

LITERATURE

In addition to the product line Handbooks listed below. the INTEL PRODUCT GUIDE (no charge. Order
No. 210846) provides an overview of Intel's complete product line and customer services.

Consult the INTEL LITERATURE GUIDE fora complete listing oflntelliterature. TO ORDER literature
in the United States. write or call the Intel Literature Department. 3065 Bowers Avenue. Santa Clara. C A
95051. (800) 538-1876. or (800) 672-1833 (California only). TO ORDER literature from international
locatiom. contact the nearest Intel sales office or distributor (see listings In the back of most any Intel
lIterature).

1984 HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contain~ all application notes. article reprints. data sheets. and other de~ign information
on RAMs. DRAMs. EPROMs. E2PROMs. Bubble Memorie,.

Telecommunication Products Handbook (Order No. 230730)
Contains all application note~. article reprinb. and data ,heel!> for telecommunication
products.

U.S. PRICE*

$15.00

7.50

Microcontroller Handbook (Order No. 210918) 15.00
Contains all application notes. article reprints. data ,heet~. and de~lgn Information for the
MCS-48. MCS-51 and MCS-96 familIes.

Microsystem Components Handbook (Order No. 230843) 20.00
Contain~ applicatIOn notes. article reprints. data sheets. techmcal paper, for micropro-
ces~ors and peripherab. (2 Volume~) (Individual User Manuab are abo avaIlable on the
8085. 8086, 8088. 186, 286. etc. Consult the Literature GUide for price, and order
numbers.)

Military Handbook (Order No. 210461)
Contains complete data sheets for all military products. Information on Leadless Chip
Carriers and on Quality Assurance is al~o included.

Development Systems Handbook (Order No. 210940)
Contains data sheets on development systems and software, support options, and design
kits.

OEM Systems Handbook (Order No. 210941)
Contains all data sheets, application notes, and article reprints for OEM boards and
systems.

Software Handbook (Order No. 230786)
Contains all data sheets, applications notes, and article reprints available directly
from Intel, as well as 3rd Party software.

* Prices are for the U.S. only.

10.00

10.00

15.00

10.00

MICROSYSTEM
COMPONENTS HANDBOOK

'VOLUME 1

1984

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

, Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS,' i, f, ICE, iCS, iDBP,
iDIS, 121CE, iL.,BX, im, iMMX, Insite, Intel, intal, intaiBOS, Intelevision, inteligent
Identifier, intaligent Programming, Intenec, Intellirik, iOSP, iPD~, iSBC, iSBX,
iSDM, iSXM, Library Manager, MCS, Megachassis, MICROMAINFRAME, MUL­
TIBUS, MULTICHANNEL, MULTIMODULE, Plug-A-Bubble, PROMPT,
Promware, QUEST, QUEX, Ripplemode, RMX/SO, RUPI, Seamless, SOLO,
SYSTEM 2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC, MCS, or
UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data
Sciences Corporation. " \

• MULTI BUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

@ INTEL CORPORATION. 1983

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

CHAPTER 1
OVERVIEW

Table of Contents

Introduction. . . . • • . • • • • • • • . • . • • . • . . • . • • . . • • • • • • • • • • • • • 1-1

CHAPTER 2
MCP-80/85 MICROPROCESSORS

DATA SHEETS
8080Al8080A-11.8080A02, 8-Bit N-Channel Microprocessor ••••.••••.••••••• '........ 2-1
8085AH/8085 AH-218085AH-1 8-Bit ,HMOS MicroproceSsors ••••••••••••.••••••••••• 2-10
8085A18085A-2 Single Chip 8-Bit N-Channel Microprocessors ...•••••••.•.••••••••• 2-26
8155H/8156H/8155H-2/8156H-2, 2048-Bit Static HMOS RAM

with I/O Ports and Timer ••.••••••••••••.•••••••••••••••••.•.••.••••••••••• ". 2-30
8155/8156/8155-218156-2, 2048-Blt Static MOS RAM with 1/0 Ports and'Timer•... 2-42
8185/8185-2, 1024 x 8-Bit Static RAM for MCS-85 •.•••.•..••.••••.•••.••.••••.••••. 2-45
8205 High Speed 1 OlJt of 8 Binary Decoder •.•..•.••• " • • . . • • • . . • . . • • . • • . • • . • • 2-50
8212 8-Bit Input/Output Port .••.•..•.•...•.••.•• , .. ,............................. 2-55
821618226, 4-Bit Parallel Bidirectional Bus Driver ••• '............................... 2-63
821818219 Bipolar Microcomputer Bus Controllers for MCs-aO and MCS-85 Family ... 2-68
8224 Clock Generator and Driver for 8080A CPU ..•••.•.•••••••..•.•••••.•••.•..•. 2-79
8228/8238 System Controller and Bus Driver for 8080A CPU•..••...•.••..•.• 2-84
8237A18237A-4/8237A~ High Performance Programmable DMA Controller.......... 2-88
8257/8257-5 Programmable DMA Controller •..........•...••.........• ". • • . • • . . • .• 2-103
8259A18259A-2/8259A-8 Programmable Interrupt Controller .•.••..•.•.•••... ,., •.... 2-120
8355/8355-2, 16,384-Bit ROM with I/O•.................•.....•..•..•..••.• 2-138
8755A18755A-2, 16,384-Bit EPROM with I/O .. 2-146

CHAPTER 3
IAPX 86, 88, 186, 188 MICROPROCESSORS

APPLICATION NOTES
AP-113 Getting Started with the Numeric Data Processor........................... 3-1
AP-122 Hard Disk Controller Design USing the Intel 8089 ...•..... ~ • . . • . •• • . • . . • 3-62
AP-123 Graphic CRT Design Using the iAPX 86/11 ..•....•.. 0 • 0 0 •• 0 0 •••••• 0 •• 0 • • • •• 3-123
AP-143 Using the iAPX 86/20 Numeric Data Processor

in a Small Business Computer 0 : , .. • 3-194
AP-144 Three Dimensional Graphics Application of the

iAPX 86/20 Numeric Data PrOcessor ••.•••• 0 •••••••••••• 0 •••••••••••• 0 ••••• 3-217
AP-186 Introduction to the 80186 0000 •• 0 •••••• 0 •••••••••••••••••••••• o. o. o. 0 0 ••••• 3-256

DATA SHEETS
iAPX 86/10 16-Bit HMOS Microprocessor 0 00' 0 0 0 0 0 0 •• 0 0 • 0 0 • 0 0 0 •• 0 0 0 • 0 0 • 0 • 0 • 0 o. 0 0" 3-334
iAPX 186 High Integration 16-Bit Microprocessor 00' 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 ••• 000 0 • 0 0 0 0 0 3-358
iAPX 88/10 8-Bit HMOS Microprocessor 00 0 0 0 0000000. 0 0 0 0 0 0 0 000. 0 0 0 0 0 0 0 • o ••• 0 000.. 3-412
iAPX 188 High Integration 8-Bit Microprocessor 00 ••• 0 • 0 0 0 0 0 0 0000 •• 0 •• 0 0 • 0 0 • 0 • 0 0 0 0 0 3-439
8089 8/16-Bit HMOS I/O Processor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 • 0 0 ~ 0 0 0 • o. 3-494
8087 Numeric Data Coprocessor 00 •• 0" 0 o. 0 0" 0 •••••••• 0" 0 •• 0 0 ~ 0 0 •••• 3-508
80130/8013(}'2 iAPX 86/30, 88/30, 186/30, 188/30 iRMX 86 . '

Operating System Processors 0 •• 0 ••• 0 •• :.0.0.0 •• 00.0 0 •• 00.0 •• :0 ••••••••• 3-529
80150/8015(}'2 iAPX 86/50, 88/50. 186/50, 188150 CPlM*-86 '

Operating System Proc:essors 0 0 0 0 0 • 0 ••••••• 0 • 0 0 : 0 ••••• 0 •• 0 • 0 • '.'. 0 ••• o. 3-551
828218283 Octal Latch . 0 •• 0 •••• 0 ••• ~', •••••• 0 •••••••••••••• '. 0 • • • • • • • • • • • • • • • • • • •• 3-562
82~Al8284A-1 Clock Generator and Driver for iAPX 86, 88 Processors 0 •••• 0, •••••• o. 3-567
8286/8287 Octal Bus Transceiver 0 ~ ,: .. .' ... :.... 3-575
8288 Bus Controller for iAPX 86, 88 Processors . 0 .. 0 •••• 0 .. 0 0 ••• 0 •••• 0 o. 3-580
8289/8289-1 Bus Arbiter 00.00 ••••• 0,' 0 o. 0', •••• 0; •• 00 0 •• 0.' ••••• 0" 0",' 0" o. o. 3-587

CHAPTER 4
IAPX 286 MICROPROCESSORS

, DATA SHEETS
iAPX 286/10 High Performance Microprocessor • ,

with Memory Management and Protection 0 0 0 o ' •••• 0 ... 0.:.0.. 4-1
80287 80-Bit HMOS Numeric Processor Extension .. 0 0 0 0 ••••• 0 •• 0 0 •• 0 •• 0 • • • • • • • • • •• 4-52
82284 Clock Generator and Ready Interface for iAPX 286 Processors o •• 00 •••••••• 0" 4-76
82288 Bus Controller for iAPX 286 Processors o. 0 •••••••• 0 ••• 0 • 0 •••••••••••••• 0 •• 0 • 4-83

'CP/M-S6 is a Trademark of Digital Research.,1nc,

CHAPTERS
IAPX 432 MICROMAINFRAME™

DATA SHEETS
iAPX 43201/43202 Fault Tolerant General, Data Processor•.......... ,: :
iAPX 43203 Fault Tolerant Interface, Processor •.......... "••. ','
iAPX 43204/43205 Fal!It''rolerant 'aus Interface and Memory Control Units

CHAPTER 6
MEMORY CONTROLLERS

APPLICATiON NOTES

5-1
5-53
5-85

AP-97A Interfacing Dynamic RAM to 'IAPX' 86/88 Using the 8202A & 8203 ..•.....•... 6-1
AP-141 8203/8206/2164A Memory Design':.......•. 6-37
AP-167 Interfacing the 8207 DYnamic RAM Controller to the iAPX 186 ..•............ 6-43
AP-168 Interfacing the 8207 Advanced Dynamic RAM Confroller to' the iAPX 286 6-48

ARTICLE REPRINTS
AR'-231 Dynamic RAM Controller Orchestrates Memory Systems ...•......•........ 6-55

TECHNICAL PAPERS ' '
System Oriented RAM Controller'• : • 6-62

, NMOS DRAM Controller :.. 6-73
DATA SHEETS

8202A Dynamic RAM Controller ~ ~ .. ; ; 6-77
8203 64K Dynamic RAM Controller , . ',' • . . . • • . . 6-91
82C03 CMOS 64K Dynamic RAM Controller• ," 6-106
8206/8206-2 Error Detection and Correction Unit•.......................... 6-119
8207 Advanced Dynamic RAM Controller :. ' , : 6-152
8208 Dynamic RAM Controller , ... '•.. 6-199

USERS MANUAL
Introduction : '; ::: 6-218
Programming the 8207•. : ''•.... 6-219
RAM Interface : ::'•.......... ; 6-224
Microprocessor Interfaces•..... :•.... 6-233
8207 with ECC (8206) : ,........................ 6-241
Appendix, : :• '•........... 6-244

SUPPORT PERIPHERALS
APPLICATION NOTES

-VOLUME2-

, AP-153 DeSigning with the 8256 .. 6-248
DATA SHEETS ' ,

8231 A Arithmetic processing Unit .. 6-321
8253/8253-5 ProgrammablE! Interval Timer•......................... 6-331
8254 Programmable Interval Timer ' .. ' 6-342
8255A18255A-5 Programmable Peripheral Interface 6-358
8256AH Multifunctional Universal Asynchronous Receiver Transmitter (MUART) 6-379
8279/8279-5 Programmable Keyboard/Display Interface ; •• 6-402
82285 Clock Generator and Ready Interface for I/O Coprocessors 6-414

FLOPPY DISK CONTROLLERS '"
APPLICATION NOTES

AP-116 An 'Intelligent Data Base System Using the 8272 ,•............. 6-421
AP~121 Software Desigriand Implementation of Floppy Di'sk Systems 6-455

DATA SHEETS
8271/8271-6 Programmable Floppy Disk Controller ,•.•......... 6-524
8272A Single/Double Density Floppy Disk Controller•........ 6-553

HARD DISK CONTROLLERS
DATA SHEETS , ,

82062 Winchester Disk Controller : '." . : : 6-572

i
I

UPI USERS MANUAL
Introduction •..•.................•........ '6-598
Functional Description ,..................................... 6-602
Instruction Set•........•.. 6-619
Single-Step, Programming, and Power-Down Modes 6-646
System Operation•.•..•.....•.•...•....................................... 6-651
Applications . ~ • . • • . • .. 6-657

DATA SHEETS
8041A18641A18741A Universal Peripheral Interface 8-Bit Microcomputer•.. 6-777
8042/8742 Universal Peripheral Interface 8-Bit Microcomputer •...... : 6-789
8243 MCS-48 InpuVOutput Expander ; .. 6-803
8295 Dot Matrix Printer Controller .• . . . • . . • . . • • .. 6-809

SYSTEM SUPPORT
ICE-428042 In-Circuit Emulator :•.......... 6-818
MCS-48 Diskette-Based Software Support Package • .. 6-826
iUP-2oo/iUP-201 Universal PROM Programmers•...........•......... 6-828

CHAPTER 7
DATA COMMUNICATIONS

INTRODUCTION
Intel Data Communications Family Overview•.. 7-1

GLOBAL COMMUNICATIONS
APPLICATION NOTES

AP-16 Using the 8251 Universal Synchronous/Asynchrono'us Receiver/Transmitter. . . . 7-3
AP-36 Using the 8273 SDLC/HDLC Protocol Controller............................ 7-33
AP-134 Asynchronous Communications with the 8274 Multiple Protocol

Serial Controller ... 7-79
AP-145 Synchronous Communications with the 8274 Multiple Protocol

Serial Controller '...... 7-116
DATA SHEETS

8251A Programmable Communication Interface :.......................... 7-155
8273/8273-4 Programmable HDLC/SDLC Protocol Controller 7-172
8274 Multi-Protocol Serial Controller (MPSC) 7-200
82530/8253-6 Serial Communications Controller (SCC) 7-237

LOCAL AREA NETWORKS
ARTICLE REPRINTS

AR-186 LAN Proposed for Work Stations : 7-266
AR~237 System Level Fu!,)ctions Enhance Controller 7-272

DATA SHEETS
82501 Ethernet Serial Interface ... 7-276
82586 Local Area Network Coprocessor .. 7-287

OTHER DATA COMMUNICATIONS
APPLICATION NOTES

AP-66 Using the 8292 GPIB Controller \ 7-322
AP-166 Using the 8291 A GPIB Talker/Listener : •................. 7-375

ARTICLE REPRINTS
AR-208 LSI Transceiver Chips Complete GPIB Interface. .. 7-407

. AR-113 LSI Chips Ease Standard 488 Bus Interfacing ,........................ 7-414
TUTORIAL
, Data Encryption Tutorial'... 7-424
DATA SHEETS

8291A GPIB Talker/Listener .. 7-425
8292 GPIB Controller ... 7-454
8293 GPIB Tranceiver ... ;•.................................... 7-469
8294A Data Encryption Unit :....................................... 7-481

CHAPTER 8
ALPHANUMERIC TERMINAL CONTROLLERS

APPLICATION NOTES
AP-62 A Low Cost CRT Terminal Using the 8275 .,. '" 8-1

ARTICLE REPRINTS
AR-178 A Low Cost CRT Terminal Does More with Less............................ 8-43

DATA SHEETS
8275 Programmable CRT Controller .. 8-50
8276 Small System CRT Controller :............... 8-74

GRAPHICS DiSpLAY PRODUCTS
ARTICLE REPRINTS

AR-255 Dedicated VLSI Chip Lightens Graphic Display Design Load 8-91
AR-298 Graphics Chip Makes Low Cost High Resolution. Color Displays Possible 8-99

DATA SHEETS
82720 Graphics Display Controller ... 8-106

TEXT PROCESSING PRODUCTS
ARTICLE REPRINTS

AR-305 Text Coprocessor Brings Quality to CRT Displays 8-144
AR-296 Mighty Chips ... 8-151
AR-297 VLSI Coprocessor Delivers High Quality Displays ' , .. 8-156

DATA SHEETS
82730 Text Coprocessor .. : .•.......... 8-159
82731 Video Interface Controller•.......... 8-199

CHAPTER 9
PACKAGING 9-1

Overview 1

INTRODUCTION

Intel microprocessors and peripherals provide a complete
solution in increasingly complex application ellviran­
ments. Quite often, a single peripheral device will replace
anywhere from 20 to 100 TIL devices (and the a:ssociated
design time that goes with them).

Built-in functions and,a standard Intel microprocessor!
peripheral interface deliver very real time and per/or­
mance advantages to the designer of microprocessor­
based systems.

. REDUCED TIME TO MARKET
i

When you can purchase an off-the-shelf solution that
replaces a number of discrete devices, you're also re­
placing aU the design, testing, and debug time that goes
with them. '

INCREASED RELIABILITY

At Intel, the rate offailure for devices is carefuJly tracked.
Reliability is a tangible goal, and today we're measuring
field failures in terms of parts per million/ That translates
to higher reliability for your product, reduced downtime,
and reduced repair costs. And as more and more func­
tions are integrated on a single VLSI device, the resulting
system requires less power, produces less heat, and
requires fewer mechanical connections-again resulting
in greater system reliability. '"

LOWER PRODUCT COST

By minimizing design time, increasing reliability, and

replacing numerous parts, microprocessor and peripheral
solutions can contribute dramaticaUy to a lower product
cost.

HIGHER SYSTEM PERFORMANCE

Intel microprocessors ,and peripherals provide the highest
system performance for the demands of today's (and'
tommorrow's) microprocessor-based applications. For
example, the iAPX 286 CpU, with its on-chip memory
management and protection, offers th~ highest perfor­
mance for multitasking,' multiuser systems .

HOW TO USE THE GUIDE

The foJlowing application guide illustrates the range of
microprocessors and peripherals that can be used for the
applications in the vertical column on the left. The peri­
pherals are grouped by the I/O function they control:
CRT, datacommunication, universal (user programma­
ble). mass storage, dynamic RAM's, and CPU/bus
support.

An "X" in a horizontal application row indicates a poten­
tial peripheral or CPU, depending upon the features
desired. For example, a conversational terminal could
use either of the three display controUers, depending
upon features like the number of characters per row or
font capability. A "Y" indicates a likely candidate, for
example, the 8272A Floppy Disk ControUer in a smaJl
business computer.

The Intel microprocessor and peripherals family provides
a broad range of time-saving, high performance solutions.

1-1

....
~

POTENTIAL CANDIDATE X-TYPICAL CANDIDATE Y

"PROCESSOR DISPLAY DATACOMM UPI DISKS DRAM CONTROL SUPPORT

t')

APPLICATION ,~ ~ ~ C\I

CD ~ ~ ~ ;! r! I

!::::: 0 0 <C < 0 co US !!:! ~ «- <" 1« coco lOC\I(') ...-<0(1')""",....(1)(1')(1)""" NNiCO (f')CO CO...,.. 11),...
CD CD co U) U) I'- I'- I'- It) It) I'- I'- '" It) It) It) I'- 0 0 0 0 0 It) It) t')'
OOCOCD CDC\IC\IC\I C\lC\IC\IC\IC\IC\IC\IC\IO OC\lC\l C\I'C\IC\IC\IC\I C\I C\I co CD,... or- C\I co CD co co CI) CD.COCO ex) ex) CD CD Q) co CD co co CD co CD co-co

PERIPHERALS I ,I I I I I I I I II I I I .
Printers
Plotters I X I X I X I X I II I I X I I II X I TTT xl x'l TTl I I II X I
Keyboards

,MASS STORAGE I I ,I I IT I III I I I T 'T T IT II I I I I I I
Hard Disk
Mini Winchester Ixi Ivi I L I I I I I I I I 1 I I '·Iv
Tape
Cassette I I I I txT X
Floppy/Mini

COMMUNICATIONS I I I· I I I I I I I I II I I I r I
PBX
LANS IXIXIXIXI I I I I I IXI IX X V X X
Modems
Bjsync, 11·.11 I I X X X X"
SOlC/HOlC
Serial BackPlane I I I· I IT X X X X X
Central Office
Network Control V I IX IV X X X X X X

OFFICE/BUS
Copier/FAX
Word Processor X xlVIVlvl X V X X X V X X X X y Y
Typewriter
Elect. Mail XIXIXI X V X. X X X
Transaction System
Data Entry' X X I X I X I X ,X X X X X X . X V

COMPUTERS
. SM Bus Computer
~ IYI XIVIXIXIX Y Y X X xlxlxTxTx xlxTvlvlxlxlX~X '~Yr
Portable PC
Home Computer lX X I X I X I X I X X X I X V X X Yi V

POTENTIAL CANDIDATE X-TYPICAL CANDIDATE Y (CONTINUED}

"PROCESSOR DISPLAY DATACOMM UPI DISKS DRAM CONTROL SUPPORT

'" APPUCATION ;;; ~ 0 ~ ~
w ~ m ~ ~ ~

~ 00< < 0 ~ w ~ e < N <
cow ~N"'~W"''''~''''''CO'''NNW'''CO~CO''' ~ ~ CO COco CO w~~~~~~~m~~~ ~olQooo ~ ~ '"
ii~~ t!3~~~~~~~~~~~ii~~~~~~ ~ ~ ~

TERMINALS I r
Conversational
Graphics CRT I I V I V I V I I Y I V I X I X I X I I X I I X X I X I X I X X I X I V I V I I I
Editing
Intelligent L X LX V V I. I Y X X J X I I X I X I X X I X I I X I X I Y I V I X I I
Videotex
Printing. Laser. Impact I X I X X I X I I I X I X I X I I I I I I X X X I I I I V I Y I I I
Portable

INDUSTRIAL AUTO J
Robotics
Network XXXXX XX XXXVX I
Num Control
Process Control X X X X X V .X X X X Y X I X X X X
Instrumentation
AVlationlNavig X X X X X X ~ x

~ INDUST/DATA ACQ
Laboratory Instr /
Source Data X I I X I I I I I I I J I J J I I V J J J I I I IJ J XJ
Auto Test
Medical XIXIXIXIXI IVI I I I I I I I IX VIXI I I I I I I IXIX
Test Instr
Secunty IXXX X VX I X

COMMERCIAL DATA
PROCESSING I I I I I J I

POS Terminal
Financial Transfer I I X X X X X X X X X V X X
Automatic Teller
Document Processing X X X X X X X X X X V X

WORKSTATIONS _

Office / Engineering x I x x x x y ~ X ~ ~ ~ ~ X y Y ~ ~ ~ ~ ~ x
CAD

MINI MAINFRAME I I I I J
Processor & Control store
DatabaseSubsys I IXI IVIX XI I I I I I I I IXI I I J I I I~I~I I I I I I
1/0 Subsystem _
Com",. Subsystem I X I V I V I I I I X I I. I X I I X I X I X I I I I I X I I I I I I

•

MCS®...sO/85
Microprocessors

. Microprocessors
! Section

2

"

I.' .[

~ " ,,'(,1/1',"
.",.:

..

.

8080A/8080A·1/8080A·2 '
8·BIT N·CHANNEL MICROPROCESSOR

• TTL Drive Capability

• 2 /AS (- 1 :1.3 /AS; - 2:1.5 /As) Instruction
Cycle

• 16·Bit Stack Pointer and Stack
Manipulation Instructions for Rapid
Switching of the Program Environment

• Powerful Problem Solving Instruction
Set .

• Decimal, Binary, and Double Precision
Arithmetic

• 6 G~meral Purpose Registers and an • Ability to Provide Priority Vectored
Accumulator. Interrupts

• 16.Bit Program Counter for Directly - 512 Directly Addressed 1/0 Ports
Addressing up to 64K Bytes of • Available in EXPRESS
Memory - Standard Temperature Range

The Intel® 8080A is a complete 8-bit parallel central processing unit (CPU). It 'is fabricated on a single LSI chip using
Intel's n-channel silicon gate MOS process. This offers thil user a high performance solution to control and processing
applications.

The 8080A contains 6 8-bit general purpose working registers and an accumulator. The 6 general purpose registers may be
addressed individually or in pairs providing both single and double precision operators\Arithmetic and logical instructions
set or reset 4 testable flags. A fifth flag provides decimal arithmetic operation.

The 8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to
store/retrieve the contents of the accumulator. flags. program counter. and all of the 6 general purpose registers. The 16-bit
stack pointer controls the addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple
level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine
nesting .

This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bidirectional data
busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to rT)emory and I/O are
provided directly by the 8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides
the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits
OR-tying these busses with other contrOlling devices for (DMA) direct memory access or multi-processor operation.

NOTE:,
The 8080A is functionally and electrically compatible With the Intel® 8080.

BmJ~fC~l"oNAL
DATA BUS

Figure 1. Block Diagram

2-1

A"

A"
A"
A12

As

A,

a080A A,

+12V

A,
A,

Ao
WAIT

READY

"
21 HUlA

Figure 2. Pin Configuration

inter 8080Al8080A·1/8080A·2

Table, 1. Pin Description

'Symbol ~pe. Name alldFunction

A,s-Ao 0 Address Bus: The address bus provides the address to memory (up to 64K 8-bit words) or denotes the 1/0
device number for up to 2/i6 input and 256 output devices. Ao IS the least sIgnificant address bit

DrDo 1/0 Data Bus: The data bus prOVIdes bi-directional communicatIon betweeen thl! CPU, memory, and 1/0
devices for instructions and data transfers. Also, during the fi,st clock cycle of each machine cycle, the
a080A outputs a status word on the data bus that describes the current machine cycle. Do is the least
SIgnifIcant bit '

SYNC 0 Synchronizing Sign~l: The SYNC pin provides a SIgnal to indicate the beginning of each machine cycle.

DBIN 0 Data Bus In: The DBIN signal indicates to external CIrcuits that the data bus is In the input mode. ThIS
signal should be used to enable the gating of data onto the 8080Adata bus from memory or,I/O.

READY I Ready: The READY signal Indicates to the 8080A that valid memory or Input data is avaIlable dn the 8080A
data bUS. ThIS signal is used to synchrOnize the CPU with slower memory or 1/0 devices. If after sending
an address out the 8080Adoes not receIve a R~ADY Input, the 8080Awill enter a WAITstate for as long as
the READY hne is low. READY can also be used to Single step the CPU

WAIT 0 Wait: The WAIT signal acknowledges that the CPU IS In a WAITstate.

WR 0 Write: The WR signal is used for'memory WRITE or 1/0 output control. The data on the data bus is stable
while the WR signal is active low (WR = 0).

HOLD I Hold: The HOLD Signal requests the CPU to enter the HOLD state. The HOLD state allows an external
device to gain control of the 8080A addressand data bus as soon as the 8080A has completed its use of
these busses for the current machine cycle. It is recognized under the following condItIons:
• the CPU is in the HALTstate.
• the CPU is in. the T2 or TW state and the READY signal is active. As a result of entering the HOLD state

the CPU ADDRESS BUS (A,s-Ao) and DATA BUS (07-00) will be in their high Impedance state. The CPU
acknowledges ItS state with the HOLD ACKNOWlEDGE (HLDA) pin.

HLDA 0 Hold Acknowledge: The HLDA signal appears in response to the HOLD signal and indicates that the data
and address bus will go to the, high impedance state. The HLDA signal begins at:
• T3 for READ memory or Input
• The Clock Period following T3 for WRITE memory or OUTPUT operation, •
In either case, the HLDA signal appears after the rising edge of <1>2'

INTE 0 Interrupt Enable: Indicates the content of the Internal interrupt enable flip/flop. ThIS fliplflop may be set
or reset by the Enable and Disable Interrupt instructions and inhibits interrupts from being accepted' by
the CPU when it is reset It is automatically reset (disabling further interrupts) at time T1 of the instruction
fetch cycle (Ml) whe~ an interrupt is accepted and IS also reset by the RESET sIgnal.

INT I Interrupt Request: The CPU recognizes an interrupt request on this line at the end of the current
instruction or while halted. If the CPU is in the,HOLD state or if the Interrupt Enable fllplflop is reset it will
not honor the request

RESET' I Reset: While the RESET sIgnal IS activated, the content of the program counter IS cleared. After RESET,
the program will start at locatIon 0 in memory. The INTE and HLDA fliplflops are also reset Note that the
flags, accumulator, stack pOinter, and regIsters are not cleared.

Vss Gro.und: Reference.

Voo Power: +12 ±5% Volts.

Vee Power: +5 ±5% Volts

Vee Power: -5 ±5% Volts.

<1>1. <1>2 Clock Phases: 2 externally supplied.clock phases. (non TTL compatIble)

2-2 AFN·OO735C

· 8080Al8080A·1/8080A·2

ABSOLUTE MAXIMUM RATINGS·

'Temperature Under Bias O°C to +70° C
Storage Temperature " _65°C to +150°C
All Input or Output Voltages

With Respect to VBB -0.3V to +20V
Vcc. VDD and Vss With Respect to VBB -0.3V to +20V
Power Dissipation 1.5W

-NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
d.evice. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specification is not, implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability. ,

D.C. CHARACTERISTICS (TA = O°C to 70°C. Voo = +12V ±5%.

Vee = +5V ±5%. Vee = "":5V ±5%, Vss =OV; unless otherwise noted)

Test Conditior

} IOL ; 1.9mA on all outputs.
~--~--+-------~---------------r------+----r-----r--~ IOH=-l50~A.

~~~-+--------------------1-~---+~-+~~1---~ 

} 
Operation 

f-~::::...::~:.....t--=-----------='-=--+-----t----il----t--- Tcy;.48 f.lS~c 

~~~-+----------------~--1------+---+----1-----

CAPACITANCE (TA = 25'C. VCC = VOO =VSS = OV. Vee = -5V)

Symbol Parameter Typ. Max. Unit Test Condition

Cq, Clock Capacitance 17 25 pf tc ~ 1 MHz

CIN I nput Capacitance 6 10 pt Unmeasured Pins

COUT Output Capacitance 10 20 pt Returned to Vss

NOTES:
1. The RESET signal must' be active for a minimum of 3 clock cycles.
2. <lol supply / <loT A = -0,45%f c,

2-3

'5

Vss .;; VIN .;; VCC

Vss .;; VCLOCK .;; VOD

Vss';;VIN';;Vss+O.8V

Vss+O.8V';;VIN';;VcC

VADDR/DATA ~ VCC

VADDR/DATA = Vss + 0.45V

I, I
'O~~

050.'-----::'2::-5 ---+750:----+:::75

AMBIENT TEMPERATURE rei

Typical Supply Current vs.
Temperature, Normalized(3)

AFN·00735C

8080Al8080A·1/8080A·2

A.C. CHARACrERISTICS (8080A) (TA = O°C to 70°C, VDD = +12V ±S%, Vee = +SV ±S%,

Vee '= -SV :±;S'l-:'., Vss =OV; unless otherwise noted)

.1 .~
Symbol Parameter Min. Max. Min. Max.

tCy[3] Clock Period 0.48 2.0 0.32 2.0

tr,tf Clock Rise and Fall Time 0 50 0 25

t"'l "'1 Pulse Width 60 50

t"'2 "'2 Pulse Width 220 145

tDl Delay "'1 to "'2 0 0

tD2 Delay "'2 to "'1 70 60

tD3 Delay "'1 to "'2 Leading Edges 80 60

tDA Address Output Delay From "'2 200 150

too Data Output Delay From "'2 220 180

tDC Signal Output Delay From ¢1 or "'2 (SYNC, WR, WAIT, HLDA) 120 110

tDF DBIN Delay From "'2 25 140 25 130

tDI[I] Delay for Input Bus to Enter Input Mode tDF tDF

tDSl Data Setup Time During "'1 and DBIN 30 10

tDS2 Data Setup Time to "'2 During DBIN 150 120

tDH[I] Data Holt time From "'2 DUring DBIN [I] [I]

tiE INTE Output Delay From "'2 , 200 200

tRS READY Setup Time During "'2 120 90

tHS HOLD Setup Time to "'2 140 120

tiS INT Setup Time During "'2 120 100

tH Hold Time .from "'2 (READY, INT, HOLD) 0 0

tFD Delay to Float During Hold (Address and Data Bus) 120 120'

tAW Address Stable Prior to WR [5] [5]

tow Output Data Stable Prior to WR [6] [6]

two Output Data Stable From WR [7] [7]

tWA Address Stable From WR [7] [7]

tHF H LOA to Float Delay [8] [8]

tWF WRlo Float Delay [9] [9]

tAH Address Hold Time After DBIN During HLDA, - 20 -20

A.C. TESTING LOAD CIRCUIT

DEVICE In, UNDER
TEST I '-____ -' I CL ~ 100 pF

CL 100 pF
CL INCLUDES JIG CAPAClTANCE

2-4

·2 ·2
Min. Max. Unit Test Condition

0.38 2.0 /-Isec

0 50 nS,ee

60 nsec

175 nsec

0 nsec

70 nsec

70 nsec

175 nsec
}CL=100 PF

200 nsec
I

120 nsec
} CL=50 pF

25 140 nsec

tDF nsec
~

20 nsec

130 nsec

[I] nsec

200 nsec CL=50 pF

90 nsec

120 nsec

100 nsec

0 nsec

120 nsec -
[5] nsec

[6] nsec

[7] nsec

[7] nsec
CL = 100 pF: Address, Data
CL = 50 pF: WR,HLDA,DBIN

[8] nsec

[9] nsec

-20 nsec - I

AFN-00735C

inter 8080A/8080A·1/8080A·2

WAVEFORMS

0, ____ ..J

9,

-------'I-~

A'5 AO ----------1--~

SYNC --------1--'1

DBIN
____________________________ +--JI

READY

HOLD

INTE

NOTE:
Timing measurements lire made at the following reference voltages: CLOCK "1" = B.OV,
"0" = 1.0V; INPUTS "1" = 3.3V, "0" = O.BV; OUTPUTS "1" = 2.0V, "0" = O.Sv.

2-5 AFN·OO735C

! \
WAVEFORMS (Continued)

.,

'.
A1IIAe

I

0,,00

SYNC

OBIN

1111

READY

WAIT

HOLD ...
HLDA

I-
INT

INTE
I

·,.,',

'\'

NOTES: (Parenthesis gives -1. -2 speclflcatiql)~. ~~C\t!\(eM,!

2-6

1. Data Input should be enabled with'OBIN status. No bus con­
flict can then occur and data hold time Is assured.
tOH = 50 ns or tOF. whichever is less.

2. tCY = tD3 + trt/>2 -l;\f,2 + tft/>2 + t02 + tr.,,1 .. 480 ns (- 1 :320
ns • ..: 2:380 ns).

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE

!
>
~
Q

I .,

• CAPACITANCE (pI)

(C4CTUAL - CSflECJ

+100

3. The followthg are relevant when intertacif)g the 8080A to
devices having VIH = 3.3V: "
a) Maximum output rise time from .av to 3.3V = 100ns @ CL
= SPEC.
b) Output delay when measured to 3.0V = SPEC +80n8@CL
= SPEC.
c) If CL = SPEC. add .6nalpF if CL > CSPEC. subtract .3nalpF
(from modified delay) If CL < CgPEC'

4. tAW = 2 tCY- too - trt/>2 - 140 ns (- 1 :110 ns. - 2:130 ns).
5. tow = tCY - tD3 - trt/>2 - 170 n8 (- 1:150 ns. -; 2:170 n8).
6. If not HLDA. two = twA = t03 + tr<f>2 + 10 ns. If HLDA. two

= tWA = tWF·
7. tHF = tD3 + trt/>2 -50 ns).
a. tWF = too + tr.,,2 - IOns.
9. Data Ifi must be stable for this period during DBIN T3'

Both tOS1 and tOS2 must be satisfied ..
10. Ready signal must be stable for this period during Ta or Tw.

(Must be externally synchronized.)
11. Hold signal must be stable for this period during T 2 or TW

when entering hold mode. and during T3. T4. Ts and TWH
\\(hen in ·hold mode. (External synchronization is not re­
qUired.)

12. Interrupt signal must be stable during this period of the last
clock cycle of any instruction in order to be recognized on the
following instruction. (Extemal synchronization is not re-
quired.) •

13. This timing diagram shows timing relationships only; it does
not represent any spe!lific machine cycle.

AFN·OO735C

8080Al8080A·1/8080A·2

INSTRUCTION SET
The accumulator group instructions include arithmetic and
logical operators with direct, indirect, and immediate ad­
dressing modes_

Move, load, and store instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the
six working registers and the accumulator using direct, in­
direct, and immediate addressing modes_

The ability to branch to different portions of the program
is provided with jump, jump conditional, and computed
jumps_ Also the ability to call to and return from sub­
routines is provided both conditionally and unconditionally_
The RESTART (or single byte call instruction) is useful for
interrupt vector operation_

Double precision operators such as stack manipulation and
double add instructions extend both the arithmetic and
interrupt handling capability of the 8080A_ The ability to

Data and Instruction Formats

increment and decrement memory, the six general registers
and the accumulator is provided as well as extended incre-.
ment and decrement instructions to operate on the register
pairs and stack pointer. Further capability is provided by
the ability to rotate the accumulator left or right through
or around the carry bit.

Input and output may be accomplished using memory ad­
dresses as 1/0' ports or the directly addressed I/O provided
for in the BOBOA instruction set.

The following special instruction group completes the BOBOA
instruction set: the NOP instruction, HALT to stop pro­
cessor execution and the DAA instructions provide decimal
arithmetic capability. STC allows the carry flag to .be di­
rectly set, and the CMC instruction allows it to be comple­
mented. CMA complements the contents of the accumulator
and XCHG exchanges the contents of two 16-bit register
pairs directly.

Data in the BOBOA is stored in the form of B-bit binary integers. All data transfers to the system data bus will be in the
same format.

ID7 D6 D5 D4 D3 D2 D, Dol

DATA WORD

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation
executed.

One Byte Instructions· TYP!CAl INSTRUCTIONS

I D7 D6 D5. D4 D3 D2 D1YDl OP CODE Register to register, memory refer-
ence, arithmetic or logical, rotate,
return, push, pop, enable or disable
Interrupt instructions

Two Byte Instructions

I D7 D6 D5 D4 D3 D2 D, Do I OP CODE

I D7 D6 D5 D4 D3 D2 D, Do I OPERAND Immediate mode or I/O instructions

Three Byte Instructions

I D7 D6 D5 D4 D3 D2 D, Do I OP CODE Jump, call or direct load and store

I D7 D6 D5 D4 D3 D2 D, Do I lOW ADDRESSOR OPERAND 1
instructions

I D7 D6 D5 D4 D3 D2 .D, Do I HIGH ADDRESS OR OPERAND 2

For the B080Aa logic "1" is defined as a high level and a logic "0" is defined as a low level.

2-7 AFN·00735C

8080Al~80A.1'8080A.2

Table 2~ Instruction Set Summary

Clock ClOck
In .. ructlon Coda [1] Operellons CycIaa Inelrucllan Code [1) Operation. Cyclea

MnanIcInIc 0,. De Ds D4 D:! D:z Dl Do Description (2) Mnemonic 0,. De Ds D4 D:! D:z Dl Do Daecrlpt,on [2)

MOVE, LOAD. AND STORE' JPO 1 1 1 0 0 0 1 0 Jump on parity ~ 10

MOVr1,r2 0 1 D D 0 ,S S S Move register to register 5 PCHL 1 1 1 0 1 0 0 1 H & L to program 5
MOVM,r 9 1 1 1 0 S S S Move register to counter

memory 7 CALI.
MOVr,M 0 1 0 0 0 1 1 0 Move memory to regis-

ter 7
CALL 1 1 0 0 1 1 0 1 Call unconditional 17
bc 1 1 0 1 1 1 0 0 Call on carry 11/17

MYlr 0 0 0 0 0 1 1 0 Move Immedlste regis- ONC 1 1 0 1 0 1 0 0 Call on no carry 11/17
ter 7 CZ 1 1 0 0 1 1 0 0 Call onzaro 11/17

MVIM 0 0 1 1 0 1 1 0 Move immediate ONZ 1 1 0 0 0 1 0 0 Call on no zarO 11/17
memory 10 CP 1 1 1 1 0 1 0 0 ,Call on positive 11/17

LXIB 0 0 0 0 0 0 0 1 Load Immediate register 10 CM 1 1 1 1 1 1 0 0 Call on minus 11/17
PairB&C CPE 1 1 1 0 1 1 0 0 Calion partty even 11/17

LXI 0 0 0 0 1 0 0 0 1 Load immediate register 10 CPO 1 1 1 0 0 1 0 0 Call on parity odd 11/17
PalrO&E RETURN

LXIH 0 0 1 0 0 0 0 1 Load Immedlste register 10
PairH&L

STAXB 0 0 0 0 0 0 i 0 Store A Indirect 7

RET 1 1 0 0 1 0 0 1 Raturn 10
RC 1 1 0 1 1 0 0 0 Ratu," on carry 5/11
RNC 1 1 0 1 0 0 0 0 Return on no carry 5/11

STAXO 0 0 0 1 0 0 1 0 Store A indirect 7 RZ 1 1 0.0 1 0 0 0 Return on zaro 5/11

LDAXB 0 0 0 0 1 0 1 0 Load A Indirect 7 RNZ 1 1 0 0 0 0 0 0 Return on no zaro 5/11
LOAXO 0 0 0 1 1 0 1 O. Load A Indirect 7 RP 1 1 1 1 0 0 0 0 Return on positive 5/11'
STA 0 0 1 1 II 0 1 0 Store A direct 13 RM 1 1 1 1 1 0 0 0 Return on minus 5111
LOA 0 0 1 1 1 0 I, 0 Load A direct 13
SHLO 0 0 1 0 0 0 f 0 Store H & L direct 16

RPE 1 1 1 0 1 0 0 0 Return on parity even 5111
RPO 1 1 1 0 0 0 0 0 Raturn on DaritY odd 5111

lHLD 0 0 1 0 1 0 1 0 Loed H & L direct 16 RESTART
XCHG 1 1 1 0 1 0 1 1 Exchange 0 & E, H & L 4 RST 1 1 A A A 1 1 1 Restert 11

Registers INCREMENT AND IlliCRIOMENl
STACKOPS INRr 000001 0 0 Increment register 5
PUSHB 1 1 0 0 0 1 0 1 Push register Pair B & 11 OCRr 0 0 o 0 0 1 0 1 Decrement register 5

Con stack INRM o 0 1 1 0 1 0 0 Increment memory 10

PUSH 0 1 1 0 1 0 1 0 1 Push register Pair 0 & tl DCRM 0 0 1 1 0 1 0 1 Decrement memory 10'

E on steck INxa 0 o 0 0 0 0 1 1 Increment B & C " 5
PUSHH 1 1 1 0 0 1 0 1 Push register Pair H & 11 registers

Lon steck INXO 0 0 0 1 0 0 1 1 Increment 0 & E 5
PUSH 1 1 1 1 0 1 0 1 Puah A and Flags 11
PSW on steck I

registers
INXH 0 0 1 0 0 0 1 1 Increment H & L 5

POPB 1 1 0 0 0 0 0 1 Pop register Pair B & 10 registers
C olf stack DCXB 0 0 0 0 1 0 1 1 Decrement B & C 5

POP 0 1 1 0 1 0 0 0 1 Pop register Palr 0 & 10
Eolf steck

DCXO 0 0 0 1 1 0 1 1 Decrement 0 & E_ 5
DCXH 0 0 1 0 1 0 1 1 Decrement H & L 5

POPH 1 1 1 0 0 0 0 1 Pop reglst~r Pair H & 10
L olf steck

ADD
ADDr 1 0 0 0 0 S S S Add register to A 4

POPPSW 1 1 1 1 0 0 0 1 Pop A and FIll!/' 10
off steck

Acer 1 0 0 0 1 S S S Add register to A 4
with carry

XTHL 1 1 1 0 0 0 1 1 Exchange top of 18 ADOM 1 0 0 0 0 1 1 0 Add memory to A 7
stack, H& L ADCM 1 0 0 0 1 1 1 0 ,Add memory to A 7

SPHL 1 1 1 1 1 0 0' 1 H & L to stack pointer 5 with carry
LXISP 0 0 1 1 0 0 0 1 Load Immediate steck 10 AOI 1 1 0 0 0 1 1 0 Add immediate to A 7

pointer ACI 1 1 0 0 1 1 1 0 Add immediate to A 7

INXSP 0 0 1 1 0 0 1 1 "Increment stack pointer 5
DCXSP 0 0 1 1 1 0 1 1 Decrement steck 5

with carry
OAOB 0 0 0 0 1 0 0 I, AddB&CtoH&L 10

pOinter DADO 0 0 0 1 1 0 0 1 AddO&EtoH&L 10

JUMP OADH 0 0 1 0 1 0 0 1 AddH&LtoH&L, 10

JMP 1 1 0 0 0 0 1 1 Jump unconditional 10 OAOSP 0 0 1 1 1 0 0 1 AcId stack pointer to 10
, JC 1 1 0 1 1 0 1 0 Jump on carry 10 H&L

JNC 1 1 0 1 0 0 1 0 Jump on no carry 10
JZ 1 1 0 0 1 0 1 0 Jump on zero 10
JNZ 1 1 0 0 0 0 1 0 Jump on no zero 10
JP 1 1 1 1 0 0 1 0 Jump on positive 10
JM 1 1 1 1 1 0 1 0 Jump on minus 10
JPE 1 1 1 0 1 0 1 0 Jump on partty even 10

2-8 AFN-0073SC

intJ 8080Al8080A·1/8080A·2

Summary of Procauor In_Ion. (Cont.)

Clock
In_Ion Code [1J Operatlone Cycl •• Instruction Code III

Mnamonlc Dr D6 Ds D4 D:l D:! D, Do De_lpllon [2J Mnemonic Dr D6 Os D4 D:l D2 D, DC

SUBTRACT ROTATE
SUBr , 0 0 1 0 S S S Subtract register 4 RLC 0

from A RRC 0
SBBr 1 0 0 1 1 S S S Subtract register from 4 RAL 0

Awlth borrow
SUBM 1 0 0 1 0 1 1 0 Subtract memory 7 RAR 0

from A
SBBM 1 0 0 1 l' 1 1 0 Subtract memory from 7 SPECIALS

A with borrow CMA 0
SUI 1 1 0 1 0 1 1 0 Subtract Immediate 7 STC 0

from A CMC 0
SBI 1 1 0 1 1 1 1 0 Subtract Immediate 7 OM 0

from A with borrow INPUT/OUTPUT
LOGICAL IN
ANAr 1 0 1 0 0 S S S And register with A 4 OUT
XRAr 1 0 1 0 1 S S S Exclusive Or register 4 CONTROL

with A EI
ORAr 1 0 1 1 0 S S S Or ragister with A 4 01
CMPr 1 0 1 1 1 S S S Compara register with A 4 NOP
ANAM 1 0 1 0 0 1 1 0 And memory with A 7 HLT
XRAM 1 0 1 0 1 1 1 0 Exclusive Or memory 7

with A
DRAM 1 0 1 1 0 1 1 .0 ·Or memory with A 7
CMPM 1 0 1 1 1 1 1 0 Compare memory with

A 7
ANI 1 1 1 0 0 1 1 0 And immediate with A 7
XRI 1 1 1 0 1 1 1 0 Exclusive Or immediate 7

with A
ORI 1 1 1 1 0 1 1 0 Or Immediate with A 7
CPI 1 1 1 1 1 1 1 0 Compare immediate 7

with A

NOTES:
1. DOD orSSS: B=OOO, C=OOI, 0=010, E=OII, H=I00, L=101, Memory=110, A=111.
2. l\vo possible cycle times (6/12) indicate Instruction cycles dependent on condition flegs.
"All mnemonics copyright Clntel Corporation 19n

2·9

1
1

1
1
0
0

0 0 0 0 1 1 1
0 0 0 , 1 1 1
0 0 1 0 1 1 1

0 0 1 1 1 1 1

0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 0 0 1 1 1

1 0 1 1 0 1 1
1 0 1 0 0 1 1

1 1 1 1 0 1 1
1 1 1 0 0 1 1
0 0 0 0 0 0 0
1 1 1 0 1 1 0

Clock
Operations Cycle.
Description 121

Rotate A left 4
Rotate A right 4
Rotete A left through 4
carry
Rotate A rrght through 4
carry

Complement A 4
Set carry 4
Complement carrY 4
Decimal ad'ust A 4

Input 10
Output 10

Enable Interrupts 4
Disable Interrupt 4
No-operation 4
Hall 7

AFN·00735C

intJ
8085AH/8085AH-218085AH-1

8-BIT HMOS MICROPROCESSORS
• Single +5V Power Supply with 10%

Voltage Margins

• 3 MHz, S MHz and 6 MHz Selections
Available

• 20% Lower Power Consumption than
8085A for 3 MHz and 5 MHz

• 1.3 fJ-S Instruction Cycle (8085AH); O.S
fJ-s (8085AH-2); 0.67 /.LS (8085AH-1)

• 100% Compatible with 808SA

• 100% Software Compatible with S080A

• On-Chip Clock Generator (with
External Crystal, LC or RC Network)

• On-Chip System Controller; Advanc:;ed
Cycle Status. Information Available for
Large System Control

• Four Vectored Interrupt Inputs (One is
Non-Maskable) Plus an
8080A-Compatible Interrupt

• Serial In/Serial Out Port
• Decimal, Binary and Double Precision

Arithmetic
• Direct Addressing Capability to 64K

Bytes of Memory
• Available in EXPRESS

- Standard Temperature Range
- Extended Temperature Range

The Intel® 8085AH is a complete 8 bit parallel Central Processing Unit (OPU) implemented in N-channel,
depletion load, silicon gate technology (HMOS). Its instruction set is 100% software compatible with the8080A
microprocessor, and it is designed to improve the present 8080A's performance by higher system speed. Its
high level of system integration allows a minimum system of three IC's [8085AH (CPU), 8156H (RAM/IO) and
8355/8755A (ROM/PROM/IO)) while maintaining total system expandability. The 8085AH-2 and 8085AH-1 are
faster versions of the 8085AH.

The 8085AH incorporates all of the features that the 8224 (clock generator) and 8228 (system controller)
provided for the 8080A, thereby offering a high level of system integration~

The 8085AH uses a multiple)<ed data bus. The address is split between the 8 bit address bus and the 8 bit data
bus. The on-chip address latches of 8155H/8156H/8355/8755A memory products allow a direct interface with
the 8085AH.

x,
x,

INTA RST65

:~: ::, * :: }REGISTER
REG REG ARRAY

S1 ACK POINTER 11S1

PROGRAM COUNTER (161

INCREMENTER/DECREMENTER
AODRESS LATCH ~ 1161

Al~-Aa
ADDRESS BUS

.0.07-.0.00
ADDRESS/DATA BUS

Figure 1. 8085AH CPU Functional Block Diagram

Vee
HOLD
HLDA
eLK (OUT)

RESET IN
READY
101M

RST65 S,
RST55 Ri5

INTR We
INTA ALE

ADO So
AD, A,S

A,.

A13

AD. A12
All

AlO
Ag

AS

Figure 2. 8085AH Pin
Configuration

Intel Corporation Assumes No Responslbilty for the Use of Any CircUitry Other Than Circuitry Embodied In an Intel Product. No Other Circuit Patent Licenses 81'8 Implied.

elNTEL CORPORATION, 1981 2-10

intJ 8085AH/8085AH-218085AH-1

Table 1. Pin Description
r-~S~ym~bo~I---'=TY~p-e-r----7N~a-m-e--a-n~d~F-u-n-c~tl-o-n--------~

ALE

RD

WR

o Address Bus: The most significant
8 bits of the memory address or the
8 bits of the 1/0 add ress, 3-stated
during Hold and Halt modes and
during RESET.

1/0 'Multlpl~ed AddresslData Bus:

o

o

Lower 8 bits of the memory address
(or 1/0 address) appear on the bus

. during the first clock cycle (Tstate)
of a machine cycle, It then becomes
the data bus dUring the second and
third clock cycles.

Address Latch Enable: It occurs
dUring the first clock state of a ma­
chine cycle and enables the address
to get latched Into the on-chip latch
of peripherals. The falling edge of
ALE is set to guarantee setup and
hold times for the address informa­
tion, The falling edge of ALE can
also be used to strobe the status
information, ALE is never 3-stated.

Machine Cycle Status:

101M 51 So Status
o 0 1 Memory write
o 1 0 Memory read
1 0 1 1/0 write
1 1 0 1/0 read
o 1 1 Opcode fetch
1 1 1 Opcode fetch
1 1 1 Interrupt

Acknowledge
o 0 Halt
X X Hold
X \ X Reset

= 3-state (high impedance)
X '" unspecified

S1 can be used as an advanced R/IN
status. 10/ii.1, So and S1 become
valid at the beginning of a machine
cycle and remain stable throughout
the cycle. The failing edge of AI,.E
may be used to latch the state 'Of
these lines,

Read Control: A low level on RD
indicates the selected memory or
1/0 device is to be read and that the
Data Bus IS available for tile data
transfer, 3-stated during Hold and
Halt modes and during RESET,

Write Control: A low level on WR
indicates the data on the DataBus is
to be written into the selected
memory or 1/0 location. Data is set
up at the trailing edge of WR. 3-
stated during Hold and Halt modes
~nd during RESE,T.

2·11

Symbol

READY

HOLD

HLDA

INTR

INTA

RST 5.5
RST 6.5
RST 7,5

..

TYpe

I

I

0

I

0

I

Name and FuncUon

Ready: If READY is high during a
relld or write' cycle, it indicates that
the memory or peripheral is ready to
send or receive data. If READY is
low, the cpu will wait an integral
number of clock cycles for READY
to go high before completing the
read or write cycle. READY must
conform to specified setup and hold
times.

Hold: Indicates that another master
IS requesting the use of the address
and data buses. The cpu, upon
receivi!1JLthe hold request, will
relinquish the use of the bus as
soon as the completion of the cur-
rent bus transfer. Internal process-
ing can continue. The processor
can regain the bus only after the
HOLD IS removed. When the HOLD
is ack'no~dged, the ,Address,
Data RD, W~, and 10iM lines are
3-stated,

Hold Ackn_ledge: Indicates that
,the cpu has received the HOLD re"
quest and that it will relinquish the
bus in the next clock cycle. HLDA
goes low after the Hold reques. is
removed. The cpu takes the bus one
half clock cycle after HLDA goes
low.

Interrupt Request: Is used as a
general purpose interrupt. It is
sampled only during the next to the
last clock cycle of an instruction
and during Hold and Halt states. If it
is active, the Program Counter (PC)
will be i~ited from incrementing
and an INTA will be issued. During
this cycle a RESTART or CALL in-
struction can be inserted to lump to
the Interrupt service routine. The
INTR IS enabled and disabled by
software. It is disabled by Reset and
immediately after an mterrupt is ac-
cepted

Interrupt Ackn_ledge: Is used in:
stea2,.of (and has the same timing
as) RD dUring the Instruction cycle
after an INTR is accepted. It can be
used to activate an 8259A Interrupt
chip or some other interrupt port.

Restart Interrupts: These three in-
puts have th'e same timing as INTR
except they cause an internal
RESTART to be automatically
inserted

The priority of these interrupts is
ordered as shown in Table 2. These
interrupts have a higher priority
than INTR. In addition, they may be
mdivldually masked out using the
SIM instruction,

AFN·01835C

". ..~,

Table 1. Pin Description (Continued)
" r-------~-----r----------------------, Symbol Type

TRAP I

mETiiii I

Name

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

NOTES:

Name and Function

Trap: Trap Interrupt is a non·
maskable AESTART interrupt. It is
recognized at the same time as
INIR or RST 5.5-7.5. It is unaffected
by any mask or Interrupt Enable. It
has the h'ghest prooroty of any ,nter·
rupt. (See Table 2)

R ••• t In: Sets the Program
Cou nter to zero and resets the Inter·
rupt Enable and HlDA fllp·flops.
The data' and address buses and the
control lines are 3·stated during
RESET and because of the asyn·
chronous nature of RESET, the pro­
cessor's Internal registers and flags
may be altered' by RESET with un·
predictable results. ~ is a
Schmitt·trlggered input, allowing
connection to an R·C network for
power-on RESET delay (see Figure
3). Upon power-up, RESET IN must
remain low for at least 10 ms after
minimum Vee has been reached.
For proper reset operation after the
power-up duration, RESET IN
should be kept Iowa minimum of
three clock periods. The CPU Is held
in the reset condition as long as
RESET iN is applied.

Symbol

RESET OUT

'.

X" X2

elK

SID

SOD

Vee

Vss

Type' Name and Function

0 ReHl Out: Reset Oul indicates cpu
is bei ng 'reset. Can be used
as a system reset. The signal is
synchronized to the processor
clock and lasts an Integral number
of clock periods.

I X, and X2: Are connected to a
crystal, le, or,RC network to drive

, the internal clOck generator. X, cari
also be an external clock Input from
a logic gate. The Input frequency is
divided by 2 to give the processor's
internal operating frequency.

0 Clock: Clock output for use as a sys-
tem clock: The period of ClK Is
twice the X" X2 input period.

I Serial Input Data Line: The data on
this line is loaded into accumulator
bit 7 whenever a RIM instruction Is
executed,

0 Serial Output Data Une;, The out-
put SOD is set or reset as specified
by the SIM instruction.

Power: +5 volt supply.

Ground: Refllrence.

Table 2. Interrupt Priority, Restart Address, and Sensitivity

Address Branched To (1)
Priority When Interrupt Occurs T,ype Trigger

" 1 24H Rising edge AND high level until sampled.

2 3CH Rising edge (latched).

3 34H High level until sampled.

4 2CH High·level until sampled.

5 See Note (2). High level until sampled.

1. T~e processor pushes the PC on the stack before branching to the iMicated address.
~. The address branched to depends on the instruction provided to the cpu when the interrupt Is acknowledged.

Vee 0 L~ f

c,

I~
TYPICAL POWEfI.ON RESET RCVAWES'
R, =75KO
c, =1#
'VAWES MAY HAVE TOVARY DUE TO
APPLIED POWER SUPPLY RAMP UP TIME.

Figure 3. Power-O" Reset Circuit

2-12 AFN·Ol835C •

inter 8085AH/8085AH-2/8085AH-1

FUNCTIONAL DESCRIPTION

The 8D85AH is a complete 8-bit parallel central pro­
cessor. It is designed with N-channel, depletion
load, silicon gate technology (HMOS), and requires
a single +5 volt supply. Its basic clock speed is
3 MHz (8D85AH), 5 MHz (8D85AH-2), or 6 MHz
(8D85AH-1), thus improving on the present 8D8DA's
performance with higher system speed. Also it is
designed to fit into a minimum system of three IC's:
The CPU (8085AH), a RAM/IO (8156H), and a ROM or
EPRO~/IO chip (8355 or 8755A).

The 8D85AH has twelve addressable 8-bit registers.
Four ofthem can function only as two 16-bit register
pairs. Six othElrs can be' used interchangeably as
8-bit registers or as 16-bit register pairs. The 8D85AH
register set is as follows:

Mnemonic Register Contents

ACC orA Accumulator a bits

PC Program Counter 16-bit address

BC,DE,HL General-Purpose a bits x 6 or
Registers; data 16 bits x 3
pOinter (HL)

SP Stack Poi nter 16-bit address

Flags or F Flag Register 5 flags (a-bit space)

The 8D85AH uses a multiplexed Data Bus. The
address, is split between the tligher8-bit Address
Bus and the lower 8-bit Address/Data Bus. During
the first T state (clock cycl'e) of a machine cycle the
low order address is sent out on the Address/Data
bus. These lower 8 bits may be latched externally by
the Address Latch Enable signal (ALE). During the
rest of the machine cycle the data bus is used for
memory or I/O data.

The 8D85AH provides RD, WR, So, S1, and 101M'
signals for bus control. An Interrupt Acknowledge
signal (INTA) is also Provided. HOLD and all Inter­
rupts are synchronized with the processor's internal
clock. The 8085AH also provides Serial Input Data
(SID) and Serial Output Data (SOD) lines for simple
serial interface.

In addition, to these features, the 8P85AH has three
tnaskable, vector interrupt pins, one nonmaskable
TRAP interrupt, and a bus vectored interrupt, INTR.

INTERRUPT,AND SERIAL I/O

The 8D85,A.H has 5 interrupt inputs: INTR, RST 5.5,
RST 6.5, RST 7.5, and TRAP. INTR is identical in
function to the 8D8DA INT. Each of the three RE­
START inputs, 5.5, 6.5, and 7.5, has a programmable
maSk. TRAP is also a RESTART interrupt but it is
nonmaskable.

,2-13

The three maskable interrupts cause the internal
execution of RESTART (saving the program counter
in the stack and branching to the RESTART address)
if the interrupts are enabled and if the interrupt mask
is not set. The nonmaskable TRAP causes the inter­
nal execution of a RESTART vector independent
of the state of the interrupt enable or masks. (See
Table 2.)

There are two different types of inputs in the restart
interrupts. RST 5.5 and RST 6.5 are high leve/­
sensitive like INTR (and INT on the 8.08.0) and are
recognized with the same timing as INTR. RST 7..5 is
rising edge-sensitive.

For RST 7.5, only a pulse is required to set an inter­
nal flip-flop which generates the internal interrupt
request (a normally high level signal with a low
going pulse is recommended for highest system
noise immunity). The RST 7.5 request flip-flop
remains set until the request is serviced. Then
it is reset automatically. This flip-flop may also be
reset by using the SIM instruction or by issuing a
RESET IN to the 8D85AH. The RST 7.5 internal flip­
flop will be set by a pulse on the RST 7.5 pin even
when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only
be affected by the SIM instruction and RESET IN.
(See SIM, Chapter 5 of the MCS-8D/85 User's
ManuaL)

The interrupts are arranged in a fixed priority that
determines which interrupt is to be recognized if
more than one is pending as follows: TRAP­
highest priority, RST 7.5, RST 6.5, RST 5.5, INTR­
lowest priority. This priority scheme does not take
into account the priority of a routine that was started
by a higher priority interrupt. RST 5.5 can interrupt
an RST 7.5 routine if the interrupts are re"enabled
before the end "of the RST 7.5 .routine.

The TRAP interrupt is useful for catastrophic events
such aspowerfailure orbus error. The TRAP input is
recognized just as any other interrupt but has the
highest priority. It is not affected by any flag or mask.
The TRAP input is both edg&and level sensitive. The
TRAP input must go high and remain high until it is
acknowledged. It will not be recognized again until it
goes low, then high again'. This avoids any false
triggering due to noise or logic glitches. Figure 4
illustrates the TRAP interrupt request drcuitry
within the 8D85AH. Note that the servicing of any
interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR)
disables all future interrupts (except TRAPs) until an
EI instruction is executed.

AFN-01835C

intJ 8085AH/S085AfI.;2/808SAH';;1

EXTERNAL
TRAP
INTERRUPT

. REaUEST

I~DE1HE
8085AH

TRAP

SCHMITT
TRIGGER

+5V 0 elK

P
FlF

INTERNAL TRAP F F
TRAP

ACKNOWLEDGE

Figure 4. TRAP and RESET IN Circuit

The TRAP interrupt is special in that it disables inter­
rupts, but preserves the previous interrupt enable
status. Performing the first RIM instruction follow­
ing a TRAP interrupt allows you to determine
whether interrupts were enabled or disabled prior to
the TRAP. All subsequent RIM instructions provide
current interrupt enable status. Performing a RIM
instru,ction following INTR, or RST 5.5-7.5 will
provide current Interrupt Enable status, revealing
that Interrupts are disabled. See the description of
the RIM instruction in the MCS-80/85 Family User's
Manual.

The serial I/O system is also controlled by the RIM
and SIM instructions. SID is read by RIM, and SIM
sets the SOD data.

DRIVING THE Xl AND X2 INPUTS

You may drive the clock inputs of the 8085AH,
8085AH-2, or 8085AH-1 with a crystal, an LC tuned
circuit, an RC network, or an external clock source.
The crystal frequency must be at least 1 MHz, and
must be twice the desired internal clock frequency;
hence, the 8085AH is operated with a 6 MHz crystal
(for 3 MHz clock), the 8085AH-2 operated with a 10
MHz crystal (for 5 MHz clock), and the 8085AH-1 can
be operated with a 12 MHz crystal (for 6 MHz clock).

'If a crystal is used, it must have the following
characteristics:

Parallel resonance at fwice the cldckfrequency
desired
CL(load capacitance) '" 30 pF
Cs (shunt capacitance) '" 7 pF
Rs (equivalent shunt resistance) '" 75 Ohms
Drive level: 10 mW '
Frequency tolerance: ± .005% (sug,gested)

Note the use of the 20 pF capj3citor between X~ ~nd
ground. This capacitor is required with crystal fre­
quencies below 4 MHz to ,assure oscillator startupat
the correct frequency. A parallel-resonant LC circuit
may be used as the frequency-determining network
for the 8085AH, providing that its frequency
tolerance of approximately ± 1 0% is acceptable. The
components'are chosen from the formula:

f = ---..!----

To minimize variations in frequency, it is recom­
mended that you choose a value for Cext that' is at
least twice that of Cint, or 30 pF. The use of an LC
circuit is not recommended for frequencies higher
than approximately 5 MHz.

An RC circuit may be used as the frequency­
determining network forthe 808qAH if maintaining a
precise clock frequency is of no importance. Var­
iations iQ the on-chip timing generation can cause a
wide variation in frequency when using the Rp
mode. Its advantage is its low component cost. The
driving frequency generated by the circuit shown is
approximately 3 MHz. It is not recommended that
frequencies greatly higher or lower than this be
attempted.

Figure 5 shows the recommended clock driver cir­
cuits. Note in 0 and E that pullup resistors are re­
quired to assure that the high level voltage of the
input is at least 4V and maximum low level voltage
of 0.8V. '

, For driving frequencies up to and including 6 MHz
you may supply the driving signal to Xl and leave X2
open-circuited (Figure 50). If the driving frequency
is from 6 MHz to 12 111Hz, stability of the clock
generator will be improved by driving both Xl and X2
with a push-pull sourc~ (Figu~e 5E). To ,prevent
self-oscillation of the 8085AH, be sure that X2 is not
coupled back to X1 through the driving circuit.

I

2-14 AFN·01835C

..

inter 8085AH/8085AH-218085AH-1

x, -----,
I
I
I C'NT
~ ~15pF .,...
I

2 X I
'--'--....... ---1 2 ___ -l

·20 pF CAPACIYORS REQUIRED FOR
CRYSTAL FREQUENCY" 4 MHz ONLY.

a. Quartz Crystal Clock Driver

r x, 8085AH

. J '1
!-----,

I
I C'NT ! LEXT CEXT

...l.. -15pF

I I

~
I

'-

~2 ___ ..J

b. LC Tuned Circuit Clock Driver

8085AH
x,

raPF

-8K

X2

c. RC Circuit Clock Driver

+5V

4700
TO
1KO

·X2 LEFT FLOATING

LOWTIME>80na \

/ x,

d. 1-6 MHz Input Frequency External Clock
Driver Circuit .

+5V

)0
.-+._470_0_/:..... _LO..,W nME > 40 no

X,

4700

e. 1-12 MHz Input Frequency External Clock
Driver Circuit

Figure 5. qlock Driver Circuits

GENERATING AN 8085AH WAIT STATE

If your system requirements are such that slow
memories or peripheral devices are being used, the
circuit shown in Figure 6 may be used to insert one
WAIT state in each 8085AH machine cycle.

The D flip-flops should be chosen so that
• ClK is rising edge-triggered
• CLEAR is low-level active.

2-15

~
CLEAR -ALE* ClK CLKOUTPUT' -

"0"
F/F

Q
0 +5V-

ClK

"0"
F/F

0
Q

TO -READY
IN PUT ----

·AlE AND ClK (OUT) SHOULD BE BUFFERED IF CLK INPUT OF LATCH
EXCEEDS 8085AH 10l OR 10H.

Figure 6. Generation of a Walt State for 8085AH
CPU

AFN·O'835C

I

8085AH!8085AH-2I8085AH-1

AB--15

A
ADO-7

ALE <
~ r' - IIIl r--I'IA

10/lll I--

elK I--

RESET OU1 r--
READY I--

I r--
I.
ITIMER AD

7:~~' 7~D fE I~I 1iD~ WRRB eE, 101M , ALE REseT I IN ALE 07 07

Tb~~R_

815811 _[ROM + 110]

[RAIl + VO + COUNTERITIMER] OR
875M [PROM + VOl

*NOTE OPTIONAL CONNEC-fiON BB B 8 8
Figure 8. MCS-85"" Minimum System (Memory Mapped 1/0)

- x, x, RESET IN
TRAP HOLD -- RST1 HLDA I-- RST. SOD I-- RST5 IIOI&AH 810_ - INTR s, I-- iN'fA. RESET s.1-ADDR/ OUT
ADOR DATA ALE Al)'WR 101M RQVCLK

181 18)

101M (es)

WR

8212 r- liD

DATA

- STANDARD

J- MEMORY

L- ADDR leS)

r
(16)

~ eLK

~ -r-- RESET

101M (es)

WR
liD

DATA

STANDARD
I/O

ADOR

~LJ. D I IIr v"
v"
Vee

I/O POR TS.
LS

¢)

Figure 9. MC8-85® System (Using Standard Memories)

2-16

I
I·
I

:l. STlRDY

- Vee

Vee

Vee

..

AFN·Ol835C

8085AH/8085AH-2/8085AH-1

As in the 8080, the READY line is used to extend the
read and write pulse lengths so that the 8085AH can
be used with slow memory. HOLD causes the CPU to
relinquish the bus when it is through with it by float­
ing the Address and Data Buses.

SYSTEM "NTERFACE

The 8085AH family includes memory components,
which are directly compatibie to the 8085AH CPU.
For example, a system consisting of the three chips,
8085AH, 8156H, and 8355 will have the following
features:

• 2K Bytes ROM
• 256 Bytes RAM
• 1 Timer/Counter
• 4 8-bit I/O Ports
• 1 6-bit I/O Port
• 4 Interrupt Levels
• Serial In/Serial Out Ports

This minimum system, using the standard I/O tech­
nique is as shown in Figure 7.

In addition to standard I/O, the memory mapped I/O
offers an efficient I/O addressing technique. With
this technique, an area of memory address space is
assigned for I/O address, thereby, using the memory
address for I/O manipulation. Figure 8 shows the
system configuration of Memory Mapped I/O using
8085AH.

The 8085AH CPU can also ,interface with the stan­
dard memory that does not have the multiplexed
address/data bus. It will require a simple 8212 (8-bit
latch) as shown in Figure 9.

2-17

r1D~ vi'vl' I
- TAAP

x, x, RESET IN

I-HOLD - RST7,5 HLDA r-- RSTIi.5 - SOD t-- RST5,5 S'Ol-

= INTR s'r-
1l<IT>. RESET s'r-ADOR! OUT

ADClR OATA ALE M) WJi 101M ROY elK

lSi lSi II
I~- CE POR~rN

~~ PORT (8)
Rli 111811 •

:~: AI POR~ (61

AOOR

'N
IO/~ TIMER -

~t- r- RESET OUT r------r--
lOw

Rli

ALE

~ PORT

Ih- Cl A

tl~
Ag. 1O

8355/
8755A

DATA/
ADDR

101M PORT

~ ~t- r: RESET B

~. ROY v"
~ eLK iOii ...J

vst vIc JOD tROG

v" v" v,,
V V

*NOTE OPTIONAL CONNECTION

Figure 7. 8085AH Minimum System (Standard 1/0
Technique)

AFN·01835C '

inter , , 80~5AH/8085AH·218085AH·1

BASIC SYSTEM TIMING Table 3. 8085AH Machine Cycle Chart

The 8085AH has a multiplexed Data Bus. ALE is used
as a strobe to sample the lower a-bits' of add res,s on
the Data Bus. Figure 10 shows an instruction fetch,
memory read and 1/0 write cycle'(as would occur
during processing of the OUT instruction). Note that
during the 1/0 write and read cycle that the I/O port
address is copied on both the upper and lower half
of the address.

MACHINE CYCLE

OPCOOE FETCH
MEMORY REAO
MEMORY WRITE
I/O READ
I/O WRITE
ACKNOWLEDGE
OF INTR
BUS IDLE

(OF)
(MR)
(MW)
1I0R)
1I0W)

IINA)
(BIl

STATUS
IO/M 51

0 1
0 J
0 0
1 1
1 0

1 1
DAD 0 1
ACK OF
RST,TRAP , 1
HALT TS 0

CONTROL
SO· IRD_ '~
\1 0 1
0 0 ~

1 1 0
0 0 1
1 1 0

1 1 1
0 1 1

, 1 1
0 TS TS

1NTA

I'
1
1
1
1

0
1

,
" ,

There are seven possible type~ of machine cycles.
Which of these seven takes place is defined by the
status of the three status lines (101M, 51, So) and the
three control signals' (Rl5, vm, and INTA). (See Table
3.) The status lines can be used as advanced con­
trols (for device selection, for example),' since they
become active at the T1 state, at the outset of each
machine cycle: Control lines Fm and WR' become
active later, at the time when the transfer of data is to
take place, so are used as command lines. '

Table 4. 8085AH Machine State Chart '

I
,A machine cycle normally consists of three T states,
with the exception of OPCODE FETCH, which nor­
mally has either four or six T states (ul'!less WAIT or
HOLD states are forced by the receipt of READY or
HOLD inputs). Any T state must be one of ten
possible states, shown in Table 4.

Machine
State SUO

Tl

T2

TWA IT

T3

T4

T5

Te

TRESET

THALT

THOLO

0"" LogiC "0"
1 = LogiC "1"

X

X

X

X

1 , ,
X

0

X

Status & Buses

101M A.-A,S ADo-AD1

X X X

X X X

X X X

X X X

Ot X TS

Ot X TS

O' X TS

TS TS TS'

TS TS TS

TS I TS TS

T8" High Impedance
X = Unspecified

Control

Rii.WR iNTA ALE ,
"

,'.
X X 0

X X 0

X X 0 , , 0

1 , 0

"
, 0

TS 1 '0

TS 1 0

TS , 0

* ALE not generated dUring 2nd and 3rd machine cycles of DAD Instruction

t 101M" 1 during 14-Ta of INA machine cycle

eLK T1

ALE

WR

101M

STATUS

PCH (HIGH ORDER ADDRESS) ,

s,s" (FETCH) 10 (READ)

Figure 10~ 8085AH Basic System Timing

2-18

01 WRITE 11

AFN·O,835C

8085AH/8085AH~21"085AH·1

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias, O°C to 70°C
Storage Temperature , ... -65°C to +l50~C
Voltage on Any Pin

With Respect to Ground -0.5V to + 7V
Power Dissipation 1.5, Watt

D.C. CHARACTERISTICS I

"NOTICE: Stresses' above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in·t/:le operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

8085AH. 8085AH-2: .(TA = O°C to 70°C, Vee = 5V ±10"lo. Vss =OV; unless otherwise specified)"
8085AH-l: (TA = O°C to 70°C, Vee = 5V ±5"1o. Vss = OV; unless otherwise specified)

Symbol Parameter Min. Max.

VIL Input low Voltage -0.5 +0.8

VIH Input High Voltage 2.0 Vee +0.5

VOL Output low Voltage 0,45

VOH Output High Voltage 2.4

135

Icc Power Supply Current
200

IlL Input leakage ±10

ILO Output leakage ±10

VILR Input low level, RESET -0.5 +0.8

VIHR Input High level. RESET 2.4 Vee +0.5

VHY Hysteresis. RESET 0.15

A.C. CHARACTERISTICS
8085AH,8085AH-2: (TA = O°C to 70°C. Vee = 5V ±10"lo. vss = OV)"
8085AH-l: (TA = O°C to 70°C. vee = 5V ±5"1o. vss = OV)

8085AH[2)

Symbol Parameter
(Final)

Min. Max.

teye ClK Cycle Period 320 2000

tl ClK low Time (Standard ClK loading) 80

t2 ClK High Time (Standard ClK loading) 120

t r • tf ClK Rise and Fall Time 30

tXKR Xl Rising to ClK Rising 20 120

tXKF Xl Rising to ClK Falling 20 150

tAe Aa_15Valid to leading Edge of Control[l) 270

tAeL Ao-7 Valid to leading Edge of Control 240

tAD Ao-15 Valid to Valid Data In 575

tAFR
Address Float After leading Edge of

0
READ (INTA)

tAL Aa-15 Valid Before Trailing Edge of ALE [11 115

"Note: For Extended Temperature EXPRESS use M8085AH Electricals Parameters.

2-19

Units Test Conditions

V

V

V IOL = 2mA

V IOH = -400p.A

mA 8085AH, 8085AH-2

mA 8085AH-l (Preliminary)

p.A o ,,;VIN ,,;Vee

!LA 0.45V '" VOUT ,,; Vee

V

V

V

8085AH.2[21 8085AH-1
(Final) (Preliminary)

Units
Min. Max. Min. Max.

200 2000 167 2000 ns

40 20 ns

70 50 ns

30 30 ns

20 ,100 20 100 ns

20 110 20 110 ns

115-: 70 ns

115 60 ns

350 225 ns

0 0 ns

50 ,25 ns

AF't01835C

·808SAH/8085AH"21808SAH·1

A.C. CHARACTERISTICS (Continued)

8085AH[21 8085AH.2[21 8085AH·1

Symbol Parameter
(Final) (Final) (Preliminary) Units

Min. . Max. Min. Max. Min. Max.

tAll Ao-7 Valid Before Trailing Edge of ALE 90 50 25 ns

tARY READY Valid from Address Valid 220 100 40 ns

tCA Address (Aa-1S) Valid After Control 120 60 30 ns

tcc
Width of Control low (m5, WR, iN'fA)

400 230 150 ns
Edge of ALE

tCl
Trailing Edge of Control to leading Edge

50 25 0 ns
of ALE

tow Data Valid to ~raillng Edge of wmfE 420 230 140 ns

tHABE HlDA to Bus Enable 210 150 150 ns

tHABF Bus Float After HlDA 210 150 150 ns

tHACK HlDA Valid to Trailing Edge of ClK 110 40 0 ns

tHOH HOLD Hold Time 0 0 0 ns

tHOS HOLD Setup Time to Trailing Edge of ClK 170 120 120 ns

tiN'" INTR Hold Time 0 0 0 ns

tiNS
INTR, RST, and TRAP Setup Time to

160 150 150 ns
Falling Edge of ClK

tLA Address Hold Time After ALE 100 50 20 ns

tLC
Trailing Edge of ALE to leading Edge

130 60 25 ns
of Control

tLCK ALE low During ClK High 100 50 15 ns

tLOR ALEta Valid Data During Read 460 270 175 ns

tLOW ALE to Valid Data During Write . 200 140 110 ns

tLL ALE Width 140 80 50 rns

tLRY ALE to READY Stable 110 30 10 ns

tRAE
Trailing Edge of READ to Re-Enabling

150 90 50 ns
of Address

tRO REAl> (or INTA) to Valid Data 300 150 75 J ns

tRY
Control Trailing Edge to leading Edge

400 220 160 ns
of Next Control

tRoH Data Hold Time After REAl> fIiITA 0 0 0 ns

tRYH READY Hold Time 0 0 5 ns

tRYS
READY Setup Time to leading Edge

110 100 100 ns
ofClK

two Data Valid After Trailing Edge of WRITE 100 60 30 ns

tWOL lEADING Edge of WRITE to Data Valid 40 20 30 ns

2-20 AFN-01835C

inter 8085AH/8085AH-2/8085AH-1

NOTES:
1. As-A,s address Specs apply IO/f;if. So. and 5, except As-A,s

are undefined during T4- Ts of OF cycle whereas IOtM. So. and
$, are stabl".

3. For all output timing where CL "# 150 pF use the following
correction factors:

25 pF .. CL < 150 pF: -0.10 ns/pF
150 pF < CL .. 300 pF: +0.30 ns/pF

2. Test Conditions: teye = 320 ns (8085AH)/200 ns (8085AH-2);/
167 ns (8085AH-1); CL = 150 pF.

4. Output timings are measured with purely capacitive load.
5. To calculate timing specifications at other values of teye use

Table 5.

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

2.0 2.0 DEVICE u=x)C > TEST POINTS <
0.8 0.8

045

UNDER

~C'=150PF TEST

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOA
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 ov FOR A LOGIC 1
AND 0 BV FDA A LOGIC 0 CL = 150pF

CL INCLUDES JIG CAPACITANCE

Table 5. Bus Timing Specification as a TCYC Dependent

Symbol 8085AH 8085AH-2 8085AH~1

tAL (1/2) T - 45 (1/2) T - 50, (1/2) T - 58

tlA (1/2) T - 60 (1/2) T - 50 (1/2) T - 63

tll (1/2) T - 20 (1/2) T - 20 (1/2) T- 33

tlCK (1/2) T - 60 (1/2) T - 50 (1/2) T - 68

tlC (1/2) T - 30 (1/2) T - 40 (1/2) T - 58

·tAO (5/2 + N) T - 225 (5/2 + N)T - 150 , (5/2 + N) T '- 192

tRO (3/2 + N)T - 180 (3/2 + N)T - 150 (3/2 + N) T - 175

tRAE (1/2) T - 10 (1/2)T-10 (1/2) T - 33

tCA (1/2) T - 40 (1/2) T - 40 (1/2) T - 53

tow (3/2 + N) T - 60 (3/2 + N) T - 70 (3/2 + N)T -110

two (1/2) T - 60 (1/2) T - 40 (1/2) T - 53

tcc, (~/2 + N) T - 80 (3/2 + N) T - 70 . (3/2 + N)T -100

tCl {1/2)T - .110 (1/2) T - 75 (1/2) T - 83

tARY (3/2) T - 260 (3/2) T - 200 (3/2) T - 210

tHACK (1/2) T - 50 . (1/2) T - 60 (1/2) T - 83

tHABF (1/2) T + 50 (1/2) T + 50 (1/2) T + 67

tHABE (1/2) T + 50 (1/2) T + 50 (1/2) T + 67

tAC (2i2) T - 50 (2/2) T - 85 (2/2) T - 97

t1 (1/2) T - 80 (1/2) T - 60 (1/2) T - 63

t2 (1/2) T - 40 (1/2) T - 30 (1/2) T - 33

tRY (3/2) T - 80 (3/2) T - 80 (3/2) T - 90

tLDR (4/2) T - 180 (4/2) T - 130 (4/2) T - 159

NOTE: N is equal to the total WAIT states. T '" teye.

Minimum

Minimum

Minimum

Minimum

Minimum

Maximum

Maximum

Minimum

Minimum

Minimum

Minimum

Minimum

Minimum

Maximum

Minimum

Maximum

Maximum

Minimum

Minimum

Minimum

Minimum

Maximum

AFN·01835C

8085AH/8085AH-218085AH.1

WAVEFORMS (Continued)

READ OPERATION WITH WAIT CYCLE (TYPICAL) - SAME READY TIMING APPLIES
'TO WRITE .

T, T,

elK

AsA15

~~--+---------+---------~I~----------+-~~----

ALE

1---+----'·0---1----'
ROIINTA'-T--*---\I-~--l

~~-+--------~I~----------~

READY

NOTE 1 READY MUST REMAIN STABLE DURING SETUP AND HOLD TIMES

INTERRUPT AND HOLD

T, T2 T,

A8-15=X========~===~-------------;
AD()"7

--< _--1

11------ BUS FLOATING· -----o.!
ALE

RD'---------r---~----------.....;

INTA

HoLD

HlOA

*IO/M IS ALSO FLOATING DURING THIS TIME.

2-22 AFN·O'835C

8085AH/8085AH-218085AH-1

Table 6. Instruction Set Summary

Instruction Code Operations In ctlon Code Operations
Mnemonic 07 De D5 ,D4 D3 D2 D1 Do Osscrlptlon Mnemonic DrDeD5D4Da~D1 Do Description

MOVE, LOAD, AND STOAE CZ 1 1 0 0 1 1 0 0 Call on zero

MOVr1 r2 0 1 0 0 0 S S S Move register to register
MOVM.r 0 1 1 1 0 S S S Move register to memory
MOVr.M 0 1 0 0 0 1 1 0 Move memory' to register
MVI r 0 0 0 0 0 1 1 0 Move immediate register
MVIM 0 0 1 1 0 1 1 0 Move Immediate memory
LXIB 0 0 0 0 0 0 0 1 Load immediate register

Pair B & C
LXI 0 0 0 0 1 0 0 0 1 I.oad immediate register

PalrO&E
LXI H 0 0 1 0 0 0 0 1 Load immediate register

Pair H & L
STAXB 0 0 0 0 0 0 1 0 Store A indirect
STAXO 0 0 0 1 0 0 1 0 Store A indirect
LOAX B 0 0 0 0 1 0 1 0 Load A indirect
LOAX 0 0 0 0 1 1 0 1 0 Load A indirect

CNZ 1 1 0 0 0 1 0 0 Call on no zero
CP 1 1 1 1 0 1 0 0 Call on positive
CM 1 1 1 1 1 1 0 0 Call on minus
CPE 1 1 1 0 1 1 ~ ~ Cal: : parity even
CPO 1 1 1 o 0 1 I Can i oanty odd
AETUAN
AET 1 1 0 0 1 0 0 1 Aetum
AC 1 1 0 1 1 0 0 0 Return on carry
ANC 1 1 0 1 0 0 0 0 Return on no carry
AZ 1 1 0 0 1 0 0 0 Return on zero
ANZ 1 1 0 0 0 0 0 0 Return on no zero
AP 1 1 1 1 0 0 0 0 Return on positive
AM 1 1 1 1 1 0 0 0 Return on minus
APE 1 1 1 0 1 0 0 0 Return on parity even
APO 1 1 1 0 0 0 0 0 Aeturn on parity odd

STA 0 0 1 1 0 0 1 0 Store A direct
LOA 0 0 1 1 1 0 1 0 Load A direct

AESTAAT
AST 1 1 A A A 1 1 1 Aestart

SHLO 0 0 '1 0 0 0 1 0 Store H & L direct
LHLO 0 0 1 0 1 0 1 0 Load H & L direct
XCHG 1 1 1 0 1 0 1 1 Exchange 0 & E, H & L

Aeglsters
STACK OPS
PUSHB 1 1 0 0 0 1 0 1 Push register Pair B &

C on stack
PUSH 0 1 1 0 1 0 1 0 1 Push register Pair 0 &

E on stack
PUSH H 1 1 1 0 0 1 0 1 Push register Pair H &

L on stack

INPUT/OUTPUT
IN I ~ 1 0 1 1 0 1 ·1 Input
OUT 1 0 1 0 0 1 1 Output
INCAEMENT AND OECAEMENT
INA'r 0 0 0 0 0 1 0 0 Increment register
DCA r ,0 0 0 0 0 1 0 1 Decrement register
INAM 0 0 1 1 0 1 0 0 Increment memory
OCAM 0 0 1 1 0 1 0 1 Decrement memory
INX B 0 0 0 0 0 0 1 1 Increment B & C

0'
registers

INXO 0 0 1 0 0 1 1 Increment 0 & E

PUSH PSW 1 1 1 1 0 1 0 1 Push A and Flags
on stack

registers
INXH 0 0 1 0 0 0 1 1 Increment H & L

POPB 1 1 0 0 0 0 0 1 Pop register Pair B &
Coif stack

POP 0 1 1 0 1 0 0 0 1 Pop register Pair 0 &
E off stack

registers
OCX B 0 0 0 0 1 0 1 1 Decrement B & C
OCXO 0 0 0 1 1 0 1 1 Decrement 0 & E
OCX H 0 0 1 0 1 0 1 1 Decrement H & L

POP H 1 1 1 0 0 0 0 1 Pop register Pair H &
L off stack

POPPSW 1 1 1 1 0 0 0 1 Pop A and Flags
off stack

XTHL 1 1 1 0 0 0 1 1 Exchange top of
stack, H & L

SPHL 1 1 1 1 1 0 0 1 H & L to stack pOinter
LXI SP 0 0 1 1 0 0 0 1 Load Immediate stack

pOinter
INX SP 0 0 1 1 0 0 1 1 Increment stack pointer
OCXSP 0 0 1 1 1 0 1 1 Decrement stack

pOinter
JUMP
JMP 1 r 0 0 0 0 1 1 Jump unconditional
JC 1 1 0 1 1 0 1 0 Jump on carry
JNC 1 1 0 1 0 0 1 0 . Jump on no carry
JZ 1 1 0 0 1 0 1 0 Jump on zero
JNZ 1 1 0 0 0 0 1 0 Jump on no zero
JP 1 1 1 1 0 0 1 0 Jump on positive
JM 1 1 1 1 1 0 1 0 Jump on minUS
JPE 1 1 1 0 1 0 1 0 Jump on parity even
JPO 1 1 1 0 0 0 1 0 Jump on parity odd
PCHL 1 1 1 0 1 0 0 1 H & L to program

counter

ADD
AOOr 1 0 0 0 0 S S S Add register to A
AOCr 1 0 0 0 1 S S S Add register to A

with carry
AOOM 1 0 C 0 0 1 1 0 Add memory to A
ADCM 1 0 0 0 1 1 1 0 Add memory to A

with carry
AOI 1 1 0 0 0 1 1 0 Add immediate to A
ACI 1 1 0 0 1 1 1 0 Add immediate to A

With carry
DAD B 0 0 0 0 1 0 0 1 AddB&CtoH&L
DAD 0 0 0 0 1 1 0 0 1 AddO&EtoH&L
OAOH 0 0 1 0 1 0 0 1 AddH&LtoH&L
OAOSP 0 0 1 1 1 0 0 1 Add stack pointer to

H&L
SUBTAACT
SUB r 1 0 0 1 0 S S S Subtract register

from A
SBB r 1 0 0 1 1 S S S Subtract register from

A with borrow
SUB M 1 0 0 1 0 1 1 0 Subtract memory

from A
SBBM 1 0 0 1 1 1 1 0 Subtract memory from

A with borrow

CALL
CALL 1 1 0 0 1 1 0 1 Call unconditIonal

SUI 1 1 0 1 0 1 1 0 Subtract immediate
from A

CC 1 1 0 1 1 1 0 0 Call on carry SBI 1 1 0 1 1 1 1 0 Subtract immediate
CNC 1 1 0 1 0 1 0 0 Call on no carry Irom A With borrow

2-23 AFN·OI835C

inter 8085AH/8085AH-218085AH-1

Table 6. Instruction Set Summary (Continued)

Instructl ... Code Operations , Instruction Code Operations
Mnemonic II? Os 05 04 II:! II:! 0, 00 Deec.lptlon ' Mnemonic 07 Os 05 04 03 02 0, 00 Oeecrtptlon

LOGICAL SPECIALS
ANA. 1 0 1, 0 0 S S S And register with A CMA 0 0 1 0 1 1 1 1 Complement
XRAr 1 ,0 1 0 1 S S S Exclusive OR register • " A

with A Sl'C 0 0 1 1 0 1 1 1 Set carry
ORAr 1 0' 1 1 0 S S S OR register with A
CMPr 1 - 0' 1 1 1 S S S Compare register with A

CMC 0 0 1 1 1 1 1 1 Complement
carry

ANAM 1 a 1 0 0 1 1 0 And memory with A OM 0 0 1 0 0 1 1 1 Decimal ad'ust A
XRAM 1 ,0 1 0 1 1 1 0 Exclusive OR memory

with A
CONTROL

'1 EI 1 1 1 1 1 0 1 Enable Interrupts
ORAM, 1 0 l' t 0 1, 1 0 OR memory with A 01 1 1 1 1 0 0 1 1 Disable Interrupt
CMP~ 1 0 1 j 1 1 1 0 Compare

memory with A
NOP 0 0 0 0 0 0 0 0 No-operation
HLT 0 1 1 1 0 1 1 0 Halt

ANI 1 1 1 0 0 1 1 0 And Immediate with A
XRI 1 1 1 0 1 1 1 0 Exclusive OR immediate

with A
ORI 1 1 1 1 0 1 1 0 OR immediate with A

NEW 8085A ISTRUCTIONS
RIM 00100 0 0 0 Read Interrupt Mask
SIM 00110 0 0 0 Set Interrupt Mask

CPI 1 1 1 1 1 1 1 0 Compare Immediate
with A

ROTATE
RLC 0 0 0 0 0 1 1 1 Rotate A left
RRC 0 0 0 0 1 1 1 1 Rotate A right
RAL 0 0 0 1 0 1 1 1 Rotate A left through

I'RAR
carry

0 0 0 1 1 1 1 1 Rotate A right throug,h
carry

NOTES; ,
1. DDS or SSS: B 000, COOl, 0010, EOl1, H 100, L 101, Memory 110, A 111.
2. Two possible cycle times (6112) Indicate ,"struction' cycles dependent on condition flags.

"All mnemonics copyrighte<j ©Intel Corporation 1976.

2-24
AFN,P'835C

WAVEFORMS

CLOCK

Xl INPUT

eLK
OUTPUT

READ

WRITE

HOLD

:\ eLK

HOLD

HlDA

8085AH/8085AH-218085AH-1

t, _1~.~ ___ t2 ___ -+1_ tf

1 ________ teye -------.1
tXKF-

T, T,

elK,./ .
~tLCK_ _tCA_

ADDRESS

t AD--_ ~1.-tRAe -tROH --'

ADDRESS W' //$) DATA IN ""- r--
I~

r- -tlL_ f+-~tLA--

I--tCl~1. tAFR - -J tLOR 1 ALE

__ tAL_

~--:::-- .1
tLC~" ~ RD/INTA

f+--- t AC -------'-'

I T, I T2 I T, I T,
eLK I . \ I \ \ I

\--t,c,-i
Aa-A'5 ADDRESS X

~tLDW __ ItCA-1

ADo-AD, ADDRESS) DATA OUT X
1+ -tLL-1 -----tlA------l - tow -"'0-1

ALEJ ~ :--tWDL.

_IAl _

WR
-tee .

~tl=f _tCL -

_tAC -

T2 T, THOLD T HOLD , / \ I ,
t "\ :~

t HOS • PHOH- r-tHACK

t \
-~ t HABF -

1_-tHABE-~

aus (ADDRESS, CONTROLS) ~ ,
! I

2-25

T,

AFN·01835C

inter
808SA/808SA-2 .

SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSORS

• Single +SV Power Supply • Four Vectored Interrupt Inputs (One Is

• 100% Software Compatible· with SOSOA Non-Maskable) Plus an SO'SOA-

• 1.3 IJ,S Instruction Cycle (SOSSA);
Compatible Interrupt

O.S IJ,s (SOSSA-2) • Serial In/Serial Out Port

• On-Chip Clock Generator (with External
Decimal, Binary ahd Double Precision Crystal, LC or RC Network) •
Arithmetic

• On-Chip System Controller; Advanced
Cycle Status Information Available for • Direct Addressing Capability to 64k
Large System Control Bytes of ,.,emory

The Intell!!> aOaSA is a complete a bit parallel Central Processing Unit (CPU). Its instruction set is 100% software compatible
with the 80aOA microprocessor," and it is designed to improve the present 8080A's performance by higher system speed,
Its high level of system integration allows a minimum system of three IC's [808SA (CPU), 8156 (RAM/IO) and 83S5/8755A .
(ROM/PROM/IO)] while maintaining total system expandability. The 8085A-2 is a faster version of the 8085A.

The 8085A incorporates all of the features tllat the 8224 (clock generator) and 8228 (system controller) provided for the
8080A, thereby offering a high level of system integration.

The 808SA uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data bus. The
on-chip address latches of 815S/8156/8355/87S5A memory products allow a direct interface with the 8085A.

* ::: * ::: }REG1STfR REG REG ARRAY

STACK POINTER • 1161

PROGRAM COUNTER 1161

INCREMENteR/DECREMENTER
ADDRESS LATCH 11&1

A16-Aa
AODREsseus

Flgl,lr. 1. 808SA CPU Functional Block Diagram
I

2-26

AOt-AOo
ADDRESS/DATA BUS

X,
X2

RESET OUT
SOD
SID

Vee
HOLD
HLOA
elK (OUT)
RESET IN

TRAP READY
RST 7 5 101M
RST 6.5 81
RSTS.5 R5

INTR' WR
INTA ALE

ADD So
AD, A15
AD2 A14
AD3 A13
AD4 A12
ADS An
ADS A10
AD7 A9
VSS ... __ ...r AJ

Figure 2; ·8OSSA Pin
. Configuration

AFN-01242C

inter 808SA/808SA-2

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias OOC to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin

With Respect to Ground -0.5V to +7V
Power Dissipation. 1.5 Watt

"NOTICE: Stresses abova those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may
affect device reliability.

D.C. CHARACTERISTICS (TA = o·c to 700C, Vee = ov ±5%, Vss = OV; unless otherwise specified)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input Low Voltage -0.5 +0.8 V

VIH Input High Voltage 2.0 VCC·+O·5 V

VOL Output Low Voltage 0.45 V IOL = 2mA

VOH Output High Voltage 2.4 V IOH = -400/JA

Icc Power Supply Current 170 rnA

IlL Input Leakage ' ±10 /JA 0 ... VIN ... Vcc

ILO Output Leakage ±10 /JA 0.45V';;; V out ';;; Vcc

VILR Input Low Level, RESET -0.5 +0.8 V

VIHR Input High Level, RESET 2.4 Vcc +0.5 V

VHY Hysteresis, RESET 0.25 V

2-27 AFN-01242C

inter 8085A/8085A-2

A.C. CHARACTERISTICS (TA == ooe to 70oe, vee = ov ±5%, vss = ,OV)

Symbol Parameter
8085AI2J 8085A·212J

Units
Min. Max •. Min • Max.

. tcvc CLK Cycle Period 320 2000 200 2000 ns
t1 (.iLK Low Time (:standard CLK Loaolng) 80 40 ns

t2 CLK High Time (Standard CLK Loading) 120 70 ns

t r, t f CLK Rise and Fall Time 30 30 ns
tXKR X· Rilling to eLK RISing 30 120 30 100 ns'
tVIt"' X Rlslne to CLK Faliine 30 150 30 110 ns
tAC A8_15 Valid to Leading Edge of ControlllJ 270 115 . ns
tACL Ao-7 Valid to Leading Edge of Control 240 115 ns
tAO AO-15 valla to valla Data In 575 350 ns
tAFR Ao~ess F~oat ATter Leaolng Edge Of

READtiNTA} 0 0 ns
tAL AS-15 Valid Before Trailing Edge of ALEI1J, 115 50 ns
tALL Ao-7 Valid Before Trailing Edge of ALE 90 50 ns
tARY HI:AUY valla from Aaaress valla 220 100 ns
lel Aaaress lAa-15) valla A ter \.: ontro 120 60 ns
tcc Width of Control Low (RD, WR, INTA)

Edge' of ALE 400 230 ns
tCL Trailing Edge of Control to Leading Edge

of ALE 50 25 ns
tow Data Valid to Trailing Edge of WRITE 420 230 ns
tHABE HLDA to Bus Enable 210 150 ns
tHABF Bus Float After HLDA 210 150 ns
t HACK HLDA Valid to Trailing Edge of CLK 110 40 ns
tHOH HOLD Hold Time 0 0 ns
tHOS HOLD Setup Time to Trailing Edge of CLK 170 120 ns
tlNH 11111 H MOla lime 0 0 ns
tiNS INTR, RST, and TRAP Setup Time to

Falling Edge of CLK 160 150 ns
tLA Address Hold Time After ALE 100 50 ns
tLc Trailing Edge of ALE to Leading Edge

of Control 130 60 ns
t LCK ALE Low During CLK High 100 50 ns
tLOR ALE to valla Data During Read 460 270 ns
tLow ALE to Valla Data Dunng write 200 120 ns
tLL ALI: Wldtn 140 80 ns
tLRy ALE to READY Stable 110 30 ns

2-28 AF~·01242C

intJ 8085A18085A·2

A.C. CHARACTERISTICS (Continued)

Symbol Parameter 8085A[2) 8085A·2[2)

Min. Max. Min.

tRAE Trailing Edge of READ to Re·Enabling 150 90
of Address

tRD READ (or I":ITA) to Valid Data 300

tRV Control Trailing Edge to leading Edge 400 220
of Next Control

tRDH Data Hold Time After READ INTA[7) 0 0

tRYH READY Hold Time 0 0

tRYS READY Setup Time to leading Edge 110 100
of ClK

two Data Valid After Trailing Edge of WRITE 100 60

tWDl lEADING Edge of WRITE to Data Valid 40
\

NOTES:
1. As·A15 address Specs apply to 101M, So' and S1 except As·A15 are undefined during T4·Ts of OF cycle

whereas IOiM, So' andS1 are stable.

2. Test conditions: teye = 320 ns (8085A)/200 ns (8085A·2); CL = 150 pF.

3. For all output timing where Cl = 150pF use the following correction factors:
25pF .. CL < 150pF: -0.10ns/pF
150pF < CL" 300pF: +0.30ns/pF

4. Output timings are measured with purely capacitive load.

Max.

150

20

5. All timings are measured at output votage VL = 0.8V, VH ='2.0V, and 1.5V with 20ns rise and fall time on inputs.

6. To calculate timing specifications at other values of teye use Table 7.
7. Data hold time is guaranteed under all loading conditions.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

"=:X :c 2.0 2.0 ? TEST POINTS < .
0.8 0.8

0.45

AC TESTING INPUTS ARE DRIVEN AT 2 4V FORA LOGIC "1" AND 045V FOR
A LOGIC "0" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A lOGIC "1"
AND a.sv FOR A LOGIC "0 "

2-29

A.C. TESTING LOAD CIRCUIT

DEVICE
. UNDER

'1CL~150PF TEST

CL =150pF
CL INCLUDES JIG CAPACITANCE

Units

ns

ns

ns

ns

ns

ns

ns

ns

A~12'2C

8155H/8,156H/8155H-218156H-2
2048-BrT STATIC HMOS RAM
WiTH 1/0 PORTS AND TIMER

• Single +5V Power Supply with 10%
Voltage Margins

• 30% Lower Power Consumption than
the 8~55 and 8156

• 100% Compatible with 8155 and 8156
• 256 Word x 8 Bits
• Completely Static Operation
• Internal Address Latch
.' 2 Programmable 8-Blt I/O Ports

• 1 Programmable 6-Bit I/O Port
• Programmable 14-Blt Binary Counter/
TIm~ ~.

, . I '
• Compatible with 8085AH, 8085A and

8088 CPU
• Multiplexed Address and Data Bus

• Available In EXPRESS
- Standalll Temperature Range
- Extended Temperature Range

The Intele 8155H and 8156H are RAM and I/O chips implemented in N-Channel. depletion load. silicon gate technology
(HMOS). to be used in the 8085AH and 8088 microprocessor systems. The RAM portion Is designed with 2048 static cells
organized as 256 x 8. They have a maximum access time of 400 ns to permit use with no walt states in 8085AH CPU.The
8155H-2 and 8156H-2 have maximum access times of 330 ns for use with the 8085AH-2 and the 5 MHz 8088 CPU.

The 110 portion consists of three general purpose 110 ports. One of the three ports can be programmed to be status
pins. thus allowing the other two ports to operate in handshake mode.

A 14-blt programmable counter/timer is also Included on chip to provide either a square wave or terminal count pulse
for the CPU system depending on timer mode.

PC, vee
PC. pc.

10 'M

B
TIMER IN PC,

PAo-,
RESET pc.

pc. PB,
ADo 7 256 x 8 TIMER OUT PBs

STATIC
101M PB.

RAM

B * PB.
PB"., RD PB,

ALE Wii PB.

RD ALE PB,

Wii

G
AO. PB.

PCO~5
AO, PA,

RESET TIMER AO. PAs

AO, PAs

Lvcc (+5VI ,

AO. PA.
TIMER CLK AO. PA,
TIMER OUT V"IOV) AD. PA.

AO, PA,

,.,_'l1li;2 = iii, 81 ___ 2 - CE Vss Plio

Figure 1. Block Diagram Figure 2. Pin Configuration

Intel Corporation A.sum .. No Reaponaibilty for the Use of Any Circuitry Other Than Circuitry Embodl.d In an Intel Product. No Other Clf'Cult Patent Licenses 8f8lmplied.
© INTEL CORPOIlATION. ,~,. 2-30

8155H/8156H/8155H-2I8156H-2

Table 1. Pin Description
Symbol Type Name and Function

RESET I R ••• t: Pulse provided by the 8085AH to initialize the system (connect to 8085AH RESET OUT). Input
high on this line resets the chip and initializes the three I/O ports to input mode. The width of RESET
pulse should typically be two 8085AH clock cycle times.

ADo_7 I/O Addr ... /Data: 3-state Address/Data lines that interface with the CPU lower 8-bit Address/Data Bus.
The 8-blt address is latched into the address latch inside the 8155H/56H on the falling edge of ALE. The
address can be eltherfor the memory section or the I/O section depending on the 10/M input. The 8-blt
data is either written into the chip or read from the chip. depending on the WR or RD input signal.

CE or Cl: I Chip Enable: On the 8155H. this pin is CE and is ACTIVE LOW. On the 8156H, this pin is CE and is
ACTIVE HIGH.

RD I Read Control: Input low on this line with the Chip Enable active enables and ADO_7 buffers. If 10/M pin
is low, the RAM content will be read out to the AD bus. Otherwise the content of the selected I/O port or
command/status registers will be read to the AD bus.

WR I Write Control: Input Iowan this line with the Chip Enable active causes the data on the Address/Data
bus to be written to the RAM or I/O ports and command/status register, depending on lo/fi:l

ALE I Address Latch Enable: This control signal latches both the address on the ADo_7 lines and the state
of the Chip Enable and 101M Into the chip at the falling edge of ALE.

10/M I I/O Memory: Selects memory if low and I/O and command/status registers if high.

PAO_7(S) I/O Port A: These 8 PinS are general purpose I/O pins. The in/out dlrecllon IS selected by programming
the command register.

PBO_7(8) I/O Port B: These 8 pins are general purpose I/O pinS The in/out direction is selected by programming
the command register

PCo_s(6} I/O Port C: These 6 pinS can function as either Input port, output port, or as control Signals for PA and PB.
Programming is done through the command register. When PCo-s are used as control signals, they
will provide the follOWing:
PCo - A INTR (Port A,lnterrupt)
PC1 - ABF (Port A Buffer Full)
PC2 - A STB (Port A Strobe)
PC3 - B INTR (Port B Interrupt)
PC4 - B BF (Port B Buffer F'ull)
PCs - B STB (Port 6 Strobe)

TIMER IN I Timer Input: Input to the counter-timer.

TIMER OUT 0 Timer Output: This output can be either a square wave or a pulse, depending on the timer mode.

Vee Voltage: + 5 volt supply.

Vss Ground: Ground reference.

FUNCTIONAL DESCRIPTION

The 8155H/8156H contains the following:

• 2k Sit Static RAM organized as 256 x 8
• Twb 8-bit 110 ports I PA & PS I and one 6-bI! 110 port I PC)
• 14-bit timer-counter

I
I
I
I
I
I
I
I
I
I

The 101M 1I0/Memory Select I pin selects either the five
registers ICommand, Status, PAo-?, PSO-?, PCO-51 or
the memory IRAMI portion.

I
I
I
I
I
I
I
I
I
I
I . I

The 8-oit address·on the AddresslData lines, Chip Enable
input CE or CE, and I DiM ,pre all latched on-chip at the
falling edge of ALE

L ___ ~_ _________ .J

Figure 3. 8155H/8156H Internal Registers

2-31 AFN·0196OC

8155H/8156H/8155H-218156H-2

CE(815SH) \ / '\
OR

CE(8l5SH) / \ /

\ \ / \ 101M

X ADDRESS
\ X DATA VALID

,

Al E

NOTE: FOR DETAILED TIMING INFORMATION, SEE FIGURE 12 AND A.C. CHARACTERISTICS.

Figure 4. 8155H/8156H On-Board Memory Read/Write Cycle

PROGRAMMING OF THE
COMMAND REGISTER
The command register consists of eight latches. Four
bits (0-31 define the mode of the ports, two bits 14-51
enable or disable the interrupt from port C when it acts
as control port, and the last two bits 16-71 are forthe timer.

The command register contents can be altered at any
time by using the 110 address XXXXXOOO dunng a WRITE
operation with the Chip Enable active and lo/liii = 1. The
meaning of each bit of the command byte is defined in
Figure 5. The contents of the command register may
never be read.

READING THE STATUS REGISTER
The status register consists of seven latches, one for each
bit. six (0-51 for the status of the ports and one 161 for the
status of the timer.

The status of the timer and the 1/0 section can be polled
by reading the Status Flegister (Address XXXXXOOO).
Status word format is shown in 'Figure 6. Note that you
may never write to the status register since the command
register shares the same 1/0 address and the command
register IS selected 'when a write to that address is issued.

2-32

ITM' TM;I 'Eel 'EAlpc,1 PC, pelPA]
'--.---1

0'" INPUT
. 1 '" OUTPUT

- DEFINES PBO.7 r= DEFINESPA .. 7 }

OQ=ALTl
, , 11=ALT2

DEFINES peO_5 { 01 = AL T 3
10=AlT4

L-____________ ~~~~~~~RTA

'-______ ~ ______ • ~~¢eBRLi;~RT B
}

1 = ENABLE

0= DISABLE

00 = NOP - DO NOT AFFECT COUNTER
6PERATION

01 = STOP - NOP IF TIMER HAS NOT STARTED;
STOP COUNTING IF THE TIMER IS
RUNNING

~TIMER COMMAND

10 = STOP AFTER Te - STOP IMMEDIATELY
AFTER PRESENT re IS REACHED (NOP
IF TIMER HAS NOT STARTED)

11 = START - LOAD MODE AND CNT LENGTH
AND STAAT IMMEDIATELY AFTER
lOADtNG !IF TIMER IS NOT PRESENTLY
RUNNING) IF TIMER IS RUNNING, START
THE NEW MODE AND CNT LENGTH
IMMEDIATEl Y AFTER PRESENT TC
IS REACHED

Figure 5. Command Register Bit Assignment

AFN'Ol960C

inter 8155H/8156H/8155H-2/8156H-2

L~
PORT A INTERRUPT REQUEST

PORT A BUfFER FULL/EMPTY
(INPUT/OUTPUT)

PORT A INTERRUPT ENABLE

PORr B INTERRUPT REQUEST

'-------_ PORT B BUFFER FULl/EMPTY
(INPUT/OUTPUT)

'---------_ PORT B IN·TERRUPT ENABLED

'------------- TIMER INTERRUPT (THIS BIT
IS LATCHED HIGH WHEN
TERMINAL COUNT IS
REACHED, AND IS RESET TO
LOW UPON READING OF THE
CIS REGISTER AND BY
HARDWARE RESET)

Figure 6. Status Register Bit Assignment

INPUT/OUTPUT SECTION
The I/O section of the 8155H/8156H consists of five regis­
ters: (See Figure 7.)

• Command/Status Register (C/S) - Both registers are
assigned the address XXXXXOOO. The CIS address
serves the dual purpose.

When the CIS registers are selected during WRITE
operation, a command is written into the command
register. The contents of this register are not accessible
throug,h the pins.

When the CIS (XXXXXOOO) is selected during a READ
operation, the status information of the I/O ports and
the timer becomes available on the ADo-7 lines .

• PA Register - This register can be programmed to be
. either input or· output ports depending on the status of
the contents of the CIS Register. Also depending on
the command, this port can operate in either the basIc
mode or the strobed mode (See timing diagram). The
I/O pins assigned in relation to this register are PAO-7.
The address of this register is XXXXX001.

• PB Register - This register functions the same as PA
Register. The 110 pins aSSigned are P80-7. The address
of this register is XXXXX010 .

• PC Register - This register has the address XXXXX011
and contains only 6 bits. The 6 bits can be program­
med to be either input ports, output ports or as control
signals for PA and PB by properly programming the
AD2 and AD3 bits of the CIS register.

When PCO-5 is used as a control port, 3 bits are
assigned for Port A and 3 for Port B. The first bit is an

interrupt that the 8155H sends out. The second is an
output signal indicating whether the buffer is full or
empty, and the third is an input pin to accept a strobe
for the strobed input mode. (See Table 2.)

When the 'C' port is programmed to either AL T3 or AL T4,
the control signals for PAand ~Bare initialized as follows:

CONTROL INPUT MODE OUTPUT MODE

SF Low Low

INTR Low High

STB Input Control Input Control

.
I/O ADDRESS-

SELECTION
A7 A6 AS A4 A3 A2 A1 AD

X X X X X 0 0 0 Interval Command/Status Register
X X X X X 0 0 1 General Purpose L'D Port A

X X X X X 0 1 0 General Purpose 1/0 Port B
X X X X X 0 1 1 Port C - General Purpose 110 or Control
X X X X X 1 0 0 Low~Order 8 bits of Timer Count
X X X X X 1 0 1 High 6 bits of Timer Count and 2 bits

of Timer Mode

X Don't Care

t 110 Address must be qualified by CE = 1 (8156H) or CE '= 0 (8155H) and 101M"" 1m
order to select the approprrate register

Figure 7. I/O Port and Timer Addressing Scheme

Figure 8 shows how I/O PORTS A and B are structured
within the 8155H and 8156H:

8155Hi8158H
ONE BIT OF PORT A OR PORT B

NOTES·

(2) SIMPLE INPUT MULTIPLEXER
(1) OUTPUT MODE }

(3) STROBED INPUT CONTROL

(4) = 1 FOR OUTPUT MODE
= 0 FOR INPUT MODE

READ PORT = (lO/M=l) _ (RD=O) _ (CE ACTIVE) _ (PORT ADORESS SELECTED) ,
WRITE PORT= (l0/M=1) _ (WFi:=O)_ (CE ACTIVE)- (PORT ADDRESS SELECTED)

'Figure 8. 8155H/8156H Port Functions

AFN·0196OC

81 55.H/81 56H/8155H.218156H~2

Table 2. Port Control Assignment

Pin ALT 1 ALT 2. ALT3 ALT4

PCO Input Port Output Port A INTR (Port A Interrupt) A INTR (Port A Interrupt)
PC1 Input Port Output Port A BF (Port A Buffer Full) A BF (Port A Buffer Full)
PC2 Input Port Output Port A STB (Port A Strobe) A STB (Port A Strobe)
PC3 Input Port Output Port
PC4 Input Port Output Port

, PC5 Input Port Output Port

Note In the diagram that when the 1/0 ports are pro­
grammed to be output ports, the contents of the output
ports can still be read by a READ operation when appro­
prlatelyaddressed.

The outputs of the 8155H/8156H are "glitch-free" meaning
that you can write a "1" to a bit position that was previ­
ously "1" and the level at the output pin will not change,

Note also that the output latch is cleared when the port
enters the Input mode, The output latch cannot be loaded
by writing to the port if the port is in the input mode. The
result is that each time a port mode is changed from input
to output, the output pins will go low, Wheri the8155H/56H
is RESET, the output latches are all cleared and all 3 ports
enter the input mode,

When in the AL T 1 or AL T 2 modes, the bits of PORT C
are structured like the diagram above in the simple input
or output mode, respectively.

Reading from an input port with nothing connected to the
PinS will provide unpredictable results.

Figure 9 shows how the 8155H/8156H I/O ports might be
configured in a typical MCS-85 system.

TO 8085AH RST INPUT

-" t PORT A OUTPUT PORT A

A INTR ($'IGNALS DATA RECEIVED) .--r He ,.,"" '''' .. ,," } • A srB (ACKNOWL DATA RECEIVED) TO/FROM

PORT C' • B STB (LOADS PORT B LATCH) PERIPHERAL

6 SF (SIGNALS BUFFER IS FULL) INTERFACE

B INTR (SIGNALS BUFFER 1
READY FOR READINGI J

PORT B A INPUT TO INPUT PORT (OPTIONAL) v ,

TO eOe5AH RST INPUT

Output Port B INTR (Port B Interrupt)
Output Port B BF (Port B Buffer Full)
Output Port B STB (Port B Strobe)

TIMER SECTION
The timer is a 14-bit down-counter that,counts the TIMER
IN pulses and provides either a square wave or pulse
when terminal count (TCI is reached.

The timer has the I/O address XXXXX100forthe low order
byte of the register and the I/O address XXXXX101 for
the high order byte of the register, (See Figure 7,)

To program the timer, the COUNT LENGTH REG is
loaded first, one byte at a time, by selecting the timer
addresses, Bits 0-13 of the high order count register will
specify the length of the next count and bits J 4-15 of the
high order register will specify the timer output mode
(see Figure 10). The value loaded into the count length
register can have any value from 2H through 3FFH in
Bits 0-13.

4 2

Mz Ml I T131 T121 Tlll TlOl T91 Te I
II I

I I
TIMER MODE MSB OF CNT LENGTH

6 4 .1 0

T7 I Tsl Tsl T 4 I T31 Tzi Tl I To I
I

I

LSB OF CNT LENGTH

Figure 10. Timer Format

There are four modes to choose from: M2 and M1 define
the timer mode, as shown in Figure 11,

MODE
BITS

M2 M1

'0

TIMER OUT WAVEFORMS

START
COUNT COUNT COUNT

1 SINGLE
SQUARE WAVE

TERMINAL (TERMINAL)

~ _____ l ____ _

2 CONTINUOUS
SQUARE WAVE

3 SINGLE
PULSE ON
TERMINAL COUNT

4 CONTINUOUS
PULSES

u---.:- ---------

v
Figure 9. Example: Command Register = 00111001 ' Figure 11. Timer Modes

2-34 AFN,Ol960C

inter 8155H/8156H/8155H-218156H-2

Bits 6-7 (TM2 and 'TM1) of command register contents
are used to start and stop the counter. There are four
com";1ands to choose from:

TM2 TM1

o 0 NOP - Do not affect counter operation.

o STOP - NOP if timer has not started.;
stop countil"1g if the timer is running.

o STOP AFTER TC - Stop immediately
after present TC is reached (NOP iftimer
has not started)

START - Load mode and CNT length
and start immediately after loading (if
timer is not presently running). If timer
is running, start the new mode and CNT
length immediately after present TC is
reached.

Note that while the counter is counting, you may load a
new count and mode into the count length registers.
Before the new count and mode will be used by the
counter, you must issue a START command to the
counter. This applies even though you may only want to
change the count and use the previous mode.

In case of an odd-numbered count, the first half-cycle
of the squarewave output, which is high, is one count
longer than the second (lOW) half-cycle, as shown in
Figure 12.

NOTE 5 AND 4 REFER TO THE NUMBER OF CLOCKS IN THAT TIME PERIOD

Figure 12. Asymmetrical Square-Wave Output
Resulting from Count of 9

The counter in the 8155H is not initialized to any particular
mode or count when hardware RESET occurs, but RESET
does stop the counting. Therefore, counting cannot begin
following RESET until a START command is. issued via the
CIS register.

Please note that the timer circuit on the 8155H/8156H chip
is designed to be a square-wave timer, -not an event
counter. To achieve thiS, it counts down by twos twice
in completing one cycle. Thus, its registers do not con­
tain values directly representing the number of TIMER IN
pulses received. You cannot load an initial value of 1 into
the count register and cause the timer to operate, as its
terminal count value is 10 (binary) or 2 (decimal). (For
the detection of single pulses, it is suggested that one
of the hardware interrupt pins on the 8085AH be used.)
After the timer has started counting down, the values
residing in the count registers can be used to calculate
the actual number of TIMER IN pulses required to com­
plete the timer cycle if desired. To obtain the remaining
count, perform the following operations in order:

1. Stop the count

2. Read in the 16-bit value from the count length registers

3. Reset the upper two mode bits

4. Reset the carry and rotate right one position al116 bits
~ro~h~~ .

5. If carry is set, add 1/2 of the full original count (112 full
count - 1 if full count is odd).

Note: If you started with an odd count and you read the
count length register before the third count pulse occurs,
you will not be able to discern whether one or two counts
has occurred. Regardless of this, the 8155H/56H always
counts.out the right number of pulses in generating the
TIMER OUT waveforms.

