
iAPX 86,88, 186
MICROPROCESSORS

PART I

WORKSHOP NOTEBOOK

VERSION 2.0 JUNE 1984

@) Intel Corporation 1984

Order No. 210976-002

~ INTEL CORPORATION 1983, 1984

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for al1Y errors which may
appear in this document nor dOles it make a commitment to update the information contained hemin.

Intel retains the right to make clhanges to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP. CREDIT, i, ICE, 12 1CE, ICS, iDBP, iDIS. iLBX, im, iMMX,
Insite, INTEL, intel, Intelevision. Intellec, inteligent Identifier'·,
intelBOS, inteligent Programming'·, Intellink, iOSP. iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe. MULTIBUS. Multichannel'·
Plug-A-Bubble. MULTI MODULE. PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS. iRMX, iSBC. MCS, or UPI and a numerical suffix.

iAPX 86,88, 186
MICROPROCESSORS

PART I

WORKSHOP NOTEBOOK

VERSION 2.0 JUNE 1984

® Intel Corporation 1984

Order No. 210976-002

TABLE OF CONTENTS

1 THE iAPX 86 PRODUCT FAMILY
- Products
- Nomenclature
- Course Contents

2 INTRODUCTION TO MICROPROCESSORS
- Registers
- Number Systems
- Flags

3 INTRODllCTION TO SEGMENTATION
- Segments
- Segment Registers
- Physical Addresses
- Segment Usage

4. INTRODUCTION TO THE iAPX 86, 88 INSTRUCTION SET
- Creating a Segment
- Assume Statement
- MOV and XCHG
- IN and OUT
- Shift and Rotate

5 MORE INSTRUCTIONS
- HLT
- JMP
- LOOP

6 SOFTWARE DEVELOPMENT
- Series III Development System
- File Utilities
- AEDIT

7 ARITHMETIC, LOGICAL AND CONDITIONAL INSTRUCTIONS
- ADD, SUB, MUL, DIV and CMP
- Conditional Jumps
- AND, OR, XOR, NOT and TEST

8 DEFINING AND ACCESSING DATA
- Defi n i ng Da ta
- Initializing Segment Registers
- Addressing Modes

9 PROGRAM DEVELOPMENT
- DEBUG-86
- ASM86
- SUBMIT Fil es

10 BASIC CPU DESIGN AND TIMING
- Minimum Mode
- Maximum Mode
- Instruction Queue
- 8086, 8088, 8284A, 8288, 8286 and 8282

11 PROCEDURES
- Procedure Definition
- Stack Creation and Usage
- Parameter Passing
- Example

12 PROGRAMMING WITH MULTIPLE SEGMENTS
- Multiple Code Segments
- Procedure Declaration
- Multiple Data Segments
- Segment Override Instruction Prefix
- Forward References

13 INTERRUPTS
- iAPX 86, 88 Interrupt System
- Creating an Interrupt Routine
- 8259A Programmable Interrupt Control Unit
- Programming the 8259A

14 MEMORY AND I/O INTERFACING
- Memory Organizations
- Speed Requirements
- Address Decoding

15 PROGRAMMING TECHNIQUES
- JMP Table (Indirect Jumps)
- Block Move (String Instructions)
- Table Look-up (XLATB)

16 MODULAR PROGRAMMING
- PUBLIC Declarative
- EXTRN Declarative
- Combining Segments
- LINK86
- LOC86

17 INTRODUCTION TO THE iAPX 186, 188 MICROPROCESSORS
- Description
- Enhancements
- New Instructions
- Per; phera 1 s

18 MULTIBUS SYSTEM INTERFACE
- Design Considerations
• Hardware Interface to the Mult1bus
- Bus Arbitration
• Lock Instructions Prefix
• Byte Swap Buffer

19 MULTI AND COPROCESSING
• 8087 Numeric Data Processor
• 8089 I/O Processor
- 80130 Operating System

20 iAPX 186, 188 HARDWARE INTERFACE
- Bus Interface
• Clock Generator
- Internal Peripherals Interface
- Differences

21 THE iAPX 286 and iAPX 386 MICROPROCESSORS
- Description
- Enhancements

AP-PBIDI C-ES .
A Lab Exercises
B Lab Solutions
C Class Exercise Solutions
D Daily Quizzes
E Unpack Decimal Arithmetic Instructions
F ICE 86

iAPX 86, 88, 186 MICROPROCESSORS
WORKSHOP SCHEDULE

1
2
3
4

5
6

7

8
9
10

11
12
13
14

15
16
17

CHAPTER Day One
THE iAPX 86 PRODUCT FAMILY
INTRODUCTION TO MICROPROCESSORS
INTRODUCTION TO SEGMENTATION
INTRODUCTION TO THE iAPX 86, 88
INSTRUCTION SET
MORE INSTRUCTIONS
SOFTWARE DEVELOPMENT

Day Two

ARITHMETIC, LOGICAL AND
CONDITIONAL INSTRUCTIONS
DEFINING AND ACCESSING DATA
PROGRAM DEVELOPMENT
BASIC CPU DESIGN AND TIMING

Day Three

PROCEDURES
PROGRAMMING WITH MULTIPLE SEGMENTS
INTERRUPTS
MEMORY AND I/O INTERFACING

PROGRAMMING TECHNIQUES
MODULAR PROGRAMMING

Day Four

INTRODUCTION TO THE iAPX 186, 188
MICROPROCESSORS
(optional) ICE 86

Day Fi ve

18 MULTI AND COPROCESSING
19 MULTIBUS SYSTEM INTERFACE
20 iAPX 186, 188 HARDWARE INTERFACE
21 The iAPX 286 and iAPX 386

MICROPROCESSORS

Lab
Lab 1 -
Using the Series III
Development System

Optional AEDIT
Basic Lab

Lab 2 -
Defining and
Accessing Data

Lab 3 -
Using Procedures
(Linking with PL/M),
Multiple Segments,
and Interrupts

Lab 4 -
Modular Programming

Optional Lab -
ICE Demo

Labs are shown for information only. All labs are self
paced and as a result are not scheduled or assigned.

DAY 1 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

* DEFINE THE TERMINOLOGY USED TO DESCRIBE THE iAPX 86,88.186,188

FAMILY OF PRODUCTS

* DEFINE THE THREE BASIC COMPONENTS OF EVERY MICROPROCESSOR

DESIGN AND THE BUSSES THAT CONNECT THEM

* MATCH THE CPU POINTER REGISTERS WITH THE TYPE OF MEMORY THEY

ARE USED TO ACCESS

* DEFINE TYPICAL SEGMENT REGISTER USE

* USE THE ASSEMBLER DIRECTIVES REQUIRED TO DEFINE A SEGMENT

* CREATE, ASSEMBLE, AND EXECUTE A PROGRAM USING THE

SERIES III DEVELOPMENT SYSTEM

CHAPTER 1

THE iAPX 86 PRODUCT FAMILY

• PRODUCTS
• NOMENCLATURE

• COURSE CONTENTS

GENERATIONS OF MICROPROCESSOR SYSTEMS

1000

500

200

100
w
0 z c
:E
II:
0
II..
II:
W
11.
W
>
j:
C
..J
W
II:

10

SOFTWARE

(!.~-~!~;)

1-1

iAPX 86 PRODUCT FAMILY

HIGH LEVEL LANGUAGES

PASCAL 88

PLM 86

FORTRAN 86

C 86

(APPLICA TIONS)

(SYSTEMS IMPLEMENT A TION, APPLICATIONS)

(APPLICATIONS, MATH)

(SYSTEM IMPLEMENTATION, APPLICATIONS)

ASSEMBL Y LANGUAGE

ASM 86 ("HIGH LEVEL· ASSEMBLER)

SYSTEM SOFTWARE

IRMX 86

IRMX 88

IMMX 800
XENIX

OPERA TING SYSTEM (FULL FUNCTION)

EXECUTIVE (SMALL,FAST)

MESSAGE EXCHANGE SOFTWARE (MULTIPROCESSOR COMM.)
OPERATING SYSTEM (FULL FUNCTION)

1-2

DEVELOPMENT SUPPORT

SERIES II DEVELOPMENT SYSTEM
(8085 PROCESSOR ONLY, PLM86, ASM86)

SERIES III DEVELOPMENT SYSTEM
(8086 AND 8085 PROCESSORS, FORTRAN 86, PLM86,
ASM86, DEBUG-86, PASCAL 86, C86)

SERIES IV DEVELOPMENT SYSTEM
(8086 AND 8085 PROCESSORS, ENHANCED HUMAN
INTERFACE)

,'------' ICE8S ICE8SA

HARDWARE

121CE

(IN CIRCUIT EMULATOR, POWERFUL SOFTWARE AND
HARDWARE DEBUGGING TOOL, USED WITH SERIES II OR III)

(INTEGRATED INSTRUMENTATION AND IN-CIRCUIT EMULATION
SYSTEM FOR 8086, 80186, 80286, USED WITH
SERIES III OR IV)

LlNK8S, LOC8S, LlB8S
(UTILITIES PROGRAMS THAT SUPPORT MODULAR
PROGRAMMING, RUN ON SERIES II OR SERIES III)

iSBC 957B PACKAGE
(DOWNLOAD AND DEBUG FOR iSBC86 BOARDS)

1-3

iAPX 86 PRODUCT F AMIL Y

SINGLE BOARD COMPUTERS

, PROCESSORS

101
I I
I I
I I
I I
I I
I I
I I

ISBC 86/30 BOARD
ISBC 86/12A BOARD
iSBC 86/05 BOARD

(8MHz 8086, 128K RAM, FULL FUNCTION)

(5MHz 8086, 32K RAM , FULL FUNCTION)

(8MHz 8086, 86/12A COMPATIBLE, 8K RAM)

iSBC 88/40 BOARD (5MHz 8088,ANALOG 10, PROCESS CONTROL)
PLUS OVER 40 ADDITIONAL 10 AND MEMORY EXPANSION BOARDS

iAPX 86

iAPX 88

iAPX 186

iAPX 188
iAPX 286

8089 lOP

(GENERAL 16 BIT DATA PROCESSOR)

(iAPX 86 WITH 8 BIT EXTERNAL DATA BUS)

(HIGHER HARDWARE INTEGRATION)

(iAPX 186 WITH 8 BIT EXTERNAL DATA BUS)

(HIGHER SOFTWARE INTEGRATION)

(HIGH SPEED DMA AND 10)

I PROCESSOR EXTENSIONS

10'10' I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

NUMERICS COPROCESSOR

OPERA TING SYSTEM EXTENSION

1-4

(8087, HIGH SPEED MATH)

(80130 FAST OPERATING SYSTEM NUCLEUS)

iAPX 86, iAPX 88 MODEL NUMBERS

IAPX 86

CPU IAPX 86/10
8088

CPU & lOP
IAPX 86/11

8088
8089

CPU & 8087 NPX
IAPX 86/20

8088
8087

IAPX 86/21

CPU & 8087 NPX & lOP
8088
8087
8089

iAPX 86/30
CPU 80130 OSP 8088

80130

1-5

iAPX 86 PRODUCT FAMILY

SOFTWARE

HARDWARE

PLM 88
PASCAL 88

FORTRAN 88

ISBC 88/12A

ISBC 88/05 *"

ISBC 88/40

DEVELOPMENT SUPPORT

SERIES" *
SERIES 111*
SERIES IV

* = COVERED 1\1 THIS COURSE

1-6

ASM 88 *

IAPX 88*

IAPX 88*

IAPX 188*
IAPX 188*
IAPX 288*

ICE 88*
LINK 88*

LOC 88*
LIB 88

SIMILAR FOR

iAPX 88,

IAPX 186,

iAPX 188

IRMX 88

IRMX 88

IMMX 800

8087*

8089*"

80130*

121CE

SDK 88

957 B

FOR MORE INFORMATION ...

.. \LL INTEL PRODUCTS ARE DESCRIBED IN

_ MICROPROCESSOR AND PERIPHERAL HANDBOOK
- MEMORY COMPONENTS HANDBOOK
- OEM SYSTEMS HANDBOOK

A V AILABLE COURSES

- INTEL WORKSHOPS CATALOG

1-7

CHAPTER 2

INTRODUCTION TO MICROPROCESSORS

• REGISTERS

• NUMBER SYSTEMS
• FLAGS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MICROCOMPUTER SYSTEM

-FUNCTIONAL SECTIONS-

11 ADDRESS BUS 1J
MEMORY INPUT/OUTPUT

CPU
(2) (3)

MODULE

(1) 1 J r 1J ..
A "

K
'("

DATA BUS
.

CONTROL BUS

1 OPERATIONS
DECISIONS

2 PROGRAMS,
STACK,DATA

3 EXTERNAL
COMMUNICATION

2-1

BUS FUNCTIONS

ADDRESS BUS

DATA BUS

20 BITS UNI-DIRECTIONAL (OUTPUT ONLY)

MEMORY ADDRESS 0 TO 2 20 (1.048.576)

I/O ADDRESS 0 TO 2 16 (65,536)

16 BITS BI-DIRECTIONAL (READ/WRITE)

THUS MEMORY AND 110 DATA WIDTH 6 OR 16 BITS

CONTROL BUS

INCLUDES THREE CONTROL LINES

MilO = 110 OR MEMORY SELECTOR

RD=READ

WR=WRITE

2-2

iAPX 86,88 CPU PROGRAMMING MODEL
15 •• ---------__ 0

7· • 0 7 •
~ 0

AX AH AL

BX BH BL
BYTE

CX CH CL

OX OH OL

WORD

SP *
BP *
SI

'"
01 *

IP I I *
FLAGS I

* POINTER REGISTER

2-3

INSTRUCTION POINTER

MEMORY

," INSTRUCTION

/'
/'
/~ INSTRUCTION

/'
;'

,.
/' ".

".

I L /' ". --.- INSTRUCTION

IP (18)
~".

~ ---- ...
..... - INSTRUCTION

"
.....,..

"- INSTRUCTION
"-

"-
~ INSTRUCTION

2-4

STACK POINTER

TOP OF STACK

I~(TOS)
STACK POINTER (16) I

~--------------~
CONTAINS ADDRESS
OF TOP OF STACK

16 0

BX, 81, 01 OR BP

EXAMPLES

MOV ex, 0005

MOV [p,g,ex
MOV AX, [sO

2-5

OAT A POINTERS

2-6

WRITE READ

LO

DATA WORD

DATA WORD

DATA WORD

DATA WORD

DATA WORD

DATA WORD

HI

DATA

DATA

DATA

TYPICAL MEMORY USAGE

CPU MEMORY

INSTRUCTION STORAGE AREA

I IP I
I

INSTRUCTION ROM/PROM/EPROM/RAM

POINTER

STACK AREA

I SP I
I RAM

STACK
POINTER

I I VARIABLE STORAGE AREA

DATA RAM
POINTER

2-7

NUMBER SYSTEMS

HEX BINARY DECIMAL

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
8 0110 8
7 0111 7 21H. 00100001 B
8 1000 8
I 1001 I ISH. 1001 0110 B
A 1010 10
B 1011 11 42H • 0100 0010 B
C 1100 12
D 1101 13
E 1110 14
F 1111 15

2-8

TWO'S COMPLEMENT ARITHMETIC
SIGNED vs UNSIGNED BINARY NUMBERS

SIGNED: -128 TO +127

UNSIGNED: 0-255

I I

2-9

TWO'S COMPLEMENT NUMBER REPRESENTATION

EXAMPLE OF TWO'S COMPLEMEMT:

BINARY DECIMAL

1000 0000 - 128

10000001 - 127

· · · ·
1111 1111 - 1

0000 0000 0
00000001 + 1

· · · ·
0111 1110 + 126

0111 1111 + 127

2-10

FLAG WORD

I FI.AQ8

.2-11

FLAG OPERATIONS

A.C.

-~-

z

2-12

CARRY

PARPY

AllXl.lMY STATUS
CARRY FlAGS
ZERO

810M

~-} CONTROL
FLAGS

DllEClIDN

OVERFLOW J STATUS
FLAG

CARRY

OPERAND 1

OPERAND 2

REauLT
(OPERAND 1)

o

FOR MORE INFORMATION .. "

INTRODUCTION TO MICROCOMPUTERS AND THE 8086

- CHAPTER 1 AND 2, iAPX 86/88, 186/188 USER'S MANUAL

REGISTERS AND FLAGS

- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL
- APPENDIX B, ASM86 LANGUAGE REFERENCE MANUAL

SIGNED BINARY NUMBERS

PAGES 3-22.23, IAPX 86/88, 186/188 USER'S MANUAL

2-13

CHAPTER 3

INTRODUCTION TO SEGMENT A liON

• SEGMENTS

• SEGMENT REGISTERS

• PHYSICAL ADDRESSES

• SEGMENT USAGE

iAPX 86,88 MEMORY TERMINOLOGY

* MEMORY IS USED TO STORE THREE TYPES
OF INFORMATION.

* THE 8086 VIEWS MEMORY AS A GROUP
OF SEGMENTS.

* A SEGMENT IS A LOGICAL UNIT OF MEMORY.

* SEGMENTS CANNOT BE GREATER THAN
64K LONG.

3-1

CODE

DATA

STACK

SEGMENT REGISTERS AND SEGMENTATION

o

CODE

o

FFFFF H

• THE CPU HAS 4 SEGMENT REGISTERS.

THE SEGMENT REGISTER POINTS TO
.. THE BEGiNNING OF' A SEGMENT.

STACK

FFFFF H

3-2

SEGMENT REGISTERS AND SEGMENTATION
OOOOOH

CODE

0000
01000H

0100

03CF

FFOO 03CFOH

EXTRA

FFOOOH

STACK

FFFFFH

3-3

SEGMENTATION

* SEGMENTED ADDRESSING HAS MANY ADVANTAGES
OVER LINEAR ADDRESSING

1) REGISTER SIZE

2) DYNAMIC CODE RELOCATION

3) MEMORY MANAGEMENT

* SEGMENTS ARE DEFINED BY APPLICATION

3-4

SEGMENTS ARE DEFINED BY APPLICATION

A FEW EXAMPLES

08

88

C8

08

DATA

8TACK

88

C8

SIMPLE PROGRAM
C8--

~ 64K CODE
'" 64K DATA
£ 84K STACK

(OUR MODEL)

CODE 2

CODE 1

MORE CODE

3-5

08 '---'I~--.....,
DATA 1

88 .---;..-----1
8TACK 1

C8 -.--,..-----1
CODE t

DATA 2

88 -- - -I---~

8TACK 2

C8 -- - -1----1
CODE 2

TWO PROGRAMS (TASKS)
SHARING ONE PROCESSOR

ACCESSING MEMORY IN A SEGMENT

* TO ACCESS A PARTICULAR BYTE (OR WORD) IN A SEGMENT, THE
CPU USES AN OFFSET

• THE OFFSET OF A BYTE <OR A WORD) IS THE DISTANCE IN BYTES
FROM THE BEGINNING OR BASE OF THE SEGMENT

lit THIS BASE ADDRESS IS SUPPLIED BY THE SEGMENT REGISTER

'----~="""'I-~f -'"
SEGMENT REGISTER

OFFSET

1

3-6

USING THE SEGMENT REGISTER CONTENTS

11 o
OFF.ET

ADDRE •• ~ ______ ---1

11
8ELECTED--.......:~---I
8EaMENT c.
RE8I8TEAI-----~

••
D.

C D .. E. 1-------1
OR NONE FOR E.

1I0.ltT 1-------1

o
0000

0000

0000

0000

I ADDER
I
I

..------.:::.~-----. !'HY.ICAL

'-_________ -' ADDRE ••
LATCH

3-7

FETCHING INSTRUCTIONS

.EaMENT
REalSTER

10 0 I 01
+ 10 0 1 _I OFFSET

tl 0

!'HY.ICAL
ADDRE.S

.. INSTRUCTIONS ARE ALWAYS FETCHED WITH RESPECT TO THE CS REGISTER.

es[0020 It-------r--·00200H

IP I 0058 I

ADD AX,10

'-----1~0 0 2 5 8 H MOV AX,BX

3-8

ACCESSING THE STACK

* THE STACK IS ALWAYS REFERENCED WITH RESPECT TO THE
STACK SEGMENT REGISTER.

ssl 0000 ~1-------r--"'OOOOOH
~----~ ~--------~

BPi 0100 I

'------+- 00 1 00 H

3-9

ACCESSING DATA

* THE OFFSET VALUE CAN BE OBTAINED IN MANY WAYS.

DATA IS TYPICALLY FETCHED WITH RESPECT TO THE DATA
" SEGMENT REGISTER. ~

osl 0540 I 05400H I

· · · OFFSETl 0050 J · · · ·
'-----+-0154 5 0 H

~'--------------------------------=~~-------~
3-10

CLASS EXERCISE 3.1

ASSUME AN INSTRUCTION IS LOCATED AT A PHYSICAL ADDRESS OF 05820H.

1. WHAT REGISTER(S> WOULD THE CPU USE TO FETCH THIS INSTRUCTION? C ',\)

2. NAME THREE COMBINATIONS OF VALUES THAT THE CPU COULD USE
TO FETCH THAT SAME INSTRUCTION.

ASSUME AI WORD OF DATA IS LOCATED AT AN OFFSET OF 210H FROM A
SEGMENT BEGINNING AT PHYSICAL ADDRESS 00020H.

3. WHAT REGISTER(S) WOULD THE CPU TYPICALLY USE TO READ

THIS DATA?

4. WHAT IS THE PHYSICAL ADDRESS OF THE DATA?

5. WHAT WOULD BE THE VALUE IN THE SEGMENT REGISTER?

I

i "'_ ,

I,

3-11

REVIEW (FILL IN REGISTER NAMES)

STACK

DATA

CODE

3-12

o

FFFFF

FOR MORE INFORMATION ...

PHYSICAL ADDRESS GENERATION

- CHAPTER 3,iAPX 86/88, 186/188 USER'S MANUAL

SEGMENTATION CONCEPTS

- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

3-13

CHAPTER 4

INTRODUCTION TO THE iAPX 86.88 INSTRUCTION SET

• CREATING A SEGMENT

• LABELS AND SYMBOLS

• ASSUME STATEMENT

• MOV,XCHG

• IN,OUT

• SHIFT,ROTATE

INSTRUCTIONS ARE CONTAINED IN SEGMENTS.

HOW DO YOU CREATE A SEGMENT?

4-1

SEGMENT DECLARATIVE

• A SEGMENT IS DEFINED IN ASSEMBLY LANGUAGE WITH A SEGMENT
DECLARATIVE •

• ALL OFFSETS ARE CALCULATED FROM THE SEGMENT DECLARATIVE.

4-2

ASM86 FEATURES

IDENTIFIERS
UPPER AND LOWER CASE ALPHA CHARACTERS (A-Z, a-z)
NUMERIC CHARACTERS (0-9)

3 SPECIAL CHARACTERS (7,6>.-)

- ALL IDENTIFIERS MUST BEGIN WITH AN ALPHA CHARACTER OR
ONE OF THE 3 SPECIAL CHARACTERS

- FIRST 31 CHARACTERS ARE SIGNIFICANT

NUMERIC CONSTANTS
D

H
Q or 0

B

DECIMAL
HEXIDECIMAL

OCTAL
BINARY

- DEFAULT BASE IS DECIMAL

- ALL NUMERIC CONSTANTS MUST BEGIN WITH A DIGIT

EITHER TABS OR SPACES CAN BE USED AS DELIMITERS

CERTAIN NAMES HAVE PREDEFINED MEANINGS AND CANNOT

BE USED AS IDENTIFIERS

4-3

ASSUME DECLARATIVE

THE ASSUME DECLARATIVE ASSOCIATES A SEGMENT REGISTER WITH A
SEGMENT NAME

THE ASSUME DOES NOT GENERATE ANY CODE

CODE _1 SEGMENT
ASSUME C8: CODE_1

MORE ON THIS LATERII

4-4

INSTRUCTIONS

BYTE OR WORD OPERATIONS USE THE SAME MNEMONIC.

BOTH OPERANDS MUST BE THE SAME LENGTH, BYTE
OR WORD.

EXAMPLES:

MOV AL, BL

MOV A:I<. BX

LEGAL -BOTH BYTE

LEGAL -BOTH WORD

MOV BX, AL ILLEGAL -ONE BYTE ,ONE WORD

4-5

MOV XCHG

* MOV BYTES OR WORDS BETWEEN REGISTERS AS WELL AS
BETWEEN REGISTERS AND MEMORY

MOV DESTINATION, SOIJRCE - TRANSFER BYTE OR WORD FROM
SOURCE TO DESTINATION

XCHG OP1, OP2 -EXCHANGE BYTE OR WORD, OP1- OP2

EXAMPLES

MOV AX, BX

XCHG BL, BH

XCHG SI, DI
MOV Cx. ~O

4-6

IMMEDIATE DATA

'" MANY INSTRUCTIONS CAN USE IMMEDIATE DATA

MOY AX, 2345H

MOY BL, 1230

ill EaU STATEMENTS ARE USEFUL WITH IMMEDIATE DATA

DA YS_IN _YEAR EQU 385

!II EQU IS NOT AN INSTRUCTION AND DOES NOT ALLOCATE ANY MEMORY

DATA

CPU

AX

DATA

CPU

4-7

IN, OUT

BYTE
PORT

WORD
PORT

PORT+ = 0 TO 255

4-8

IN AL, PORT+

OUT PORT+, AL

IN AX, PORT+

OUT PORT+, AX

1/0 OPERATION DIRECT PORT

r--

CPU
DECODE 0

ADDRESS BUS
LOGIC D--

0 r

0
0

I I .~
I' · 0 · WR - L--c 0 '"' LATCH · -

BXI I
MilO ---

AXI I 04 I

DATA BUS

MOV AL, 000001008

OUT 20H, AL

4-9

ANOTHER WAy

OR

(HOW DO YOU GET 64K 10 ADDRESSES)

4-10

IN, OUT

MOV DX,PORT#'

IN AL,DX

DATA BYTE OUT DX,AL

r-fIiQ----
DX PORT

PORT.,.
\

\
\

\
\

\
\

\
AX IN AX,DX

\

DATA OUT DX,AX
WORD

\ DX PORT \

I PORT.,.

PORT#' 0 TO 65,535

4-11

~--------------~~~~AlTONI----------------~

(INDIRECT PORT)

DX I 0020 I

AX I 1 04 1

MOV AL,04H
MOV DX,20H
OUT DX,AL

ADDRESS BUS

WR

MilO

DATA BUS

r--

DECODE 0
C>-LOGIC 0

0
0
0

~ 0 - L--q
"- LATCH 0

'1
"-

!II BY USING THE DX REGISTER TO POINT TO I/O THE CPU CAN ACCESS UP
4 FF RENT I/O PORT

4-12

SHIFT INSTRUCTIONS

• ARITHMETIC SHIFTS CAN BE USED TO MULTIPLY OR DIVIDE NUMBERS
BY POWERS OF TWO

SHIFT LOGICAL RIGHT

o ---I~~I DEsn.AnON

SHIFT ARITHMETIC RIGHT

(SIGN BIT SHIFTED IN) DESTINATION CF SAR

SHIFT LEFT

I "' I~; '--_DES_""'_ATIO_N---,I~ o SHL/SAL

4-13

ROT ATE INSTRUCTIONS
• ROTATE INSTRUCTIONS ARE USED TO MANIPULATE BITS WITHOUT

DESTROYING THE BITS

* THE CARRY FLAG CAN BE INCLUDED OR EXCLUDED IN THE OPERATION

ROTATE RIGHT q DESTINATION ~ ROR

ROTATE RIGHT THROUGH CARRY

~TINATION ~ RCR

ROTATE LEFT

~ DESTINATION b
ROTATE LEFT THROUGH CARRY

~ DESTINATION P
4-14

ROL

RCL

SHIFT AND ROTATE FORMS

.. TYPE OF OPERAND DETERMINES BYTE OR WORD

* SINGLE BIT FORM:

SHL AX,1

ROR BL,1

* VARIABLE BIT FORM:

MOV CL,4

SAR AX,CL

:SHIFT LEFT LOGICAL

:ONE BIT

:ROTATE RIGHT

:SET UP THE SHIFT

:COUNT

:SHIFT CL TIMES

* ONLY THE CL REGISTER MAYBE USED TO HOLD THE VARIABLE
SHIFT COUNT

.. CL IS UNAFFECTED

4-15

CLASS EXERCISE 4.1

WRITE A SEQUENCE OF INSTRUCTIONS THAT WILL INPUT AN UNSIGNED

BIYTE FROM PORT ¢FFFBH. AND MULTIPLY THE BYTE BY B. ALLOW THE

~UL TIPL Y TO EXTEND INTO 16 BITS. THE PROGRAM SHOULD THEN OUTPUT
T~E WORD RESULT TO PORT BH.

4-16

FOR MORE INFORMATION ...

ASSEMBL Y LANGUAGE INSTRUCTIONS
-CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL
-CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

SEGMENT DECLARATIVE
-CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...
IN THIS COURSE WE DO NOT COVER THE BIT ENCODING OF MACHINE
INSTRUCTIONS. DUE TO THE MANY ADDRESSING MODES AVAILABLE IN
THE 8(686, AND THE DESIRE TO MINIMIZE CODE SIZE, INSTRUCTION

ENCODING IS MORE DIFFICULT TO UNDERSTAND THAN IN MANY PREVIOUS
8-BIT MACHINES (SUCH AS THE 8~85). INFORMATION IS AVAILABLE IN

-CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL
-APPENDIX E, ASM 86 LANGUAGE REFERENCE MANUAL

4-17

CHAPTER 5

MORE INSTRUCTIONS

• HLT

• JMP

• LOOP

START:

HL T INSTRUCTION

SEGMENT
ASSUME CS: MY_SEG

5-1

HLT----:-::>~
ENDS--- ~

JMP INSTRUCTION

SEGMENT
ASSUME CS: MY_SEG

JMP START
ENDS

5-2

JMP INSTRUCTION

JMP t128 BYTE DISPLACEMENT (-SHORT- JUMP, 2 BYTE INSTRUCTION)

JMP ±32K BYTE DISPLACEMENT (-NEAR- JUMP ,3 BYTE INSTRUCTION)

JMP ANY SEGMENT, ANY OFFSET (-FAR- JUMP, 6 BYTE INSTRUCTION)
(DISCUSSED LATER)

LET THE ASSEMBLER GIVE YOU THE CORRECT FORM I

5-3

DISPLACEMENTS AND OFFSETS

... ' THE DISPLACEMENT OF A BYTE (OR WORD) IS THE DISTANCE IN BYTES
':ROM THAT BYTE (OR WORD) TO ANOTHER BYTE (OR WORD) •

• 1 THE OFFSET OF A BYTE (OR WORD) IS THE DISTANCE IN BYTES FROM
fHE BEGINNING OF THE SEGMENT.

I
OFFSET

!
l

DISPLACEMENT

~

I

5-4

QUESTION

HOW CAN I EXECUTE MY PROGRAM 10 TIMES THEN STOP?

ANSWER
USE A PROGRAM LOOP.

5-5

LOOP INSTRUCTION

A SPECIAL JUMP INSTRUCTION THAT DECREMENTS THE CX REGISTER
AND JUMPS IF CX¢O

START:
AGAIN:

SEGMENT

5-6

ASSUME CS: MY-SEG

MOV CX.10

LOOP AGAIN
HLT
ENDS

LOOP INSTRUCTION

START:

r-----.- AGAIN:

SEGMENT

ASSUME

MOV

CS;MY_SEG

CX,10

LOOP AGAIN

NO

5-7

CX=CX-1

YES

HLT

ENDS

LOOP INSTRUCTION

ALSO USEFUL FOR DELAYS

MOV CX,OFFFFH } TAKES ::::0.2 SECONDS @ 5MHZ
SELF: LOOP SELF

HOW LONG WOULD THESE TAKE?

MOV CX,OFFFFH
SELF: LOOP SELF

SEU:Z: LOOP SELFZ

5-8

MOV CX,OFFFFH
OUTER: MOV OX, CX

MOV CX,OFFFFH
INNER: LOOP INNER

MOV CX,DX
LOOP OUTER

STOPPING THE ASSEMBLER

START:
AGAIN:

:~~~;N~---------~
ASSUME CS: MY_SEG

MOV CX, 1 0 ; EXECUTE PROGRAM
;10 TIMES

LOOP AGAIN
JMP $
ENDS

END START -------~

5-9

CLASS EXERCISE 5.1

1. Why doesn't the end statement make the CPU stop execution?

2. Which of the following are proper ASM86 identifiers? What is wrong
with the others?

a. BEGIN
b. ?ALPHA
c. HALT
d. ? a
e. 'ELEPHANT'
f. 5TIMES
g. GROUP7
h. LOOP_
i. TOTAL$AMOUNT
j. NOW_IS_THE_TIMEJOR_ALL_GOOD_MEN

5-10

FOR MORE INFORMATION ...

ASSEMBL Y LANGUAGE INSTRUCTIONS
- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL
- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

ASSEMBLER DIRECTIVES (E.G. NAME, END)
- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...
THE LOOP INSTRUCTION IS ALSO AVAILABLE AS A CONDITIONAL

INSTRUCTION.
LOOPE/LOOPZ
LOOPNE/LOOPNZ

SEE CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

5-11

CHAPTER 6

SOFTWARE DEVELOPMENT

• SERIES III DEVELOPMENT SYSTEM

• FILE UTILITIES

• AEDIT TEXT EDITOR

J AEDIT
I 1.. ___ 1

SOFTWARE DEVELOPMENT
(SERIES I I I DEVELOPMENT SYSTEM)

,- - - - I ,----1
BOUND

SOURCE
I

OBJECT
I

LNK86
I

OBJECT
FILE ASM88 FILE BND

I I I I
ASM 1... ___ .OBJ

1...---1

6-1

LIST
FILE

J.ST

INITIALIZING ISIS-II

1) POWER ON COMPLETE SYSTEM
(MDS, DISK DRIVES)

2) INSERT SYSTEM DISKETTE INTO DRIVE 0
(DRIVE 0 IS THE DRIVE ON THE RIGHT)

3) PRESS RESET ON FRONT PANEL

6-2

FILE

NOEXT.

RUN

SERIES I I I ENVIRONMENT

INTERRUPT 1

ISIS-II
UTILITES
COPY,DIR.
DELETE •. .

RESET

6-3

DIRECTORY COMMAND

* LISTS ISIS DISKETTE FILES

DIR

* EXAMPLE
DIR I

DIRECTORY OF :FO:86P1.002
NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 26 3200 IF
ISIS .TO 24 2944 IF
ISIS .BIN 94 11756 SIF
ISIS .OVO 11 1279 SIF
COpy 69 8489 WS
DELETE 39 4824 WS
IDISK 63 7895 WS
RUN 214 26804 WS
AEDIT 214 26775 WS
LINK86.86 608 76512 WS
DEMO .A86 14 1586
LARGE .LIB 49 6029 W
CI .OBJ 7 763 W
RUN .OVO 78 9724 W
TEST .LAB 3 212

3290
3290/4004 BLOCKS USED

6-4

NAME .EXT
ISIS .MAP
ISIS .LAB
ISIS .CLI
ATTRIB
CREDIT
DIR
RENAME
SUBM IT
ASM86 .86
LOC86 .86
CREDIT. HLP
RUN .MAC
CO .OBJ
AEDIT .MAC

LINK 86

LOCATE 86

BLKS LENGTH ATTR
~) 512 IF

54 6784 IF
25 2984 SIF
40 4909 WS

156 19470 WS
55 6815 WS
20 2346 WS
39 4821 WS

1056 132988 WS
292 36652 WS

25 2985 WSI
2 9
6 561 W
2 5 WS

ISIS II NOTES

.. FILE NAME CONVENTIONS:

:DEVICE:FllENAME.EXTENSION

2 CHARACTERS/ 1 TO e CtARACTERS ~1 TO 3 CHARACTERS
OPTIONAL OPTIONAL

:FO: INDICATES DRIVE 0

:F1: INDICATES DRIVE 1

IF NO DEVICE IS SPECIFIED :FO: IS USED

* FOR EASE OF ENTRY OF COMMAND LINES, AND OTHER INPUT:

(RUBOUT)

(CNTL-X)

(CNTL-S)

(CNTL-Q)

DELETES THE PREVIOUS
CHARACTER ENTERED

DELETES THE ENTIRE LINE

STOPS OUTPUT PROCESS

RESTARTS OUTPUT PROCESS

6-5

COpy COMMAND

COPY ISIS FILENAME ,ISISFILENAME ... TO ISISFILENAME

COpy :F 1 :LAB 1.LST TO :LP:

COpy :F 1 :LAB 1.ASM TO :F 1 :LAB4.ASM

6-6

DELETE COMMAND

DELETES ISIS DISKETTE FILES FROM THE DIRECTORY

DELETE ISISFILENAME

-DELETE LAB 1.LST
-DELETE :F 1 :LAB 1.LST

-DELETE :F1:LAB?LST

DELETE :F1:LAB1.*

DELETES LAB1.LST FILE FROM DISK IN DRIVE 0

DELETES LAB 1.LST FILE FROM DISK PRESENTLY

IN DRIVE 1

DELETES LAB 1.LST

LAB2.LST FROM DISK IN DRIVE 1
LAB3.LST
LABA.LST

DELETES LAB 1.LST

6-7

LAB 1.0BJ FROM DISK IN DRIVE 1
LAB1.ASM

SOFTWARE DEVELOPMENT
(SERIES I I I DEVELOPMENT SYSTEM)

r - - - I r---I
I I I BOUND

OBJECT LNK86 OBJECT
ASM86 FLE BND FLE RUN

.OBJ
I I L.. ___ L. ___ I NOEXT.

LIST
FLE

loST

6-B

AEDIT

SERIES II/III/IV TEXT EDITOR

6-9

FILE CREATION

LABI.ASM

L KEYBOARD /l FLOW E DATA I @)
t======J-{/~--.~ .. __ A_E_D_IT __ I--........ ~ ~IL~

LABI.ASM

AEDIT

/ KEYBOARD Y
WHEN EDITING AN OLD FILE A BACKUP FILE IS CREATED
OF THE OLD FILE UPON EXITING AEDIT.

6-10

INITIAL
CREATION

LABI.BAK

EDITING
AN OLD
FILE

LABI.ASM

AEDIT IS CALLED FROM ISIS BY ENTERING:

AEDIT FILENAME

WHERE FILENAME IS THE NEW FILE TO BE CREATED OR AN

EXISTING FILE TO BE UPDATED.

EXAMPLE:

-AEDIT :F 1 :LAB 1.ASM

6-11

IS MENU DRIVEN

INITIAL SCREEN

MESSAGE LINE ~ ISIS-II AEDIT V10

PRO M P T LI N E ===I ---'.... 81oc' Do"" b ... ,.
Find ·tlnd 0 ••

• TO GET NEXT MENU:

EJ

6-12

THE MENUS

MENU 1

G ~- __ ,_D_.�._�._E_.eo_"'. ____ F_~ ___ -lm_d_G._' __ -----

MENU 2

B H.. 'n",t Jump Micro Of her Quit Replau· -'"018--

MENU 3

G TI", View Xchanoe

• TO I NVOKE A COMMAND J KEY THE FI RST LETTER OF THE COMr1AND,

• TO ABORT A COMMAND, TYPE CNTL-C

6-13

INSERTING NEW TEXT

Jump Macro

--

• TO INSERT TEXT, TYPE I

6-14

INSERTION

SCREEN

.~EOF .
"'-CURSOR

MESSAGE LINE ---. [lnser{l

I KEYSTROKES I
Now Is the time a
for all good mend

6-15

INSERTION

6-16

SCRE~

Now Is the time

EOF
for all good mend .:. ~

"'-CURSOR

[Insert]

- -~ .. -~~

CORRECTING MISTAKES

SCREEN

Now Is the time

for ali good menl

Onsert]

6-17

ENDING INSERTION

SCREEN

Now Is the time

for all good meni

MENU Again Block Delete Execute

6-18

CURSOR CONTROL

[0

EJBG
OJ

• ARROW KEYS MOVE CURSOR ONE SPACE OR LINE FOR EDITING

6-19

CURSOR MOVEMENT AND PAGING

(• ~ [HOPvtE) - MOVES CURSOR TO END OF LINE

(() (HOPvtE) - MOVES CURSOR TO BEGINNING OF LINE

CIJ (HOME J - PAGES DOWN

m (HOPvtE) - PAGES UP

6-20

I CONTJltOL I 0

(CONTJItOL I m
(Ca..TAOL I ~

DELETING TEXT

DELETES CHARACTER AT CURSOR

DELETES LINE ON WHICH CURSOR IS POSITIONED

UNDO-RESTORES DELETED CHARACTERS

THESE ALSO WORK DURING INSERTION

6-21

ENDING AN EDITING SESSION

I KEYSTROKESI

Q

Insert Jump

6-22

Replace

QUIT

I MENU PROMPT LINE

ABORT EXIT INIT UPDATE WRITE

SUBCOMMANDS:

A - ABORT ALL CHANGES LOST. RETURN TO OPERATING SYSTEM.

E - EXIT FILE IS UPDATED. RETURN TO OPERATING SYSTEM

I - INIT STARTS NEW EDITING SESSION. DOES NOT RETURN TO
OPERATING SYSTEM.

U - UPDATE UPDATES FILE. DOES NOT RETURN TO OPERATING SYSTEM.

W - WRITE PROMPTS YOU FOR OUTPUT FILENAME. DOES NOT RETURN
TO OPERATING SYSTEM.

6-23

EXIT

Inlt Update Write

6-24

SOFTWARE DEVELOPMENT
(SERIES I I I DEVELOPMENT SYSTEM)

I AEDIT
I L ___ I

RUN

6-25

DEVELOPMENT STEPS

-AEDIT :F1:LAB 1.ASM

-RUN ASM86 :F1:LAB1.ASM
-COpy :F1:LAB1.LST TO :LP:

-RUN LlNK86 :F1:LAB1.0BJ BIND
-RUN :F 1 :LAB 1.

CREA TES FILE

ASSEMBLE FILE - CREATE .LST AND .OBJ FILE
PRINT .LST FILE LOOK AT ERRORS, IF ANY
CREATE -RUN TIME LOCATED- FILE

EXECUTE PROGRAM IN DEVELOPMENT SYSTEM

6-26

FOR MORE INFORMATION . ..

ISIS-I I COMMANDS AND ERROR MESSAGES

-INTELLEC SERIES III MICROCOMPUTER DEVELOPMENT SYSTEM
CONSOLE OPERATING INSTRUCTIONS POCKET REFERENCE

AEDIT TEXT EDITOR

- AEDIT TEXT EDITOR POCKET REFERENCE

AEDIT HAS MANY ADVANCED COMMANDS THAT ARE NOT COVERED IN THIS
COURSE. INFORMATION IS AVAILABLE IN THE AEDIT TEXT EDITOR

USER'S GUIDE AND THE AEDIT LAB IN APPENDIX A.

6-27

DAY 2 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

.. WRITE EXECUTABLE PROGRAMS USING THE ARITHMETIC, LOGIC, AND

CONDITIONAL INSTRUCTIONS

.. ALLOCATE MEMORY SPACE AND INITIALIZE THAT [)ATA USING THE

ASM86 DIRECTIVES

~ DEBUG YOUR PROGRAMS USING THE SERIES III DEBUGGER

*' WRITE A SUBMIT FILE TO "AUTOMATE- PROGRAM DEVELOPMENT

• DIFFERENTIATE BETWEEN THE MINIMUM MODE AND MAXIMUM MODE OF

OPERATION OF THE iAPX 86,88

.. DEFINE THE STATE OF THE 8086 AFTER IT IS RESET

~ RECOGNIZE THE SYMBOLS USED IN INTEL TIMIN<:i DIAGRAMS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 7

ARITHMETIC, LOGICAL AND CONDITIONAL INSTRUCTIONS

• ADD, SUB, MUL, DIV, CMf>

• CONDITIONAL JUMPS

• AND, OR, XOR, NOT, TEST

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I

I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I

I

I
I
I
I

AND

OR

XOR

TEST

NOT

LOGICAL INSTRUCTIONS

EXAMPLES

1001 1111 source
0000 1111 destination
0000 1111 destination

1001 1111 source

0000 1111 destination
1001 1111 destination

1001 1111 source

0000 1111 destination
1001 0000 destination

1001 1111 source
0000 1111 destination

NO CHANGE destination

(PRODUCES 1'S COMPLIMENT)

7-1

RESULT

RESULT

(LOGIC ' AND')

NO .. EeIITE .. ' CHAN •••
FLAGS MFLI!CT .. £IUL T

LOGICAL INSTRUCTIONS

* THE AND INSTRUCTION IS USED TO CLEAR BIITS
ANO BX,1 ; MASK OUT A.LL BITS BUT BIT 0

* THE TEST INSTRUCTION IS USED TO TEST BIT'S
TEST CL,2

JZ NOTSET
; TEST BIT 1 C' AND' CL WITH 000000101)

* THE OR INSTRUCTION IS USED TO SET BITS
OR OX,8000H j SET THE MOST SIGNIFICANT BIT TO 1

• THE XOR INSTRUCTION COMPLEMENTS BITS
XOR CX, 8000H

XOR OX,OX
; COMPLEMENT HIGH OAtlEI't liT
; SET OX TO 0

.. THE NOT INSTRUCTION COMPLEMENTS ALL BITS
NOT AX ; COMPLEMENT THE AX REGISTER

7-2

ADDITION

ADD DESTINATION, SOURCE
ADC DESTINATION, SOURCE

INC DESTINATION

DESTINATION = MEMORY OR REGISTER

SOURCE = MEMORY ,REGISTER OR IMMEDIATE DATA

EXAMPLES

-NO MEMORY TO MEMORY

ADD
INC
ADD

SI,2

BL
BX,DL

7-3

; ILLEGAL

ADDING TWO 32-BIT NUMBERS

Cy Cy

[2] II]
,~

0010001101110011 1011101101100101
0001001110001000 1110001100011100

0011011011111100 10011110100010001

7-4

SUBTRACTION

SUB DESTINATION, SOURCE

SBB DESTINATION, SOURCE

DEC DESTINATION

NEG DESTINATION ;FORMS 2'8 COMPLIMENT

CMP DESTINATION, SOURCE ; ONL Y FLAGS ARE AFFECTED

EXAMPLES

OX

SUB CL.20

DEC DL

7-5

MUL TIPLICATION

(ALWAYS USES ACCUMULATOR)

8 BIT
REGISTER

AX AL OR MEMORY

L..--_---II C I 1 Xl '-----I

AX AX

18 BIT
REGISTER

OR MEMORY

~ __ ~ ____ ~IC ~I ___ ~XI,---__ ~

7-6

MUL TIPLICATION

UNSIGNED OPERATIONS

MUL SOURCE

SIGNED OPERATIONS

IMUL SOURCE !II

EXAMPLES:

MUL

IMUL

BL

OX

;AX= AL. BL

jOX,AX=AX.OX

* CAN BE IMMEDIATE DATA ON 186 BUT NOT 8086

7-7

DIVISION

8 BIT
REGIS'TER

AX AL OR MEMORY

L..-.-.-.-.-JI \=1 L.-.-_---'I -:-C~
AH

I REMANlER 1

AX ox AX

16 BIT
REGISTER

OR MEMORY

'--_----...II C= L-I __ --L-__II-;.· L..-1 __ __
ox

REMAINDER

7-8

DIVISION

- UNSIGNED

DIY SOURCE *

- SIGNED

IDlY SOURCE *

-AUQ-
- TO EXTEND SIGN BIT OF AL REGISTER INTO AH

CBW

- TO EXTEND SIGN BIT OF OF AX REGISTER INTO DX

CWD

QUESTION: CBW AND CWO ARE USED WITH SIGNED NUMBERS.
HOW DO YOU ACHIEVE THE SAME RESU!L T WITH UNSIGNED

NUMBERS?

* CANNOT BE IMMEDIATE OAT A

7-9

CLASS EXERCISE 7.1

AN 8 BIT FARENHEIT TEMPERATURE IN THE RANGE ()F 40° TO 2000 IS INPUT
FROM THE SWITCHES (PORT 0). WRITE A PROGRAM TO CONVERT THE

TEMPERATURE TO CELSIUS AND OUT THE CONVERTIED TEMPERATURE TO
THE LIGHTS (PORT 1).

USE THE FORMULA:
CELSIUS = «FAREN.-32)x 5)/9

7-10

CONDITIONAL JUMPS

• CONDITIONAL JUMPS ARE USED TO TEST ONE OR MORE FLAGS

• ALL CONDITIONAL JUMPS ARE SHORT JUMPS

• THERE IS ONE SET OF JUMPS FOR USE WITH SIGNED NUMBERS
AND ONE SET OF JUMPS FOR USE WITH UNSIGNED NUMBERS

7-11

CONDITIONAL JUMPS FOR SIGNED OPERATIONS

INSTRUCTION CONDITION INTERPRETATION

.IL OR JNGE (SF XOR OF)-1 "LESS" OR "NOT GREATER"OR EQUAL"

JLE OR.JNG «SF XOR OF) OR ZF)=1 "LESS OR EQUAL" OR "NOT GREATER"

JlNL OR JGE (SF XOR OF)=0 "NOT LESS" Ol~ "GREATER OR EQUAL"

JNLE OR JG «SF XOR OF) OR ZF)"O "NOT LESS"OR'EQUAL" OR "GREATER"

JIO OF .. 1 "OVERFLOW"

JIS SF=1 "SIGN"

JNO OF=O "NOT OVERFLC)W"

JNS SF=O "NOT SIGN"

7-12

CONDITIONAL JUMPS FOR UNSIGNED OPERATIONS

INSTRUCTION

JB OR JNAE OR JC

JBE OR JNA

JNB OR JAE OR JNC

JNBE OR JA

CONDITION

CF=1

(CF OR ZF)= 1

CF=O

<CF OR ZF)::O

7-13

INTERPRET ATION

"BELf)W" OR "NOT ABOVE"OR"EQUAL"

"BELf)W OR EQUAL" OR 'NOT ABOVE'

"NOT BELOW" OR "AEiOVEOR EQUAL"

"NOT BELOW"OR'EQUAL" OR "ABOVE'

CONDITIONAL JUMPS FOR SIGNED AND UNSIIGNED OPERATIONS

INSTRUCTION

JE OR JZ

JP OR JPE

JNE OR JNZ

JNP OR JPO

JCXZ

CONDITION

ZF= 1

PF=1

ZF::O

PF:O

CX:O

7-14

INTERPRET A TION

"EQUAL" OR "ZERO'

"PARITY" OR PARITY EVEN"

"NOT EQUAL" OR "NOT ZERO"

'NO" PARITY" OR "PARITY ODD"

"CX REGISTER IS ZERO"

CLASS EXERCISE 7.2

SUPPOSE WE HAVE AN 10 DEVICE WHICH HAS A STATU:S PORT (PORT 10)

AND A DATA PORT (PORT 11).

