should get a result of approximately .5
seconds for this.

ICE-86 DEMO LAB
F-33

Now let's change the value of the delay by changing the
MOV BH,2 instruction at 2#:39. Enter the following:

*BYTE CS:3A = 4
*ASM .DELAY TO .LP1
¥GO FROM .DELAY TILL .START FETCHED

and check the timers. The delay should be approximately 1
second. You may want to change the LOOP count in the CX
register and try it again.

At this time, you should have a basic idea as to how ICE-86
Will be used to execute and debug programs that you write.
By using the GO command with breakpoint, you can test and
verify logical portions of your program. Using the REG
command, you can verify the contents of the CPU registers
whenever emulation has been stopped. You can collect
information in a trace buffer and time sections of your
progranm,

Whenever emulation is terminated, you may interrogate or
modify the system. Using your system and documentation, you
may Wish to experiment at this time with some of the
capabilities of ICE 86. Some of the features that you may

Wwish to try are to modify the contents of an I/0 port or to
look at the switch settings.

When you are satisfied, you may exit ICE86 by entering:

*EXIT

This Wwill cause the system to return to ISIS and close the
LIST file you created. You may want to view this file using
AEDIT or copy it to the printer.

ICE-86 DEMO LAB
F-34

INTEL WORKSHOPS

Microcomputer Workshops—Architecture & Assembly Language
Introduction to Microprocessors
MCS®-48/49 Microcontroilers
MCS®-51 Microcontrollers
MCS®@-96 16-Bit Microcontrollers
MCS®-80/85 Microprocessors
iAPX 86, 88, 186 Microprocessors, Part |
iAPX 86, 88, 186 Microprocessors, Part Il
iAPX 286 Microprocessors
Data Communications including Ethernet
Speech Communication with Computers
iCEL™ VLSI Design

Programming and Operating Systems Workshops
Beginning Programming Using Pascal
PL/M Programming
PL/M-iRMX™ 51 Operating System
iRMX™ 86 Operating System
XENIX*/C Programming
System 86/300 Applications Programming
iDIS™ Database Information System
iTPS Transaction Processing System
Development System Seminars

System 2000® Database Management Workshops
System 2000® For Non-Programmers
System 2000® Technical Fundamentais
System 2000® Applications Programming
System 2000® Report Writing
System 2000® Database Design and Implementation

Self-Study Introduction to Microprocessors
System 2000© Multimedia Course

BOSTON AREA
27 industrial Avenue, Chelmsford, MA 01824 (617) 256-1374

CHICAGO AREA
Gould Center, East Tower
2550 Golf Road, Suite 815, Roiling Meadows, IL 60008 (312) 981-7250

DALLAS AREA
12300 Ford Road, Suite 380, Dallas, TX 75234 (214) 484-8051

SAN FRANCISCO AREA
1350 Shorebird Way, Mt. View, CA 94043 (415) 940-7800

WASHINGTON D.C. AREA
7833 Walker Drive, 5th Fl., Greenbelt, MD 20770 (301) 474-2878

LOS ANGELES AREA
Kiiroy Airport Center, 2250 Imperial Highway, El Segundo, CA 90245 (415) 940-7800

CANADA
190 Attwell Drive, Toronto, Ontario MOW 6H8 (416) 675-2105

customer e

training

Intel Corporation - 3065 Bowers Avenue - Santa Clara, California 95051 - (408) 987-8080