2-35. AFN·Ol96OC

~15S.H/8156H/8155H~218156H.2

808SA MINIMUM SYSTEM CONFIGURATION

Figure 13a shows a minimum system using three chips,
. containing:

• 256 Bytes RAM
• 2K Bytes ROM
• 38 1/0 Pins
• 1 Interval Timer
• 4 I nterrupt Levels

8085 MINIMUM SYSTEM CONFIGURATION

AS-1S

A
AOO·7

ALE
. 8085AH RiS

~

101M

eLK

RESET OUT

READY

TIMER
RESET IN WR Ri5 ALE eE'(7- '101M ~

I

B
L.j LATCHES I

T6~~R_
-'-- I

I
CONTROL

256 x 8
RAM

8158H - I

~~~~ 
, 'B B B 
, 

-= ;:.. 

-
-
-
-
-
-

7:~~" 7-~~ CE Igi ALE RiSIKWi 

8355 I ROM + I/O I 
OR 

8755A [PROM + I/OJ 

B B 
Figure 13a. 8085AH Minimum System Configuration (Memory Mapped 1/0) 

2-36 

t-.. 

v 

Vee 

eLK RST RDY 

\ 

. AFN-01960C 



inter 8155H/8156H/8155H-218156H-2 

8088 FIVE CHIP SYSTEM • 381/0 Pins 

Figure 13b shows a five ~hip system containing: • 1 Interval Timer 

• 1.2SK Bytes RAM • 2 Interrupt Levels 

• 2K Bytes. ROM 

/' 

I Vss Vee 

I I 
1 ~t- CE POR!~ 

~t--'-WR 00 
Ali PORT (8) 

"&111-2 8 

. ALE PORToo 
DATAl C (8) 
ADDR 

IN_ 
101M TIMER 

RESET 
OUT r-

A8-A19 
~. I\" lOW 

/1 
V Ali 

h 
,-- CLKADo- AD7 ADDRIDATA ALE 00 r~ PORT 

CE A 

L.:- .. r-.. AS_10 
8088 r--

r- READY '. V '355-2/ 
8755A-2 

MN/MX I--Vee DATAl 
ADDR 

rOl ALE f- f-
101M PORT 00· RST ® Rli I-- I--I- ~--' RESET B ., 

" ClK WR 1--' I READY Vee 
READY ~ 101M f- ~-' 

REli .-- 'f- , I II lpROG 
828' 

RESET f- Vss Vee VDD 

ROY' 
Vee 

WR 
...... Ali 

CD eel 
• 818502 

ALE 

If- Cli. 

11'1- CE, 

I~t- "e.'" 
APo·, 

! ! . 
Vss Vee· 

, 7 

Figure 13b. 8088 Five Chip System Configuration 

2-'37 AFN·Ol98OC 



, 
8155H!8158H18155H-218158H-2 "'r:'" 0'). 

, , .. ~ 

ABSOLUTE MAXIMUM RATINGS· 

TemperatureUnderBias ................ 0·Cto+70·C 
Storage Temperature ..•............ -65·C to +150·C 
Voltage on Any Pin 

With Respectto Ground ............... -0.5V to +7V 
Power Dissipat jon . .' ........................... 1.5W 

'NOTICE: Stresses above those listed (/fider "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functionalopera­
tion of the device at these or any other conditions above 
those indicated in the operational sections, of this 
specification is not implied. Exposure to absolute maxi­
mum rating conditions fOf extended periods may affect 
device reliability. 

D,C. CHARACTERISTICS (fA = o·c to 700C. Vee = 5V ± 10%) 

Symbol Parameter Min. Max. Units Test Conditions 

V'l Input Low Voltage -0.5 0.8 V 

V'H Input High Voltage 2.0 Vcc+O.5 V 

VOL Output Low Voltage 0.45 V Iol = 2mA 

VoH Output High Voltage 2.4 V IoH = -4OO1tA 

I'l Input Leakage ±10 ItA OV"" VIN "" Vec' 

IlO Output Leakage Current ±10 ItA 0.45V .;;; VOUT .;;; VCC 

Icc Vee Supply Current 125 mA 

l'llCE) Chip Enable Leakage 
8l55H +100 p.A OV"" VIN "" Vec 
8l56H -100 p.A 

A.C. CHARACTERISTICS (fA = o·c to 700C. Vce = 5V ±10%) 

8155H18156H 8155H-218156H-2 

Symbol Parameter Min. Max. Min. Max. Units 

tAL Address, to Latch Set Up Time 50 30 ns 

tlA Address Hold Time after Latch 80 30 ns 

tlC Latch to READIWRITE Control 100 40 ns 

tRO Valid Data Out Delay from READ Control 170 140 ns 

tAD Address Stable to Data Out Valid 400 330 ns 

tLL Latch Enable Width 100 70 ns 

tROF Data Bus Float After READ 0 100 0 80 ns 

tCl READIWRITE Control to Latch Enable 20 10 ns 

tcc READIWRITE Control Width 250 200 ns 

tow Data In'to WR ITE Set Up Time 150 100 ns 

two Data In Hold Time After WR ITE 25 25 ns 

tRv Recovery Time Between Controls 300 200 ns 

twp WR ITE to Port Output 400 300 ns 

tPR Port Input Setup Time 70 , 50 ns 

tRP Port Input Hold Time 50 10 ns 

tSBF Strobe to Buffer Full 400 300 ns 

tss Strobe Width 200 150 ns 

tRBE READ to Buffer Empty 400 300 ' ns 

tSI Strobe to I NTR On , 400 300 hs 

AFN-019BOC 



intJ 8155H18156H/8155H-218156H-2 

A.C. CHARACTERISTICS (Continued) (TA = O·C to 70·C. Vee = 5V :t10%) 

Symbol Parameter 

tRDI READ to INTR Off 

tPSS Port Setup Time to Strobe Strobe 

tl'HS Port Hold Time After Strobe 

tSBE Strobe to Buffer Empty 

tWBF WR ITE to Buffer Full 

tWI WR ITE to I NTR Off 

tTL TIMER-IN to TIMER-OUT Low 

tTH TIMER-IN to TIMER-OUT High 

tRDE Data Bus Enable from READ Control 

tl TIMER-IN Low Time 

t2 TIMER-IN High Time 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

"-V>-~~<X= "'5~ . 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 20V FOR A LOGIC 1 
AND 0 ev FOR A LOGIC 0 ) 

WAVEFORMS 

READ 

- CE(I155H) 

OR 

CE18111111) Jf-

101M \ 

7 .x ADDRESS 

'AD 

-tAL - -tLA -

Al E J \ 
-'LL-

8155H/8156H 8155H-218156H-2 

Min. Max. Min. Max. 
400 300 

50 0 

.120 100 

400 300 

400 300 

400 300 

400 300 

400 300 

·10 10 

80 46 

120 70 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

~CL=150PF TEST 

CL = 150pF 
CL INCLUDES JIG CAPACITANCE 

~ 

1\ / 

/ ~ 

~ DATA VALID ~ 

/ 
_tRDE_ I-tRDF-

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

\-'RO- V I\.--
-tLC- -'CL-

r---'CC- -'RV-, 

-,,j',' 2-39 AFN-0196OC 



inter " 8155H/8156H/81SSIi .. 2/8156H-2 

WAVEFORMS (Continued) 

WRITE 

CE (81&&H ) \ ( /\ 
OR 

CE (8158H ) / ~I\ / 
\ 

101M , \ V \ 

~ ADDRESS K ~ DATA VALID K 
~'Al- - t lA ----- -+---tow~ ----·el-

ALE / -'\ -.1 
------- ,tLL -------.. -+--- t LC ----+- ~two~ 

, 

V I\-
I-tcc~ I--tRV -

STROBED INPUT 

BF / ___ -oJ 

'RB,-I+--

INTR 

INPUT DATA \ii V 
FROMPORT ______ ~~I.-~_-I--.:fI'\.;.Jo..-----------------

2-40 AFN-Ol960C 



intJ 8155H/8156H/8155H-2/8156H-2 

WAVEFORMS (Continued) 

STROBED_O_U_T_P_U_T ________ --'J~\ \~ ______ _ 
rtRO:: L);/ 

t WB' -+------+1 J_~ 
~ / 7~-
'I~---~-J~~----------------------------' 

INTR 

WR-----tw'\k-)' Jf-

OUTPUT DATA 
TO PORT 

BASIC INPUT 

~_tRPf-bl tPR-~ _ 

'NPUT ==::x~--------

RD 

DATA BUS· ~ = = = = = -=-x _________ _ 

TIMER OUTPUT COUNTDOWN FROM 5 TO 1 

TIMER IN 

TlMER,QUr 
IPULSEI 

TlMEROUT 
ISQUARE WAVEI ~ 

LOAD COUNTER FROM CLR ___ I 
I 2 I 1 

" INOTE 1) " '- ___ J 

" (NOTE 1 I " ~ ________ J 

NOTE 1 THE TIMER OUTPUT IS PERIODIC IF IN AN AUTOMATIC 
RELOAD MODE 1M, MODE BIT = 1) 

BASIC OUTPUT 

\ '-----tf---- ' '''".':.::: -=--=--=--}(- t 
OUTPUT 

-DATA BUS TIMING IS SHOWN IN FIGURE 7 

RELOAD COUNTER FROM CLR 

I 2 I 1 

2-41 



inter ,"I' 

8155/8156/8155-2/8156-2 . . ... 
2048 BIT STATIC MOS RAM WITH 1/0 PORTS AND TIMER 

• 256 Word x. 8 Bits 

• Single +5V Power Supply 

• Completely_ Static Operation 

• Internal Address Latch 

• 2 Programmable 8 Bit 1/0 Ports 

• .1 Programmable 6-Blt 1/0 Port 
• Programmable 14-Blt Binary Counterl 

Timer 
• Compatible with 8085A and 8088 CPU 
• . Multiplexed Address and Data Bus 

• 40 Pin DIP 

The 8155 and B156 are RAM and I/O chips to be ·used in the BoSsA· and B088 microprocessor systems. The RAM portion 
is designed. with 2048 static cells organized as 256 x B. They have a maximum access time of 400 ns to permit use with 
,no wait states in B085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use with the B085A-2 and the 
5 MHz !l088 CPU. 

The 1/0 portion consists of three general purpose 1/0 ports. One of the three ports can be programmed to be status 
pins, thus allowing the other two ports to operate in handshake mode. . 

A 14-blt programmable counter/timer is also included on chip to provide either a square wave or terminal count pulse 
for the CPU system depending on timer mode. 

pc. :vee 

pc. pc. 

101M 

G 
TlI\1ER IN PC, 

PAo-7 
RESET PCG 

t ADo'7 
PCs PB7 

256 X8 TIMER OUT PBs 
STATIC 

101M PB. RAM 

G 
* , CE OR CEo PB. 

PBo-7 RD PB. 
ALE WR PB. 

RD ALE PB, 

iiiiR 

G 
ADo PBG 

PCO- 5 
AD, PA7 

RESET TIMER AD. P~ 
AD. PAs 

AD. PA. 
TIMER ClK Vee (+5VI ADs PAl 
TIMER OUT Vss (OVI AD. PA. 

AD7 PA, 

• 8155/8'55,2 = CE. 8158/8156·2 = CE 
V .. Plio 

Flgure·1. Block Diagram FIgure 2. Pin Configuration 

2-42 AFN-0020'D 



intJ 8155/8156/8155-218156-2 

ABSOLUTE MAXIMUM RATINGS· 

TemperatureUnderBias ••••.......•.•.• O·Cto+70·C 
Storage Temperature •••..•....•••.. -55·Cto +150·C 
Voltage on Any Pin 

With Respect to Ground ...••..•••••••. -o.5V to +7V 
Power Dissipation •..•••.•••..•••..•.••••.•••.• 1.5W 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functlona; ope,a~ 
tlon of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi­
m/lm rating conditions for extended perIods may affect 
device reliability. 

D.C. CHARACTERISTICS ITA = O°C to 70°C; Vee = 5V ± 5%) 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vcc+O·5 V 

'bL Output Low Voltage 0.45 -V IoL = 2mA 

'bH Output High Voltage 2.4 V IoH = -40011A 

k Input Leakage ±10 IIA OV EO VIN EO Vee 

ILO Output Leakage Current ±10 IIA O.45V ...; VOUT ...; Vee 

Icc Vee. Supply Current . 180 mA 

IldCE) Chip Enable Leakage 
8155 +100 /loA OV EO VIN EO Vee 
8156 -100 /loA 

2-43 AFN-00201D 



, 

8155/8156/8155-2/8156-2 
, " "', r . ; .J f 

A.C. CHARACTERISTICS ITA = oOc to 70°C; Vee = 5V ± 5%) 

" " 8155/8156, 815,6-21815&:2 . , 
.. : SYMBOL ~ARAMETER 

" 
MIN. MAX. MIN. MAX. UNITS 

tAL' 
, Address to, Latch Set Up Time 50 30 AS 

, 
Address Hold Til'(1e after Latch lK) 30 tUl, ns 

'tle Latch to R EAD/WR ITE Control 100 40 ns 

tRD Valid Data Out Delay from READ Control 170 140 ns 

tAD Address Stable to Data Out Valid 400 330 ns 

tll Latch Enable Width 100 70 ns 

tRDF Da~a Bus Float ~fter, READ 0 100 0 " 80 ns 
, 

tel I 
REAO/W,RITE Control to Latch Enable 20 10 ns 

"' tee READ/WRITE Control Width 250 200 ns 

tow Data In to WR ITE Set Up Time 150 100 ns 

two Dat~ In Hold Time After WRITE 25 25 ns 

tRY Recol(ery Time Between Controls 300 200 ns 

twp WRITE to Port Output 400 300 ns 

tPR Port Input &tup Time 70 50 ns 

tRP Port Input Hold Time 50 10 ns 

tSBF Strobe to Buffer Full 400 300 ns 

tss Strobe Width 200 150 ns 

tRBE :1'1 EAD to Buffer Empty 400 300 ns 

tSI 
, 

Strobe to INTR On 400 300 ns 

tROI READ to INTR Off 400 300 ns 

tpss Port &tup Time to Strobe Strobe 50 0 ns 

tPHS Port Hold Time After Strobe 120 100 ns 

tSBE Strobe to Buffer Empty 400 300 ns 

tWBF WRITE to Buffer Full 400 300 ns 

tWI WRfTEto INTR Off 400 300, ns 

tTL TIMER·IN to TIMER·OUT Low 400 300 ns 

tTH TIMER·IN to,TlMER·OUT High 400 300 ns 

tRDE Data B,!s Enable from READ Control 10 10 ns 

t1 TIMER·IN Low Time 80 40 ns 

t2 TIMER·IN High Time 120 70 , ns 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

•• ~U· "')C > TEST POINTS < 
O.B O.B 

0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1" AND 0 45V FOR 
A LOGIC o· TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 08V FOR A LOGIC 0 

2-44 

DEVICE 
UNDER rrC':150 PF 

TEST 

C, = 150pF 
C, INCLUDES JIG CAPACITANCE 

, AFN-00201P 



inter 
8185/8185-2 

1024 x 8-BIT STATIC RAM FOR MCS-SS-

• Multiplexed Address and Data Bus 

• Directly Compatible with 8085A 
and IAPX 88 Microprocessors 

• Low Operating Power Dissipation 

• Low Standby Power Dissipation 

• Single +5V Supply 

• High Density 18·Pln Package 

The IntelllD 8185 is an 8192-bit static random access memory (RAM) organized as 1024 words by 8-bits using N-channel 
Silicon-Gate MOS technology. The multiplexed address and data bus allows the 8185 to, interface directly to the 8085A and 
iAPX 88 microprocessors to provide a maximum level of system integration. 

The low standby power dissipation minimizes system power requirements when the 8185 is disabled. 

The 8185-2 is a high-speed selected version of the 8185 that is compatible with the 5 MHz 8085A-2 and the5 MHz iAPX 88. 

ADo Yee 

es AD, lID 

CE, AD2 WR 
~ IIIW lID LOGIC ADa AU: 
WR 

ALE AD, es 
AD. CE, 

AIle CE2 

AI>, As 
DATA lK ., 

ADo-AI>, BUS RAM vss As MEMORY BUFFER ARRAY 

ADcr-AD7 ADDIIES1I/IIATAUNES 
As.Ag _UNES' 
cs CHIPIELECT 
CE, CHIP ENAIILE (10/11) 

As. As =====L---=J ALE 
CE2 CHIP ENAIIU! 
ALE _ LATCH ENABLE 

WR WRITE ENABLE 
r 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporation As.um •• No Responlibltty for the Uae of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Circuit Patent Licene •• .,.Implled 

, @INTEL'CORPORATION, '9ao 245 A~l230C 



8185/8185-2 

FUNCTIONAL DESCRIPTION 
The 8185 has been designed to provide for direct interface 
to the multiplexed bus sfructure and bus timing of the 
8085A microprocessor. 

At the beginning of an 8185 memory access cycle, the 8-
bit address on ADo-7, As and As, and the status of CEl and 
CE2 are all latched internally in the 8185 by the falling edge 
of ALE. If the latched status of both CEl and CE2 are 
active, the 8185 powers its!!1f up, but no action occurs until 
the CS line goes low and the appropriate Ri5 or WR control 
signal Input is activated. 

The Cs input is not latched by the 8185 In order to allow 
the maximum amount of time for address decoding in 
selecting the 8185 chip. Maximum power consumption 
savings will occur, however, ohly when CEl and CE2 are 
activated selectively to power down the 8185 when it is not 
in use. A possible connection would be to wire the 8085A's 
101M line to the 8185's CElinput, thereby keeping the 
8185 powered down during 1/0 and interrupt cycles. 

Table 1. 
Truth Table for 

Power Down and Function Enable 

CEl CE2 CS (CS*)12]' 8185 StatuI i 

1 X X 0 Power Down and 
Function Disablell] 

X 0 X 0 Power Down and 
Function Disablell] 

0 1 1 0 Powered Up and 
Function Disablell] 

0 1 0 1 Powered Up and 
Enabled 

NOTES: • 
X: Don't Care. 
t: Function Disable implies Data Bus in high impedance state 

and not writing. 
2: CS' = (CEl = 0). (CE2 = 1),0 (CS = 0) 

CS' = 1 signifies all chip enables and chip select active 

Table 2. 
Truth Table for 

Control and Data Bus Pin Status 

ADo-7 During Data 
(CS*) RD WR Portion of Cycle 8185 Function 

0 X X Hi-Impedance No Function 

1 0 1 Data from Memory Read 

1 1 0 Data to Memory Write 

1 1 1 Hi-Impedance Reading, but not· 
Driving Data Bus 

NOTE: 
X: Don't Care. 

------

2-46 

DD~ 
Vss Vee 

I I I 
TRAP 

X, X2 RESET IN 
I-HOl.D 

RST7,S HlOA I-
R516,5 

8085A SOD I-
R8T5,5 SID f-
INTR ' S, I-
mTA RESeT Sol-ADDR/ OUT 

ADOR OAT A ALE AD WR 101M ROY eLK 

181 181 Vi' T 
[~- CE POR!W 

WR W PORT 8 
Ali 815s B II 

ALE PORT~ 
DATAl C , 
ADDR 

IN 
IO/~ TIMER f:= RESET OUT 

'OW 

Ali 

ALE 

~ PORT 

[t- CE A 

~= 
-" As to 

: 8355/ 
8755A 

DATAl 
ADDR 

101M pV PORT 

RESET B 

ROY 

...- ClK 

.1 1 J t 
Vss Vee Voo PROG 

WR 

RD 

CE, 8185 
ALE 

I~- CS, eE2 

I~- As. Ag 

A°0-7 

t vL Vss 

Figure 3. 8185 in an Me8-85 System 

4 Chips: 
2K Bytes ROM 
1 .25K Bytes RAM 
38 liD Lines 
1 CounterlTimer 
2 Serial I/O Lines 
5 Interrupt Inputs 

Vee 

Vee 

AFN-Q1230C 



inter 8185/8185-2 

IAPX 88 FIVE CHIP SYSTEM: 

• 1.25 K Bytes RAM 
• 2 K Bytes ROM 
• 38110 Pins 
• 1 Internal Timer 
• 2 Interrupt Levels 

Vss Vee 

j j 
I It- ~ POR1~ 

~j----_WR ~ 
Rii POR~ (8) 

8155-2 

ALE PORT~ 
DATAl C (6) 

ADOR 

\. 

IN_ 
101M TIMER 

RESET 
OUT I--

As A19 ADDR 
.. ", 

lOW 

'Rii 

~ ADDRIDATA ~ ADo- AD7 ALE 
PORT ~ ,--- ClK V ~~ CE A 

?~ 
~. Ae•1o 

8088 -V 8355-21 
,--- READY 8755A·2 

MNIMX -Vee 
DATAl 
ADOR 

Vee 

~4-
? '''., GND 

~ MANUAL 
GND RESET 

(VSS) 

rDl ALE f-- c-- 101M PORT ~ ,- RST ® Rii f-- f--f- ..---- RESET B 
X, X, 

WR f--ClK I READY 
Vee 

READY t-- 101M f-- iOR ..J 

RES LpROG 

,--- f-- 111 8284A 
RESET f-- Vss Vee Voo 

RCYl Vee 

- ViR 

.... Rii 

CD eEt. 81.2 
ALE 

If-- es. 
Irf-- CE, 

\-- As. Ag 

ADO_7 

1 1 
v's Vee 

Figure 4. iAPX 88 Five Chip System Configuration 

2-47 AFN-OI230C 



,8185/8185-2 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias ...•......•... o·c to +70·C 
Storage Temperature .•...•.•.••... -65·C to +150·C 
Voltage on Any Pin 

with Respect to Ground .............• -0.5V to +7V 
Power Dissipation ..••••...••.................. 1.5W 

-NOTICE: Stresses above those'listed under "Absolute 
Maximum Ratings" may cause permanent' damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = o·c to 70·C. Vee = 5V ± 5%) 

Symbol Parameter Min. Max. Units Test Conditions 

Vil Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee+0.5 V 

VOL Output Low Voltage 0,45 V IOl = 2mA 

VOH Output High Voltage 2.4 IOH = - 400!,A 

ill Input Leak'age ±10 !,A OV ,;;VIN .;;VCC 

IlO Output Leakage Current ±10 IJA 0.4SV ::;; VOUT ::;; Vee 

Icc Vce Supply Current 
Powered Up 100 mA 
Powered Down 35 mA 

A.C. CHARACTERISTICS (TA = o·c to 70·C. Vee = 5V ± 5%) 

8185 8185-2 

Symbol Parameter Min. Max. Min. Max. Units 

tAL Address to Latch Set Up Time 50 30 ns 

tlA Address Hold Time After Latch 80 30 ns 

tLe Latch to READ/WRITE Control 100 40 ns 

tRO Valid Data Out Delay from READ Control 170 140 ns 

lLo ALE to Data Out Valid 300 200 ns 

. ILL Latch Enable Width 100 70 ns 

tROF Data ~us Float After READ 0 100 0 80 ns 

tel READ/WRITE Control to Latch Enable 20 10 ns 

tee READ/WRITE Control Width 250 200 ns 

tow Data In to WRITE Set Up Time 150 150 ns 

two Data In Hold Time After WRITE 20 20 ns 

tse Chip Select Set Up to Control Line 10 10 ns 

tcs , Chip Select Hold Time After Control 10 10 ns 

tAleE Chip Enable Set Up to ALE Falling 30 10 ns 

tlACE Chip Enable Hold Time, After ALE 50 30 ns 

2-48 AFN·01230C 



inter 8185/8185-2 

A.C. TESTING INPUT, O~TPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

u~u ")C > TEST POINTS < 
OAS 0.8 0,' 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "I" AND 0 45V FOR 
A LOGIC "0" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC "I" 
AND 0 81/ FOR A LOGIC "0 " 

WAVEFORM 

ALE 

(CE,-O). 

ICE2'" 

WR,Fffi 

ADo-AI>, 
IA., A,) 

ADO·AD? 

\'--_-.J.I_~ 
ISELECTED) 

2-49 

, 

DEVICE 
UNDER 

IJCL_nOPF 
TEST 

CL = 150'pF 
CL INCWDES JIG CAPACITANCE 

(READ CYCLE) 

~-----~c--~---'I 

(WRITE CYCLE) 

IDESELECTED) 

AFN-0123OC 



8205 
HIG·H SPEED 1 OUT OF 8 BINARY DECODER 

• 1/ 0 Port or Memory Selector 

• Simple Expansion - Enable Inputs 

• High Speed Schottky Bipolar 
Technology - 18ns Max. Delay 

• Directly Compatible with TTL Logic 
Circuits 

• Low Input Load Current - .25 mA 
max., 1/6 Standard TTL Input Load 

• Minimum Line Reflection - Low 
Voltage Diode Input Clamp 

• Outputs Sink 10 mA min. 
• 16·Pin Dual·ln·Line Ceramic or 

Plastic Package 

The Intele 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and memory 
components with active low chip select input. When the 8205 is enabled, one of its 8 outputs goes "low," thus a single row 
of a memory system is selected. The 3-chip enable inputs on the,8205 allow easy system expansion. For very large systems, 
8205 decoders can be cascaded such that each decoder can drive.8 other decoders for arbitrary memory expansions. 

The 8205 is packaged in a standard 16-pin dual in-line package, and its performance is specified over the temperature 
range of O°C to + 75°C, ambient. The use of Schottky barrier diode clamped transistors to obtain fast switching speeds 
results in higher performance than equivalent devices made with a gold diffussion process. 

AO 

A, Ao 16 Vee 

A, A, 15 0 0 

A, 14 0, 
8205 

E, 13 0, 
8205 

E, E, 12 03 

E, E3 11 0, 

E, 0, 10 °5 
GRD ,.9 0 6 

ADDRESS ENABLE OUTPUTS 

" " " E, E, E, a , 2 , 4 G G I 

L L L L L H L H H H H H H H 
H L L L L H H L H H H H H H 
L H L L L H H H L H H H H H 
H H L L L H H H H L .H H H H 
L L H L L H H H H H L H H H 
H L H L L H H H H H H L H H 
L H H L L H H H H H H H L H 
H H H L L H H H H H H H H L 
X X X L L L H H H H H H H H 

AO A2 ADDRESS INPUTS 

E 1 E3 ENABLE INPUTS 
X X X H L L H H H H H H H H 00 0, DECODED OUTPUTS 
X X X L H L H H H H H H H H 
X X X H H L H H H H H H H H 
X X X H L H H H H H H H H H 
X X X L H H H H H H H H H H 
X X X H H H H H H H H H H H 

Figure 1. Logic Symbol Figure 2. Pin Configuration 

2·50 



8205 

FUNCTIONAL DESCRIPTION 

Decoder 

The 8205 contains a one out of eight binary decoder. It ac­
cepts a three bit binary code and by gating this input, creates 
an exclusive output that represents the value of the input 
code. 

For example, if a binary code of 101 was present on the AO, 
A 1 and A2 address input lines, and the device was enabled, 
an active low signal would appear on the ii5 output line. 
Note that all of the other output pins are sitting at a logic 
high, thus the decoded output is said ~o be exclusive. The 
decoders outputs will follow the truth table shown below in 
the same manner for all other input variations. 

Enable Gate 

When using a decoder it is often necessary to gate the out­
puts with timing or enabling signals so that the exclusive 
output of the decoded value is synchronous with the overall 
system. 

The 8205 has a bu ilt·in function for such gating. The three 
enable inputs (Ei, E2, E3) are ANDed together and create 
a single enable signal for the decoder. The combination of 
both active "high" and active "low" device enable inputs 
provides the designer with a powerfully flexible gating func­
tion to help reduce package count in his system. 

2-51 

... 
A, 

A, 

E, 
r, 
E, 

ADDRESS 

Ao A, Az 

L L L 
H L L 
L H L 
H H L 
L L H 
H L H 
L H H 
H H H 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 
X X X 

ENABLE GATE 

Figure 3. 

ENABLE 

E, E, E3 

L L H 
L L H 
L L H 
L L H 
L L H 
L L H 
L L H 
L L H 
L L L 
H L L 
L H, L 
H H L 
H L H 
L H H 
H H H 

0-; 

6~ 

0, 

if) 
DECODER 

0; 

0; 

o~ 

0; 

(f; E2 E3) 

Enable Gate 

OUTPUTS 

a 1 2 3 4 S 6 7 

L H H H H H H H 
H L H H H 'i H H 
H H L H H H H H 
H H H L H .., H H 
H H H H L H H H 
H H H H H L H H 
H H H H H H L H 
H H H H H H H L 
H H H H H H H H 
H H H H H H H H 
H H H H H H H H 
H H H H H H H H 
H H H H H H H H 
H H H H H H H H 
H H H H H H H H 

AFN-Q0204C 



inter 8205' 

Applications of the 8205 

The 8205 can be used in a wide vllriety of applications in 
microcomputer systems. 1/0 ports can be decoded from the 
address bus, chip select signals can be generated to select 
memory devices and the type of machine state such as in 
8008 systems can be derived from a simple decoding of the 
state lines (SO, S1, S2) of the 8OO8,CPU. . ' 

I/O PORT DECODER 

Shown in the figure below is a typical application of the 
8205. Address input lines are decoded by a, group of 8205s 
(3). Each input has a binary weight. For example, AO.is as· 
signed a value of 1 and is the LSB; A4 is assigned a value of 
16 and is the MSB: By connecting them to the decoders as 
shown, an active low signal that is exclusive in nature and 
represents the value of the input address lines, is available at 
the outputs of the 8205s. 

This circuit can be used to generate enable signals for 1/0 
ports or any other decoder related application. 

Note that no external gating is required to decode up to 24 
exclusive devices and that a simple addition of an inverter 
or two will allow expansion to even larger decoder net· 
wor1<s. 

CHIP SELECT DECODER 
USing a very similar circuit to the 1/0 port decoder, an ar-

., ., 0, 

A, A, 

A, ., 
8206 

A, E, 

A, E, 

'N E, 

., 
A, 

A, 1. 
11 

PORT .... 
" 

NUMBERS 

E, 13 

EN ;; 14 

E, " 
., ,. 
A, 17 

A, " ,. 
.205 2. 

E, 21 

EN E, 22 ., 23 

Figure 4. 110 Port DeCQder 

2-52 

ray of 8205s can be used to create a simple interface to a 
24K memory system. 

The memory devices used can be either ROM or RAM and 
are 1 K in storage capacity. 2708s and 2114As are devices 
typically- used for-this application. This type of melTlory 
device l:1as ten (10) addrel!s inputs .and an active "low" 
chip select (CS). The lower order address bits AQ-A9' 
which come from the microprocessor are "bussed" to all 
memory elements and the chip select to enable a specific 
device or group of devices comes from the array of 82058. 
The output of the 8205 is active low so it is directly compat­
ible with the memory components. 

Basic operation is that the CPU issues an address to identify 
a specific memory location in whiC;h it wishes to "write" or 
"read" data. The most. significant address bits A 10-A 14 are 
decoded by the array of 8205s and an exclusive, active low, 
chip select is generated that enables a specific memory de­
vice. The least significant ~ddress bits AO-A9' ide~tify a 
specific location Within the selected device. Thus, all ad' 
dresses throughout the entire memory array are exclusive 
in nature and are non-redundant. 

This technique can be expanded almost indefinitely to sup­
port even farger systems with the additi,!n of a few inverters 
and an extra decoder (8205). 

., .. IL ________ > ~~MORIES 

A" 

Au 

Au 

A" 

Au 

V" 

, 

GNO 

A, 

A, 

A, 

E, 

e; 
E, 

I 
~ ., 
-A, 

-A, 

E, 

I 
;; 
E, 

, 

I 
~., 

L=:A' 
A, 

E, 

;; ., 

8 ... 

'Z05 

8206 

0, :>--' cs, 
0, :>--' CS, 

es, 

CS, 
es, 

0; :>--' 

0; :>--' 
0; =>=--, 
~ :>--' 

0, :>--' 

0, :>--' 

0. :>--' 

0; :>--' 

0, :>--' cs" 
0,:>--' fS';, CHIP 

0; P'--
o,p----
0; p----
o;p----

o,p----
o,p----
o;p----
0, p----
0; :>--

0; D---

0. :>---

0; :>---

~ SELECTS 

CS;; 

es,. 
cr., 

Figure 5. 24K Memory Interface 

AFN-G0204C 



inter 8205 

ABSOLUTE MAXIMUM RATINGS· 
Temperature Under Bias: 

Ceramic .......................... -65°C to +125°C 
Plastic ............................ -65°C to + 75°C 

Storage Temperature ............... -65°C to +160°C 
All Output or Supply Voltages ........ -0.5 to +7 Volts 
All Input Voltages .................. -1.0 to +5.5 Volts 
Output Currents ............................. 125 rnA 

-NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or at any other condition above 
those indicated in the operational sections of this specifi­
cation is not .implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = O°C to + 75°C, Vee = 5V ±5%) 

Limit 
Symbol Parameter f-Mln~- Max.- Unit Test Conditions 

IF INPUT LOAD CURRENT -025 rnA Vee = 5.25V. V F - 0.45V 
._------ -_. 

IR INPUT LEAKAGE CURRENT 10 ~A Vee = S 25V. VR = S.2SV 

Ve INPUT FORWARD CLAMP VOLTAGE -10 V Vee = 4 75V. Ie = -5.0 rnA 
.---~ 

VOL OUTPUT "LOW" VOLTAGE 045 V Vee = 4.7SV. IOL = 10.0 rnA 
.. ---- -- ------

VOH OUTPUT HIGH VOLTAGE 24 V Vee =4.75V.l oH = -1.SrnA 
._---------_. ------ - --- -----_.- -_. --

VIL INPUT "LOW" VOLTAGE 085 V Vee = 5 OV 
-- .... ------- "-

VIH INPUT "HIGH'" VOLTAGE 20 V Vee = 5.0V 
-------f---- ------ ----- ---

Ise OUTPUT HIGH SHORT -40 -120 rnA Vee = S.OV. VOUT = OV 
CIRCUIT CURRENT 

-------. 
Vox OUTPUT "LOW" VOLTAGE 08 V Vee = S.OV. lox = 40 rnA 

@ HIGH CURRENT 

lee POWER SUPPL Y CURRENT 70 rnA Vee = S 25V 

A.C. CHARACTERISTICS (TA = O°C to + 75°C, Vee = 5V ±5%; unless otherwise specified) 

Symbol Parameter Max. Limit Unit 

'++ 18 ns 

t -+ ADDRESS OR ENABLE TO 18 ns 

t+ 
OUTPUT DELAY 18 ns 

t 18 ns 

CIN 
(1) INPUT CAPACITANCE P8205 4(typ.) pF 

C820S S(typ) pF 

1 ThIS parameter IS periodically sampled and IS not 100°'0 tested 

TYPICAL CHARACTERISTICS 

;( 
! .. 

80 

~ 60 
0: 
0: 

" c.> 

OUTPUT CURRENT VS. 
OUTPUT "LOW" VOLTAGE 

~I 40 I--+--+--t-~-It-

~ 
" o 

20 t-+--t--fJo¥+---+ 

OUTPUT' lOW" VOL TAGE (VI 

10 

OUTPUT CURRENT VS. 
OUTPUT "HIGH" VOLTAGE 

10 + 
;( 
! .. 20 
~ 
0: 
0: 

B 
·30 .. 

~ 
" 0 

-40 

OUTPUT 'HIGH VOLTAGE (VI 

2-53 

Test Conditions 

f = 1 MHz. Vee = OV 
vBIAS = 2.0V. TA = 250 e 

DATA TRANSFER FUNCTION 
50 

40 

20 

10 

o 2 4 6 8 10 1214 16 18 20 

INPUT VOLTAGE (V) 

AFN.Q0204C 



inter 

TYPICAL CHARACTERISTICS (Continued) 

ADDRESS OR ENABLE TO OUTPUT 
DELAY VS. LOAD CAPACITANCE 

20 r----------

OL-__ ~ __ L_ __ L_ _ __J 

o 50 100 150 200 

LOAD CAPACITANCE (PF) 

SWITCHING CHARACTERISTICS 

8205 

ADDRESS OR ENABLE TO OUTPUT 
DELAY VS. AMBIENT TEMPERATURE 

20 r-------------, 

t+_.t __ 

--------~~----------

'++ 

AMBIENT TEMPEI1ATURE ("C) 

TEST LOAD 

CONDITIONS OF TEST: TEST LOAD: 

Input pulse amplitudes: 2.5V 

Input rise and fall times: 5 nsec 
between 1 V and 2V 

Measurements are made at 1.5V 

WAVEFORMS 

ADDRESS OR ENABLE 
INPUT PULSE 

OUTPUT 

----I 

390n 

All TransIstors 2N2369 or EQUivalent CL = 30 pF 

\ 
I '---, --------

-..It_+,t __ ,"'-

~--~-----------------~ . . 
______________ J ~ _______________ _ 

2·54 AFN-00204C 



8212 
8-BIT INPUT/OUTPUT PORT 

• Fully Parallel 8-Blt Data Register and Buffer 
• Service Request Flip-Flop for 

Interrupt Generation 
• Low Input Load Current - .2SmA Max. 
• Three State Outputs 
• Outputs Sink 1SmA 
• 3.6SV Output High Voltage for 

Direct Interface to 8008, 80aoA, or 
808SA CPU 

• 'Asynchronous Register Clear 

• ReplaCes Buffers, Latches and 
Multlplexe,. In MicroComputer 
$ystems 

• Reduces System Package Count 

• Available In EXPRESS 
- Standard Temperature Range 
- Ext~nded Temperature Range 

, 
The 8212 Input/output port consists of an 8-bit latch with 3-state output buffers along with control and device selection 
logic. Also Included is a service request flip-flop for the generation and control of interrupts to the microprocessor. 

The device Is multi mode In nature. It can be used to Implement latches, gated buffers or multiplexers. Thus, aU of the 
principal peripheral and input/output functions of a microcomputer system can be implemented with this device. 

SERVICE REOUEST FF 

liD DSZ 

IL> MD ---f+-L..J 

lIT> STB~--4-,-L~ 

'\ 

[[> D IZ --------=<'""-"H 

II> D 14 ---------''""-"H 

§>DIS ------~c-H 

[9DI6-------:--H 

Ill> D'e --------J-H 

(E>CLR-----<t 

Figure 1. logic Diagram 

OS, vcc 
MD INT 

01, 01. 

DO, DOa 
01, 01, 

DO, 00, 

Dl3 016 . 

0°3 0°6 

01. 015 

D0. 0°5 

ST8 CUi 
GND os, 

DI,-olo DATA IN 

00.·Il00 DATA OUT 

DSi-D8z DEVICE SELECT 
MD MODE 
STa STROBE 
INT INTERRUPT CACTIYE LOWI 
CLR CLEAR IACTIYE LOWI 

Figure 2. .Pln Configuration 



8212 

FUNCTIONAL DESCRIPTION 
Data Latch 
The 8 flip-flops that make up the data latch are of a "0" 
type design. The output (0) of the flip-flop will follow the 
data input (0) while the clock input (C) is high. Latching 
will occur when the clock ,(C) returns low. 

The latched data is cleared by an asynchronous reset 
input (CLR). (Note: Clock (C) Overrides Reset (CLR).) 

Output Buffer 
The outputs of the data latch (0) are connected t03-state, 
non-inverting output, buffers. These buffers have a 
common control line (EN); this control line either enables 
the buffer to transmit the data from the outputs of the data 
latch (0) or disables the buffer, forCing the output into a 
high impedance state. (3-state) 

The high-impedance state allows the designer to connect 
the 8212 directly onto the microprocessor bi-directlonal 
data bus. 

Control Logic 
The 8212 has control inputs OS1, OS2, MO and STB. 
These inputs are used to control device selection, data 
latching, output buffer state and service request flip-flop. 

DS1, DS2 (Device Select) 
These 2 inputs are used for device selection. When OS1 is 
low and OS2 is high (OS1 • OS2) the device is selected. In 
the selected state the output buffer is enabled and the 
service request flip-flop (SR) is asynchronously set. 

MD (Mode) 
This input is used to control the state of the output buffer 
and to determine the source of the clock input (C) to the 
data latch. 

When MO is high (output mode) the output buffers are 
'enabled and the source of clock (C) to the data latch is 
from the device selection logic (OS1 • OS2). 

When MO is low (input mode) the output buffer state is 
determined by the device selection logic (DS1' OS2) and 
the source of clock (C) to the data latch is the STB 
(Strobe) input. 

STB (Strobe) 
This input is used as the clock (C) to the data latch for the 
input mode MO = 0) and to synchronously reset the 
service request flip-flop (SR). 

Note that the SR flip-flop is negative edge triggered. 

Service Request Flip-Flop 
The (SR) flip-flop is used to generate and control 
interrupts;n microcomputer ,systems. It is asynchron-

, ouslyset bytheCLR input (active low). When the (SR) flip­
flop is set it is in the non-interrupting state. 

The output of the (SF'll) flip-flop (0) is/connected to an 
inverting input of a "NOR" gate. The other input to the 
"NOR" gate is non-inverting and is connected to the 
device selecti2!Llogic (OS1 • OS2). The output of the 
"NOR" gate (INT) is active low (interrupting state) for 
cO.nnection to active low input priority generlltlng circuits. 

IT> os, 
@>OS2 

SERVICE REQUEST FF 

[I> MO ---+H_'" 
[IT> ST 8 ~-....... --t._,/ 

IT> 0', ---------+-+1 

[E> D '2 --------=-+1 

[E> D', ---------+.-+I 

Ii§> D 's ----------t-+l 

§> D'8-------~_ti 

OUTPUT 
BUFFER 

DO,@> 

rsTBMO---iD5, D~TAOUT EauAiSl eLA los, 082) STB 
! 0 0 0 . 3 STATE 1 0 • 4 0 

r ~ ~ ~ ~!~~TLEA'tCH I ~ ~ 
i' 1 0 DATA LATCH '1 0 

o 0 , DATA LATCH. j 1 0 

: 6 . ~ ~ g~+: :~I " ; '- ' 
L~ l,! 1 DATA IN ---' -INTERNAL SR F'LIP FLOP 

eLA - RESETS DATA LATCH 
SETSSR FLIP FLOP 
(NO EFFECT ON OUTPUT BUFFER! 

2-56 AFN.()()731C 



ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias Plastic ..••..• O·C to +70·C 
Storage Temperature ••..•..•...... -65~C to +160·C 
All Output or Supply Voltages •..••.•• -0.5 to +7 Volts 
All Input Voltages .................. -1.0 to 5.5 Volts 
Output Currents ............................. 100mA 

8212 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
. tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA=O°C to +-75°C, Vcc= +5V ± 5%) 

Symbol Parameter 

IF Input Load Current, ACK. OS2, CR, 
011-01s Inputs 

IF Input Load Current MO Input 

IF Input Load Current OS1 Input 

IA Input Leakage Current, ACK, OS, CR, 
011-01s Inputs 

IA Input Leakage Current MO Input 

IA Input Leakage Current OS1 Input 

Ve Input Forward Voltage Clamp 

VIL Input "Low" Voltage 

VIH Input "High" Voitage 

VOL Output "Low" Voltage 

VOH Output "High" Voltage 

Ise Short Circuit Output Curr!!nt 

1101 Output Leakage Current High 
Impedance State 

lee Power Supply Current 

CAPACITANCE· (F = lMHz, VBIAS = 2.5V, 
Vee = +5V, TA = 25°C) 

Limits 
Symbol Telt 

Typ. Max. 

CIN OS1 MO Input Capacitance 9pF 12pF 

CIN OS2, CLR, STB, 01,-0Is 
Input Capacitance 5pF 9pF 

COUT 001-00a Output Capacitance 8pF 12pF 

"This parameter is sampled and not 100% tested. 

A.C. TESTING LQAD CIRCUIT 

-rVcc 

DEVICE 
UNDER 

TEST 

CL INCWDES JIG CAPACITANCE 

R, 

Limits 
Unit Test Conditions 

Min. Typ. Max. 

-.25 mA VF = .45V 

-.75 mA VF = .45V 

-1.0 mA VF - .45V 

10 p.A VA '5, Vce 

30 p.A VA '5, Vce 

40 p.A VA '5, Vee 

-1 V Ie - -5mA 

.85 V 

2.0 V 

.45 V 10L -15mA 

3.65 4.0 V 10H = -lmA 

-15 

~-57 

-75 mA Vo - OV, Vee - 5V 

20 p.A Vo = .45V/5.25Vee 

90 130 mA 

SWITCHING CHARACTERISTICS 
Conditions 01 Test 

Input Pulse Amplitude = 2.5V 
Input Rise and Fall Times 5ns 
Between lV and 2V Measurements made at 1.5V 
with 15mA and 30pF Test Load 

NOTE: 
1 Test 

tPD. tWE, tR, ts, tc 

tE, ENABLEI 

tE, ENABLE I 

tEo DISABLEI 

te. DISABLEI 

CL· 

30pF 

30pF 

. 30pF 

5pF' 

5pF 
,. 

"Includes probe and JIg capacItance. 

R, R2. 

3000 6000 

10KO lKl) 

3000 6000 

3000 6000 

10KO lKO 

AFN-<)0731C 



inter 8212 

A.C. CHARACTERISTICS (TA'" O"C to +7o·c: vcc = +5V ± 5%)" 

Limit. 
Te.t CQndltlon. Symbol Parameter Unit 

Min. Typ. Max. 

tpw Pulse Width 30 

tpo Data to Output Delay 30 

tWE Write Enable to Output Delay 40 

tSET Data Set Up Time 15 

tH Data Hold Time 20 

tR Reset to Output Delay 40 

ts Set to Output Delay 30 

tE Output Enable/Disable Time 45 

tc Clear to Output Delay 55 

"Note: For extended Temperature EXPRESS use M8212 AC Electncals Parameters. 

APPLICATIONS 

Basic S~hematlc Symbols 

ns 

ns Note 1 

ns Note 1 

ns 

ns 

ns Note 1 

ns Note 1 

ns Note 1 

ns Note 1 

Two examples of ways to draw the 8212 on system schematics-(l) the top being the detailed view showing pin numbers. 
and (2) the bottom being the symbolic view showing the system input or output as a system bus (bus containing 
8 parallel lines). The output to the data bus is symbolic in referencing 8 parallel lines. 

INPUT DEVICE 

---...,,, 
~ 01 STB DO : 

16 ,. 8212 

GND 

• 
10 
15 
17 

(DETAllEDf 

, (SYMBOLIC) 

DATA BUS 

OUTPUT DEVICE 

" 
01 

ST. 
DO 

4 
6 

10 
16 8212 15 ,. 17 
20 ,. 
22 !NT CLR 21 
23 MD 14 

SYSTEM 
OUTPUT 

Figure 3. Basic Schematic Symbols 

Gated B'uffer (3-State) 
The simplest use of the 8212 is that of a gated buffer. By 
tying the mode signal low and the strobe input high. the 
data latch is' acting as a strai,ght through gate, The output 
buffers are then enabled from the device selection logic' 
i5S1 and DS2. 

When the device selection logic is false. the outputs are 3-
state. ' 

When the device selection logic is true. the input data from 
the system is directly transferred to the output. The input 
data load is 250 micro amps. The output data can sink 15 
milli amps. The minimum high output is 3.65 volts. 

2-58 

Vee -..,....-------, 

INPUT 
DATA 
(250 ,.AI 

STB 

GATING { 
CONTROL 
168100821 ---____ --' 

Figure 4. Gated Buffer 

OUTPUT 
DATA 
("SmA) 
(36SV MIN) 

AFN'()()731C 



Bi-Directlonal Bus Driver 
A pair of 8212's wired (back-to-back) can be used as a 
symmetrical drive, bi-dlrectional bus driver. The devices 
are controlled by the data bus input control which is 
connected to OS1 on the first 8212 and to OS2 on the 
second. One device Is active, and acting as a straight 
through buffer the other is In 3-state mode. This is a very 
useful circuit In small. system design. 

DATA r-----'" 
BUS 

DATA BUS 
CONTROL 
10, L - A) 
II" A - L) 

STB 

8212 

STB 

GND 

.--'-----,. DATA 
BUS 

Figure 5. Bidirectional Bus Driver 

Interrupting Input Port 
This use of an 8212 is that of a system input port that 
accepts a strobe from the system input source, which in 
turn clears the service request flip-flop and interrupts the 
processor. The processor then goes through a service 
routine, identifies the port, and causes the device 
selection logic to go true - enabling the system input data 
onto'the data bus, 

SYSTEM 
INPUT 

SYSTEM 
RESET, 

SELECTION 

STB 

PORT { 

IDS'.DS2) ------' 

DATA 
BUS 

+-___ T;>c~f~~RlI6~)CKT 
OR • 

TO CPU 
INTERRUPT INPUT 

Figure 6. Interrupting Input Port 

8212 

Interrupt Instruction Port 
The 8212 can be used to gate the interrupt instruction, 
normally RESTART instructions, onto the data bus. The 
device is enabled from the interrupt aCknowledge signal 
from the microprocessor and from a port selection signal. 
This signal is normally tied to ground. (OS1 could be used 
to multiplex a variety of interrupt instruction ports onto a 
common bus). 

RESTART 
INSTRUCTION 
(RST 0 - AST 7) 

STB 

DATA 
BUS 

(BST) PORT SELECTION 

INTERRUPT ACKNOWLEDGE -_-_--' 

Figure 7. Interrupt Instruction Port 

Output Port (With Hand-Shaking) 
The 8212 can be used to transmit data from the data bus to 
a system output. The output strobe could be a hand­
shaking signal such as "reception of data" from the device 
that the system is outputting to. It in turn, can interruptthe 
system signifying the reception of data. The selection of 
the port comes from the device selection logic.( i5S1 • OS2) 

SYSTEM 
INTERRUPT 

DATA 
BUS 

,..---- OUTPUT STROBE 

STB 

SYSTEM OUTPUT 

SYSTEM RESET 

} 
PORT SELECTION 

L_.c.:..___ :~~;'~2~ONTAOL) 

Figure 8. Output Port 

2-59 AFN·00731C 



inter 8212 

808A Status Latch 

Here the 8212 Is used as the status latch for an 8080A 
microcomputer system. The input to the 8212 latch is 
dlreotly from the 8080A.data bus. Timing,shows that when 
the SYNC signal is true, which is connected to the DS2 
input and the phase 1 signal is true, which is a TTL level 
coming from the clock generator; then, the status data will 
be latched into the 8212. 

~ 0, 
O2 
0 3 
0, 

8080A d. 

D. 
0 7 

SYNC 

OBIN 

¢1 02 

22 15 

12Vn 

ovJ \.. • ..L; ~ 

CLOCK GEN. 
80 DRIVER 

10 
9 
8 
7 

3 
4 

5 
6 

19 

r!L-

~TL) 

Note: The mode signal is tied high so that the output on the 
latch is active and enabled all the time. 

~ 
~ 7 

9 
16 
18 
20 
22 

-;i 

,1 

,2 

SYNC 

DATA ~ __ I-I-_ 

STATUS f---f-A.--1 

STATUS 
LATCH 

0, Do 

8212 

CLR 
OS2 MO OS, 

13 12 " 

~ 
~ 
fo-
tt-
"iT 
~ 
1L 

INTA 

STACK 
HLTA 
OUT 
M1 
INP 
MEMR 

OBIN 

DATA BUS 

BASIC 
CONTROL 
BUS 

It is shown that the two areas of concern are the bi­
directional data bus of the microprocessor and the control 
bus. 

2-60 AFN-00731C 



inter 
TYPICAL CHARACTERISTICS 

INPUT CURRENT VS. INPUT VOLTAGE 

-60 

~ ~100 

i a:: -150 
il 
i 
! -200 

-250 

-300-3 

22 

20 

• 

2 

0 1 
-25 

Vee -lsov 
~ ~ 

",I' 

T. -O"C' 
.;'" VT. -2S"C 

""vT. -7S"C 

-2 -1 " '2 

INPUT VOLTAGE (VI 

OUTPUT CURRENT vs. 
OUTPUT "HIGH" VOLTAGE 

OUTPUT "HIGH" VOLTAGE (V) 

DATA TO OUTPUT DELAY 
VB. TEMPERATURE 

Vee =+SDV 

I 

,/', 

):". .. ,." 
1--;' 

...... .... t-- -....... 

25 50 1S 

TEMPERATURE lOCI 

'3 

100 

8212 

2-61 

OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE 

! 
> 

~ 
0 ... 
~ 
:> 
0 
0 ... 
0( 

It 
0 

! 
> 

~ 
0 ... 
~ 
0 
0 ... 
w 

~ z 
w 
w 
!: 
a: 
~ 

l00r------r------r------r----~ 

Vee· +I.OV 

H~----_+------~------+-----~ 

50 

40 

30 

20 

10 

OUTPUT "LOW" VOLTAGE (V) 

DATA TO OUTPUT DELAY 
VS. LOAD CAPACITANCE 

Vee "'~50V 
TA .. 25~C 

r-T 
1 
I 

I \-1""'",-
f-o .... 

.......... 1- l--

~ r-r-I 
-

I 

.... 
~ 

so 100 150 200 250 300 

40 

36 

30 

2S 

20 

15 

10 
-25 

LOAD CAPACITANCE (pF) 

WRITE ENABLE TO OUTPUT DELAY 
VS. TEMPERATURE 

Vee = +5 OV 

I 

I 
I ~!.. ...... ---' r--,,,.or 
f---- ...." 

ST~< ..... t+_ 
OS, 
~-

_ .. 
t __ -OS;< ~ 

25 50 1S 100 

TEMPERATURE rei 

AFN.()()731C 



inter 8212' 

WAVEFORMS 

DATA ,.5VX-- - - - - - -.- -Y,.5V 
------'. I;==tpw ·1' tH :..j'-----

STB •• OS,. OS2 ,.5Vl \: ... '.5_V ______ _ 
I.-- tWE-----I 

-"\1,--------
'OUTPUT __ ....:... ________ ~ ...-/\ ... '._5V ___ · ______ _ 

OS,. 052 'SV/ \',.SV 
_____ ~_tE -+j r _______ \:::-to--:j---

OUTPUT _______ X . ~'"'==-=:------'r-
itpwi 

CLR ----------,-SV ..... , I, ~V 
_______ I, ___ tc_~·1 , ____ _ 

DO ______________ JX'-'_5V _____ _ 

DATA ,5VX----------"'5V 
-----..Jt; tSET ~ r tH -~'----

STB •• i?S, • 052 r '5V\'--___________ _ 

"0,"", _____ ~~~1;.;-----' -----: 
• STB _~'5V 

~ tpw ---I ----------------
-~~---;'--,--.-'\-

2-.62 AFN·0073,C 



. intel~ 
8216/8226 

4·BIT PARALLEL BIDIRECTIONAL BUS DRIVER 

• Data Bus Buffer Driver for 8080 CPU • 3.65V Output High Voltage for Direct 

• Low Input Load Current - 0.25 IT!A 
Maximum 

• High Output Drive Capability for 
Driving System Bus 

Interface to 8080 CPU 

• 3·State ~utputs 
• Reduces System Package Count 

• Available in EXPRESS 
- Standard Temperature Range 

The 8216/8226 Is a 4·blt bidirectional bus driver/receiver. All inputs are low power TIL compatible. For driving MOS, the 
DO outputs provide a high 3.65V VoH, and for high capacitance terminated bus structures, the DB outputs provide a 
high 50 mA 10l capability. A non·lnvertlng (8216) and an inverting (8226) are available to meet a wide variety of applica· 
tlons for buffering In microcomputer systems. 

'Nole: The specifications for Ihe 321613226 are ,,,nlical wilh thosa f~r the 821618226. 

8216 8226 

O~ 0', cs Vee 

DB. DB, 00. 6iEN 

00. DO, os, 00, 

01, DI, , 
O~ DB, 

DB, DB, 
00, 0,> 

00, DO, De, 00, 

0', DI, 
0', 01, 

DB, DB, 
GNO 0., 

00, 00, 

D~ 01, 

DB, .----<> DB, 

00, 00, 
os,-oa, I)ATAIUS 

.'-DIRECTIONAL 

0'0.0,> DATA INPUT 

DOo·003 DATA OUTPUT 

'-----+-~----<>cs '----+_----<> CS OlEN OAT A IN ENABLE 
DIRECTION CONTROL 

O'EN <>-_+-___ ...1 O'EN o-_ ...... ___ .-J a CHtPSELECT 

Figure 1. Block Diagrams Figure 2. Pin Configuration 

2-63 



8216/8226 

FUNCTIONAL DESCRIPTION 

Microprocessors like the 8080 are MOS devices and are 
generally capable of driving a single TTL load. The same is 
true for MOS memory devices. While this type of drive is 
sufficient in small systems with few components, quite often 
it is necessary to buffer the microprocessor and m(lmories 
when adding components or expanding to a multi-board 
system. 

The 8216/8226 is a four bit bi·directional bus driver specif· 
ically designed to buffer microcomputer system components. 

Bidirectional Driver 

Each buffered line of the four bit driver consists of two 
separate buffers that are tri·state in nature to achieve' direct 
bus interface and bi·directional capability. On one side of 
the driver the output of one buffer and the input of another 
are tied together (08), this side is used to interface to the 
system side components such as memories, I/O, etc., be· 
cause its interface is direct TTL compatible and it has high 
drive (50mA). Oli the other side of the driver the inputs 
and outputs are separated 10 provide maximum flexibility. 
Of course, they can be tied together so that the driver can 
be used to buffer a true bi·directional bus such as the 8080 
Data Bus, The DO outputs on this side of the driver have a 
special high voltage output drive capability (3.65V) so that 
direct interface to the 8080 and 8008 CPUs is achieved with 
an adequate amount of noise immunity (350m V worst'case). 

Control Gating OlEN, CS 

The CS input is actually a device select, When it is "high" 
the output drivers are all forced to their high·impedance 
state. When it is at "zero" the device is selected (enabled) 
and the direction of the data flow is determined by the 
OlEN input. 

The OlEN input controls the direction of data flow (see 
Figure 3) for complete truth table. This direction control 

is accomplished by forcing one of the pair of buffers into its 
high impedance state and allowing the other to transmit its 
data. A simple two gate circuit is used for this function. 

The 8216/8226 is adevice that will reduce component count 
in microcomputer systems and at ths same time enhance 
noise immunity to assure reliable, high performance op· 
eration. 

2-64 

DB, 

OO,o---I--<Q-+---' 

01, o---I--i>--+--, 
DB, 

DO,o---t--___ ~t--+~ 

01,0---1--1.>-+......., 
DB, 

00,0---+--< t--+-~ 

01,0---+--1 .... _-+-, 
DB] 

00] <>---I----Q-+---' 

~---t-.----~cs 

Figure 3a. 8216 LogiC; Diagram 

01, 

DB, 

DO. 

DI, 

DB, 

DO, 

01, 

DB, 

DO, 

'OIJ 

DB] 

D0] 

~---~~-------ocs 

OlEN 0---.... --------' 

OlEN cs 
0 0 01 DB , 0 DB 00 

0 , 
} HIGH IMPEDANCE r-;-, 

Figure 3b. 8226 Logic Diagram 

AFN-00733C 



821618226 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ............ " aOc to 70°C 

Storage Temperature . , ....... , .. -65°C to +150°C 

All Output and Supply Voltages. . . . . .. -0.5V to +7V 

All Input Voltages .. , ...... , , .... -1.0V to +5.5V 

Output Currents ...... , . • . . . . . . . . . . .. 125 mA 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.q. CHARACTERISTICS (TA = o·e to + 70·e, Vee = +5V ± 5%) 

Limits 
Symbol Parameter Min. Typ. Max. Unit Conditions 

IF1 Inpllt Load Current OlEN, CS -0.15 -.5 mA VF ~0.45 . 
IF2 Input Load Current All Other Inputs -0.08 -.25 mA VF =0.45 

IR1 Input Leakage Current OlEN, CS 80 IJ.A VR =5.25V 

IR2 Input Leakage Current 01 Inputs 40 itA VR =5.25V 

Ve Input Forward Voltage Clamp -1 V Ie = -5mt\ 

Vil Input "Low" Voltage .95 V 

VIH Input "High" Voltage 2.0 V 

1101 Output Leakage Current DO 20 itA Vo = .45V/5.25Vee 

(3-Statel DB 100 

8216 95 130 mA 
Icc Power Supply Current 

8226 85 120 mA 

VOL1 Output "Low" Voltage 0.3 .45 V DO Outputs IOl=15mA 
DB Outputs 10l =25mA 

8216 0.5 .6 V DB Outputs Iol =55mA 
VOl 2 Output "Low" Voltage 

8226 0.5 .6 V DB Outputs 10l =50mA 

VOH1 Output "High" Voltage 3.65 4.0 V DO Outputs 10H = -lmA 

VOH2 Output "High" Voltage 2.4 3.0 V DB Outputs 10H = -1 OmA 

los Output Short Circu it Current -15 -35 -65 mA DO Outputs Voi!!!OV, 
-30 -75 -120 mA DB Outputs VcC=5.0V 

NOTE: 

, Typical value. are for TA = 25· C. Vec = 5.0V. 

2-65 AFN'()0733C 



inter 821618226 

CAPACITANCE'SI (VBIAS = 2.5V, Vec = 5.0V, TA = 25°C, f = 1 MHz) 

Limits 
. Symbol Parameter Min . Typ.!l] Max. Unit 

C,N Input Capacitance 4 8 pF 

COUT! Output Capacitance 6 10 pF 

COUT2 Output Capacitance 13 18 pF 

A.C. CHARACTERISTICS (TA = O°Cto +70°C. Vee = +5V ± 5%) 

Limits 

Symbol Parameter Min. Typ.!l] Max. Unit Conditions 

TpDI Input to Output D~lay DO Outputs 15 25 ns CL =30pF, R,=300n 
R2=600n 

TpD2 I nput to Output Delay DB Outputs 
8216 19 30 ns CL =300pF, R, =90n 

8226 

Te Output Enable Time 
8216 

8226 

To Output Disable Time 

NOTE: 
Input pulse amplitude of 2.5V. 
Input rise and fall times of 5 ns between 1 and 2 volts. 
Output loading is 5 mA and 10 pF. 
Speed measurements are made at 1.5 volt levels. 

NOTES: 
1. TYPIcal values are for T A = 2So C, VCC = S.OV. 

16 25 ns R2 = 180n 

42 65 ns (Note 2) 

36 54 ns (Note3) 

16 35 ns (Note4) 

2. DO Outputs, CL' 30pF, Rl = 300/10 Kn, R2 = 180/1Kn; DB Outputs, CL = 3OOpF, R, = 90/10 Kn, R2 = 18011 Kr. 
3. DO Outputs, CL = 30pF, R, = 300/10 Kn, R2 = 600/1K; DB Outputs, CL = 30OpF, Rl = 90/10Kn, R2 = 180/1 Kn. 
4. DO Outpu,s, CL = SpF, Rl = 300/10 Kn, R2 = 600/1 Kn; DB Outputs, CL = SpF, R, = 90/10 Kn, R2 = 180/1 Kn. 
S. This parameter is portodtcally sampled and not 100% tested. 

" 

A.C. TESTING LOAD CIRCUIT 

-,- Vee 

R, 

DEVICE 
UNDER eli TEST 

R, 

-=E" 

2-66 AFN·00733C 



inter 
WAVEFORM 

INPUTS 

OUTPUT 
EN .... LE 

OUTPUTS 

8216/8226 

~'oj. Y 15V'X,.-----... F- · t ~H 
-------.... ~~L 

5V 

2-67 AFN'()()733C 



8218/8219 
BIPOLAR MICROCOMPUTER BUS 

CONTROLLERS FOR MCS-SO®,AND MC8-85® FAMILIES 

• 8218 for Use In MCS-80® Systems 

• 8219 for Use InMCS-85® Systems 
• Reduces Component Count In 

Multlmaster Bus Arbitration Logic 

• Coordinates the Sharing of a Common 
Bus Between Several CPU's 

• Single +5 Volt Power Supply 

• 28 Pin Package 

The 8218 and 8219 Microcomputer Bus Controllers consist of control logic which allows a bus master device such as a CPU 
or DMA channel to interface with other masters on a common bus, sharing memory and I/O devices. The 8218 and 8219 
consist of: 

1. Bus Arbitration Logic which operates from the Bus Clock (SCU<) and resolves bus contention be~ween devices sharing 
a common bus. 

2. Timing Logic which when initiated by the bus arbitration logic generates timing signals for the memory and I/O 
command lines to guarantee set-up and hold times ofthe address/data lines onto the bus. Thetiming logicals0signals 
to the bus arbitration logic when the current data transfer is completed and the bus is no longer needed. 

3. Output Drive Logic which contains the logic and output drivers for the memory and I/O command lines. 

An external RC time constant is used with the timing logic to generate the guaranteed address set-up and hold times on the 
bus. The 8219 can interface directly to the 8085A CPU and the 8218 interfaces to the 8080A CPU chip and the 8257 DMA 
controller. 

TOTHE~ 
BUS 
MASTER 

BCR1 

{EI 

RSTB 

ADm 

OVRO 

OtYAOJ 

XSTR 

xep 

xcv 

ANVR 

{AI 

{BI 

{el 

{DI 

ROD 

BUS ARBITRATION 
lOGIC 

OUTPUT DRIVE lOGIC 

Figure 1. Block Diagram 

~TOTHE 
L-.y' BUS 

2-68 

{BI 

{el 

ANYR 

ROD 

MROC 
IORC 

GND 

§ill §ill 
{AI iOWA 101M 
(B) MWTR WR 
{el IDRR AD 
{DI MRiiFi ASRQ 
(E) Bcfi2 BCR2 

N.C. = NO CONNECT 

vee 
OVRO 

RSTB 

BeR1 

{EI 

BREQ 
BeLK 

ADEN 

BiJSY 
fi5Wc 
MWTC 

DLYADJ 

Figure 2. Pin Configuration 

AFN-00208C 



intJ 8218/8219 

Table 1. Pin Description 

Signall Intertaced Directly to the Syltem BUI, Signal, Generated or Received by the Bus Master 

I Symbol Type Name end Function (Continued) 

BREQ 0 Bu, Reque't: The Bus Request is used Symbol Type Name and Function 
with a central parallel priority resolution 
circuit. It 'indicates that the device needs to 
access the bus for one or more data trans-
fers. It is synchronized with the Bus Clock. 

ADEN 0 Addres, end Data Enable: Address and 
Data Enable indicates the Master has con-
trol of the bus. It is, often used to "mabie 
Address and Data Buffers on the bus, It is 

BUSY I/O Bu, Bu,y: Bus Busy indicates to all master synchronous with Bus Clock. 
devices on the bus thai the bus is in use. II 
inhibits any olher device from gelling Ihe 
bus. It is synchronized wilh Bus Clock. 

ROD 0 Read Data: Read Data controls the direc-
tion of the bi-directional data bus drivers. It 
is.asynch'ronous to the Bus Clock. A high on 

BCLK I Bus Clock: The neg alive edge of Bus Clock ROD indicates a read mode by the master. 
, is used 10 synchronize the bus conlention 

resolution circuit asynchronously to the 
CPU clock. It has 100ns min. period, 3S%-
6S% duty cycle. It may be slowed, single 
stepped or stopped. 

BPRN I Bu, Priority In: The Bus Priority In indi-

OVRD I Override: Override inhibits automatic de-
select between transfers caused by a higher . priority bus request. May be used for con-
secutive data transfers such as read-
modify-write operations. It is asynchronous 
to the Bus Clock. . 

cates to a device that no device of a higher 
priority is requesting the bus. It is syn-
chronous with the Bus clock. 

XSTR I Transfer Start Requeat: 'Transfer Start Re-
quest indicates to the 8218/8219 that a new 
data transfer cycle is requested to start. It 'is 

BPRO 0 Bus Priority Out: The Bus Priority .out is 
used with serial priority resolution circuits. 
Priority may be transferred to the next lower 

raised for each new word transfer in a mul-
tiple data word transfer. It is asynchronous" 
to the Bus Clock. 

in priority as BPRN. XCP I Transfer Complete: Transfer Complete in-

INIT I Initialize: The Initialize resets the 8218/ 
8219 to a known internal stdle. 

dicates to the 8218/8219 that the data has 
been received by the slave device in a write 
cycle or transmitted by the slave and re-

MRDC .0 Memory Read Control: ThE! Memory Read . Control indicates that the Master is request-

ceived by master ina read cycle. It is asyn-
chronous to the Bus Clock. 

ing a read operation from the addressed XCV 0 Date Transfer: Indicates that a data trans-
location. It is asynchronous to the Bus fer is in progress. It is asynchronous to the 
Clock. Bus Clock. 

MWTC .0 Memory Write Control: The Memory Write 
Control indicates that data and an address 

WR,RD, I Write, Read, 10/Memory: WRITE, READ, 
101M 10lMemory are the control request inputs 

have been placed on the bus by the Master used by the 808S and are Internally decoded 

and the data is to be deposited at that loca- by the 8219 to produc~request signals 

tion. It is asvnchronous to the Bus Clock. 

,iORc 0 I/O Read Control: The 1/0 Read Control in-
dicates that the Master is requesting a read 
operation from the I/O device addressed. It 
is asynchronous to the Bus Clock. 

10WC 0 1/0 Write Control: The 1/0 Write Control in-

MRDR, MWTR, 10RR, IOWR. They are asyn-
chronous to the Bus Clock. (8219 only) 

ASRQ " I Asynchronous Bus Request: Can be used 
for interrupt status from the 8OBS.l\cts like a 
level sensitive asynchronous bus 
request-no RSTB needed. It is asynchron-
OuSiOihe Bus Clock. (8219 only) 

dicates that Data and an I/O device address MRDR, I Memory Read Request, Memory Write 
has been placed on the bus by the Master 
and the data is to be deposited to the 1/0 

MWTR, 
I 

Reque~t, 1/0 Read Request, or 1/0 Write 
10RR, Request: Indicate that address and data 

device. It is asynchronous to'the Bus Clock. IOWR have been placed on the bus and the appro-

Signals Generated or Received by the Bus Master priate request is being made to the ad-
dressed deVice. Only one of these inputs 

BCR11 I Bus Control Request: Bus Control Re- should I:!e active at anyone time. They are 
BCR2 quest 1 or Bus Control Request 2 indicate to synchronous to the Bus Clock. (8218 only) 

the 8218/8219 that the Master device is mak-
ing a request to control the bus. BCR2 IS 

active low in the 8218 (BCR2). BCR2 is ac-
tive high in the 8219. 

ANYR .0 Any Request: Any Request is the logical 
OR of the active state of MRDR, MWTR, 
i15RR, iOWA. It may be tied to XSTR when 
the rising edge of ANYR is used to initiate a 

RSTB I Request Strobe: Request Strobe latches 
the status of BCR1 and BCF\2 into the 

transfer. 

DLYADJ I Delay Adjust: Delay Adjust is used for con-
821818219. The strobe is active low in the nection of an external capacitor and resis .. 
8218 and negalive edge triggered in the tor to ground to adjust the required set-up 
8219. and hold time of address to control signal. 

2-69 AFN-00208C 



8218/8219 

FUNCTIONAL DESCRIPTION 

The 8218/8219 is a bipolar Bus Control Chip which 
reduces component count In the interface between a 
master device and the system Bus. (Master device: 8080, 
8085, 8257 (DMAU 

The 8218 and 8219 seNe three major functions: 

1. Resolve bus contention. 
2. Guarantee set~up and hold time of address/data lines 

to . I/O and Memory read/wrIte control signals 
(adjustable by external capacitor). 

3: Provide sufficient drive on all bus command lines. 

BUI Arbitration Logic 
Bus Arbitration Logic activity begins when the Master 
makes a request for use of the bus on BCR1 or 'EiCR2. The 
request is strobed in by RSTB. FQllowing the next two 
falling edges of the bus clock (BCLK) the 8218/8219 
outputs a bus request (BREQ) and forces Bus Priority Out 
inactive (BPRO)' See Figures 1a and 1b. 

BRECi is used for requesting the bus when priority is 
decided by a parallel priprity resolver circuit. 

OVRIDf 

-II \- -:1 

~ -
BCRl 

Iic1l2 

SET 

BPRO is used 10 allow lower priority devices to gain the 
bus 'when a serial priority resolving structure is used. 
B/5J!iO would go to msmiI of the next lower priority Master. 

When priority is granted to the Master (a low on BPRN and 
a high on ~) the Master outputs a MmV signal on the 
next falling edge of BCLR. The. BUSY signal locks the 
master onto the bus and prohibits the enable of any other 
masters onto the bus. 

At the Same time BUSY goes active, Address and Data 
Enable iADENi goes active signifying that the Master has 
control of the bus. ADEN is often used to. enable the bus 
drivers. 

The Bus will be released only if the master loses priority; is 
not in the middle of a transfer, and Override is not active 
or, if the Master stops req)Jesting the bus, is not in the 
middle of a data transfer, and Override is not active. ADEN 
then goes inactive. 

Provision has been made in the 8218 to allow bus­
synchronous requests. This mode is activated when 
BCR1, BCR2 and RS'i'B are all low. This action 
·asynchronously sets the synchronization flip flop (FF2) in 
Figure 3a. 

-=u-

BUSY 

...... SET 
ASYNCH. SYNCH. PRIOR'ITY ----V" Q 
REQUEST 

D Q 
REQUEST AND 

REQUEST 
~QGIC SPRN 

FFl FF2 

r----<= CLK 

CLR ' CLR 

1'""' 'I 
q 

Figure 3a. 8218 Bus Arbitration Logic 

2-70 AFN'()()208C 



inter ·8218/8219 

ADEN 

OVRIDE 

ASRO 

1 
SET 

ASYNCH. SYNCH PRIORITY 
BeR' REQUEST REQUEST AND I J 0 a 0 a REQUEST BCR2 

LOGIC 

FF. FF2 

iffi'ii eLK ,---< eLK 

CLR· eLR 

I I 
I 

Figure 3b. 8219 Bus Arbitration Logic 

Timing Logic 

Timing Logic activity begins with the rising edge of XSTR 
(Transfer Start Request) or with ADEN going active, 
whichever occurs second. This action causes XCV 
(Transfer Cycle) to go active. 50-200ns later (depending on 
resistance and capacitance at DLYADJ) the appropriate 
Control Outputs will go active if the control input is active. 

XSTR can be raised after the command goes active in the 
current transfer cycle so that a new transfer can be 
initiated 'immediately after the current transfer is 
complete. 

A negative going edge on XCP (Transfer Complete) will 
cause the Control Outputs (MRDC, etc.) to go inactive. 
50-200ns later (depending on capacitance at DL YADJ) 
XCV will go inactive indicating the .transfer cycle is 
completed, 

Additionallbgic within the 8218/8219 guarantees that if a 
transfer cycle is started (XCY is active), but the bus is not 
requested (BREQ is inactive) ana there is no command 
request input (ANYR is output low), then thfl transfer cycle 
will be cleared. This allows the bus to be released in 
applications where advanced bus req'uests are generated 
but the processor enters a HALT mode. 

Control Logic 

The control outputs are generated in the 8219 by decoding 
the 8085 system control outputs (I.e., RD, WR, 101M) or in 
the 8218 by directly buffering the control inputs 1"0 the 
control outputs for use in an 8080 or DMA system (see 
Figures 4a and 4b>' The control outputs may be held high 
<inactive) by the Timing Logic. Also the control outputs are 
enabled when tlie Master gains control of the bus and 
disabled when control is relinquished. 

The Control Logic also has two other outputs, ANYR (Any 
Request) and ROD (Read Data>. ANYR goes high (active) if 
any control requests (IOWR, etc.) are active. ROD controls 
the direction of the Masters Bi-directional Data Bus 
Drivers. The Bus Driver will always be in fhe Write mode 
(ROD = Low) except from the start of a Read Control 
Request to 25 to 70ns after XCP is activated. 

2-71 

MRDR 

IOAR OUTPUT 
CONTROL 

MWTR lOGIC 

IOWR 

ANY A 

CONTROL 
OUTPUT 
INACTIVE 

ROD 

Figure 4a. 8218 Control Logic 

IO/M-~---------I 

RD------~-----I 

WR--------t~----I 

ANVR 

ROO_----/ 

DECODING 
AND 

OUTPUT 
CONTROL 

LOGIC 

CONTROL 
OUTPUT 
INACTIVE 

Figure 4b. 8219 Control Logic 

iiiiSY 

BRea 

BPRN 

BPRO 

. iiClK 

INIT 

MRDC 

IO~C 

MWtC 

lowe 

AFN'()()20BC 



inter 8218/8219 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ...•.. ODC to 70DC 
Storage Temperature ...........•.• -65DC to +150·C 
Supply Voltage (Vee) . .. . . • .• . . . • . . . . .. -0.5V to +7V 
Input Voltage.................. -1.0V to Vee + 0.25V 
Output Current .............................. 100mA 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure ·to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = ODC to 70DC; Vee = 5V ± 5%) 

Symbol 

Ve 

IF 

IA 

VTH 

Icc 

VOL 

VOH 

los 

10 (OFF) 

CIN 

CIO 

LImits 

Parameter Min. Typ. Max. Unit 

Input Clamp Voltage -1.0 V 

Input Load Current 
MRDR/INTA/MWTR/WR 
iOA'RiRD, IOWR/IOiM -0.5 mA 
Other . -0.5 mA 

Input Leakage Current 100 !J.A 

Input Threshold Voltage 0.8 2.0 V 

Power Supply Current 200 240 mA 

Output Low Voltage 

MiffiC, MWi'C, IORC, IOWC 0.45 V 
BREQ, BUSY 0.45 V 
XCY,RDD,ADEN 0.45 V 
BPRO,ANYR 0.45 V 

Output High Voltage 

MRiSC, MWTC, IORC, IOWC 2.4 

All Other Outputs 2.4 

Short Circuit Output Current -10 -90 mA 

Tri-State Output Current -100 !J.A 

+100 !J.A 

Input Capacitance Except Busy 10 20 pF 

Input Capacitance Busy 25 35 pF 

••• 8218/8219 XSTR TO OUTPUT DELAY (T sew 

'7S 

,SO _A , .. 
DELAY 

'00 
7S 

.... F 

'00" S. 
loopF 

'S~~~~~~~~~~~-=~~ __ ~~ .. ~ ~ ... ~ - ~ ~ ~ ~ 
OHMS 

Test Conditions 

Vee = O.OV, Ie = -5 mA 

Vee = 5.25V 
VF = 0.45V 

Vee = 5.25 
VA = 5.25 . 

Vee = 5V 

Vee = 5.25V 

Vee = 4.75 

10L = 32mA 

10L = 20m A 
10L = 16mA 
.I0L = 3.2mA 

Vee = 4.75V 

10H = -2m A 

10H = -4OO!J.A 

Vee = 5.25V, Vo ;" OV 

Vee = 5.25V, Vo = .0.45V 

Vee = 5.25V, Vo = 5.25V 

One Shot Delay Versus Delay Adjust Capacitance And Resistance 

AFN-00208C 



8218/8219 

A.C. CHARACTERISTICS (TA = DoC to 70°C; Vcc = 5V ± 5%) 

Lhnlt. 
Symbol Parameter Min. Typ. Max. Unit Test Conditions 

tacy Bus Clock Cycle Time 100 ns 35% to 65% Duty Cycle 

tpw Bus Clock Pulse Width 35 0.65 tacy ns 

tROS RSTB to BlXR Set-Up Time 25 ns 

tcss BCR1 and BCR2 to RSTB 15 ns 
Set-Up Time 

tCSH BCR1 and BCR2 to RSTB 15 ns 
Hold Time 

tROD BCLK to BREQ Delay 35 ns 

tPRNS BPRN to BCLK Set-Up Time 23 ns 

taNo BRPN to BPRO Delay 30 ns 

teYD BCLK to BUSY Delay 55 ns 

tCAD MRDR, MWTR, IORR, IOWR' 30 ns 
to ANYR Delay 

tsxD XSTR to XCV Delay 40 ns 

tSCD XSTR to MRDC, MWTC, IORC, 50 200 ns \Adjustable by External RIC 
IOWC Delay 

txsw XSTR Pulse Width 30 ns 

tXCD XCP to MRDC, MWTC, IORC, 50 ns 
IOWC Delay 

txcw XCP Pulse Width 35 ns 

tCCD XCP to XCV Delay 50 200 ns Adjustable by External RIC 

tCMD MRDR, MWTR, IORR, IOWR 35 ns 
to MR5C, MWTC, IORC, IOWC 

tCRD MRDR, MWTR, IORR, IOWR 25 ns 
to ROD Delay 

tRW RSTB Min. Neg. Pulse Width 30 ns 

tCPD BCLK to BPRO Delay 40 ns 

tXRD XCP to ROD Delay 25 70 ns 

A.C. TESTING INPUT, OUTP.UT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC l' AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 1 5V FOR BOTH A 
LOGIC 1 AND 0 . 

2-73 

...,... Vl 

RL 

DEVICE 
UNDER -

TEST 

I CL 

VL - 24V 

~:: ~~F 
ct: INCLUD~S JIG CAPACITANCE 

AFN-Q0208C 



intel' 8218/8219 

WAVEFORMS 

SYNCHRONOUS BUS TIMING (System Bus Previously Not In Use) 

ilSfii-----' 

leVD 181'0--

~~ ------------------___ ~--------'l_+----~--

- . -"[ -- f---7--
1 

"'0 _____________________________________________ :N] "N°d .... 
to" 

CONTROL CYCLE (System Bus Previously Not In Use) 

M'R5"R MWTR ~ 
lORA IOWA I'----

!--tcAD_ I-tcAD-

ANYR ~ / j 

j+--'CRD_ 

ROD 
-.i . t)(RD ~ 

H~1- I 

XSTR __ J ~~1::- XCP --"" 

1\..,.--
I - j+---tcCD-

xcv _~ ____ ~ ) 

-'SXD- ..... ·XCD-

MRi5C MWTC 'l 
lORe lowe \ 

tSCD_ I-tcMO-
<eMD 

2-74 AFN-00208C 



8218/8219 

WAVEFORMS (Continued) 

BUS CONTROL EXCHANGE (Master No.1 Leaving Bus And Master No.2 Getting On Bus) 

MAfiA MWTA 

IOAA IOWR MASTER 1 GETS OFF 8US A 
MASTER 1 ANVA OUT 
AND XCP IN 

MASTER 1 XCV OUT 

MASTEA 1 ADEN 

BUSV MASTER 1 HAS BUS 

MASTER 2 ADEN 

MASTER 2 
REaUESTS BUS 

ANYR r­
XSTR --' 

ONE SHOT =' DELAY 

MASTER 2 HAS BUS 

~~----

DELAYED BY 
ONE SHOT 
FOR ADOAf:SS SETUP J 

~~~~----------------------------------------------------------------------r(4\""\ 
:~:~ OF MASTER 2 '---\."' ___ _

MASTER 2 _----

2-75 AFN-00208C

8218/8219

AO.15

rD~
B080A

., 00-7 .,
8228

8224 READY

r-" READY MEMR

STSB MEMW
STSB lOR

RES'iN lOW

I~

"1

MC8-80® CPU With 8218

rD~
AS.15

ADo.7

BOS5A

WR WR MRDe
Ri5 Ri5 MWTC

101M 101M IORC

~"'.~
INTA ASRQ lowe
ALE RSTB

So BCRl i!RECi

RESET
8, BCR2

SYNC BUSY
FF 8219

BCLK -- ADEN '8iiR'N •
~ ,1 ,± DLYADJ

'E xcp BPRO

XSTR

ANYR INIT

t

MCS-85® CPU With 8219

2-76

Do

0,

i'E

MROR MRi5C ~ MWTR MWfC
IDRR i5RC ~ IOWR lowe

BCRl i!RECi I--
BeR2 BUSY I---

8218

RSTB
ADEN
DlYADJ

xcp
XSTR

ANYR

\

BCLK -
BPRN -
BPRO -

IN IT

t

RESET

XACK

RESET

XliCR
(TRANSFER· '
ACKNOWLEDGE)

(TRANSFER
ACKNOWLEDGE)

AFN-oG208C

inter 8218/8219

~ __________ USE fALLING EDGE OF ALE TO INITIATE DeCODe . ~'~",=~"ffl'M\

AD()'7

8085A

~.~--------~~
BUSV~--------~

8219
~LK~----~------

BPRNI_' -----------

~Ra~--------~

L~==============================::====================::RESET XACK
(TRANSFER
ACKNOWLEDGE)

MCS-85<1!> CPU With 8219 Using Local Memory

2-77

EXAMPLE OF BUS
ACCESS DECODe LOGIC

LEVEL ACTIVATED
LATCH

, ~TI'pA~ro~ENT"
TOBCR2
ANDXSTR
AND GATE

AFN'()()208C

" __ I"
I'.-e-.

BUS CLOCK

BUS CLOCK

TO/FROM HIGHEST
PRIORITY BUS MASTER

8218

U 1
REQUEST ADEN

8219

iiij§V BREQ Bl'RN iiC[j(

t t
I

8218/8219

8219

"DAISY CHAIN" CON FIGURATION

~J f
REQUEST ADEN

821B

iiij§V BREa iii'Riii iiC[j(

t -f
j

1 !
PRIORITY
RESOLVING
LOGIC

I I

PARALLEL REQUEST CONFIGURATION

TO/FROM LOWEST
PRIORITY BUS MASTER

8218

~l
REQUEST ADEN

8219

BUSY BREQ 'iPRN iiC[j(

t
1

lWo Methods of Connecting Multiple 8218/8219's To Resolve Bus Contention Among Multiple Masters

2-.78 AFN-00208C

•

•
•
•

8224
CLOCK GENERATOR AND DRIVER

FOR 8080A CPU

Single Chip Clock Generator/Driver for • Oscillator Outp~t for'External System
8080A CPU Timing

Power-Up Reset for CPU • Crystal ControUed for Stable System
Operation

Ready Synchronizing Flip-Flop • Reduces System Package Count

Advanced Status Strobe • Available in EXPRESS
'- Standard Temperature Range

The Intel<l!> 8224 is a single chip clock generator/driver for the 8080A CPU, It is controlled by a crystal, selected by the
designer to meet a variety of system speed requirements, .

Also included are circuits to provide power-up reset, advance status strobe, and synchronizlltion of ready,

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A

RESET Vee

RESIN XTAL 1
§> XIAll

asc @>
1!9 XTAl2

RDY1N XTAl2
@> TANK

READY TANK ., IT]>
SYNC a80 ., Ii9

¢2 (TTL) .,
.,ITTLIIE>

STSTB ~,

GND Voo

IE> SYNC sms[D

[D RESIN

AESET IT>
[D RDYIN AEADY~

RESIN RESET INPUT

RESET RESET OUTPUT

RDYIN READY INPUT

~-

! CONNECTIONS
XTAL 2 FOR CRYSTAL

READY READY OUTPUT TANK USED WITH OVERTONE XTAL

SYNC SYNC INPUT asc OSCILLATOR OUTPUT

STSTS STATUSSTB ¢2 (TTL) ¢2 eLK (TTL lEVEL)

(ACTIVE LOW) Vee +5V

~ ~ 8080 .,
CLOCKS

Voo +12V

GND OV

Figure 1. Block Diagram Figure 2. Pin Configuration

2-79

inter 8224

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias ' O°C to 70°C
Storage Temperature _65°C to 150°C.
Supply Voltage, Vee -0.5V to +7V
Supply Voltage, Voo -0.5V to +13.5V
Input Voltage -1.5V to +7V
Output Current•................ 100mA

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = o·c to 70·C. Vee = +5.0V ±5%. Voo = +12V ±5%)

Limits
Symbol , Parameter Min. Typ.

IF Input Current Loading

IR Input Leakage Current

Ve Input Forward Clamp Voltage

Vil Input "Low" Voltage

VIH Input "High" Voltage 2.6
2.0

V1WVIl R.ES I N I nput Hysteresis .25

VOL Output "Low" Voltage

VOH Output "High" Voltage

<1>1 , <1>2 9.4
READY, RESET 3.6
All Other Outputs 2.4

Ise[IJ Output Short Circuit Current -10
(All Low Voltage Outputs Only)

Icc Power Supply Current

100 Power Supply Current

Note: 1. Caution, 4>1 and ¢2 output drivers do not have short circuit protection

Crystal Requirements

Tolerance: 0.005% at 0·C-70·C
Resonance: Series (Fundamental)"
Load Capacitance: 20-35 pF
Equivalent Resistance: 75-20 ohms
Power Dissipation (Min): 4 mW

·Wlth tank circuit use 3rd overtone mode.

2-80

Max. Units Test Conditions

-.25 mA VF = .45V

10 p.A VR = 5.25V

1.0 V le= -5mA

.8 V Vee = 5.0V

V Reset Input
All Other Inputs

V Vee = 5.0V

.45 V VPl,tP2), Ready, Reset,STSTB
IOl =2.5mA,

.45 V All Other Outputs
IOl = 15mA

V IOH = -1001lA
V IOH = -100p.A
V IOH = -lmA

-60 mA Vo =OV
Vee =!;i.OV

115 mA

12 mA

AFN·OO732C

inter 8224

A.C. CHARACTERISTICS (Vee = +5.0V ±5%, Voo = +12.0V ±5%, TA = O°C to 70°C)

limits Test
Symbol Parameter Min. Typ. Max. Units Conditions

tq,1 <P1 Pulse Width 2tcy _ 20ns
9

t<P2 <P2 Pulse Width 5tcy _ 35ns
9

t01 <P1 to <P2 Delay 0 ns

t02 <P2 to <P1 Delay 2tcy _ 14ns
9

CL = 20pF to SOpF
-

t03 <P1 to 1>2 Delay
2tcy 2tcy + 20ns

9 9

tR
,

<P1 and <P2 Rise Time 20

tF <P1 and <P2 Fall Time 20

to<P2 <P2 to <P2 (TTL) Delay -5 +15 ns <P2 TTl,Cl=30
R1=300n
R2=600n

toss <P2 to STSTB Delay 6tcy _ 30ns ~
9 9

•

tpw STSTB Pulse Width tey _ 15ns STSTB,Cl=15pF
9 R1 = 2K

tORS
RDYIN Setup Time to SOns _ 4tey R2 = 4K

Status Strobe 9

tORH
RDYIN Hold Time 4tcy
After STSTB 9

tOR
RDYIN or RESIN to 4tcy _ 25ns Ready & Reset

<P2 Delay 9 Cl=10pF
R1=2K
R2=4K

tCLK ClK Period tcy

9

fmax
Maximum Oscillating

27 MHz
Frequency

Cin Input Capacitance 8 pF Vcc=+5.0V
Voo=+12V
VBIAS=2.5V
f=lMHz

2-81 AFN·00732C

intJ 8224
,

A.C. CHARACTERISTICS (Continued) (For tCY = 488.28 ns) (TA = O"C to 70"C, VOO = +5V ±5%;
Voo = +12V ±5%)

" Limits ,
Symbol Parameter Min. Typ. Max. Units Test Conditions·

t./>1 tPl Pulse Width 89 ns tcy=488.28ns

t4>2 tfi2 Pulse Width 236 ns

tOl Delay tPl to tP2 0 ns

t02 Delay tP2 to tPl 95 ns I- tPl & tP2 Loaded to

t03 Delay tPl to tP2 Leading Edges 109 129 ns CL = 20 to 50pF

tr Output Rise Time 20 ns

tf Output Fall Time 20 ns

toss tP2 to STSTB Delay 296 326 ns

t04>2 tP2 to tP2 (TTL) Delay -5 +15 ns

tpw Status Strobe Pulse Width 40 ns
Ready & Reset Loaded

tORS RDYIN Setup Time to STSTB -167 ns to 2mA/l0pF

tORH RDYIN Hold Time after STSTB 217 ns All measurements

tOR READY or RESET 192 ns referenced to 1.5V

to tP2 Delay
unless sPl'Cified .
otherwise.

fMAX Oscillator Frequency 18.432 MHz

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

::: > TESTPQINTS < :::V-U=>\
8.45 -________ A-
A.C.TESTlNO:INPUTSAREDRlVENAT2.4VFORA LOGIC"I"ANOO.45VFOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT2.OV FORA LOGIC "1"
AND 0.8V FOR A LOGIC "0" (UNLESS OTHERWISE NOTED).

. ,

2-82

DEVICE
UNDER

TEST

-,- Vee

R,

-

CL INC WOES JIG CAPACITANCE

AFN·OO732C

inter 8224

WAVEFORMS

\

SYNC
(FROM 8D8OA)

I
I--·--------·DII'--------i-~

i-------10AH------i

READVOUT __ ~ __________________ -J~

RESET OUT

VOLTAGE MEASUREMENT POINTS: 4>,.4>2 Logic "0" = ,.OV. logic ",". a.ov. Another signals m ... ured at '.5V.

-,'

2-83 . , AFN·OO732C

8228/8238
SYSTEM CONTROLLER AND BUS DRIVER

FOR 8080A CPU

• Single Chip System Control for
MCS-801R> Systems

• Bullt·ln Bidirectional Bus Driver for
Data Bus Isolation

• Allows the Use of Multiple Byte .
Instructions (e.g. CALL) for Interrupt
Acknowledge

• User Selected Single Level Interrupt
Vector (RST 7)

• 28·Pln Dual In· Line Package

• Reduces System Package Count
• 8238 Had Advanced IOW/MEMW for

Large System Timing Control

• Available In EXPRESS
- Standard Temperature Range

The Intel· 8228 Is a single chip system controller and bus driver for MCS·80. It generates all signals required to
directly Interface MCS-80 family RAM, ROM, and I/O components.

A bidirectional bus driver is Included to provide high system TIL fan·out. It also provides isolation of the 8080 data bus
from memory and I/O. This allows for the optimization of control Signals, enabling the systems designer to use slower
memory and I/O. The Isolation of the bus driver also provides for enhanced system noise immunity.

A user selected single level Interrupt vector (RST 7) is provided to simplify real time, interrupt driven, small system
requirements. The 8228 also generates the correct control signals to allow the use of multiple byte instructions (e.g.,
CALL) in response to an Interrupt acknowledge by the 8080A. This feature permits large, interrupt driven systems to
have an unlimited number of Interrupt levels.

The 8228 Is designed to support a wide variety of system bus structures and also reduce system package count for
cost effective, reliable design of the MeS·SO systems.

Note: The speclflcallons for tho 322813238 are Identical with thos,. lor the 822818238

r- -~l
STSTS Vco

0,_ -OB,
CPU °2- -082 HLOA IIOW

DATA °3- :=: g:~ SYSTEM OAT A BUS WR M£Mw BUS D._
0,- -DO,

iiOR 0,- _ 08. DSIN
0,_ -oB,

MEMR 084

04 INTA

OB7 BUSEN
tmn

07 06 l§ .. = !mfW
LATCH OB3 086

i70R 03 OS

I!OW 0.2 D.,
sfSi'i

02 01
OBIN _liUmii

WA 0.,
HlDA If<Tl

O'

0700 DATA BUS (8080 SIDE) INTA INTERRUPT ACkNOWLEDGE

DB7 DBO DATA BUS (SYSTEM SIDE) HLOA HLOA (FROM 10801

IIOR I/O READ WlI WR (FADM 8080)

I/OW I/O WRITE BUSEN BUS ENABLE INPUT

MEMR MEMORY READ STITS STATUS STROBE (FADM 822.,

m;;w MEMORY WRITE Yco "Y
OBIN OBIN {FROM 80BOI ONO o VOLTS

Figure 1. Block Diagram Figure 2. Pin Configuration

2-84

intJ 8228/8238

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias -O'C to 70'C
Storage Temperature .•..•. "•. - 65'C to 150'C
Supply Voltage, Vee - 0.5V to + 7V
Input Voltage ..•••..•......••...•... - 1.5V to + 7V
Output Current 100 mA

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any ot!!er conditions above
those indicated In the operational sections of this specifi­
cation is not limited. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = o·c to 70·C, Vee = 5V ±5%)

Limits
Symbol Parameter Min. Typ.I') Max. Unit Test Conditions

Vc Input Clamp Voltage. All Inputs .75 -1.0 V Vcc=4.75V; Ic=-5mA

IF Input Load Current. ,
STSTB 500 jJA. Vcc=5.25V

02&1Js 750 IlA VF=0.45V

00. 0 ,.04. Os. jJA

& 07 250

All Other Inputs 250 IlA

IR I nput Leakage Current
STSTB 100 IlA VCC=5.25V

~0·OB7· 20 IlA VR =5.25V

All Other Inputs 100 IlA

VTH Input Threshold Voltage. All Inputs 0.8 2.0 V VCC=5V

ICC Power Supply Current 140 190 mA Vcc=5.25V

VOL Output Low Voltage.
00.0 7 .45 V ·Vcc=4.75V~IOL =2mA

All Other Outputs
,

.45 V IOL =10mA

VOH Output High Voltage.
00.0 7 3.6 3.B V VcC=4.75V; IoW-1OIlA

All Other Outputs 2.4 V IOH --1mA

los Short Circuit Current. All Outputs 15 90 mA Vcc=5V

1010ff) Off State Output Current.
All Control Outputs 100 IlA Vcc=5.25V; VO=5.25

-100 JJ.A VO=·45V

liNT I NT A Current 5 mA (See INTA Test Circuit)

Note'. Typical values are for T A = 250 C and nom,nal supply voltages.

2.a5 AFN·00213C

inter 822818238

CAPACITANCE (VBIAS = 2.5V, vee = 5.0V, TA = 25°C, f = 1 MHz)

This parameter IS paroodlcaliV sampled and not 100% tested.

Limits

Symbol Parameter Min. Typ.111 ' Max. Unit

CIN , I nput Capacitance 8 12 pF

CoUT
' Output Capacitance

7 15 pF
Control Signals

I/O
I/O Capacitance

8 15 pF
(0 or 08)

'A.C. CHARACTERISTICS (TA = OOC to 700C, Vet: = 5V ±5%)

Symbol Parameter

tpw Width of Status Strobe

tss Setup Time, Status Inputs 00-07

tSH Hold Time, Status Inputs DO·D7

toc Delay from sTST8 to any Control Signal

tRR Delay from D81N to Control Outputs

tRE Delay from DBIN to Enable/Disable 8080 Bus

tRO Delay from System Bus to 8080 Bus during Read

twR Delay from WR to Control Outputs

tWE Delay to Enable System Bus DBo·DB7 after sTST8

two Delay from 8080 Bus Do-D7 to System Bu's
DBo-DB7 during Write

tE Delay from System Bus Enable to System Bus DBo-DB7

tHO HLDA to Read Status Outputs

·tos Setup Time, System Bus Inputs to HLDA

tOH Hold Time, System Bus Inputs to HLDA

A.C. TESTING LOAD CIRCUIT

-r- Vee

DEVICE
UNDER

TEST

For 00-07: Rl = 4Kn, R2 = -no
cL = 25pF. For all other outputs:

R,

Rl = 5OOn, R2 = lKn, CL = l00pF.

Limits

Min. ,Max. Units Condition

22 ns

8 ns

5 ns

20 60 ns CL = l00pF

30 ns CL = l00pF

45 ns CL = 25pF

30 ns CL = 25pF

5 45 ns CL = l00pF

30 ns CL = l00pF

ns CL = 100pF
5 40

30 ns CL = l00pF

,25 ns

10 ' ns

20 ns CL = 100pF

+12V

1Kn'11)%

8228

23
INTA p--------'

INTA Teat Circuit (for RST 7)

AFN-00213C

822818238

WAVEFORM

0,

o, ____ .J

~DATABUS ________ ~--~+_-_1~------------------------------

081N ------------t-+----..JI

HLDA ______________ r-+_~----+_---~

INTA. lOR, MEMR --------------h
DURING HLOA '+ ______ + ______ +'"

-kl,..---'-T-,I.I'-:-- - - - - - - - - - - - - -
SYSTEM BUS DURING READ ---1,....,1''----+/1 - - - - - - - - - - - - - -

8080 BUS DURING READ - - - - - - -

IOWORMEMW--------------~~+-------------------~

8080 BUS DURING WRITE

SYSTEM BUS DURING WRlle - - - - - - - - -

SYSTEM BUSENA.lE, j j
"~r-SYSTEM BUS OUTPUTS - - - - - - - - - - - - - - - < t---- > - - - - - - - - - - - - - -

VOLTAGE MEASUREMENT POINTS: 00-07 (when outputs) Logic "0" = O.BV, Logic "1" = 3.0V. All other Signals measured
at 1.5V.

"ADVANCED IOW/MEMW FOR 8238 ONLY.

2-87 AFN-00213C

8237A/8237A-4/8237A-5
HIGH PERFORMANCE

PROGRAMMABLE DMA CONT,ROLLER,
• Enable/Disable Control of Individual

DMA Requests

• Four Independent DM~ Channels

• Independent Autoinitialization of all
Channels

• Memory·to·Memory Trensfers

• Memory Block Initialization .

• Address Increment or Decrement

• High performance: Transfers up to 1.6M
Bytes/Second with 5 MHz 8237A·5

• Directly Expandable to any Number of
Channels

• End of Process Input for Terminating
Transfers

• Software DMA Requests

• Independent Polarity Control for DREQ
and DACK ~Ignals

• Available In EXPRESS
- Standard Temperature Range

The 8237A Multlmode Direct Memory Access (DMA) Controller Is a peripheral Interface circuit for microprocessor sys­
tems. It Is designed to Improve system performance by allowing external devices to directly transfer Information from
the system memory. Memory-to-memory transfer capability Is also provided. The 8237A offers a wide variety of pro­
grammable control features to enhance data throughput and system optimization and to allow dynamic reconflgura-
tion under program control. .

The 8237A Is designed to be used In conjunction with an external 8-blt address register such as the 8282. It contains
four independent channels and may be expanded to any number of channels by cascading additional controller chips.

The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be
Individually programmed to Autoinitialize to Its Qrlginal condition following an End of Process (EOP). .

Each channel has a full 64K 'address and word count capability.

The 8237A-4 and 8237A-5 are 4 MHz and 5 MHz selected versions of the standard 3 MHz 8237A respectively.

110 BUFFEfI

"" '"IT ..
REAOY

CLOCK , TIMING

'IN .ND
CONTROL

iIII!W
RIll COMMAND

CDNTRDL
lOW

DR ... • .
0

""0
... KD- .
DACKt

Figure 1. Block Diagram

2-88

.... '"

;ow
iiEiiIi
IifIIW

INOTE11)

ROADY

HLOA

AEN

HR.

ell
eLK

RISET

DAEQ3

DR'"
DREQ1

•
3

•
•

Vcc(+6V) ...
DO' .B .

"

.1,
____ --r

Figure 2.

Pin Configuration

inter
Symbol Type

Vee
Vss
ClK I

CS I

RESET I

READY I

HLDA I

DREQO-DREQ3 I

DBQ-DB7 I/O

8237A/8237~4/8237~5

Table 1. Pin Description
~------~---r----------------~

Name and Function

Power: + 5 volt supply.

Ground: Ground.

Clock Input: Clock Input controls
the Internal operiltlons of the
8237A and Its rate of data trans·
fers. The Input. may be driven at up
to 3 MHz for the standard 8237A
and up to 5 MHz for the 8237A·5.

Chip Salect: Chip Select Is an ac·
tlve low Input used to select the
8237A as an I/O device during the
Idle cycle. This allows CPU com·
municatlon on the data bus.

Reaet: Reset is an active high In·
put which clears the Command,
StatuB, Request and Temporary
registers. It also clears the
flrstllast f1iplflop and sets the
Mask register. Following a Reset
the device is in the Idle cycle.

Ready: Ready Is an Input used to
extend the memory read and write
pulses from the 8237A to accom·
modate slow memories or I/O per·
Ipheral devices. Ready must not
make transitions during its speci·
fied setuplhold time.

Hold Acknowledge: The active
high Hold Acknowledge from the
CPU Indicates thaI it has relin·
quished control of the system
busses.

DMA Request: The DMA Request
lines are Individual asynchronous
channel request Inputs used by pe·
ripheral circuits to obtain DMA
service. In fixed Priority, DREQO
has the highest priority and
DREQ3 has the lowest priority. A
request is generated by activating
the DREQ line of a channel. DACK
will acknowledge the recognition
of DREQ signal. Polarity of DREQ
Is programmable. Reset intlalizes
these 1.lnes to active high. DREQ
must be maintained until the corre-
sponding DACK goes active.

Data Bus: The Data Bus lines are
bidirectional three·state signals
connected to the system data bus.
The outputs are enabled In the Pro·
gram condition during the 1/0 Read
to output the contents of an Ad·
dress register, a Status register,
the Temporary register or a Word
Count register to the CPU. The out·
puts are disabled and the inputs
are read during an I/O Write cycle
when the. CPU Is programming the
8237A control registers. During
DMA cycles the mos! significant 8
bits of the address are output onto I the data' bus to be strobea Into an
external latch by ADSTB. In memo

SYll1bol

lOR

lOW

EOP

AO-A3

2-89

Type Name and Function

ory·to·memory operations, data
from the memory comes Into the
8237 A on the data bus during the
read-from-memory transfer. In the
wrlte-to-memory transfer, the data
bus outputs place the data Into the
new memory locallon.

I/O I/O Read: I/O Read Is a bidirec­
tional active low three-state line. In
the Idle cycle, It Is an Input control
signal used by the CPU to read the
control registers. In the Active cy­
cle, It Is an output control signal
used by the 8237 A to access data
from a peripheral during a DMA
Write transfer.

I/O 1/0 Write: I/O Write Is a bidirec­
tional acllve low three-state line. In
the Idle cycle, It Is an Input control
signal used by the CPU to load In­
formation Into the 8237A.ln the Ac­
live cycle, It Is an output control
signal used by the 8237 A to load
data to the peripheral during a
DMA Read transfer. •

I/O End of. Proce .. : End of Process III
an active low bidirectional signal.
Information concerning the com·
pletlon of DMA services Is avail­
able at the bidirectional EOP pin.
The 8237 A allows an external sig­
nal to terminate an active DMA
service. This Is accomplished· by
pulling the EOP Input low with an
external EOP signal. The 8237 A al­
so generates a pulse when the ter·
mlnal count (TC) for any'channells
reached. This generates an EciP
!!anal which Is output through the
EOP Line. The recepllon of EOP,
either Internal or external, will
cause the 8237A to terminate the
service, reset the request, and, If
Autoinitialize Is enabled, to write
the base r\lgisters to the current
registers of that channel. The mask
bit and TC bit In the status word
will be set for the currenlly active
channel by EOP unless the channel
Is programmed for Autoinitialize. In
that case, the mask bit remains un­
changed. During memory-to'memory
transfers, EOP will be output wlJen
the TC for channel 1 occurs. EOP
should be tied high with a pull·up
resistor If It Is not used to prevent
erroneous end of process inputs.

1/0 Address: The four least significant
address lines are bidirectional
three·stale signals. In the Idle cy·
cle they are inputs and are used by
the CPU to address the register
to be loaded or read. In the Active
cycle they are outputs and provide
the lower 4 bits of the output

. address.

AFN·OO7890

inter 8237 A/8237Ar-4/8237 Ar-5 .

Table 1. Pin Description (Continued)

Symbol lYpe Name and Function

A4-A7. 0 Address: The four most significant
address lines are three-state out-
puts and provide 4 bits of address.
These lines are enabled only during
the OMA service.

HRO 0 Hold Request: This Is the Hold Re·
quest to the CPU and Is used to reo
quest control of the system bus. If
the corresponding mask bit Is
clear, the presence of any valid
OREO causes 8237 A to issue the
HRO. After HRO goes active at
least one clock cycle (TCY) must
occur before H LOA goes active.

DACKD-OACK3 0 DMA Acknowledge: OMA Ac-
knowledge is used to notify the in·
dividual peripherals when one has
been granted a OMA cycle. The
sense of these lines is program-
mable. Reset initializes them to ac-
tive low.

FUNCTIONAL DESCRIPTION

The 8237A block diagram Includes the major logic
blocks and all of the internal registers. The data inter·
connection paths are also shown. Not shown are the
various control signals between the blocks. The 823711.
contain~ 344 bits of Internal memory In the form of
registers. Figure 3 lists these registers by name and
shows the size of each. A detailed description of the
registers and their functions can be found under
Register Description.

Name Size Number

Baae Address Registers 16 bits 4
Base Word Count Registers 16 bits 4
Current Address Registers 16 bits 4
Current Word Count Registers 16bits 4
Temporary Address Register 16 bits 1
Temporary Word Count Register 16 bits 1
Status Raglsier 8blts 1
Command Register 8 bits 1
Temporery Register 8blts 1
Mode Raglsters 6 bits 4

. Mask Register 4blts 1
Request Register 4 bits 1

Figure 3. 8237 A Internal Registers

The 8237A contains three basic blocks of control logic.
The Timing Control block generates internal timing and
external control signals- for the 8237A. The Program
Command Control block decodes the various com·
mands given to the 8237A by the microprocessor prior
to servicing a DMA Request. It also decodes the Mode
Control word used to select the type of DMA during the
servicing. The Priority Encoder block resolves priority
contention bj!tween DMA channels requesting service
simultaneously.

The Timing Control block derives internal timing from
the ~clock. input. In 8237A systems this Input will usually

Symbol Type Name and Function

AEN 0 Addre •• Enable: ·Address Enable
enables the 8-bit latch containing
~the upper 8 address bits onto the
system address bus. AEN can also
be used to disable other system bus
drivers 'during OMA transfers. AEN
is active HIGH.

AOSTB 0 Addre •• Strobe: The active high,
Address Strobe is used to strobe the
upper address byte into an "xternal
latch.

~ 0 Memory Read: The Memory Read
signal is an active low three-state
output used to access data from the
selected memory location' during a
OMA Read or a memory-to-memory
transfer.

MEMW 0 Memory Write: The Memory Write
is an active low three-state output
used to write data to the selected
memory 'Iocation during a OMA
Write or a memory-to-memory
transfer.

be the </>2 TTL clock from an 8224 or ClK from an
8085AH or 8284A. For 8085AH-2 systems above 3.9 MHz,
the 8085 ClK(OUn does not satisfy 8237A-5 clock lOW
and HIGH time requirements. In this case, an external
clock should be used to drive the 8237 A·5.

2-90

DMA Operation

The 8237A is deSigned to operate in two major cycles.
These are called Idle and Active cycles. Each device cy·
cle is made up of a number· of states. The 8237 A can
assume seven separate states,each composed of one
full clock period. State I (SI) is the inactive state. It is
el\tered when the 8237A has no valid DMA requests
pending. While in SI, the DMA controller is inactive but
may be in the Program Condition, being programmed by
the processor. State SO (SO) is the first state of a DMA
service. The 8237 A has requested a hold but the pro·
cessor has not yet returned an acknowledge. The 8237A
may still be programmed until it receives HlDA from the
CPU. An acknowledge frdm the CPU will signal that
DMA transfers may begin. S1, S2, S3 and S4 are the .
working states of the DMA service. If more time is
needed to complete a transfer than is available with nor·
mal tilning, wait states (SW) can be inserted between S2
or S3 and S4 by the use of the Ready line on the 8237A.
Note that the data is transf\med directly from the I/O
device to memory (or viCE! versa) with lOR and MEMW (or
.MEMR and !OW) being active at ,the same time. The data
is not read into or driven out of the 8237A in I/O·to·
memory or memory·to·I/O DMA.transfers.

Memory·to·memory transfers require a read·from and a
write·to·memory to complete each transfer. The states,
which resemble the normal working states, use two
digit numbers for identification: Eight states are re­
quired for a single transfer. The first four states (S11,
S12, S13, S14) are used for.the read·fr9m·memory half

AFN·OO789D

8237A/8237~4/8237~5

and the last four states (521, 522, 523, 524) for the write·
to-memory half of the transfer.

IDLE CYCLE

When no channel Is requesting service, the 8237A will
enter the Idle cycle and perform "SI" states. In this
cycle the 8237A will sample the DREQ lines every clock
'cycle to determine If any channel Is requesting a DMA
service. The device will also sample eg, looking for an
attempt by the microprocessor to write or read the Inter·
nal registers of the 8237A. When CS Is low and HLDA Is
low, the 8237A enters the Program Condition. The CPU
can now establish, change or Inspect the Internal deflnl·
tlon of the part by reading from or writing to the Internal
registers. Address lines AO-A3 are Inputs to the device
and select which registers will be read or written. The
lOR and iOW lines are used to select and time reads or
writes. Due to the number and size of the Internal regis·
ters, an Internal fIIp·flop Is used to generate an addl·
tional bit of address. This bit Is used to determine the
upper or lower byte of the 16·bit Address and Word
Count registers. The fIIp·flop Is reset by Master Clear or .
Reset. A separate software command can also reset this
fIIp·flop.

Special software commands can be executed by the
8237A In the Program Condition. These commands are
decoded as sets of addresses with the C5 and lOW. The
commands do not make use of the data bus. Instruc·
tions include Clear First/Last Flip·FLop and Master
Clear.

ACTIVE CYCLE

When the 8237A Is in the Idle cycle and a non·masked
channel requests a DMA service, the device will output
an HRQ to the microprocessor and enter the Active cy­
cle. It is In this cycle that the DMA service will take
place, in one of four modes:

Single Transfer Mode - In Single Transfer mode the
device is programmed to make one transfer only. The
word count will be decremented and the address dec·
remented or incremented following each transfer. When
the word count "rolls over" from zero to FFFFH, a Ter·
minal Count (TC) will cause an Autoinitialize if the chan·
nel has been programmed to do so.

DREQ must be held active until DACK becomes active In
order to be recognized. If DREQ Is held active through­
out the Single transfer, HRQ will go Inactive and release
the bus to the system. It will again go active and, upon
receipt of a new HLDA, another single transfer will be
performed, in8080A, 8085AH, 8088,.or 8086 system this
will ensure one full machine cycle execution between
DMA transfers. Details of timing between the 8237A and
other bus control protocols will depend upon the char·
acterlstics of the microprocessor involved.

Block Transfer' Mode - In Block Transfer mode the
device Is activated by DREQ to continue making trans·
fers during the service until a TC, caused by word co~nt
going to FFFFH, or an external End of Process (EOP) is
encountered. DREQ need only be held active until DACK

2-91

becomes active. Again, an Autoinitiallzation will occur
at the end of the service If the channel has been pro·
grammed for It.

Demlnd Trlnsfer Mode - In Demand Transfer mode the
device Is programmed to continue making transfers
until a TC or external EOP Is encountered or until DREQ
goes Inactive. Thus transfers may continue until the 110
device has exhausted Its data capacity. After the 110
device has had a chance to catch up, the DMA service Is
re·establlshed by means of a DREQ. During the time
between services when the microprocessor Is allowed
to operate, the Intermediate values of address and word
count are stored In the 8237A Current Address and Cur­
rent Word Count registers. Only an EOP can cause an
Autoinitialize at the end of the service. EOP Is generated
either by TC or by an external signal.

Cascade Mode-This mode is used to cascade morethan one
8237 A together for Simple system expansion. The HRQ and
HLDA signals from the additionat8237 A are connected to the
DREQ and DACK signals of.a channel of the initial 8237A.
This allows the DMA requests of the additional device to
propagate through the priority network circuitry of the preced­
ing device. The priority chain is preserved and the new device
must wait for its turn to acknowledge' requests. Since the
cascade channel of the initial 8237 A is used only for prior­
itizing the additional device, it does not output any address
or control signals of its own. These could conflict with the
outputs olthe active channel in the added device. The 8237 A
will respond to DREQ and DACK but all other outputs except
HRQ will be disabled. The ready input is ignored.

Figure 4 shows two additional devices cascaded Into an
Initial device using two of the previous channels. This
forms a two level DMA system. More 8237As could be
added at the second level by using the remaining chan·
nels of the first level. Additional devices can also be
added by cascading into the channels of the second
level devices, forming a third level.

2ND LEVEL

MICROPROCESSOR
1ST LEVEL 8237A

1- HRQ DREQ 1- HRQ

\ ~ HLOA DACK - HLDA

8237A

DREQ - HRQ

DACK - HLOA

INITIAL DeVICE 8237A

ADDITIONAL
DeVICES _

Figure 4. Cascaded8237As

AFN-00789D

8237A/8237 Af.4/8237 J4t.5

TRANSFER TYPES

Each of the three active transfer modes can perform three
different types of transfers. These are Read, Write and Verify.
Write transfers move data from and 110 device to the memory
by actlvetlng ~ and lOR. Read transfers move data from
memory to an 1/0 device by activating MEMR and R5W. Verify
transfers are pseudo transfers. The 8237 A operates as in
Read or Write transfers generating addresses, and responding
to EOp, etc. However, the memory and 1/0 control lines all
remain inactive. The ready input is ignored in verify mode.

Memory·to-Memory-To perform block moves of data from
:)ne memory address space to another with a minimum of
program effort and time, the 8237 A includes a memory-to­
memory transfer feature. Programming a bit in the Command
register selects chan nels 0 to 1 to operate as memory-to­
memory transfer channels. The transfer is initiated by setting
the software DREQ for channel O. The 8237 A requests a DMA
service in the normal manner. After HLDA is true, the device,
using four state transfers in Block Transfer mode, reads data
from the memory. The channel 0 Current Address register is
the source for the address used and is decremented or incre­
mented in the normal manner. The data byte read from the
memory is stored in the 8237 A internal Temporary register.
Channell tben performs afour-stete transfer of the data from
the Temporary register to memory using the address in its
Current Address register and incrementing or decrementing it
In the normal manner. The channe.1 1 current Word Count is
decremented. When the word count of channel 1 goes to
FFFFH, a TC is generated causing an EQj5 output terminating
the service.

Channel 0 may be programmed to retain the same ad­
dress for all transfers. This allows a Single word to be
written to a block of memory.

The 8237A will respond to external EOP signals during
memory-ta-memory transfers. Data comparators, in
block search schemes may use this input to terminate
the service when a match is found. The timing of
memory-to-memory transfers is found in Figure 12.
Memory-ta-memory operations can be detected.as an
active AEN with no DACK outputs.

AulDinltlallze-By programming a bit in the Mode register, a
channel may be set up as an Autoinitialize channel. During
Autoinitialize ini~alization, ,the original values of the Current
Address and, Current Word Count registers are automatically
restored from the Base Address and Base Word count registers
of that channel following EOI5. The base registers are loaded
simultaneously with the current registers by the miCrOPro­
cessor and remain unchanged throughout the DMA service.
The mask bit Is not altered when the channel is in Autoinitialiie. _
Following Autoinitialize the channel is ready to perform
another DMA service, without CPU intervention, as soon as a
valid DREQ Is detected. In order to Autoninitialize both chan­
nels in a memory-to-memorytransfer, both word counts should
be, programmed identically. If interrupted externally, EQj5
pulses should be applied in both bus cycles.

Priontv-The 8237 A has two types of priority encoding avail­
able as software selectable QPtions. The first is Fixed Priority

which fiXes the channels in priority order based upon the
descending value of their number. The'channel with the lowest
priority is 3 followed by 2, 1 and the highest priqrity channel"
O. After the recognition of anyone channel for service, the -
other channels are prevented from interferring with that ser­
vice until it is completed.