7 0

10 rOV) STATUS PORT

7 0

11 I DATA PORT

WRITE A PROGRAM SEQUENCE THAT REPEATEDLY INPUTS FROM THE

STATUS PORT UNTIL THE READY BIT BECOMES 1, THEN INPUTS FROM

THE DATA PORT. IF THE UNSIGNED NUMBER OBTAINED IS LARGER

THAN 43 THEN JUMP TO A LABEL CALLED ERRal.

7-15

FOR MORE INFORMATION ...

ASSEMBL Y LANGUAGE INSTRUCTIONS
- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

MilL TIPRECISION ARITHMETIC
- APPENDIX G (EXAMPLES 6 & 7) ASM86 LANGUAGE

REFERENCE MANUAL

RELATED TOPICS
THE ag86 PROVIDES A FULL SET OF ADJUST OPERATORS TO ALLOW
FOUR FUNCTION ARITHMETIC ON BINARY CODED DECIMAL (BCD)
OPERANDS. SEE APPENDIX E IN THE WORKSHOP NOTEBOOK,

AND CHAPTER e IN THE ASM86 LANGUAGE REFERENCE: MANUAL.

7-16

CHAPTER 8

DEFINING AND ACCESSING DATA

• DEFINING DATA

• INITIALIZING SEGMENT REGISTERS

• ADDRESSING MODES

DATA DEFINITIONS

ASSEMBLER OECLARATIVES ASSIGN STORAGE SPACE

EXAMPLES:

BYTE1 DB

BYTE2 DB

BYTE3 DB

STRING DB

ARRAY DB

WORD1 OW

ANGLE

TEMP

BARRAY

3

?

DB - DEFINE BYTE

OW - DEFINE WORD

DO - DEFINE DOUBLE WORD

DQ - DEFINE QUAD WORD

DT - DEFINE TEN BYTES) 82187 DATA TYPES

ilNITIALIZED BHE
iUNINITIALIZED BYTE

8,7,8 j3 INITIALIZED EIYTES

;7 INITIALIZED ElYTES

j1ll11l ZEROED BYTES

'MESSAGE'

HIli DUP(fI)

.03 eJfIJ H ;016 ';3
i(LOW) (HIGH)

8-1

MEMORY ALLOCATION

ANGLE

TEMP

OW 1
DB 1

BARRAY DB 100 OUP (1)

~ lOW

HIGH

BIIRRAY [OJ

BARRAY [1]

B/~RRAY [2J
• • · • · • · ·

B"RRAY [98J

BARRAY [99J

8-2

DATA DEFINITION

• DATA IS TYPICALLY DEFINED IN A DATA SEGMENT

DATA_l SEGMENT

XYZ DB 1

ALPHA OW ?

MEBSAGE DB 10 DUP (1)

DATA_.1 ENDS

WHAT IS THE OFFSET OF THE FIRST BYTE IN MESSAGE?

WHY WOULD WE WANT DATA IN A SEPARATE SEGMENT FROM THE CODE?

8-3

ATTRIBUTES OF VARIABLES

* FOR EVERY DATA DEFINITION (VARIABLE). THE ASSEMBLER KEEPS TRACK
OF THREE ATTRIBUTES.

- SEGMENT

- OFFSET

- TYPE

* THE ASSEMBLER USES THESE ATTRIBUTES TO GENERATE THE CORRECT
INSTRUCTION FORM.

EXAMPLE:
DAUd SEGMENT

XYZ DB ?

YYY OW 1
DATA_l ENDS
CODE_l SEGMENT

INC XYZ ;BYTE OPERATION

INC YYY ,WORD OPERATION

WHAT ARE THE OFFSETS OF XYZ AND YYY?

8-4

CLASS EXERCISE 8.1

WRITE THE ASSEMBLER DIRECTIVES OR INSTRUCTIONS THAT WOULD:

1. DEFINE WAREA AS A WORD VARIABLE AND IINITIALIZE IT TO 2000H.

2. DEFINE BAREA AS A BYTE VARIABLE AND DON'T INITIALIZE IT.

3. SET BAREA TO 10.

4. LOGICALLY' AND' WAREA WITH 40H.

5. CHECK THE MSB (BIT 15) OF WAREA FOR A 1.

8-5

GENERATING ADDRESSES

ADDRESS SEGMENT + OFFSET
BASE

D n SEGMENT
REGISTER INSTRUCTION

• THE ASSEMBLER DECIDES WHICH SEGMENT REGISTEFI TO USE.

WHICH SEGMENT REGISTER IS NORMALLY USED TO ACCESS DATA?

HOW DOES THE ASSEMBLER KNOW WHICH SEGMENT REGISTER IT .wAtt USE?

8-6

ASSUME DECLARATIVE

* THE ASSUME DECLARATIVE TELLS THE ASSEMBLER WHICH SEGMENT REGISTER

IS SUPPLYING VALUE FOR THE INSTRUCTION'S DATA ACCESS.

EXAMPLE

DATA_l SEGMENT

XYZ DB ?

DATA_l ENDS

CODE_l SEGMENT

ASSUME DS:DATA_l.CS:CODE _1

MOV XYZ.l0H

CODE_l ENDS

* XYZ IS IN THE SEGMENT DATA_1. WHICH SEGMENT REGISTER IS POINTING AT

DATA_1? THE ASSUME TELLS THE ASSEMBLER DS.

8-7

INITIALIZING SEGMENT REGISTERS

-lIE, THE ASSUME DECLARATIVE IS JUST A PROMISE TO THE ASSEMBLER.
IT DOES NOT INITIALIZE THE SEGMENT REGISTER ..

OS

- TO WHAT VALUE SHOULD OS BE SET?

- HOW DOES THE SEGMENT REGISTER GET INITIALIZED?

CPU

?

SEGMENT

DB

SEGMENT

?

ASSUME D8:DATA_1,C8:CODE_1

iT HERE IS NO MOVE IMMEDIATE TO THE

iSEGMENT REGISTER

?

8-8

TOTAL SOLUTION

8086/8087/8088 MACRO ASSEMBLER DEMOl 09/01/80 PAGE

LOC OBJ

0000 11

0000 B8----
0003 8ED8

0005 C606000010

R

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

SOURCE

NAME

DATA 1
XYZ -
DATA_l

START:

CODE_l

DEMOl

SEGMENT
DB
ENDS

SEGMENT
ASSUME CS :CODE_l,DS:DATA •• 1

MOV AX,DATA_l
MOV DS,AX

MOV XYZ,10H I !IOV 108 INTO MEMORY
11.000'rIOR OS ,XYZ

ENDS

END START

8-9

ADDRESSING MODES

* THE 8088 PROVIDES SEVERAL WAYS TO ACCESS MEMORY

- DIRECT

- INDIRECT

- INDEXED

- BASED

- BASED INDEXED

- BASED INDEXED AND DISPLACEMENT

* THESE ADDRESSING MODES ARE PROVIDED TO SUPPORT DIFFERENT TYPES
OF DATA STRUCTURES.

!If DIFFERENT ADDRESSING MODES ARE THE DIFFERENT WAYS .AN INSTRUCTION
CAN SPECIFY AN OFFSET:

OFFSET = IYARIABLE NAM! + ~~ + ~ru + (gISPLACEMENjJ

8·10

ADDRESSING MODES

MOV AX, MVAR DIRECT OFFSET = VARIABLE NAME

MOV AX, [EI><I INDIRECT OFFSET=ID~

MOV AX, MYAR ~U INDEXED OFFSET = VARIABLE NAME + ~O

MOY AX, ~~ + 5 BASED OFFSET=[j~ + DISPLACEMENT

MOV AX, IP,g [PO BASED INDEXED OFFSET=[P,g + IPO

MOV AX, ~p+ SI + 15J BASED INDEXED OFFSET·[BfI+~O + DISPLACEMENT
AND

DISPLACEMENT

OFFSET'" &ARIABLE NAMii + ~~ + ~3 + [QISPL"CEMEND

8-11

ADDRESSING SIMPLE VARIABLES

* TO ACCESS A SINGLE SIMPLE VARIABLE. THE NAME OF THE VARIABLE IS USED.

LOC OBJ

0000 ??
0001 0020

0000 88----
0003 8ED8

EXAMPLE:

R

0005 C606000010

OOOA 20060000

OOOE 8B1EOlOO

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

*" OFFSET = VARIABLE NAME

SOURCE

NAME

DATA_1
XYZ
BETA
DATA_1

CODE_1

START:

CODE_l

DEM01

SEGMENT
DB ?
OW 2000H
ENDS

SEGMENT
ASSUME CS • CODE_1 ,OS : DATA_1

MOV AX,DATA_l
MOV DS,AX

MOV XYZ,10H ,MOV 10H INTO MEMORY LOCATION
,DS.XYZ

AND XYZ,AL ,AND LOCATION DS.XYZ WITH AL

MOV BX,BETA ,MOV CONTENTS OF 8ETA INTO 8X

ENDS

8-12

ARRAYS

* THE 8088,88 HARDWARE AND ASSEMBLER SUPPORT THE REPRESENTATION
OF SINGLE DIMENSIONED ARRA VS.

* AN ARRAY IS A COLLECTION OF OBJECTS ALL OF THE SAME TYPE

EXAMPLE: A BYTE ARRAY V

IN MEMORY:

· · ADDRESS · ·
VIOl IN A88EM8L Y LANGUAGE:

V(1)

V(2)

V(3)
10 DUP (7)

V(4)

V(II)

vee)
V(7)

VIS)

VUH

8-13

ACCESSING ARRAYS

* THE ELEMENTS OF THE ARRA V ARE ACCESS ED BY USING AN
INDEX (SUBSCRIPT)

EXAMPLE:

MOV AL,V+l

OR

MOV AL,V[l]

VIOl
V(l)

V(2)

V(3)

V(4)

VIS)
vie)
V(7)

V(S)

V(II)

.

.

;FETCH THE SEC:OND

;BYTE OF V

V

INDE X

~
.. OFFSET = VARIABLE NAME + [DISPLACEMEN~1

8-14

ACCESSING ARRAYS (INDEXED ADDRESSING)

*" IN GENERAL V [I] REPRESENTS THE Ith ELEMENT OF THE ARRAY.
THE INDEX (SUBSCRIPT) CAN BE IN AN INDEX REGISTER OR A
BASE REGISTER

EXAMPLE: TO ACCESS V [8J

SI.8 MOV
MOV AL. V [SO ;IBX.BP.SI. OR 01 ONLY)

Vlo)
V(1)

V(2)

V(3)

V(4)

V(5)

V(S)

V(7)

V(S)

V(9)

· · ·

L-----

J'l
*" OFFSET = VARIABLE NAME T [81J

* ALL INDEXING IS ON A BYTE LEVEL

8-15

EXAMPLE

PROBLEM

v

AN 8 BIT VALUE REPRESENTING A TEMPERATURE IN THE RANGE 0° TO

50°C IS IN A MEMORY LOCATION SYMBOLICALLY CALLED "CTEMP". IT IS

TO BE CONVERTED TO FAHRENHEIT USING A TABLE OF FAHRENHEIT

TEMPERATURE VALUES STORED IN ROM MEMORY STARTING AT A

LOCATION SYMBOLICALLY CALLED "CTABlE". THE FIRST TABLE ENTRY
IS THE TEMPERATURE VALUE CORRESPONDING TO OoC. EACH

SUCCESIVE ENTRY CORRESPONDS TO AN INTEGRAL CELSIUS DEGREE

1° ,2°, 500 C. THE CONVERTED VALUE IS TO BE STORED AT A BYTE

LOCATION CALLED "FTEMP",

B-16

/" EXAMPLE

* IN MEMORY ·CTABLE- APPI::ARS

•
•
•
•

CTABLE (0) 32 0

CTABLE (1) 33 0

CTABLE (2) 36 0

•
•
•
•

CTABLE (60) 122

-~

~
8-17

EXAMPLE

SOLUTION

THE VALUE IN CTEMP DEFINES WHERE IN CTABLE THE CORRESPONDING
FAHRENHEIT VALUE CAN BE FOUND. THE VALUE IN CTEMP IS LOADED
INTO AN INDEX REGISTER AND IS USED AS AN INDEX INTO CTABLE.
CTABLE INDEXED BY THE REGISTER IS STORED INTO FTEMP.

CTABLE -1---------1

I
ax I

I CTEMP I

~-~==========~r-----------·~tl!F~TE~M~P~1

~
,~------------------------------~~

8-18

ASSEMBLY LANGUAGE SOLUTION

8086/8087/8088 MACRO ASSEMBLER LESSON_4 09/01/80 PAGE

Loe OBJ LINE SOURCE

1 NAME LESSON_4
2
3 DATA 1 SEGMENT

0000 1? 4 CTEMP DB
0001 ?? 5 FTEMP DB

6 DATA_1 ENDS
7
8 CODE_1 SEGMENT
9 ASSUME CS:CODE_1,DS:DATA_1

0000 20 10 CTABLE DB 32,33, 35J •

0001 21
0002 23
0003 7A 11 DB 122 ,FARENHEIT TDIPERATURES

12
13

0004 BB---- R 14 START: MOV AX,DATA_1
0007 BEDB 15 MOV DS,AX

16
17
18

0009 32FF 19 XOR BH,SH ,CLEAR UPPER BYTE OF BX
OOOB BA1EOOOO 20 MOV BL,CTEMP ,GET CELCIUS TEMP. INTO BX
OOOF 2EBA07 21 MOV AL,CTABLE[BX] ,GET CONVERTED TDIP INTO AL
0012 A20100 22 MOV FTEMP,AL

23
24
25 CODE_l ENDS
26 END START

8-19

CLASS EXERCISE 8.2

* ASSUME THERE IS AN ARRAY OF EMPLOYEE PAYSCALES. ASSUME THERE

ARE 100 EMPLOYEES AND 1 BYTE IS NEEDED TO REPRESE:NT EACH

EMPLOYEE'S PAYSCALE. WRITE A PROGRAM THAT ADDS 50 DOLLARS

TO EACH EMPLOYEE'S PAYSCALE. USE THE NECESSARY DECLARATIVES

TO SET ASIDE MEMORY FOR THE ARRAY AND TO WRITE tHE PROGRAM.

8-20

~-----------------------------------,--------------~
FOR MORE INFORMATION ..

DEFINING DATA

- CHAPTER 3, ASM86 LANGUAGE REFERENCE MANLIAL

ACCESSING DATA AND ADDRESSING MODES

- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

- CHAPTER 4, ASM86 LANGUAGE REFERENCE MANUAL

ASSUME DECLARATIVE

- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...

ASM86 LETS YOU DEFINE VERY COMPLEX DATA ITEMS IJSlfI.IG STRUCTURES
(A COLLECTION OF DISSIMILAR DATA ITEMS) AND RECORDS (VARIABLE BIT

LENGTH FIELDS). USING 'HIGH LEVEL' DATA ITEMS SUGH AS STRUCTURES
AND RECORDS WILL IMPROVE THE DOCUMENTATION AND RELIABILITY OF

YOUR PROGRAMS. READ CHAPTER 3 OF THE ASM86 LANGUAGE REFERENCE

MANUAL. CODE EXAMPLES ARE IN CHAPTER 3 OF THE iAPX 86/88, 186/188

USER'S MANUAL.

8-21

CHAPTER 9

PROGRAM DEVELOPMENIT II

• DEBUG-86

• ASM86

• SUBMIT FILES

'------------.----.--~.-----------'

SERIES III ENVIRONMENT

INTERRUPT 1 RESET

ISIS-II
UTILITIES

COPY. DIR.
DELETE ••.

ISIS-II
SERIES-II

- RUN

9-1

SERIES III DEBUGGER

LINK 86

LOCATE 86

*" ALLOWS SYMBOLIC DEBUGGING OF 8086,88 PROGRAMS

"* DOWNLOADS YOUR 86,88 PROGRAM FROM A DISK FILE

"*" ALLOWS REAL-TIME EXECUTION OF PROGRAMS

"* ALLOWS SINGLE STEP EXECUTION OF PIROGRAMS

* DISPLAY AND ALTERATION OF 86,88 REGISTERS,

MEMORY LOCATIONS, AND 1/0 PORTS

* DISASSEMBLE PROGRAMS IN MEMORY

9-2

* SAMPLE PROGRAM TO BE EXECUTED/DEBUGGED USING DEBUG-S6

8086/87/88/186 MACRO ASSEMBLER DEMO 10:06:11 12/27/83 PAGE 1

SERIES-III 8086187/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DEMO
OBJECT MODULE PLACED IN :Fl:DEMO.OBJ
ASSEMBLER INVOKED BY: ASM86.86 :Fl:DEMO.ASM DEBUG SYMBOLS

LOC

0000
0002

0000
0003
0005
0007
OOOA
OOOE
OOOF
0012
0013
0015

OBJ

0100
(10
??

B8---- R
8ED8
33F6
B90AOO
8B160000
EC
884402
46
E2F9
EBE9

LINE

~~

3
11

5

6
'r
8
9

10
1'1'
I" " 13
ILl
15
16
17
18
19
20
21
2;:'

SOURCE

NAME DEMO

DATA
WVAR
ARRAY

SEGMENT
DW 1
DB 10 DUP(?)

DATA ENDS

CODE SEGMENT

START:

AGAIN:

CODE

ASSUME CS:CODE,DS:DATA

MOV
MOV
XOR
MOV
MOV
IN
MOV
INC
LOOP
JMP
ENDS

AX,DATA
DS,AX
SI,SI
CX,LENGTH ARRAY
DX,WVAR
AL,DX
ARRAY[SIl, AL
SI
AGAIN
START

END START

9-3

; INITIALIZE OS

;ARRAY POINTER

;GET ADDRESS OF PORT
;INPIJT THE VALUE
;AND SAVE IN ARRAY

;00 IT 10 TIMES
;REPEAT

USING THE SERIES III DEBUGGER

* TO INVOKE THE SERIES III DEBUGGER

1. POWER ON DEVELOPMENT SYSTEM

2. INVOKE ISIS-II

-INSERT SYSTEM DISK INTO DRIVE I)

-PRESS RESET ON MDS FRONT PANEL ISIS
WILL SIGN ON

ISIS-II V X.y.

3. ON DEVELOPMENT SYSTEM TYPE:

RUN DEBUG

DEBUGGER WILL SIGN ON:

DEBUG 8086 V x.y.

*

9-4

USING THE DEBUGGER

*" THE SERIES III DEBUGGER CAN EXECUTE/DEBUG ABSOLUTE (LOCATED)

86,88 OBJECT CODE OR LOAD TIME LOCATABLE (LINKED WITH -BIND-)

86,88 OBJECT CODE

-EXAMPLE: TO LOAD DEMO PROGRAM AND ITS~ SYMBOLS FROM
DRIVE 1 OF MDS:

* LOAD :F1:DEMO

USING THE DEBUGGER

* DISPLAY COMMANDS

-TO DISPLAY ALL REGISTERS:

* REGISTERS

RAX=OOOOH RBX-OOOOH RCX=OOOOH RDX=OOOOH SP=4000H BP~4E50H SI=OOOOH DI=OOOOH

CS .. 0483H DS=OOOOH SS=OOOOH ES=OOOOH RF=0200H IP=OOOOH

-TO DISPLAY/CHANGE ONE REGISTER USE THE NAME SPECIFIED
IN THE DISPLAY.

* RAX

RAX=OOOOH

* SP=100

* RBX=50

9-6

USING THE DEBUGGER

* DISPLAY COMMANDS

-TO DISPLAY/CHANGE MEMORY USE THE TYPE (BYTE,WORD) WITH
AN ADDRESS OR SYMBOLIC NAME .

• BYTE .ARRA Y
BYT 0481:0002H-FBH

* WORD .WVAR
WOR 048l:0000H~OOOlH

"" BYT .ARRAY LENGTH lOT
BYT 0481:0002H=FBH BSH E3H OFH 50H B8H ECH ODH 50H E8H

"* BYTE .ARRAY=FF.OO.FF,OO.FF,OO.FF.OO,FF.OO

- BYTE .ARRAY TO .ARRAYt9
BYT 0481:0002H=FFH OOH FFH OOH FFH OOH FFH DOH FFH OOH

9-7

USING THE DEBUGGER

* DISPLAY COMMANDS

- TO DISPLAY INSTRUCTIONS USE THE DISSASSEMBLER WITH AN
ADDRESS OR SYMBOLIC NAME.

·ASM .START LENGTH 17
ADDR PREFIX MNEMONIC
0483 COOOH MOV
0483 Q003H MOV
0483 0005H XOR
0483 0007H MOV
0483 OOOAH MOV
0483 OOOEH IN
0483 OOOFH MOV
0483 0012H INC
0483 0013H LOOP
0483 0015H JMP

*ASM CS: IP TO CS:IP+16
ADDR PREFIX MNEMONIC
0483 OOOOH MOV
0483 0003H MOV
0483 0005H XOR
0483 0007H MOV
0483 OOOAH MOV
0483 OOOEH IN
0483 OOOFH MOV
0483 0012H INC
0483 0013H LOOP
0483 0015H JMP

OPERANDS
AX,0481H
DS,AX
SI,S!
CX,OOOAH
DX,WORD PIR [OOOOHJ
AL,DX
BYTE PTR [SIJ [+02H] ,AL
SI
$-05H
$-15H

OPERANDS
AX,0481H
DS,AX
Sr,SI
CX,OOOAH
DX,WORD PTR [OOOOH]
AL,DX
BYTE PTR [SIl [+02H],AL
SI
$-05H
$-15H

9-8

COMMENTS

;SHORT
;SHORT

COMMENTS

:SHORT
:SHORT

USING THE DEBUGGER

DISPLA Y COMMANDS

- TO DISPLAY ICHANGE I/O PORTS

* PORT 0

POR 0000H=66H

* PORT 0 LENGTH 2

POR 0000H,,66H 01H

* WPORT 1000

WPO 1000H .. 00FFH

* PORT O=FF

9-9

USING THE DEBUGGER

* PROGRAM EXECUTION COMMANDS

- TO EXECUTE THE PROGRAM WITH NO BREAKPOINTS USE THE

GO COMMAND * GO FROM .START-F-ORE'IIER

- TO STOP THE PROGRAM USE THE CNTRL-D KEY. THE NEXT INSTRUCTION
IS DISPLAYED

0483:0012H INC SI
PROCESSING ABORTED

* - TO EXECUTE FROM THE BEGINNING UNTIL THE OUT INSTRUCTION IS
EXECUTED: THE DEBUGGER DISPLAYS THE INSTRUCTION AT THE
BREAKPOINT

*GO FROM .START TILL .AGAIN

0483:000EH

*
IN AL,DX

- TO EXECUTE UP TO THE INSTRUCTION AT LABEL START

* GO TILL .START

0483:0000H

*
MOV A~:,o481 H

9-10

USING THE DEBUGGER

PROGRAM EXECUTION COMMANDS

-TO EXECUTE ONE INSTRUCTION AND SEE THE NEXT INSTRUCTION.

* STEP FROM .AGAIN

0483:000FH MOV BYTE PTR [81] [+ 02~i1 ,AL

-TO EXECUTE THAT INSTRUCTION AND DISPLAY THE NEXT.

* STEP

0483:0012H INC 81

*

THERE ARE ADVANCED COMMANDS THAT YOU CAN USE
AFTER MASTERING THESE.

9-11

USING THE DEBUGGER

"" FINISHING UP

-TO EXIT THE DEBUGGER TYPE:

EXIT
OR

CNTRL-C

"" ONCE A PROGRAM IS DEBUGGED, IT CAN BE LOADED AND EXECUTED BY
TYPING:

RUN :DRIVENUMBER: FILENAME.

* THE DEBUGGER CAN BE INVOKED DURING EXECUTION BY TYPING CNTRL-D.
THE DEBUGGER CAN BE ABORTED BY TYPING CNTRL-C.

9-12

SERIES III ENVIRONMENT

INTERRUPT 1 RESET

ISIS-II
UTILITIES

COPY, DIR,
DELETE ...

- RUN

9-13

LINK 86

LOCATE 86

8086/8088 ASSEMBLER CONTROLS

-RUN ASM86 :F 1 :LAB.ASM OPTIONS

OBJECT (FILENAME)

NOOBJECT

PRINT(FILENAME)

NOPRINT

PAGING/NOPAGING

SYMBOLS/NOSYMBOLS

ERRORPRINT(F ILENAMEl

DEBUGINODEBUG

PRIMARY CONTROLS

If OJ

NOOJ

II PR

NOPR

• PIINOPI

SBINOSB '"

EPINOEP "

DBINODB *

CONTROL CREA TlON AND [IESTINA TlON OF .OBJ FILE

NO .OBJ FILE

CONTROL CREATION AND DESTINATION OF .LST FILE

NO .LST FILE

PAGINATE/DON'T PAGINATE LISTING

APPEND/DON'T APPEND SYMBOL TABLE TO LISTING

SEND ERRORS TO DEVICE E;PECIFIED/DON'T REPORT ERRORS

APPEND/DON'T APPEND SYMBOL TABLE TO OBJECT FILE

.. DEFAULT

9-14

p

8086/8088 ASSEMBLER CONTROLS (GONT'D)

GENERAL CONTROLS

LIST·/NOLIST " LI

NOLI

INCLUDE ALL LINES FOLLOWING IN LISTING FILE

SUSPEND LISTING

EJECT EJ FORCE A FORM FEED (OVERRIDDEN BY NO PAGING)

INCLUDE(FILENAME) IC (FILENAME) LINES FROM SPECIFIED FILE ARE INCLUDED IN SOURCE FILE

* DEFAULT

9-15

8086/8088 ASSEMBLER CONTROLS (CONT'D)

CONTROLS CAN BE SPECIFIED EITHER:

• AT INVOCATION

- RUN ASM86 :FI:EXMPL.ASM DEBUG SYMBOLS: PRINT(:LP:)

OR

• IMBEDDED IN SOURCE FILE

$DEBUG SYMBOLS >-------- PRIMA flY CONTROLS MUST <; NAME EXAMPLE BE ON FIRST LINE OF
MUST BE IN SOURCI=: FILE
COLUMN 1 $INCLUDE(:FI:EQUS.SRC)

$EJECT

CODE SEGMENT

9-16

ASSEMBLER FEATURES

* ASM86 HAS SOME BUILT-IN OPERATORS TO AID IN PROGRAMMING

(THEY MAKE A PROGRAM MORE READABLE AND RELIABLE)

TYPE - RETURNS TYPE OF DATA DEFINITION

DB

OW
DO

2

4

BYTE

BYTES

BYTES

LENGTH - RETURNS NUMBER OF UNITS

SIZE - RETURNS NUMBER OF BYTES

EXAMPLE

ARRAY OW 100 DUP(?)

ADD

MOV

MOV

SI,TYPE ARRAY

eX,LENGTH ARRAY

01, SIZE ARRAY

.ADJUST SI TO NEXT ELEMENT

;LOAI)S ex WITH 100

;LOAI)S SI WITH 200

9-17

SERIES III DEVELOPMENT STEPS

- AEDIT :F1:LAB1.ASM

- RUN ASM88 :F1:LAB1.ASM DEBUG

- COPY :F1:LAB1.LST TO :LP:

- RUN LlNK86 :F1:LAB1.0BJ BIND

- RUN DEBUG

* LOAD :F 1: LAB 1

9-18

COMPOSE SOURCE PROGRAM

ASSEMBLE PR()GRAM

COPY ASSEMBLER OUTPUT
LIST FILE TO lrHE PRINTER

PRODUCE LOAD TIME LOCATABLE CODE

FOR EXECUTION ON SERIES III

INVOKE DEBU(3GER

LOAD PROGRA.M AND DEBUG

YOU WILL PROBABLY HAVE TO EXECUTE

SOME OF THESE STEPS A FEW TIMES

BEFORE YOUR PROGRAM EXECUTES

AS YOU WANT IT.

WOULDN'T IT BE NICE IF YOU DIDN'T HAVE TO TYPE
ALL THOSE COMMANDS EACH TIME?

9-19

SUBMIT FILES

ISIS II LETS YOU PUT COMMANDS IN A DISK FILE

TO BE EXECUTED AUTOMA TlCALL Y.

9-20

FOR EXAMPLE

WE COULD USE AEDIT TO CREATE A SUBMIT FILl: CALLED :FI:SBMT.CSD

RUN ASM86 :F 1 :LAB 1.ASM DB PR(:LP:)

RUN LlNK86 :F 1 :LAB 1.0BJ BIND

9-21

THIS WOULD GIVE US THE COMMANDS REQUIRED TO:

- ASSEMBLE OUR PROGRAM

- DUMP THE LISTING TO THE LINE PRINTER

- MAKE IT -RUN TIME LOCATED-

9-22

IF THERE WERE ERRORS IN THE ASSEMBLY, WE WOULD LIKE

TO TAKE CONTROL. EDIT THE FILE AND ASS EMElLE IT AGAIN

BEFORE LINKING.

TO TURN CONTROL OF THE SYSTEM OVER TO THE CONSOLE

IN A SUBMIT FILE, ADD tE eCTRL-E) COMMAND TO THE

SUBMIT FILE.

IN AEDITCOMMAND MODE

1) POSITION CURSOR

2) TYPE H r 05 <CR>

9-23

:FI:SBMT.CSD <CONT'D)

RUN ASM86 :FI:LAB 1.ASM DB PRe:LP:)

t E +~ --___________ ALLOWS YOU TO EDIT YOUR MISTAKE

RUN L1NK86 :FI:LAB 1.0BJ BIND

9-24

AND RETYPE THE ASM86 COMMAND IF

THERE WAS AN ERROR. TO GET BACK

TO SUBMIT FILE, TYPE AtE WHICH WILL

EXECUTE THE LINK88 COMMAND.

INVOKING A SUBMIT FILE

IF THE SUBMIT FILE WAS THE DEFAULT .CSD EXTENSION,

ENTER:

- SUBMIT :FI:SBMT

9-25

PASSING PARAMETERS

USE % N (WHERE N=0 TO 9) IN THE SUBMIT FILE

RUN ASM86

RUN LINK86

EXAMPLES:

:%0:% 1.ASM DB SB
:%0:% 1.0BJ BIND

SUBMIT :F1:SBMT (F1,LAB5)

SUBMIT :F 1 :SBMT (F2,LAB3)

9-26

CLASS EXERCISE 9.1

WRITE SUBMIT FILE WHICH WILL:

A ASSEMBLE A PROGRAM WHOSE SOURCE IS CALLED PROB.LEM ON A DISK IN DRIVE 1

e: ADD A SYMBOL TABLE TO THE LISTING

C ADD A SYMBOL TABLE TO THE OBJECT FILE

D PUT THE LIST FILE ON THE DISK IN DRIVE 1 UNDER THE NAME I.ISTIN.G

E PRODUCE A "RUN-TIME LOCATABLE" PROGRAM

9-27

FOR MORE INFORMATION ...

DEBUG - 86
- CHAPT ER 6, INTELLEC SERIES III M.D.S. CONSOLE OPERATING INSTRUCTIONS

ASM86 (CONTROLS AND OPTIONS)
- CHAPTER 3, ASM86 MACRO ASSEMBLER OPERATING INSTRUCTIC)NS

ASM86 ERRORS AND RECOVERY

- APPENDIX A, ASM88 MACRO ASSEMBLER OPERATING INSTRUCTIONS

RESERVED WORDS (ASM86)
- APPENDIX C, ASM88 LANGUAGE REFERENCE MANUAL

RELATED TOPICS ...
ASM88 SUPPORTS USER DEFINED TEXT MACROS INCLUDING CONDITIONAL ASSEMBLY.

SEE CHAPTER 7 OF THE A$M86 LANGUAGE REFERENCE MANUAL.

IT IS POSSIBLE TO MODIFY THE OPERATION OF THE ASSEMBLER TO CHANGE

MNEMONICS, DEFAULT CONDITIONS, ETC. THIS ADVANCED TOPIC IS DISCUSSED

IN APPENDIX A OF THE ASM86 LANGUAGE REFERENCE MANUAL"

9-28

CHAPTER 10

BASIC CPU DESIGN AND TIMING

• MINIMUM MODE

• MAXIMUM MODE

• INSTRUCTION QUEUE

• 8086.8088. 8284A.8288.8286. 8282

THE iAPX 86,88 SYSTEM

* FLEXIBLE PROCESSOR SYSTEM

- TWO OPERATING MODES

- ARCHITECTURE SUPPORTS MULTIPROCESSING AND 'COPROCESSING

- MEGABYTE MEMORY ADDRESS SPACE

-16 BIT DATA BUS (8 OR 16 BIT DATA)

- INSTRUCTION PREFETCH QUEUE

10-1

iAPX 86,88 ARCHITECTURE (MINIMUM MODE)

• MINIMUM MODE DESIGNED FOR SMALL SYSTEMS

• CONTROL SIGNALS TO MEMORY AND 10 SUPPLIED DIRECTLY BY CPU

• USED IN SINGLE PROCESSOR SYSTEMS ONLY

MIN/~

J+5
8284A - CPU

=J CONTROL BUS

10-2

iAPX 86,88 ARCHITECTURE (MAXIMUM MODE)

* MAXIMUM MODE DESIGNED FOR LARGE SYSTEMS

* 8288 BUS CONTROLLER DECODES STATUS SIGNALS TO
GENERATE CONTROL SIGNALS

* CPU USES CONTROL PINS FREED BY 8288 TO COORDINATE
OTHER PROCESSORS

8284A
CLOCK
DRIVER

8284A

STATUS
f-- CPU

v

MINIMAX Q

10-3

8288
BUS

CONTROLLER

}

I
BUFFERED
CONTROL BUS

8086, 88 CPU SET AND BUS STRUCTURE
MINIMUM AND MAXIMUM MODE

r---t" ALE

8086, 88

ADDRESS"

I,)

~
8282

LATCHES

I I ")
'I ADDRESS/DATA

10-4

8086 - 5 MHZ
8086-4 - 4 MHZ
8086-2 - 8 MHZ
8086-1 - 10 MHZ

8086, 88 BASIC BUS CYCLE

T1 T2 T3 T'w T4

CLK~ J"' r-' S~ r-'

MilO

---- -- -X-FLOAT X~ATA IN OR 4:>UT '--- - ~-AD '-----
ALE 1'\

10-5

8284A CLOCK GENERAT()R

* GENERATES SYSTEM CLOCK FOR 8086/8088

.. USES CRYSTAL OR TTL SIGNAL FOR FREQUENCY SOURCE

'*' PROVIDES LOCAL READY AND MUL TIBUS READY SYNCHRONIZATION

* GENERATES SYSTEM RESET OUTPUT FROM SCHMITT TRIGGER INPUT

10-6

8284A BLOCK DIAGRAM

RB----------------------~~ D

Q RBET
ICK

XI

X2 OSC

FIe --------~_I>>--I_I
+3 PCLK

EFI----------__ ---I_I SYNC

CSYNC --------------------------+..----1-+----'

RDYI

ClK

READY

ASYNC--------------------~

10-7

8284A TIMING

EFI/OSC

ClK

PClK

RDY

AEN

READY

10-8

} RESET CAPTURE LOGIC

CLOCK GENERATOR
33% DUTY CYCLE

}
READY SYNCHRONIZER
GUARANTEES SETUP
REQUIREMENTS FOR 8086

RESET

RESET-SUPPLIED BY 8284A CLOCK GE:NERATOR

FLAGS • 0

cs • FFFF

IP,DS,SS,ES ~ 0

8086, 88

+5V

~ .;:."
RESET

l

10-9

READY

• READY IS SYNC.HRONIZED WITH THE CPU BY THE CLOCK GENERA TOR

• READY IS USED TO EXTEND A BUS CYCLE BY ONE OR MORE: CLOCK CYCLES

• INCREASES THE AMOUNT OF TIME THAT CPU GIVES MEMORY TO RESPOND WITH
OR ACCEPT DATA

• THE USER MUST DESIGN THE HARDWARE WHICH DECODES THE BUS ADDRESS AND
DETERMINES IF 'WAIT STATES' ARE REQUIRED.

• THE 8284A HAS 2 RDY-AEN INPUTS WHICH ALLOWS YOU TO DEVELOP TWO
DIFFERENT WAIT STATE PERIODS.

8086,88

8284A

ROY r---. READY

AEN

10-10

74125

CS1---'
FROM DECODER

CS2 ---'

FROM DECODER

ClK

ALE

CS

RDY1

READY.

SINGLE WAIT STATE GENERATOR

+5

8284A

AENi

J -=-

CLK
74LS373 RDY1 tl

AEN2
READY

RDY2
ALE

-
+5

10-11

BUS CYCLE WITH WAIT STATES

10-12

/' 8086 PIN DIAGRAM (MINIMUM MODE) ~

vyc G~D

elK ... DTiR

RESET
,.. DEN

~ ALE
READY f.. BHE/S7

INTR ...
f.. A19/S6

f.. A 18/S5
NMI f. A17/S4

HOLD ... - A18/S3

TE8T ... 8086 ::
:::

~
~
~ I! ADO-AD15

f.. WR

f-o-Rii
Vee f.. MIlO

L f.. INTA
MINIMAX

f- HlDA

\.. ~

10-13

8086 SYSTEM (MINIMUM MODE)

Vee D lUi
IU4ACLOCK MN/iIl! Vee

QENERATOII f- eLK M/iO ~

f-m f- READY iNti ! ,
f- RESET RD r ROY ViR 1

QND r-l--, I
OTIA ~---, I

I WAIT I DEN 1---, I I
I STAn I 8086 CPU

I I I
I GENERArOR I I I I
L ___ ..J ALE

GND~
sre I
OE

8282 I
ADo-AD1~ rOorT-v LArCH - ADOA

A'6- A,. 2 OR 3 -----

SHE L-~ r - I---._J-
I I I

I I rr----.., I
I L_ r ----' I I

L _ -1oe I I : L------j 8286 I
TRANSCEIVER DATA

I (21 I I - E 1
1411 iii TT; 11 I I eHE

L ___ f
OPTIONAL CSOH

FOR INCREASED
CSOl WE 00 CE OE cs RDWA

DATA BUS DRIVE 2142 RAM (4) 2716·2 PROM (2) MCS·80
PERIPHERAL

(21 (21
1Kd I 1Kl8 2K>e8 I 2K .. 8

10-14

8086 SIGNAL DESCRIPTION (CONTROL SIGNALS)

DT /R - CONTROLS DIRECTION OF DATA THROUGH TRANSCEIVER

DEN - OUTPUT ENABLE FOR TRANSCEIVER

RD, WR - INDICATES A READ OR WRITE CYCLE TO/FROM MEMORY OR I/O

MilO - INDICATE WHETHER READ OR WRITE IS TO MEMORY OR I/O

DT/R
8086, 88

DeN

RD

-
WR

M/iO

10-15

READ TIMING MINIMUM MODE

T, T2 TS Tw T4
T, OF
NEXT

CLK ~ r-' ~ rs-. r-' CYCLE

M/iO b(

ALE \ ,--
'---

---- ---------
0 XADDRESS A -Aol FLOAT XDATA IN 016-00 FLOAT --f---J ----- ,...-----

OT/A

DEN V

10-16

-HOLD

-HLDA

HOLD AND HLDA

FORCES THE CPU TO RELEASE CONTROL OF THE BUSSES
AFTER THE CURRENT BUS CYCLE

INDICATES THAT THE CPU HAS TRI-ST ATED THE BUSSES

.. HOLD AND HLDA ARE USED BY DMA DEVICES TO '"BORROW· BUS CYCLES
FOR THEIR OAT A TRANSFERS

HOLD ----.

8086,88

10-17

HLDA

~

8088 PIN DIAGRAM (MINIMUM MODE)
VIC

elK

RESET .
READY

INTR ...

NMI ...
HOLD ...

TE8T ... 8088

Vee

G~D

... DTiR

r--- DEN

r-- ALE

f+- 880

r-- A 19/88

r-- A 18/55

f. A17/84

f. A16/83

~
t

A8-A15

~ f+- ADO-AD1

r+"WR
f.Ro
f. 101M

r+" INTA L MINiMAx
L..-___ ~f. HLDA

DIFFERENCES IN PINOUT FROM 8086:
• NO !mE PIN: SSO ALONG WITH 101M AND DT/R PROVIDE MACHINE CYCLE STATUS

IN MIN MODE
• PIN 28 IS 101M RATHER THAN MilO TO BE COMPATIBLE WITH THE 8085
• A8 - A 15 NOT MULTIPLEXED WITH DATA

10-18

8088 MULTIPLEXED BUS

.('~ 1'\ . Vn Vee

I I
So- CE POA!¢V

WA

AD POAT~
.,11 I •

ALE POAT ~
AI .. DATA C 161

K ADO A
'(--y

IN-
10 iii TIMER

RESET ouT --
" ",-A,t ADDA iOW
vi AD

Yt t) Alit -ADr AOOA/DATA

~ ~
ALE

CLK POAT

~ - CE A

~=
....

A IIO - "V ,.----- AEADY 83558755A

... ...

-vee DATA

'- AOOA

rOl ALE ~
Y

cc - 10 iii

~ PORT
r- RESET iffi - B RESET

v

X, X2
CLK ~ WR -

AEADY - 101M - lOR
~c

- RES

1 1 r 1 I2I4A - RESET -
I Vss "cc "00 PROG

G NO WR

RD

eel
818S

AU

~ ~ CS CE.

r-~ AI. A •

... ..
('\

/ AD,.

" -y

r r
V .. Vre

~ ., '" .,

10-19

MINIMAX

8086, 88

MINIMAX SELECTION

MINIMUM OR MAXIMUM CONFIGURATION
STRAPPING OPTION THAT ALTERS THE
FUNCTIONS OF 8 OF THE CPU PINS
AS FOLLOWS:

MINIMUM MAXIMUM

WR LOCK
INTA QS1

ALE QS O

MilO So

DTiR S1
DEN S2

HLDA RQ/GTO

HOLD RQ/GT 1

10-20

8086 PIN OUT (MAXIMUM MODE)

ClK

RE8ET

READY

INTR

NMI

(Ra/GTO)

nTT

MINIMAX

Vee GND

8086

10-21

(Si)

(!O)
(080)
BHE/87
A 19188
A 18/85
A 17184

A18/83

(I"lreK)

RI5
(82)

(081)

(RO/GT 1)

8088 PIN OUT (MAXIMUM MODE)

Vee GND

ClK (Si)

RESET
• (!O)

- (080)
READY

A19/88

A18/S5
NMI

A17/S4

(ffO/lffo) A16/83

8088

A8-A15

ADO-AD7

MIN/MAX
(081)

'--____ --'C""" (RQ/Gi' 1)

10-22

8086 SYSTEM (MAXIMUM MODE)

.r+l~ ClK
121<A MN/M~ r-uND ~

OE~~A ClK Sa Sa MWTC

ii - AMWC i-N.C• ~m I- AEADY 5,

v

I- AESET 5, S, 1211 ililiC 1 ADY ,-- DEN CmR lOWl:

ND r-1 -, I0Il - DT/R AIOWC i-N.C.
CPU

ALE INTA

o

I WAIT I = -N.C. I lUTE I
I OENERATOA I

STB L ___ ...J
GND DE

8282
ADo~AD1!i r DDI DAr--"

LArCH
J--.!DDR A,.-A,. (2 OR 3)

l
'--- -1-.-IHl I----- f---

~
T

DE
828. -- --- --

TRANSCEIVER

BHE 11, lr~l 11 ~
(2)

~H CSOL WE 00 CE DE es II1IIV11

2142 RAM (4) 2711·2 PROM (2) MC$-IO
PERIPHERAL

(2) (2)
1KxI I 1Ka8 2Ka'12K.'

10-23

8086 SIGNAL DESCRIPTION (MAXIMUM MODE)

S2' S1' So - STATUS LINES THAT INFORM THE 8288 OF THE TYPE OF
BUS CYCLE THAT THE 8076 IS RUNNING

S2 S1 So SIGNAL
0 0 0 INTA

8086,88
So

0 0 110 READ

S1 0 0 1/0 WRITE

S2 0 HALT

0 0 CODE ACCESS

0 READ MEMORY

0 WRITE MEMORY

PASSIVE

10-24

8288 TIMING

CLK

ADDRESS/DATA WRI E DATA VAL D

ALE

MRoC, 10RC, iNTA
AMWC,fjQWC --~------~

THE AMWC, AIOWC ARE PROVIDED TO GENERATE LONGER STROBES REQUIRED BY

SOME MEMORIES. THEY SHOULD NOT BE USED WITH DEVICES THAT LATCH DATA

ON THE LEADING EDGE OF THE STROBE SINCE DATA IS NOT GUARANTEED TO BE

VALID AT THAT TIME.

10-25

r 8086, 88 CPU BLOCK DIAGRAM

• TWO INDEPENDENT UNITS: EU AND BIU
• BIU READS DATA AND INSTRUCTIONS
• EU EXECUTES INSTRUCTIONS
• SPEEDS EXECUTION BY OVERLAPPING INSTRUCTION FETCHES WITH EXECUTION

CLOCK AND
SYSTEM CONTROL CONTROL AND TIMING BUS CONTROL

i'> , r-

.
f---

EXECUTION BUS
UNIT JI. --" INTERFACE
(EU) UNIT

MUL TIPLEXED ADDRESS/DATA
'(-y

(BIU)

\..

10-26

~

..)

INSTRUCTION PREFETCH QUEUE

~ It--
,

DATA
===> ADDRESS DATA

EXECUTION BUS
I\r--

UNIT INTERFACE

I I I UNIT

QUEUE

I I I
INSTRUCTIONS

) CONTROL

• DATA ACCESSES HAVE PRIORITY OVER INSTRUCTION FETCHES

• QUEUE "FLUSHES· AUTOMATICALLY ON JMP

• QUEUE IS 6 BYTES IN 8086, 4 BYTES IN 8088

INVISIBLE TO USER (ALMOST)

10-27

PROGRAM TIMING

• IT IS NOT PRACTICAL TO CALCULATE EXACT PROGRAM EXECUTION TIME

- EXECUTION TIME CAN BE MEASURED WITH A TIMER SUCH

AS PROVIDED ON ICE86

- PROBABLE WORST CASE CAN BE ESTIMATED BY ASSUMING

A MINIMUM INSTRUCTION TIME OF 4 CLOCK CYCLES

10-28

OUR DESIGN EXAMPLE

iSBC 86/05 SINGLE BOARD COMPUTER

• 8 MHZ 8086 CPU

• 8K BYTES STATIC RAM (EXPANDABLE)

• SOCKETS FOR 32K BYTES ROM (EXPANDABLE)

• 1 SERIAL 10 PORT, 3 PARALLEL 10 PORTS

• 2 iSBX CONNECTORS

• MULTIBUS COMPATIBLE

• FLEXIBLE DESIGN

10-29

.......
a
I
w
a

iSBC 86/05 SCHEMATIC
PAGE 2

Ul'}

atJ IIOII.RO ROY I ~Il.

I &U~ AUII t~
s,,41 A .• ~V >liV

I 14$04 ..
't "PI [lot

19 U:.
COl CL." E 110 ~111

US UAM ..

.5V - 14U.IZ~ "1 I'I:lll 2

- II .. E.N.. 0<;(, .!.

~ I!ZO U4S" ~Q."l.1
IODIt 8Z64.... Q. ~.

U.,.a. 10 __ .U' 12.~';1iT1 0 II 10. Ra/Goli
n"lot) UCI< lIoaT I -'!'..Jiii/ffi
PI-Z ~ 140(" I

JJi
·"0'" 7!> U"lZ ~oc. .. 1 ~D"-2

.:.)+J &
"'''-110 p:.:-

I INTA .
SI1QLt..--

R.,
, lOll

PI-14 .- ". _.1/

'4S0e.

Hi'

'5V

~

f3Tl!>l
INllt

17 Nt4I

If
"Ie a
6.4 7

IIIO c..

i~L-
zlli-----t
1"15

~II'" Aoil 1

Il~

fOOl<

t---

FF~:4. ~
BD R.E~TI _I

I III ~ 21. 1 II

-tv
.... ~ 1 ~ r '"

lot:..
I I I PROCE<;'<;()R. ~H.l'Ot..I

74cx.

P2'~

5"~IFljT~E.~~T~/==============================~~~~~~~======~~::::~~::~ _______ I '"" ~~ . rN=YI~ ____________________________________ -===========~'1
SHq ~. -

~S>II"'''I
~L."-

AF SII ...
125T

J ~H J.~.IC
L.~"-

"- :'11 4

L 1 S"'
...
N

0
AIw./!03 p
"'"

AD~-"Oll
~Is ... q

f
M-~m>""'" 12 SH ~.4

5 5H'::", 4
5dJ1 T ~ .. 4

CLASS EXERCISE 10.1

1.) IS THIS 8086 IN MINIMUM MODE OR MAXIMUM MODE?

2.) AS CONFIGURED WHAT SPEED WILL THIS 8086 RUN AT?

3.) THERE IS A JUMPER SHOWN AS E181-E182 JUST TO THE
LEFT OF THE 8284A. WHAT EFFECT WILL THE REMOVAL
OF THIS JUMPER HAVE?

10-31

FOR MORE INFORMATION ...

8086 CPU SET AND OPERATION
-AP-67, 8086 SYSTEM DESIGN APPLICATION NOTE

iSBC 86/05 SINGLE BOARD COMPUTER

-iSBC 86/05 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL

10-32

DA Y THREE OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

* LIST THE PERIPHERALS AND THEIR FUNCTIONS THAT ARE INCLUDED

IN THE iAPX 186,188

* DESCRIBE THE OPERATION OF THE ADDED INSTRUCTIONS TO
THE iAPX 186,188

* WRITE A PROCEDURE USING THE PROPER ASSEMBLER DIRECTIVES

* WRITE A PROCEDURE THAT COULD BE CALLED FROM A PL/M PROGRAM
WHICH REQUIRES PARAMETERS

* WRITE THE CHANGES REQUIRED TO ELIMINATE FORWARD

REFERENCING ERRORS IN A MULTIPLE SEGMENTED PROGRAM

*' WRITE AN INTERRUPT SERVICE ROUTINE AND THE ASSEMBLER
DIRECTIVES REQUIRED TO CREATE THE PROPER INTERRUPT POINTER

TABLE ENTRY

CHAPTER 11

PROCEDURES

• PROCEDURES DEFINITION

• STACK CREATION AND USAGE

• PARAMETER PASSING

• EXAMPLE

PROCEDURES

* SECTIONS OF A PROGRAM THAT ARE CALLED AND RETURNED FROM

MAIN PROGRAM PROCEDURE,

* THE CALL INSTRUCTION WRITES THE RETURN ADDRESS (THE ADDRESS
OF THE NEXT INSTRUCTION) INTO THE STACK.