	cov_Page_1
	cov_Page_2
	b1_Page_01
	b1_Page_02
	b1_Page_03
	b1_Page_04
	b1_Page_05
	b1_Page_06
	b1_Page_07
	b1_Page_08
	b1_Page_09
	b1_Page_10
	b1_Page_11
	b1_Page_12
	b1_Page_13
	b1_Page_14
	b1_Page_15
	b1_Page_16
	b1_Page_17
	b1_Page_18
	b1_Page_19
	b1_Page_20
	b1_Page_21
	b1_Page_22
	b1_Page_23
	b1_Page_24
	b1_Page_25
	b1_Page_26
	b1_Page_27
	b1_Page_28
	b1_Page_29
	b1_Page_30
	b1_Page_31
	b1_Page_32
	b1_Page_33
	b1_Page_34
	b1_Page_35
	b1_Page_36
	b2_Page_01
	b2_Page_02
	b2_Page_03
	b2_Page_04
	b2_Page_05
	b2_Page_06
	b2_Page_07
	b2_Page_08
	b2_Page_09
	b2_Page_10
	b2_Page_11
	b2_Page_12
	b2_Page_13
	b2_Page_14
	b2_Page_15
	b2_Page_16
	b2_Page_17
	b2_Page_18
	b2_Page_19
	b2_Page_20
	b2_Page_21
	b2_Page_22
	b2_Page_23
	b2_Page_24
	b2_Page_25
	b2_Page_26
	b2_Page_27
	b2_Page_28
	b2_Page_29
	b2_Page_30
	b2_Page_31
	b2_Page_32
	b2_Page_33
	b2_Page_34
	b2_Page_35
	b2_Page_36
	b3_Page_01
	b3_Page_02
	b3_Page_03
	b3_Page_04
	b3_Page_05
	b3_Page_06
	b3_Page_07
	b3_Page_08
	b3_Page_09
	b3_Page_10
	b3_Page_11
	b3_Page_12
	b3_Page_13
	b3_Page_14
	b3_Page_15
	b3_Page_16
	b3_Page_17
	b3_Page_18
	b3_Page_19
	b3_Page_20
	b3_Page_21
	b3_Page_22
	b3_Page_23
	b3_Page_24
	b3_Page_25
	b3_Page_26
	b3_Page_27
	b3_Page_28
	b3_Page_29
	b3_Page_30
	b3_Page_31
	b3_Page_32
	b3_Page_33
	b3_Page_34
	b3_Page_35
	b3_Page_36
	b3_Page_37
	b3_Page_38
	b3_Page_39
	b3_Page_40
	b3_Page_41
	b3_Page_42
	b3_Page_43
	b3_Page_44
	b3_Page_45
	b3_Page_46
	b3_Page_47
	b3_Page_48
	b4_Page_01
	b4_Page_02
	b4_Page_03
	b4_Page_04
	b4_Page_05
	b4_Page_06
	b4_Page_07
	b4_Page_08
	b4_Page_09
	b4_Page_10
	b4_Page_11
	b4_Page_12
	b4_Page_13
	b4_Page_14
	b4_Page_15
	b4_Page_16
	b4_Page_17
	b4_Page_18
	b4_Page_19
	b4_Page_20
	b4_Page_21
	b4_Page_22
	b4_Page_23
	b4_Page_24
	b4_Page_25
	b4_Page_26
	b4_Page_27
	b4_Page_28
	b4_Page_29
	b4_Page_30
	b4_Page_31
	b4_Page_32
	b4_Page_33
	b4_Page_34
	b4_Page_35
	b4_Page_36
	b4_Page_37
	b4_Page_38
	b4_Page_39
	b4_Page_40
	b4_Page_41
	b4_Page_42
	b4_Page_43
	b4_Page_44
	b4_Page_45
	b4_Page_46
	b5_Page_01
	b5_Page_02
	b5_Page_03
	b5_Page_04
	b5_Page_05
	b5_Page_06
	b5_Page_07
	b5_Page_08
	b5_Page_09
	b5_Page_10
	b5_Page_11
	b5_Page_12
	b5_Page_13
	b5_Page_14
	b5_Page_15
	b5_Page_16
	b5_Page_17
	b5_Page_18
	b5_Page_19
	b5_Page_20
	b5_Page_21
	b5_Page_22
	b5_Page_23
	b5_Page_24
	b5_Page_25
	b5_Page_26
	b5_Page_27
	b5_Page_28
	b5_Page_29
	b5_Page_30
	b5_Page_31
	b5_Page_32
	b5_Page_33
	b5_Page_34
	b5_Page_35
	b5_Page_36
	b5_Page_37
	b5_Page_38
	b5_Page_39
	b5_Page_40
	b5_Page_41
	b5_Page_42
	b5_Page_43
	b5_Page_44
	b5_Page_45
	b5_Page_46
	b5_Page_47
	b5_Page_48
	b5_Page_49
	b5_Page_50