The second scheme Is Rotating Priority. The last chan­
nel to get service becomes the lowest priority channel
with the bthers rotating accordlrigly., '

highest

lowest

1et
Senlce

2nd .

s4n1ce '

o 2_servICe\3_SeivICe
1'_serylce~ 3_request ,0
2 ,0 1
3 1 2

, With Rotating Priority In a single chip DMA system, any
device requesting service Is guaranteed to be recog­
nized after no more than three higher priority services
have occurred. This prevents anyone channel from
monopolizing the system.

Compressed Timing - In order to achieve even greater
throughput where system characteristics permit, the
8237A can compress the transfer, time to two clock
cycles. From Figure 11 It can be seen that state S3 Is
used to extend the access time of the read pulse. By
removing state S3, the read pulse width is made equal to
the write pulse width and a transfer consists only of
state 52 to change the address and state S4 to perform
the read/write. 51 states will stili occur when A8-A15
need updating (see Address Generation). Timing for
compressed transfers is found in Figure 14.

Address Generation - In order to reduce pin count, the
8237A multiplexes the eight higher order address bits
on the data lines. State Sl Is used to output the higher
order address bits to an external latch from which they
may be placed on the address bus. The failing edge of
Address Strobe (AD5TB) Is used to load these bits from
the data lines to the latch. Address Enable (AEN) Is used
to enable the bits onto the address bus through a three­
state enable. The lower order address bits are output by
the 8237A directly. Lines AO-A7 should be connected to
the address bus. Figure 11 shows the time relatklOshlps
bet~een CLK, AEN, ADSTB, DBO-DB7 and AO-A7.

During Block and Demand Transfer mode services,
which Include multiple transfers, the addresses gener­
ated will be sequenilal. For many transfers the data held
In the ex.ternal address latch will remain t,he saine. Thl,s
data need only change when a carry or'borrow from A7
to A8 takes place In the normal sequenc,e of addresses.
To save time and speed' transfers,' the 8237A executes
Sl states only when updating of A8-A15 in the latch is
necessary. This I)'leans for long services, Sl states and
Address Strobes may occur only onc,e every 258 trans­
fers, a savings :of 255 clock cycles for each 258
transfers.

AFN·OO789D

8237A/8237~4/8237~

REGISTER DESCRIPTION

Current Address Raglstsr - Each channel has a HI .. blt
Current Address register. ,This register holds the value
of the address used during DMA transfers. The address
Is automatically incremented or decremented after each
transfer and the Intermediate values of the address are
stored In the Current Ad,dress register during the trans­
fer. This register Is written or read by the micro­
processor in successive 8 .. blt bytes. It may also be relnl·
tiallzed by an Autoinitialize back to its original value.
Autoinitialize takes place only after an EOP.

Current Word Raglster - Each channel has a 16-bit Cur·
rent Word Count register. This register determines the
number of transfers to be performed. The actual number
of transfers will be one more than the number pro­
grammed in the Current Word Count register (i.e., pro­
gramming a count of 100 will result in 101 transfers). The
word count is decremented after each transfer. The
Intermediate value of the word count Is stored In the reg·
Ister during the transfer. When the value in the register
goes from zero to FFFFH, a TC will be generated. This
register is loaded or read in successive 8·blt bytes by
the microprocessor In the Program Condition. Follow ..
ing the end of a DMA service it may also be reinitialized
by an Autoinitialization back to its original value. Auto­
initialize can occur only when an EOP occurs. If it is not
Autoinitialized, this register will 'have a count of FFFFH
after,TC.

Base Address and Base Word Count Raglsters - Each
channel has a pair of Base Address and Base Word
Count registers. These 16·blt registers store the original
value of their associated current registers. During Auto·
initialize these values are used to restore the current
registers to their original values. The base registers are
written simultaneously with their corresponding current
register in 8·bit bytes in the Program Condition by the
microprocessor. These registers cannot be read by the
microprocessor.

Command Raglster - This 8·bit register controls the
operation of the 8237A. It is programmed by the micro­
processor In the Program Condition and is cleared by
!'teset or a Master Clear instruction. The following table
lists the function of the command bits. See Figure 6 for
address coding.

Mods Raglster - Each channel has a 6·bit Mode regis ..
ter associated with it. When the register is being written
to by the microprocessor in the Program Condition, bits
o and 1 determine which channel Mode register is to be
written.

Request Register - The 8237A can respond to requests
for DMA service which are initiated by software as well
as by a DF\EQ. Each channel has a request bit associ·
ated with it in the 4-bit Request register. These are non·
maskable and subject to prioritization by the Priority
Encoder network. Each register bit is set or reset sepa·

,2·93

Command Register
7 • 5 4 3 2 1 0 ~III Num

l I I I I I II I
Y 0 Mernory·to-memory dl8eble

1 Memory-to-memory enable

Y 0 Channel 0 add hold dluble
1 Channel 0 eddr_ hold enable
X II bll 0 .. 0

I 0 Controller eneble
I 1 Controller dl8eble

f
t

0 Normal timing
1 Compreeaed timing
X II bit 0 .. 1

j 0 Fixed priority
I 1 Rotating priority

f
I

0 Lat. write .electlon
1 Extended write .electlon
X II bl13" 1

I 0 DREQ 88nse active high
I 1 DREQ 88nse active low

j 0 DACK 88nse active low
I 1 DACK len.e active high

Mode Register
7 8 5 4 3 2 1 04--BltNumber

I I II I I II
'-,-"" -~L{

I
I

I
I

f
l

Request Raglster

00 Channel 0 select
01 Channel'l select
10 Channel 2 select
11 Channel 3 .elect

00 Verily transler
01 Write trensler
10 Reed transfer
11 Illegal
XX II bits 8 and 7 .. 11

o Autoinitialization disable
1 Autoinitialization enable

o Address Increment select
1 Address decrement select

00 Demand mode select
01 Slngl. mode .elect
10 Block mode .elect
11 C8acade mode select

o Reaat request bit
'-----i 1 Set request bit

rately under software control or Is cleared upon genera·
tion of a T,C or external E()P.The entire register is
cleared by a Reset.. To set or reset a 'bit, the software
loads the proper form of the data word. See Figure 5 for
register address coding. In order to make a software reo
quest, the channel must be in Block Mode.

AFN·OO7880

intJ. S237 A/S23" A-4/S237 A-S

Mask Register ... Each channel has associated with It Ii
mask bit which can be set to disable the Incoming
DREQ. Each mask bit Is set when its associated channel
produces an ,mP If the channel Is not programmed for
Autoinitialize. Each bit of the 4-blt Mask register may
also be set or cleared separately under software control.
The entire register Is also set by a Reset. This disables
all DMA requests until a clear Mask register Instruction
allows them to occur. The Instruction to separately set
or clear the mask bits Is 'similar In form to that used with
the Request register. See Figure 5 for Instruction ad­
dressing.

.... "T"'-r-r-,~r1..,..O...,~ alt Hum ..

Don't Care L{ 00 Select channel 0 maek bit
01 Select channel 1 mask bit
10 Select channel 2 mask bit
11 Select channel 3 mask bit

'-----I 0 Clear mask bit
1 Set mask bit

All four bits of the Mask register may also be written
with a single command.

8 5 4,3 2 1 O.--altHumber

Register

o Clear channel 0 mask bit
1 Set channel 0 mask bit

o Clear channel 1 mask bit
1 Set channel 1 mask bit

'-__ -! 0 Clear channel 2 mask bit
1 Set channel 2 mask bit

'-___ -I 0 Clear channel 3 mask bit
1 Set channel 3 mask bit

Operation
Signals

OS lOR lOW A3 A2 A1 AD
Ccmmand Write, 0 1, 0 1 0 0 0
Mode Write 0 1 0 1 0 1 1
Request Write 0 1 '0 1 0 0 1
Mask Set/Reset 0 1 0 1 0 1 O·
Mask Write 0 1 0 1 1 1 1
Temporary Read '0 0 1 1 1 0 1
Status Read 0 0 1 I 1 0 0 0

Figure 5_ Definition of Register Codea

Status Regl"er - The Status register'ls available to be
read out of the 8237 A by the microprocessor. It contains
infotlnation about the status of the devices at this point.
This infonnatlon Includes which channels have reached
a terminal count and which channels have pending DMA
requests: Bits 0-3 are set every time a TC is reached by
that channel or an external &lP-is applied. These bits
are cleared upon Reset and on each Status Read. 'Bits
4-7 are set whenl!ver their corresponding channel Is,
requesting service.

2-94

I, Channel 0 has reechld TC
1 Ohannel 1 has reached TC

'----- 1 Channel 2 has reached TC
'------ 1 ,Channel 3 has reached TC

Channel 0 request
Channel '1 request
Channel 2 request
Channel 3 request

Temporary Register - The Temporary register Is used
to hold data during memory-to-memory transfers. 'Fol­
lowing the completion of the trarlsfers, the last word
moved can be read by the microprocessor In the Pro­
gram Condition. The Temporary register always con­
tains the last byte transferred In the previous memory­
to-memory operation, unless cleared by a Reset.

Software Commands-These are additional special80ftware
commands which can be e/Cecuted in the Program Condition.
They do not depend on any speCific bit pattern on the data
bus. The three ~ftware commands are:

I Clear First/Last FliP-Flop: This co'mmand is executed
prior to writing or reading new address or word count
information to the 8231A. This Initializes the flip-flop
to a known state so that subsequent accesses to reg­
Ister contents by the microprocessor will address
upper and lower bytealn the correct sequence.

Master Clear: This software instruction has the same
effect as'the hardware Reset. The Command, Status,
Request; Temporary; and Internal First/Last Flip-Flop
registers are,cleared and the Mask register is set. The
8237A will enter the Idle cycle.

Clear Mask Register: This command clears the mask
bits of all four channels, enabling them to accept
DMA requests. '

Figure 6 lists the address codes for 'the software com­
mands:

Sign."

A3 A2 AI AD lOR iOW Operation

1 ,0 a 0 0 1 Read Statue Register

1 0 0 0 1 0 Write Command Regrater

1 0 0 1 0 1 Illegal

1 0 0 1 1 0 Wnte Reque.t Regllter

1 0 1 0 0 1 11_1

1 0 1 0 1 0 . Write SIngle Meak Register Bd

1 0 1 1 0 1 Illegat

1 o . 1 1 1 0 Wnt. Mode Regl.lar '

1 1 0 0 0 1 Illegal

1 1 0 0 1 0 Clear Byte POinter Flip/FlOP

,1 1 0', 1 0 1 Read Temporary Regllttl, "

1 ,1 0 1 1 0, MaaterCfMr

1 1 1. ~ 0 1 III ••• ,

1 1 1 0 1 0 Clear Mask Register

1 '1 1 1 '0 1 Illegal

1 1 1 1 1 0 Write All Mask,Realater Ekt.a

Figure 6_ Software Command Code.

AFN·OO7BBil

8237 A/8237 A-4/8237 A-5

Chlnnel Register Operltlon
, Slgnols

Intemll Flip-Flop
CS , lOR lOW A3 A2 At AO

0 Base and Current Address Write 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 t

Current Address Read 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 t

Base and Current Word Count Write 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 1

Current Word Count Read 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 1

1 Base and Current Address Write 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1

Current Address Read 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1

Base and Current Word Count Write 0 1 0 0 0 1 1 0
0 1 0 1) 0 1 1 1

Current Word Count Read 0 0 1 0 0 1 1 0
0 0 1 0 0 1 1 1

2 Base and Current Address Write 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1

Current Address Read 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 1

Base and Current Word Count Write 0 1 0 0 1 0 t 0 . 0 1 0 0 1 0 1 1

Current Word Count Read 0 0 1 0 1 0 1 0
0 0 1 0 1 0 1 1

3 Base and Current Address Write 0 1 0 0 1 1 0 0
0 1 0 0 1 1 0 1

Current Address Read 0 0 1 0 1 1 0 0
0 0 1 0 1 1 0 1

Base and Current Word Count Write 0 1 0 0 1 1 1 0
0 1 0 0 1 1 1 1

Current Word Count Read 0 0 1 0 1 1 1 0
0 0 1 0 1 1 1 1

Figure 7. Word Count and Address Register Command Codes

PROGRAMMING

The 8237A will accept programming from the host proc­
essor any time that HLDA is inactive; this is true even if
HRQ ,is active, The responsibility of the host is to assure
that programming and HLDA are mutually exclusive.
Note that a problem can occur if a DMA request occurs,
on an unmasked channel while the 8237A is being pro·
grammed, For instance, the CPU may be starting to
reprogram the two byte Address register of channel 1
when channel 1 receives a DMA request. If the 8237 A is
enabled (bit 2 in the command register is 0) and channel
1 is unmaSked, a DMA service will occur after only one
byte of the Address register has been reprogrammed_
This can be avoided by disablin'g the controller (setting
bit 2 in the command register) or masking the channel
before programming any other registers. Once the pro­
gramming is complete, the controller can be enabled/un·
masked,

After power·up it is suggested that all internal locations,
especially the Mode registers, be loaded with some
valid value. This should be done even if some channels
are unused.

2-95

Dlte Bus DBO-DB7

AG-A7
AS-At 5

Ao-A7
AS-At5

WQ-W7
WS-WI5

wyJ-W7
W8-WI5

AO-A7
AS-At5

AG-A7
Ai-A15

Wo-W7
W8-Wt5

WO-W7
W8-WI5

AO-A7
AS-A15

Ao-A7
AS-At5

Wo-W7
WS-Wt5

wyJ-W7
W8-Wt5

AO-A7
AS-A15

Ao-A7
AS-A15

WO-W7
W8-W15

WtO-W7
W8-WI5

AFN-00789D

8237 A/8237 ~4/8237 A·5

APPLICATION INFORMATION

Figure 8 shows a convenient method for conflguril1g a
DMA system with the 8237 A controller and an 8080AI
808.5AH microprocessor system. The multi mode DMA
controller issues a HRQ to the processor whenever
there is at least one valid DMA request from a peripheral
device. When the processor replies with a HLDA signal,
the 8237 A takes control of the address bus, the data bus
and the cOl]trol bus. The address for the first transfer

operation comes out in two bytes - the least signifi­
cant 8 bits on the eight address outpufs and the most
significant 8 bits on the data bus_ The contents of the
data bus are then latched into the 8282 8-bit latch to
complete the full 16 b,its of the address bus. The 8282 is
a high speed, 8-blt, three-state latch in a 2().pln package.
After the Initial transfer takes place, the latch is updated
only after a carry or borrow Is generated in the least sig­
nificant address byte. Four DMA channels are provided
when one 8237A is used.

ADDRESS BUS AO-A15)

AO-A15

BUSEN

HLDA HLDA

HOLD HRQ,

CPU

CLOCK

RESET

MEMR

MEMW

iIDi

iOW

DBO-DB7

...

.... ~

.... i"--

I-- -"

I
....

I ...
AEN AO-A3 A4-A7 cs ADSTB

8237A .., ..,
l-

iI i 8 l2 w

~ ~ gj I~
w u a: .. u a: " "

I) f14
,

SYSTEM DATA BUS

Figure 8_ 8237A System Interface

2-96

DBO-
DB7

y

A8-A15

~
8282

STB

8·BIT LATCH

.... i"--
,t -.l\

, r

l~' BUS

.... ~

)
r

AFN·OO789D

intJ 8237A/8237~4/8237~

ABSOLUTE MAXIMUM RATINGS·

AmblentTemperature under Bias ••••••••• O'C to 70'C
Storage Temperature ••••••••••••• -55'Cto + 150'C
Voltage on any Pin with

Respectto Ground •••••••••••••••••••• - 0.5 to 7V
Power Dissipation •••••••••••••••••••••••• : 1.5 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (T A = O°C to 70°C, Vee = 5.0V ±5%, GND = OV)

Symbol Parameter Min. 1IJp.(1) Max. Unit Test Conditions

VOH Output High Voltage 2.4 V IOH = -200 "A
3.3 V IOH = -100 "A (HRQ Only)

VOL Output LOW Voltage 45 V IOl = 2.0rnA (data Bus)EIW
IOl = 3.2rnA (other outputs) (Note 8
IOl = 2.5rnA (ADSTB) (Note 8)

VIH Input HIGH Voltage 2.2 Vcc+ 0•5 V

Vil Input LOW Voltage -0.5 0.8 V

III Input Load Current ±10 "A OV ~ VIN ~ Vcc

ILO Output Leakage Current
.

±10 "A O.45V ~ VOUT ~ Vcc

Icc VeeSupply Current 110 130 rnA TA=+25°C

130 150 rnA TA=O°C

Co Output Capacitance 4 8 pF

C1 Input Capacitance 8 15 pF Ic = 1.0 MHz, Inputs = OV

C1Q I/O Capacitance 10 18 pF

NOTES:
1 Typical values are for T A = 25°C, nominal supply voltage and nominal processing parameters
2. Input liming panimeters assume transition times of 20 ns or less. Waveform measurement pOints for both input and output signals are 2 OV for HIGH and 0 8V

for lOW. unless otherwise noted.
3. OUlput loading is 1 m gate plus 150pF capacitance, unless otherwise noted.
4. The net lOW or MEMW Pulse wtdth for normal wrHe will be TCY-1 00 ns and for extended write wtll be 2TCY-100 ns. The net lOR or MEMR pulse WIdth for

normal read will be 2TCY-SO ns and for compressed read wtll be TCY-SO ns.
5. TOQ Is specified for two different output HIGH levels TOQ1 is measured at 2.0V. TOQ2 is measured at 3.3V. The value for TOQ2 assumes an external 3.3k2

pull-up resIstor connected form HRQ to Vcc.
6. DREQ should be held active unHI DACK Is returned.
7 DREQ and DACK signals may be active high or active low. Timing diagrams assume the active high mode.
8. A revision of the 8237 A Is planned for shipment In April 1964, which wtllimprove the folloWing charactaristics.

1. VIH from 2.2V to 2.0V
2. VOL from 0.45V to 0.4V on all outputs. Test condHion IOl = 3.2 mA
Please contact your local sales office at thai time for more Information.

9. Successive read andlor write operations by the external processor 10 program or examIne the controiler must be bmed to allow at least 600 ns for the 8237 A,
at least 500 ns for the 82~7 A-4 and alleast 400 ns for the 8237 A-5, as recovery time between active read or wrila pulses

10. Emi is an open collector output. This parameter assumeslhe presence of a 2.2K puilup to Vcc.
11. Pin 5 is an Input thai should always be at a logic high level An Internal puil-up resistor wtll establish a logic high when the pin is left floating. II is recom­

mended however, thai pin 5 be tied to Vcc.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

u~.. ux= . > TEST POINTS < .
~ ~ u

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND 0 45V FOR
~~ggl~v"~~~I~[NpGG:t:E.~S,~(=~rs ARE MADE AT 2 OV FOR A LOGIC "1"

2-97 AFN·OO789D

8237 A/82~7 A..4/8237 A-5

A.C. CHARACTERISTICS~DMA (MASTER) lI/IODE (TA=O·C to 70·C,
Vee= +5V:t5%. GND=OV)

8237A 8237A-4 8237A-S
Symbol Parameter Min. Max. Min. Max. Min. Max. Unit

TAEl AEN HIGH from ClK lOW (S1) Delay Time 300 225 200 ns

TAET AEN lOW from ClK HIGH .(81) Delay Time 200 150 130 ns

TAFAB ADR Active to Float Delay from ClK HIGH 150 120 90 ns

TAFC READ or WRITE Float from ClK HIGH 150 120 120 nS

TAFDB DB Active to Float Delay from ClK HIGH 250 190 170 ns

TAHR ADR from READ HIGH Hold Time TCY-100 TCY-100 .rCY-100 ns

, TAHS DB from ADSTB lOW Hold Time 50 40 30 ns

TAHW ADR from WRITE HIGH Hold Time TCY-50 TCY-50 TCY-50 ns

DACK Valid from ClK lOW DelayTime (Note 7) 250 220 170 ns

TAK EOP HIGH from eLK HIGH Delay Time (Note 10) 250 190 170 ns

EOP lOW from ClK HIGH Delay TIme 250 190 170 ns

TASM ADR Stable from ClK HIGH i 250 190 170 ns

TA$S DB to ADSTB LOW Setup Time I 100 • 100 100 ns

TCH Clock High Time (Transitions,,; 10 ns) 120 100 80 ns

TCl Clock lOW Time (Transillons,,;10 ns) 150 110 68 ns

TCY ClK Cycle Time 320 250 200 ns

TOCl ClK HIGH to READ or WRITE lOW Delay (Note 4) 270 200 190 ns

TDCTR READ HIGH from ClK HIGH (S4) Delay Time
(Note 4) ! 270 210 190 ns

TOCTW WRITE HIGH from ClK HIGH (84) Delay Time
(Note 4) 200 150 130 ns

TOO1 160 120 120 ns
HROValid from ClK HIGH Delay Time (Note 5)

TOO2 250 190 120 ns

TEPS EOP lOW from ClK lOW Setup Time 60 45 40 ns

TEPW EOP Pulse Width 300 225 220 ns

TFAAB ADR Float to Active Delay from ClK HIGH 250 190 170 ns

TFAC READ or WRITE Active from ClK HIGH 200 150 150 ns

TFADB DB Float to Active Delay from ClK HIGH 30~ 225 200 ns

THS HlDA Valid to ClK HIGH Setup Time 100 75 75 ns

TlDH Input Data from MEMR HIGH Hold Time 0 0 0 ns

TIDS Input Data to MEMR HIGH Setup Time 250 190 170 ns
/

TODH Output Data from MEMW HIGH Hold Time 20 20 10 ns

TODV Output Data Valid to MEMW HIGH 200 125 125 ns

TOS DREO to elK lOW (SI, 84) Setup Time (Note 7) 0 0 0 ns

TRH elK to READY lOW Hold Time 20 20 ,20 ns

TRS READY to ClK lOW Setup Time 100 60 60 ns

TSTl ADSTB HIGH from elK HIGH Delay Time 200 150 130 ns

TSTT ADSTB lOW from CLK HIGH D~layTime 140 110 . 90 ns

2-98 AFN-00789D

intJ 8237A/8237~4/8237~5

A.C. CHARACTERISTICS-PERIPHERAL (SLAVE) MODE (TA = OOC to 70°C, VCC =5.0V ±5%,
GND = OVr

Symbol Parameter
8237A 8237A-4 8237A-5 Unit

Min. Max. Min. Max. Min. Max.

TAR ADR Valid or CS LOW to READ LOW 50 50 50 ns

TAW ADR Valid to WRITE HIGH Setup Time 200 .1 SO 130 ns

TCW CS LOW to WRITE HIGH Setup Time 200 150 130 ns

TOW Data Valid to WRITE HIGH Setup Time 200 lS0 130 ns

TRA ADR or CS Hold from READ HIGH '" 0 0 0 ns

TRDE Data Access from READ LOW (Note 3) 200 200 140 ns

TRDF DB Float Delay from READ HIGH 20 100 20 100 0 70 ns

TRSTD Power Supply HIGH to RESET LOW Setup Time 500 SOO 500 ns

TRSTS ,RESET to First IOWR 2TCY 2TCY 2TCY ns

TRSTW RESET Pulse Width 300 300 300 ns

TRW READ Width 300 2S0 200 ns

TWA ADR from WRITE HIGH Hold Time 20 20 20 ns

TWC CS HIGH from WRITE HIGH Hold Time 20 20 20 ns

TWO Data from WRITE HIGH Hold Time 30 30 30 ns

TWWS Write Width 200 200 160 . ns

WAVEFORMS

SLAVE MODE WRITE TIMING
L TCW

-i
- ~TWC

I,)
(NOTE I)

TWWS

I

'- -TWA
TAW

----,.
AO-A3 ---.J INPUT VALID

- -TWO
TOW

DBO-DB7 =:) INPUT VALID (
Figure 9. Slave Mode Write

SLAVE MODE READ TIMING

cs~

AO-A3~ ADDRESS MUST BE VALID (

H'"l TRW ~-iliA

(NOTE I)

t.. TRDE

t TRDF3-

DBO-DB7

Figure 10. Slave Mode Read
DATA OUT VALID ___

2-99 AFN·Q0789D

intJ 8237A/8237 Ao4/8237 A-S

WAVEFORMS (Continued)

DMA TRA~SFER TIMING

elK

.,
~~~~~~~~~~~~ 

54 81 Sf .. 
--f \..J ~~~~~ 

-jTQS 1TQS~ 
TCl 

l- . F r TCV - -

m \\ l\ l\\ !\ \ \' (NOTE 6) DtiQ 

TC" 

T~_ F T~~ 

~ 
I-

HO. 

THS- -
""OA lLLi ,\ ,\\\\\\\\\ 

TAELI--I TAET i I, 11 - ~TT 
.EN 

Tsn ~ - -- rEPS 

,,,TO r ""\ 
I 

~~~T'SS ~ 
TFADB - f:: r-r

\ AI~A15"i

FfiTAi'·O - lAIM - - TAFAI

rFAAI - 1 1-- TAHW I- f-TAHW

010-087

t, ADDRESS VALID ADDRESS VALID

, ~ I-- -fAHA -TAHR

/ 1\
I

DACK

TFAC - ~ TOCTA ~ TDCTA l- I- r--TAFC

,----..,. ""-, Ir-,",
I

~
I-TDeTW TDCTW

I ~ ~<\ <-_ yl~_
(FOR ~ENDED WRITE) ~

I

~ -},;--~ T£PW

I
\\\\\\\\\\\ (jIll I I I I I I I I

INT'"

m_
Figure 11. DMA Transfer

2-100 AFN-00789D

inter B237A/B237~4/B237~5

WAVEFORMS (Continued)

MEMORY-TO-MEMORY TRANSFER TIMING

ADSTB

AD-A7

DBO-DB7

EXT EOP

Figure 12. Memory·to-Memory Transfer

READY TIMING

ClK

TDCl --+~--I

READY

EXTENDED
WRITE TRH 1-

TRS1

\\\\\\\ \\\\
TRS

Figure 13. Ready

2-101 AFN·OO7B9D

inter 8237 A/8237ftr;4/8237 ~5

WAVE,FORMS (Continued)

COMPRESSED TRANSFER TIMING

elK

AO-A7

REAOY

Figure 14. Compressed Transfer

RESET TIMING

r--------------------------------------~I~I------------
Vee ------J/ll-.------- TRSTO ----------1

)

-----TRSTW ----

RESET ___ -..J ---~

iOIi OR row

Figure 15. Reset

AFN-007890

8257/8257·5
PROGRAMMABLE DMA CONTROLLER

• MCS-85$ Compatible 8257-5

• 4·Channel DMA Controller

• Priority DMA Request Logic

• Channel Inhibit Logic

• Terminal Count and Modulo 128
Outputs

• Single TTL Clock

• Single + 5V Supply

• Auto Load Mode

• Available in EXPRESS
- Standard Temperature Range

The Intel' 8257 is a 4·channel direct memory access (DMA) controller. It IS specifically designed to simplify the
transfer of data at high speeds for the Intel@ microcomputer systems. Its primary function is to generate, upon a
peripheral request, a sequential memory address which will allow the peripheral to read or write data directly to or
from memory. Acquisition of the system bus in accomplished via the CPU's hold function. The 8257 has priority logic
that resolves the peripherals requests and Issues a composite hold request to the CPU. It maintains the DMA cycle
count for each channel and outputs a control signal to notify the peripheral that the programmed number of DMA
cycles is complete. Other output control signals simplify sectored data transfers. The 8257 represents a significant
savings in component count for DMA·based microcomputer systems and greatly simplifies the transfer of data at
high speed between peripherals and memories.

A, A,_
A,

cs--_---l
A.

A,

A.

A,

A ••

ADSTB
TC ___ ...J

MAAIC. ____ -.J

Figure 1. Block Diagram

DAao

ORO 1

OAO 2

2·103

A,

A,

A,

A,

TC

A,

A,

A,

A,

00
ClK 0,

RESET 0,
OACK 2 0,

5AcK'3 0,

DACK 0

r3ACi(1

'" 0,

GND

Figure 2. Pin Configuration

8257/8257 ·5

FUNCTION~L DESCRIPTION

General
The 8257 is a programmable, Direct Mem,ory Access
(DMA) device which, when coup,l~ with a single IntelI!')
8212 I/O port device, provides a complete four-channel
DMA controller for use in Intel18 micro~omputer systems.
After being initialized by software, the 8257 can transfer a
block of data, containing up to 16,384 bytes, between
memory and a peripheral device directly. without further
intervention required of the CPU. Upon receiving a DMA
transfer request from an enabled peripheral, the 8257:

1. Acquires control of the system bus.

2. Acknowledges that requesting peripheral which is
connected to the highest priority channel.

3. Outputs the least significant eight bits ofthe memory
address onto system address lines Ao-A7, outputs
the most significant eight bits of the memory address
to the 8212 110 port via the data bus (the 8212
places these address bits on lines A8"A,sl. and

4. Generates the appropriate memory, and I/O read/
write control signals that cause the peripheral to
receive or deposit a data byte directly from or to the
addressed location in memory.

The 8257 will retain control of the system bus and repeat
the transfer sequence, as long as a peripheral maintains its
DMA request. Thus, the 8257 can transfer a block of data
to/from a high speed peripheral (e.g., a sector of data on a
floppy disk) in a Single "burst". When the specified
number of data bytes ·have been transferred, the 8257
activates its Terminal Count (TC) output, informing the
CPU that the Operation is complete.

The 8257 offers three different modes of operation:
(1) DMA read, which causes data to be transferred from
memory to a peripheral; (2) DMA write, which causes
data to be transferred from a peripheral to memory;
and (3) DMA verify, which <joes not actually involve the
transfer of data. When an 8257 channel is in the DMA venfy
mode, it will respond the same as described for transfer
operations, except that no memory or I/O read/write
control signals will be generated, thus preventing the
transfer of data. The 8257, however, will gain control of the
system bus and will acknowledge the peripheral's DMA
request for each DMA cycle. The peripheral can use these
acknowledge signals to enable an internal access of each
byte of a data block in order to execute some verification
procedure, such as the accumulation of a CRC (Cyclic
Redundancy Code) checkword. For example, a block of
DMA verify cycles might follow a block of DMA read cycles
(memory to peripheral) to allow the peripheral to verify ItS
newly acquired' data.

Block'Diagram Description

1. DMA Channels
The 8257 provides four separate DMA channels (labeled
CH-O to CH-3). Each channel includes two sixteen-bit
registers: (1) a DMA address register, and (2) a termi­
nal count register. Both registers must be initialized
before a channel Is enabled. The DMA address register is
loaded with the address of the first memory location to be
accessed. The value loaded into the low-order 14-bits of
the terminal count register specifies the number of DMA
cycles minus one before the Terminal Count (TC) output
is activated. For instance, a terminal count of 0 would
cause the TC output 10 be active in the first DMA cycl!! for
that channel. In general, if N = the number of desired DMA
cycles, load the value N-l into the low-order 14-bits of the
terminal count register. The most significant two bits of the
terminal count register specify the type of DMA operation
for that channel.

Flgure~. 8257 Block Diagram Showing DMA
Channels

2-104 / AFN·Ol840D

inter 825718257·5

These two bits are not modified during a oMA cycle, but
can be changed between oMA blocks.

Each channel accepts a oMA Request (oROn) input and
provides a oMA Acknowledge .(oACKn) output.

(ORO O-ORO 3)
oMA Request: These are individual asynchronous chan­
nel request inputs used by the peripherals to obtain a oMA
cycle. If not in the rotating priority mode then ORO 0 has
the highest priority and ORO 3 has the lowest. A request
can be generated by raising the request line and holding it
high until oMA acknowledge. For multiple oMA cycles
(Burst Mode) the request line is held high until the oMA
acknowledge of the last cycle arrives.

(OACK 0 - OACK 3)

oMA Acknowledge: An active low level on the acknowl·
edge output informs the peripheral connected to that
channel that It has been selected for a oMA cycle. The
i5J£R output acts as a "chip select" for the peripheral
device requesting s!,rvice. This line goes active (iow)
and inactive (high) once for each byte transferred even If
a burst of data is being transferred.

2. Data BUI Buffer

This three-state, bf-directional, eight bit buffer interfaces
'the 8257 to the system data bus.

(00-07)

Data Bus Lines: These are bi-directional three-state lines.
When the 8257 is being programmed .by the CPU, eight­
bits of data for a oMA address register, a terminal count
register or the Mode Set register are received on the data
bus. When the CPU reads a oMA address register, a
terminal count register or the Status register, the data is
sent to the CPU over the data bus. During oMA cycles
(when the 8257 is the bus master), the 8257 will output the
most significant' eight-bits of the memory address (from
one of the oMA address registers) to the 82121atch via the
data bus. These address bits will be transferred at the
begin'ning of the oMA cycle; the bus will then be released
to handle the memory data transfer during the balance of
the oMA cycle. .

2-105

BIT 15 BIT 14 TYPE OF DMA OPERATION

0 0 Verity DMA CyCle
0 1 Write DMA Cycle
1 0 R.ed DMA Cycle
1 1 (lIIegel)

DRQO

0,

~

ORO 1

DiCKi

ORO 2

6m"l

ORO 3

6'iCil

Figure 4. 8257 Block Olagram Showing Oata Bus
Buffer

AFN·01840D

825718257.5

3. Re.dlWrlte Logic

When the CPU is programming or' reading one of the
8257's registers (Le., when the 8257 is a "slave" device on
the system bus), the Read/Write logic accepts the 110
Read (lR5R) or IIOWrite (TIOW) signal, decodes the least
significant four address bits, (Ao-A3), and either writes
the contents of the data bus into the addressed register
(if IIOW is true) or places the contents of the addressed
re:Jister onto the data bus (if mm is true).

During DMA cycles (i.e., when the 8257 is the bus
"master"), the ReadlWrite logic generates the 1/0 read
and memory write (DMA write cycle) or 1/0 Write and
memory read (DMA read cycle) signals which control the
data link with the peripheral that has been granted the
DMA cycle.

Note that during DMA transfers Non-DMA 1/0 devices
should be de-selected (disabled) usin9 "AEN" signal ,to
inhibit 1/0 device decoding of the memory address as an
erroneous device address,

(1I0R)

J/O Read: An active-low, bi-directional three-state line. In
the "slave" mode, it is an Input whic!1 allows the 8-bit
status register or the upperllower byte of a 16-bit DMA
address register or terminal count register to be read. In
the "master" mode, I/OR is a control output which is used
to access data from a peripheral during the DMA write
cycle,

(I/OW)

110 Write: An active-low, bi-directional three-state line, In
the "slave" mode, it IS an input which allows the contents
of the data bus to be loaded into the 8-bit mode set register
or the upperllower byte of a 16-bit DMA address register

'or terminal count register In the "master" mode, I/OW is a
control output which allows data to be output to a
peripheral during a DMA read cycle "

(ClK)

Clock Input: Generally from an Intel'" 8224 Clock Gen­
erator device. (~2 TIL) or Intel'" 8085A ClK output

(RESET)

Reset: An asynchronous input (generally from an 8224
or 8085 device)' which disables all DMA channels by
clearing the mode register and 3-states all control lines.

2-106

(~-A31
Address lines: These least significant four address lines
are bi-directional. In the "slave:' mode they are inputs
which select one of the registers to be read or
programmed. In the "master" mode, theY.are outputs
which constitute the least significant four bits of the 16-bit
memory address generated by the 8257.

Chip Select: An active-low input which enables the 1/0
Read or 1/0 Write input when the 8257 is being read or
programmed in the "slave" mode. In the "master" mode,
CS is automatically disabled to prevent the chip from
selecting itself while performing the DMA function.

4. Control Logic

This block controls the sequence of operations during all
DMA cycles by generating the appropriate control signals
and the 16-bit address that specifies the memory location
to be accessed

Figure 5. 8257 Block Diagram Showing
Read/Write Logic Function

AFN-01840D

825718257·5

(A4-A7)

Address Lines: These four address lines are three-state
outputs which constttute bits 4 through 7 of the 16-bit
memory address generated by the 8257 during all DMA
cycles.

(READY)
Ready: This asynchronous input is used to elongate the
memory read and write cycles in the 8257 with wait
states if Ihe selected memory requires longer cycles.
READY must conform to specified setup and hold
times.

(HRQ)

Hold Request: This output requests control of the
system bus. In systems with only one 8257, HRQ will
normally be applied to the HOLD input on the CPU. HRQ
must conform to specified setup and hold times.

(HLDA)

Hold Acknowledge: This Input from the CPU indicates
that the 8257 has acquired control ot'the system bus.

(MEMR)

Memory Read: This active-low three-state output is used
to read data from the addressed memory location dunng
DMA Read cycles.

Memory Write: This active-low three-state output IS used
to write data Into the addressed memory location dunng
DMA Write cycles.

(ADSTB)

Address Strobe. This output strobes the most significant
byte of the memory address into the 8212 device from the
data bus.

(AEN)

Address Enable. This output IS used to disable (floall the
System Data Bus and the System Control Bus. It may also
be used to disable (floall the System Address Bus by use
of an enable on the Address Bus drivers in systems to
inhibit non-DMA devices from responding dl!ring DMA
cycles. It may be further used to Isolate the 8257 data bus
from the System Data Bus to facilitate the transfer of the 8
most significant DMA address. bits over the 8257 data 1/0
pins without subjecting the System Data Bus to any
timing constraints for the transfer. When the 8257 is used
in an 1/0 device structure (as opposed to memory
mapped). this AEN output should be used to disable the
selection of an 1/0 device when the DMA address IS on the
address bus. The 1/0 device selection should be
determine~ by the DMA acknowledge outputs for the 4
channels.

(Te)
Terminal Count: This output notifies the currently
selected peripheral that the present DMA cycle should be
the last cycle for this data block. If the TC STOP bit in the
Mode Set register is set. the selected channel will be
automatically disabled at the end of that DMA cycle. TC is
activated when the 14-bit value in the selected channel's
terminal count register equals zero. Recall that the low­
order 14-bits of the terminal count register should be
loaded with the values (n-1). where n = the desired number
of the DMA cycles.

2-107

(MARK)
Modulo 128 Mark: This output nollfies the selected
penpheral that the current DMA cycle IS the 128th cycle
since the prevIous MARK output. MARK always occurs at
128 (and all multiples of 128) cycles from the end of the
data block Only if the total number of DMA cycles (n) is
evenly dlvlsable by 128 (and the terminal count register
was loaded with n-l). will MARK occur at 128 (and each
succeeding muiliple of 128) cycles from the beginning 01
the data block -

FIgure 6. 8257 Block Diagram Showing Control
Logic and Mode Set Register

AFN·01840D

'/
I,

inter 825718261-5
~,. ,

5. Mode Set Register

When set, the various bits in the Mode Set register enable' I

each of the four DMA channels, and allow four different
options for the 8257:

E AUTOLOAD ~ Eno.le. DMA ehannot 0
~I'I~

'n.bles ROTATING PR 'OR ITY r , ... blo. DMA e"'nn.'3

Enabfes tc STOP Enables OMA Ch.nnel 1
Eno E'TENDED WRITE Enob' .. DMA ehanne'Z

The Mode Set register is normally programmed by ,the
CPU after the DMA address register(s) and terminal
count register(s) are initialized. The Mode Set Register IS
cleared by the RESET input, thus disabling all options,
inhibiting all channels, and preventing bus conflicts on
power-up. A channel should not be left enabled unless Its
DMA addresll and terminal count registers 'contain valid
valu!'s; otherwise, an Inadvertent DMA request (DROn)
from a peripheral could initiate a OMA cycle that would
destroy memory ,data.

The various options which can be enabled by bits In the
Mode Set register are explained below.

Rotating Priority Bit 4

In the Rotating Pnonty Mode. the pnorotY,of the channels
has a circular sequence After each DMA cycle. the
prionty-of each channel changes. The channel which had
just been serviced Will have the lowest pnonty

~~
(:) M
.~

If the ROTATING PRIORITY bit 's not set (set to a zero),
each DMA channe; has a fixed pnority In the fixed pnonty
mode, Channel 0 has the highest pnonty and Channel 3
has the lowest p'rionty "the ROTATING PRIORITY bit '5
set to a one, the pr,or,ty of each channel changes after
each DMA cycle (not each DMA request). Each channel
moves up to the next highest pnonty as~,gnment, while
the channel which has just been serviced move$ to the
lowest proonty assignment

CHANNEL'-' CH·O CH·' CH·2 CH-3
JUST SERVICED

Prlortty_ Hlgh •• t CH·1 CH-2 CH-3 CH-O
Aallgnmentl

~
CH-2 CH-3 CH·O CH·1
CH-3 CH-O CH-1 CH.2

Lowelt CH·O CH·' CH-2 CH·3

Note that rotating priority will prevent anyone channel
from monopolizing the OMA mode; consecotive DMA
cycles will service different channels if more than one
channel is enabled and requesting service. Tl)ere is no
overhead penalty associated with this mode of opera·
tlon. All DMA operations began with Channel 0 initially
assigned to the highest priority for the first DMA cycle.

Extended Write Bit 5

If the EXTENDED WRITE bit is set, the duration of both the
MEMW and /lOW signals is extended by activatong them
earlier in the DMA cycle. Data transfers within mlcro-'
computer systems proceed asynchronously to allow
use of various types of memory and I/O devices with
different access times. If a deVice cannot be accessed
within a speCifiC amount of time It returns a "not ready"
Indicatoon to the 8257 that causes the 8257 to Insert one or
more walt statl's In its Internal sequencing. Some deVices
are fast enough to be accessed without the use of wait
states, but If they generate thelf READY response with the
leading edge of the I/OW or MEMW signal (which
generally occurs late in the transfer sequence), they
would normally cause the 8257 to enter a wait state
because it does not receive READY In tome. For systems
with these types of deVices, the Extended Write optoon
prOVides alternative timing for the I/O and memory write
signals which allows the deVices to return an early READY
and prevents the unnecessary occurrence of walt states in
the 8257, thus increasing system throughput

TC Stop Bit 8

If the TC STOP bit is set, a channel 15 disabled (i.e., its
enable b,t IS reset) after the Terminal Count (TC) output
goes true, thus automatically preventing further DMA
operation on that channel. The enable bit for that channel
must be re-programmed to continue or begin anothel"
OMA operation If the TC STOP bit, is not set, the
occurrence of the TC output has no effect on the channel
enable bits. In thiS case, It is generally the responsibility of
the penpheral to cease DMA requests In order to terminate
a DMA op"ratoon

Auto Load Bit 7

The Auto Load (TIode permits Channel 2 to be used for
repeat block or block chaining operations, without
Immediate software intervention between blocks Chan­
nel 2 registers are initialized as usual for the first data
block, Channel 3 registers, .however, are used to store the
tilock re-Initiallzation parameters (DMA starting address,
terminal count and DMA transfer mode). After the first
block of DMA cycles IS executed by Channel 2 (i.e., after
the TC output goes true), the parameters stored in the
Chan'nel 3 registers are transferred to Channel 2 during an
"update" cycle Note that the TC STOP feature, descrobed
above, has no effect on Channel 2 when the Auto Load bIt
IS set

AFN·0184QD

intJ 8257/8257·5

If the Auto Load bit is set, the initial parameters for
Channel 2 are·automatically duplicated in the Channel 3
registers when Channel 2 is programmed. This permits
repeat block operations to be set up with the programming
of a single channel. Repeat block operations can be used
in· applications such as CRT refreshing. Channels 2 and 3
can still be loaded with separate values if Channel 2 is
loaded before loading Channel 3. Note that in the Auto
Load mode, Channel 3 is still available to the user if the
Channel 3 enable bit is set, but use of this channel will
change the values to be auto loaded into Channel 2 at
update time. All that is necessary to use the Auto Load
feature for chaining operations is to reload Channel 3
registers at the conclusion of each update cycle with the
new parameters for the next data block transfer.

Each timEl that the 8257 enters an update cycle, the update
flag in the status register is set and parameter~ in Channel
3 are transferred to Channel 2, non-destructively for·
Channel 3. The actual re-initialization of Channel 2 occurs
at the beginning of tHe next channel 2 DMA cycle after the
TC cycle. This will be the first DMA cycle of the new data
block for Channel 2. The update flag is cleared at the
conclusion of this DMA cycle. For chaining operations,
the llpdate flag in t'le status register can be monitored by
the CPU to determine when the re-initialization process
has been completed so that the next block parameters can
be safely loaded into Channel 3.

6. Status Register

The eight-bit status register indicates which channels
have reached a terminal count condition and includes the
update flag described previously.

TC STATUS FOR CHANNEL 0
YC $TATUSFOR CHANNEL 1

L~====TC STATUS FOR CHANNEL 2
TC STATUS FOR' CHANNEL 3

The TC status bits are set when the Terminal Count (TC)
output is activated for that channel. These bits remain set
until the status register is read or the 8257 is reset. The
UPDATE FLAG, however, is not affected by a status
register read operation. The UPDATE FLAG can be
cleared by resetting the 8257, by changing to the non-auto
load mode (Le., by resetting the AUTO LOAD bit in the
Mode Set register) or it can be left to clear itself at the
completion of the update cycle. The purpose of the
UPDATE FLAG is to prevent the CPU from inadvertently
skipping a data block by overwriting a starting address or
terminal/count in the Channel 3 registers before those
parameters are properly auto-loaded into Channel 2.

The user is cautioned against reading the TC status
register and using this information to reenable chan·
nels that have not completed operation. ·Unless the
DMA channels are inhibited a channel could reach ter·
minal count (TC) between the status read and the mode
write. DMA can be inhibited by a hardware gate on the
HRQ line or by disabling channels with a mode word
before reading the TC status.

FOR BLOCK 3
_IPARAMETERS!+- IPARAMETERSI~

FOR BLOCK 1 ! FOR BLOCK 2
CHANNel 2 UPDATE

OCCURS HERE

_IPARAMETERS," -IETC----
CHANNEL 2 UPDATE

OCCURS HERE ~
I/O WRITE

ORa2 _____________ nnIUL __
I-.OATABLOCK1_,·

TC

UPOATE FLAG

Figure 7. Autoload Timing

2-109 . AFN·Ol840D

8257/8257.·5· ,

OPERATIONAL SUMMARY

Programming and Reading the 8257 Registers.
There are four pairs of "channel registers": each pair
consisting ot a 16-bit DMA address register and a 16-bit
terminal co lint register (one pair for each channel). The
8257 also includes two "general registers": one 8-bit
Mode Set register and one 8-bit Status register. The
registers are ,loaded or read when the CPU executes a
write or read instruction that addresses the 8257 device
and ·the appropriate register within the 8257. The 8228
generates the appropriate reM or write control signal
(generally IIOR or I/OW while the CPU places a 16-bit
address on the system address bus, and either outputs the
data to be written onto the system data bus or accepts the
data being read from the data bus. All or some of the most
significant 12 address bits A4-A15 (depending on the
systems memory, 1/0 configuration) are usually decoded
to produce the chip select (CS) input to the 8257. An I/O
Write input (or Memory Write in mernory mapped I/O
configurations, described below) specifies that the
addressed register is to be programmed. while an I/O
Read Input (or Mernory Read) specifies that the addressed
register is to be read. Address bit 3 specifies whether a
"channel register" (A3, = 0) or the Mode Set (program
only)/Status (read onIY),register (Al = 1) is to be accessed.

The. least significant three address bits. Ao-A,. indicate the
specific register to be. accessed. WhEm accessing the
Mode Set or Status register. Ao-A2 are all zero. When
accessing a channel register bit A~ differentiates between
the DMA address register (Ao = 0) and the terminal count
register (Ao = 1), while bits AI and A.2 specify one of the

8257 Register Selection

CONTROL. INPUT Cs I/OW IIOR A3

Program Half of a 0 0 1 0
Channel Register

Read Half of a 0 1 0 0
Channel Register

Program Mode Set 0 0 1 1
Regiller

Re.d Status Regl 0 1 0 1

four channels. Because the "channel registers" are 16-
bits, two program instruction cycles are required to load
or read an entire register. The 8257 contains a first/litst
(F/L) flip flop which toggles at the completion of each
channel program or read operation. The F/L flip flop
determines whether the upper or lower byte of the register
is to be accessed. The F/L flip flop is reset by the RESET
input and whenever the Mode Set register is loaded. To
maintain proper synchronization when accessing the
"channel registers" all channel command instruction
operations should occur 'in pairs. with the lower byte of a
register always being accessed first. Do not allow CS to
clock while either IIOR or I/OWis acti~e, as this will cause
an erroneous F/L flipflop state. In systems· utilizing an
interrupt structure, int~rrupts should be disabled prior to
any paired programming operations to prevent an
interrupt from splitting them. The r,esul.t of such a split
would leave the F/L F/F in the wrong state. This problem is
particularly obvious when other DMA chann'els are
programmed by an interrupt structure.

AODRESSINPUTS 'BI-DIRECTIONAL DATA BUS

REGISTER BYTE
Aa A2 Al Ao

F/L
0., D6 Ds D4 Da D2 Dl Do

CH-D DMA Addr ... LSB 0 0 0 0 0 A7 As As A4 A3 A2. Al Ao
··MS8 0 0 0 0 1 A1S A14 A13 A12 All Al0 A9 As

CH-O Terminal Count LSB . 0 0 0 1 0 ~ Os cs C4 Ca' ~ Cl Co
MSB 0 0 0 1 1 Rd Wr C13 C12 Cll 010 C9 Os

CH-1 DMA Addre •• LSB 0 0 1 0 0
Same a. Channel 0 MSB 0 0 1 0 1

I I I
CH-1 Terminal Count LSB 0 0 1 1 0

MSB 0 0 1 1 1

CH-2 DMA Addre •• LSB 0 1 0 0 0
MSB 0 1 0 0 1

Same a. Channel 0

CH-2 Terminal Count LSB 0 1 0 1 0

I I I MSB 0 1 0 1 1

CH-3 DMA Addre .. LSB 0 1 1 0 0
MSB 0 1 1 0 1

Same a. Channel 0

CH-3 Terminal Count LSB 0 1 1 1 . 0
MSB 0 1 1 1 1

MODE SET (Program only) - 1 D 0 0 0 AL TCS EW RP EN3 EN2 EN1 END

STATUS (Read only) - 1 0 D 0 0 0 0 0 UP Te3 TC2 TC1 TCO

• "o-A15: DMA Starting Address. Co-C13: Terminal Count value (N,1), Rd ant! Wr: DMA Verify (00), Write (01) or Read (10) cycle selection,
AL: Auto Load, TCS: TC STOP, EW: EXTENDED WRITE, RP: ROTATING PRIORITY. EN3·ENO: CHANNEL ENABLE MASK, UP: UPDATE
FLAG, TC3·TCO: TERMINAL COUNT STATUS BITS. '

2-110
AFN·01840D

825718257·5

"r
" SAMPLE DROn LINES

SET HAO IF OROn s 1 .
lOROn

SO

1
SAMPLE HLOA

RESOLVE OAOn PRIORITIES

,HLOA

" PRESENT AND LATCH

r--+ UPPER ADDRESS
PRESENT LOWER ADDRESS

\

~
.2

ACTIVATE READ COMMAND
ADVANCED WAITE COMMAND

AND DACltn

~. -
53 READY SW

ACTIVATE WRITE COMMAND I VERI'; -X] ACTIVATE MARK AND TC READY
IF APPROPRIATE

LINE

+ READY .. VERIFY
-

54 READV
RESET ENABLE FOR CHANNEl N IF

TC STOP AND TC ARE ACTIVE
DEACTIVATE COMMANDS

OROn ~ DEACTIVATE QACKn, MARK AND TO
SAMPL.E DROn AND HlOA

RESOLVE OROn PRIORITIES
RESET HAD If HLOA = 0 OR ORO" 0

~ HlDA + OROn

1 OROn REFERS TO ANY ORO LINE ON AN ENABLEO OMA CHANNEL.

Figure 8. DMA Operation State Diagram

DMA OPERATION

Single Byte Tren~fers
A single byte transfer is initiated by the 1/0 device rais­
ing the ORO line of one channel of the 8257. If the chan­
nel is enabled, the 8257 will output a HRO to the CPU.
The 8257 now waits until a HLOA is .received insuring
that the system bus is free for its use. Once HLOA is
received the ~ line for the requesting channel is ac­
tivated (LOW). The ~ line acts as a chip select for
the requesting I/O device. The 8257 then generates the

read and write commands and byte transfer occurs be­
tween the selected I/O device and memory. After the
trans'fer Is cOlT!plete, the OACK line is set HIGH and the
HRO line is set LOW to indicate to the CPU that the bus
is now free for use. ORO must remain HIGH until i5ACK
is issued to be recognized and must go LOW before S4
of the transfer sequence to prevent another transfer
from occuring. (See timing diagram.)

Consecutive Trensfers

If more than one channel requests service simultaneous­
ly, the transfer will occur in the same way a burst does.
No overhead is incurred by switching from one channel
to another. In each 54 the ORO lines are sampled and
the highest priority request is recognized during the
next transfer. A burst mode transfer in a lower priority
channel will be overridden by a higher priority request.
Once the high priority transfer has completed control
will return to the lower priority channel if its ORO is still
active. No extra cycles are needed to execute this se­
quence and the HRO line remains active until all ORO
lines go LOW.

Control Override

The continuous OMA transfer mode described above
can be interrupted by an external device by lowering the
HLOA IinEi. After each OMA transfer the 8257 samples
the HLOA line to insure that it is still active. If it is not
active, the 8257 completes the current transfer, releases
the HRO line (LOW) and returns to the idle state. If ORO
lines are still active the 8257 will raise the HRO line in
the third cycle and proceed normally. (See timing
diagram.)

Not Ready

The 8257 has a Ready input Similar to the 80BOA and the
B08SA. The Ready line is sampled in State 3: If Ready is
LOW the 8257 enters a wait state. Ready is sampled dur­
ing every wait state. When Ready returns HIGH the 8257
proceeds to State 4 to complete the transfer. Ready is
used to interface memory or I/O devices that cannot
meet the bus set up times required by the 8257.

Speed

The 8257 uses four clock cycles to transfer a byte of
data. No cycles are lost in the master to master transfer
maximizing bus efficiency. A 2MHz clock input will
allow the 8257 to transfer ata rate of 500K bytes/second.

Memory Mapped I/O Configurations

The 8257 can be connected to the system bus as a memory
deVice Instead of as an 1/0 deVice for memory mapped 1/0
configurations by connecllng the system memory control
lines to the 8257"s 1/0 control lines and the system 1/0
control lines to the 8257"s memory control lines

ThiS configuratIon permits use of the 8080's consIderably
larger repertoire of memory instructIons when reading or
loading the 8257"s regIsters Note that With thiS
connecllon .. the programming of the Read (bit 15) and
Wrote (bIt 14) bIts on the termonal count regIster WIll have a
dIfferent meaning

2-111 AFN·01840D

intef 8257/8257·5

BIT 15 BIT 14

MEMRD i'iOFiD READ WRITE

0 0 DMA Verify Cycle
0 1 DMA Read Cycle

MEMWR i70WR
8257

i76'"RD MeM1fEj

i70WR "M'EMWR 1 0 DMA Write Cycle
1 1 Illegal

Figure 9. System Interface for Memory
Mapped I/O

Figure 10. TC Register for Memory Mapped
I/O Only .

SYSTEM APPLICATION EXAMPLES

~

fr
\

II
\

U

-

D
8257
AND

,
8212

OMA CONTROLLER

8257
AND
8212

ADDRESS BUS

I II
CONTROL BUS

1"'1 DOW I I f/OR I II
DATA BUS

U , 11 D 1 U
DRao DISK 1

DACKO -------
ORO 1

DISK 2
DACI(1 ------

ORQ2

DAeK 2
DISK 3

ORQ3 -------
OACK3 DISK 4

Figure 11. Floppy Disk Controller (4 Drives)

ORO

DACK
8251

USAAT

MODEM

TELEPHONE
LINES

D
SYSTEM

RAM
MEMORY

SYSTEM
RAM

MEMORY

Figure 12. High·Speed Communication Controller

2-112

II

U

\

\

AFN-Ol840D

inl:el" 8257/8257·5

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

~J" '")C > TEST POINTS <
0.8 0.8

0.45

A C TESTING INPUTS ARE DRIVEf'II AT 2 4V FOR A LOGIC 1 AND 0 45V FOA
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A lOGIC '1
AND 08V FOR A LOGIC 0

Tracking Parameters

DEVICE
UNDER 'ICl ,,50 PF

TEST

CL INCWDES JIG CAPACITANCE

Signals labeled as Tracking Parameters (footnotes 1 and 5·7 under A.C. Specifications) are signals that follow similar
paths through the silicon die. The propagation speed of thelile signals varies in the manufacturing process but -the
relationship between all these parameters is constant. The variation is less than or equal to 50 ns.

Suppose the following timing equation is being evaluated,

T A(MIN) + T B(MAX) oS 150 ns

and only minimum specifications exist for T A and T B. If T A(MIN) is used, and if T A and T B are tracking parameters,
. T B(MAX) can be taken as T B(MIN) + 50 ns.

T A(MIN) + (T B(MINI* + 50 ns) oS 150 ns

* if T A and T B are tracking parameters

WAVEFORMS-PERIPHERAL MODE

WRITE
-TAW-- I-TWA ---,

CHIP SELECT

~ TAW --~ _TWAf--

DATABUS ______ >t· , r
i-· row ._1_ Two ~ -

I/OWR---------U

RESET II -:'
;.--1

-/:"---'l-I lRSTS I Tww

READ

CHIP SElECT

2-113 AFN·OI840D

825718257 ·5

WAVEFORMS-DMA

CONSECUTIVE. CYCLES AND BURST MODE SEQUENCE
8' I 8. I SO I 8. I 82 I S3 I S4

CLOCk

8. 82 S3 S4 I 8' 8.

DR003 __ ~ __ ~+-______ ~" ____ -+ ____ -J~ ________ +-____________ ~-1 ____ -+ __________ __

HRO ________ J.

HLDA ____________ -'.

AEN ____________ ~--~

ADR07(LOWERAOR) __ _

DATAO 7 (UPPER AOR)-

TSH

ADR STB
----!'

CLOCK

NOTE The ctock w foffn "
dupl~fOfCI.rtty
'The 8257 r'WtU,rtI only
ontclodl,nput

MEM/WR/IIQ WR -

READY

Te/MARK

8' so 51

- \._----

52 53 I S4 I 5. 52 53 S4 5' 5' 5'

2-114 AFN-01840D,

825718257·5

WAVEFORMS (Continued)

CONTROL OVERRIDE SEQUENCE

I S1 I S2 I 53 Sol I SI I SI
I

! so S1 I 52

CLOCK

OR003 ------V+---------+-----

HRO

HLOA -----~ ~--------..J} F THS

AEN ..J

NOT READY SEQUENCE

so I S1 SW I SW I Sol I SI i SI I SI

CLOCK

DROOl

-~~----~---~--

""""Ili,fORD _____ J,...--r\--+I-----+I----I-r-....... \.. _ ---

MEM-WR,f{)WR _-_-_-_-_-_./:_-_-:_T-R_Sr?--."b,.....::::-~----+!1-'_---'-:T~R-S:-_/T_-_~-_~""'I\.._-----
READY --------l-"l'''------'..... \

Te/MARK I \

2-115 AFN-01840D

intJ

A"
I
I ..

A,LE

AD,
I
I

ADo

....
III)

iIIi

IOID

HOLD

HLOA

CLK(OUTI

IfRn iN
RESET OUT

·8257/8257·5

-

~ STI
00,--00,

'3 052

~
Y"

'212 erA
MO t 01,--01 1 6ii

~~A' ~I,
~A,

~ctr
8
~ ~8J

~A.
13 8.

sn (81 1

_ ATffi

-
U

,

,
-
-

Y"

0, • - -, 7 R!Il , - -, • , -'2 lOW
0, -

CHIP

i5l SELECT REAOY

L "1 I·

=>
CS READY

f--:7 ., , ,
t---0, A,

82575

- --l.c MEMR DRDo
,.

'--- --Lc R!Il DACKo
25

- ~ M"EMW ORO, 'B

--l.c iOW DACK,
2.

ORal "
--12.. "RO OACKI

,.
.,.-!- HLOA ORaJ

, .
DACKl

,.
----.!!.. CLK TC

36

----!!.. RESET MARK •
A'N ADSTa

• 8
v"

, '3 j"
DS2 rn STB

~ 01, DO,
, ,

---v' , 8212 ,
01, DO,

MO Dli

t J
Figure 13. Detailed System Interface Sche.!I1atlc

2-116

r==> ~" ADDRESS
BUS

A,

0,

I DATA BUS ,
y

0,

-R!Il CONTROL - aUs

IllI'i

ORa.

OACKa

ORO,

DACK,

OR02

i5AcK 1

ORal

6ACK)
TC

M.o.RK

,

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O°C to 700 e
Storage Temperature -65°e to +150oe
Voltage on Any Pin

With Respect to Ground -0.5V to + 7V
Power Dissipation 1 Watt

-NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specIfi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (8257: TA = ooe to 70oe. Vee = 5.0V ±5%. GND = OV)
(8257-5: TA = ooe to 70oe. Vee = 5.0V ±10%. GND = OV)

Symbol Parameter Min. Max. Unit Test Conditions

Vil Input Low Voltage -0.5 O.S Volts

VIH Input High Voltage 2.0 Vee+· 5 Volts

Val Output Low Voltage 0.45 Volts IOl = 1.6 rnA

VOH Output High Voltage 2.4 Vee Volts IOH=-l50/.LA for AB,
DB and AEN
IOH =-80J.lA for other

VHH HRQ Output High Voltage 3.3 Vee Volts IOH = -SO/.LA

Icc Vee Current Drain 120 rnA

III Input Leakage ±10 /.LA OV.,; VIN .,;Vee

IOFl Output Leakage During Float ±10 /.LA 0.45V .,; VOUT .,; Vee

CAPACITANCE (TA = 25°e; vee = GND = OV)

Symbol Parameter Min. Typ. Max. Unit Test Conditions

CIN Input Capacitance 10 pF fc= lMHz

CliO I/O Capacitance 20 pF Unmeasured pins
returned to GND

2-117 AFN-01B40D

825718257·5

A.C. CHARACTERISTICS-PERIPHER~L (SLAVE) MODE
(8257: TA = O"C to 70"C, Vee = 5.0V ±5%, GNO = OV)
(8257-5: TA = O"C to 70"C, Vee = 5.0V ±10%, GNO = OV)

8080 "U8 paramete,.
READCYCLE·

8257

Symbol Parameter Min.

TAR Adr or CS~ Setup to RO~ 0

TRA Adr or cst Hold from ROt 0

TRO Data Access from Rfi ~ 0

TOF DB-+Float Delay from ROt 20

TRR RD Width 250

WRITE CYCLE

8257

Symbol Parameter Min.

TAW Adr setup to WR~ 20

TWA Adr Hold from WRt 0

Tow Data Setup to WR t 200

Two Data Hold from WiH 10

Tww WR WIdth 200

OTHER TIMING

8257

Symbol Parameter Min.

TRSTW Reset Pulse W,dth 300

TRSTO Power Supplyt (Vee) Setup to Reset~ 500

T, Signal Rise T,me

Tf Signal Fall Time

TRSTS Reset to FIrst IIOWR 2

A.C. CHARACTERISTICS-DMA (MASTER) MODE
(8257: TA '= O·C to 70·C, Vee = 5.0V ±5%, GNO = OV)
(8257-5: TA = O·C to 70"C, Vec = 5.0V ±10%, GNO = OV)

TIMING REQUIREMENTS

,

Sym~1 Parameter
Min.

TCY Cycle Time (Period) 0.320

T, Clock Active (High) 120

Tos ORQI Setup to ClKI (SI, S4) 120

TOH ORQI Hold from HlOAII1] 0

THS HlOAI or ISetup to ClKI(SI, 84) 100

TRs - READY Setup Time to ClKI(S3, Sw) 30

TRH READY Hold Time from ClKI(S3, Sw) 30

2-118

Max.

300

150

Max.

Max.

20

20

8257

8257·5

Min. Max.

0

0

0 220

20 120

250

8257·5

Min. Max.

20

0

200

10

200

8257·5

Min. Max.

300

500

20

20

2

Max. Min.

4 0.320

.8Tcy 80

120

0

100

30

30

Unit Test Conditions

ns

ns,

ns

ns

ns

Unit Test Conditions

ns

ns

ns

ns

ns

Unit Test Conditions

ns

IlS

ns

ns

tev

8257·5
Unit

Mex.

4 ,.s
.8TCY ns

ns-
ns
ns
ns
ns

AFN·Ol840D

inter 825718257·5

A.C. CHARACTERISTICS-DMA (MASTER) MODE
(8257: TA = O°C to 70°C, VCC = 5.0V ±5%, GND = OV)
(8257·5: TA = O°C to 70·C, VCC = 5.0V ±10%, GND = OV)

TIMING RESPONSES

Symbol Parameter 8257

Min.

Too
HRQt or !Delay from CLKt (51,54)
(measured at 2.0V)

T001
HRot or !Delay from CLKt (51, 54)
(measured at 3.3V)[3)

TAEl AENt Delay from CLK! (51)

TAET AEN! Delay from CLKt (51)

TAEA Adr (AB) (Active) Delay from AENt (51)[1) 20

TFAAB Adr (AB) (Active) Delay from CLKt (51)[2)

TAFAB Adr (AB) (Float) Delay from CLKt (51)[2)

TASM Adr (AB) (5table) Delay from ClKt (51)[2)

TAH Adr (AB) (5table) Hold from CLKt (51 P) TASM-50

TAHR Adr (AB) (Valid) Hold from ROt (51, 51)[1) 60

TAHW Adr (AB) (Valid) Hold from wrt (51,51)[1) 300

TFAOB Adr (DB) (Active) Delay from ClKt (51)[2)

TAFOB Adr (DB) (Float) Delay from CLKt (52)[2) TSTT+20

TASS Adr (DB) 5etup to Adr $tb! (51-52)[1) 100

TAHS Adr (DB) (Valid) Hold from Adr 5tb! (52)[1) 20

TSTl Adr 5tbt Delay from CLKt (51)

TSTT Adr 5tb! Delay from ClKt (52)

Tsw Adr 5tb Width (51-52)[1) TCy-100

TASC Rd! orWr(Ext)! Delay from Adr 5tb!
(52)[1) 70 ,

TOBe
RO! orWR\ExtH Delay from Adr (DB)
(Float) (52) 1) 20

DACKt or! Delay from ClK! (52, 51) and
TAK TC/Markt Delay from CLKt (53) and

'FC/Mark! Delay from CLKt (54)[4)

TOCl
RD! orWr(Ext)~ Delay from ClKt (52) and
Wr! Delay from CLKt (53)[2,5)

TOCT
Rdt Delay from CLK! (51, 51) and
wrt Delay fromClKt (~)[2,6)

TFAC Rd orWr (Active) from eLKt (51)[2)

TAFC Rd orWr (Active) from ClKt (51)[2)

TRWM Rd Width (52-51 or 51)[1) 2TCy+TO-50

TWWM WrWidth (53-54)[1) TCy-50

TWWME WR(Ext) Width (52-54)[1) 2TCy-50

NOTES:
1. Tracking Parameter.
2. load = + 50 pF. ,

3. load = VOH = 3.3V.
4:, aTAK < 50 ns,

2-119

Max.

160

250

300

200

250

150

250

300

250

200

140

250

200

200

300

150

8257·5

Min. Max.

160

250

300

200

20

250

150

250

TASM-50

60

300

300

TSTT+20 170

100

20

200

140

TCy-100

70

20

250

200

200

300

150

2TCy+TO-50

TCy-50

2TCy-50

5, aTOCl < 50 ns.
6. aToeT < 50 ns,

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

I
ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

AFN,01640D

inter
8259A/8259A·2/8259A·8

PROGRAMMABLE INTERRUPT CONTROLLER

• IAPX 86, IAPX 88 Compatible • Individual Request Mask Capability

• MCS-80®, MCS-85® Compatible • Single + 5V Supply (No Clocks)

• Eight·Level Priority Controller • 28·Pin Dual·ln·Line Package .

• Expandable to 64 Levels • Available in EXPRESS

• Programmable Interrupt Modes
- Standard Temperature Range
- Extended Temperature Range

The Intel"' 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is
cascadable for up to 64 vectored priority Interrupts without additional circuitry. It is packaged in a 28-pin DIP, uses
NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input.

The 8259A is designed to minimize the software and realtime overhead in handling multi-level priority interruptI!. It has
several modes, permitting optimization for a variety of sYl!tem requirements.

The 8259A is fully upward compatible with the Inlel'" 8259. Software originally written for the 8259 will operate the
8259A in all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge Triggered).

°,-0 0
DATA CONTROllQGIC
BUS

BUFFER

CS Vee

WR ...
iii5 iN'fA
0, IR7

iffi
IRO D. IR6
IR'

0. IRS ViR IR2
D. IR4

IR. OJ IR3

O2 IR2

cs 0, IRI

Do IRO

CAS 0 INT

CASO CAS 1 ~/EN

GND CAS2
CAS 1

CAS2

$PIEri ~INTERNAl BUS

Figure 1. Block Diagram Figure 2. Pin Configuration .

Intel Corporation Assumes No Responaibllty for the Use of Any Circuitry Other Than C,rcultrv Embodied tn an Intel Product No Other Circuit Patent' License. a,. Implied,

©INTEL CORPORATION, 1980 2-120 AFN-00221C

8259A/8259A·218259A·8

Table 1. Pin Description

Symbol Pin No. Type Neme and FuncUon

Vee 28 I Supply: +5V Supply.

GND 14 I Ground.

es 1 I ·Chlp Select: A low on this pin enables RD and WR communication between the CPU and the'8259A.
INTA functions are independent of CS.

WR 2 I Write: A low on this pin when CS is low enables the 8259A to accept command words from the CPU.

RD 3 I Read: A low on this pin when CS is low enables the 8259A to release status onto the data bus for the
CPU.

o,.-Do 4-11 I/O Bidirectional Data Bus: Control, status and interrupt-vector Information is'transferred via this bus.

CASo-CAS2 12,13,15 I/O Ca.cade Une.: The CAS lines form a private 8259A bus to control a multiple 8259A structure. These
pins are outputs for a master 8259A and inputs for a slave 8259A.

SP/EN 16 I/O Slave ProgramlEnable Buffer: This is a dual function pin. When in the Buffered Mode it can be used
as an output to control buffer transceivers (EN). When not in the buffered mode it is used as an input
to deSignate a master (SP = 1) or slave (SP = 0).

INT 17 0 Interrupt: This pin goes high whenever a valid interrupt request is asserted. It Is used to interruptthe
CPU, thus it is connected to the CPUls interrupt pin.

I Rc-IR7 18-25 I Interrupt Request.: Asynchronous inputs. An interrupt request is executed by raising an IR input
(low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or just by a high
level on an IR input (Level Triggered Mode).

INTA 26 I Interrupt Acknowledge: This pin is used to enable 8259A interrupt-vector data onto the data bus by
a sequence of interrupt acknowledge pulses issued by the CPU.

Ao 27 I AO Addre •• Une: This pin acts in conjunction with the CS, WR, and RD pins. It is used by the 8259A
to decipher various Command Words the CPU writes and status the CPU wishes to read. It is typically
connected to the CPU AO address line (AI for iAPX 86, 88).

2-121 AFN·00221E

., \

inter 8259AJ8259A-2/8259A-8

FUNCTIONAL DESCRIPTION

Interrupts in Microcomputer Systems
Microcomputer system design requires that 1/0 devices
such as keyboards, displays, sensors and other com­
ponents receive servicing In an efficient manner so that
large amounts of the total system tasks can be assumed
by the microcomputer with little or no effect on through­
put.

The most common method of servicing such devices Is
the Polled approach. This Is where the processor must
test each device in sequence and In effect "ask" each
one if it needs servicing. It is easy to See that a large por­
tion of the main program is looping through this con·
tinuous polling cycle and that such a method wouid
have. a serious, detrimental effect on system through­
put, thus limiting the tasks that could be assumed by
the microcomputer and reducing the cost eff.ectlveness
of using such devices.

A more desirable method would be one· that would allow
the microprocessor to be executing its main program
and only stop to service peripheral devices when it is
told to do so by' the' device itself. In effect, the method
would provide an !,!xternal asynchronous input that
would inform the processor that It should complete
whatever instruction that Is currently being executed
and fetch a new routine that will service the requesting
device. Oflce this servicing is complete, however, the
processor would resume exactly where It left off.

This method is calied Interrupt. It is easy to see that
system throughput would drastically increase, and thus
more tasks could be assumed by the microcomputer to
further enhance its cost effectiveness.

The Programmable Interrupt Controller (PIC) functions
as an overall manager in an Interrupt-Driven system
environment. It accepts requests from the peri pheral
equipment, determines which of the incoming requests
is of the highest importance (priority), ascertains
whether the Incoming request has a higher priority value '
than the level currently being serviced, and Issues an
interrupt to the CPU based on this determination.
Each peripheral device or structure usually has a special
program or "routine" that is associated with Its specific
functional or operational requirements; this is referred
to as a "service routine". The PIC, after issuing an Inter­
rupt to the CPU, must somehow input information into
the CPU that can "point" the Program Counter to the
service routine associated with the requesting device.
This "pointer" Is an address in a vectoring table and will
Often be referred to, in this document, as vectoring data.

The 8259A
The 8259A Is a device specifically designed for use In
real time, Interrupt driven microcomputer systems. It
manages eight levels or requests and has built-In fea­
tures for expandabillty to other 8259A's (up to 64 levels).
It Is programmed by the system's software as an I/O
peripheral. A selection of priority modes is available to
the programmer so that the manner in which the re­
quests are processed by the 8259A can be configured to

match his system requirements. The priority modes can
be changed or reconfigured dynamicall·y at any time dur­
ing the main program. This means that the complete
interrupt structure can be defined as required, basecl on
the total system environment.

CPU·DRIVEN
MULTIPLEXOR

CPU
---- --)~

<rOQ
RAM P ~ 110 111 f-J

ROM I) P 1/01') t"-

r---,
I I
~ 110 IN)

I I L ___J

v

Figure 38. Polled Method

CPU INT

RAM

ROM 1/0111

1101')

I 110 IN) I

1 I 1 ___ ':'_J

Figure 3b. Interrupt Method

2-122 AFN-00221E

inter 8259A!8259A-218259A-8

INTERRUPT REQUEST REGISTER (IRR) AND
IN·SERVICE REGISTER (lSR)

The Interrupts at the IR Inpot lines are handled by two
registers In cascade, the Interrupt Request Register
(lRR) and the In-Service Register (ISR). The IRR Is used
to store all the Interrupt levels which are requesting ser­
vice; and the ISR Is used to store all the Interrupt levels.
which are being serviced.

PRIORITY RESOLVER

This logic block determines the priorities of the bits set
In the IRR. The highest priority Is selected and strobed
Into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (lMR)

The IMR stores the bits which mask the Interrupt lines
to be masked. The IMR operates on the IRR. Masking of
a higher priority Input will not affect the interrupt
request lines of lower priority.

INT (INTERRUPT)

This output goes directly to the CPU Interrupt input. The
VOH level on this line is designed to be fully compatible
with the 808OA, 8085A and 8086 input levels.

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring
information' onto the data bus. The format of this data
depends on the system mode ("PM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to inter­
face the 8259A to the system Data Bus. Control words
and status Information are transferred through the Data
Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization Com­
mand Word (ICW) registers and Operation Command
Word (OCW) registers which store the various control
formats for device operation. This function block also
allows the status of the 8259A to be transferred onto the
Data Bus.

CS (CHIP SELECT)

A LOW on this Input enables the 8259A. No reading or
writing of the chip will occur unless the device is
selected.

WR(WRITE)

A LOW on this input enables the CPU to write control
words (leWs and OCWS) to the 8259A.

RD (READ)

A LOW on this input enables the 8259A to send the
status of the Interrupt Request Register (iRR), In Service
Register (I~R), the .Interrupt Mask Register (IMR), or the
Interrupt level onto the Data Bus.

2-123

~'NTERNAl aus

Figure 4a. 8259A Block Diagram

Figure 4b. 8259A Block Diagram

Ao
This input signal is used in c(;mjunction with VIIR and RD
signals to write commands into the various command
registers, as well as reading the various status registers
of the chip. This line can be tied directly to one of the ad­
dress lines.

AFN·OO221E

/ ,

inter 8259AV8259A~82S9A~8
~ .
.',

THE CASCADE BUFFER/COMPARATOR

This function block stores and compares the IDs of all
8259A's used In the system. The associated three I/O
pins (CASO-2) are outputs when the 8259A Is used as a
master and are inputs when the 8259A is used as a

. alave. As a master, the 8259A sends the 10 of the inter·
ruptlng slave device onto the CASO-2 lines. The slave
thus selected will send its preprogrammed subroutine
address onto the Data Bus during the nexl' one or two
consecutive INTA pulses. (See section "Cascading the'
8259A".) .

INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer
'system are its programmability and the interrupt routine
addressing capability. The latter allows direct or indirect
Jumping to the specific interrupt routine requested
without any polling of the interrupting devices. The nor·
mal sequence of events during an interrupt depends on
the .type of CPU being used.

The events occur as follows in an MCS-80/85 system:

1. One or more of the INTERRUPT REQUEST lines
(IR7-0) are raised high, setting the corresponding IRR
bit(s).

2. The 8259A evaluates these requests, and sends an
INT to the CPU, If appropriate.

3. The,CPU acknoWledges the INT and responds with an
INTA pulse.

4. Upon receiving an iNTA from the CPU group, the
highest priority ISR bit is set, and the corresponding
IRR bit is reset. The 8259A will also release a CALL in·
struction code (H001101) onto the 8·bit Data Bus
through Its 07-0 pins.

5. This CALL Instruction will initiate two more INTA
pulses to be sent to the 8259A from the CPU group.

6. These two INTA pulses allow the 8259A to release Its
preprogrammed subroutine address onto the Data
Bus. The lower 8-bit address is released at the first
iNTA pulse and and the higher 8·bit address is reo
leased at the second INTA pulse.

7. This completes the 3·byte CALL instruction released
by the 8259A. In the AEOI mode the ISR bit is reset at
the end of the third INTA pulse. Otherwise, the ISR bit
remains set until an appropriate EOI command is
issued at the end of the interrupt sequence.

The events occurring in an iAPX 86 system are the same
until step 4.

4. Upon receiving an iN'i'A from the CPU group, the high·
est priority ISR bit is set and the corresponding IRR
bit Is reset. The 8259A does not drive the Data Bus
during this cycle. '

5. The iAPX 88/10 will initiate a second INTA pulse.
During this pulse, the 8259A releases an 8·bit pOinter
onto the Data Bus where it Is read by the CPU.

6. This completes the Interrupt cycle. In the AEOI mode
the ISR bit is reset at ,the end of the second INTA
pulse. Otherwise, the ISR bit remains set until an
appropriate' EOI command is issued at the end of the
interrupt subroutine.

If no interrupt request Is present at step 4' of either
sequence (i.e., the request was too shOI1 in duration) the
8259A will Iss,ue an inter~upt ,level 7, ~q~h th,e vectorir,lg
bytes and ihe CAS lines wjlliook like all interrupt level, 7
was feq~ested. , . " .

iN'fA INT

CASO

"" INnANA~ aus

Figure 4c. 8259A Block Diagram ' ,

\ ADDRESS BUS (111 ,

, CONTROL BUS

, , , , ..
-1M'

, .. , ..

i70ii i7iiW .NT ifii?'
\ DATA BUS 181

< ';10

~).

~{=
CASO Ao o,·D. III! WR .NT ili A

LINES CAS' ---- CASZ IRQ IRQ IAQ IRQ IRQ IRQ IRQ IAQ
DI!Ii 7 8 5 4 3 Z • 0

8LAVE~WJ 1 1 1 1 11
ENABLE au_R i

INTERRUPT
REQUESTS

Figure 5. 8259A Interface to Standard
System Bus ' .

'\

1

,

.

I

2-124 AFN·OO221E

8259418259A-218259A-8

INTERRUPT SEQUENCE OUTPUT~
MC8-80, MCS-85

. This sequence Is timed by three INTA pulses. During the
first iiiifApulse the CALL opcode is enabled onto the
data bus.

Content of First Interrupt
Vector Byte

07 D8 os D4 03 02 01 DO

CALLCODEI, 00 ,I
During the second iliITA pulse the lower address of the
appropriate service routine is enabled onto the data bus.
When Interval = 4 bits As-A7 are programmed, while Ao­
A~ are automatically inserted by the 8259A. When Inter­
val = 8 only A6 and A7 are programmed, while Ao-As are
automatically Inserted.

IR

07

7 A7

6 A7

S A7

4 A7

3 A7

2 A7

1 A7

0 A7

IR

07

7 A7

6 A7

5 A7

4 A7

3 A7

2 A7

1 A7

0 A7

Content of Second Interrupt
Vector Byte

Inl.",.1-4

D8 05 D4 03 02

A6 AS , 1 1

A6 AS 1 1 0

.A6 AS 1 0 1

A6 A5 1 0 0

A6 A5 0 1 1

A6 AS 0 1 0
A6 AS 0 0 1

A6 A5 0 0 0

Interval='

06 05 04 03 02

A6 1 1 1 0

A6 1 1 0 0

A6 1 0 1 0

A6 1 0 0 0

A6 0 1 1 0

A6 0 1 0 0

A6 0 0 1 0

A6 0 0 0 0

01 DO

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

01 DO

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

During the third INTA pulse the higher address of the
appropriate service routine, which was programmed as
byte 2 of the initialization sequence (As - A,s), is
enabled onto the bus.

07 D8

A15 A14

Content of Third Interrupt
Vector Byte

05 D4 03 02

A13 A12 All Al0

iAPX 86, iAPX 88

01 DO

,0.9 A8

iAPX 86 mode is similar to MC5-80 mode except that only
two Interrupt Acknowledge cycles are issued by the pro­
cessor and no CALL opcode is sent to the processor. The
first interrupt acknowledge cycle is similar to that of
MCS-80, 85 systems in that the 8259A uses it to internal!y
freeze the state of the interrupts for priority resolution and
all a master it issues the interrupt code on the cascade
lines at the end of the INTA pulse. On this first cycle it does

not issue any data to the processor and leaves its data bus
buffers disabled. On.the second interrupt acknowledge
cycle in iAPX 86 mode the master (or slave if so pro­
grammed) will send a byte of data to the processor with
the acknowledged interrupt code composed as follows
(note the state of the ADI mode control is ignored and
As-A11 are unused io iAPX 86 mode):

IR7

IR6

IR5

IR4

IR3

IR2

IRI

IRO

Content of Interrupt Vector Byte
for IAPX 86 System Mode

07 06 05 04 03 02

T7 T6 T~ T4 T3 I

T7 T6 T5 T4 T3 1

T7 T6 T5 T4 T3 1

T7 T6 T5 T4 T3 1

T7 T6 T5 T4 T3 0

T7 T6 T5 T4 T3 0

T7 T6 T5 T4 T3 0

T7 T6 T5 T4 T3 0

PROGRAMMING THE 8259A

01 00

I 1

1 0

0 1

0 0

I 1

I 0

0 I

0 0

The 8259A accepts two types of command words gener·
ated by the CPU:

1. Initialization Command Words (lCWs): Before normal
operation can begin, each 8259A in the system must
be brought to a starting point - by a sequence of 2 to
4 bytes timed by WR pulses.

2. Operation Command Words (OCWs): These are the
command words which command the 8259A to oper­
ate in various interrupt modes. These modes are:

a. Fully nested mode
b. Aotating priority mode
c. Special mask mode
d. Polled mode

The OCWs can be written into the 8259A anytime after
initialization.

INITIALIZATION COMMAND WORDS
(ICWS)
GENERAL
Whenever Ii command is issued with AO= 0 and 04= 1,
this is.interpreted as Initialization Command Word 1
(ICW1). ICW1 starts the initialization sequence during
~hich the following automatically occur.

a. The edge sense circuit is reset, which means that 101-
lowing initialization, an interrupt request (IA) input
must make a low-to-high transition to generate an
interrupt.

b. The Interrupt Mask Aegister is cleared.
c. IR7 input is assigned priority 7.
d. The slave mode address is set to 7.
e. Special Mask Mode is cleared and Status Read is set to

IAA.
f. If IC4=O, then all functions selected in ICW4 are set to

zero. (Non-Buffered mode', no Auto-EOI, MCS-80, 85
system).

-Note: MasterlSlave In leW4 is only used In the buffered mode

2-125 AFN-00221E

inter 825,9A/8259A~218259A·8

INITIALIZATION COMMAND WORDS 1 AND 2
(ICW1, ICW2)

A$-A1s: Page starting address of servIce routinas. In an
MCS 80185 system, the 8 request levels will generate
CALLs to 8 locations equally spaced ,in memory. These
can' be programmed to be spaced at Intervals of 4 or 8
memory locations, thus the 8 routines will occupy a
page of 32 or 64 bytes, respectively.

The address formal Is 2 bytes long (Ao-Al s). When the
routine interval is 4, Ao-A. are automatically inserted by
the 8259A, while As-A1S are programmed externally.
When the routine Interval Is 8, Ao-As are automatically
inserted, by the 8259A, while Aa-Als are programmed
externally.

The 8·byte interval will maintain compatibility with cur·
rent software, while the 4·byte Interval is best for a com·
pact jump table.

In an iAPX86 system A1S-Al1 are inserted in the five most
significant bits of the vectoring byte and the 8259A sets
the three least significant bits according to the interrupt
level. A10-As are ignored and ADI (Address interval) has
no effeyt.

LTIM: If LTIM=1, then the 8259A will operate In the
level Interrupt mode. Edge detect logic on the
Interrupt Inputs will be disabled.

ADI:, CALL address Interval. ADI = 1 then interval = 4;
ADI = 0 then interval = 8.

SNGL: Single. Means that this is the only 8259A in the
system. If SNGL= 1 no ICW3 will be Issued.

IC4: If this bit is set - ICW4 has to be read. If ICW4
,Is not needed, set IC4 = O.

NO (SINGl = 1)

NO (IC4 '" 0

INITIALIZATION COMMAND WORD 3 (ICW3)

, This word is'read only when there is more 'than one
8259A in the system and cascading is used, in which
case SNGL = O. It will load the 8·bit slave register. The
functions of this register are:

a. In the master mode (either when SP = 1, or in buffered
mode when MIS = 1 In ICW4) a "1" Is set for each
slave in the system, The master then will release byte
1 of the cali sequence (for MeS·80/85 system) and
will enable the corresponding slave to release bytes 2
and 3 (for iAPX 86 only byte 2) through the cascade
lines. '

b.ln the slave mode (either when ms=O, or if BUF= 1
and MIS = 0 in ICW4) bits 2-0 Identify the slave. The
slave compares its cascade Input with these bits and,
if they are equal, bytes 2 and 3 of the call sequence (or
just byte 2 for iAPX 86 are released by it on the Data
Bus.

. INITIALIZATION COMMAND WORD 4 (ICW4)

SFNM: If SFNM = 1 the special fully nested mode Is
programmed.

BUF: if BUF = 1 the b"uffered mode is programmed. In
buffered mode SJ5/EN becomes an enable output '
and the masterlslave determination is by MIS,

MIS: If buffered mode Is selected: MIS = 1 means the
8259A Is programmed to be a master, MIS = 0
means the 8259A Is programmed to be a slave, If
BUF = 0, MIS has no function.

AEOI: If AEOI = 1 the automatic end of Interrupt mode
Is programmed.

,.PM: Microprocessor mode: !-,PM = 0 sets the 8259A for
MeS-80, 85 system operation, !-,PM = 1 sets the
8259A for iAPX 86 system operation.

Figure 6. Initialization Sequence

2-126 AFN-00221E

inter 8259AJ8259A·~8259A·8

ICW'

ICW3 CMASTER DEVICtt

1 ICW" NEEDED
0: NO ICW", MU.0I0

1 = SINGLE
o = CASCADE MODE

CALL "CORfSS INTERVAL
1- INTERVAL Of"
a_INTERVAL Of.

1 = LEVEL TRIGGERED MODE
o '" EDGE TRiGGERED MODE

1 ~ IA 'NPUT HAS A SLAVE
'-----'--L_-'-_-'-_.L...._L-----'~ _ _I 0 - 1ft II"WUT DOES NOT HAVE

ICWllSLAVE DEVICEI

A SLAVE

•• 7

, 0 ,

1 0 a 1 1

o 1 1 1 1

1 := 8086/8088 MODE
0= MCS-80f85 MODE

1 AUTO EOI
o ~ NORMAl EOI

EfHj)(NON BUFfERED MODE
., 0 - BUfFERED MOOElSlAVE
1 1 - BUfFERED MODEIMASTER

=~ ~~~ IS EQUAL 19 THE CORRESPONDING

1 &" SPEQAL FULLY NESTED

'---------01 0 = ~g~SPECIAL FULLY
NESTED MODE

Figure 7. Initialization Command Word Format

2-127 AFN·00221E

S259A18259A-2/8259A-8

OPERATION COMMAND WORDS (OCWs)
After the Initialization Command Words (ICWs) are pro­
grammed into the 8259A, the chip Is ready to accept
Interrupt requests at its input lines. However, during the
8259A operation, a selection of algorithms can com­
mand the 8259Ato operate in various modes through
the Operation Command Words (OCWs).

OPERATION CONTROL WORDS (OCWs)

OCWI
AO 07 De 05 04 03 02 01 DO

[Q I M7 Me M5 M4 M3 M2 M, MO I

OCW2

0 I A SL EOI 0 0 L2 Ll LO I

OCW3

0 a ESMM SMM 0 P AA AIS I

OPERATION CONTROL WORD 1 (OCW1)

OCW1 sets and clears the mask bits In the interrupt "
Mask Register (IMRI. M7 - Ma represent the eight mask
bits. M", 1 indicates the channel is masked
(inhibited), M '" 0 indicates the channel is enabled.

OPERATION CONTROL WORD 2 (OCW2)

R, SL, EOI - These three bits control the Rotate and
End of Interrupt modes and combinations of the two. A
chart of these combinations can be found on the Opera­
tion Command Word Format.

L2 , L" Lo-These bits determine the interrupt level acted
upon when the SL bit is active.

OPERATION CONTROL WORD 3 (q<:W3)

ESMM - Enable Special Mask Mode. When this bit is
set to 1 it enables the SMM bit to set or reset the Special
Mask Mode. When ESMM = 0 the SMM bit becomes a
"don't care".

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1
the 8259A wili enter Special Mask Mode. If ESMM = 1
and SMM = 0 the 8259A will revert to normal mask mode.
When ESMM = 0, SMM has no effect.

2-128 AFN·OO221E

inter 8259A18259A-2/8259A-8

'oew,

~ ~ ~ ~ ~ ~ ~ ~. ~

Dew,

~ 01 06 Os O. 03 0, 0, Do

I 0 R I 8L I EOI I 0 i 0 I L, I L, I L,I

I
IRLEVEL TOlE
AC'IED"",,"

0 1 , , • • • 7

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 ,

l r
rtO+ NON-8PECIFIC EOICOMMAHD l END OF INTERRUPT Or,- 1
1~ 1

SPECIFtC Eot COMMAND

ROUTE ON NO CtFIC EOI COMMANO } 1 r-; 0 N)TI(f'£ IN AU'rOMATIC EOI MODE (8El) AiJToMATICROTAnoN oro- 0 ROTATE IN AUTOMATIC ECIt MODE (CLEAR)
1 r,- 1 'ROTATE ON SHelFIC EOI COMMAND l SPEctFIC ROTAT-ION
1 h- 0 "U'T PRIORITY COMMAND otto N00P1!I1AT1ON

"l.O-U:AR£U8ED

Dew'
A~ D, Db Os D. 03 02 0, Do

I 0 I 0 IESMMISMM I 0 I 1 I p I OR I RIS I

I L READ REGtSTI!R COMMAND

0 I 1 0 1

0 I 0 1 1

READ READ

NO ACTION IR REG ISReG
ON NEXT ON NEXT
RD PULSE RDPULSE

1 ... POLL COMMAND
8=NO POLL COMMAND

SPECIAL MASK MODE

0 I 1 0 1

0 I 0 1 1

RESET SET
NO ACTION SPECIAL SPECIAL

MAS« MASK

F:igure 8. Operation Command Word Format

2-129 AFN·OO221E

I "

8259A/8259A-2/8259A-8

FULLY NESTED MODE

This mode is entered after initialization unless another
mode is programmed. The interrupt requests are
ordered in priority form 0 through 7 (0 highest). When an
Interrupt is acknowledged the highest priority request is
determined and its vector placed on the bus. Additional­
ly, a bit of the Interrupt Service register (ISO-7) is set.
This bit remains set until the microprocessor issues an
End of Interrupt (EOI) command immediately before
returning from the service routine, or if AEOI (Automatic
End of Interrupt) bit is set, until the trailing edge of the
last INTA. While the IS bit is set, all further interrupts of
the same or lower priority are inhibited, while higher
levels will generate an interrupt (which will be
acknowledged only if the microprocessor internal Inter­
rupt enable flip-flop has been re-enabled through soft­
ware).

After the Initialization sequence, IRO has the higneSt
priority and IR7 the lowest. Priorities can be changed, as
~i11 be explained, in the rotating priority mode.

END OF INTERRUPT (EOI)

The In Service (IS) bit can be reset either automatically
following the trailing edge of the last in sequence INTA
pulse (when /-EOI bit in ICW1 is set) or by a command
word that must be issued to the 8259A before returning ,
from a service routine (EOI command). An EOI command
must be issued twice if in the Cascade mode, once for the
master and once for the corresponding slave.

There are two forms of EOI command: Specific and Non­
Specific. When the 8259A is operated in modes which
preserve the fully nested structure, it can determine
which IS bit to reset on EOI. When a Non-Specific EOI
command is issued the 8259A will automatically reset
the highest IS bit of those that are set, since in the
fully nested mOQe the highest IS level was necessarily the
last level acknowledged and serviced. A non-specific EOI
can be issued with OCW2 (EOI = 1, SL = 0, R = 0).

When a mode is used which may disturb the fully nested
structure, the 8259A may no longer be able to determine
the last level acknowledged. In this case a Specific End of
Interrupt must be issued which includes as part of the
command the IS level to be reset. A specific EOI can be is­
sued with OCW2 (EOI = 1, SL = 1, R = 0, and LO-L2 is the
binary level of the IS bit to be reset). .

It should be noted that an IS bit that is masked by an
IMR bit will not be cleared by a non-specific EOI if the
8259A is in the Special Mask Mode.

AUTOMATIC END OF INTERRUPT (AEOI) MODE

If AEOI = 1 in ICW4, then the 8259A will operate in AEOI
mode continuously until reprogrammed by ICW4. In this
mode the 8259A will automatically perform a non­
specific EOI operation at the trailing edge of the last
interrupt acknowledge pulse (third pulse in MeS-80/85,
second in iAPX 86). Note that from a system-standpoint,
this mode should be used only when a nested multilevel
intern,lpt structure'is not required within a single 8259A.

The AEOI mode can only be used in a master 8259A and
not a slave.

AUTOMATIC ROTATION
(Equal Priority Devices)

In some applications there are a number of interrupting
devices of equal priority. In this mode a device, after
being serviced, receives the lowest priority, so a device
requesting an interrupt will have to walt, in the worst
case until each of 7 other devices are serviced at most
once. For example, if the priority and "in service" status
is:

B.for. Rotat. (IR4 the highest priority requiring service)

"IS" Slatus

PriOrity Status

157 lSI ISS 154 IS3 152 lSI ISO

101 1 101,1 0 10101 01
L_ •• tPrlority

7 f 6 1 5

Hlllh •• '\.rlority

4 1 3 1 2 I 11'0 I

Aft.r Rotat. (IR4 was serviced, all other priorities
rotated correspondingly)

IS7 lSI 155 154 IS3 IS2 151 ISO

"IS" Stalus 10 1' 1010101010101

'Priority Status

There are two ways to accomplish Automatic Rotation
using OCW2, the Rotation on Non-Specific EOI Command
(R = 1, SL = 0, EOI = 1) and the Rotate in Automatic EOI
Mode which is set by (R = 1, SL = 0, EOI = 0) and cleared
by (R = 0, SL = 0, EOI = 0).

SPE:CIFIC ROTATION
(Specific Priority)
The programmer can change priorities by programming
the bottom priority and thus fixing all other priorities;
i.e., if IR5 is programmed as the bottom priority device,
then IR,6 will have the highest one.

The Set Priority command is issued in OCW2 where:
R = 1, SL = 1; LO-L2 is the binary priority level code of the
bottom priority device.

Observe that in this mode internal status is updated by
software control during OCW2. However, it is independent
of the End of Interrupt (EOI) command (also executed by
OCW2). Priority changes can be executed during an EOI
command by using the Rotate on Specific EOI command
in OCW2 (R = 1, SL = 1, EOI = 1 and LO-L2 = IR level to
receive bottom priority).

INTERRUPT MASKS

Each Interrupt Request Input can be masked Individu­
ally by the Interrupt Mask Register (IMR) programmed
through OCW1. Each bit in the IMR masks one Interrupt
channel if It is set (1). Bit 0 masks IRO, Bit 1 masks IR1
and so. forth. Masking an IR channel does not affect the
other channels <>peration.

2-1qO AFN·00221E

intJ 8259A18259A-218259A-8

SPECIAL MASK MODE

Some applications may require an interrupt service
routine to dynamically alter the system priority struc·
ture during Its execution under software control. For
example. the routine may wish to Inhibit lower priority
requests for a portion of its execution but enable some
of them for another portion. .

The difficulty here is that If an Interrupt Request is
acknowledged and an End of Interrupt command did not
reset its IS bit (i.e .• while executing a service routine).
the 8259A would have inhibited all lower priority
requests with no easy way for the routine to enable­
them

That is where the Special Mask Mode comes In. In the
special Mask Mode. when a mask bit is setjn OCW1. it
Inhibits further Interrupts at that level and enables Inter·
rupts from all other levels <lower as well as higher) that
are not masked. '

Thus. any Interrupts may be selectively enabled by
loading the mask register.

The special Mask Mode is set by OCW3 where:
SSMM=1. SMM=1. and cieared where SSMM .. 1.
SMM=O.

POLL COMMAND

In this mode the INT output i,s not used or the micropro­
cessor internal Interrupt Enable fllp·flop Is reset. disabling
its interrupt input. Service to devices is achieved by
software using a Poll command.

The Poll command Is Issued by setting P = "1" In OCW3.
The 8259A treats -the next FItS pulse to th~ 8259A (i.e.,
I!m = 0, e§ = 0) as an Interrupt acknowledge, sets the
appropriate IS bit If there Is a request, and reads the
priority level. Interrupt Is frozen from vm to 1m.

The word enabled onto the data bus during Fm Is:

07 De De De 03 D2 01 DO

I I W2 WI wol
WO-W2: Binary code of the highest priority level

requesting service.
I: Equal to a "1" If there is an interrupt.

This mode Is useful If there is a routine command com·
mon to several levels so that the INTA sequence Is not
needed (saves ROM space). Another application is to
use the poll mode to expand the number of priority
levels to more than 64.

LTtM liT
O. EDGE
1 $ LEVEL

TO OTHER '''IORTY CELLS

lOGl
SfNSl

cu".,.
...... T

~L.~T£!CH!-.+-__ +-__ --4-_~ __ "'(I~mr----===1I SET IIR

......
LATCH

D oHf+t--+

'RfORITY
REIOL~IIII

CONTROL
LOGIC

L-~~---++t-~--~~----~~::::

ItrtOTEI
1 IIMTltJI CLEAR ACTIVE OftIL V OUIIIING tan

'"IEZEIII AC;TIYE DURING 1ilfi:1 AND POLL "QUINCES ONt.. Y

TRUTH TAiLE ,,. 0 LATCH

OPl TION

'OLlOw
HOLD

Figure 9. Priority Ceil-Simplified Logic Diagram

2·131 AFN·00221E

inter 82S9A18iZ59,A-21825$A-8 , "-j' ~\f
',,"

READING THE a259A STATuS.

The,input status of several internal registers can be read to
update the user information on the system. The following
registers can be read via OCW3 (IRR and ISR or OCW1
[lMR]).

Interrupt Request Register (IRR): 8-bit reg'ister which con­
tains the levels requesting an interrupt to be acknowl­
edged. The hfghest request level is reset ~rom the IRR
when an interrupt is acknowledged. (Not affected by IMR:)

In-8ervice Register (/SR): 8-bit register which contains the
priority levels that are being serviced. The ISR is updated
when an End of Interrupt Command Is issued.

Interrupt Mask Register: 8-bit register which contains the
interrupt request lines which are masked.

The IRR can be read when, prior to the RD pulse, a Read
RegisterCommand is iss~ed with OCW3 (RR = 1, RIS = 0.)

The ISR can be read when, prior to the RD pulse, a Read
Register Command is issued with OCW3 (RR = 1, RIS = 1).

There is no need to write an OCW3 before every status
read operation, as long as the status' read corresponds
with the previous one; i.e., the 8259A "remembers"
whether the IRR or ISR has been previously selected by
the OCW3. This is not true when poll is used.

After initialization the 8259A is set to IRR.

For reading the IMR, no OCW3 is needed. The outp~t data
bus will contain the IMR whenever 1m is active and AO = 1
(OCW1).

Polling overrides status read when P = 1, RR = 1 in OCW3.

IR

INT ------i--'

INTA -----t-...... ----""'

LATCW'
ARMED

EARLIEST IR
CAN BE REMOVED

EDGE AND LEVEL TRIGGERED MODES

, This mode is programmed using bit 3 in ICW1.

It L TIM = '0', an I,nterrupt request will be recognized ,bY a
low to high transition on an IR inPlit. The IR input can re­
main high without generating another interrupt.

If:LTlM"" '1', an interrupt request will be recognized by a
'high' level on IR Input, and there Is no need for aR edge
detection. The interrupt request must be removed before
the EOI command Is issued or the CPU interrupt is enabled
to prevent a second interrupt from occurring.

The priority cell diagram shows a conceptual circuit of the
level sensitive and edge sensitive Input circuitry of the
8259A. Be sure to note that the request latch is a transpar-
ent D type latch. '

In both the edge and level triggered modes the IR inputs
must remain high until after the falling edge of the first
INTA.lf the IR input goes low before this time a DEFAULT
IR7 will occur when the CPU acknowledges the interrupt.
This can be a useful safeguard for detecting interrupts
caused by spurious noise glitches on the IR inputs. To im­
plement this feature the IR7 routine is used for "clean up"
simply executing a return instruction, thus ignoring the
interrupt. If IR7 is needed for other purposes a default IR7
can stili be detected by reading the ISR. A normal IR7
interrupt will set the corresponding ISR bit, a default IR7
won't. If a default IR7 routine occurs during a normallR7
routine, however, the ISR will remain set. In this case it is
necessary to keep track of whether or not the IR7 routine
was previously entered. If another IR7 occurs it is a
default.

B088I8088 8080/1015

B088I8088

8080/8085

"EDGE TRIGGERED' MODE ONLY
LATCH"
ARMED

Figure 10. IR TrIggering Timing Requirements

, 2-132 AFN·OO221E

8259A18259A-2/8259A-8

THE SPECIAL FULLY NESTED MODE

This mode will be used In the case Of a big system
where cascading is used, and the priority has to be con·
served within each slave. In this case the fully nested
mode will be programmed to the master (using ICW4).
This mode Is similar to the normal nested mode with the
following exceptions:

a. When an Interrupt request from a certain slave is in
service this slave Is not locked out from the master's
priority logic and further interrupt requests from
higher priority IR's within the slave will be recognized
by the master and will initiate interrupts to the proc·
essor. (In the normal nested mode a slave is masked
out when Its request is in service and no higher
requests from the same slave can be serviced.)

b. When exiting the Interrupt Service routine the soft·
ware has to check whether the interrupt serviced was
the only one from that slave. This is done by sending
a nOR·speclfic End of Interrupt (EOI) command to the
slave and then reading its In·Servlce register and
checking for zero. If it is empty, a non·specific EOI
can be sent to the master too. If not, no EOI should be
sent.

BUFFERED MODE

When the 8259A Is used In a large system where bus
driving buffers are required on the data bus and the cas·
cadlng mode Is used, there exists the problem of enabl·
Ing buffers.

The buffered mode will structure the 8259A to send an
enable signal on SP/EN to enable ,the buffers. In this

mode, whenever the 8259A's data bus outputs are ena·
bled, the SP/EN output becomes active.

This modification forces the use of software program·
mlng to determine whether the 8259A is a master or a
slave. Bit 3 In ICW4 programs the buffered mode, and bit
2 in ICW4 d~termines whether It is a master or a slave.

CASCADE MODE
The 8259A can be easily interconnected in a system of one
master with up to eight slaves to handle up to 64 priority
levels.

The master controls the slaves through the 3 line cascade
bus. The cascade bus acts like chip selects to the slaves
during the INTA sequence.

In a cascade configuration, the slave interrupt outputs afe
connected to the master interrupt request inputs. When a
slave request line is activated and afterwards acknowl­
edged, the master will enable the corresponding slave to
release the device routine address during bytes 2 and 3 of
INTA. (Byte 2 only for 8086/8088).

The cascade bus lines are normally low and will contain
the slave address code from the trailing edge of the first
INTA pulse to the trailing edge of the 'third pulse. Each
8259A in the system must follOW a separate initialization
sequence and can be programmed to work in a different
mode, An EOI command must be issued twice: once for
the master and once for the corresponding slave. An
address decoder is required to activate the Chip Select
(CS) input of each 8259A.

The cascade lines of the Master 8259A are activated only
for slave inputs, non slave inputs leave the cascade line
inactive (low).