* THE RET INSTRUCTION READS THE RETURN ADDRES~I FROM THE STACK.

11-1

STACK OPERATION

* REMEMBER THAT STACK IS ALWAYS REFERENCED WITH RESPECT
TO THE STACK SEGMENT REGISTER

SS LO

STACK

+

1
SP

HI

11-2

STACK INITIALIZATION

* A STACK SEGMENT IS LIKE A DATA SEGMENT WITH A POINTER TO
THE TOP OF THE SEGMENT

SEGMENT

OW 100 OUP(?)
LABEL WORD

ENDS

SEGMENT

ASSUME CS: CODE_A, ss: STACK..2

MOV AX, STACK_2

MOV SS, AX
LEA SP, TOP_OF_STACK

ENDS

11-3

ST ACK OPERATION WITH CALL AND RET

C5 _.-

IP-....
IP+3-.-+

55 ._

SP-2-.+

SP-..

PROCI PROC

RET

PROCI ENDP

CALL PROCI

IP + 3

~

:v

®
C!J

®
CD

11-4

CD SP IS SET UP INITIALLY.

o CALL INSTRUCTION WRITES
RETURN ADDRESS TO STACK
AND TRANSFERS TO PROCI •

o RET INSTRUCTION READS

RETURN ADDRESS FROM STACK
INTO IP AND THUS TRANSFERS
TO INSTRUCTION AFTER CALL.

PUSH AND POP INSTRUCTIONS

• PUSH

• POP

- WRITES A WORD VALUE INTO THE STACK

SYNTAX

PUSH MEMORY OR REGISTER

.,. READS A WORD VALUE FROM THE STACK

SYNTAX

POP MEMORY OR REGISTER

* PUSH CAN BE IMMEDIATE ON 186

11-5

COMMUNICATING WITH A PROCEDURE

'* PARAMETERS

PARAMETERS MAY BE PASSED:

- REGISTERS

MOV AX.
CALL

- MEMORY

MOV
CALL

- STACK

PUSH

CALL

"* FUNCTIONS, (PROCEDURES THAT RETURN A SINGLE VALUE) MAY USE
REGISTER OR A MEMORY LOCATION TO HOLD THE RETURN VALUE

11-6

PROCEDURE EXAMPLE

* DELAY ROUTINE - EXPECTS A BYTE VALUE IN THE AL REGISTER. THIS NUMBER IS
THE NUMBER OF 100 MICROSECOND DELAYS THIS PROCEDURE WILL PRODUCE.

NAME DEMO

PRO SEGMENT
ASSUME CS:PRO

;FUNCTION: Delay
;INPUTS: AL - 8 bit integer denoting number of
;OUTPUTS: None 100 microsecond delay periods required.

;CALLS: Nothing
;DESTROYS: AL, CL, FLAGS
DELAY PROe

OR
JZ

LOOP: HOV
SHR
DEC
JNZ

EXIT: RET
DELAY ENDP
PRO ENDS

END

AL,AL
EXIT
CL,78H
CL,CL
AL
LOOP_

;Check for 0 delay
l1f 0 - quit
lCount for 100 u.
;Delay 100 u.
jAdjust iteration counter
;00 again if non-zero
lElse go back to calling routine

* THE ABOVE METHOD WORKS WELL FOR PASSING A SINGLE VALUE.

HOW WOULD AN ARRAY BE PASSED TO A PROCEDURE?

11-7

COMMUNICATING WITH A PROCEDURE

WHEN PASSING AN ARRAY (OR EVEN A LARGE NUMBER OF DIFFERENT
VALUES) TO A PROCEDURE, THE ADDRESS OF THE ARRAY IS USED.

TO GET THE OFFSET OF AN ARRAY (OR ANY VARIABLE) INTO A

REGISTER, THE LEA INSTRUCTION IS USED.

DATA

BUFFER

DATA

CODE

SEGMENT

DB 100 DUP(?)

ENDS

SEGMENT

ASSUME CS:CODE,DS:DATA

•
•
•

MOV ex, LENGTH BUFFER

LEA BX, BUFFER

CALL OUTPROC

11-8

COMMUNICATING WITH PROCEDURES
(BASED ADDRESSING)

* THE PROCEDURE CAN THEN USE THE ADDRESS IN THE REGISTER TO
ACCESS THE ARRAY.

CRT EQU

OUTPROC PROC
JCXZ

MORE: MOV

OFFH

EXIT

AL, [BXl

OUT CRT,AL

INC BX

LOOP MORE

EXIT: RET

OUTPROC ENDP

lCHECK FOR CX SETUP

lMOV CONTENTS OF JBUFFER POINTED TO
lBY BX INTO AL

lINCREMENT BX TO POINT TO NEXT LOCATION
1 IN BUFFER

* REMEMBER - OFFSET = [~:n +

* NOTE THAT THIS PROCEDURE CAN BE USED TO OUTPUT THE
CONTENTS OF ANY BUFFER.

11-9

EXAMPLE

PARAMETER PASSING ON THE STACK

PROBLEM

A PROCEDURE IS REQUIRED FOR A PL/M PROGRAM TO CONVERT A TEMPERATURE FROM
ONE UNIT OF MEASURE TO ANOTHER USING A TABLE OF CONVERSION VALUES. THE
TEMPERATURE VALUE, TABLE ADDRESS, AND TABLE LENGTH ARE PARAMETERS PASSED
IN THE STACK FROM THE CALLING PROGRAM. ALLOCATION OF STACK SPACE IS
HANDLED BY THE CALLING PROGRAM AND THE ITEMS ARE PUSHED ONTO THE STACK IN
THE FOLLOWING ORDER:

TMPIN

N

TBLADR

TEMPERATURE

TABLE LENGTH

TABLE ADDRESS

1st WORD

2nd WORD

3rd WORD

THE PROCEDURE SHOULD SAVE THE BP REGISTER VALUE, BUT ALL OTHER REGISTERS
ARE AVAILABLE. UPON EXIT FROM THE PROCEDURE THE RESULTANT VALUE SHOULD
BE LEFT IN THE ACCUMULATOR, AND ALL PARAMETERS DELETE:D FROM THE STACK.

11-10

THIS IS AN EXAMPLE OF WHAT IS CALLED A TYPED PROCEDURE IN PL/M

AND IT WOULD BE CALLED WITH A STATEMENT LIKE THIS:

TEMPOUT = CONVERT (TEMPIN. N. TBLADR)j

PL/M EXPECTS THIS PROCEDURE TO RETURN A VALUE IN THE AL REGISTER

11-11

TABLE OF CONVERSION VALUES

* TABLE LOCATED SOMEWHERE IN MEMORY.

-

TABLE (O) 32

(1) 33

(2) 35

•

(50) 122

~~------------------~~~------~~
11-12

STACK "FRAME" WITH PARAMETERS AFTER CALL

LOW MEMORY

f--------

SP RETURN ADDR

TBLADR

N

TMPIN

'-- I

HI MEMORY

11-13

STACK "FRAME" WITH PARAMETERS AFTER ENTRY

LOW MEMORY

r--..
f------- - INITIALIZED BY

- SAVED BP -0
/ PROCEDURE

BP] SP

RETURN ADDR 0 BP] + 2

TBLADR 0 BP] + 4

N ~ BP] + 6

TMPIN [! BP] + 8

-
HI MEMORY

11-14

EXAMPLE

SOLUTION:

8086/8087/8088 MACRO ASSEMBLER DMO 09/01/80 PAGE 1

LOC OBJ LINE SOURCE

1 NAME DMO
2 CODE SEGMENT
3 ASSUME CS:CODE
4
5
6

I--'

I
0000 7 CONVERT PROC

I--' 0000 55 8 PUSH BP :SEE DIAGRAM
I
I--' 0001 8BEC 9 MOV BP,SP
<..n 10

0003 8B5E04 11 MOV BX, [BP+4] :BX <-- TBLADR
0006 8B7E06 12 MOV DI, [BP+6] :DI <-- LENGTH OF TABLE
0009 8B7608 13 MOV 51, [BP+8] :SI <-- TMPIN

14
OOOC 3BF7 15 CMP SI,DI :CHECK IF TMPIN > LENGTH OF TABLE
OOOE 7206 16 JB INRANG
0010 8A41FF 17 MOV AL,[BX+DI-l] 1 IF NOT IN RANGE USE GREATEST

18 :VALUE IN TABLE (LENGTH OF TABLE-I)
0013 EB0390 19 JMP EXIT
0016 8AOO 20 INRANG: MOV AL, [BX+SI] :USE 51 TO POINT TO TEMP. VALUE
0018 5D 21 EXIT: POP BP
0019 C20600 22 RET 6

23 CONVERT ENDP
24
25
26 CODE ENDS
28 END

.I

DISCUSSION

STEP1 SAVES THE VALUE FROM THE CALLING PROGRAM'S BP BEGISTER ONTO THE STACK
AND LOADS BP (STEP 2) WITH THE CURRENT SP VALUE. THIS ESTABLlSHE.SA BASE
REGISTER (BP) WHICH WILL BE USED FOR ADDRESSING THE PARAMETERS BEING PASSED.
DURING EXECUTION OF THE MOVE INSTRUCTION (STEP 3) THE DISPLACEMENT VALUE (4)
WILL BE ADDED TO THE CONTENTS OF THE BP REGISTER AND AN EFFECTIVE ADDRESS
GENERATED EQUIVALENT TO BP+4. SIMILARLY, INDEX REGISTER DIIS LOADED WITH THE
SECOND PARAMETER (N) WHEN BP+6 IS ACCESSED IN STEP 4.

THE PROGRAM FIRST CHECKS THE TEMPERATURE TO SEE IF IT IS WITHIN THE RANGE OF
VALUES IN THE TABLE. IF IT ISN'T, THE PROCEDURE CONVERTl9 IT INTO THE HIGHEST
TEMPERATURE IN THE TABLE.

REGARDLESS OF WHETHER THE TEMPERATURE IS WITHIN RANGE OR NOT, THE CONVERTED
VALUE IS RETURNED IN AL THE BP IS THEN RESTORED AND THE RET INSTRUCTION IS
EXECUTED. THE RET ALSO ADJUSTS THE SP BY 6, THUS REMOVING THE PARAMETERS
FROM THE STACK.

NOTE THAT THE PROCEDURE USES BP TO FETCH PARAMETERS OFF THE STACK. THE CPU.
WHEN USING BP AS A POINTER, DEFAULTS TO USING THE SS AS THE SEGMENT REGISTER.
ANY OTHER POINTER REGISTER COULD BE USED, BUT WOULD REQUIRE AN EXPLICIT
SEGMENT OVERIDE .

11-16

CLASS EXERCISE 11.1

WRITE AN ASSEMBLY LANGUAGE PROGRAM TO CALL THE

CONVERT PROCEDURE. SET UP A STACK SEGMENT AND

INITIALIZE THE REGISTERS TO POINT TO IT. SET UP

A DATA SEGMENT WITH VARIABLES FOR THE TEMPERATURE

TO CONVERT, THE CONVERSION TABLE, AND A PLACE TO STORE

THE CONVERTED TEMPERATURE.

11-17

FOR MORE INFORMA nON '"

ASSEMBL Y LANGUAGE INSTRUCTIONS

- CHAPTER 3, iAPX 86/88, 186/188 USER'S MANUAL

- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

PARAMETER PASSING (EXAMPLES)

- PAGE 3-171, iAPX 86/88, 186/188 USER'S MANUAL

- APPENDIX G (EXAMPLES 3,4,5) ASM86 LANGUAGE

REFERENCE MANUAL

11-18

CHAPTER 12

PROGRAMMING WITH MULTIPLE SEGMENTS

• MULTIPLE CODE SEGMENTS

• PROCEDURE DECLARATION

• MULTIPLE DATA SEGMENTS

• SEGMENT OVERRIDE INSTRUCTION PREFIX

• FORWARD REFERENCES

CODEt SEGMENT

ASSUME CS:CODEt

ABC: -
JMP ABC K

JMP ABC

CODEt ENDS

CODEt SEGMENT

ASSUME CS:CODE 1

ABC: -

CODEt ENDS

CODE2 SEGMENT

ASSUME CS:CODE2

JMP ABC

CODE2 ENDS

ONE CODE. SEGMENT
NEAR, SHORT JUMP

(REVIEW)

SHORT JUMP_ BYTE INSTRUCTION
DISPLACEMEN'T + __ BYTES

__ BYTES

NEAR JUMP _ BYTE INSTRUCTION

DISPLACEMEN·r + BYTES

__ BYTES

12-1

INTERSEGMENT FAR JUMP

12-2

FAR JUMP 5 BYTE INSTRUCTION
LOADS CS,LOADS IP

OPCODE

- NEW IP -

- NEW CS-

CODE1 SEGMENT

ASSUME CS:CODE1

HAL PROC ---
RET

HAL ENDP

START: --
CALL HAL

CODE1 ENDS

ONE CODE SEGMENT
NEAR CALL,RET

(REVIEW)

PROCEDURE DECLARATION

NEAR RETURN
RESTORES_ REGISTER
FROM TOP OF STACK

NEAR CALL_ BYTE INSTRUCTION
SAVES _REGISTER
ON TOP OF STACK

JUMPS+_BYTES
-_BYTES

12-3

INTERSEGMENT FAR CALL,RET

CODE1 SEGMENT
ASSUME C8:CODE1

HAL PROC FAR

RET
HAL ENDP

CALL HAL

CODE1 ENDS

CODE2 SEGMENT
ASSUME CS:CODE2

CALL HAL

CODE::! ENDS

PROCEDURE DECLARATION, TYPE FAR

FAR RETURN

RESTORES IP AND CS FROM STACK

~
FAR CALL 5 BYTE INSTRUCTION

/ SAVES CS AND IP ON TOP OF STACK
LOADS NEW CS AND NEW IP

OPCODE

t-- NEW IP -

t-- NEW C8 -

12-4

PROCEDURE DECLARATION

THE PROCEDURE DECLARATION DEFINES WHETHER
HIE PROGRAM OR SUBROUTINE HAS ATTRIBUTE
NEAR OR FAR,

THIS TELLS THE ASSEMBLER TO GENERATE FAR
OR NEAR CALLS AND RETURNS,

EXAMPLE:

XYZ PROC f NEAR/FAR}

{
RET

XYZ ENOP

12-5

ONE DATA SEGMENT
REVIEW

~--------------~
OS--" OATA1 SEGMENT

VAR1 OW?

OATA1 ENDS

CS COOE1 SEGMENT

ASSUME CS:COOE1

ASSUME OS:OATA 1
MOV AX ,OATA1
MOV OS,AX

· · · MOV VAR1,12H OA T A REFERENCE

USES OS SEGMENT REGISTER

COOE1 ENDS

12-6

SEGMENT OVERRIDE INSTRUCTION PREFIX

• OAT A IS NORMALLY ACCESSED USING THE OS SEGMENT REGISTER

• DATA CAN BE ACCESSED WITH ANY SEGMENT REGISTER BY

USING A ONE BYTE INSTRUCTION PREFIX

• ASM86 GENERATES SEGMENT OVERRIDE PREFIXES
AUTOMA TIC ALL Y. USING THE ASSUME STATEMENT

12-7

ACCESSING CONSTANT DATA

LOC OBJ LINE SOURCE

1 NAME SAMPLE
2
3 DATA SEGMENT

0000 ?? 4 ALPHA DB 7
......

I
5 DATA ENDS

~ 6 SEGMENT I CODE
CP 7 ASSUME CS:CODE,DS:DATA

0000 0020 S BETA DW 2000H
9

0002 8S---- R 10 START: MOV AX, DATA
0005 SEDS 11 MOV DS,AX

12
0007 2E880EOOOO 13 MOV CX,BETA lCS OVERRIDE

14
OOOC SAOEOOOO 15 MOV CL,ALPHA ;NO OVERRIDE NECESSARY

16
17 CODE ENDS
18 END START

USING MULTIPLE DATA SEGMENTS

I.OC OBJ LINE SOURCE

1 NAME SAMPLE2
2
3 DATA SEGMENT

0000 11 4 ALPHA DB 7
5 DATA ENDS
6

I 7 DATA 2 SEGMENT
N
I 0000 1171 B BETA DW, ?
\0 9 DATA 2 ENDS

10
11 CODE SEGMENT
12 ASSUME CS:CODE,DSSDATA,ES:DATA_2
13

0000 80---- R 14 START: MOV AX,DATA
0003 BEDO 15 MOV DS,AX
0005 80---- R 16 MOV AX,DATA_2
0008 BECO 17 MOV ES,AX

10
OOOA 26080EOOOO 19 MOV CX,BETA ,ASSEMBLER CAUSES ES OVERRIDE

20
OOOF 81\OEOOOO 21 MOV CL,ALPIIA ,NO OVERRIDE NECESSARY

"', I 22
23 CODE ENDS
24 END START

ADDRESSING DATA USING OS AND ES

• ALL DATA THAT BELONGS TO ONE CODE SEGMENT SHOULD BE ADDRESSED USING THE
DS REGISTER

• ANY DATA THAT IS SHARED BETWEEN CODE SEGMENTS (EACH HAVING LOCAL DATA)
SHOULD BE ADDRESSED USING ES

• THIS ALLOWS THE PROGRAM TO ACCESS LOCAL DATA MANY TIMES WITH NO PENALTY
IN CODE SIZE

• SHARED DATA WILL BE ACCESSED A FEW TIMES WITH A ONE BYTE ES OVERRIDE
PREFIX

12-10

EXAMPLE

LOC OBJ LINE SOURCE

1 NAME SAMPLE3
2
3 SHARED DATA SEGMENT

IJOOO (l00 4
11

BUFFER- DB 100 DUP (1)

)

5 SnARED DATA ENDS
6
7 LOCAL DATA SEGMENT

0000 7111 0 BETA DW 1
0002 11 9 ALPHA DB 1

I 10 LOCAL DATA ENDS N
I 11

12 CODE SEGMENT
13 ASSUME CS:CODE,DS:LOCAL_DATA,ES:SHARED DATA
14

0000 B8---- R 15 START: MOV' AX,I.OCAL_DATA
0003 OEDO 16 MOV DS,AX
0005 80---- R 17 MOV AX, SHARED_DATA
0008 8ECO 18 MOV ES,AX

19
OOOA OBOEOOOO 20 MOV CX,BETA lNO OVERRIDE

21
OOOE 8AOE0200 22 MOV CL,AI.PHA rNO OVERRIDE NECESSARY

23
0012 26880EOOOO 24 MOV BUFFER,CL lASSEMBLER CAUSE ES OVERRIDE

25
26 CODE ENDS
27 END START

-N
I -N

EXPLICIT SEGMENT OVERRIDE

* ALLOWS YOU TO EXPLICITLY SPECIFY SEGMENT REGISTER USE

WHEN ASSEMBLER DOESN'T HAVE ENOUGH INFORMATION

PRO

LOWEST
HIGHEST
CONVERT VALUE

NAME SAMPLE
SEGMENT
ASSUME CS:PRO

EQU
EQU
EQU

61H
7AH
20H

;THIS PROCEDURE WILL CONVERT ALL OF THE LOWER CASE ASCII
;CHARS IN THE BUFFER POINTED TO BY THE ES:SI REGISTER PAIR
;TO UPPER CASE. THE CX REGISTER CONTAINS THE BYTE COUNT.
;a=61H, z=7AH, A=41H, Z=5AH

UPPER
NEXT:

MOVE PTR:

UPPER
PRO

PROC
MOV
CMP
JB
CMP
JA
SUB
MOV
INC
LOOP
RET
ENDP
ENDS

FAR
AL,ES: [SI]
AL,LOWEST
MOVE PTR
AL,HIGHEST
MOVE PTR
AL,CONVERT VALUE
ES : [S I] . AL-
SI
NEXT

•

•

FORWARD REFERENCING

• ASM86 IS A TWO PASS ASSEMBLER

PASS 1

ALLOCATE SPACE AND ASSIGN OFFSETS FOR EVERY INSTRUCTION.

PASS 2

FILL IN OPCODES AND INSTRUCTION FIELDS.

• DURING PASS 1, IF AN INSTRUCTION REFERENCES A LABEL OR A VARIABLE
NOT YET ENCOUNTERED, (FORWARD REFERENCE), ASM86 WILL TAKE A
GUESS AT THE CORRECT LENGTH FOR THAT INSTRUCTION.

• ASM86 CAN MAKE INCORRECT GUESSES I

12·13

FORWARD REFERENCES

THE JMP AND CALL INSTRUCTIONS DEFAULT TO NEAR (WITHIN SEGMENT)

DATA REFERENCES TO DATA IN A SEGMENT DEFINED LATER DEFAULTS TO USING THE
OS REGISTER

12·14

......
N
I

01

LOC OBJ

0000 9A9090
III ERROR 63. LINE
0003 2E8B 1690
III ERROR #3, LINE

0007 F4
0008 1111

0000
0000 00
0001 CB

FORWARD REFERENCING ERRORS

LINE

1
2
3
4

#4, (PASS 2)
5

#5, (PASS 2)
6
7
8
9

10
11
12
13
14
15
16
17
18

SOURCE

NAME
CODEI SEGMENT

SAMPLE5

ASSUME CS:CODEl
START: CALL WIZZY

INSTRUCTION SIZE BIGGER THAN
MOV DX,VARI

;Forward Reference to a FAR procedure.
PASS 1 ESTIMATE

INSTRUCTION SIZE BIGGER THAN PASS
;Forward Reference to a variable not

1 ESTIMATE

HLT
; accessible using DS register.

VARI DW 1
CODEl ENDS

CODE2 SEGMENT
ASSUME CS:CODE2

WIZZY PROe FAR
NOP
RET

WIZZY ENDP
CODE2 ENDS

END START

ASSEMBLY COMPLETE, 2 ERRORS FOUND

.......
N
I

.......
0'1

LOO OBJ

0000 9AOOOO----
0005 2E88160800

OOOA FlI
0008 1111

0000
0000 90
0001 C8

R

LINE

1
2
3
1I
5

6
7
8
9

10
11
12
13
III
15
16
17

SOURCE

CODE1

START:

VAR1
CODE1

CODE2

WIZZY

WIZZY
CODE2

ASSEMBLY COMPLETE, NO ERRORS FOUND

ONE SOLUTION

NAME SAMPLE6
SEGMENT
ASSUME CS:CODE1
CALL FAR PTR WIZZY ;Forward Reference using PTR operator
MOV DX,CS:VAR1 ;Forward Reference using explicit

; segment override •
HLT
OW 1
ENDS

SEGMENT
ASSUME CS:CODE2
PROC FAR
NOP
RET
ENDP
RNDS
END START

PTR OPERATORS

* THE PTR OPERATORS EXPLICITLY SPECIFY AN INSTRUCTION TYPE

EXAMPLES:

NEAR PTR
FAR PTR
BYTE PTR
WORD PTR
DWORD PTR

JMP FAR PTR THERE

INC WORD PTR /PU

NOTE: THERE IS ALSO A "SHORT" OPERATOR WHICH ACTS LIKE A PTR OPERATOR

WITHOUT THE PTR e.g. JMP SHORT XYZ

12-17

.......
N
I

.......
(Xl

LOC OBJ

0000
0000 90
0001 CB

0000 1111
0002 9AOOOO~p~p R
0007 2E8Bl60ooo
OOOC FlI
.,.~

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

ASSEMBLY COMPLETE, NO ERRORS FOUND

BETTER SOLUTION

SOURCE

NAME SAMPLE7
CODE2 SEGMENT

ASSUME CS:CODE2
WIZZY PROC FAR

NOP
RET

WIZZY ENDP
CODE2 ENDS

CODEl SEGMENT
ASSUME CS:CODE1

VAR1 DW ?
START: CALL WIZZY ;No Forward Reference, no problems.

MOV DX,VAR1
HLT

CODEl ENDS
END START

PROGRAMMING MODEL

[
EQUATES
DA T A SEGMENT(S) J • YOU CAN CHANGE THE ORDER OF

SEGMENTS AT LOCATE TIME. THIS

IS JUST FOR THE SAKE OF ASSEMBLER. [STACK SEGMENT J
[

CODE SEGMENT(S)]
WITH PROCEDURE(S)

MAIN
CODE SEGMENT

CONSTANTS

[!ROCEDURES]

~IN PROGRA~

12-19

FOR MORE INFORMATION

SEGMENT A TION AND ASSUME USAGE

- CHAPTER 2, ASM86 LANGUAGE REFERENCE MANUAL

FORWARD REFERENCING

- PAGE 1-3, ASM86 LANGUAGE REFERENCE MANUAL

SEGMENT OVERRIDES AND PTR OPERATOR

- CHAPTER 4, ASM86 LANGUAGE REFERENCE MANUAL

12-20

CHAPTER 13

INTERRUPTS

• iAPX 86,88 INTERRUPT SYSTEM

• CREATING AN INTERRUPT ROUTINE

• 8259A PRIORITY INTERRUPT CONTROL UNIT

• PROGRAMMING THE 8259A

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PROGRAMMED . INPUT/OUTPUT

START DEVICE AND POLL FOR COMPLETION

PROGRAM

EXECUTION

•
•
•

START

DEVICE

INPUT STATUS ~

POLL AND WAIT v ~

UNTIL DEVICE READY

13-1

INTERRUPT INPUT/OUTPUT

PROGRAM EXECUTION

•
•
•
•
• --------..
•

~ •
•
•
•

INTERRUPT SERVICE

ROUTINE

•
•
•
•
•

IRET

• INTERRUPTS ARE A,SYNCHRONOUS EXTERNAL EVENTS

13-2

AUTOMATIC

UPON

DETECTING

INTERRUPT

IRET

INTERRUPT SEQUENCE

• CURRENT INSTRUCTION FINISHES EXECUTION

• FLAGS ARE PUSHED ON THE STACK

• IF AND TF ARE CLEARED (DISABLES MASKABLE INTERRUPTS
AND SINGLE STEP)

• SAVE OLD CS ON THE STACK

• SAVE OLD IP ON THE STACK

• READ NEW CS AfD IP FROM INTERRUPT VECTOR TABLE

SERVICEfOUTINE

(
• FAR RETURN (POPS IP AND CS FROM STACK)

• POP FLAGS

INTERRUPT PROCESSING (RESPONSE) TIME - 61 CLOCKS
DOES NOT INCLUDE:

r-

TYPE 0
-
-

TYPE 1
-

",Y

-
-

1. COMPLETION OF CURRENT INSTRUCTION

2. SAVING REGISTER DATA

3. ANY WAIT STATES

13-3

8086,88
INTERRUPT VECTOR TABLE

II> 0

CS o

IP 1

CS 1

IP 255

CS
255

- o

-

-
-

/v

-

- 1023

TABLE STARTS AT ABSOLUTE
ADDRESS 0 IN MEMORY SPACE.

13-4

DEDICATED POINTERS

0: DIVIDE ERROR

1: SINGLE STEP - TF

2: NON-MASKABLE INTERRUPT

3: BREAKPOINT TRAP
4: OVERFLOW TRAP

5-31: RESERVED BY INTEL

iAPX 186,188 PRE-ASSIGNED INTERRUPT TYPES

Interrupt Name

'Type 0
lYpe1
NMI
Type 3
INTO
.Array bounds trap
Unused op trap
ESCAPE op trap
TImer 0
TImer 1
TImer 2
DMAO
DMA1
Reserved
INTO
INT1
INT2/1NTAO
INT3/INTA1

Vector
1}tpe (Decimal) Comments

o Divide error trap
1 Single step trap
2 Non-maskable Interrupt
3 Breakpoint trap
4 Trap on overflow
5 BOUND instruction trap
6 Invalid op-code trap
7 Supports 8087 emulation
8 Internal h/w Interrupt

18 Internal h/w Interrupt
19 Internal h/w Interrupt
10 Internal h/w interrupt
11 Internal h/w interrupt

9 *Reserved*
12 External Interrupt 0
13 External Interrupt 1
14 External Interrupt 2
15 External interrupt 3

13-5

INTERNAL INTERRUPTS

DIVIDE ERROR

SINGLE STEP

iAPX 186, 188 ONLY

ARRA Y BOUNDS TRAP

UNUSED OPCODE TRAP

ESCAPE OPCODE TRAP

TYPE CAUSED BY ...

o

5

6

7

QUOTIENT LARGER THAN DESTINATION

MOST INSTRUCTIONS IF TF IS SET

BOUND INSTRUCTION IF ARRAY INDEX
IS OUTSIDE BOUNDARY

CPU DIRECTED TO EXECUTE AN UNUSED
OPCODE

CPU DIRECTED TO EXECUTE ESC OPCODE
AND ESC TRAP SET IN RELOCATION REG

13-6

INT N

INT 3

INTO

SOFTW ARE INTERRUPTS

WHERE (b ~N ~ 255

SPECIAL ONE BYTE INSTRUCTION TO

REPLACE OPCODE FOR SOFTWARE

BREAKPOINTS

TYPE 4 INTERRUPT IF OVERFLOW FLAG

IS SET, OTHERWISE NEXT INSTRUCTION

13-7

SYSTEM CALLS ADV ANT AGES

• HARDWARE INDEPENDENCE

• RELOCAT ABLE CODE

• EFFICIENT USE OF THE SYSTEM

• MUL TIT ASK SUPPORT

• LESS CODE REDUNDANCY

13-8

EXAMPLE SYSTEM CALL OPERATION

YOUR PROGRAM INTERRUPT OPERATING

VECTOR TABLE SYSTEM
OOOOOH -- ~<-,,-

TERMINAL
I

I

I

I

;READ KEY

INT 52H

00148H OFFSET READ_KEY

0014AH SEG READ_KEY

003FFH

RETURN CHARACTER
IN AL REGISTER

13-9

READ_KEY:

"\
\

IRET

PI=tOBLEM:

HOW WOULD YOU WRITE THE CODE TO ASK THE

OPERATING SYSTEM TO READ A KEY FROM THE

KEYBOARD?

SOLUTION:

___ TELETYPE

\

\PARALLEL
KEYBOARD

INT 52H ; CALL TO OPERATING SYSTEMS READ_KEY

CMP AL,~DH; CHARACTER RETURNED IN AL

13-10

r-~

8088/8088

I--.!~

iNTA

IRO-

8259A

HARDWARE INTERRUPTS

INTERRUPT
CONTROL

UNIT

NMI - NON-MASKABlE INTERRUPT

EDGE TRIGGERED

INVOKES TYPE 2 INTERRUPT

INTR - MASKABlE INTERRUPT REQUEST (IF)
AND

13-11

lEVEL TRIGGERED

EXTERNAL HARDWARE MUST SUPPLY
INTERRUPT TYPE NUMBER

COMMUNICATIONS WITH EXTERNAL
HARDWARE SET UP BY INTA

INTERRUPT PROCESSING

INTR

'N'

IAPX 88,88

VECTOR TABLE

INT-PTR

13-12

INTERRUPT
SERVICE

ROUTINE

8259A PROGRAMMABLE INTERRUPT CONTROLLER

• PROVIDES UP TO 8 PRIORITIZED INTERRUPTS WITH FIXED OR

ROTATING PRIORITY SCHEMES.

• EXPANDABLE TO 64 INTERRUPTS WITH PRIORITY MODES

DEFINABLE IN GROUPS OF 8.

• ABILITY TO INDIVIDUALLY MASK INTERRUPTS.

• SUPPLIES INTERRUPT TYPE NUMBER IN RESPONSE TO

INTERRUPT ACKNOWLEDGE.

CPU INTERF'ACE

[
CA"

MASTER/SUVE
COMMUNICA110NS C""

CA ..

.. ,"
lUI .""111

SELECTlO~1 OR §P/Eri -f-_...J
MASTER/Sl.AVE [

DATA BliS
BUFFER ENABLE

13-13

13-14

INTERRUPT
CONTROL

LINES

~
1II'rI ...

•• •• ••
... 1
=}
....

'--_.1,1111

EXTERNAL
INTERRUPT
REQUESTS

IRO

8259A OPERATION

IRO

HOLD

INTR -.----------t------'

- ,..--- --I
INTA_:~:

I 'FREEZE

lL-..I: '-_____ ...J

LOOKS AT CURRENT REQUESTS AND

ALSO ANY INTERRUPTS IN-SERVICE.

IF REQUESTING LEVEL HAS HIGHEST

PRIORITY. IT IS PUT IN-SERVICE

AND AN INTERRUPT REQUEST IS SENT

TO CPU.

13-15

INITIALIZATION AND CONTROL

ISR

CLEAR

EOI

• TO USE THE 8259A, IT MUST BE INITIALIZED. THIS IS DONE

USING 3 OR 4 INITIALIZATION COMMAND WORDS (lCW1-ICW4) .

• ONCE INITIALIZED, THE 8259A'S OPERATION CAN BE

CONTROLLED OR MODIFIED WITH ANY ONE OF THREE

OPERATIONAL COMMAND WORDS <OCW 1-0CW3).

13-16

INITIALIZATION SEQUENCE

NO

13-17

ICW 1 AND ICW2

ICW1

~--------------~~

ICW2

AO 0'7 0 6 0 5 0 4

D [~T7 ...,-L---r---I-~~

13-18

1:: SINGLE I
o = CASCADE MO~

1 = LEVEL TRIGGERED INPUT

0= EDGE TRIGGERED INPUT

T7 - T3 OF MODEl
INTERRUPT TY~

INTERRUPT TYPE SELECTION

I HI Tel T51 141 T31 X I X I X I
~

EXAMPLE:

5 Msa, OF INSERTED
INTERRUPT TYPE AUTOMATICALLY,

RELATIVE TO IR
LEVEL CAUSING
INTERRUPT

ASSUME INTERRUPT TYPES 32-39

I T71 Tsl Te I T41 T31 X 1 X I X I USE THIS AS ICW2

001 0 00 0 oJ IRO
IRI 0 0 0 0 0 0

IR2 0 0 0 0 0 0

IR3 0 0 0 0 0

IR4 0 0 0 0 0 0

IR5 0 0 0 0 0 1

IRe 0 0 0 0 1 0

IR7 0 0 0 0

13-19

ICW3

• USED IN CASCADE MODE ONLY

• THE MASTER AND EACH SLAVE DEVICE HAVE DIFFERENT ICW3s.

ICwa (MASTER DEVICE)

Icwa (SLAVE DEVICE)

AO 0 7 0 e 0 5 0 4 0 a O 2 0 1 0 0

[J I x I x I x I x I X 110 2 1101 1100 I

13-20

l-IR INPUT HAS A SLAVE

O.IR INPUT DOES NOT HAVE
A SLAVE

SLAVE II)

o 1 2 a 4 II e 7

o 1 o 1 0 1 0 1

o 0 1 1 o 0 1 1

o 0 0 o 1 1 1 1

INTR---

f
ICW3 =,6

-

SET UP OF ICW3 ~

IR1 INTR ~
ICW3 = 1

SLAVE
MASTER IR2

10 = 1

INTR
~ ICW3- 2

SLAVE

10= 2

..,I

13-21

ICW4

1 AUTO EOI

o NORMAL EOI

U usl NORMAL EOI.

~x NON SUFFERED MODE Will HAVE NO PROSLEMS THAT WAY.
1 0 BUFFERED MODE SLAVE '"

1 1 BUFFERED MODE MASTER I ~ DETERMINES FUNCTION OF SP/EN

13-22

1 SPECIAL FUll Y NESTED
MODE

o FULLY NESTED MODE

FULLY NESTED MODE

• ENTERED BY DEFAULT UPON INITIALIZATION

HIGHEST IRO
IR1
IR2
IR3
IR4
IRS
IRe

LOWEST IR7

• IF AN INTERRUPT LEVEL IS IN SERVICE, FURTHER INTERRUPTS
FROM THAT LEVEL AND ALL LOWER PRIORITY LEVELS ARE

INHIBITED UNTIL AN EOI IS ISSUED.

13-23

MASTER/SLAVE CONFIGURATION

MASTER INTR --.I

SHOULD BE IN SPECIAL

FULL Y NESTED MODE.

PERMITS NESTING OF

INTERRUPTS ON SINGLE

IR INPUT.

IF NECESSARY,
MASTER PLACES
SLAVE 10
ON CASO-2

1'--1

iNTA -------..
I

CAS 0 - CAS 2

1 1
1 I
1 :

----v=-~ ___ Xl ~SLAVEIO _

13-24

NON-BUFFERED MODE

~.

JL

~ ADDR/DATA ADDRESS
8086 LATCHES

ADDRESS BUS

ALE STB

--
INTA INTR

DATA BUS

11
INT

8269A I---· IRO
--
INTA • · - f---- IR7

+ 5 --.A./"v SP

• SP IDENTIFIES 8259A AS MASTER OR SLAVE DEVICE

13-25

BUFFERED MODE

..
ADDR/DATA ADDRESS)

8086 LATCHES
ADDRESS BUS

STB

" DATA BUS ..
~ INTR

TRANS- . DATA BUS

CEIVERS

U -- OE

SO-52

jI,LE f- "
8288 lfc)-- 8259A •

" •
- •

e'EN EN -- --INTA INTA INT

IRO

IR7

I f

• EN USED TO CONTROL LOCAL DATA BUS

13-26

OPERATIONAL COMMAND WORDS

OCW 1 AND OCW2

OCW2

AO Dr D, De D4 D3 D 2DI DO

G I R 1 Bl jeOIJ 0 I 0 I L 2 I L I I L oJ

l

INTERRUPT MASK

1 MASK SET

o MABK REBET

IR LEVEL TO BE ACTED UPON

0123458r

o I 0 I 0 I 0 I

00110011

00001111

~ ~ r-!- NON SPECIFIC EOI COMMAND]END OF INTERRUPT
o I 1 -BPECIFIC EOI COMMAND

~ ro ~ ROTATE ON NON SPECIFIC EOI COMMAND]

~ ro ro ROTATE IN AUTOMATIC EOI MODE (SET) AR':;~A~~~~ ro to to ROTATE IN AUTOMATIC EOI MODE (CLEAR)

~ r, r;- 'ROTATE IN SPECIFIC EOI COMMAND J
t"-j" r, ro 'SET PRIORITY COMMAND :~~~~~N
to r, to NO OPERATION ,. LO-U ARE USED

13-27

ROTATING PRIORITIES

BEFORE

HIGHEST ----I~ IRQ HIGHEST
IR1
IR2

LEVEL 3 SPECIFIED
IR3

IN ROT ATE COMMAND
IR4
IR5
IRS

LOWEST --+- IR7 LOWEST

13-28

AFTER

~IR4

IR5
IRS
IR7
IRQ
IR1
IR2

.IR3

6 5

OCW3

D D 4 3

OCW3

D D 2 1 D 0

IESM1 SMM I 0 I 1 I P I RR I RIS I
I

I

13-29

READ REGISTER COMMAND

X 0 1

0 1 1

READ READ
NO IR REG IS REG

ACTION ON NEXT ON NEXT

RDPUlSE RD PULSE

] 1 POll COMMAND

o NO POLL COMMAND

SPECIAL MASK MODE

X 0 1

0 1 1

NO
RESET SET

ACTION SPECIAL SPECIAL
MASK MASK

HARDWAR:E SET UP FOR SAMPLE PROGRAM

~LI _________ _LA_D_D_R_ES_S __ B_US ______ ~ __ J __________ _L __ ~~2
~.._____I] : CONTROL aus FROM a+ : : i

~ DATA BUS (

'"
,.

~ ~

AQ 00-7 INTA INT ~ AO 00-7 INTA INT I
LAVE 8259A CAS ~

MASTER 8259Aj
IT ADDRESS 40H,41 H CAS 1 PORT ADDRESS 30H.31 H ... --- -

CA~._2_

ENI71 e l514131211 0 ~7EN i 71 e l 514131211 0
VCC

" I S

I POF

!
1'Sl>'

GNO

TIMER

13-30

.....
W
I

W

SETTING UP TIMER INTERRUPT

INT VECTOR SEGMENT AT 0
ORG 28H*4

TIMER_INT_IP DW ?
TIMER._INT._CS DW ?
INT_VECTOR ENDS

INTERRUPTS SEGMENT
ASSUME CS:INTERRUPTS

TIMER: STI ;ENABLE INTERRUPTS

EXIT:

PUSH AX
;PUSH OTHER REGISTERS USED IN INTERRUPT
jHANDLE THE TIMER INTERRUPT
;POP REGISTERS IN REVERSE ORDER OF PUSH

AL,60H
40H,AL
AL,ODH
4bH,AL
AL,40H
AL,O
EXIT
AL,64H
30H,AL
AX

;SPECIFIC EOI FOR SLAVE

;COMMAND TO READ ISR

;READ ISR
;CHECK TO SEE IF EMPTY
;DON'T SEND EOI TO MASTER
;SPECIFIC EOI FOR MASTER

IN~ERRUPTS

MOV
OUT
MOV
OUT
IN
CMP
JNZ
MOV
OUT
POP
IRET
ENDS

;SET UP POINTER TO INTERRUPT

I-'
W
I

W
N

SETTING UP POINTER TO INTERRUPT

MAIN SEGMENT
ASSUME CS:MAIN,ES:INT_VECTOR

INIT: CLI
MOV
MOV
MOV
MOV

AX,INT VECTOR
ES,AX -
TIMER INT IP,OFFSET TIMER
TIMER=INT~CS,SEG TIMER

;INITIALIZE TIMER AND OTHER PERIPHERALS

;INITIALIZE MASTER 8259A AND SLAVE 8259A

I

INITIALIZING MASTER 8259A AND SLAVE 8259A

;INITIALIZE THE MASTER

MOV AL,llH ;ICWl - CASCADE MODE, EDGE TRIGGER
OUT 30H,AL
MOV AL,20H ;ICW2 - INTERRUPT TYPES 32 -39
OUT 31H,AL
MOV AL,lOH ;ICW3 - MASTER HAS ONE SLAVE ON IR4
OUT 31H,AL

......

I MOV AL,llH ;ICW4 - SPECIAL FULLY NESTED MODE, w
I OUT 31H,AL NON-BUFFERED, NORMAL EOI w
w

;INITIALIZE THE SLAVE

MOV AL,llH ;ICWl - CASCADE MODE, EDGE TRIGGER
OUT 40H,AL
MOV AL,28H ;ICW2 - INTERRUPT TYPES 40 - 47
OUT 41H,AL
MOV AL,04H ;ICW3 - SLAVE ID IS 4
OUT 41H,AL , CONNECTED TO MASTER IR4
MOV AL,OlH ;Icw4 - FULLY NESTED MODE,
OUT 41H,AL . NON-BUFFERED, NORMAL EOI ,
STI ;ENABLE INTERRUPTS

;REST OF MAIN PROGRAM CODE GOES HERE

MAIN ENDS
END INIT

CLASS EXERCISE 13.1

ASSUME THAT YOU HAVE A PROGRAM THAT CONTAINS
THE INSTRUCTION

DIV BL

SINCE YOU DO NOT DO ANY RANGE CHECI<ING BEFORE THE
OPERATION, THERE IS A POSSIBILITY OF A DIVIDE ERROR.

WRITE AN INTERRUPT PROCEDURE FOR THE DIVIDE ERROR

INTERRUPT THAT LOADS THE AH REGISTER WITH FFH AND
THE AL REGISTER WITH OOH AND THEN RETURN. ALSO
WRITE THE INSTRUCTIONS TO CREATE THE POINTER.

13-34

FOR MORE INFORMATION ...

INTERRUPT STRUCTURE

- PAGE 4-6, iAPX 86/88, 186/188 USER'S MANUAL

PROGRAMMING THE 8259A (EXAMPLES)

.- PAGE 3-186, iAPX 86/88, 186/188 USER'S MANUAL

13-35

CHAPTER 14

MEMORY AND 10 INTERFACING

• MEMORY ORGANIZATION

• SPEED REQUIREMENTS

• ADDRESS DECODING

~----,---~

8086 MEMORY ORGANIZATION

TO THE PROGRAMMER:

1 MBYTE CAN BE ADDRES,SED AS

M BYTES OF MEMOR:Y

512 K WORDS OF MEMORY

NO CONSTRAINTS ON BYTE OR WORD MEMORY ACCESSES.

(WORDS CAN BE ON ODD OR EVEN BOUNDARIES)

14-1

8086 MEMORY ORGANIZATION

* MEMORY OFIGANIZED IN
TWO BANKS>

* ALL ODD AI)DRESSES IN

ONE BANK- EVEN ADDRESSES
IN OTHER

* BYTE ACCESS IN EITHER BANK

* ALIGNI:D WORD CAN BE

ACCESSED IN ONE BUS CYCLE

* NON-ALIGNED WORD REQUIRES

TWO BUS CYCLES

15 •• ----------... 0
7 ... ·----.0.7 .. ·---... 0

512K
WORDS

14-2

o
3

5 4

9 8

F E

13 12

15 --
FFFFA

FFFFD FFFFC

FFFFF FFFFE

ODD EVEN

AI.IONED
WORD

IIIION­
ALIGNED

WORD

CPU

MODULE

8086 MEMORY INTERFACING

MilO, RD, WR

AO-A19, SHE
8086

00-015

STANDARD ROM,
PROM, EPROM,

RAM,IIO

14-3

STANDARD MEMORY INTERFACE

AO-A 19 SHE

A1-A19 A1-A19

iiHE AO

CS CS

000 BANK EVEN BANK

08-015

00-07

BANK SELECTED BY CONNECTED TO

EVEN AO 00-07

ODD SHE 08-015

14-4

BANK SELECTION

=> AO-A2 BHE D AH, A1-A2

-
BHE

1
AO

0

4-c 3 2
CPU ~~

MODULE
5 4

7 ODD BANK 6
EVEN B ANK

=> D I>
V I

08-015 (HI)

""
=> K 00-07 (LO)

~ '--,----
ADDRESS A2 A1 AO BHE
BYTEIiO

BYTE@l

14-5

THE 8086 WILL INTERNALLY TRANSFER

A BYTE FROM ONE SIDE OF ITS DATA BUS TO THE OTHER IF IT NEEDS TO.

e.~I. IN ORDER TO MOVE A BYTE OF DATA FFWM AN ODD ADDRESS

INTO THE CL REGISTER

AO-A19 'i3HE ~

Al-A19 Al-A19

BHE A,O

CS

000 BANK EVE.N BANK

00,-07 --==>
14- 6

" AO-A2 BHE D ,,-A> A1-A2

BHE AO
1 0

3 2
--"" ~

CPU
MSB LSB

MODULE
7 ODD BANK 6

EVEN BANK

V 7\
v/l

08-015 (HI) ~ 1""

V
~

00-07 (LO) 1"", ~lo'

WHAT IS REQUIRED TO WRITE A WORD FROM MEMORY ADDRESS 4?

IS THIS AN ALIGNED WORD?

14-7

r-
AO-A2 ·eHE

D "-" A1-A2
BHE AO

1 0

3 2
CPU

MODULE LSB 4

7 ODD BANK MSB EVEN BANK

D 7,\
j ~

v/l.
I".. 08-015 (HI)

K
....

00-07 (LO)

WHAT IS REQUIRED TO WRITE A WORD FROM MEMORY ADDRESS 5?

IS THIS AN ALIGNED WORD?

14-8

8T A TIC RAM INTERFACE

A2

8205

~++-<fE1

+----+-+--++-4 E2

MI
iO

r--+-----1f--+--I-I E 3 07

~~ °01>--------1 _H-----\

A2
8205

~--...qE1

'--~-----4E2

~-~---lE3 °T

~ 08-015

14-9

PROM MEMORY INTERFACING

CURRENT PROM DEVICES

SINGLE 5VOL T POWER REQUIREMENTS

LOW POWER STANDBY MODE

CEI AND ()EI SELECT LINES

2758 1024 BYTES

2716 2048 BYTES

2732.2732A 4096 BYTES
2764 8192 BYTES

27128 16384 BYTES
27256 32768 BYTES

14-10

ROM INTERFACE

All Al-A14 Al-A14 Al-A14 Al-A14

All Ala A17 A15

AO 00 iiD
Al
A2 18K. I 18K. a 18K. I 18K. I

27128 27128 27128 27128

CE CE CE CE

8 8 8 8

00-07

08-015

14-11

I/O DEVICE SELECTION

*" IN/OUT PORTS CAN TRANSMIT BYTES (8 BITS) OR WORDS (16 BITS).

* BYTE 110 PORTS CAN COMMUNICATE ON THE LOW (00-07) DATA
BUS LINES C'R THE HI (08-015) DATA BUS LINES.

* EVEN ADDRE:SSED I/O PORTS TRANSFER DATA ON LOW (00-07) DATA
BUS LINES.

*" ODD ADDRESSED 110 PORTS TRANSFER DATA ON HI (08-0 15) DATA
BUS LINES.

WARNING: CARE MUST BE EXERCISED THAT EACH REGISTER WITHIN
AN 8 BIT PERIPHERAL CHIP IS ADDRESSED BY ALL EVEN
OR ALL ODD ADDRESSES.

14-12

8086

--

8086 I/O INTERFACE

LATCH
'ii'HE A1

., 'i"

"<! ? ~

CS Ao
8 BIT
PORT

ODD 1
ADDRESS 3

A 0 - A 191m

AO A1

i DO -

D8 _

CS AO
8 BIT
PORT

o EVEN
2 ADDRESS

0 7

0 15

) ADDRESS
BUS

DO NOT CONNECT "AO· LINE ON PERIPHERAL TO AO LINE OF ADDRESS BUS.