	b5_Page_51
	b5_Page_52
	b5_Page_53
	b5_Page_54
	b6_Page_01
	b6_Page_02
	b6_Page_03
	b6_Page_04
	b6_Page_05
	b6_Page_06
	b6_Page_07
	b6_Page_08
	b6_Page_09
	b6_Page_10
	b6_Page_11
	b6_Page_12
	b6_Page_13
	b6_Page_14
	b6_Page_15
	b6_Page_16
	b6_Page_17
	b6_Page_18
	b6_Page_19
	b6_Page_20
	b6_Page_21
	b6_Page_22
	b6_Page_23
	b6_Page_24
	b6_Page_25
	b6_Page_26
	b6_Page_27
	b6_Page_28
	b6_Page_29
	b6_Page_30
	b6_Page_31
	b6_Page_32
	b6_Page_33
	b6_Page_34
	b6_Page_35
	b6_Page_36
	b6_Page_37
	b6_Page_38
	b6_Page_39
	b6_Page_40
	b6_Page_41
	b6_Page_42
	b6_Page_43
	b6_Page_44
	b6_Page_45
	b6_Page_46
	b6_Page_47
	b6_Page_48
	b6_Page_49
	b6_Page_50
	b7_Page_01
	b7_Page_02
	b7_Page_03
	b7_Page_04
	b7_Page_05
	b7_Page_06
	b7_Page_07
	b7_Page_08
	b7_Page_09
	b7_Page_10
	b7_Page_11
	b7_Page_12
	b7_Page_13
	b7_Page_14
	b7_Page_15
	b7_Page_16
	b7_Page_17
	b7_Page_18
	b7_Page_19
	b7_Page_20
	b7_Page_21
	b7_Page_22
	b7_Page_23
	b7_Page_24
	b7_Page_25
	b7_Page_26
	b7_Page_27
	b7_Page_28
	b7_Page_29
	b7_Page_30
	b7_Page_31
	b7_Page_32
	b7_Page_33
	b7_Page_34
	b7_Page_35
	b7_Page_36
	b7_Page_37
	b7_Page_38
	b7_Page_39
	b7_Page_40
	b7_Page_41
	b7_Page_42
	b7_Page_43
	b7_Page_44
	b7_Page_45
	b7_Page_46
	b8_Page_01
	b8_Page_02
	b8_Page_03
	b8_Page_04
	b8_Page_05
	b8_Page_06
	b8_Page_07
	b8_Page_08
	b8_Page_09
	b8_Page_10
	b8_Page_11
	b8_Page_12
	b8_Page_13
	b8_Page_14
	b8_Page_15
	b8_Page_16
	b8_Page_17
	b8_Page_18
	b8_Page_19
	b8_Page_20
	b8_Page_21
	b8_Page_22
	b8_Page_23
	b8_Page_24
	b8_Page_25
	b8_Page_26
	b8_Page_27
	b8_Page_28
	b8_Page_29
	b8_Page_30
	b8_Page_31
	b8_Page_32
	b8_Page_33
	b8_Page_34
	b8_Page_35
	b8_Page_36
	b8_Page_37
	b8_Page_38
	b8_Page_39
	b8_Page_40
	b8_Page_41
	b8_Page_42
	b8_Page_43
	b8_Page_44
	b8_Page_45
	b8_Page_46
	b8_Page_47
	b8_Page_48
	b8_Page_49
	b8_Page_50
	b8_Page_51
	b8_Page_52
	b8_Page_53
	b8_Page_54
	b8_Page_55
	b8_Page_56
	b9_Page_01
	b9_Page_02
	b9_Page_03
	b9_Page_04
	b9_Page_05
	b9_Page_06
	b9_Page_07
	b9_Page_08
	b9_Page_09
	b9_Page_10
	b9_Page_11
	b9_Page_12
	b9_Page_13
	b9_Page_14
	b9_Page_15
	b9_Page_16
	b9_Page_17
	b9_Page_18
	b9_Page_19
	b9_Page_20
	b9_Page_21
	b9_Page_22
	b9_Page_23
	b9_Page_24
	b9_Page_25
	b9_Page_26
	b9_Page_27
	b9_Page_28
	b9_Page_29
	b9_Page_30
	b9_Page_31
	b9_Page_32
	b9_Page_33
	b9_Page_34
	b9_Page_35
	b9_Page_36
	b9_Page_37
	b9_Page_38
	b9_Page_39
	b9_Page_40
	b9_Page_41
	b9_Page_42
	b9_Page_43
	b9_Page_44
	b9_Page_45
	b9_Page_46
	b9_Page_47
	b9_Page_48
	b9_Page_49
	b9_Page_50
	b9_Page_51
	b9_Page_52
	b9_Page_53
	b9_Page_54
	b9_Page_55
	b9_Page_56
	b9_Page_57
	b9_Page_58
	b9_Page_59
	b9_Page_60
	cov_Page_3
	cov_Page_4