\ AODRESS BUS (161

\ CONTROL BUS \
INT REO

\ DATA BUS ~.I \

-- --- - - -- - ~ -
-- - - -- - ~ -
--~ - -- -- - r- r--- ~ ,

r~ I I
cs A" 00-7 lNTA INT CS A, 00-7 INTA INr cs A, 00-7 INTA INT . CASO CASO CASO

8259A CAS 1 I~
8259A .8259A

SLAVE A r-- !:IlAVE 8 CAS 1 CAS 1 MI\STER

jll
CAS 2 CAS 2

SPIEN1 • • • J 2 Si'rENl 6 • • J 2 , 0 SPIENM7 M6 M5 M4 M3 M2 Ml MO

II I 1 1 1 1 'G!O 1 1 1 1 I III LLl.l n:! 1
1 6 • • J 2 1 6 • • • 0

I
I

I
INTERRUPT REQUESTS

Figure 11. Cascading the 8259A

2-133 AFN-00221E

82S9A/8259A·218259A·8

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias O°C to 70°C

~~~;:g: ~~nz,~~;::e .•............ -' 65'C 1.0 + 150'C 

with Respect to Ground .. : .......... - 0.5V to + 7V 
Power Dissipation ..•.....................•. 1 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated In the operational sections of this specifi­
c!Jtion is not implied. 

D.C. CHARACTERISTICS [TA = OOC to 7C1'C, Vee = 5V ±5% (8259A-8), vee = 5V ±10% (8259A, 8259A-2)] 

Symbol Parameter Min. Max. Units Test CondHlons 

V,L Input Low Voltage -0.5 0.8 V 

V,H Input High Voltage 2.0" Vee+0.5V V 

, VOL Output Low Voltage 0.45 V IOL = 2.2mA 

VOH Output High Voltage 2.4 V IOH - -400~A 

VOHONT) 
Interrupt Output High 3.5 V IOH = -100~A 
Voltage 2.4 V IOH - -400~A 

'll I nput Load Cu rrent -10 +10 ~A OV ,;;V,N .;;Vee 

'LOL Output Leakage Current -10 +10 ~A 0.45V,;;VOUT,;;Vee 

IcC Vee Supply Current 85 mA 

'LiR IR Input Load Current 
-300 ~A Y,N = 0 

10 ~A Y,N = Vee 

°Note: For Extended Temperature EXPRESS V1H = 2.3V. 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

C,N Input Capacitance 10 pF fc = 1 MHZ 

C,IO 110 Capacitance 20 pF Unmeasured pins returned to Vss 

A.C. CHARACTERISTICS [TA = O°C to 70°C, Vee = 5V ±5% (8259A-8), Vee = 5V ± 10% (8259A, 8259A-2)] 

TIMING REQUIREMENTS 

Symbol Parameter 
8259A-8 8259A 8259A-2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

TAHRL AO/CS Setup to RD/INTA\. 50 0 0 ns 

TRHAX AO/CS Hold after RD/lNTAi 5 0 0 ns 

TRLRH RD Pulse Width 420 235 160 ns 

TAHWL AO/CS Setup to WR~ 50 0 0 ns 

TWHAX AO/CS Hold afterWRi 20 0 0 ns 

TWLWH WR Pulse Width 400 290 190 ns 

TDVWH Data Setup to WRi 300 240 160 ns 

TWHDX Data Hold afterWRi 40 0 0 ns 

TJLJH Interrupt Request Width (Low) 100 100 100 ns See Note 1 

Cascade Setup to Second orThird i 
TCVIAL INTAj, (Slave Only) 55 55 40 ' ns 

End of R5 to ne~t RD 
TRHRL E'nd of iiiffA to next INTA within 160 160 160 ns 

an INTA sequence only 

TWHWL End ofWR to nextWR 190 190 190 ns 

2-134 AFN,00221E 



inter 8259A/8259A-2/8259A-8 

A.C. CHARACTERISTICS (Continued) 

Symbol Parameter 
8259A·8 8259A 8259A·2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

*TCHCL 
End of Command to next Command 

500 500 500 (Not same command type) - ns 

End of INTA sequence to next 
INTA sequence. 

·Worst case timing for TCHCL in an actual microprocessor system is typically much greater than 500 ns (i.e. 808SA = 1.6/Ls, 
808SA-2 = l/Ls, 8086 = l/Ls, 8086-2 = 625 ns) 
~OTE: This is the low time required to clear the input latch in the edge triggered mode. 

TIMING RESPONSES 

Symbol Parameter 
8259A-8 

Min. Max. 

TRLDV Dala Valid from RD/INTA) 300 

TRHDZ Data Float after RDIiNTAj 10 200 

TJHIH Interrupt Output Delay 400 

TIALCV Cascade Valid from First INTA) 
565 

(Masier Only) 

TRLEL Enable Active from RD) or INTA) 160 

TRHEH Enable Inactive from ROT or INTAT 325 

TAHDV Data Valid from Stable Address 350 

TCVDV Cascade Valid to Valid Data 300 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

'NPUT/OUTPUT 

u=:x x= 2.0 20 > TEST POINTS < 
0.8 0.8 

0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 ANO 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 8V FOR A LOGIC 0' 

WAVEFORMS 

WRITE 

\ 
- T"HWL -

lUI ). 

OAT" lUI 

8259A 8259A-2 Units Test Conditions 
Min. Max. Min. Max. 

200 120 ns C of Data Bus = 
loopF 

10 100 10 85 ns C of Data Bus 

350 300 ns 
Max text C = 100 pF 
Min. test C = 15 pF 

565 360 ns C'NT = 100 pF 

125 100 ns CCASC~DE = 100 pF 

150 150 ns 

200 200 ns 

300 200 ns 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

iJCL~100PF TEST 

-= 
Cl =100pF 
Cl INCLUDES JIG CAPACITANCE 

TWLWH 

I - TWHAX -
( 

-TDYWH- !--TWHDX 

) r -
AFN·OO221E 



8259A1B259A-2/B259A-B . 

WAVEFORMS (Continued) 

READ/INTA 

TIILIIH 

j \ 

~ \ >-- TIILEL - {TIIHEH 

- I--TAHIIL - _TRHAX 

lUI } ( AODRE .. 

At 
-T"LOV - T"HOZ ~ 

"---TAHOV .. ,,"'----------------~---------....r-----
OTHER TIMING 

III! 

Jf=TRHRL=t 
IJiIfA 

\ / 
WR 

\ ~TWHWL=1\ / 
III! 

INTA 

\ C-=1 WI! 

AD 
iIDl\ 

/ WR 

2-136 AFN·00221E 



inter 8259A/8259A-2/8259A-8 . 

WAVEFORMS (Continued) 

INTA SEQUENCE 
IA 

INT------J 

~A--------_~ 

08 ____________ _ 

TCYOY 

-- 0--
_TCVIAl 

c02----------------r----~Lf------~---_L_L ___________ ~_ 
-TlAlCV~ 

NOTES: Interrupt output must remai~ HIGH at least until leading edge of first INTA. 
1. Cycle 1 in iAPX 86, iAPX SS systems, the Data Bus is not active. 

2-137 AFN·OO221E 



inter 
.,,' 

8355/8355~2 

16,384-8IT ROM WITH 1/0 

'i 

• 2048 Words )( 8 Bits 

• Single + SV Power Supply 

• Directly Compatible with 808SA 
and IAPX 88 Microprocessors' 

.2 General Purpose 8·Blt,1I0 Ports 

• Each I/O Port Line Individually 
Programmable as Input or Output 

• Multiplexed Address and Data Bus 

• Internal Address Latch 

• 40.Pln DIP 

The Intele 8355 is a ROM and 1/0 chip to be used in the 8OS5A and iAPX 88 microprocessor systems. The ROM portion is 
organized as 2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states in the 8OS5A 
CPU. 

The I/O portion consists of 2 general purpose I/O ports. Each I/O port has 8 lines and each 1/0 port line is individually pro· 
grammable as input or output. ' ' 

The 8355-2 has a 300 ns access time for compatibility with the 8085A-2 and 5 MHz iAPX 88 microprocessors. 

eLK 

READY 

ADO-7 

~,o 

CE, 

CE1 
101M 
ALE 

AD 
iliW 

RESET 

iliA 

G ROM 
G 

G 

Vee (+5V) 

'----V .. IOV) 

Figure 1.' Block Diagram 

PAn-, 

PBO- 7 

\ 2-138 

RESET 

N C (NOT CONNECTED)' 

lOW 

ALE 

ADo 

AD, 

AD. 
CO AD7 

Vee 
PB, 

PBs 

PBs, 
PB. 
PB, 
PB. 

PB, 

P" 

PA, 

PAo 

A,o 

A. 

-For 8755A compatibility, pl,n 5 should be directly tied to Vee. 

Figure 2 •. Pln Configuration, 

AFN.()0234D -



inter 

Symbol 

ALE 

ADO-7 

As-l0 

eel 
CE2 

101M 

RD 

lOW 

ClK 

READY 

PAo-7 

PBO-7 

RESET 

lOR 

Vee 

Vss 

8355/8355-2 

Table 1. Pin Description 

Type Name and Function 

I 

I 

I 

I 

I 

I 

I 

I 

0 

I/O 

Addre.s latch Enable: When high, ADo_7, 101M, As-10, CE2, and CEl enter the address latches. The signals 
(AD, 110M, As-10, CE2, CEll are latched in at the trailing edge of ALE. ' 

Addre.S/Data Bu. (Bidirectional): The lower 8-bits of the ROM or I/O address are applied to the bus lines when 
ALE is high. During an I/O cycle, Port A or B is selected based on the latched value of ADo. If RD or lOA is low when 
the latched chip enables are active, the output buffers present data on the bus. 

Address Bus: High order bits of the ROM address. They do not affect 1/0 operations. 

Chip Eneble Inputs: CEl Is active low and CE2 Is active high. The 8355 can be accessed only when BOTH Chip 
Enables are active at the time the ALE signal latches them up. If either Chip Enable Input is not active, the 
ADo-7 and READY outputs will be in a high imPl'dance state. 

1/0 Memory: If the latched 101M is high when Ri5 is low, the output data comes from an I/O port. If it is low, the out­
put data comes from the ROM, 

Read: If the latched Chip Enables are active when RD goes low, the ADo-7 output buffers are enabled and output 
either the selected ROM location or I/O port. When both RD and lOR are high, the ADO-7 output buffers are 3-stated. 

1/0 Write: If the latched Chip Enables are active, a low on lOW causes the output port pointed to by the latched 
value of ADo to be written with the data on ADo-7. The state of 101M is ignored. 

Clock: Used to force the READY into its high impedance state after it has been forced low by eel low, CE2high 
and ALE high. ' 

R'EADY: A 3-state output controlled by CEl, CE2, ALE and ClK. READY is forced low when the Chip Enables are 
active during the time ALE is high, and remains low until the rising edge of the next ClK. 

Port A: General purpose I/O pins. Their inputloutput direction is determined by the contents of Data Direction 
Register (DDR). Port A is selected for write operations when the Chip Enables are active and lOW is low and a 
o was previously latched from ADo, AD1. 

Read operation Is selected by either lOR low and active Chip Enables and ADo and AD1 low, or 101M high, RD 
fow, ,active chip enables, and ADo and AD1" lOW. 

I/O. Port B: This general purpose I/O port Is identical to Port A except that it is selected by a 1 latched from ADo 
and a 0 from AD1. 

I Reset: An Input high causes all pins in Port A and B to assume input mode. (Clear DER Register). 

I I/O Read: When the Chip Enables are active, a low on lOR will outpulthe selected I/O port onto the AD bus. lOR low 
performs the same function as the combination 101M high and RD low. When lOR is not used in a system, lOR 
should be tied to Vee ("1"). ' 

Voltage: +5 volt supply. 

Ground: Ground Reference. 

2-139 AFN.(}()234D 



8355/8355-2 

FUNCTIONAL DESCRIPTION 
ROM Section 
The 8355 contains an 8·bit address latch which allows it 
to interface directly to MCS·48, MCS·85, and iAPX 88/10 
Microcompyters without additional hardware. 

The ROM section of the chip Is addressed by an ll-bit 
addrel!s and the Chip Enables. The address and levels on 
the c:hip Enable pins are latched into the address latches 
on the falling edge of ALE. If the latched Chip Enables 
are active and 10/M is low when RD goes low, the contents 
of the ROM location addressed by the latched address 
are put out through ADo-7 output buffers. 

1/0 Section 
The I/O section of the chip is addressed by the latched 
value of ADo-1. Two 8-bit Data Direction Registers (oDR,I 
in 8355 determine the input/output status of each pin in 
the corresponding ports. A "0" In a particular !lIt po~itlon 
of a DDR signifies that the corresponding 110 port bit is 
in the input mode. A "1" in a particular bit position signi­
fies that the corresponding 110 port bit IS in the output 
mode: In this manner the 1/0 ports of the 8355 are bit-by­
bit programmable as inputs or outputs. The table sum­
marizes port and DDR designation. DDR's cannot be 
read. 

AD1 ADD Selection 

0 0 Port A 
0 1 Port B 
1 0 Port A Data Direction Register (DDR AI 
1 1 Port B Data Direction Register (DDR BI 

When 10VY goes low and the Chip Enables are active, the 
data on the ADo-7 is written Into 1/0 port selected by the 
latched value of ADo-1 DUring this operation all 1/0 bits 
of the selected port are affected, regardless of their 1/0 
mode and the state of 10iM The actual output level does 
not change until lOW returns high (glitch free output I. 

A port can be read out when the latched Chip Enables are 
active and either RD goes low with 10iM high, or lOR 
goes low. Both input and output mode bits of a selected 
port will appear on lines ADo-7. 

To clarify the function of the 1/0 ports and Data Dlrecllon 
Registers, the following diagram shows the conflgural'on 
of one bit of PORT A and DDR A. The same logic applies 
to PORT Band DDR B 

Note that hardware RESET or writing a zero to the DDR 
latch will cause the output latch's' output buffer to be 
disabled, preventing the data In the output latch from 
being passed through to the pin. ThiS IS equivalent to 
putting the port in the input mode. Note also that the data 
can be written to the Output Latch even though the Out­
put Buffer has been disabled. ThiS enables a port to be 
initialized with a value prior to enabling the output. 

The diagram also shows that the contents of PORT A and 
PORT B can be read even when the ports are configured 
as outputs. 

8355 
ONE BIT OF PORT A AND DDR A 

DO 

~ 
READ PA 

WRITE PA = (iOW=OJ. (CHIP ENABLES ACTIVE) • (PORT A ADDRESS SELECTED) 
WRITE DOR A " (iOW=OJ. (CHIP ENABLES ACTIVE). (DDR A ADDRESS SElECTED) 
READ PA = {[(I0tM"'11. (RD=O)] + (iOR=o)} • (CHIP ENABLES ACTIVE). (PORT A ADDRESS SELECTED) 

NOTE WRITE PA IS NOT QUALIFIED BY 101M 

Figure 3. 8355 One Bit of Port A and DDR A 

SYSTEM APPLICATIONS 

System Interface with 8085A and iAPX 88 
A system using the 8355 can use either one of the two 
1/0 Interface techniques . 

• Standard 1/0 
• Memory Mapped 1/0 

If a standard I/O technique is used, the system can use 
the feature of both CE2 and CE1, By using a combina­
tion of unused address lines A11 - 15 and the Chip 
Enable inputs, the system can use up to 5 each 8355's 
without requiring a CE decoder, See Figure 5a and 5b. 

if a memory mapped I/O approach is used the 8355 will 
be selected by the combination of both the Chip En­
ables and 10iM using ADs_15 address lines, See Figure 
4. 

8085 

2-140 

A8~15 

" 
,~ 

""LE -
RD -i'iI1 -
elK (02) -
READY -
101M t 

Vee 
~ 

I f", 
AOO_7 AI_10 RD eLK • 101M 

fiR ALE iOW READY C. 

8355 

Figure 4. 8355 in 8085A System 
(Memory-Mapped I/O) 

"-

~ 
>f~ 

AFN-00234D 



inter 8355/8355-2 

iAPX 88 FIVE CHIP SYSTEM: 

• 1.25 K Bytes RAM 
• 2 K Bytes ROM 
• 38 I/O Pins 
• 1 Internal Timer 
• 2 Interrupt Levels 

,A v,s Vee 

I I 
H-- ~ POR!¢!(> 

~~_WR ¢!(> 
AD POR~ (8) 

8155-2 

ALE PORT~ 
" DATAl C (6) 

ADDR 
IN_ 

101M TIMER 

RESET OUT I--

Aa-A19 ADDA lOW 

AD 

~ ADo-AD7 ADDR/DATA ALE 

~ ,- ClK 
I ~j2::: PORT 

CE A 

t= " AS• 10 
8088 V 8355-2 ,- READY 

" MN/MX f---Vcc DATAl 
ADDR 

[OJ ALE t-- t--

¢!(> 

101M PORT 

RST@ AD r- r-r- ..--- RESET 8 
X, X, 

ViR r-ClK I READY Vee 

READY r-- 101M r- iDA .....J 

RES .-- r- III LROG 
8284A 

REseT t-- Vss Vee Voo 

ROYl Vee 

WR 

.... AD 

'CD eEl 8185-2 
ALE 

I ~t- cs, 

iH- CE, 

I \-t-- Ae,Ag 

ADO•7 

1 1 
V5S Vee 

Figure Sa. iAPX 88 Five Chip System Configuration 

2-141 AFN-00234D 



t~ 

~ 

1;; 
z 

~ 
o 

80<15A 

A8-15 

An Au A" A14 

~- - - - r- r-

ALE - - - t- t-
AD - - - t- t-
WR - - - - t-
eLK (l/12) - - - - t--
READY - - - - t--
101M - - - - t-

i\ vee i\ " 7- t\ " 7- Vr 7-~ T 
1m Aro,_, A~1O RD eLK 10/\ 11_ Affl~, A~1O RD eLK 101M 'II Al°g...1 A~" RO CtK 101M 'II Affle-, 'A~" RO eLK 101M 'II AIDg...l 

lOR ALE iOW READY eEl lOR A~DW READY eE2 fiR ~ iliW READY CE2 iOR ~Ow READ.Y eE2 iOii 
8355 

(2K BYTES) (2K BYTES) (2K BYTES) (2KBYTES) 

NOTE: Use CEl for the first 8355 in the system, aDd CEz for the other 8355's, Permits up to 5-8355's in a system without CE decoder. 

Figure 5b. 8355 in 8085A System (Standard I/O) 

A15 

7 

Aa..l0 RD eLK 101M 
ALE mw READY CE 

8355 
(2KBYTES) 

l 

Q) 
(0) 

g: 
" Q) 
(0) 

~ 
I\) 



8355/8355-2 

ABSOLUTE MAXIMUM RATINGS· 

TemperatureUnderBias ................ 0°Cto+70°C 
Storage Temperature .... . . . . . . . . . .. -65°C to +150°C 
Voltage on Any Pin 

With Respect to Ground ............... -0.5V to +7V 
Power Dissipation .. . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.5W 

'NOTICE: Stresses above those listed under "Absolute 
Maximvm Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in'the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = o°c to 70°C; Vee = 5V ± 5%) 

Symbol Parameter Min. Max. Unit Test Conditions 

VIL I n put low Vo Itage -0.5 0.8 V Vee = 5.0V 

VIH Input High Voltage 2.0 Vee+O·5 V Vee = 5.0V 

VOL Output low Voltage 0.45 V IOL = 2mA 

VOH Output High Voltage 2.4 V IoH = -400/lA 

IlL Input lea kage 10 /lA OV ,,; Y'N ,,; Vee 

ILO Output leakage Current ±10 JlA 0.45V ';;;VOUT .;;;vee 

Icc Vee Supply Current 180 mA 

A.C. CHARACTERISTICS· (TA = o°c to 70°C; Vee = 5V ± 5%) 

8355 8355-2 

Symbol Parameter Min. Max. Min. Max. Units 

tCYC Clock Cycle Time 320 200 ns 

T1 ClK Pulse Width 80 40 ns 

T2 ClK Pulse Width 120 70 ns 

tf.t, ClK Rise and Fall Time 30 30 ns 

tAL Address to latch Set Up Time 50 30 ns 

tLA Address Hold Time after latch 80 45 ns 

tLe latch to READ/WRITE Control 100 40 ns 

tRO Valid Data Out Delay from READ Control' 170 140 ns 

tAD Address Stable to Data Out Valid" 450 300 ns 

tLL latch Enable Width 100 70 ns 

tRoF Data Bus Float after READ 0 100 0 85 ns 

teL READIWRITE Control to latch Enable 20 10 ns 

tee READ/WRITE Control Width 250 200 ns 

tow Data In to Write Set Up Time 150 
, 

150 ns 

two Data In Hold Time After WRITE 30 10 ns 

twp WRITE to Port Output 400 300 ns 

tpR Port Input Set Up Time 50 50 ns 

tRP Port Input Hold Time 50 50 ns 

tRYH READY HOLD Time 0 160 0 160 ns 

tARY ADDRESS (CE) to READY 160 160 ns 

tRY Recovery Time Between Controls 300 200 ns 

tROE READ Control to Data Bus Enable 10 10 ns 

'Or TAo-('i'AL + TLc). whichever is greater. 

"Defines ALE to Data out Valid in conjunction with TAL. 

2-143 AFN-00234D 



A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

2.0 2.0 DEVICE "=-X x= > TEST POINTS < 
0.8 0.8 

045 

UNDER 

lCL~'50PF TEST 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC '1" ANOO 45V FOR 
A'LOGIC "0" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1" 
AND 0 BV FOR A LOGIC "0 " 

WAVEFORMS 

ROM READ AND I/O READ AND WRITE 

AS_10 

101M 

ADO_7 

ALE 

=> , 

=> 
'CE 2"'1)* 

r!-

ADDRESS K 
tAD 

ADDRESS 

tLl ~ t--~ tLA ~ 

-tAL -

) 

~tRDE~ 
l----tRD-~ 

1+----- t Le ~ 

I----tee 

-=-
CL =150pF 
CL INCLUDES JIG CAPACITANCE 

DATA 

I- t RDF • 

'I------- tRv 

~- tDw 
i-- t WD _ 

i.--tCL~ 

• Please note that for 8755A compatibility, CE, should remain low for the entire read cycle. 

8355 CLOCK SPECIFICATIONS 

2-144 

If 

AFN-00234D 



intJ 8355/8355-2 

WAVEFORMS (Continued) 

INPUT MODE 

OUTPUT MODE 

WAIT STATE 

NOTE: Ready = O. 

ROOR 
lOR d=~ 
PORT:X I,NPUT 

DATA' - - - - - - -)< 
BUS ------- ..... _-------

_______ 1, GLITCH FREE twp+- / OUTPUT 

PORT ------------~ 
OUTPUT ____________ p..,.. ____ _ 

DATA'- ~ - - - '" 
BUS ____ _ .J'\ ______ ...JX"-__ _ 

"DATA BUS TIMING IS SHOWN IN FIGURE 4. 

2-145 

• 

AFN.Q0234D 



inter 
8755A /8755A-2 

16,384-8IT EPROM WITH I/O 

• 2048 Words )( 8 Bits 

• Single + 5V Power Supply (Vee) 

• Directly Compatible with S08SA 
and 8088 Microprocessors 

• U.V. Erasable and. Electrically 
Reprogrammable 

• Internal Address Latch 

• 2 General Purpose 8·Blt 110 Ports 

• Each 110 Port Line Individually 
. Programmable as Input or Output 

iii Multiplexed Address and Data Bus 

• 40·Pin DIP 

• Available in EXPRESS 
-. Standard Temperature Range 
- Extended Temperature Range 

The Intel@ 8755A is an erasable and electrically reprogrammable ROM (EPROM) and 1/0 chip to be used in the 8085A and 
iAPX 88 microprocessor systems. The EPROM portion Is organized as 2048 words by 8 bits. It has a maximum access 
time of 450 ns to permit l!se with ,no wait sta~es in an 8085A CPU. 

The 1/0 portion consists of 2 general purpose 1/0 ports. Each 1/0 port has 8 port lines, and each 1/0 port line is individually 
programmable as iriput or output. 

The 8755A-2 is a high speed selected version of the 8755A compatible with the 5 MHz 8085A-2 and the 5 MHz iAPX 88 
microprocessor. 

ClK----.., 

REAoV----! 

A8-10~_o/ 

CE,---.j 

IOiM---.J 
AlE---.j 

fiij---.j 

iOW---.j 

RESET---,.J 

iOR----I 

2K x 8 
EPROM 

PAOG/CE, 

VDD.----' 

G 

G 
P8o-, 

,~-~/ 

Vee (+5V) 

L---Vs~ IOVI 

Figure 1. Block Diagram 

PROG AND CE, 1 

CE2 2 

ClK 

PB, 

PB. 

lOW 

ALE 

PA, 

AD3' PA, 

AD, PA, 

PA. 

A,. 

AD, A, 

Vss 

Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibllty for the,U.8 of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Circuit Patent Licenses afa Implied 

© INTEL CORPORATION. 1980 

2-146 



inter 8755A18755A-2 

Table 1. Pin Description 

Symbol Type Name and Function Symbol ~pa Name and Function 

ALE I Addre •• latch Enabla: When Addreee 
latch Enable goes high, ADo-7, 101M, 
As-l0, CE2; and CEl enier t~ addreee 

READY 0 Ready Is a 3-state output controlled by 
eel. CE2. ALE and ClK. READY Is forc-
ed low when the Chip Enables are active 

latches. The signals (AD, lOlly! ADs-l0, during the time ALE Is high. and re-
CE2, eel) are latched In at the trailing mains low until the riSing edge of the 
,edge of ALE. next ClK. (See Figure 6c.) 

ADo-7 I Bidirectional Addre •• /Data Bu.: The 
lower 8-bits of the PROM or I/O address 
are applied to the bus lines when ALE is 
high. 

PAo-7 I/O Port A: These are general purpose I/O 
pins. Their input/output direction Is de-
termined by the contents of Data Direc-
tion Register (DDR). Port A is selected for 

During an 1/0 cycle, Port A or B Is write operations when the Chip Enables 
selected based on the latched value of are active and lOW is low and a 0 was 
ADo. IF RD or lOR is low when the latched previously latched from ADo, AD1. 
Chip Enables are active, the output buf-
fers present data on the bus. 

Read Operation is selected by either iOR 
low and active C~ Enables and ADo 

As-l0 I Address Bus: These are the high order and AD11ow,or 101M high, RD low, active 
bits of the PROM address. They do not Chip Enables, and ADo and ADl low. 
affect I/O operations. 

PBO-7 I/O Port B: This general purpose I/O port Is 
PROG/CE, I Chip Enable Inputs: CEl is active low identical to Port A except that it is 
CE2 and CE2 is actiVe high. The 8755A can be selected by a 1 latched from ADo and a 0 

accessed only when both Chip Enables from AD1, 
are active at the time the ALE signal 
latches them up. If either Chip En!lble 
input is not active, the ADo-7 and 
READY outp!!.!!.will be in a high impe-
dance state.CEl Is also used as a pro-
gramming pin. (See section on 
programming.) 

101M I 1/0 Mamory: If the latched 101M is high 
when RD is low, the output data comes 
from an 1/0 port. If it Is low the output, 
data comes from the PROM. 

RESET I Relet: In normal operation, an input 
high on RESET causes all pins in Ports A 
and B to assume input mode (clear DDR 
register). 

lOR I 1/0 Read: When the Chip Enables are 
active, a low on lOR will output the 
selected I/O port onto the AD bus. R5A 
low performs the same fUnction as the, 
combination of 101M high and RD low, 
When lOR is not used In a system, lOR 
should be tied to Vee ("1"). 

RD I Read: " the latched Chip Enables are 
active when RD goes low, the ADO-7 

Vee' Power: +5 volt supply. 

output buffers are enabled and output Vss Ground: Reference. 
either the selected PROM location or I/O 
port. When both RD and lOR are high, 
the ADo-7, output buffers are a-stated. 

Voo Power Supply: Voo is a programming 
voltage, And mllit !2!! tillg m 'tee '«hIl!l ' 
the 8755A is being read. 

lOW I 1/0 Write: If the latched Chip Enables are 
active, a low on lOW ,causes the output 
port pointed to by the latched value of 
ADo to be writtell.wlth the data on ADo-7' 

For programming, a high voltage is 
supplied with Voo = 25V, typical. (See 
section on programming.) 

The state of 101M is ignored. 

ClK I Clock: The ClK Is used to force the 
READY into its high impedan~ state 
after it has been forced low by CEl low, 
CE2 high, and ALE high. 

2-147 AFN.()08430 



87:55A18755,,-~ 

FUNCTIONAL DESCRIPTION 
PROM Section 
The 8755A contains an 8-bit address latch which allows it 
to interface directly to MCS-48, MCS-85 and iAPX 88(10 
Microcomputers ~ithout additional hardware. 

The PROM section of the chip is addressed by the 11·bit 
address and the Chip Enables. The address, CE, and 
CE2 are latohed into the address latches on the failing 
ed~ of ALE. If the latched Chip Enables are active and 
101M Is low when AD goes lOw, the cpntents of the 
PROM . location addressed by the latched address are 
put out on the ADO_71ines (provided that Voo is tied to 
Vee·) 

1/0 Section 
The I/O section of the chip is addressed by the latched 
value of ADo-1. Two 8-bit Data Direction Registers (DDR) 
in 8755A determine the input/outp!!t status of each pin 
in the corresponding ports. A "0" in a particular bit posi­
tion of a DbR signifies that the corresponding I/O port bit 
is in the input mode. A "1" in a particular bit position signi­
fies that the corresponding I/O port bit is in the output 
mode. In this manner the I/O ports of the 8755A are bit-bY­
bit programmable as inputs or outputs. The table 
summarizes port and DDR designation. DDR's cannot be 
read. 

AD1 ADo Selection 

0 0 Port A 
0 1 Port B 
1 0 Port A Data Direction Register (DDR A) 
1 1 Port B Data Direction Register (DDR B) 

When lOW goes low and the Chip Enables are active, 
the data on the ADo_7 is written into I/O port selected 
by the latched value o~ ADo_ 1. During this operation all 
1/0 bits of the selected port are affected, regardless of 
their I/O mode and the state of 101M. The actual output 
level does not change until lOW returns high. (glitch free 
output) 

A port can be rea2.,2ut when the latch~ Chip Enables are 
active and either RDgoes 10wwithJO/M high, or lOR goes 
low. Both input and output mode bits of a selected port 
will appear onlines ADo-? 

To clarify the function of the I/O Ports and Data Direction 
Registers, the following diagram shows the configuration' 
of one bit of PORT A and OCR A. The same logiC applies 
to PORT Band DDR B. 

8755A 
ONE BIT OF PORT A AND OOR A 

WRIT~ CDR A 

o. 

---, 
REAOPA 

WRITE PA" (row-O). (CHIP ENABLES ACTIVE). (PORT A ADDRESS SELECTED) 
WRITE DDA A .. (jaW"Ole (CHIP ENAlLESACTN". ftlOA A ADDRESS SELECTED) 
READ PA .. {[IIO.l). fKD .. OIl t (iOR.O)) • (CHIP (NAILES ACTIVE). (PORT A ADOIUSS SELECTEDI 

NOTE: WRITE PA IS NOT QUALIFIED BY 101M. 

. Note that hardware RESET or wrlti'ng a zero to the DDR 
latGh will cause the output latch'S output. buffer to be 
disabled, preventing the data in the Output Latch from 

, being passed through to. the pin. This Is equivalent to 
putting the port in the input mode. Note also that the data 
can be written to the Output Latch even though the Output 
Buffer has been disabled. This enables a port to be ini­
tialized with a' value prior to enabling the output. 

The diagram also sl10ws that the contents of PORT A and 
PORT B can be read eVlln when the ports are configured 
as outputs. 

TABLE 1. 8755A PROGRAMMING MODULE CROSS 
REFERENCE 

MODULE. NAME 

UPP 955 
UPP UP2(2) 
PROMPT 975 
PROMPT 475 

NOTES: 

USE WITH 

UPP(4), 
UPP 855 
PROMPT 80/85(3) 
PROMPT 48(1) 

1. DeS9ribed on p. 13-34 of 1978 Data Catalog. 
,2. Special adaptor socket. 
3. Described on p. '13-39 of 1978 Data Catalog. 
4. Described on p. 13-71 of 1978 Data Catalog. 

AFN'()0843D 



inter 8755A18755A-2 

ERASURE CHARACTERISTICS 
The erasure characteristics of the 8755A are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter than approximately 4000 Angstroms 
(A). It should be noted that sunlight and certain types of 
fluorescent lamps have wavelengths in the 3000-4000A 
range. Data show that constant exposure to room level 
fluorescent lighting could erase the typical 875SA in 
approximately 3 years while it would take approximately 1 
week to cause erasure when exposed to direct sunlight. 
If the 8755A is to be exposed to these types of lighting 
conditions for extended periods of time, opaque labels 
are available from Intel which should be placed over the 
8755 window to prevent unintentional erasure. 

The recommended erasure procedure for the 8755A is 
exposure to shortwave ultraviolet light which has a wave­
length of 2537 Angstroms (A). The integrated dose (i.e., 
UV intensity X exposure time), for erasure should be a 
minimum of 15W-sec/cm2. The erasure time with this 
dosage is approximately 15 to 20 minutes using an ultra­
violet lamp with a 12000/LW/cm2 power rating. The 
8755A should be placed within one inch from the lamp 
tubes during erasure. Some tamps have a filter on their 
tubes and this filter should be removed before erasure. 

PROGRAMMING 
Initially, and after each erasure, all bits of the EPROM 
portions of the 8755A are in the "1" state. Information is 
introduced by selectively programming "0" Into the 
desired bit locations. A programmed "0" can only be 
changed to a "1" by UV erasure. 

The 8755A can be programmed on the Intel@ Universal 
PROM Programmer (UPP). and the PROMPT'" 80/85 and 
PROMPT-48'" design aids. The appropriate programming 
modules and adapters for use in programming both 
8755A's and 8755'5 are shown in Table 1. 

The program mode itself consists of programming a 
single address at a time, giving a single 50 msec pulse 
for every address. Generally, it is desirable to have a 
verify cycle after a program cycle for the same address 
as shown in the attached timing diagram. In the verify 
.cycle (i.e., normal memory read cycle) 'Voo' should 
be at +5V. . 

Preliminary timing diagrams and parameter values per­
taining to the 8755A programming operation are con­
tained in Figure 7:. 

2-149 

SYSTEM APPLICATIONS 
System Interface with e085A and IAPX 88 
A system using the 8755A can use either one of the two I/O 
Interface techniques: 

• Standard I/O 
• Memory Mapped I/O 

If a standard I/O technique Is used, t~ a system can use 
the feature of both CE2 and CE1• By IIslng a combina­
tion of unused address lines A11 - 15 and the Chip 
Enable Inputs, the 808SA system can use up to 5 each 
8755A's without requiring a CE decoder. See Figure 4a 
anc! 4b. 

If a memory ma~ped I/O approach is used the 8755A will 
be selected by.,!he combination of both the Chip 
Enables and 101M using AD8- 15 address lines. See 
Figure 3. 

-
A 

K;8-15 
A 

B085A ~ ADo., 
'oj 

ALE -
RD -
WR -
eLK 1,,2) -
READY - f 101M -

- Vr", 
'" ;. r 

AID .. , AB_10 RD elK 101M 
iDR ALE iOi'I READY 

B755A 

Figure 3. 87SSA In 808SA System 
(Memory-Mapped I/O) 

'> 
~ 
;> 

CE 

AFN·008430 



inter 
IAPX 88 FIVE. CHIP SYSTEM 

Figure 4 shows a five chip system containing: 

• 1.25K Bytes RAM 
• 2K Bytes ROM 
.381/0 Pins 
• 1 Interval Timer 
• 2 Interrupt Levels 

rD1 
X, x, 

ClK 

READY 

RES 
8284 

RESET 

RDY1 

As-Au 

ADo-AD7 
r- ClK 

8088 

r- READY 

MNIMX 

ALE 

RST ® iili 

VIR 

f- 101M 

"ee 

.... 
(j) 

, 

8755A18755A .. 2 

/' /' 

I ~f-
~ I-

AD OR 
.. ~ 

AODRIDATA P', 
~~ 
it:: 

t--Vcc 

r-- r--
r-- r--r-
r--
I---

.--- I---

r--

\1-
.r-
r-

, 

Figure 48. IAPX 88 Five Chip System Configuration 

2-150 

Vss Vee 

I I 
CE POR1~ - ViR 
_ 'PORT~ 
RD 8155-2 B . 

. ALE PORT~ 
DATAl C (6) 
ADDR 

IN_ 
IO/ii TIMER 

RESET 
OUT r--

il5W 

iili 

~ 
ALE 

PORT 
CE A 

.J\ AS_10 

-V 83111-21 
175fA.2 

DATAl 
ADDR 

~ 101M PORT 

r-- RESET 8 

vee r READY 
il5li -l 

! ! ! LROG 
Vss Vee Voo 

ViR 
iili 

eE, .,811-2 
ALE 

cs. 
CE, 

Ae. A, 

ADO_l 

J 
Vs. 

J 
Vee 

AFN-00843C 



A 
"TI 

.e 

AI-1S 

C c a; 
tT 

A" '" '-" A" 
I 

AIOf)-l 
r- - r- r-" 

CD ..... 
UI 
UI 
~ 
S· 

ALE r- - r- r-
ao8" jffi r- - r- r-

WR r- -'- r- r-

~ 
CD 
0 
CD 

~ 
UI 
~ 

~ 

elK (1/)2) r- - r- r-
READY r- - r- r-
101M r- - r- r-

(I> 

Cil" 
3 

2! 
'" ::J a. 
'" a. 
.9 

vee 
;.~ ;. Vt'~ , 7 t\ ~ t\ ;. , y f' 

1m. 
A/D ... , 

AI-" RD eLK IDIlii, II AID~, AI-.. RD eLK IDiM, II AID ... , 
AI-" RD eLK IDIlii , II i AIDI-' AI-" RD eLK ID,tj '1 ALE iOW READY eEl iiii ALE IlIW READY eE2 iDA ALE iOW READY eE2 iiiR ALE i1iW READY eEl iiiii 

8755A 8755A 8755A 8755A 
(2K BYTES) 12K BYTES) 12K BYTES) 12K BYlES) 

Note:'U" CE1 fo, the fi,st 8755A in the system, and CE2 for the other 8755A's. Permit. up to 5-8755A'. in a system without CE decoder. 

~ z 

~ 
o 

:=0 
'" 

r- V 

r-
r-
r-
r-
r-
r-

7' 
AID .. , 

AI-" RD elK 101M J 
ALE iliW READY eE2 

8755A 
12K BYTES) 

( 

CD 
~. 
en 
~ 
CD ..... en 
en 
~ 
~. 



8755A18755A·2 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under !:lIas ................ 0°Cto+70°C 
Storage Temperature .......... . . . .. -65'C to +150°<:; 
Voltage on Any Pm 

With Respect to Ground .............. , -0.5V to +7V 
Power Dissipation ............................. 1.5W 

·NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. . 

D.C. CHARACTERISTICS (TA = O°C to 70°, Vee = Voo = 5V ± 5%; 

Vee = VOO = 5V ±10% for 8755A-2) 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

VIL Input Low Voltage -0.5 0.8 V Vee = 5.0V 

VIH Input High Voltage 2.0 Vee+O·5 V Vee = 5.0V 

VOL Output Low Voltage 0.45 V IOL = 2mA 

VOH Output High Voltage 2.4 V IOH = -4001lA 

IlL Input Leakage 10 IlA VSS .;; VIN .;; Vee 

ILO O~tPut Leakage Current ±10 IlA 0.45V .;; Your .;; Vee 

Icc Vee Supply Current 180 mA 

100 Voo Supply Current 30 mA Voo = Vee 

CIN Capacitance of Input Buffer 10 pF fe = 1p.Hz 

CVO Capacitance of I/O Buffer 15 pF fe = 1p.Hz 

D.C. CHARACTERISTICS-PROGRAMMING (TA =0°Ct070°, Vee = 5V±50/0, vss = OV, Voo =25V±1V; 
Vee = Voo = 5V ±100/0 for 8755A-2) 

Symbol Parameter Min. Typ. Max. Unit 

Voo Programming Voltage (during Write 
to EPROM) 24 25 26 V 

100 Prog Supply Current 15 30 mA 

2-152 AFN·00843D 



inter 8755A18755A·2 

A.C. C~ARACTERISTICS (TA = O°C to 70°. Vee = 5V ± 5%; 

Vee = VOO, = 5V ±10% for 8755A-2) 

8755A 

Symbol Parameter Min. Max. 

tCYC Clock Cycle Time 320 

T1 ClK Pulse Width 80 

T2 ClK Pulse Width 120 

tf. tr ClK Rise and Fall Time 30 

tAL Address to latch Set Up Time 50 

tlA Address Hold Time after latch 80 

tlC latch to READ/WRITE Control 100 

tRO Valid Data Out Delay from READ Control· 170 

tAD Address Stable to Data Out Valid·· 450 

tll latch Enable Width 100 

tROF Data Bus Float after READ 0 100 

tCl READ/WRITE Control to latch Enable 20 

tcc READ/WRITE Control Width 250 

tow Data In to Write Set Up Time 150 

two Data In Hold Time After WRITE :30 

twp WRITE to Port Output 400 

tpR Port I"'put Set Up Time 50 

tRP Port Input Hold Time to Control 50 

tRYH READY HOLD Time to Control 0 ' 160 

tARY ADDRESS rCEI to READY 160 

tRV Recovery Time Between Controls 300 

tROE READ Control to Data Bus Enable 10 

NOTE: 

eLOAO = 150pF. 
·Or TAD - (TAL + T Le!. whichever is greater. 

"Defines ALE to Data Out Valid in conjunction with TAL' 

8755A·2 
(Preliminary) 

Min. Max. Units 

200 ns 

40 ns 

70 ns 

30 ns 

30 ns 

45 ns 

40 ns, 

140 ns 

300 ns 

70 ns 

0 85 ns 

10 ns 

200 ns 

150 ns 

10 ns 

300 ns 

50 ns 

50 ns 

0 160 ns 

160 ns 

200 ns 

10 ns 

A.C. CHARACTERISTICS- PROGRAMMING (TA = O°Cto 70°. Vee = 5V ± 5%. VSS = OV. VOO = 25V ±lV; 
Vee = Voo = 5V ±10% for 8755A-2) 

Symbol Parameter Min. Typ. Max. Unit 

tps Data Setup Time 10 ns 

tpo Data Hold Time 0 ns 

ts Prog Pulse Setup Time 2 p.S 

tH Prog Pulse Hold Time 2 p's 

tpR Prog Pulse Rise Time 0.01 2 p's 

tpF Prog Pulse Fall Time 0.01 2 P.s 

tpRG Prog Pulse Width 45 50 msec 

2-153 AFN.()0843D 



inter 8755A18755A,·2 
" 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

2.0 2.0 DeVICE u=x x= , > TEST POINTS < 
0.8 0.8 

0.45 

UND'ER 

!JCL. ,50 PF 
reST 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 . TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 BV FOR A LOG.lC 0 

WAVEFORMS 

CLOCK SPECIFICATION FOR 8755A 

PROM READ, 1/0 READ AND WRITE 

--
AS10 )j ADDRESS 

IO/M-

'AD 

AD07' ) ADDRESS ~---<D 
-t 'LL~ 

ALE 

-'AL~ I---'LA-

(PROGl/eE l \ 

CE, \ 
- -tReE 

iDA AD 

-'LC~ -'RU 

lOW 

Please note that CEl must remam low for the entIre cycle 

, 

CL ", 150pF 
Cl INCLUDES JIG CAPACITANCE 

DATA ~--,--< 

I 
, , 

Ifll II/, VII 

\ 
- tRDF -

I 
'ow --------'-- - r-two 

'CC----~ 
_'CL_ 

tRV 

2-154 

ADDRESS 

ADDRESS r 

1\-' 

I\-

AFN·00843D 



inter 87SSAl8755A·2 

WAVEFORMS (Continued) 

1/0 PORT 

A. INPUT MODE 

DATA· - - - - - - - ~ 
BUS _______ -A ____ -:-_____ _ 

B. OUTPUT MODE 

_______ 1...1 GLITCH FREE 

VIP+- / OUTPUT 

PORT -- ----------.") 
OUTPUT ------------ ~-----

DATA·-----~ 
BUS _____ -A ____ -:-_...JX'--___ _ 

WAIT STATE (READY", 0) 

2-155 AFN.()08430 



WAVEFORMS (Continued) 

8755A PROGRAM MODE 

FUNCTION 

I ... >-------PROGRAM CYCLE ---...,---...... _*1.00-, ----VERIFy C'YCLE> ~_ PROGRAM CYCLE 

ALE 

A/DO_? 

AB·l0 

+25 

Voo 

IpS 

DATAlaSE 
PROGRAMMED 

tpo 

--
+5----____________________ -{ 

*VERIFY CYCLE IS A REGULAR MEMORY READ CYCLE (WITH VOO '" +5V FOR 8755A) 

2-156 

"-1--

AFN-00843D 



iAPX 86, 88, 186, 188 
Microprocessors 

Microprocessors 
Section 

3 



", t 

i ,~ . .! '.", ' '.,'" 
"I",: 

\.' 

\ 

l' 

'\ 



APPLICATION 
NOTE 

Ap·113 

February 1981 



AP·1~3 

INTRODUCTION 

This is an'application note on using numerics in Intel's 
iAPX 86 or iAPX 88 microprocessor family. The nu­
merics implemented in the family provide instruction 
level support for high-precision integer and floating 

i point data types with arithmetic operations like add, 
subtract, multiply, divide, square root, power, log and 
trigonometrics. These features are provided by members 
of the iAPX 86 or iAPX 88 family called numeric data 
processors. 

Rather than concentrate on a narrow, specific applica­
tion, the topics covered in this application note were 
chosen for generality across many applications. The 
goal is to provide sufficient background information so 
that software and hardware engineers can quickly move 
beyond needs specific to the numeric data processor and 
concentrate on the special needs of their appliaation. 
The material is structured to allow quick identification 
of relevant material without reading all the material 
leading up to that point. Everyone should read the in­
troduction to establish terminology and a basic 
background. 

IAPX 86,88 BASE 

The numeric data processor is based c;m an 8088 or 8086 
microprocessor. The 8086 and 8088 are general.purpose 
microprocessors, designed for general data processing 
applications. General applications need fast, 'efficient 
data movement and program control instructions. Ac­
tual arithmetic on data values is simple in general appli­
cations. The 8086 and 8088 fulfill these needs in a low 
cost, effective manner. 

However, some applications. need more powerful arith­
metic instructions and data types than a general purpose 
data processor provides. The real world deals in frac­
tional values and tequires arithmetic operations like 
square root, sine, and logarithms. Integer data types 
and their operations like add, subtract, multiply, and 
divide may not meet the needs for accuracy, speed, and 
ease of use. 

Such functions are not simple or inexpensive. The 
general data processor does not provide these features 
due to their cost to other less-complex applications that 
do not need such features!. A special processor is re­
quired, one which is easy to use and has a high level of 
support in hardware and software. 

The numeric data processor provides these features. It" 
supports the data types and operations needed and 
allows use of all the current hardware and software sup­
port for the iAPX 86/10 and 88/10 microprocessors. 

The iAPX 86 and iAPX 88 provide two imple-, 
mentations of a numeric data processor. Each offers 
different tradeoffs in performance, memory size, and 
cost. 

3-2 

One alternative uses a special hardware component, the 
8087 numeric processor extension, while the other is 
based on software, the 8087 emulator. Both component 
and software emulator add the extra numerics data 
types and operations to the 8086 or 8088. 

The component and its software emulator are com-
pletely compatible. ' 

Nomenclature 
Table one shows several possible configurations 
of the iAPX 86 and iAPX 88 microprocessor, family. 
The choice of configuration will be decided by the 
needs of the application for' cost and performance 
in the areas of general data processing, numerics, 
and 1/0 processing.' The combination of an 8086 or 
8088 with an 8087 is called an iAPX 86/20 or 88/20 
numeric data Processor. For applications requir­
ing high 110 bandwidths and numeric perfor­
mance, a combination of 8086, 8087 and 8089 is ali 
iAPX 86/21 numerics and 110 data processor. The 
same system with an 8088 CPU for smaller size 
and lower cost, due to the smaller 8-bit wide 
system data bus, is referred to as an iAPX 88/21. 
Each 8089 in the system is designated in the units' 
digit of the system designation. The term 86/2X or 
88/2X refers to a numeric data processor with any 
number of 8089s. 

Throughout this application note, I will use the 
terms NDP, numeric data processor, 86/2X, and 
88/2X synonymously. Numeric processor exten­
sion and NPX are also synonymous for the func­
tions of either the 8087 component or 8087 
emulator. The term numeric instruction or 
numeric data type refers to an instruction or data 
type made available by tile NPX. The term host will 
refer to either the 8086 or 8088 microprocessor. 

Table,1. Components Used In IIAPX 88,88 

Conflgural/ons 

System Name 8088 8087 8088 8089 

iAPX 86/10 1 
iAPX 86/11 1 1 
iAPX 86/12 1 2 
iAPX 86/20 1 1 
iAPX 86/21 1 1 I 
iAPX 86/22 1 1 2 

iAPX 88/10 1 
iAPX 88111 1 1 
iAPX 88/12 1 2 
iAPX 88/20 1 1 
iAPX 88/21 1 1 1 
iAPX 88/22 1 1 2 



Ap·113 

NPX OVERVIEW 
the 8087 is a coprocessor extension available to 
iAPX 86/IX or iAPX 88/IX maximum mode 
microprocessor systems. (See page 7). The 8087' 
adds hardware support for floating point and ex­
tended precision integer data types, registers, and 
instructions. Figure I shows the register set 
available to the NDP. On the next page, the seven 
data types available to numeric instructions are 
listed (Fig 2). Each data type has a load and store 
inStruction. Independent of whether an 8087 or its 
emulator are used, the registers and data I types all 
appear the same to the programmer. 

All the numeric instructions and data types of the NPX 
are used by the programmer in the 'Same manner as the 
general data types and instructions of the host. 

The numeric data formats and arithmetic operations 
provided by the 8087 conform to the proposed IEEE 
Microprocessor Floating Point Standard. All the pro­
posed IEEE floating point standard algorithms, excep­
tion detection, exception handling, infinity arithmetic 
and rounding controls are implemented. 1 

The numeric registers of the NPX are provided for fast, 
easy reference to values needed in numeric calculations. 
All numeric values kept in the NPX register file are held 
in the 80-bit temporary real floating point format which 
is the same as the 80-bit temporary real data type. 

All data types are converted to the SO-bit register file 
format when used by the NPX. Load and store instruc­
tions automatically convert between the memory 
operand data type and the register file format for all 
numeric data types. The numeric load instruction 
specifjes the format in which the memory operand is ex­
pected and which addressing mode to use. 

All host base registers, index registers, segment 
registers, and addressing modes are available for 
locating numeric operands. In the same manner, the 
store instruction also specifies which data type to use 
and where the value is located when stored into 
memory .. 

Selecting Numeric Data Types 
As figure 2 shows, the numeric data types are of dif­
ferent lengths and domains (real or integer). Each 
numeric data type is provided for a specific function, 
they are: 

16-bit word integers -Index values, loop counts, 
and small program control 
values 

t .. An Implementation Guide to a Proposed Standard for Floating 
Point" by Jerome Coonen in Computer, Jan. 1980 or the Oct. 1979 
issue of ACM SIGNUM, for more information on the standard. 

3-3 

32-bit short integers 

64-bit long integers 

IS-digit packed 
decimal 

32-bit short real 

64-bit long t;eal 

80-bit temporary 
real 

-Large integer general 
computation 

-Extended range integer 
computation 

-Commercial and. decimal 
conversion arithmetic 

-Reduced range and 
accuracy is traded for 
reduced memory require­
ments 

-Recommended floating 
poi~t variable type 

-Format for intermediate 
or high precision calcu­
lations 

Referencing memory data types in the NDP is not 
restricted to load and store instructions: Some arith­
metic operations can specify a memory operand in one 
of four possible data types. The numeric instructions 
compare, add, subtract, subtract reversed, multiply, 
divide, and divide reversed can specify a memory 
operand to be either a 16-bit integer, 32-bit integer, 
32-bit Peal, or 64-bit real value. As with the load and 
store operations, the arithmetic instruction specifies the 
address and expected format of the memory operand. 

The remaining arithmetic operations: square root, 
modulus, tangent, arctangent, logarithm, exponentiate, 
scale power, and extract power use only register 
operands. 

15 FILE 0 79 NPX STACK 0 

u~ 
R1 EXPONENT SIGNIFICANO 

BX R2 

ex R3 
ox R4 
51 R5 

01 R6 
BP R7 
SP R8 

I IP I NPXSTATUS 
FLAGS NPXMOOE 

i~1 I 
Figure 1. NDP Register Seftor IAPX 86/20,88120 



AP~113 

The register. set of the host and BQ87 are in separate 
components. Direct transfer of values between the two 
register sets in one instrUction is not possible. To trans­
fer values between the host and numeric· register sets, 
the value must first pass through memory. The memory 
format of a 16-bit short integer used by the NPX is iden­
tical to that of the host, ensuring fast, easy transfers. 

Since an 8086 or 8088 does not provide single instruc­
tion support for the remaining numeric data types, host 
programs reading or writing these data types must con­
form to the bit and byte ordering established by the 
NPX. 

Writing programs using numeric instructions is as sim­
ple as with the host's instructions. The numeric instruc­
tions are simply placed in line with the host's instruc­
tions. They are executed in the same order as they ap­
pear in the instruction stream. Numeric instructions 
follow the same fbrm as the host instructions. Figure 2 
shows the ASM 86/88 representations for different 
numeric instructions and their similarity to host instruc­
tions. 

FILD 
FIADD 
FADD 

DATA 
~ORMATS 

WORD INTEGER 

SHORT INTEGER 

~ONG INTEGER 

PACKED BCD 

SHORT REAL 

LONG REAL 

TEMPORARY REAL 

RANGE 

1Q4 

10' 

1019 

1018 

10:!:38 

10:!:308 

10:1:.4932 

PRECISION 

16 BITS 

32 BITS 

64 BITS 

18 DIGITS 

24 BITS 

53 BITS 

64 BITS 

VALUE 
TABLE [8X] 
ST,ST(1) 

MOST SIGNIFICANT BYTE 

7 01 7 017 

I" 101 

131 

I" 

S I -10 17 0161 

S IE7 EO) F, 

S 11;10 Eol f, 

S IE14 Eo I Fo 

INTEGER: 1 
PACKED BCD: (-115(017." Dol 

01 7 

8087 EMULATOR OVERVfEW 

The NDP has two basic implementations, an 8087 coin­
ponent or with its software emulator (E8087);"Thedeci~ 
SiOli'tO use the emulator or component has no'effect on 
programs at the source leveL At the source level, all in­
structions, data types, and features are used the same 
way. 

, 

The emulator requires all nu,neric instruction opcodes 
to be replaced with 'an fnterrupt instruction. This 
replacement is performed by the LINK86 program.' In­
terrupt vectors in the host's interrupt vector table will 
point to numeric instruction emulation routines in the 
8087 software emulator. 

When using the 8087 emulator, the linker changes all the 
2-byte wait-C1scape, nop-escape, wait-segment override, 
or nop-segment override sequences generated by an 
assembler or compiler for the 8087 component with a 
2-byte interrupt instruction. Any remaining bytes of the 
numeric instruction are left unchanged. 

, 

01 7 , 017 017 01 7 01 7 01 7 oj 

TWO'S COMPLEMENT 

101 TWO'S COMPLEMENT 

loj 
TWO'S 

COMPLEMENT 

10, 001 

F231 Fo ,MPLICIT 

, 

F52) Fo IMPLICIT 

F .. I 

REAL: (-1IS(2E .• JAS)(Fo.F, ... ) 
BIAS = 127 FOR SHORT REAL 

1023 FOR LONG REAL 
16383 FOR TEMP REAL 

Figure 2. NPX Data Types 

3-4 



Ap·113 

When the host encounters numeric and emulated in­
struction, it will execute the software interrupt instruc­
tion formed by the linker. The interrupt vector table will 
direct the host to the proper entry point in the 8087 
emulator. Using the interrupt return address and CPU 
register set, the host will decode any remaining part of 
the numeric instruction, perform the indicated opera­
tion, then return to the next instruction following the 
emulated numeric instruction. 

One copy of the 8087 emulator can be shared by all pro­
grams in the host. 

The decision to use the 8087 or software emulator is 
made at link time, when all software modules are· 
brought together. Depending on whether an 8087 or its 
software emulat'Or is used, a different group of library 
modules are included for linking with the program. 

If the 8087 component is used, the libraries do not add 
any code to the program, they just satisfy external refer­
ences made by the assembler or compiler. Using the 
emulator will not increase the size of individual modu­
les; however, other modules requiring about 16K bytes 
that implement the emulator will be automatically 
added., 

Selecting between the emulator or the 8087 can be very 
easy. Different versions of submit files performing the 
link operation can be used to specify the different set of 
library modules needed. Figure 3 shows an example of 
two, different submit files for the same program using 
the NPX with an 8087 or the 8087 emulator. 

iSBC 337™ MULTIMODULETM Overview 

SOS7 BASED LINK/LOCATE COMMANDS 

LlNKS6 :F1:PROG.OBJ, IO.LlB, SOS7.LlB TO 
:F1:PROG.LNK 

LOC86 :F1:PROG.LNK TO :F1:PROG 

SOFTWARE EMULATOR BASED 
LINK/LOCATE COMMANDS 

LlNKS6 :F1 :PROG.OBJ, IO.LlB, ESOS7.LlB, 
ESOS7 TO :F1:PROG.LNK 

LOCS6 :F1:PROG.LNK TO :F1:PROG 

Figure 3. Submit File Example 

Isec 337™ MULTIMODULETM BOARD 

/ 
BOARD OPTIONAL SOLDER 

(ISBC 86/12A'") MOUNT 

The benefits of the NPX are not limited to systems 
which left board space for the 8087 component or mem­
ory space for its software emulatoE. Any maximum 
mode iAPX 86/1X or iAPX 88/1X system can be up­
graded to a numeric processor. The iSBC 337 MUL­
TIMODULE is designed for just this function. The 
iSBC 337 provides a socket for the host microprocessor 
and an 8087. A 4O-pjn plug is provided on the underside 
of the 337 to plug into the original host's socket, as 
shown in Figure 4. Two other pins on the underside of 
the MUL TIMODULE allow easy connection to the 
8087 INT and RQ/GTI pins. 

Figure 4. MULTIMODULETM Math Mounting Scheme 

3-5 



Ap·113 

CONSTRUCTING AN iAPX 86/2X OR iAPX 
8812X SYSTEM 

This section will describe how to design a micropro­
cessor system with the 8087 component. The discussion 
will center around hardware issues. However, some of 
the hardware decisions must be made based upon how 
the software will use the NPX. To better understand 
how the 8087 operates as a local bus master, we shall 
cover how the coprocessor interface works later in this 
section. 

Wiring up the 8087 

The 8087 can be designed into any 86/IX or 88/IX 
system operating in maximum mode. Such a system 
would be designated an 8612X or 88/2X. Figure 5 shows 
the local bus interconnections for an iAPX 86/20 (or 
iAPX 88/20) system. The 8087 shares the maximum 
mode host's multiplexed address/data bus, status sig­
nals, queue status signals, ready status signal, clock and 
reset signal. Two dedicated signals, BUSY and INT, in­
form the host of current 8087 status. The 10K pull-down 
resistor on the BUSY signal ensures the host will always 
see a "not busy" statu~ if an 8087 is not installed. 

Adding the 8087 to your design has a minor effect on 
hardware timing. The 8087 has the exact same timing 
and equivalent DC and AC drive characteristics as a 
host or lOP on the local bus. All the local bus logic, 
such as clock, ready, and interface logic is shared. 

The 8087 adds 15 pF to the total capacitive loading on 
the shared address/data and status signals. Like the 
8086 or 8088, the 8087 can drive a total of 100 pF 
capacitive load above its own self load and sink 2.0 mA 
DC current on these pins. This AC and DC drive is suf­
ficient for an 86/21 system with two sets of data 
transceivers, address latches, and bus controllers for 
two separate busses, anon-board bus and an off-board 
MULTIBUSTM using the 8289 bus arbiter. 

Later in this section, what to do with the 8087 INT and 
RQ/GT pins, is covered. 

It is possible to leave a prewired 4O-pin socket on the 
board for the 8087 .. Adding the 8087 to such a system is 
as easy as just plugging it in. If a program attempts to 
execute any numeric instructions without the 8087 in­
stalled, they will be simply treated as NOP instructions 
by the host. Software can test for the existence of the 
8087 by initializing it and then storing the control word. 
The program of Figure 6 illustrates this technique. 

3-6 

_N"" .. "'CO ..... 

8282 

Figure 5. System Diagram 



(.0) 
..!,j 

zz 
°li If. 

~I! 
l-g 

n-
il :! 
"!-
:;3. 
;S" 
~!! 
.:~ 
~-;1 

3 

A. 
A; 
II! 
A; 
A: 
A; 
A 

o 
o 
o 
o 
o 
D_ 

Ol!. 
01 

~ 000 010 1 

~ 001 011 2 

~ 002 012 3 

003 a> 013 4 
~ DO. N DI4 5 a> 

~:: N DIS 6 

016 7 
, 007 017 8 

DE ST8 

T " 
tBO AO 1 

~ 81 AI 2 

~ 82 A2 3 
i' 83 za> A3 • 

~B4;'~A45 
~85~"'A56 
~86 A67 
t 87 A7 8 

DE T 

91 " 

I 80 AOI 

~ 81 AI • 

~: 
A2 3 

a> A3 • 
N 

~: a> A. 5 
a> A5 6 

I 86 A6 7 
! B7 A7 8 

DE T 

91 "L 

AU' 
12 AD4 

13 AD3 

~ AD2 52 
28 

~ AD1 _ S1 j1!. 
~ AD~S1 QSO :~ BUSYSO ~ 

.2' 25 31 23 

~'" 

2. 25 30 23 
~ OSI OSOiiOJGTlmT 

4191S6 
~ 36 A18155 (SSOl8HElS7 

37 A171S4 READY 22 

38 AI61S3 RESET 21 a: AO'5(AI5)" elK 19 
liD 32 3 AOI4(AI4} 

AQ/CfO 31 

4 ::~::~: ~29 
5 A011(A11) _ 

6 AO'0(A10} ~ ~ 

: :::: ;: NMI 17 
INTR 18 

9 AD7 
10 ADS 
11 ADS 

12 AD4 

13 ADa-
"I' 52 28 AD. 
15 

ADI 51 2;" 

16 ADO SO 26 
Vee GND GNOMNIfi 

4Ot, '~ 
+5V -=-

..... 
~ 

f.--

Ani 

lID 
RllICTO 
rocK 

-
-

NIII 
IN", 

• 6 

J~' +SV MCE 

• 10~ ~h 171 
eLK AEN lOB GNO Vee CEN MeEl 

18 52 
iiDEN 

a> 
I=} 3 S. N 

19 SO a> 
~AtOWC ..! a> 

ALE DTIR DEN MRDC MWTC ~ INTA 

5 • .6 7 9 8 •• 

-
II ~I II ~I 

~ 
iiiWc" 
"ifc)wc 

:J> 
'V 
~ .... 
~ 



AP·113 

WHAT IS THE IAPX 86, 88 
COPROCESSOR INTERFACE? 
The idea of a coprocessor is based on the observation 
that hardware specially desi$lled for a function is the 
fastest, smallest, and cheapest implementation. But, it is 
too expensive to incorporate all desired functions in 
general purpose hardware. Few applica~ons could use 
all the functions. To build fast, small, eConomical sys­
tems, we need some way to mix and match ¢omponents 
supporting specialized functions. ' ' 

Purpose of the Coprocessor Interface 
The coprocessor interface of the general,Purpose 8086 
or 8088 microprocessor provides a way to attach special­
ized hardware in a simple, elegant, and efficient man­
ner. Because the coprocessor hardware is specialized, it 
can perform its job much faster than any general pur­
pose CPU of similar size and cost. The coprocessor 
interface simply requlles connection to the host's local 
address/data, status, clock, ready, reset, test and re­
quest/grant signals. Being attached to the host's local 
bus gives the coprocessor access to all memory and I/O 
resources availabl~ to the host. ' 

The coprocessor is independent of system configura­
tion. Using the local bus as the connection point to the 
host isolates the coprocessor from the particular system 
configuration, since the timing and function of local bus 
signals are fixed. ' 

Software's View of the CoproCessor 
T~e coprocessor interface allows specialized hardware . 
to appear as an integral part of the host's architecture 
controlled by the host with special instructions. When 
the host encounters these special instructions, both the ' 
host and coprocessor recognize them and work together 
to perform the desired function. No status polling loops 
or command stuffmg sequences are required by soft­
ware to operate the coprocessor. 

More information is available to a coprocessor than 
simply an instruction opcode and a signal to begin exe-

" 

Clition. The host's coprocessor interface can read a 
value from memory, or identify a region of memory the 
coprocessor should use while perf~rming its fun~on. 
All the addressing modes of the host are available to 
identify memory based operands to the coprocessor. 

Concurrent Execution of Host and 
Coprocessor 
After the coprocessor has started its operation, the host 
may continue on with the program, executing it in par­
allel while the coprocessor performs the function started 

, earlier. The parallel operation of the coprocessor does 
not normally affect that of the host, unless the copro­
cessor must reference memory or I/O-based operands. 

, When the host releases the local bus to the coprocessor, 
the host may continue to execute from its internal in­
struction queue. However, the host must stop when it 
also needs the local bus currently in use by the copro­
cessor. Except for the stolen memory cycle, the opera­
tio~ of the coprocessor is transparent to the host. 

This parallel ,operation of host and coprocessor is called ' 
concurrent eXecution. Concurrent execution of instruc­
tions requires less total time then a strictly sequential 
execution would. System performance will be higher 
with concurrent execution of instructions between the 
host and coprocessor. 

SYNCHRONIZATION 

In exchange for the higher system performance made 
available by concurrent execution, programs must pro­
vide what is called synchropization between the host 
and coprocessor. Synchronization is necessary whenever 
the host and coprocessor must use information available 
from the otJter. Synchronization inv!>lv~ either the host 
or coprocessor waiting for the,other to finish an opera­
tion currently in progress. Since the host executes the 
program, and has program control instructions like 
jumps, it is given responsibility for synchronization. To 
meet this need, a special host instruction exists to syn­
chronize host operation with a coprocessor. 

; Test for the existenqe of an 8087 in the system. This code will always recognize an 8087 
; independent of the TEST' pin ,lJsage on the host. No deadlock is poss'ible. USing the 8087 
,; emulator will not change' tHe 'function of this code since: ESC instructions are used, The word 
; variable control is used for communlcatio'n between the 8087 and the tlost. Note: if an 8087 is 
; present, it will be initialized, Register ax is not transparent aCross this code. 

" 

,ESC 
XOR 
,MOV 
ESC 
OR 
JZ 

28,bx 
ax,ax 
control, ax 
15, contr!,1 
ax, control 
no_8087 

; FNINITif ~7 is present, The contents of bx is irrelevant 
; These two instructions insert delay while the 8087 initializes itself 
; Clear Intial control wlord value ' 
; ,FNSTCW if 8087 Is present 
; Control == 03ffh if 8087 present 

'; Jump if no 8087 is present 

FigureS. Test for EXistence' of an 6087 

3-8 



AP·113 

The host coprocessor synchronization instruction, 
called "WAIT", uses the TEST pin of the host. The 
coprocessor can signal that it is still busy to the host via 
this pin. Whenever the host executes a wait instruction, 
it will stop program execution while the TEST input is 
active. When the TEST pin becomes inactive, the host 
will resume program execution with the next instruction 
following the WAIT. While waiting on the TEST pin, 
the host can be interrupted at S clock intervals; how­
ever, after the TEST pin becomes inactive, the host will 
immediately execute the next instruction, ignoring any 
periding interrupts between the WAIT and f9llowing 
instruction. 

COPROCESSOR CONTROL 

The h~st has the responsibility for overall pl,'Ogram cott­
trol. Coprocessor operation is initiated by special in­
structions encountered by the host. These instructions 
are called "ESCAPE" instructions. When the host eri­
counters an ESCAPE instruction, the coprocessor is 
expected to perform the action indicated by the instruc­
tion. There are 576 different ESCAPE instructions, 
allowing the coprocessor to perform many different 
actions. 

The host's coprocessor interface requires the copro­
cessor to recogniie when the host has encountered an 
ESCAPE instruction. Whenever the host begins execut­
iRg a new instructiop., the coprocessor must look to see 
if it is an ESCAPE instruction. Since only the host 
fetches instructions and executes them, the coprocessor 
must monitor the instructions being executed by the 
host. 

Host Queue Tracking 
The host can fetch an instruction at a variable length 
time before the host executes the instruction. This is a 
characteristic of the instruction queue of an 8086 or 
8088 microprocessor. An i1istruction queue allows pre­
fetching instructions during times when the local bus 

S2 S1 SO Function QS1 . 
0 0 0 Interrupt Acknowledge 0 

0 0 1 Read I/O Port 0 

0 1 0 Write I/O Port 1 

0 1 ~ Halt 1 

1 0 0 Code Fetch 

1 0 1 Read Data Memory 

1 1 0 Write Data Memory 

1 1 1 Idle 

would be otherwise idle. The end benefit is faster. execu­
tion time of host instructions for a given memory band­
width. 

The host does not externally indicate which instruction 
it is currently executing. Instead, the host indicates 
when it fetches an instruction and when, some time 
later, an opcode byte is decoded and executed. To id~­
tify the actual instruction the host fetched from Its 
queue, the coprocessor must also maintain an instruc­
tion stream identical to the host's. 

Instructions can be fetched in byte or word increments, 
depending on the type of host and the destination ad­
dress of jumP. instructions executed by the host. When 
the host has filled its queue, it stops prefetching instruc­
tions. Instructions are removed from the queue a byte at 
a time for decoding and execution. When a jump 0c­

curs, the queue is emptied. The coprocessor follows 
these actions in the host by monitoring the host's bus 
status, q~eue status, and data bus signals. Figure 7 
shows how the bus status signals and queue status 
signals are encoded. " 

IGNORING UO PROCESSORS 

The host is not the only local bus master capable of 
fetching instructions. An Intel 8089 lOP can generate 
instruction fetches on the local bus in the course of exe­
cuting a chalmel program in system memory. In this 
case, the status signals 82, SI, and SO generated by the 
lOP are identical to those of the host. The coprocessor 
must not interpret these instruction prefetches as going 
to the host's instruction queue. This problem is solved 
with a status signal called S6. The S6 signal identifies 
when the local bus is being used by the host. When the 
host is the local bus master, S6 = 0 during T2 and T3 of 
the memory cycle. 'All other bus masters must set S6 = 1 
during T2 and T3 of their instruction prefetch cycles. 
Any coprocessor must ignore activity on the local bus 
when S6= 1.-· 

QSO Host Function Coprocessor Activity 

0 No Operation No Queue Activity 

1 First Byte Decode Opcode Byte 

0 Empty Queue Empty Queue 

1 SubsequeAt Byte Flush Byte or if 2nd 

Byte of Escape 

Decode it 

Figure 7. 

3-9 



Ap·113 

DECODING ESCAPE INSTRUCTIONS 

To recognize ESCAPE in~truCtions, the coprocessor 
must examine all instructions executed by the host. 
When the host fetches an instruction byte from its inter­
nal ~ueue, the coprocessor must do likewise. 

The queue status state, fetch opcode byte, identifies 
when an opcode byte is ~ing examined by the host. At 
the same time, the coprocessor will check if the byte fet­
ched from its internal instruction queue is an ESCAPE 
opcode. If the instruction is not an ESCAPE, the 
coprocessor will ignore it. The queue status signals for 
fetch subsequent byte and, flush queue let the 
coprocessor track the host's queue without knowledge 
of the length and function of host instructions and ad­
dressing modes. 

Escape Instruction Encoding 

All ESCAPE instructions start with the high-order 
S-bits of the instruction being 11011. They have two 
basic forms. The non~memory form, listed here, in­
itiates some activity in the coprocessor using the nine 
available bits of the ESCAPE instruction to indicate 
which function to perform. 

MOD 
11111011,1, , I 11111 I I I , I 1 

1,5 1,4 113 1,2 I" 1,0 19 Is 17 IS 15 14 13 12 1, 10 

Memory reference forms of the ESCAPE instruction, 
shown in Figure 8, allow the host to point out a memory 
operand to the coprocessor using any host memory ad­
dressing mode. Six bits are available in the memory 
reference form to identify what to do with the memory 
operand. Of course, the coprocessor may not recognize 
all possible ESCAPE instructions, in which case it will 
simply ignore them. 

Memory reference forms of ESCAPE instructions are 
identified by bits 7 and 6 of the byte following the 
ESCAPE opcode. These two bits are the MOD field of 
the 8086 or 8088 effective address calculation byte. 

They, together with the R/M field, bits 2 through 0, 
determine the addressing mode and how many subse­
quent bytes remain in the instruction. 

H08t'8 Re8ponse to an E8cape Instruction 

The host performs one of two possible actions when 
encountering an ESCAPE instruction: .do nothing or 
calculate an effective address and read a word value 
beginning at that address. The host ignores the value of 
the word read. ESCAPE instructions change no regis­
ters in the host other than advancing IP. So, if there is 
no coprocessor, or the coprocessor ignores the ESCAPE 
instruction, the ESCAPE instruction is effectively a 
NOP to the host. Other than calculating a memory ad­
dress and reading a word of memory, the host makes no 
other assumptions regarding coprocessor activity. 

The memory reference ESCAPE instructions have two 
purposes: identify a memory operand and for certain in­
structions, transfer a word from memory to the 
coprocessor. 

COPROCESSOR INTERFACE TO MEMORY 

The design of a coprocessor is considerably simplified if 
it only requires reading memory values of 16 bits or less. 
The host can perform all the reads with the coprocessor 
latching the value as it appears on the data bus at the 
end of T3 during the memory read cycle. The copro­
cessor need never become a local bus master to read or 
write additional information. 

If the coprocessor must write information to memory, 
or deal with data values longer than one word, then it 
must save the memory address and be able to become a 
local bus master. The read operation performed by the 
host in the course of executing the ESCAPE instruction 
places the 2O-bit physical address of the operand on the 
address/data pins during T1 of the memory cycle. At 
this time the coprocessor can latch the address. If the 
coprocessor instruction also requires reading a value, it 
will appear on the data bus during T3 of the memory 
read. All other memory llytes are addressed relative to 
this starting physical address. 

MOD RIM II·blt direct displacement 

11,1,0,1111 , , 1°,01' 1,1, 11 °1 I I I I I I I I I I , I I I II 
1, 5 1,4 1,3 1,2 I" 1,0 19 18 17 Is 15 14 13 12 1, 10 0,5 0,4 0,3 012 0" 0,0 Os 08 07 06 05 04 03 D2 D, DO 

MOD RIM 1.·blt displacement 

11111011111 I 11110, I I I, I I I I I I , , , 1 I I) I I I I I 
1,5 1,4 '13 1,2 I" 1,0 19 18 17 16 15 14 13 12 1, 10 D,S D'4 D'3 D'2 D" D'0 D9 D8 D7 Ds Ds D4 D3 D2 D, Do 

MOD RIM a·blt displacement 

1111101111, I 11°,1, I 1'1 I I II I I I' , I 
1,5 1,4 113 1,2 I" 1,0 19 18 17 16 15 14 13 12 1, 10 D7 D8 DS D4 D3 02 D, DO 

MOD RIM 

11,1)01111, 111°1 0 , , I' , , I 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ 4 ~ 

Figure 8. Memory Reference Escape Instruction Forms 

3-10 



Ap·113 

Whether the coprocessor becomes a bus master or not, 
if the coprocessor has memory reference instruction 
forms, it must be able to identify the memory read per­
formed by the host in the course of executing an 
ESCAPE instruction. 

Identifying the memory read is straightforward, requir­
ing all the following conditions to be met: 

1) A MOD value of 00,01, or 10 in the second byte 
of the ESCAPE instruction executed by the host. 

2) This is the frrst data read memory cycle performed 
, by the host after it encountered the ESCAPE in- ' 

struction. In particular, the bus status signals 
S2-SO will be 101 and S6 will be O. 

The coprocessor must continue to track the instruction 
queue of the host while it calculates the memory address 
and reads the memory value. This is simply a matter of 
following the fetch subsequent byte status commands 
occurring on the queue status pins. 

HOST PROCESSOR DIFFERENCES 

A coprocessor must be aware of the bus c~aracteristics 
of the host processor. This determines how the host will 
read the word operand of a memory reference ESCAPE 
instruction. If the host is an'8088, it will always perform 
two byte reads at sequential addresses. But if the host is 
an 8086, it can either' perform a single word read or two 
byte reads to sequential addresses. 

The 8086 places no restrictions on the alignment of 
word operands in memory. It will automatically per­
form two byte operations for word operands starting at 
an odd address. The two operations are necessary since 
the two bytes of the operand exist in two different mem­
ory words. The coprocessor should be able to accept the 
two possible methods of reading a word value on the 
8086. 

A coprocessor can determine whether the 8086 will per­
form one or two memory cycles as part of the current 
ESCAPE instruction execution. The ADO pin during Tl 
of the first memory read 15y the host tells if this is the 
only read to be performed as part of the ESCAPE in­
struction. If this pin is a 1 during Tl of the memory 
cycle, the 8086 will immediately follow this memory 
read cycle with another one at the next byte- address. 

Coprocessor Interface Summary 
The host ESCAPE instructions, coprocessor interface, 
and WAIT instruction allow easy extension of the host's 
architecture with specialized processors. The 8087 is 
such' a processor, extending the host's architecture as 
seen by the programmer. The specialized hardware pro­
vided by the 8087 can greatly improve system perfor­
mance economically in terms of both hardware and 
software for numerics applications. 

3-11 

The next section examines how the 8087, uses the 
coprocessor interface of the 8086 or 8088. 

8087 COPROCESSOR OPERATION 
The 8086 or 8088 ESCAPE instructions provide 64 
memory reference opcodes and 512 non-memory refer­
ence opcodes. The 8087 uses. 57 of the memory reference 
forms and 406 of the non-memory reference forms. Fig­
ure 9 shows the ESCAPE instructions. not \lsed by the 
8087. 

11 1 1 0 1 1 1 1 1 1 1 11 1 1 I 1 1 1 I I 
'15 '14 '13 '12 'II '10 '9 '8 '7 '8 '5 '4 '3 '2 'I '0 

110 19 18 15 14 13 12 11 10 Available code. 

0 0 1 0 1 0 0 0 1 1 
0 0 1 0 1 0 0 1 - 2 

0 0 1 0 1 0 1 -- 4 
0 0 1 1 0 0 0 1 - 2 

0 0 1 1 0 0 1 1 - 2 

0 0 1 1 0 1 1 1 1 1 
0 0 1 1 1 0 1 0 1 1 
0 0 1 1 1 1 0 1 1 1 
0 0 1 1 1 1 1 1 - 2 

0 1 1 1 0 0 1 0 1 1 
0 1 1 1 0 0 1 1 - 2 

0 1 1 1 0 1 --- 8 
0 1 1 1 1 ---- 18 
1 0 1 1 ----- 32 
1 1 1 1 0 0 0 0 1 1 
1 1 1 1 0 0 0 1 0 1 
1 1 1 1 0 0 1-- 4 
1 1 1 1 0 1':"-- 8 
1 1 1 1 1 ---- 18 ---

105 total 

Available Non.Memo,ry Reference Escape Instrucllons 

MOD RIM 

11 1 1°1 1 1 1 1 II II I I I I 1 I 
'IS '14 '13, '12 'II '10 '9 '8 "7 '6 '5 '4 '3 '2 'I '0 

11019 18 15 14 13 
0 0 1 0 0 1 
0 1 1 0 0 1 
0 1 1 1 0 0 
0 1 1 1 1 0 
1 0 1 0 0 1 
1 0 1 1 0 1 
1 1 1 0 0 1 

Available Mem,ory Reference Escape Instrucllons 

Figure 9. 



Ap·113 

Using the 8087 With Custom 
Coprocessors 
Custom coprocessors, a designer may care to develop, 
should limit their use of ESCAPE instructions to those 
not used by the 8087 to prevent ambiguity about 
whemer anyone" ESCAPE instruction is intended for" a 
i1umerics or other custom coprocessor. Using any 
escape instruction for a custom coprocessor may con­
flict with opcodes chosen for future Intel coprocessors. 

Operation of an 8087 together with other custom co­
processors is possible under the following con~traints: 
1) All 8087 errors are masked. The 8087 will update its 

opcode and instruction address registers for the un­
used opcodes. Unused memory reference instruc-" 
tions will also update the operand address value. 
Such changes in the 8087 make software-defined 
error handling impossible. 

2) If the coprocessors provide a aUSY signal, they must 
be ORed together for connection to the host TEST 
pin. When the host executes a WAIT instruction, it 
does not know which coprocessor will be affected by 
the following ESCAPE instruction. In" general, all 
coprocessors must be idle before executing the 
ESCAPE instruction. 

Operand Addressing by the 8087 
The 8087 has seven different memory operand formats. 
Six of them are longer than one word. All are an even 
number of bytes in length and are addressed by the host 
at the lowest address word. 

When the host executes a memory reference ESCAPE 
instruction intended to cause a rea" operation by the 
8087, the host always reads the low-order word of any 
8087 memory operand. The 8087 will save the address 
and data read. To read any subsequent wor"s of the 
operand, the 8087 must become a local bus master. 

When the 8087 has the local bus, it increments the 20-bit 
physical address it saved to address the remaining words 
of the operand. 

When the ESCAPE instruction is intended to cause a 
write operation by the 8087, the 8087 will save the ad­
dress but ignore the data read. Eventu~ly, it will get 
control of the local bus, then perform successive write, 
increment address operations writing the entire data 
value. 

8087 OPERATION IN IAPX 88,88 SYSTEMS 
The 8087 will work with either an 8086 or 8088 host. 
The identity of the host determines the width of the 
local bus path. The 8087 will identify the host and 
adjust its use of the data bus accordingly; 8 bits for an 
8088 or 16 bits for an 8086. No strapping options are 
required by the 8087; host identification is automatic. 

The 8087 identifies the host each time the host and 8087 
are reset via the RESET pin. After the reset signal goes 
inactive, the host will begin instruction execution at 
memory address FFFFOI6• 

If the host is an 8086 it will perform a word read at that 
address; an 8088 will perform a byte read. 

The 8087 monitors pin 34 on the first memory cycle 
af~er power up. If an 8086 host is used, pin 34 will be the 
BHE signal, which will be low for that memory cye1e. 
For an 8088 host, pin 34 will be the SSO signal, which 
will be high during Tl of the first memory cycle. Based 
on this signal, the 8087 will then configure its data bus 
width to match that of the host local bus. 

For 88/2X systems, pin 34 of the 8087 may be tied to 
Vee if not connected to the 8088 SSO pin. 

The width of the data bus and alignment of data oper­
ands has no effect, except for "execution time and num­
ber of memory cycles performed, on 8087 instructions. 
A numeric program will always produce the same results 
on an 8612X or 8812X with any operand alignment. All 
numeric operands have the same relative byte orderings 
independent of the host and starting address. 

The byte alignment of memory operands can affect the 
performance of programs executing on an 8612X. If a 
word operand, or any numeric operand, starts on an 
odd-byte address, more memory cycies are required to 
acces~ the operand than if the operand started on an 
even address. The extra memory cycles will lower system 
performance. 

The 8612X will attempt to minimize the number of extra 
memory cycles required for odd-aligned operands. In 
these cases, the 8087 will perform first a byte operation, 
then a series of word operations, and finally a byte 
operation. 

3-12 

88/2X instruction timings are independent of operand 
alignment, since byte operations are always performed. 
However, it is recommended to align numeric operands 
on even boundaries for maximum performance i~ case 
the program is transported to an 86/2X. 



r--

--

.. 

rO~ 
READY 

8284A 
ClK 

ClO<;K 
GENERATOR 

RESET 

i 
SYSTEM 
READY 

-
L-.-;.. 

Ap·113 

ClK 
A ~ 

AID 
~ V 

8088 
READY ---1\ (3)8282' 

. ADDRESS 

:--v LATCHES 

~ 
RESET STATUS ,---y ..... 
~/Gf1 OS 'I'm STB 

~7 
m:\/aTi) OS BUSY 

~ W\ ;L~ 8286 
AID 

N- Iv' 
DATA 

'l V TRANSCEIVER 

READY 

8087 T OE 

elK 

VU\ 
RESET STATUS n RO/GT1 

-

4-
RO/GT vi- W\ RESET Al6 

8089 
~ IV 

READY 
DT/R 

~ ALE DEN -

W\ 1\ 8288 
STATUS STATUS 

elK III V BUS 
CONTROLLER 

r eLK 

Figure 10, iAPX 88/21 

.3-13 

11 

'l 

r--'" 
11 

~AO~: 
I 
I 
I 

DATA 1\ 

;>; 

ICOMMANKSI 

1 ~: 
I I 
ISYSTEMI 
I BUS I 
L. __ .J 



AP·113 

RQ/GT CONNECTION 

. Two decisions must be made when connecting the 8087 
to a system. The first is how to interconnect the RQ/GT 
signals of all local bus masters. The RQ/GT decision af­
fects the response time to service local bus requests from 
other local bus masters, such as an 8089 lOP or other 
coprocessor. The intertupt eonnection affects the 
response time to service art interrupt request and how 
user-interrupt handlers are written. The implications of 
how these pins are connected concern both the hardware 
designer and programmer and must be understood by 
both. 

The RQ/OT issue can be broken into three general ca:te­
gories, depending on system configuration: 86/20 or 
88/20, 86/21 or 88121, and 86122 or 88/22. Remote 
operation of an lOP is not effected by the 8087 RQ/OT 
connection. 

iAPX 86/20, 88/20 

For an 86/20 or 88120 just connect the RQ/GTO pin of 
the 8087 to RQ/GTI of the host (see Figure 5), and skip 
forward to the interrupt discussion on page 15. 

iAPX 86/21, 88/21 

For an 86/21 or 88121, connect RQ/GTO of the 8087 to 
RQ/OTl of the host, connect RQ/GT of the 8089 to 
RQ/OTl of the 8087 (see Figure 10, page 12), and skip 
forward to the interrupt discussion on page 15. 

The RQ/OTl pin of the 8087 exists to. provide one 1/0 
processor with a low maximum wait time for the local 
bus. The maximum wait times to gain control of the 
local bus for a device attached to RQ/OTI of an 8087 
for an 8086 or 8088 host are shown in Table 2. These 
numbers are all dependent on when the host will release 
the local bus to the 8087. 

As Table 2 implies, three factors determine when the 
host will release the local bus: 

1) What type of host is there, an 8086 or 8088? 

2) What is the current instruction being executed? 

3),How is the lock prefix being used? 

An 8086 host will not release the local bus between the 
two consecutive byte operations performed for odd­
aligned word operands: The 8088, in contrast, will never 
release the local bus between the two bytes of a word 
transfer, independent of its byte alignment. 

Host operations such as acknowledging an interrupt will 
not release the local bus for several bus cycles. 

Using a lock prefix in front of a host instruction 
prevents the host from releasing the local bus during the 
execution of thatinstruction. 

8087 RQ/GT Function 
The presence of the 8087 in the RQ/OT path from the 
lOP to the host has little effect on the maximum wait 
time seen by the lOP when requesting the local bus. The 
8087 adds two clocks of delay to the basic time required 
by the host. This low delay is achieved due to a preemp­
tive protocol implemented by the 8087 on RQ/OTl. 

The 8087 always gives higher priority to a request for 
the local bus from a device attached to its RQ/OTl pin 
than to a request generated internally by the 8087. If the 
8087 currently owns the local bus and a request is made 
to its RQ/OTl pin, the 8087 will finish the current 
memory cycle and release the local bus to the requestor. 
If the request from the devices arrives when the 8087 
does not own the local bus, then the 8087 will pass the 
request on to the host via its RQ/OTO pin. 

Table 2. Worst Case Local Bus Request Walt Times In CIO~ks 

System No Locked 
Configuration Instructions 

iAPX86121 
even aligned words lSi 

iAPX 86/21 
odd aligned words lSI 

iAPX 88121 lSI 

Notes: 1. Add two clocks for each wait state inserted per bus cycle 
2. Add four clocks for each wait state inserted per bus cycle 
• Execution time of longest locked instruction 

Only Locked Other Locked 
Exchange Instructions 

3S1 max (lSI' 0) 

432 max (432• 0) 

432 max (432• 0) 



AP·113 

A 1\ READV 
AID 

~ V 

8089 ...- ClK (IOPA) 

r- STATUS 

IV RESET 
RQIGT 

SYSTEM 

RErV 

RDIGTO IA J\ IA 
READV READV AID 

Ir--lt IV 
~ 8284A STATUS rv ClK ClK 8086 

CLOCK 
OS I--GENERATOR 

RESET RESET 
JIlllanTES'! I-

~ YOrJ 

READlOIGTO BUSV r-

OS lA-
8087 ~~ l-I- 'ClK 

AID 

I~ V 
~ ~ RESET STATUS rv JIlllan '4 

r--

I 

1m1(!T 
A 1\ READV 

AID 

1'4 V"-

8089 
~ I- ClK, (lOPS) 

-~ 

4 RESET 
STATUS 

V 

Figure 11. IAPX 86122 System 

3-15 

ADDRESS 
LATCHES 

r (3)8282 

STB 

---.J 

\ 

~ DATA 
TRANSCEIVERS 

V (2)8286 

T OE 

ALE DTIIi DEN 

8288 
STATUS 

BUS CONTROllER 
ClK 

r--,' 
I 

~ I 
I 

I 

Vvl 
I 
I 
I 
I 

I 

~ I 
I 

Vi 
I 
I 
I 

ICOMMAN DS 
I j., 

I r 
ISYSTE 

L !.U.! 

I 
I 
I 

MI 
.J 



Ap·113 

IAPX 86/22, 88/22 
An 86/22 system offers two alternates regarding to 
which lOP to connect an I/O device. Each lOP will of­
fer a different maximum delay time to servide an I/O re­
quest. (See Fig. 11) 

The second 8089 (IOPA) must use the RQ/GTO pin of 
the host. With two lOPs the designer must decide which 
lOP services which I/O devices, determined by the max­
imum wait time allowed between when an I/O device re­
quests lOP service and the lOP can respond. The max­
imum service delay times of the two lOPs can be very 
different. It makes little difference which of the two 
host RQ/GT pins are used. 

The different wait times are due to the non-preemptive 
nature of bus grants between the two host RQ/GT pins. 
No communication of a need to use the local bus is 
possible between 10PA and the 8087/IOPB combina­
tion. Any request for the local bus by the 10PA must 
wait in the worst case for the host, 8087, and 10PB to 
finish their longest sequence of memory cycles. 10PB 
must wait in the worst case for the host and 10PA to 
finish their longest sequence of memory cycles. The 
8087 has little effect on the maximum wait time of 
IOPB. 

DELAY EFFECTS OF THE 8087 

The delay effects of the 8087 on 10PA can be signifi­
cant. When executing special instructions (FSA VE, 
FNSA VE, FRSTOR), the 8087 can perform SO or 96 
consecutive memory cycles with an 8086 or 8088 host, 
respectively. These instructions do not affect response 
time to local bus requests seen by an IOPB. 

If the 8087 is performing a series of memory cycles while 
executing these instructions, and 10PB requests the 
local bus, the 8087 will stop its current memory activity, 
then release th~ local bus to IOPB. 

The 8087 cannot release the bus to 10PA since it cannot 
know that IOPA wants to use the local bus, like it can 
for IOPB. 

REDUCING 8087 DELAY EFFECTS 

For 86/22 or 88122 systems requiring lower maximum 
wait times for IOPA, it is possible to reduce the worst 

, case bus usage of the 8087. If three 8087 instructions are 
never executed; namely FSA VE, FNSA VE, or 
FRSTOR, the maximum number of consecutive mem­
ory cycles performed by the 8087 is 10 or 16 for an 8086 

, or 8088 host respectively. The function of these instruc­
tions can be emulated with other 8087 instructions. 

Appendix B shows an example of how these three in­
structions can be emulated. This improvment does have 
a cost, in the increased execution time of 427 or 747 ad-

3-16 

ditional clocks for an 8086 or 8088 respectively, for'the 
equivalent save and restore operations. These opera­
tions appear in time-critical context-switching functions 
of an operating system or interrupt hancller. This tech­
nique has no affect on the maximum wait time seen by 
10PB or wait time seen by IOPA due to IOPB. 

Which lOP to connect to which I/O device in an 86/22 
or 88/22 system will depend on how quickly an I/O re­
quest by the device must be serviced by the lOP. This 
maximum time must be greater than the sum of the 
maximum delay of the lOP and the maximum wait time 
to gain control of the local bus by the lOP. 

If neither lOP offers a fast enough response time, con­
sider remote operation of the lOP. 

8087 INT Connection 
The next decision in adding the 8087 to an 8086 or 8088 
system is where to attach the INT signal of the 8087. 
The INT pin of the 8087 provides an external indication 
of software-selected numeric errors. The numeric pro~ 
gram will stop until something is done about the error. 
Deciding where to connect the INT signal can have im­
portant consequences on other interrupt handlers. 

WHAT ARE NUMERIC ERRORS? 

A numeric error occurs in the NPX whenever an opera­
tion is attempted with invalid operands or attempts to 
produce a result which cannot be represented. If an in­
correct or questionable operation is attempted bY,a pro­
gram, ,the NPX will always indicate the event. Examples 
of errors on the NPX are: I/O, square root of -I, and 
reading from an empty register. For a detailed descrip­
tion of when the 8087 detects a numeric error, refer to 
the Numerics Supplement. (See Lit. Ret). 

WHAT TO DO ABOUT NUMERIC ERRORS 

Two possible courses of action are possible when a 
numeric error occurs. The, NPX can itself handle the 
error, allowing numeric program execution to continue 
undisturbed, or software in the host can handle the 
error. To have the 8087 handle a numeric error, set its 
associated mask bit in the NPX control word. Eacp 
numeric error may be individually masked. 

The NPX has a default fIXup action defined for all pos­
sible numeric errors when they are masked. The default 
actions were carefully selected ,for their generality and 
safety. 

For example, the default fixup for the precision error is 
to round the result using the rounding rules currently in 
effect. If the invalid error is masked, the NPX will 
generate a special value called indefinite as the result of 
any invalid operation. 



AP·113 

NUMERIC ERRORS (CON'T) 

Any arithmetic operation with an indefinite operand 
will always generate an indefinite result. In this manner, 
the' result of the original invalid operation will pro­
pagate throughout the program wherevC\" it is used. 

When a questionable operation such as multiplying an 
unnormal value by a normal value occurs, the NPX will 
signal this occurrence by generating an unnormal result. 

The required response by host software to a numeric 
error will depend on the application. The needs of each 
application must be understood when deciding on how 
to treat numeric errors. There are three attitudes 
towards a numeric error: 

1) No response required. Let the NPX perform the 
default rump. 

2) Stop everything, something terrible has happened! 

3) Oh, not again! But don't disrupt doing something 
more important. 

SIMPLE ERROR HANDLING 

Some very simple applications may mask all of the 
numeric errors. In this simple case, the 8087 INT signal 
may be left unconnected since the 8087 will never assert 
this signal. If any numeric errors are detected during the 
course of executing the program, the NPX will generate 
a safe result. It is sufficient to test the final results of the 
calculation to see if they are valid. 

Special values like not-a-number (NAN), infinity, in­
definite, denormals, and unnormals indicate the type 
and severity of earlier invalid or questionable opera­
tions. 

SEVERE ERROR HANDLING 

For dedicated applications, programs should not gener­
ate or use any invalid operands. Furthermore, all num­
bers should be in range .. An operand or result outside 
this range' indicates a severe fault in the system. This 
situation may arise due to invalid input values, program 
error, or hardware faults. The integrity of the program 
and hardware is in question, and immediate action is re­
quired. 

In this case, the INT signal can be used to interrupt the 
program currently running. Such an interrupt would be 
of high priority. The interrupt handler responsible for 
numeric errors might perform system integrity tests and 
then restart the system at a known,. safe state. The 
handler would not normally return to the point of.error. 

Unmasked numeric errors are very useful for testing 
programs. Correct use of synchronization, (Page 21), 
allows the programmer to find out' exactly what 
operands, instruction, and memory values caused the 
error. Once testing has finished, an error then becomes 
much more serious. 

3-17 

The 8086 Family Numerics Supplement recommends 
masking all errors except invalid. (See Lit. Ref.). In this 
case the NPX will safely handle such errors as 
underflow, overflow, or divide by zero. Only truly ques­
tionable operations will disturb the numerics program 
execution. 

An example of how infinities and divide by zero can be 
harmless occurs when calculating the parallel resistance 
of several values with the standard formula (Figure 12). 
If RI becomes zero, the circuit resistance becomes O. 
With divide by zero and precision masked, the NPX will 
produce the correct result. 

NUMERIC EXCEPTION HANDLING 

For some applications, a numeric error may not indicate 
a severe problem. The numeric error can indicate that a 
hardware resource has been exhausted, and the software 
must provide more. These cases are called exceptions 
since they do not normally arise. 

Special host ·software will handle numeric error excep­
tions when they infrequently occur. In the~e cases, 
numeric exceptions are expected to be recoverable 
although not requiring immediate service by the host. In 
effect, these exceptions extend'the functionality of the 
NDP. Examples of extensions are: normalized only 
arithmetic, extending the register stack to memory, or 
tracing special data values. 

Equivalent resistance = 

Figure 12. Infinity Arithmetic Example 



Ap·113 

HOST INTERRUPT OVERVIEW 

The host has only two possible interrupt inputs, a non­
maskable interrupt (NMI) and a maskable interrupt 
.(INTR). Attaching the 8087 INT pin to the NMI input is 
not recommended: The following problems arise: NMI 
cannot be masked, it is usually reserved for more impor­
tant functions like sanity timers or loss of power signal, 
and Intel supplied software for the NDP will not sup­
port NMI interrupts. The INTR'input of the host allows 
interrupt masking in the CPl], ·using an Intel 82S9A 
Programmable Interrupt Controller (PIC) to resolve 
multiple interrupts, and has Intel 'support. ' 

NUMERIC INTERRUPT CHARACTERISTICS 

Numeric error interrupts are different from regular in­
struction error interrupts like divide by zero. Numeric 
interrupts from the 8087 can occur long after the 
ESCAPE instruction that started the failing operation. 
For example, after starting a numeric multiply opera­
tion, the host may respond to an external interrupt and 
be in the process of servicing it when the 8087 detects an 
overflow error. In this case the interrupt is a result of 
some earlier, unrelated program. 

From the point of view of the currently executing inter­
rupt handler, numeric interrupts can cpme from only 
two sources: the current hllndler or a lower priority pro­
gram. 

To explicitly disable numeric interrupts, it is recom­
mended that numeric interrupts be disabled at the 8087. 
The code example of Figure 13 shows how to disable 
any pending numeric interrupts then reenable them at 
the end of the handler.' This code example can be safely 
placed in any routine which must prevent numeric inter­
rupts from occurring. Note that the ESCAPE instruc­
tions act as NOPs if an 8087 is not. present in the system. 
It is not recommended to use numeriy mnemonics sin<;e 
they may be converted to emulator calls, which run 
comparatively slow, if the 8087 emulator used. 

Interrupt systems have specific functions like fast 
response to external events or periodic execution of 
system routines. Adding an 8087 interrupt should not 
effect these functions. Desirable goals of any 8087 inter­
rupt configuration are: 

- Hide numeric interrupts from interrupt handlers that 
don't use the 8087. Since they didn't cause the 
numeric interrupt why should they be interrupttld? 

- Avoid adding code to interrupt ,handlers that don't 
use the 8087 to prevent interruption by the 8087. 

- Allow other higher priority interrupts to be serviced 
while executing a numeric exception handler. 

- Provide numeric exception handling for interrupt 
service routines which use the 8087. 

- Avoid deadlock as described in a later section 
(page 24) 

Disable any possible numeric interrupt from the 8087. This code is safe to place in any 
procedure. If an 8087 is not present, the ESCAPE instructions will act as nops. These 
instructions are not affected by the TEST pin of the host. Using the 8087 emulator will not 
convert these instructions into interrupts. A word variable, called control, is required to hold 
the 8087 control word. Control must not be changed until it is reloaded into the 8087. 

ESC 15, control 
NOP 
NOP 
ESC 28,cx 

; (FNSTCW) Save current 8087 control word 
Delay while 8Q87 saves current control 
register value 
(FNDISI) Disable any 8087 interrupts 
Set IEM bit In '8087 control register 
The contents of cx Is Irrelevant 
Interrupts can now be enabled 

(Your Code Here) 

Reenable any pending interrupts in the 8087. This instruction does not disturb any 8087 Instruction 
currently in progress since all it does is change the \EM bit in the control registe~. ' 

TEST control, 80H 
JNZ $+4 
ESC 28,ax 

;. Lopk at .IE¥ bit 
If IEM = 1 skip FNENI 
(FNENI) reenable 8087 interrupts 

Figure 13. Inhibit/Enable 8087 Interrupts 

3-18 



Ap·113 

Recommended Interrupt Configurations 
Five categories cover most uses of the 8087 interrupt in 
fixed priority interrupt systems. For each category, an 
interrupt configuration is suggested based on the goals 
mentioned above. 

1. All errors on the 8087 are always masked. 
Numeric interrupts are not possible. Leave the 
8087 INT signal unconnected. 

2. The 8087 is the only interrupt in the system. Con­
nect the 8087 INT signal directly to the host's 
INTR input. (See Figure 14 on page 19). A bus 
driver supplies interrupt vector 1016 for com­
patibility with Intel supplied software. 

3. The 8087 interrupt is a stop everything event. 
Choose a high priority interrupt input that will ter­
minate all numerics related activity. This is a 
special case since the interrupt handler may never 
return to the point of interruption (i.e. reset the 
system and restart rather than attempt to continue 
operation) . 

4. Numeric exceptions or numeric programming er­
rors are expected and all interrupt handlers either 
don't use the 8087 or only use it with all errors 
masked. Use the lowest priority interrupt input. 
The 8087 interrupt handler should allow further 
interrupts by higher priority events. The PIC's 
priority system will automatically prevent the 8087 
from disturbing other interrupts without adding 
extra code to them. 

3-19 

5. Case 4 holds except that interrupt handlers may 
also generate numeric interrupts. Connect the 8087 
INT signal to mUltiple interrupt inputs. One input 
would still be the lowest priority input as in case 4. 
Interrupt handlers that may generate a numeric in­
terrupt will require another 8087 INT connection 
to the next highest priority interrupt. Normally the 
higher priority numeric interrupt inputs would be 
masked and the low priority numeric interrupt 
enabled. The higher priority interrupt input would 
be unmasked only when servicing an interrupt 
which requires 8087 exception handling. 

All of these configurations hide the 8087 from all inter­
rupt handlers which do not use the 8087. Only those in­
terrupt handlers that use the 8087 are required to per­
form any special 8087 related interrupt control ac­
tivities. 

A conflict can arise between the desired PIC interrupt 
input and the required interrupt vector of 1016 for com­
patibility with Intel software for numeric interrupts. A 
simple solution is to use more than one interrupt vector 
for numeric interrupts, all pointing at the same 8087 in­
terrupt handler. 'Design the numeric interrupt handler 
such that it need not know what the interrupt vector was 
(i.e. don't use specific EOI commands). 

If an interrupt system uses rotating interrupt priorities, 
it will not matter which interrupt input is used. 



AP·113 

r--' 
I ADDRESS 

rO_~ ~ (318282 ~i ADDRESS 

r--- 8284A -V L.ATCHES 

i.-'I READY 

,----:. CLOCK STB I 
RESET GENERATOR SYSTEM READY • I 

r- elK I 
I 

,1 I DATA ~ 

READY 1,1 t\ A ~ (218286 

~! AID l\f DATA 
V ..,-;::lI -V TRANSCEIVERS ISYSTEM1 

STATUS T OE L!U~ .J 
>---- RESET 

8086 
I--INTR 

.- elK 
fm l-

T 8286 I 
= OE 

RQfGT1 os 

t ~~ Y 
RQ/GTO os VECTOR 

BUSY '-

- - -- READY 

INT !---
ALE 

~ 

- .. 8087 1,1 ~ 
8288 Dl/R RESET 

AID BUS 

H V CONTROLLER 

INTA :r ~ 

.... elK 
STATUS STATUS 

DEN 
, ~ v V elK 

• 

Figure 14. iAPX 86120 With Numerics Interrupt Only 

• 3-20 



AP·113' 

GETTING STARTED IN SOFTWARE 

Now we are ready to run numeric programs. Developing 
numeric software will be a new experience to some pro­
grammers. This section of the application note is aimed 
at describing the programming environment and pro­
viding programming guidelines for the NPX. The term 
NPX is used to emphasize that no distinction is made 
between the 8087 component or an emulated 8087. 

Two major areas of numeric software can be identified: 
systems software and applications software. Products 
such as iRMXTM 86 provide system software as an off­
the-shelf product. Some applications use specially 
developed systems software optimized to their needs. 

Whether the system software is specially tailored or 
common, they share issues such as using concurrency, 
maintaining synchronization between the host and 8087, 
and establishing programming conventions. Appli­
cations software directly performs the functions of the 
application. All applications will be concerned with ini­
tialization and general programming rules for ,the NPX. 
Systems software will be more concerned with context 
switching, use of the NPX by interrupt handlers, and 
numeric exception handlers. 

How to Initialize the NPX 
The first action required by the NPX is initialization. 
This places the NPX in a known state, unaffected by 
other activity performed earlier. This initialization is 
similar to that caused by the RESET signal of the SOS7. 
All the error masks are set, all registers are tagged 
empty, the TOP field is set to 0, default rounding, pre­
cision, and infinity controls are set. The SOS7 emulator 
requires more initialization than the component. Before 
the emulator may be used, all its interrupt vectors must 
be set to point to the correct entry points within the 
emulator. 

To provide compatibility between the emulator and 
component in this special case, a call to an external pro­
cedure should be used before the first numeric instruc­
tion. In ASMS6 the programmer must call the external 
function INITS7. (Fig. 15). For PLMS6, the 
programmer must call the built-in function 
INIT$REAL$MATH$UNIT. PLMS6 will call INITS7 
when executing the INIT$REAL$MATH$UNIT built-
in function. ' 

The function supplied for INITS7 will be different, 
depending on whether the emulator library, called 
ES087.LIB, or component library, called SOS7.LIB, 
were used at link time. INITS7 will execute either an 
FNINIT instruction for the 8OS7 or initialize the SOS7 
emulator interrupt vectors, as appropriate. 

3-21 

Concurrency Overview 
With the NPX initialized, the next step in writing a 
numeric program is learning about cOllcurrent execution 
within the NDP. 

Concurrency is a special feature of the 80S7, allowing it 
and the host to simultaneously execute different instruc­
tions. The SOS7 emulator does not provide concurrency 
since it is implemented by the host. 

The benefit of concurrency to an application is higher 
performance. All Intel high'level languages automatic­
ally provide for and manage concurrency in the NDP. 
However, in exchange for the added performance, the 
assembly language programmer must understand and 
manage some areas of concurrency. This section is for 
the assembly language programmer or well-informed, 
high level language programmer .. 

Whether the 80S7 emulator or component is used, care 
should be taken by the assembly language programmer 
to follow the rules described below regarding synchro­
nization. Otherwise, the program may not function cor­
rectly with current or future alternatives for implement­
ing the NDP. 

Concurrency is possible in the NDP because both the 
host and SOS7 have separate arithmetic and control 
units. The host and' coprocessor automatically decide 
who will perform any single instruction. The existence 
of the SOS7 as a separate unit is not normally apparent. 

Numeric instructions, which will be executed by the 
SOS7, are simply placed in line with the instructions for 
the host. Numeric instructions are executed in the same 
order as they are encountered by the host in .its instruc­
tion stream. Since operations performed by the SOS7 
generally require more time than operations performed 
by the host, the host can execute several of its instruc­
tions while the S087 performs one numeric operation. 

IN PLM86: 
CALL INIT$REAL$MATH$UNIT; 

IN ASM86: 
EXTRN 

• 
• 
• 
• 

CALL 

INIT87:FAR 

INIT87 

Figure 15. 8087 Initialization 



AP·113 

MANAGING CONCURRENCY 

Concurrent execution of the host and 8087 is easy to 
establish and maintain. The activities of numeric pro­
grams can be split into two major areas: program con­
trol and arithmetic. The program control part performs 
activities like deciding what functions to perform, calcu­
lating addresses of numeric operands, and loop control. 
The arithmetic part simply performs the adds, sub­
tracts, multiplies, and other operations on the numeric 
operands. The NPX and host are designed to handle 
these two parts separately and efficiently. 

Managing concurrency is necessary because the arithme­
tic and control areas must converge to a well-dermed 
state when starting another numeric operation. A well­
defined state means all previous arithmetic and control 
operations are complete and valid. 

Normally, the host waits for the 8087 to finish the cur­
rent numeric operation before starting another. This 
waiting is called syncb,ronization. 

Managing concurrent execution of the 8087 involves 
three types of synchronization: instruction, data, and 
error. Instruction and error synchronization are 
automatically provided by the compiler or assembler. 
Data synchronization must be provided by the assembly 
language progammer or compiler. 

Instruction Synchronization 
Instruction synchronization is required because the 8087 
can only perform one numeric operation at a time. Be­
fore any numeric operation is started, the 8087 must 
have completed all activity from previous instructions. 

The WAIT instruction on the host lets it wait for the 
8087 to finish all numeric activity before starting an­
other numeric instruction. The assembler automatically 
provides for instruction synchronization since aWAIT 
instruction i~ part of most numeric instructions. A 
WAIT instruction requires 1 byte code space and 2.5 
clocks average execution time overhead. 

Instruction synchronizati()n as provided by the assem­
bler or a compiler allows concurrent operation in the . 
NDP. An execution time comparison of NDP concur­
rency and non-concurrency is illustrated in Figure 16. 
The non-concurrent program places aWAIT instruction 
immediately after a multiply instruction ESCAPE in­
struction. The 8087 must complete the multiply opera­
tion before the host executes the MOV instruction on 
statement 2. In contrast, the concurrent example allows 
the host to calculate the effective address of the next 
operand while the 8087 performs the multiply. The ex-· 
ecution time of the concurrent technique is the longest 
of the host's exec\1tion time from line 2 t05 and the ex­
ecution time of the 8087 for a multiply instruction. The 
execution time of the non-concurrent example is the 
sum of the execution times of statements 1 to 5. 

This code macro defines two instructions which do not allow any concurrency of execution with 
; the host. A register version and memory version of the instruction is shown. It is assumed that the 
; 8087 is always idle from the previous instruction. Allow space for emulator fixups. 
, 
R233 Record RF6:2, Mid3:3, RF7:3 
CodeMacro NCMUL dst:T, src:F 
RNfix OOOB 
R233 (11 B, 001 B, src) 
RWfix 
EndM 

CodeMacro NCMUL memop:Mq 
RNfixM 100B, memop 
ModRM 001 B, memop 
RWfix 
EndM 

Statement 

1 

2 
3 
4 
5 

Concurrent 

FMUL st(O), st(1) 
MOV ax, size A 
MUL index 
MOV bX,ax 
FMUL A [bx] 

Figure 16. Concurrent Versus Non·Concurrent Program 

3-22 

Non Concurrent 

NCMUL st(O), st(1) 
MOV ax, size A 
MUL index 
MOV bx, ax 
NCMULA [bx] 



AP·113 

Data Synchronization 
Managing concurrency requires synchronizing data ref­
erences by the host and 8087. 

Figure 17 shows four possible cases of the host and 8087 
sharing a memory value. The second two cases require 
the FWAIT instruction shown for data synchronization. 
In the first two cases, the host will finish with the 
operand I before the 8087 can reference it. The 
coprocessor interface guarantees this. In the second two 
cases, the host must wait for the 8087 to finish with the 
memory operand before proceeding to reuse it. The 
FW AIT instruction in case 3 forces the host to wait for 
the 8087 to read I before changing it. In case 4, the 
FW AIT prevents the host from reading I before the 
8087 sets its value. ' 

Obviously, the programmer must recognize any 'form of 
the two cases shown above which require explicit data 
synchronization. Data synchronization is not a concern 
when the host and 8087 are using different memory 
operands during the course of one numeric instruction. 
Figure 16 shows such an example ofthe host performing 
activity unrelated to the current numeric instruction 
being executed by the 8087. Correct recognition of these 
cases by the programmer is the price to be paid for pro­
viding concurrency at the assembly language level. 

Automatic Data Synchronization 
Two methods exist to avoid the need for manual recog­
nition of when data synchronization is needed: use a 
high level language which will automatically establish 
concurrency and manage it, or sacrifice some perfor­
mance for automatic data synchronization by the as­
sembler. 

When a high level language is not adequate, the 
assembler can be changed to always place aWAIT in­
struction after the ESCAPE instruction. Figure 18 
shows an example of how to change the ASM86 code 
macro for the FIST instruction to automatically place 
an FW AIT instruction after the ESCAPE instruction. 
The lack of any possible concurrent execution between 
the host and 8087 while the FIST instruction is executing 
is the price paid for automatic data synchronization. 

An explicit FWAIT instruction for data synchroniza­
tion, can be eliminated by using a subsequent numeric 
instruction. After this subsequent instruction has 
started execution, all memory references in earlier 
numeric instructions are complete. Reaching the next 
host instruction after thesynchronizihg numeric instruc­
tion indicates previous numeric operands in memory are 
availaole. . 

The data synchronization purpose of any FW AIT or 
. numeric instruction must be well documented. Other­
wise, a change to the program at a later time may 
remove the synchronizing numeric instruction, causing' 
program failure, as: 

3-23 

FISTP 
FMUL 
MOV 

Case 1: 

AX,I 

MOV 1,1 
FILD I 

Case 2: 
MOV A,X, I 
FISTP I 

; I is safe to use 

Case 3: 
FILD 
FWAIT 
MOV 

Case,4: 
FISTP 
FWAIT 
MOV 

Figure 17. Data Exchange Example 

1,5 

AX,I 

This is a code macro to redefine the FIST 
instruction to prevent any concurrency 
whi·le the instruction runs. A wait 
instruction is placed immediately after the 
escape to ensure the store is done 
before the program may continue. This 
code macro will work with the 8087 
emulator, automatically replacing the 
wait escape with a nop. 

CodeMacro FIST memop: Mw 
RfixM 111 B, me mop . 
ModRM 010B, memop 
RWfix 
EndM 

Figure 18. Non·Concurrent FIST Instruction 
Code Macro 



AP·113 

DATA SYNCHRONIZATION RULES EXCEPTIONS 

There are five exceptions to the above rules for data syn-' 
. chroniiation. The 8087 automatically provides data syn­
chronization for these cases. They are necessary to 
avoid deadlock (described on page 24). The instructions 
FSTSW IFNSTSW, FSTCW IFNSTCW, FLDCW, 
FRSTOR, and FLDENV do not require any waiting by 
the host before it may read or modify the referenced 
memory location. 

The 8087 provides the data synchronization by prevent- . 
ing the host from gaining control of the local bus while 
these instructions execute. If the host cannot gain con­
trol of the local bus, it cannot change a value before the 
8087 reads it, or read a value before the 8087 writes into 
it. 

The coprocessor interface guarantees that, when the 
host executes one of these instructions, the 8087 will 
immediately request the local bus from the host. This 
request is timed such that, when the host finishes the 
read operation identifying the memory operand, it will 
always grant the local bus to the 8087 before the host 
may use the local bus for a data reference while execut­
ing a subsequent instruction. The 8087 will not release 
the local bus to the host until it has finished executing 
the numeric instruction. 

Error Synchronization 
Numeric errors can occur on almost any numeric in­
struction at any time during its execution. Page 1 S 
describes how a numeric error may have many inter­
pretations, depending on the application. Since the re­
sponse to a numeric error will depend on the applica­
tion, this section covers topics common to all uses of the 
NPX. We will review why error synchronization is need­
ed and how it is provided. 

Concurrent execution of the host and 8087 requires syn­
chronization for errors just like data references and 
numeric instructions. In fact, the synchronization re­
quired for data and instructions automatically provides 
error synchronization. 

However, incorrect data or instruction synchronization 
may not cause a problem until a numeric error occurs. A 
further complication is that a programmer may not ex­
pect his numeric program to cause numeric errors, but 
in some systems they may regularly happen. To better 
understand these points, let's look at what can happen 
when the NPX detects an error. 

ERROR SYNCHRONIZATION FOR EXTENSIONS, 

The NPX can provide a default flXUP for all numeric 
errors. A program can mask each individual error type 
to. indicate that the NPX should generate a safe, reason­
able result. The default error flXUP activity is simply 
treated as part of the instruction which caused the, error. 
No external indication of the error will be given. A flag 
in the numeric status register will be set to indicate that 
an error was detected, but no information, regarding 
where or when will be available. 

If the NPX performs its default action for all errors, 
then error synchronization is never exercised. But this is 
no reason to ignore error synchronization. 

Another alternative exists to the NPX default fixup of 
an error. If the default NPX response to numeric errors 
is not desired, the host can implement any form of re­
covery desired for any numeric error detectable by the 
NPX. When a numeric error is unmasked, and the error 
occurs, the NPX will stop further execution of the 
numeric instruction. The 8087 will signa). this event on 
the INT pin, while the 8087 emulator will cause inter­
rupt 1016 to occur. The 8087 INT signal is normally con­
nected to the host's interrupt system. Refer fo page 18 
for further discussion on wiring the 8087 INT pin. 

Interrupting the host is a request from the NPX for 
help. The fact that the error was unmasked indicates 
that further numeric program execution under the arith­
metic and programming rules of the NPX is unreason­
able. Error synchronization serves to insure the NDP is 
in a well defined state after an unmasked numeric error 
occured. Without a well defined state, it is impossible to 
figure out why the error occured. 

Allowing a correct analysis of the error is the heart of 
error synchronization. 

NDP ERROR STATES 

If concurrent execution is allowed, the state of the host 
when it recognizes the interrupt is undefmed. The host 
may have changed many of its internal registers and be 
executing a totally different program by the time it is in­
terrupted. To handle this situation, the NPX has special 
registers updated at the start of each numeric instruction 
to describe the state of the numeric proSram when the 
failed instruction was attempted. (See Lit. Ref. p. iii) 

Besides programmer comfort, a well-definedstate,is im­
portant for error recovery routines. They can change the 
arithmetic and programming rules of the 8087. These 
changes may redefine the default fixup from an error. 
change the appearance of the NPX to the programmer, 
or change how arithmetic is defined on the NPX .. 

3-24 



Ap·113 

EXTENSION EXAMPLES 

A change to an error response might be to automatically 
normalize all denormals loaded from memory. A 
change in appearance might be extending the register 
stack to memory to provide an "infinite" number of 
numeric registers. The arithmetic of the 8087 can be 
changed to automatically extend the precision and range 
of variables when exceeded. All these functions can be 
implemented on the NPX via numeric errors and 
associated recovery routines in a manner transparent to 
the programmer. 

Without correct error synchronization, numeric 
subroutines will not work correctly in the above situa­
tions. 

Incorrect Error Synchronization 

An example .of how some instructions written without 
error synchronization will work initially, but fail when 
moved into a new environment is: 

FILD 
INC 
FSQRT 

COUNT 
COUNT 

Three instructions are shown to load an integer, calcu­
late its square root, then increment the integer. The 
coprocessor interface of the 8087 and synchronous ex­
ecution of the 8087 emulator will allow this program to 
execute correctly when no errors occur on the FILD in­
struction. 

But, this situation changes if the numeric register stack 
is extended to memory on an 8087. To extend the NPX 
stack to memory, the invalid error is unmasked. A push 
to a full register or pop from an empty register will 
cause an invalid error. The recovery routine for the er­
ror must recognize this situation, fixup the stack, then 
perform the original operation. 

The recovery routine will not work correctly in the ex­
ample. The problem is that there is no guarantee that 
COUNT will not be incremented before the 8087 can in­
terrupt the host. If COUNT is incremented before the 
interrupt, the recovery routine will load a value of 
COUNT one too large, probably causing the program to 
fall. . 

Erro.r Synchronization and WAITs 

Error synchronization relies on the WAIT instructions 
required by instruction and data synchronization and 
the INT and BUSY signals of the 8087. When an un­
masked error occurs in the 8087, it asserts the BUSY 
and INT signals. The INT signal is to interrupt the host, 
while the BUSY signal prevents the host from destroy­
ing the current numeric context. 

3-25 

The BUSY signal will never go inactive during a numeric 
instruction which asserts INT. 

The WAIT instructions supplied for instruction syn­
chronization prevent the host from starting another 
numeric instruction until the current error is serviced. In 
a like manner, the WAIT instructions required for data 
synchronization prevent the host from prematurely 
reading a value not yet stored by the 801\7, or over­
writing a value not yet read by the 8087. 

The host has two responsibilities when handling 
numeric errors. I.) It must not disturb the numeric con­
text when an error is detected, and 2.) it must clear the 
numeric error and attempt recovery from the error. The 
recovery program invoked by the numeric error may 
resume program execution after proper fixup, display 
the state of the NDP for programmer action, or simply 
abort the program. In any case, the host must do 
something with the 8087. With the INT and BUSY 
signals active, the 8087· cannot perform any useful 
work. Special instructions exist for controlling the 8087 
when in this state. Later, an example is given of how to 
save the state of the NPX with an error pending. (See 
page 29) 

Deadlock 
An \lndesirable situation may result if the host cannot 
be interrupted by the 8087 when asserting INT. This sit­
uation, called deadlock, occurs if the interrupt path 
from the 8087 to the host is broken. 

The 8087 BUSY signal prevents the host from executing 
further instructions (for instruction or data syn­
chronization) while the 8087 waits for the host to service 
the exception. The host is waiting for the 8087 to finish 
the current numeric operation. Both the host and 8087 
are waiting on each other. This situation is stable unless 
the host is interrupted by some other event. 

Deadlock has varying affects on the NDP's perfor­
mance. If no other interrupts in the system are possible, 
the NDP will wait forever. If other interrupts can arise, 
then the NDP can perform other functions, but the af­
fected numeric program will remain "frozen". 

SOLVING DEADLOCK 

Finding the break in the interrupt path is simple. Look 
for disabled interrupts in the following places: masked 
interrupt enable in the host, explicitly masked interrupt 
request in the interrupt controller. implicitly masked in­
terrupt request in the interrupt controller due to a higher 
priority interrupt in service, or other gate functions, 
usually.in TTL, on the host interrupt signal. 



AP·113, 

DEADLOCK AVOIDANCE 

Application programmers should not be concerned with 
deadlock. Normally" applications programs run with 
unmasked numeric errors able to interrupt them. Dead­
lock is not possible in this case. Traditionally! Systems, 
software or interrupt handlers may run with numeric in­
terrupts disabled. Deadlock prevention lies in this do­
~ain. The golden rule to abide by is: "Never wait on the 
8087 if an unmasked error is possible and the 8087 inter­
rupt path may be broken." 

Error Synchronization Summary 

In summary, error synchronization involves protectill8 
the state of the 8087 after an exception. Although not all 
applications may initially require error synchronizatioll, 
it is just good programming practice to follow the rules. 
The advantage of being a "g~" numerics program­
mer is generality of your program so it can work in 
other, more general environments. 

Summary 

Synchronization is the price for concurrency in the 
NDP. Intel high level language compilers will auto­
matically provide concurrency and manage it with syn­
chronization. The assembly language programmer can 
choose between using concurrency or not. Placing a 
WAIT instruction immediately after any numeric in­
struction wiIJ prevent concurrency and avoid synchro­
nization concerns. 

The rules given above are complete and allow concur­
rency to be used to full advantage. 

Synchronization and the Emulator 
The above discussion on synchroniZation takes on 
special meaning with the 8087 emulator. The 8087 emu­
lator does not allow any concurrency. All numeric 
operand memory references, error tests, and wait for 
instruction completion occur within the emulator. As a 
result, programs which do not provide proper instruc­
tion, data, or error synchronization may work with the 
8087 emulator while failing on the component. 

Correct programs for the 8087 work correctly on the 
emulator. 

Special Control Instructions of the NPX 
The special control instructions of the NPX: FNINIT, 
FNSAVE, FNSTENV, FRSTOR, FLDENV, FLDCW, 
FNSTSW, FNSTCW, FNCLEX, FNENI, and FNDISI 
remove sorne of the synchronization requirements men­
tioned earlier. They are discussed here since they repre­
sent exceptions to the rules mentioned on page 21. 

The instructions FNINIT, FNSAVE, FNSTENV, 
FNSTSW, FNCLEX, FNENI, and FNDISI do not wait 

for the current numeric instruction to finish before theY 
execute. Of these instructions, FNINIT,' FNSTSW, 
FNCLEX, FNENI and FNDISI will produce different 
results, depending on when they are executed relative to 
the current numeric instruction. 

For example, PNCLEX will cause a different status 
value to result from a concurrent arithmetic operation, 
depending on whether is is executed before or after the 
error status bits are updated at the end of the arithmetic 

. operation. The intended use of F:NCLEX is to clear a 
known error status bit which has caused BUSY, to be 
asserted, avoiding deadlock. 

FNSTSW will safelY, without deadlock, repor:t the busy 
and error status of the NPX independent of the NDP in­
terrupt status. 

FNINIT, FNENI, and FNDISI are used to place the 
NPX into a known state independent of its current 
state. FNDISI will prevent an unmasked error from 
asserting BUSY without disturbing the current, error 
status bits. Appendix A shows an example of using 
FNDIS1. 

The instructions FNSA VB and FNSTENV provide spe­
cial functions. They allow saving the state of the NPX in 
a single instruction when host interrupts are disabled. 

Sev~ral host and numeric instructions are necessary to 
save the NPX status if the interrupt status of the host is 
unknown. Appendix A and B show examples of saving 
the NPX state. As the Numerics Supplement explains, 
host interrupts must always be disabled when executing 
FNSA VE or FNSTENV. 

The seven instructions FSTSW IFNSTSW, J<STCW I 
FNSTCW. FLDCW, FLDENV, and FRSTOR do not 
require explicit WAIT instructions for data synchro­
nization. All of these instructions are used to interrogate 
or control the numeric context. 

Data synchronization for these instructions is 
automatically provided by the coprocessor interface. 
The 8087 will take exclusive control of the memory bus, 
preventing the host from interfering with the data values 
before the 8087 can read them. Eliminating the need for 
aWAIT instruction avoids potential deadlock pro­
blems. 

The three load instructions FLDCW, FLDENV, and 
FRSTOR can unmask a numeric error, activating the 
8087 BUSY signal. Such an error was the result of. a 
previous numeric instruction and is not related to' any 
fault in the instruction. 

Data synchronization is, automatically provided since 
the hQst's interrupts are usually disabled in context swit­
ching or interrupt handling, deadJock might result if the 
host executed a WAIT instruction with its interrupts 
disabled after these instructions. After the host inter­
rupts are enabled, an interrupt wiII occur if an unmask-
ed error was pending. ' 

3-26 



Ap·113 

PROGRAMMING TECHNIQUES 

The NPX provides a stack-oriented register set with 
stack-oriented instructions for numeric operands. These 
registers and instructions are optimized for numeric 
programs. For many programmers, these are new re­
sources with new programming options available. 

Using Numeric Registers and 
Instructions 
The register and instruction set of the NDP is optimized 
for the needs of.numeric and general purpose programs. 
The host CPU provides the instructions and data types 
needed for general purpose data processing, while the 
8087 provides the data types and instructions for 
numeric processing. 

The instructions and data types recognized by the 8087 
are different from the CPU because numeric program 
requirements are different from those of general pur­
pose programs. Numeric programs have long arithmetic 
expressions where a few temporary values are used in a 
few statements. Within these statements, a single value 
may be referenced many times. Due to the time involved 
to transfer values between registers and memory, a 
significant speed optimization is possible by keeping 
numbers in the NPX register file. '. 

In contrast, a general data processor is more concerned 
with addressing data in simple expressions and testing 
the results. Temporary values, constant across several 
instructions, are not as common nor is the. penalty as 
large for placing them in memory .As a result it is 
simpler for compilers and programmers to manage 
memory bas~d vallfes. 

MAIN_PROGRAM: 

FLO A 
FAOO .ST, ST(1) 
CALL SUBROUTINE 
FSTP B 

SUBROUTINE: 

FLO 
FSQRT 
FAOO 
FMULP 
RET 

ST 

C 
ST(1), ST 

NPX Register usad 
The eight numeric registers in the NDP are stack ori­
ented. All numeric registers are addressed relative to a 
value called the TOP pointer, defined in the NDP status 
register. A register address given in an instruction is ad­
ded to the TOP value to form the internal absolute ad­
dress. Relative addressing of numeric registers has ad­
vantages analogous to those of relative addressing of 
memory operands. 

Two modes are available for addressing the numeric 
registers. The first mode implicitly uses the top and op­
tional next element on the stack for operands. This 
mode does not require any addressing bits in a numeric 
instruction. Special purpose instructions use this mode 
since full, addressing flexibility is not required. 

The other addressing mode allows any other stack ele­
ment to be used together with the top of stack register. 
The top of stack or the other register may be specified as 
the destination. Most two-operand arithmetic instruc­
tions allow this addressing mode. Short, easy to develop 
numeric programs are the result. 

Just as relative addressing of memory operands avoids 
concerns with memory allocation in other parts of a 
program, top relative register addressing allows registers 
to be used without regard for numeric register assign­
ments in other parts of the program. 

STACK RELATIVE ADD~ESSING EXAMPLE 

Consider an example of a main program calling a 
subroutine, each using register 'addressing independent 
of the other. (Fig. 19) By using different values of the 
TOP field, different software can use the same relative 
register addresses as other parts of the program, but 
refer to different physical registers. 

Argument is in ST(O) 

ST(O) = ST(1) = Argument 
Main program ST(1) Is 
safe ·in ST(2) here . 

Figure 19. Stack Relative Addressing Example 

3-27 



Ap·113 

Of course, there is a limit tolny physical resource. The 
NDP has eight numeric registers. Normally, program­
mers must ensure Ii maximum of eight values are pushed 
on the numeric register stack at any time. For time­
critical inner loops of real-time applications, eight regis­
ters should contain all the values needed. 

REGISTER STACK EXTENSION 

This hardware limitation can be hidden by software. 
Software can provide "virtual" numeric registers, ex­
panding the register stack size to 6000 or more. 

The numeric register stack can be extended into memory 
via unmasked numeric invalid errors which cause an in­
terrupt on stack overflow or underflow. The interrupt 
handler for the invalid error would manage a memory 
image of the numeric stack copying values into and out 
of memory as needed. , 
The NPX will contain all the necessary information to 
identify the error, failing instruction, required registers, 
and destination register. After correcting for the'missing 
hardware . resource, the original numeric operation 
could be repeated. Either the original numeric instruc­
tion could be single stepped or the affect of the instruc­
tion emulated by a composite of table-based numeric in­
structions executed by the error handler. 

With proper data, error, and instruction synchroniza­
tion, the activity of the error handler will be transparent 
to programs. This type of extension to the NDP allows 
programs to push and pop 'numeric registers without 
regard for their usage by other subroutines. 

Programming Conventions 
With 'a better understanding of the stack registers, let's 
consider some useful programming conventions. Fol­
lowing these conventions ensures compatibility with 
Intel support software and high level language calling 
conventions. 

1) If the ·numeric registers are not extended to 
memory, the programmer must ensure that the 
number of temporary values left in the NPX stack 
and those registers used by the caller does not exceed 
8. Values can be stored to memory to provide enough 
free NPX registers. 

2) Pass the first seven numeri<; parameters to a subrou­
tine in the numeric stack registers. Any extra param­
eters can be passed on the host's stack. Push the 
values on the register or memory stack in left to right 
order. If the subroutine does not need to allocate any 
more numeric registers, it can execute solely out of 
the numeric register stack. The eighth register can be 
used for arithmetic operations. All parameters 
should be popped off when the subroutine com­
pletes. 

3) Return all numeric values on the numeric stack. The 
caller may now take advantage of the extended preci­
sion and flexible store modes of the NDP. 

4) Finish all memory reads or writes by the NPX before 
exiting any subroutine. This guarantees correct data 
and error synchronization. A numeric operation 
based solely on register contents is safe to leave run-
ning on subroutine exit. \ . 

5) The operating mode of the NDP should be transpar­
ent across any subroutine. The operating mode is 
defined by the control word of the NDP. If the sub­
routine needs to use a different numeric operating 
mode than that of the caller, the subroutine should 
first save the current control word, set the new oper­
ating mode, then restore the original control word 
when completed. 

PROGRAMMING EXAMPLES 

The last section of this application note will discuss five 
programming examples. These examples were picked to 
illustrate NDP programming techniques and commonly 
used functions. All have been coded, assembled, and 
tested. However, no guarantees are made regarding 
their correctness. 

The programming examples are: saving numeric 
context switching, save numeric context without 
FSA VE/FNSA VE, converting ASCII to floating point, 
converting floating point to ASCII, and trigonometric 
functions. Each example is listed in a different appendix 
with a detailed written description in the following text. 
The source code is available in machine readable form 
from the Intel Insite User's Library, "Interactive 8087 
Instruction Interpreter," catalog item AA20. 

The examples provide some basic functions needed to 
get started with the numeric data processor. They work 
with either the 8087 or the 8087 emulator with no source 
changes. 

3-28 

The context switching examples are needed for 
operating systems or interrupt handlers which may use 
numeric instructions and operands. Converting between 
floating point and decimal ASCII will be ,needed to in­
put or output numbers in easy to read form. The trigo­
nometric examples help you get started with sine or 
cosine functions and can serve as a basis for optimiza­
tions if the angle arguments always fall into a restricted 
range. 



Ap·113 

APPENDIX A 

OVERVIEW 
Appendix A shows deadlock-free examples of numeric 
context switchina. Numeric context switching is re­
quired by interrupt handlers which use the NPX and . 
operatina system context switchers. Context switching 
consists of. two basic functions, save the numeric con­
text and restore it. These functions must work indepen­
dent of the current state of the NPX. 

TWo versions of the context save function are shown. 
They use different versions of the save context instruc­
tion. The FNSA VB/FSA VB instructions do all the work 
of savina the numeric context. The state of host inter­
rupts will decide which instruction to use. 

Using FNSAVE 
The FNSA VB instruction is intended to save the NPX 
context when host interrupts are disabled. The host does 
not have to wait for the 8087 to fmish its current opera- . 
tion before starting this operation. Eliminatina the in­
struction synchronization wait avoids any potential 
deadlock. 

The 8087 Bus Interface Unit (BIU) will save this instruc­
tion when encountered by the host and hold it until the 
8087 Floatina point Execution Unit (FEU) finishes its 
current operation. When the FEU becomes idle, the 
BIU will start the FEU executina the save context opera­
tion. 

The host can execute other non-numeric instructions 
after the FNSA VB while the BIU waits for the FEU to 
finish its current operation. The code startina at 
NOJNT,JolPXJAVE shows how to use the 
FNSA VE instruction. 

When executina the FNSA VB instruction, host inter­
rupts must be disabled to avoid recursions of the in­
struction. The 8087 BIU can hold only one FNSA VB in­
struction at a time. If host interrupts were not disabled, 
another host interrupt might cause a second FNSA VB 
instruction ,to be executed, destroyina the previous one' 
saved in the 8087 BIU. 

It is' not recommended to explicitly disable host inter­
rupts just to execute an FNSA VB iitstruction. In 
general, such an operation may not be the best course of 
action?or even be allowed. 

If host interrupts are enabled during the NPX context 
save tuitction, it is recommended to use the FSA VB in­
struCtio~ as shown by the code startina at NPXJA vB. 
This example will always work, free of deadlock, in­
dependent of the NDP interrupt state. 

Using FSAVE 
The FSA VB instruction performs the same operation as 
FNSA VB but it uses standard instruction synchroniza­
tion. The host will wait for the FEU to be idle before 
initiatina the save operation. Since the host ignores all 
interrupts between completing a WAIT instruction and 
starting the followina ESCAPE instruction, the FEU is 
ready to immediately accept the operation (since it is not 
signalling BUSy). No recursion of the save context 
opefation in the BIU is possible. However, deadlock 
must be considered since the host executes a WAIT in­
struction. 

To avoid deadlock when usina the FSAVB instruction, 
the 8087 must be prevented from signallina BUSY when 
an unmasked error exists. 

The Interrupt Enable Mask (IBM) bit in the NPX con­
trol word provides this function. When IEM= I, the 
8087 will not signal BUSY or INT if an unmasked error 
exists. The NPX instruction FNDISI will set the IEM in­
dependent of any pendina errors without causina 
deadlock or any other errors. Usina ,the FNDISI and 
FSA VB instructions together with a few other glue in­
strut::tions allows a general NPX context save function. 

Standard data and instruction synchronization is re­
quired after executina the FNSA VBIFSA VB instruc­
tion. The wait instruction followina an FNSA VBI 
FSA VB instruction is always safe since all NPX errors 
will be masked as part of the instruction execution. 
Deadlock is not possible since the 8087 will eventually 
signal not busy, allowing the host to continue on. 

PLACING THE SAVE CONTEXT FUNCTION 

Decidina on where to save the NPX context in an inter­
rupt handler or context switcher is dependent on 
whether interrupts can be en.bled inside the function. ' 
Since interrupt latency is measured in terms of the max­
imum time interrupts are disabled, the maximum wait 
Qme of , the host at the data synchronizina wait instruc­
tion after the FNSA VB or the FSA VB instruction is im­
portant if host interrupts are disabled while waitina. 

The wait time will be the maximum single instruction 
execution time of the 8087 plus the execution time of the 
save operation. This maximum time will be approxi­
mately ,1300 or IS00 clocks, dependina on whether the 
host is an,8086 or 8088, ¥es~ively. The actual time 
will depen4 on how much co~currency of execution bet­
ween the host and 8087 is provided. The greater the 
concurrency, the lesser the maximum wait time win be. 

" 3-29 



Ap·113 

If host interrupts can be enabled during the context save 
function, it is recommended to use the FSA VE instruc­
tion for saving the numeric context in the interruptable 
section. The FSA VE instruction' allows instruction and 
data synchronizing waits to be interruptable. This 
technique removes the maximum execution time of 8087 
instructions from system interrupt latency time con­
siderations. 

Using FRSTOR 
Restoring the numeric context with FRSTOR does not 

. require a data synchronizing wait afterwards since the 
8087 automatically prevents the host from interfering 
with the memory load operation. 

The code starting with NPX_RESTORE illustrates the 
restore operation. Error synchronization is not 
necessary since theFRSTOR instruction itself does not 
cause errors, but the previous state of the NPX may in­
dicate an error. 

It is recommended to delay starting the numeric save 
function as long as possible to maintain the maximum 
amount of concurrent execution between the host and 
the 8087. If further numeric instructions are executed after the 

FRSTOR, and the error state of the new NPX context is 
unknown. deadlock may occur if numeric exceptions 
cannot interrupt the host. 

NP>Lsave 

General purpose save of NPX context. This function will work independent of the interrupt state of 
the NDP. Deadlock can not occur. 47 words of memory are required by the variable save_area. 
Register ax is not transparent across this code. 

NP~save: 
FNSTCW 
NOP 
FNDISI 
MOV 
FSAVE 

FWAIT 
MOV 

ax, save_area 
save_area 

Save IEM bit status 
Delay while 8087 saves control register 
Disable 8087 BUSY signal 
Get original control word 
Save NPX context, the host can be safely interrupted while 
waiting for the 8087 to finish. Deadlock is not possible since 
IEM = 1.Wait for save to finish. Put original control word into 
NPX context area. All done 

Save the NPX context with host interrupts disabled. No deadlock is possible. 47 words of memory 
are required by the variable save_area. 

no_lnLN P~save: 
FNSAVE save_area 
FWAIT 

N P>Lrestore . 

Save NPX context. Wait for save to finish, no deadlock 
is possible. Interrupts may be enabled now, all done 

Restore the NPX context saved earlier. No deadlock is possible if no further numeric instructions 
are executed until the 8087 numeric error interrupt is enabled. The variable save_area is assumed 
to hold an NPX context saved earlier. It must be 47 words long. . 

NP~restore: 

FRSTOR Load new N PX context 

3-30 



Ap·113 

APPENDIX B 

OVERVIEW 

Appendix B shows alternative techniques for switching 
the numeric context without using the FSA VEl 
FNSA VE' or FRSTOR instructions. These alternative 
techniques are slower than those of Appendix A ,but 
they reduce the worst case continuous local bus usaae of 
the 8087. 

Only an iAPX 86/22 or iAPX 88/22 could derive any 
benefit from this alternative. By replacing' all 
FSA VE/FNSA VE instructions in the system, the worst 
case local bus usage of the 8087 will be 10 or 16 con­
secutive memory cycles for an 8086 or 8088 host, respec­
tively. 

Instead of saving and loading the entire numeric context 
in one long series of memory transfers, these routines 
use the FSTENV /FNSTENV /FLDENV instructions 
and separate numeric register load/store instructions. 
Using separate load/store instructions for the numeric 
registers forces the 8087 to release the local bus after 
each numeric load/store instruction. The longest series 
of back-to-back memory transfers required by these 
instructions are 8/12 memory cycles for an 8086 or 8088 
host, respectively. In contrast, the FSA VEl 
FNSAVE/FRSTOR instructions perform 50/94 back­
to-back memory cycles for an 8086 or 8088 host. 

Compatibility With FSAVElFNSAVE 

This function produces a context area of the same for­
mat produced by FSA VE/FNSA VE instructionS. Other 
software modules expecting such'a for-mat will not be 
affected. All the same interrupt and deadlock considera­
tions of FSA VE and FNSA VE also apply to FSTENV 
and FNSTENV. Except for the fact that the numeric 
environment is 7 words rather than the 47 words of the 
numeric cont~t, all the discussion of Appendix A also 
applies here. 

The state of the NPX registers must be saved in memory 
in the same format as the FSA VE/FNSA VE instruc­
tions. The program example starting at the label 
SMALL-BLOCIC.NPX....8AVE illustrates a software 
loop that will store their contents into memory in the 
same top relative order as that of FSA VE/FNSA VE. 

To save the registers with FSTP instructions, they must 
be tagged valid, zero, or special. This function will force 
all the registers to be tagged valid, independent of their 
contents or old tag, and then save them. No problems 
will arise if the tag value conflicts with the register's 
content for the FSTP instruction. Saving empty regis­
ters insures compatibility with the FSA VEIFNSA VE in­
structions. After saving all the numeric registers, they 
will all be tagged empty, the same as if an 
FSA VE/FNSA VE instruction had been executed. 

Compatibility With FRSTOR 

Restoring the numeric context reverses the procedure 
described above, as shown by the code starting at 
SMALL-BLOCIC.NPXJWSTORE. All eight regis­
sters are reloaded in the reverse, order. With each 
register· load, a tag value will be assigned to each 
register. The tags assigned by the register load does not 
matter since the tag word will be overwritten when the 
environment is reloaded later with FLDENV. 

Two assumptions are required for correct operation of 
the restore function: all numeric registers must be empty 
and the TOP, field must be the same as that in the con­
text being restored. These assumptions will be satisfied 
if a matched set of pushes and pops were performed bet­
ween saving the numeric context and reloading it. 

If these assumptions cannot be met, then the code exam­
ple starting at NP>L.CLEAN shows how to force all the 
NPX registers empty and set the TOP field of the status 
word. 

3-31. 



'J 

,smaILbloc!LNPlLsave 

; Save the NPX context Jn~~pendent of NDP Interrupt state. Avoid using the, FSAVE instruction to 
; limit the worst case me'mol'y bus usage of the 8087. The NPX context area formed will appear the 
; same as If an FSAVE'lnstructlon had written Into It. 1h~ variable save_area will hold the NPX 
; context and must be 47 words long. The reglsters,ax, bX,and cx will not be transparent. 

smaILblocILNP)Lsave: 
FNSTCW save_area 
NOP 
FNDISI 
MOV 
MOV 
XOR 

ax, save_area 
cx,8 
bx, bx 

FSTENV save_area' 
FWAIT 
XCtIIG save_area + 4, bx 
FLDENV save_area 
MOV 
MOV 
XOR 

save_area, ax 
save_area + 4, bx 
bX,bx 

reg_store_loop: 
FSTP saved_reg Lbxl 
,ADD bx, type saved_reg 
LOOP reg_store_l~op 

NPlLclean 

; Save current IEM bit 
;' Delay while 8087 saves control register 
,; Disable 8087 BUSY signal 
; Get original control word 
; Set numeric register count 
; Tag field value for stamping all registers as valid 
; Save NPX environment 
; Walt for the store to complete 
; Get original tag value and set new tag value 
; Force all register tags as valid. BUSY Is stili masked. No data 
; synchronization needed. Put original control word Into NPX 
; environment. Put original tag word ,Into NPX environment 
; Set Inltlalreglst~r Index 

; Save register 
; BUmp pointer to next register 

; All done 

" ; f • I I ',!. ., ,I,' , '., ." ,~' , 

,; Force the NPX Into a clean state with TOP matching the TOP field stored In the NPX context and all 
, i numeric registers tagged empt~. ,Sllve_~a must. be the NPX environment saved earlier.,: 

; Temp_env Is a 7 word ~eITIPo~ry area .used to build a prototype NPX environment. Register ax will 
; not be transparent. 

NP)Lclean: 
FINIT 
MOV 
AND 
FSTENV 

FWAIT 

~ '," 

ax, saveJrea + 2 , 
ax,3800H" , 
temp_eny 

OR temp_env + 2, ax : 
FLDENV temp_env. '," 

i' ; Put NPX Into k'nown state 
; Get original status word 

, , 

; Mask out the top field 
. ; Format a temporary environment area with all registers 
, ; stamped empty and TOP field = O. 

, ; Wait for the store to finish. 
, ;' Put in the desired TOP value. 

'.j Sl!Itup new NPX environment. 
; Now enter smalLbloclLNP)Lrestore 



Ap·113 

smalLblocLNP>Lrastora 

Restore the NPX context without using the FRSTOR instruction. Assume the NPX context Is'in the 
same form as that created by an FSAVElFNSAVE instruction, all the registers are empty, and that 
the TOP field of the NPX matches the TOP field of the NPX context. The variable save~~a must 

; be an NPX context save area, 47 words long. The registers bx and cx will not be transparent. 

smaILblocILNP)Lrestore: 
MOV cx,8 
MOV bx, type saved_reg*7 

'; Set register count 
Starting offset of ST(7) 

reg_load_loop: 
FLO ' saved~reg [bx) Get the register 
SUB bx, type saved_reg Bump pOinter to next register 
LOOP reg_load_loop 
FLOENV saveJrea Restore NPX context 

; All done 

APPENDIX C 

OVERVIEW 

Appendix C shows how floating point values can be 
converted to decimal ASCII character strings. The func­
tion can be called from PLM/86, PASCAL/86, FOR­
TRAN/86, or ASM/86 functions. 

Shortness, speed, and accuracy were chosen rather than 
providing the maximum number of significant digits 
possible. An attempt is made to keep integers in their 
own domain to avoid unnecessary conversion errors. 

Using the extended precision real number format, this 
routine achieves a worst case accuracy of three units in 
the t6th decimal position for a non-integer value or in­
tegers greater than 1018• This is double precision ac­
curacy. With,values having decimal exponents less than 
100 in magnitude, the accuracy is one unit in the 17th 
decimal position. 

Higher precision can be achieved with greater care in 
programming, larger program size, and lower perfor­
mance. 

Func,tlon Partitioning 
Three separate modules impletnent the conversion. 
Most of the work of the conversion is done in the mod­
ule FLOATING_TO-ASCII. The other modules are 
provided separately since they have a more general use. 
One of them, GETJOWELIO, is also 'used by the 
ASCII to floating point conversion routine. The other 
small module, TOS-llTATUS, will identify what, if 
anything, is in the top of the numeric register stack. 

3-33 

Exception Considerations 

Care is taken inside the function to avoid generating ex­
ceptions. Any possible numeric value will be accepted. 
The only exceptions possible would occur if insufficient 
space exists on the numeric register stack. 

The value passed in the numeric stack is checked for ex­
istence, type (NAN or infinity), and status (unnormal, 
denormal, zero, sign). The string size is tested for a 
minimum and maximum value. If the top of,the register 
stack is empty, or the string size is too small, the func­
tion will return with an error code. 

Overflow and underflow is avoided inside the function 
for very large or very small numbers. 

Special Instructions 
The functions demonstrate the operation of several 
numeric instructions; different data types, and precision 
control. Shown are instructions for automatic conver­
sion to BCD, calculating the value of 10 raised to an in­
teger valuei establishing and maintaining concurrency, 
data synchronization, and use of directed rounding on 
the NPX. 

Without the extended precision data type and built-in 
exponential function, the double' precision accuracy of 
this function could not be attained with the size and 
speed of the shown example. 

The function relies on the numeric BCD data type for 
conversion from binary floating point to decimal. It is 



AP·113 

not difficult to unpack the BCD digits into separate Scaling the Value 
. ASCII decimal digits. The major work involves scaling 

the floating point value to the comparatively limited 
range of BCD values. To print a 9-digit result requires 
accurately scaling the given value to an integer between 
lOS and 109• For example, the number +0.123456789 
requires a scaling factor of 109 to produce the value 
+ 123456789.0 which can be stored in 9 BCD digits: The 
scale factor must be an exact power of 10 to avoid to 
changing any of the printed digit values. 

. To scale the number, its magnitude must be determined. 

These routines should exactly convert all values exactly 
representable in decimal in the field size given. Integer 
values which fit in the given string size, will not be 
scaled, but directly stored into the BCD form. Non­
integer values exactly representable in decimal within 
the string size limits will also be exactly converted. For 
example, 0.125 is exactly representable in binary or 
decimal. To convert this floating point value to decimal, 
the scaling factor will be 1000, resulting in 125. When 
scaling a value, the function must keep track of where 
tlie decimal point lies in the final decimal value. 

DESCRIPTION OF OPERATION 

Converting a floating point number to decimal ASCII 
takes three major steps: identifying the magnitude of 
the number, scaling it for the BCD data type, and con­
verting the BCD data type to a decimal ASCII string. 
. ' 

Identifying the magnitude of the result requires finding 
the value X such that the number is represented by 
I*IOX, where 1.0 <= 1< 10.0. Scaling the number re­
quires multiplying it by a scaling factor lOS, such that 
the result is an integer requiring no more decimal digits 
than provided for in the,ASCII string. 

Once scaled, the numeric rounding modes and BCD 
conversion put the number in a form easy to convert to 
decimal ASCII by host software. 

Implementing each of these three steps requires atten· 
tion to detail. To begin with, not all floating point 
values have a numeric meaning. Values such as infinity, 
indefinite, 'or Not A Number (NAN) may be en­
countered by the conversion routine. The conversion 
routine should recognize these values and identify them 
uniquely. 

Special Cases of numeric values also exist. Denormals, 
unnormals, and pseudo zero all have a numeric value' 
but should be recognized since all of them indicate that 
precision was lost during some earlier calculations. 

Once it has been determined that the number has a 
numeric value, and it is normalized setting appropriate 
unnormal flags, the value must be scaled to the BCD 
range. 

3-34 

It is sufficient to calculate the magnitude to an accuracy 
of I unit, or within a factor of 10 of the given value. 
After scaling the number, a check will be made to see if 
the result falls in the range expected. If not, the result 
can be adjusted one decimal order of magnitude up or 
down. The adjustment test after the scaling is necessary 
due to inevitable illaccuracies in the scaling value. 

Since the magnitude estimate need only be close, a fast 
technique is used. The magnitude is estimated by multi­
plying the power of 2, the unbiased floating point expo­
nent, associated with the number by 10g102. Rounding 
the result to an integer will produce an estimate of suffi­
cient accuracy. Ignoring the fraction value can in­
troduce a maximum error of 0.32 in the result. 

Using the magnitude of the value and size of the number 
string, the scaling factor can be calculated. Calculating 
the scaling factor is the most inaccurate operation of the 
conversion process. The relation'IOX = 2**(X*log21O) is 
used for this function. The exponentiate instruction 
(F2XM1) will be used. ' 

Due to restrictions on the range of values allowed by the 
F2XMI instruction, the power of 2 value will be split in­
to integer and fraction components. The relation 
2"(1 + F) = 2**1 * 2"F allows using the FSCALE in­
struction to recombine the 2**F value, calculated 
through F2XMI, and the 2**1 part. 

Inaccuracy in Scaling 
The inaccuracy of these operations arises because of the 
trailing zeroes placed into the fraction value when strip­
ping off the integer valued bits. For each integer valued 
bit in the power of 2 value separated from the fraction 
bits, one bit of precision is lost in the fraction field due 
to the zero fill occurring in the least significant bits. 

Up to 14 bits may be lost in the fraction since the largest 
allowed floating point exponent value is 214 - 1. 

AVOIDING UNDERFLOW AND OVERFLOW 

The fraction and exponent fields of the number are sep­
arated to avoid underflow and overflow,in calculating 
the scaling values. For example, tei scale 10- 4932 to 108 

requires a scaling factor of 104950 which cannot be rep­
resented by the NPX. 

By separating .the exponent and fraction, the scaling 
operation involves adding the exponents separate from 
multiplying the fractions. The exponent arithmetic will 
involve small integers, all easily represented by the 
NPX. 



'AP.113 

FINAL ADJUSTMENTS Output Format 
It is possible that the Power function (OeLPower_lO) 
,could produce a scaling value such that it forms a scaled 
result larger than the ASCII field could allow. 
For example, scaling 9.999999999999999ge4900 
by 1.000OOOOOOOOOOOOlOe-4883 would produce 
1.00000000000000018. The scale factor is within the 
accuracy of the NDP and the result is within the conver­
sion accuracy, but it cannot be represented in BCD for­
mat. This is why there is a post-scaling test on the 
magnitude of the result. The result can be multiplied or 
divided by 10, depending on whether the result was too 
small or too large, respectively. 

For maximum flexibility in output formats, the posit!on 
of the decimal point is indicated by a binary integer 
called the power value. If the power value is zero, then 
the decimal point is assumed to be at the right of the 
right-most digit. Power values greater than zero indicate 
how, many trailing zeroes are not shown. For each Unit 
below zero, move the decimal point to the left in the 
string. 

The last step of the conversion is storing the result in 
BCD and indicating where the decimal point lies. The 
BCD string is then unpacked into ASCII decimal char­
acters. The ASCII sign is set corresponding to the sign 
of the original value. 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
211 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44' 
45 
46 
47 
48 

SOURCE 

$title(Convert a floating point number to ASCII) 
name floating to ascii 
public floating-to-ascii 
extrn get_power_10:near,tos_status:near 

This 'Subroutine will convert the floating point number in the 
top of the B087 stack to an ASCII string and separate power of 10 
scaling value (in binary). The maximum width of the Ascrt string 
formed is controlled by a parameter which must be > 1. Unnorma1 values, 
denorma1 values, and psuedo zeroes will be correctly converted. 
A returned va1ue will indicate how many binary bits of 
preciSion were lost in an unnormal or denorma1 value. The magnitude 
(in terms of binary power) of a psuedo zero will also be indicated. 
Integers less than 10**18 in magnitude are accurately converted if the 
destination ASCII string field is wide enough to hold all the 
digits. Otherwise the value is converted to scientific notation. 

The status of the conversion is identified by the return value, 
it can be: 

o conversion complete, string size is defined 
1 invalid arguments -
2 'exact integer conversion, string_size' is defined 
3 indefinite 
4 + NAN (N<>t A Numbe r) 
5 - NAN 
6 + Infinity 
7 - Infinity 
8 psuedo zero found, string_size is defined 

The PLM/86 calling convention is: 

floating to ascii: 
pro'cedure (number, denormal_ptr , str i ng _ptr , size _ptr, field _ si ze, 

power-ptr) word external; 
declare (denormal ptr,string ptr,power ptr,size ptr) pointer; 
declare field size word, strfng size based size-ptr word; 
decl.are number re,al; - -
declare denormal integer based denormal ptr; 
declare power integer based power ptr; 
end floating_to_ascii; -

The floating point value is expected to be on the top of the NPX 
stack. This subroutine expects 3 free entries on the NPX stack and 
will pop the passed value off when done. The generated ASCII string' 
will have a leading character either '-' or '+' indicating the sign 
of the value. The ASCII decimal digits will immediately follow. 
The numeric value of the ASCII string is (ASCII STRING.)*10**POWER. 

3-35 



49 
50 
51 
52 
53 
54 
55 
56 
57 
~8 
59 
69 
61 
62 
63 
64 
65 
66 
67 
68 
69 
79 
71 
72 
73 
74 
'/5 
76 
77 
78 
79 
89 
81 
82 
83 
84 
85 
86 
87 
88 
89 
99 
91 
92 
93 
94 
95 
96 

,97 
98 
99 

100 
191 
1112 
1113 
104 
105 
106 
1117 
1118 
199 
110 
111 
112 
113 
114 
115 
116 

.111 
118 

Ap·113 

It the given number was zero, the ASCII string will contain a sign 
and a single zero chacter. The value string size indicates the total 
length of the ASCII string including the sign character. String(II) will 
always hold the sign. It is possible for string size to be less than 
field size. This occurs for zeroes or integer values. A psuedo zero 
will return a, special return code. The denormal count will indicate 
the power of two originally associated with the value. The power of 
ten and ASCII string will be as if the value was an ordinary zero. 

This sUbroutine is accurate up to a maximum, of 18 decimal digits for 
integers. Integer values will have a decimal power of zero associated 
with them. For non integers, the result will be accurate to within 2 
decimal digits of the 16th decimal place (double precision). The 
exponentiate instruction is also used for scaling the value into the 