14-13

MEMORY SPEED REQUIREMENTS

PROCESSOR

• ALLOWS ~'EMORY AND 10 A SPECIFIC AMOUNT

OF TIME TO RESPOND WITH DATA AFTER IT

ISSUES AN ADDRESS

(MEMORY ACCESS TIME-Tad)

• MEMORY ACCESS TIME IS PROPORTIONAL TO

CLOCK SPEED

MEMORY

• REQUIRES FINITE: PERIOD OF TIME TO RESPOND

WITH DATA TO A VALID ADDRESS (Tacc)

14-14

CALCULATING PROCESSOR REQUIREMENTS

Tad=3 *Tclcl-Tclav-Tdvcl (PROCESSOR ACCESS TIME)

WHERE
Telel = CLOCK PERIOD

Telay = TIME PERIOD FROM CLOCK TO ADDRESS VALID'

TdYel = SET UP TIME FOR DATA IN

FOR A MINIMUM MODE 8086

5 MHZ 8086

Telel = 200 nsee

Telay '" 110 nsee

Tdvel... 30 nsee

Tad =

14-15

8 MHZ 8086-2

Telel = 125 nsee

Telay '" 60 nsee

TdYel '" 20 nsee

Tad =

PROCESSOR REQUIREMENTS

CLK --./

1--- Telel --~

ALE

ADO-AD15 AO-A15 DATA IN

Telav r- r-Tdyel--1

r-- Tad ---1

14-16

MEMORY TIMING

ADDRESS BUS ADDRESS

DATA BUS ;i~vM~ip.:,:,: .• :. ',:,::},.,)U' ;"':::::::::::::::::::::::::::::::":::::::::::::':: ::::'":;::::::::::::../
2:::::',:::::::{:::: , •• '\:> •• ',»"", DATA

'-------

j4----Tacc ----.1

14-17

BUS CONFIGURATIONS
(MINIMUM MODE)

8086 MINIMUM MODE
(MUL T/PLEXED BUS)

80813 MINIMUM MODE
(BUFFERED BUS)

8086 8282
r--- r-v LATCH

RAM

EPROM/HOM

14-18

8086 8282
1---_.-

I-- rv' LATCH 1----,-

"- 8286
'-- TRANS- 1\,-----1

CEIVER

8088

BUS CONFIGURATIONS

(MAXIMUM MODE)

8086 MA>CIMUM MODE
(BUFFERED BUS)

8288

'i:~~~ES; 1-----1

80a6

8088

14-19

WAIT STATES

ADDRESS

8282
LATCH

8286
TRANS-

L-___ CEIVER

8086 MAXIMUM MODE
(DOUBLED BUFFERED BUS)

8282 BUFFER
LATCH 111---...,

8288

TRANS­
CEIVER

TRANS- I---...l
CEIVER

RAM

EPROM/ROM

DATA

IN ANY SYSTEM YOU MUST CONSIDER ANY DELAYS ENCOUNTERED
BY BOTH THE ADDRESS OR THE DATA ON THE "ROUND TRIP".

l4-20

SYSTEM TIMING FACTORS

"* ANY BUFFERS, LATCHES AND DECODE LOGIC IN THE 8086

SYSTEM MUST BE CONSIDERED IN THE TIMING ANALYSIS

DELA Y TIMES:

8282/8286

8283/8287

8205/LOGIC

NON INVERTING

INVERTING

30 NSEC

22 NSEC

18 NSEC

* THESE DELAY TIMES MUST BE SUBTRACTED FROM
THE CPU ACCESS TIME.

14-21

ARE WAIT STATES NEEDED?

IF THE SYSTEM ARCHITECTURE JUST DOES NOT ALL.OW THE CPU TO SEe
DATA WITHIN ITS REQUIRED Tad YOU CAN EXTEND THE BUS CYCLE WITHI A
WAIT STATE (OR MULTIPLE WAIT STATES).

TO DETERMINE HOW MANY WAIT STATES:

POSITIVE

5;'NO
WAIT STATES

RECIUIRED

SOLVE FOR N

N*Tclcl)IRESULTI

14-22

Tdelay - TOTAL PROPAGATION DELAY FOR

ALL BUFFER. TRANSCIEVERS. AND LATCHES

IN ADDRESS AND DATA PATHS

8086 AND 8088 WAIT STATE CHART
5MHZ

MODE
1---.

BUS

STATIC
RAM

EEPROM

EPROM

DYNAMIC
RAM

,..---'---, so·· 8 2

8088-2

8M HZ

MEMORY MATRIX
NO WAITS STATES

MIN MODE MAX MODE
MUL TIPLEXED BUFFERED BUFFERED DOUBLE

BUS BUFFERED

2114-3 2114-3 2114-3 2114-3

2141-5 2141-5 2141-5 2141-5

2147 2147 2147 2147

2168 2168 2168 2168

2816 2816 2816 2816

2716-2 2716-2 2716-2 2732A

2732A 2732A 2732A

2764 2764 2764 2764

2118-7 2118-7 2118-7 2118-7

2164 2164 2164 2164

14-23

iSBC 86/05 DESIGN EXAMPLE

8282

(748373

CONTROL
SIGNALS

ADDRESS

14-24

ADDRESS DECODING
EXAMPLE USING BIPOLAR PROMS

ADDRESS

AO

+5V

3628A

CS3

r--+--jCS4

r-----+--+~ CSI

~-+---+--d CS2

3628A

L------4--+-~~CS3

MilO ------+----4 --..., CS4

BHE CS2

~-----QCSl

ADVANTAGES

HIGHL Y FLEXIBLE DESIGN ALLOWS:
DIFFERENT MEMORY COMPONENTS
FIELD MODIFICATIONS
EASY UPGRADE TO NEW MEMORY DEVICES

14-25

+5

-\ LOW BANK

-,/ CHIP SELECTS

+5

:=J HIGH BANK

--. CHIP SELECTS

DISADVANT AGES

HIGHER COST (?)
REDUCED ACCESS TIME

CLASS EXERCISE 14.1

1. WHAT IS THE FIRST ADDRESS OF THE FIRST LOCATION IN THE
:!186 +4 ON PAGE 14-9?

2. WHY DO WE NEED ONLY ONE ADDRESS DECODER IN A ROM MEMORY
AS SHOWN ON PAGE 14-117 WHAT MAKES THIS POSSIBLE?

3. CAN AN 8088 READ A WORD PORT?

4. DOES A 5MHZ 8086 CPU IN MINMODE BUFFERED SYSTEM REQUIRE
WAIT STATES TO ACCESS A 2764 EPROM? WHAT IF IT WERE AN
i3MHZ 8086? (2764 Tacc = 250 nsec)

5. IF A WAIT STATE IS REQUIRED, WHICH CHIP ACTUALLY GENERATES
THE WAIT STATE?

14- 26

FOR MORE INFORMATION ...

MEMORY INTERFACING AND ADDRESS DECODING

- AP-67. 8086 SYSTEM DESIGN

AVAILABLE MEMORY COMPONENTS

- MEMORY COMPONENTS HANDBOOK

RELATED TOPICS

IN SOME SYSTEMS THE TIMING OF THE MEMORY STROBES (RD.WR) MIGHT
ALSO BE A CONCERN. AP-67 COVERS THIS CONSIDERATION (Toe) IN DETAIL.

14-27

DAY 4 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

* IMPLEMENT AN ENCRYPTOR IN SOFTWARE USING THE XLATB INSTRUCTION

* MOVE A BLOCK OF MEMORY USING THE STRING MOVE INSTRUCTIONS

'* ADD THE PROPER ASSEMBLER DIRECTIVES TO A MODULE SO THA1' IT CAN

REFERENCE AND UlSE AN EXISTING PIECE OF SOFTWARE

*' EMULATE ON PAPER AN 8086 INTERFACED TO MEMOBY. GENERATING THE

PROPER SIGNALS 'TO ACCESS A BYTE OR A WORD ON ANY BOUNDARY

* DETERMINE WHETHER A PARTICULAR SYSTEM WILL REQUIRE WAIT STATES

GIVEN THE SYSTEM CONFIGURATION AND THE DEVICE SPECIFICATIONS

* OPTIONALLY DEBUG USING ICE-86

CHAPTER 15

PROGRAMMING TECHNIQUES

• JUMP TABLE (INDIRECT JUMPS)

• BLOCK MOVE (STRING INSTRUCTIONS)

• TABLE LOOK-UP (XLATB INSTRUCTION)

PROBLEM

JUMP TABLE
(INDIRECT JUMPS)

A PIFlOGRAM IS TO BE WRITTEN THAT READS THE VALUE OF AN 8 BIT

INPUT PORT AND TRANSFERS TO ONE OF A SET OF ROUTINES DEPENDING

ON THE VALUE READ. FIVE PROCESSING ROUTINES ARE PROVIDED AS
WELL AS ONE ERROR ROUTINE. IF THE VALUE READ IS IN THE RANGE

OF 0 ... 4 THEN THE PROGRAM SHOULD TRANSFEFt TO ROUTINE 0 •..

ROUTINE 4. IF THE INPUT VALUE IS OUT OF RANGE, GREATER THAN 4,

THE PROGRAM SHOULD TRANSFER TO THE ERROR ROUTINE.

15-1

ASSEMBL Y CODE
LOC OBJ LINE SOURCE

1 NAME JUMP TABLE
2

0000 3 PORT EQU OOH
4
5 CODE SEGMENT
6 ASSUME CS:CODE

0000 1COO 7 TABLE OW ROUTINEO,ROUTINE1,ROUTINE2,

0002 1EOO
0004 2000
0006 2200 8 & ROUTINE3,ROUTINE4
0008 2400
OOOA E400 9 START: IN AL,PORT
OOOC 3C04 10 CMP AL,4

I-'

I OOOE 770A 1 1 JA ERROR (J"J
I 0010 32E4 12 XOR AH,AH N

0012 8BF8 1 3 MOV DI,AX
0014 D1E7 14 SHL 01,1
0016 2EFF25 15 JMP TABLE[DI]
0019 F4 16 EXIT: HLT
001A EBFD 17 ERROR: JMP EXIT

18
001C 19 ROUTINEO:
001C EBFB 20 JMP EXIT
001E 21 ROUTINE1:
001E EBF9 22 JMP EXIT
0020 23 ROUTINE2:
0020 EBF7 24 JMP EXIT
0022 25 ROUTINE3:
0022 EBF5 26 JMP EXIT
0024 27 ROUTINE4:
0024 EBF3 28 JMP EXIT

29 CODE ENDS
30 END START

SOLUTION

STEPS

A TABLE IS CONSTRUCTED; EACH ENTRY IN THE TABLE
IS THE ADDRESS OF ONE OF THE PROCESSING ROUTINES.
THE FIRST ENTRY IN THE TABLE IS THE ADDRESS OF
ROUTINEO, THE SECOND THE ADDRESS OF ROUTINEl, .•..
AN INDIRECT JUMP INSTRUCTION WITH INDEXED ADDRESSING
WILL UTILIZE THE TABLE.

1. INPUT VALUE FROM PORT INTO AL
2. CHECK VALUE TO SEE IF IT IS OUT OF BOUNDS.

IF SO TRANSFER TO THE ERROR ROUTINE.
3:. ASSUME THAT DI WILL BE USED AS THE INDEX

REGISTER FOR THE INDIRECT JUMP. SET AH
TO ZERO TO MAKE A WORD VALUE

4. I'1OV AX TO DI
5. DOUBLE DI FOR WORD INDEXING
5. JUMP INDIRECT TO THE PROPER ROUTINE

15-3

JMP INSTRUCTION ADDRESSING

(INDIRECT JUMPS)

• INDIRECT JUMPS USE AN ADDRESS WHICH IS IN A REGISTER OR A
MEMORY LOCATION.

• INDIRECT JUMPS CAN USE ANY OF THE 8086,88 ADDRESSING MODES.

• ALL JUMP INSTRUCTIONS USE THE SAME MNEMONIC.

EXAMPLES:

JMP CX

JMP WORD PTR [B~

15-~

PROBLEM

BLOCK MOVE

STRING INSTRUCTIONS)

MANIPULATING LARGE BLOCKS OF MEMORY IS A COMMON AND TIME-CONSUMING
TASK OF COMPUTERS. WRITE A PROGRAM THAT MOVES A BLOCK OF DATA FROM
ONE MEMORY LOCATION TO ANOTHER. THE CODE SHOULD BE EFFICIENT AND FAST.

15-5

MOTIVATION FOR STRING OPERATORS

* WORD BLOCK MOVE WITHOUT STRING OPERATORS

DATA SEGMENT

SOURCE DW 100 DUP (?)

DESTINATION DW 100 DUP (?)

DATA ENDS

CODE SEGMENT
ASSUME CS: CODE, DS: DATA
MOV AX, DATA
MOY DS} AX

LEA SI, SOURCE
LEA DI, DESTINATION
MOV CX, LENGTH SOURCE

BLOCK: MOY AX, @!] 12 MICROSECONDS PER WORD
MOY IPll ' AX
ADD 51, 2
ADD DL 2
LOOP BLOCK

15-6

STRING INSTRUCTIONS

* BYTE AND WORD ORIENTED ONE BYTE INSTRUCTIONS

* USE DS:SI AS SOURCE POINTER }
AUTOMATICALLY

* USE ES:DI AS DESTINATION POINTER
INCREMENTS/DECREMENTS

* USE DIRECTION FLAG BIT
DF = 0 PROCEEDS TO HIGHER MEMORY ADDRESS
DF = 1 PROCEEDS TO LOWER MEMORY ADDRESS

* ADDITIONAL INSTRUCTION

STD
CLD

15-7

STRING INSTRUCTION

;LDO-- ~IJ Movse
MOVSW ;SI-SI+ 1 (+2 FOR WORD)

;01--01 + 1 (+2 FOR WORD)

f----------
,
1---

"-

-

f4----

ASSUMING DF=O

15-8

1)8

CMPSB
CMPSW

SCASB
SCASW

LODSB
LODSW

STOSB
STOSW'

OTHER STRING INSTRUCTIONS

COMPARE TWO BLOCKS OF MEMORY

SCAN FOR AN ITEM IN MEMORY

LOAD AXI AL WITH STRING ITEM

STOREAX/AL IN MEMORY

NOTE: THESE INSTRUCTIONS PERFORM ONE BYTE OR WORD OPERATION ONLY.

15-9

REPEAT INSTRUCTION PREFIX

* ONE BYTE INSTRUCTION PLACED BEFORE STRING INSTRUCTION TO FORM
BLOCK STRING OPERATIONS

* FOR STRING INSTRUCTIONS THAT DO NOT AFFECT THE FLAGS:

(
MOVS

REP STOS
LODS

* FOR STlHNG INSTRUCTIONS THAT DO AFFECT THE FLAGS:
- REPZ, REPE

- REPNZ, REPNE

15-10

f CMPS

1 seAS

OPERATION OF THE

REP PREFIX

DfCIlt:MENT
CX IY \

{
'IIOI.ell
AND ')F WOULD
TYPI(:"llY liE
IN" "IUZEO HEAl

•

STIlINO DF DfLTA

PRUENT

ADJUST
SIIOI

" DELTA

r-----l
I IH$,~~~TTlON I
L _____ J

15-11

I
I

IYTE
lYlE
WORD
WORD

0 \
I -\

• 2
I -2

PREFIX l

AEPE \
REPZ ,

At:PHf • REPNl 0

EXAMPLES OF BLOCK OPERATIONS

BLOCK MOVE

DATA

SOURCE

DESTINATION

DATA

CODE

REP

SEGMENT

OW

OW

ENDS

SEGMENT

100 DUP(?)

100 DUP(?)

ASSUME CS: CODE, OS: DATA, ES: DATA

MOV AX, DATA

MOV OS, AX

MOV ES, AX

CLD

LEA SI, SOURCE

LEA 01, DESTINATION

MOV CX, LENGTH SOURCE

MOVSW

15-12

;3.4 MICROSECONDS PER

;WORD

PROBLEM

T ABLE LOOK UP

(XLATB INSTRUCTION)

ASSUME WE HAVE A TEMPERATURE SENSOR ATTACHED TO AN 8 BIT ACCURACY
ANALOCI TO DIGITAL CONVERTER. THIS CONVERTER IS ATTACHED TO PORT' 12

OF OURI 8086 SYSTEM. UNFORTUNATELY. THE SENSOR DOES NOT PRODUCE A
LINEAR OUTPUT

WE WANT TO WRITE A PROCEDURE THAT INPUTS FROM THIS PORT AND QUICKLY
CONVERTS THE INPUTTED VALUE TO THE CORRECT TEMPERATURE VALUE.

SOLUTION ----"
USE A 'CONVERSION lrABLE AND "LOOK-UP' THE CORRECT VALUE.

2!00

AC"rUAL
TEMPERATURIE

15-13

TABLE LOOK -UP

SENSOR RESPONSE
CONVERSION TABLE

o 0

50
1------1 - - - - - - I (100.137) 95

100 137

, ,
200 250

INI~UTTED VALUE

OFFSET INTO TABLE = VALUE READ

DATA liN TABLE= CORRECT TEMPERTURE

15-14

~ I

LOC OBJ

OOOC

0300 00
0000 113

0000
0000 IE
0001 53
OOO~ 1:38----
0005 3ED8
0007 8D1EOOOO

OOOB E40C
DODD D7
OOOE 5B
OOOF IF
0010 eB

R

LINE

1
2
3
4
5
6
'7
8
9

10
11
12
13
111
15
16
17
18
19
20
21
22
23
24

ASSEMBLY COMPLETE, NO ERRORS FOUND

TABLE LOOK -UP

SOURCE

SENSOR
DATA 1
TABLE

DATAl

CODE1

INPUT

AGAIN:

INPUT
CODE1

NAME TABLE LOOKUP
EQU 12
SEGMENT

DB 0,2,4,6,8,10,12,14, 16, 18,20,23,~5
DB 27,29,30,32,34,35 j ••••••••••• ctc.

ENDS

SEGMENT
ASSUME CS:CODE1,DS:DATAl
PROC FAR
PUSH DS
PUSH BX
MOV AX, DATAl
MOV DS,AX
LEA BX,TABLE

IN
XLATB
POP
POP
RET
ENDP
ENDS
END

AL,SENSOR

BX
DS

jSave registers except AX

jInitialize segment register

jThe XLAT lnst. requires BX to
j point to the lookup t3ble.
jGet input from sensor.
iLinearized result 1s now in AL

SOLUTION

THE XLATB INSTRUCTION USES THE AL REGISTER AS AN INDEX INTO
A BYTE TABLE. THE BYTE ACCESSED IS PUT IN THE AL REGISTER.

AH AL

BX 0

2
AL 3

4

5

6

7 ,...

XLAT IS USEFUL FOR MANY CONVERSIONS EJ3., ASCII TO EBCDIC

15-16

CLASS EXERCISE 15.1

WRITE A PROCEDURE THAT WILL ENCRYPT THE CONTENTS OF A BUFFER
WHICH CONTAINS NUMBERS IN HEX ASCII FORMAT SO THAT:

30H - ASCII 0 BECOMES AN ASCII 5
31H - . 1 . 0
32H - . 2 4
33H - 3 7
34H - 4 2
35H-

. 5 . 8
36H- 6 3
37H-

. 7 9
38H- 8 1
39H - 9 6

USE THE XLAT B INSTRUCTION. ASSUME THAT WHEN THE PROCEDURE IS

CALLED THE ES AND SI REGISTERS CONTAIN THE ADDRESS OF THE

BUFFER AND THE CX REGISTER CONTAINS THE NUMBER OF THE CHARACTERS

IN THE BUFFER •.

15-17

FOR MORE INFORMATION

BRANCH TAIBLE (EXAMPLE)

- APPENDIX G, ASM86 LANGUAGE REFERENCE MANUAL

STRING AND XLATB INSTRUCTIONS

- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

- CHAPTER 3, iAPX 86/88, 186/186 USER'S MANUAL

STRING AND XLATB INSTRUCTIONS (EXAMPLES)

- PAGE 3-191, iAPX 86/88, 186/168 USER'S MANUAL

RELA TED TOPICS ..•

THERE ARE MORE 8086 INSTRUCTIONS THAT ARE NOT DISCUSSED IN THIS

WORKSHOP. IT WOULD BE A GOOD IDEA TO LEAF THROUGH THE COMPLETE
LIST IN CHAPTER 6 OF THE ASM86 LANGUAGE REFERENCE MANUAL.

15-18

CHAPTER 16

MODULAR PROGRAMMING

• PUBLIC DECLARATIVE

• EXTRN DECLARATIVE

• COMBINING SEGMENTS

• LlNK86

• LOC86

WHAT IS MODULAR PROGRAMMING?
3DK

PROGRAM

2K 2K

• PROBLEM IS BROKEN INTO MANAGEABLE PARTS.

• MODULES ARE DEVELOPED CONCURRENTLY.

• EASIER TO DEBUG AND MAINTAIN.

16-1

SOFTWARE DEVELOPMENT PROCESS

r: .. « LllE
r----'
I "'ANI- I
I UtO. I
L ___ J

[~
r----'

IO~lIIcl I ,UNI- I
,... I UtO. I

L ___ J

~~
r----'

IOURCE I '."NI. I
flU I LA10lll I

L ___ J

IO~'"Cl I tIiANI- I ~~
r----'

fiLl I LAIO. I
L ___ J

OIJICt
MODUlE
".O.J"

WITH

16-2

r----.
I """"ull I

I·t~ I
I IllllnlN I
L ___ J

r----.
I IX ••• " :

: .. ':'.. I
L __ J

2K

r- --.
I lU.. I
I W:l.:~. I
I LOADER I
L ___ J

LINKAGE

THE L1NK86 PROGRAM COMBINES RELOCATABLE OBJECT FILES TO ACT AS IF

THEY WERE CREATED AT ONE TIME. ALL REFERENCES BETWEEN MODULES

ARE RESOLVED.

L1NK86 ALLOWS A PROGRAM TO BE BROKEN UP INTO MODULES SO THAT THE
ENTIRE PROGRAM DOES NOT HAVE TO BE RETRANSLATED EVERY TIME CHANGES

ARE MADE.

16-3

RELOCATION

THE ABILITY TO ASSIGN MEMORY ADDRESSES TO A PROGRAM. AFTER IT HAS

BEEN TRANSLATED.

ASM86 AND PLM86 MARK SOME ADDRESSES AS BEING RELOCATABLE. THE

ADDRESSES WILL BE CONVERTED TO ABSOLUTE ADDRESSES BY THE

LOC86 PROGRAM.

16-4

ITf QUESTIOO:
HOW TO REFERENCE LABELS AND VARIABLES IN OTHER
ASSEMBLED MODULES ?

NAME MOILA
SEGA SEGMENT

ASSUME CS:SEGA

CALL PROCA

~EGA ENDS

END

NAME MOD_B
SEGB SEGMENT

ASSUME tSISEGB

PROCA PROC fAR

RET

PROCA ENDP

SEGB ENDS

END

IpROCA IS UNDEFINED IN THE SEGA MODULE. THE TWO MODULES
I«JlILD HAVE TO BE REASSEMBLED TOGETHER TO ALLOW THE
IREFERENCE TO PROCA

16-5

HE ANS\oIER:
BY USING PUBLIC AND EXTRN DECLARATIVES WITH THE TWO MODULES
llNK86 CAN RESOLVE EXTERNAl REFERENCES

NAME MOD_A
EXTRN PROCA:FAR

SEGA SEGMENT

ASSUME CS:sEGA

CALL PROCA

SEGA ENDS

END

16-6

NAME MOD_B

PUBLIC PROCA

SEGB SEGMENT

ASSUME CS:SEGB

PROCA PROC FAR

PROCA ENDP

SEGB ENDS

END

PUBLIC AND EXTERNAL DECLARATIVES

PUBLIC MAKES A NAME AVAILABLE TO OTHER MODULES.

EXTRN MAKES NAMES DEFINED ELSEWHERE USABL.E IN THIS MODULE.

EXAMPLES:

PUBLIC

EXTRN

.. ATTRIBUTES

NEAR, FAR

XYZ, WP, ERS

FOO: BYTE *

BYTE, WORD, DWORO

ABS

16-7

......
en
I

OJ

8086/8081/8088 MACRO ASSEMBLER

LOC OBJ

0000 (10
7111
)

0014

2110

LINE

1
2
3
4
5
6
1
8
9

10

11
12
13
14
15
16
17

0000 B8---- R 18
0003 8EDO 19
0005 80261400 20
0009 BAl021 21
oooe E400 22
OOOE 52 23

MAIN PROGRAM

DEMO 09/01/80 PAGE 1

SOURCE

,THIS ROUTINE INPUTS AND OUTPUTS TO THE I/O BOX OF THE MOS.
,IT USES AN EXTERNAL DELAY ROUTINE TO DELAY 1 SECOND
,BETWEEN A INPUT AND A SUBSEQUENT OUTPUT.

NAME DEMO

STACK

TOP
STACK

CODE

SECOND

START:

LOOP

.Q.~fij(:::::::~.~:1::~t~~> ,MUST DECLARE TYPE OF EXTRN

SEGMENT
OW 10 DUP (1)

EQU THIS WORD
ENDS

SEGMENT
ASSUME CS:CODE,SS:STACK
EQU 10000 ,DELAY PARAMETER FOR 1 SECOND

MOV AX, STACK
MOV SS,AX
LEA SP,TOP
MOV OX, SECOND
IN AL,O
PUSH OX ,PUSH DELAY ONTO STACK

::(j:PPf:::::is~:O:9~4++;:··::::· :.:.:".i!::::::.: : ••• ::.: •••••• ::.~:.}}:::::: :::::::-:-'.' ::.·t:<\L.1V: .·~~~l\·t
0014 E600 25
0016 EBF4 26

21
28
29

CODE

OUT O,AL
JMP LOOP

ENDS
END START

-0"1
I
\0

8086/8081/8088 MACRO ASSEMBLER

LOC OBJ

0000
0000 51
0001 50
0002 55
0003 8BEC
0005 88460A
0008 OBCO
OOOA 1401
OOOC B118
OOOE D2E9
0010 48
0011 15F9
OOll 5D
0014 58
0015 59
0016 CA0200

LINE

1
2
3
4
5
6
1
8
9

10
11
12
II
14
15
16
11
18
19
20
21
22
23
24
25
26
21
28

SUB PROGRAM

DEM02 09/01/80 PAGE 1

SOURCE

,THIS IS THE DELAY ROUTINE. THE ROUTINE WILL DELAY N*
,100 MICRO SECONDS. N IS PASSED IN ON THE STACK.

NAME DEM02

JW:IMrI~{ ,DECLARE DELAY AS A GLOBAL NAME

PRO SEGMENT
ASSUME CS:PRO

(jet.t(t?~~~){t~~:~r-(
PUSH
PUSH
MOV
MOV
OR
JZ

LOOP MOV
SHR
DEC
JNZ

EXIT: POP
POP
POP
RET

DELAY ENDP
PRO ENDS

END

AX
BP
BP,SP
AX, (BP+lO)
AX,AX
EXIT
CL,18H
CL,CL
AX
LOOP
BP
AX
CX
2

,FAR PROC., PARAME'l'ER AT BP+6
,SAVE CX, NOW PARAMETER AT BP+8
,SAVE AX, NOW PARAMETER AT BP+lO

,GET -N- OFF STACK.
,CHECK FOR 0
,IF 0, QUIT PROCEDURE
,TIME DELAY FOR 100 MICRO SECOND

COMBINING SEGMENTS

SE~ A
"- ,

f-

f- ,

f-

1--

ONE
LOGICAL
SEGMENT

'--....,.._ i~::; I·~_:_A.....----'
MANY MODULES

USES NEAR CALLS AND JMPS

ONE PHYSICAL SEGMENT

16-10

COMBINING LOGICAL SEGMENTS INTO A PHYSICAL SEGMENT

SEGA

SEGA

SEGA

SEGA

SEGMENT
ASSUME

ENDS
END

SEGMENT
ASSUME

ENDS
END

16-11

PUBLIC
CS:SEGA

PUBLIC
CS:SEGA

PLACEMENT OF SEGMENTS WITH PUBLICS

CS ~ ,----...,
SEGA FROM

MODULE III

SEGA FROM

MODULE #2

4--"-_--- ALL OFFSETS MUST

BE ADJUSTED

ALL REFERENCES ARE WITHIN ONE PHYSICAL SEGMENT; NEAR

JUMPS AND CALLS CAN BE USED.

16-12

......
0'1

•
w

MAIN PROGRAM

8086/8087/8088 MACRO ASSEMBLER DEMO 09/01/80 PAGE 1

LOC OBJ LINE SOURCE

,THIS IS THE SAME ROUTINE AS SHOWN EARLIER.
,IT NOW CONTAINS A PUBLIC CODE SEGMENT SO THAT
,NEAR CALLS AND JUMPS CAN BE USED.

NAME uEMO

1
2
3
4
5
6
7
8
9

~~<::{:p~~t~~~:: ,MUST DECLARE TYPE OF EXTRN

0000 (10
1111
)

0014

10

11
12
13
14
15

STACK

TOP
STACK

SEGMENT
OW 10 DUP (1)

~QU THIS WORD
ENDS

~(#i") /<:~~::i6j~~~r
ASSUME CS:CODE,SS:STACK

2710 16
17

SECOND EQU 10000 ,DELAY PARAMETER FOR 1 SECOND

0000 B8---- R 18 START: MOV AX, STACK
0003 8EDO 19 MOV 55,AX
0005 8D261400 20 LEA SP,TOP
0009 BAI027 21 MOV DX,SECOND
OOOC E400 22 LOOP: IN AL,O
OOOE 52 23 PUSH DX
~6Mi'\":fj.9.::><:>::{<:::~»< ::::::<~.:: -:-:--:->:-:<-:::: :-:t.i\t.t:)PE.liA.V:
0012 E600 25 OUT O,AL
0014 EBF6 26 JMP LOOP

27
28
29

CODE ENDS
END START

,PUSH DELAY ONTO STACK

I--'
0)
I

I--'
..j:::.

8086/8087/8088 MACRO ASSEMBLER

LOC OBJ

0000
0000 51
0001 50
0002 55
0003 8BEC
0005 8B4608
0008 OBCO
OOOA 7407
OOOC B178
OOOE D2E9
0010 48
0011 75F9
0013 5D
0014 58
0015 59
0016 C20200

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

SUB PROGRAM

DEM02 09/01/80 PAGE 1

SOURCE

,THIS IS THE DELAY ROUTINE. THE ROUTINE WILL DELAY N*
1100 MICRO SECONDS. N IS PASSED ON THE STACK.

NAME DEM02

)?:~.~~¢}j)~t:

:::~~~::HC::::::~.~::::~·~i~{
ASSUME CS:CODE

>*l.¢~j:::::::::::::~:::::::»~~*>

PUSH AX
PUSH BP
MOV BP,SP
MOV AX, (BP+8)
OR AX,AX
JZ EXIT

LOOP: MOV CL,78H
SHR CL,CL
DEC AX
JNZ LOOP

EXIT: POP BP
POP AX
POP CX
RET 2

DELAY ENDP
CODE ENDS

END

,DELAY IS A PUBLIC NAME

,BOTH SEGMENTS SHARE SAME NAME

,NEAR PROC., PARAMETER AT BP+4
,SAVE CX, NOW PARAMETER AT BP+6
,SAVE AX, NOW PARAMETER AT BP+8

,GET WNW OFF ST~CK FOR DELAY
,CHECK FOR 0
,IF 0, QUIT PROCEDURE
,TIME DELAY FOR 100 MICRO SECOND

REFERENCING EXTERNAL OAT A (ONE ITEM)

NAME MODl

DATA SEGMENT

PUBLIC

BUFFER DB

WBUFFER OW

BUFFER,WBUFFER

100 DUP(?)

100 DUP(?)

DATA

CODE

BEGIN:

CODE

ENDS

END

NAME

EXTRN

SEGMENT

ASSUME

MOV

MOV

MOV

ENDS

END

MOD2

BUFFER:BYTE

CS:CODE,DS:SEG BUFFER

AX,SEG BUFFER

DS,AX

AL,BlIFFER[SIJ

BEGIN

16--15

REFERENCING EXTERNAL OAT A (MULIPLE ITEMS)

DATA

BUFFER

WBUFFER

DATA

DATA

DATA

CODE

BEGIN:

CODE

NAME MODl

SEGMENT PUBLIC

PUBLIC BUFFER,WBUFFER

DB 100 DUP(?)

DW 100 DUP(?)

ENDS

END

NAME MOD3

SEGMENT PUBLIC

EXTRN

ENDS

SEGMENT

ASSUME

MOV

MOV

BUFFER:BYTE,WBUFFER:WORD

CS:CODE,DS:DATA

AX,DATA

DS,AX

MOV AL,BUFFER[SIJ

MOV WBUFFER,DX

ENDS

END BEGIN

16-16

DEVELOPMENT CYCLE WITH LlNK86 AND LOC86

INPUlS
LINK ..

COMMAND
AND

CONlROLS

LINK .. /LOC ..
OUTPUTS INPUT

10UNO
OR

LINKED
OBJECT
MODULE

16-17

LlNK86 SYNTAX

LOC ..
COMMAND

AND
CONTROLS

-RUN LINK86 FILENAME.FILENAMEG •. JITO FILENAM~~O MA~

~RINT (FILENAME)]

LOCATED
ABSOLUTE

OBJECt
MODUU

ERROR
MESSAGES

[~IND jgRDER(SEGMENTS(SEGNAME) ••. J]

CONSOLE
MESSAGES

10UND
ODJECT
MODULE

1I~lg8m°Jts J ..----. Lr---
"I LINKe. I---------:::'ND----OBJECT

IIODULE

L-r~
CONSOLE
MESSAGES

LINKED
OBJECT
MODULE
".LHK"

PRINt
fiLE

..... P1~·

16-18

LOC86 SYNTAX

-RUN LOCS6 FILENAME ITO FILENAM~ [PRINT (FILENAMEn

~O MA~

O'JECT
MODUll

INVOCATION
LINE CONIROlS

~DDRESSES(SEGMENTS(segment [. .• J 11
[9RDER(SEGMENTS(segment G ..] fI
~OOTSTRA~

fSTARTI

!flAME (MODNAMEi]

[NITCODE [JADDRESS!Il

L1r---l
1-__ I A'SOlUTE L :rCII

- JI-I --l · 3g~t~1
CONSOLE
MESSAOEI

16-19

:IIX]

USING LlNK86 AND LOC86

HIE PROBLEM:

* MESSAG.OBJ IS A PROGRAM THAT USES THE ROUTINES IN

READ.OBJ AND PRINT.OBJ TO INPUT AND OUTPUT

CHARACTER(S).

* MESSAG. OBJ CONTAINS THE FOLLOWING SEGlliENTSj

STACK) CODE AND DATA.

* THE SEGMENTS ARE TO BE LOCATED WITH TUE STACK SEGMENT

AT 200H, THE CODE SEGMENT AT 300H AND THE REMAINING

SEGMENTS FOLLOWING IN ANY ARBITRARY ORDER.

16-20

THE SOLUn ON:

RUN} LINK86 MESSAG.OBJ,READ.OBJ,PRINT.OBJ

RUN Loe86 MESSAG.LNK ADDRESSES(SEGMENTS(STACK(200H),CODE(300H»)

1. RUN IS NECESSARY FOR SERIES III ONLY.

16-21

CLASS EXERCISE 16.1

ADD THE ASSEMBLER DIRECTIVES THAT ARE NECESSARY FOR THESE
TWO MODULES TO BE LINKED TOGETHER

NAME MOD A NAME MODS

DATA SEGMENT BJ:ODE SEGMENT

USEFUUATA DB ? ASSUME CS:B_CODE

DATA ENDS

A-CODE SEGMENT

ASSUME CS:A""pODE MOV AL. U8EFU~DATA
HANDY PROC FAR

MOV AX. 0 CALL HANDY
RET

HANDY ENDP

AJ:ODE ENDS B_CODE ENDS
END END

15-22

FOR MORE INFORMATION ...

LlNK86

- iAPX 86,88 FAMILY UTILITIES USER'S GUIDE

LOC86

- iAPX 86,88 FAMILY UTILITIES POCKET REFERENCE CARD

'COMBINING SEGMENTS, PUBLIC AND EXTRN DECLARATIVE

- CHAPTER 2, ASM86 L.ANGUAGE REFERENCE MANUAL

RELATED TOPICS ...

LlB86 IS A UTILITY PROGRAM TO MANAGE COLLECTIONS OF DEBUGGED MODULES.
(SEE THE LAPX 86,88 FAMILY USER'S GUIDE)

THERE ARE OTHER WAYS OF COMBINING AND MANIPULATING SEGMENTS DURING
ASSEMBL V, LINK, AND LOCATE. CLASSES AND GROUPS ARE TWO SUCH FACILITIES
PROVIDED BV ASM86. CLASSES ARE A WAY OF LOCATING A GROUP OF SEGMENTS
AT SOME PHYSICAL ADDRESS. THIS IS MOST OFTEN USED TO SEGREGATE ROM-BASED
SEGMENTS FROM RAM-BASED SEGMENTS. GROUPS ARE A WAY OF COMBINING
DIFFERENT LOGICAL SEGMENTS INTO ONE PHYSICAL SEGMENT. IT WORKS
SIMILARLY TO THE PUBLIC SEGMENT COMBINE TYPE EXCEPT THAT THE COMBINING
SEGMENTS MAY HAVE DIFFERENT NAMES. SEE CHAPTER 2 OF THE ASM86 LANGUAGE

REFERENCE MANUAL.

16-23

CHAPTER 17

INTRODUCTION TO THE iAPX 186, 188 MICROPROCESSOR

• DESCRIPTION

• ENHANCEMENTS

• NEW INSTRUCTIONS

• PERIPHERALS

READY

LOGIC

READY

IAPX
88,88

TYPICAL iAPX 86,88 SYSTEM

DECODE

LOGIC

INTERRUPT

CONTROLLER
TIMER

DMA

CONTROLLER

SYSTEM

MEMORY
SYSTEM]

1/0

17-1

SAtME SYSTEM USING THE iAPX 186, 188

ADDRESS BUS

pcs 7,
/

t cs 6 I

\! \/ I +
iAPX 186

SYSTEM SYSTEM

MEMORY 1/0

~ ~.
DATA BUS

-v

17-2

1

lAP X 186 BLOCK DIAGRAM

"A CPU BOARD ON A SINGLE SILICON CHIP"
o

CLOCK CPU INTER·
RUPTS

TIMERS

INTERNAL BUS

I DMA
CHANNELS

Combines 10 of the most common IAPX 86 system
components Into one

17-3

iAPX 186 PERIPHERAL INITIALIZATION

D On-chlp peripheral. are conlrolled via a block or 18-bll reglsler.
D The block u ••• 258 byle. or add,ess .pac.
D Reglslers ar. m.mory or 110 mapped
o Peripherals are Iocaled allhe lop or 110 apace aller reaal (OFFOOH - OFFFFH)
D 256 byle block la felocalabl. anywhere In Ih. 1 megabyte memory

apece Of 64K I/O apace aller Inlllallzallon

REOlstER BLOCK r -11 - - - - - - - -.. - ., 11 o
1-'-

X A

B
C

D

X

X

X

AH At.
lit.
c.. Ca.
DII "-

BP

BP

BI

DI

I IP I STATU8

~ 8S
DS
E8

L
___________ ...1

[§!!!!!OOL BLOCK POINTER I MEMORY OR 1i0 MAPPED •

17-4

DMACONTROL

CtUP SELECt CONtROL

258 BYTE8

TIMER
CONTROL

INTERRUPT
CONTROL

-'-

iAPX 186,188 INTERRUPT CONTROL UNIT BLOCK DIAGRAM

TIMER TIMER TIMER DMA DMA

~ U INTO INT,...1_IN_T_2_IN Uj
TIMER

CONTROL REG.

DMAO
I CONTROL REG.

DMA1
CONTROL REG.

EXT. INPUT 0
CONTROL REG.

EXT.INPUT 1
CONTROL REG.

EXT. INPUT 2
CONTROL REG.

INTERRUPT
PRIORITY
RESOLVER

INTERRUPT
REQUEST TO

INTERRUPT
REQUEST REG.

INTERRUPT
MASK REG.

...-__ ~ IN-SERVICE
REG.

PRIORITY
MASK REG.

INTERRUPT
STATUS REG.

ADDRESS/DATA > < PROCESSOR

I~i -------~~--------V

17 -5

iAPX 186,188 INTERRUPT CONTROL UNIT

• ACCEPTS INTERRUPTS FROM INTERNAL SOURCES (DMA, TIMEBS) AND
FROM 5 EXTERNAL PINS (NMI + 4 INTERRUPT PINS)

• PROVIDES FULLY NESTED, SPECIAL FULLY NESTED FEATURE:S OF

THE 8259A

• EXPANDABLE TO 128 EXTERNAL INTERRUPTS BY CASCADIN~3
MUI. TIPLE 8259A'S

- iAPX 186 CAN BE CONFIGURED TO SUPPORT TWO MASTER 8259A'S

• EIGHT ()ISTINCT PRIORITY LEVELS

• PROGRAMMABLE PRIORITY LEVEL FOR EACH INTERRUPT SOURCE

• LEVEL OR EDGE TRIGGERED PROGRAMMABLE MODES FOR EACHI
EXTERNAL INTERRUPT SOURCE.

17-6

iAPX 186,188 TIMER/COUNTER BLOCK DIAGRAM

TIMER 0

MAX COUNT VALUE
A

MAX COUNT VALUE
B

MODE/CONTROL

TO
INT.
REO.

ALL 18 BIT REGISTERS

TIMER 1

T1
INT.
REO.

MAX COUNT VALUE
A

MAX COUNT VALUE
B

MODE/CONTROL

ADDRESS/DATA BUS

17-7

T20UT

TIMER 2

MAX COUNT VALUE

MODE/CONTROL

iAPX 186 TIMER FEATURES

DMA
REQ.
T2
INT.
REO.

• 3 INDEPENDENT 16-BIT PROGRAMMABLE TIMER/COUNTERS
(64K MAX COUNT)

• TIMERS COUNT UP

• TIMER REGISTERS MAYBE READ OR WRITTEN AT ANY TIME

• TIMERS CAN INTERRUPT ON TERMINAL COUNT VIA INTERNAL
INTERRUPT CONTROLLER

• TIMERS CAN HALT OR CONTINUE ON TERMINAL COUNT

• TIMER 0 AND TIMER 1 OPTIONS:
- ALTERNATE COUNT BETWEEN INTERNAL MAX COUNT REGISTERS

- RETRIGGER ON EXTERNAL EVENT

- COUNT INTERNAL CLOCK/EXTERNAL PULSES

• TIMER 2 OPTIONS:
- CLOCK COUNTER (REAL-TIME CLOCK, TIME DELAY)

- CLOCK PRESCALER FOR OTHER TWO TIMERS

- DMA REQUEST SOURCE

• MAXIMUM CLOCK RATE: 2 MHz (114 CPU CLOCK FREQUENCY)

17-8

CHIP SELECT IREADY GENERATION BLOCK DIAGRAM

r,---T-----------------, I Ready I Upper memory CS I
I Bits I Base address: from FFFFF down I
L , ___ .1.!!~~~~ ~ ~5!.K i1~, ,!K.!, 4!,..:':! ~~t.

L
71

r,---T-----------------, R.eady I Mid range memory CS I
: Bits I Base address: 4X selected range I
I I Range: from 2K to 128K I
L , ___ .L ! £0!!1!!!02~ m.!',!0!'y 11!1!;, _____ .J

L
74

~---T-----------------, Ready Lower memory CS
: Bits : Base address: from 0 up :

L ___ .L ~~~~~ ~ ~58! !1~, !K.:. 4!,.:':! ~~~
L

71

~---T-----------------, Ready Peripheral CS
: Iliits : Base address: any 1 K byte boundary I --~-
L 1-J. !!~:!~ ~.~ ~ !~~,,!~~I-J

L
/7

rR;a~;y --,

: Gemnatlon :
I Logic I
iJlJ!a!!, '!!.a,!!!~ .J

17 -9

-Cues

~DMCS

~[][CS

~[JPCS

iAPX 186,188 CHIP SELECT IREADY GENERATION LOGIC

• PROVIDES CHIP SELECT AND WAIT STATES FOR
UP TO 6 MEMORY BANKS

• PROVIDES CHIP SELECT AND WAIT STATES FOR UP TO
7 PERIPHERAL DEVICES

.0-3 WAIT STATES CAN BE PROGRAMMED FOR EACH RANGE

17-10

iAPX 186, 188 DMA CONTROLLER BLOCK DIAGRAM

nMER REQUEST

DMA
CONTIIDL 1+-----'

LOGIC

17-11

iAPX 186, 188 DMA CONTROLLER FEATURES

• TWO INDEPENDENT HIGH-SPEED CHANNELS

• SUPPORTS All COMBINATIONS OF TRANSFER MODES

- MEMORY-TO-MEMORY J
- MEMORY TO-I/O
_ 1I0-TO-MEMORY TWO BUS CYCLE TRANSFER

- I/O-TO-I/O

• BYTE OR WORD TRANSFERS
- WORDS CAN BE TRANSFERRED TO/FROM ODD OR EVEN A[)DRESSES

• 20-BIT SOURCE AND DESTINATION POINTER FOR EACH CHANNEL
- CAN BE INCREMENTED/DECREMENTED INDEPENDENTLY DURING TRANSFER

• 16-BIT TRANSFER COUNTER
- PROGRAMMABLE TERMINATE AND/OR INTERRUPT RmUEST

WHEN COUNTER REACHES 0

• DMA REQUESTS CAN BE GENERATED BY TIMER 2

• 2MBYTE/SECOND MAXIMUM TRANSFER RATE

17-12

iAPX 186. 188 RELATIVE PERFORMANCE
(8 MHz STANDARD CLOCK RATE)

Instruction 8086 (SMHz) 8086-2 (8MHz)

MOV REG TO MEM 2.0-2.9X 1.2-1.8X

ADO MEM TO REG 2.0-2.9X 1.2-1.8X

MUL REG 16 >S.4X >3.4X
DIV REG 16 >6.1X >3.8X

MULTIPLE (4-BITS)
SHIFT/ROTATE MEMORY 3.1-3.7X 1.95-2.3X

CONDITIONAL JUMP 1.9X 1.2X

BLOCK MOVE 3.4X 2.1X
(100 BYTES)

OVERALL: 2x PERFORMANCE OF 5 MHz iAPX 86
1.3x PERFORMANCE OF 8 MHz iAPX 86

NOTE: SAME COMPARISONS APPLY TO iAPX 188 and iAPX 88

17-13

iAPX 186. 188 CPU ENHANCEMENTS

• EFFECTIVE ADDRESS CALCULATIONS(EA)

- CALCULATION OF BASE + DISPLACEMENT + INDEX

- 3 - 6X FASTER IN THE iAPX 186,188

• 16-81T INTEGER MULTIPLY AND DIVIDE HARDWARE

-3X THE 8MHz iAPX 86, 88

• STRING MOVE

- 2X THE 8MHz iAPX 86,88

• TRAP ON UNUSED OPCODES

- PRE-DEFINED INTERRUPT VECTOR

• MUL TIIPLE-BIT SHIFT IROT ATE SPEED-UP

- 1.5 - 2.5X THE 8MHz j,APX 86,88

• NEW INSTRUCTIONS

17-14

COMPATIBILITY WITH iAPX 86,88

• OBJECT CODE COMPATIBLE WITH THE iAPX 86,88

• lANGUAGES
- ASM, PLlM, PASCAL AND FORTRAN INCORPORATE 186 CONTROL

TO SUPPORT ENHANCED INSTRUCTION SET.

• DEVELOPMENT SYSTEMS
- SERIES III
- INTEGRATED INSTRUMENTATION IN-CIRCUIT EMULATION (1 2ICE)

17-15

NEW iAPX 186, 188 INSTRUCTIONS

• SHIFT/ROTATE IMMEDIATE

- SHIFT OR ROTATE BY AN 8-BIT UNSIGNED IMMEDIATE OPERAND

SHl AX, 12
ROR Bl,4
SAR DX,3
RCR XYZ, 2

17-16

• MULTIPLY IMMEDIATE OMUL)

- IMMEDIATE SIGNED "16-BIT MULTIPLICATION WITH 16-BIT RESIJL T

- IMMEDIATE OPERAND CAN BE A 16-BIT INTEGER OH A SIGNED

EXTENDED a-BIT INTEGER

- USEFUL WHEN PROCESSING AN ARRA Y INDEX

REG 16 --- REG/MEM 16 * IMMED 8/16

IMUL
IMUL
IMUL

BX, SI, 5
SI, .-200
DI, XYZ, 20

17 -17

;BX= SI * 5
;SI = SI * -200
;01 = XYZ * 20

• PUSH IMMEDIATE (PUSH)

- PUSHES AN IMMEDIATE 16-BIT VALUE OR A SIGNED EXTENDED a-BIT

VALUE ONTO THE STACK

PUSH 50 ;PLACE 50 ON THE TOP
;OF THE STACK

• PUSH ALL/POP ALL (PLJSHA/POPA)

- PUSHES/POPS ALL a GENERAL PURPOSE REGISTERS

ONTO/OFF THE STACK

INLSRV: PUSHA

• • •
POPA
IRET

;SAVE REGISTERS

:RESTORE BEGISTERS

17 -18

• BLOCK 1/0 (INS, OUTS)

- MOVES A STRING OF BYTES OR WORDS BETWEEN MEMORY AND AN
I/O PORT

INS

'DI.--1I0fOxl
INSB (BYTE TRANSFER))

DI-- 01 +/- INCR *
INSW (WORD TRANSFER)

*.,- INCR: + WHEN OF .. 0 (CLD)

- WHEN OF -1 (STO)

17-19

OUTS

MEMORY

SI- -1"0 DEVICE I-+- OX

OUTSB (BYTE TRANSFER))
1I0[Dl<l-{SI}

SI-+SI +1- INCR
OUTSW (WORD TFIANSFER)

INCR: 1 FOR BYTE TRANSFERS

2 FOR WOBO TRANSFERS

HIGH LEVEL LANGUAGE SUPPORT

• CHECK ARRAY BOUNDS (BOUND>'

- CHECKS AN ARRAY INDEX REGISTER AGAINST THE ARRAY BOUNDS

WHICH ARE STORED IN A 2 WORD MEMORY BLOC:K

• ENTER PROCEDURE (ENTER)

- SAVES STACK FRAME POINTERS FROM CALLING PROCEDURE AND
SETS UP NEW STACK FRAME FOR CURRENT PROCEDURE

• LEAVE PROCEDURE (LEAVE)

- RESTORES CALLER'S STACK FRAME UPON PROCEDURE EXIT

17-20

FOR MORE INFORMATION ...

INTRODUCTION TO THE iAPX 186/188

- CHAPTER 5, iAPX 86/88, 186/188 USER'S MANUAL

- AP-186, INTRODUCTION TO THE 80186 MICROPROCESSOH

17 -21

DAY 5 OBJECTIVES

BY THE TIME YOU FINISH TODAY YOU WILL:

* DEFINE MULTIPROCESSING AND COPROCESSING

* DESCRIBE THE SIGNALS USED TO INTERFACE TO THE MUL TIBUS

* DESCRIBE THE SIGNALS USED TO INTERFACE AN 80186 TO

EXTERNAL HARDWARE

* DESCRIBE THIE BASIC FUNCTIONS ()F THE iAPX 286 AND iAPX 386

CHAPTER 18

MUL TIBUS SYSTEM INTERFACE

,. DESIGN CONSIDERATIONS

• HARDWARE INTERFACE TO THE MULTIBUS

,. BUS ARBITRATION

• LOCK INSTRUCTION PREFIX

,. BYTE SWAP BUFFER

~----------,--------------------------------'-----'

FUNCTIONAL PARTITIONING SUPPORTS MULTIPROCESSING:

CRT
TERMINAL

LOCAL
MEMORY

18-1

SYSTEM
INTERFACE

SYSTEM
INTERFACE

SYSTEM
INTERFACE

MULTI PROCESSOR

SYSTEM
MEMORY

* REFERS TO SYSTEM CONTAINING MORE THAN ONE CPU
WHERE ONE CPU IS USUALLY THE "MAIN" CPU AND OTHER
CPU'S PERFORM SPECIAL TASKS

* EACH CPU HAS ITS OWN PROGRAM AND OPERATES
INDEPENDENTL Y

*" EACH CPU HAS ACCESS TO GLOBAL RESOURCES

18-2

CO-PROCESSORS

* SPECIAL CASE OF MULTIPROCESSING

* SPECIAL. PURPOSE PROCESSORS THAT ENHANCE THE HARDWARE
CAPABILITIES OF THE 8086

*" SHARE COMMON PROGRAM WITH HOST PROCESSOR EXECUTING
CERTAIN INSTRUCTIONS

*" OPERATE IN A LOCAL CONFIGURATION WITH THE 8086

(SHARE COMMON DATA, ADDRESS, AND CONTROL BUSSES)

18-3

NUMERIC PROCESSOR EXTENSION

*" COPROCESSOR

* INTEGRAL PART OF THE iAPX 86 AND iAPX 88 ARCHITECTURE

*" 68 NUMERIC INSTRUCTIONS

* MtJL TlPLE AND MIXED MODE DATA TYPE CAPABILITIES
(INTEGER, REAL, BCD)

'* FULL IMPLEMENTATION OF THE IEEE FLOATING POINT STANDARD

"* AUTOMATIC EXCEPTION DETECTION AND RECOVERY

'* COMPILETE HARDWARE/SOFTWARE TRANSPARENCY

"* EIGHT 80-BIT INTERNAL REGISTERS

18-4

iAPX 86/20, 88/20 ARCHITECTURE

iAPX 86/20, 88/20
IAPX '6110. 11110 NOP

- flU; • I 71 &TACK; a
i : Rl EXPONENT SIGNlflCANO I

I RJ
I I Rl
I I r I R4

I I RS
I I R.
I R1
I I RI

I L __ ,

I IP I NOP STATUS

flAGS : NOP MODE

L ____ -,

I

m I j
• THE 8087 CAN BE VIEWED AS AN ARCHITECTURAL

EXTENSION OF AN 8086/8088.

• TO USE THE 8087, ADDITIONAL OPCODES AND OPERANDS
ARE INCLUDED IN THE 8086/8088 INSTRUCTION SET ..

......
00
I

0'1

DATA FORMATS FOR MEMORY OPERANDS

- INCREASJNG SIGNIFICANCE

II ~ ... ~ (TWO'S
WORD INTEGER S MAGNI~ COMPHMENTI

U 0

I~ 1 CTWO'S SHORT INTEGER: MAGNITUDE COMPLEMENT!

31 0

II I tlWO'S LONG INTEGER S MAGNITUDE COMPLEMENT)

63 0

PACKED DECIMAL
MAGNITUDE

d,o. d •• d. I d, • d, I d~ • d 4 • d l • dZ • d, • do

19 72 o

SHORT REAL

o
I,

I~ ,-BIASED
LONG REAL: EXPONENT SIGNlflCAND 1

63 52~ 0
I,

BIASED I~ hl··- --TEMPORARY REAL: EXPONENT ~ SIGNIFICAND

79 6463" 0

iAPX 86/20, 88/20 INTERCONNECT

r - - ..,

8284
CLOCK

GENERATOR

82S9A
PIC

INT 1-1 ---01 INT"

CLK 1-+---...-+--1
I

L----t--lINT

RO/OTt :

• I I

r io;-" I.
I I.

L- -ICLK ~~8: I~ - ..

'----"

18-7

8086
FAMILY

SUS
INTERFACE

COMPONENTS

iAPX 86/20 iAPX 88/20 ARCHITECTURE

MULTI MASTER
SVSTEM

IUS

.. HOST CPU MUST BE IN MAX MODE TO PROVIDE: INTERFACE

* RQ/GT, QSO-QS1, TEST LINES USED FOR COMMUNICATION
AND SYNCRONIZATION

18-8

QUEUE STATUS LINES

QS1. QSO -QUEUE STATUS LINES: INDICATE THE INSTRUCTION QUEUE
ST A TUS AS FOLLOWS:

8088 QS1 QSO STATUS

0 0 NO OPERATION
QSo

0 1 FIRST BYTE OF OPCODE
os 1-"0

1 0 EMPTY THE QUEUE

1 1 SUBSEQUENT BYTE

18-9

TEST PIN

TEST -USED BY WAIT INSTRUCTION TO SYNCHRONIZE PROGESSORS

IF TEST PIN IS LOW. EXECUTE CONTINUES

IF TEST PIN IS HIGH. CPU ENTERS AN IDLE STATE

8086

18-10

r

"

8087 CO-PROCESSOR OPERA liON

8087
NUMERICAL
DATA PROCESSOR

8086

RQ/GTO]
RQ/GT 1

18-11

REQUEST IGRANT LINES

-REQUEST GRANT: BIDIRECTIONAL HANDSHAKE LINES

ALLOWS UP TO TWO SEPERA TE DEVICES CONTROL
OF THE BUSSES

8088

18-12

EXECUTION TIME FOR SELECTED iAPX 86/20 INSTRUCTIONS

APPROXIMATE EXECUTION

INSTRUCTION
TIME (liS)

IAPX 86/20 IAPX 86/10
(5 MHz CLOCK) EMULATION

ADD/SUBTRACT MAGNITUDE 14/18 1,600
MULTIPLY (SINGLE PRECISION) 18 1,600
MULTIPLY (DOUBLE PRECISION) 27 2,100
DIVIDE 39 3,200
COMPARE 10 1,300
LOAD (SINGLE PRECISION) 9 1,700
STORE (SINGLE PRECISION) 17 1,200
SQUARE ROOT 36 19,600
TANGENT 110 13,000
EXPONENTIATION 130 17,100
--

18-13

8089 10 PROCESSOR

* THE I/O PROCESSOR CONTROLS ALL 1/0 IN THE SYSTEM

* BOTH PROCESSORS OPERATE IN PARALLEL

"* SYSTEM THROUGHPUT IS ENHANCED

18-14

1/0 PROCESSOR FEATURES

• 2 INDEPENDENT CHANNELS

• 1 MEGABYTE SYSTEM SPACE, 64K 1/0 SPACE

• 2 LOGICAL BUSSES CAN BE TREATED AS 8 OR 16

OR BOTH TO MATCH PERIPHERALS TO SYSTEM

• CHANNEL PROGRAM STORE CAN BE ON SYSTEM
OR LOCAL BUS

• INSTRUCTION SET TAILORED FOR 1/0 FUNCTIONS

18-15

110 PROCESSOR BLOCK DIAGRAM

HOlT CPU

18-16

• INFORMATION FLOWS
THROUGH lOP

• INSTRUCTIONS APPLY TO
1/0 OR SYSTEM

• 2 LOGICAL BUSES

• 2 CHANNELS
2 REGISTER SETS
2 INSTRUCTION POINTERS

8086
OR

8088
CPU

·6089

lOP

LOCAL CONFIGURATION

MINIMUM BOARD SPACE AND COST

BUS
CONTROLLER

SYSTEM
MEMORY

LATCHESI
TRANSCEIVERS PERIPHERAL

P1
PERIPHEF~

P2 ~

18-17

-------,--'----------------------~
REMOTE CONFIGURATION ALLOWS

PARALLEL PROCESSING

18-18

DMA FUNCTIONS

• MEMORY TO MEMORY, 1/0 TO 1/0 IN ADDITION TO
MEMORY TO 110

• MASKEDICOMPARE FOR DATA PATTERN AS TRANSFER
OCCURS

- 8·BIT MASK, 8·BIT COMPARE

• TRANSLATE DURING TRANSFER
- BYTE TRANSLATED THROUGH 256·BYTE LOOKUP TABLE

• VERSATILE TERMINATION CONDITIONS
- BYTE COUNT EXPIRED (UP TO 64K)
- EXTERNAL SOURCE
- MASKED/COMPARE PASSES OR FAILS
- SINGLE BYTE

18-19

8089 PERFORMANCE

5 MHz 8 MHz

DMA TRANSFER 1.25 Mbyte 2.0 Mbyte

(16 BIT TRANSFERS)

DMA BYTE SEARCH 0.6125/0.833 Mbyte 1.0/1.33 Mbyte

8 BIT/16 BIT SOURCE

DMA BYTE TRANSLATE 0.333 Mbyte 0.533 Mbyte

DMA BYTE SEARCH AND TRANSLATE 0.333 Mbyte 0.533 Mbyte

DMA RESPONSE (LATENCy) 1.0/2.2~s 0.625/1.375 IJS

SINGLE CHANNEUDUAL CHANNEL

18-20

------,---,---------------------------------------'----,

OPERATING SYSTEM FIRMWARE COMPONENT

.. 16kbyte CONTROL STORE

.. PROGRAMMABLE INTERRUPT CONTROLLER MANAGED BY OS SO'FTWARE

"* 3 PROGRAMMABLE TIMERS

SYSTEM (8254 RATE GEN MODE)

DELAY (8254 COUNT MODE)

BAUD (8254 SQUARE WAVE MODE)

18-21

80130 FEATURES

HARDWARE

o 128 K-bit kernal control store

o Progl'ammable Interrupt
controller

o System timer

o Delay timer

o Baud-rate generator

18-22

SOFTWARE

o Task management

o Intertask communication
and synchronization

o Mutual exclusion control

o Interrupt management

o Free memory managementl
system partitioning

.......
(X)
I

N
W

r-r- f-- ClK

121.A

i-- 801.
OR

lOll

INT

TYPICAL SYSTEM USING
OPERATING SYSTEM PROCESSOR

• eLK

-"-~
CONTROL

52 8211 n / .. I--

I

8HE
I

8HE
A"

A 19

ADDRESS/Dr0 -') · · 8282
ADDRESS • · · r • ADO

AD

DIS

'\ vt DATA ~ •
• / 8216 · ~ r

~ DO -
L.....- ClK n ON' "~

ADI5
ADO ~

DECODE
~ : MEMes LOGIC

1 lOCI f'-r
3 ACK
0 L1R

lHO

· Vt r 8AUD •
j INTERRUPT REQUESTS · f'\ IR7

~IR2 SYSnCK

LOCAL
AND

SYSTEM
RESOURCES

FOR MORE INFORMATION ...

8087 MATH COPROCESSOR

- CHAPTER 6, iAPX 86/88, 186/188 USER'S MANUAL

- CHAPTER 6, ASM86 LANGUAGE REFERENCE MANUAL

EI089 110 PROCESSOR

- CHAPTER 7, iAPX 86/88, 186/188 USER'S MANUAL

80 130 OPERATING SYSTEM FIRMWARE COMPONENT

- CHAPTER 8, iAPX 86/88, 186/188 USER'S MANUAL

RELATED TOPICS ...

1!;E86A SUPPORTS THE 8087 FOR DEBUGGING PURPOSES. SEE THE ICE86A
OPERATOR'S MANUAL. AN ICE8S CAN BE UPGRADED TO AN ICE86A.

RBF89 (REAL-TIME BREAKPOINT FACILITY) IS A DEBUGI3ING TOOL FOR THE
Si089 AND WORKS IN CONJUNCTION WITH ICE86(A).

18-24

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 19
MULTI AND COPROCESSOR

• 8087 NUMERIC DATA PROCESSOR

• 8089 110 PROCESSOR

• 80130 OPERATING SYSTEM

WHAT IS THE MULTIBUS SYSTEM INTERFACE?

PROCESSOR
BOARDS

MEMORY
BOARDS

I MUL TIBUS INTERFACE)
\------~

• 16 MEGABYTE ADDRESS SPACE

• IEEE STANDARD (IEEE 796)

• INDUSTRY STANDARD • OVER 40 VENDORS OF MUL TIBUS BOARDS

• OVER 40 BOARDS AVAILABLE FROM INTEL

19-1

WHY USE THE MUL TIBUS SYSTEM INTERFACE?

• MODULARIZE HARDWARE/DISTRIBUTED PROCESSING

• SHORTEN DESIGN TIME

• REDUCE COST OF DESIGN AND TEST

• FLEXIBLE

• SYSTEM CAN BE QUICKLY RECONFIGURED

• EASY TO ADD MORE PROCESSING POWER. MEMORY OR 10

• SIMPLIFIES REPAIR

19-2

MODULARIZE HARDWARE/DISTRIBUTED PROCESSING

ACCOUNTING

PROCESSOR

FACTORY
CONTROL 1

PROCESSOR

FACTORY
CONTROL 2 -------1

II
I FUTURE I
I

1 1 ______ -

I MUL TIBUS INTERFACE)
\------~-----,

SHARED
MEMORY

• HARDWARE MODULES CAN BE DEVELOPED INDEPENDENTLY
,

• CONCURRENT PROCESSING ACHIEVES HIGHEiR THROUGHPUT
I

• PROCESSORS COMMUNICATE THROUGH SHARED MEMORY

• HARDWARE MODULES CAN BE REUSED IN FU~URE DESIGNS

19-3

REDUCE COST/SHORTEN DESIG~ TIME

INTEL:] PROCESSiOR
BOARD

XYZ CO.
GRAPHICS

CONTROLLER
CUSTOM 10

<r---_____ ...;.cM:..;:.U.::...L T:..;:.IB~U:..;:.S:..;:.IN.::...T:..=E~RF:...;.A.;..:C.::.E _____ -...,) i

[
INTEL

MEMORY
BOARD

MADE BY
YURE COMPANY

• CONFIGURE SYSTEM COMPLETELY FROM AVAILABLE BOARDS
OR

• DESIGN CUSTOM 10 BOARDS FOR YOUR APPLIC"'TION

19-4

COST
PER BOARD

MAKE/BUY COMPARISON

1K-3K

TOTAL NUMBER OF BOARDS

19-5

TYPES OF BUS MASTERS

BASIC MASTER WITH MASTER WITH
MASTER RESIDENT BUS DUAL-PORTED RAM

r------l r---------~ r--- -------~

I I I I I I
I I I I I I
I I I I I I
I I I I I I

I I I I I
I I I I I
I I I I I
I I I I I

I I I I I I
L_ _ _ _ _ ~ l_ _ _ _ _ ____ J L _ _ _ _ _ _______ I

MULTIBUS

NOT VERY iSBC 86/05 BOARD iSBC 86/12A BOARD
COMMON

WHY WOULD THE BASIC MASTER NOT BE VERY COMMON?

19-6

LOCAL BUS INTERFACE
(REVIEW)

,------,
I 8258A 1
I PROGRAMMABLE : .. INTERRUPT LINES,

.-------------------1 INTERRUPT I"
I

CONTROLLER 1

L.-
80881
8088
CPU

1-- -
~I 80881

1 8~:~
I

II:
w
I-

'" <
~

~
:::E

I~ ...

I ' "

L.. ___ J

~
'" 0>
m ...
<
(J
0 ...

~ ..
i "

I ,

~ -f -f:ONTR~ LINES ~
L

4

8288

BUS

CONTROLLER

8282183
LATCHES ,.

8288/87 DATA LINES ..

TRANSCEIVERS 1------..... ----.• "

19-7

SYSTEM BUS INTERFACE

INTERRUPT LINES

I
I CONTROL LINEa

8282183 ADDRESS LINES

8288/87 DATA LINES

19-8

LOCAL (PRIVATE)
110 AND MEMORY

SYSTEM BUS

GLOBAL RESOURCES

........
1.0
I

1.0

BASIC MASTER

r--------------------------- -,
\J

LOCAL BUS

~j,.. ...;;::,. G.
OC .. ,

iii! 81 ..
I;;; 8086

<l-
1:;1 ~ ~

~~
UOI:

I ""'" ~7 I ~ 1Ii!~~i ~~e 1 l
r8~ I~ 1Ii!~U;; ~ i "'~ I 0

0 U .. u~ c ..
8287 8283 -~ 8288 8289 8284 0

5~~ 2 ~!I=~lg I~ t
01:

L ~f ---1t!-lit--------- J

~

BUS CONTROL

• 8289 RESB PIN TIED LOW (NO RESIDENT BUS)

• ALL MEMORY AND 110 CYCLES REQUIRE MUL TIBUS ACCESS

• ONLY vVHEN 8289 GETS CONTROL OF BUS DOES IT ENABLE BUS

CONTROLLER (8288) AND ADDRESS LATCHES (8283,S)

RESIDENT

BUS

.....
~

...
'"

•

MASTER WITH RESIDENT BUS
+VCC

t
I

RESB

8284 80881
"'- 8288 I.... ARBITR)mON ...

CLOCK 8088 .L---' BUS G:=r-- CPU .. J" '" J" ARBITER LINES
,..

0:

!1'-- SVSB/RESB ~ ..
i ~

8288
~ g

CONTROL LINES ~ 8288

BUS ... BUS
CONTROL'L"ES ...

CONTROll.ER '" " CONTROLLER P'

PBOM or , • DE:CODER

..... ADDRESS LINES 8282/83 8282/83 ADDRESS tiNES _ ...
LATCHES

'" "
LATCHES

P'

1- ---
I

DATA LINES ~I 8286/87 ,..... 8288/87 DATA ~INES ...
1 TRANSCEIVERS 1'- -, 1""--" TRANSCEIVERS

'" ..
I 1 --- -

.8289 RESB PIN TIED HIGH (RESIDENT BUS PRESENt)

MUL TIMASTER

SYSTEM BUS

• ADDRESS DECODING SELECTS THE SYSTEM BUS OR RESIDENT BUS
VIA 8289 PIN SYSB/RESB.