range acceptable for the BCD data type. The rounding mode in effect 
on entry to the subroutine is used for the conversion. 

The following registers are not transparent: 

ax bx cx dx si di flags 

Define the stack layout. -
, 
bp_save 
es save 
,:eturn"'ptr 
power ptr 
field-size 
size ptr 
str ing ptr 
denormal_ptr 

parms_size 
& 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

equ 

word ptr [bpJ 
bp save + size bp_save 
es-save + size es save 
return ptr + size-return ptr 
powerytr + size power ptr 
field size + size fiel~ size 
sizejPtr + size size_ptr 
string_ptr + size string_ptr 

size power ptr + size field size + size size_ptr + 
size strinq_ptr + size denormal_ptr 

Define constants used 
; 
BCD DIGITS 
WORD tiIZE 
BCD 1i"IZE 
MINUS 
NAN 
INFINITY 
INDEFINITE 
PSUEDO ZERO 
INVALiD 
ZERO 
DENORMAL 
UNNORMAL 
NORMAL 
EXACT 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

18 
2 
HI 
1 
4 
6 
3 
8 
-2 
-"4 
-6 
-8 
II 
2 

Number of digits in bcd_value 

Define return values 
The exact values chosen here are 
important. They must correspond to 
the possible return values and be in 
the same numeric order as tested by 
the program. 

Define layout of-temporary storage area. 

status 
power two 
power-ten 
bcd value 
bcdbyte 
fraction 

local size 
& -

stack 

equ 
equ 
equ 
equ 
equ, 
equ 

equ 

word ptr [bp-WORD I:iIZE] 
status - WORD tiIZE 
power two - W~RD tiIZE 
tbyte-ptr power ten - BCD_tiIZE 
byte ptr bed varue 
bcd value -

size status + size power two + size power ten 
+ size bcd value - -

Allocate stack space for the temporaries so the stack will be big enough 

segment stack 'stack' 
db (10cal_size+6) dup (7) 

3-36, 



1211 
121 
122 
123 
124 
125 
126 
127 
128 
129 
1311 
131 
132 
133 
134 

135 

136 

137 

138 
139 
1411 
141 
142 
143 
144 
145 
146 
147 
148 
149 
1511 
151 
152 
153 
154 
155 
156 
157 
158 
159 
1611 
161 
162 
163 
164 
165 
166 
167 
168 
169 
178 
171 
172 
173 
174 
175 
176 
117 
178 
179 
1811 

cgroup 
code 

constl11 

group 
segment 
assume 
extrn 

Ap·113 

code 
public 'code' 
cs:cgroup 
power_table:qword 

Constants used by this function. 

even 
dw 111 

; Opti~ize for 16 bits 
; Adju~tment value ,for too big BCD 

Convert the C3,C2,Cl,CII encoding from tos_statu~ into, meanin<,ful bit 
flags and values. 

status table db UNNORMAL, NAN, UNNORi"/lr: + "'I'lL'S, NM! + "I"'IIS, 

call 
mov 
mov 
cmp 
jne 

~OR~AL. I~FINITY, NOR~AL + MINUS, INFINITY + MINUS, 

ZERO, INVALiD, ZERO + MINUS, INVALID, 

DENORMAL, INVALID, DENORMAL +,~INUS, INVALID 

tos status 
bx,ax 
al,status table[bx] 
al,INVALID 
not_empty 

Look at status of ST(II) 
Get descriptor from table 

Look for empty ST(II) 

l;T(Il) is empty! Return the status value. 

Remove infinity from stack and exit. 
; 
found_infinity: 

exit 

fstp 
jmp 

st(lI) 
short ex! t_proc 

OK to leave fstp runninq 

l;tring space is too smalll Return invalid code. 

mov al,INVALID 

_proc: 

mov sp,bp Free stack space 
pop bp Restore registers 
pop es 
ret parms_size 

ST(II is NAN or indefinite. Store the value in memory and look 
at the fraction field to separate indefinite from an ordinary NAN. 

; 
NAN_or_indefinite: 

fstp 
test 
fwait 
jz 

fraction 
al,MINUS 

exityroc 

3-37 

Remove value from stack for examination 
Look at sign bit 
Insure store is done 
Can't be indefinite if positive 



181 
182 
183 
184 
185 
186 
187 
188 
189 

"190 
1!11 
192 
193 
194 
195 
196 
197 
198 
199 
2'Hl 
21H 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
2211 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 

; 

mov 
sub 
or 
or 
or ' 
jnz 

mov 
jmp 

AP·113 

bx,0C""IIH 
bx,word ptr fraction+6 
bx,word ptr fraction+4 
bx,word ptr fraction+2 
bx,word ptr fraction 
exi t_proc 

al,INDEFINITE 
exit_proc 

Match against upper 16 bits of fiaction 
Compare bits 63-48 
Bits 32-47 must be zero 
Bits 31-16 must be zero 
Bits IS-II must be zero 

Set return value for indefinite value 

Allocate stack space for local variables and establish parameter 
addressi bi 11 ty. 

not_empty: 

push 
push 
mov 
sub 

mov 
cmp 
jl 

dec 
cmp 
jbe 

mov 

cmp 
jge 

cmp 
jge 

es 
bp 
bp,sp 
sp,local_size 

cx,field size 
cx,2 -
small_string 

cx 
cx,BCD DIGITS 
size OK 

al,INFINITY 
found_infini ty 

al,NAN 
NAN or_indefinite 

Save working register 

Establish stack addressibility 

Check for enough string space 

Adjust for sign character 
See if string is too large for BCD 

Else set maximum string size 

Look for infinity 
Return status value for + or - info 

Look for NAN or INDEFINITE 

Set default return values and check that the number is normalized. 

fabs 

mov 
xor 
mov 
mov 
mov' 
mov 
cmp 
jae 

cmp 
jae 

fxtract 
cmp 
jb 

sub 

dx,ax 
ax,ax 
di,denormalytr 
word ptr [dT] ,ax 
bx,power ptr 
word ptr-[bx] ,ax 
dl,ZERO 
real zero 

d 1 , DENORMAL 
found denormal 

dl,UNNORMAL 
normal_value 

dl,UNNORMAL-NORMAL 

Vse positive value only 
sign bit in al has true sign of value 
Save return value for later 
Form II constant 
Zero denormal count 

Zero power of ten value 

Test for zero 
Skip power code if value is zero 

Look for a denormal value 
Handle it specially 

Separate exponent from significand" 
Test for unnormal value 

; Return normal status with correct sIgn 

Normalize the fraction, adjust the power of two in ST(l) and set 
the denormal count value. 

Assert: 0 <= ST(II) < 1.11 

fldl 

normalize_fraction: 

fadd st(l),st 
fsub 
flctract 

fxch 

3-38 

Load constant to normalize fraction 

Set integer bit in fraction 
Form normalized fraction in ST(0) 
Power of tvo field will be negative 
of denormal count 
Put denormal count in ST(0) 



255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299. 
3110 
301 
302 
303 
304 
305 
306 
307 
308 
309 
3HJ 
311 
312 
313 
314 
315 
316 
317 
318 
319 
3211 
321 
322 
323 
324 
325 
326 
327 

, 

fist 
faddp 

neg 
jnz 

word ptr [diJ 
st (2) ,st 

word ptr [diJ 
notJ'suedo_zero 

Ap·113 

Put negative,of denormal count in memory 
Form correct power of two in stell 
OK to use word ptr [diJ now 
Form positive denormal count 

A psuedo zero will appear as an unnormal number. When attempting 
td normalize it, the resultant fraction field will be zero. Performing 
an fxtract on zero will yield a zero exponent value. 

fxch 
fistp 

sub 
jmp , 

word ptr [di J 

dl,NORMAL-PSUEDO ZERO 
convert_integer -

Put power of two value in st(0) 
Set denormal count to power of two value 
Word ptr [diJ is not used by convert 
integer, OK to leave runn'ng 
Set return value saving the sign bit 
Put zero value into memory 

The number is a real zero, set the return value and setup for 
conversion to BCD. 

sub 
jmp 

dl,ZERO-NORMAL 
convert_integer 

; Convert status to normal value 
; Treat the zero as an integer 

The numb~r is a denormal. FXTRACT will not work correctly in this 
case. To correctly separate the exponent and fraction, add a fixed 
constant to the exponent to guarantee the result is not a denormal. 

found_denormal: 

; 

fldl 
fxch 
fprem 

fxtract 

Prepare to bump exponent 

Force denormal to smallest representable 
extended real format exponent . 
This will work correctly now 

The power of the original denormal value has been safely isolated. 
Check if the fraction value is an unnormal. 

fxam 
fstsw 
fxch 
fxch 
sub 
test 
jz 

fstp 

status 

st(2) 
dl,DENORMAL-NORMAL 
status,441lllH 
normalize fraction 

st (0) 

See if the fraction is an unnormal 
Save status for later 
Put exponent in ST(0) 
Put 1.0 into ST(Il), exponent in ST(2) 
Return normal status with correct sign 
See if C3=C2=0 impling unnormal or NAN 
Jump if fraction is an unnormal 

Remove unnecessary 1.11 from st(ll) 

Calculate the decimal magnitude associated with thi's number to 
within one order. This error will always be inevitable due to 
rounding and lost precision. As a result, we will deliberately fail 
to consider ·the LOG10 of the fraction value in calculating the order. 
Since the fraction will always be 1 c= F < 2, its LOGlll will not change 
the basic accuracy of the function. To get the decimal order of magnitude, 
simply multiply the power of two by LOGlll(2) and truncate. the. result to 
an integer. 

normal value: 
not_psuedo_zero: 

fstp fraction 
fist power_two 
fldlg2 

fmul 
fistp power_ten 

Save the fraction field for later use 
Save power of two 
Get LOGH! (2) 
Power two is now safe to use 
Form [0010(of exponent of number) 
Any rounding mode will work here 

Check if the magnitude of the number rules out treating it as 
an integer. 

CX has the maximum numb~r of decimal digits allowed. 

3-39 



328 
329 
331l 
331 
332 
333 
334 
335 
336 
337 
338 
339 
341l 
341 
342 
343 
344 
345 
346 
347 
348 
349 
3511 
351 
352 
353 
354 
355 
356 
357 
358 
359 
361l 
361 
362 
363 
364 
365 
366 
367 
368 
369 
371!J 
371 
372 
373 
374 
375 
376 
377 
378 
379 
388 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
4Il1l 
481 

fwaif 
mov 
sub 
ja 

• 

ax,power_ten 
ax,cx 
adjust_result 

Wait for power ten to pe valid 
Get power of ten of value 
Form scaling factor necessary in ax 
Jump if number will not fit 

The number is between 1 and lll**(field_size). 
Test if it is an integer. 

fUd power two Restore original number 
mov si,dx- Save return value 
sub dl,N9RMAL'-EXACT Convert to exact return value 
fld fraction 
fscale Form full value, this is safe here 
fst stell Copy value for compare 
frndint Test i~ its an integer 
fcomp Compare values 
fstsw status Save status 
test status,41lliH1H C3=1 implies it was an integer 
jnz convert_integer 

fs~p st(0) ; Remove non integer value 
mov dx,si ; Restore original return value 

Scale the num,ber to wi thin the range allowed by the 8CD format. 
The scaling operation should produce a number within one decimal order 
of magnitude of the largest decimal number representable within the 
given string width. 

The scaling power of ten value is in ax. 
; 
adjust_result: 

, 

mov 
neg 

call 

fld 
fmul 
mov 
shl 
shl 
shl 
fild 
faddp 
fscale 
fslOp 

word ptr [bx) ,ax 
ax 

get_power_lll 

fraction 

si,cx 
si,l 
si,l 
si " 1 
power_two 
st(2) ,st 

stO) 

Set initial power ot ten return value 
Subtract one for each order of 
magnitude the value is scaled by 
Scaling factor is returned as exponent 
and fr'act ion 
Get fraction 
Combine fractions 
Form power of ten of the maximum 
BCD value to fit in the string 
Index in si 

Combine powers of two 

Form full value, exponent was safe, 
Remove exponent 

Test the adjusted value against a table of exact powers of ten. 
The combined errors of the magnitude estimate and power function can 
result in a value one order of magnitude too small or too large to fit 
correctly in the BCD field. To handle this problem, pretest the 
adjusted value, if it is too small or large, then adjust it by ten and 
adjust the power ot ten value. 

testyower: 

fcom 

fstsw 
test 
jnz 

fidiv 
, and 

inc 
jmp 

test _fo r_small: 

fcom 
fstsw 

power_table[si)+type power table; Compare against exact power 
; entry. Use the next entry since cx 

has been decremented by one 
status 
status,4lllllH 
test -for_small 

constHJ 
dl,not EXACT 
word ptr [bx) 
short in _range 

power_table[si) 
status 

3-40 

No wait is necessary 
If C3 = CII = Il then too big 

Else adjust value 
Remove exact flag 
Adjust power of ten value 
Convert the value to a BCD integer 

Test relative size 
No wait is necessary 



402 
403 
4114 
405 
406 
407 
408 
41')9 
4111 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
43" 
437 
438 
439 
.440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 

test 
jz 

fimul 
dec 

frndint 

status,11lJ0H 
in_range 

const10 
word ptr [bx] 

AP·113 

If C0 = II then st(0) )= lower bound 
Convert the value to a BCD integer 

Adjust value into range 
Adjust power of ten value 

; Form integer value 

Assert: " <= TOS <= 999,999,999,999,999,999 
The TOS number will be exactly representable in 18 digit BCD format. 

; 
convert_integer: 

fbstp Store as BCD format number 

While the store BCD runs, setup registers for the conversion to 
ASCII. 

mov 
mov 
mov 
mov 
mov 
mov 
cld 
mov 
test 
jz 

mov 

positive_result: 

stesb 
and 
fwa i t 

si,BCD SIZE-2 
cx,0f1J4'h 
bx,l 
di,string ptr 
ax,ds -
es,ax 

aI, '+' 
dl,MINUS 
positive_result· 

ai, '-' 

dl,not MINUS 

Register usage: 

Initial BCD index value 
Set s~ift count and mask 
Set initial size of ASCII field for sign 
Get address of start of ASCII string 
Copy ds to es 

Set autoincrement mode 
Clear sign field 
Look for negative value 

~u~p strin~ pointer past sign 
Turn off sign bit 
Wait for fbstp to finish 

ah BCD byte value in use 
al ASCII character value 
dx Return value 
ch BCD mask = 0fh 
cl BCD shift count = ~ 
bx ASClI string field width 
si: BCD field index 
di: ASCII string field pointer 
ds,es: ASCII string segment base 

Remove leading zeroes from the number. 
; 
skip_leading_zeroes: 

mov 
mov 
shr 
and 
jnz 

mov 
and 
jnz 

dec 
jns 

ah,bcd byte lsi] 
al,ah -
al,cl 
al,ch 
enter odd 

al,ah 
al,ch 
enter _even 

si 
skip_leading_zeroes 

The significand was all zeroes. 

mov 
stosb 
inc 
jmp 

aI, .,,. 

bx 
short exit_with_value 

3~41 

Get BCD byte 
Copy value 
Get high order digit 
Set zero flag 
Exit loop if leading non zero found 

Get BCD byte again 
Get low order digit 
Exit loop if non zero digit found 

Decrement BCD index 

Set initial zero 

Bump string length 



475 
476 
477 
478 
479 
48~ 
481 
482 
483 
484 
485 
486 
487 
488 
489 
498 
491 
492 
493 
494 
495 
496 
497 
498 
499 
50~ 
501 
502 
5~3 
504 
5~5 

506 
507 
508 
509 
5H1 
511 

,. 
AP·113 

NOW expand the BCD string into digit per byte values 0-9. 

mov 
mov 
shr 

enter_odd: 

add 
stosb 
mov 
and 
inc 

enter _even:. 

add 
stosb 
inc 
dec 
jns 

ah,bcd byte (si] 
al,all -
al,cl 

aI, 'Il' 

al,ah 
al,ch 
bx 

al,'0 • 

bx 
si 
digit_loop 

,;;; ,. 

Get BCD byte 

Get high order digit 

Convert to ASCII 
Put digit into ASCII string area 
Get low order digit 

Bump field size counter 

Convert to ASCII 
Put digit into ASCII area 
Bump field size counter 
Go to next BCD byte 

Conversion complete. Set the string size and remainder. 
; 
exit_with_value: 

di ,size ptr 
word Ptr (di],bx 
ax,dx 

mov 
mov 
mov 
jmp .exit_proc 

floating to ascii 
code --

endp 
ends 
end 

Set return value 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

HI 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

SOURCE 

Stitle(Calculate the value of 10**ax) 

stack 

stack 

cgroup 
'code 

Tllis subroutine will calculate the value of 10**ax. 
All 8086 registers are transparent and the value is returned on 
the TOS as two numbers, exponent in STIll and fraction in ST(0). 
The exponent value can be larger than the maximum representable 
exponent. TIISee stack entries are used. 

name get power 10 
public get~power~lll,power_table 

segment stack 'stack' 
dw 4 dup (?) 

group code 
segment .public 'code' 
assume cs:cgroup 

Use exact values from 1.0 to Ie Ii. 
'., even 

dq 1.0,lel,1e2,le3 

3-42 

Allocate space on the stack 

Optimize 16 bit access 



24 

25 

26 

27 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4,8 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
10 
71 

AP·113 

dq le4,le5,le6,le7 

dq le8,le9,le10,lell 

dq le12,le13,le14,le15 

dq le16,le17,le18 

get_power_10 proc 

cmp ax,18 
ja out_of_range 

push bx 
mov bx,ax 
shl bx,l 
shl bx,l 
shl bx,l 
fld power table[bx] 
pop bx-
fxtract 
ret 

Test for 0 <- ax < 19 

Get working index register 
I Form taMe index 

Get exact value 
Restore register value 
Separate power and fraction 
OK to leave fxtract running 

Calculate the value using the exponentiate instruction. 
The following relations are used: 

10**x = 2**(log2(10)*x) 
2**(I+F) • 2**I * 2**F 
if still .. 1 and st(0) .. 2**F then fscale produces 2**(I+F) 

; 
out_of_range: 

fldl2t 
push 
mov 
push 
push 
fimul 
fnstcw 

mov 
and 
or 
xchg 

fldl 
fchs 
fld 
fldcw 

,frndint 
mov 
fldcw 

bp 
bp,sp' 
ax 
ax 
word ptr [bp-2] 
word ptr [bp-4] 

ax,word ptr [bp-4) 
ax,not 0C00H 
ax , 041111'H 
ax,word ptr [bp-4] 

st (1) 
word ptr [bp-4) 

word ptr [bp-4],ax 
word ptr [bp-4) 

3-43 

TOS .. LOG2(10) 
Establish stack addres'sibility 

Put power (P) in memory 
Allocate space for status 
TOS,X • LOG2(l0)*P .. LOG2(10**P) 
Get current control word 
Control word is a static value 
Get control word, no wait necessary 
Mask off current rounding field 
Set round to negative infinity 

; Put new control word in memory 
old control word is fn ax 
Set TOS .. -1.8 

Copy power value in base two 
Set new control word value 
TOS" I:,-inf < I <= X, I is an integer 
Restore original rounding control 



AP·11'3 

72 fxch st(2) TOS = X, ST (l) = -loll, ST(2) = I 
73 pop ax Remove original control word 
74 fsub st,st(2) TOS,F = X-I: " <= TOS < 1." 
75 pop ax Restore power of ten 
76 fscale TOS = F/2: " <= TOS < Il.S 
77 f2xml I TOS = 2**(F/2) - 1.1l 
78 pop bp Restore stack 
79 fsubr Form 2** (F/2) 
811 fmul st,st(II) Form 2**F 
81 ret OK to leave fmul running 
82 
83 get power III endp 
84 code - ends 
85 end 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

II! 
11 
12 

13 
l4 
15 
16 
17 
18 
19 
29 
21 
22 
23 
24 
25 
26 
27 
28 
29 
311 
31 
32 
33 
34 
35 
36 
37 
38 

SOUHCE 

$title(Determine TOS register contents) 

This subroutine will return a value from Il-15 in ax corresponding 
to the contents of 81187 TOS. All registers are transparent and no 
errors are possible. The return value corresponds to c3,c2,cl,cll 
of FXAM instruction. 

name tos status 
public tos-status 

stack 

stack 

cgroup 
code 

tos_status 

fxam 
push 
push 
mov 
fstsw 
pop' 
pop 
mov 
and 
shr 
shr 
shr 
or 
mov 
ret 

tos st,atus 
code 

segment stack "stack' 
dw 3 dup (?) Allocate space on the, stack 

ends 

group 
segment 
assume 
proc 

ax 
bp 
bp,sp 
word ptr 
bp 
ax 
al,ah 
ax,4",,,,7h 
ah,l 
ah,l 
ah,l 
'al,ah 
ah,lI 

code 
public 'code' 
cs:cgroup 

[bp+2J 

Get register contents status 
Allocate space for status value 
Establish stack addressibility 

Put tos status in memory 
Restore registers 
Get status value, no wait necessary 
Put, bit 111-8 into bits 2-0 
Mask out bits c3,c2,cl,cll 
Put bit c3 into bit 11 

Put c3 into bit 3 
Clear return value 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

3-44 



AP·113 

APPENDIX D 

OVERVIEW 

Appendix D shows a function for converting ASCII 
input strings into floating point values. The returned 
value can be used by PLM/86, PASCAL/86, FOR­
TRAN/86, or ASM/86. The routine will accept a num­
ber in ASCII of standard FORTRAN formats. Up to 18 
decimal digits are accepted and the conversion accuracy 
is the same as for converting in the other direction. 
Greater accuracy can also be achieved with similar 
tradeoffs, as mentioned earlier. 

code simply determines ihe meaning of each character 
encountered. Two separate number inputs must be rec­
ognized, mantissa and exponent values. Performing the 
numerics operations is very straightforward. 

The length of the number string is determined first to 
allow building a BCD number from low digits to high 
digits. This technique guarantees that an integer will be 
converted to its exact BCD integer equivalent. 

If the number is a floating point value, then the digit 
string can be scaled appropriately. If a decimal point oc­
curs within the string, the scale factor must be decreased 
by one for each digit the decimal point is moved to the 
right. This factor must be added to any exponent value 
specified in the number. 

Description of Operation 
COllverting from ASCII to floating point is less complex 
numerically than going from floating point to ASCII. It 
consists of four basic steps: determine the size in deci­
mal digits of the number, build a BCD value corre­
sponding to the number string if the decimal point were 
at the far right, calculate the exponent value, and scale 
the BCD value. The first three steps are performed by 
the host software. The fourth step is mainly performed 
by numeric operations. 

ACCURACY CONSIDERATIONS 

All the same considerations for converting floating 
point to ASCII apply to calculating the scaling factor. 

. The accuracy of the scale factor determines the accuracy 
of the result. 

The exponents and fractions are again kept separate to 
prevent overflows or underflows during the scaling 
operations. 

The complexity in this function arises due to the flexible 
nature of the input values it will recognize. Most of the 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
'J 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

SOURCE 

$title(ASCII to floating point conversion) 

Define the publicly known names. 

name 
public 
extrn 

ascii to floating 
ascii-to-floating 
get-power_10:near 

This function will convert an ASCII character string to a floating 
point representation. Character strings in integer or scientific form 
will be accepted. The allowed format is: ' 

[+,-) [digit(s)] [.) [digit(s)) [E,e) [+,-:-Udigit(s)j 

Where a digit 'must have been 'encountered before the exponent 
indicator 'E' or'e'. If a '+', "-', or '.'was'encountered, then at 
least one digit must exist before the optional exponent field. A value 
will always be returned in the 8087 stack. In case of invalid numbers, 
values like indefinite or infinity will be returned. 

The first character not fitting within the format will terminate the 
conversion. The address of the terminating character will be returned 
by this subroutine.' 

The result will be left on the top of· the NPX stack. This 
subroutine expects 3 free NPX stack'registers. The sign of the result 
will correspond to any sign characters in the ASCII string. The rounding 
mode in effect at the time the subroutine was called will be used for 
the conversion from b~se 10 to base 2. Up to 18 significant decimal 
digits may ~ppear in the number. Lea~inn ze~o~s. t~~ilinn zeroes, or 
exponent digits do not count towards the 18 digit maximum. Integers 
or exactly representable decimal nu~bers of 18 digits or less will be ' 
exactly converted. The technique used constructs a BCD number 

3-45 



34 
35 
36 
37 
38 
39 
411 
41 
42 
43 
44 
45 
46 
47 
48 
49 
511 
!II 
52 
53 
54 
55 
)6 
57 
58 
59 
611 
61 
62 
63 
64 
65 
66 
67 
68 
69 
79 
71 
72 
73 
74 
75 
76 
77 
78 
79 
89 
81 
82 
83 
84 
85 
86 
87 
88 
89 
99 
91 
92 
93 
94 
95 
96 
97 
98 
99 

Hl0 
191 
1Il2 
Hl3 
194 
Hl5 
196 
197 

, 

AP·113 

representing the significant ASCII digits of the string with the decimal 
point removed. 

An attempt is made to e~actly convert relatively small integers or 
small fractions. For example the values: .96125, 123456789912345678, 
le17, 1.23456e5, and 125e-3 will be exactly converted to floating point. 

The exponentiate instruction is ~sed to scale the generated BCD va slue 
to very large or very small numbers. The basic accuracy of this function 
determines the accuracy of this subroutine. 'For very large or very small 
numbers, the accuracy of this function is 2 units in the 16th decimal 
place or double precision. The range of decimal powers accepted is 
10-*-4930 to 19**4939. 

The PLM/86 calling' format is: 

ascii to floating: 
- procedure (string ptr,end ptr,status ptr) real external; 

declare (string ptr,end ptr,status ptr) pointer; 
declare end based end ptr pointer;-
declare status based status ptr word; 
end; 

The status value has 6 possible states: 

9 A number was found. 
1 No number was found, return indefinite. 
2 Exponent was expected but none found, return indefinite. 
3 Too many digits were found, return indefinite. 
4 Exponent was too big, return a signed infinity. 

The following registers are used by this subroutine: 

ax bx cx dx si di 

Define constants. 

LOW EXPONENT 
HIGH EXPONENT 
WORD-~IZE 
BCD)rIZE 

equ 
equ 
equ 
equ 

-4939 
4939 
2 
HI 

Smallest allowed power of 10 
Largest allowed power of 111 

Define the parameter layouts involved: 
, 
bp save 
return ptr 
s'tatus-ptr 
endytr 
string_ptr 

parms _si ze 

equ 
equ 
equ 
equ 
equ 

equ 

word ptr [bp) 
bp save + size bp save 
return ptr + size-return ptr 
status-ptr + size status-ptr 
endytr + size end_ptr -

size status_ptr + size endytr + size string_ptr 

Define the local variable data layouts 

power ten 
'bed form 

equ 
equ 

equ 

word ptr [bp- WORD SIZE) ; power of ten value 
tbyte ptr power_ten '- BCD_SIZE; BCD representation 

size power_ten + size bed form 

Define common expressions used 

bcd byte 
bcd-count 
bcd-sign 
bCd:sign_bi t 
; 

equ 
equ 
equ 
equ 

byte ptr bed form 
(type(bcd form)-1)*2 
byte ptr bcd form + 9 
89H -

Current byte in the BCD form 
Number of digits in BCD form 
Address of BCD sign byte 

Define return values. . 
NUMBER FOUND equ 
NO _NUMB:ER equ 
NO EXPONENT equ 
TO~ MANY DIGITS equ 
EXPONENT-TOO BIG equ 

3-46 

Number wa,s found 
No number was found 
No e,xponent was found when expected 
Too many digits were found 
Exponent was too big 



Hl8 
109 
110 
111 
112 

113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
14 I! 
141 
142 
143 
144 
145 
146 
147 
148 
149' 
1511 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

; 
stack 

stack 

cgroup 
code 

Ap·113 

Allocate stack space to insure enough exists at run time. 

segment stack 'stack' 
db (local_size+4) dup (?) 

ends 

group code 
segment public 'code' 
assume cs:cgroup 

Define some of the possible return values. 

Optimize 16 bit access 
indefinite 
infinity 

even 
dd 
dd 

0FFC0",,00R 
07FF81!IIIHIIR 

Single precision real for indefinite 
Single precision real for +infinity 

ascii to_floating proc 

fldz 
push 
mov 
sub 

bp 
bp,sp 
sp,loca1_size 

Prepare to zero BCD value 
Save callers stack environment 
Establish stack addressibility 
Allocate space for local variables 

Get any leading sign character to form initial BCD template. 

mov 
xor 
cld 

si,string ptr 
dx,dx -

Register usage: 

Get starting address of the number 
Set initial decimal digit count 

'Set auto increment mode 

al: Current character value being examined 
cx: Digit count before the decimal point 
dx: Total digit count 
si: Pointer to character string 

Look for an initial sign and skip it if found. 

lodsb 
cmp 
jz 

cmp 
jnz 

fchs 

al,I+' \ 
scan_leading_digits 

aI, '_I 
enter_leading_digits 

Get first character 
Look for a sign 

If not "-" test current character 

Set TOS = -0 

Count the number of digits appearing before an optional decimal point. 
; 
scan_leading_digits: 

lodsb 

call 
jnc 

test dig i.t 
scan:leading_digits 

Get next character 

; Test for digit ~nd bump counter 

Look for a possible decimal point and start fbstp operation. 
The fbstp zeroes out the BCD value and sets the correct sign. 

fbstp 
mov 
cmp 
jnz 

bcd form 
cx,dx 
aI, .•. 
testJor_digits 

Set initial sign and value of BCD number 
Save count of digits before decimal point 

Count the number of digits appearing after the decimal point. 
; 
scan_trailing_digits: 

iodsb ~ook at next character 
3-47 



188 
181 
182 
183 
184 
185 
186~ 

187 
188 
189 
198 
191 
192 
193 
194 
195 
196 
197 
198 
199 
2811 
2111 
282 
2113 
2114 
285 

"286 
287 
288 
289 
218 . 
211 
212 
213 
214 
215 
216 
217 
218 
219 
228 
221 
222 
223 
224 
225 
226 
227 
228 
229 
231l 
231 
232 
233 
234 
235' 
236 
237 
238 
239 
248 
241 
242 
243 
244 . 
245 
246 
247 
248 
249 
258 
251 
252 
253 

call 
jnc 

AP~113 

test digit 
scan:trailing_digits 

; Test for digit and bump counter 

There must be at least one digit counted at this point. 
; 
test_for_digits: 

; 

dec 
or 
jz 

push 
dec 

si 
dx,dx 
no:..number _found 

st. 
si , 

Put si back on terminating character 
Test digit count 
Jump if no digits were found 

Save pointer to terminator 
Backup pointer to last digit 

Check that the number will fit in the 18 digit BCD format. 
CX becomes the initial scaling factor to account for the implied 
decimal point. 

sub cx,dx \ For each digit to the right of the 
decimal point, subtract one from the 
initial scaling power 

neg dx Use negative digit count so the 
test_digit routine ca~ count dx up 
to zero 

cmp dx,-bcd count ; See if too many digits found 
jb test_foF_unneeded_digits 

Setup initial register values for scanning· the number right to left 
while building the BCD value in memory. 

form bcd val,ue: 
" -

; 

std 
mov 
xor 
mov 
fwa i t. 
jmp 

power ten,cx 
di ,di-
cl,4 

enter digit loop 
f - -

Set autodecrement mode 
Set initial power of ten 
Clear BCD number index 
Set digit shift count 
Ensure BCD store is done 

No digits were encountered before testing for the exponent. 
Restore the string pointer and return an indefinite value. 

mov 
fld 
jmp 

ax,NO NUMBER 
indefrnite 
exit 

Set return status 
Return an indefinite numeric value 

Test for a number of.the form ???1I1I1l1l8. 

test_terminat! ng_point: 

lodsb 
cmp 
jz 

inc 
jmp 

aI,'.' 
enter-power_zeroes 

si 
short enter_power_zeroes 

Get last character 
Look for decimal point 
Skip forward if found 

Else bump pointer back 

Too many dec,imal digits encountered. Attempt to remove leading and 
trailing d'g~ts to bring the total into the boundS of the BCD format. 

test_for_unneeded_digits: 

std 
or 

jz 

dec' 

cx,cx 

test terminatinq_point 

dx 

Set autodecrement mode 
See if any digits appeared to the 
right of the decimal point 
Jump if none exist 

Adjust diqit counter for loop 

Scan backwards from the right skipping trailing zeroes. 
If the end of the number is encountered,'dx=9, the string consists of 
all zeroesl 

3-48 



254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
392 
393 
304 
395 
306 
307 
308 
31'19 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 

Ap·113 

; 
skip_trailing_zeroes: 

inc 
jz 

lodsb 
inc 
cmp 
jz 

dec 
cmp 
jnz 

dec 

dx 
look_for_exponent 

cx 
aI, I", 
skip_trailing_zeroes 

cx 
aI, ••• 
scan_leading_zeroes 

dx 

Bump digit count 
Jump if string of zeroes found I 

Get next character 
Bump power value for each :trailing 
zero dropped, 

Adjust power counter from loop 
Look for decimal point 
Skip forward if none found 

Adjust counter for the decimal point 

The string is, of the form: ????9900000 
See if any zeroes exist to the left of the decimal point. 

; 
enter_power_zeroes: 

dec 

inc 
jz 

lodsb 
inc 
cmp 
jz 

dec 

dx 

dx 
look_fo r_exponent 

cx 
aI, ." I 
skip_power_zeroes 

cx 

Adjust digit counter for loop 

Bump digit count 

Get next character 
Bump power value for each trailing 
zero dropped 

; Adjust power counter from loop 

Scan the leading digits from the left to see if they are zeroes. 
, 
scan_leading_zeroes: 

lea 
cld 
mov 
lodsb 

di,byte ptr [si+l] 

cmp aI, '+' 
je skip_leading zeroes 

cmp al,f-' 
jne enter_leading_zeroes 

Save new end of number pointer 
Set autoinc-rement mode 
Set pointer to the start 
Look for sign character 

Drop leading zeroes. None of them affect the power value in cx. 
We are guarenteed at least one non zero digit to terminate the loop. 

, 
skip_leading_zeroes: 

lodsb 

enter_leading zeroes: 

inc 
cmp 
jz 

dec 
cmp 
jnz 

dx 
a1, .". 
~kip_Ieading_zeroes 

dx 
a1,· . • 
test_digit_count 

Number is ot the form 001l.???? 

Get next character 

Bump digit count 
Look for a zero 

Adjust digit count from loop 
Look tor 000.??? form 

Drop all leading zeroes with no effect on the power value. 
; 
skip middle zeroes: 

-r 

inc 
lodsb 

dx 

3-49 

Remove the digit 
Get next character 



328 
329 
339 
331 
332 
333 
334 
335 
336 
'337 
338 
339 
349 
341 
342 
343 
344 
345 
346 
347 
348 
349 
3511 
351 
352 
353 
354 
355 
356 
357 
358 
359 
369 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
389 
381 
382 
383 
384 
385 
386 
387 
388 
389 
391t 
391 
392 
393 
394 
395 
396 
397 
398 
399 
41!11!1 
41!11 

Ap·113 

cmp aI, 'II' 
jz skip_middle_zeroes 

dec dx ; Adjust digit count from loop 

All superflous zeroes are removed. Check if all is well now. 
; 
test_digit_count: 

cmp dX,-bcd count 
jb too_many_digits_found 

mov 
jmp 

fld 
mov 
pop 
jmp 

si ,di 
form_bcd_value 

indefinite 
ax,TOO MANY DIGITS 
si - -
exit 

Rewtore string pointer 

Set return numeric value 
Set return flag, 
Get last address 

Build,BCD form of the decimal ASCII string from right to left with 
trailing zeroes and decimal point removed. Note that the only non 
digit possible is a decimal point which can be safely ignored. 
Test digit will correctly count dx back towards zero to terminate 
the BCD build function. 

; 
get_digit_loop: 

lodsb 
,call 
jc 

shl 
or 
mov 
inc 
or 
jz 

test d'iglt 
get_digi t_Ioop 

al,cl 
ah,a1 
bcd byte[dij ,ah 
di -
dx,dx 
look_for_exponent 

enter _digi t_loop: 

lodsb 
ca11 test digit 

enter_digi t'_loop jc 

mov 
or 
jnz 

mov 

ah',al 
dx,dx 
get_digit_Ioop 

bcd_byte [dl] ,ah 

Look for an exponent indicator. 
; 
look_for_exponent: 

pop 
cld 
mov 
lodsb 
cmp 
je 

si 

aI, 'e' 
exponent_found 

cmp al,'E' 
jne convert 

Get next character 
Check if digit and bump digit count 
Skip the decimal point if found 

Put digit into high nibble 
Form BCD byte in ah 
Put into BCD string 
Bump BCD pointer ' 
Check if digit is available 

Get next character 
Check 1f diqit 
Skip the de~imal point 

Save digit 
Check 1f digit is available 

Save last odd digit 

Restore string pointer 
Set autoincrement direction 
Get current power, of ten 
Get next character 
Look for expo~ent indication 

An exponent is expected, get its numeric value. 
; 
exponent..:found: 

lodsb 
xor 
mov 

di,di 
cx,di 

3-50 

Get n'ext character 
Clear power variable 
Clear exponent sign flag and digit f,lag 



402 
403 
4114 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
4511 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
4711 
471 
472 
473 
474 
475 

cmp 
je 

cmp 
jne 

aI, '+' 
skip_power_sign 

aI, I_I 

enter_power_loop 

Ap·113 

Test for positive sign 

Test for negative sign 

The exponent is 'negative. 

inc ch Set exponent sign flag 

Register usage: 

all exponent character being examined 
bx: return value 
ch: exponent sign flag 0 positive, 1 negative 
cl: digit flag 0 no digits found, 1 digits found 
dx: not usable since test digit increments it 
si: string pointer -
di: binary value of exponent 

Scan off exponent digits until a non-digit is encountered. 

power _loop: 

lodsb Get next character 

enter _power_loop:' 

mov 
call 
jc 

mov 
sal 
add 
sal 
sal 
add 
cmp 
jna 

ah,0 
test digit 
form:power_value 

Clear ah since ax is added to later 
Test tor a digit 
Exit loop if not 

cl,l Set power digit flag 
di ,1 01d*2 
ax,di 0Id*2+digit 
di,l 01d*4 
di,l 01d*8 
di ,ax ; old*Hl+digit 
di,HIGH EXPONENT+bcd_count; Check if exponent 
power_loop 

is too big 

The exponent is too large. 

exponent_ verflow: 

mov 
fld 
test 
jz 

fchs' 
jmp 

ax,EXPONENT TOO BIG 
infinity -
bcd sign,bcd sign bit 
exit --

short exit 

NO exponent was found. 
; 
no_exponent_found: 

dec 
mov 
fld 
jmp 

si 
ax,NO EXPONENT 
indeffnite 
short exit 

Set return value 
Return infinity 
Return correctly signed infinity 
JUmp if not 

Return -infinity 

Put si back on terminating character 
Set return value 
Set number to return 

The string examination is complete. Form the correct power of ten. 
, 
form_power_value: 

dec 

rcr 
jnc 

neg 

si 

ch,l 
positive_exponent 

di 
3-51 

Backup string pointer to terminating 
character 
T~st exponent sign flag 

Force exponent negative 



476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 
5113 
5114 
505 
506 
5f1J7 
508 
5119 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 

positive_exponent: 

convert: 

rcr 
jnc 

add 
cmp 
js 

cmp 
jg 

inc 

cl,l 
no_exponent_found 

di ,power_ten 
di,LOW EXPONENT 
exponent_overflow 

di,HIGH EXPONENT 
exponen~overflow 

si 

Test exponent digit flag 
If zero then no exponent digits were 
found 
Form the final power of ten value 
Check if the value is in range 
Jump if exponent is too small 

; Adjust string pointer 

Convert the base 10 number to base 2. 
Note: l0**exp = 2**(exp*10g2(10)) 

di has binary power of ten value to scale the BCD value with. 

dec 
mov 
or 
js 

si 
ax,di 
ax,ax 
get_negative_power 

Bump string pointer back to last character 
Set power of ten to calculate 
Test for positive or negative value 

Scale the BCD value by a value >= 1. 

call 
fbld 
fmul 
jmp 

get power 10 
bcd-form -

short done 

Get the adjustment power of ten 
Get the digits to use 
Form converged result 

Calculate a power of ten value> 1 then divide the BCD value with 
it. This technique fs more exact than multiplying the BCD value by 
a fraction since no negative power of ten can be exactly represented 
in binary floating point. Using this technique will guarentee exact 
conversion of values like .5 and .0625. 

; 
get_negative_power: 

; 
done: 

neg 
call 
fbld 
fdivr 
fxch 
fs:hs 
fxch 

ax 
get power 10 
bcd::form - ' 

All done, set return values. 

fscale 
mov aX,NUMBER FOUND 
fstp st(l) -

mov 
mov 
mov 
mov 
mov 
pop 
fwait 
ret 

di,status ptr 
word ptr Tdil,ax 
di ,end ptr 
word ptr [dil,si 
sp,bp 
bp 

parms size 

Force positive power 
Get the adjustment power of ten 
Get the digits to use 
Divide fractions 
Negate scale factor 

Update exponent of the result 
Set return value 
Remove the scale factor 

Set status of the conversion 

Set ending string address 

Deallocate local storage area 
Restore caller's environment 
Insure all loads from memory are 

Test if the character in al is an ASCII digit. 
If so then convert to binary, bump cx, and clear the carry flag. 
Else leave as is and set the carry flag. 

3-52 

done 



Ap·113 

548 
549 
558 
551 
552 
553 
554 
555 
556 
557 
558 
559 
568 
561 
562 
563 
564 
565 
566 
567 
568 
569 
578 

; 
test digit: 

- cmp 
ja 

cmp 
jb 

aI, '9' 
.not_digi t 

Character is a digit. 

inc dx 
sub aI, '8' 
ret 

Character is not a digit. 
; 
not digit: 

- stc 
ret 

ascii to floating endp 
code - - ends 

end 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

See if a digi t 

Bump digit count 
Convert to binary and clear carry flag 

Leave as is and set the carry flag 

APPENDIX E 

OVERVIEW 
Appendix E contains three trigonometric functions for 
sine, cosine, and tangent. All accept a valid angle argu­
ment between - 262 and + 262• They may be called from 
PLM/86, PASCAL/86, FORTRAN/86 or ASM/86 
functions. 

They use the partial tangent instruction together with 
trigonometric identities to calculate the result. They are 
accurate to within 16 units of the low 4 bits of an ex­
tended precision value. The functions are coded for 
speed and small size, with tradeoffs available for greater 
accuracy. 

FPTAN and FPREM 
These trigonometric functions use the FPT AN instruc­
tion of the NPX. FPT AN requires that the angle argu­
ment be between 0 and' PI/4 radians, 0 to 45 degrees. 
The FPREM instruction is used to reduce the argument 
down to this range. The low three quotient bits set by 
FPREM identify which octant the original angle was in. 

One FPREM instruction iteration can reduce angles of 
1018 radians or less in magnitude to PI/41 Larger values 
can be reduced, but the meaning of the result is ques­
tionable since any errors in the least significant bits of 
that value represent changes of 45 degrees or more in the 
reduced angle. 

Cosine Uses Sine Code 
To save code space, the cosine function uses most of the 
sine function code •• The relation sin (IAI + PI/2) = 
cos(A) is used to convert the cosine argument in~o a sine 

3-53 

argument. Adding PU2 to the angle is performed by 
adding Ol~ to the FPREM quotient bits identifying the 
argument's octant. 

It would be very inaccurate to add PII2 to the cosine 
argument if it was very much different from PI/2, 

Depending on which octant the argument falls in, a dif­
ferent relation will be used in the sine and tangent func­
tions. The program listings show which relations are 
used. 

For the tangent function, the ratio produced by FPTAN 
will be directly evaluated. The sine function will use 
either a sine or cosine relation depending on which oc­
tant the angle fell into. On exit these functions will nor­
mally leave a divide instruction in progress to maintain 
concurrency. 

If the input anSIes are of a restricted range, such as from 
o to 45 degrees, then considerable optimization is pos­
sible since full angle reduction and octant identification 
is not necessary. 

All three functions begin by looking at the value given 
to them. Not a number (NAN), infmity, or empty regis­
t~s must be specialiy treated. Unnormals need to be 
converted to normal values before the FPT AN instruc­
tion will work correctly. Denormals will be converted to 
very small unnqrmals which do work correctly for the 
FPTAN instruction. The sign of the angle is saved to 
control the sign of the result: 

Within the functions, close attention was paid to main­
tain concurrent execution of the 8087 an<!- host. The 
concurrent execution will effectively hide the exeeuti.on 
time of the decision logic used. in the program. 



LINE 

1 
2 
3 
4 
5 
6 +1 
7 
8 
9 

111 
11 
12 
13 
14 
15 
16 
17 
18 
19 
211 
21 
22 
23 
24 
25 
26 
27 
28 
29 
311 
31 
32 
33 
34 
35 
36 
37 
38 
39 
411 
41 
42 
43 
44 
45 
46 
47 
48 
49 
59 
51 
52 
53 
S4 
55 
56 
57 
58 
59 
611 
61 
62 
63 
64 
65 
66 
67 
68 
69 
711 
71 
72 

Ap·113 

SOURCE 

$title(BII87 Trignometric Functions) 

public 
name 

sine,cosine,tangent 
trig_functions 

$include (:fl:81187.anc) 

Define 81187 word packing in the environment area. 
; 
cw 87 , -, 
& 

sw 87 
& -
& 
& 

tw 87 
& 

low_ip_87 

high_i p_op _87 

low_op_87 

high_op_87 

environment_87 
env87 cw 
env87-sw 
env87-tw 
env87-low ip 
env87nip-op 
env87-low -op 
env87hop­
environment_87 

record res87l:3,infinity control:l,rounding control:2, 
precision control:2,error enable:l,res872:l, 
precision-mask:l,underflow mask:l,overflow mask:l, 
zero_divide_mask:l,denormaf_mask:l,invalidJmask:l 

record busy:l,cond3:1,top:3,cond2:l,cond~:1,cond9:l, 
error-pending:l,resB73:l,precision error:l, 
underflow error:l,overflow error:l;zero divide error:l, 
denormal_error:l,invalid_error:l - -

record reg7 tag:2,reg6 tag:2,reg5 tag:2,req4 tag:2, 
reg3:tag:2,reg2:tag:2,regl:tag:2,req,,:tag:2 

record low_ip:16 

record hi _i p: 4, resB74: 1 ,opcode _B7: 11 

record low_o~:16 

record hi_op:4,res875:l2 

struc 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
ends 

? 
? 
? 
? 
? 
? 
? 

8987 environemnt layout 

Define 81187 related constants. 

TOP _VALUE INC equ sw 87 <9,B,I,II,9,9,lI,9,",II,9,9,9,"> 

VALID TAG equ II I Tag register values 
ZERO TAG equ 1 
SPECI'AL TAG equ 2 
EMPTY TAG equ 3 
REGISTER MASK equ 7 

Define local var,iable areas. 
; 
stack 

local_area 
swl 
'local_area 

stack 

code 

; 
status 

segment stack 'stack' 

struc 
dw 
ends 

? 8987 status value 

db 
ends 

size local_area+4 Allocate stack space 

segment public 'code' 
assume cs:code,ss:stack 

Define local constants. 

equ [bp].swl 

even 

dt 3FFEC9"FDAA22l68C'23SR 

3-54 

8987 status value location 

PI/4 



73 
74 
75 
76 
77 
78 
79 
811 
81 
82 
83 
84 
85 
86 
87 
88 
89 
9" 
91 
92 
93 
94 
95 
96 
97 
98 
99 

1911 
lin 
HJ2 
1"3 
194 
HIS 
1116 
1117 
1118 
1119 
1111 
III 
112 
113 
114 
ll5 
ll6 
117 
ll8 
119 
1211 
121 
122 
123 
124 
125 
126 
127 
128 
129 
13" 
131 
132 
133 
134 
135 
136 
137 
138 
139 
1411 
141· 
142 
143 
144 
145 

AP·113 

indefinite dd "FFC"""""R ; Indefinite special value 

This subroutine calculates the sine or cosine of the angle, given in 
radians. The angle is in ST(II), the returned value will be in ST(II). 
The result is accurate to within 7 units of the least significant three 
bits of the NPX extended real format. The PLM/86 definition is: 

sine: procedure (angle) real external; 
declare angle real; 
end sine; 

cosine: procedure (angle) real external; 
declare angle real; 
end cosine; 

Three stack registers are required. The result of the function is 
defined as follows for the following arguments: 

angle 

valid or unnormal less than 2**62 in magnitude 
zero 
denormal 
valid or unnormal greater than 2**62 
infinity 
NAN 
empty 

result 

correct value 
II or 1 
correct denormal 
indefinite 
indefini te 
NAN 
empty 

This function is based on the NPX fptan instruction. The fptan 
; instruction will only work with an angle of from" to P.I/4. With this 

instruction, the sine or cosine of angles from" to PI/4 can be accurately 
~alculated. The technique used by this routine can calculate a general 
sine or cosine by using one of four possible operations: 

Let R = langle mod PI/41 
S = -lor 1, according to the sign of the angle 

1) sin(R) 2) cos(R) 3) sin(PI!4-R) 4) cos (PI/4-R) 

The choice of the relation and the sign of the result follows the 
decision table shown below based on the octant the angle falls in: 

octant 

II 
1 
2 
3 
4 
5 
6 
7 

sine 

S*l 
S*4 
S*2 
S*3 

-S*l 
-S*4 
-S*2 
-S*3 

cosine 

2 
3 

-1*1 
-1*4 
-1*2 
-1*3 

1 
4 

Angle to sine, function is a zero or unnormal. 

;ine_zero_unnormal: 

fstp stell Remove PI/4 
jnz enter sine _normalize Jump if angle is unnormal 

Angle is a zero. 

pop bp Return the zero as the result 
ret 

, ; Angle is an unnormal. 
.1 
enter sine normalize: 

3-55 



.~6 
147 
148 
149 
15. 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
198 
191 
192 
193 
194 
195 
196 
197 
198 
199 
208 
281 
202 
203 
204 
205 
206 
287 
208 
289 

. 210 
211 
212 
213 
214 
215 
216 
217 
218 
219 

AP·113 

call normalize value 
jmp short enter_sine 

cosine proc Entry point to cosine 

; 
sine: 

fxam 
push 
sub 
mov 
fstsw 
fld 
mov 
pop 
lahf 
jc 

bp 
sp,size local_area 
bp,sp 
status 
pi quarter 
cl~1 
ax 

funny.,parameter 

Look at the value 
Establish stack addresslbility 
Alloeate staek spaee for status 

Store status value 
Setup for angle reduee 
Siqna1 cosine funetion 

r Get status value 
ZF • C3, PF z C2, CF • C0 
Jump'if parameter is 
empty, NAN, or infinity 

Angle is unnorma1, normal, zero, denorma1. 

fxch 
jpe 

Angle is an unnormal or zero. 

fstp 
jnz 

st (1) 
enter_sine_normalize 

Angle is a zero. cos(8). 1.0 

fstp 
pop 
fldl 
ret 

st(0) 
bp 

st(0) = angle, st(l) • PI/4 
Jump if normal or denormal 

, Remove PI/4 

Remove 0 
Restore staek 
Return 1 

All work is done as a sine function. By adding PI/2 to the angle 
a cosine is converted to a sine. Of course the angle addition is not 
done to the argument but rather to the program logie eontrol values. 

fxam 
push 
sub 
mov 
fstsw 
fld 
pop 
lahf 
je 

bp 
sp,size local_area 
bp,sp 
status 
pi_quarter 
ax 

funny_parameter 

Entry point for sine funetion 

Look at the parameter 
I Establish staek addressibility 

Allocate loeal space 

Look at fxam status 
Get PI/4 value 
Get fxam status 
CF • C8, PF • C2, ZF • C3 
Jump if empty, NAN, or infinity 

Angle is unnormal, normal, zero, or denormal. 

fxch 
mov 
jpo 

el,0 
sine_zero_unnormal 

, ST(l) • PI/4, st(0) angle 
; Signal sine 
; Jump if zero or unnormal 

ST(0) is either a normal or denormal value. Both will work. 
Use the fprem instruction to aecurately reduee the range of the given 
angle to within 0 and PI/4 in magnitude. If fprem cannot reduce the 
angle in one shot, the angle is too big to be meaningful, > 2**62 
radians. Any roundoff error in the calculation of the angle given 
could completely ehange the result of this funetion. It is safest to 
call this very rare case an error. 

fprem 

mov 
fstsw 

sp,bp 
status 

3-56 

Redueeangle 
Note that fprem will force a 
denormal to a very small unnormal 
Fptan of a very small unnormal 
will be the same ver:y small 
unnormal, which is correct. 
Alloeate stack spaee for status 
Check if rertuction was complet~ 



220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
2311 
231 
232 
233 
234 
235 
236 
237 
238 
239 
241l 
241 
242 
243 
244 
245 
246 
247 
248 
249 
2511 
251 
252 
253 
254 
255 
256 
257 
258 
259 
2611 
261 
262 
263 
264 
265 
266 
267 
268 
269 
27r1l 
271 
272 
273 
274 
275 
276 
277 
278 
279 
2811 
281 
282 
283 
2!!4 
285 
286 
287 
281! 
289 
2911 
291 
292 
293 

pop 
test 
jnz 

Ap·113 

bx 
bh,high(mask cond2) 
ang Ie _too _big 

Quotient in C0,C3,Cl 
Get fprem status 
sln(2*N*PI+x) = sin (x) 

Set sign flags and test for which eighth of the revolution the 
angle fell into. 

Assert: -PI/4 < st(ll) < PI/4 

fabs 

or 
jz 

cl,cl 
sine _selec.t 

Force the argument 'positive 
condl bit in bx holds the sign 
Test for sine or cosine function 
Jump if sine function 

This is a cosine function. Ignore the original sign of the angle 
and add a quarter revolution to the octant id from the fprem instruction. 
cos(A) = sin(A+PI/2) and cos(IAI) = cos(A) 

and 
or 

add 
mov 
rcl 
xor 

ah,not hIgh(mask condl) 
bh,high(mask busy) 

bh,high(mask cond3) 
al,ll 
al,l 
bh,al 

Turn off sign of argument 
Prepare to add 010 to C0,C3,Cl 
status value in ax 
Set busy bit so carry out from 
C3 will go into the carry flag 
Extract carry flag 
Put carry flag in low bit 
Add carry to C0 not changing 
Cl flag 

See if the argument should be reversed, depending on the octant in 
which the argument fell during fprem. 

; 
sine_select: 

test 
jz 

bh,high(mask condl) 
no _sine _rev'erse 

Angle was in oct ants 1,3,5,7. 

fsub 
jmp 

Angle was in octants 1l,2,4,6. 

Reverse angle if Cl 1 

Invert sense of rotation 
o < arg <= PI/4 

Test, for a zero argument since fptan wi 11 not work if st (Il) Il 

ftst 
mov 
fstsw 
fstp 
pop 
test 
jnz 

sp,bp 
status 
stell 
cx 
ch,high(mask cond3) 
sine_argument_zero 

Assert: Il < st(ll) <= PI/4 

~o sine_fptan: 

fptan 

after _Sine _fptan: 

pop 
test 
jpo 

bp ; 
bh,high(mask cond3 + mask condl); 
X numerator 

Test for zero angle 
Allocate stack space 
cond3 = 1 if st(ll) = 0 
Remove PI/4 
Get ftst st'atus 
If C3=l, argument is zero 

TAN ST(Il) ST(l)/ST(Il) = Y/X 

Restore stack 
Look at octant angle fell into 
Calculate cosine for octants 
1,2,5,6 

Calculate the sine of the argument. 
sin (A) = t~n(A)/sqrt(l+tan(A)**2) if tan (A) = Y/X then 
sin (A) = Y/sqrt(X*X + y*y) 

fld 
jmp 

st (1) 
short finish sine 

Copy Y value 
Put Y value in numerator 

3-57 



294 
295 
296 
297 
298 
299 
31111 
3H 
3112 
393 
3114 
3115 
3116 
3117 
3118 
309 
3111 
311 
312 
313 
314 
315 
316 
317 
318 
319 
3211 
321 
322 
323 
324 
325 
326 
327 
328 
329 
3311 
331 
332 
333 
334 
335 
336 
337 
338 
339 
349 
341 
342 
343 
344 
345 
346 
347 
348 
349 
3511 
351 
352 
353 
354 
355 
356 
357 
358 
359 
3611 
361 
362 
363 
364 
365 
366 

Ap·113 

The top of the stack is either NAN, infinity, or empty. 
; 
funny-parameter: 

fstp 
jz 

jpo 

st (ll) 
return_empty 

return_NAN 

Remove PI/4 
Return empty if no parm 

Jump if st(II) is NAN 

st(II) is infinity. Return an indefinite value. 

fprem ; ST/l) can be anything 

return NAN: 
return:empty: 

pop 
ret 

bp 

Simulate fptan wi th st (II) II 
, 
sine_argument_zero: 

fldl 
jmp 

Restore stack 
Ok to leave fprem runninq 

; Simulate tan(9) 
; Return the zero value 

The angle was to~ large. Remove the modulus and dividend from the 
stack and return an indefinite result. 

; 
angle_too_big: 

fcompp 
fld indefinite 
pop bp 
fwa it 
ret 

Calculate the cosine of the argument. 

; Pop two values from the stack 
Return indefinite 
Restore stack 
Wait for load to finish 

cos (A) = 1/sqrt(1+tan(A)**2) if tan (A) = Y/X then 
cos (A) = X/sqrt(X*X + y*y) . 

X numerator: 

fld 
fxch 

finish_sine: 

fmul 
fxch 
fmul 
fadd 
fsqrt 

st(II) 
st(2) 

s,t,st (II) 

st,st(II) 

Copy X value 
Put X in numerator 

Form X*X + y*y 

st(II) = x*x + y*y 
st(II) sqrt(X*X + y*y) 

Form the sign of the result. 'The two conditions are the Cl flag from 
FXAM in bh and the CII flag from fprem in ah. 

and 
and 
or 
jpe 

fchs 

posi tive_sine: 

fdiv 
ret 

cosine endp 

bh,high(mask condll) 
ah,high(mask condl) 
bh,ah 
posi tive_sine 

Look at the fprem CII flag 
Look at the fxam Cl, flag 
Even number'of flags cancel 
Two negatives make a positive 

Force result negative 

Form final result 
Ok to leave fdiv running 



367 
368 
369 
3711 
371 
372 
373 
374 
375 
376 
377 
378 
379 
3811l 
381 
382 
383 
384 
385 
386 
387 
388 
389 
3911l 
391 
392 
393 
394 
395 
396 
397 
398 
399 
41111l 
4111 
4112 
403 
404 
4115 
4116 
4 III 7 
4118 
409 
4111 
411 
412 
413 
414 
415 
416 
417 
418 
419 
4211 
421 
422 
423 
424 
425 
426 
427 
428 
429 
4311 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 

; 

Ap·113 

This function will calculate the tangent of an angle. 
The angle, in radians is passed in ST(IIl), the tangent is returned 
in ST(IIl). The tangent is calculated to an accuracy of 4 units in the 
least three significant bits of an extended real format number. The 
PLM/86 calling format is: 

tangent: procedure (angle) real external; 
declare angle real; 
e'nd tangent; 

Two stack registers are used. The result of the tangent function is 
defined for the following cases: 

angle result 

valid or unnormal < 2**62 in magnitude 
III 
denormal 
valid or unnormal > 2**62 in magnitude 
NAN 
infini ty 
empty 

correct value 
III 
correct denormal 
indefinite 
NAN 
indefinite 
empty 

The tangent instruction uses the fptan instruction. Four possible 
relations are used: 

Let R = langle MOD Pl/41 
S = -lor 1 depending on the sign of the angle 

1) tan(R) 2) tan(Pl/4-R) 3) l/tan(R) 4) l/tan (PI/4-R) 

The following table is used to decide which relation to use depending 
on in which octant the angle fell. 

octant 

II 
1 
2 
3 
4 
5 
6 
7 

relation 

S*l 
S*4 

-S*3 
-S*2 

S*l 
5*4 

-S*3 
-S*2 

tangent proc 

fxam 
push 
sub 
mov 
fstsw 
fld 
pop 
lahf 

bp 
sp,size local area 
bp,sp 
status 
pi_quarter 
ax 

jc funny_parameter 

Look at the parameter 
Establish stack addressibility 
Allocate local variable space 

Get fxam status 
Get PI/4 

CF = CII, PF C2, ZF C3 

Angle is unnormal, normal, zero, or denormal. 

fxch 
jpe 

Angle is either an normal or denormal. 

st(lIl) = angle, st(l) PI/4 

Reduce the angle to the range -PI/4 < result < PI/4. 
If fprem'cannot perform this operation in one try, the magnitude of the 
angle must be > 2**62. Such an angle is so large that any rounding 
errors could make a very large difference in the reduced angle. 
It is safest to call this very rare case an error. 

tan normal: 

fprem Quotient in CII,C3,C1 
Convert denormals into unnormals 

3-59 



441 
442 
443 
444 
445 
446 
447 
448 
449 
451l 
451 
452 
453 
454 
455 
456 
457 
458 
459 
461l 
461 
462 
463 
464 
465 
466 
467 
468 
469 
471l 
471 
472 
473 
474 
475 
476 
477 
478 
419 
489 
481 
482 
483 
484 
485 
486 
487 
488 
489 
499 
491 
492 
493 
494 
495 
496 
497 
498 
499 
599 
Sill 
592 
593 
594 
595 
596 
597 
598 
5119 
5111 
511 
512 
513 

mov 
- fstsw 

pop 
test 
jnz 

sp,bp 
status 

bx 

Ap·113 

bh,high(mask cond2) 
ang Ie _too _big 

See if the angle must be reversed. 

Assert: -PI/4 < st(ll) < PI/4 

fabs 

test 
jz 

bh,high(mask condl) 
no _tan _reverse 

Allocate stack spce 
Quoti~nt identifies octant 
original angle fell into 
tan(PI*N+x) x tan (x) 
Test for complete reduction 
Exit if angle was too big 

Il <- st(ll) < PI/4 
Cl in bx has the sign flag 
must be reversed 

Angle fell in octants 1,3,5,7. Reverse it, subtract it from PI/4. 

fsub 
jmp short do_tangent 

Angle is either zero or an unnormal. 
; 
tan_zero_unnormal: 

fstp 
jz 

stIll 
tan_angle_zero 

Angle is an unnormal. 

call normalize value 
jmp tan normar 

pop 
ret 

bp 

Reverse angle 

Remove PI/4 

Restore stack 

Angle fell in octants 11,2,4,6. Test for st(ll) D 9, fptan won't work. 

no tan reverse: 

ftst 
mov 
fstsw 
fstp 
pop 
test 
jnz 

do_tangent: 

fptan 

a fter _tangent: 

sp,bp 
status 
stIll 
cx 
ch,high(mask cond3) 
tan_zero 

Test for zero angle 
Allocate stack space 
C3 = 1 if st(ll) = Il 
Remove PI/4 
Get ftst status 

tan ST(Il) ST (1) /ST(9) 

Decide on the order of the operands and their sign for the divide 
operation while the fptan instructIon is working. 

pop 
mov 
and 

test 

jpo 

bp 
al,bh ; 
ax,mask condl + high(mask cond3); 

; 
bh,high(mask condl + mask cond3); 

reverse_divide 

Angle was in octants ~,3,4,7. 

Restore stack 
Get a copy of fprem C3 flag 
Examine fprem C3 flag and 
fxtract Cl flag 
Use reverse divide if in 
octants 1,2,5,6 
Notel parity works on low 

8 bits onlyl 

Test for the sign of the result. Two negatives cancel. 

or, al,ah 
jpe positive_divide 

3-60 



514 
515 
516 

- 517 
518 
519 
521l 
521 
522 
523 
524 
525 
526 
527 
528 
529 
531l 
531 
532 
533 
534 
535 
536 
537 
538 
539 
541l 
541 
542 
543 
544 
545 
546 
547 
548 
549 
551l 
551 
552 
553 
554 
555 
556 
557 
558 
559 
561l 
561 

fchs 

positive_divide: 

fdiv 
ret 

fldl 
jmp 

AP·113 

a fter _tangent 

Angle was in octants 1,2,5,6. 
Set the correct sign of the result. 

reverse_divide: 

or al,ah 
jpe positive_r_divide 

, Force result negative 

Forll result 
Ok to leave fdiv running 

Force l/Il tan(PI/2) 

fchs Force result negative 

positive_r_divide: 

fdivr 
ret 

tangent endp , 

Form reciprocal of result 
Ok to leave fdiv running 

This function will normalize the value in st(Il). 
Then PI/4 is placed· into st (1) • 

; 
normalize value: 

fabs 
fxtract 
fldl 
!add 
fsub 
fscale 
fstp 
fld 
fxch 
ret 

code ends 
end 

st(l),st 

stIll 
pi _quarter 

Force value positive 
Il <= st(ll) < 1 

, Get normalize bit 
1 Normalize fraction 

Restore original value 
Porm original normalized 
Rellove scale factor 
Get PI/4 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

3-61 

value 



©, INTEL CORPORATION, 1981 

APpLICATION 
NOTE 

3-62 

AP·122 

September 1981 

210202;001 



AP·122 

I. INTRODUCTION 

This application note describes the design of a disk con­
troller for a Shugart SA4008 Winchester disk drive. An 
8089 I/O processor is used to offload many of the disk 
control overhead tasks from the host processor. The in­
telligent controller maximizes system throughput by 
performing the disk control tasks concurrently with 
data processing by the host processor. The features of 
the 8089 110 processor which make it ideal for disk con­
trol applications are also described. 

As newer microprocessors provide more throughput 
and address more memory, larger and more complex 
microprocessor based applications are designed. Many 
of these applications require high performance and high 
capacity mass storage devices such as hard disk drives. 
Winchester-technology (filtered air system and non­
removable platters) disk drives are cost and perfor­
mance compatible with high performance micro­
processors. These drives provide more performance and 
reliability than floppy disk drives yet are less expensive 
than removable platter disk drives of comparable per­
formance. 

For applications requiring high performance disk 
drives, a major task of the system designer is the design 
of the disk controller-the interface between the high 
performance processor and disk drive. The conven­
tional approach (Fig. I) is to develop specialized control 

A 

~ 

HOST A 1\ 
PROCESSOR 

~ I' 

circuitry which interfaces the disk drive to the host 
processor's system bus. The host has complete control 
over the disk drive and executes a separate command se­
quence for each function-such as seek, format.or read 
data. The host is assisted by a DMA (direct memory 
access) controller which performs the high speed trans­
fers of read or write data between the drive interface 
and the system memory. Any error processing, such as 
CRC (cyclic redundancy check) error checking and in­
itiating retries, is also performed by the host processor. 
A major disadvantage of this approach is that a large 
portion of the host's time and bus bandwidth is con­
sumed by disk control overhead (command execution, 
interrupt servicing, and error processing) leaving little 
time for data processing. 

A better approach is to partition the system functions 
and implement an intelligent disk controller which 
would perform the overhead tasks and free more host 
processor time for data processing. This intelligent con­
troller would" be able to accept a single high level com­
mand and perform multiple functions such as seek, read 
data, and process errors. Here the host has more time 
for data processing since it generates one high level com­
mand rather than several simple commands. It also ser­
vices only one interrupt at the completion of the high 
level command rather than several. 

The system configuration of an intelligent disk con­
troller based on the Intel 8089 110 processor is shown in 

DISK CONTROLLER r-----, 
t\ I I 

~ 
) 

PARALLEL : V 
I' 110 IA 

I l~ I 
I I I 

CONTROL 

STATUS 

S 
Y 
S 
T 
E 
M A I ~ 

I 
SERIAU 

I 
WRITE DATA 

SYSTEM A 1\ 
MEMORY 

~ I' 

B 
U 
S 

l\f 

A 

~ 

PARALLEL 

I 
-V CONVERTER 

I 
READ DATA 

L ____ .J 

1\ DMA 
I' CONTROLLER 

Figure 1. Conventional Disk Controller System Configuration 

3-63 AFN02057A 



AP~122 

Figure 2 where it is used in conjunction with an 8086 
CPU as, the host processor. This type of system con­
figuration is called the iAPX 86/11 since it contains an 
8086 IUld an 8089. The 8089 I/O processor is ideal for 
implementing an intelligent controller since it provides 
processing capabilities well suited for controlling a disk 

,drive and high speed DMA transfers for moving data to 
and from, the disjc drive. The 8089 also supports a 
private local bus which provides access to the drive con­
trol circuitry, program memory, and local data buffers. 
This minimizes, access to the shared system bus and 
hence increases overall system throughput. It will be 
seen later that local data buffering allows: 

.:.. high speed burst transfers without overrun and 
underrun errors 

- disk controller operation at lower system bus priority 
than the host to maximize host processing 

- error detection and retries directly by the disk con-
troller without host intervention 

The 8089-based disk controller maximizes system 
throughput. The disk control overhead tasks are off­
loaded from the host and performed by the 8089. This 
frees host processor time for data processing and other 
control processing. Host processor performance is 
reduced when both the host and 8089 try to access the 
system bus at the same time. These system bus conflicts 
can only occur when the 8089 accesses the system 
bus-during the accessing of memory-based com­
munication blocks (used for transferring command and 

status information) and during sector data transfers be­
tween the system memory buffer and the 8089's local 
data buffer. For a sirigle drive, this can mean host proc­
essor performance degradation of no more than 3070. 
With the conventional approach of Figure 1, the degra­
dation can approach 10Vfo due to CPU overhead time to 
control the disk operation and system bus time used by 
the DMA controller. Thus the 8089-based controller 
allows significantly more processing by the host, espe­
cially when multiple drives are supported. 

This application note describes how basic disk control 
functions are implemented with an 8089. Therefore, the 
design described here does not exhibit all features pos­
sible in an intelligent controller. However, the hardware 
design allows the software to be easily enhanced to pro­
vide extra features. A later section addresses software 
enhancements. 

The application note begins with an overview of the 
8089 I/O proCessor followed by a brief description of 
the SA4008 drive. Next it discussion of the implemented 
functions is provided. A detailed description of the 
hardware and software design is then presented. Finally, 
a discussion of possible enhancements concludes the 
note. 

Additional information related to topics discussed in 
this application note can be found in the following Intel 
documents: 

The 8086 Family User's Manual 

DISK CONTROLLER r------- ---I 
8086 
HOST 

PROCESSOR 

LOCAL 
MEMORY 

SYSTEM 
BUS 

INTERFACE 

S 
Y 
S 
T 
E 
M 

B 
U 
S 

SYSTEM 
MEMORY 

I 
I 
I 
I 

8089 
UO 

PROCESSOR 1-________ ..., 

SYSTEM 
BUS 

INTERFACE ",--" 

LOCAL 
BUS 

INTERFACE 

LOCAL 
, MEMORY 

I 
I 
I 

L __________ --1 

Figure 2. Intelligent Disk Controller System Configuration (IAPX 86111) 

3-64 

CONTROL 

STATUS 

WRITE 
DATA 

READ 
DATA 

AFN02067A 



Ap·122 

Intel Multibus Specification 

iSBC 86/l2A Hardware Reference Manual 

iSBC 604/614 Cardcage Hardware Reference Manual 

ICE-86 In-Circuit Emulator Operating Instructions for 
. ISIS-II Users 

RBF-89 Real-Time Breakpoint Facility Operating In­
structions for ICE-86 In-Circuit Emulator Users 

8089 Macro Assembler User's Guide 

In addition, the following documents from Shugart 
Associates provides detailed information on the disk 
drive: 

SA4000 Fixed Disk Drive OEM Manual 

SA4000 Fixed Disk Drive Service Manual 

II. INTEL@ 8089110 PROCESSOR 

This section briefly describes the 8089 110 processor's 
features and modes of operation. A more detailed dis­
cussion can be found in The 8086 Family User's Manual 
(October 1979). 

A block diagram of the 8089 110 processor is shown in 
·Figure 3. The 8089 provides two independent channels. 
Both channels can execute task program instructions 
and perform high speed DMA transfers. Each channel 
has its own register set to support these operations. 

A channel starts operation by executing task program 
instructions. These instructions are conceptually similar 

CA 

ull-----:----I 
l1 TASK POINTER 
~I----~ 
() 1/0 CONTROL 

I------Iul 
TASK POINTER l1 
I----~ .. 

l: 
1/0 CONTROL U 

1 1 t t 
ORO 1 EXT 1 SINTR·l ORO 2 EXT 2 SINTR·2 

to instructions of other microprocessors but are typi­
cally executed to prepare the channel and I/O device for 
DMA transfers. Execution of the XFER (transfer) in­
struction switches the channel from instruction execu­
tion mode to DMA mode and high speed data transfer 
cycles are performed. When the DMA transfer termi­
nates, task program instruction execution resumes for 
any post-DMA processing (e.g., status analysis, error 
processing, etc.). One channel or two channels may be 
operating at any given time. When two channels are ac­
tive, they operate in a time-multiplexed manner sharing 
a common multiplexed address/data bus. A flexible pri­
ority structure allows both channels to operate with 
equal priorities or either channel to operate at a higher 
priority. 

The 8089's bus structure and timing are identical with 
other members of the iAPX 86 and iAPX 88 families, 
such as the 8086 CPU and 8087 numeric processor ex­
tension. This allows the bipolar support circuits of the 
iAPX 86 and 88 families (8284A clock generator, 8288 
bus controller, 8289 bus arbiter, etc.) to be used with the 
8089. The 8089 generates 20 address signals and, 
depending on how it is initialized, supports an 8- or 
16-bit data bus. This provides compatibility with the 
16-bit 8086 CPU or the 8-bit 8088 CPU. 

Both channels can access a 1 megabyte system address 
space and a 64 kilobyte local address space. Each ad­
dress space accommodates both memory and 110 
devices. This allows task program execution, memory 
data access, and 110 de~ice access in both system and 
local address spaces. Task program and DMA access of 
the two address spaces is discussed later. 

BHE 

FIgt.re 3. 8089 I/O Prqcessor Block Diagram 

3-65 AFN02057A 



Ap·122 

The 8288 bus' controller used with the 8089 provides 
separate command signals for each address space. The 
bus controller's memory read and write commands pro­
vide access to the system address space and the I/O read 
and write commands are used to access the local address 
space. Separate commands for each address space allow 
two external buses to be implemented which promotes 
concurrent processing between the 8089 and the host 
processor and increases system throughput. 

In addition, the 8089 allows these physical buses to be 
either 8 or 16 bits wide. During the 8089's initialization 
sequence, the widths of the system and local buses are 
dermed. Although the 8089 supports two buses, a single 
bus may be used which is shared with a CPU. This will 
be described later when local and remote mode con­
figurations are discussed. 

The interface signals used to communicate with a host 
processor are also shown in Figure 3. The channel atten­
tion (CA) and select (SEL) input signals are used to start 
channel operation. Both signals are activated simul­
taneously by the host. SEL selects channel 1 or channel 
2 (0 or 1, respectively). The SINTRI and SINTR2 out­
put signals are used to interrupt the host processor. One 
of these signals is activated whenever the set interrupt 
instruction, SINTR, is executed. SINTRI is activated by 
channel 1 and SINTR2 by channel 2. The memory­
based communication structure used to transfer com­
mand and status information between the 8089 and the 
host processor is discussed in a later section. 

8088 
CPU 

R"Q/GT 

8288 
BUS 

CONTROLLER 

LATCHES & 
TRANSCEIVERS 

System Configurations 
Systems using the 8089 may be configured in one of two 
different ways-local mode or remote mode. In the 
local configuration, the 8089 provides capabilities of an 
intelligent DMA controller for a single CPU. In the 
remote configuration, the 8089 provides capabilities of 
a control processor and a DMA controller and can 
operate concurrently with one or more host processors. 

Local Mode Configuration 
In the local mode configuration, the 8089 resides on the 
same local bus as an 8086 or 8088 CPU and shares the 
clock generator, address latches, data transceivers, and 
bus controller with the CPU. An example of a local 
mode iAPX 88/11 (8088 CPU and 8089 I/O processor) 
configuration is shown in Figure 4. 

The 8089 is a slave to the CPU in local mode configura­
tions and access to the shared bus is controlled by the 
bidirectional request/grant (RQ/GT) line. The CPU has 
possession of the bus when system operation begins. 
Whenever the 8089 needs access to the bus, it signals the 
CPU of this need by pulsing the ru::!/GT line. The CPU 
may be presently accessing the bus. As soon as the CPU 
is finished with the bus, it pulses the RQ/GT line. The 
8089 receives this grant pulse and accesses the bus. 
When the 8089 is finished using the bus, the 8089 pulses 
the RQ/GT line to notify the CPU that it has released 
the bus. 

Once the 8089 acquires the bus, it retains buS possession 
until finished. The request/grant protocol provides no 

Figure 4. Typical Local Mod~ Configuration (iAPX 88111) 

3-66 AFN02057A 



AP·122 

mechanism for the CPU to regain the bus from the 
8089. Care should be used when selecting this ConfIgura­
tion since frequent or lengthy periods of 8089 activity 
can limit the CPU's use of the bus. However, the local 
mode confJguration is'an economical technique for add­
ing intelligent, high speed DMA transfer capabilities to 
the system. 

In local mode configurations, the 8089's 1 megabyte 
system address space coincides with the CPU's memory 
address space and the 64 kilobyte local address space 
coincides with the CPU's 110 address space. This means 
that when the 8089 accesses its system space or when the 
CPU accesses its memory space, the 8288 bus control­
ler's memory read or write command is activated. When 
the 8089 accesses its local space or when the CPU ac­
cesses its 1/0 space, the bus controller's 1/0 read or 
write command is activated. 

The 8089's physical data bus widths must be defined the 
same as the CPU's during the initialization sequence (to 
be discussed later) in local mode configurations. With 
an 8088 CPU the 8089's system and local physical bus 
widths must be initialized as 8 bits. When used with an 
8086 CPU, both buses must be initialized as 16 bits. 

Although the 8089 can execute programs and access 
memory and 1/0 devices from its two address spaces, 
several rules should be followed to ensure compatibility 
with the CPU. Data memory that is shared with the 
CPU must be accessed in the 8089's system address 
space. 1/0 devices which are accessed by the CPU in its 
1/0 address space must be accessed in the 8089's local 
address space. Other memory and 1/0 devices accessed 
by the 8089 only may reside in either the 8089's system 
or lo~ address space. 

Remote Mode Configuration 
In the remote mode configuration, a shared system bus 
with memory provides communications between the 
host processor and the 8089 1/0 processor (Fig. 5). The 

HOST 
PROCESSOR 

MODULE 

8089 
I/O 

PROCESSOR 
MODULE 

SHARED 
MEMORY 

Figure 5. Remote Mode Configuration 

3-67 

8089 supports two independent externally.implemented 
physical buses (Fig. 6). One bus is the shared system bus 
and'the other is a private local bus. The system bus 
interface contains address latches, data transceivers, a 
bus controller, and a bus arbiter. The host processor 
uses an identical interface to access the system bus. The 
8289 bus arbiter controls access to the system bus and is 
responsible for acquiring and surrendering the bus 
based on system priorities. The local bus interface con­
tains address latches and data transCeivers (if required 
by loading conditions). 

The 8089's 1 megabyte system address space is used to 
access the shared system bus and the 64 kilobyte local 
address space is used to access the private local bus. A 
single 8288 bus controller provides command signals for 
both the system and local buses. The memory read and 
write commands are used to access both memory and 
1/0 devices on the system bus. The 1/0 read and write 
commands are used when accessing memory or 1/0 
devices on the local bus. 

The physical widths of the system and local buses may 
be 8 or 16,bits. The widths are defined during the in­
itialization sequence (to be discussed later). All four bus 
width combinations are available: 

8-bit system bus and 8-bit local bus 

8-bit system bus and 16-bit local bus 

16-bit system bus and 8-bit local bus 

16-bit system bus and 16-bit local bus 

figure 6. Typical 8089 110 Processor Module 
(Remote Mote) 

AFN02C57A 



AP·122 

The system bus width is typically established by the host 
processor. A 16-bit system bus is usually used with a 
16-bit host while an 8-bit bus with an 8-bit host. The 
local bus width is typically selected based on the peri­
pheral devices supported-8-bit bus with 8-bit peri­
pherals and 16-bit bus with 16-bit peripherals. A 16-bit 
local bus is selected when both 8- and 16-bit peripherals 
are supported since it allows task program and DMA ac­
cessing of both 8- and 16-bit 1/0 devices. DMA capa­
bilities are discussed later. Memory devices are con­
figured so that the width of the memory's data path is 
the same as the physical bus. 

Communications With Host Processor 

Communications between the host processor and the 
8089 110 processor are primarily through shared 
memory. The hardwired signals (CA and SEL to the 
8089 and SINTRI and SINTR2 from the 8089) are used 
as startup and interrupt signals. Memory-based commu­
nication is implemented through a series of five linked 
control blocks (Fig. 7). This feature provides a very flex­
ible communication structure and aJlows the 8089 to 
handle a wide variety of 1/0 functions. 

The first three linked blocks in the' communication 
structure are used during the 8089' s initialization se­
quence (Fig. 8). The system configuration pointer (SCP) 
and system configuration block (SCB) are used only 
during initialization. Initialization is required after a 
RESET signal is received by the 8089. When the first 
channel attention after reset is received, the initializa­
tion sequence begins and the 8089 reads the data in the 
system configuration pointer. The parameter SYSBUS 
defines the physical width of the system bus (8 or 16 
bits). The SCB offset and segment base point to the se­
cond block, the system configuration block (SCB). The 
8089 next reads the data in the SCB. The SOC param­
eter defines the local bus's physical width and re­
quest/grant mode (refer to The 8086 Family User's 
Manual). The CB offset and segment base point to the 
channel control block (CB). The 8089 clears (zeros) 
channell's BUSY byte in the CB which completes the 
initialization sequence. With subsequent channel atten-

/ tions, the 8089 directly accesses the CB as described 
below. 

The SCP, SCB and CB must reside in shared memory 
since both the host and the 8089 access them. The SCP 
must begin at OFFFF6H while SCB and CB locations are' 
user-defined. The SCP is typically located in ROM 
while the SCB and CB are in RAM. With the SCP in 
ROM, the SCB's location remains fixed once defined. 
Since each 8089 must have a unique CB, the SCB (which 
points to the 8089's CB) must be placed in RAM if mul­
tiple 8089' s exist in the system. This aJlows each 8089 to 

be in-RAM since certain parameters are updated during 
8089 operation (e.g., BUSY byte). 

The channel control, parameter and task blocks are 
used whenever the host starts channel operation. The 
host initializes certain parameters in the channel control 
and parameter blocks before generating the channel 
attention signal. When the 8089 receives a channel 
attention signal, the proper half of the CB is accessed 
depending on the value of SEL (0 for channel I and I 
for channel 2). The CCW (channel control word) in­
structs the selected channel what action to perform, 

HIGH MEMORY 

"mM I SCB SEGMENT BASE }-CONFIGURATION 
SCB OFFSET POINTER 

• (SCP) I SYSBUS 

}-"mMI 
CB SEGMENT BASE 

CONFIGURATION CB OFFSET 
BLOCK 

(SCB) I SOC 

PB2 SEGMENT BASE 

PB2 OFFSET 
CHANNEL 

I CONTROL BUSY CCW 
BLOCK 

(CB) 

}-PBl SEGMENT BASE 

PB10FFSET 

BUSY I CCW I+--

I J 
PARAMETER 

BLOCK 
(PB1) TBl SEGMENT BASE }~ TB10FFSET 

,m/ I L CHANNELl 
BLOCK 1 TASK PROGRAM 

(TB1) 

LOW MEMORY 

be initialized and directed to its own CB. The CB must Figure 7. Memory B,ased Communication Blocks 

3-68 AFN02057A 



AP·122 

, 
HIGH SYSTEM MEMORY 

FFFFEH 
(RESERVED) 

, FFFFCH 

SCB SEGMENT BASE }- FFf'FAH 

SCBOFFSET FFFF8H SYSTEM 
CONFIGURATION (RESERVED) I SYSBUS FFFF6H POINTER 
(FIXED LOCATION) FFFF4H 

8088/8088 
FFFF2H RESET LOCATION 

FFFFOH 

\ 

}-SYSTEM CB SEGMENT BASE 

CONFIGURATION CBOFFSET BLOCK 
(USER·DEFINED LOCATION) (RESERVED) I SOC I--

, 

C (RESERVED) 
H 
A PB2 SEGMENT BASE 

}-- CHANNEL 2 ' \ N 
- .. PARAMETER BLOCK N 

PB2 OFFSET E 
CHANNEL L 

BUSY I CCW CONTROL 2 
BLOCK C (RESERVED) 

(USER· DEFINED LOCATION) H 
A PB1 SEGMENT BASE 

}-- - .. ~~:::~;E~ BLOCK 
N 
N PB10FFSET E 
L 

BUSY I CCW t--1 -
LOW SYSTEM MEMORY 

, 

Figure 8. Initialization Control Blocks 

such as start, suspend, resume, or halt task program 
execution. The BUSY byte is set to OFFH by the 8089 if 
task program execution is started or resumed. The 8089 
clears it to OH if task program execution is suspended or 
halted. Within the channel control ,block, PBI offset 
and segment base point to the parameter bloclc for chan­
nel I and PB2 offset and segment base point to the 
parameter block for channel 2. From the proper param­
eter block, the 8089 reads the task block (TBI or TB2) 
offset and segment base which point to the task pro­
gram~ The task block address must be the first two 

words of the parameter block. All other parameters in 
the PB are user-deflned allowing parameters to be tail­
ored to a specific I/O task. 

Of all the five linked blocks, only the task block may 
reside either in system or local memory. For remote 
mode configurations, the task block typically resides in 
local m~oty to obtain maximum system performance. 
However, executing task programs from system 
memory is advantageous for initial debugging or for ex­
ecuting a task program that downloads another task 
program from s!stem memory to local RAM. 

3-69 AFN02057A 



AP-122 

DMA Capabilities 
The 8089's high speed DMA capability is ideal for disk 
controller applications. The maximum DMA transfer 
rate with a 5 MHz clock is 1.25 megabytes/sec. Conven­
tional DMA controllers use a single bus cycle and gate 
data from the source device (memory or I/O) to the 
destination device. However, the 8089's DMA transfer 
uses two bus cycles. The fIrst bus cycle reads the data 
fFom the source device and the second bus cycle ,writes 
the data to the destination device. The advantages of 
two cycle DMA are discussed in a later section. 

All possible combinations of source and destination 
device specifIcations are available. Both source and 
destination may be memory or an I/O device. This 
means that memory to memory, I/O to I/O, and 
memory to or from I/O DMA transfers are available. In 
addition, DMA transfers between system and local ad­
dress spaces or within the same address space can 'be 
specifIed. 

Both memory and 110 devices (source and destination) , 
are specifIed as addresses either in the system or local 
address space. These address values are loaded into 
source and destination pointer registers. After each 
word or byte is transferred, a register used as a memory 
pointer is incremented by one for byte transfers or by 
two for word transfers. A register used as an I/O device 
pointer is not modifIed. Registers used as DMA memory 
pointers are incremented only. No provisions exist for 
decrementing memory pointer registers during DMA. 

DMA Synchronlza~ion 
To accommodate a wide range of I/O device transfer 
rates, the 8089 allows DMA transfers to be synchro­
nized. Each byte or word is transferred between the I/O 
device and the 8089 upon receiving a DMA request 
synchronizing signal from the 110 device. Each channel 
,has a DMA request input: DRQl for channel 1 and 
DRQ2 for channel 2. Three options exist When specify­
ing DMA transfer synchronization. DMA transfers may 
be source synchronized, destination synchronized, or 
unsynchronized. 

During source synchronized DMA transfers, the chan­
nel waits until the DMA request input is activated by the 
source device before reading the data. External circuitry 
decodes the source device's address and provides a 
DMA acknowledge signal to the source device allowing 
it to deactivate the DMA request signal. Immediately 
after readirg the data, the 8089 writes it to the destina­
tion device. The next read and write cycles begin when 
the source device activates DMA request again. Source 
synchronized DMA transfers are typically used when 
transferring data from an I/O device to memory. 

During destination synchronized DMA transfers, the 
channel reads the data from the source device and waits 
for the DMA request signal before writing the data to 
the destination device. Similar to source synchroniza­
tion, the DMA acknowledge signal is generated by 
decoding the destination device's address. This type of 
synchronization is commonly used when transferring 
data from memory to an 110 device. 

The fInal synchronization option is to specify no synch­
ronization. Here the DMA request input is not exam­
ined and the channel transfers data' without waiting for 
a request. This specifIcation is usually reserved for 
memory to memory transfers. The channel runs at full 
memory speed. Wait states may be used when accessmg 
slow memory devices or when waiting to access the 
shared system bus. 

DMA latency is the time required for the 8089 to re­
spond to a DMA request; i.e., the time from DMA re­
quest signal activation until the synchronized bus cycle 
begins. DMA latency is due to DMA request propaga­
tion through internal pipelined control circuitry. The 
maximum DMA latency time when one channel is active 
and waiting for DMA 'request is 6 clocks. When both 
channels are active, the latency time may be up to 12 
clocks. 

Due to DMA latency, the DMA request signal cannot be 
used to synchronize transfers when the transfer rate of 
the I/O device is close (greater than 0.7 megabytes/sec 
when one channel is active) to the maximum transfer 
rate ofthe 8089, 1.25 megabytes/sec. F.or this case, wait 
states may be used to synchronize transfers. Since hard 
disk drives are in this category, the disk controller 
described in this application note uses wait states to 
synchronize disk transfers. 

Advantages of Two Cycle DMA 
The two bus cycle implementation of DMA transfers 
allows enhanced DMA capabilities. Data transfers be­
tween source and destination devices with different data 
widths may be specifIed. For example (Fig. 9), a DMA 
transfer cycle from an 8-bit I/O device to 16-bit memory 
is accomplished by reading two bytes from the I/O de­
vice (two bus cycles), assembling the bytes into a word, 
and then writing a 'single word into memory (one bus cy­
cle).' Here buses are accessed effIciently since three bus 
cycles are required as compared to four bus cycles if a 
single byte at a time Vl(ere read and written. In the same 
eXll!11ple, since the 16-bit memory resides on the shared 
system bus, 50070 fewer system bus accesses are required 
and overall system throughput may be increased. 

Use of this bus matching DMA feature involves specify­
ing logical J;>MA source and destination bus widths with 

3-70 AFN02057A 



Ap·122 

a·BIT 
MEMORY 

a·BIT 
1/0 

DEVICE 

8089 

l6·BIT 
MEMORY 

Figure 9. 8·Blt 1/0 to 16·Blt Memory DMA 

the WID instruction. This allows DMA transfers to or 
from 8-bit 110 devices which reside on a 16-bit bus. The 
only restriction is that the logical bus width may not ex­
ceed the physical width. Thus 8- or 16-bit transfers may 
be performed with a 16-bit bus while only 8-bit transfers 
are permitted with an 8-bit bus (Fig. 10). Synchronized 

l6·BIT 
MEMORY 

a'BIT 
I/O 

DEVICE 

a AND l6·BIT 
LOGICAL WIDTHS 

l60BIT 
I/O 

DEVICE 

DMA transfers between dissimilar width logical buses 
may have more than one synchronized bus cycle. For ex­
ample, destination synchronized transfers from 16-bit 
memory to an 8-bit I/O device perform two synchro­
nized 8-bit write bus cycles for each l6-bit fetch from 
memory. 

8089 

a·BIT 
MEMORY 

a·BIT LOGICAL 
- WIDTH ONLY -

Figure 10. Logical Bus Widths for DMA Transfers 

3-71 AFN02057A 



AP·122 

Another feature derived from the two bus cycle DMA 
approach is character translation during DMA mode. 
Byte data may be translated via a 256-byte translation or 
lookup table. During each DMA transfer cycle, a byte 
of data is read from the source device, the data byte is 
translated, and then the translated byte is written to the 
destination device. Three bus cycles are required here 
since the translation requires a fetch cycle from 
memory. 

Two bus cycle DMA also allows DMA transfers to be 
terminated based on masked comparison of the trans­
ferred data. This is discussed in the next section. 

DMA Termination 

The 8089 allows several conditions to terminate DMA 
transfers. One condition or several conditions may be 
specified. When several conditions are specified, DMA 
transfers are terminated when anyone condition is 
detected. In addition, different task program re-entry 
points may be specified for each condition. This permits 
special post-DMA' processing based on the terminate 
condition. Task program re-entry points are specified as 
offsets which are added to the task pointer. Three off­
sets are available: 0, 4, or 8. These offsets permit long or 
short jumps to termination routines. When more than 
one terminate condition occurs simultaneously, task 
program execution is resumed at the largest offset of the 
simultaneously occurring terminate conditions. An ex­
ception to this rule exists. The byte count terminate con­
dition has highest priority and its offset is used if this 
terminate condition occurred. 

DMA transfers can be terminated when the byte count 
(BC) register, which is decremented after each byte or 
word is transferred, reaches zero. The 16-bit BC register 
is initialized by task program instructions before the 
DMA transfer is started and permits data transfers of 
up to 64 kilobytes to be terminated. Each channel has an 
external terminate (EXT) input which can be activated 
by external circuitry to terminate the DMA transfer. 
Another condition allows termination based on masked 
comparison of transferred data. As byte data is trans­
ferred, an 8-bit mask value selects which bits of the data 
are compared with corresponding bits of an 8-bit com­
pare value. Terminatioll can be specified to occur either 
when a match occurs or does not occur. Examples using 
this terminate condition are transferring data until an 
EOF character is detected (match) and transferring data. 
while bit 7 = 1 (mismatch). A final terminate condition 
called single transfer allows a single byte or word to be 
transferred. 

Register Set 

The register set of the 8089 is presented in Figure 11. 
Each channel has its own set of registers, except for the 

TAG 
19 0 

O.P.ADDRESSA (OA) 

G.P. ADDRESS B (OB) t-
O.P. ADDRESS C (OC) t-
TASK POINTER (TP) t-

15 

INDEX (IX) 

BYTE COUNT (BC) t-
MASK I CMPR t-

CHANCNTL (CC) t-
a 0 

~I~--~--~~--" PARAMETER PNTR (PP) ! 
19 

I CHAN CNTL PNTR (CP) 

Figure 11. 8089 Register Set 

channel control pointer register (CP) which is shared by 
both channels. This register is 20 bits in size and is used 
to access the channel control block whenever a channel 
receives a channel attention signal. Each channel has a 
20-bit parameter pointer register (PP) which provides 
access to the parameter block. The common CP register 
is initialized during the 8089's initialization sequence 
while the PP registers are initialized whenever a channel 
attention signal is received. Therefore, the CP and PP 
may be read during task program execution, but cannot 
be changed. 

Each channel has four 20-bit registers, each with an 
associated tag bit. The tag bit is used whenever the regis­
ter is used as a pointer and indicates which address space 
(system or local) is accessed. If the tag bit is equal to 0, 
the 1 megabyte system address space is accessed using all 
20 bits of the register. However, if the tag bit is equal to 
1, the 64 kilobyte local address space is accessed using 
the lower' 16 bits of the register. Instructions that initial- . 
ize these registers either set or clear the tag bit. The load 
pointer instruction clears the tag bit, the move instruc­
tion sets the tag bit, and the move pointer instruction 
which moves data from memory into the register's 20 
bits and tag bit either sets or clears the tag bit based on 
the contents of the referenced memory location. 

The task pointer register (TP) is used as a task program 
counter. The remaining three 2O-bit registers (GA, GB, 
and GC) are general-purpose registers. During task pro­
gram execution, they may be used for data manipula­
tion or as pointers. During DMA mode, the GA and GB 

. registers point to source and destination devices and if 

3-72 AFN02057A 



Ap·122 

the translation option is specified, the GC register 
points to a 2S6-byte translation table. Two source/ 
destination register specifications are possible: (1) GA 
points to the source and GB to the destination and (2) 
GB points to the source and GA to the destination. 

Four 16-bit registers are also included in each channel's 
register set. The index register (IX) may be used by task 
program instructions to access memory and I/O 
devices. The address of the memory or I/O device is 
computed by adding the contents of IX with the con­
tents of the specified pointer register. The byte co.unt 
register (BC) can terminate DMA transfers. The mask/ 
compare register (MC) may be used to perform masked 
compare operations during task program execution or 
masked compare DMA terminations. The channel con­
trol register (CC) specifies the details of DMA transfers 
(refer to The 8086 Family User's Manual). Although 
these four 16-bit registers have special functions at 
times, they may also be used as general-purpose regis­
ters for data manipulation. Use of the CC register for 
general-purpose functions is not recommended when 
both channels are simultaneously used since the chain 
bit specifies channel priority. 

Instruction Set 
In addition to intelligent, high speed DMA transfers 
which make the 8089 well-suited for 110 processing, the 
set of S3 instructions is tailored for I/O operations 
rather than data processing. Task programs are pri­
~arily used to prepare for and initiate DMA transfers 
and to perform post-DMA status checking. Included in 
the instruction set are data transfer, arithmetic, logical 
and bit manipulation, program transfer, and processor 
control instructions. 

Data transfer instructions move information between 
registers and memory or I/O devices. Movement of data 
between any two devices in either address space is easily 
accomplished with the MOV instruction. This includes 
memory to memory and 110 to I/O trensfers. Arith­
metic instructions such as' add, increment, and decre­
ment are provided for simple computations (e.g., 
pointer manipulation) required in 110 processing. The 
logical and bit manipUlation instructions are especially 
'useful in the 110 environment to mask data and set or 
clear ,bits. 

Procedure calls and conditional and unconditional 
Jumps are provided with the program transfer instruc-' 
tions. Jump if masked compare equal or not equal and 
jump if bit true or false instructions are also included In 
this group. Finally, the processor control instructions 
perform test and set while locked operations (sema­
phore access), define logical DMA bus widths, initiate 
DMA transfers, activate the SINTR interrupt output 
lines, and halt task program execution. 

3-73 

Special Design Considerations 
Most interrupt signals reCeiVed by the 8089 are used to 
synchronize DMA transfers and the 8089's DMA re­
quest (DRQ) inputs support these interrupts. The 8089 
also supports non-DMA related interrupt signals. 

Most non-DMA interrupts are used to synchronize 
channel program execution with some externlll event. 
Here channel program execution is suspended and the 
channel waits until the synchronizing signal is received 
before resuming task program execution. A disk control 
example is waiting for the INDEX signal before for-, 
matting the track. ' 

A dummy DMA transfer can be used to implement this 
function. This is a synchronized, externally terminated 
DMA transfer where no data is actually transferred. 
The DMA request (DRQ) signal is held inactive and the 
channel executes idle cycles while waiting for either 
DRQ or EXT (external terminate) signals. 

No bus cycles are executed by the channel during idle 
cycles. The channel's EXT input is used to receive the 
synchronizing signal. When received, 'the dummy DMA 
transfer is terminated and channel program execution 
resumes. The dummy DMA transfer can also be viewed 
as the iAPX 86/IO's WAIT instruction. 

This concept can also be applied when two channels are 
operating. For example, one channel may be waiting for 
a synchronizing signal while the other channel is o~­
ating. Here the second channel can execute at full speed 
since, the first' channel is e~ec1,Jting i~le cycles. 

One application of this two channel approach is to per­
form two independent DMA transfers in rapid succes­
sion. After the first DMAtransfer, conditions are tested 
to determine if the second DMA transfer is performed. 
One channel (e.g., channel I) initialize~ its registers for 
the second DMA transfer and executes'a dummy DMA 
transfer. Next, the other channel (e.g., channel 2) ini­
tializ~s its registers f!Jr the first riMA transfer. Channel 
2 performs the first DMA trlUlsfer, activates channell,:s 
EXT input, and halts. Channell resumes task program 
execution and determines whether conditions permit the 
second DMA transfer. If the proper conditions are' pre­
sent, the DMA transfer is performed. The two DMA 
transfers are performed in rapid succession because 
both channels initialized their registers before either 
DM,A transfer was' performed. A single channel im­
plementation must re-initializeits ~egisters after the first 
DMA transfer beforeper(orming ~e second DMA 
transfer. Therefore, the time between successive DMA 
transfers is increased. " 

In the example above, channel I performs two DMA 
transfers-a ,dummy DMA transfer and then the second 
DMA trailsfer. Registers are initialized for the second 
DMA transfer before the dummy DMA transfer is per-

AFN!)2057A 



AP·122 

formed. Therefore; all DMA register changes resulting 
from the dummy DMA transfer must be accounted for 
when initializing the registers. SYnchronized DMA 
transfers between I/O and memory update the byte 
count register (BC) and the memory pointer register' 
(GA or GB). During each two cycle transfer, Be is 
decremented during the data fetch bus cycle and GA or 
GB is incremented during the data store bus cycle. Since 
the dummy DMA transfer never stores the data (DRQ 
remains inactive), the memory pointer is never incre­
mented. However, Be mayor may not be decremented 

,depending on whether source or destination synchro­
nization, is selected. If source synchronization is 
selected, Be is not decremented because the data is not 
fetched. However, since the data is prefetched during 
destination synchronized DMA transfers, Be is 
decremented. This means that Be must be adjusted only 
when a destination synchronized DMA transfer follows 
the dummy DMA transfer. Here Be must be loaded 
with the actual number of data bytes to be transferred 
plus one for byte transfers or plus two for word trans­
fers. A byte transfer is defined as the fetching and stor­
ing of a single byte. All other cases are considered word 
transfers since the net result is that 16 bits of data are 
transferred during the two or more bus cycles. 

III. SHUGART SA4008 DRIVE 

The Shugart Associates SA4008 disk drive is typical of 
Winchester drives now being, used in microcomputer 
systems. The unformatted drive capacity is 29 mega­
bytes. Typical of high performance drives, the transfer 
rate is 889 kilobytes/second and the average seek time is 
65 milliseconds. A summary of the drive's performance 
and functional specifications is included, in Appendix A. 

Drive Organization 
The Shugart SA4008 drive has two 14-inch disk platters. 
The top ana bottom surfaces of these two platters pro­
vide four recording surfaces. Each recording surface 
contains 404 concentric circular data paths called 
tracks. The tracks on each surface are accessed by two 
read/write heads which move along the radial distance 
of the circular platter (Fig. 12). The two heads are rigid-
ly connected and inovein unison. One read/write head 
travels from the outermost track of the surface to the 
midway point between the outermost and innermost 
tracks. The other head travels from the midway point to 
the innermost track. Each of the four surfaces has two I 

read/write heads (eight total heads). The drive's head 
positioning mechanism moves all eight heads in unison 
onto 202 discrete positions called cylinders (numbered 0 
through 201). The head mechanism is positioned at 

3-74 

SURFACES 

DATA TRACKS 

Figure 12. SA4008 Drive with Two Heads Per Surface 

cylinder 0 when the outermost track is accessed and at 
cylinder 201 when the innermost track is accessed. At 
each cylinder position, eight unique data tracks are 
accessible, one by each head. By activating the elec­
tronics of one read/write head, a single data track is ac­
cessed. With 8 heads and 202 cylinders, the SA4008 has 
a total of 1,616 tracks. 

Sector Format 
Data is recorded on sections of the track called sectors. 
The number of sectors per track is a function of the con­
troller design. The SA4008 allows any number of sectors 
per track. This design organizes each track into 30 sec­
tors (Fig. 13). The 600 bytes of each sector is divided 
into an ID field, data field and gaps. The ID field is a 
unique identifier or address used to locate a particular 
data record. The data field contains the 512 byte data 
record that is read or written by the host processor. 
Gaps containing no usable information are inserted 
before and after the ID and data fields to allow the drive 
and controller el~ctronics time for synchronization and 
switching between, read and write modes. 

Assignment of sequential records to sectors is inter­
leaved using an interleave code of 3 such that logical 'sec~ 
tors are three physical sectors apart (Fig. 14). Since a' 
data record is buffered in local memory, this interleave 
scheme allows two sector times to transfer the data 
record to or from system memory. This allows the disk 
controller to operate at lower system bus priority and 
provides enough time to transfer the data record be­
tweert the local buffer and system buffer. When the 
8089 has complete use of the system bus, a 512 byte data 
record can be transferred in 564 p.sec which is 840/0 of 

AFN02057A 



AP·122 

INDEX J 
1\ I"L 

SECTOR J PHYSICAL SECTOR 0 n PHYSICAL SECTOR 1 ~~ PHYSICAL SECTOR 29 I"L 
I I I 
I LOGICAL SECTOR 0 I LOGICAL SECTOR 10 I I LOGICAL SECTOR 29 I 
I I I I I 

BYTES 

Figure 13. Track Format 

INDEX ~~ ______________________________________________________ ~ 

PHYSICAL SECTOR 10 11 12 13 14 

LOGICAL SECTOR \ I 0 10 20 I 1 I 11 21 2 I 12 22 3 I 13 23 I 4 14 24 I h 

INDEX ~------------------------------------~~ 
PHYSICAL SECTOR 15 16 17 18 

LOGICAL SECTOR ~ I 5 I 15 I 25 I 8 I 16 I 26 I 7 I 17 I 27 I 8 I 18 I 28 I 9 I 19 I 29 I ) 

Figure 14. Interleaved Sector Ordering 

the 672 p.sec sector time. The selected interleave scheme 
permits up to 10 sequential logical sectors to be accessed 
per 20.2 millisecond disk revolution. 

To access up to 15 sequential logical sectors 'per revolu­
tion, an interleave code of 2 could be used. For this 
case, logical sectors are two physical sectors apart and 
the buffered data record must be transferred to or from 
system memory in one sector time (672 p.sec). This re-

3-75 

quires that the 8089 retain possession of the system bus 
for the entire data record transfer after acquiring the 
system bus. The 8089 can accomplish this with a LOCK 
output signal which is discussed later. The 564 p.sec 
data record transfer time allows 108 p.sec to set up the 
DMA transfer to or from the system bus, obtl!in posses­
sion of the system bus, and prepare for a subsequent 
disk sector access. 

AFN02057A 



AP·122 

,Disk Drive Interface Signals 
The interface signals (Fig. 15) between the SA4008 drive 
and the controller are now described. The input control 
signals are first described, followed by. the output con­
Jrol signals, and finally the data transfer signals. 

The input control signals to the drive are DRIVE 
SELECT, DIRECTION SELECT, STEp, HEAD 
SELECT, FAULT CLEAR, WRITE GATE, and 

. READ GATE. Four drive select signals,DRIVE 
SELECT 1 to 4, allow selection of one drive in a multi- . 
pie drive configuration of up to four drives. A jumper is 
used to select one of the DRIVE SELECT signals and 
allows the drive to respond to only one DRIVE 
SELECT signal. The DRIVE SELECT 4/SEEK COM­
PLETE line can be jumper selected as the DRIVE 
SELECT 4 signal or SEEK COMPLETE signal (see 

DRIVE SELECT 1 

DRIVE SELECT 2 

DRIVE SELECT 3 

DRIVE SELECT 4/SEEK COMPLETE 

DIRECTION SELECT 

STEP 

HEAD SELECT 1 

HEAD SELECT 2 

HEAD SELECT 4 

HEAD SELECTS 

FAULT CLEAR 

WRITE GATE 

READ GATE 

TRACK 00 SA4008 
CONTROLLER 

INDEX 
DRIVE 

READY 

WRITE FAULT 

BYTE CLOCK/SECTOR 

+ WRITE DATA 

- WRITE DATA 

+ WRITE CLOCK 

- WRITE CLOCK 

+ READ DATA 

. - READ DATA 

+ PLO CLOCK 

- PLO CLOCK 

GROUND 

Figure 15. SA4008 Interface Signals 

description below). The DIRECTION SELECT and 
STEP signals are used to position the read/write heads. 
DIRECTION SELECT defines an inward or outward 
movement while the STEP line is pulsed. Each pulse 
moves the heads one cylinder position. Four head select 
signals, HEAD SELECT 1, 2, 4 and 8, are used to select 
one of the SA4008.'s eight read/write heads. Four 
signals are provided to allow eight optional fixed heads 
to be selected. The FAULT CLEAR signal is used to 
reset a write fault condition. The WRITE GATE signal 
enables data to be written on the selected data track, 
while the READ GATE enables reading from the track. 

The output control signals from the drive are TRACK 
00, INDEX, READY, WRITE FAULT, SEEK COM­
PLETE, and BYTE CLOCK/SECTOR. The TRACK 
00 signal is activated when the read/write heads are 
positioned at track 0 (cylinder 0). The INDEX signal is 
pulsed once each revolution (20.2 msec) indicating the 
beginning of the data track. The READY signal in­
dicates that the drive Is ready to position the read/write 
heads, read data, or write data. The WRITE FAULT 
signal indicates that a condition which caused improper 
writing on the disk occurred. The SEEK COMPLETE 
signal is available in a single drive configuration and in­
dicates when the read/write heads have arrived at the 
desired cylinder during a seek operation. The DRIVE 
SELECT 4/SEEK COMPLETE line can be jumper 
selected as the DRIVE SELECT 4 signal (multiple drive 
configuration) or SEEK COMPLETE (signal drive con­
figuration). The SEEK COMPLETE signal is selected 
with the controller described in this application note. 
The BYTE CLOCK/SECTOR line is another jumper 
selectable signal. It can be configured as the BYTE 
CLOCK' signal (1.12 /Lsec period) or as the SECTOR 
signal. The number of SECTOR pulses per revolution is 
jumper programmable. The controller described here 
requires selection of the SECTOR signal and 30 sector 
pulses per revolution. 

The SA4008 provides four data transfer signals: 
WRITE DATA, WRITE CLOCK, READ DATA and 
PLO (Phase Locked Oscillator) CLOCK. All of these 
are differential signals. The WRITE DATA and 
WRITE CLOCK signals are received by the drive and 
used to write data on the track. The WRITE DATA 
signal provides the data while the WRITE CLOCK 
signal is used to sample the data. The READ DATA and 
PLO CLOCK signals are transmitted by the drive and 
used to read data from the track. The READ DATA 
signal provides the data while the PLO CLOCK signal is 
used to sample the data. Both the WRITE DATA and 
READ DATA signals are in the non-return to zero 
(NRZ) format. 

A detailed description and timing of the interface 
signals can be obtained from the Shugart Associates 
manuals referenced in the introduction. 

.3-76 AFN02057A 



AP·122 

Functional Operations 

The SA4008 provides three functional operations: track 
accessing, write data, and read data. These operations 
are initiated and controlled by certain interface signals. 

Track accessing (seeking from one track to another) is 
accomplished by activating the DRIVE SELECT line 
and deactivating the WRITE GATE line. Inward or out­
ward movement is selected by activating or deactivating, 
respectively, the DIRECTION SELECT line. The STEP 
lme is pulsed once for each track that the read/write 
heads are moved. 

Writing data to the SA4008 is initiated by activating the 
DRIVE SELECT line, selecting the desired read/write 
head by activating the HEAD SELECT lines, and pro­
viding a clock signal on the WRITE CLOCK line. The 
WRITE GATE line is then activated and the data to be 
written is transmitted on the WRITE DATA line. The 
WRITE GATE line is deactivated to terminate writing. 

Reading data from the SA4008 is initiated by activating 
the DRIVE SELECT line and selecting' the desired 
read/write head by activating the HEAD SELECT 
lines. The READ GATE line is then activated and the 
data is read on the READ DATA line using the PLO 
CLOCK signal to sample the data. The READ GATE 
line is deactivated to terminate reading. 

IV. DISK CONTROLLER OPERATIONS 

By using an 8089, the disk controller becomes an intelli­
gent interface between the host processor and the disk 
drive. The host issues a single high level command for 
the desired operation and the 8089 implements the 
operation through task program control. 

The 8089-based disk controller described in this applica­
tion note implements four basic disk control operations: 
seek track, format track, write data record, and read 
data record. The previous section described the three 
functional operations of the SA4008 drive: track access­
ing, write data, and read data. The controller uses these 
three drive operations to implement the four high level 
operations. An overview of the four operations is now 
presented. This serves as an introduction to the disk 
controller before hardware and software details are 
described. 

Seek Track 
The seek track operation is implemented primarily 
through task program control with minimal use of 
special hardware. B;;ISed on the cylinder which is pres­
ently accessed by the read/write head mechanism, the 
task program determines which direction (inward or 
outward) the head mechanism must be moved. The 
number of cylinder positions that the beads must be 

3-77 

moved is also determined. The task program writes data 
to an octal latch which transmits the DIRECTION 
SELECT and STEP signals to the SA4008 drive. By 
writing the proper data sequence to the octal latch, 
DIRECTION SELECT is asserted and STEP is pulsed 
the required number of times. Finally the task program 
asserts the drive's head select (HEAD SELECT I, 2, 4 
and 8) ~ignals to access the desired track. 

Format Track 

The format track, write data record, and read data 
record operations are implemented by a task program 
which controls special hardware. Details of the special 
hardware are described in the next section. 

The timing overview of the format track operation is 
presented in Figure 16. The INDEX, SECTOR and 
READ DATA signals from the drive and the WRITE 
GATE, WRITE DATA, and READ GATE signals to 
the drive are shown. 8089 channel activity is also shown. 
The READ GATE and READ DATA signals remain in­
active during the format track operation. 

Channell begins the format track operation by initializ­
ing the registers for the DMA transfer which writes sec­
tor O's ID data on the track. Serial/parallel conversion 
hardware is used to convert the 8089's parallel data to 
serial so that it can be received by the drive. The hard­
ware is initialized with zeros so that when the WRITE 
GATE is activated, zeros are written on the track. Next 
a dummy DMA transfer is used to wait for the INDEX 
pulse which indicates the beginning of the track. 

When the INDEX pulse is received, channel I resumes 
executjon. The INDEX pulse also activates the WRITE 
GATE signal to the drive and zeros are written on the 
track. Timing hardware which was started by the SEC­
TOR pulse determines when to stop writing zeros and 
begin the write ID field DMA transfer. A synch 
character is written on the track before the ID field and 
CRC word after thelD field. After the ID data for sec­
tor 0 has been written on the track, the hardware 
resumes writing zeros. 

Channel 1 next initializes the DMA registers for writing 
ID data to the next sector. A dummy DMA transfer is 
started to wait for the SECTOR pulse. Channel I now 
idles while it waits for the SECTOR pulse. Note that 
zeros continue to be written on the track' between ID 
data. 

ID data for the remaining 29 sectors is written on the 
track identically to the first sector. After ID data is writ­
ten for the last sector, channell deactivateHhe WRITE 
GATE signal. WRITE GATE deactivation is delayed so 
that zeros are written into the data field. This ensures 
that after a data record has been written (in the last sec­
tor), the required zeros are present before and after the 
data field. . 

AFN02057A 



AP·122 

INDEX ~--------------~~-----------~ 
SECTOR 

'--------' L..----4~'-------~ 

WRITE GATE 

WRITE DATA ~-----

READ GATE _______________________________________ ~\~\----------------------------

READ DATA 

------------~----~~-----------

, 8089 ACTIVITY ..J CHANNEL 1 CHANNEL 1 CHANNEL 1 

Figure 16. Format Track Timing Overview 

Write Data Record 

The data transfer operations (write data record and read 
data record) are implemented with both 8089 channels 
(Fig. 17). Channel 2 searches for the desired sector by 
comparing the ID field information read from the. track 
with the desired ID field information. The comparison 
is performed by a hardware comparator; One input of 
the comparator accepts ID information read from the 
track while the other input accepts the desired ID infor­
mation transferred from channel 2 using DMA 
transfers. Upon locating the desired sector, channel I 
transfers the data record to or from the track using 
DMA transfers. Both channels perform DMA transfers 
using the technique described earlier which allows two 
DMA transfers in rapid succession. 

Higher data capacity is achieved with this two channel 
approach than with a single channel approach. With 
two channels, all DMA registers are initialized before 
either DMA transfer is started. No register re­
initialization is required betwen the DMA transfers for 
the two channel approach. To allow for register re­
initialization between DMA transfers in the single chan­
nel approach, a larger gap between the ID and <lata 
fields is required. This results in lower data capacity per 
track and therefore lower data capacity per drive. Figure 17. Sector Search and Data Transfer 

3-78 AFN02057A 



Ap·122 

The write data record operation begins with chann'el 1 
initializing DMA registers used to transfer the data 
record to the track (Fig. 17) and starting a dummy DMA 
transfer. Next channel 2 initializes its DMA registers 
used to transfer the desired ID information to the hard­
ware comparator. Channel 2 waits for a SECfOR pulse 
with a dummy DMA transfer. When the SECTOR pulse 
is detected, channel 2 performs the "compare" DMA 
transfer, activates channell's EXT input and halts. 

Activation of EXT terminates channell's dummy DMA 
transfer and resumes task program execution. The hard­
ware comparator is tested to determine if the desired 
sector is found (i.e., the compare is successful). If not 
found, the ID field comparison is repeated for the sub­
sequent sector. If the desired sector is found, the data 
record is written in the data field which follows the ID 
field. 

The timing overview of Figure 18 shows the sector ac­
tivity when the desired sector is found. Channel 2's 
dummy DMA transfer is terminated' by the SECfOR 
pulse and the READ GATE signal is activated. This 

allows the serial/parallel conversion hardware to read 
the serial data from the track and convert it to a parallel 
format. The beginning of the ID field is found by hard­
ware that searches for a synch character. When 
detected, channel 2's DMA transfer moves the desired 
ID information to the hardware comparator synchro­
nously with the ID information from the track arriving 
at the comparator. Finally, channel 2 activates channel 
l's EXT input and halts. Channel 2's sector search 
activity is the same for all sectors. 

Channel 1 resumes execution, tests the hardware com­
parator, and deactivates the READ GATE signal. 
Figure 18 shows that channel 1 then activates the 
WRITE GATE signal and zeros are written on the 
track. Timing hardware which was started by the detec­
tion of the ID field's synch character determines when 
to stop writing zeros and begin the write data recor4 
DMA transfer. A synch character precedes the data 
record and an CRC word follows the data record. 
Finally channel 1 deactivates the WRITE GATE signal 
and halts. 

. SECTORJn~ ________________________________ ~I~\ ____________ ~nL 

WRITE GATE 

------------------~ 

WRITE DATA _____________________ ~ISYNCHlwO.Dll-~~ __ 

READ GATE ----.J " 

I' • 

READ DATA ~! • -_--1····"1 '" 1 .n" ~ _________ ---!I-- __________ __ 

8089 ACTIVITY J CHANNEL 2 ur-------CH-A~N~E~\-,-----~~ 

Figure 18. Write Data Record Timing Overview 

3-79 .AFN02057A 



Read Data Record 

The read data record operation is similar to the write 
data record operation. The sector search activity is iden­
tical. Only channell's activity after locating the desired 
sector is different. 

The timing overview of Figure 19 shows that when chan­
nel 1 resumes execution the hardware comparator is 
tested and the READ GATE signal is deactivated. Next 
the READ GATE is again activated and the hardware 

searches for the synch character. The READ GATE 
signal is momentarily deactivated so that the disk drive 
does not read where the WRITE GATE has been ac­
tivated (during a previous write data record operation). 
This ensures that the drive's data separator decodes data 
properly. When the synch character is detected, channel 
l's DMA transfer reads the data record from the track. 
Finally, channell checks for a CRC error, deactivates 
the READ GATE signal, and halts. 

SECTOR Jl-----------------111-1-------...JrL 

WRITE GATE ----------------------411.,..__--------

WRITE DATA ----------------It--------
READ GATE --.-J LJ 1\ 

READ DATA __ ---.JSYNCHI I. 

8089 ACTIVITY -.-J CHANNEL 2 u CHANNEL 1 

Figure 19. Read Data Record Timing Overview 

3-80 AFN02057A 



AP·122 

V. HARDWARE DESIGN 

The controller was designed to be compatible with 
Multibus, an industry-standard multiprocessor system 
bus. It was constructed on an iSBC 905 Universal Pro­
totype board using wirewrap interconnections. Seventy­
five IC packages reside on this 6-3/4 by 12 inch board. 
The development environment consisted of the con­
troller board, an iSBC 86/12A single board computer 
(based on the iAPX 86/10) which served as the host pro­
cessor, and an iSBC 604 cardcage which provided a 
Multibus interconnect between the two boards. Other 
development tools used were an I~E-86 in-circuit emu­
lator and the RBF-89 real-time breakpoint facility. 

A block diagram of the disk controller is shown in 
Figure 20. The hardware is divided into four major sec­
tions-I/O processor, Multibus interface, timing and 
control, and data transfer. The 8089 110 processor 
along with the timing and control circuitry supervise all 
disk control operations. The 8089's interface to the tim­
ing and control circuitry is through control and status 
registers which are part of the timing and control 
section. 

1/0 Processor 
The 110 processor section (Figure 21) consists of the 
8089, support circuitry, local bus interface, and local 
memory. Support circuitry includes the 8284A clock 
generator and the 8288 bus controller. The clock 
generator is configured in asynchronous mode since 
ready signals are generated asynchronously with respect 
to the 8089's clock signal. The 8089's local bus read 
signal, lORD, is generated from the bus controller's 
10RC and INTA commands since INTA is activated 
whenever the 8089 fetches instructions from its local 
bus. Both bus controller I/O write commands, advanc­
ed (AIOWC) and normal (IOWC), are used. The ad­
vanced command is used to write to all local devices ex­
cept the two 8282 control ports. The normal command 
is used when writing to these control ,ports to prevent 
glitching of the 8282's output signals. This command 
prevents glitches since its timing guarantees that the 
write data is valid before the command's leading edge. 

The channel attention (CA) signal is, generated by 
decoding Multibus I/O writes to ports 0 and I allowing 
the host processor to start channell and 2, respectively. 
A CA signal for channel 2 is also generated when the 
8089 accesses local bus port 4070H allowing channel 1 
to start channel 2. . 

The local bus interface is implemented with two 8282 
octal latches and two 8286 octal transceivers. Two 8205 
one-of -eight decoders provide the local bus address 
decoding for memory and 110 devices. Two 2716-1 
EPROM components provide 4K bytes of program 

3-81 

storage addressable from 2000H to 2FFFH. If more 
program storage is required, the 2716-1s can be replaced 
with 2732As or 2764s to provide 8K or 16K bytes, 
respectively, of program memory. 4K bytes of 
read/write memory for storing program variables and 
buffering disk sector data are provided with four 2142-3 
static RAM components addressable from 0 to 7FFH. 

Multibus™ Interface 
The Multibus interface (Fig. 21) is implemented with 
three 8283 octal latches, three 8287 octal transceivers, 
8289 bus arbiter, and byte swap circuitry. The 8089 has 
access to the full 1 megabyte Multibus memory address 
space since all 20 address signals are latched with the 
three address latches. Memory read and write com­
mands (MRDC and AMWC) from the 8288 bus control­
ler are used to access shared system memory. The 8289 
bus arbiter provides the system bus access functions for 
the 8089. The iSBC 604 card~age is configured for serial 
priority resolution with' the iSBC 86/12A having pri­
ority over the disk controller board. The priorities can 
be changed by simply swapping the cardcage slot loca­
tions of the two boards. 

The 8089's LOCK output is connected to the bus ar­
biter's LOCK input. While LOCK is active, the bus ar­
biter will not relinquish the shared system bus to 
another processor regardless of its priority. A channel 
activates the LOCK output when a test and set while 
locked instruction, TSL, is executed (semaphore 
access). A channel may also activate LOCK for the en­
tire duration of a DMA transfer by setting the LOCK bit 
in its channel control register (CC). This ensures that 
once the system bus is acquired, the DMA transfer is 
completed as quickly as possible. 

Three data transceivers and associated byte swap cir­
cuitry provide 8- and 16-bit Multibus compatibility. 
Since Multibus convention states that all 8-bit transfers 
must occur on the lower half of the 16-bit data bus 
(DATO to DAT7), all 8089 designs which access 
Multibus must provide byte swap circuitry. Even though 
the system bus is defined as 16 bits wide during the ini­
tialization of the 8089, the 8089 may perform byte 
references to odd-addressed memory locations. This 
results in the high byte of a 16-bit word being trans­
ferred over the lower half of the data bus. 

Timing and Control 
The timing and control section (Fig. 22) receives signals 
from the 8089 and disk drive to control all disk opera­
tions. The interface with the 8089 is via two 8-bit control 
ports and one 8-bit status port. Control ports 1 and 2 
are implemented with 8282 latches and have addresses 
4010H arid 4021H; respectively. The two control ports. 
are the primary interface from the software to the hard-

AFN02057A 



COMMANDS 

CONTROL 

M 
U 

l 

T 
Cf I 

ADDRESS 

ex> 
I\) 

B 

U 
STM 

DATA 

XACK 

r---T-·------------------, 
(~ 

I Ii COMMANDS I 
8288 

~ I I 1'1 I 
STATUS elK 

I I ..c. :>.., I 
I 

~ 
CLK 

;tl 
CLK I 8289 8089 

Ii t-, 

STATUS \r I STATUS DRQ 

I 
EXT 

\I ..:::;:>.. I 

I I LO 

I 
C( 

I 
B~ 

¢{= Vtl ADDRESS/DATj L I 
I 8283 

t-, (3) 

Nl 8282 ADDRESS 

r---v (2) 
n' 

DECODE I 
I I I 

ICAl 
INTROL 
IS 

~ 8287 IA I ~ 8286 Ii I t-, 

(3) 

I'f l 
(2) .;> I' 'C 1. -~l-~~-..L~-·rr~~ 

I I I 
I 

MULTIBUS I 
~NT~A~ __ --1 

-.::: I LO 
CLK 

DA 

~ ~ 
2142·3 2716-1 B~ 

8284A RAM EPROM I 
T 

(2KBYTES) (4KBYTES) 

I .1 
-= 1/0 PROCESSOR ----------t -- -- -- ~ -- -- ---

Figure 20. Disk Controller Block Diagram (Sheet 1 of 2) 

CAL 
,TA 
S 

l> 
"'U 
~ 

• I\) 
I\) 



w 

~ 

> 

I 

LOCAL 
CONTROL 

BUS 

LOCAL 
DATA 

BUS 

DIS K o R I V E 
CONTROL/STATUS PLO SERIAL IN WRITE CLOCK 

r- ~- -- - -~- T -- -- -- -- -- -- --
...... -t>-

I I 
..... 

L I I 
I 

TIMING 

I 
III-BIT CRC 

LOGIC --- SHIFT LOGIC 
REGISTER 

I I I I i~ 

ill 
SYNCH DETECT I [ 

CONTROL ... I -
~ 

LOGIC 

I 
I ... ;::... I .. j,.. 

I I 
I"!PUT OUTPUT 'LI 

BUFFER J1. BUFFER 

I (III-BIT) - (III-BIT) 

I I ... i"'-

I I 
I ... 7 I "'" ~ "",,-7 
I CONTROL/STATUS 8254 I TRANSCEIVER III-BIT 

I 
REGISTERS COUNTER 

J 
(III-BIT) COMPARATOR 

l 
... ;::... ... i"'- -1_ ... i"'-

TIMING AND CONTROL - - ~- -- -- - -- -- -- ~- --
11 

\ 

Figure 20. Disk ~ontroller Block Diagram (Sheet 2 of 2) 

SERIAL OUT 

-- -- --

WRITE DATA 
GATING r--

DATA TRAI 

-- -- -

~ 
." .:. 
~ 



AFN02057A 

r -, 
I 
I 

iliiiiil 
iIIIlJ mm 
mill 

iiiiF 
IIiW 
6ft 
ilM 
DAii 
6iTi -mo 

I 
I 
I 
I 
I 
I 
I 
I 
I 

AP'-122 

. V. I, 

rlllRli'" ill 
• '.!-Ia a II I .... , 

17~" AI4:~2 
I AI AD1 

'·~GN05i~..!...!!!!..... 

ADO 

I -&0 • ·9...., ,,'0K +5 I r-i--r--.- ;:L.:....~-1l' .. -L~ •• +' 
~_. • 14 Tao f,";vv.......-v ~ Vee 108 elM 117 I 'DEN MCE/iiiilRt,~.===;--,--

i ~.,J.:r ~.~--l-{:.=====::j:t:lJ:~~ .... :: ~ 
iCLi ~~~~~~~~~~ll'~CL~K i:OCR lfj' H Ii 51 AiOWC~ g ~ ':- ~~. Q : =~ 
IUIV IUP II t L...-...-....J OTt. eLK GNP lIIiR 7 
fI1RS 1 CaR eLiI ~' I GND iOi REII 12 ~ 

I ~. L--__ -+ __ ...... I __ ~I_I+_-

- rl=========================t==========~ ~ ~ 

Figure 21. I/O Processor and Multlbus Interface 

3-84 



AP·122 

~ ?" .. 1 .. 11 RES ec AEN2 ~ +. 
1 "ROYt ffi'iif t5 -=- ., · .. " ""A 

A' 
, 

A, 

~, ~ 
X, I. ROn • A. 

A, :1:142-3 ." A, · .. II 
RESET ~ A' · A, 

" DO 

~ • " XI READY 

~ AI , A, 1/0, 

" D. A, '" ::~ 3 AENI elK 
A' · A, 110, . , -.!l!......l 

A, 
CSYHCOND 

A. " 
A, lIDs 

12 D. .. E, 

9 AI , A, 110. 

oli--
.... 

A" " 
A, WE ID 

AO 
A, OD ~ I 5.5 " 

D'1 _V40~ 
C51 GHDes:!: 

rl'< 
0, 

-¥' 
.... D, •• D 

m .. 
'HE'" "·'~1, ~ r, * A" + • 

A .. It • '11$1 READY 1 

" A" " 
AI1I55 flES£T 31 

f" A .. .. A17/S4 OAOt A' I 
A, '" " 

A18/53 OR02 .. .. , 
A, 

.. .. SINTfM EXTI , A. 
A, 214203 ¥ . .. '" E, I 

84"TI\.2 Em A. · .. , 
AO!: ~ A1S/015 A' " " 

., , I, 

" I ~:!:jg~: AI , I, 110, 

" os 
..!!. .. 0, 

" " 
, I, 1/02 

" 
.... 0, .. 

~""2/DI2 A, 1/03 'C 0, AI · , , 
~Al1/011 .. .. I, 110. 12 

~ 
0, 

~AtO/D'O A" " 
I, 

WE :!: E, " ~AIID' AD 
I, DD 'i E, ... 0, 

~AIIO' C51 GNOeS2 
24 SEl 

*' .,!! 
:I: CA ~ 

~A1'07 AD6 1 

Y .. A05 11 "81DB 

~ ::~~: -Ii"'" ~l! " · A, 
A2 141.2102 Si' 7 A , 

A, 
01 1 Al/DI 52' .. • A, 2142-3 

I A"DO wc. J .. · A, 
,e 

AS · " DO 
V Vss AI , A, 1/0, 

14 

Y " 
, A, 1/02 .. , 
" 

A, 110, 
12 ." .. .. A, I/:~ oa 

A" " 
A, -A, oo...!f 

~ C51 GNO es:!: --! 

j 
+'Y .. I,,' J -¥' 

~ 01 Vee STBO 111 

~ f .. ~DI: o~~ 
~o~ D02~ !-#.- " · Ao Yee 

~ g:: ':~2 ~~: #= ~ " , 
" · A, 

2142-3 
~ 015 DOST ~ 

.. , A, ,0 , A, 

" .. , 
~ ~~OE GND ~~~ :it: .. 2 

I, liD, 
14 ... 

" , I, 1/02 .. 14 

v~ 
.. A, 1103 015 .. .. A, liD, 12 

" WE ~ .. " '" " A, O. ' 

~ 
~ 

C51 GNDes:!: 
010 ¥c:c STI DOo 

~' 
DI, DO, ~ , 011 002 
DI3 12$2 DOl ~ A" 01. 5C DO. 

~ 01, DOs ~ 21 24 

:m::::i 01, DO, 

" 
.. · AtVp, Vc:cOo 

. DO 
OIJ OE GNODO, .. , 

A, 0, " , 
• 10 

.. · .. 211"1 " " D2 

{-
.. · A, 

3C 0, " .. 
AS · A. O. 14 . 

·'Y .. I" · A, " " OS 
A> 2 .. D • 

~ 
, B, il AI , .. 0, 

" D7 
.. 2 

1.0 Yc:c: 
A 

A, 0, 

02 
A, B, 

A" 
A, 

CE '8 

~ 
A, B, 

" " 
A, 

GNOOE ~ A, .... S, *4 A .. 

~ A, 'C B, 
A, a, t ~ lit:i Af I, , , 
A, OE GND I, 

y. ~o 21 .. 

" · AnY p!> Vc:c: 0 0 
. DO 

, '20 [;- A , , D · A, 
27'''1 

0, 

" '10 

'" 0, t::: ; A, '" T B, ~ .. , 
A, 'C 0, 13 ." AS · " .. 

~", 1111 AI · A, " " .13 
~" a, A> 2 

A. " " .14 

, 'A " .. 'U " '. D1 5 AI II B' 1 012 AI , 
" 0, 

, .15 

tI:j .: a;:::: It " '. .. , " " AOI 8:6 :' ..l!.....JU!.. A" .. I, CE .. 
10£ GND 1 A" GNO O£ oe: 

V. -¥o -¥' ..... 
A1 • . . 3~C 4 
. , .. :ZXi " , .... I Xl' 
EX" 

Figure 21. 1/0 Processor and Multibus Interface 



AP-122 

, 
w.o.:iffiO 

.; _'2~ l. t.' 
>0' ~ :WN V~: 

~ 
v" , 

I~ 

II 
..!.!. ,0 PR 

; ~; 8 
A D. A 

74193 74154 

SRO I~~ 180 ~1.,! 160 170 

... ,~D_ ~~ I r.P'" ':~;,j ~~ ¥, SRS 

,~D_.'" 1"<. . ,,~~ >0 SVNCH_'Um 

SR4 ... 
.... ~'C rr SA' 

.~ SR2 
... 

SYNCN 

19C 

75,,5 leeK, of!-'!'y '''e' r --- -----, 
'READ~QAT~ ,I.!. ..: I " ~D _ >0 SERIAL _IN 

1'rLJ'V; 
... 

.'1°::, (} 15~1 ",I 

,..:!8_, ~ 
+"O_CLOC' l,,1 • In... I" "~_,, "0 ... 

A - ~ ... 
~, LA _______ J 

FORMAT >0-

~ r---;2;--I'~ 

: f I "" 

~k: 
I I .I.,---l 

D","_INDEX II I ... '" INDEX 

DR"E_SECTOR ,I I .,1 ....... I SECTOR '-- ~ 
D","_WRITE_FAULT "I I "I b. .... I" .- ,,-

"I I "I ....... I" '-." 
D","_READY ,I I ,I .. ... I, 

,.D)d-

r--d.:!!' 

." d I ,I'" "",I ,-

': I L __ ':.-.J 
I 

I",:D_~11 ,~~ 
I. I V 
~ __ ~3~ ___ J V ,,-, 

CRC_ERROR 

'.W' , ~ ~NTROL Y2(J COUN 
YTE 1 

:: V'':: . 

E 
V" -;::::;;;:J 

~:: DO. ~ ~:j ~~; CHANIiCHAiil ~ :~ 8286 ; ~6i,KptETE 8282 00, 
B~ 90 9C 004 

I 

I:: 
DiS 00, 

A, I 
01, 

A, 01, 

~ I GND DE T iGND DE 

~'J 
I q'" , 

ADiiifl. 

00·0" 

iiDDii' 

~ 
j 

--

I 
I 
I 

Figure 22. Timing and Control 

AFN02057A 3-86 



AP-122 

• ...!.6C , , 'R' 
'!'" 

boo 

It 
' PR 

0 

3t-1.,6C .. 'R' '" , 
'kJ)" " CLK -~ RonA 3K!B 4 ".--5~C6 BAS CLR Q 6 16B " ... ". " ROY 2 

3~""'6C y" " 
:rlL~7 READ + WRITE 

R7 
uN'C 12 'R' 

" " 
... BR,. 

" " 8R15 

.~ 
,.... 0 

p~ 

fF>' ,.,.:.'B 2 Ir-"\r. 

". 3 16B ., -p-
, o • , 

OETECT CLK 
C'" ~3 ORal 

'j', 

~ 00 

" 0 
PR 9 ORa2 

0 

". 

I 
II elK CLR 
3~D~ eNTA2 

~ I '" ... 
9"': 8C 8 5~B 6 " ... p' EXT' 

17A 3 5 

2 

EXT2 

CNTRO DETECT 

,':'BC.,+., eNTRO DETECT 

..... CNTRO 
"C LCL< O' ---;Lr,-

PLO 
SYNCH DETECT 

SERIAL IN .. 
ENBJCYR 

I I 
WRITE 
CNTRI 

S,..!.,8C 6 J READ 

WRITE GATE ... I , h!2C 2 uR.VE FIE 0 GATE 

I ... 3~2C .. CRIVE WRITE-GATE 

ERS Y24 CONTROL 'Y2 HEADI '3"'::C 12 
... 

DRIVE HEAD_SELECT 1 

BYT',' " J ... 
I~D 2 -, Vee GATE2 " V" 

HEA02 DRIVE HfAD_SELECT 2 

" ~ 0', OOI~ HEAD4 3":"0 . ... DRIVE HEAD SELECT 4 

" GATE' 2!- D. , 
0', ~~~p " c!!..- ~ ~'0 3 01, HEADa 

... 
5~'0 6 DRIVE HEAO SELECT 8 

" 
GATEO " . Oi, 8282004~ .... 

" 
8254 ~ 0'. '98 OO~ ~ DRIVE' 9~D8 DRIVE SELECT 1 ,. ". ~ ~ ~~! ~ 0'. Dab ... '. ClK2 01. DO~ ~ DIRECTION 

s...!2C 6 DRIVE DIRECTION SELECT 

'. CLKO ;t-- ~ 01, 
OO'il 

... 
" 

elKI 

" 
STEP 9£>,' DRIVE STEP 

S aUT2 

" 
0, GNO STB 

ii aUTO 

" ~o 
II FAULT_CLEAR ,_~c,o DRIVE FAULT CLEAR 

;; GND OUT I ... 
" -: 

15114 . ,--;;'--l. 
I ~ +WRITLDATA 

-JH ~ : I, -WRITLOAT. 

a_ 10 I ~ 
9 

'O:Jo"'-
• I ....rim +WRITE CLOCK 

10.......... It ::=.:::j£3 r~ I .. 5 15~ g,:,:)o!- +WRITE CLOCK . I I ""--!.!l.J 
L -' , 

Figure 22. Timing and Control 

3-87 AFN02057A 



ware and allow the8089's task program to control all 
disk drive activity. The status port is implemented with 
an 8286 transceiver, has 4030H as an address and allows. 
the task program to monitor drive activity. The 8288 
bus controller's normal I/O write command is used to 
write to the control ports. This prevents the outputs 
from glitching, which can occur if the advanced I/O 
write command is used. 

Output signals from control port I are used to control 
the special hardware. The FORMAT signal is active 
when formatting a track. The READ signal is active 
when reading an ID or data field. The WRITE signal is 
active when writing an ID or data field. The 
CHANIlCiiAN'2 signal enables generation of the pro­
per DMA request (DRQ) signal. The ENB-'CCVR 
signal enables transceivers when reading or writing sec­
tor data or disables them when comparing an ID field. 
The SEL_INDEX signal selects the drive's INDEX or 
SECTOR pulse for terminating dummy DMA transfers. 

Output signals from control port 2. are transmitted 
to the disk drive. The head select (HEADI, HEAD2, 
HEAD4. and HEAD8), drive select (DRIVEl), seek 
track (DIRECTION and STEP), and 
FAULT_CLEAR signals are generated by control port 
2. 

The status port receives signals from the special hard­
ware and the disk drive. From the special hardware 
are COMPAREJTATUS and CRC-ERROR which 
indicate the status' of the ID field compare and data 
read, respectively. The SEEK_COMPLETE, 
DISK-R,EADY, TRACKOO, and WRITEJAULT 
signals are from the SA4008. 

The interface with the disk drive involves both digi­
tal and analog signals. All control signals are digital 
while the READ-'.DATA, WRITE_DATA, 
PLO_CLOCK, and WRITE_CLOCK are differential 
signals. Control signals from the drive are resistor ter­
minated and conditioned with 7414 schmitt-trigger in­
verters. The control signals to the drive are driven with 
7406 open-collector inverting drivers. The 
READ_DATA and PLO_CLOCK inputs are received 
with a 75115 dual differential receiver while the 
WRITE-.-DATA and WRITE_CLOCK outputs are 
driven with a 75114 dual differential driver. . 

A 16-bit ring counter is used to provide bit resolution 
timing. Only one of the sixteen outputs is active at any 
time. As 16-bit words are being serially received from or 
transmitted to the drive, the active ring counter output 
corresponds to a bit received or transmitted. When data 
is received from the drive, output 0 (BRO) corresponds 
to bit 0 of the received word, BR7 to bit 7, and BRI5 to 
bit 15. When data is transmitted to the drive, BR8 cor­
responds to bit 0 of the transmitted word, BR15 to bit 7, 

3-88 

and BR7 to bit 15. The different relationships between 
received and transmitted words are a result of simplified 
ready circuitry (to be discussed later). 

The ring counter is implemented with a 74193 binary 
up/down counter and a 74154 four-to-sixteen decoder. 
The drive's PLO clock is used as the count input signal. 
The ring counter is reset whenever a SECTOR pulse or a 
synch character is detected allowing BRO to be activated 
on the next count. A ring counter provides a great deal 
of design flexibility. Disk control actions can be fine 
tuned with the availability of 16 outputs. Some of these 
key actions are reading from and writing to the serial/ 
parallel conversion circuitry, generating ready and 
DMA request signals, and transmitting and checking 
CRC words. 

An 8254 programmable interval timer provides timing 
delays. The 8254 must be used, rather than an 8253, due 
to the short output pulse widths (approximately 140 
n.sec) of the ring counter. The 8254 has three inde­
pendent 16-bit counters which are initialized by the soft­
ware to operate in the hardware triggered strobe mode 
(mode 5). Each counter accepts CLK and GATE inputs 
and provides a single OUr output. Each counter's 
count register is initialized with a count value and when 
the GATE input is activated, the count register is decre­
mented with each CLK pulse received. When the count 
register is decremented to zero, a pulse is generated on 
the OUT output. 

The three 8254 output signals are designated CNTRO, 
CNTRI, and CNTR2 and are associated with their 
respective counter. Details of the time delays are dis­
cussed later. In general, CNTRO signals the start of an 
ID field during the forqtat track operation or the start 
of a data field during the write data record operation. 
CNTRI signals the end of the DMA transfer when the 
format track operation writes the ID field, when the 
write data record operation writes the data field, or 
when the read data record operation reads the data 
field. During both the read or write data record opera­
tions, CNTR2 signals the end of the DMA transfer used 
to compare the ID field (sector search). 

When the 8254's counter 0 times out, the 
CNTRO_DETECT flip-flop is set. The 
CNTRO-.-DETECT signal enables the 8089'8 DMA 
transfer (write ID field or data field) and is reset by 
channell's task ,program at the completion of the. 
transfer. 

A synch character (OFH for ID field and ODH for data 
field) must be detected to begin comparing an ID field 
or reading a data field. Only a single AND gate is re­
quired to detect the sYnch character since the 
DRIVE~AD_GATE signal is activated when the 
read/write heads are over a gap written with zeros. 

AFtl02057A ' 



Ap·122 

Upon detection, the SYNCILJ)ETECT flip-flop is set. 
The SYNCILJ)ETECT signal enables the 8089's DMA 
transfer (write desired ID information or read data 
field) and is reset by channell's task program at the 
completion of the transfer. 

When an I/O device's transfer ratl: approaches the 
8089's maximum transfer rate (1.25 megabytes/sec), the 
DMA request (DRQ) input cannot be used to synchro­
nize each byte or word transferred due to the 1.2 ,.sec 
maximum (at 5 MHz) latency of this input. The disk 
controller uses the 8089's ready signal (and wait states) 
to synchronize the SA4008's 889 kilobyte/sec transfer 
rate with the 8089's transfer rate. The DRQ inputs are 
used to enable DMA transfers while the ready signal is 
used to synchronize individual word transfers. Channel 
I's DMA request signal, DRQI, is activated when 
CNTRO-1)ETECT becomes valid (write ID field or 
data field) or 8 bit times after SYNCILJ)ETECT 
becomes valid (read data field). The 8-bit delay time 
allows the first word to be converted from serial to 
parallel before the 8089's DMA transfer begin. Channel 
2's DMA request signal,' DRQ2, is also activated 8 bit 
times after SYNCILJ)ETECT becomes valid (write 
desired ID information). DRQI and DRQ2 are deacti­
vated by the task program upon completion of the 
DMA transfer. 

The 8284A clock generator Isynchronizes ready signals 
from two buses. RDYI is the ready signal from the 
Multibus and RDY2 is the ready signal from the local 
bus. Both ready inputs are nonnally inactive. When ac­
cessing memory or I/O devices, one ready input is acti­
vated to complete the bus transfer cycle. Depending on 
when the ready input is activated, wait states mayor 
may not be inserted. In the disk controller, the 8089 may 
require wait states only when accessing the 16-bit disk 
data port. Wait states are not required when accessing 
other I/O devices or memory devices on the local bus. 
For these devices requiring no wait states, RDY2 is gen­
erated by the 110 read or write command. 

Accessing the disk data port may require wait states to 
synchronize 8089 transfers with the drive. For this case, 
BRO is used to set a flip-flop. The flip-flop's output 
enables RDY2 generation by the 110 read or write com­
mand. This ensures that previous data has been trans­
ferred to or from the serial/parallel converter before 
writing to the output buffer or reading the input buffer, 
respectively., Using only BRO involved changing the rela­
tionships between ring counter outputs and actual data 
bits transmitted to the drive. A transmitted bit 0 cor­
responds to BR8 while a received bit 0 corresponds to 
BRO. This is required since a transmitted word must be 
preloaded into the output buffer (at data bit 8 time) 
before being transferred to the serial/parallel converter 
(to prevent underrun errors). On the other hand, a 

received word must be transferred from the serial/ 
parallel converter, to the input buffer before being read 
(at data bit 0 time). The input and output buffers are 
described later. 

The external DMA termination signals, EXTl and 
EXT2, are used to terminate dummy DMA transfers. 
EXTI is generated whenever the 8254's counter 2 times 
out (signifying the end of ID field comparison) or when­
ever the drive's SECTOR or INDEX pulse is detected. 
The SEL-INDEX signal which is controlled by the task 
program selects which pulse generates EXTl (0 for 
SECTOR and I for INDEX). This allows the SECTOR 
or INDEX pulse to terminate the dummy DMA 
transfer. EXT2 is also generated by either the SECTOR 
or INDEX pulse, qualified with SELINDEX. 

Data Transfer 
The data transfer section (Fig. 23) provides serial! 
parallel conversion, ID field comparison, and CRC 
generation and checking functions. Serial/parallel con­
version is performed with a 16-bit shift register imple­
mented with two 74S299 8-bit shift registers. Data read 
from the drive is converted from serial to parallel while 
data written to the drive is converted from parallel to 
serial. 

A double buffered technique is used here. A 16-bit input 
buffer receives read data Jrorn 'the shift register and a 
16-bit output buffer transmits write data to the shift 
register. Each buffer is implemented with a pair of 8282 
octal latches. Two 8286 octal transceivers provide the 
interface between the local data bus and the input and 
output buffers. These transceivers are enabled when 
writing an ID field or a data field or when reading a data 
field. They are disabled during the ID field comparison. 

The 16-bit comparator is implemented with four 74LS85 
4-bit comparators and one 4-input NAND gate. During 
the ID field comparison, the transceivers are disabled 
allowing the input buffer which contains the ID infor­
mation read from the disk to drive one. input of the 
16-bit comparator while the ID information written by 
the 8089 drives the other input. The comparator output 
is sampled during each 16-bit comparison. The first mis­
match is latched (until reset) for channell's task pro­
gram to examine later. This permits the length of the ID 
field to be any mUltiple of words. 

The input buffer, output buffer, and comparator are 
all accessed via port 4OOOH. The CRC circuitry uses a 

, 9401 CRC generator/checker strapped to use the CRC­
CCITT polynomial, X16 + X12 + XS + 1. Immediately 
after reading the CRC word, the 9401 's error output is 
latched allowing channell's task program to examine 
the CRC error status later. 

3-89 AFN02057A 



AP-122 

READ--~----------------~----------------------------------------------------------------__ ~----__ --__ -

-----~+-------------------~~~'~' SERIAL_IN 17e .-
+. r----.!''f.':,,;c\. ' 10K 

10 10-

eNTRI ___________________ + ..... ______________________ -"12~D :: 0 ~ ~ , 

.R·--------------------+------------------------~"~~~·~--~I-------TR-•• -S-.-'T-C-.-c------+---~-+~~:~-:.:'I', 
]13 ~ 

WRITE --------------------+-----------------------------..... -------------------------_+----' 

PLO--------------------+---------------------------------------------t--------------_t------+----------
READ'" WRITE 

WRITE_GATE -------------------+---------------------------------------_t--------------_t------+---------­CN1R2--------------+---------------------------------------_t--------------_t-----+--------
BRIS 

MiliAo--------------------+---------------------------------+-------------+------+---------­
~--------------------+---------------------------------------------+--------------+-----+--------­

READ + WRITE ------------------+-------------------------,,-------------------f--------------f----, 
CNTRO_OET~ ------------:,--,,-c-,-1r------------------------'-----------------+--LO-.-. -.-.'-'T-_-'-'O-"-TE-'-+--' 
CNTRO DETECT 

SYNCH_OeTEcT------------~------+----------__ ------------------------, 
~ 13 LOAD INPUT ... BUFFER 

AFN02057A 

~-----------~~l1~ __ t1515~CC)~~~----~~~j.~~~~----r----ll ~ ~ 
I 111 120 111 120 ' 112 

"K 

EN~_XCVR - ___ -, , 

13-t:..° 12 ... 

__ -0-'-,..-",80 T Vee An 1 BFRO " 000 STB Vee 010 ,,'-t--'S"''':..... ...... -+-'t7 A CCK 

r-,0,,'-r-,18'18 1 Al:.1 BFR. '8 00\ 0'1 2 SRI 13 8 

20 

V" 

r-,D""-r-,-11'1B2 "2 3 BFR2 17 002 012 3 SA2 6 c 
1r--,0"'-+-""'183 6286 A3 1'·:..... ... ""'0,..'--...... -+-'''''I003 8286 013 4 SR3 14 0 

r-,O",'-r-,15'1 S• 11e "4 5 BFA4 15 004 138 014 5 SR4 5 E 
14SZH 13D 

S. ' 

SA !..L­
SI1L-­

D, ' 
r-,o""-r-""'1 Bs As 6 BFRS 14 005 015 6 SRS 16 F CLF.!>"-'---++-+ 

1r--,0"'-+-""'-I86 A6 7 8FR6 13 Do, Dis 7 SRa 4 G OH .lL.-
r-,0"'-r-,12'1 B7 147 8 BFR1 12 007 011 8 SRT ,16 H 

GND OE GND DE L.....;D;;',.....D::;N;;;0:--l *' r *' l!- ~' 
TRANSCEIVERS INPUT BUFFER 

0' ~20 ---',1 120 ---',1 121 

16-81T8HIF1 
REGISTER 

+. 
20 

r--..2.!..-!.! 80 T Vee:: Ao .. ''--''''''O''"'~-+ __ -'''", 000 srB Vet DID 1--1-'.",0 .. ' ....... -+---"C(A elK Vee 

r..£!...-!.!. 8, A, "''--''!.!FR!!,'~_+---'''i8 DO, 01, 2 SRI 13 B So 1 
r-...2.!!.-!! 82 A2 3 BFR10 17 002 012 I"''-i-'."O''''''c.....t-+--...:''-I c SA .!L--
r-~ B3 8288 A3 4 BFAll 18 003 8282 013 SA11 14 0 145299 S,.!!..-.-

~ ~ 8, 118 A, 5 8FR12 15 004 13A 014 5 5R12 5 E 13C 02 ~ 

,--~ B~ As 6 BFR13 1.<1 DOs Dis 6 511;13 15 F elR 1>'-' _____ -' 
DH 13 8& As 1 BFR14 13 006 01, 7 SA14 4 G QHI"''-' -==",.-,=..J 
015 12 81 At 8 BFR1S. 12 007 011 ~.'-f...;."'0!!''''-oI-+--~164H SEAIAL_OUT 

GNO QE GND Of L....,D1r,-..:D,.r.;0;-' 

*'1' *'~ ~' 

~-------------_t---------------------~r_------------------_t_t------------------------------_t_ 

._. __________ -L __________________________________ ~ ________________________ ~ __ J 

Figure 23. Data Tl'ansfer 

3-90 



AP-122 

.oK 

19E 8 
'R 
Q"'~--------4----I------------- WRITE_DATA 

18. 

_,~,-{':>'Coo-!'!!.O ---.-.---I----'!!'bo.!.!'---.4---4-----------4----I------------- WRITE_CLOCIC 

. 
, , 
, 

. ,.. 
.1P~~-----------------~'~~~~,,'----------------------------------':J ~ WRO + "00 ,.. , WRO 

,.---:, 10K +5 

-:!:-__ ~311~ 

16-81T 
COtfPARATOR 

10K +5 

."r:-;t 3 1~ 

BFA' 

BFR9 

BFR10 

8FRll 

'FAU 

BFA13 

BFR1. 

BFRIS 

1"- ,N.8C 2 .. 

f----J" 1" " · no y" 

" SAO' . " .0 • , 
." .0, " SR' , 
." .0, " SR' · ." 8282 .0, " SR' 

5 . " ". • 0 • " SR • 

· DI, .0, ,. SR' , . ,. • 0 • " SR • 

· ." .0, " SR' 

ON. .E 

*' ~ 
OUTPUT8UFFER 

--", 'flO 
, ST8 ", " 01. .'. SR. , 

." .0, " SR' , 

." .0, " SR10 

· ." DO, " 8282 
SAl1 , . " ". .0 • " · ." 0', ,. 
SA12 

SR13 c20 
7 

01, DO, " · ." DO, " ON. OE 

,¥' ~ 
'-__ -l-"l3 eLK Q ~~ COMPARE_STATUS 

L..-:oCL,-:~_..1 

'.A~ 

==============================:J-A----------------- SA2·SRG 

Figure 23. Data li'ansfer 

3-91 AFN02051A 



AP·122 

VI. HARDWARE OPERATION 

Now that an overview of the four disk control opera­
tions and the details of the hardware components have 
been presented, the detailed disk control operations will 
be discussed. The interaction of hardware components, 
the relative timing of signals, and the data flow are 
described for the format track, write data record, and 
read data record operations. The seek track operation is 
primarily implemented with software. The channel I 
and 2 task programs are discussed in the section on soft­
ware operation. This discussion is focused on how the 
hardware operates. While reading the detailed descrip­
tion, it may be helpful to refer to the hardware 
schematics (Figs. 21, 22, and 23). 

Format Track 
The format track operation is preceded by a seek track 
operation where the proper cylinder is accessed and the 
proper head is selected. Upon detecting the INDEX 
pulse, the format track operation writes the ID data for 
30 sectors and writes zeros everywhere else including the 
data field areas. Channel I controls the entire operation 
without assistance from channel 2. 

The overall timing of the format operation is shown in 
Figure 24. The INDEX and SECTOR signals from the 
drive and the WRITE_GATE signal to the drive are 
shown. Also presented are the signals controlled by 
channell's task program-FORMAT, WRITE, 
CHANlICHAN2, and ENB-'CCVR. In addition, the 
activity of the 8254's counters is shown. 

Channel I begins the format track operation by initial­
izing the 8254 counters and its DMA registers used to 
transfer the ID data to the drive. The FORMAT signal 
is activated and a dummy DMA tr~sfer is started to 
wait for the INDEX pulse. When the INDEX pulse is 
detected (Fig. 24), the hardware activates the 
WRITE_GATE signal and zeros are written on the 
track. A SECTOR pulse which coincides with the IN­
DEX pulse starts counter O. Counter 0 provides the time 
delay from the SECTOR pulse to the start of the ID 
field and indicates when to start writing the ID data. 
This provides the proper-sized gap between the SEC­
TOR pulse and ID field. ' 

Detection of the INDEX pulse also resumes channell's 
program execution and the WRITE, CHANlICHAN2, 

and ENB-'CCVR signals are activated (Figs. 24 and 
25). Next the destination synchronized DMA transfer is 
started, the synch character word is prefetched from 
memory, and charmell waits for DMA request. 

When counter 0 times out, the CNTRO_DETECT flip­
flop is set (Fig. 25). CNTRO~ETECT is transmitteP. 
to the 8089's DMA request input, DRQl. This starts the 
8089 bus cycle which writes the synch character to the 
output buffer. CNTRO"':'DETECT is also transmitted 
to counter I's gate input, GATE I , which allows counter 
I to start counting BR3 ring counter pulses. Counter 1 
provides the time delay from the start to the end of the 
ID field and indicates when to append a CRC word. 

The WRO signal is activated when the 8089 writes to the 
output buffer or the hardware comparator and is used 
by the ready circuitry to generate RDY2A. RDY2A is 
activated by BRO or WRO, whichever occurs last. This 
ensures that previous data has been transferred from the 
output buffer to the shift register before writing new 
data to the output buffer. When RDY2A is activated, 
the write bus cycle completes and the synch character is 
latched in the output buffer with the rising edge of 
WiW. The synch character is next loaded into the shift 
register with BR7 and written to the drive. 

3-92 

The DMA activity repeats until four words have been 
transferred-synch character, first ID word, second ID 
word, and zero word. As the zero word is being written, 
counter 1 times out after counting four BR3 pulses. The 
TRANSMIT_CRC flip-flop latches CNTRI with BR8 
and remains active for one word time. The active 
TRANSMIT_CRC signal allows a CRC word to be 
serially transmitted to the drive from the 9401 CRC 
generator/checker. When TRANSMIT_CRC goes in­
active, zeros are shifted out of the shift register to the 
drive. Zeros are written on the track until the next ID 
field since WRITE_GATE is held active until all 30 ID 
fields have been written. 

After the four word DMA transfer, channell initializes 
DMA registers in preparation for writing the next sec­
tor's ID data and starts a dummy DMA transfer to wait 
for the next SECTOR pulse. The same procedure is re­
peated until ID data has been written for all 30 sectors. 
The format track operation concludes with channel 1 
deactivating FORMAT, WRITE, CHANlICHAN2, 
and ENB-'CCVR. The FORMAT signal deactivates 
WRITE.,...GATE which stops writing zeros to the drive. 

AFN02057A 



Ap·122 

TRACK DATA OH OH OH OH OH 

INDEX 

SECTOR 

WRITE_GATE 

FORMAT 

WRITE 

CHANt/CHAN2 

ENBJCVR 

CNTRO ACTIVE 

CNTRI ACTIVE 

CNTR2 ACTIVE If j 

Figure 24. Format Treck Operation 

TRACK DATA OH SYNCH 101 I 102 CRC I OH 

WRITE .J L 
CHANl/CHAN2 .J L 

ENB_XCVR .J L 
CNTRO_DETECT L 

DRQt m:gT L 
RDY2A 

SY~ 
LOAD OUTPUT BUFFER WRO 

SYNCH 101 102 ZEROS ZEROS ZEROS 

LOAD_SHIFT_REGISTER f1 f1 fl' f1 fl fl 
GATE1 g~~:gT f L 

1 2 3 4 

CLKt~ n n n 
~ ~ 

n IL 
CNTRI 

TRANSMIT_CRC 

Figure 25. Write ID Field 

3-93 AFN02057A 



Ap·122 

Write Data Record 
The write data record operation consists of two 
phases-sector search and write data field. Channel I's 
task program supervises this operation with assistance 
from channel 2. The sector search phase begins with the 
first complete sector that passes under the read/write 
heads and ends either when the desired sector is located 
or when all 30 sectors on the track have been compared 
without a match. If no match occurs, channel I aborts 
the operation and reports the error to the host pro-

, cessor. Upon locating the desired 'sector, the write data 
field phase begins. Two types of DMA transfers are per­
formed during the write data record operation-channel 
2 transfers the desired ID field information to the 16-bit 
comparator and channel 1 transfers the data record to 
the drive. ' 

The overall timing of the write record operation is 
shown in Figure 26. The drive signals (SECTOR, 
READ_GATE, and WRITE_GATE), signals con­
trolled by 8089 task programs (READ, WRITE, 
CHANIICHAN2, and ENB-XCVR), and activity of 
the 8254 counters are displayed. 

Channell begins the write data record operation by ini­
tializing the 8254 counters and its DMA registers used to 
transfer the data record to the drive. Next channel 1 
starts channel 2, initiates a dummy DMA transfer, and 
executes idle cycles. Channel 2 begins execution and ini­
tializes its DMA registers used to transfer the desired ID 
data to the 16-bit comparator. Next channel 2 starts a 
dummy DMA transfer to wait for a SECTOR pulse. 

When the SECTOR pulse is detected (Fig. 26), channel 2 
activates the READ signal. The destination synchro­
nized DMA transfer is started, ID word 1 is prefetched 
from memory, and channel 2 waits for DMA request. 
The READ signal activates the drive's READ_GATE 
signal and the synch character detection circuitry reads 
data from the track. When the synch character is 
detected, the SYNCH~ETECT flip-flop is set (Fig. 
27). The SYNCH~ETECT signal is used to start 
counters 0 and 2 (Figs. 26 and 27). Counter 2 provides 
the time delay from the start to the end of the ID' field 
and indicates when to check for CRC errors. Counter 0 
provides the time delay from the start of the ID field to 
the start of the data field and indicates when to start 
writing the data field. This provides the proper-sized 
gap be~ween the ID lIQd data fields. 

SYNC~ETECT also allows the DMA request 

signal, DRQ2, to be activated with BR7. This starts the 
8089 bus cycle which writes ID word 1 to one input of 
the 16-bit comparator. BRI4 is used to generate the 
LOAD-INPUT -BUFFER signal which latche~ the 
drive's ID word 1 in the input buffer (from the shift 
register). The input buffer drives the other comparator 
input. Note that the ENB-XCVR signal is inactive and 
the transceivers between the local data bus and the 
double-buffered serial/parallel converter are off., 
CNTRO~ETECT is also inactive which deactivates 
the output buffer. 

The ready circuitry operates in an identical way as dure 

ing the format operation. When RDY2A is activated, 
the write bus cycle completes and the COM­
P ARE_STATUS is latched with the rising edge of 
WRO. The COMPARE_STATUS flip-flop keeps the 
first mismatch latched until reset. 

Counter 2 was set up to count three BR7 pulses. After 
both ID words have been compared, counter 2 times 
out. The CNTR2 signal allows the 9401 CRC generator/ , 
checker's error output to be latched in the CRC_ ER­
ROR flip-flop with BR7. Channel 2 halts after the DMA 
transfer. The CNTR2 signal is also used to activate 
channell's external terminate input, EXTI. Channell 
resumes execution, examines the COM­
PARE_STATUS and CRCJRROR flip-flops, and 
deactivates the READ signal. 

Upon detecting a match without CRC error, channel I 
begins the write data field phase by activating WRITE, 
CHANIICHAN2, and ENB-XCVR (Fig. 26). The 
destination synchronized DMA transfer is started,. the 
synch character word is prefetched from memory, and 
channell waits for DMA request. When counter 0 times 
out, CNTRO~ETECT is activated and counter I is 
started. Counter I provides the time delay from the start 
to the end of the data field and indicates when to ap­
pend a CRC word. CNTRO~ETECT is also transmit­
ted to the 8089's DMA request input, DRQI, which 
starts the data record transfer to the drive (Fig. 28). The 
data record is written on the track almost identically to 
the way that the ID data is written on the track during 
the format track operation. The only hardware opera­
tional difference -is that more words are written on the 
track for the data record than for the ID field. The 
earlier discussion explains the operation of Figure 28 
and tIlerefore will not be repeated here. The write data 
reCOrd operation concludes with channel I deactivating 
WRITE, CHANI/CHAN2, and ENB-XCVR. 

3·94 AFN02057A 



Ap·122 

TRACK DATA ____ o_H ____ ~IS~Y~NC~H~I~ID_"_I~ID~'~I~c~.~c~I~ ___ o_H ____ ~IS~YN~C~H~F~D~.D_'I~«~~I_W~~~D~I_c~.~C~I ____ ~OH ____ _ 
SECTOR ..JlO"'-________________ _!I~1 ______ .... 11... 

READ_GATE ~ 
~-----~I~\---------

WRITE_GATE W_A_IT_E __________________________ ..... I~I-----~L___ 

READ --.J 
WRITE ___________ ..I-------II~I -------,L___ 

CHANl/CHAN2 
___________ -....I~----~I~I-----~L___ 

ENB-XCVR ____________________________ ~ I~\-----~L___ 

~ :'j CNTRO ACTIVE ______________________ CO_U_N_T_=_21 ______ ~----------! 
CNTRl ACTIVE COUNT=N+~ ..... -------------
CNTR2 ACTIVE __________ ~ C;:OUNT=3 

I' 

Figure 26. Write Data Record Operation 

TRACK DATA _~OH~~ __ ~SY~N~C __ L-~ID~1~_L __ ~ID~2~~~C~RC~~ ____ ~OH~ __ _ 

READ ---.l 
CHANl/CiiAN2 ---------------------

ENB_XCVR _________________________________________________ __ 

SYNCH_DETECT _________ ..1 ~ 
ID1 ID2 CRC Z~ROS 

fI fI fI t'L-LOAD_INPUT _BUFFER _____________ ....... ___ n ... __ ......1 

DRQ2 ______________ ..J ~ 

~ 
RDY2A _________________ ___ 

LATCH COMPARE_STATUS WRO 

GATE2 SYNCH_DETECT + ~ 
1 2 3 

n 
~ .~ 11... CLK2 ~ ________ JL..' __ ..I 

CNTR2 

fI LATCH CRC_ERROR 
______________ -..1 

Figure 27. Compare ID Field 

3 ... 95 AFN02057A 



Ap·122 

TRACK DATA ___ '...;;O;,;.H ___ L-.;;.SY;.;.N.;;.CH~..LI_· ...;;W;.;O.;.;RD:;..l;....!I...J(\L. __ .1-.;.;W.;;.OR.;;;D;.;.N~_~C;;;RC;,......L._.....::OH~ __ 

WRITE -.lr--------------\��I---------------,L 

CHANliCHAN2 J.-------------·~I------------.......,L 

ENB_XCVRJ.-------------------~I~I--------------------,L 

CNTRO_DETECT ___ .Jr-------------ll\--·------------.L 
CNTRO_ 

DRQl DETECT 

RDY2A _____ ..1 

LOAD OUTPUT BUFFER ;----"1' 
SVNCH WORD 1 

LOAD_SHIFT_REGISTER _______ ... fI .. __ ...... f1 

\~I----------------------~L 

~~------------
WORD 2 WORD N ZEROS ZEROS ZEROS 