19-10

BUS ARBITRATION

r------

,- - -
1

I PRIVATE ~.I
I MEMORY i"'-';I - - - -
1 ~ I 1
_.- __ , I!;! "'I 1 BUS I

~~~ .... INTERFACE 

I - - - "I s::nr '1 GROUP 1 
1 I'RIVATE 1 ~I L _ _ J 

BUS 

INTERFACE PROCESSOR 

GROUP 

1 1/0 ~,. I,I ______________ ~ 
1 __ - _ 

PROCESSING 

MODULE 

----------------

1- - --1 
.~ PROCESSING 1 

I MODULE 1 
1 ____ J 

PUBLIC 

MEMORY 

PUBLIC 

1/0 

1- - - -1 

..: PROCESSING I 
• "; MODULE 1 

1 _____ ' 

HOW CAN WE PREVENT TWO MASTERS FROM ACCESSING THE BUS AT THE SAME TIME? 

NOTE: 

19-11 

SERIAL PRIORITY RESOLVING 

HIGHEST PRIORITY 

/ BPRN 
BUS 

ARBITER 
1 

BUS 
ARBITER 

2 

BUS 
ARBITER 

3 

• A MASTER CAN TAKE THE BUS WHEN 

BPRN IS LOW (BUS PRIORITY IN) 

NO HIGHER PRIORITY MASTER NEEDS THE BUS 

BUSY IS HIGH 

THE BUS ISN'T BEING USED NOW 

THERE IS A MAXIMUM OF 3 MASTERS WHEN USING THE SERIAL PRIORITY RESOLVING TECHNIQUE 

19-12 



SERIAL PRIORITY RESOl VIN 

HIGHEST PRIORITY 

/ BPRN 
BUS 

ARBITER 

BUS 
ARBITER 

2 

BUS 
ARBITER 

3 

• A MASTER REQUESTS THE BUS BY DRIVING 

BPRO HIGH (BUS PRIORITY OUT) 

BPRO 

BPRN 

BPRO 

BPRN 

BPRO 

-:t" 

ALL LOWER PRIORITY MASTERS GET OFF THE BUS 

CBRQ LOW (COMMON BUS REQUEST) 
IF A HIGHER PRIORITY MASTER HAS THE BUS AIND DOES NOT 
NEED IT RELEASE THE BUS. 

19-13 

SERIAL PRIORITY RESOLVING 

HIGHEST PRIORITY 

/BPRN 
BUS 

ARBITER 

...------, BPRN 
BUS 

ARBITER 
2 

r-----..., BPRN 
BUS 

ARBITER 
3 

• A MASTER WILL RELEASE THE BUS WHEN 

BPRN GOES HIGH 

OR A HIGHER PRIORITY MASTER WANTS THE BUS 

CBRQ GOES LOW AND CURRENT MASTER IS NOT USING BUS 

THE ARBITER NORMALLY DOES NOT SURRENDER! THE SYSTEM BUS, 
UNLESS ANOTHER ARBITER IS REQUESTING ITS USE. 

19-14 



..­
<.D 
I ..­

<...T1 

PARALLEL PRIORITY RESOLVING TECHNIQUE 

1 l : 
iiifm 

BUS 

-
ARBITER mm 

.--
1 _I--

I 1 

-
A'Am-

2 
f- 1.'38 3 

- 7.,.. 
I"-
~ BUS 

3 PRIORITY r-- 3 TO. I 4j----, 
DECODER 

, 
\ 1 ARBITER 

8PRN ..... 
"ENCODER t-- 1-__ 

2 
....J ._-

j-- I 

II ._-
J 

!lmi 
J 

I"-H 
.J 

BUS r-,[7 ARBITER 
IJPRN 

-
1 \ 3 

7 
~ iiifm "'h --I BUS 

J 
... Jl 

\~ 
ARBITER mm .. 

-
CaRa 51 J BUSY 

ADVANTAGES 

• CAN HANDLE ANY NUMBER OF MASTERS 
• ALLOWS COMPLEX PRIORITY ASSIGNMENT (E.G., ROUND ROBIN, 

ROTATING, ETC'> 

DISADV ANT AGE 

• UIRES EXTRA. USER-SUPPLIED HARDWARE . 



PROBLEM: 

MUTUAL EXCLUSION PROBLEM 

8086 
#1 

MEMORY 

8086 
#2 

8086 +2 STARTS READING MESSAGE 
8086 + 1 STARTS UPDATING MESSAGE BEFORE +2 IS FINISHED 
8086 +2 GETS INVALID MESSAGE 

SOLUTION: 
USE ONE SHARED MEMORY LOCATION AS A FLAG (SEMAPHORE), 
WHICH INDICATES IF MESSAGE AREA IS BEING USED .. 

19-16 



USING A SEMAPHORE WITH THE LOCK INSTRUCTION PREFIX 

~ 
~ 

~ 
~ 

< ________ ~M~U~LT~IB~U~S~IN~T~ER~F~AC~E~ ________ ~) 

LOOP1: 

C;= LOCK 

8086 

LOCK 

1=MESSAGE AREA IS BEING USED 

O=MESSAGE AREA IS NOT BEING USED 

MOV AL,1 

XCHG SEMA4,AL 
CMP AL,1 
JE LOOP1 

; ACCESS MESSAGE 

MOV SEMA4,0 

19-17 

: GET AND SET SEMA4 WITHOUT 
; RELEASING THE BUS 
; TRY AGAIN IF SEMA4 WAS SET 

: RELEASE MESSAGE AREA 

LOCKING THE MUL TIBUS 

8289 
ARBITER 

LOCK MUL TIBU8 CONTROL . 
80-82 .. 

• THE 8086 WILL ASSERT ITS LOCK PIN DURING ANY INSTRUCTION 
PRECEDED BY A LOCK PREFIX. 

• THE 8289 WILL NOT RELEASE THE BUS AS LONG AS ITS LOCK 
PIN IS ASSERTED 

19-18 



SHARING RESOURCES 

BETWEEN 8 AND 16 BIT BOARDS 

8 BIT 
16 BIT 

B ISBC 
DUALPORT 80/30 

RAM BOA.RD 

8085 

( MUL TIBUS INTERFAC"E"") 

PROBLEM: THE 8086 TRANSFERS ODD ADDRESSED BYTES ON 

THE UPPER 8 DATA LINES. THE 8085 TRANSFERS 

ALL DATA ON THE LOWER 8 DATA LINES. 

SOLUTION: USE BYTE-SWAP BUFFER SO THAT ALL BYTE TRANSFERS 

ION THE MULTI BUS INTERFACE USE THE LOWER 8 DATA 

LINES. 

19-19 

BYTE SWAP BUFFER 

AO 

00-07 

HI LO 

1---'" 00-07 

LO HI 

__ .. 00-07 

LO LO 

__ "D8-0'S 

MUL nSU8 TRANSFER 
IOATA PATH 

00-07 

8-BIT 

00-07 

18-BIT 

00-0115 

• ALL INTEL MEMORY BOARDS AND 16 BIT PROCESSOR BOARDS HAVE 
BYTE-SWAP BUFFERS 

• INTEL 8 AND 16 BIT BOARDS ARE COMPATIBLE 
• TO BE COMPATIBLE WITH INTEL BOARDS, USER BOARDS SHOULD HAVE 

BYTE-SWAP BUFFERS 

19-20 



CLASS EXERCISE 19.1 

DIRECTIONS: EACH ITEM IN THE FOLLOWING PROBLEM REPRESENTS A STEP 
THAT WOULD BE REQUIRED IN A MULTIBUS SYSTEM AS SHOWN ON PAGE 16-13 
WITH 3 BUS MASTERS IF BUS MASTER 3(BM3) WAS CUBRENTL Y CONTROLLING 
THE MUL TIBUS AND BM2 WANTED ACCESS TO THE MUl.TlBUS. IN THE SPACE 
PROVIDED. NUMBER EACH ITEM SO THEY OCCUR IN THE PROPER ORDER. THE 
FIRST STEP HAS BEEN NUMBERED CORRECTLY AS AN EXAMPLE. 

BM3 DRIVES BUSY HIGH 

BM2 ISSUES CBRQ LOW 

_1_ BM2 DRIVES BPRO HIGH 

BM2 TAKES OVER BUS. DRIVES BUSY LOW 

BM3 SEES CBRQ LOW 

BM3 SEES BPRN HIGH 

19-21 

FOR MORE INFORMATION 

MUL TlBUS ARCHITECTURE 

- CHAPTER 4. iAPX 86/88, 186/188 USER'S MANUAL 

8289 BUS ARBITER 

- CHAPTER 4, iAPX 86/88. 186/188 USER'S MANUAL 

LOCK PIN OPERATION 

- CHAPTER 4, iAPX 86/88, 186/188 USER'S MANUAL 

19-22 





CHAPTER 20 

iAPX 186,188 HARDWARE INTERFACE 

• BUS INTERFACE 

• CLOCK GENERATOR 

• INTERNAL PERIPHERALS INTERFACE 

• DIFFERENCES 





BUS INTERFACING 

TIMER UNIT 

20-1 

INTERRUPT 
CONTROL 

UNIT 

80186 BUS SIGNALS 

ADDRESS/DAT A 

ADDHESS/STATUS 

CO-PROCESSOR CONTROL 

LOCAL BUS ARBITRATION 

l.OCAL BUS CONTROL 

MULTI-MASTER BUS 

STATUS INFORMATION 

ADO - AD15 

A 16/S3 - A 19/56,. BHE/S? 

TEST 

HOLD,HLDA 

ALE, RD, WR, DT/i~, DEN 

LOCK 

SO - S2 

20-2 

INT31 
INTAT 

INT21 
INTA, 

NU 



eLK OUT 

ALE 

SO-S2 

ADDRESSI 

DATA LINES 

RD 

DTIR 

DEN 

pes. 

Mes. 
m. 
ucs, 

READ CYCLE 

T1 T2 T3 Tw T4 

I 
I 

--.1_ 

,-
\ 
'-

r - - - )r DATA IN 
'-

20-3 

80186 CONTROL SIGNAL DIFFERENCES 

PROVIDES BOTH LOCAL BUS SIGNALS AND STATUS OUTPUTS 

NO SEPARATE I/O AND MEMORY READ AND WRITE SIGNALS. 

THE WR SIGNAL IS AN EARLY WRITE SIGNAL 

ALE GOES ACTIVE A CLOCK PHASE EARLIER 

QUEUE STATUS IS PROVIDED IF RD IS TIED TO GROUND 

QUEUE STATUS IS AVAILABLE A CLOCK PHASE EAR:LlER 

HOLD/HLDA IS PROVIDED RATHER THAN RQ/GT 

S3 - S6 PROVIDE DIFFERENT INFORMATION THAN 8086 

THE OUTPUT DRIVERS WILL DRIVE DOUBLE THE LOAD 

20-4 



THE 80186 PROVIDES BOTH LOCAL I3US SIGNALS 
AND SYSTEM BUS SIGNAL S 

.---
80186 8288 

- - SO-52 -A WR SO-S2 
-

--V RD 
LOCK f-ALE 

LOCAL DTiR --- SYSTEM 
MEMORY DEN 

ANI) RESOURCES 
- - -

1/0 LCS UCS PCS 

i 8289 

L~ SO-S2 

I > I SYSBI 

I RESB 
--
LO~~ 

20-5 

/ 
GENERATING SEPARATE 1/0 AND MEMORY READ SIGNALS 

LATCH 
-
82 D 

QI----~~--------~ I >- 110 READ 
ALE ----I8TB r----L. 

\/ 

AD -------------------------4~_I 1[)_ MEMORY READ 

\.. 
20-6 



SYNTHESIZING DELAYED WRITE ON 80186 

CLKOUT--------~~--~ 

b----.i~DELAYED 
L----------------------L------' WRITE 

T2 T3 T4 
(DATA VALID ON LEADING EDGE) 

I 

ADO-AD15 ADDRESS: X WRITE: DATA X ; ADDRESS 

WR :\ / 
I 
I 

DELAYED I 

WRITE :\ / 

20-7 

80186 QUEUE STATUS MODE 

Tn Tn Tn 

CLOCK 
OUT 

80186 X X I 

QS 

8086 I 

X X QS 

80186 
QSO ALE 

QS1 WR 

RD 

20-8 



DEN 

RD 

ALE 

HOLD 

HLDA 

S3 - S6 STATUS SIGNAL DIFFERENCES 

8086 80186 

S3 - S4 SEGMENT REGISTER USED LOW 

S5 

S6 

INTERRUPT ENABLE FLAG 

CONDITION 

LOW 

20-9 

LOW 

LOW IF CPU BUS CYCLE 

HIGH IF DMA BUS CYCLE 

CLOCK GENERATOR 

BUS INTERFACE 
UNIT 

SEGMENT 
REGISTERS 

CHIP-SELECT 
UNIT 

20-10 

INTERRUPT 
CONTROL 

UNIT 

NMI 

INT3/ 
INTAI 

INT2/ 
iNTA~ 

INTI 



80186 INTERNAL CLOCK GENERATOR 

• GENERATES A MAIN CLOCK FOR INTEGRATED COMPONENTS 
AND SYSTEM 

• CAN USE A CRYSTAL OR EXTERNAL FREQUENCY SOURCE 

• GENERATES A SYNCHRONIZED SYSTEM RESET 

• PROVIDES A SYNCHRONOUS AND AN ASYNCHRONOUS READY INPUT 

20-11 

80186 CLOCK GENERATOR BLOCK DIAGRAM 

CRYSTAL 

OSC. .;. 2 
r-

ARDY 
READY ~ 

GENERATION 
SRDY 

RESET 
~ 

CIRCUIT 

20-12 

R 

CPU CLOCK 

AND 
CLOCK OUT 

CPU 
READY 

CPU RESET 

AND 

ESET OUTPUT 



80186 AND 8284A CLOCK DIFFERENCES 

NO OSCILLATOR OUTPUT IS AVAILABLE FROM THE 80186 

THE 80186 DOES NOT PROVIDE A PCLK OUTPUT 

THE 80186 CLOCKOUT HAS A 50% DUTY CYCLE CLOCK AND THE 

8284A CLK OUTPUT HAS A 33% DUTY CYCLE 

THE CRYSTAL OR EXTERNAL OSCILLATOR USED BY THE 80186 IS 
TWICE THE CPU CLOCK FREQUENCY WHILE ON THE 8284A IT IS THREE 

TIMES THE CPU CLOCK FREQUENCY 

20-l3 

EFFECT OF RESET 

SAME EFFECT AS IN THE 8086 PLUS EFFECTS THE INTERNAL 
PERIPHERALS AS FOLLOWS 

RELOCATION REGISTER = 20FFH 

INTERNAL PERIPHERALS ARE ADDRESSED AT THE VERY TOP 
(FFOOH TO FFFFH) OF THE 110 SPACE 

UMGS = FFFBH 

UCS LINE WILL PROVIDE A CHIP SELECT FOR THE UPPER 1 K 
BLOCK OF MEMORY WITH THREE WAIT STATES WITH EXTERNAL 
READY CONSIDERED 

THE REST OF THE INTERNAL PERIPHERALS ARE RESET AND ARE 
INACTIVE UNTIL PROGRAMMED 

20-14 



READY SIGNALS 

SYSTEM CONSISTS OF TWO BUSSES - A LOCAL BUS AND A SYSTEM BUS 

THE SYSTEM BUS IS ASYNCHRONOUS AND NORMALLY NOT READY 

THE LOCAL BUS OPERATES SYNCHRONOUS TO THE PROCESSOR 

ARDY WOULD BE USED FOR THE SYSTEM BUS 

SRDY AND/OR THE 80186 CHIP SELECT LINES WITH THE 

PROGRAMMABLE WAIT STATES WOULD BE USED FOR THE LOCAL BUS 

20-15 



MUL TIMASTER BUS INTERFACE 

16 MHz 

~o~ 
Vee Xl X2 

UCS 

f1 liD 

An 

~ 

ALE 

LCS 

SHE 
WA 

I 
AOO-A019 

80196 I 
I 

NMI 

~ HOLD 

CLKOUT 

SO-S2 

I 

I 
'--- i PC SO 

PCS1 

LOCK 
, 

SROY f---GND 

AROY 

-cs 
RESET 

JF 
ROM 

6282 OR 

~ 
8283 

rtb LATCH 

STI OE 
STB OE LOW 

• 
"*" 

RAM 

ES .. 
• 

/\ 

b -" F'OO~U l ~~ ~ 
. T qg ~ STI OE 

T9 ~-

I I 
., L_ 

i f 

IL' I ~ 8286 OR l 
8287 > DATA IUS 

TRANSCEIVER r 
T OE J '-r"t-O~-

t L 

DEN~ DTiR 
CLK 

~ ALE 
8288 

K:-

MUl: n· 
TER 
EM 

MAS 
SVST 
IUS 

SO-52 BUS 
~ CONTROLLER 

:> BUS CONTROL 
COMMANDS 

.---f- ~ CEN 
101 AEN 

~ 1 
I 

~ SO-52 AEN 
8289 

~ CLK AR':i;ER 
:> ~~iii~~~ION 

SYSBRESB 

lOB 

~-5V LOCK RESB 

r "-I 
XACK ) 

20-16 



RESET 

DEN 

RD 

WR 

HOLD 

HlOA 

DMA CONTROLLER INTERFACE 

BIIS INTERFACE 
UNIT 

SEGMENT 
REGISTERS 

CHIP-SELECT 
UNIT 

20-17 

INTERRUPT 
CONTROL 

UNIT 

NMI 

INT31 
INTAT 

INT1 

USING DMA REQUEST AND SENDING AN ACKNOWLEDGE 

ADDR. 
LATCH 

80186 S8 
DMA DEVICE 

'--d n- OMA ALE ACKNOWLEDGE 

r -ut 

PCSO CHIP SEL 

DRQO DMA REQUEST 

20-18 



SRDY 

ARDY 

DT/R 

DEN 

AD 

XI 

CHIP SELECTS 

TMR IN TMA OUT IN TMR OUT 

11 

20-19 

USING 80186 CHIP SELECTS 

AO - A 19. SHE 

UC S 

ClK OUT --
SO 
81 

52 

lC 5 

Al-A13 

,-- 2164--

I~ AO-A12 

'"' CE 

OE 

L. C> 

['- A13 

r2~ 8201 -=:> ~-A12 --f\ 
DRAM v 

CE ClK 

-
r-<: OE WR 

-~ Ro 

PCTL 

I---- - PE 

AACK 

I 
Lv-SR 

20-20 

DY 



RESET 

SROV 

OT 

RO 

ALE 

HOLD 

RESET 

AROV 

DT/R 

DEN 

RD 

WR 

UNIT 

SEGMENT 
REGISTERS 

TIMER UNIT 

CHIP-SELECT 
UNIT 

INTERRUPT CONTROLLER 

20-22 

NMI 

INT31 
iNfAT 

INT21 
ili"TA., 

NTt 



NON-iRMX86 DIRECT INPUT MODE AND CASCADE MODE 

80186 
ARDY 

INTO 

INT2 ~ 

INTl ~ 

INT3 

ADO-AD7 

RD 

WR 

PCSA 

;---61 
80186 

INT_ 

INT2 

ALE 

INT1 

INT3 

a.(]-OTHER AI 

8259A-2 

INT / 
J 

8 
-INTA 

00-07 

RD LJV 
WR ~ 

a 
t 

20-23 

iRMX86 MODE 

8259A 

INT 

--
--'0 INTA 

WY 

1 10 

EXTERNAL 

INTERRUPTS 

IR" ----
I---
r--

IR7 
r--

CASrI CAS1 CAS2 

8205 
r E 1 

r E2 
AQI f.---

A1 
t-5v ---- E3 

A2 

07 

20-24 



80186 

ALE 

ADO-AD15 

ClK 

MMCs"2 
P"CS3 

so-8'2 
BHE 

INTO 

INT3 

INT2 

INT1 

iRMX86 MODE INTERFACE TO 80130 

ADDR 

lATCH -" 

~ 

3A8 
16 80130 V , 

ADO-AD15 I 
I 

ClK 
MEMCS 8 7 

/ IRO- / / 
3 IOCS IR7 

/ SO-82 

~ SHE 
INT 

I 

+5 

8205 t E2 E3 

E1 

7 

20-25 

80186/80188 BLOCK DIAGRAM 

TMR IN TMR OUT TMR IN TMR OUT 

AO-A15 

-Al0 

INTERRUPT 

REQUESTS 

] I CLT:--UT ~Yr===G=:r _O~TH~r -;=1 ===I~t ~1 I 

W SROY 

AROY 

OT/R 

DEN 

RD 

WR 

ALE 

HOLD 

EXECUTION 

ALU UNIT 

GENERAL 
REGISTERS 

BUS INTERFACE 
UNIT 

SEGMENT 
REGISTERS 

QUEUE 

TIMER UNIT 

1 ___ ---' 

BUS 

CHIP-SELECT 
UNIT 

INTERRUPT 
CONTROL 

UNIT 

HLDA~~==~~~==~~~=====;~ ____ ~~==;=~==~~ ______ ~==~==~I 
t 

LOCK TEST St-S2 BHE ~g~; A18/63-
A19/68 

MCS~-3 UCS LCS Pcse-8 NMI 

20-26 

INT31 
INTAI 

INT21 
INTA~ 

INTl 

INU 



80186/80188 DIFFERENCES 

80186 HAS A 6 BYTE QUEUE AND THE 80188 HAS A 4 BYTE QUEUE. 

AD8 - AD 15 ON THE 80186 ARE TRANSFORMED TO A8 - A 15 ON THE 
80188 AND ARE VALID THROUGHOUT THE BUS CYCLE. 

BHElS7 IS ALWAYS DEFINED HIGH BY THE 80188. 

THE DMA CONTROLLER ONLY PERFORMS BYTE TRANSFERS. 

EXECUTION TIMES FOR MEMORY ACCESSES ON THE 80188 ARE 

INCFIEASED BECAUSE OF 8-·BIT EXTERNAL OAT A BUS. INTERNAL 
DATA BUS IS STILL 16-BIT8. 

20-27 



Vee 

TYPICAL iAPX 186, 188 COMPUTER 

SYSTEM 
16 MHz rD1 

l(1 X2 

~ 
ucs 

8282 OR ADDRESS RESET 

RES 8283 /---J ROM 
ADO-.. 

:t 

. 

AD15 t-- ~ LATCH I--
ALE f-- f-- STB ~ 

1STB OE 
-~ 

80188 

1m 
\VA 

~3 

BHE I--
SRDY +5V 

U ARDY 

NMI ~ 
HOLO 

~ 
~ 

TMRINO f--+5V 

TMR OUT 0 

82B80R 

~ 8287 
TRANSCEIVER 

T OE 

DT/R ~ 
PCSO 

A1 
A2 

INTO 

INT1 
~ 
DROO 

.-

I ( 

~ 

PROGRAM 
RAM 

r-~ 

.... 
~ 

LDWRAM 

( 

t 
CLOCK -

1)0-07 

SERIAL 
I/O 

I 

..... 
...,. -> "V ~ 
~ 
ERMINAL T 

~0DI DISK ...... 
INTERFACE 
HARDWARE 

...,. SK 

• BHE NOT IMPLEMENTED ON iAPX 188 

20-28 



iAPX 186,188 PINOUT 

TOP BOTTOM 

ucs 
l.CS 
PCS6/.6.2 
PC~A1 
PeS"" 

c peS3 

C ~ill 
Vss 
peso 

L ~f.\ OUT 1 
TMA OUT 0 

TMR1N1 
r TMR IN 0 

DRat 

UI..JUI.lUI.lUIUUUUUUJ...Jl.JlL.ICJ' / ~ ... _ 8 M 8 ~ iii U. M "N ~ C II: 8 .. ORao 

PIN NO.1 MARK E!ic -<Q"f;1:;C~ ci~;iH5!i =z '" c '" eeoC'" ".C 

20-29 

FOR MORE INFORMATION 

INTRODUCTION TO THE 80186 MICROPROCESSOR 
AP-186 

20-30 





CHAPTER 21 
THE iAPX 286 AND iAPX 386 MICROPROCESSORS 

• DESCRIPTION 

• ENHANCEMENTS 



I 
I 
I 
I 

I 
I 

I 

I 
I 
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

I 
I 
I 
I 



iAPX 286 MICROSYSTEM SOLUTION 

TWO OPERATION MODES TO MATCH YOUR NEEDS: 

• REAL ADDRESS MODE 

-PROGRAM ENVIRONMENT IDENTICALTO iAPX 86, 186 

-HIGHEST-PERFORMANCE SYSTEM (6 TIMES iAPX 86) 

--LARGEST BASE OF AVAILABLE SOFTWARE (iAPX 88, 86, 186) 

• PROTECTED VIRTUAL ADDRESS MODE 

--SAME PERFORMANCE AS REAL MODE PLUS NEW FEATURES: 
VIRTUAL MEMORY 
SOFTWARE PROTECTION 
PERFORMANCE BOOST FOR PROTECTED O.S. 

-SIMPLE MIGRATION PATH FOR LARGE BASE OF APPLICATIONS 
SOFTWARE 

21-1 

iAPX 286 REAL ADDRESS MODE 

• OPERATES EXACTLY AS IAPX 86 (PLUS UP TO 6 TIMES 
PERFORMANCE) 

• 1 MBYTE ADDRESS SPACE 

• EXECUTES SAME iAPX 86 INSTRUCTION SET (BASIC SET) 

• HAS ALL iAPX 186 INSTRUCTION EXTENSIONS 

• SEGMENTATION SAME AS iAPX 86 

• FULLY SOFTWARE COMPATIBLE WITH iAPX 86 AND iAPX 186 
INCLUDING ADVANCED NUMERICS 

21-2 



iAPX 286 PROTECTED VIRTUAL MODE 
SATISFIES SYSTEM REQUIREMENTS 

• ADVANCED MEMORY MANAGEMENT WITH NO PERFORMANCE 
PENALTY 
-16 MBYTE PHYSICAL ADDRESS 
-1 BILLION BYTE VIRTUAL ADDRESS/TASK 
-VIRTUAL MEMORY SUPPORT-INSTRUCTION RESTART 

• ADVANCED PROTECTION MECHANISM 
-AUTOMATIC INTEGRITY CHECKS (CODE AND DATA TYPING, 

SIZE, AND PRIVILEGE) 

-TASK ISOLATION CONTROL (USER/USER ISOLATION AND 
SHARING) 

-MULTILEVEL PROTECTION-UP TO 4 LEVELS-(USERlO.S. 
ISOLATION AND ACCESS CONTROL) 

• OPERATING SYSTEM PERFORMANCE ENHANCEMENTS 
-MULTITASKING (INTEGRATED TASK SWITCH) 
-ABILITY TO PROVIDE DIRECT ACCESS TO O.S. FUNCTIONS 

• EXECUTES SAME BASIC iAPX 86 AND iAPX 186 INSTRUCTION SET 
INCLUDING ADVANCED NUMERICS 

21-3 

MEMORY PROTECTION 

--~---- --~---~Level 0 (most privileged) 

'"J-----\--- -Level 2 

3 (least privileged) 

LeVE~1 Isolation 

Task Isolallon 

21-4 



~RUCTION) 

• RELATIVELY 

PIPE LINED ARCHITECTURE 

-
INSTR. 

QUEUE 

ADDRESS 

UNIT 

INSTRUCTION 

UNIT 

.. 
CODE 

QUEUE 

INHIBIT CODlo PREFETCHER 

ADVANCE NOTIFICATION OF DATA NEED 

DATA 

21-5 

ACCESSING MEMORY 

REAL ADDRESS MODE 

SEGMENT 
ADDRESSING 

BASE 
MECHANISM 

J I .. 1234H 
I BASE x 16 J 

OFFSET 

BUS 
UNIT 

I (I<)~5H ~ 

SIMPLE ADDRESSING MECHANISM l 
A TIONSHIP BETWEEN SEGMENT REGISTER • DIRECT REL 

CON TENTS AND SEGMENT ADDRESS 

21-6 

-

LOCAL 
BUS 

1 

1 

2340H 

2345H 



INSTRUCTION 

ACCESSING MEMORY 

PVAM 

SEGMENT 

SELECTOR 

OFFSET 

ADDRESSING 

MECHANISM 

,r--1-----........ + 
• MORE SOPHISTICATED ADDRESSING MECHANISM 

• UTILIZES MEMORY MANAGEMENT AND 
PROTECTION MECHANISMS 

• ADDRESS STILL CONSISTS OF 32 bit QUANTITY 

SELECTOR: OFFSET 

• 24 bit ADDRESS SUPPORTS 16Mb MEMORY 

INSTRUCTION 

21-7 

PV AM ADDRESSING MECHANISM 

OFFSET 

SEGMENT 

DESCRIPTOR 

DESCRIPTOR 

TABLE 

• SEGMENT SELECTOR "SELECTS" A PARTICULAR 
DESCRIPTOR FROM A DESCRIPTOR TABLE 

• DESCRIPTOR PROVIDES SEGMENT BASE AND LIMIT 

21-8 

T 
LIMIT 

1"-----11 



DESCRIPTOR REGISTER LOADING 

• DESCRIPTORS ARE AUTOMATIC ALL Y LOADED WHENEVER 

A SEGMENT REGISTER IS LOADED. 

• NO NEW INSTRUCTIONS ARE NEEDED. 

EXAMPLES: MOV OS, AX :2.5 USEC 
POP ES 
JMP SELECTOR, OFFSET 
CALL SELECTOR, OFFSET 
RET 
LOS SI, POINTER VA RIABLE 

• THESE ARE THE ONLY TYPES OF INSTRUCTIONS THAT AFFECT 

THE PERFORMANCE OF REAL ADDRESS MODE VERSUS PV AM 

21-9 

BEYOND 

286 

PERFORMANCE 

21-10 



iAPX 386 

• EVOLUTION OF THE iAPX 86 FAMILY TO THE FUTURE 

- IMPROVED PERFORMANCE 

- INCREASED FUNCTIONALITY 

- PRESERVATION OF 86, 186 AND 286 

SOFTWARE INVESTMENT 

21-11 

iAPX 386 FUNCTIONALI TV 

• FULL 32 BIT ADDRESS AND DATA 

• 286 MODEL PROTECTED SEGMENTATION PLUS OPTIONAL PAGING 

• INSTRUCTION SET ENHANCEMENTS 

- BIT OPERATIONS, POINTER OPERATIONS, ETC 

• EXTENDED NUMERICS COPROCESSOR (80387) 

- INCREASED PERFORMANCE 

- ENHANCED TRIGONOMETRICS 

• IMPROVED SYSTEM RELIABILITY 

21-12 



ARCHITECTURE PLANNED FOR EVOLUTION 

1 ST GENERATION 

~~ 
~ 

/ 

2ND GENERATION 3RD GENERATION 

386 

21-13 





APPENDIX A 

LAB EXERCISES 





LAB 1 

, 

When you finish this lab you will be able to: 

* 
* 
* 
* 

Write a simple but complete assembly l~nguage program 
using an editor . 
Use ASM86 to create object code from a text file 
Use LINK86 to make a run time locatable file 
Execute the program using the SERIES If I development 
system ' 

PROBLEM (part 1) 

This lab requires an INTELLEC SERIES III MlCROCOMPUTER 
DEVELOPMENT SYSTEM with an attached 1/0 box containing 
LED's and switches. You are to write a prqgram that will 
input the value on the switches wired to p~rt 1, and then 
output this value to the LED's attached tOIPort 0. The 
program should do this continuously. 

When you have a written solution, continueiwith the lab. 
I 

PREPARING THE USER DISKETTE 

If you are using the network, follow the directions given 
by your instructor, skip this section and 80 to CREATING A 
SOURCE FILE. 

Your instructor has two floppy diskettes t~at you will use 
for all the labs during the week. One of ~he diskettes is 
a system diskette that has the ISIS-II operating system on 
it. To use the Development System, you must first boot up 
the system with a system diskette. To boot the system, 
first power on everything and then place t~e diskette 
marked SYSTEM DISKETTE into drive 0 of the development 
system (this is the right hand slot of the drive unit). 
Place the diskette into the drive such that the label is to 
the left or facing upwards (it depends on how the disk slot 
is orientated). Now press the button marked RESET. The 
system should sign on: 

ISIS-II V x.y 

The " " tells you that you are in ISIS and that any ISIS 
command may now be entered. 

Now place the other diskette into drive 1. This is your 
diskette that you will use for the entire week. First 
initialize the diskette in drive 1 with an ISIS command 
named IDISK. This command is used typically only once to 
initialize a new diskette. The command formats the 

A-l 



LAB 1 

diskette to make it compatible with ISIS and "erases" 
everything that was on the diskette previously (so only use 
the IDISK command once this week). To format your diskette 
enter the IDISK command exactly as it appears below 
followed by return. 

IDISK :F1:MYDISK 

The ":F1:" tells ISIS that you want drive 1 (drive 0 is 
accessed by :F0:). The name is arbitrary. The return key 
enters the command. Once the command is done, ISIS will 
return with a "_H. If you make ~ mistake while typing, use 
the key labeled "Rubout" to delete the last character you 
entered. 

CREATING A SOURCE FILE 

Now you are ready to create a disk file of your program 
using an editor. If you wish to use AEDIT and you are 
unfamiliar with it, go to the optional AEDIT Basics lab in 
this appendix. 

To invoke AEDIT, type: 

AEDIT :F1:LAB1.ASM 

While you are creating this file, it would be good practice 
to keep your AEDIT Pocket Reference card with you to help 
you with unfamiliar commands. You should also use the Tab 
key to make orderly columns in your program. 

Once you have your program entered, you are ready to 
assemble it. This is accomplished by typing: 

RUN ASM86 :F1:LAB1.ASM SYMBOLS 

where 

RUN 

ASM86 

is a program that invokes the 8086 processor 
in the development system (ISIS uses the 8085 
processor) . 

is the program that you want the 8086 
processor to execute (the assembler). 

:F1:LAB1.ASM is what you want the assembler to assemble. 

SYMBOLS is a control telling the assembler that you 
would like a table of all the symbols used in 
your program. This symbol table will be 
attached to the program listing. 

A-2 



LAB 1 

When the assembler is done, it will return control to 
ISIS. It will also create two new files on the floppy disk 
in drive 1. One of these files contains 8086 object code 
to be executed on an 8086 processor. The other file 
contains the program listing which gives u$eful information 
about the program including any errors the assembler 
found. Write the names'of these two files~ 

: F 1 : 
: F 1 : ----------------------------------------------------------

If you cannot remember the names of these files, you can 
find them by looking at the directory of dtive 1. Type: 

DIR 1 

Copy the listing file to the line printer by typing: 

COPY :F1: TO :LP: ------
or substitute the printing device given by your instructor 
to use instead of :LP:. 

If the assembler found any errors, now is the time to 
correct them by changing your source file ~sing AEDIT. 

You should be able to identify most of the items in the 
listing. Try to answer these questions. 

How many bytes long is the program? 

What is the offset of the last instruction in the 
pr ogr am? 

How many bytes long is this last instruction? 

DON'T PROCEED TO THE NEXT SECTION UNTIL YOU HAVE ASSEMBLED 
YOUR PROGRAM WITH NO ERRORS! 

A-3 



LAB 1 

LOADING AND RUNNING YOUR PROGRAM 

As we saw in the last section, the assembler produced an 
object file called :F1:LAB1.0BJ. This file contains 
relocatable object code. It does not contain any absolute 
addresses. It must be assigned an address before it can be 
executed. To assign an address to a program, it is run 
through a "locater". The locater assigns absolute 
addresses to the segments in a file. 

The SERIES III development system, however, is designed to 
accept run time locatable code. Thus the code is assigned 
an address as it is being loaded into RAM memory from the 
disk. This saves several steps (and time) during program 
debugging (eventually the program will need to be located 
before it can be used with an in-circuit emulator or burned 
into PROMs). To assign run time locatable addresses to 
your program, we use the linker with a BIND option. This 
option allows the program to be run on the SERIES III 
development system. Type: 

RUN LINK86 :F1:LAB1.0BJ BIND 

The LINK86 program produces two new files, :F1:LAB1 and 
: F 1 : LA B 1 . M P 1 . 

The file :F1:LAB1.MP1 is a map of the output of the 
linker. You may want to copy it to the line printer, but 
for such a small program as this one it won't give you much 
useful information. :F1:LAB1 is the run time locatable 
object file. 

To run your program type: 

RUN : F 1 : LA B 1 . 

The period after LAB1 is required. If you don't include 
it, the RUN program will look for a file called :F1:LAB1.86 
and not find it. Most 8086 object code programs to be run 
on the SERIES III have an extension of .86. You may want 
to look at the directory of your system disk to verify 
this. By including the period after your file name, you 
tell the RUN program not to look for the .86 extension. 

Verify that your program works correctly. If it does not, 
study your listing or ask your instructor for help. 
Tomorrow you will learn techniques for debugging your 
programs while they are running in the development system. 
Remember, you can abort your program execution at any time 
and return to ISIS by entering Ctrl-C (press and hold the 
Ctrl key and then type a C). 

A-4 



LAB 1 

Note: If a HLT instruction is included in your program, you 
might get some unexpected results. This is due to the way 
that the HLT instruction works and the way that the SERIES 
III works. The main use of the HLT instruction is to wait 
for a hardware interrupt. After an interrupt, the 
processor continues execution with the instruction after 
the HLT instruction. The SERIES III normally interrupts 
the 8086 processor every 50 msec. When interrupted, the 
8086 checks to see if any keys had been hit at the 
keyboard. These interrupts are invisible to you unless you 
use a HLT instruction to end your program. If you do end 
with a HLT instruction, the 8086 will execute whatever 
follows the HLT instruction as soon as it returns from the 
interrupt routine. The solution is to not use a HLT 
instruction for ending your program or to use a JMP 
instruction directly after the HLT which jumps to the HLT 
instruction. 

PROBLEM (part 2) 

Write a program that will rotate a pattern of one lit LED 
on the LED's of port 0. The program should delay about 1 
second between each rotate. 

PROBLEM (part 3) 

Use the program written in part 2, but make the delay a 
variable that is specified by the switch setting on port 
1. You may find it difficult to write a 'bug free' program 
using only the instructions covered so far in class. If 
you have problems, speak to the instructor ~r you may want 
to look at the solution given. Try your own solution 
first! ! 

REVIEW: 

In this lab, you have learned how to use the instructions 
taught in Day 1 of the workshop and some of the ISIS 
commands discussed in class. You have learned how to 
create, assemble, link and execute your program using the 
SERIES III development system. The development steps taken 
in this lab were: 

AEDIT :F1:LAB1.ASM 
RUN ASM86 :F1:LAB1.ASM SYMBOLS 
COpy :F1:LAB1.LST TO :LP: 
RUN LINK86 :F1:LAB1.0BJ BIND 
RUN :F1:LAB1. 

A-5 



LAB 2 

When you finish this lab you will be able to: 

Define and access a data array * 
* Debug using DEBUG-86 symbolic debugger 

PROBLEM (part 1) 

Using the flow chart in the following text, write a program 
that will continuously search a 50 byte array called BUFFER 
for the ASCII code for return (0DH). If a return is found, 
the program should output F0H (for FOund) to port 0 LEDs 
and continue looking from the beginning of the buffer. 

If a return is not found, the program should output 0FH to 
the LEDs and start looking again from the beginning of the 
buffer. 

When writing your program, don't worry about putting a 
return in the buffer. We will do this later using the 
debugger. Use START: as the program label for the first 
instruction in your program. 

NO 

START 

INITIALIZE 
ex= LENGTH OF BUFFER 

BX= 0 

BX: BX+ 1 

ex= eX-1 

A-6 

YES 

YES 

(FOUND) 
OUTPUT 

OFOH 

(NOT FOUND) 
OUTPUT 

OFH 



LAB 2 

When you have your program written, you will have to 
prepare it for execution as you did in Lab 1. Enter your 
program on a disk file using AEDIT and assemble it using 
ASM86. Don't forget to use the DEBUG and SYMBOLS options 
for the assembler as shown below. 

RUN ASM86 :F1:LAB2.ASM SYMBOLS DEBUG 

The DEBUG option attaches a copy of the symbol table to the 
object file. When you load your object file into RAM 
memory, DEBUG-·86 will remember the symbol names and their 
values. This allows you to use symbolic names to reference 
parts of your program. You should get a copy of the 
listing for the DEBUG session that follows. 

Remember, the SYMBOLS option attaches a copy of the symbol 
table to the program listing so that you can look at it. 

Prepare your object file for loading with: 

RUN LINK86 :F1:LAB2.0BJ BIND 

USING THE SERIES III DEBUGGER 

At this point, you are ready to execute YOUr program. 
However, instead of just running your program and hoping 
that it works correctly, your should use DBBUG-86 to 
analyze its operation and find any errors that you might 
have made. 

To invoke the SERIES III Debugger, type: 

RUN DEBUG 

The debugger will sign on: 

DEBUG 8086 V x.y 
* 

The asterisk prompt ,"*", tells you that you are in the 
debugger and only DEBUG-86 commands are valid (you can 
still use Rubout). The DEBUG-86 commands are shown in the 
Intellec SeriE~s III Microcomputer Development System Pocket 
Reference Card with a full explanation in the Intellec 
Series It I Mi~rocomputer Development System Console 
Operating Instructions manual Chapter 6. 

To load the program into memory type: 

LOAD :F1:LAB2 

A-7 



LAB 2 

This command will load both your program and all of the 
symbols that you declared in your program. The symbols 
will only get loaded if the DEBUG option was used when you 
assembled your program. The loader will also initialize 
the CS and IP registers to point to the first instruction 
in your program. Do not put a per iod at the end! DEBUG-86 
only looks for the filename specified. Before executing 
the program, check to see where in memory the program was 
loaded. How can you tell where the program was loaded? 
(hint--look at the registers.) Type: 

REGISTER 

The debugger will display all the registers and flags. 

Where is the program located? 

To see if the program was loaded correctly, display 
memory. The memory display commands use an address range 
which can be specified in several ways. Type: 

BYTE CS:0 TO CS:20 

Compare this memory dump to the object code given in the 
listing. Do they match? An easier way to determine if the 
program was loaded correctly would be to disassemble the 
object code in memory. To do this, type: 

ASM CS:0 TO CS:20 

This command, like the BYTE (display memory) command, 
requires an address range. The LENGTH keyword can also be 
used in specifying address ranges. To try it, type: 

ASM CS:IP LENGTH 25 

Note: You may see an XCHG AX,AX when you dissemble your 
program. This is not an error. XCHG AX,AX is the way the 
assembler generates a NOP (no operation) instruction. It 
is possible for the assembler to allocate one extra byte 
for a JMP instruction if the destination of the jump is 
defined later in the program. This extra byte is filled 
with a NOP. More on this later. 

Before running the program, you should know whether or not 
a return character is in the buffer. But where is the 
buffer? One way of finding out the address of the buffer 
is to look it up in the symbol table. Type: 

SYMBOLS 

A-a 



LAB 2 

I 

You should see all the symbols in your program including 
segment names. However, we can also use s~bol names 
directly. To display the buffer, try: : 

BYT .BUFFER LENGTH 50T 
i 

You must use a period in front of every s~bol name. This 
is to differentiate symbol names from DEBU~-86 commands in 
case they happen to be the same. The Tin. 50T indicates 
base ten. The default base is hex. 

Fill the buffer with all zeroes by typing: 

BYT .BUFFER LEN 50T = 0 

Now execute the program sing the GO command: 

GO 

The GO command defaults to using the curre~t CS:IP value as 
a starting address. If CS:IP were not correct, you could 
have typed: 

GO FROM .START 

Is the program working correctly? To stop: execution, press 
and hold the Ctr 1 ke y and type D (Ctr l-D).1 Ctr l-D br ings 
you back into the debugger. The program sltops executing 
and the next instruction to be executed i~ displayed. To 
place a return (0DH) in the buffer and see if your program 
finds it, type: 

BYT .BUFFER+10T = 0DH 

This will place a 0DH in the eleventh byte in the buffer. 
Display the buffer again to see if it is there. Now 
execute the program from the beginning to 'see if it works. 
If your program doesn't work, there are se'veral commands to 
help you find out why. 

Breakpoints can be used to stop execution jat a certain 
place in your program. They are very useful for finding 
out if a program is executing correctly. :If you had a 
program label called FOUNDIT and you wanted to see if your 
program ever reached this statement, you could type: 

GO FROM .START TILL .FOUNDIT 

A-9 



LAB 2 

To single step the program, use the step command. To 
single step the first instruction, type: 

STEP FROM .START 

An address could have been used (STEP FROM 485:0). The 
debugger displays the next instruction to be executed. To 
step again type: 

STEP 

The ports on the 1/0 box can be directly controlled with 
the debugger. To read the value of the switches on port 0, 
type: 

PORT 0 

To turn on the LEOs on port 1, type: 

PORT 1 = FF 

The debugger has several advanced commands that are useful 
during debugging. One of these allows any number of 
OEBUG-86 commands to be repeated indefinitely. To use this 
command to repeatedly single step and display the registers 
after every instruction, type: 

REPEAT 
STEP 
REGISTER 
END 

Abort with Ctrl-D. Use these commands until you feel 
comfortable with them. If you have extra time, you should 
try some of the other DEBUG-86 commands that were not 
discussed here. 

To exit the debugger and return to ISIS, type: 

EXIT 

or 

Ctrl-C. 

PROBLEM: (optional) 

Modify the previous lab to count the number of returns in 
the buffer. You should use a variable in memory to hold 
this count. After going through the entire buffer, output 

A-10 



LAB 2 

the count to the LEDs on port 0. If the count is zero, 
output a value of FFH. Have this repeat cpntinuously. Use 
DEBUG-86 to add returns to your buffer. Tpe following 
steps may assist you in development: I 

1) INITIALIZE CX = LENGTH OF BUFFER, BX = 0, COUNT = 0 
2) IF BUFFER [BX] = 0DH THEN COUNT = COUNT + 1 
3) BX = BX + 1, CX = CX - 1 
4) IF CX DOES NOT EQUAL ZERO GO TO STEP 2 
5) IF COUNT = 0 THEN OUTPUT 0FFH OTHERWISE OUTPUT COUNT 
6) GO TO STEP 1 

REVIEW: 

In this lab, you have learned how to use the instructions 
taught in Day 2 of the workshop and how to define and 
access data. You have learned how to debug your program 
using the SERIES III development system anid DEBUG-86. 

The DEBUG-86 commands used in this lab were: 

RUN DEBUG 

LOAD 

REGISTER 

BYTE 

ASM 

SYMBOLS 

GO 

STEP 

PORT 

REPEAT 

EXIT 

Activates DEBUG-86. 

Loads your program code into 8086 
memory. 

Display the contents of user registers. 

Display and change the contents of byte 
memory locations. 

Display the contents of memory locations 
in 8086 Assembly langu~ge mnemonics. 

Displays symbols and their values. 

Causes execution of your program until 
breakpoint conditions are met. 

Causes execution of a $ingle program 
instruction. ' 

Display and change contents of a byte 
I/O port. 

Causes looping of a command. 

Exits DEBUG-86 (or use Ctrl-C). 

A-ll 



LAB 3 

When you finish this lab you will be able to: 

* 
* 
* 
* 
* 

Use and declare procedures in ASM86 
Break up your code into separate segments 
Pass parameters to a procedure 
Create and initialize a stack 
Optionally, create an interrupt routine 

PROBLEM (part 1) 

In the first part of this lab, you will create a simple 
typewriter program that inputs characters from the 
development system keyboard and outputs them to the CRT. 
For this part of the lab, you will use two procedures 
provided on your system disk. These procedures are 
labelled CI and CO. 

CI is a procedure that inputs one character from the 
keyboard and returns its ASCII value in the AL register. 
It will wait until a key has been hit. 

CO is a procedure that outputs one character to the CRT. 
The character to be output (the parameter) should be passed 
on the stack. CO will clean up the stack. 

CI and CO have already been written for you and the object 
code is contained in two files on your system disk called 
CI.OBJ and CO.OBJ. We have provided these to save you the 
time and effort of writing them on your own. CI and CO are 
actually written in PL/M~86, a high level language. The 
listings are given in the lab solutions section. 

Write your program as if CI and CO were declared in your 
own source program. They will actually be added later when 
you use LINK86 to bind your program. This is modular 
programming which will be covered later in the course. 

Use the following steps to help you write your program: 

1 ) CREATE A STACK 
2) INITIALIZE ANY NECESSARY REGISTERS 
3) CALL CI 
4) CALL CO (Don't forget to pass the character on the 

stack) 
5) JUMP TO STEP 3 

A-12 



LAB 3 

Because you are using the procedures CI and CO and you 
don't declare them anywhere in your progra~, the assembler 
will give you an error. To prevent this, you should tell 
the assembler that the procedures CI and CO are defined 
"external" to the module. To do this, place the following 
statement at the very beginning of your prpgram (it must be 
outside of any segment). . 

EXTRN CO:FAR,CI:FAR 

When you are ready to link your program, use the command: 

RUN LINK86 :F1:LAB3.0BJ,CO.OBJ,CI.OBJ,LARGE.LIB BIND 

This will include the CI and CO routines. LARGE. LIB is a 
collection of programs that enables an 8086 program to 
access 1/0 devices on the development system. 

---Good luck---

PROBLEM (part 2) 

In this part of the lab, you should make t~o additions to 
the program written for part 1. The first is to write a 
new procedure called ENCRYPT. Before outp;utting any 
character to the CRT, it should first be passed to the 
ENCRYPT procedure. ENCRYPT should transfo,rm the ASCII 
character in some way that you decide and ipass it back to 
the main program. An easy example would de to add a one to 
the value. This would transform an "A" into a "B" ,"B" into 
a "C", etc. An ASCII table is included in; the front of 
this lab section to help you. Pass this ~arameter on the 
stack to ENCRYPT. Place ENCRYPT in the saime segment as the 
main program. 

Where would be the best place to put ~he ENCRYPT 
procedure in your code segment? (the beginning or the 
end) 

What would you use to access the parameter passed to 
ENCRYPT on the stack? 

Also, you probably noticed that carriage returns did not 
produce a line feed. Add some code to your main program to 
detect carriage returns and to output a carriage return and 
a line feed when a carriage return is entered. 

A-13 



LAB 3 

PROBLEM (par t 3) 

Place ENCRYPT in a separate segment from the main program. 
Your program should then contain two segments with one of 
them containing your main code and the other containing 
only the ENCRYPT procedure. 

Where would be the best place to put the ENCRYPT 
procedure segment in your program? (the beginning or 
the end) 

What changes had to be made to make this work? 
(procedure type and parameter access changes) 

PROBLEM (part 4) 

This is a slightly more difficult version of part 2. 

Instead of creating an ENCRYPT procedure, write one that 
implements a shift-lock feature for the keyboard. The TPWR 
key already does this, but we will implement the feature in 
software. When the TPWR key is depressed, the Intellec 
keyboard produces both upper and lower case characters 
depending on the shift key. You should write a procedure 
that converts lower case alpha characters to upper case 
characters depending on whether the shift-lock has been 
set. The shift-lock is defined as the character "I" (7CH) 
in the upper right hand corner of the keyboard. After this 
key is hit for the first time, all alpha characters output 
should be in upper case only. After it is hit again, alpha 
characters should be in both upper and lower case. Your 
procedure should maintain a software flag to keep track of 
whether the lock is set or not. 

A-14 



LAB 3 

OPTIONAL PROBLEM (Interrupts) 

You are to implement an interrupt service routine. Your 
main program will be required to read the values set on the 
port switches then divide the number set o~ port 0 by that 
set on port 1. The result (port 0/port 1): should be 
displayed on the port 0 LEDs. This should! be done in a 
continuous loop. 

A divide error may occur. For example, if the port 1 
switches were 0 then the answer of infinit~ cannot be 
represented. You will have to write an initerrupt service 
routine for the type 0 interrupt to handle this. This 
routine should change the state of the port 1 LEDs, delay 
for a half a second and then return. While there is a 
divide error being generated in the main program, the LEDs 
on port 1 will flash, the first interruptswi tching them 
on, the nex t swi tching them off, etc. Use: a byte in RAM to 
flag the LEDs on/off. 

Remember to do the following: 

1) Your main program should set up Mle stac k. 
2) Your main program should set up tihe pOinter to the 

interrupt service routine. 
3) The interrupt service routine should save any 

registers it uses. 
4) Use the correct return at the end of the routine. 

If you prefer to use an absolute segment with a pointer to 
your interrupt routine in that segment, you may encounter 
some problems with DEBUG-86. DEBUG overw~ites your pointer 
table entry when it loads your program. If you wish to 
reload it, type POINTER 0 = .(error) where "error" is 
whatever you called your service routine. 

Do you need to enable interrupts with an STI 
instruction? 

Why not? 

REVIEW: 

In this lab, you have learned how to create procedures, 
placed them in a separate segment from your main program, 
and passed parameters to your procedure. You have created 
and initialized the registers to point to your stack. If 
you did the optional lab, then you have set up interrupt 
pointers and written an interrupt service routine. 

A-iS 



LAB 4 

When you finish this lab you will be able to: 

* 
* 
* 

Break up your program into separate modules 
Use a jump table 
Encrypt using the XLAT instruction 

PROBLEM (part 1) 

In this lab, you are going to write a procedure that will 
be referenced in another module. Edit the program you 
developed in part 3. Remove the segment that contained the 
ENCRYPT procedure and make an external reference to the 
procedure. Now write a separate module that will only 
contain the ENCRYPT procedure. Modify this procedure to 
provide a switch selective encryption technique. The 
operation of the procedure should be as follows: 

The procedure should read the value set on the port 0 
switches and use this as an index into a table of offsets 
of program labels. Using an indirect jump, the procedure 
will jump to one of several different program labels. Each 
of these pieces of code will provide a different encryption 
technique to alter the character that was sent to the 
ENCRYPT procedure. If the value on the switches is greater 
than the number of encryption techniques you have provided, 
the ENCRYPT procedure should return a "*" (2AH) to indicate 
a nonvalid switch setting. 

This purpose of this lab is to implement a jump table and 
to use multiple modules, not to think of many ways of 
altering the characters. Two or three simple encryption 
techniques will suffice (i.e. increment character, 
decrement character, and shift character). Remember to 
link these together. 

PROBLEM (part 2) 

Write another encrypt procedure in a separate module. This 
time try writing it using the XLAT instruction for 
encrypting your characters. This is a natural for this 
instruction. Link this module to your main program instead 
of the one you created in part 1. 

REVIEW: 

In this lab, you have used multiple modules and the 
conventions for linking them together. You have also used 
the instructions taught in Day 4 of the workshop. 

A-16 



AEDIT Basics Lab 

When you finish this lab you will be able to: 

* Invoke the editor 
* Insert text to make a file 
* Position the cursor to make corrections 
* Correct mistakes by deleting and exchangjing characters 
* Move and copy blocks of text 
* Exit the editor and save your file 

In this lab, you will be learning the basip AEDIT commands 
so you can create your program files. If !you have any 
problems or errors occur, please see your iinstructor. You 