~~~~fI~ ___ ~flL-___ fl--. 
I~\------·---------------~L

CNTRl __________ --i1~'-1 - '~----,~L_ __ fL-___

Figure 28 •• Write Data Field

Read Data Record
The read data record operation (Fig. 29) is similar to the
write data record operation. Although counter 0 is acti­
vated, it is not used during this operation. The sector
search activity by channel 1 and 2 is identical to that of
the write record operation. Only channell's activity
after locating the desired sector is different. Channel 1
reads the data record instead of writing it.

After the desired sector is located without a CRC error,
channel 1 begins the read dilta field phase by activating
READ, CHANlICHAN2, and ENB~CVR. The
source synchronized DMA transfer is started and chan­
nel 1 waits for DMA request. The READ signal acti­
vates the drive's READ_GATE signal and the synch
character detection circuitry reads data from the track.
When the synch character is detected, the
SYNClLJ)ETECT flip-flop is set (Fig. 30). The
SYNClLJ)ETECT signal is used to start counter 1.
Counter 1 provides the time delay from the start to the'
end of the data field and indicates when to check for
CRC errors.

BR14 is used to generate the LOAD-INPUT_

3-96

BUFFER signal which latches the first data word in the
input buffer (from the shift register). SYNCIL­
DETECT also allows the DMA request signal, DRQ1,
to be activated with BR7. This starts the 8089 bus cycle
which reads the first data word from the input buffer.

The RDO signal is activated when the 8089 reads the in­
put buffer and is used by the ready circuitry to generate
RDY2A. RDY2A is activated by BRO or ROO,
whichever occurs last. This ensures that data has been
loaded into the input buffer before reading it. Recall
that during the format and write record operations, the
ready circuitry used WRO instead of RDO. When
RDY2A is activated, the read bus cycle completes and
the 8089 stores the data word in memory.

The DMA activity repeats until all data words have been
read. Counter 1 times out and ,CNTRI allows the 9401
CRC generator/checker's error output to be latched in
the CRCJRROR flip-flop with BR7. The DMA
transfer terminates and channel 1 examines the
CRCJRROR flip-flop. The read data record opera-'
tion concludes with ehannel 1 deactivating READ,
CHANl/CHA~2, and ENB~CVR.

AFN02057A

AP·122

TRACK DATA OH ISYNCHI.D. I.D2 I CRC I OH

SECTOR jl~ .. ~~ __
READ_GATE ~ LJ

WRITE-GATE W~R~IT~E~ .. ~

READ --.J LJ
WRITE .. ~~ _

CHAN1/CiiAN2 .. --'

ENBJCVR -------------',

~~~--........ , 
CNTRl ACTIVE ............................................ _ ................ _~.. eOUNT=N+1 .................... _ 

CNTRO ACTIVE eOUNT=21 

CNTR2 ACTIVE .................... ....... COUNT=3 

'''. 

Figure 29, Read Data Record Operation 

TRACk DATA __ ~O~H .... ~~S~YN~C_H~~~W_OR_D_'--' __ -J~<~ .... ~~W~O_R~D~N~'_' .... e_RC~~ __ .... O_H .... _ 

r---------~I~\ ................................... ----~L__ 

r--............... ---~I~I .......... - .............................. ~L__ 

r-................................... ~I~I ............................................. ~L__ 

','. L__ 
WORD 1 WORD N -1 WORD N eRe ZEROS 

_______ ~~ .... --'fl'":--...... fl~-fL. 
I', L 

................................ __ .... ~W~~ ........................ __ 

I~\--.................... - .......... -,L__ 

ClKl ~---__ ~~:J_N_"--_----Jj--l'~ ..... r--' -::..~~:~_Il 
, CNTRl 

lATCH CRC_ERROR _ ..... _ .............................. ~,~,-----..... ~fl~-~-_ 

Figure 30, Read Data Field 

,3-97 AFN02IJ!i7A 



Ap·122 

VII. SOFTWARE DES-IGN 

The host processor communicates with and starts only 
channel 1 and subsequently channel 1 starts channel 2. 
Although the 8089's architecture and the controller 
hardware permit the host processor to control and start 
both channels, this design restricts the host's interac­
tions with channel 1. 

In a previous section, the linked blocks of the memory­
based communication structure are described. The 
system configuration pointer and the system configura­
tion block are used only during 8089 initialization after 
reset. The channel control block (CB) is used for 8089 
initialization and to control channel operation. Before 
starting channel operation, the host processor initializes 
the channel control word and the parameter block offset 
and segment base in the proper half of the channel con­
trol block (Fig. 8). This section describes the parameter 
and task blocks used in the disk controller design. 

Parameter Blocks 
The parameter block for channel 1 is shown in Figure 
31. The TBI offset points to channell's task program 
which resides in local memory. If the task program 
resides in system memory, such as during initial debugg­
ing, TBI segment base is also used to generate the 
pointer. Note that the 8089' s architecture requires that 
the first parameter in the PB be the task program's ad­
dress. All other parameters are user-defined allowing 
parameters to be tailored for a specific 1/0 task. Other 
PBI parameters that are passed to the 8089 in this appli­
cation are the data buffer'S address, function, cylinder, 

HIGH MEMORY 

PB2 SEGMENT BASE 

PB20FFSET 

CB SEGMENT BASE 

CBOFFSET 

HEAD I SECTOR 

0 I CYLINDER 

STATUS 

FUNCTION CODE 

MEMORY BUFFER SEGMENT BASE 

MEMORY BUFFER OFFSET 

TBl SEGMENT BASE 

T810FFSET 

LOWMEMORY 

} 
CHANNEL2 

- - __ PARAMETER 
BLOCK 

} 
CHANNEL 

--+- CONTROL 
BLOCK 

} 
CHANNEL 1 

- - -- TASK BLOCK 

Figure 31. -Channel 1 Parameter BI~k 

head, sector and pointers to the CB and PB2. The only 
parameter passed back to the host is status. 

Normally the host processor starts channel 2 and is 
responsible for initializing parameters in the CB and 
PB2. In this design channel I starts channel 2. The CB 
and PB2 pointers received from the host in PBI allow 
channel 1 to initialize the proper parameters before 
starting channel 2. 

In this disk controller design, channel 2 is essentially a 
slave of channel I. Prior to starting channe12, channell 
initializes channel2's CCW and PB2 offset and segment 
base in the second half of the channel control block. 
Next channel 1 initializes three parameters in channel 
2's parameter block (Fig. 32). The first parameter is the 
address of channel2's task program. The function code 
and the data buffer's address are the other two param­
eters. Although parameter block 2's structure allows the 
task program and data buffer to reside in system or 
local memory, this design places them both in local 
memory. Therefore, only TB2 offset and data buffer of­
fset are initialized by channel I and the segment bases 
are not used. Channel 2 provides no status information 
back to channel I via parameter block 2. 

HIGH MEMORY 

MEMORY BUFFER SEGMENT BASE 

MEMORY BUFFER OFFSET ' 

FUNCTION CODE 

TB2 SEGMENT BASE } CHANNEL 2 
1----T-B-20-F-F-SE-T---; --+- TASK BLOCK 

L------LO-W-M~E~M~O~R~Y----~ 

Figure 32. Channel 2 Parameter Block 

Software Organization 
The disk controller software is organized as several 
modules with a threi-Ievel hierarchy (Fig. 33). When the 
8089 receives a channel attention from the host pro­
cessor, module TBLKI begins execution (level I). Con­
trol is next transferred to one of the level 2 modules (IN­
IT, SEEK, FMAT, WDATA, or RDATA) based on 
which function was specified in the parameter block. 
For read or write data record functions, TBLK2, which 
is the lone level 3 module, -is also executed. 

The details of each software module are now described. 
While reading the detailed description, it may be helpful 
to refer to the ASM89 assembly language source code in 
Appendix B. ' 

3-98 AFN02057A 



Ap·122 

CA 1 
I 
I 

Figure 33. Disk Controller Software Organization 

Control Program (TBLK1) 
After the host processor initializes parameters in the 
channel control and parameter blocks, a channel atten­
tion is generated which starts module TBLKI. Registers 
GA and GC are first initialized. GA is used as a pointer 
to the start of local RAM and GC is used as a pointer to 
control port 1. The FORMAT, READ, WRITE, 
CHANlICHAN2, ENB~CVR, and SEL_INDEX 
control signals are generated by writing to control port 
I. In general, the controller software uses GA as a base 
pointer when accessing variables. in local memory and 
GC as a base pointer when accessing I/O ports. 

Next TBLKI examines the function code in the param­
eter block to determine which function has been speci­
fied. A unique bit in the function code is used to specify 
each of the five functions. This allows the 8089"'s bit test 
and branch instructions to be used. If a valid function is 
specified, control is transferred to the proper level 2 
module. If not, the BAD_CODE error bit in the 
parameter block's status word is set, the host is inter­
rupted, and channel 1 halts. 

Initialization (lNIT) 
The initialization module, INIT, is used to place the 
controller in a known state after applying power to the 
system. It is also used to reset the drive's write fault 

signal. Control ports 1 and 2 are first cleared and then 
the drive select line is activated. Any pending write 
faults are reset. The heads are next positioned over 
cylinder 0 and the three 8254 counters are initialized in 
preparation for other disk drive operations. Counter 0 is 
initialized to count 8 pulses, counter 1 to count 4 pulses, 
and counter 2 to count 3 pulses. Finally, the host is in­
terrupted and the channel halts. 

Seek Track (SEEK) 
The seek track module, SEEK, is used to position the 
heads over a specified cylinder and to select one of the 
eight read/write heads. TIlls module first checks if the 
controller is initialized. Since INIT selects the drive, an 
~ctive ready signiu from the drive indicates that the con­
troller has been initialized. If not initialized, the 
NOT~ADY error bit in the status word is set, the 
host is interrupted, and the channel halts. In order to 
minimize unnecessary accesses to Multibus, a status 
word in local memory is updated as errors are encoun-

. teredo Prior to halting, a module will copy this local 
status word to the parameter block i!l Multibus's shared 
memory. 

3-99 

If the drive is initialized, execution of the SEEK module 
continues. The cylinder and head values are copied from 
the parameter block to local memory. These variables 

AFN02051A 



AP·122 

are stored in local memory to minimize Multibus access. 
The cylinder and head values are checked to determine 
whether they exceed the maximum values of the drive. If 
one or both does, the BAD_CYLINDER ,and/or 
BAD--...HEAD error bits are set and the channel halts. 

With valid input parameters, head movement is next 
determined using a local variable, PRESENT _CYL, 
which specifies which cylinder is presently being ac­
cessed. By subtracting the present cylinder value from 
the new cylinder value, the head movement is deter­
mined. A zero result means no movement, a positive 
resu~t means'inward movement, and a negative result 
means outward movement. A non-zero result also speci­
fies how many cYlinders inward or outward the set of 
heads must be moved. Although the 8089 does not have 
a subtract instruction, the subtract operation is easily 
implemented by complementing the subtrahend before 
adding it to the minuend., If head movement is 
necessary, the drive's direction. line is activated (l for in­
ward and 0 for outward) and a string ,of pulses equal to 
the number of cylinders to be mQved is transmitted to 
the drive. 

Next the PRESENT_CYL variable is updated and a 20 
msec delay loop is executed. This delay is required by 
the drive to allow the head positions to stabilize. 
Finally, the host is interrupted and channel 1 halts. 

Format Track (FMAT) 

Before information can be stored on a track, the ID 
fields must be written. This is the function of the format 
track module, FMA T. Similar to the SEEK module, 
controller initialization is first checked. Next the count 
registers for the 8254 counters 0 and 1 are initialized to 8 
and 4, respectively. A format table is generated which 
contains fpur words of information that are written on 
the track for each of the 30 sectors. The four words con­
tain the ID synch character, cylinder number, head and 
sector numbers, and a word of zeros. The zero word is 
used to write zeros on the track between ID fields. This 
area contains the gap between ID and data fields, the 
data field, the gap after the data field, and the gap after 
the subsequent SECTOR pulse. Only one zero word is 
needed since the 16-bit shift register continues to shift, 
out zeros until it is reloaded. 

The format table is generated in three steps: an array 
containing, the 30 interleaved sector numbers is con­
structed, the head numbe~ is loaded into the upper half 
of the MC register, and then four words for each ~ector 
are assembled in the table. Loading the head number in~ 

to MC's upper half is effectively done by shifting the 
data from MC's lower half to its upper half. Although 
the 8089 has no shift instruction, the shift left operation 
can be implemented by adding a number to itself. Shift­
ing the head number left 8 bits is easily accomplished 
with a loop containing just a few lines of code. 

After the format table has been constructed, the infor­
mation is written to the drive using high speed DMA 
transfers. Channell performs the entire format opera­
tion without assistance from channel 2 .. Dummy DMA 
transfers are used to synchronize the format operation 
with INDEX or SECTOR pulses received from the 
drive. The byte count (BC) register is initialized with the 
actual byte count plus two since the dummy DMA trans­
fer decrements BC (refer to the section on Special 
Design Considerations). After the synchronization 
signal is received, four words from the format table are 
written on the track with DMA transfers. The first sec­
tor's ID field is written after the INDEX pulse is 
detected and the ID fields of the remaining 29 sectors 
are written after SECTOR pulses are detected. 

After each of the 30 ID fields has been written on the 
track, the drive's write fault signal is examined. If a 
fault is detected, the BAD_WRITE error bit is set and 
the channel halts. If no faults are detected, the channel 
halts after all 30 ID fields have been written. 

Write Data Record (WDAT A) 
The WDA T A module begins execution whenever a data 
record is written to the drive. Channel 1 begins by 
transferring the desired sector's ID information from 
the parameter block to a local memory buffer. This 
local buffer will be used by channel 2 during the ID field 
compare. The sector number is checked to determine 
whether it exceeds, the maximum value. If so, the 
BAD_~ECTOR error bit is set and channell halts. If 
no error is detected, the 8254's count registers for 
counters 0 and 1 are initialized to 21 and 258, 
respectively. 

Channel 1 next enters the DMA mode and transfers the 
data .record from the system memory buffer to a local 
memory buffer. The data synch character is inserted in­
to this local buffer before the data record and a zero 
word is inserted after the data record'~ The zero word 
causes zeros to be written after the data record and CRC 
word. 

Preparation, for starting channel 2 is next performed. 
Channel2's half of the channel control block is loalied 
with the channel control word to start t~s~ program exe-

3-100 AFN02057A 



AP·122 

cution in local memory and with the offset'and segment 
base values of parameter block 2'saddress. Channel2's 
task program address, the function code for compare 
ID field, and the address of the buffer containing the 
desired sector's ID information are then loaded into 
channel2's parameter block. Next channell's registers 
for the write data record DMA transfer are initialized, a 
channel attention signal to start channell is generated, 
and channel I starts a dummy DMA transfer. Note that 
two must be added to BC since it is decremented durifig 
the dummy DMA transfer. 

Channell now idles while channel 2 detects a SECTOR 
pulse and transfers the desired sector's ID information 
to the 16-bit comparator. As channel 2 completes its 
DMA transfer and halts, counter 2 times out which ter­
minates channell's dummy DMA transfer. Channel I 
resumes execution and examines the compare status and 
CRC error flip-flops simultaneously. This is accom­
plished using the 8089's jump if masked compare not 
equal (JMCNB) instruction which uses the MC register 
to test both flip-flop outputs and jumps if a mismatch 
and/or CRC error is detected. If a match without CRC 
error is detected, channel I enters the DMA mode and 
writes the data record ,on the disk. 

If a mismatch and/or CRC error is detected, the CRC 
error flip-flop is checked individually. The detection of 
a CRC error causes the BAD~D_CRC error bit to be 
set and the channel to halt. Detecting no CRC error 
means that only a mismatch occurred. In this case, the 
next sector's ID field is compared by starting channel 2 
again. 

Assuming that no CRC errors are detected, the sector 
search is repeated until a match is found or all 30 ID 
fields have been compared, whichever comes first. This 
technique allows the sector search to begin with the first 
complete sector encountered rather than starting at the 
beginning of the track when the INDEX pulse is 
detected." 

After detecting a match and writing the data record on 
the track, the drive's write fault signal is examined. The 
BAD_WRITE error bit is set if a fault is detected. 
Otherwise, channell halts. For the case where all 30 sec­
tors have been searched and the desired sector is not 
found, the BAD_SEARCH error bit is set and channel 
1 halts. 

Read Data Record (ROAT A) 
Whenever a data record is to be read from the drive the 
RDATA module is executed. Much of the actions per­
formed by this module are identical- to that of the 

3-101 

WDATA module. Channel 1 also begins by transferring 
the desired sector's ID information from the parameter 
block to a local memory buffer, checking the sector 
nUplber, and initializing the 8254 count registers. Iden­
tical action continues by updating channel 2's com­
munication blocks, initializing channell's registers for 
the DMA transfer, generating a channel attention signal 
to start channel 2, and starting a dummy DMA transfer. 
Since the read data record DMA transfer is source 
synchronized, the BC register is not modified during the 
dummy DMA transfer and therefore no adjustment is 
needed when initializing BC. 

Channel 2 next performs the ID field compare and 
halts. Channel I resumes execution when counter 2 
times out. Identically with WDATA, channel I exam­
ines the compare status and CRC error flip-flop simul­
taneously. Detecting a match without eRC error causes 
channel 1 to enter the DMA mode and read the data 
record. The CRC error flip-flop is again examined and 
if no error is detected, the data record just read into a 
local memory buffer is transferred to the system 
memory buffer with DMA transfers and channel 1 
halts. If a CRC error was detected during the reading of 
the data record, the BAD-DAT A-CRC error bit is set 
and channel I halts. 

Detection of a mismatch and/or CRe error after the ID 
field compare causes the eRC error flip-flop to be 
checked individually. Encountering a CRC error will set 
the BAD~D_CRC error bit and halt channel 1. 
Otherwise channel I will repeat the sector search until a 
match is found, all 30 ID fields are compared, or a CRC 
error is detected. Anyone of these conditions will cause 
channell to read the data record and halt or set an error 
bit and halt. ' 

Compare or Read 10 (TBLK2) 
Channel 2's task program, TBLK2, is executed when­
ever the ID field is compared or read. Note that the code 
to read the ID field is included in TBLK2 but is not used 
in ihis version of the software. Channel 2 begins by 
reading the function cpde to determine whether to com­
pare the ID field or to read it. In either case, the major 
actions are similar. Channel 2's DMA registers are ini­
tialized, a dummy DMA transfer is started to wait for 
the SECTOR pulse, the data transfer DMA mode is 
entered, and finally channel 2 halts. During an ID field 
compare, the data transfer DMA mode writes informa­
tion to the 16-bit 'Comparator while during an ID field 
reaa, information is read from the serial/parallel con­
version circuitry. The BC register must be adjusted dur­
ing the ID compare but'not during the ID read. 

AFN02057A 



AP·122 

VIII. POSSIBLE ENHANCEMENTS 

As discussed earlier, the main purpose of this applica­
tion note is to present basic design information on b;n~ 
plementing a disk controller with the 8089 1/0 pro­
cessor. Although the design described here does not ex­
hibit many intelligent features, the controller does allow 
software enhancements to provide the desired features. 

The present design requires a separate track seek opera­
tion before a read or write data record operation. Ad­
ding the capability to perform the seek operation prior 
to reading or writing the data record is simple. Separate 
bits in the function code word are used to specify each 
function. This allows the host to select multiple func­
tions. Recall that the function code is included in the 
parameter block and is initialized by the host processor. 

The SEEK software module can be modified to examine 
the read and write function code bits after completing 
the seek operl!tion. If only one function (read or write, 
but not both) is specified, control is transferred to the 
proper module, either RI>ATA or WDATA. Otherwise, 
an error bit is set and the channel halts. Note that this 
same technique can be used to perform a seek operation 
prior to the format track operation. 

Another possible enhancement is the ability to retry an 
operation when a CRC error is detected. This feature 
applies whenever the ID field (during sector search) or 
data field (during read data record) is read. The soft­
ware can be modified to reposition the heads at the fail­
ing sector (by counting SECTOR pulses) and retry the 
search or read operation. If several more CRC errors 
are detected, the operation is terminated, an error bit is 
set, and the channel halts. The number of retries can be 
preset in the task program or received as 'a variable from 
the host processor via the parameter block. 

The ability to transfer multiple sectors of data is another 
desirable feature. A new variable called record count 
Illust be added to the parameter block. Sequentiallogi­
cal sectors are transferred from the starting logical sec­
tor specified in the parameter block. As many sectors as 
specified by the record count are transferred. This could 
also include head switching from one track to another 
(without a seek operation) to access data across track 
boundaries. 

The transferred data is buffered in local memory and 
the interleaved scheme allows two physical sector times 
for the 8089 to transfer the data from system memory to 
local memory (write operation) or from local memory to 
system memory (read operation). Data is transferred to 
or from the multiple sector system memory buffer start­
ing at the location specified by the parameter block 
variables. Another parameter block variable may be 

created which returns the last sector number transferred 
to the host. This information can be used by the host 
during. an error to determine how many sectors were 
successfully transferred. 

The ability to perform linked operations might be 
useful. For example, a track seek and the reading of five 
data records can be followed by another track seek and 
the writing of two data records. To include this featUre, 
the parameter block could be modified to pass a set of 
parameters for each operation or multiple parameter 
blocks could be linked together. Variables such as func­
tion code, data buffer's address, cylinder, head, sector, 
record count, status, and last sector transferred are pro­
vided for each operation. As many sets of parameters as 
desired can be specified. The controller software would 
sequence through these sets of parameters, perform the 
required operations, and halt when a special function 
code, such as one with no functions selected, is detected. 

It was pointe~ out 'earlier that the controller hardware 
includes provisions for reading the ID field. In addition, 
the software module TBLK2, channel2's task program, 
can either compare the ID field or read it, depending on 
the function code that chann~l 1 provides" Therefore, 
the software can be modified to read the ID field infor­
mation and verify track position. The 30 ID fields can 
also b~ read to verify a format track operation. In addi­
tion, sophisticated access methods which r~quire read­
ing the ID field may be implemented. 

Another enhancement is to verify a data record just 
written to the drive. Here the same circuitry used to 
compare ID fields is used to compare data fields. The 
good data is written to one input of'the hardware com­
parator while data read from the drive is applied to the 
other input. The first mismatch is latched in the com­
pare status flip"flop for examination later. 

3-102 

The software can also be enhanced to manage a file 
structure. The host processor would refer to data rec­
ords by logical file,names rather than physical disk loca­
tions (cylinder, head, and sector). By maintaining a disk 
directory, the software would determine where the 
record is located dr will be located and perform the data 
record access. The 8089's general instruction set, 
although oriented towards 1/0 processing, supports 
data processing of this complexity. 

The 8089's flexible memory-based communication 
structure allows enhancements to be easily imple­
mented. Modifying the parameter block to accommo­
date any additional parameters is a simple task. All 
variables in the parameter block except for the task pro­
gram address are defined by the user based on the 1/0 
processing task to be performed. 

AFN02057A 



AP·122 

IX. CONCLUSIONS 

This application note has provided a detailed descrip­
tion of a hard diskcontroflel" design based on the Intel 
8089 I/O processor. The features provided by the 8089 
make it well suited for disk control applications. The 
1.25 megabyte/sec DMA transfer rate allows interfacing 
with high speed Winchester disk drives. The two chan­
nels provided in a single 4O-pin package permit back-to­
back DMA transfers in rapid succession to minimize 
gaps between the ID and data fields . and provide a 
higher formatted drive capacity. The 'bit manipulation 
instructions simplify the implementation of the disk 
controller software, typical of I/O processing software. 
All of these features allow the design of a versatile, in­
telligent and high performance disk controller compati­
ble with high performance microprocessors and disk 
drives available today. 

An 8089-based disk controller maximizes6verall system 
throughput. The host processor and 8089 operate con­
currently due to the 8089's local bus whicbis used to ac­
cess the controller circuitry, task programs, and local 
data variables and buffers. Shared system bus accesses 
are kept to a minimum which minimizes system bus con­
tention. System throughput is also ,maximized by off­
loading disk control overhead tasks from the host and 
having the 8089 perform these tasks in parallel with the 
host. This frees host processor time for data processing. 

A versatile disk controller with many intelligent features 
is easily implemented with an 8089. The host initiates a 
single high level command to perform track seek, data 
record transfers, error checking, and any retries. Other 
controller features such as multiple sector transfers, 
linked operations, and data record verification can also 
be provided. The 8089 provides flexible system bus in-

terfacing. The controller described here has a Multibus 
interface with byte swap circuitry that permits inter­
facing with 8- or 16-bit system memory. Since the 
system bus width is defined during 8089 initialization, 
no controller hardware or software changes are neces­
sary. Memory based communications allow both 8- and 
16-bit host processors to use this controller. 

Use of the 8089 promotes modular subsystem develop­
ment. Memory based communication blocks provide a 
simple software interface with the host processor. Once 
the parameter block structure is defined, host and 8089 
software development proceeds in parallel. Future 
enhancements are also .easily incorporated with possible 
additions to the parameter block. The hardware inter­
face is also straightforward. A system bus interface, 
such as Multibus, allows the use of address signals to 
generate the CA and SEL signals received by the 8089 
and the use of the interrupt lines to route interrupts 
back to the host processor. Such a simple interface per­
mits the disk controller hardware to be developed con­
currently with, other hardware subsystems. Also, note 
that the entire 8089 subsystem may be changed with 
minimal impact, if any, to the host processor software. 
For example, the subsystem could be upgraded to sup­
port higher capacity disk drives or a bubble memory 
subsystem could be implemented using a similar soft­
ware interface. 

Finally, the 8089 allows a compact disk controller to be 
implemented. The design here is constructed on a 6-3/4 
by 12 inch board with 75 IC packages. By combining at­
tributes of a CPU and an intelligent DMA controller in 
a single 4O-pin package, the 8089 I/O processor allows 
versatile, high performance, and compact I/O subsys-
tems to be implemented. ' 

3-103 AFN02057A 



Ap·122 

APPENDIX A 

SHUGART SA4000 PERFORMANCE AND FUNCTIONAL SPECIFICATIONS 

MODEL 4004 4008 

No. of Disk Surfaces 
" 2 4 

No. of Heads 4 8 . 
No. of Cylinders 202 202 
No. of Tracks 808 1616 

" Gross Capacity.(M bytes) 14.S4 29.08 
Access Time including seek settle 

of 20 ms (Milliseconds) 
One Track 20 20 
Average (67 Track Seek) 6S 65 
Maximum (201 Track Seek) 140 140 

Disk Speed 2964 RPM 
Recording Mode MFM 
Recording Density SS34 BPI 
Flux Density SS34 FCI 
Track Capacity 18000 Bytes 
Track Density 172 TPI 
Transfer Rate 7.11 x 106 bits/sec. 

889 x Uf bytes/sec. 
Sectors .. Programmable 
Start Time . I.S minutes 

3-104 AFN02057A 



Ap·122 

APPENDIXB 

8089 MACRO ASSEMBLER *** 8089-BASED PISK CNTLR *** 

ISIS-II 8089 MACRO ASSEMBLER X202 ASSEMBLY OF MODULE HDC89 
OB~ECT MODULE PLACED IN :F1:HDCB9.0B~ 
ASSEMBLER INV,OKED BY: : F1: ASMB9 : F1: HDCB9. AB9 DATE (7-20-81 ) 

LINE SOURCE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25, 
26 
27 
2B 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

$TITLE(*** BOB9-BASED DISK CNTLR ***) 

BOB9-BASED HARD DISK CONTROLLER 

I 

HDCB9 SEQMENT 

I 

$INCLUDE(:F1:EOUB9.AB9) 

CHANNEL 1 PARAMETER BLOCK OFFSETS 

$E~ECT 

PBl_TBl_OFF 
PBl_TBl_SEQ 
PBl_BUFR_OFF 
PBl_BUFR_SEQ 
PBl_FUNCTION 
PBl_STATUS 
PBl_CYLINDER 
PBl_HEAD_SECTOR 
PBl_CCB_OFF 
PBl_CCB_SEQ 
PBlJB2_0FF 
PB l_PB2_SEQ 

EOU 
EOU 
EOU 
EOU 
EOU 
EOU 
EOU 
EOU 
EOU 
EOU 
EOU' 
EOU 

OOH 
02H 
04H 
06H 
OSH 
OAH 
OCH 
OEH 
10H 
12H 
14H 
16H 

CHANNEL 2 PARAMETER BLOCK OFFSETS 
I 

PB2_TB2_0FF 
PB2_TB2_SEQ 
PB2J"UNCTION 
PB2_BUFR_OFF 
PB2_BUFR_SEQ 

EOU 
EOU 
EOU 
EOU 
EOU 

CHANNEL 2 FUNCTION CODES 

~105 

EOU 
EOU 

OOH 
02H 
04H 
06H 
OSH 

OOH 
OlH 

AFN02OIi7A 



Ap·122 

43 
44 
45 8089 CHANNEL CONTROL REGISTER BIT MASKS 
46 
47 PORT_TOyORT EGU OOOOOOOOOOOOOOOOB 
48 BLOCK_TO_PORT EGU 0100000000000000B 
49 PORT_TO_BLOCK EGU 1000000000000000B 
50 BLOCK_TO_BLOCK EGU 1100000000000000B 
51 
52 TRANSLATE EGU 0010000000000000B 
53 
54 SOURCE_SYNCH EGU 00001000000000008 
55 DEST_SYNCH EGU 0001000000000000B 
56 I 

57 GA_SOURCE EGU 00000000000000008 
58 GB_SOURCE EGU 00000 1 OOOOOOOoooa 
59 i 

60 LOCKED_CONTROL EGU 00000010000000008 
61 
62 CHAINED_MODE EGU 0000000100000000B 
63 
64 SINGLE_XFER EGU 0000000010000000B 
65 
66 EXT_TERM_O EGU 0000000000100000B 
67 EXT_TER"1_4 EGU 000000000 1 OOOOOOB 
68 EXT_TERM_8 EGU 0000000601100000B 
69 
70 BC_TERM_O EGU 0000000000001000B 
71 BC_TERM_4 EGU 00000000000 1 OOOOB 
72 8C_TERM_8 EGU 0000000000011000B 
73 
74 UNTIL_MC_TERM_O EGU 0000000000000001B 
75 UNTIL_MC_TERM_4 EGU 0000000000000010B 
76 UNTIL_MC_TERM_8 EGU 0000000000000011B 
77 
78 WHILE_MC_TERM_O EGU 00000000000001018 
79 WHILE_MC_TERM_4 EGU 0000000000000110B 
80 WHILE_MC_TERM_8 EGU 0000000000000111B 
81 
82 $E.JECT 
83 

·84 
85 CONTROLL.ER ADDRESSES 
86 
87 RAM_BASE EGU OOOOH 
88 ROM_BASE EGU 2000H 
89 DATA]ORT EQU 4000H 
90 CNTL_PORT_l EQU 4010H 
91 CNTL_PORT _2 EGU 4021H 
92 STATUS_PORT EGU 4030H 
93 CHAN23A]ORT EGU 4070H 
94 
95 LD_CNTRO_54 EGU 4051H 
96 LD3NTR1_54 EGU 4053H 
97 LD3NTR2_54 EGU 4055H 
98 MODE __ 54 EGU 4057H 

3-106 AFN02057A 



Ap·122 

99 RD_CNTRO_54 EGU 4051H 
100 RD_CNTR1_54 EGU 4053H 
101 RD_CNTR2_54 EGU 4055H 
102 
103 
104 OFFSET VALUES FROM CNTL_PORT_l = 4010H 
105 
106 CNTL2 EGU 011H 
107 STATUS EQU 020H 
108 CA2 EGU 060H 
109 
110 
111 8254 CONTROL WORD BIT MASKS 
112 
113 SEL_CNTRO_54 EGU OOOOOOOOB 
114 SEL_CNTR 1_54 EGU 01000000B 
115 SEL_CNTR2_54 EQU 10000000B 
116 
117 RDJ-D_LATCH_54 EQU OOOOOOOOB 
118 RD_LD_MSB_54 EQU 00100000B 
119 RD_LD_LSB_54 EQU 00010000B 
120 RD_LD_WORD._54 EQU 00110000B 
121 
122 MODEO_54 EGU OOOOOOOOB 
123 MODEl_54 EQU 00000010B 
124 MODE2_54 EQU 00000100B 
125 MODE3_54 EGU 00000110B 
126 MODE4_54 EQU 00001000B 
127 MODE 5_54 EQU 00001010B 
128 
129 BCD_COUNT _54 EGU 00000001B 
130 
131 .$E-.lECT 
132 
133 
134 CNTL_PORT _1 8IT MASKS 
135 
136 CLEAR EGU OOOOOOOOB 
137 FORMAT EGU 000000018 
138 READ EGU 00000010B 
139 . WRITE EGlJ 00000100B 
140 CHAN1 EGlJ 0000 1 OOOB 
141 CHAN2 EQU 000000009 
142 ENB_XCVR EGU 00010000B 
143 SEL_INDEX EGU 001000008 
144 
145 
146 CNTL]ORT 2 BIT MASKS 
.147 
148 HEAD 1 EGU 00000001B 
149 HEAD2 EQU 00000010B 
150 HEAD4 EQ'U 00000100B 
151 HEAD8 EGU 00001000B 
152 DRIVEl EGU 00010000B 
153 INWARD EGU 00100000B 
154 OUTWARD EGlJ OOOOOOOOB 

3-107 AFN02057A 



155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 .$E.JECT 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 

STEP 
FAULT_CLEAR 

Ap·122 

EOU 
EOU 

01000000B 
10000000B 

STATUS-P0RT BIT POSITIONS 
J 

COMPARE_STATUS 
CRC_ERROR 
SEEK_COMPLETE 
DRIVE_READY 
TRACKOO 
WRITE_FAULT 

EOU 
EOU 
EOU 
EOU 
EGU 
EGU 

o 
1 .., 
5 
6 
7 

MASK-COMPARE (Me) PATTERNS 

TEST_SECTOR FOUND EGU 0301H 

FUNCTION CODE BIT POSITIONS 

INIT_CODE 
SEEK30DE 
FMAT_CODE· 
WRITE_CODE 
READ_CODE 

LOOP _CODE 

EGU 
EGU 
EGU 
EGU 
EGU 

EGU 

o 
1 
2 
3 
4 

7 , 

ERROR CODE BIT POSITIONS 

BAD_CODE 
NOT_READY 
BAD_CYLINDER 
BAD_HEAD 
BAD_SECTOR 
BAD_WRITE 
BAD_SEARCH 
BAD_ID_CRC 
BAD_DATA_CRC 

OTHER CONSTANTS 

MAX_CYLINDER 
MAX_HEAD 
MAX_SECTOR 

ID_SYNCH 
DATA_SYNCH 

ID_SIZE 
WORD_COUNT 

EGU 
EGU 
EGU 
EGU 
EGU 
EGU 
EGU 
EGU 
EGU 

EGU 
EGU 
EGU 

EGU 
EGU 

EGl} 
EGU 

3-108 

o 
1 
2 
:3 .., 

6 ., 
o 

202 
8 
30 

OFH 
ODH 

'I 
256 

AFN02057A 



211 
212 
213 
214 
215 
216 $E.JECT 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 $E.JECT 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 TBLK1: 
260 
261 
262 
263 
264 
265 
266 

Ap·122 

i . 

START_SYS_CCW 
STARTJ-OC_CCW 

EQU 

EQU 
EQU 

WORD_COUNT + WORD_COUNT 

083H 
081H 

J--------------------------------------------------
J 

DATA VARIABLE DEFINITIONS 

; ---------------------,-----------------------------

ORG RAM_BASE 

CYLINDER: 
HEAD: 
SECTOR: 

FUN-CTlON: 

PRESENT 3YL: 

FIND_SECTOR: 

TEMP _STATUS: 

TEMP: 

ORG RAM_BASE + 05FOH 

SECTOR_BUFFER: 

DW 
DW 
DW 

DW 

DW 

DW 

DW 

DW 

DS 

° 0 

° 
0 

0 

0,0,0,0 

° 
° 

512 

IN LOW BYTE 
J IN LOW BYTE 

IN LOW BYTE 

IN LOW BYTE 

; -----------------------------------------.---------

C HAN N ELl 

;--------------------------------------------------

CONTROL PROGRAM 

ORG RAM_BASE + 040H 

QA,RAM BASE i GA = RAM BASE PTR 
[GAl. TEMP _STATUS, OH i STATUS = NO ERROR 

MOVI 
MOVI 
MOVI 
MOV 

GC,CNTL_PORT_li GC = 110 BASE PTR 
[GAl. FUNCTION, [PPl.PB1_FUNCTION i GET FUNCTION 

CODE 
LJBT· [GAl.FUNCTION,INIT_CODE.INIT J JUMP IF INIT 

L.JBT [GAJ.FUNCTION.SEEK_CODE.SEEK JUMP iF SEEK 

3-109 . AFN02057A 



267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 $E-.lECT 
280 
281 
282 
283 
284 
285 
286 INIT: 
287 
288 
289 
290 110: 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
31.8 
319 
320 
321 
322 

115: 
120: 

130: 

I40: 

L-.lBT 

L-.lBT 

L-.lBT 

SETB 
MOV 
SINTR 
HLT 

Ap·122 

[GAl. FUNCTION,FMAT_CODE,FMAT 

[GAl. FUNCTION,WRITE_CODE,WDATA 

[GAl. FUNCTION,READ_CODE,RDATA 

-.lUMP IF FMAT 

-.lUMP IF WR ITE 

.JUMP IF READ 

[GAl. TEMP_STATUS, BAD __ CODE ; ERROR. INVALID 
[PPJ. PB1_STATUS, [GAJ. TEMP ... STATUS ; FUNCTION 

; SET INTERRUPT 

, INITIALIZATION 

j--------------------------------------------------
MOVBI 
MOVBI 
MOVJilI 

.JNBT 

-.lNBT' 
MOVE I 
MOVBI 

JET 
MOVBI 
MOVBI 
.JNET 
JNBT 

MOVI 
MOVI 
MOVI 
MOVI 

; , 

MOVI 
MOVE I 
MOVBI 
MOVBI 
MOVI 
MOVBI 

[GCl.CLEAR ZERO CONTROL PORTS 
[GCl. CNTL2,CLEAR 
[GCl.CNTL2,DRIVEl SELECT DRIVE 

[GCl.STATUS,DRIVE_ftEADY,I10 

RESET WRITE FAULT (IF ANY) 

[GCl. STATUS, WRITE_.FAULT. 115 
[GC J. CNTL2, DR I VE 1 +FAUL T _.CLEAR 
[GCl.CNTL2,DRIVEl 

POSITION HEADS OVER TRACKOO 

[GCl. STAT.US, TRACKOO, 140 
[GCl.CNTL2,DRIVE1+OUTWARD+STEP 
[GCl,CNTL2,DRIVE1+OUTWARD 
[GCl. STAtUS, SEEK_.COMPLETE, 130 
[GCl.STATUS,TRACKOO. I20 

WAIT FOR DRIVE 
READY 

[GAl.PRESENT_CYL,OH 
[GAl. CYLINDER. OH 
CGAl.HEAD,OH 
[GAl.SECTOR,OH 

INIT PRESENT 3YL 
ZERO VARIABLES 

INITIALIZE 8254 CNTRO, CNTR1, AND CNTR2 

GA,MODE_54 
[GAl, SEL_CNTRO.,,,54 + RD,.:..LD_WORD_54 + MODE5_54 
[GAl. SEL_CNTR1 ... 54 + RD_LD_WORD._.54 + MODE5_54 
[GAl. SEL._CNTR2~54+ RD __ LD_WORD_54 + I"IODE5._54 
GA, LD_CNTRO._54 . 
CGAJ.07 i CNTRO "COUNT = 8 PULSES 

AFN02057A 



323 
324 
325 
320 
327 
328 
329 
330 
331 
332 
333 
334 
335 
330 $E.JECT 
337 
338 
339 
340 
341 
342 
343 
344 
345 SEEK: 
340 
347 
348 
349 
350 
351 
352 S10: 
353 
354 
355 
350 
357 
358 
359 
300 
301 
302 
303 
304 
305 
300 S13: 
307 
308 
369 
370 
371 
372 
373 S16: 
374 
375 
376 
377 
378 

MOVBI 
MOVI 
MOVBI 
MOVBI 
MOVI 
MOVBI 
MOVBI 

MOVI 
MOV 
SINTR 
HLT 

Ap·122 

[GAl,O 
GA,LD3NTR1_54 
[GAl,03 
[GAl,O 
GA,LD_CNTR2_54 
[GA1,02 
[GAl, 0 

CNTRl COUNT PULSES 

CNTR2 COUNT = 3 PULSES 

GA,RAM_BASE ; GA = RAM BASE PTR 
[PPl.PB1_STATUS, [GAl. TEMP_STATUS 

; SET INTERRUPT 

SEEK TRACK 

;-----------------------------------~--------------

.JBT 
SETB 
L.JMP 

MOV 
MOVB 
MOV 

MOVI 
MOV 
NOT 
INC 
ADD 
.JNBT 
SETB 

MOVI 
MOV 
NOT 
INC 
ADD 
.JNBT 
SETB 
.JNZ 

CHECK IF DRIVE IS INITIALIZED 

[GCl.STATUS,DRIVE_READY,S10 
[GAl. TEMP_STATUS, NOT_READY 
S80 

.JMP IF DRIVE RDY 
SET ERROR BIT 

INITIALIZE VARIABLES: CYLINDER AND HEAD 

[GAl. CYLINDER, [PPl. PB1._CYLINDER 
GB, [PPl.PB1_HEAD_SECTOR+l 
[GAl.HEAD,GB 

[GAJ. TEMP,MAX3YLINDER-1 
IX, [GAl. CYLINDER 

CHECK CYLINDER PARAM 
SUBTRACT FROM MAX 

VALUE 
IX 
IX 
[GAl. TEMP, IX 
[GAl.TEMP+l,7,S13 ; .JUMP IF POSITIVE 
[GAl. TEMP_STATUS, BAD_CYLINDER ; SET ERROR BIT 

[GAl. TEMP, MAX._HEAD-l 
IX, [GAl: HEAD 
IX 
IX 
[GAl. TEMP, IX 

CHECK HEAD PARAM 
SUBTRACT FROM MAX 

VALUE 

[GAl.TEMP+l,7,S16 .JUMP IF POSITIVE 
[GAl. TEMP_STATUS, BAD ... HEAD ; SET ERROR BIT 
[GAJ.TEMP_STATUS,S80 .JUMP IF ERROR 

DETERMINE HEAD MOVEMENT: INWARD, OUTWARD, 
OR NONE 

3-111 AFN02057A 



379 
380 
381 
382 
383 
384 
385 
386 
387 $EJECT 
388 
389 
390 
391 
392 
393 S20: 
394 
395 
396 
397 
398 
399 
400 
401 
402 830: 
403 
404 
405 S40: 
406 
407 
408 
409 
410 650: 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 860: 
422 
423 
424 
425 
426 
427 
428 
429 870: 
430 
431 
432 
433 S80: 
434 

MOV 
MOV 
NOT 
INC 
ADD 
JZ 
JBT 

MOV 
MOVBI 
MOVBI 
DEC 
JNZ 
JMP 

MOV 
NOT 
INC 
MOVBI 
MOVBI 
DEC 
JNZ 

JNBT 

MOV 

MOV 
ORI 
MOVB 

MOVI 
DEC 
JNZ 

MOV 
SINTR 

AP·122 

[GAl. TEMP. [GAl. CYLINDER 
IX. [GAJ.PRESENT_CYL 

SUBTRACT PRESENT CYL 
FROM NEW CYLINDER 

IX 
IX 
[GAl. TEMP. IX 
[GAl. TEMP.S60 
[GAl. TEMP+1.7.S30 

JUMP IF 'DELTA ZERO 
JUMP IF DELTA NEGATIVE 

MOVE HEADS INWARD (POSITIVE DELTA) 

BC. [GAJ. TEMP ; GET CYL.INDER COUNT 
[GCl.CNTL2.DRIVE1+INWARD+STEP i PULSE 
[GCJ.CNTL2.DRIVE1+INWARD 
BC DECREMENT COUNT AND 
BC.S20 REPEAT IF <> 0 
850 

MOVE HEADS OUTWARD (NEGATIVE DELTA) 

BC, [GAl. TEMP ; GET AND COMPLEMENT 
BC CYLINDER COUNT 
BC 
[GCJ.CNTL2,DRIVE1+0UTWARD+STEP i PULSE 
[GGJ.CNTL2,DRIVE1+0UTWARD 
BC i DECREMENT COUNT' AND 
BC.840 REPEAT IF <> 0 

[GC J. STATUS, SEEK .. COMPLETE. S50 WA IT FOR SEEK 
COMPLETE 8IG 

UPDATE PRESENT.CYL VARIABLE 

[GAJ. PRESENT _CYL, [GAl, CYLINDER 

SELECT HEAD: ACTIVATE HEAD SIGNALS TO DRIVE 

IX, [GAJ,HEAD 
IX,DRIVEl 
[GCJ.CNTL2. IX 

20 MSEC TIME DELAY 

IX, 3448 
IX 
IX,S70 

[PPJ.PB1_STATUS, [GAJ. TEMP_STATUS 
; SET INTERRUPT 

3-112 AFN02057A 



435 
436 
437 .E,JECT 
438 
439 
440 
441 
442 
443 
444 
445 
446 FMAT: 
447 
A48 
449 
450 
451 
452 
453 F05: 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 FlO: 
469 
470 
471 
472 
473 
474 
475 
476 
477 
.478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 F15: 
489 
490 

Ap·122 

HLT 

FORMAT TRACK 

1--------------------------------------------------

,JBT 
SETS 
L,JMP 

MOVI 
MOVBI 
MOVBI 
MOVI 
MOVBI 
MOVBI 

MOVI 
MOVI 
MOVI 
MOV 
MOV 
ADDI 
MOV 
ADDI 
MOV 
ADOI 
INC 
MOV 
NOT 
INC 
ADDI 
,JNZ 

MOVI 
MOV 
MOV 
ADD 
DEC 

CHECK IF DRIVE IS ~NITIALIZED 

[GCl.STATUS,DRIVE_READY,F05 
[GAl. TEMP_STATUS, NOT_READY 
F50 

,JMP IF DRIVE RDY 
SET ERROR BIT 

INITIALIZE 8254 FOR FORMAT 

GA,LD_CNTRO_54 
CGAl,07 
[GAl,O 
GA,LD_CNTR1_54 
[GAl, 03 
[GAl,O 

CNTRO COUNT 8 

CNTRl COUNT = 4 

GENERATE BYTE ARRAY, SECTOR(30), WHICH CONTAINS 
THE INTERLEAVED SECTOR NUMBERS STARTING AT 
ADDRESS = SECTOR._BUFFER + lOOH 

GA,RAM_BASE 
GB,SECTOR_BUFFER + lOOH 
[GAl. TEMP,OH 
BC, [GAl.· TEMP 
[GBl.OH,BC 
BC, 10 
[GBl. 1H, BC 
BC, 10 
[GBl.2H,BC 
GB,3 
[GAl. TEMP 
BC, [GAl. TEMP 
BC 
BC 
BC, 10 
BC,FIO 

GA = RAM BASE PTR 

J = 0 
SECTOR(I) ,J 

SECTOR(I+l) = ,J+10 

SECTOR(I+2) ,J+20 

r = 1+3 
,J = ,J+1 
REPEAT IF J <> 10 

LOAD MC REGISTER WITH HEAD DATA IN UPPER 
BYTE (BITS 8-:-15) 

BC,8H 
[GAl. TEMP, [GAl. HEAD 
MC, [GAl. TEMP 
[GAl. TEMP,MC 
BC 

3·113 

SHIFT COUNT '" 8 
GET HEAD DATA 
SHIFT LEFT BY ADDING 

; TO ITSELF 
DECREMENT SHIFT COUNT 

AFN02057A 



Ap·122 

491 JNZ BC.F15 & REPEAT IF <> .0 
492 MOV MC. [GAJ.TEMP 
493 
494 $EJECT 
495 
496 
497 GENERATE SECTOR'FORMAT TABLE STARTING 
498 AT ADDRESS = SECTOR_.BUFFER 
499 
500 MOVI GB,SECTOR_BUFFER + lOOH 
501 MOVI [GAJ.TEMP.OH SECTOR COUNT = 0 
502 MOVI IX. SECTOR_BUFFER 
503 F20: MOVI [GA+IX+J. ID_SYNCH SYNCH CHARACTER 
504 MOV [GA+IX+J. [GAl. CYLINDER CYLINDER 
505 MOV [GA+IXJ.MC HEAD / SECTOR 
506 MOVB BC. [GBl 
507 OR [GA+IX+J.BC 
508 MOVI [GA+IX+J.OH ZEROS 
509 INC GB INCREMENT SECTOR NO. 
510 POINTER 
511 INC . [GAJ. TEMP INCREMENT SECTOR COUNT 
512 MOV BC. [GAJ.TEMP & REPEAT IF <> MAX 
513 NOT BC 
514 INC BC 
515 ADDI BC.MAX_SECTOR 
516 JNZ BC.F20 
517 
518 
519 FORMAT FIRST SECTOR AFTER INDEX PULSE 
520 
521 F30: MOVI GB.SECTOR_BUFFER SOURCE POINTER 
522 MOVI GA. DATA_PORT DESTINATION POINTER 
523 MOVI BC. ID_SIZE + 6 BYTE COUNT 
524 MOVI CC.BLOCK_TO_PORT 
525 & . + DEST _.SYNCH 
526 & + GB_SOURCE 
527 & + EXT._TERM_O 
528 & + BC_TERM_O DMA CONTROL 
529 WID 16. 16 16-BIT TO l6--BIT DMA 
530 XFER INIT DUMMY DMA TO 
531 DETECT INDEX PULSE 
532 Move I [GCl. FORMAT+SEL_.INDEX EXT1 = INDEX PULSE 
533 --------------------
534 WAIT FOR INDEX PULSE 
535 --------------------
536 XFER START ID DATA TO DRIVE 
537 DMA 
538 MOVBI [GCl.FORMAT 
539 & + WRITE 
540 & + CHAN1 
541 !!< + ENB_XCVR I OUTPUT FORMAT COMMAND 
542 --------------------
543 DMA OCCURS HERE 
544 --------------------
545 MOVBI [GCJ.FGlRMAT RESET ALL BUT FORMAT 
546 LINE 

3-114 AFN02057A 



547 
548 SEJECT 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 

F35: 
F40: 

8< 
8c 
8< 
8c 

575 8< 
576 8< 
577 8< 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 

F45: 

F50: 
F55: 

MOVI 
JNBT 
SETS 
JMP 

MOVI 
MOVI 
MOVI 
MOVI 

XFER 

WID 

XFER 

MOVBI 

MOVBI 

MOVI 
JNBT 
SETB 
JMP 

DEC 
JNZ 

MOVI 
DEC 
JNZ 
MOVBI 

MOV 
SINTR 
HLT 

Ap·122 

GA,RAM_BASE ; GA = RAM BASE PTR 
CGCl.STATUS,WRITE_FAULT,F35 JUMP IF NO FAULT 
[GAl. TEMP _STATUS, BAD._WRITE ; SET ERROR BIT 
F50 

FORMAT REMAINING SECTORS 

MC,MAX_SECTOR-1 
GA,DATA_PORT 
BC, ID_SIZE + 6 
CC,BLOCK_TO_PORT 

16,16 

+ DEST.SYNCH 
+ GB_SOURCE 
+ EXT __ TERM_O 
+ BC _ TERM._O 

[GCl, FORMAT 
+ WRITF 
+ CHAN1 
+ ENB XCVR 

SECTOR_COUNT = MAX-1 
DESTINATION POINTER 
BYTE COUNT 

DMA CONTROL 
INIT DUMMY DMA TO 

DETECT SECTOR PULSE 
16-BIT TO 16-BIT DMA 

WAIT FOR SECTOR PULSE 

START 10 DATA TO DRIVE 
DMA 

OUTPUT FORMAT COMMAND 

DMA OCCURS HERE 

[GCl,FORMAT RESET ALL BUT FORMAT 
LINE 

GA,RAM_BASE GA = RAM BASE PTR 
[GCl.STATUS,WRITE_FAULT,F45 JUMP IF NO FAULT 
[GAl. TEMP._STATUS, BAD_,WRITE ; SET ERROR BIT 
F50 

DECREMENT SECTOR_COUNT AND JUMP IF <> 0 

MC 
MC,F40 

IX,26 
IX 
IX, F55 ' 
[GCl,CLEAR 

; 150 MSEC DELAY 
(FOR WR ITE GATE 

TURN OFF) 
CLEAR FORMAT LINE 

[PPJ. PBl STATUS, [GAl. TEMP_,STATUS 
; SET INTERRUPT 

3-115 AFN02057A 



603 $E,JECT 
604 
605 
606 
607 
608 
609 
610 
611 
612 WDATA: 
613 
614 
615 
616 
617 
618 
619 W05: 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 WiO: 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 & 
655 & 
656 
657 
{;I 58 

Ap·122 

WRITE SECTOR DATA 

;--------------------------------------------------
CHECK IF DRIVE IS INITIALIZED 

,JBT 
SETB 
L,JMP 

[GCJ.STATUS,DRIVE_READY,W05 
[GA J. TEMP _STATUS, NOT _ ,READY 
W50 

,JMP IF DRIVE RDY 
SET ERROR BIT 

INITIALIZE SECTOR VARIABLES 

MOV [GAJ.FIND_SECTOR, [PPJ.PB1_CYLINDER ; FIND_SECTOR 
MOV GB, [PPJ.PB1_HEAD_SECTOR FIND_SECTOR + 2 
MOV CGAJ.FIND_SECTOR+2,GB 
ANDI GB,OFFH SECTOR 
MOV [GAJ.SECTOR,GB 

CHECK SECTOR PARAM 
MOVI [GAJ. TEMP, MAX_.SECTOR-1 SUBTRACT FROM MAX 
MOV IX, [GAJ.SECTOR VALUE 
NOT IX 
INC IX 
ADD [GAJ.TEMP, IX 
,JNBT [GAJ. TEMP+1,7,WIO ; ,JUMP IF POSITIVE 
SETB [GAJ. TEMP _STATUS, BAD_.SECTOR ; SET ERROR BIT 
L,JMP W50 

MOVI 
MOVBI 
MOVBI 
MOVI 
MOVBI 
MOVBI 

LPD 
MOVI 
MOVI 
ADDI 
MOVI 
MOVI 

INITIALIZE 8254 FOR WRITE DATA 

GA,LD_CNTRO_54 
[GAJ,20 
[GAJ,O 
GA,LD_CNTR1_54 
[GAJ, 1 
[GAJ, 1 

CNTRO COUNT = 21 

CNTRl COUNT = 258 

TRANSFER DATA FROM SYSTEM BUFFER TO 
LOCAL BUFFER 

GA, [PPJ.PB1_BUFR OFF 
GB,SECTOR_BUFFER 
[GBl. DATA_SYNCH 
GB,2 
BC,BYTE_CqUNT 
CC,BLOCK_TO_BLOCK 

+ GA_SOURCE 
+ BC_TFRM_.O 

SOURCE POINTER 
DESTINATION POINTER 
INSERT SYNCH CHAR 

IN LOCAL BUFFER 
BYTE COUNT 

DMA CONTROL 
INIT DMA XFER 

WID 
MOVI 

16, 16 
[GBJ,OH 

l6-BIT TO l6-BIT DMA 
INSERT ZEROS 

3-116 AFN02057A 



659 
660 $E,JECT 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 W20: 
682 
683 W30: 
684 
685 
686 
687 8< 
688 8< 
689 8< 
690 8< 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 $E,JECT 
705 
706 
707 
708 
709 
710 
711 
712 8< 
713 
714 

LPD 
MOVBI 
MOV 
MOV 

LPD 
MOVI 
MOVI 
MOVI 

MOVI 

MOVI 
MOVI 
MOVI 
MOVI 

WID 
MOVI 
XFER 

MOVB 

,JMCNE 

MOVDI 
XFER 
MOVBI 

Ap·122 

PREPARE CHANNEL 2'S eCB AND PB 

GA, [PPl.PB1_CCB_OFF 
[GAl. 08H, START_.LOC_CCW 
[GAl.OAH,[PPl.PB1_PB2_0FF 
[GAl.OCH,[PPl.PB1_PB2_SEG 

INITIALIZE CCD 
GET CCB ADDRESS 
INIT CCW 
; INIT PB2 OFFSET 
; INIT PB2 SEGMENT 

INITIALIZE PB2 
GA, [PPl.PB1_PB2_0FF GET PB2 ADDRESS 
[GAl.PB2_TB2_DFF,TBLK2 INIT TB2 ADDRESS 
[GAl. PB2_FUNCTION, CMP .. ID ; INIT COMPARE CMD 
[GAl. PB2_BUFR_OFF, FIND __ SECTOR INIT BUFFER 

. ADDR 

SEARCH FOR SECTOR SPECIFIED IN FIND_SECTOR 

IX, MAX_SECTOR SECTOR_COUNT = MAX 

GA, SECTOR._BUFFER SOURCE POINTER 
GB,DATA_PORT DESTINATION POINTER 
BC,BYTE_COUNT + 6 BYTE COUNT 
CC,BLOCK_TO_PORT 

+ DEST_SYNCH 
+ GA_SOURCE 
+ EXT_JERM_O 
+ BC_TERM_O DMA CONTROL 

16, 16 16-BIT TO 16-BIT DMA 
MC,TEST_SECTOR FOUND INIT MC 

INIT DUMMY DMA TO 
DETECT END OF ID 
COMPARE 

[GCl.CA2,BC GENERATE CHANNEL 2 
CA SIGNAL 

--------------------
WAIT FOR CHANNEL 2 
TO COMPARE ID 
--------------------

[GCl.STATUS,W40 ,JUMP JF NOT FOUND 

WRITE SECTOR DATA ON DISK 

[GCl,CLEAR 

[GCl, WRITE + CHANl 
+ ENB .. XCVR 

3-117 

CLEAR READ LINE 
. START DMA WR ITE 

; OUTPUT WRITE COMMAND 
i ,--------------------
; ,DMA OCCURS HERE 

" 

AFN02057A 

. , 



715 
716 
717 
718 
719 
720 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 

W40: 

W45: 

W50: 

lIiEJECT 

756 RDATA: 
757 
758 
759 
760 
761 
762 
763 R05: 
764' 
765 
766 
767 
768 
769 
770 

NOP 
NOP 
NOP 
NOP 
NOP 

, MOVBI [GCl,CLEAR 

Ap·122 

TIME DELAY 

i CLEAR WRITE L~NE 

MOVI GA,RAM_BASE i GA = RAM BASE PTR 
JNBT [GCl.STATUS,WRITE FAULT,W50 i JUMP IF NO FAULT 
SETS [GAl. TEMP_STATUS, B"AD __ WRITE i SET ERROR BIT 
JMP W50 

I 

MOVI 
JNBT 
SETB 
MOVBI 
MOVBI 
JNZ 

DEC 
JNZ 
SETB 

MOV 
LJBT 
SINTR 
HLT 

NO MATCH ON PRESENT SECTOR 

GA,RAM~ASE i GA = RAM BASE PTR 
[GCl.STATUS,CRC ERROR,W45 i JUMP IF NO ERROR 
[GAl. TEMP _STATOS, BAD_.ID.eRC i SET ERROR BIT 
[GCl,ENB_XCVR RESET COMPARE STATUS 
[GCl, CLEAR FLIP FLOP 
[GAl. TEMP._STATlJS, W50 JUMP IF ERROR 

I X DEC SECTOR_COUNT 8, 
IX,W30 LOOP IF <> 0 
[GAl. TEMP STATUS, BAD_,SEARCH i SET ERROR BIT 

[PPJ. PB1._STATUS, [GAl. TEMP _.STATUS 
[GAJ. FUNCTION+1. LOOP .. ,CODE, W20 

SET INTERRUPT 

READ SECTOR DA1A 

'i--------------------------------------------------

JBT 
SETB 
LJMP 

MOV 
MOV 
MOV 
ANDI 
MOV 

MOVI, 
MOV 

CHECK IF DRIVE IS INITIALIZED 

[GCl. STATUS, DR IVE_,READY, R05 
[GAl. TEMP _STATUS, NOT __ READY 
R50 

JMP IF DRIVE RDY 
SET ERROR BIT 

INITIALIZE SECTOR VARIABLES 

[GAJ. FIND_SECTOR, [PPl. PBl __ CYLINDER i FIND SECTOR 
GB, [PPl.PB1_HEAD_SECTOR FIND_SECTOR + 2 
[GAl. FIND. __ SECTOR+2, GB 
GB,OFFH SECTOR 
[GAJ.SECTOR,GB 

[GAl. TEMP, MAX SECTOR-l 
IXICGAJ: SECTOR 

3-118 

CHECK SECTOR PARAM ' 
SUBTRACT FROM MAX 

VALUE 

AFN02057A 



771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 R07: 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 R10: 
792 
793 
794 
795 $EJECT 
796 
797 
798 
799 
800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 R20: 
817 
818 R30: 
819 
820 
821 
822 8< 
823 8< 
824 8< 
825 8< 
826 

NOT 
INC 
ADD 
JNBT 
SETB 
LJMP 

MOVI 
MOVBI 
MOVBI 

MOVI 
MOVI 
MOVI 
MOVI 
DEC 
JNZ 

LPD 
MOV.BI 
MOV 
MOV 

LPD 
MOVI 

·MOVI 
MOVI 

MOVI 

MOVI 
MOVI 
MOVI 
MOVI 

WID 

IX 
IX 
(GAl. TEMP, IX 

· Ap·122 

[GAl. TEMP+1,7, R07 ; JUMP IF POSITIVE 
[GAl. TEMP_STATUS, BAD_SECTOR ; SET ERROR BIT 
R50 

INITIALIZE 8254 FOR READ DATA 

GA, LD_CNTR1_54 
[GA],O 
[GAl, 1 

ZERO SECTOR BUFFER 

GA,SECTOR_BUFFER 
IX,O 
BC,WORD30UNT 
[GA+IX+],O 
BC 
BC,R10 

CNTR1 COUNT = 257 

PREPARE CHANNEL 2'S CCB AND PB 

GA, [PPJ.PB13CB.OFF 
[GA].08H,START_LOC3CW 
[GAl. OAH, [PPl. PB 1_ .. PB2 .. OFF 
[GAJ. OCH, [PPJ. PB1]B2.SEG 

INITIALIZE ceIl 
GET CCB ADDRESS 
INIT CCW 

INIT PB2 OFFSET 
; INIT PB2 SEGMENT 

INITIALIZE PB2 
GA, [PPJ.PB1]B2.0FF GET PB2 ADDRESS 
[GAJ. PB2._TB2_0FF, TBLK2 INIT TB2 ADDRESS 
[GAJ.PB2_FUNCTION,CMP_ID; INIT COMPARE CMD 
[GA]. PB2_BUFR OFF, FIND .. SECTOR INIT BUFFER 

.; AD DR 

SEARCH FOR SECTOR SPECIFIED IN FIND_SECTOR 

GA,SECTOR_BUFFER 
GB,DATA_PORT 
BC,BYTE_COUNT 
CC,PORT~TO_BLOCK 

+ SOURCE_.SYNCH 
+ GB_SOURCE 
+ EXT_.TFRM .. O 
+ BC_TERM ... O 

SECTOR_COUNT = MAX 

SOURCE POINTER 
DESTINATION POINTER 
BYTE COUNT 

DMA CONTROL 
16-BIT TO 16-BIT OMA 

3-119 AFN02057A 



827 
828 
829 
830 
831 , 
832 
833 
834 
835 
836 
837 
838 

,839 $E,JECT 
840 
841 
842 
843 
844 
845 
846 
847 
848 
849. 
850 & 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 R35: 
865 
866 
867 
868 
869 & 
870 & 
871 
872 
873 
874 
875 
876 
877 
878 
879 R40: 
880 
881 
882 R45: 

MOVI 
XFER 

MOVB 

,JMCNE 

MOVBI 
NOP 
NOP 
NOP 
XFER 
MOVBI 

MOVI 
,JNBT 
MOVBI 
.SETB 
,JMP 

MOVBI 
MOVI 
LPD 
MOVI 
MOVI 

XFER 
WID 
MOVI 
,JMP 

. ; 

MOVI 
,JNBT 
SETB 
MOVBI 

Ap·122 

MC, TEST _SECTOR_.FOUND INIT MC 
INIT DUMMY DMA TO 

DETECT. END OF 10 
COMPARE 

[GCl.CA2.BC GENERATE CHANNEL 2 

[GCl.STATUS,R40 

READ SECTOR DATA FROM DISK 

[GCl,CLEAR 

[GCl,READ + CHAN! 
+ ENB XCVR 

CA SIGNAL 

WAIT FOR CHANNEL 2 
TO COMPARE 10 

,JUMP IF NOT FOUND 

CLEAR READ LINE 
TIME DELAY 

START DMA READ 

OUTPUT READ COMMAND 

DMA OCCURS HERE 

GA. RAM_BASE GA = RAM BASE PTR 
[GCl. STATUS, CRCo_ERROR, R35 ; ,JUMP IF NO ERROR 
[GCl,CLEAR CLEAR READ LINE 
[GAl. TEMP_STATUS+l,BAD_DATA_CRC ; SET ERROR BIT 
R50 

TRANSFER DATA FROM LOCAL BUFFER ,TO 
SYSTEM BUFFER 

[GeJ,CLEAR' 
GA,SECTOR_BUFFER 
GB, [PPJ.PBl_BUFR_OFF 
BC,BYTE_COUNT 
CC,BLOCK_TO_BLOCK 

+ GA_SOURCE 
+ BC_TERM_O 

; CLEAR READ LINE 
SO~RCE POINTER 
DESTINATION POINTER 
BYTE COUNT 

DMA CONTROL 
INIT DMA 

16, 16 
GA,RAM_BASE 
R50 

16-BIT TO 16-BIT DMA 
GA = RAM BASE PTR 

NO MATCH ON PRESENT SECTOR 

GA,RAM_BASE ; GA = RAM BASE PTR 
[GCl. STATUS, CRC .. ERROR, R45 ; ,JUMP IF NO ERROR 
CGI>IJ. TEMP STATUS,BAD 10 CRC ; SET ERROR BIT 
[GCl, ENB_XCVR .-. --j RESET COMPARE STATUS 

3-120 
, 
AFN02057A 

\ 



883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 
897 
898 
899 
900 
901 
902 
903 
904 
905 
906 
907 
908 
909 

R50: 

MOVBI 
JNZ 

Ap·122 

[GCl.CLEAR 
.tGAl.TEMP_STATUS.R50 

FLIP FLOP 
JUMP IF ERROR 

DEC I X DEC SECTOR_COUNT 8< 
JNZ IX. R30 LOOP IF <> 0 
SETB [GAl. TEMP_STATUS. BAD SEARCH; SET ERROR BIT 

MOV 
LJBT 
SINTR 
HLT 

[PPl. PB1_STATUS. [GAl. TEMP_ .. STATUS 
[GAJ.FUNCTION+l.LOOP30DE.R20 

I SET INTERRUPT 

$EJECT 
$INCLUDE(:Fl:CHAN2.A89) 

;--------------------------------------------------
C HAN N E L 2 

IjT ________________________________________________ _ 

DETERMINE OPERATION TO BE PERFORMED 

° = ~OMPARE ID FIELD 

1 = READ ID FIELD 

910 ORG RAM_BASE + 0580H 
911 i 

912 TBLK2: MOV 
913 JNZ 
914 
915 
916 
917 
918 
919 
920 
921 
922 
923 
924 
925 
926 
927 
928 
929 
930 
931 
932 
933 
934 
935 
936 
937 
938 

CP _ID: 

& 
& 
& 
& 
& 

MOV 
MOVI 
MOVI 
MOVI 

MOVI 
XFER 

WID 

XFER 

MOVBI 

IX. [PPJ.PB2_FUNCTION 
IX. RD_ID 

COMPARE ID FIELD OPERATION 

GA. [PPJ. PB2._BUFR OFF 
GB.DATA_PORT 
BC. ID_SIZE + 2 
CC.BLOCK_TO_PORT 

+ DEST_SVNCH 
+ GA __ SOURCE 
+ EXT_.TERM_O 
+ BC_o,TERM __ O 
+ CHAINED_1'10DE 

GC. CNTL_PORT_l 

16. 16 

[GCJ.READ + CHAN2 

GET OPERATION CODE 

SOURCE POINTER 
DESTINATION POINTER 
BYTE COUNT 

DMA CONTROL 
CONTROL PORT POINTER 
INIT DUMMV DMA TO 

DETECT SECTOR 
PULSE 

16-BIT TO 16-BIT DMA 

WAIT FOR S~CTOR PULSE 

START COMPARE ID FIELD 
DMA 

OUTPUT COMMAND 

AFN02057A 



939 
940 
941 
942 
943 
944 $EJECT 
945 
946 
947 
948 
949 RD_ID: 
950 
951 
952 
953 8< 
954 8< 
955 8< 
956 8< 
957 8< 
958 
959 
960 
961 
962 
.963 
964 
965 
966 
967 
968 8< 
969 
970 
971 
972 
973 
974 
975 HDCB9 
9·76 
977 
978 
979 

HLT 

MOVI 
MOV 
MOVI 
MOVI 

MOVI 
XFER 

WID 

XFER 
MOVBI 

HLT 

ENDS 

END 

READ ID FIELD OPERATION 

GA,DATA_PORT 
GB, [PPl. PB2_BUFR OFF 
BC, ID_SIZE 
CC,PORT_TO_BLOCK 

+ SOURCE.SYNCH 
+ GA_SOURCE 
-t. EXT _.1 E:.RM ... O 
+ BC._TERM_O 
+ CHAINED_.I'lODE 

GC,CNTL_PORT_l 

16, 16 

[GCl, READ + CHAN2 
+ ENB XCVR 

DMA OCCURS HERE 

SOURCE POINTER 
DESTINATION POINTER 
BYTE COUNT 

DI'lA CONTROL 
CONTROL PORT POINTER 
INIT DUMMY DMA TO 

DETECT SECTOR 
PULSE 

16-BIT TO 16-BIT DMA 

WAIT FOR SECTOR PULSE 

.. ; START READ ID FIELD DMA 

OUTPUT COMMAND 

DMA OCCURS HERE 

AFN02057A 



@INTELCORPORIITION. 1982 
- . 

• I, ," , 

APPUCATION 
NOTE 

AP-123 

March 1982 

MARCH 1982 
ORDER_HR: 11_ 

, I 



INTRODUCTION 

The purpose of this application note is to provide the 
reader with the conceptual tools and factual informa­
tion needed to apply the iAPX 86/11 to graphic CRT 
design. Particular attention will be paid to the require­
~ents of high-resolution, color graphic applications, 
SInce these tend to require higher performance than 
those which do not use color. 

The iAPX 86/11 is a microprocessor system which con­
tains an 8086 CPU and an 8089 Input/Output Processor. 
In the graphic CRT application, the 8089 performs 
DMA transfers from the display memory to the CRT 
controller, and also serves as a CPU for functions such 
as keyboard polling and initialization of the CRT con­
troller chips. The DMA transfers are done in such a 
manner that they do not tie up the system bus. 

The system is organized so that the 8086 and the 8089 
can perform concurrent processing on separate buses. 
Using the inherent ability of the 8089 to execute pro­
grams in its own 110 space, the 8086 can successfully 
delegate many of the chores that have specifically to do 
with the CRT display and keyboard, thus reducing the 
8086's processing overhead. For these reasons, the ca­
pabilities ofthe 8086,8s a CPU can be more fully utilized 
to perform calculations dealing with the material to be 
displayed. Thus, more complex types of displays can be 
undertaken, and the terminal will also be more 
interactive. 

~ CIINTIIAI. lIMA 
PROCIIICIII DOlCE 

II II 

, 
" 

This application note is presented in five sections: 

1. Introduction 

2. Overview of Graphic CRT Systems 

3. Overview of the 8089 

4. Graphic CRT System Design 

5. Conclusions 

Section 2 discu'sses typical CRT designs, shows how 
performance requirements increase when the capabil­
ity for color graphics is included, and explains some of 
the system bottlenecks that can arise. Section 3 de­
scribes the capabilities of the 8089, which can be 
brought to bear to resolve these bottlenecks. Section 4 
gives detailed information for a color graphic CRT sys­
tem using the iAPX 86/11 (8086 and 8089). 

The reader may obtain useful background information 
on the 8086 and 8089 from iAPX 86,88 User's Manual. 
It would also be helpful to read the data sheets on the 
8086, 8089, 2118 Dynamic RAM, 8202 Dynamic Ram 
Controller, 8275 CRT Controller, 8279 
Keyboard/Display Interface, and 2732A EPROM. 

. OVERVIEW OF CRT GRAPHIC SYSTEMS 

Typical DeSign Technique 

A typical microprocessor-based CRT terminal is shown 
in block diagram form in Figure 1. The terminal consists 

CHARACTER _RA~_ 

~ ~ CIIT 
CIIT-.roR 

CONTROLU!R 
a IIOIIITOII 

ELECTIIONICS 

II 
IYIITI!II_ 

CIIT TERIiINAL 
MRAUEL INPUT/OI/TIIUT ..-

Figure 1. Typical CRT Terminal Block Diagram 

8-124 AFN-02172A 



AP-123 

of a CRT monitor, monitor electronics, a CRT control­
ler and character generator ROM, display memory, a 
DMA device, a central processor and associated pro­
gram memory, a keyboard and keyboard interface, and 
serial and/or parallel communication devices. 

The primary function of the non-graphic CRT controller 
is to refresh the display. It does this by controlling the 
periodic transfer of information from display memory 
to the CRT screen, with the help of the DMA device. 
The central processing unit (CPU) coordinates the 
transfer of information to and from the external 
devices. When information from an external device is 
received by the terminal, the CPU performs character 
recognition and handling functions, display memory 
management functions, and cursor control functions. 
The CPU also interrogates the keyboard interface 
device. If a key depression is detected, the ASCII char­
acter representing that key is sent to the display 
memory and/or an external device. 

The design shown in Figure 1 could be implemented 
using Intel LSI products. The CPU could be an 8085, 
the DMA device an 82)7A DMA controller, the CRT 
controller an 8275, the character generator ROM a 
2708, program memory ROM a 2716, display memory 
2114s (2K x 8), and the keyboard interface an 8279 
keyboard controller. These choices would result in a 

CRT terminal capable of displaying 25 lines of text 
containing 80 characters each. 

As the design is upgraded to add color and graphics 
capability, performance requirements increase accord­
ingly. The components most likely to require changing 
are the CPU, the DMA device, the CRT controller, and 
the display memory. Thus, it is desirable at this point to 
examine the operation of these components in more' 
detail to provide a foundation for graphic system opera­
tion. Later we shall give a specific example of a more 
complex display, and examine the performance re­
quirements imposed. Figure 2 is a block diagram show­
ing only those components involved with the 
non-graphic CRT' refresh function, with more detail 
provided regarding the connecting signal lines . 

The refresh function proceeds as follows. The 8275, 
having been programmed to the specific screen format, 
generates a series ofDMA request signals to the 8237 A. 
This results in the transfer of a row of characters from 
display memory to one of two row buffers within the 
8275. From this row buffer, the characters are sent, via 
lines CCO-CC6, to the character generator ROM. The 
dot timing and interface circuitry is then utilized to 
convert the parallel output data from the character 
generator ROM into serial signals for the video input of 
the CRT. 

DISPLAY 
MEMORY 

t1 
{ 8Y8TEM_ ( 

~ At 
iCiW ~7 -- WR 
iOli iIij 
a a 
HRQ IRQ 
IIACI( 

ORQ LCo-a 
833710 VIDEO SIGNAL - CHARACT£R 

CONTROLLER DACi GENERATOR 

127. ~. 
OOT HORIZONTAL SYNC 

cRt TIMING 
CONTROLLER AND VERTICAL SYNC 

CCLl( INTERFACE 

INTENSITY ' 
1-----

1IIDEOCONTROU 

Figure 2. Components Involved In the CRT Refresh Function 



AP·123 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character 

~--------------------' 00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

First Lina of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
CharactAr Character Character Character Character Character Character ---------------------"-00 •••• 000.0000.00 ••••• 000000000 •••• 0000' ••• 000.000.0 

o.oooo.oo •• ooo.oo.ooooooooooooo.ooo.~o.~oo.OO.ooo.o 
Second Line of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character 

------------~------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 
0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0 
O.OOOO.OO.[]OOO.OO.OOOOODOOOODOO.OOO.OO.OOO.OO.ODO.O 

Third line of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character' Character Character Character -------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

o.oooo.uO •• ooo.oo.ooooOOOOQOooO.ooO.OO.ODO.OO.OOO.O 
O.OODO.OO.O.OO.Co.ooooooooooooo.ooo.oo.oOO.oO.ooO.O 
0.0000.00.0000.00 ••• 1.0000000000 •••• 000.000.00.0.'0.0 
0.0000.00.00.0.00.0000.0000'00000.0.0000.000.00.0.0.0 
O.oooo.oo.ooo •• co.OOOOOODOOOOOO.OO.ODO.OOO.oo.o.owo 
00 •••• 000.0000.00 ••••• 000000000.00.0000 ••• 0000.0.00 

Seventh Line ,of a Character Row 

Figure 3. Character Row Display 

The character rows are displayed on the CRT one line at 
a time. Line count signals LCO-LC3 are applied to the 
character generator ROM by the 8275, to specify the 
specific line count within the row of characters. This 
display process is shown in Figure 3, using a seven·line 
character for purposes of illustration. The entire pro­
cess is repeated for each row of characters in the 
display. 

At the beginning ofthe last display row, the 8275 issues 
an interrupt request via the IRQ output line. This inter­
rupt output is normally connected to the inter~upt input 
of the system CPU. The interrupt causes the CPU to 
execute an interrupt service subroutine. This sub­
routine typically reinitializes the DMA controller 
parameters for the next display refresh cycle, polls the 
system keyboard controller, and eJl,ecutes other appro­
priate functions. 

ters, with no color or graphic capability, has been as­
sumed. Such a screen can be represented by 80 x 25 = 
2000 bytes of data. If the screen is refreshed 60 times 
per second, then atotal of 120,000 bytes will need to be 
transferred each second from display memory to the· 
8275 CRT controller. This figure is well within the capa­
bility of the 8237 A DMA controller, even allowing for 
vertical retrace time and other overhead. In this appli­
cation then, both the display memory and the system 
bus remain available to the system CPU most of the 
time, and no bottleneck occurs because of the DMA 
transfer process. 

Performance Requirements 

In the example we have discussed thus far, a display 
consisting of 25 rows, each containing 80 text charac-

3-126 

The situation is quite different when a high-resolution, 
color graphics capability is desired. The performance 
requirements are obviously much greater. To derive a 
quantitative requirement it is necessary to choose, even 
if somewhat arbitrarily, a specific display method and 
screen format. The display method chosen for the sys­
tem described in this application note is called the 
virtual-bit mapping technique. When this technique is 
used, the graphic material to be displayed is handled on 
a character basis. Figure 4 shows the structure of the 
text and graphic characters used. The text character is a 

AFN-02172A 



AP·123 

7 x 5 character in an 8 x 5 matrix. The graphic character 
is a 4 x 5 matrix. 

The size of a graphic character is the same as the size' of 
a text character. In addition, the text characters may be 
in color. The resolution (horizontal) fora graphic char­
acter is twice as coarse as the dot spacing for a text 
character. One of eight colors may be selected for fore­
ground and for background within a particular 
character. 

Figure 5 shows how the display character can be speci­
fied using four bytes. The first byte determines whether 
the character is a text character or a graphic character, 
and specifies the colors for foreground and back­
ground. If it is a text character, the second byte 
specifies the character with a seven-bit ASCII code, and 

(A) TEXT CHARACTER 
REPRESENTING THE LETTER A. 

LINE COUNT (LCo-LC2) 

000 

001 

010 

011 

100 

the remaining two bytes are not used. If it is a graphics 
character, the second, third, and fourth bytes contain 
the color specification for each of the twenty distinct 
picture elements (pixels) within the character. Use of 
the foreground color is indicated by it one in the respec­
tive bit position, while a zero specifies use of the back­
ground color. 

The screen format chosen has 80 characters per row 
and 48 rows. Thus the resolution (in terms of picture 
elements) is 640 x 480 for text characters and 320 x 240 
for graphic characters. A full screen contains 80 x 48 = 
3840 characters. Thus; a single frame ofthe display can 
be represented by 3840 x 4 = 15,360 bytes. If the screen 
were updated 60 times per second, the CRT refresh 
function would require a DMA transfer rate of 15,360 x 
60 = 921,600 bytes per second. 

COL3 COL2 COL 1 COLO 

1 1 l : I 

1 I ~ I 

1 1 I I 
1 I I 

I 1 I I 
I I I 1 
1 1 : I 
I I I 

(B) GRAPHIC CHARACTER 

ROW A 

ROWB 

ROWC 

ROWD 

ROWE 

Figure 4. Character Structure 

1 0 1M IFC21FC11FCOlBC21BC11BCoI 

~ '---y---' 
I I 
I I I BACKGROUND COLOR (1 ., 8) 

I 
FOREG~OUND COLOR (1 01 8) 

MODE-O ~ ALPHANUMERICS 
1 ~ GRAPHICS 

COLOR CODE 
000 
001 
010 
011 
100 
101 
110 
111 

<a) Byte 0 

COLOR 
iii:ACK 
RED 
GREEN 
YELLOW 
aWE 
MAGENTA 
CYAN 
WHITE 

,Figure 5. Display Character Specificatl~n 

3-127 AFN-02172A 



MDDE = 1 

Ap.;123 

~ '""----.>v-.,...--..... I 
ROW B GRAPHICS 

(b) B,..1 

ROW A GRAPHICS 
1 = FOREGRDUND COLOR 
o ~ BACKGRDUND CDLOR 

NDTE: RBI IS INTE~nDNALLY MOVED TD BYTE 3 SUCH THAT REPRESENTAnDN DF A BLANK 
CHARACTER FOR EITHER TEXT DR GRAPHIC IS THE SAME. 

I RDI I R~ I RC31'RC21 ReI I RCO RB3 

~ , ____ ---._-----'I'-.,-J 
I ROW B GRAPHICS 

I 
I 
I 
I 

RDW D GRAPHICS 

RDW C GRAPHICS 

(e) .,..2 

~-_ ............... ..-_--,I '--.,.-/ 
I ROW D GRAPHICS 
I 
I 
I 
I 

ROW B GRAPHICS 

RDW E GRAPHICS 

(d) a,..3 

Figure,5. DIsplay Character SpecIficatIon (Cont.) 

AI'N-02172A 



AP-123 

System Bottlenecks 

It can be seen from the above calculation that nearly 
one megabyte of data must be transferred per second to 
effect the CRT refresh function alone. Even with the 
fastest available DMA controllers, this represents the 
llU\ior part of the bandwidth for such devices. When the 
design shown in Figure I is used, the system bus must 
also be used by the CRT terminal processor for such 
functions as keyboard polling and communication with 
external devices. In addition, any changes made to the 
material being displayed would require use of the sys­
tem bus for the purpose of storing the new material in 
the display memory, and possibly also for access to 
system memory during the calculation process. It is 
easy to see, therefore, that severe bottlenecks can oc­
cur in terms of system bus utilization. Problems involv­
ing bus contention could also be difficult to resolve. 
Display underruns could become difficult or impossible 
to avoid in some cases, such as when graphics com­
~utations require excessive use of the system bus. 

The situation can be improved substantially if provision 
is made for concurrent processing. One CPU can be 
doing calculations on the material to be displayed, 
while another CPU can be managing the CRT terminal 
functions and the 110 devices simultaneously. Local 
buses can be used for access to the respective program 
memories, with the system bus used only for transfer of 
new display data and for communication between the 
two processors. 

The iAPX 86111 offers a convenient and economical 
way of implementing this multiprocessing approach. In 
particular, the 8089 has unique capabilities that simplify 
the design process. 

OVERVIEW OF THE 8089 

Architectural Overview 

The 8089 Input/Output Processor is a complete 110 
management system on a single chip: It contains two 
independent 110 channels, each of which has the, capa­
bilities of a CPU combined with a programmable DMA 
controller. 

The DMA functions are somewhat more flexible than 
those of most DMA controllers. For example, a con­
ventional DMA controller transfers data between an 
110 device and a memory. The 8089 DMA function can 
operate between one memory and another, between a 
memory and an 110 device, or between one 110 device 
and another. Any,device (110 or memory) can physi­
cally reside on the system bus or on the 110 bus. The bus 

width for the source and destination need not be the 
same. If the source, for example, is a 16-bit device, 
while the destination is an 8-bit device, the 8089 will 
disassemble the 16-bit word automatically as part of the 
DMA transfer process. The transfer can be synchro­
nized by the source, by the destination, or it can be free 
running. The 8089 can effect data transfers at rates up to 
1.25 megabytes when a 5 MHz clock is used. 

Unlike most DMA controllers, the 8089 uses a two­
cycle approach to DMA transfer. A fetch cycle reads 
the data from the source into the 8089, and a store cycle 
writes the data ,from the 8089 to the destination. This 
two-cycle approach enables the 8089 to perform opera­
tions on the data being transferred. Typical of such 
operations are translating bytes from one code to an- , 
other (for example, EBCDIC to ASCII) or comparing 
data bytes to a search value. 

A variety of conditions can be specified for terminating 
DMA transfers, including single cycle, byte count (up 
to 64K), external event, and data-dependent condi­
tions, such as the outcome of a masked compare 
operation. 

The CPU in each channel can execute programs in the 
system space (from a memory on the system bus) or in 
the 110 space (from a memory on a separate 110 bus). 
Thus, complete channel programs can be run by the 
8089 without tying up the system bus or interfering with 
the operation of the system CPU. Figure 6 is a simpli­
fied block diagram of the 8089, showing how the 8089 
interfaces with these two buses. 

The programs that the 8089 executes may be preexisting 
programs stored in ROM or EPROM, or they may be 
programs prepared for the 8089 by the system CPU. In 
the latter case, the programs are typically in modular 
form, contained in "task blocks" that the system CPU 
places in a memory location accessible to the 8089. 
During normal operation, the system CPU then directs 
the 8089 to the various task blocks, according to which 
programs are to be executed. The details of how this is 
done are given below under Software Interface. 

The 8089 has an addressi,ng capability of 64K bytes in 
the liD space, and thus can support multiple per­
ipherals, as illustrated in Figure 7. In the system space, 
the 8089 supports, I-megabyte addressing, and is di. 
rectly compatible with the 8086 or 8088, and with Intel's 
Multibus. The 8089 operates from a single +5V power 
source, and is housed in a standard 4O-pin, dual in-line' 
package. The instruction set for the 8089 lOP is specifi­
cally designed and optimized for liD processing 'and 
controL In addition to being able to execute DMA 

3-129 AFN-Cl2172A 



/ 

H08TCPU 

SYSTEM IUS 

EXTI 
CPU 

"CHANNELl" DRQ1 

SINTRI 

CA 

SEL 

SINTR2 

CPU EXT2 
,"CHANNEL 2" .. DRQI 

LOCAL UO BUS AND MEMORY 

Figure 6. Simplified Block Diagram of the 8089 

transfers under a wide variety of operating conditions, 
the 8089 can perform logic operations, bit manipula­
tions, and elementary arithmetic operations on the data 
being transferred. A variety of addressing modes may 
be, used, including register indirect, index auto. incre­
ment, immediate offset, immediate literal, and indexed. 

The register set fdr the 8089 is shown in Figure 8. Each 
channel has an independent set ofthese registers, not 

3-130 

accessible to the other channel. Table 1 gives a brief 
summary of how these registers are used during a pro­
gram execution or during a DMA transfer. Four of the 
registers can contain memory addresses which refer to 
either the system space or the I/O space. -These regis­
ters each have an associated tag bit. Tag = 0 refers to the 
system space and tag = 1 refers to the I/O space. More 
details on how the registers are used are given belovy as 
part of the Sbftware Interface section. 

AFN-cJ2172A 



AP·123 

80881 -CPU 

-lOP DR01,EXf1 

1271 
CRT 

CONTROLLER 

11271 
FLOPPY 

DISK 
CONTROLLER 

8271 
KEYBOARD 

CONTROLLER 

Figure 7. 1/0 System with Multiple Peripherals 

USER PROGRAMM.\BLE 

TAG l' • 
B P ADDRESS A (OA) 

G.P ADDRESS 8 (08) 

Q P ADDRESS C (OC) 

TASK POINTER (TP) 

'""'"----- 1·BIT POINTER TO EITHER UO OR SYSTEM MEMORY SPACE 

" • 
INDEX (IX) 

BYTE COUNT (BC) 

MASt< COMPARE (Me) 

CHANNEL CONTROL teC) 

NON USER PROGRAMIiABLE 
(ALWAYS POINTS TO SYSTEM MEMORY) 

1" P I PARAMETER POINTER (PP) 

I CHANNEL CONTROL POINTER (CP) I 

Figure It. 8089 Register Set 

System Configurations 

The hardware relationship between the host -CPU and 
the 8089 can take one of two basic forms-local con­
figuration' or remote confiiuration. In local configura­
tion (Figure 9) the lOP shares the system bus' interface 

3--131 

logic with the host CPU. They reside on the same bus, 
sharing the same system address buffers,-data buffers, 
and bus timing and control logic. The 8089 requests the 
use of the bus by activating the request/grant line to the 
host CPU. When the host relinquishes the bus, the lOP 
uses all the same hardware, and the host CPU is re­
stricted from accessing the bus until the 8089 returns 
control ofthe bus to the host CPl,]. 

The local configuration is a very economical configura­
tion in terms of hardware cost, but it does not allow 
con~urrent processing, and thus it is not able to really 
take advantage of the 8089's capabilities for indepen­
dent operation. In the local configuration, the 8089 acts 
as a local DMA controller for the CPU, providing en­
hanced DMA capabilities and I-megabyte addressing. 

,For applications such as the color graphics terminal, 
where system bus utilization (and,other overhead) due 
to I/O processing would clearly be excessive in the local 
configuration, it is far more desiTable to use the remote 
configuration, illustrated in Figure )0. The two proces­
sors both access the system bus, but each may have its 
own local bus in addition. Each of the processors may 
execute progI'ams from memory on its own local bus, or 

AFN-02172A 



Register 

GA 

GB 

GC 

TP 

PP 

IX 

BC 

MC 

CC 

I 

Size 

20 

20 

20 

20 

20 

16 

16 

16 

16 

8086 
OR 

8088 
cPU 

Program 
Access 

Update 

Update 

Update 

Update 

R,eference 

Update 

Update 

Update 

Update 

System 
or 1/0 

Pointer 

Either 

Either 

Either 

Either 

System 

N/A 

N/A 

N/A 

N/A 

Table 1. Channel Register Summary 

Use,by Channel Programs Use In DMA Transfers 
, 

General, base Source/destination pOinter 

General, base Source/destination pOinter 

General, base 'Translate table pOinter, 

Procedure return, instruction pointer Adjusted to reflect cause of termination 

Base 

General, auto·increment 

General 

General, masked compare 

Restricted use recommended 

BUS 
CONTROLLER 

LATCHES! 
TRANSCEIVERS 

N/A 

N/A 

Byte counter 

Masked compare 

Defines transfer options 

PERIPHERAL 
P1 

SYSTEM MEMORY 

PERIPHERAL 
P2 

Fi~ure 9. ,CPU and lOP in Local Conflg~rlltion , 

3-132 AFN-02172A 



AP.123 

Figure 10. CPU and lOP In Remote Configuration 

on the shared system bus. This creates a much more 
flexible arrangement. Concurrent processing may be 
used, and it is not necessary to synchronize the proces­
sors. An 8086, for example, may run at 8 or 10 MHz 
while the 8089 operates at 5 MHz. The specific terminal 
design described later in this application note makes 
use of one additional technique to further decouple the 
operation of the tWo processors. This is a ,dual-port 
RAM; which is located between the system bus and the 
8089, and serves as display memory and as storage for 
the task blocks created by the 8086 CPU. Details on 
how this dual-port RAM operates are given below in the 
sections describing the terminal design itself. 

Software Interf,ce 

Although the 8089 is an intelligent device which· has a 
great deal of ability to function independently· when 
managing the course of VO operations, it typically 
operates under the overall supervision of the host CPU. 

Figure 11 illustrates the method of communication be­
tween the CPU and the lOP. The CPU communicates 
to the lOP by placing messages in memory and activat­
ing the lOP's channel attention (CA) input. The lOP 
communicates to the CPU by placing messages in sys­
tem memory and making an interrupt request on one of 
its system, interrupt request (SINTR-I or SINTR-2) 
outputs. 

The messages in memory take the form of linked 
blocks. These blocks are of the following five types: 

1. System Configuration Pointer (SCP) 

2. System Configuration Block (SCB) 

3. Channel Control Block (CCB) 
, , 

4. Parameter Block (PB) 

5. Task Block (TB) 

The SCP and SCB blocks are.used by the CPU (only 
after reset) to initialize the 8089. The CCB, PB and TB 
'blocks are used when the CPU wishes to instruct th,e 

AFN-G2172A 



/ 

AP-123-
, ,~ " .. ' 

CHANNEL ATTENTION 

11-CPU IN lOP 

III!IIORY 

INTERMWT 

Figure 11. CPU/lOP Communication 

lOP to perform a particular sequence of operations. 
Figut:e 12 shows these five blocks and how they are 
linked. The SCP, SCB, CB, and PB must be in memory 
which is accessible from both the CPU and 8089 (either 
system memory or for this application note, d'¥ll-port 
memory). TheTB may be in either system or 8089 local 
memory. 

The system configuration pointer is always found at the 
same location (FFFF6) in the system memory. The first 
time channel attention is activated (after an lOP reset) 
the 8089 reads the system configuration pointer from 
this location. The SYSBUS field contains only one sig­
nificant bit (Bit 0), designated by the letter W. If W = 0, 
the system bus is an 8-bit bus. W = I denotes a 16-bit 
system bus. The lOP first assumes an 8-bit bus and 
reads the SYSBUS field. It stores the information as to 
the physical width ofthe system bus, then immediately 
uses this information in the process of fetching the'next 
rour bytes, which contain the address of the system 
configuration block. 

The addresses used to link blocks are standard iAPX 86, 
88 pointer variables, each occupying two word loca­
tions in system memory. The lower-addressed word 
contains an' offset" which is added to th~ segment base 
value (left-shifted four places) found in the upper­
addressed word to derive the complete 20-bit physical 
address in system memory. If the block is in an I/O 
memory (a~ a task block might be), only the offset value 
is used. ' 

After thus deriving the address of the system cd1lfigura­
tion block, the lOP reads this block, starting with the 
system operation command (SOC) field. Bit I of the 
SOC field specifies the request/grant mode (used in 

local configuration or in multiple-lOP systems). Bit 0 
specifies the I/O bus width (designated!). When I = 0, 
the I/O bus is an 8-bit bus. I = I denotes a 16-bit I/O bus. 
The lOP then proceeds to read the double-word pointer 
to the channel control block, converts it to the 20-bit 
physical address, and stores it in an internal register 
(the channel control pointer register). This register is 
loaded only during initialization and is not available to 
channel programs. For this reason the channel control 
block cannot be moved unless the lOP is reset and 
reinitialized. 

The initialization is complete when the channel control 
pointer has been stored. The lOP indicates this by clear­
ing the busy flag in the channel I control block (which 
must beset by the host CPU before the initialization 
sequence began). The host CPU can monitqr this flag to 
determine when initialization is complete, and then to 
initialize any other 80898 ~ the system. 

It is the responsibility of the host CPU to make ,sure that 
the SCP and SCB have the proper contents before 
issuing the channel ~ttention (CA) that begins the in­
itialization sequence. After initialization, the host CPU 
must also assure that the channel control block (CCB) , 
parameter block (PB), and task block (TB) all hav:e the 
proper contents, before issuing a subsequent CA. 

The CA may be issued in the form of an I/O write 
command to the address of the lOP on the Multibus. 
Figure 13 shows a typical decoding circuit,for this write 
command. The lOP actually occupies two consecutive 
address locations on this bus, because the AOline is tied 
to the select (SEL) input of the 8089. A zero on the SEL 
line specifies lOP channel I for the impending opera­
tion, while a one specifies 'lOP channel 2. 

3-134' AFN-02172A 



Ta 

Ta 

....... 

T 

AP-123 

• I SYSBUS FFFF8 
SYSTEM 

f' r- sca ADDRESS FFFF8 CONFIGURATION 

L POINTER 
sca RELOCATION FFFFA 

I SOC 

INITIALIZAnON SYSTEM 

r- ca ADDRESS CONFIGURATION 

L- CB RELOCATION 
BLOCK 

BUSY I CCW 

r PB ADDRESS }~~a~_,~ 
CHANNEL 1 

L- PB RELOCATION 

}--, BUSY I CCW 

PB ADDRESS 

PB RELOCATION 

ADDRESS 

RELOCATION W 
lOP TASK 

PROGRAM 
~ .... PARAMETER BLOCK TASK BLOCK ':-

T T 
Figure 12. Lin!<ed Block Communication Structure 

A7----; 
Aa-----; 
A5-----I 
A4 ----f"S-30' 
A3----i,.;.;.-" 

A2---~-I 

~--------ct.,;;J 
CA 

... ---________ r SEL 

PORT Fe"" CHANNEL 1 CA 
PORT FD = CHANNEL 2 CA 

RESET 

I 

"':-

T 

Figure 13. Channel Attention Decoding Circuit 

reads the channel command word (CCW). It then sets 
or clears the busy flag (FFH = set, OOH = clear). The 
encoding of the channel command word is shown in 
Figure 14. The CCW provides the lOP with a functional 
command (START in I/O space, HALT, etc.) and 
specifies some of the operating conditions, such as 
interrupt handling, bus load limit, or priority relative to 
the other channel. If the CPU is instructing the lOP to 
execute a program, it is at this point that the CPU 
specifies, via the CCW, whether the instructions are to 
be fetched from the system space or from the 8089's I/O 
space. Refer to bAPX 86,88 User's Manual for specific 
details on the setting and clearing of the busy flag and on 
CCW specifications. 

The channel control block has a section for each chan­
nel. When the CA is received, the lOP goes to the 
section corresponding to the selected channel, and 

After the CCW has been read, the lOP reads (if appro­
priate to the command) the address of the parameter 
block associated with the impending operation, .and 
stores the translated address (from the two-word seg­
ment and offset pair to the 20-bit physical address) in 

3-135 AFN-02172A 



AP-123 

7 0 

I P I 0 I B I 19F I CF 

CF COMMAND FIELD 
UPDATEPSW 000 

001 
010 
011 
100 
101 
110 
111 

START CHANNEL PROGRAM LOCATED IN I/O SPACE. 
(RESERVED) 
START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE. 
(RESERVED) 
RESUME SUSPENDED CHANNEL OPERATION 
SUSPEND CHANNEL OPERATION 
HALT CHANNEL OPERATION 

ICF INTERRUPT CONTROL FIELD 
00 IGNORE. NO EFFECT ON INTERRUPTS. 
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED. 
10 ENABLE INTERRUPTS. 
11 DISABLE INTERRUPTS. 

B BUS LOAD LIMIT 
o NO BUS LOAD LIMIT 
1 BUS LOAD LIMIT 

P PRIORITY BIT 

Figure 14. Channel Command Word Encoding 

the parameter pointer (PP) register. PP is another regis­
ter which is not programmable by the channel program. 
The lOP then goes to this location in system memory, 
and fetches the address of the task block itself. The task 
block contains the actual program to be executed, while 
the parameter block contains parameters to be used by 
that program. 

Except for the first two words, which contain the task 
block address, the parameter block format is up to the 
discretion of the user. Similarly, the task block may 
have any format whatsoever, as long as the lOP can 
execute the program. The parameter block is always in 
system memory, but the task block may be either in 
system memory or in I/O (local) memory. 

The host CPU may prepare as many parameter­
block/task-block sets as it wishes. An individual set is 
then activated for execution by placing its parameter 
block pointer in the desired channel's control block, 
loading the appropriate channel control word, and issu­
ing a CA to that channel. 

The registers shown in Figure 8 store (in addition to 
pointer variables) various flags and parameters associ­
ated with the lOP's operation. Some of these registers 
are loaded automatically with information fetched dur-

, ing the initialization sequence or during channel atten­
tion processing. Others must be set by executing a 
program using instructions from the lOP's .instruction 
set that are specifically designed for loading these 
registers. 

Channel programs (task blocks) are written in ASM-89, 
the 8089 assembly language. About 50 basic instruc­
tions are available. The lOP instruction set contains, 
some instructions similar to those found in CPUs, and 
also other instructions specifically tailored to I/O oper­
ations. Data transfer, simple arithmetic, logical, and 
address manipUlation operations are available. Uncon­
ditional jump and call instructions are provided so that 
channel programs can link to each other. An individual 
register or even a single bit may be set or cleared with a 
single instruction. Other instructions specify condi­
tional jumps, initiate DMA transfers, perform sema­
phore operations, and issue interrupt request&, to the 
CPU. 

A channel program typically ends by posting the result 
of an operation to a field supplied in the parameter 
block, then interrupting the CPU (if interrupts are en­
abled) and halting. When the channel halts, its associ­
ated BUSY flag is cleared in the channel control block. 
The CPU can polHhis flag (as an alternative to being 
interrupted) to determine when the operation has been 
completed. 

Timing Details 

The basic bus timing' relationships for the 8089 are 
identical to those of the 8086 or g088, in that all cycles 
consist~ffour states (assuming no wait states), and use 
the same time-multiplexing technique for the ad­
dress/data lines. The address (and ALE signal from the 

3-136 AFN-02172A 



AP-123 

CLK 

---,------~~--------~-=~~--~I----ii-iO S2-SO ACTIVE 81-80 INACTIVE L __ _ 

ADIIII£SSISTATUS ==~}--<,-_A_1 ... ,--A1_'--"X ________ -________ --,~ 

ADORE88/DATA 
(.ol1-ADDI Alt-AU 

'ALE ~'-__________ _ 

*MORe or -lORe 

'DTIR 
-- -r,' --------, ,----
---' '--_____ ~I 

'DEN _______________ ---J 

' ... _ CONTROUER OUTPUTS 

Figure 15, Read Bus Cycle 

8288 bus controller) is output during state TI for either a 
read or write cycle. During state T2 for a read cycle 
(Figure 15) the address/data lines are floated. During 
state T2 for a write cycle (Figure 16) data is output on 
these lines. During state T3, the write data is main­
tained or the read data is sampled. The bus cycle is 
concluded in state T4. 

Figure 17 shows some details on the wait state timing 
and Figure 18 shows the RESET-CA initialization 
timing. 

During DMA transfers, the transfer cycle may be 
synchronized by'either the source or the destination. 
Figure 19 (source-synchronized transfers) and Figure 
20 (destination-synchronized transfers) show the 
relationships among the basic clock cycles, the DRQ 
signals, and the DACK signals. 

The 8089 does not have a DACK output signal. Rather, 
it uses the 'more ~eneral process of issuing a command 
(for example, I/O read or write) to an address on the I/O 
bus. This command is then hardware decoded to obtain 

'3-137 

a chip select signal for the addressed device. This 
method enables the 8089 to relate to a variety of I/O 
devices in a very flexible manner. 

Figures 19 and 20 also show how the 8089 inserts idle 
clocks to accommodate various DRQ latency condi­
tions. H maximum efficiency (transferiate) is desired, it 
is usually possible to remove this latency by techniques 
such as generating an early DRQ. Another possibility is 
to use the unsynchronized DMA transfer mode (DRQ is 
not examined) and to use the READY signal for 
synchronizing transfers. The early DRQ technique will 
be discussed later. 

GRAPHIC CRT SYSTEM DESIGN 
Hdving examined the requirements for graphic CRT 
systems in general, and having also discussed the capa­
bilities of the 8089, we can now proceed to describe a 
specific graphic CRT design using the 8089. 

In this design, the system CPU is an 8086. Thus, the 
entire system is called' an iAPX 86/.11. 

AFN-02172A , 



AP.1'23 

ClK 

S2-SO ACTIVE 52-SO INACTIVE \~ = = = 

ADDRESS/STATUS = = ~ ~ }______{'--_A_l_9-_A_16---Jr'--____ S9-_S3 ____ ---'~ 

ADDRESS/DATA 
(ADl5-ADO) = ~ ~ ~}______{L_A_l5-_A_O.-J'--__ D_At_A_D_U_T ~Dl_5-_DO __ ---,}--

'ALE ~'--__________ _ 

·AiiWc OR ·iiOWC 

'MWTC OR 'IOWC 

'DEN 
---, , 
----',-----' 

'6288 BUS CONTROllER OUTPUTS 

Figure 16, Write Bus Cycle 

ONE BUS CYCLE 

READY ---=R~EA~D~Y --'\ NOT READVr-riEADv 
OUTPUT • ! "~"u. 

·REFER TO THE 8284A CLOCK GENERATOR/DRIVER 
SHEET FOR TIMING INFORMA110N 

Figure 17. Wait-State Timing 
(Synchronous ROY Input) 

ClK~ 

RESET "UST BE ACTIVE \ 
FOR FIVE CLOCK .... ---'----
CYCLES I 1 elK MIN I .... .. ----------i.. ..'~CA 

CA _________ , 1 ClK MIN:LU-RECOGNIZED 

Figure 18. Reset and Channel Attention Timing 

System Partitioning 

The 8086 and 8089 are arranged in the remote configura­
tion. This assures that concurrent processing can occur. 
As mentioned earlier, an additional step is taken to 
further decrease system bus utilization for lIO-related 
processes. This step is .the inclusion in the system of a 
dual-port RAM, located l:>etween the system bus and 
the 8089. This dual-port RAM contains the display 
memory and also contains the Iink.ed message blocks 
used for communication between the 8086 and the 8089. 

The system configuration then becomes that shown in 
Figure 21. The dual-port RAM pecomes'the only data 
path between the 8086 and the 8089. Access to this 
memory is time-shared between the 8086 and the 8089, 
with the 8089 taking less than 50% of, the total time 
available. Since the 8089 do~s not access the system 
bus, the ,host system can enjoy complete freedom to 
allocate its resources between its own local bus and the 
system bus. The CPU and the lOP can operate 
asynchronously, with the 8086 running on an 8 MHz 
clock and the 8089 on a 5 MHz clock. 

The division of responsibility between the 8086 and the 
8089 is then very clearly defined. The, 8086 initializes the 
8089 and specifies the task parameters, storing them in 

3-138 AFN-02172A 



DACK~ (DECODED 
I/O ADDRESS) 

NOTES 

YALID I/O ADDRESS 
PRESENT 

AP·123 

\\-.-------
1) INDICATES THE NUMBER OF (OLE CLOCKS INSERTED AFTER T4 OF THE STORE CYCLE BEFORE THE NEXT TRANSFER CYCLE 

BEGINS IF ORO IS RECEIVED BEFORE THE RISING EDGE OF ClK IN THE CURRENT FETCH CYCLE, THE NEXT FETCH BEGINS 
IMMEDIATELY AFTER THE CURRENT STORE 

2) IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FOUR OR FIVE MORE IDLE CLOCI( CYCLES OCCUR BEFORE THE 
ASSOCIATED TRANSFER CYCLE BEGINS (ORO IS lATCHED ON THE RISING EDGE OF ClK ) 

3) TO PREVENT THE START OF THE I\1EXT TRANSFER CYCLE, ORO MUST BE BROUGHT lOW BY THE RISING EDGE OF ClK IN T4 
OF THE CURRENT FETCH (FOR B/B~W SOURCE SYNCHRONIZED AND W~B/B DESTINATION SYNCHRONIZED IT MUST BE 
lOW BY THE RISING EDGE OF ClK IN THE FOURTH CLOCK OF THE CURRENT BUS CYCLE INCLUDING WAIT STATES) 

Figure 19. Source-Synchronized Transfer Cycle ' 

TRANSFER CYCLE 1 .. .. 
STORE BUS CYCLE 1 FETCH BUS CYCLE 2 2 stORE aus CYCLE 2 

C~k 

DRO' 
(FROM I/O DEVICE) \\\\\\\ 

r---

ID~ 

CLOCKS 3 

DACK I VALID 1/0 \ I ' 
(DECO~D I/OAI/DRE_SS,;,) _____ ..J ADDRESS PRESENT L _________ -. __ ...J. 

NOTES 

, 

1) FIRST DMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE lAST TASK PROGRAM INSTRUCTION IS EXECUTED 
2) FETCH CYCLE 2 BEGINS (MMEDIATElY AFTER STORE CYCLE 1 

L 
,3) INDICATES THE NUMBER OF IDLE CLOCKS INSERTED AFTER T4 OF THE FETCH BEFORE STORE CYCLE 2 BEGINS IF ORO IS 

RECEIVED BEFORE THE RISING EOGE OF ClK IN THE CURRENT STORE CYCLE, THE NEXT STORE BEGINS IMMEDIATELY 
AFTER THE NEXT FETCH 

4) IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FOUR OR FIVE MORE IDLE CLOCK CYCLES OCCUR BEFORE THE 
ASSOCIATED STORE CYCLE BEGINS (ORO IS LATCHED ON THE RISING EDGE OF ClK) 

5) TO PREVENT TI:IE NEXT STORE CYCLE FROM OCCURRING, ORO MUST BE BROUGHT lOW BY THE RISING EDGE OF ClK IN T4 
OF THE CURRENT STORE (FOR B/B->W SOURCE SYNCHRONIZED AND W->B/B DESTINATION SYNCHRONIZED, IT MUST BE 
lOW BY THE RISING EDGE OF ClK IN THE FOURTH CLOCK OF THE CURRENT STORE CYCLE INCLUDING WAIT STATES) 

• Figure '20i Otistinatlon-Svnchronized TratIsfir Cycle 

3-139 AFN-02172A 



AP-123 

32K BYTE 

~ 
8289 

2732A-2 
. CPU - - BUS 

EPROM ARBITER 

8K BYTE RESIDENT -I MULTIBUS™ 
2141-4 - BUS INTER· -SHAM FACE INTERFACE 

8259 

i~ INTERRUPT 
I-

CONTROLLER z w .... Q ;5 ;;; '" w => 9 II: ID 

CPU 

, 

-~--

IK BYTE 32K BYTE 

2732A 2118·12 
EPROM DRAM 

1 
2K BYTE LOCAL DUAL·PORT 
2114AL-3 - - I/O BUS - - MEMORY 

SRAM iNTERFACE CONTROL 

8279 0 KYBO/DISPLAY - - lOP CONTROLLER 

g 
.~ 

'" 
:IE w 

9 => I-ID 
~ 

4-8275 '" CRT - .... 
.CONTROLLERS 

;5", 
Q => 
.... ID 

I. 
PERIPHERAL CONTROLLER' 

Flgure21. Remote Conflgwation with Qual-Port .RAM 

3-140 AFN-02172A 



AP·123 

the 'dual-port RAM. In many cases, the 8086 also pre­
pares the task programs and stores them in the dual­
port RAM, from which they may be downloaded to a 
memory on the 8089's 110 bus. The 8089 executes the 
task programs (from the dual-port RAM or from a local 
memory on the 110 bus), while the 8086 simultaneously 
executes other control or .application programs. The 
application programs may encompass a wide variety of 
operations, but they will always generate the display 
'characters and store them in the dual-port RAM. The 
8089 returns status to the 8086 when task program 
execution has been completed. 

BOOTSTRAP LOADER 
OPERATING SYSTEM 

APPLICATION PROGRAMS 

DISPLAY BUFFER 
PROGRAM STORAGE 
(DOWN LINE LOADED) 

NON·VOLATILE DATA 
STORAGE 

INTERRUPT YECTOATABLE 
STACK 

SCRATCH PAD 

~ 

2732"-2 
EPROM 

2118·12 
DUAL·PORT 

DYNAMIC RAM 

2816 
EEPROM 

2141·4 
CPU LOCAL 

MEMORY 

FFFFF 

F8oo0 

"- }-~" 
Foooo 

;:::~ 

OFfFF } 18K BYTES 

08000 

01FFF } 8K BYTES 

"'00 

Figures 22 and 23 show the manner in which the 
memories are organized. Figure 22, which shows the 
memory configuration for the 8086, should be taken as 
an example, since many different ,configurations are 
possible, according to the user's application. Figure 23 
shows the memory configuration for the 8089, given the 
particular choices made for the application discussed in 
this note. Of the memories shown in Figure 22, the 2141 
static RAMs and the 2732A EPROMs are located on the 
8086's local bus, while the 2816 EEPROM and the 2118 
'dual-port RAM are interfaced to the Multibus. The 2816 
is a non-volatile read/write memory equivalent in its 
storage capacity to the 2716 EPROM. Figure 22. CPU Memory Organization 

2 PAGES 
DISPLAY 
BUFFER 

SYSTEMS ..... CE 

,---------, F1'FFF 

2118·12 
DYNAMIC RAM 

~ _______ ~FUOO 

32K BYTES 

T 
I/O PORTS 

CHANNEL 
PROGRAM 

SCRATCH 
PAD 

~.., 

Figure 23. lOP Memory Organization 

3-141 

I/O SPACE 

KEYBOARD 

DACK 

CLKENA 

CRT CONTROLLER 1 

CRT CONTROLLER 2 

2732A 
EPROM 

2114AL-3 
RAM 

.... r---

cooo 

Aooo 

sooo 

sooo 

4000 

2000 
07FF 

0000 

AFN-02172A 



AP-123 

8086/8089 Software Interface 

Comparing Figures 22 and 23, it can be seen that the 
2118 dynamic RAM appears in the memory cone 
figurations for both the 8086 and the ~089. In the 8086's 
system space, this memory occupies addresses FOOOO 
through F7FFF, while in the 8089's system space, its 
address range is F8000 through FFFFR 

Figure 24 shows the organization of the dual-port 
RAM. The addresses given are those seen by the 8089. 
The display data (for the CRT refresh function) is con­
tained in the two largest blocks-Display Page 0 and 
Display Page 1. Each page contains 15K bytes, enough 
to refresh a color graphic screen containing 48 rows of 
80 characters each. In typical operation, the 8086 and 
the 8089 both access the same page of display data. In 
special cases, such as animated displays, the 8089 per­
forms repetitive DMA transfe(s from one of these 
pages, while the 8086 is generating new display material 
and storing it in th~ other page. The display page pointer 
(DSPLY _PG-PTR) in the parameter block specifies 
which of these pages is to be displayed at any given 
time. This pointer may be changed by the 8086, or by a 
command fro!ll the terminal keyboard. 

The Command Buffer is a 256-byte area set aside for 
transferring ASCII 'characters from the 8086 to the 
8089. It is like a second keyboard, scanned by the 8089. 
It takes precedence over any real keyboard activity. 
The COM_8086 flag in the parameter block is used to 
indicate when there are entries in the command block 
area. 

The EEPROM Buffer is a 256-byte area used in connec­
tion with the non-volatile EEPROM memory, an op­
tional memory which may be located on the Multibus. 
One use of such a memory would be to store ASCII 
strings, which could then be recalled by the 8086 upon 
recognition of special keyboard control code 
sequences. 

The Keyboard Buffer is a 256-byte area which serves as 
a storage area for ASCII characters entered from the 
terminal keyboard. When this buffer becomes full, or 
when a return is ,entered at the keyboard, an end-of-file 
byte is placed after the last entered character, and the 
keyboard buffer full (KBD_BUF-FULL) flag is set in 
the parameter block. This prevents the 8089 from pro­
cessing any more inputs from the keyboard, until the 
8086 resets KBD-.BUF-FULL. 

The Spare blocks total lK (1024) bytes, and may be 
used for any purpose, according to the user's 
application. 

3-142 

LlN~eD IDP CONTROL BLOCKS 

FFFFF 

} 258B~ES 
FFFOO 

SPARE 

FFEFF 

}M_ 
FFCOO 
FFBFF 

DISPLAY PAGE 1 15K BYTES 

KEYBOARD BUFFER 

FCOOO 

} 2S6BYTES 
FBFFF 

F8FOO 

EEPROM BUFFER 

FBEFF 

} 258BYTES 

FBEOO 

COMMAND BUFFER 

FBDFF 

} 258 BYTES 

FBDOO 

SPARE 

FBCFF 

) 258BYTES 

FBCOO 
FBBFF 

DISPLAY PAGE 0 
15~ BYTES 

Figure 24. Organization of the Dual-Port RAM 

The Linked lOP Control Blocks are those which have 
been discussed above, as part of the 8089 overview. The 
specific memory locations are as shown in Figure 25. 
Note that there is only one parameter block, andno task 
blocks present. Only one task block is used in this 
application, and it is stored in the 2732A EPROMs on 
the 8089's I/O bus. 

AFN-02172A 



AP-123 

SPARE 

FFFFF 

} 4BYTES 

FFFFC 

SYSTEM CONFIGURATION 
POINTER 

FFFFB 

} I BYTES 

FFFF. 

SYSTEM CONFIGURATION 
BLOCK 

FFFF5 

} IBms 
FFFFO 

CHANNEL CONTROL BLOCK 

FFFEF 

} .. ~. 
FFFEO 
FFFDF 

PARAMETER BLOCK 224 BYTES 

FFFOO 

Figure 25. Organization of the Linked 
lOP Control Blocks Area 

As mentioned earlier, the structure of the parameter 
block is very flexible. Only the first four bytes are fixed 
(because of the 8089's requirements). These four bytes 
contain the address of the task block. The remaining 
space in the parameter block may be defined by the 
user. The following list shows the parameter block 
structure that is used in support of the channel program 
contained in the 2732A EPROMs on the 8089's I/O bus. 

TP_LSW DW 
TP_MSDc DW 
EEP-INH DB 
EEP_BUF_FULL DB 
EEP-RECALL DB 
COL-CH-INH DB 
KBD-INH DB 
KBD_BUF_FULL DB 

COM-8086 DB 
COLOR DB 
ST~lL8086 DW 
BACK-COL_SW DB 
MON-INH DB 
DSPLYJG-PTR DB 
SCROLL-REQ DB 

MaN_HOM DW 
MON-END DW 
MON_LMARG DW 
MON-RMARG DW 
KBD_BUF-PTR DW 

,In the above table, DB represents a one-byte quantity, 
and DW represents a two-byte quantity. 

TP _LSW and TP ~SD are the two words making up 
the task pointer. However, since in this application the 
task program is in the 110 space, only the least­
significant word (LSW) is fetched. 

EEP-INH, when not equal to zero, indicates that the 
EEPROM buffer is closed to keystrokes or 8086 ASCII 
commands. 

EEP -BUF-FULL, when not equal to zero, indicates 
that the EEPROM buffer is full. 

EEP -RECALL, when not equal to zero, indicates that 
the 8089 is recalling the contents of an EEPROM buffer 
area. 

COL-CH-INH, when not equal to zero, inhibits the 
color control keys on the keyboard. 

KBD-INH, when not equal to zero, inhibits the pro­
cessing of keystrokes (entered at the keyboard) by the 
8089. Up to 6 keystrokes may be saved in the keyboard 
controller and may be processed later. 

KBD_BUF _FULL, when not equal to zero, indicates 
that a new line of keyboard data needs to be processed 
by the 8086. The 8089 sets KBD_BUF -FULL equal to 
-1 when the return key is pressed. The 8086 resets 
KBD_BUF_FULL to zero after it has read this data. 

COM-8086, when not equal to zero, indicates that 
there are ASCII commands in the command buffer 
areas of dual-port RAM that need to be processed by 
the 8089. 

COLOR determines the foreground and background 
colors to be used in connection with ASCII characters 
entered at the keyboard, or senthy the 8086, via the 
command buffer area. In the COLOR byte; bits BO-B2 
determine the background color, w,hiie B3-B5 deter­
mine the foreground color. The following code is used: 

·000 Black 
001 ' ,Red 
010 Green 
011 Yellow 
100 Blue 
101 Magenta 
110 Cyan 
111 White 

STlLPTlL8086 is ,a two-byte quantity that serves as 
, an offset address for the ASCII characters in the com­

mand buffer. 

3-143 AFN-02172A 



AP-123 

BACK-COLSW determines whether the 8089 color 
control keys will alter the foreground or the back­
ground portions of the COLOR byte. If BACK­
_COL_SW equals zero, the foreground color is 
altered. If BACIC:COLSW is not equal to zero, the 
background color is altered. 

MON-INH, when not equal to zero, suspends DMA 
transfers by the 8089 from display memory to the 8275s. 
When MON-INH is cleared, DMA will resume. 

DSPLY J(LPI'R determines which of the two display 
pages will be used to refresh the CRT. If DSPLY_­
PG_PI'R equals zero, page 0 will be displayed'! If 
DSPLY-PG-PTR does not equal zero, page I will be 
displayed .. 

SCROLLREQ is set by the 8089 to indicate to the 8086 
that the cursor is at the bottom of the page, and that key 
entry/commandprocessing has been halted, pending a 
display memory scroll operation. When the 8086 has 
performed this operation, it clears SCROLLREQ. 

MON_HOM, MON_END, MON_LMARG, and 
MON-RMARG specify, respectively, the upper, lower, 
left, and right boundaries of the region on the screen in 
which keyboard entries will be displayed. 

KBD_BUF -PTR is a two-byte quantity that serves as 
an address for the ASCII characters in the keyboard 
buffer. 

Note that a number of these parameters' support op- ' 
tions (e.g., EEPROM buffer) and are not critical to the 
graphic operation described in this application note. 

8089 Display Hardware Interface 

This section describes the hardware of the peripheral 
processing module (PPM), which includes everything 
between the system bus and the CRT displll-y/keyboard 
unit. The overall organization of the PPM is as shown in 
Figure 21. The dual-port RAM can be accessed from 
either the system bus or the 8089's local bus; The 8089 is 
said to be opera~ing in the system space when it is 
accessing the dual-port RAM, and'in the 110 space 
when it is accessing devices on the 110 bus. Included on 
the 110 bus are four 8275 CRT 'controllers, an 8279-5 
keyboard controller, two 2732A EPROMs, which are 
used to hold channel programs, and four 2114 static 
RAMs, which are used as scratch-pad RAM for the 
8089. 

As explained above (under OVERVIEW OF CRT 
'GRAPHIC SYSTEMS;·Performance Requirements), 
four bytes' are used to specify each character in the 

display. The first byte determines whether the character 
is a text character or a graphic character, and specifies 
the colors for foreground and background. If it is a text 
character, the second byte specifies the character with 
a seven-bit ASCII code, and the remaining two bytes 
are not used. If it is a graphics character, the second, 
third, and fourth bytes contain the color specification 

. for each oCthe twenty distinct picture elements (pixels) 
within the character. Use of the foreground color is 
indicated by a one in the respective bit position, while a 

,zero specifies use of the background color. 

The structure oCthe display characters and the formats 
of the individual bytes are shown in Figures 4 and 5. 

The four 8275 CRT controllers on the 8089's 110 bus are 
used to process the four bytes comprising each'charac­
ter. Since the 8089 can t~ansfer two bytes at a time in 
DMA mode, the four bytes are transferred in two 
stages. In the first stage, the 8089 fetches the first two 
bytes from the dual-port RAM, and transfe,s these two 
bytes into the first pair of CRT controllers. In the 
second stage, the 8089 fetches the second. two bytes 
from the dual-port RAM, and transfers these two bytes 
into the second pair of CRT controllers. This process is 
repeated 80 times to transfer the 80 characters making 
up each row in the display. 

The distinction between text and graphic characters is 
entirely transparent to the 8089. Four bytes are trans­
ferred in every case, even though the text information 
onJy requires two bytes per character. 

We shall now examine the hardware schematics in 
detail, to see how the various functions of the PPM are 
implemented. Figure 26 shows the 8089IOP and its 
associated bus controller. At the top left are the inputs 
through which the 8089 is controlled. The DRQF signal 
(detailed later) is the DMA request that initiates the 
transfer of two bytes from the lOP to two of the four 
CRT controllers. DRQF comes from the 8275s via a 
one-shot, and is connected to the DRQ I input of the 
8089. 

IRQ is an interrupt request that comes from the 8275s. 
It is activated after an entire screen's video information 
has been transferred from the. dual-port RAM to the 
8275s. IRQ is connected to the EXT I input of the 8089. 
It is necessary to program the 8089 to terminate the 
DMA transfer on an external event, iIi order for this 
signal to be effective. 

CA is the channel attention signal. Upon receipt of CA, 
the 8089 reads the channel control word (CCW) from 
the dual-port RAM. From the CCW, the 8089 deter­
mines the nature of the operation assigned to it by the 

.3-144 AFN-02172A 



AP-123 

ORQF 
IRQ 
CA 

lIIIR' 
ROY 
RST 

...... • 

31 ORQl 
33 

EXTl .. 
CA 

20 
SEl 

21 ::~ 

AOIDO 1. 

Al/0l 15 
A21D2 l' 
A3ID3 13 
A4ID4 12 
A5/DS 11 
_10 

A7/07 1 
·At/OSI 

AI/OI 7 

11 lIO 12 

3S; I 
11 lI! 11 

1 
2 7 

AOiDO-A 151015 
All188,A Al8/S3-

iii 

lRIR 
DIW(! 
RIWf 
an 

ClK ilIii5C! 
A101010 8 vcc~ 13 

5 15 
lOB 

14 JlR 
1\11/011 

4 

~ 
CEN INTA(R 

4 
EAOWOI 

Al2/012 m DTiK 3 Al31013 
2 ALE 

Al41014 18 
DEN 

A151D15 31 A48 17 JI15!A 
All/83 [38 8288 

A17/84 
37 0--38 Pl All/85 
3S Al1/S8 

IIRI' 34 
28 

so 27 

: 28 ~ .... A3 

--1! SINTA.1 17 41 
SINTR-2 18 42 

8081 

ClK ....r 

Figure 26. 8089 1/0 Processor and 8288 Bus Controller 

8086. CA is derived by hardware decoding of an 110 
write command made by the 8086 to address OOH or 
address 01H on the Multibus. The lowest-order bit of 
this address is used to specify whether channel 1 or 
channel 2 of the lOP is to be selected, and is connected 
to the 8089's SEL input. In this application, the DMA 
transfers are always performed by channell. 

RDY is the ready signal that comes from the 8202 
dynamic RAM controller, and is synchronized by the 
8284A clock generator. RDY is low whenever the 8086 
is accessing the dual-port RAM. The RDY signal is used 
to establish a master/slave relationship between thl( 
8086 and the 8089, with the 8086 as the master. As 
mentioned earlier, the 8089 accesses the dual-port 
RAM about 50% of the time during DMA transfers. It. 
can be seen, referring to Figure 20, that if no idle clocks 
occur, the lOP will access the dual-port RAM during 
the four clock times of the DMA-fetch bus cycle, and 
will access the 110 bus during the four clock times of the 
DMA-store bus cycle. While the 8089 is doing the store 
operation, the 8086 can access the dual-port RAM. 
Once the 8086 has gained this access, the RDY signal 
will remain low until the 8086 is finished. The 8089 waits 
for RDY to go high before making a subsequent fetch .. 

At 5 MHz, the 8089 requires 3.2 microseconds (16 clock 
cycles) to transfer the four bytes representing a graphic 
character from the display memory to the four 8275s, 
assuming that no wait states have been inserted be­
cause of the 8086's access to the dual-port RAM, or 
because of dynamic RAM refresh functions. A com­
plete row, consisting of 80 characters, requires 80 x 3.2 
= 256 microseconds. The time allowed to complete the 
transfer of one row must be less than the time it takes to 
display that row on the screen. This latter time is equal 
to 1/50 of the total screen update time, or 1/3000 of a 
second (333 microseconds). Comparing the two figures 
(256 vs 333), it can be seen that there are 77 microsec-

, onds available for such wait states. It is the responsibil­
ity of the software designer to control the 8086's access 
to dual-port 'RAM in such a mannner that the added 
wait states do.not total more than 77 microseconds in 
any span of 333 microseconds. Otherwise, underruns 
may occur and the CRT screen will be blanked. See 
System Performance (below) for further discussion on 
this effect. 

RST is the lOP reset signal, which comes from the 
8284A clock generator. The first CA after RST causes 
the lOP to access address FFFF6 in the dual-port 
RAM, in order to read the system configuration pointer. 

3-145 AFN-02172A 



AP-123 

Outputs from the lOP are the time-multiplexed address 
and data lines, BHEI (bus high enable), status lines SO, 
SI, and S2, and the system interrupt request lines, 
SINTR-I and SINTR-2. The interrupt lines go directly 
to the Multibus, and from there they become inputs to 
the 8086's 8259A interrupt controller. 

Figure 27 shows the I/O address latches and decoder, 
and the circuitry used to generate the DACKI signals 
for the CRT controllers. The lOP status bit S2 indicates 
whether the lOP is accessing the 1/0 sp~ce or the sys­
tem space. Latched by ALE (address latch enable), S2/ 
generates 10 and 10/. 10 and 10/ are used to indicate 
that the 8089 is not accessing dual-port RAM. 10/ goes 
to the dual-port RAM controller. 

ALE 
AOiDo-AI51DI5 

RST 
3 

A49 

11 STB 
010 

DOO 
A1/D1 • 011 
A2ID. 3 01' 

DOl 

A3ID3 • 013 DO. 

A4I04 5 01. 003 

A5ID5 • DIS DO. 

A5ID8 7 016 DOS 

A7/07 8 017 D06 

~ 
0- 007 

8.82 

A66 
'11 

A81D8 1 
A91D9 • 
A101Dl0 3 
A11JDl1 4 

. Al21Dl' 5 
A131D13 6 
A14 D14 7 
A15/D15 8 

F 8282 

Vee'" 

• 
2 A.O 

Q " 0 

~ 
T4lS7'!,. 6 

1 2 
Q 

, A19 

"T 
• 

A19 

19 
18 
17 
16 
15 
14 
13 

" 

19 
18 
17 
16 
15 ,. 
13 
12 

The DACKI signals are generated in the following 
manner: 

I. Both 8275 pairs are accessed by the 8089 (DMA 
mode) Viii port AOOOH. 

2. Hardware is used to select one pair of CRT con­
trollers (byte~ 0 and I or bytes 2 and 3). 

3. As th68089 reads (DMA) the word from the dual­
port memory, address bit I (SAl) is latched with 
the memory read command (MRDCI). 

4~ When SAl = 0, DACK 11 is activated. 

5. When SAl = I, DACK 2/ is activated. 

6. In this manner the 8089 performs alternating 
writes (DMA) to the 8275 pairs. 

IClAo-IOA15 

.os 
ICA13 1 AO l :: IOA1' • IDA 

10A1S 3 
.,_ 

~ 13 
IDE 

A. AT ,. 
0, 11 

AT 
ClK 

6 ~ 10 CAT 

r~ ~ 9 KEY 
4 E1 0. 7 

820S 

Vee 

SA1~ 4 A21 
10 ~DA 9 

12 0 A.O Q 5---..-

MiiiiCp 9 
74lS74 

DA ii • • ...... 'i3 10 
A21 

iO 

10 

Figure 27. Address Latch~s, Decoders, and DACK Generator 

3-146 AFN-02172A 



AP-123 

Figure 28 shows the bus transceivers used between the 
8089 and the I/O bus, and also shows the 2732 
EPROMs. 

Figure 29 shows the 2K bytes of 2114 static RAM on 
the I/O bus, which are used as scratch-pad RAM for 
the 8089. 

Figure 30 shows the 8279-5 keyboard controller, and 
also shows the 8284A clock generator that produces the 
CLK, RDY, and RST signals for the 8089. For more 
information on interfacing the 8279-5 to the keyboard 
(Cherry Electrical Products B70-05AB), refer to the 
8279/8279-5 data sheet and application noteAP-32, CRT 
Terminal Design Using the Intel 8275 and 8279. 

10A0-10A15 

A30 

DTiii 11 
T 

1 AO BO 
19 

AOiOO-AI51DI5 • 18 
Al 81 

3 82 
17 

A2 
4 83 

18 
A3 

15 5 A4 B4 
6 

85 
14 

AS 
7 

A6 B6 
13 

9 12 
A7 8~ 

PiiEN 9 De 
6266 

A31 
11 

1 19 

• 16 
3 17 

4 16 

5 15 

6 14 
7 I. 

----.L 12 

9 

8.96 

iOEPiiOi.i 

A18 

INTA ~3 
iORc ---' 2 

Figure 31 shows the clock generator for the character 
timing and dot timing. The character clock frequency (C 
CLK) is 1/8 of the dot clock frequency (D CLK), 10.8 
MHz. Also shown in Figure 31 is a 9602 one-shot used 
to generate the video sync pulses. 

Figure 32 shows th~ CRT Controllers #0 and #1. Bit 6 
of Byte 0 determines whether the display character is 
text or graphic. If Bit 6 is low, the character is a text 
character, and Byte 1 is used to address the 2732A 
character generator ROM. Bytes 2 and 3 are ignored. 
The line count outputs LCO-LC3 of an 8275 (any 8275 
can be used, since they are all synchronized) are also 
applied to the cliaracter generator to perform the line 
select function. 

1000-10015 

A47 

118 

CE 
10Al 8 9 1000 

AO Do 
lOA' 7 10 1001 

AI 0, 
IOA3 6 Oz 

11 1002 
A2 13 1003 10A4 5 D:! A3 

14 1004 ICAS 4 
A4 0, 

15 1005 IOAI 3 
2 

A5 0, 16 1006 IOA7 A6 Os 
10Al 1 0., 

17 1007 
A7 

10A9 '3 AI 
IOA10 .. 

A9 
10Al1 ' 19 

AI. 
I 10A12 21 

Al1 
2732A 

DE 

120 
iOFiiAD 

,'8 
10Al 8 CE 

9 1008 

10A2 7 10 1009 

IOA3 6 11 10010 

IOA4 5 I. 10011 

10A5 4 14 10012 

IOAe 3 A65 
15 10013 

10A7 2 16 10014 

10A8 1 17 10015 

IOA9 23 

IOA10 22 

10A11 19 
IOA12 21 

2732A 
DE 

'20 

Figure 28. Bus Transceivers and EPfJOMs on 1/0 Bus 

3-147 I\FN-02172A 



AP-123 

10A1-10A10 

1U8 
5 14 10DO 5 14 1004 

8 AO VOl 
13 1001 8 13 IOD8 

Al UCla 
7 A2 V03 12 1002 7 12 IOD8 
4 11 1003 4 11 1007 
~ 1/04 

3 3 

r----; M 2 
AS 

1 
~ A8 17 

~ 18 
A7 AlB 18 
AI 214AL·3 15 

~ A9 2114AL-3 

We CS WE Cs 

10 1 8 
10 r 8 

~~ 11 

-' 13 ........... 
A2 

lOA~ 

iOiiAii 

~ 14 1001 '----+ 14 IOD12 

~ 13 1001 ~ 13 10013 

~ 
12 IOD10 '-----+- 12 10014 
11 IOD11 ~ 11 10015 

'----t 
~ ----+ 
r---;- ~ 
'"--F '--+ '----'- .s. ~ A7. 

'-*" ~ 
~ ~ 

2144AL·3 
2144AL~3 

10 I 8 10 I 8 

~11 
13 

A21 

IODO-IOD15 

Figure 29. Static RAMs on 1/9 Bus 

3-148 AFN-02172A 



AP-123 

1-ODlI 

~ 
1000 

"17 
12 31 RUI 

1001' 13 
D80 RLO 31 RL1 

43 

IOD2 DB1 RL1 44 
14 RU 1 RL2 41 D82 2 1003 15 RLS 41 D82 ALI RL4 1004 1. 5 .... RU • RLI 

47 
IODS 17 

DBI RLS 
7 RL5 

41 
1001 1. RL8 
1007 1. 

D. e RL7 
41 

DII7 RU 50 

iOiiC 10 ~ RD 
lowe 11 

WR ST" 
37 STRS 51 

RD 22 cs ~ 
10A1 

21 
AD ~ 

----4 RESET ~ ......!. eLK 

,,--
~ 

827M 
,.--. 51 

~ 52 
~ 61 
~ 10 

... 510 

Vee 15MHI 110 

~ ~DI f17 P1 

~5IOK 
, 

~ M IN914 "il> .-
> 11 1037 

14~ iiiT 
5 6 11011 t11'F 10 

RST RST 

8 
",.. 103 eLK CLK 

~4 : RDn 
5 

SACK RDY RD 

10 7 RDY2 

y 

M SAW AlN2 

r;; Wii 
~ FIe 
~ CSYNC , 5214" 

Figure 30. Keyboard ControUer and Clock Generator 

, 3-149 AFN-02172A 



Vee* 

INTYTRC 

Vcc*1 

110 

21.1 MHz 510 

A75 

13 F/f 
CIYNC 

osc 

8284A 

12 

Vcc* 

AP·123 

CCLI( 

r----------t--~----------_4---------- UDoiIAR 

A27 
715713 

;. 10 

Ci:R 1 

'-_____ --< .... __ Vcc' 

A7 

DCLK 

P2 

r-------L-~>---~~ ~----~57 

A2 

HRTC -------------------------------~ 

Figure 31. Character Clock Generator and Video Sync Pulse 

3-150 AFN-02172A 



~ 
~ 

~ 
z 

§ 
;;:j ,. 

CcLK 

1O[)o"'IOD15 

iORC 
AiOWC 

IoAi 
CRTi 

DACi<1 
GCClK 

DCLK 

VSP 1 

DCLK 

LQCHAR 

RVV 

-

2 AS 
11 

• 

L 
FOR 1000 12 

OBO ceo ~ ClK 10 2 2 lA 
1001 13 eel ~ 10 2Q 5 FGG 5 IV 

OBI lB 
1002 " OB2 CC2 ~20 3Q 7 FOB 11 

2A 
3 1003 15 CC3 ~ 3D AI1 4Q 10 BGR 2V 0B3 2B 

1004 16 
OB4 CC. 127 11 .0 12 BGG 6 

10 
3A 1005 17 

OBS ee 128 13 50 sa 15 BGB 
5 14 D 8Q 3B 

100& 18 
Oa& ~ 6 74LS174 ~ 4A 3Y. 

1007 ,. CC6 elK ,. 
OB7 

" 
1" 4B • AD s "Y-

10 Wii 15 
G A3' Vee· 21 AO 

74157 22 cs 6 " __ • 
OACK ORO" 

.. CClK 

f lPEN 31 

A13 1RQ 

8275 

CRT CONTRdiLLER #0 

I 
118 7 

10DB 12 4 A4 FE 
V 

2' 17 FBD ,. 
G\i CCO 0, 12 H 1009 13 2. • A' I. FBI 

eCl 
2 A6 Os G 

10010 ,. 
CC2 

25 
D. " FB2 11 F 

10011 1. 26 1 A7 

" Fa3 
': E 

CC3 D. 10012 I. 27 23 AS 13 FB4 
10013, 

CCO 
28 22 A9 0, 0 A.O 

17 11 FBS 
: C 10014 18 CCS 29 19 A10 0" 10 FB. 

19 
CC. 0, 

FB7 
B 

IO[l15 4 Do 
9 2 A LCO 

9 • ~Al VCC·~ CLR 
10 

LCI 
2 LC1 6 A2 f ClKINH 21 lC2 

f-2. ~ A3 2732A 
LC3 ~ AO A28 SRIN 

22 7.LSI66 

• r AI1_ 
to 

3D DE 
15 

f CRT ~20 
AI. CONTROLLER 

8275 #1 

- -

Figure 32. CRT Controllers, Color MuHlplexer, and Character Generator 

4 lIED 

7 GREEN 

• BWE 

..!!..-

13 1 A6 

RU;-

PI -
54 

II 

51 

k 
'RQl 

BO-Ca& 

.PHMOOE 

LC2 

FB7 

~ 
"CI . " .... 
N 
Co) 



• AP·123 

For each character, the foreground and background 
color bits are output from Byte 0 and latched into the 
74LS 174, from which they are applied to the input of the 
74LS157 mUltiplexer. Selection between foreground 
and background is done by the output of the 74LSI66 
parallel-to-serial converter, which operates from either 
the text or graphic character generator, as appropriate. 
The roles of foreground and background color may be 
reversed by the RVV (reverse video) signal from the 
8275, which is exclusive-ORed with this color select 
output. 

Since the RBG (red-blue-green) inputs of the color 
monitor (Aydin Controls 8039D) are AC coupled, 
return-to-zero type outputs are needed to pass these 
signals through the input stages. This is provided by 
strobing the gate input ofthe 74LSl57 multiplexer with 
the D CLK (dot clock) signal. By varying the duty cycle 
of the D CLK, the user can produce many different 

IOOO-IOD15 
IDOG 12 DBO ceo 

2a 
1001 I. CCI 

.. ,. oBI 
H 1002 DB2 cca 

1003 ,. 
Da. cca 28 

1004 11 27 
OM CC4 

1005 17 DB. ceo 21 

1000 18 
D88 CCI 

28 

1007 ,. • • DB7 

r+-,ORe RD 

AiO'WC 10 
WR ~ 

iOif 21 
AO I--

CiiTf 22 CS 
6ACK2 6 

DACK 

GCCLK 30 CCLl< 

lPeN 

shades of color. The D eLK signal is ORed with the VSP 
(video suppress) signal from the 8275, to produce com­
plete video blanking when desired. 

Figure 33 shows the CRT Controllers #2 and #3, the 
decoder for the line select function, and latches for the 
video control sigrials. CRT controllers #2 and #3 are 
operational in graphics mode only. Synchronization of 
the two pairs of CRT controllers is discussed in the 8089 
Display Functions Software section. 

Figure 34 shows the tri-state buffers used to handle the 
color information within a graphic character. The 
decoded line count outputs (ROW Of-ROW 4/) are used 