will be editing a file called TEST. LAB. This file is on 
your system disk. Power up your system following the steps 
taught in class. To use this file, copy ~t to your user 
disk wi th the following command: «CR) ind1icates the return 
key) 

COpy TEST.LAB TO :F1: <CR) 

To edit this file, you invoke AEDIT by typing the following 
line: 

AEDIT :F1:TEST.LAB <CR) 

AEDIT displays a menu on the bottom of the screen which 
should look like this: 

---- system id AEDIT V x.y 
Again Block Delete Execute Find -find Get -- more 

At the end of the text you should see a v.rtical bar "l" 
which is the EOF mark. This marks the enq of the text 
file. If this was a new file it would appear at the top of 
the screen. As you type in text it will move and continue 
to mark the end of the file. 

The solid non-blinking block is the cursor. This marks 
where you are at in the file. 

When you begin a session, AEDIT is in the 'command mode. 
The menu at the bottom of the screen shows you what options 
you have. Press the Tab key (If the terminal you are using 
does not have a Tab key, press and hold t~e Ctrl key and 
then type the I key). Pressing the Tab key will show the 
other options available in the command mode. Pressing Tab 
repeatedly will show all the options and wrap around to the 
beginning of the menu. Several of the commands also have 
subcommand menus as you will see later. 

A-17 



AEDIT Basics Lab 

The Insert command is used to type in new text in front of 
the current cursor position. lo enter any command, you 
type the first letter of the command. Press the I key. 
You should see "[insert]" at the bottom of the screen to 
indicate that you are now in the insert mode. Now type in 
a word but misspell it. To correct your error, press the 
RUBOUT key. Each time you press the RUBOUT key, it backs 
the cursor one column and erases that character. Once the 
offending character is erased, simply type in the new 
characters. 

Delete the characters you just typed by holding down the 
Ctrl key and typing the X key. This is the DELETE LEFT 
command and deletes the text on a line from the cursor to 
the beginning of the line. At this point, the text should 
be the same as shown below. 

When you type ussing an edior you may often 
make a mistoke that you have to correct. 
AEDIT will allow you to correct the the 
problem, get rid of bad stuff, and make your life easy. 
This is the first line. 

The arrow keys move the cursor up, down, right, or left. 
If you type the HOME key after one of the arrow keys, then 
you can move rapidly to the beginning or end of a line or 
page forward and backwards through a file. Press the right 
arrow key followed by the HOME key. Notice the cursor 
moved to the end of the line. Press the left arrow key 
followed by the HOME key. This took the cursor to the 
beginning of the line. 

The fourth word in the first line, "ussing", is misspelled. 
Press the right arrow key to move the cursor to the first 
"s" in "ussing". To delete the "s", hold down the Ctrl key 
and type an F. This is the DELETE CHAR command which 
deletes the character under the cursor. 

The sixth word in the first line, "edior", is missing a 
"t". Move the cursor to the "0" in "edior". Now type a 
"t". While in the insert mode, you can insert characters 
anywhere in your text. 

Press the Esc key. This takes you out of the insert mode 
and back to the command mode. Another method to go back to 
the command level is to use a Control C. Control C aborts 
the command and all corrections made are lost. 

A-l8 



AEDIT Basics Lab 

The third word on the second line "mistokel' is spelled 
wrong. Move the cur sor to the "0" in "mistoke". Since we 
wish to change the character "0" for an "a", press X for 
Xchange mode. Xchange allows you to overt~pe characters. 
If you make a mistake, press the RUBOUT key, and the old 
character is returned as long as you don't, press Esc, 
return, or a cursor movement key. Press an "a" to correct 
"mistoke", and then press the Esc key to get back to the 
command mode. 

The third line contains "the the" at the end of the line. 
Since the second "the" is at the end of th~ line, you can 
delete from there to the end of the line. To get rid of 
the second "the", move the cursor to the space in front it. 
Press and hold the Ctrl key and type an A.! This command, 
DELETE RIGHT, deletes all characters to the right of the 
cursor to the end of the line. 

Control A (DELETE RIGHT), Control X (DELETE LEFT) and 
Control Z (DELETE LINE) can also be restor led. The command 
to do this is the Undo command which is Ctrl U. Undo is 
able to restore up to 100 characters deleted by the last 
Control A, X, or Z at the current cursor position. Press 
Ctrl and type a U. Notice the "the" you j'ust deleted has 
reappeared. Now delete it again. 

Now you will be deleting characters in the middle of a 
line. If you wished to delete", get rid !of bad stuff ,", 
you would first block or delimit this sectiion. Move the 
cursor to the comma in front of "get" and type a B for 
Block. Notice when you did this an "@n has taken the place 
of the cursor. Now move the cursor to one character past 
the last character you want in the block. In this case, 
you would move it to the space after "stutf,". Notice an 
n@" moved with your cursor and marks the end of the block. 

When you pressed B for Block, you may have noticed that the 
menu has changed to show Block's subcommands. Since you 
wish to delete, type a D for Delete. Notlce that 
everything from under the first "@" up to the last "@" was 
deleted. 

The Block command gives you the ability to move and copy 
text from one part of your file to another. The fifth line 
which reads "This is the first line." shobld be moved to 
the first line. Move the cursor to the first character of 
the fifth line and type a B for Block. Now type the down 
arrow key. This will block the line. To move the line, 
you would first delete it, move the cursor to where you 
want to move it, and then get the line back. Type a D for 
the block subcommand Delete. This has deleted the line and 

A-19 



AEDIT Basics Lab 

placed it in a buffer. Now move the cursor to the 
beginning of the text by typing an up arrow and then HOME. 
Now you want to get the text you deleted. Type a G for the 
Get command. The Get command will prompt: 

Input file: 

on the bottom of the screen. To get the buffer which holds 
the deleted line, type a return or the Esc key. Notice the 
line has been retrieved and has been inserted before the 
old cursor position. 

Now let's copy the entire text file. Move the cursor to 
the beginning of the file if your cursor isn't already 
there. Now type a B for Block. Move the cursor to the EOF 
mark by typing a down arrow followed by HOME. Since you 
are about to copy, type a B for Buffer. This will place 
the blocked text in the buffer without deleting it. Now 
get the contents of the block buffer by typing G for the 
Get command. Answer Get's prompt with a return to get the 
buffer. Notice the six lines are repeated on the screen. 
Type G again and answer Get's prompt with a return. Notice 
the same six lines are repeated. Once text is in the 
buffer you can get it several times. Get the buffer three 
more times. 

To look at the text that is scrolled off the screen, type a 
down arrow several times. Notice that when you are at the 
bottom of the screen the screen scrolls up one line every 
time you type a down arrow. A faster way to look at the 
next page is to use the HOME key. Type the HOME key. 
Since the last arrow key typed was the Down arrow key, this 
should have taken you to the next page or screenfull of 
text. Typing HOME again should take you to the next page of 
text or the EOF marker, if this was the last page of text. 
To look at the previous page of text, you could type the Up 
arrow key several times or type the Up arrow key followed 
by the HOME key. Type the HOME key again. Repeated typing 
of HOME will take the cursor to the beginning of the text. 
Go from the beginning to the end of the text several times 
to get comfortable with the operation. 

Now that you are finished editing this file, you are ready 
to end the editing session. Type Q for the Quit command. 
The bottom of the screen should look like this: 

---- Editing :F1:TEST.LAB 
Abort Exit Init Update Write 

Notice that Quit has several subcommands that you can 
choose from. Abort returns to the operating system with 

A-20 



AEDIT Basics Lab 

all changes lost. If any changes were made, it will ask 
you "all changes lost (y or en])" to make ~ure. Exit will 
write out the new file and return to the operating system. 
Init allows you to edit another file without leaving AEDIT. 
Update updates your file without leaving A~DIT. Write 
prompts for an output file name and then i~ writes your 
file to the named file without leaving AED~T. Any legal 
filename can be used even :LP:. If you dip not specify a 
filename at the beginning of the session, only Abort, Init, 
and Write are available. Since you want tp save the file 
and leave AED1T, type E for Exit. Now you~ file has been 
written to the disk and you should have the operating 
system prompt. See if your file has been ~ritten by typing 
DIR 1<CR>. 

i 

You should have two files TEST. LAB and TEST.BAK. When you 
edit an old file and exit, AEDIT first chabges the name of 
yo ur old fi 1 e, TEST. LAB, to TEST. BAK be for,e sav ing the 
changed file. This way you still have the: old file in case 
the new one did n' t wor k. To use AEDIT on ithe old fi 1 e, use 
the ISIS RENAME command. For example: . 

RENAME :Fl:TEST.BAK TO :F1:TEST1.LAB 

The AEDIT commands can be found in the ~~9IT Text Editor 
Pocket Reference and in the AEDIT Text ltor User's Guide. 
AED!T has several other advanced commands Ithat you may wish 
to use. Refer to these guides to look at .these commands. 
The commands you have seen in this lab session are the most 
frequent ones that you will use to do most of your editing. 

I 

A-21 



AEDIT Basics Lab 

Review: 

The AEDIT commands that we have learned are: 

Cursor Movement commands: 

Arrow keys 
Rig ht ar row-HOM E 
Le ft arrow-HOME 

Down arrow-HOME 
Up arrow-HOME 

Delete commands: 

Ctrl-X 

Ctrl-A 

Ctr l-Z 
Ctrl-U 
Ctrl-F 
RUBOUT 

Menu commands: 

In ser t 
Xchange 
Block 

Get 

Qui t 

Buffer 
Delete 

Abort 
Ex it 
Ini t 

Upd ate 

Write 

Esc 
Ctrl-C 

Moves cursor right, left, up, or down. 
Move cursor to end of line. 
Move cursor to the beginning of the 
line. 
Move cursor to the next page. 
Move cursor to previous page. 

Delete all characters left of the cursor 
to the beginning of the line. 
Delete all characters right of the 
cursor to the end of the line. 
De 1 e tel in e . 
Undo a Ctrl-A, X, or Z. 
Delete character under cursor. 
Delete the preceeding character. 

Insert text before cursor. 
Type over characters under cursor. 
Allows you to delimit a block of 
characters with the following 
subcommands: 
Store delimitted block in buffer. 
Delete delimitted block and store it in 
the buffer. 
If responded to with a return, gets the 
contents of the block buffer. 
Ends the editing session with the 
following subcommands: 
Quit with all changes lost. 
Write new file to disk and quit. 
Edit a new file without returning to the 
operating system. 
Update your file without returning to 
the operating system. 
Writes contents of file to the named 
file without returning to the operating 
system. 
Takes you back to the command mode. 
Aborts the command and returns you to 
the command mode. 

A-22 



APPENDIX B 

LAB SOLUTIONS 





8086/87/88/186 MACRO ASS9IBLER LABIA 

I 

SERIES-III 8086/871881186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE LABl~ 
OBJECT MODULE PLACED IN :F2:LABIA.OBJ i 

ASSEMBLER INVOKED BY: :F3:ASJII86.86 :F2:LABIA. ASM 

lOC DBJ LINE SOURCE 

1 NAME LABIA 
2 

0000 3 LEDS EQU " jLED PORT .1 4 SWITCH EIII 1 j5WITCH PORT 
5 
6 CODE SEGMENT 
7 ASSlJIIIE CS:CDDE 
8 

0000 EIt01 9 START: IN ~,SWITCH 
0002 £600 10 OUT LEDS,AL 
0004EBFA 11 JMP START 

12 
13 CODE ENDS 
14 END START 

ASSEMBLY COMPlETE, NO ERRORS FOUND 

8-1 



8086/87/88/186 MACRO ASSEMBLER LAS1_PART2 

SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.& ASSEMBLY OF MODULE LAS1_PART2 
OBJECT MODULE PLACED IN :F2:LABIB.OBJ 
ASSEMBLER INVOKED BY: :F3:ASM86.86 :F2:LAB1B.ASM SYJI1BOLS DEBUG 

LOC OBJ LINE SOURCE 

1 NAME LABtPART2 
2 

0000 3 LEOS Ef1U 0 
0001 4 SWITCH EOO 1 
0001 5 PATTERN EGU 01H ;LED PATTERN 

6 
7 CODE SEGMENT 
8 ASSUME CS:CODE 

0000 B001 9 START: MOV AL, PATTERN 
0002 E600 10 AGAIN: OUT lEDS, Ai.. ;OUTPlIT PATTERN 

11 
0004 B90500 12 MOV cx,s ;5 TIMES FOR 1 SEC 
0007 8BD1 13 OUTER: MOV DX,CX jSAVE IT FOR LATER 
0009 B9FFFF 14 NOV CX,0FFFFH ;. 2 SEC DELAY 
000C E2FE 15 INNER: LOOP INNER 
000E8BCA 16 MOV CX,DX ;6ET IT B&tK 
0010 E2F5 17 LOOP OUTER ; TO DO IT 5 TIIllES 

18 
0012 D0C8 19 ROR AL,l ; ROTATE PATTERN 
0014 EBEC 20 JMP AGAIN ; REPEAT 

21 CODE ENDS 
22 END START 

B-2 



8086/87/88/186 MACRO ASSEMBLER LAB1_PART3 

SERIES-III 8086/87/88/186 MACRO ASSEMBLER Y2.0 ASS9IBLY OF MODLlE LAB1_~RT3 
OBJECT MODlI.E PLACED IN :F2:LABIC.OBJ 
ASSEMBLER UMIKED BY: :F3:ASJII86.86 :F2:LABIC. ASM SVMBOl..S DEBOO 

LOC OBJ LINE SOURCE 

1 NAME LABl_PART3 
2 

0000 3 LEOS EQU 0 
.1 4 SWITCH EQU 1 
0001 5 PATTERN EQU 01H iLED !lATTERN 

6 
7 CODE SEGIENT 
8 ASSUME CS:CODE 

0000 B001 9 START: I«JIJ AL, PATTERN 
jOUTI~JT PATTERN 82 E608 10 AGAIN: OUT LEDS,AL 

0804 8ADS 11 I«JIJ BL,Ai. jSAlJE! PATTERN 
12 

0006 E401 13 IN Ai.,SWITCH jDELA~ TIME IS SET BY 
.8 B. 14 MO\I AH,0 ; SWI CHES 
0I0A 8BC8 15 MOV CX,AX 
Me E30B 16 JCXl CONTIN ;IF Cr IS ZERO, THEN 

17 jSKIP DELAY. OTHERWISE 
18 ; DELAY WOULD BE TOO LONG , 

000E 8B01 19 OUTER: JIIO\I DX,CX ; SAVE ! IT FOR LATER 
0010 B9FFFF 20 MOV CX,0FFFFH j.2 ~C DELAY 
0013 E2FE 21 INNER: LOOP INNER 
00158BCA 22 I«JIJ CX,DX j6ET n BOCK 
0017 E2F5 23 LOOP OUTER JTO Db IT 5 TIlES 

24 
00198AC3 25 CONTIN: !(IV AL,BL IM=lINm 001B D0C8 26 ROR AL,l j ROTA E PATTERN 
001D EBE3 27 JlI1P AGAIN JRE T 

28 CODE ENDS 
29 END START 

B-3 



8086/87/88/186 ~RO ASSEMBLER LAB2 

SERIES-III 8886/87/88/186 MACRO ASSEMBLER Y2.' ASSaIBlY OF MODULE LAB2 
OBJECT MODlli PLACED IN :F2:l.AB2.0BJ 
ASSEMBLER INVOKED BY: :F3:ASM86.86 :F2:LAB2. AS/II SYMBOlS DEBUS 

LOC OBJ 

_ (50 

?? 

0000 88--
08038ED8 
0005 B93200 
0008 33DB 
000A 803F0D 
000D 7409 
000F 43 
0010 E2F8 

0012 B80F 
0014 E600 
0016 EBED 

001880F0 
001A E600 
001C EBE1 

R 

LItE 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
2"2 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

SllJRCE 

;THIS PROGRAM IMPLEtENTS TI£ FLCIDf.lRT GIVEN IN LAB 2 

NAME LAB2 

CR EQU 0DH ,CARRIAGE RETURN 
FOOND EGU 0F0H ,LED PATIERN IF CR IS FOUND 
NFOUND EQU 0FH ;LED PATTERN IF CR IS MlT FIlNl 
LED EQU 0 ;LED PORT 

DATA SEs.Q'T 
BUFFER DB 50 DUP (?) 

DATA ENDS 

CODE SEGMENT 
ASSlJIIE CS:CODE, DS:DATA 

START: MOV AX, DATA ;INITIALIZE DS SEGMENT 
MOV DS,AX 

AGAIN: MOV CX,LENSTH BUFFER ;LOAD CX FOR LOOP COUNT 
XOR BX,BX ;INITIALIZE INDEX 

CHECK: CMP BUFFER[BX1,CR i CHECK CONTENTS OF BUFFER FOR IDH 
JE FNDIT ;JMP IF CR WAS FOUND 
IN:: BX ;BUMP INDEX 
LOOP CHECK ;DO IT ~IN 

; IF TI£ CPU FALLS OUT OF 1l£ LOOP TO THIS LOCATION THEN 
; A CR WAS NOT FOUND 
NFD: MOV AL,NFOUND ,SIGNAL OPERATOR THAT CR 

OUT LED, AI.. ; WAS NOT FOUND 
JMP AGAIN 

; IF THE CPU JtJ!IIPS HERE THEN A CR WAS FOLINO 
FNDIT: MOV AL,FOUND ;SIGNAL OPERATOR THAT CR 

OUT LED, AI.. ; WAS FOOND 
JMP AGAIN 

CODE ENDS 
END START 

8-4 



8i86/87/88/i86 MACRO ASSEMBlER lAB2»ART2 

SERIES-III 8086/87/88/186 MACRO ASSEMBlER V2.0 ASSEMBLY (f MODUlE LAB2-oPART2 
OBJECT MODlli PlACED IN :F2:LAB2B.OBJ 
ASSEMBLER INVIl<ED BY: :F3:ASI486.86 :F2:LAB2B. ASM SYMBOlS DEBlE 

LOC OBJ LINE SIlJRCE 

1 NAME LAB2_PART2 
2 

000D 3 CR Ell! 0DH ;CARRIAGE RETURN 
0000 4 LEDS EOO 0 ;PORT FOR LEDS 
00FF 5 NtCR EQU 0FFH ;LED PATTERN IF CR NOT Fl1.IND 

6 
7 DATA SEGMENT 

0000 11 8 COlM' DB 1 
0001 (50 '3 BUFFER DB 50 DUP(?) 

11 

10 DATA ENDS 
11 
12 CODE SEGMENT 
13 ASSUME CS:CODE,DS:DATA 
14 

0000 B8--- R 15 START: MOV AX, DATA 
00038ED8 16 MaY DS,AX j INITIALIZE OS 
0005 B93200 11 AGAIN: MOV CX,LEN6TH BUFFER jSET CX WITH LOOP COUNT 
000833DB 18 XOR BX,BX jINITIALIZE INDEX 
000A C606000000 19 MOV COIJH, 0 jINITIALIZE COUNT 

20 
000F 807F010D 21 CHECK: CMP BUFFER[BXJ,CR ;LOOK FOR CR 
9013 7"'.J04 22 JNE NFIND ;IF NO CR THEN DON'T COUNT IT 
0015 FE060000 23 INC COUNT ; ELSE COUNT IT 
9019 43 24 NFIND: INC BX ;IlIMP INDEX 
001A E2F3 25 LOOP CHECK 

26 
001C 803E000000 27 CMP COUNT, 0 ;IF COUNT IS ZERO 
0021 7407 28 JE NONFND ; THEN PUT OUT NONE FDlt4D CODE 

29 
0023 A00000 30 MOV AL,COUNT ;ELSE PUT ruT NUMBER OF CR 
0026 E600 31 OUT LEDS,AL 
0028 EBDB 32 .IMP AGAIN 

33 
002A B0FF 34 NONFND: MOY AL,NtCR ;THIS IS WHERE WE PUT OUT 
002C E600 35 OUT LEDS,AL ; NONE FOUND CODE 
002E EBD5 36 JMP AGAIN 

37 
38 CODE ENDS 
39 END START 

B-5 



SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBlY OF MODllE LAB3_PARTJ 
OBJECT MODULE PLACED IN :F2:LABJA.OBJ 
ASSEMBLER INVOKED BY: :F3:ASM86.86 :F2:LAB3A.ASM SYMBOLS DEBI.E 

LOC OBJ 

0000 <100 
???? 
) 

00C8 

0000 88--
00038ED0 
000S 8D26C800 

1009 9A0000----
000E 50 
000F 9A0000--
0014 EBF3 

R 

E 

E 

LINE SOORCE 

1 i THIS PROORAM WILL USE TWO EXTERNAL PROCEDURES TO ECHO CHARACTERS 
2 ; FROM THE KEYBOARD AND THE CRT OF n£ SERIES III. CI IS M 
3 ; OF Tl£SE PmnuRES. CI INPUTS 1 CHARACTER FROM THE KEYBOARD AND 
4 i RETURNS IT IN THE AL REGISTER TO THE CALLING RWTlNE. CO 
5 ; IS THE OTHER PROCEDURE. CO OUTPUTS A CHARACTER TO THE CRT. CO 
6 ; EXPECTS THE CHARACTER ON THE STACK. THEREFORE, THE CALLING ROUTINE 
7 ; !'lUST PUSH THE CHARACTER ONTO THE STACK BEFORE CALLING CO. 
8 
9 i THESE ARE THE EXTERNALS FOR CI AND CO 

10 EXTRN CI:FAR,CO:FAR 
11 
12 NAME lAB3_PART_l 
13 STOCK SEGMENT 
14 DW 100 DUP(?l 

TOP EOO THIS WORD 
STOCK ENDS 

CODE SEGMENT 
ASSUME CS:CODE,SS:STACK 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

START: MOV AX,STACK jINITIALIZE THE 
MOY SS, AX i STACK SEGMENT AND 
LEA SP,TOP ; STACK POINTER RESISTERS. 

AGAIN: CALL CI 
PUSH AX 
CALL CO 
JMP AGAIN 

CODE ENDS 
END START 

B-6 

JBET CHARACTER FROM THE KEYBOARD 
i PLACE CHARACTER ONN THE STOCK 
jOUTPUT IT TO THE CRT 



SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY [f JIIODllE LAB3_PART_' 
OBJECT MODULE PLACED IN :F2:LAB3B.OBJ 
ASSEMBLER INVOKED BY: :F3:ASM86.86 :F2:LAB3B.ASM SYMBOLS DEBlli 

LOC OBJ LINE SOURCE 

1 ; THIS PROGRAM IS TI£ sa.UTION TO LAB3 PAIrr 2 OF THE WORKSKJP. 
2 ; IT INPUTS CHARACTERS FROM.1l£ KEYIORD, ! OCRYPTS TI£\II (ADD 
3 j 0tE TO THE ASCII VltJJE) AND THEN OUTPUT~ THE RESllT TO THE 
4 ; CRT. THE PROGRAM ALSO DETECTS II£N A CR IS INPUT, AND INSERT A LF. 
5 
6 EXTRN CO:FAR,CI:FAR 
7 
8 NAIE LAB3_PART_2 
9 

000D 10 CR Eoo 0DH 
000A 11 LF Eoo ~ 

12 
1.3 STACK SEGMENT 

0000 <100 li4 OW 100 DUP(?) 
11?? 
) 

00C8 15 T_O_S LABEL WORD 
16 STACK ENDS 
17 
18 CODE SEGMENT 
19 ASSUME CS:CODE,SS:STACK 
20 
21 ENCRYPT PRe[ 
22 ; THIS IS A SIMPlE ENCRYPTOR PROCEDURE. ENCRYPT EXPECTS 
23 ; TO RECEIVE AN ASCII Df.lRACTER AS A PA.-rER ~ THE STACK. 
j~4 ; IT It«:RalENTS THE ASCII VALUE BY Ot£ AND RETURNS THE 
25 ; OCRYPTED CHARACTER IN THE At. RESISTER. 
26 

0000 55 27 PUSH BP JSAVE BP 
.1 8BEC 28 iIIOV BP,SP JUSE AS REFERENCE IN STACK 
M3 8B4604 29 MOIJ AX, [BP+41 iGET Df.lRflCTER 
Ml6 FECI 30 INC At. j INCREMENT IT AND LEAVE IT 
0008 5D :U pop BP i IN II. ' 
0009 C20200 J2 RET 2 JDELETES !MRAJlETER FROM STACK 

33 ENCRYPT ENDP 
34 

000C B8- R 35 START: IIKlV AX, STACK ; INITIII.IZE STACK 
000F 8ED0 36 MOIJ SS,AX 
0011 8D26C800 37 LEA SP, T_O_S 
01)15 9A0000 E 38 AGAIN: CAlL CI ;SET CHARACTER FRIJIII KEYBOARD 
I0IA DD 39 CMP II.,CR j IS IS C~RIAGE RETURN? 
I0IC 740C 40 JE CALF ; IF YES l'HEN OUTPUT CR/LF 
001E 50 41 PUSH AX i PASS CHAR. ON STACK 
001F E8DEFF It2 CAlL ENCRYPT ; TRANSFORM IT 
0022 51 43 PUSH AX 
0023 .. - E 44 Cll.L CO ;OUTPUT CHAR ON SCREEN 
1028 EBEB 45 JIIIP AGAIN 

46 
47 ;WE SHIlJlD ONLY BE EXECUTING CRLF IF A CARRIAGE RETURN WAS INPUT 
48 ; CRLF OUTPUTS A CARRIAGE RETURN AND LINE mn 

B-7 



8086/87/88/186 MACRO ASSEMBLER LAB3 JIART -'~ 

LOC OBJ LINE SOURCE 

802A B00D 49 CRLF: IIlV AL,CR 
I02C 50 50 PUSH AX 
802D 9A8000 E 51 CAlL CO jOUTPUT A CARRIAGE RETURN 
1032 B00A 52 IIlV ~,LF 
1034 50 53 PUSH AX 
0135 9AIe00- E 54 CALL CO jOlJTPUT A LINE FEED 
003A EBD9 55 .IMP AGAIN j60 BACK TO BET NEXT ~R • 

56 CODE ENDS 
57 END START 

B-8 



SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE LAB3_PART_3 
OBJECT MODULE PLACED IN :F2:LAB3C.OBJ 
ASSEMBLER INVOKED BY: :F3:ASJII86.86 :F2:LP.B3C. ASM SYMBOLS DEBUG 

LOC OBJ LINE SOURCE 

1 j THIS PROGRAM IS THE SOLUTION TO LABJ 1 AART 3 OF THE wORKSHOP. 
2 j IT DOES THE SAME AS PART 2 EXCEPT THE PROCEDURE IS IN 
3 ; ANOTI£R SEGMENT 
4 
5 EXTRN CO:FAR,CI:FAR 
6 
7 NAME lAB3JlART_3 
8 

.D 9 CR Eoo 0DH 
000A 10 LF EQU 0AH 

11 
12 STACK SEGMENT 

0000 (100 13 OW 100 DUP(?) 
???? 
I 

M:8 14 T_O_S LABEL IIlRD 
15 STACK ENDS 
16 
17 PRO SEGMENT 
18 ASSUME CS:CODE,SS:STACK 
19 
20 ENCRYPT PROC FAR 
21 j THIS IS THE SAME PROCEDURE AS PART 2 EXCEPT THE PROCEDURE 
22 ; IS IN ANOTHER SEGMENT AND IS FAR AND THE PARAMETER IS NOW 
23 ; SIX BYTES FROM THE TOP OF THE STACK 
24 

0000 55 25 PUSH BP JSAVE Bil 
0001 8BEC 26 I'IOV BP,SP ;USE AS REFERENCE IN STACK 
0003 884606 27 MOV AX, [BP+6l iGET CHARACTER 
0006 FECS 28 It«: AL jINCREMENT IT AND LEAVE IT 
0008 5D 29 pop BP ; IN AI. 
.9 CA0200 30 RET 2 ;DELETES PARAMETER FROM STACK 

31 ENCRYPT ENDP 
32 PRO ENDS 
33 
34 CODE SEGMENT 
35 ASSUME CS:CODE,SS:STACK 
36 

0000 88-- R 37 START: MOV AX,STACK JINITIALIZE STACK 
0003 8ED0 38 MOV SS,AX 
0005 8D26C800 39 LEA SP, T_O_S 
0009 9(.10000-- E 40 AGAIN: CALL CI ;SET CHliRACTER FRO/ll KEYBOARD 
000E3C0D 41 eMP Al,CR j IS IS CARRIAGE RETURN? 
0010 740£ 42 JE CRLF JIF YE~ THEN OUTPUT CR/LF 
001250 43 PUSH AX ; PASS CHAR. ON STACK 
00139A0B-- R 44 C~ OCRYPT j TRANSFORM IT 
.1850 45 PUSH AX 
0019 9A0800-- E 46 W CO JOUTPUT CHAR ON SCREEN 
.1E EBE9 47 JIIIP AGAIN 

48 
8-9 



LOC OBJ LINE SOURCE 

49 ,WE SI{)lJ\j) ONLY BE EXECUTING CRLF IF A CARRIAGE RETURN WAS INPUT 
50 ; CRLF IlJTPUTS A CARRIAGE RETURN AND LII'£ FEED 

IM20 B00D 51 CRlF: MOV AL,CR 
0022 50 52 PUSH AX 
8023 9A0000--- E 53 CALL CO ;OUTPUT A CARRIAGE RETURN 
0028 B00A SIt MOV A..,LF 
802A 50 55 PUSH AX 
002B 9A0000- E 56 CALL CO ;OUTPUT A LINE FEED 
e030 EBD7 57 JMP AGAIN ;60 BACK. TO SET NEXT (H!R. 

58 CODE ENDS 
59 END START 

B-10 



8086/87188/186 MACRO RSSEMBl..ER LAB3}ART) 

SERIES-III 8086/87/88/186 MACRO ASSEMBlER Y2.0 ASSEMBLY OF MODUlE LAB3_PART_3 
OBJECT MODULE PlACED IN :F2:LAB3D.OBJ 
ASSEJIIBlER INVOKED BY: :F3:ASM86.86 :F2:LAB3D.ASM SYi'1BOLS DEBUB 

LOC OBJ 

.D 
000A 
007C 
0000 

_ (1111 

1111 
) 

lID 

0000 00 

8001 

_1 55 
0002 SBEC 
848B4604 
0007 3C7C 
.9750B 
000B 2E8036000080 
0011 B800 
11113 EB1390 
8016 2EF606000080 
001C 740A 
101E 3C6e 
8028 7206 

LINE 

1 
2 
3 
4 
5 
6 
7 
S 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

SOURCE 

, THIS PROGRAM IS THE SOLUTION TO LAB3 \lART It OF THE WORKSHOP. 
; IT INPUTS CHARACTERS FROM THE KEYBOAR», AND OOTPUTS THEM TO 
i THE CRT. IT ALSO IMPLEMENTS A SHIFT LOCK FEATURE. BY TYPING 
, AN UPPER CASE BACK SLASH n \ a ALL SUBS~QUENT LOWER CASE ALPHA CHARACTERS 
; WILL BE CONVERTED TO UPPER CASE. TYPING THE UPPER CASE BACK SLASH 
; AGAIN RETURNS THE OUTPUT TO UPPER AND! LOWER CASE AGAIN. 

EXTRN CO:FRR,CI:FAR 

NAME LAB3_PART_3 

CR EQU 0DH 
EQU 0AH LF 

LOCK_KEY 
NUlL 

EQU 7CH ;SHIFT LOCK KEY (ASCI I) 
EQU 0IH iNUlL ASCI I CHARACTER 

STACK SEGIJIENT 
OW 1. DUP(?I 

CODE SEGMENT 
ASSUME CS:CODE,SS:STACK 

SHFTFLS DB 0 iMEMORY LOCATION WHICH INDICATES 
; IF SHIFT LOCK IS CURRENTLY SET 

SHIFT PROC 
;SHIFT IS A PROCEDURE THAT WILL CHANGE LOWER CAS ALPHA 
;CHARACTERS TO UPPER CASE DEPENDENT ON WHETHER A SHIFT LOCK 
JHAS BEEN SET OR NOT. SHIFT IS ALSO RESPONSIBLE FOR DETECTING 
; THE SHIFT LOCK KEY (ASCI I 7CH, UPPER C~E BACK SLASH) AND 
iT066l.INS A MEMORY BASED FLAB WHICH INDtCATES IF TI£ SHIFT IS 
;CURRENTLY LOCKED OR NOT. NOTE: THIS LOLl< ONLY AFFECTS ALPHA 
,CHARACTERS AND S NOT THE SRME RS LOCKS FOUND ON A COMMON 
j TYPEWRITER. SHIFT EXPECTS AN ASCI I Il$RACTER TO BE PASSED 
;ON TI£ STACK, AND WILL RETURN A CHARACtER IN THE AI. RESISTER. 

PUSH BP 
MOV BP,SP 
MOV RX,(BP+4l 
CMP AL,LOCK_KEY 
JNE TST 
XOR SHFTPLG,80H 
MOV AL, NULL 
JMP DONE 

TST: TEST SHFTFLG,80H 
JZ DONE 
CMP AL,60H 
JB DONE 

,USE BP TO REFERENCE STACK 
jGET INPUT CHARACTER 
iLOOK FOR SHIFT LOCK 
jIF HIT, THEN 
;TOGGLE SHIFT FLAS 
JAND DON'T OOTPUT ANYTHING 

JLOOK At SHIFT FLAG STATUS 
; IF CLEAR, RETURN THE UNALTERED CHAR. 
i IF SET, LOOK 
jFOR LOUER CASE 



8086/87/88/186 tA:RO ASSEMJLER LAB3 -'~~RT _3 

LOC OBJ LUI: SOURCE 

E 3C7A 49 CMP AL,7~ ;Al.~ ~IR:TERS 
1124 7702 51 JA DrH: ;IF FWND, THEN 
8826 2C28 51 SUB AL,28H ; MAKE INTO UPPER CASE. 
1128 5D 52 DONE: pop BP 
1029 C28200 53 RET 2 

54 SHIFT ENDP 
55 

802C B8-- R 56 START: KJV AX,ST~K ;INITIALIZE STACK 
II2F 8ED0 57 KJV SS,AX 
1131 8D26C811 58 LEA SP, TJ_S 
I8J5 9A0B-- E 59 ~IN: CALL CI ;GET CHAKTER FRtJI KEYBOARD 
II3A DO 68 CMP Al.,CR ;IS IS CARRIAGE RETURN? 
I83C 741: 61 JE CRLF ; IF YES 1l£N OUTPUT CR/LF 
II3E 58 62 PUSH AX ;PASS ~R. ON STACK 
003F ESBFFF 63 CALL SHIFT ;mNERT TO UPPER CASE IF SHIFT LOCKED 
1042 58 64 PUSH AX 
8843 9AB0 E 65 CALL CO ; OUT PUT CHAR ON SCREEN 
8848 EBEB 66 JMP ~IN 

67 
68 ;WE SKlJLD MY BE EXECUTING CILF IF A CARRIAGE RETURN WAS INPUT 
69 ; CALF OOTPUTS A CARRIAGE RETURN AND LItE FEED 

884A 1180D 78 CALF: MOY AL,CR 
884C 50 71 PUSH AX 
IMD 9A8808 E 72 CALL CO JOUTPUT A CARRIAGE RETURN 
1152 B88A 73 IIIlV AL,LF 
1054 58 74 PUSH AX 
0855 9A0008- E 75 CALL CO ;OUTPUT A LINE FEED 
005A EBDCJ 76 3MP ~IN ; SO BACK TO SET tEXT CHAR. 

n CODE ENDS 
78 END START 

8-12 



8986/87/88/186 MACRO ASStlMBLER INTERRUPT_HA~nLER 

SERIES-III 8086/87188/186 MACRO ASSEMBLER V2.0 tlSSEMBLY OF MODULE INTERRUPT -,HANDLER 
OBJECT MODULE PLACED IN : F2: LAB3E. OBJ 
ASSEMBLER INVOKED BY: :F3:ASM86.86 :F2:LAB3E. ASM SYMBOlS DEBUS 

LOC OBJ LINE SOURCE 
I 

1 jTHIS IS THE OPTIONAL EXERCISE TO WRITE AN INTERRUPT HANDLING ROUTINE 
2 jTHIS WILL HANDLE THE INTERRUPT FOR DIVIqE ERROR 
3 
4 NAII!E INiERRUPT_HANDLE~ 
5 - 6 DIVIDEND Elli 0 jPORT FOR DIVIDEND 

0001 7 DIVISOR EOO 1 iiPORT FOR DIVISOR 
0000 8 QUOTIENT EQU 0 ;ANSWER OUTPUT HERE .1 9 ERROR EOO 1 JOR IF ERROR THESE WILL FLASH 

10 
11 INTERRUPT SElJIENT AT 0 

0000 nn 12 DIV_ERRJP OW 1 i OFFSET TO BE LOADED 
82 11n 13 DIVJRR_CS OW 1 ;SEGIOT TO BE LOADED 

14 INTERRUPT ENDS 
15 
16 STACK SESBT 

0000 (100 17 OW 100 DUP (?) 

1111 
) 

00C8 18 TOP LABEL lrIIRD 
19 STACK ENDS 
20 
21 DIVIDE SEGMENT 
22 ASSUME CS:DIVlDE 
23 _00 
24 AlARM DB 0 jHOLDS PATIERN TO LEDS 
25 

0001 50 26 DIVIDE_ERROR: PUSH AX jSAVE RESISTERS USED 
0002 51 27 PUSH ex 
0003 2EF6160000 28 NlT AlARM jCOMPLEMENT LED PATIERN 
0008 2EA00000 29 MOV AL,ALARM ; SET THE FLASH VALLE 
008C E601 30 OUT ERROR,AL jAND SEND IT OUT 

31 
BE 890300 32 MOV eX,3 j DELAY ABOUT • 6 SEC 
0011 8BCl 33 OUTER: I'IOV RX,CX 
8013 B9FFFF 34 MOV eX,0FFFFH 
.16 E2FE 35 INNER: LOOP INNER 
.188BC8 36 MOV CX,AX 
001A E2F5 37 LOOP OUTER 

38 
00IC 59 39 pop ex jGET BACK REGISTERS 
001D 58 40 pop AX 
001E CF 41 I RET iAN» RETURN 

42 
43 DIVIDE ENDS 
44 
45 MAIN SESMENT 
46 ASSUME CS:MAIN,DS:INTERRUPT,SS:STACK 
47 

0000 88- R 48 START: MOV AX, STACK i INITIALIZE STACK 



8&/87/88/186 MACRO ASSEMBlER INTERRUPTJM . .ER 

LOC OBJ LIfE SOURCE 

IiI83 8ED8 49 MeV SS,AX 
1005 8D26C800 50 LEA SP, TOP 
M9 B80800 51 fIKlV AX, INTERRUPT 
.,; 8ED8 52 MOV DS,AX ;HAVE DS POINT TO LOAD VECTOR TABLE 

53 
54 ;TI£SE NEXT 00 INSTRl£TIOOS WILL MAKE THE VECTOR POINT TO 1l£ INTERRUPT 
55 ;RflJTlNE TO HANDLE A DIVIDE ERROR 
56 

ME C70600010100 57 MOV DIV_ERR_IP,OFFSET DIVIDE_ERROR 
1114 C70612t0---- R 58 MOV DIV_ERR_CS, DIVIDE 

59 
60 ;THIS PART OF TI£ PROGIWI WILL INPUT TI£ DIVIDEND AND DIVISOR AND DIVIDE. 
61 ;1l£ RESllT OF Tf£ DIVISION WILL BE OUTPUT TO TI£ PORT 0 LEnS. THIS WILL 
r~ ;BE DOt£ CONTINUOUSLY. 
fi3 

lilA E401 64 AGAIN: IN AL,DIVISOR ;BET VALUE TO DIVIDE BY 
.1C 8AD8 65 MOV BL,AL ;~ SAVE IT 
101EE400 li6 IN AL, DIVIDEND ;GEJ WHAT TO DIVIDE BY 
1120 32£4 67 XOR AH,AH ; AND CONVERT IT TO A WORD 
1022 F6F3 68 DIV a.. 
1024 E600 69 oor QUOTIENT, AI.. ;OUTPUT DIVISION RESULT TO LEOS 
0026 EBF2 70 .IMP AGAIN JDO THIS C(tm~Y 

11 MIN ENDS 
72 END START 

8-14 



iNDX-541 (V2.U 8886/87188/186 MACRO ASSEMBLER V2. 0 ASSEMBLY OF MODULE ~ PART 1 MAIN 
OBJECT MODllE PUtED IN :Fl:lAB4Al.OBJ i - - -

ASSEMBLER INYIJ<ED BY: ISW/ASM86 :Fl:LAB4A1.ASM SB DB 

LOC DBJ LINE SOURCE 

1 ; THIS PROGRAM IS THE SOLUTION TO LAB4 PART 1 OF iHE WOR~SHOP. 
2 j IT DOES TI£ SAME AS LAB 3 PART 3 EXCEPT THE PROCEDURE IS IN 
3 ; ANOTHER MODUlE 
4 
5 EXTRN CO: FAR, CI :FAR, ENCRYPT :FAR 
6 
7 - LAB4_PART_l_MAIN 
8 

aD 9 CR EOO 8DH 
8IIA 10 LF EQU 0Ai 

11 
12 ST~K SEGMENT 

8000 (100 13 OW 100 DUP(?) 
1111 
) 

80C8 14 T_O_S LABEL WORD 
15 ST~ ENDS 
16 
17 
18 CODE SESIENT 
19 ASS\.JIIIE CS:CODE, SS:STACK 
20 

0001 88-- R 21 START: /IIOV AX, STACK jINITIALIZE STACK 
.38ED0 22 MOV SS,AX 
8005 8D26C800 23 LEA SP,T_OJ 
8N9 9A0000---- E 24 AGAIN: CALL CI jSET CHARACTER FROM KEYBOARD 
ME 3C0D 25 OIP AL,CR JIS IS CARRIAGE RETURN? 
8010 740E 26 JE CRLF jIF YES THEN OUTPUT CR/LF 
0012 50 27 PUSH AX jPASS CHAR. ON STACK 
0013 9A0000---- E 28 CALL ENCRYPT j TRANSFORM IT 
081858 29 PUSH AX 
.19 9A0000-- E 30 CALL CO jOUTPUt CHAR ON SCREEN 
00IE EBE9 31 .1MP AGAIN 

32 
J3 jWE SHOULD ONLY BE EXECUTING CRLF IF A CARRIAGE RETURN WAS INPUT 
34 i CRUF OUTPUTS A CARRIAGE RETURN AND LINE FEED 

0020 B00D 3S CRLF: MOV ALtCR 
0022 58 36 PUSH AX 
8023 9A0800 E 37 CALL CO jOUTPUl' A CARRIAGE RETURN 
0128 BI0A 38 I()V AL,LF 
002A 58 39 PUSH AX 
002B 9A000t-- E 40 CALL CO ;OUTPUT A LINE FEED 
0030 EBD7 41 JIIIP AGAIN JGO BACK TO SET NEXT CHAR. 

42 CODE ENDS 
43 END START 

B-15 



SERIES-III 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE LAB4_PART_l_SUB 
OBJECT MODULE PLACED IN :F2:LAB4A2.0BJ 
ASS91BLER INVIl<ED BY: :F3:ASM86.86 :F2:LAB4A2.ASM SYMBOLS DEBUG 

LOC OBJ 

0000 IF. 
0002 2300 
M4 2700 

_55 
00078BEC 
0009 E400 
.B 3C02 
000D 17M 
000F 32E4 
0011 8BF0 
00138B4606 
0016 2EFF24 

0019 B02A 
001B 5D 
001C CA0200 

801F FECI 
0021 EBF8 

0023 FECS 
0025 EBF4 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

SOURCE 

NAME LAB4JJART _i_SUB 

SWITCHES EQIJ 0 

PUBlIC OCRYPT 

PRO SE£iIIIENT 
ASSUME CS:PRO 

TABLE OW PLUS_l,MINUS_l,PLUS_2 jJUMP TABLE 

ENCRYPT PROC FAR 
j THIS PROCEDURE WILL ENCRYPT TI£ CHARACTERS Im1RDINS TO THE 
j ~lE READ FROM PORT 0. 

PUSH BP jSAYE BP 
MOV BP,SP ;USE AS REFERENCE IN STACK 
IN AL, SWITCHES ;FIND OUT WHICH ONE 
CMP AL,2 ; SEE IF OOT OF RANGE 
JA ERROR ; YES THEN EX IT 
XOR AH,1il jOTHERWISE CONVERT TO WORD 
MOV SI,AX jPUT IT IN AN INDEX REGISTER 
I40V AX, (BP+61 ;BET CHARACTER 
JMP TABlErSIJ i RND ENCRYPT IT 

ERROR: MOV AL,' I' jILLEGAL CHARACTER 
EXIT: POP Bll ; IN AI.. 

RET 2 jDELETES PARAMETER FROM STACK 

PLUS): INC AI.. j INCREMENT CHARACTER 
1MP EXIT 

MINUS): DEC AL jDECREMENT CHARACTER 
.IMP EXIT 

PLUS_2: ADD AL,2 JADD 2 TO CHt:lRACTER 
JMP EXIT 

ENCRYPT ENDP 
PRO ENDS 

END 

B-16 



SERIES-III 8886/87/88/186 MACRO ASSEMBlER V2.0 ASSEMBlY OF MODUlE LAB4}ART_2_SUB 
OBJECT MODUlE PI.ACED IN :F2:LAB4B.OBJ 
ASSEMBLER INVOKED BY: :F3:ASM86.86 :F2:LAB4B. ASJII SYMBOLS DEBUG 

LOC OBJ LINE SOORCE 

1 !'WE LAB4_PART_2_SlIB 
2 
3 PUBLIC OCRYPT 
4 
5 TRANS SEIJENT 

_ (65 6 TABLE DB 41H IlUP (' If) jONLY LETTERS ENCRYPTED 
2A 
) 

1041 5A595857565554 7 DB ' ZYXWYUTSRQPONMlKJIHSFEDCBA' 
5J52S1514F4E4D 
4C4B4A49484746 
4544434241 

II5B (6 8 DB 6 DUP ('f') 

2A 
) 

0061 5A595857565554 9 DB ' ZYXWVUTSROPOtfIl.KJIHGFEDCBA' 
535251514F4E4D 
4C4B4A49484 7 46 
4544434241 

8078 (5 10 DB 5 DUP (' I' ) 

2A 
) 

11 TRANS ENDS 
12 
13 PRO SEGMENT 
14 ASSUME CS:PRO,DS:TRANS 
15 
16 OCRVPT PROC FAR 
17 ; THIS PROCEDURE WILL ENCRYPT THE CHARACTERS ACCORDING TO 11£ 
18 ; VALUE RERD FROM PORT 0. 
19 

_55 20 PUSH BP jSAVE BP 
.18BEC 21 MOV BP,SP jUSE AS REFERENCE IN STACK 
080J 1E 22 PUSH DS jSAVE DS AND BX SINCE WE ARE USING Tie! _53 

23 PUSH BX 
8005 88-- R 24 .rJV AX,T~ 
0088 8ED8 25 MOV DS,AX 
MA 8D1E0000 26 LEA BX,TABLE 
BE 884616 27 MOV AX, [BP+61 ;GET CHARACTER 
0011 D7 28 XLATB i CtJM:RT THE CHARACTER AND LEAVE IT IN It 
001258 29 pop BX jSET BACK Ttl RESISTERS 
0013 IF J0 pop DS 
8014 5D 31 pop BP 
8015 CA0200 32 RET 2 jDELETES PARAMETER FROM STOCK 

33 
J4 ENCRYPT ENDP 
35 PRO ENDS 
J6 END 

B-17 



CO and CI 

/* 

/* THIS PROGRAM DOES THE CONSOLE OUTPUT FROM THE SERIES III 
IT IS BEING LINKED wrI'H AN ASSEMBLY LANGUAGE ROUTINE THAT 
EXPECTS IT IN LARGE MODEL. THIS PROGRAM USES SYSTEM CALLS 
TO DO THE OUTPUTTING TO THE CONSOLE.*/ 

/* THESE ARE THE DECLARATIONS FOR THE EXTERNAL PROCEDURES 
THAT IMPLEMENT THE CONSOLE OUTPUT FUNCTIONS.*/ 

COMOD: DO~ 
DECLARE FLAG BYTE INITIAL (OFFH); 

DQ$CREATE: PROCEDURE (PATH$PNTR,EXCP$PTR) WORD EXTERNAL; 
DECLARE PATH$PNTR POINTER, EXCP$PTR POINTER; 

END; 

*/ 

DQ$OPEN: PROCEDURE (CONN, ACCESS, NUM$BUF, EXCP$PTR) EXTERNAL; 
DECLARE CONN WORD, ACCESS BYTE, NUM$BUF BYTE, 

EXCP$PTR POINTER; 
END; 

DQ$WRITE: PROCEDURE (CONN, BUFF$PTR, COUNT ,. EXCP$PTR) EXTERNAL; 
DECLARE CONN WORD, BUFF$PTR POINTER, COUNT WORD, 

EXCP$PTR POINTER: 
END: 

CO: PROCEDURE (CHAR) PUBLIC; 
DECLARE CHAR BYTE; 
DECLARE CONN WORD, ERR WORD; 

/* WE SHOULD ONLY MAKE ONE CONNECTION AND ONE OPEN ON CO. THEREFORE 
WE MUST CHECK FIRST TO SEE IF THIS IS THE FIRST TIME THIS ROUTINE HAS 
BEEN CALLED.*/ 

IF FLAG THEN 
DO; 

FLAG=O; 
CONN=DQ$CREATE ( @(4,~:CO:~), @ERR); 
CALL DQ$OPEN (CONN, 2, O,@ERR); 

END; 
CALL DQ$WRITE (CONN, @CHAR,l,@ERR); 

END CO~ 

END COMOD: 

B-18 



CO and CI 

/* */ 

/*THIS PROGRAM IS WRITTEN FOR USE WITH AN ASSEMBLY LANGUAGE 
PROGRAM. THIS PROGRAM DOES THE INPUTTING OF CHARACTERS FROM THE SERIES 
III. IT USES SYSTEMS CALLS AND MUST BE LINKED WI1H THE SYSTEM 
LIBRARIES. THIS PROGRAM IS BEING LINKED WITH AN ASSEMBLY LANGUAGE 
ROUTINE THAT EXPECTS THIS ROUTINE IN LARGE MODEL. */ 

CIMOD: DO: 
/*THIS FLAG IS USED BY THE PROCEDURE TO TELL IF ITS BEING CALLED 
FOR THE FIRST TIME OR SOME TIME AFTER THE FIRST CALL.*/ 

DECLARE FLAG BYTE INITIAL (OFFH); 
CO: PROCEDURE (CHAR) EXTERNAL; 

DECLARE CHAR BYTE; 

/* THESE ARE THE DECL,ARATIONS FOR THE EXTERNAL SYSTEM CALLS NECESSARY 
FOR CONSOLE INPUT.*/ 

DQ$ATTACH: PROCEDURE ( PNTR, EXCP$PTR) WORD EXTERNAL: 
DECLARE PNTR POINTER,EXCP$PTR POINTER; 

DQ$READ: PROCEDURE ( CONN, BUF$PNTR, COUNT~ EXCP$PTR) WORD EXTERNAL; 
DECLARE CONN WORD, BUF$PNTR POINTgR, COUNT WORD, 

EXCP$PTR POINTER: 
".. END; 

DQ$SPECIAL: PROCEDURE (TYPE, PARAM$PTR, EXCP$PTR) EXTERNAL; 
DECLARE TYPE BYTE, PARAM$PTR POINTER, EXCP$PTR POINTER; 

END; 

DQ$OPEN: PROCEDURE (CONN,ACCESS,NUM$BUFF,EXCP$PTR) EXTERNAL; 
DECLARE CONN WORD, ACCESS BYTE, NUM$BUFF BYTE, 

EXCP$PTR POINTER; 
END: 

8-19 



CO and CI 

/* 

CI: PROCEDURE BYTE pm~LIC; 
DECLARE CONN WORD, ERR WORD, 
ACTUAL WORD, BUFFER (80) BYTE, 

*/ 

I BYTE, SIGNON (*) BYTE DATA (lBH,45H,OAH,OAH,OAH,"'COMMUNICATION LINK 
ESTABLISHED .... ,ODH,OAH) ; 

/* THIS IS THE MAIN ROUTINE. FIRST WE MUST ATTACH eI TO GET 
A CONNECTION. THE SYSTEM CALL OPEN IS USED TO OPEN THE CONSOLE 
AND THEN WE USE A SYSTEM CALL (DQSPECIAL) TO MAKE 
THE CONSOLE INPUT TRANSPARENT. FINALLY WE DO A READ FROM 
THE KEYBOARD TO READ IN THE CHARACTER.*/ 

/*WE SHOULD ONLY MAKE A CONNECTION/OPEN ONCE. THEREFORE WE MUST 
CHECK TO SEE IF THIS IS THE FIRST TIME THAT THIS PROCEDURE IS 
CALLED. IF FLAG IS FF (TRUE), THEN THIS IS THE FIRST TIME. */ 

IF FLAG THEN 
DO; 

FLAG=OO: 
CONN= DQ$ATTACH (@(4,"':CI:"') ,@ERR); 
CALL DQ$OPEN (CONN,l,O,@ERR); 
CALL DQ$SPECIAL (l,@CONN,@ERR); /*THE FIRST PARAM SPECIFIES 

TRANSPARENT MODE*/ 
/*OUTPUT A SlGNON MESSAGE*/ 

DO l=O TO LAST (SIGNON) ; 
CALL CO (SIGNON(I)); 

END;~ 

END: 
ACTUAL=DQ$READ (CONN,@BUFFER(O) ,1,@ERR); /* THE 1 SPECIFIES THE 

THE NUMBER OF BYTES TO 
INPUT*/ 

RETURN BUFFER(O) ; 
END Cli 
END CIMODi 

B-20 



APPENDIX C 

CLASS EXERCISE SOLUTIONS 





3.1 

':;'0:;' ""'t .... ' 

1., CS:IP 
2. Any combination of XXXX and YYYY so that when 

they at"e added as shown t.hey will t"esult in 
O~:if.{20H • 

c:::; XXXX 
I P '! ...... Y..Y..Y..Y.. 

:3. (IS, and BX, BF', SI, ()t- (II 
4·. OO;~~'::OH 

5. OOO~·~H 

REVIEW (FILL IN REGISTER NAMES) 

1----------------------------)----------- o 
I 

+ 1 

--------------------- 1 
SP STACK 1 

--------------------- 1 
1 

--------------)1 1 

DS I---------------------------~)-----------
1 

i 1 

--------------------- 1 
BX, BP, SI, DI 1 DATA 

--------------------- 1 
1 1 

.................... _ ........................................ > I 

C!:;; 1 ........................ _ ................... _ ............................................................ _ ..... >_ ................................................ . 

IF' CODE 

..................... _ ............................... )- 1 

----------- FFFFF 

C-l 



4. 1 

5. 1 

7. 1 

MOV 
11\1 
MOV 
MOV 

SHL 
01...1"1' 

1 • 

2. 

NAME 

[IX , OF f:."FF I3H 
AL,DX 
AH,O 
CL,3 

AX,CL 
8,AX 

; Clr SHL A X, 1 
SHL AX, 1 
SHL AX,1 

The END statement is an assembler directive. 
It never gets encoded and as a result it never 
g~.:~ts e>~ecllted. 

GOOD a, b, c, d, g, h, and J 
BAD 
e -.. I i~; an i 11egi~1 chiiract€~r 

f - starts with a number 
i _.!I' is an illegal charact.er 

SWITC~~S eQU 0 
LITES EQU 1 

conE SEGMENT 
M:;::::UME CS: CODE 

STAFH: IN AL,SWITCHES 
m.lE: At. , 3~~ 
MOV BL, ~5 
MUL BL. 
MOV BL,9 
DIV ElL... 
OUT LITES,AL 
• ...IMP ~:TAFn 

CODE END:;:: 
END START 

C-2 



'7.2 

8.1 

8.2 

NAME 

STATUS PORT 
DATA_PORT 
ROY 

POL.l. 

HANDSHAKE: 

ERf~OR : 

POLL 

1- WAREA 
"', 
.c;" • BAREA 
3. MOV 
4. AND 
5. TEST 

NAME 
PAYROLL 
PAYSCAl...E 
PAYROLL 

PAYRAISE 

INIT: 

AGAIN: 

PAYRAISE 

1,-" At;.· ,-. E: X Ef) C" I S[::j . 7 1", _" _ • .!)..:=t _. '.' t .. ,_ _r. .. 

E(~U 
EQU 
EQU 

SEGMENT 

10 
11 
0000000lB 

ASSUME C:S:F'OL.L 
IN AL,STATUS_PORT 
TEST AL,~DY 

JZ HANDSHAKE 
IN AL, DATA_.PORT 
CMP AL,4:3 
JA ERRC)iH 

HLT 

HLT 
ENDS 
END 

DW ~?,OOOH 

DB ? 
BAI~EA, 10 
WAREA,40H 
WAnEA,80ClClH 

CL.ASS _E XEH C I Sf:: ._8 _~? 
SEGMENT 
DB 100 DUP(?) 
ENDS 

SEGMENT 
ASSUME C:S:PAYRAI8E,DS:PAYROL.L. 
MOV AX, PAYHOLL 
MOV DS,AX 
XOR SI, SI 
MOV CX,lOO 
ADD PAYSCALE[SIJ,50 
INC 81 
LOOP AGAIN 
Hl...T 
ENOS 
END INIT 

C-3 



9.1 RUN ASM86 :F1:PROB.lEM SB DB PR(:F1:lISTIN.G) 
RUN LINK86 :Fl:PROB.OBJ BIND 

10. 1 

11. 1 

1. 
2. :3 Mhz 
3. The CPU will run at 5 Mhz rather than 8 Mhz 

NAME 

~:::TACK 

T_.O,J:: 
STAO, 

DATA 
CTEMP 
TI\BLE 
I::: TEMP 
D(.\TA 

CODE 

CCINVEHT 

CONVERT 

IN11': 

C/\L .. LPnoc: 

CODE 

CLASS _.E X EH elSE _ j. ;,~,_ i. 

SEGMENT 
DW 100 DUP(?) 
LABEl.. WORD 
ENDS 

SEGMENT 
DW ? 
DB 51 DUP(?) 
[IB "7-' 
END::; 

SEOMI:::':NT 
ASSUME CS:CODE,DS:DATA,SS:STACK 

PROC 

RE',!, 
ENDP 

MOV 
MOV 
MOV 
MOV 
L.EA 
PU~::;;H 

MOV 
F'USH 
L.EA 
Pll~:;H 

CAL.l.. 
MOV 
HL.T 
ENDS 
END 

C-4 

6 

AX,DATA 
[I~3, AX 
AX , S'rAC:~< 
~3S, AX 
SF', r_o_~::; 
CTFI'1P 
AX,L..ENGTH TABLE 
AX 
AX,TABL.E 
AX 
CONVERT 
Ffl:::MP, AL 

INIT 



13. 1 

14. 1 

NAME 
INTERRUPT 
DIV ERR IF' 
DIV~EHR=C:S 
INTERRUPT 
EHfWR 
D I V __ EHROH: 

Ef~HOR 

MAIN 

STAHr: 

i'1AIN 

CLASS_ .. EXERCISE_,14 _1 
SEGMENT AT 0 
[lW ? 
[lW ? 
ENDS 
SEGMENT 
MOV AX,OFFOOH 
IRET 
ENDS 

SEGMENT 
ASSUME CS:MAI~,DS:INTERRUPT 
MOV AX, INTERRUPT 
MOV DS,AX 
MOV DIV_"EF~R_IiF',OFFSET DIV J::~HROF~ 
MOV DIV_EHRpS,Ef~ROR 

DIV St. 

ENDS 
END START 

1. 04001H 

:3. 
lI· • 

a) IJl.~re is nc) biHl~~ ~;elee:t iOTi usi.ng AO and 
BHE 

b) 

Yes, 
a) 

b) 

We do not have to worry about writing 
extraneous data to the unwanted bank 
since we never write to a ROM. 
but it will take two bus cycles 
TlCI 

TAD - Tace: - Tdelay - ? 
295 - 250 - 60 = ? 

--15 -" ? 
Yes one wait state 

C-5 



lS.1 

16.1 

PUBLIC 

DATA 
USEFUL _ .. 
DATA 

A CODE •.. 

HANDY 

HANDY 
A .. _CODE 

NAME 
DATA 
r~~BLE 
DATA 

CODE 

ENCRYPT 

AGAIN: 

EXIT: 
ENCRYPT 
INIT: 
CODE 

Nf.\ME MOOA 

CLASS _E XER C I SF.: _15_1 
SEGMENT 
DB '5047283916' 
ENDS 

SEGMENT 
ASSUME CS:CODE,DS:DATA 
PROC 
JCXZ 
PUSH 
PLISH 
MOV 
MOV 
LEA 
MOV 
SUB 
XL...ATB 
MOV 
INC 
LOOP 
POP 
POP 
I:~ET 

ENDf' 

ENDS 

EXIT 
OS 
BX 
BX,DATA 
DS,BX 
ax, TABL.E 
AL,ES:[SIl 
AL,3C>H 

ES:[SI1,Al... 
SI 
AGAIN 
ax 
DS 

END INI1' 

I NAME MODB 
U:;:;EFUL _.DATA, HANDY I EXTRN USEFUL. __ DATA: BYTE 

I EXTF~N HANDY:FAR 
SEGMENT I B CODE SEGMENT _. 

DATA DB ';.e I ASSUME CS:B _com::: 
ENDS I 8. DS:SEG USEFUL DATA 

I 
SEGMENT I MOV AX,SEG USEFUL. ._DATA 
ASSUME C:3:A -. CODE I MOV DS,AX 

I MOV AL,I...ISEFI...IL_. DATA 
PR!OC FAR I 
MOV AX,O I CALl. HANDY 
HET I B _.CODE ENDS 
ENDP I END 
ENDS I 
END I 

C .. 6 



19.1 
_~_ BM3 DRIVES ~~$~ HIGH 
_,g_, 8M2 ISSUES g~R.q HIGH 
_1_ 8M2 DRIVES BPRO HIGH 

--~-, 
'j -.... '::-~, ..... 

BM2 TA~'\ES OVER BUSY DR I VE:::; BUSY LOW ... , .. , .. ,.- , 
BM3 SEES CBRO LOW 
8M:!:: SEES Bf.;R'N HI I GH 

C-7 





APPENDIX D 

DAILY QUIZZES 





1. Match the pointer with the appropriate memory area: 

CPU 

IP 

SP 

DI 

I 
I --.-

MEMORY 

STACK 

RAM 

INSTRUCTIONS 

ROM/PROM/EPROM/RAM 

VARIABLES 

RAM 

2. What is the state (1,0) of the zero flag after the CPU 
executes the following arithmetic operations? 

5FH 
-5H[ 

5FH 
-4FH 

5FH 
-6FH 

3. Which SEG REG and offset REG would the CPU use to 
generate an address for the following types of memory 
access? 

SEG OFFSET 

Op code fetch 

Stack access 

Data access 

Daily Quiz Tuesday 

0-1 



4. Where does the CPU get immediate data? 

5. What is wrong with the following 8~86 instructions and 
what can be done to make them work? 

IN AL,0FFFFH 

SAR AX,5 

Daily Quiz Tuesday 

D-2 



1 • Match the following: 

TEST 

CMP 

NOT 

NEG 

ADC 

CBW 

CWD 

a. 
b . 
c. 
d. 

e . 
f. 
g. 

Quiz 112 

2's complement 
Used for multi-word addition 
"Non-destructive" AND 
Used when dividing one signed 
word by another 
1's complement 
"Non-destructive" subtract 
Used when dividing one signed 
byte by another 

2. For every data definition (variable), the assembler 
keeps track of what three attributes? 

3. Fill in the spaces to represent the condition of the 
registers in an 8086 CPU after being reset. 

FLAGS 

CS 

IP,DS,SS,ES 

AX,BX,CX,DX 

4. What address will the 8086 CPU begin execution after 
being reset 

TRUE - FALSE (circle one) 

T F 5. In the MIN mode, the CPU is the source of the 
control bus signals. 

T F 6. DIV 35H is a valid instruction. 

T F 7. You can have more than one ASSUME statement in a 
code segment. 

Daily Quiz Wednesday 

D-3 



8. What are the abbreviations for the following assembler 
controls? 

NOPRINT 

LIST 

DEBUG 

SYMBOLS 

EJECT 

Daily Quiz Wednesday 

0-4 



1. What is the difference between the CALL and JMP 
instruction? 

2. Each item in the following problem represents a step in 
the response of an 8086 to an interrupt request. 

T 

T 

T 

Number each item in the space provided so the steps 
occur in the correct order. The first item has been 
correctly numbered as a starting point. 

F ~ 
~. 

F 4. 

F ~ 
~. 

IF and TF are cleared 
CPU completes execution of current instruction 
CS and IP loaded from Interrupt Vector Table 
Flags pushed onto stack 
CS and IP pushed onto stack 

TRUE - FALSE (circle one) 

V~ can PUSH and p~ a 16-bit register. 

You can PUSH and POP an 8-bit memory locatIon. 

y~ can PUSH immediate data in the 8088. 

T F 6. A procedure with a FAR attribute will always 
generate a FAR return. 

7. What is the physical address for the Interrupt Vector 
Table entry for a type 10 interrupt? 

8. What does the assembler use to determine if it must 
generate a segment override prefix? 

9. What prevents the RAMs shown on page 14-9 from 
responding to an 1/0 address such as the one generated 
by the instruction IN AL,OFFH? 

Daily Quiz 0-5 Thursday 



1. Can a string operation (using the REP prefix) be 
interrupted? 

2. Where can you find the definition of an assembler error 
code? 

3. What directive would be used in a module to allow it to 
call the FAR procedure INPUT that is in another module? 

4. Is IMUl XYZ,BX,7 a legal 80186 instruction? 

Daily Quiz 0-6 Friday 



APPENDIX E 

UNPACKED DECIMAL ARITHMETIC 

INSTRUCTIONS 





* 

* 

PACKED DECIMAL 

BINARY ADDITION AND SUBTRACTION USED 

RESULT IN AL REGISTER ADJUSTED 

DAA (DECIMAL ADJUST FOR ADDITION) 

ADDS 06 
60 AS REQUIRED 

DAS (DECIMAL ADJUST FOR SUBTRACT) 

SUBTRACTS AS REQUIRED 

E-l 



DECIMAL ADJUST ADDITION 

* PURPOSE: CONVERTS RESULT OF BINARY ADDITION TO BCD VALUE 

RULE 1 I FALLOW> 9 OR IF A.C. = 1 THEN ADD 6 
RULE 2 IF ALHI > 9 OR IF C = 1 THEN ADD 60 

DECIMAL BCD 
EXAMPLES: 29 0010 1001 

+ 1 1 

30 0010 1010 

0110 (RULE 1) 

0011 0000 

18 0001 1000 

+18 0001 1000 

36 0011 0000 

0110 (RULE 1) 

0011 0110 

72 0111 0010 

+93 1001 0011 

165 [!] 0000 0101 

0110 0000 (RULE 2) 

[iJ 0110 0101 

E-2 



CASCII) - UNPACKED DECIMAL ARITHMETIC 

I FORfYIA T - 1 BCD DI GI T PER BYTE 

I ZONE DIGIT SET TO ZERO 

I BINARY ADD AND SUBTRACT USED 

. ASCII INSTRUCTIONS: 

EXA~lPLE 

I ADJUST AL LOW DIGIT +6 
I SET AL HIGH DIGIT TO 0 
I MOD I FY AH BY 1 FOR CARRY IBORROv,1 

I MODIFIES CARRY FLAG 

~10V AL ALPHA 
ADD AL" BETA 
AAA . ALPHA + BETA " 
OR AL" 30H 
AAA ADDS 00 } AS REQUI RED 

AAS SUBTRACTS 06 

E-3 



UNPACKED DECIMAL ARITHMETIC 

* BINARY ADD) SUBTRACT) MULTIPLICATION AND DIVISION USED 

* 

* 

INSTRUCTIONS ADJUST VALUE IN AL REGISTER 

INSTRUCTIONS -
AAA -- ASCII ADJUST AFTER ADDITION 
AAS -- ASCII ADJUST AFTER SUBTRACTION 
AAM -- ASCII ADJUST AFTER MULTIPLY 
AAD -- ASCII ADJUST BEFORE DIVIDE 

E-4 



Z 5 

+ Z 6 

X B 

+ 6 

~l \ 01\ 
AH AL 

ASCII ADJUST EXAMPLE 

XXXX 0101 
+ XXXX 0110 

XXXX 1011 

0110 

l!~ __ J_QQQO __ ~0_0}j 
AH AL 

E-5 

AAA 



ASCII ARITHMETIC - ADDITION 

OPERATION: C = A + B ; WHERE A AND B ARE STRINGS OF ASCI I 
DIGITSJ AND C IS TO BE A STRING OF UNPACKED BCD DIGITS, 

IVlOV BX J STRING_LENGTH - 1 

CLC 
NEXT: MOV ALJ A [BX] 

ADC ALJ B [BX] 
AAA 
MOV C \~X] J AL 
DEC BX 
JNS NEXT 

NOTE: THE UPPER NIBBLE AFTER THE AAA IS SET TO ZERO, ANY CARRy 
IS SAVED IN THE CARRY FLAG FOR THE NEXT ADC. THE CARRY IS ALSO 
ADDED TO AHJ BUT THIS FACT IS NOT UTILIZED IN THE ABOVE CODE, 

CLASS P ROB LEr~1 

WRITE A PROGRAM SEGMENT THAT WILL PERFORM THE OPERATION 
C = A - B , USE THE SAME ASSUMPTIONS AS ABOVE, 

E-6 



CASCI I) UNPACKED DECIMAL DIVIDE 

AAD ASCII ADJUST DIVIDE 

ADJUSTS A DIVIDEND IN AX REGISTER PRIOR TO A DIVIDE 
OPERATION TO PROVIDE AN UNPACKED DECIMAL QUOTIENT. 

EXA~lPLE 

MOV ALJ ALPHA 

AAD 

DIV BETA j ALPHA/BETA 

THE AH REGISTER DATA IS MULTIPLIED BY TEN AND ADDED TO AL 
REGISTER. AH IS SET TO ZERO. 

THIS PLACES THE BINARY EQUIVALENT OF THE TWO DIGITS FROM 
AHJ AL INTO ALJ IN PREPARATION FOR A BINARY DIVISION. 

THE BINARY DIVISION WILL LEAVE THE INTEGER QUOTIENT IN 
ALJ AND THE INTEGER REMAINDER IN AH. 

NOTE: THE REMAINDER IN AH WILL ALWAYS BE SMALLER THAN 
THE DIVISION AND IS IN CORRECT FORM FOR THE 
NEXT AAD INSTRUCTION. THE USER MUST BE SURE THAT 
THIS CONDITION IS TRUE FOR THE FIRST OPERATION. 

E-7 



ASCII ARITHMETIC - DIVISION 

OPERATION: C = A / B ;WHERE A IS A STRING OF ASCII DIGITS J 
AND B IS A SINGLE ASCII DIGIT. C IS TO BE A STRING OF 
UNPACKED BCD DIGITS. 

SETUP: MOV DLJ B ;GET B 
MOV SIJ OFFSET A ;POINTER TO A 

~10V DIJ OFFSET C ;POINTER TO C 
~10V CXJ LENGTH A ;# OF TIMES TO LOOP 
CLD ;AUTO INCREMENT 

AND DLJ OFH ;RID B OF ZONE 
XOR AHJ AH ; SEED LOOP 

NEXT: LODS A ;GET BYTE 
AND ALJ OFH ;ZERO ZONE 
AAD ;ADJUST FOR DIVIDE 
DIV DL 
STOS C ;SAVE QUOTENT BYTE 
LOOP NEXT 

NOTE: THE AAD MULTIPLIES THE REMAINDER FROM THE PREVIOUS 
DIVID~J (SAVED IN AH)J BY 10 THEN ADDS THIS VALUE TO AL. 
AH IS CLEARED BEFORE ENTERING THE LOOP SO FIRST AAD WORKS 
PROPERLY. 

E-8 

f' 



(ASCII) UNPACKED DECIMAL MULTIPLICATION 

THE AAM INSTRUCTION IS USED TO DIVIDE A NUMBER BY 10 
AND IS USEFUL IN CONVERTING A BINARY NUMBER <: 99 TO 

n~o BCD DIGITS. 

IN APPLICATION} BINARY MULTIPLICATION IS USED ON 2 BCD 

DIGITS TO PRODUCE A BINARY PRODUCT. THE PRODUCT IS 

CONVERTED TO DECIMAL USING THE AAFI INSTRUCTION. FINALLY .. 

THE DECIMAL j~DDIT ION CAN BE USED TO Cm1B I NE PRODUCTS OF 

MULTIPLICATION. 

BINARY f~ULTIPLICATION 

A BCD DIGIT IS A VAl.ID BINARY NUMBER AND CAN BE USED IN 

BINARY MULTIPLICATION. 

EXAMPLE: 

DECIMAL BCD 

9 1001 BCD = BINARY 

X 9 * X 1001 BCD = BINARY 

81 1010001 BINARY RESULT 

* BINARY MULTIPLY 

£-9 



CONVERSION TO DECIMAL 

TO CONVERT THE BINARY RESULT TO BCD IT IS NECESSARY TO 
DO A BINARY DIVIDE BY TEN. 

EXAMPLE: 

81 . -. 10 

1010001 : 1010 

= 8 REMAINDER 1 

= 1000 REMAINDER 0001 

THE RESULT INDICATES THE NUMBER OF TENS AND ONES THAT CAN 
BE USED AS A TWO DIGIT BCD NUMBER. 81 

E-IO 



ASCI I ARITHMETI C - MULTIPLY 

OPERATION: C = A * B ; WHERE A IS A STRING OF ASCII DIGITSJ 
AND B IS A SINGLE ASCII DIGIT. C IS TO BE A STRING OF 
UNPACKED BCD DIGITS. 

SETUP: NOV DLJ B jGET SINGLE ASCII DIGIT 
MOV CX J LENGTH A ;NUMBER OF TIMES TO LOOP 
STD jSET UP FOR AUTO DECREMENT 
[VI 0 V SL OFFSET A + LENGTH A -1 
i'ViOV DIJ OFFSET C + LENGTH A -1 

r\'1OV BYTE PTR [DiJ J 0 JCLEAR C(l) 

AND DLJ OFH ;CLEAR ZONE OF B 

NEXT: LODS A ;LOAD BYTE FROM A 
AND ALJ OFH ;CLEAR ZONE 
~1UL DL ;MIULTIPLY BY B 

A.A~l ;ADJUSTED RESULT IN AX 

ADD ALJ [DO ;ACCUMULATE INTO C 

PIAA ;IN UNPACKED FORMAT 
STOS \~ORD PTR C ;PROPOGATE UPPER DIGIT 
INC DI ;POINT TO PROPER DIGIT 
LOOP NEXT 

NOTE: AAM PLACES THE UPPER DIGIT IN AH. AAA PROPIGATES THE 
CARRY FROM THE LOWER NIBBLE BY ADDING THE CARRY TO AH. THE 
C STRING IS ONE BYTE LONGER THAN THE A STRING. 

E-ll 



MULTIPLICATION LOOP 
UNPACKED BCD 

MULTIPLICAND INDEX 
PARTIAL PRODUCT INDEX 
MULTIPLIER INDEX 
MULTIPLIER LENGTH 
MULTIPLICAND LENGTH 

ZERO PARTIAL PRODUCT 
MULTIPLIER INDEX 

LOOPl: DL = 0 

BX = 1 

51 

BI 
BX 
B 
C 

I~ITIALIZE MULTIPLICAND INDEX SI = 1 
INITIALIZE PARTIAL PRODUCT INDEX: Dl = BX (MULTIPLIER INDEX) 

~LOOP2: FETCH MULTIPLICAND [SI] TO AL 

MULTI PLY MULTI PLIER [BX] * 
ASCII MULTIPLY ADJUST 
ADD DL TOAL 
ASCII ADD ADJUST AL 

AL -----} At 

AX 

ADD PARTIAL PRODUCT ~IJ TO AL 
ASCII ADD ADJUST AL 
STORE AL TO PARTIAL PRODUCT [PI] 
SAVE DL = AH 

DJ = D1 + 1 

51 = SI + 1 

IF SI ~ C (MULTIPLICAND LENGTH) TO TO LOOP 2 
STORE DL TO PARTIAL PRODUCT [DI] 
BX = BX + 1 

IF BX ~ B (MULTIPLIER COUNT) GO TO LOOP 1 

E-12 



374 
x 152 

748 
1870 
374 

56848 

0 
2x4 = 08 

0 

l~ 
2x7 = 14 0 

0 5x4 = 20 

[1 
) 4 

f;(4J 
2x3 = 06 '-)2 

0 5x7 = 35 0 
07 ) 7 1x4 = 04 

44 ~4 
-
aID 

4 
5x3 = 15 0 
~ 0 1x7 = 07 

19 ) 9 

l: 
lx3 = 03 

) 1 

C® 

E-13 





APPENDIX F 

ICE-B6,BB IN-CIRCUIT EMIULATOR 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

I 

I 
I 
I 
I 



ICE-86,88 

• IN- C~RCUIT EMULATOR ALLOWS HARDWARE AND SOFTWARE DEBUGGING. 

* ICE-se AND ICE-88 COMMANDS ARE IDENTICAL, THE tlARDWARE IS NOT 

* fEATURES INCLUDE: 

HARDWARE BREAKPOINTS 

TRACE DATA COLLECTION 

SYMBOLIC DEBUGGING 

MEMORY MAPPING 

DEBUGGING MACROS 

BUILT IN DISASSEMBLER 

ICE-S6 COMPONENTS AND ENVIR()NMENT 

ICE-8e SOFTWARE ICE-8e CIRCUIT BOARDS 

" lintel I-=-

~t·r~ .-~ -

! ~~,~ 
CAN BE PLUGGED INTO BUFFER BOX: 

USER HARDWARE CONTAINS AN 8088 F'ROCESSOR 

F-l 



ICE-86 COMPONENTS 

FM CONTROLLER PCB - 8080 ICEJlP,12KB FIRMWARE ROM, 3KB SCRATCHPAD RAM 

86 CONTROLLER PCB - 2KB ICE RAM, 1 K x6 MAP RAM, 0.5K DUAL PORT RAM 

ICE 86 TRACE PCB - TRACE RAM 

ICE-86 BUFFER BOX ASS'y - 8086J1P, GATING AND CONTROL LOGIC 

INTELLEC SERIES II TRIPLE AUXILLIARY CONNECTOR 
·T· CABLE 
GROUND CABLE 

ICE-86 DISKETTE - ICE86 
ICE86,OYO 
ICE86,OY1 
ICE86,OY2 
ICE86,OY3 
ICE86,OY4 

ICE86,OY5 
ICE86,OY6 
ICE86,OY7 
ICE86,OY8 
ICE86,OVE 

SERIES II OR SERIES III DEVELOPMENT SYSTEM WITH 3 ADJACENT CARD SLOTS 
AVAILABLE AND 64KB OF RAM 

OPTIONAL: 
SERIAL OR PARALLEL PRINTER 
EXPANSION MEMORY (ISBC 16,32 OR64) (SERIES III CONTAINS 128K 

EXPANSION MEMORY) 

ICE-86 INST ALLA TlON 

1. INSURE THAT E-1 TO E-2 AND E-7 TO E-8 ARE JUMPER ED ON FM CONTROLLER PCB. 

2. INSTALL 3 PCB'S IN CHASSIS SO THAT FM CONTROLLER IS ON TOP, TRACE PCB IS 
NEXT, AND 86 CONTROLLER PCB IS ON THE BOTTOM. 

3. INSTALL ·T· CABLE BETWEEN TRACE PCB AND 86 CONTROLLER PCB. 

4. ATTACH ·X· CABLE TO ·X· CONNECTOR AND ON 86 CONTROLLER PCB. 

5. ATTACH ·Y· CABLE TO ·Y· CONNECTOR ON FM CONTROLLER PCB. 

6. IF USER HARDWARE IS TO BE USED, REMOVE SOCKET PROTECTOR ASS'Y FROM 
UMBILICAL ASS'y AND INSERT UMBILICAL PLUG INTO PROTOTYPE 8086 SOCKET. 

7. CONNECT GROUND CABLE FROM CABLE ASS'Y TO PROTOTYPE HARDWARE GROUND. 

8. POWER UP DEVELOPMENT SYSTEM AND PROTOTYPE. 

NOTE: 

TO PREVENT PIN DAMAGE INSTALL A 40 PIN IC SOCKET ON THE END 
OF THE UMBILICAL CORD. THE SOCKET ASS'Y PROTECTOR SHOULD 
BE IN PLACE WHENEYER ICE-86 IS NOT CONNECTED TO A PROTOTYPE. 

F-2 



PRODUCT DEVELOPMENT PHASES USINGi ICE-S6 

PHASE 1: 

NO PROTOTYPE HARDWARE AVAILABLE­
USE ICE-8S STANDALONE, DEBUG SOME 
OR ALL PROGRAM MODULES. PROGRAMS 
RESIDE IN ICE ANDIOR MDS ANDIOR 
DISK MEMORY. 

PRODUCT DEVELOPMENT PHASES USING ICE-S6 

PHASE 2: 

SKELETON PROTOTYPE HARDWARE AVAILABLE­
DEBUG HARDWARE BY EXECUTING TEST SOFTWARE. 
DEBUG SYSTEM WITH PROTOTYPE HARDWARE AND 
SOFTWARE. PROGRAMS RESIDE IN PROTOTYPE 
ANDIOR ICE ANDIOR MDS ANDIOR DISK MEMORY. 
DOWN LOADING OF PROGRAMS DONE BY ICE, 
NO NEED TO BURN PROMS. 

F-3 



PRODUCT DEVELOPMENT PHASES USING ICE-S6 

PHASE 3: 

COMPLETE PROTOTYPE SYSTEM AVAILABLE­
DEBUG FULL HARDWARE AND SOFTWARE 
TOGETHER. USE ICE TO DOWNLOAD PROGRAMS. 
USE ICE FOR FINAL PRODUCT CHECKOUT. 

NOTE: 

ICE8S SHOULD NEVER BE USED ON A 
PRODUCTION LINE FOR PRODUCTION TESTINGI 

PROGRAM PREPARATION 

BEFORE USING ICE-8S, AN ABSOLUTE OBJECT FILE MUST BE CREATED. ALSO. 

HARD COPIES OF ALL DIAGNOSTIC INFORMATION SHOULD BE GENERATED. 

RUN ASMS6:F 1 :LAB 1.AS6 DEBUG 

RUN LOC86:F1:LAB1.0BJ MAP SYMBOLS INITCOOE 

COPY:F1:LAB1LST,:F1:LAB1.MP2 TO :LP: 

F-4 



CODE 

START: 

INIT 10: 

PREPARATION OF THE MAIN PROGRAM MODULE 

NAME 

SEGMENT 

ASSUME 

MOV 

SERIES -II 

EXAMPLE 

CS:CODE,DS: OAT A,SS:STACK 

AX,DATA 

MOV DS,AX 

MOV 

MOV 
LEA 

MOV 

END 

AX,STACK 

SS,AX 
SP,STACK_TOP 

START 

SERIES-III 

NAME SERIES III EXAMPLE 

CODE SEGMENT 

ASSUME C!i:CODE,DS:DATA,SS:STACK 

START: MOV D>l,USART CMD PORT 

END START,DS:DATA,SS:STACK:STACK TOP 

• END STATEMENT CREATES SEGMENT REGISTER 
INITIALIZATION RECORD. THIS RECORD IS REOUIRED 

THE INITCODE FEATURE' OF LOC8S . 

• SEGMENT REGISTER INITIALIZATION PERFORMED 

IN MAIN MODULE. 

• WHEN USED IN CONJUNCTION WITH THE OPTIONAL INITCODE 

CONTROL ON THE LOC8S INVOCATION LINE. THE LOCATOR 

USES THIS INFORMATION TO CREATE A SEGMENT CALLED 

?? LOC86_INITCODE WHICH INITIALIZES ALL SPECIFIED 

REGISTERS. 

INVOKING ICE-86 

THE ICE-B6 SOFTWARE DRIVER IS INVOKED FROM ISIS-II. 

-ICE86 

ONCE LOADED, CONTROL IS THEN PASSED TO Tt-IE SOFTWARE 
DRIVER. ICE-B6 IS READY TO ACCEPT A COMMAND WHEN THE 

ICE PROMPT *IS DISPLAYED. 

F-5 



LOGICAL 

PREPARATION OF THE ENVIRONMENT 

• MEMORY MAPPING 

• CLOCK SELECTION 

• READY SELECTION 

PREPARATION OF THE ENVIRONMENT 

MEMORY MAPPING 

PROGRAM ------I ... 
ADDRESS 

MEMORY 
MAP 

t----..... GUARDED 

"""'---__1" USER 

t----~ICE 

~----'INTELLEC 

!----..... DISK 

USER INOYERIFYI 
{

GUARDED } 
MAP ".,1I1Ion· ICE IPhy.tc,'-,,"m.n'-numb.rIINOYERIFYI 

INTi!lLEC Jphy.'c,'-,egm.nt-numberIINOIIERIFYI 
DlSK"hy,/c,'-.. gm.n'-numbeaINOY~hIFYI 

where 

( Iof/Ic,'-.. gmen'-numblll ITO Iof/Ic"-.. "men/-numbllli J 
partition • Ioglcal-,egmen'-number L~NGTH (oglc.'-ugmen,-'.ng'h 

F-6 



ICE-86 MEMORY MAPPING 

* ICE-86 DIVIDES THE MEGABYTE OF MEMORY INTO 1024 1K BLOCKS 

*- EACH 1K BLOCK CAN BE MAPPED INTO A PHYSICAL 1K BLOCK 

PROGRAM 
REFERENCE 

LOGICAL 

0 GUARDED 

1 GUARDED 
2 ICE 
9 USER 

ICE PHYSICAL 

· · · 
1029 

MAPPING TO USER MEMORY 

MEMORY 
MAP 

NO ADDRESS DISPLACEMENT IS ALLOWED 
LOGICAL AND PHYSICAL ADDRESS 
REFERENCES MUST BE THE SAME . 

.. MAP 0 LEN 32=USER 

.. MAP 1000=USER 

F-7 



MAPPING TO ICE-S6 MEMORY 

PROGRAM 
REFERENCE 

MEMORY 
MAP 

* MAP O=ICE 0 

* MAP 1023=ICE 1 

-

o 

-

MEMORY MAPPING EXAMPLE 

LOGICAL MEMORY 

OFFFFFH -------. 
PROGRAM 

AND 
CONTENTS 

OFFCOOH 1------1 

PHYSICAL MEMORY 

]lKROM---------~.~ ~ 

OH 
L_~_~_~_~_~_~_~~ ]1KRAM----------~.~ [~ STACK .~ 

3FFH 

* MAP O=USER 

* MAP 1023:ICE 0 

F-8 

2K 



• DISPLAY MAP STATUS COMMAND 

ellmplel. 

MAPOT03 

DI.play: 

_r-USE an-a_ran-Itr_rOOO3-DIIIOOOOr 

I!xample2. 

_r • USE IOOIT -ICE _r _r· Itr _r 1001· DIS _r 
_r • DIll .. IT 1OO4T' DIS lOOn _T· USE 1001 • USE 

1123T • DIS 

* RESET MAP COMMAND 

RESET MAP 

PREPARA TION OF THE ENVIRONMENT 

CLOCK SELECTION 

11 CLOCK= INTERNAL 

OR 

• CLOCK= EXTERNAL 

ICE-88 CLOCK 

USER CLOCK 

INTERNAL 

------<0-' 

EXTERNAL 

;DEFAULT 

F-9 

CPU CLOCK 



PREPARA TION OF THE ENVIRONMENT 

ENABLE/DISABLE READY COMMAND 

ENABLE ROY Default 

ICE-88 READY 

:11.-_)~-~ CPU READY U8ER READY 

DISABLE ROY 

ICE-8e READY D)...--~ CPU READY 
U8ER READY 

LOADING A PROGRAM 

BEFORE LOADING THE PROGRAM, THE PREPARATION OF THE EXECUTION ENVIRONMENT 
MUST BE COMPLETED • 

• CLOCK=EXTERNAL 

* ENABLE ROY 

;SELECT USER CLOCK FOR USE 
;BY THE EMULATING PROCESSOR. 

;ENABLE USER READY FOR USE 
;BY THE EMULATING PROCESSOR. 

WITH THE EXECUTION ENVIRONMENT NOW PREPARED. THE PROGRAM CAN BE LOADED. 

* LOAD :F1:LAB1 ·;LOAD AN ABSOLUTE OBJECT 
;FILE 

F-IO 



ICE-86 PROGRAM 

GO EMULATIONl -

* FULL SPEED, OR NEAR FULL SPEED, PROGRAM EXECUTION • 

• DURING EMULATION, ALTHOUGH ICE MONITORS PROGRAM EXECUTION, 
THE USER HAS NO INTERACTION WITH THE SYSTEM UNTIL A HALT IN 
EMULATION OCCURS • 

.. A HALT IN EMULATION CAN OCCUR THROUGH A USER DEFINED HARDWARE 
BREAKPOINT, OR BY DEPRESSING THE ESCAPE (ESC) KEY ON THE 
CONSOLE KEYBOARD • 

.. AFTER A HALT IN EMULATION, THE USER MAY INTERROGATE THE CURRENT 
STATE OF THE SYSTEM, VIEW INFORMATION COLLECl'ED DURING EMULATION, 
AND/OR CHANGE THE STATE OF THE SYSTEM. 

EX. 

t: GO FROM .START 

ICE-86 PROGRAM EXECUTION 

STEP EMULATION -

• USER PROGRAM IS EXECUTED BY ICE, ONE INSTRUCTION AT A TIME . 

• DURING STEP EMULATION, EFFECTIVE PROGRAM EXECUTION SPEED IS MUCH 
SLOWER THAN THAT OF GO EMULATION • 

.. STEP EMULATION PERMITS INTERROGATION AND/OR MODIFICATION OF THE 
USER SYSTEM, AFTER THE EXECUTION OF EACH INSTRUCTION. 

EX. 

* STEP FROM .START 

F-ll 



ICE-86 OPERATION 

( ~~~~TEN 
INPUT 
OUTPUT 

FETCHED 

EXECUTED 

HALT 

ACKNOWLEDGE 

ICE-86 MONITORS THE BUSSES, (ADDRESS AND DATA CONTROL); 

EACH FRAME OF A BUS CYCLE IS MONITORED AND CAN BE SAVED. 

8086 BUS CYCLE TRACING 

FRAME 1 

I 

ALE 

1 
BUS CYCLE 

F-12 



ICE-BS BREAK POINTS 

AND/OR! L _____ .... 

BRO BR1 

ICE-86 HAS TWO BREAKPOINT REGISTERS THAT MAY BE GIVEN VALUES 

THROUGH SOFTWARE COMMANDS. 

FRAME 
INFORMATION 

BREAKPOINT REGISTER CONTENTS 

>---_ EMULATION 
BREAK 

ICE-BS BREAKPOINTS 

ICE-86 BREAKPOINTS ARE OF TWO TYPES: 

EXECUTION 

- TAKES INTO ACCOUNT THE QUEUE 

- TRACKS INSTRUCTION THROUGH QUEUE 

SYNTAX: 

EXECUTED 

F-13 

- BASED CIN BUS ACTIVITY ONLY 

SYN1rAX: 

READ 

WRITTEN 

INPUT 

OUTPUT 

FETCHED 

HALT 

ACKNOWLEDGED 



LOADING THE BREAKPOINT REGISTERS 

GO FROM .START TILL .PORT2 OUTPUT OR .PARM1 READ 

LOADING THE BREAKPOINT REGISTERS (CON'T.) 

r---* BRO=.PORT2 OUTPUT 

• BR1 =.PARM1 READ 

.. GO FROM START TILL BRO OR BR 1 

BRO 

F-14 

BR1 



THE GO-REGISTER 

THE GO-REGISTER(GR) IDENTIFIES THE BREAKPOINT REGISTERS TO BE USED 
FOR HAL TIING EMULATION. 

* GO FROM .START TILL .PROC1 EXEC; 

'REG 

OR 

* BRO = .PROC 1 EXEC 

'* GR = TILL BRO 
.. GO FROM .ST ART 

OR 

*' GR = TILL .PROC 1 EXEC 

* GO FROM .ST ART 

INTERROGA TION MODE 
DISPLA Y ICHANGE 

REGISTERS 

REG 

RBX 
RAL 

SP 

FLAGS 

RF 

AFL 
TFL 

IFL 

PINS (READ ONLY) 

HOLD 

NMI 
IR 

ROY 

RAX ••• IIIIIIII RB ..... IIIII RCX· .. .,.II RD.· .... II SP· .... II BP· .... II 81· .... 11 01· ... ". 
es ••••• 11 DS ..... II 88· .... 11 n· .... 11 RF· .... II IP· .... " 
• 'RA.·:!:!:!:! 
• 'RCII·FF 
• -REG 
RA •• :!:!:!:!II! RB.· .... " RCX·FF •• II RDX· .... II Sp· .... 11 BP· .... II sl· .... 11 01· .... 11 
CS ••••• II DS· .... II 88· .... 11 ES· .... H IIF· .... II Ip· .... " 
• 
tlFL-. 
• 
'RF 
RF·.Z •• II 
• ,"0LD 
HOL·" 



INTERROGA TION MODE <CONT.) 

ACCESSING MEMORY AND 1/0 

.BYTE ,BUfTfR LEN 16T = 77 
* .BYTE .BUFFFR LEN 16T 
BYT fl0Zflll11f1I11I11I1=771l 7711 7711 7711 77f1 77H 7711 7711 7711 7711 7711 7711 7711 77H 7711 77H 

* -INTEGER ,SUM = -9 

* .!SUM 
INT flfIZZ:l1Ifl00f1=-lIIflIII9H 
• -WORD ,XVZ 
WaR 11I0Z3:011104H=026IH 
• 
.IXYZ = 0 
* .!XVZ 
WOR 0023:0004H=0000H 
• -WPORT ',CONTROL = 9f19111 

* -PORT FFF9 
paR FFF9H=AAH 

* *PORT FFFB = FF 
*WPORT .LIGHTS = 111 

* *"IPORT • SW ITCIIES 
WPO FFFSH=AADFH 

INTERROGATION MODE (CON'T.) 

CODE DISASSEMBLY 

'AS" .START LEN Z' 
ADDR PREFII ""E~NIC OPERANDS 
,lfl""11I1 NOY DX,FFEAII 

.2'1.11311 HOY AL,.'H 
.'2II.II:1H OUT DX,AL 
.. 2'1 .. 16H HOY AL,39H 
,'ZlI'.1811 OUT DX,AL 
'.Z'I,eI91f CALL •••• 8EH 
"ZIIII •• ICH CAlL •• lf7CH 
•• Z'llfIFH HOY NORD PTR U.Z4HlI .... H 
"z'leez:m PUSH NORD PTR [88Z4HJ 
.8Z'I •• Z911 HOY ALIIIII 
.. ZIII ••• Z811 PUSH AX 
"Z'I •• ZCH HOY AL,.IH 
.. Z .... ZEH PUSH AI 
.ez •• eeZFH CAlL .... 87H 

F-16 

COHHENTS 

SIIORT 
SIIORT 

I SIIORT 



TRACE DATA COLLECTION 

BUS DATA 

TRACE DATA 

IADDRIDATAI BHE BUS STS QSTS QDEPTH DMUX MARK 

20 3 2 3 2 

• EACH FRAME OF TRACE DATA CONTAINS 32 BITS OF INFORMATION. 

F-17 



TRACE DATA BUFFER 
2 FRAMES/MACHINE CYCLE - 511 CYCLE CAPACITY 

FRAME 0 

" - -

- -

FRAME N 

FRAME N+ 

ADDR/DATAI BHE IBUSSTSI QSTS IQDEPTHI DMUlX I MARK 

1 ADDRIDATAJ BHE IBUS STS1 QSTS IQDEPTH I DMUX J MARK } 
I--- -

f-- -

L 

FRAME102 2 

CONTROLLING TRACE DATA COLLECTION 

• ENABLE TRACE 

NOTE: BY DEFAULT THE TRACE IS INITIALLY TURNED ON • 

• DISABLE TRACE 

TRACE DATA CAN ALSO BE COLLECTED CONDITION ALL Y 

F-18 



CONDITIONAL TRACE DATA COLLECTION 

ICE-86 HAS TWO TRACE CONTROL REGISTERS THAT MAY BE LOADED 
BY SOFTWARE COMMANDS. 

ONTRACE 
REGISTER 

FRAME 
INFORMATION 

'>----~ TRACE ON 

OFFTRACE 
RIEGISTER 

~---------l = >---~ TRACE OFF 

USING THE TRACE CONTROL REGISTERS 

*ONTRACE =.DISPLAY_DATA FETCHED 

*' OFFTRACE :.LIGHLPORT OUTPUT 

• ENABLE TRACE CONDITIONALLY NOW OFF 

OR 

• ENABLE TRACE CONDITIONALLY NOW ON 

ONTRACE 
REGISTER 

OFFTRACE 
REGISTER 

;TRACE CONlrROL REGISTERS CAN ONLY 

;BE LOADED WITH NON-EXECUTION 
MATCH CONDITIONS. 

F-19 



-TRACE 
TRA-INS 

* • 
• PRINT -5 

DISPLA YING TRACE OAT A 

Se' TRACE Dllpll, Mode Commlnd 

TRACE - I fRAME I 
INSTRUCTION 

1!1I111p1cs: 

TRACE - fRAME 
TRACE -INSTRUCTION 

PRINT Commlnd 

1. PRINT All 
2. PRINT II t ::-Jdeclm./1 

I!lImple: 

PRINT 
PRINT All 
PRINT tl 
PRINT 1 
PRINT -18 

EXAMPLES 

FRAHE ADDR PREFIX ""EHONIC 
HOV 

OPERANDS 
DX,FFF8H 
AX,DX 

t9971 "Z II'" 
•• 131 •• ZIIII" 

FFFEI"-I-'ZZ'" 
te.71 "ZIB" 
•• 111 .'ZUIII 
.et!!1 •• ZZ8111 

FFF~III-O-FDDFH 

* -HRACE - n:AHE 

* • 
• PRINT -5 

IN 

NOT 
HOV 
OUT 

AX 
DX,FFFAIt 
DX,AX 

FRAHE ADD~: BHEI STS DSTS DDEPT" DHUX HARK 
te.61 ZFFF311 • F N 3 D • 
• 11.71 .FFFA" • 0 N 3 A • 
• e181 ZFDDF" • 0 N 3 D • 
11.91 "224" • F N 3 A • 
IIl2'1 2F4FBH • F N 5 0 IJ 



TRACE BUFFER POINTER 

o Ir------, 

TRACE 
BUFFER 

1+---- POINTER 

1022 11.... ___ ....... 

NOTE: 
THE PRINT COMMAND FUNCTIONS 
RELATIVE TO THE POINTER. 

MOVE, OLDEST, Ind NEWEST Commlndl 

MOVE II t ::-!declm"1 
OlDEst 
NEWEST 

1! .... pIe: 

MOVE 
MOVE tl 
MOVE-II 
OLDEST 
NEWEST 

MISCELLANEOUS FEATURES AND COMMANDS 

Set or Display Console Input Radix Commands 
IUFFIX 

IUFFIX - Y::Q::O::T::H 

E ........ : 

IUFflX 

SUfflX-Y 

Set or Display Console Output Radix Commands 

~'E 

lASE • Y::O::O::T::H::AICI 

lASE 

• INITIAL RADIX IS HEX FOR BOTH INPUT ANI) OUTPUT. 

F-21 



EMULA TION TIMER 

2 MHz (500ns) CLOCK ---------, 

ClK 

GO ------------.fSTART 

EMULATION 
TIMER 

HITIMER 
TIMER 

-EMULATION BREAK· ---~"'STOP 

FROM clause 
CS OR IP MODIFIED 
ENABLE/DISABLE TRACE 

LOAD Command 

lOAD!""w.:IiIIenI'" {HOCOIJE } 
N08VII8Ol 
NOllfE 

E ........ : 

lOAD:ft:TE8T .YIII 
lOAD:fl:IIVPIIOCI HOlINE 
LOAD:fl:COUNT. ONE NOCODE NOlINE 
lOAD:fI:HEWCOO NOSVIlBOL 

SAVE Command 
.AYEI:dfwe:III.". ... HOCODE::p_lpolfnlon " 

NOSVIIBOL 
NOlINE 

e ....... : 

IAYE:fl:TElT 
IAYE:ft:MYl'IIOO_IOtffFNOlINE 
IAYE:FI:COUNT.lWOHOlINE HOIVII8Ol 
IAYE:fI:NEWlVM HOCOIJE NOlINE 
IAYE:FI:TE8T II TOIIG •.. SUBII" lO .. SUBl"1I 

LIST Command 

LIST :lP: 
lIST :co: 
LIST :'I:ICE' .. 

F-22 

RESET 



• TO RETURN TO ISIS-II 

* EXIT 

CLASS EXERCISE 6.1 

SET UP THE ICE-S6 COMMANDS TO DO THE FOLLOWING: 

1. MAP LOGICAL MEMORY 0-32K INTO USER MEMORY 

* 
2. SELECT THE USER CLOCK 

* ----------------------------
3. LOAD THE PROGRAM FILE :F1:DEMO 

*----------------------------
4. EX,I\MINE THE SYMBOL TABLE 

* 
5. BEIGIN EMULATION AT .START AND CONTINUE UNTIL .L5 EXECUTED 

'* ----------------------------
F-23 



CLASS EXERCISE 6.1 (CON'T.) 

6. EXAMINE THE REGISTERS 

* -----------------------------
7. EXJ\MINETHE BYTE MEMORY LOCATION .XYZ 

*-----------------------------
S. CONTINUE EMULATION UNTIL OAT A IS INPUT FROM PORT OFSH 

*-----------------------------
9. EXAMINE THE CONTENTS OF THE TRACE BUFFER 

*-----------------------------
10. SINGLE STEP THROUGH THE NEXT TWO INSTRUCTIONS 

*----------------------------­
*-----------------------------

CLASS EXERCISE 6.1 (CON'T.) 

11. EXAMINE THE LAST 5.ENTRIES IN THE TRACE BUFFER 

*---------------------------
12. EXAMINE THE WORD LOCATION .ABC 

*---------------------------
13. CONTINUE EMULATION FOREVER 

*---------------------------
14. BREAK EMULATION 

*---------------------------
15. GO BACK TO ISIS-II 

*---------------------------



CLASS EXERCISE 6.1 (CON'T) 

16. MATCH THE PCB WITH THE RELATIVE LOCATION IN WHICH IT SHOULD 
BE INSTALLED. 

TOP A 88 CONTROLLER 

MIDDLE B FM CONTROLLEtR PCB 

BOTTOM_ C TRACE PCB 

17. WHICH ICE86 PCB CONTAINS THE 8080 MICRO PROCESSOR? 

* 

WHERE TO FIND MORE INFORMATION ... 

ICE-B6 MICROSYSTEM IN-CIRCUIT EMULATOR OPERA.TING INSTRUCTIONS 

CHAPTER 1 - INTRODUCTION TO ICE-86 

CHAPTER 2 -ICE-86 INSTALLATION PR9CEDURI=S 

F-25 



GETTING STARTED WITH ICE-86 

The purpose of this lab exercise is to use the commands of 
the In-Circuit Emulator presented in this appendix. With 
these commands, you will be able to load ~nd debug programs 
that you have written. The items to be covered during this 
lab are as follows: 

1. Preparation of the Execution Environment 
2. Loading of an Executable Program File 
3. GO or "Real-Time" Emulation 
4. Implementing User Defined Breakpoints 
5. Examining CPU Registers, Memory Locations, and 

1/0 Ports 
6. Collection and Display of Trace Information 
7. Timing a Section of a Program 

Before you get started, make sure that you are at a system 
which is properly configured. In order to perform this lab, 
you must be at a workstation which contains the following 
items: 

A. SERIES III Development System 
B. ICE 86 connected to an SDK 86 

If you have any question or if your ICE unit is not attached 
to your SDK 86, ask your instructor for assistance. You 
will also need some software. If you do not have the ICE86 
software, you should see your instructor. 

Once you are situated at a properly configured workstation 
with the proper software, you must generate an absolute 
program file. For this lab, we are going to borrow a 
program that is already written and use it to create an 
absolute program file. 

There is a file on the system disk which was prepared for 
this lab exercise. It is :F0:DEMO.A86. DEMO.A86 is a 
source file for a program which is written in 8086 assembly 
language. We will use this program in this lab to 
demonstrate the features of ICE86. 

Copy the source file to your user disk. Once you have the 
file on your user disk, you must assemble the source file 
into an object module. Make sure you use the DEBUG option 
of the assembler. Also, get a hard copy of the list file to 
use during this lab session. 

ICE-86 DEMO LAB 

F-26 



By the time it finishes, the assembler will give us a 
relocatable object module. Although the assembler produced 
a module which is in code that our CPU can execute, we can't 
do anything with it until we provide it with some absolute 
addresses. We can use LOC86 to do this for us. Enter the 
following command: 

-RUN LOC86 :Fl:DEMO.OBJ ADDRESSES(SEGMENTS(CODE(200H»)&<CR) 
»INITCODE(100H) 

The "-" and "»" are prompts from the system. Get a copy of 
the listing from the locator which is in the file DEMO.LST. 
First of all there should not be any errors listed. If 
there are, you should match the invocation line at the top 
of your listing with the command above to make sure you 
don't have a cockpit error. If you have an error on your 
listing and the invocation line was OK, then you should see 
your instructor. 

This program, as you can see from the assembler listing, 
utilizes the LEDs and switches on your SDK 86. The Module 
is named ICE DEMO. 

Now let's look at the locate command we just entered. As 
you can see, we located our program by segments beginning at 
address 200H. Then we invoked something called INITCODE and 
gave it an address of 100H. At this time, take a look at 
your program listing. In particular look at the END 
statement. You will see that the END statement on this 
program is more extensive than you would think it needs to 
be. This END statement contains the initialization 
information for the segment registers used by this module. 
The assembler uses this information to create what it calls 
an initialization record. Now back to our locator and this 
INITCODE business. ICE-86 ~~~ that the INITCODE 
control be used. The INITCODE control causes the locator 
(LOC86) to create a segment which will initialize the 
segment registers and pointer registers in our CPU when our 
program is loaded. 

Once you have familiarized yourself with the program and the 
locate map, you are ready to start the ICE session. Make 
sure the ICE-86 System Software is in Drive 0 and enter the 
following command: 

-ICE86 

This will load the ICE software driver and invoke the ICE 
hardware. If the invocation is successful, ICE will return 
an asterisk "*" prompt character. 

ICE-86 DEMO LAB 

F-27 



If you wish to make a record of this ICE session, type the 
following: 

LIST :F 1: ICE. LAB 

This will copy everything that goes to the screen to a file 
on your user disk called ICE. LAB. 

The first thing we must do is prepare the execution 
environment for ICE. This consists of mapping memory and 
making a clock selection. 

Memory mapping is our way of informing ICE the memory it can 
use and where it is located. Since we will be executing out 
of memory on the SDK-86 board, we will map our memory 
requirements to the user system. To do this, enter the 
following command: 

*MAP 0 LEN 2 = USER 

This command identifies the first two 1K blocks in the 
8086's logical address space as being located in the user 
system (00000H - 007FFH). 

Next we must make a clock selectiop. We have a choice of 
using a clock supplied by ICE-86 hardware (internal) or one 
supplied by user hardware. Since we are executing out of 
user memory, it is necessary that we select the user clock. 
Enter the following: 

*CLOCK = EXTERNAL 

At this point, the execution environment has been prepared. 
So now we can go ahead and load our absolute object file. 

*LOAD :F1:DEMO 

Now that we have our program loaded into our system, let's 
take a look at the CPU registers to see where our CS and IP 
registers are pointing. Enter: 

*REG 

When we assembled our program we used a switch called 
DEBUG. At the time we said that this switch added the 
symbol table to our object module. If we want to see what 
symbols are available, we can enter: 

*SYMBOLS (Remember that you can use Ctrl-S to stop the 
display and Ctrl-Q to resume) 

ICE-86 DEMO LAB 

F .. 28 



As you can see, this will give us a list of all the symbols 
associated with the module called "ICE DEMO". Let's add a 
symbol to the table which will be equal to the address of 
the first instruction to be executed. We know that the 
CS:IP currently point to that instruction so let's enter: 

*DEFINE .BEGIN = CS:IP 

Now look at the symbol table again. 

*SYMBOLS 

As we can see we now have a new symbol called .BEGIN. 

When you displayed the registers, you may have noticed that 
the CS and IP registers contain values of 0010H and 0006H. 
This translates to an absolute address of 00106H. But our 
program was located at an address of 200H. What is going on 
here? Well, remember that locate command? Remember 
something called INITCODE? Our locator crE!ated an absolute 
segment at the address we specified (100H) and our loader 
initialized our CPU so that it would execute this code. If 
you look at the map from the Locator, you may notice a 
segment was created called ??LOC86 INITCODE. Let's see what 
this code is. Enter: 

*ASM .BEGIN LEN 19 

This code is used to initialize our segment registers and 
the stack pointer from the information in our END 
statement. SS is loaded from CS:WORD PTR [0000J. To see 
what this value is, enter: 

*WORD CS:0 

Is this segment value the same as the one on your locate 
map? 

You may also want to look at the value SP is loaded with and 
see if it agrees with the assembly listing and the value DS 
is initialized with and check it against the locate map. 
The final instruction is to do a FAR JMP to 0020:0000 which 
is where we told the locator to place our CODE SEGMENT. 

We can begin executing our program by issuing the command: 

*GO FROM .BEGIN FOREVER 

We could have said simply GO FOREVER since CS:IP was 
pointing to .BEGIN anyway. The term FOREVER indicates that 
the program will continue executing with no breakpoints. 

ICE-86 DEMO LAB 



At this time, verify the operation of the program by placing 
the switches in various positions and monitoring the 
reaction of the LEDs with the program description in the 
listing file. 

Now that we know the program executes properly, let's 
terminate its execution and look at some other ICE 
commands. To bring about a random breakpoint, the Escape 
key must be struck. 

<Esc> 

Notice the termination address is printed when emulation 
comes to a halt. 

Now let's see how we can enter some breakpoints of our own. 
Suppose we wanted to restart this program, but this time we 
wanted to stop when the switches of port 0FFF9H are in an 
illegal setting. 

Before you enter the breakpoint, make sure that the command 
switches are in a legal configuration (refer to the 
listing). As you can see from the listing, the only time 
the instruction with the label ILLEGAL CMD is executed is 
when an illegal command is decoded. We can set the 
breakpoint for that instruction by entering: 

*GO FROM .START TILL .ILLEGAL CMD EXECUTED 

You can reference any symbol by referencing it as shown by 
this command. Notice the period "." before the symbol 
name. Also notice that we were very explicit in saying that 
we wanted to break emulation when that instruction was 
EXECUTED. If we were not explicit, we would break emulation 
when that instruction was fetched regardless of whether it 
was executed or not. This is important since our CPU has a 
pre-fetch queue and may fetch the instruction even though it 
might never execute it. 

Your program should execute until you change the setting of 
the command switches to an illegal setting. When this 
happens and execution terminates, you can correlate the 
address at which the execution terminated as displayed on 
the screen with the address of ILLEGAL CMD on the locate 
map. As you can see, the execution terminated with the 
CS:IP pointing to the instruction following the one we set 
our breakpoint at. 

ICE-86 DEMO LAB 



With the system halted there are a few thing you can look 
at. If you enter: 

*PRINT -20 

you can see what the last 20 instructions were executed 
before the breakpoint was encountered and what the illegal 
switch setting was that caused us to terminate. 

If you prefer to see the information in each frame, enter: 

*TRACE = FRAME 
*PRINT -25 

This will give you frame by frame information 

If you enter: 

*REG 

you can examine all of the registers. 

You may want to look at the Zero flag condition to see that 
it is cleared from the previous CMP by entering: 

*ZFL 

You can examine the controls of the memory location called 
.DISPLAY by entering: 

*BYTE .DISPLAY 

In response to this command, ICE 86 gives us the address of 
.DISPLAY and displays its contents. 

Now change the settings of the command switches to a valid 
configuration and enter: 

*GO 

Once the program begins executing, change the switch 
settings to an illegal command setting. What happened? 

If you notice, we didn't enter a TILL clause in our last GO 
command. As it turns out, ICE86 maintains breakpoints until 
they are cleared out. To verify this, enter: 

*GR 

This causes ICE 86 to display the contents of it GO 
REGISTER. As you can see, the GO REGISTER contains the 

ICE-86 DEMO LAB 

F-31 



breakpoint BR0. How can you determine what BR0 contains? 
You guessed it •.• type: 

*BR0 

If you compare this with your locate map, you should see 
that the breakpoint was matched when the instruction 
associated with the program label ILLEGAL CMD was executed. 
In order to get the program to execute continuously we have 
to change the contents of the GO REG. We can do this two 
ways. The first way is to do it implicitly by entering GO 
FOREVER which sets the contents of the GO REG to FOREVER and 
begins execution. The other way to do it is by explicitly 
setting the GO REG to FOREVER by entering: 

*GR=FOREVER 

Before we execute the program again, let's conditionally 
collect trace information for later display. In this 
example, we would like to collect information from the time 
the instruction at location .START is fetched until a value 
is output to .DISPLAY_PORT. Enter the following: 

*ONTRACE = .START FETCHED 
*OFFTRACE = .DISPLAY PORT OUTPUT 
*ENABLE TRACE CONDITIONALLY NOW OFF 
*GO 

Change the switch settings several times and then strike the 
Escape key to abort the process. Now let's look at the 
trace buffer to see what was collected. If you are still in 
frame information mode enter: 

*TRACE = INSTRUCTIONS 

and then we will print the entire buffer by entering: 

*PRINT ALL 

If you wish to stop it at any time press the Escape key. 

If you look at the assembler listing, you will notice a 
delay was written in starting at the program label .DELAY. 
Let's use the ICE-86 built in timer to time this delay and 
see how long it takes to execute. Enter the following: 

*GO FROM .DELAY TILL .START FETCHED 

ICE-86 DEMO LAB 



Now we can look at the timer to see how long it took to 
execute this piece of our program. Enter 

*HTIMER 
*TIMER 

HTIMER contains the most significant 16 bits of the timer 
and TIMER the least significant 16 bits of the timer. To 
find out how long this p~rt of our program took to execute. 
we would have to multiply the HTIMER value by 65536 add the 
TIMER value and then multiply it by the timers clock period 
of 500 nsec. Since most of us don't like to do hexadecimal 
multiplication. we need these values in decimal. We can do 
this two ways. Enter: 

*BASE = T 
*HTIMER 
*TIMER 

This changed our output mode to base ten and displays all 
our values in decimal. Another method is to evaluate using 
the EVAL command. Enter: 

*EVAL HTIMER 
*EVAL TIMER 

This displays these values in all the bases supported by 
ICE. To calculate how long this took we now have to take 
HTIMER and multiply it by 65536. The following chart may 
help. 

1 * 65536 = 65536 
2 * 65536 = 131072 
3 * 65536 = 196608 
4 * 65536 = ?62144 
5 * 65536 = 327680 
6 * 65536 = 393216 
7 * 65536 = 458752 
8 * 65536 = ~:;24288 
9 * 65536 = ~;89824 

10 * 65536 = 655360 

We then add the TIMER value and multiply this by 500 nsec or 
.5 usec. You should get a result of approximately .5 
seconds for this. 

ICE-86 DEMO LAB 

F .. 33 



Now let's change the value of the delay by changing the 
MOV BH,2 instruction at 20:39. Enter the following: 

*BYTE CS:3A = 4 
*ASM .DELAY TO .LP1 
*GO FROM .DELAY TILL .START FETCHED 

and check the timers. The delay should be approximately 1 
second. You may want to change the LOOP count in the ex 
register and try it again. 

At this time, you should have a basic idea as to how ICE-86 
will be used to execute and debug programs that you write. 
By using the GO command with breakpoint, you can test and 
verify logical portions of your program. Using the REG 
command, you can verify the contents of the CPU registers 
whenever emulation has been stopped. You can collect 
information in a trace buffer and time sections of your 
program. 

Whenever emulation is terminated, you may interrogate or 
modify the system. Using your system and documentation, you 
may wish to experiment at this time with some of the 
capabilities of ICE 86. Some of the features that you may 
wish to try are to modify the contents of an IIO port or to 
look at the switch settings. 

When you are satisfied, you may exit ICE86 by entering: 

*EXIT 

This will cause the system to return to ISIS and close the 
LIST file you created. You may want to view this file using 
AEDIT or copy it to the printer. 

ICE-86 DEMO LAB 



INTEL WORKSHOPS 

Microcomputer Workshops-Architecture & Assembly Language 
Introduction to Microprocessors 
MCS®-48/49 Microcontrollers 
MCS®-51 Microcontrollers 
MCS®-96 16-Bit Microcontrollers 
MCS®-80/85 Microprocessors 
iAPX 86, 88, 186 Microprocessors, Part I 
iAPX 86, 88, 186 Microprocessors, Part \I 
iAPX 286 Microprocessors 
Data Communications including Ethernet 
Speech Communication with Computers 
iCEL" VLSI Design 

Programming and Operating Systems Workshops 
Beginning Programming Using Pascal 
PUM Programming 
PL/M-iRMX" 51 Operating System 
iRMX" 86 Operating System 
XENIX· /C Programming 
System 86/300 Applications Programming 
iDIST• Database Information System 
iTPS Transaction Processing System 
Development System Seminars 

System 2000ID Database Management Workshops 
System 2000® For Non-Programmers 
System 2000® Technical Fundamentals 
SYstem 2000® Applications Programming 
System 2000® Report Writing 
System 2000® Database Design and Implementation 

Self-Study Introduction to Microprocessors 
System 2000® Multimedia Course 

BOSTON AREA 
27 Industrial Avenue, Chelmsford, MA 01824 (617) 256-1:174 

CHICAGO AREA 
Gould Center, East Tower 
2550 Golf Road, Suite 815, Rolling Meadows, IL 60008 (~112) 981-7250 

DALLAS AREA 
12300 Ford Road, Suite 380, Dallas, TX 75234 (214) 484-8051 

SAN FRANCISCO AREA 
1350 Shorebird Way, Mt. View, CA 94043 (415) 940-7800 

WASHINGTON D.C. AREA 
7833 Walker Drive, 5th Flo, Greenbelt, MD 20770 (301) 4i'4-2878 

LOS ANGELES AREA 
Kilroy Airport Center, 2250 Imperial Highway, EI Segundo, CA 90245 (415) 940-7800 

CANADA 
190 Attwell Drive, Toronto, Ontario M9W 6H8 (416) 675-2105 



• t_l® 
~ll!e1 

training 

Intel Corporation· 3065 Bowers Avenue· Santa Clara, California 9!5051 . (408) 987-8080 


	cov_Page_1
	cov_Page_2
	b1_Page_01
	b1_Page_02
	b1_Page_03
	b1_Page_04
	b1_Page_05
	b1_Page_06
	b1_Page_07
	b1_Page_08
	b1_Page_09
	b1_Page_10
	b1_Page_11
	b1_Page_12
	b1_Page_13
	b1_Page_14
	b1_Page_15
	b1_Page_16
	b1_Page_17
	b1_Page_18
	b1_Page_19
	b1_Page_20
	b1_Page_21
	b1_Page_22
	b1_Page_23
	b1_Page_24
	b1_Page_25
	b1_Page_26
	b1_Page_27
	b1_Page_28
	b1_Page_29
	b1_Page_30
	b1_Page_31
	b1_Page_32
	b1_Page_33
	b1_Page_34
	b1_Page_35
	b1_Page_36
	b2_Page_01
	b2_Page_02
	b2_Page_03
	b2_Page_04
	b2_Page_05
	b2_Page_06
	b2_Page_07
	b2_Page_08
	b2_Page_09
	b2_Page_10
	b2_Page_11
	b2_Page_12
	b2_Page_13
	b2_Page_14
	b2_Page_15
	b2_Page_16
	b2_Page_17
	b2_Page_18
	b2_Page_19
	b2_Page_20
	b2_Page_21
	b2_Page_22
	b2_Page_23
	b2_Page_24
	b2_Page_25
	b2_Page_26
	b2_Page_27
	b2_Page_28
	b2_Page_29
	b2_Page_30
	b2_Page_31
	b2_Page_32
	b2_Page_33
	b2_Page_34
	b2_Page_35
	b2_Page_36
	b3_Page_01
	b3_Page_02
	b3_Page_03
	b3_Page_04
	b3_Page_05
	b3_Page_06
	b3_Page_07
	b3_Page_08
	b3_Page_09
	b3_Page_10
	b3_Page_11
	b3_Page_12
	b3_Page_13
	b3_Page_14
	b3_Page_15
	b3_Page_16
	b3_Page_17
	b3_Page_18
	b3_Page_19
	b3_Page_20
	b3_Page_21
	b3_Page_22
	b3_Page_23
	b3_Page_24
	b3_Page_25
	b3_Page_26
	b3_Page_27
	b3_Page_28
	b3_Page_29
	b3_Page_30
	b3_Page_31
	b3_Page_32
	b3_Page_33
	b3_Page_34
	b3_Page_35
	b3_Page_36
	b3_Page_37
	b3_Page_38
	b3_Page_39
	b3_Page_40
	b3_Page_41
	b3_Page_42
	b3_Page_43
	b3_Page_44
	b3_Page_45
	b3_Page_46
	b3_Page_47
	b3_Page_48
	b4_Page_01
	b4_Page_02
	b4_Page_03
	b4_Page_04
	b4_Page_05
	b4_Page_06
	b4_Page_07
	b4_Page_08
	b4_Page_09
	b4_Page_10
	b4_Page_11
	b4_Page_12
	b4_Page_13
	b4_Page_14
	b4_Page_15
	b4_Page_16
	b4_Page_17
	b4_Page_18
	b4_Page_19
	b4_Page_20
	b4_Page_21
	b4_Page_22
	b4_Page_23
	b4_Page_24
	b4_Page_25
	b4_Page_26
	b4_Page_27
	b4_Page_28
	b4_Page_29
	b4_Page_30
	b4_Page_31
	b4_Page_32
	b4_Page_33
	b4_Page_34
	b4_Page_35
	b4_Page_36
	b4_Page_37
	b4_Page_38
	b4_Page_39
	b4_Page_40
	b4_Page_41
	b4_Page_42
	b4_Page_43
	b4_Page_44
	b4_Page_45
	b4_Page_46
	b5_Page_01
	b5_Page_02
	b5_Page_03
	b5_Page_04
	b5_Page_05
	b5_Page_06
	b5_Page_07
	b5_Page_08
	b5_Page_09
	b5_Page_10
	b5_Page_11
	b5_Page_12
	b5_Page_13
	b5_Page_14
	b5_Page_15
	b5_Page_16
	b5_Page_17
	b5_Page_18
	b5_Page_19
	b5_Page_20
	b5_Page_21
	b5_Page_22
	b5_Page_23
	b5_Page_24
	b5_Page_25
	b5_Page_26
	b5_Page_27
	b5_Page_28
	b5_Page_29
	b5_Page_30
	b5_Page_31
	b5_Page_32
	b5_Page_33
	b5_Page_34
	b5_Page_35
	b5_Page_36
	b5_Page_37
	b5_Page_38
	b5_Page_39
	b5_Page_40
	b5_Page_41
	b5_Page_42
	b5_Page_43
	b5_Page_44
	b5_Page_45
	b5_Page_46
	b5_Page_47
	b5_Page_48
	b5_Page_49
	b5_Page_50
	b5_Page_51
	b5_Page_52
	b5_Page_53
	b5_Page_54
	b6_Page_01
	b6_Page_02
	b6_Page_03
	b6_Page_04
	b6_Page_05
	b6_Page_06
	b6_Page_07
	b6_Page_08
	b6_Page_09
	b6_Page_10
	b6_Page_11
	b6_Page_12
	b6_Page_13
	b6_Page_14
	b6_Page_15
	b6_Page_16
	b6_Page_17
	b6_Page_18
	b6_Page_19
	b6_Page_20
	b6_Page_21
	b6_Page_22
	b6_Page_23
	b6_Page_24
	b6_Page_25
	b6_Page_26
	b6_Page_27
	b6_Page_28
	b6_Page_29
	b6_Page_30
	b6_Page_31
	b6_Page_32
	b6_Page_33
	b6_Page_34
	b6_Page_35
	b6_Page_36
	b6_Page_37
	b6_Page_38
	b6_Page_39
	b6_Page_40
	b6_Page_41
	b6_Page_42
	b6_Page_43
	b6_Page_44
	b6_Page_45
	b6_Page_46
	b6_Page_47
	b6_Page_48
	b6_Page_49
	b6_Page_50
	b7_Page_01
	b7_Page_02
	b7_Page_03
	b7_Page_04
	b7_Page_05
	b7_Page_06
	b7_Page_07
	b7_Page_08
	b7_Page_09
	b7_Page_10
	b7_Page_11
	b7_Page_12
	b7_Page_13
	b7_Page_14
	b7_Page_15
	b7_Page_16
	b7_Page_17
	b7_Page_18
	b7_Page_19
	b7_Page_20
	b7_Page_21
	b7_Page_22
	b7_Page_23
	b7_Page_24
	b7_Page_25
	b7_Page_26
	b7_Page_27
	b7_Page_28
	b7_Page_29
	b7_Page_30
	b7_Page_31
	b7_Page_32
	b7_Page_33
	b7_Page_34
	b7_Page_35
	b7_Page_36
	b7_Page_37
	b7_Page_38
	b7_Page_39
	b7_Page_40
	b7_Page_41
	b7_Page_42
	b7_Page_43
	b7_Page_44
	b7_Page_45
	b7_Page_46
	b8_Page_01
	b8_Page_02
	b8_Page_03
	b8_Page_04
	b8_Page_05
	b8_Page_06
	b8_Page_07
	b8_Page_08
	b8_Page_09
	b8_Page_10
	b8_Page_11
	b8_Page_12
	b8_Page_13
	b8_Page_14
	b8_Page_15
	b8_Page_16
	b8_Page_17
	b8_Page_18
	b8_Page_19
	b8_Page_20
	b8_Page_21
	b8_Page_22
	b8_Page_23
	b8_Page_24
	b8_Page_25
	b8_Page_26
	b8_Page_27
	b8_Page_28
	b8_Page_29
	b8_Page_30
	b8_Page_31
	b8_Page_32
	b8_Page_33
	b8_Page_34
	b8_Page_35
	b8_Page_36
	b8_Page_37
	b8_Page_38
	b8_Page_39
	b8_Page_40
	b8_Page_41
	b8_Page_42
	b8_Page_43
	b8_Page_44
	b8_Page_45
	b8_Page_46
	b8_Page_47
	b8_Page_48
	b8_Page_49
	b8_Page_50
	b8_Page_51
	b8_Page_52
	b8_Page_53
	b8_Page_54
	b8_Page_55
	b8_Page_56
	b9_Page_01
	b9_Page_02
	b9_Page_03
	b9_Page_04
	b9_Page_05
	b9_Page_06
	b9_Page_07
	b9_Page_08
	b9_Page_09
	b9_Page_10
	b9_Page_11
	b9_Page_12
	b9_Page_13
	b9_Page_14
	b9_Page_15
	b9_Page_16
	b9_Page_17
	b9_Page_18
	b9_Page_19
	b9_Page_20
	b9_Page_21
	b9_Page_22
	b9_Page_23
	b9_Page_24
	b9_Page_25
	b9_Page_26
	b9_Page_27
	b9_Page_28
	b9_Page_29
	b9_Page_30
	b9_Page_31
	b9_Page_32
	b9_Page_33
	b9_Page_34
	b9_Page_35
	b9_Page_36
	b9_Page_37
	b9_Page_38
	b9_Page_39
	b9_Page_40
	b9_Page_41
	b9_Page_42
	b9_Page_43
	b9_Page_44
	b9_Page_45
	b9_Page_46
	b9_Page_47
	b9_Page_48
	b9_Page_49
	b9_Page_50
	b9_Page_51
	b9_Page_52
	b9_Page_53
	b9_Page_54
	b9_Page_55
	b9_Page_56
	b9_Page_57
	b9_Page_58
	b9_Page_59
	b9_Page_60
	cov_Page_3
	cov_Page_4