to select which buffer is enabled onto the bus. The 
buffer A36, enabled by the GRAPH MODE signal, is 
used to "double up" the four graphic cells to produce 
eight (horizontal) dot inputs to the shift register (Figure 
32). 

CB7 C87-C_ 
C8I 
ca. 
C81D 

C81t IIIIQl 

C81. 

ca1' 

• • 
~ 

iiiiii 

.... 

CRT f A'. CONTROLLER 
1275 #2 

ORO' A.7 

LCO-Le3 Leo 1 AO ~ 1. iiiiWo 
Le1 • A, 

~ 
1. 

iiiiWi' lC2 • ... 
GRAPH MODE iii 1. 

!!!!!.! 

l 
12 

~ 
ROW. 

11 &4 • ~ lOOt 12 23 ca14 f!! r+-1001 ,. .. ca15 • EO ~. 
JOD10 14 CB16 

n 
25 

10011 15 28 CS17 
t205 

IOD12 16 27 ca,1 
10013 11 H CS1. 74175 

10014 18 29 CB20 

10015 ,. A41 
2 

• • 1Q 

~ 
RVY 

IG 
10 

10 2Q 
7 

1IIIP 
21 50 

~ 22 .. 
HTRC 

6 35 .0 
3D 

~ ~ 
'0 7 15 

4Q INTYTRC 

f 
8 r- CD r!L • 8275 ClK 

A18 I CLR 

CRT CONTROLLER #3 ,T' CCiJ( 
Vee" 

Figure 33., CRT Controllers, Line Decoder, and Video Control Signal. Latch 

3-152 AFN-02172A 



C80-C820 

iiOii'o 
iiiiWT 

GRAPH MODE 

10 

ceo 
CI1 
C .. 
ca. 
C .. 
cao. 
CBS 

CB7 

cB9 
CBI 
C810 
C811 

CB.o 
C.,' 

C.,. 
C815 

C81& 
ca17 
C818 
C818: 

AP·123 

A73 
SBO SBO 2 lAl II 2 

• lYl ,. 8Bl 
lA> 8., r-.; 'YO • lA' 

8.0 

• w. '83 
582 I-f. W. 12 

11 
lA. 
2A' 2Y' • 8eo 

13 oAo 
7 8Bl 

5.3 LT.-2YO I, 
2A' 

, 882 
17 2Y. • sa. L!!. 2A. 2YO AH 

nL8244 74LS244 
10 2G 

T' l" 'r • • 
A7 

2 18 SBO 

0 , .. sal 

• ,. SBo 

• 10 SB' 
11 • SBO 
13 1 SB. 

15 A54 • ~82 
17 • S8. 

74LS244 .. 

Y· r'. 
a 18 SB. 

•• SBI 

• ,. SU 

• .2 5 .. 

11 • ,. -+-15 AS. , 
-----!!. • 

74LS244 

T'r 

Figure 34. Tri-State Buffers for Graphic Color Information 

3-153 

,. Feo 
FBO-.. FBI 

F.1 

,. F.o 
12 F" 

• FB • 
7 F., 

S FB. 
3 Fa7 

AFN-02'72A 



AP-123 

The block diagram in Figure 35 shows how the text 
characters are processed. The following statements ap­
ply to Figure 35: 

1. Byte 0, Bit 6 = 0 indicates text mode. 

2. The six color signals from CRT Controller' #0 
(three foreground and three background) are 
latched and transmitted to the multiplexer. 

3. The seven character output signals and the three 
line count signals from CRT Controller # 1 are 
transmitted to the text character generator. 

CRT 
CONTROLLER LATCH 

#0 CCo-CC5 6 

8275 75L5174 

CRT CCO-CC6 7 TEXT 

CONTROLLER CHARACTER 

#1 
, 

GENERATOR 

LCo-LC2 3 
L 

8275 2732A 

4. The eight output signals from the text character 
generator are transmitted to the para1lel-to-serial 
converter. 

5. The serial, horizontal dot data is transmitted to 
the multiplexer and selects foreground (dot data 
bit = 0) or background (dot data bit = 1) color 
signals. 

6. The red, blue, and green color signals are trans- , 
mitted to the color monitor. ' 

7. CRT Controllers #2 and #3 are not operational in 
text mode. 

MULTIPLEXER f----. RED 

FOREGROUND & BACKGROUND 6 - BLUE 

COLOR SELECT 

74L5157 - GREEN 

SERIAL HORIZO NTAL 

DOT DATA 

PARALLEL TO 
SERIAL 

8 CONVERTER 

74LS166 

Figure 35. Processing of Text Characters 

3-154 AFN-02172A 



AP-123 

The block diagram in' Figure 36 shows. how graphic 
characters are processed. The following statements ap­
ply to Figure 36: 

1. Byte 0, Bit 6 = 1 indicates graphic mode. 

2. The six color signals from CRT Controller #0 
(three foreground and three background) are 
latched and transmitted to the mUltiplexer. 

3. The three line count signals from CRT Controller 
#1 are transmitted to a one-of-eight decoder 
which generates five row select signals (ROW 0-
ROW 4). 

4. The twenty pixel signals from CRT Controllers 
#1, #2, and #3 are transmitted to three octal 
buffers. 

• 

CRT 
LATCH 

CONTROLLER 
#. CCo-CC5 • 

827. 74LS174 

CRT LCD-LC2 DECODER ROW. 

CONTROLLER (1 OF 8) .. , 
ROW' 

827S r- .... I--

• 

CRT BUFFER 
CONTROLLER i-/.-#2 • 

8275 74LS244 

ROW. 

ROW' 

• 
CRT 

+- BUFFER 
CONTROLLER 

.3 • 

8275 74LS244 

ROW' 

+ 
BUFFER , 

74LS244 

• 

• 

5. The four pixel signals of the selected row (based 
on the row select signals) are transmitted to an­
other octal buffer. 

6. The octal buffer converts these four bits to eight 
bits by duplicating each signal. Thus, output bits 0 
and 1 are equal, 2 and 3 are equal, etc. 

7. The eight output signals of the octal buffer are 
transmitted to the parallel-to-serial converter. 

S. The serial, horizontal dot data is transmitted to 
the multiplexer and selects foreground (dot data 
bit = 0) or background (dot data bit = 1) color 
signals. 

9. The red, blue, and green color signals are trans­
IJ).itted to the color monitor. 

r-MULTIPLEXER 

FOREGROUND & BACKGROUND • 
RED 

r- BLUE 

COLOR SELECT 
74LS157 f-- GREEN 

SERIALHO RIZONTAL 
DOT DATA 

~ 
BUFFER PARALLELTO 

SERIAL 

• CONVERTER 

~ 
~ 

74LS244 74LS166 

r-+-' 

+ 

Figure 36. Processing of Graphic Characters 

AFN-Q2172A 



AP-123 

Figure 37 shows the circuit used to synchronize the 
8275s, and also the circuit used to generate the DRQF 
signal. As mentioned earlier (see Figure 20), ifthe 8089 
were to wait for a subsequent DRQ signal from the 
8275s, some clock cycles_ would be allocated to idle 
clocks, and the DMA transfer would become less effi-

1IlIT" ______ ~-..., 

Vee· 

, A7 

CCLK 

8.2K 

Vee 

DiiQ 12 

11 

Vee· 
AI 

DRQ1 - 10 

ALi 

Vee· 

cient. To-preclude this, the circuit shown in Figure '37 
generates a surrogate (early) DRQ signal, DRQF, using 
a one-shot triggered by the trailing edge ofDRQ (DRQ 1 
ANDDRQ 2). The one-shot times out prior to the rising 
edge of eLK in T4 of the DMA's store bus cycle. 

GCCLK 

Vee· 

DROF 

10 

SCaT". 

Figure 37. Circuits to Synchronize CRT Controller. and Generate DRQF 

3-156 



AP-123 

Figure 38 shows the relationship between the individual 
DRQ signals from the 8275s and the DRQF signal that is 
sent to the 8089. DRQ 1 is the data request representing 
the 8275s #0 and #1, while DRQ 2 similarly represents 
the 8275s #2 and #3. The DACK 11 and DACK 2/ 
signals (along with AIOWC/) are used to deactivate 
DRQ 1 and DRQ 2, respectively. 

BYTQ 0 AND 1 

Figure 39 shows the multiplexer used to control writing 
of data to the dual-port RAM. When 10 and SWTCI are 
both low, the 8089 data is gated to the dual-port RAM. 
When BDSEll and SWTCI are both low, the 8086 data 
is gated to the dual-port RAM. BDSEll may be active 
only when the 8089 is in the 110 space. Note that the 
address range for the dual-port RAM is F8000-FFFFF 
as seen by the 8089, and FOOOO-F7FFF as seen by the 
8086. ' 

BYTE82 AND 3 

FlITCH SfORI 

I 12 I 12 I T4 I T1 I 12 I 13 I T41 T1 I 12 T.a I T41 T1 I 12j: I T4/ 

DIICII 
(FROM un #2 AND #3) 

Ii 
(FROII~ 

ORQF 
(TO _ DRQ1INPUT) 

iiACii 
(TO 8Z75 #0 AND #1) 

DiCKi 
(TO un #2 AND #3) 

'-----11' - - - - - - - - - - - - - - --

- - - - - - = LAST TRANSFER 

Figure 38. Derivation of DRQF Signal 

, 
3-157 

:' 
AF'H12172A 



c.> 
:!. 
8l 

~ 
~ 

ADiii'5 
ADIDO-Al51D15 

10 

SWfC 

IoWC 
MiDC 
iWTC 
TciiiC 

iDiEL 
SWiC 

A3 

./ 

'a--"\3 . -.-./ ., A22 

~U A70 ~-11 STB XACK 
22 SCSTAB_ 

" tOlD DOG ~ iii6C 
20 2 011 DOl ~SWTC 
21 

3 01' DO' ~ SiOii ~*-CA ll:i DI. " S 11 10 
SV A •• 

DIS ,. 
DO' ,. 
DOS 

L Io..!. 0. SV 

8282 " I 
00-D1i 

VCC'-4- T A72 11 
T A35 

iii - 1 
AD iii 18 WSDO Vee· AOIDO 1 19 WSCO 

73 AO BO 
iii 2 

A1 iii 
18 WSDI Al/D1 2 Al 

,. WSDl 

7' 
Bl 

71 
D2 3 

A2 i2 11 WSD. A2ID2 3 A2 B2 17 WS02 

72 
1!3 • A3 B3 18 WSD3 A31D3 • A3 B" 

,. WSD3 

88 IR S 
A4 i4 IS WS04 A41D4 5 

A. 
15 WSD4 

as 6 " WSDS A5i05 • B4 14 wSD5 
70 

7 
AS 85 A6 BS 

DI A6 -Ii 13 WSDI A8iD8 ~ AI 
13 WSD8 

87 67 _8 ,. WSD7 A7ID7 
B8 .. A7 87 A7 B7 

12 WSD7 

r--L OE 8217 • 0E8218 

. 
Vee· 

11 Vee· 11 

iii" ""1 A71 18 WSDe Al/DI 1 A63 10 WSD8 
IS 

DI • ,. WS09 AtID8 • ,. WSD8 .. .. 010 3 17 WSD10 A101010 3 17 WSDl0 .. 11'11 • 18 WS011 A11Lq11 4 ,. WlD11 

Dl • 5 15 WS012 -"'21012 5 15 WSD12 . , 
013 8 ,. waD13 "'31013 8 14 WSD13 

~ 'DR 7 13 WSD14 A141014 7 13 WSD14 
51 1m 8 12 eo WSDI. Al1/015 8 12 WSD15 

~ .. 87 I 8218 

~ A22 

~ 10 

_ _ Figure 39. Multiplexer for_ Writing to DUIJI-Po_rt R~M 

1_ 8 13 A18 

10 A18 -- ,. 
MBAW 

WSDO-WSD15 

»­
'P .-
N 
-c..1 



J ' 
Figure 40 shows the deIItultiplexer used to control read-
ing of data from the dual-port RAM. The internal trans­
fer acknowledge (SACK!) signal from the dynamic 
RAM controller latches this data. If MRDC/ is active, 
the data is then gated to the 8089. IfBD ENAI is active, 
the data is gated to the Multibus for: transmission to the 
8086. 

1Ni'iiCi( 
RlDa-R&D,. 

MADC 

RIDO -AID2 
AlD3 

AlDO 

AlDI 

AIDI 

AlD7 

d!I!!!L 
ASDI 
AI010 

ASD1' 

A801. 
AlD13 

• ABD10 
A8015 

11 
1 

I 
3 

0 
I 

• 
7 

8 

• 

, 

11 
1 

• 
I 

• 
I 
I 

7 

• • 

AM 
STa 

11 AD/DO 
010 DOG 
011 D01 

11 A,1/D1 
17 

Oil DOl A21DI 

DI3 D03 
11 A21D2 
11 MlDO 

010 DOO .. oU/DI 
Dli DOS 

13 MIDI 
011 DOl 

11 A7/D7 
Dl7 D07 

ill .... 

AS. 
11 ABlDI 

11 A9IDt 
17 .,01010 
,. A11/011 
15 A,121012 

14 A,131013 

13 A14/D14 
,. A'IID11 

.... 

Figure 41 shows the multiplexer for the address inputs 
to the dual-port RAM. If the 10 signal is high, the 
address on the Multibus is gated into the dual-port 
RAM. If 10 is low, the address from the 8089 is gated 
into the dual-port RAM. 

11 All 
STa - 1 DOii DlO 

AlD1 I ii01 DI1 
A_ 3 6iI2 DlI 
AlDI 0 Diii 
ABDO_ 5 

Oil 
DIO DOO 

, AlDi • i50i DII 
AlDI 7 

011 IiOi 
AlD7 • DI7 607 • OE '.83 

11 
All 

1 
ASDI 2 
ASDI 3 

A8010 0 

1ISD1' 5 

AlD1. I 
A8013 7 

A8010 • 
A801I • 1283 

11 
11 

17 

11 
11 .. 
13 ,. 

11 
11 
17 

11 
11 
10 
13 ,. 

iii 
D1 

D2 
iii 
04_ 
iii 
01 
D7 

iii 
iii 
~ 
iffi' 
1m' 
!iii 
1m 
011 

50-61i 
MULnaul 

Figure 40. Demultiplexer for Reading from Dual-Port RAM 

3-159 AFN-D2172A 



AP·123 

I" iiiii / 
ALE 

_I 
PI 

'" -. 
Ycc·~ -" ~ 

I 
IT ASI 1JrB-

:: I'" ~ 
I. SAO. DIG DOG 

I. UO. 
2 II -, AI 2 OIl DOl II Ul. 
3 I.. :. .17 ~ AI 3 

II Dl2 D02 
.!. I'" = II IIAI '" 4 II IIAI 

,= 5 

~ 
IS IIA4 0\4 5 

DI2 DOa ,. IIA4 
0\4 DI4 D04 

I 14 IIAI AI • Dl5 
14 lAS 

I: AI :: AI 7 
001 13 11M. 7 13 ~ DIS DOe 13 AI 

~ 12 110\7 A7 • 12 U7 • DI7 in I ~ • D07 A7 

- 1117 
. ill -

vcc·+ A50 II 0\33 

I:; I 
I. U8 AI 1 l' SAIl 

2 I II SAIl AI 2 l' "" 3 11 SAl. Al0 3 17 \10 

-". 1JI _1IMt A" 4 II 1A...11 

I: 5 ;15 SA12. AU 5 15 ~ 

141 I i 14 SAla. A13 I 14 1,\13 

.L SAl. AI' .13 SA.1!. 

I:: 8 12 ,SA15 A15 8 I. SA15 

.1. I 

8217 II.,. 

Vcc·+ AI7 II Al0 

Z8 

I 
11 SAIl All I I' SAIl 

:: 2 II U17 ~17 .2. II 110\17 
3 17 SAIl All a SAl. 

: 4 ..!! .. 1IMl. AI. 4 JI IlAJl. 
5 ~I _B.H~ 

BHi~ 
15 BHEN.. 

, 

A7-

./' • • I 

1187 -ro -
10 

Figure 41. Multiplexer for Address Inputs to Dual-Port RAM 

3-160 AFN-0217ZA 



AP·123 

Figure 42 shows the 8202 dynamic RAM controller. The 
inputs SAO-SA19 come from the multiplexer shown in 
Figure 41. The dynamic RAM controller generates the 
control signals (shown at the right of the page) for 
operating the dynamic RAM. 

Figures 43 and 44 show the dynamic RAM itself. 

lK 

~t 
110 

31 137 
8AO-SA11 SAl • ALO Oiffii 

7 

SA2 • • 

8089 Display Functions Software 

The 8089 display functions software consists of a single 
program which is executed by the 8089 on a continuous 
basis. This program performs the following functions: 

~ 

Initialization for the 8089 itself and for the CRT con­
trollers and the keyboard controller. 

iiiiTi ou CIII 
SA3 10 

ALI Oiffi 11 /iii 
AL2 iiiRi 

.11M 1. OU' 12 ALI iiiffi 
SAl 1. A~ 0iRi 11 OU4 

~ l' ALI 0iiTi 17 iiiffi 
SA7 1. ALI Oii'fi II mm 
SAl I AIIO 
SAl 4 CAs 27 

AHI 
"SAID 3 AH2 
SAIl 2 

iiAiO 
21 

SA12 1 
AH3 

SA13 31 
AH. 

Wi 2' 
SA14 31 

AHS WE 
AHI 

32 iiiCK 21 
iIij INT 

31 Wli 

SAl' 
m 

12...!!.. 
All A12 

11 33 PCii 13 24 r I • "'H' 10 
81 - 30 0\22 A4 

"ii- 13 11 , 
REFRQJSM;K ~ 12 . 

k ..... 
I -- 1 2 na 

7 ....... ' o.e. 

8D 

1 
Ai 

4 
1 3 • J f BD 

2"-

SAl. 

SA1i 

FIgure 42. DynamIc RAM Control/er 

3-161 AFN-02172A 



~ 
R3 

'~ 

; 
~ 

OUTG-O' 

WE 
SAO 

AS 

S 

~ 
~ 
~ 
~ 
~ 
~ 

15 
3 

I'--:-
I'--
'---
'--
'---. 
'--
'---

AO AU 

Al 

A2 r2-A3 DtN WSDO 

A4 
AS 

r!!-AS l10uT RSDO 

RAS 

CAS 

WE 
2118-12 

A48 

wso.. 
~ 

RSo. 

2118-12 

AU A44 ,.-- ~ 

l--- ~ 

i---
---' WSDI 

~ 

i--- .---
i--- ~ 

l--- .---
l--- - RSDI .--- -

~ . 
r--

2118-12 2118-12 

l--- AIO ..-- ASI 

i--- ..--
l--- ..--
l--- ~ ~ 

i--- ~ 

~, ..--
~ ""iiSD5' .---

2118-12 2118-12 

Figure 43. Dynamic RAM (Low Data Byte) 

0\41 ,.--
i---
i---

r--- W8D2 l---
r--

I-- RSD2 
l---
i---

2118-12 

. 

,.-- AS2 
,.--
,.--

f---' 
~ WSDI 

,.--

iiSii6""' ,.--

2118-12 

r--- WSD3 

I-- RSD3 

I--" 
WSD7 

r-----
RSD7 

WSDo:WSD7 

RSDO-RSD7 

:a-
! 
tJ 



! 
~ 

! 
~ 

OUTo-OUTI 

iiAi 
CA'" 

We 
iHeii 

9 

10 

AS 

A63 

~ 
r---
r--- ~ 

~ 
r---
'--- -

2118-12 

r--- A79 

r---
r---
r--- r-
r----
I'---
I'--- r---

2118·12. 

• 

,.--- A64 ,--- An 

>--- ,---
l---- ,---
>--- - ,---

>--- r-
>--- ,---
Ir-- -f-" ,---

2118-12 2118·12 

Ir-- A60 r-- A61 

l---- v---
Ir-- v---
l---- t------ v---
V-- v---
L-- v---
V-- I--- v---

2118·12 2118·12 

Figure 44. Dynamic RAM (High Data Byte) 

,.--- A78 
V--
r--

r--' r--
V--
r--- V--

2118-12 

V-- A82 

r--
V--

t------ V--
V--
V--r--- V--

2118-12 

.~ 

-I-

~ 

I---

_WSD15 

IISDI-RSD15 

:. 
! 
~ 
w 



AP-123 

The transfer instruction "'which causes the DMA 
transfer of the CRT refresh data to begin. 

Polling routines for the keyboard and the command 
buffer. 

Figure 45 is a simplified flowchart showing the relation­
ships among these three main functions. The program 
begins upon receipt of the second CA (channel atten­
tion) following an lOP reset. After the initialization 
processes have been "completed, the program loops 
continuously, alternating between DMA transfer and ' 
polling processes. There are 48 rows of characters on 
the screen. The polling processes are carried out during 
the vertical retrace time, which is the equivalent of 2 
rows. Thus, it is easy to see that the DMA process uses 
up 96% of the 8089's time, leaving 4% for the polling 
processes. 

CA 

~ 
INITIALlZI'TION 

, 

CRT 
REFRESH 

(OMA) 

POLLING 

Figure 45. Channel Program Simplified Flowchart 

As mentioned earl~er, the channel program is stored in 
the 2732A EPROMs on the I/O bus. Figure 23 (above) 
shows the address" assignments for devices on the I/O 
bus. The 2732As occupy addresses 2000-3FFF. The 
8089 also uses a scratch-pad static RAM (2K bytes at 

addresses 0000-07FF). The CRT controllers are ac­
cessed by using addresses 4000 and 6000 on the I/O 
bus. Address 6000 is "CRT Controller 1" and actually 
refers to the first pair of 8275s. Address 4000 is "CRT 
Controller 2," the second pair of8275s.Address 8000 is 
a clock enable address. Write commanc\s to this address 
enable or disable the GC c1ock,which is the character 
clock for the 8275s. Address AOOO is decoded to pro­
duce the DACK signal fgr the 8275s. Address COOO is 
the address of the keyboard controller. 

The exact manner in which the channel program ex­
ecutes depends" on the flag settings and parameter 
values in the parameter block. 

Appendix A is a flowchart for the complete channel 
program·. Appendix B is the corresponding ASM-89 
assembly language listing. In the paragraphs to follow, a 
general overview of the channel program is given. The 
reader may refer to the flowchart and listing if a more 
detailed description is desired. 

The first CA after lOP reset causes the 8089 to fetch the 
system configuration pointer (SCP) and system configu­
ration block (SCB) from dual-port memory. These 
blocks contain certain very basic system-level informa­
tion for the 8089, as explained above under Overview of 
the 8089. 

The next CA causes the channel program to begin ex­
ecution (at the point marked START on the flowchart). 
The initialization portion of the channel program con­
sists of the following operations: 

Start and initialize the 8275 CRT controllers. 

Initialize the 8279 keyboaro controller. 

Initialize the dual-port variables (parameter block). 

Synchronize the 8275 CRT controllers. 

To initialize and synchronize the 8275s, the channel 
program performs the following operations: 

Enable the GC CLK to the 8275s by writing 01H to 
I/O port address .8000H. 

Send the Reset command to the 8275s, followed by 
the four screen format parameters (all commands 
sent to the 8275& are sent first to the pair of 8275s at 
address 6000H and then repeated for the second pair 
of 8275s at address 4000H). 

Send the Preset Counters command to the 8275s. 

Disable the GC CLK by writing OQH to address 
8000H. 

Send the Start Display com~and to the 8275s. 

Enable the GC CLK again by writing 01H to address 
8000H. The 8275s 'are now initialized and 
synchronized. 

3-164 AFN-02172A 



AP-123 

After the initializations have been completed, the chan­
nel program enters its main loop. The 8089 channel 
control register is loaded to specify the following DMA 
conditions: 

Data transfer from memory to 110 port. 

~stination-synchronized transfer. 

GA register pointing to data source. 

Termination on external event. 

Termination offset = O. 

The source for the DMA transfer (display page 0 or 1) is 
then selected according to the value of DSPLY_­
PG-PI'R (the display page pointer initialized by the 
host CPU) in the parameter block. The CRT character 
clock is then started and the DMA transfer begins. 
When the entire screen has been refreshed, the 8275s 
activate the 8089's EXT input. 

The 8089 then executes the SINTR instruction, which 
causes an interrupt to be sent to the 8086 (SINTR-lline 
on the Multibus), to notify the 8086 that the page trans­
fer has been completed. The 8089 then reads the CRT 
controller status registers which causes the IRQ signal 
(from the 8275s to the 8089) to be reset. 

The channel program then begins the polling process 
which checks for ASCII commands from the 8~ (in 
the command buffer) and also for key depressions at the 
keyboard. In addition to the alphanumeric characters, 
the channel program recognizes the following control 
characters: ' 

Character Code Description 

CNTRL-A 01 Monitor Inhibit 
CNTRL-B 02 Monitor Uninhibit 
CNTRL-C 03 EEPROM Inhibit 
CNTRL-D 04 EEPROM Uninhibit 
CNTRL-E 05 Turn on EEPROM Buffer 
CNTRL-F 06 Display Page 0 
CNTRL-G 07 Display Page 1 
CNTRL-H 08 Backspace 
CNTRL-I 09 TAB (Every 8 Characters) 
CNTRL-J OA Linefeed 
CNTRL-K OB EEPROM Buffer Off 
CNTRL-L OC Erase Page 
CNTRL-M OD Carriage Return 
CNTRL-N OE Set Background Color 
CNTRL-O OF Set Foreground Color 
CNTRL-P 10 Set Color to Black 
CNTRL-Q 11 Set Color to Red 
CNTRL-R 12 Set Color to Green 
CNTRL-S 13 Set Color to Yellow 
CNTRL-T 14 Set Color to Blue 
CNTRL-U 15 Set Color to Magenta 
CNTRL-V 16 Set Color to Cyan 

3-165 

CNTRL-W 
CNTRL-X 
CNTRL-Y 
CNTRL-Z 
CNTRL-A 

CNTRL-/ 
CNTRL-DEL 

17 Set Color to White 
18 Abort Line 
19 Cursor Right 
lA Cursor Down and Left 
IE Cursor Up 
lC Cursor Home 
IF' Recall EEPROM Buffer 

The first four commands listed above are not recog­
nized if they originate from the physical keyboard, but 
are recognized if they appear as ASCII commands in 
the command buffer (that is, if they come from the 
8086). Refer to the flowchart (Appendix A) for more 
details on how the channel program responds to the 
control characters. 

System Performance 

The 8089 performs DMA transfers on 921,600 bytes of 
display data per second. In addition, the 8089 executes 
a polling routine (described above) during the vertical 
retrace time (the equivalent of two display rows). The 
DMA transfer (for a single frame) takes 16.000 millisec­
onds. This leaves .667 millisecoRl,s for the polling 
routine to execute, out of a total of lI60-second CRT 
refresh period. The prolvam listed in Appendix B takes 
about 300 microseconds to execute, approximately half 
the available time. When the polling process is finished, 
the channel program goes back to DMA mode, and 
waits for the first DRQ signal from the 8275s. 

While the polling routine is executing, the 8089 makes 
most of its memory accesses in the 110 space, and the 
dual-port RAM is available to the 8086. When the 8089 
returns to the DMA routine, however, it hangs' the 
dual-port RAM while waiting for DRQ. This occurs 
because the fetch from the dual-port RAM deactivates 
the 10 signal which locks out the 8086 from the dual­
port RAM. The 10 signal is then not activl;lted until 
DRQ is received and the data is written to the CRT 
controllers. This can adversely affect system through­
put. Therefore, if it is desired to increase the 8086'8 
access to the dual-port RAM during this period, the 
user should insert NOPs into the channel program so 
that it spends more time in the 110 space before return­
ing to DMA. 

The 8086 may also access dual-port RAM during the 
DMA transfer. The dual-port RAM is available to the 
8086 on approximately a 50% duty cycle (during the 
store portion of the DMA transfer cycle). The 8089's 
store cycle is 800 nanoseconds long (assuming a 5 MHz 
clock). The 8086's access to dual-port RAM (assuming 
an 8 MHz clock) takes 500 mmoseconds. However, 
since the two processors operate asynchronously, the 
8086 may begin its access at any point during the 8089's 

AFN-02172A 



DMA store cycle. Since. the 8086 is the master relative 
to the dual-port RAM, the ready signal for tbe 8089's 
next fetch operation will not be generated until the 8086 
is through. Thus, on occasion, the 8089 will have to 
wait. 

Each row of characters requires 256 microseconds of 
DMA transfer time if no such wait states occur. The 
rePetition rate for rows of characters is 333 microsec­
onds .(1/3000 second). Thus, the accumulated wait 
states due to the 8086'8 access to dual-port RAM may 
total 77 microseconds before any underrun occurs. The 
8086 programs should be written in such a manner that 
the added wait states do not total 77 microseconds 
during anyone period of 333 microseconds. The most 
important single factor in assuring this is to avoid mak­
ing long burst transfers to or from the dual-port RAM. 
If an underrun does occur, the entire screen will be 
blan~ed until the beginning of the next frame. 

Aside from the shared access to dual-port RAM, the 
two processors may operate concurrently with no coor- . 
dination necessary. Operations performed by the 8086 
(such as numeric processing of display data) may be 
programmed without regard to the overhead associated 
with lOP operations. 

Conclusions 

This application note has demonstrated that a high­
performance, color-graphic CRT terminal can be con­
veniently built using the Intel iAPX 86/11 
microprocessor system. This system utilizes a high­
performance 8086 CPU operating at 8 MHz and an 8089 
110 processor operating at 5 MHz; . 

In particular, the unique abilities of the 8089 lend them­
selves to the graphic CRT application by enabling a true 
multiprocessing approach to be usec:i. The following list 
summarizes the capabilities used in this specific design: 

,High-speed DMA transfers (up to 1.25 mega­
bytes/second) without wait states. 

Cap~ilities of ~ CPU and a: DMA controller in a 
single 4O-pin package. 

Support of concurrent operation for the system CPU 
and the 110 processor. Ability to access memory and 
address devices on both a system bus and a separate 
110 bus. 

Flexible, memory-based communications between 
the 110 processor and the system CP~. 

Capabilit~ for I-megabyte addressing in the system 
space. 

Capability for 16-bit DMA transfer, with external 
event termination. 

Support of modular, subsystem development effort 
due to the simple software interface (memory-based 
communications, plus channel attention and inter-' 
rupt signals) and the simple hardware interface (CA, 
SEL, and SINTR lines). 

The following 8089 capabilities were not used in the 
design described in this note, but may be useful in other 
graphic CRT systems or 110 processing systems: 

3-166 

Two channels, each of which may execute 'instruc­
tions and perform DMA transfers. 

Bit manipUlation instructions. 

Support of both 8-bit and 16-bit bus width in the 
system 'space and in the 170 space. 

Enhanced DMA capabilities" including: 

Translation (e.g., ASCII to EBCDIC code). 

Termination on masked compare. 

Word assembly/disassembly (8-bit word to/from 16-
bit word). ; 

Memory-to-memory or 1I0-to-II0 transfer. 

Synchronization on source, destination, or neither. 

AFN~172A 



APPENDIX AlAP-123 

INITIALIZATION AND MAIN LOOP 

CHANGEDMA 
SDURCE POINTER 

TO DISPLAY PAGE 1 

SET UP CURSOR 
POSITION IN 1275. 

STRING-66 

CLEAR 1066 
COMMAND STRING 

POINTER 

CLEAR 8081 
COMMAND STRING 

POINTER 

f":\ STRING-IS 

V 

f":\REAILKYBD 

V 

INCREMENT 8081 
COMMAND STRING 

POINTER 

GELCOM 

CURSOILUPDATE 

3-167 AFN-02172A 



GET ICEY _ 3271 

AND_IT 

COILCNT 

SAVEFI 
CHARACTER AFTER 
CNTL..-E IN BUFFER 

FOR USE AS 
_INDEX 

INCREMENT EEPROM 
BUFFERPTR 

APPENDIX AJAp.,123 . ".' . , 

, , 

KEY AND COMMAND DECODE' 

_ASCII 
CHARACTER FOR 
EEPROM BUFFER 

RECALL 

CURBDlLUPOATE 

'CHAR-OUT 

r---
CNTIIL-A 

I CNTIIL-B 
I CNTIIL-C 

_ LC~R:O _ 

01H 
I12H 
D3H 
D4H 

CUIIBD~UPDATE 

r CN-;R'; - 08H - - - -
I CNTIIL-G 07H 

I ~::~: :: 
I CNTIIL-P 10 CNTIIL-

I ~TIIL-N :::;17H 

_ I CNTIIL-O -

I~~ :: 
I CNTIIL-DEL lFH 

I :~:~~ :: 
I CNTIIL-X 1111 

I ~:~~ :t:: 
II::~ ::: 

CNTIIL-Z lAN 1- __ 

MONITOIIINHIBIT 
MONITOII UHINHIBIT 
EEPIIOM INHIBIT 
EEPIIOM UNINHIBIT 

CHAILCII 
IlAClLsPACE 

CDLOR-KEY 
CNTIIL...N 
CNTIIL-O 
CNTIIL-!! 
CNTIIL-K 
EEP-DUMP 
CUIIBDILTAB 
EIlASLMGE 
CNTIIL...X 
CUIIBDIL_ 
UP_CUIIBDII 
DWlLCURSOII 
RIGHT_CU_ 
IIACIL_ 

AFN-Q2172A 



INHIIIT THE_ 
FROMDMA 

OPERATIONS 

RESUME NORMAL 
_TO.27S 

DMA OPERATIONS 

INHIIIT EEPROM 
CONTROL WORDS 

AND THEIR 
OPERATION 

CURSOR UPDATE 

UNINHIIIT 
EEPROM OPERATION 

CURSOILUPDATE 

APPENDIX AlAP-123 

CONTROL KEY OPERATIONS 

SET DUAL-PORT 
DSPLY_PG-PTR TO 

PAGE 0 FOR DMA 

SET DUAL-PORT 
OSPLY_PG-PTR TO 

.PAGE 1 FOR DMA 

SET THE 
IlACK-COL-SW 

VARIABLE TO 
fOREGROUND 

KEY-EEP _EXIT 

CLEAR EEPROM 
BUFFER PTR 

AND UNINHIBIT 
EEPROM OPERATION 

CURSOR-UPDATE 

INSERT EEPROM 
BUFFER EOF AND 
FLAG_WITH 
EEP_BUF_FULL 

INCREMENT 
EEPROM BUFFER 

POINTER 

FLAG 1018 BY 
SETTING 

EEP_RECALL 
TOOFFH 

INTR-II (DMJLLP) 

AFN-P2172A 



\ 

APPENDIX A/AP-123 

CONTROL KEY OPERATIONS 

STRIP I4W TO A 
COLOR, FROM .... 7 

UPDATE 
FOREGROUND 
SECTION Of 
COLOR BYTE 

KEY_BIIF_UPDATE 

CURSOR-UPDATE 

IACILGRDUND 

STRIPI4WrO 
A COLOR FROM .... 7 

ANDS"IFT 
LEFT •• ITS 

UPDATE 
BACKGROUND 
8ECTIONOF 
COLOR BYTE 

CURSOR-UPDATE 

IIGNALSOII 
THAT THE KEYBOARD 

BUFFER 18 FULL 

3-170 

\ 

AFN-02172A 



APPENDIX AlAP·123 

CONTROL KEY OPERATIONS 

DECREIIENT 
LlNE-CNT TO PUT 

CURSOR UP 
ONE SPACE 

, r--:---, 
: BAVE KEYSTROKE I 

- - -I FOR EEPROII I 
I 'ANDIGII I L ____ ..J 

KEY_EEP_EXIT 

INCIlElll!NT 
LlNILCNTTO 

PERFORII UNEFEED 

r------, 
I SAVE KEYSTROKE I 

- - -I FOR IEPROII I 
I ANDIGII I 

KEY_EEP_EXIT 

INCREMENT 
CHARACTER COUNT 

TOIIOVE 
CURSOR TO RIGHT 

L. _____ .J 

r-----, 
I • I 

- - -J SAVE KEYSTROKE I 

DECREMENT 
CHARACTER COUNT 

AND INCREMENT 
UNECOUNTIR 

KEY_EEP_EXIT 

3-171 

L _____ J 

SET CHARACTER 
COUNT TO 
THE LEFT 
IIARGIN 

CLIAR KEYSOAIIIi 
FULL .LAG AND 

KEYBOARD 
BUFFER POINTER 

KEY_EEP_EXIT 

AI'N-02172A 



APPENDIX AlAP-123 

CONTROL KEY OPERATIONS 

CLEAR KEYBOARD 
INHIBIT AND CLEAR 
SCROLL REQUEST 

SET CHARACTER AND 
LINE COUNTERS TO 

UPPER LEFT 
WINDOW ~OUNDARIES 

CURSOR-UPDATE 

3-172 

DECREMENT 
CHARACTER 

COUNTER 

DECREMENT 
KEYBOARD BUFFER 

POINTER 

AFN-02172A 



APPENDIX A/AP-123 

SUPPORT SUBROUTINES 

POINT AT DUAL-PORT 
MClEOORMGE1 

BY USING 
OSPlY_PO-PTR 

CALCULATE DISPLAY 
PAGE ADDRESS 

USING CHARACTER 
AND UNE COUNT 

SAVE ASCII CODE AND 
COLOR IN THE 
DIBPLAYMCIE 

INCREMENT 
CHARACTER 

COUNTER 

3-173 

SAVE CHARACTER IN 
KEY BUFFER AND 
INCREMENT KEY 
BUFFER POINTER 

DECREMENT BUFFER 
POINTER, SET 

KEYBOARD FUU FLAG. 
AND INSERT EOF 

CHARACTER IN BUFFER 

AFN-02172A 



APPENDIXA!AP·123 

SUPPORT SUBROUTINES 

DECREMENT EEPROM 
BUFFER POINTER 
AND SET BUFFER 

FULL FLAG 

3-174 AFN-ll2172A 



APPENDIX B/AP-123 

8089 MACRO ASSEMBLER 

ISIS-II BOB"1 MACRO ASSEMBLER X202 ASSEMBLY OF 
OBJECT MODULE PLACED IN :Fl:N8"1.0BJ 
ASSEMBLER INVOKED BY: :F2:ASM89 :F1:N89.SRC 

1 
8089 DUMB TERMINAL PROGRAM 

B. K.NELSON 

STARTED: 4/30/80 
LAST CHANGE: 8/12/80 

, 

MDDULE NB"1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

THIS PROGRAM INITIALIZES FOUR 8275 CRT CONTROLLERS AND A 
8279 KEYBOARD CONTROLLER. ASCII INFORMATION FLOW MAY FOLLOW 
THESE PATHS: 

13 
14 
15 
16 
17 
18 
19 

KEYBOARD 
KEYBOARD 
KEYBOARD 
8086 
EEPROM 
EEPROM 
EEPROM 

20 COMMAND CODES ARE: 
21 iK E 
22 i- -

23 ;- -
24 ; - -
25 i - -
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

i - -

i - -

i - -
; 0 X 
i X X 
; X X 
; X -
; X X 
; X X 
; X X 
; X X 
; X X 
; X X 
; X X 
; X X 
; X X 
; X X 
; X X 
; X X 
;0 X 
; X X 
; X X 
; X X 
; X X 
;- -

CNTRL-A 
CNTRL-B 
CNTRL-C 
CNTRL-D. 
CNTRL-E 
CNTRL-F 
CNTRL-G 
CNTRL-H 
CNTRL-I 
CNTRL-J 
CNTRL-K 
'CNTRL-L 
CNTRL-M 
CNTRL-N 
CNTRL-O 
CNTRL-P 
CNTRL-a 
CNTRL-R 
CNTRL-S 
CNTRL-T 
CNTRL-U 
CNTRL-V 
CNTRL-W 
CNTRL-X 
CNTRL-Y 
CNTRL-Z 
CNTRL- A 

CNTRL-\ 
CNTRL-DEL 

TO 
TO 
TO 
TO 
TO 
TO 
TO 

0086 COMMAND INTERPRETER 
8086 EEPROM ROUTINE 
MONITOR 
MONITOR 
8086 COMMAND INTERPRETER 
8086 EEPROM ROUTINE 
MONITOR 

MONITOR INHIBIT 
MONITOR UNINHIBIT 
EEPROM INHI.B IT 
EEPROM UNINHIBIT 
TURN ON EEPROM BUFFER 
DISPLAY PAGE 0 SELECTED 
DISPLAY PAGE 1 SELECTED 
BAC~SPACE (CURSOR LEFT) 
TAB (EVERY 8 CHARACTERS) 
LINEFEED (CURSOR DOWN) 
TURN EEPROM BUFFER OFF 
ERASE PAGE 
CARRIAGE RETURN 
TURN OFF B.AC~GROUND/FOREGROUND* 
TURN ON BAC~GROUND/FOREGROUND* 
SET COLOR TO BLAC~ 
SET COLOR TO RED 
GREEN 
YELLOW 
BLUE 
MAGENTA 
CYAN 
WHITE 
ABORT LINE 
MOVE CURSOR 
MOVE CURSOR 
MOVE CURSOR 
HOME CURSOR 

RIGHT 
DOWN AND LEFT 
UP 

RECALL EEPROM BUFFER 

S:-175 AFN-02172,. 



APPENDIX BO~P-123 

LINE SOURCE 

52 
53 

54 

55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
:'9 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 

THE TWO COLUMNS ASSOCIATED WITH EACH CONTROL KEY REPRESENT THI 
-E 

APPROPRIATE KEYBOARD AND EEPROM BUFFER ACTION CONNECTED WITH 1 
-THAT 

KEY. 

x 
o 

KEYSTROKE NOT STORED IN BUFFER 
KEYSTROKE STORED IN BUFFER 
OPERATION PERFORMED ON BUFFER 

A CHARACTER IS STORED IN THE EEPROM BUFFER ONLY IF THE OPERATI 
-ION 

WAS PERFORMED ON THE MONITOH.· 
DUMB TERM SEGMENT 

8275 REGISTERS 

CRT_REGS 
CRT_PARAM: 
CRT _COM_STAT: 

CRT_REGS 

STRUC 
OW 
DW 
ENDS 

8279 REGISTERS 

KYBD_REGS 
KBD_DATA: 
KBD_COM_STAT: 

KYBD_REGS 

STRUC 
OW 
DW 
ENDS 

1 
1 

1 
1 

8086/8089 COMMON FLAGS 

DP_RAM_FLAGS STRUC 
TP _LSW: OW 1 
TP_MSD: DW 1 
EEP INH: DB 1 
EEP _BUF JULL: DB 1 
EEP _RECALL: DB 1 
COL_CH INH: DB 1 
KBD INH: DB 1 
KBD_BUF _FULL: DB 1 

COM_8086: DB 1 
COLOR: DB 1 
STRJ'TR_8086: OW 1 
BACK_COL_SW: DB 1 
MON INH: DB 1 
DSPL Y _PG _PTR: DB 1 
SCROLL_REG: DB 1 
NEW_CHAR_FLAG: DB 
NEW_CHAR: DB 

MON_HOM: DW 1 
MON_END: DW 1 
MON_LMARG: DW 1 
MON_RMARG: OW 1 

3-176 

1 
1 

AFN·02172A 



APPENDIX B/AP·123 

LINE SOURCE 
106 KSD __ BUF _,PTR: OW 
107 E'.2_MON - INH: DB 1 
108 
109 DP __ RAMJLAGS ENDS 
110 . 
11'1 DISPLAY CHARACTER STRUCTURE 
112 
113 CHAR_DEF STRUC 
114 COLOR_MODE: DB 1 
115 ASC I I_GRAPH1: DB 1 
116 GRAPH_2AND3: DB 1 
117 GRAPH_ 4AND5: DB 1 
118 CHAR_DEF ENDS 
119 
120 PRIVATE 8089 FLAGS 
121 
122 STAT_RAM_FLAGS STRUC 
123 STACK: DW 1 
124 STACK_MSD: DW 1 
125 DW 1 
126 OW 1 
127 EEP _BUF _PTR: DW 1 
128 
129 
130 LINE_CNT: DW 1 
131 CHAR_CNT: DW 1 
132 
133 
134 ASC I I: DB 1 
135 ASCII _TEMP: DB 1 
136 CURSOR Xl: DB 1 -137 CURSOR X"'" "', DB 1 
138 CURSOR_Vi : DB 1 
139 CURSOR_Y2: DB 1 
140 
141 
142 LINE_TEMP: DW 1 
143 CHAR_TEMP: DW 1 
144 PAGE_INDEX: DW 1 
145 STAT_RAMJLAGS ENDS 
146 
147 ADDRESS EQUATES 
148 
149 STAT_RAM EQU OOOOOH 
150 CRTl EQU 06000H 
151 ' CRT2 EQU 04000H 
152 CLK_EN EQU 08000H 
153 CRT_DATA EQU OAOOOH 
154 KYBD EQU OCOOOH 
155 
156 
157 DSPLY_PAGEO EQU OF8000H 
158 DSPLY _PAGEl EQU OFCOOOH 
159 COM_BUF EQU OFBDOOH 
160 EEP_BUF EQU OFBEOOH 
161 KEY_BUF EQU OFBFOOH 
162 DP _PB EQU OFFFOOH 

3-177 AFN.()2172A 



LINE 

163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
1TI 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 

APPEMDIX BlAP-123 

SOURCE 

DATA/COMMAND EGUATES 

EOF EQU OFFH 
CRT_RSl EQU OOOH 
CRT_PARAM1 EQU 04F4FH 
CRT_PARAM2 EQU 06F6FH 
CRT _PARAM3 EGU 04444H 
CRT_PARAM4 EGU 00606H 
CRT_CURSOR EQU 08080H 
CRT_CNTR EGU OEOEOH 
START_DISP EGU 02020H 
END_DISP_PG EGU 15360 
KBD_STR_SET EGU 006H 
KBD_PRG_CLK EGU 034H 
KBDjIFO_RD EQU 050H 
;************************************************* 
;*********** INITIALIZATION ******************** 
;************************************************* 

TURN ON THE CRT CHARACTER CLOCK AND RESET THE 
CRT CONTROLLERS 

START: 
MOVl GB.CLK_EN 
MOVI [GBJ.001H 
MOVI GB. CRT1 
MOVI GC.CRT2 
MOVI [GCJ.CRT_COM_STAT.CRT RST 
MOVI . [GBJ. CRT_COM_STAT, CRT_.RST 

SUPPLY THE FOUR PARAMETER BYTES THAT SPECIFY 
80X48 CHARACTERS. TRANSPARENT ATTRIBUTES, AND 
A BLINKING UNDERLINE CURSOR 

MOVI [GBJ.CRT_PARAM1 
MOVI [GBJ.CR~_PARAM2 
MOVI [GBJ.CRT_PARAM3 
MDVI [GBJ.CRT_PARAM4 
MOVI [GCJ,CRT_PARAMl 
MOVl tGCJ.CRT_PA~AM2 
MOVI [GCJ,CRT_PARAM3 
MOVI tGCJ,CRT_PARAM4 

SET CURSOR TO UPPER LEFT CORNER OF MONITOR 

MOVI tGCl. CRT_COM_STAT,CRT_CURSOR 
MOVI [GCJ.OOOH 
MOVI tGCl.OOOH 
MOVI [GBJ. CRT_COM_STAT, CRT __ CURSOR 
MOVI [GBJ.OOOH 
MOVI rGBJ.OOOH 

SYNCHRONIZE 8275 CLUSTER BY RESETTING COUNTERS 

MOVI [GCJ.CRT_COM_STAT,CRT_CNTR 
MOVI tGBJ.CRT_COMSTAT,CRT_CNTR 

3-178 AfN.02172A 



APPENDIX B/AP-123 

LINE SOURCE 
220 MOVI 

MOVBI 
MOVBI 
MOVBI 
MOVBI 

GC, STAT _.RAM 
[GCJ.CURSOR Xl,OOOH 
[GCl.CURSOR_X2,000H 
[GCJ.CURSOR_Yl,OOOH 
(GCl. CURSOR_Y2,OOOH 

221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 

·237 
238 
239 
240 
241 
242 
243 
244 
24~ 

246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
2~7 

258 
259 
260 
261 
262 
263 
264 
;265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276' 

INITIALIZE B27.~ KEYBOARD CONTROLLER 

MOVI GB,KYBD 
MOVI (G131. KBD_COM_STAT, KBD_STR ... SET 
MOVI [GBl.KBD_COM_STAT,KBD_PRG_CLK 
MOVI [GBl. KBD30M_STAT, KBDJIFO._RD 

INITIALIZE 8089 FLAGS 

MOVI 
LPDI 
MOVI 
MOVI 

MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOV13 I 
MOVBI 
MOVBI 
MOVBI 
MOVBI 
MOVI 
MOVI 
MOVI 
MOVI 

GC,STATYAM 
GA, DP _PB 
(GCl.LINE_CNT,OOOH 
[GCl.CHAR_CNT,OOOH 

(GAJ.EEP INH,OFFH 
(GAl.EEP=BUF_FULL,OOH 
[GA1.EEP_RECALL,00H 
(GAJ.KBD_INH,OOH 
[GAl.KBD_BUF_FULL,OOH 
[GAl.COM_8086,OOH 
(GA1.COLOR,038H 
CGA1.BACK_COL_SW,00H 
(GA1.COL_CH_INH,00H 
(GAJ.SCROLLYEQ,OOH 
[GAl. DSPLY_PG_PTR,OOH 
(GAl. MON_INH,OOH 
(GA1.E2_MON_INH,0 
(GAl. MON_HOM,OOH 
(GAl. MON_END, 048 
(GAl. MON_RMARG,080 
[GAl. MON_LMARG,OOH 

INITIALIZE 8089 POINTER 

MOVI [GCl.EEP~BUF_PTR,OOH 

MOVI [GA1.STR_PTR_B086,00H 
MOVI. [GAl.KBD_BUF_PTR,OOOH 

i************************************************** 
i*********** EXECUTIVE ************************** 
i************************************************** 

DMA SET-UP 

LOAD CHANNEL CONTROL REGISTER TO SPECIFY: 
MEMORY TO PORT 
SYNCHRO ON DEST 
GA POINTS TO ·SOURCE 
TERMINATE ON EXT 
TERMINATION OFFSET=O 

3-179 
AFN-l)2172A 



LINE 
2'77 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 

298 
299 
300 
:301 
302 
303 
304 
305 
306 
307 
308 

309 
310 
311 

. 312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 

SOURCE 
MOVI 
MOVI 

MOVI 
MOVI 
MOVI 
MOVI 

DMA_LP: 
MOVI 

APPENDIX B/AP-123 

GC, CLI..<._EN 
(GC],OOH 

GC,CRTI 

I I~HIBIT CHAR CLOCK 
ION 827~ TO SYNCHRONIZE 

[GC] CRT ... COM._STAT, START DISP 
GC,CRT2 
[GCJ. CRT_COM_STAT,START.DlSP 

CC,05120H 

SETUP DESTINATION AND THEN 
SOURCE ACCORDING TO DISPLAY PAGE 
POINTER 

MOVI 
LPDI 
LPDI 
-.lZB 
LPDI 

GB,CRT_DATA 
GA,DSPLY_PAGEO 
GC, DP _PB 
(GC]. DSPLY]G]TR, SOURCE_oOK 
GA, DSfLY._PAGEI 

SOURCE_OK: 
-.lNZB (GCJ.MON_INH,DMA_BYPASS I IF THE MONITOR IS INHIBI 

-ITED 

-.lNZB 
MOVI 

; BYPASS THE DMA 
(GCJ. E2_MON_INH, DMA .. .BYPASS_l 
GC,CLK_EN 

START CRT CHARACTER CLOCK AND BEGIN DMA 

XFER 
MOVI 
SINTR 

(OC],OlH 

SIGNAL THE 8086 THAT END OF FRAME HAS OCCURED AND THE UPDATINI 
-G OF THE 

INTERRUPT DRIVEN SECONDS COUNTER MAY BEGIN 

READ CRT STATUS REGISTERS IN ORDER TO RESET IRG 

MOVI 
MOV 
MOVI 
MOV 
-.IMP 

DMA_BYPASS_l : 
. MOVI 

E2_WAIT_LOOP: 
MOVI 

E2_I NNER _LOOP: 
DEC 
-.lNZ 
DEC 
-.lNZ 

DMA_BYPASS: 

GC,CRTI 
GA, (GCJ.CRT_COM STAT 
GC,CRT2 
GB, (GCJ. CRT _COM .. _STAT 
DMA_BYPASS 

GC, 120 

GB,300 

GB 
GB,E2_INNER_LOOP 
GC 
GC,E2_WAIT_LOOP 

CHECK FOR STRING FROM 8086 
IT HAS PRIORITY OVER KEYBOARD 

3-180 AFN-02172A 



APPENDIX BlAP·123 

LINE SOURCE 
332 
333 LPD! GC,DP PB 
334 JNZB [GC·]. COM_8086. STRING __ 86 
335 

CHECK 8279 KYBD STATUS 

MOVI GB.KYBD 
MOVB GA. [GBJ.KBD_COM_STAT 
ANDI GA.OFH 
LJNZ GA. READ~KYBD i KEY DOWN 

UPDATE THE CURSOR POSITION 

CURSOR_UPDATE: 
LPDI GC,DP_PB 

CHECK FOR 86 COMMAND CHARACTER MODE AND PROCESS 
THE NEXT BYTE 

JZB [GC]. COM_80B6l COM._STR __ BYPASS 
INC CGCl.STR_PTR_8086 
JMP GET30M 

COM_STR_BYPASS: 
GB.CRTl 
GC.STAT_RAM 
[GBl.CRT_COM_STAT.CRT CURSOR 

336 
337 
338 
339 
340 
34'1 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 

MOVI 
MOVI 
MOVI 
MOVB 
MOVB 
MOVB 
MOVB 
MOVB 
MOVB 
MOV 
MOV 
MOVI 
MOVI 
MOV 
MOV 

GA. [GCl.CHAR_CNT iSET UP FOR X POSITION 

INTR_86: 

[GCl.CURSOR_Xl.GA iCURSOR OUTPUT 
[GCl.CURSOR_X2.GA iBY DOUBLING UP 
GA. [GCl.LINE_CNT 
[GCl.CURSOR_Yl.GA 
[GCJ.CURSOR_Y2,GA 
[GEl, [GCl.CURSOR_Xl 
[GBl,[GCl.CURSOR_Yl 

iSAME FOR Y POSITION 

GB,CRT2 iDO IT FOR ALL 
[GBl. CRT._.COM_STAT, CRT_CURSOR 
[GBl. [GCl.CURSOR_Xl iCONTROLLERS 
[GBl. [GCl. CURSOR_Yl 

JMP 
STRING_86: 

MOVI 
GET_COM: 

MOV 
LPDI 

IX. [GCl. STR_PTR._8086 
GB,COM_BUF 

GET NEXT COMMAND CHARACTER FROM THE 8086 
AND SAVE IT AS A KEYSTROKE 

MOVB GA. [GB+IXl 
LPDI GC,COM_BUF 'i***TEST CODE**** 
MOVB GA. [GB + IXl i*** 
LPDI GC.DP_PB i*** 
MOVI GB,STAT_RAM 
MOVB [GBl.ASCII,GA 

CHECK FOR END OF COMMAND STRING 

3-181 AFN-02172A 



APPENDIX··BtAP:'1.23 

LINE SOURCE 
389 MOVI MC,OFFFFH 
390 JMCNE [GB]. ASC 11, COM_CNT 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 

419 
420 
421 

422 

423 

424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 

END OF COMMAND STRING-RESET COMMAND FLAG 

MOVBI 
JMP 

READ_KYBD: 

[GC].COM_8086,00H 
CURSOR __ UPDATE 

TEMPORARY GET CHAR ROUTINE 

JNZE [GCJ.KBD_INH,CURSO~.~PDATE 
JNZB [GC J. KED._EUF _FULL, CURSOR __ .UPDATE 

IF THE KEYBOARD IS INHIBITED OR THE BUFFER FULL, 
DONT READ THE 8279 

COM_CNT: 

MOVE 
NOT 
ANDI 
MOVE 
MOVEI 
MOVI 
MOVB 

LPDI 
MOVI 

GA, [GB].KBD_DATA 
GA 
GA,007FH 
[GCl. NEW_CHAR, GA 
[GC]. NEW CHAR FLAG,l 
GE, STAT_RAM --
[GEl. ASCII, GA 

GB,DP_PB 
GC,STAT_RAM 

i SAVE KEYSTROKE 

CHECK FOR FIRST CHARACTER AFTER CNTRL-DEL, THIS CHARACTER WILL 
BE PLACED IN EEP_RECALL AND USED FOR SELECTING WHICH EEP BUFFI 

-ER 
IS TO BE RECALLED 

MOVB 
- SET 

ANDI 
-CTER 

GA; [GBl.EEP_RECALL 

GA,007FH 

i IF MSB OF EEP_RECALL lSI 

iUSE PRESENT ASCII CHARAI 

JZ iAS INDEX FOR EEPROM RECI 
-ALL 

MOVB 
MOVB 
JMP 

NO_RECALL: 

GA, [GCl.ASCII 
[GEJ.EEP_RECALL,GA 
CURSOR_UPDATE 

CHECK FOR FIRST CHARACTER AFTER CNTRL._E 
THIS CHARACTER WILL BE PLACED IN THE 
EEPROM BUFFER AND NOT PROCESSED 

JNZE [GBJ. EEP _INH, EEP._ElYPASS 
JNZ [GCl.EEP_BUF-PTR,EEP_BYPASS 

INSERT ASCII CHARACTER 

MOV IX, [GCl.'EEP_BUF PTR 
MOVB GA, [GCl.ASCII 
LPD! GB,EEP_BUF 
MOVB [GE+IXl,GA 

3-182 AFN·02172A 



APPENDIX B/AP·123 

LINE SOURCE 
442 INC [GC]. EEP _BUF]TR 

CURSOR_UPDATE 443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 

JMP 
EEP _BYPASS: 

CHECK FOR NON CONTROL CHARACTER 

MOVI MC,06000H 
L.JMCNE [GC]. ASCII, CHAR .. ,.OUT 

i********************************************************* 
i*************** CONTROL KEY DECODE ********************** 
i********************************************************* 

LOOK FOR 8086 COMMAND STRING SO CERTAIN 
COMMANDS WILL NOT BE AVAILABLE FROM 
KEYBOARD 

CHECK FOR MONITOR INHIBIT 
(CNTRL-A) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT _CNTRLA: 

MC,07F01H 
[GC].ASCII,NOT_CNTRLA 
[GBJ.MON_INH,OFFH 
CURSOR_UPDATE 

CHECK FOR MONITOR UNINHIBIT 
(CNTRL-B) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT_CNTRLB: 
NOT _CNTRLC: 
NOT _CNTRLD: 

MC,07F02H 
[GC J. ASC I I, NOT., CNTRLB 
[GBJ.MON_INH,OOH 
CURSOR_UPDATE 

CHECK FOR SET DISPLAY PAGE 0 
(CNTRL-F) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT_CNTRLF: 

MC,07F06H 
[GC]. ASCII, NOT CNTRLF 
[GBJ. DSPLY PG PTR,OOH 
CURSOR_UPD;t\TE-

CHECK FOR SET DISPLAY PAGE 1 
(CNTRL-G) 

MOVI 
JMCNE 
MOVBI 
JMP 

NOT _CNTRLG: 

MC,0'7F07H 
[GC]. ASCI I, NOT ... CNTRLG 
[GB]. DSPLY_PG_PTR,OFFH 
CURSOR_UPDATE 

3-183 AFN-02112A 



APPENDIX B/AP·123 

LINE SOURCE: 
499; THE FOLLOWING CONTROL COI"lMANDS ARE 
500 AVAILABLE THROUGH THE 8089 KEYBOARD 
501 
502 
503 
504 
505 
506 
507 
508 
509 ; 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
541 
542 
543 
544 
545 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 

LOOK FOR CARRIAGE RETURN 

MoVI 
LJMCE 

MC,07FODH 
[GCl.ASCII,CHAR CR 

LOOK FOR BACKSPACE 

MC,07F08H MOVI 
LJMCE [GC]. ASC I I, BACK .. _SPACE 

LOOK FOR COLOR CONTROL KEYS 
CNTRL-PTHRU CNTRL-W 

MC,07810H MOVI 
LJMCE [GC J. ASC I I, COLOR .}<'EY 

CHECK FOR SET BACKGROUND COLOR FLAG 
(CNTRL-N) 

MC,07FOEH MOVI 
LJMCE [GCl. ASCII,CNTRL_N 

CHECK FOR SET FOREGROUND COLOR 
(CNTRL-O) 
MoVI MC,07FOFH 
LJMCE E GC J. ASC I I, CNTRL._o 

CHECK FOR EEPROM BUFFER RECALL 
(CNTRL-DEL) 
MOVI MC,07F1FH 
LJMCE [GCJ.ASCII,EEP_DUMP 

LOOK FOR TAB 
(CNTRL-I) 

MC,07F09H MOVI 
LJMCE EGC J. ASC I I, CURSOR __ TAB 

LOOK FOR ERASE PAGE 
(CNTRL-L) 

MoVI 
LJMCE 

MC,07FOCH 
[GCJ.ASCII,ERASE_PAGE 

LOOK FOR CANCEL LINE 
(CNTRL-X) 

MOVI 
LJMCE 

MC,07F18H 
[GCJ.ASCII,CNTRL_X 

LOOK FOR HOME THE CURSOR 

3-184 AFN-02172A 



APPENDIX B/AP-123 

LINE SOURCE 
556 (CNTRL \) 
557 
558 
559 
560 
561 
562 
563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
574 
575 
576 
577 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 

LOOK 

MOVI 
LJMCE 

FOR UP 
(CNTRL 
MOVI 
LJMCE 

MC,07F1CH 
[GC]. ASC I I, CURSOR._HOME 

CURSOR 
.', ) 

MC,07F1EH 
CGC]. ASCII,UP_CURSOR 

LOOK FOR DOWN 'CURSOR 
(CNTRL J) 

MOVI 
LJMCE 

MC,07FOAH 
C GC]. ASC I I, DWN .. CURSOR 

LOOK FOR RIGHT CURSOR 
(CNTRL-Y) 

MOVI 
LJMCE 

MC,07F19H 
[GC).ASCII,RIGHT_~URSOR 

LOOK FOR DOWN AND LEFT CURSOR 
(CNTRL-Z) 

MOVI 
LJMCE 

MC,07F1AH 
CGC). ASCII,BACK_DOWN 

ALL OTHER KEY INPUTS ARE IGNORED 

JMP CURSOR_UPDATE 
i************************************************** 
i************* CONTROL SEGMENTS ***************** 
i************************************************** 

SET THE COLOR BACKGROUND/FOREGROUND* FLAG TO 
BACKGROUND (0) 

CNTRL N: 
- MOVI 

LPDI 
GB,STAT_RAM 
GC, DP _PB 

CHECK FOR MONITOR OR COLOR CHANGE INHIBITED 

JNZB 
MOVBI 

KEEP _BF: 
LJMP 

[GC). COL_CH_INH, KEEP._BF 
[GC]. BACK_COL. __ SW, OOH 

SET THE COLOR BACKGROUND/FOREGROUND* FLAG 
TO FOREGROUND 

CNTRL_O: 
MOVI 
LPDI 

GEl, STAT._RAM 
GC,DP_PB 

\3-185 



APPENOIX· B/AP·:t 23 

LINE SOURCE 
613 CHECK. FOR MONITOR OR COLOR CHANGE INHIBITED 
614 
615 
616 

JNZB 
MOVBI 

[GC]. COL_CH._INH, KEEP __ BF;1 
[GC]. BACK. _.COL. SW, OFFH 

617 KEEP __ BF2: 
618 LJMP 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 

TURN ON THE EEPROM BUFFER 
(CNTRL .. _El 

THIS ROUTINE INITIALIZES THE EEPROM BUFFER 
POINTER 

CNTRL_E: 
MOVI 
LPDI 
LJNZB 
MOVEI 
MOVI 
MOVBI 
JMP 

GB,STAT_RAM 
GC,DP_PB 
(GC]. EEP._BUF _FULL. CURSOR UPDATE 
[GCJ.EEP_BUF_FULL,OOH i******** 
CGBJ.EEP_BUF_PTR,OOH 
[GCJ.EEP~INH,OOH 

CURSOR_UPDATE 

TURN THE EEPROM BUFFER OFF 

CNTRL_K: 
MOVI· 
LPDI 
LCALL 
MOVBI 
MOVBI 
MOV 
LPDI 

GB,STAT_RAM 
GC, DP _PB 
[GB], KEY_BUF __ UPDATE 
(GC]. EEP_BUF_FULL,OFFH 
[GCJ.EEP_INH,OFFH 
I X, [GB]. EEP __ BUF _'pTR 
GA,EEP_BUF 

INSERT END OF FILE MARKER 

MOVBI 
INC 
JMP 

[GA+IX],OFFH 
eGB J. EEP _BUF YTR 
CURSOR_UPDATE 

DUMP EEPROM BUFFER 0-9 

EEP _DUMP: 
GB,STAT_RAM 
GC,DP_PB 

654 
655 
656 
657 
658 

MOVI 
LPDI 
LPDI 
MOVBI 

GC, DP _PB 
(GCJ.EEP_RECALL,OFFH iSET FLAG TO ALL ONES, Bf 

659 

660 
661 
662 
663 
664 
665 
666 
667 

-UT IT 

- NEXT 

JMP 
CHAR_OUT: 

MOVI 
LCALL 

Ga,STAT_RAM 
[GB]' CHAR_TO_MON 

PASS KEYSTROKES TO 8086 

3-186 

iWILL BE REPLACED BY THEI 

lASCII CHARACTER 

AFNo02172A 



LINE SOURCE. 
668 
669 KEY_EEP_EXIT: 
670 MOVI 
671 LCALL 
672 EEP _UP _EXIT' 
673 MOVI 
674 LCALL 
675 JMP 
676 CHAR_CR: 
677 MOVI 
678 LCALL 
679 

, APPENDIX B/AP·123 

GB,STAT_RAM 
[GBl,KEY_BUF_UPDATE 

GB,STAT_RAM 
[GBl, EEP __ BUF __ UPDATE 
CURSOR_UPDATE 

GB,STAT_RAM 
[GBl,CR_UPDATE 

680 
681 
682 

SET KEYBOARD AND EEPROM BUFr-ER FULL 
FLAGS IF NOT INHIBITED 

GB,STAT_RAM 
GC,DP_PB 

683 
684 
685 

MOVI 
LPDI 
JNZB [GCl. COM_8086, CURSOR_,UPDATE i IF IN 8086 COMMI 

686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 
721 
722 
723 

-AND 
iMODE, DONT ALTER 
iKEYBOARD STATUS 

EEP _CHK: 

MOVI 
LCALL 
MOVBI 

JMP 

GB,STAT_RAM 
[GBl,KEY_BUF_UPDATE 
[GCl.KBD_BUF-FULL.OFFH i****** 

ALTER BACKGROUND OR FOREGROUND COLOR ACCORDING 
,TO THE 3 LEAST SIGNIFICANT BITS OF THE INPUT 
KEY AND THE STATUS OF THE BACKGROUND/FOREGROUND* 
FLAG. 

COLOR_KEY: 
MOVI 
LPDI 
LCALL 
LCALL 
LJNZB 
MOVB 

GB,STAT_RAM 
GC,DPYB 
[GBl,EEP_BUF_UPDATE 
[GBl,KEY_BUF_UPDATE 
[GCl. COL_CH_INH, CURSOR __ UPDATE 
GA, [GCl.BACK_COL_SW 

CHECK B/F* FLAG 

JNZ GA,BACK_GROUND 
MOVB GA, [GBl.ASCII 
ANDI GA,07H 
MOV [GBl.ASCII,GA 
MOVB GA, [GCl.COLOR 
ANDI GA,038H 

OR INPUT COLOR INTO FOREGROUND SECTION OF COLOR BYTE 

ORB 
MOVB 
JMP 

BACK_GROUND: 
MOVE 
ADD 

GA, [GBl.ASCII 
[GC]. COLOR,GA 
CURSOR_UPDATE 

GA, [GBl.ASCII 
GA, [GBl.ASCII 

3-187 AFN-02172A 



APPENDIX;S/AP .. 128 

LINE SOURCE 
724 

·725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 ' 
738 
739 
740 
741 
742 
743 
744 

ADD 
ADD 
MOVEl 
ADD 

GA, [GBl. ASCII 
GA, WB J. ASC II 
CGBJ.ASCII_TEMP,GA 
GA, [GBl. ASCII TEMP 

SHIFT INPUT COLOR OVER AND OR IT INTO THE BACKGROUND 
SECTION OF THE COLOR BYTE 

ANDI 
MOV 
MOVB 
ANDI 
ORB 
MOVB 
JMP 

TAB ROUTINE 

GA,038H 
[GBl. ASCII. GA 
GA, [GCl.COLOR 
GA.047H 
GA. [GBl.ASCII 

. [GCl. COLOR. GA 
CURSOR_UPDATE 

THIS ROUTINE MOVES THE CURSOR TO THE NEXT 
COLUMN WHOSE NUMBER IS A MULTIPLE OF 8. 

745 
746 
747 

CURSOR_TAB: 

748 
749 
750 
751 
752 
753 

MOVI 
LCALL 
LCALL 
LPDI 

GB.STAT_RAM 
[GBl.EEP_BUF_UPDATE 
[GBl.KEY_BUF_UPDATE 
GC.DP_PB 

CHECK FOR CHARACTER COUNT BEING A 
MULTIPLE OF EIGHT (3 LSB = 0) 

754 TAB_CNT: 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 I 

772 
773 
774 
775 
776 
777 
778 

PLACE BLANK ON THE SCREEN 

MOVBI 
LCALL 
MOV 
ANDI 
LJZ 
JZB 
JMP 

[GBl. ASCII, 020H 
[GBl,CHAR_TO_MON 
GA.CGBl.CHAR_CNT 
GA.07H 
GA,CURSOR_UPDATE 
CGCl.SCROLL_REG,TAB 
CURSOR_UPD~TE 

ERASE PAGE ROUTINE 

CNT 

THIS ROUTINE ERASES THE PAGE FROM THE CURRENT 
CURSOR POSITION. IT ENDS WITH THE CURSOR AT 
THE HOME POSITION. 

UP CURSOR ROUTINE 

GB.STAT_RAM 
GC.DP_PB 

779 

UP _CURSOR: 
·MOVI 
LPDI 
MOV 
NOT 
AND 

'IX, [GCl. MON_HOM 
IX iCHECK FOR UPPER BOUNDARY 

780 IX, CGBl.LINE_CNT 

3~188 AFN-02172A 



LINE SOURCE 
781 
782 
783 
784 

LJZ 
DEC 
JMP 

APPENDIX B/AP-123 

IX. CURSOR_UPDATE 
[GB J. LINE_.CNT 
KEY _EEP ._EX 1 T 

785 
786 i 

LINE FEED (DOWN CURSOR) 

787 DWN_.CURSOR: 
788 MOVI 
789 LPDI 
790 MOV 
791 INC 
792 NOT 
793 AND 

-OVE 
LJZ. 
INC 
JMP 

GB. STAT._RAM 
GC. DP._PB 
IX. (GBl, LINE._CNT 
IX 
IX 
IX. (GCJ.MON_END 

I X. CURSOR._UPDATE 
[GB ]. LI NE_CNT 
KEY _EEP _EX IT 

794 
795 
796 
797 
798 
799 
800 
801 
802 
803 

MOVE CURSOR RIGHT 

804 
805 
806 
807 
808 
809 
810 

.811 
812 
813 
814 
815 
816 

817 
818 

RIGHT _CURSOR: 

-ER 

MOVI 
LPDI 
MOV 

INC 
NOT 
AND 
LJZ 
INC 
JMP 

BACK_DOWN: 
MOVI 
LPDI 
MOV 
INC 
NOT 
AND 

-OVE 
LJZ 
MOV 

-RGIN 
NOT 
AND 
LJZ 
INC 
DEC 
JMP 

GB.STAT_RAM 
GC. DP _PB 
IX, [GBJ.CHAR_CNT 

IX 
IX 
IX. [GCJ.MON_RMARG 
IX. CURSOR_UPDATE 
[GBJ. CHAR_CNT 
KEY _EEP _EX IT 

GB.STAT_RAM 
GC.DP_PB 
IX. (GBJ.LINE_CNT 
IX 
IX 

, IX. [GCJ. MON_END 

IX. CURSOR_.UPDATE 
·IX. (GCJ.MON_LMARG 

IX 
IX. [GB]. CHAR_CNT 
IX. CURSOR_UPDATE 
[GBJ. LINE_CNT 
[GBJ.CHAR3NT 
KEY_EEP_EXIT 

CANCEL THE PRESENT LINE 

CNTRL_X: 
GB.STAT_RAM 
GC.DP]B 

iCOMPARE PRESENT LINE 
iCOUNT + 1 TO BOTTOM 
i MARGIN 
i IF EQUAL ABORT CURSOR MI 

i MOVE OK 

iCOMPARE PRESENT CHARACTI 

iCOUNT + 1 TO RIGHT 
i MARGIN 
i IF EQUAL ABORT 
i CURSOR MOVE 
i MOV OK 

iCOMPARE PRESENT LINE 
iCOUNT + 1 TO BOTTOM 
i MARGIN 
i IF EQUAL ABORT CURSOR MI 

i IF CURSOR IS AT LEFT MAl 

iABORT CURSOR MOVE 819 
820, 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 i' 

833 

MOVI 
LPDI 
MOV [GBl. CHAR_CNT. [GCl. MON._LMARG 

RESET THE KEYBOARp BUFFER POINTER 

3-189 AFN-02172A 



LINE SOlJRCE 
834 , 
835 
836 
837 

MOVBI, 
MOVI 
,JMP 

838 
839 
840 

ERASE_PAGE: 

841 
842 
843 ), 

MOVI 
LCALL 
LCALL 
LPDI 

APPENQllt B/AP~123 

[GCl, KBD ... BUF._FllLL. OOH 
r.GCl.KBD_BUF_PTR,OOH 
KEY _EEP _EX I T 

G8,STAT_RAM 
[GBl, EEP._BUF._UPDATE 
[GBl, KEY":'BUF._UPDATE 
GC,DP]B 

844 
845 

'STORE BLANKS ON THE SCREEN 

846 
847 
848 
849 
850 
851 

MOVBI 
ERASE_CNT: 

LCAL.L 
.JZB 
,JMP 

[GBl. ASCII, 020H 

[GBl,CHAR_TO_MON 
[GC l, SCROLL_REG, ERASE._CNT 
CH_NTR 

852 
853 

'HOME THE CURSOR 

854 CURSOR_HOME: 
855 - MOVI 
856 LCALL 
857 LCALL 
858 CH_NTR: 
859 
860 
861 
862 
863 
864 

LPDI 
MOVBI 
MOVBI 
MOV 
MOV 
,JMP 

GB,STAT_RAM 
[GBl,EEP_BUF_UPDATE 
[GBl,KEY_BUF_UPDATE 

GC,DP_PB 
[GCJ.KBD_INH,OOH 
[GCJ.SCROLL_REG.OOH 
[GBJ. CHAR_CNT. [GCl. MON .. LMARG 

\ [GBJ. LINE_CNT. [GCJ. MON ... HOM 
CURSOR_UPDATE 

865 
866 
867 
868 ; , 
869 

PERFORM BACK-SPACE BY DECREMENTING THE DISPLAY 
PAGE POINTER, KEYBOARD POINTER. EEPROM POINTER, 
AND CURSOR POSITION 

870 BACK_SPACE: 
871, MOVI 
872 LPDI 

, 
GB.STAT_RAM 
GC,DP]B 

873 MOV 
874 NOT 

IX. [GCJ.MON_LMARG 
IX 

;' IF CURSOR IS AT LEFT 
;MAR~IN ABORT BACKSPACE 

875 AND 
876 L,JZ, 
877 DEC 
878 

IX, [GBl.CHAR_CNT 
IX. CURSOR_UPDATE 
[GBl. CHAR_.CNT 

879 
880 
881 

DO BACKSPACE IF MONITOR NOT INHIBI,TED AND CURSOR, IS 
NOT AT THE BEGINNING OF A LINE, 

882 KYBD_UPDATE: 
883 L,JNZB 
884 
885 IF KEY BUFFER POINTER IS ZERO. DONT BACKSPACE IT 

,886 
887 
888 
889 
890 

JZ 
DEC 

EEP _E'XIT: 
MOVI 

[.GCl. KBD_BUF _PTR, EEP .. EXJT, 
[GCJ.KBD_BUF_PTR 

GB, STAT _RAM 

'3·190 AFN-02172A 



APPENDIX B/AP-123 

LINE SOURCE 
891 JMP 
892 ;*************************************************** 
893 ,*************** SUBROUTINES ********************* 
894 ;*************************************************** 
895 CHAR_TO_MON. 
896 
897 SET UP DISPLAY PAGE POINTER AND INDEX 
898 

LPDI GB,DSPLY]AGEO 
LPDI GC,DP"'pB 
JZ [GC].DSPLY_PG_PTR,PTR _._OK 
LPDI GB,DSPLY_PAGE1 

COMPUTE BOXLINE_CNT 

PTR_OK: 
MOVI GC,STAT_RAM 
Mdv GA, [GCJ.LINE_CNT 
ADD GA, [GCJ.LINE_CNT 
ADD GA, [GCJ. LINE __ .CNT 
ADD GA, [GC]. LINE_CNT 
ADD GA, [GCl.LINE_CNT 
MOV [GCl. LINE.JEMP, GA 
ADD GA, [GC]. LINE_TEl'lP 2 X 
MOV {GCl. LINE_TEMP, GA 
ADD GA, [GCJ. LINE_TEMP 4 X 
MOV [GCJ. LINE_TEMP,GA 
ADD ~A, [GCJ.LINE_TEMP 8 X 
MOV [GCJ.LINE_TEMP,GA 
ADD GA, [GCJ. LINE __ TEMP 16 X 

MEMORY POINTER = DISPLAY PAGE POINTER + 

899 
900 
901 
902 
903 
904 
905 
906 
907 
908 
909 
910 
911 
912 
913 
914 
915 
916 
917 
918 
919 
920 
921 
922 
923 
924 
925 
926 
927 
928 
929 
930 
931 
932 
933 
934 

4X (80XLINE._.CNT + CHAR .. _CNT> 

935 
936 
937 
938 
939 
940 
941 
942 
943 ; 
944 
945 
946 
947 

ADD GA, [GCJ.CHAR_CNT 
MOV [GCJ.LINE_TEMP,GA 
ADD GA, [GCJ. LINE_.TEMP 
ADD GA, [GCl.LINE_TEMP 
ADD GA, [GCl.LINE_TEMP 
MOV [GCJ.PAGE_INDEX,GA 
ADD GB, [GCJ.PAGE_INDEX 

SAVE ASCII CODE IN DISPLAY PAGE 

MOVB [GBJ.ASCII_GRAPH1, [GCl. ASCII 

SAVE BACKGROUND AND FOREGROUND COLOR IN 
DISPLAY PAGE 

'LPDI 
MOVE 

GC,DP_PB 
[GBJ.COLOR_MODE, [GC].COLOR 

CLEAR OTHER 2 DISPLAY PAGE BYTES 

MOVEI 
MOVEI 

[GB].GRAPH_2AND3,OOH 
[GE]. GRAPH_4AND5,00H 

3-191 

5 

5 

5 

:.; 

AFN-02172A 



APPENDIX B/AP-12.3 

SOURCE LINE 
948 
949 
950 

INCREMENT X CURSOR POSITION AND CHARAC1ER POINTER. 
CHECK .FOR RIGHT MARGIN OVERRUN 

951 MOVI 
952 INC 
953 MOV 
954 NOT 
955 MOV 
956 AND 
957 .JNZ 
958 CR_UPDATE: 

OB,STAT_RAM 
CGBJ.CHAR_CNT 
CGE]. CHAR._TEMP, [(~Bl. CHAR 
[GBJ.Ct-!AR_TEMP 
GA, CGCl. MON_RMARG 
GA, [GBT. CHAR._TEMP 
GA,MON_UPDATE..FIN 

CNT 

959 IF RIGHT MARGIN WAS EXCEEDED, MOVE CHARACTER COUNT 
960 TO LEFT MARGIN AND INCREMENT LINE COUNT AND Y CURSOR 
961 POSITION 
962 LPDI GC,DP_PB 

GB,STAT_RAM 
[GBl. LINE_.CNT 

963 MOVI 
964 INC 
965 MOV [GB]. CHAR3NT, [GCl. MON ... LMARG 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 
976 
977 
978 
979 
980 
981 
982 
983 
984 
985 
986 
987 
988 
989 
990 
991 
992 
993 
994 
995 
996 
997 
998 
999 

1000 
1001 
1002 
1003 
1004 

CHECK IF LINE COUNT WENT/PAST BOTTOM OF SCREEN 

MOV 
NOT 
MOV 
AND 
.JNZ 

CGBl.LINE_TEMP. [GBl.LINE.CNT 
[GBl. LINE._TEMP 
GA. CGBl.LINE_TEMP 
GAd GC]. MON_END 
GA,MON_UPDATE_FIN 

LINE COUNT EXCEEDED BOTTOM MARGIN··· 
SET SCROLL FLAG 
AND KEYBOARD INHIBIT AND DECREMENT LINE COUNT 

MOVBI 
MOVBI 
DEC 

MON_UPDATE_FIN: 

CGCJ.SCROLL_REG.OFFH 
CGCl. KBD __ INH, OFFH ; **** 
CGBl. LINE_CNT 

RETURN TO CALLING ROUTINE 

MOVI GB,STAT_RAM 
LPDI GC,DP_PB 
MOVP TP, CGBl 

KEYBOARD BUFFER SUBROUTINE 

TRANSFER THE ASCII. CHARACTERS OBTAINED FROM THE 
8279 CONTROLLER INTO A BUFFER FOR LATER 
PROCESSING BY THE 8086. 

KEY _BUF _UPDATE: 
LPDI GC,DP_PB 
MOVI GB,STAT_RAM 

BYPASS IF BUFFER FULL 

BYPASS IF 8086 COMMAND MODE 

3-192 AFN.Q2172A 



LINE SOURCE 
1005 , 
1006 
1007 , 

APPENDIX B/AP·123 

·.JNZB [GC] COM._8086, KBU._RETU~N 

1008. 
1009 

XFER THE CHARACTER 

1010 
1011 
1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 

MOV IX, [GeJ.KBD BUF PTR 
LPDI GA, KEY._BUF 
MOVB [GA+IXl, [GBl.ASCII 
INC [GCl.KBD._BUF_PTR 
MoV GA, [GCl. KBD_BUF. PTR 
ANDI GA,OFFOOH 
JZ GA,KBU_RETURN 

POINTER OVERRUN-SET BUFFER FULL FLAG 

1020 DEC [GCJ. KBD._BUF _PTR 
1021 MOVBI [GCJ. KBD_BUF_FULL,OFFH 
1022 MOVBI [GA+IXl,OFFH ;SET END OF BUFFER MARKER 
1023 KBU_RETURN: 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1044 
1045 
1046 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 

MOVP TP, [GBJ 

EEPROM BUFFER SUBROUTINE 

THIS ROUTINE TRANSFERS THE ASCII CHARACTERS OBTAINED 
FROM THE 8279 CONTROLLER INTO THE DUAL PORT EEPROM BUFFER 

EEP _BUF _.UPDATE: 
MOVI 
LPDI 

G.B, STAT .:...RAM 
GC,DP]B 

CHECK FOR BUFFER FULL FLAG OR EEPROM INHIBITED 

JNZB [GCl.EEP_INH,EBU_RETURN 
JNZB [GC J. EEP._BUF _FULL, EBU __ RETURN 

XFER THE CHARACTER 

MoV I X, [GB J. EEP _BUF .. _P TF! 
LPDI GA,EEP_BUF 
MOVE [GA+IXl, [GBJ.ASCII 
INC [GBJ.EEP_BUF_PTR 
MOV GA, [GBJ. EEP _BUF ... PTR 
ANDI GA,OFFOOH 
JZ GA,EBU_RETURN 

POINTER OVERRUN-SET BUFFER FULL FLAG 

DEC 
MOVBI 

EBU_RETURN: 
MOVP 

DUMBTERM 

[GBl. EEP _BUF _PTR 
[GCl.EEP~BUF_FULL,OFFH 

TP, [GBJ 
ENDS 
END 

3-193 
AFN~172A 



inter 

©INTEL ~RPORATION, 1982 

APPLICATION . 
NOTE 

3-194 

March 1982 

Order Number. 21~OO1 J 



AP-143 

INTRODUCTION 

As the performance of microcomputers has improved, 
the types of functions performed by these microcom­
puters have grown. One application filled by these 
machines has been to perform typical "adding 
machine" type calculations, balancing ledgers, etc. This 
type of machine has come to be called a "small business 
computer." To be a tru~ business computer, however, 
the types of operations performed by these machines 
need to be expanded beyond simple "balance the 
books" types of operations. There are many algorithms 
.that have been impractical for these small business com­
puters because the number of calculations required by 
the algorithms and the performance available from 
these machines did not make them feasible. Such opera­
tions were available only on large mainframe or mini­
computers. With the introduction of the iAPX 86120, a 
microcomputer can finally perform these types of 
calculations at a cost level appropriate to small business 
computers. 

The iAPX 86120 features the Intel 8086 with the 8087 
numerics co-processor. This combination allows for 
high-performance, high-precision numeric calculations. 
Many types of operations require this performance to 
provide accurate results in a reasonable amount of time. 
This increased performance will also be particularly 
welcome in the interactive user environment, typically 
found in small business computer;. It is very frustrating 
to wait many seconds or even minutes after hitting 
"return" for the computer to generate results. 

In general, if there are many methods to solving a 
business computer problem, the method requiring the 
largest number or calculations will. provide the best 
results. In many applications, approximate methods 
have been used because the speed of the hardware (or 
the cost of the computer time) did not allow a more ex­
act method to be used. Because of the high performance 
of the iAPX 86120, these numeric intensive methods 
may now be used in small business computer software. 

The types of calculations demonstrated in this note are: 

• Interest and Annuities. These calculations require 
the use of floating point multiplication, division, 
exponentiation and logarithms. These calculations 
are used to determine the present or future value 
of certain types of funds. 

• Restocking. These iterative calculations require 
extensive use of floating point multiplication and 
division. They are used to determine the optimum 
restocking times for a given item when the set-up 
charges, holding costs and demand for the item 
are known or can be estimated. 

3-195 

• Linear Programming. These calculations require 
extensive use of floating point multiplication and 
division. One of many applications for linear pro­
gramming is the determination of optimum pro­
duction quantities of diverse products when the 
quantities of their various constituents are both 
overlapping and limited. 

iAPX 86/20 HARDWARE OVERVIEW 

The iAPX 86120 is a 16-bit microprocessor based on the 
Intel 8086 CPU. The 8086 CPU features eight internal 
general-purpose 16-bit registers, memory segmentation, 
and many other features allowing for efficient code 
generation from high-level language compilers. When 
augmented with the 8087, it becomes a vehicle for high­
speed numerics processing. The 8087 adds eight 80-bit 
internal floating point registers, and a floating point 
arithmetic logic unit (ALU) which can speed floating 
point operations up to 100 times over other software 
floating point simulators or emulators. 

The 8086 and 8087 execute a single instruction stream. 
The 8087 monitors this stream for numeric instructions. 
When a numeric instruction is decoded, the 8086 
generates any needed memory addresses for the 8087. 
The 8087 then begins instruction execution automat­
ically. No other software interface is required, unlike 
other floating point processors currently available 
where, for example, the main processor must explicitly 
write the floating point numbers and commands into the 
floating point unit. The 8086 then continues to execute 
non-numeric instructions until another 8087 instruction 
is encountered, whereupon it must wait for the 8087 to 
complete the previous numeric instruction. The over­
lapped 8086 and 8087 processing is known as concur­
rency. Under ideal conditions, it effectively doubles the 
throughput of the processor. However, even when a 
steady stream of numeric instructions is being executed 
(meaning there is no concurrency), the numeric per­
formance of the 8087 ALU is much greater than that of 
the 8086 ~Ione. 

The hardware interface between the 8086 and the 8087 is 
equally simple. Hardware handshaking is performed 
through two sets of pins. The RQ/GT pin is used when 
the 8087 needs to transfer operands, status, or control 
information to or from memory. Because the 8087 can 
transfer information to and from memory independent 
of the 8086, it must be able to become the "bus 
master," that is, the processor with read and write con­
trol of all the address, data and status lines. Only one 
unit is permitted to have control of these lines at a time; 
chaos would exist otherwise, like four people talking at 
once with each trying to understand the others. 

AFN.()2184A 



AP-143 

The TEST IBUSY pin is used to manage the concur­
rency mentioned above. Whenever the 8087 is executing 
an instruction, it sets the BUSY pin on high. A single 
8086 instruction (the WAIT instruction) tests the state 
of this pin. If this pin is high, the WAIT instruction will 
cause the 8086 to wait until the pin is returned to low. 
Therefore, to insure that the 8086 does not attempt to 
fetch a numeric instruction while the 8087 is still work­
ing on a previous numeric instruction, the WAIT, in­
struction needs to be executed. The 8086/87/88 
assembler, in addition to all Intel compilers, auto­
matically inserts this WAIT instruction before most 
numeric instructions. Software polling can be used to 
determine the state of the BUSY pin if hardware hand­
shaking is not desired. 

Most other lines (address, status, etc.) are connected 
directly in parallel between the 8086 and the 8087. An 
exception to this is the 8087 interrupt pin which must be 
routed to an external interrupt controller. An example 
iAPX 86120 system is shown in Figure 1. A more com­
plete discussion of both the handshaking protocol be­
tween the 8086 and the 8087 and the internal operation 
of the 8087 can be found in the application note Getting 
Started With the Numeric Data Processor, AP-113 by 
Bill Rash, or by consulting the numerics section of the 
July 1981 iAPX 86,88 Users Manual. 

r ..., 
I INT I INTR 

In addition to the 8087 hardware, the 8086 is also sup­
ported by Intel compilers for both Pascal and FOR­
TRAN. Code generated by these compilers can easily be 
combined with code generated from the other compiler, 
from the Intel 8086/87/88 macro assembler ,or the Intel 
PL/M compiler. In addition, these compilers produce 
in line code for the 8087 when numeric operations are 
required. 'By producing in line code rather than calls to 
floating point routines, the software overhead of an un­
necessary procedure call and return is "eliminated. The 
combination of both hardware co-processors and soft­
ware support for the iAPX 86120 provides for greater 
performance of both the end product, and its develop­
ment effort. 

ROUTINES IMPLEMENTED 

All routines implemented in this application note were 
written entirely in either Pascal 86 or FORTRAN 86. In 
addition, a FORTRAN program available from IMSL 1 

for use in solving linear programs was used. In each 

lIMSL, Inc., 'Sixth Floor-NBC Building, 7500 Bellaire 
Boulevard, Houston, Texas, 77036. (713) 722-1927. 

~ 8259A 

I PIC I 
8086/8088 ,--- ClK CPU 

\r-
L IRn J r- iiOJGT1 -- 8088 QSO QS1 TEST 

~ FAMilY .II J t + + 
BUS SYSTEM BUS 

IV' INTERFACE \ QSO QS1 BUSY COMPONENTS 

8284A '-- iiOJGTO 
CLOCK /'-., GENERATOR 

ClK ClK 
8087 

'\r-~ T NDP 

INT 
g 
...J 

I 
iiOJGT1 

~t~ I 
I r RQIGT 

..., 

I I I ,1_ 
L - ~ClK 

8089 r'r--lOP 

I I . 
L.. - - ...J 

Figure 1. Typical 86/20 System 

3-196 AFN'()2184A 



AP-143 

case, the routine was executed using a 5 MHz iAPX 
86/20 on an iSBC86/12 board contained within an Intel 
Intellec™ Series III development system. The programs 
can be executed on any iAPX 86/20 (or iAPX 88/20) 
with sufficient ,memory, however. In general, the 
memory requirements for the programs were not 
substantial. Source listings' for all routines written for 
this note are la<;ated in the appendix. 

All routines were run using both the S087 and the S087 
software emulator. The 8087 software emulator is a 
software package exactly emulating the internal opera­
tion of $e 80117 using 8086 instructions. When the 
emulator is used, an 8087 is not required. The emulator 
is a software product available from Intel as part of the 
8087 support library. The performance of the 8087 
hardware is much better than that of the software 
emulator, as one would expect from a specialized floating 
point unit. . . 

In some routines, values are quoted for the various data 
formats supported by the 8087. For real numbers, these 
formats are short real, long real, and temporary real. 
The differences among the three are in' the number of 
bits allocated to represent a: given floating point 
number. 

In all real numbers, the data is split into three fields: the 
sign bit, the exponent field and the mantissa field. The 
sign bit indicates whether the number is positive or 
negative. The exponent and mantissa together provide 
the value ,of the number: the exponent providing tl;le 
power of two of the number, and the mantissa pro­
viding the "normalized" value of the number. A "nor­
malized" number is one which always lies within a cer­
tain range. By dividing a number by a certain power of 
two, most numbers can be made to lie between the 

SIGNIFICAND 

numbers 1 and 2. The power of two by which the 
number must be divided to fit within this range is the 
exponent of the number, and the result of this division is 
the mantissa. This type of operation will not work on all 
numbers (for example, no matter what one divides zero 
by, the result is always zero), so the number system must 
allow for these certain "special cases." 

As the size of the exponent grows, the range of numbers 
representable also grows, that is, larger and smaller 
numbers may be represented. As the size of the mantissa 
grows, the resolution of the points within this range 
grows. This means the distance between any two adja­
cent numbers decreases, or, to P\lt it another way, finer 
detail may be represented. Short real numbers provide 
eight exponent bits and 23 significand or mantissa bits. 
Long real numbers provide 11 exponent bits and 52 
significand bits. Temporary real numbers provide 15 ex­
ponent bits and 63 significand bits. These data formats 
are shown in Figure 2. Thus, of the three data, formats 
implemented, short real provides the least amount of 
precision, while temporary real provides the greatest 
amount of precision. These levels of precision represent 
only the external mode of storage for the numbers; in­
side the 8087 all numbers are represented in temporary 
real precision. Numbers are automatically converted 
into the temporary real precision when they are loaded 
into the 8087. In addition to real format numbers, the 
8087 automatically converts to and from external 
variables stored as 16, 32 or 64-bit integers, or SO-bit 
binary coded decimal (BCD) numbers. 

Memory requirements also increase as precision in­
creases. Whereas a short real number requires only four 
bytes of storage (32 bits), a long real number requires 
eight bytes (64 bits) and a temporary real number 10 

LONG REAL lsi J~~NT I SIGNIFICAND I 
~A~--------~~~'==---IA--.----------------------~o 

SIGNIFICAND TEMPORARY REAL Is I J~i~T 51 
~n~------------~M~A~i----------------------------------~ 

Figure 2. Data Formats 

3-197 AFN-021_ 



AP-143 

bytes (SO bits)! In many floating point processors, pro­
cessing time also increases dramatically as precision is' 
increased, making this another consideration in' the 
choice of precision tO'be used by a routine. The dif-
. ferences in 8087 processing time among short real, long 
real and temporary real numbers is relatively insignifi­
cant, however. This makes the choice of which precision ' 
to use in an iAPX 86/20 system a function only of 
memory limitations and precision requirements. 

Interest 

Routines were written to calculate the final value of a 
fund when given the annual interest and the present 
value. Although the calculations required to generate in­
dividual interest values are rather short, the additional 
precision of the'iAPX 86120 can be used to generate 
better results. In addition, if a large number of interest 
calculations are to be performed (or if an interest rate 
type of calculation is used as part of an iterative model), 
the speed of the single interest rate calculation is impor­
tant, as it will be performed very many times. 

It is assumed that the interest will be compounded daily, 
which requires the calculation of the yearly effective 
rate. This value, which is the equivalent annual interest 
rate when interest is compounded daily, is determined ' 
by the following formula: 

np 

Where: 

• yer is the yearly effective rate 

• i is the ~ual interest rate 

• np is the number of compounding periods per 
annum 

Once the yer is determined, the final value of the fund ' 
can be determined by: 

Iv = (1 + yer)*pv 

Where: 

• pv is the present value 

• fv is the future value 

Results were obtained using short real, long real, and 
temporary real precision numbers when 

• ir is set to 10070 (0.1) 

• np is set to 365 (for daily compounding) 

• pv is set to $2,000,000 

The results are shown in Table 1. 

Table 1': Interest Rate Calculation Results 

18r Final value' 

Short real 10.5141110 $2,210,287.50 
Long real 10.5161110 ' $2,210,311.57 
Temp real 10.5161110 $2,210,311.57 

The times required to calculate these results using FOR­
TRAN 86 with both the S087 and the 8087 emulator are 
shown in Table 2. 

Table 2. Interest Rate Calculation Times 

8087 Emulator 

Short 'real 1.052 ms 100.4 ms 
Long real 1.058 ms 100.7 ms 
Temp reaJ. 1.041 ms 100.8 ms 

The difference in the final value between the short real 
and long real precision in this simple calculation is 
$24.07: Although the difference between short and long 
real precision results shown here is small, this difference 
would be signficant if the principal was larger, or,if the 
period over which the interest was calculated was longer 
than a single year. Hence, the fong real precision 
capability of the 8087 can provide most accurate results. 
Indeed, since the error calculated between the long real 
precision and temporary teal precision results is in the 
thousandths of cents, the long'real results ·are exactly 

, correct, to the penny. Note that temporary real format 
allows for approximately 18 decimal digits of precision 
and the full precision of the numbers used in the calcula­
tion is not printed in the above table. 

Annuities 

Values for a frequently used type or' annuity were 
calculated, using routines written in both FORTRAN 
and Pascal. An annuity is a type of fund which gathers 
interest at the same time the principal is changing. A 
mortgage is a type of annuity in which the principal is 
decreasing, whereas "the sinking fund" implemented' 
hete is a type of annuity in which the principal is 
increasing. In both cases, the interest is added to the 
principal. 

THE SINKING FUND 

The "sinking fund" could be characterized by an in­
dividual retirement account (IRA). In this fund, a fixed 
amount is placed in a savings fund each period. This 
fund also earns a certain amount of interest per period. 
The problem, then, is to calculate the final value of the 

3-1913 AFN'()2184A 



AP-143 

fund (after a certain number of periods). The example 
given calculates the value after 20 years of a fund in 
which payments of $1000 are made each month. The 
annual interest rate is given at 12% (0.12), but th'e in­
terest is compounded daily. 

The first step in solving the problem is to determine the 
interest rate per month. This is done in a similar manner 
to . the way the effective annual rate is calculated; 
however, the number of compounding periods is set to 
the number of days in a month, rather than the number 
of days in a year. Once this is done, the final value of 
the annuity is determined by: 

jv = pm!. «1 + irp)"P - 1) 
irp 

Where: 

• fv is the final value 

• pmt is the amount placed in the fund each period 

• irp is the interest rate per period 

• np is·the number'ofperiods 

The short, long and temporary real precision results are 
shown in Table 3. 

Table 3. Annuity Calculation Results 

Tot Contrib Final value Rate/period 

Short $240,000 $997,103·.25 1.00511,10 
Long $240,000 $997,048.51 1.005% 
Temp $240,000 $997,046.51 1.005% 

The times required to calculate these results using FOR­
TRAN 86 with both the 8087 and. the 8087 emulator are 
shown in Table 4. Notice that although the most signifi­
cant four digits of the interest rates per period shown 
are the same, the final value using short real precision 
calculations is inaccurate by $56.74 compared to the 
final value using long or temporary real calculations. 

Table 4. Annuity Calculation Times 

8087 Emulator 

Short real 2.121 ms 222 ms-
Long real 2.139 ms 229 ms 
Temp real 2.106 ms 232 ms' 

Restocking Algorithms 

A restocking algorithm determines when a company 
should replenish its stock of raw goods which make up 
its products. A restocking algorithm can be used to 
determine the restocking pattern if: 

• the demand for the given product can be predicted 

• carrying costs from month to month are known 
and fixed 

• no shortages are allowed 

• lead times are known and fixed 

There are three methods commonly used to determine 
the restocking pattern: 

1) the Fixed Economic Order Quantity (EOQ) 

2) the Silver-Meal heuristic 

3) the Wagner-Whitin method 

Of the three, the Wagner-Whitin method is guaranteed 
to provide the optional restocking pattern, whil.e the 
Silver-Meal heuristic may provide a good approxima­
tion to this pattern. The fixed Economic Order Quantity 
will not provide good results when the demand pattern 
is highly variable. Both the Wagner-Whitin method and 
the Silver-Meal heuristic are iterative methods in which 
many options are evaluated before the final'restocking 
pattern is determined. . 

THE FIXED ECONOMIC ORDER QUANTITY 

The simple Economic Order Quantity method may be 
used to seillct the number of items to be restocked at a 
time if the demand is constant. This number is deter­
mined by: 

EQU=V 2AD 
. vr 

Where: 

• A is the set-up cost 

~ D is the average demand for the period 

• v is the variable demand cost per item 

• r is the holding cost per item 

As this method dOeS not provide for period to period 
variability in demand, if this demand is variable, the 
performance of the· method will obviously suffer. Its 
only advantage is simplicity. 

THE SILVER·MEAL HEURISTIC 

The Silver-Meal heuristic will provide an approximation 
to the optimal restocking pattern determined by the 
Wagner-Whitin method. It has been used ratber than 
the Wagner-Whitin in application where better results 
were required than those supplied by the EOQ metpod, 
but where the available computing resoUrces did not 
allow the use of the Wagner-Whitin method. This 

3-199 AFN'()21B4A 



AP-143 

method begins with th~ first month to be. considered, 
then calculates the total replenishment and holding costs 
for this month, and a certain number of following 
months. As the number of months increases, the set-up 
charge per unit will decrease as it is distribu~ed over 
more units. Also, however, as the number of units in­
creases, the holding costs will increase. At a certain 
point, the holding costs will begin to increase at a 
greater rate than the set-up cost per unit falls. At this 
point, a "local minimum" of the replenishment cost 
function will haye been realized. The h~uristic stops 
here, and begins the process again witli the follpwing 
month until all the months of the period have been con­
sidered. This method may not provide the optimal solu­
tion, since it provides only a local minimum, rather than 
a global minimum. The cost function is not guaranteed 
to continue to· rise once it has begun to rise. This means 

. that the restocking cost may actually fall to a lower level 
after an initial rise. This method requires much fewer 
cost calculations than the Wagner-Whitin method, 
however. 

THE WAGNER·WHITIN METHOD 

The Wagner-Whitin method is the most computationally 
intensive method to be discussed. It also is guaranteed 
to produce the optimal results. It is an application of 
"dynamIc programmi~:" It starts with the last month 
of the period, determining in inverse order the optimill 
replenishment pattern for the given month'if the inven-

. tory is assumed zero at the start of the month. It does 
this by calculating the.- replenishment cost for the given 
month and a number of subsequen't months along with 
the holding costs for the stock replenished in the given 
month but carried over. The replenishment cost is the 
sum of the set-up charges and the per unit cost times the 
number of units acquired. The holding cost is the 
number of units held but not consumed in a given 
month. The total stocking costs for this option clPl then 
be determined by adding the replenislUnent cost, the 
holding cost and the optimal restocking cost for the 
month following the last one restocked in this iteration 
(since we have started from the last month of the period, 
the optimal restocking cost has already been determined 
for all months following the 'month being considered). 
The optimal restocking cost for the last month of the 
period is the restocking cost for that month alone. For 
example, if we are trying to determine the optimal 
restocking pattern from January tbfough DeCember of a 
year, the determination of the optimal restocking pat­
tern for Nne Ulight begin like this: 

1) Determining restockink cost (startup cost, per part 
cost, etc.) for June alone. 

1>. ~i~n"the holding costs (if June 8.I~ne is being 
reslock~,the halding cost will be zero). 

, ~ I 3-200 

3) Determine the total cost of ~s OP'tioll. This will be 
the restocking cost deteflpined in (1) IiPded to the 
hplding costs determined, in (2) adsied to the op­
timal restocking cost from zero initial inVentory 
determined previously (using this algorithm) for 
July. ' 

4) Loop bapk to (1). However this time, restock for 
June and July, ~lculate the holding cost for the 
July stock, and ,use the optimal, rest~cking cost 
from zero initial ,inventory for August. 

This will continue until starting with June, requirements 
for the balance of the year are being restocked. As the 
algorithm continues, the cost of each new restocking 
period (that month and the number of months following 
it being restocked) for a particular month is compared 
with a previously determined minimum cost. If it is less, 
a new minimum cost has been deterinined, and this 
restocking pattern will replace the Qld one as the optimal 
restocking pattern for the month. As should be ap­
parent, a "horizon" in which the stock will be known to 
go to zero must be determined, in order for this 
algorithm to be used. While this may at first seem 
unrealistic, one can see that in any month where the de­
mand for the product is relatively high, the stock will be 
allowed to go to zero, as the holding cost to that month 
will surpass the benefit _ in the, restocking cost· if the re­
quirements were restocked in the previous month. 

OVERALL PERFORMANCE CONSIDERATIONS 

Generally, the better an algorithm is in determining an 
objective function, the greater the computer perform­
ance required to execute the algorithm. This is true here, 
with the,most nunieiic intensive solution guaranteed to 
realize the optimal solution to the problem, whereas the 
sinipler solutions will' only provide approximations to 
this solution. A more complete 'explanation of 'these 
three methods can be found in Peterson 'and Silver2. ' 

EXAMPLE RESTOCKING PROBLEM ' 

Routines were written in Pascal to show possible im­
plementations of the Wagner-Whitin and Silver-Meal 
heuristic. The EOQ method's results were solved by 
hand and programmable calculator. The following 
example was used to demonstrate the results of these 
methods in solving a gemial stock management 
problem: . 

A company manufactures video games'in 
which a ROM programmed microcomputer 

2Peterson, Rein, -and Edward A. Silver, ~ision Systems For 
Inventory Management, And Prpduction Planning. 10hn 
Wiley & Sons, New York,1279, PP. 308-3~1. 

AFN.Q2184A 



AP·143 

is used. The manufacturer from which the 
company buys this microcomputer has an in­
itial ROM set-up charge of $3000, with the 
cost per part varying from $20 in quantities 
of less than 500, $17.50 in quantities from 
500 to 5000, and $15 in larger quantities. The 
holding cost is determined to be $0.40 per 
part. The company barely missed the 
Christmas rush with its introduction, but has 
determined that the monthly demand for the 
next two years will be: 

Month Demand Month Demand 

January 500 July 3500 . 
February 1500 August 2500 
March 2500 September 5000 
April 2000 October 7500 
May 2000 November 9500 
June 1000 December 10000 

How should the company restock the 
microcomputers? 

The first problem that must be solved (when using the 
Wagner-Whitin method) is the horizon to which the 
stock will be replenished. The criterion to be used is that 
the final month should be a month in which the demand 
in the subsequent month is relatively high. Choosing 
December as the final month would not produce the 
best results, as the requirements for January are low. 
Looking at the demand function, it can be seen that the 
requirements for September are relatively high, so 
August would be a good choice as the horizon month. It 
is assumed that the demand for the second year will be 
similar to the demand predicted for the first year. This 
allows extending the period of calculation beyond the 
first year up to the chosen horizon month. Given the 
total demand function, the part cost, the holding cost, 
and the startup cost, the problem may be plugged into 
the Wagner-Whitin, Silver-Meal and Economic Order 
Quantity methods, and the results calculated. 

Using the EOQ with this demand function yields: 

• Dis 3150 

• A is 3000 

• v is $15.00 

• r is 0.0229 

3-201 

This leads to an EOQ of 7418. 

The results obtained from the Wagner-Whitin method, 
the Silver-Meal heuristic and the EOQ are shown in 
Table 5. The performance difference between the 
methods is apparent. Although using the Silver-Meal· 
heuristic would save the business $12,949 over using the 
EOQ method, using the Wagner-Whitin method would 
save the business almost $25,000 over using the EOQ 
(surely below the cost of a small business computer!). 
The effect on the performance of the Silver-Meal 
heuristic of choosing a local minimum rather than a 
global minimum can be seen especially in the first few 
months in which it replenishes stock 5 times vs. 3 times 
for the Wagner-Whitin method. It should also be noted 
that the execution time of the Silver-Meal heuristic using 
the emulator is stilI greater than the execution time of 
the Wagner-Whitin method when the 8087 is used (and 
the execution time of the EOQ on the hand calculator 
was much greater than the execution time of either of 
the two iAPX 86/20 programs!). These results are also 
interesting when one realizes that until now the 
Economic Order Quantity method has been the most 
commonly used method of scheduling stocking intervals. 

Linear Programming 

Linear programming methods are very powerful ways 
of finding the optimal solution to operations problems. 
For example, if a number of different products can be 
made from a combination of limited resources as ex­
pressed by a set of equations, a linear program can be 
set up to determine the optimal number of each end 
product to make in order that a certain objective func­
tion is maximized. This objective function can be prac­
tically anything if it is a linear function-for example, 
insuring that profit is maximized, that the use of a cer­
tain facility is maximize<i, that shipping costs are 
minimized, etc. Various softwar.e packages are available 
on the market to solve linear programs. The .package· 
which was used in this example consisted of a set of 
FORTRAN subroutines available fromIMSL 3• To use 
the routines a FORTRAN program is written to set up 
the appropriate input arrays and. call the routine. They 
could very easily be integrated into a friendly interactive 
user environment, where the increased performance of 
the 8087 would be especially apparent and welcomed. 

3IMSL, Inc. 

AFN.()2184A 



AP-143 

Table 5. Restocking Algorithm Results 

Wagner-Whltln Method SlIver·Meal Heuristic Economic Order Quantity 

Month Number Optimal Number 
to Restock Cost to Restock 

I 6500 $985,200 500 
2 • 1500 
3 • 7500 
4 • • 
5 6500 $879,700 • 
6 '. • 
7 • 6000 
8 7500 $776,000 • 
9 • 5000 

10 7500 $658,500 7500 
II 9500 $543,000 9500 
12 12000 $397,500 19500 
13 • • 
14 • • 
15 7500 $213,100 • 
16 • • 
17 • • 
18 • • 
19 6000 $94,000 6000 
20 • • 

Total Hold Costs: $16,200 
Replenishment Costs: $24,000 
Times Replenished: 8 
Total Cost: $985,200 

Time to calculate above values: 
Using 8087: 310 ms 
Using emulator: 22.98 seconds 

THE SIMPLEX METHOD 

The simplex method is an algorithm which may be used 
to solve linear programs. The problem is specified to the 
routine as an objective function (of a certain number of 
"products") and a set of constraints on the constituents 
of these products. The objective function specifies 
exactly how the products are combined to derive the 
objective function. The constraints specify how each of 
the constituents are combined to make up each of the 
products, and also specify the limits imposed on these 
various constituents. ' 

The set of constraints is usually set' up as a two­
dimensional matrix, while the objective function is set 
up as a vector. The combination of the objective func­
tion and the set of constraining equations is known as 
the input tableau. The constraining equations may have 
both inequality relations (we must use less than 1000 
eggs) and equality relations (we must use exactly 1000 
eggs). The method itself requires all inequality relations 
to be converted to equality relations. This is done 
through the addition of "slack" and "surpius" 

Optimal Number Optimal 
Cost to Restock Cost 

$996,600 7418 $1,009,549 
$984,850 • 
$995,600 • 

• 
7418 $888,810 

$836,500 • 
7418 $769, 137 

$742,500 · , 
$664,500 7418 $651,464 
$549,000 14836 $536,525 
$403,500 7418 $308,182 

• 
• 

7418 $189,600 
• 
• 
• 

$94,000 3656 $67,980 
• 

$19,600 $31,409 
$27,000 $24,000 

9 8 
$996,600 $1,009,549 

20 ms 
I. 91 seconds 

variables, so called beacuse they fill up the slack or take 
up the surplus in an inequality relationship. Through 
many iterations, the method automatically reduces the 
inequality constraints in the original problem to equality 
constraints through the addition of these slack and 
surplus variables. "Artificial" variables are then added 
to the equation to form an initial set of basic variables 
or' bases. This basis forms a feasible solution to the 
problem, although this solution is non-optimal. The 
object, however, is to find the optimal solution to the 
problem (the solution that optimizes the objective func­
tion). This initial form is called the canonical form. It 
transforms the original set of constraint equations and 
the objective function by the addition of artificial, slack 
and surplus variables. 

After the problem has been set into canonical form, 
phase I of the problem is ready to begin. In this phase, 
"pivoting" is performed on the constraint variable 
matrix until all the coefficients on the modified objec­
tive function are less than zero. This pivoting operation 
is very similar to gaussian elimination. A certain 
variable in a certain row and column of the matrix is 

3-202 AFN'()2184A 



AP-143 

divided by itself to become 1. Subsequently, every other 
variable in that row must be divided by this variable. All 
other variables in the column containing this variable 
are then eliminated by mUltiplying the variable set to 
one by the negative of the variable to be eliminated and 
then adding the result of this multiplication to the 
number being eliminated. In order for the matrix to re­
main valid, this operation must be 'performed on all 
other columns of the matrix as well, which leads to a 
large number of multiplies and divides. 

Once phase I is complete, phase II must be initiated. 
This phase is required if any of the artificial variables re­
main in the solution as a basis. Through another round 
of pivoting, the remaining artificial variables are re­
moved from the solution. What finally comes out is the 
optimal mix of the input variables so the objective func­
tion is maximized. A more complete description of both 
the simplex method and the revised simplex method can 
be found in Bradley, Hax, and Magnanti4 • 

iROUTINE IMPLEMENTED 

The linear program used in this example is the IMSL 5 

routine "ZX3LP." This routine is the so-called "easy­
to-use" linear program solver. It solves the linear pro­
gram using the revised simplex method. On output, it 
provides not only the solution to the problem, but also 
what is called the dual solution. The dual solution gives 
information about how the solution could be enhanced. 
The objective function is input to the routine as a vec­
tor, while the constraining equations are input to the 
routine as a matrix. Both inequality and equality con­
straining equations may be used; the routine will 
automatically insert slack and surplus vatiables. The 
outputs of the routine are two vectors containing the 
"primal" solution and the dual solution. The routine 
also calculates the optimal value of the objective func­
tion. The version of the routine used was originally 
developed for the IBM 370/3033 mainframe computer. 
It required no modifications to run on the iAPX 86120 
using FORTRAN 86. 

EXAMPLE PROBLEM 

The following problem was input to the linear program 
routine: 

A small cookie company has four different 
products: chocolate chip cookies without 
walnuts, > chocolate chip cookies with 

4Stephen P. Bradley, Hax, Arnoldo C., and Magnanti,. 
Thomas L., Applied Mathematical Programming, Addison­
Wesley, Reading, Massachusetts, 1977. 

'IMSL, Inc. 

3-203 

walnuts, brownies without walnuts, and 
brownies with walnuts. The recipes for the 
four are: 

Chocolate Chip Cookies 
2 eggs 
;;, cup shortening 
1 cup. sugar 
1 cup brown sugar 
1 tsp. vanilla 
214 cup flour 
1 tsp. baking soda 

1 tsp. salt 
12 oz. chocolate chips 

(l Y2 cup walnuts) 
0.15 hour oven time 
0.25 hr mix time (w/o nuts) 
0.45 hr mix time (w/nuts) 

Brownies 
4 eggs 
;;, cup shortening 
2 cups sugar . 

1 tsp. vanilla 
1 v.. cup flour 

1 tsp. baking powder 
1 tsp. salt 

4 oz baking chocolate 
(;;' cup walnuts) . 
0.5 hour oven time 
0.25 hr mix time (w/o nuts) 
0.45 hr mix time (w/nuts) 

The available amounts of many of the ingre­
dients have been set previously by contract 
and may not be altered. They are: 

Item Quantity 

eggs 1000 
sugar 600 cups 

brown sugar 20 cups 
baking chocolate 700 oz. 

flour 600 subs 
baking soda 150 tsp. 

baking powder 150 tsp. 
chocolate chips 1500 oz. 

walnuts 125 cups 
oven time 560 hours 

mixing time 750 hours 

The amount of profit made for each type 
cookie is: 

Cookie Type Profit per Batch 

chocolate chip wlo $0.85 
chocolate chip with $0.95 

brownies wlo $1.10 
brownies with $1.25 

It is assumed that the cookie company can 
sell everything that it makes. How many of 

. each kind of cookie should the company 
make in order that the profitis maximized? 

The problem was set up into the input tableau. The 
objective function is: 

y= .85*XI + .95*X2 +1.1*X3 + 1.25*X4 

AFN'()2184A 



AP-143 

Table 6. Example Problem Input Tableau 

2X, + 2 X2 + 4X3 + 4X. = 1000 (eggs) 
X, + X2 + 2X3 + 2 X. 600 (sugar) 
X, + X2 200 (b. sugar) 

4X3 + 4 X. 700 (b. choc), 
2.25 X, + 2.25 X2 + 1.25 X3 + 1.25 X. 600 (flour) 

X, + , X2 150 (b, soda) 
X3 + X4 150 (b. powder) 

12X, + 12X2 1500 (c, chips) 
.5 X2 + .65 X. 125 (walnuts) 

.15 X, + .15 X2 + ,5 X3 + . 5 X • 560 (oven time) 
,25 X, + .45 X2 + ,25 X3 + .45 X4 750 (mix time) 

Where the variable Xl is the number of batches of 
chocolate chip cookies without nuts, X2 is the number 
of batches of chocolate chip cookies wjth nuts, X3 is the 

, number of batches of brownies without nuts, and X4 is 
, the number of batches of brownies with nuts. The input 
,tableau is shown in Table 6. These w,ere put into the 
proper input matricies of the ZX3LP program, and the 
following results were generated: 

profit 
, batches of choc chips wlo 
batches of choc <chips with 
batches of brownies wlo 
batches of brownies with 

$299.25 
70 
55 
o 

ISO 

In addition, the dual solution shows that the single in­
gredient most limiting the profit of the cookie company 
is the availability of baking powder, and that for every 
additional unit (teaspoon) of baking powder available, 
the profit of the company will increase 1.12 cents. 

The calculation times are: 

with 8087 
with emulator 
with PDPll 145 
with IBM 30336 

1.01 seconds 
46.78 seconds 
0.7 seconds 
0.07 seconds 

6Non-Intel computers used were a PDP 11/45 mini-computer 
with 25,6K MOS RAM, and a FPll-B floating point unit run­
ning the UNIX operating system during a period of light load. 
The program was compiled ,using the UNIX F77 FORTRAN 
compiler, and an IBM 370/3033 mainframe computer run­
ning the VMI eMS operating system during a period of 
medium ioad (the program, however, did not get swapped 
out of niemory during execution). The IBM FORTRAN G 
compiler was used. 

The results show that the performance of the iAPX 
86120 is close to the performance cifthe mini~computer. 
In addition, the performance is only a little more than 
an order of magnitude below the performance of the 
IBM mainframe, a "maxi" computer with an execution 
rate of 5 MIPS, and a CPU Ihour cost of around $800! 
A comparison of results between the iAPX 86120 and 
the emulator verifies the speed of the 8087 is required to 
provide results. in a reasonable period of time. The 
power and ease of use of this type of sophisticated 
numerical method combined with an ",electronic 
worksheet" type of program could be a major advance 
in the "state of the art" of small business machine soft­
ware. 

CONCLUSIONS 

The types of routines demonstrated in this note show 
that there are many classes of numeric intensive soft­
ware which are (or should be) commonly used in every­
day business operations. With the introduction of the 
iAPX 86120, these types of applications are finally 
within the performance limits of microcomputers seIling 
for a fraction of the cost of the previously required 
mini- or maxi-computers. In addition, the availability 
of both Pascal and FORTRAN compilers for the iAPX 
86120 eases the problem of software generation and 
availability for the processor. Because of the portable 
nature of these high-level languages, a minimum of ef­
fort is required to generate or to port software to the 
iAPX 86120 from existing systems. With this kind of 
numeric intensive software support, the 8087 will be an 
essential part of the next generation of small business 
computers. 

3-204 AFN.()218'A 



AP-143 

APPENDIX A Contents PAGE' 

Interest rate calculation routin'e 
in FORTRAN ......................... A-2 

Annuity calculation routine 
in Pascal ...•.......................... A-3 

Annuity calculation routine 
in FORTRAN ........................... A-4 

Silver-Meal heuristic calculation 
routine in Pascal ..................... A-6 

Wagner-Whitin method calcu'lation 
routine in Pascal.. . . . . . . . . . . . . . . . . . .. A-9 

Linear programming routine 
in FORTRAN ......................... A-12 

3-205 AFN.()2184A 



AF'-14~ 

FORTRAN-86 COMPILER 
:F6: INTST .FOR 

SERIES-III FORTRAN-86 COMPILER X023 
COMPILER INVOKED BY: FORT86.86 :F6:INTST.FOR 

1 
2 
3 
4 
5 

c 
c 
c 
c 
c 
c 

c 

this program provides the yearly effective rate(double and 
single precision) and final value when the interest rate 
(ir), the number of compounding periods (,np) , 
the present value (pv) are specified. 

real pv,ir,fv,yer 
real*8 fvd,yerd 
tempreal fvt,yert 
integer*2 np,csv 
ihteger*4 count,rtimer 

c $2,00p,000., at an interest rate of 10% with daily compounding for 1 year 
c '\ 

6 
7 
8 

9 
10 
11 

12 
13 

14 
15 

16 
17 

18 
19 

20 
21 

22 
23 
24 
25 
26 

\ 

c 

pv=2000000. 
ir=.l 
np=365 

c set rounding control to single precision 
c 

c 

c 

call stcw87(csv) 
csv=csv .and. #fcffh 
call ldcw87(csv) 

yer=(l+(ir/np»**np - 1 
fv=(l + yer)*pv 

c set rounding control to double precision 
c 

c 

c 

csv=csv .or. #200h 
call ldcw87(csv) 

yerd=(l+(ir/np»**np - 1 
fvd=(l + yerd)*pv 

c set rounding control to temp real precision 
c 

c 

c 

csv=csv .or. #lOOh 
call ldcw87(csv) 

yert=(l+(ir/np»**np - 1 
fvt=(l + yert)*pv 

c print results 
c 

print *, 'single prec~s~on yer=' ,yer, 'fv=' ,fv 
'print *, 'double prec~s~on yer=',yerd, 'fv=' ,fvd 
print *,Iternp real precis on: yer=1 ,yert, Ifv=',fvt 
stop 
end 

3-206 AFN·02184A 



SERIES-III Pascal-86, Vl.l 

Source File: :Fl:ANNPl.PAS 
Object File: :Fl:ANNPl.OBJ 
Controls Specified: CODE. 

AP·143 

SOURCE TEXT: :FI:ANNPl.PAS 
(* ANNUITIES: type I, the sinking fund 
* if one were to place $1000 a month into a savings fund which 
* earns 12% per annum, compounded daily, what will be the value 
* of the fund after 20 years??? 
*) 

module annuity; 
public cell 

function mqery2x(y,x: real):real; 
program annuity(input,output); 

(* takes y to the x *) 

var 
ir, (* the annual interest rate *) 
fv, (* the final value *) 
pmt, (* the amount of the payment *) 
irp: (* the interest rate per period 

real; 
np: (* the number of periods ,*) 

integer; 

begin 
(* insert calculation values *) 

ir := 0.12; 
pmt := 1000; 

*) 

np := 12 * 20; (* 20 years of months *) 

(* calculate the effective interest rate per period *) 
irp := mqery2x«1+(ir/365.0)),365.0/l2.0)-1; 

(* effective monthly rate *) 
(* calculate the future value *) 

fv := pmt • (mqery2x«1+irp) ,np)-l)/irp; 

(* print results *) 
writeln('the effective monthly rate is',irp:18) 
writeln('the future value of the annuity is',fv 
writeln('the total contribution to the annuity 

12: 2) ; 
s',np*pmt:12:2); 

end. 

3-207 AFN·02184A \ 



FORTRAN-86 COMPILER 
:Fl:ANNUl.FOR 

AP~143 

SERIES-III FORTRAN-86 COMPILER X023 
COMPILER INVOKED BY: FORT86.86 :Fl:ANNUl.FOR 

1 
<! 
3 
4 

.!> 

6 
7 

8 

12 

13 

14 
15 
16 
17 
18 
19 

20 
21 

22 

23 . 

24 

c 
c ANNUITIES: type I, the sinking fund 
c if you place in a savings fund $1099.09 a month, and it 
c earns an interest rate of 12% per annum compounded daily, 
c what will be the value of the fund after 29 years? 
c 

c 

real ir,pv,fv,pmt,irp 
real*8 tvd,irpd 
tempreal fvt,irpt 
integer*2 cwv 
integer np 

·i r = .12 
pmt = 11190. 

c the number of periods is the number of months in 20 years! (one period 
c is one month 
c 

np = 20*12 
c 
c set the 8087 to single precision mode 
c 

c 

call stcw87(cwv) 
cwv=cwv .and. #fcffh 
call Idcw87 (cwv) 

c tirst calculate the effective interest rate per period 
c 

irp = (l+(ir/365.) )**(365./12.) - 1 
c 
c then calculate the future value 
c 

c 

'c 

fv = pmt * (1 +irp)**np - l)/irp 

print *,'single precision values:' 
prlnt *,'the effective rate per month is' ,irp 
write(6,800)fv 
write(6,801)np*pmt . 
format('the future value of the annuity is' ,flB.2) 
format('the total contribution to the annuity is',f18.2) 

c set the 8087 to double precision mode 
c 

c; 

cwv=cwv .or. #200h 
call ldcw87(cwv) 

c first calculate the effective interest rate per period 
c I 

irpd = (1+(ir/365.»**(365d0/l2d0) - 1 
c 
c then calculate the future value 
c 

fvd = pmt * ((1 +irpd)*~np - l)/irpd 
c 

print w,'double precision values:' 

3-208 AFN'()2184A 



AP·143 

·FORTRAN-a6 COMPILER 
,FI ,ANNUL FOR 

25 
26 
27 

28 
29 

31l 

31 

32 
33 
34 
35 
36 
37 

c 

print *,'the effective rate per month is',irpd 
write(6,81lll)fvd 
write(6,81ll)np*pmt 

c set the 81187 to temp real precision mode 
c 

c 

cwv=cwv .or. tlllllh 
call Idcw87(cwv) 

c first calculate the effectiv~ interest rate per period 
c 

irpt = (1+(ir/365.»**(365tll/12tll) - 1 
c 
c then calculate the future value 
c 

c 
fvt = pmt * «1 +irpt)**np - l)/irpt 

print *,'temp real precision values:' 
print *,'the effective rate per month is',irpt 
write(6,81lll)fvt 
write(6,81ll)np*pmt 
stop 
end 

3-209 AFN·02184A 



SERIES-III Pascal-86, Vl.l 

Source File: :F6:SMCT.PAS 
Object File: :F6:SMCT.OBJ 
Controls Specified: <none>. 

SOURCE TEXT: :F6:SMCT.PAS 

AP-143 

(* This is going to try to find the optimal replacement cost 
* for a rather variable demand product OVer 20 months, when 
* the demand is known, an example could be a video game, using 
* a single chip ROM programmed microcomputer with an initial set 
* up charge of $3000.00, demand varies a lot with peak in october 
* and november(for Christmas), droops in may(vacations), etc. 
* The cost per part varies from $20.00 per part up to 500, 
* $17.50 per part from 500 to 5000, and $15.00 above 5,000. 
* The Sliver-Meal heuristic is going to be used. 
* ) 

module silver meal, 
public timers; 

function rtimer:integer, 
procedure stimer, 

program silver meal(input,output) , 
const I -

var 

"months = 20, 
monthspl = 21, 
setupcost = 3000.0; 
holdcost = 0.4; 
real large = 1.OelO; 
reallargei = 32000; 

repl: (* first time stock goes to 0 for a given month *) 
array[l .. months] of integer; 

tomake, (* the number of boxes to make in a month *) 
require: (* number of boxes required in a given month *) 

array[l .. monthspl] of real; 
trcut, 
holdcos'tv: (* holding costs *) 

array[l .. months] of real. 
cost, (* calculated cost in a given situation *) 
costl, (* production cost *) 
cost2, (* holding cost *) 
totalcost, (* the total cost of it all *) 
lastcost, (* used in determining the total cost *) 
totalholdcost: (* the total hold cost *) 

real. 
i, j, k: 

integer; 
totcnt, 
holdcnt: 

(* counters *) 

(* accumulated number of boxes in a batch *) 
(* number of boxed holding *) 

real. 
count: (* the 10 ms count *) 

integer. 

begin 
require[l] := 500. 
require[2] := 1500. 
require[3] := 2500. 
require[4] := 2000, 

3-210 AFN{)2184A 



AP-143 

SOURCE TEXT: :F6:SMCT.PAS 
require[5] := 2000; 
require[6] := 1000; 
require[7] := 3500; 
'require[8] := 2500; 
require[9] := 5000; 
require[lO] := 7500; 
require[ll] := 9500; 
require[12] := 10000; 
require[13] := 500; 
require[14] := 1500; 
require[15] := 2500; 
require[16] := 2000; 
require[17] := 2000; 
require[18] := 1000; 
require[19] := 3500; 
require[20] := 2500; (* stop here, because the next month is much 

higher can assume will restock then *) 
require[monthspl] := reallargei; 

stimer; (* start the timer *) 

i := 1; 
while i <= months do begin 

trcut[i] := reallarge; 
totcnt := 0; 

(* i is the month working on *) 

end; 

j := i; 
while j <= monthspl do begin 

totcnt := totcnt + require[j]; 
if totcnt < 500 then costl := 20.0 * totcnt 
else if totcnt < 5000 then costl := 17.5 * totcnt 
else costl := 15.0 * totcnt; 
cost2 := 0.0; 
holdcnt := totcnt; 
for k := i to j - 1 do begin 

holdcnt := holdcnt - require[k]; 
cost2 := cost2 + holdcnt * holdcost; 

end; 
cost := (setupcost + cost2 + costl)/(j - i + 1); 
if cost < trcut[i] then begin 

end 

trcut[i] := cost; 
tomake[i] := totcnt; 
holdcostv[i] := cost2; 

else_begin 
repl[i] := j; 
i := j; 
j := monthspl; 

end; 
j := j ... I; 

end; 

count := rtimer; 
j := I; 

3-211 AFN.o2184A 



AP-143 

SERIES-III Pascal-86, Vl.l 

SOURCE TEXT: :F6:SMCT.PAS 
writeln('month res~ock# optimal cost per period'); 
total cost := 0; 
for i := 1 to months do begin 

if i = j then begin 
write(i:5,' ',tomake[i]:6,' ',trcut[i]:10:2); 

end. 

end; 

writeln(' * restocking now' ); 
j : = repl[ j] ; 
lastcost := trcut[i]; 
tota1cost := totalcost + lastcost; 

end 
else begin 

end; 

total cost := totalcost + lastcost; 
writeln(i:5); 

i := 1; 
j := 0; 
totalholdcost := 0.0; 
while i <= months do begin 

totalholdcost := totalholdcost + holdcostv[i]; 
j := j + 1; 
i := repl[i]; 

end; 
write1n('the total hold cost is' ,totalholdcost:12:2); 
writeln('stock gets replenished' ,j:4,' times'); 
writeln('replenishment cost is',j*setupcost:12:2); 
writeln('the total cost thingy is' ,totalcost); 
writeln('the 10 ms count is,' ,count); 

Summary Information: 

PROCEDURE 
SILVER MEAL 

OFFSET CODE SIZE DATA SIZE STACK SIZE 
0108H 05F7H 15270 OlACH 428D OOOEH 14D 

Total 06FFH 17910 OlACH 428D 0042H 660 

135 Lines Read. 
o Errors Detected. 

41% Utilization of Memory. 

3-212 AFN.(I2184A 



SERIES-III Pascal-86, Vl.l 

Source File: :F6:WAGCT.PAS 
Object File: :F6:WAGCT.OBJ 
Controls Specified: <none>. 

SOURCE TEXT: :F6:WAGCT.PAS 
(* This is going to try to find the optimal replacement cost 
* for a rather variable demand product over 20 months, when 
* the demand is known, an example could be a video game, using 
* a single chip ROM programmed microcomputer with an initial set 
* up charge of $3000.00, demand varies a lot with peak in october 
* and november(for Christmas), droops in may(vacations), etc. 
* The cost per part varies from $20.00 per part up to 500, 
* $17.50 per part from 500 to 5000, and $15.00 above 5,000. 
*) 

module wag with: 
public timers: 

function rtimer:integer: 
procedure stimer: 

program wag with(input,outpUt): 
const -

months = 20: 
monthspl = 21: 
setupcost = 3000.00: 
holdcost = 0.4: 

(* mask set up charge *) 
(* cost per part of maintaining inventory*) 

var 
real large 1.Oe9: 

require, (* number of chips required in a given month *) 
tomake: (* the number of chips to make in a month *) 

array[l •• mortths] of real: 
repl: (* first time stock goes to 0 for a given month *) 

array[l •• months] of integer: 
optwz: (* optimum cost for a given month with zero stock 

to start with *) 
array[l •. monthspl] of real: 

holdcostv: (* holding costs *) 
array[l •• months] of real: 

cost, (* calculated cost in a given situation *) 
costl, (* production cost *) 
cost2, (* holding cost *) 
totalcost, (* the total cost of it all *) 
totalholdcost: (* the total hold cost *) 

real: 
i,j,k: (* 

integer: 
totcnt, 
holdcnt: 

real: 
count: 

integer: 

counters *) 

(* accumulated number of chips in a batch *) 
(* number of boxed holding *) 

(* 10 ms count *) 

begin 
optwz[monthspl] := 0: 
require[l] := 500: 
require[2] := 1500 
require[3] := 2500 
require[4] := 2000 

3-213 ' AFN.()2184A 



AP·143 

SERIES-III Pascal-86, VI.I 

SOURCE TEXT: :F6:WAGCT.PAS 
require[5] := 2000; 
require[6] := 1000; 
require[7] := 3500; 
require[8] := 2500; 
require[9] := 5000; 
require[IO] := 7500; 
require[ll] := 9500; 
require[12] := 10000; 
require[13] := 500; 
require[14] := 1500; 
require[15] := 2500; 
require[16] := 2000; 
require[17] := 2000; 
require[18] := 1000; 
require[19] := 3500; 
require[20] := 2500; (* stop here, because the next month is much 

higher can assume' will restock then *) 

stimer~ 

for i := months downto 1 do begin (* i is the month working on *) 
optwz[i] := reallarge; 
totcnt := 0; 
for j := i to months do begin (* is the option working on *) 

totcnt := totcnt + requirce[j]; 
costl := setupcost+optwz[j+l]; 
if totcnt <= 500 then costI := costl + 20.0*totcnt 
else if totcnt <= 5000 then costl := costl + I7.5*totcnt 
else costl := costI + l5.0*totcnt; 
cost2 := 0.0; 
holdcnt := totcnt; 
for k := ito j - 1 do begin 

end; 

holdcnt :~ holdcnt - require[k]; 
cost2 := cost2 + holdcnt * holdcost; 

cost := costl + cost2; 
if cost < optwz[i] then begin 

optwz[i] := cost; 
repl[i] := j + 1; 
tomake[i] := totcnt; 
hold,costv[i] := cost2; 

end; 
end; 

end; 
count := rtimer; 

j := 1; 
writeln( 'month restock# optimal, cost' ); 
for i := 1 to months do begin 

write(i:5,' ',tomake[i]:6,' ',optwz[i]:10:2); 
if i = j then begin 

writeln(' * restocking now'); 
j : = rep 1 [ j] ; 

end 
else writeln; 

end; 

3-214 AFN-0218~A 



Ap·143 

SERIES-III Pascal-86, Vl.l 

SOURCE TEXT, ,F6,WAGCT.PAS 
i := 1: 

end. 

j ,= 0: 
totalholdcost ,= 0.0: 
while i <- months do begin 

totalholdcost ,= totalholdcost + holdcostv[i]: 
j ,= j + 1: 
i ,= repl[i]: 

end: 
writeln('the total hold cost is',totalholdcost,12,2): 
writeln('stock gets replenished',j,4,' times'): 
writeln('repleni~hment cost is' ,J*setupcost,12,2): 
writeln('the 10 ms count is ',count): 

Summary Information, 

PROCEDURE 
WAG WITH 

OFFSET CODE SIZE DATA SIZE STACK SIZE 
00E5H 0576H l39SD OlASH 424D OOOEH 14D 

Total 065BH 1627D OlASH 424D 0042H 66D 

119 Lines Read. 
o Errors Detected. 

41% Utilization of Memory. 

3-215 AFN-02184A 



AP-143 

FORTRAN-86 COMPILER 
:F1:COOKIE.FOR 

SERIES-III FORTRAN-86 COMPILER X023 
COMPILER INVOKEO BY: FORT86.86 :F1:COOKIE.FOR 

1 
2 
3 

4 

5 
6 

7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

c 
c this routine will solve a linear problem using the IMSL fortran 
c library. the IMSL routine used is "zx31p" which solves the problem 
c using the revised simplex method. 
c 

c 
c 
c 
c 
c 
c 

800 
100 

200 

* 
* 
* 

integer ia,n,m1,m2,iw(37),ier 
rea1*8 a(13,4),b(13),c(4),rw(206),pso1(11),dso1(13),s 
integer*4 rtimer,count 

data .a/2. ,I. ,I. ,0.,2.25,1. ,0. ,12. ,0., .15, .25,0. ,0. , 
2.,1.,1.,0.,2.25,1.,0.,12.,.5,.15,.45,0.,0., 
4.,2.,0.,4.,1.25,0.,1.,0.,0.,.5,.25,0.,0., 
4.,2., O. ,4. ,1.25, O. ,1.,0., .65, .5, .45,0., O. / 

data b/l000.,600.,200.,700.,600.,150.,150.,1500.,125.,560.,750.,0.,0./ 
data c/.85,.95,l.10,l.25/ 

n is the number of variables" 
m1 is the number of inequality constraints 
m2 is the number of equality constraints 
ia is the declared number of columns of a 

ml = 11 
m2 = 0 
n = 4 
ia = 13 

print *,'the input tableau:' 
do 100 i=l,ia-2 
write(6,800)a(i,l),a(i,2),a(i,3),a(i,4),b(i) 
format(4f10.4,' <= ',f10.4) 
continue 

call stimer 
call zx31p(a,ia,b,c,n,m1,m2,s,psol,dso1,rw,iw,ier) 
count = rtimer () . 

pnint *,'ier = 'tier 
print *,'the final value of the objective function(profit!) is:',s 
print *,'batches of chocolate chip w/o walnuts: ',pso1(1) 
print *,'batches of chocolate chip with walnuts: ',psol(2) 

'print *,'batches of brownies without walnuts: ',pso1(3) 
print *,'batches of brownies with walnuts: ',pso1(4) 
print *, 'the dual solutions follOW:' 
do 200 i=l,ia-2 
print *,'var',i,' = ',dsol(i) 
continue 
print *,'the calculation time here (in seconds .•• ) is: ',count/100. 
stop 
end 

3-216 AFN.(J2184A 



inter 

© INTEL CORPORATION, 1~ 

APPLICATION 
NOTE 

3-:m . 

Ap·144 

October 1983 

Order Number 210384-001 



) ,", 
AP-144 '.' 

INTRODUCTION 

As the performance of microcompute~s ha~ improved, 
these machines have been used in many applications. 
With the introduction of 16-bit microprocessors (along 
with the associated CPU enhancements, especially the 
integer multiply instruction) the operations required to 
manipulate graphic representations of three­
dimensional objects were made easier. Only integer 
values could be used to define figures, however, because 
only integer multiplies were supported in hardware. 
While software floating point routines existed, the speed 
at which a general purpose microprocessor could ex­
-ecute even the simplest floating point operation preclud­
ed the use of these routines because of the number of 
floating point operations which must be performed to 
manipulate all but the simplest of objects. 

The lack of high performance floating point math or the 
restriction of using only integer representations seve~ely 
limits the types and sizes of objects that can be defined. 
Imagine limiting everything in .the universe to be less 
than 32,000 millimeters long, high, or wide! This limita­
tion could severely impact any system that is used to 
model real world objects. An example of such an ap­
plication is a Computer Aided Design (CAD) system. If 
real or floating poinenumbers are used, however, prac­
tically any object can be defined (after all, there are only 
9,397,728,000,000,000,000 m.iIlimeters in a li~ht year(!), 
well within the range of floating point numbers). With 
the introduction of the iAPX 86120, the Performance 
required to execute the requisite operations 'on floating 

· point representations 'of three-dimensional figures has 
finally been achieved in a microprocessor solution, at a 
microprocessor price. 

The iAPX 86120 features the Intel 8086 with the 8087 
numerics co-processor. This combination allows· for 
high performance, high precision numeric operations. 
This performan<ie is especially important in the graphics 
routines implemented in this note because of the large 
number of floating point operations performed for each 
line drawn. In addition, the precision is required to 
maintain the image quality of the represented figures. 

This application note shows the fundamental com­
ponents of a three-dimensional graphics package. As 

· stated before, if the objects are to be described in real 
· Size, floating point. values must be used. Since the opera-
· tions performed require many multiplies and divides, a 
high performance floating point arithmetic' unit is a 
must. Note that the operations to be performed by this 
software are not those of a "bit map" controller: single 
chip devices performing this 'specialized task are or will 
soon be available. Because they are special-purpose 
devices, they can also execute this task quickly, 
of,floading the task from the gerieral purpose 

microprocessor allowing the processor to perform other 
work in parallel. In addition, since the size of the 
memory used in a bit-mapped controller is constrained 
(one could hardly have unlimited memory for the 
refresh map), only integer math is required. This 
graphics package is a much higher level type of routine, 
where the inputs are three-dimensional' line drawing 
commands (which could be fed into a bit map con-' 
troller). 

The three-dimensional graphics package implemented 
in this note allows for the entry of three-dimensional 
figures, the manipulation of these figures, the setting of 
the viewer's location, the size of the picture to be seen, 
and the position of the picture on the graphics output 
device. Along the way, it performs perspective transfor­
mations, window clipping and projection. All figures 
are defined using floating point numbers. Thus, any 
figure may be defined "real size" without pre-scaling. 
This means that the size of the figure defined within the 
package may be the actual size of the object, i.e. the size 
of the object is not arbitrarily limited by the machine, 
whether the object be a sub-nuclear particle, or a 
cellestial body. 

iAPX 86/20 HARDWARE OVERVIEW 

The iAPX 86/20 is a 16-bit microprocessor based on the 
Intel 8086 CPU. The 8086 CPU features eight internal 
general purpose 16-bit registers, memory segmentation, 
and many other features allowing for compact, efficient 

. code generation from high-level language compilers. 
When augmented with the 8087, it becomes a vehicle for 
high-speed numerics processing. The 8087 adds eight 
80-bit internal floating point registers, and a floating 
point arithmetic logic unit (ALU) which can speed 
floating point. operations by up to 100 times over other 
software floating .point simulators or emulators. 

The 80~6 and 8087 execute a single instruction stream. 
.The 8087 monitors this stream for numeric instructions. 

. 'When a numeric .Instruction is decoded, the 8086 
generates any need~ menwfY addresses for the 8087. 
The 8087 then begin~ instruction execution automatical­
ly. No other. softwafe interface is required, unlike other 
floating point proceSSOrS currently available where, for 
example, the main processor must explicitly write the 
floating point mimbers and commands into the floating 
point unit. The 8086 then continues to execute non­
numeric instructions until another 8087 instruction is 
encountered, whereupon it must wait for the 8087 to 
complete the previous numeric instruction. The parallel 
8086 and 8087 processing is known as concurrency. 
Under ideal conditions, it effectively doubles the 
throughput of the processor. However, even when a 
steady stream of numeric insructions is being executed 
(meaning there. is no concurrency), the numeric perfor-

3-218 AFN.(l2185A 



AP-144 

mance of the 8087 ALp is much greater than that of the 
8086 alone. 

The hardware interface between the 8086 and the 8087 is 
equally simple. Hardware handshaking is performed 
through two sets of pins. The RQIGT pin is used when 
the 8087 needs to transfer operands, status, or control 
information to or from memory. Because the 8087 can 
access memory independently of the 8086, it must be 
able to become the "bus 'master ," that is, the processor 
with read and write control of all the address, data and 
status lines. ' 

, , 

The TEST 1 BUSY pin is used to manage the concurren­
cy mentioned above. Wbenever the 8087 is executing an 
instruction, it sets the BUSY pin high. A single 8086 in­
struction (the WAIT instruction) tests the state of this 
pin. If tbispin is high, ,the WAIT instruction will cause 
the 8086 to wait until the pin is returned low. Therefore, 
to insure that the 8086 does not attempt to fetch a 
numeric instruction while the 8087 is still working on a 
previous numeric instruction, the WAIT instruction 
needs to precede most numeric instructions (the only 
class of instructions which do not need to be preceded 
by a WAIT instruction are those which access the con­
trol registers of the 8087). The 8086/87/88 assembler, 
in addition to all INTEL compilers, automatically in­
serts this WAIT instruction before most numeric in­
structions. Software polling can be used to determine 
the state of the BUSY pin if the hardware handshaking 

r ., 
I INT I INTR 

8259A 

is not desired. 

Most other lines (address, status, etc.) are connected 
directly in parallel between the 8086 and the 8087. An 
exception to this is the 8087 interrupt pin. This signal 

, must be routed to an external interrupt controller. An 
example iAPX 86120 system is shown in Figure 1. A 
more complete discussion of both the handshaking pro­
tocol between the 8086 and the 8087 and the internal 
operation of the 8087 can be found in the application 
note Getting Started With the Numeric Data Processor, 
Ap Note #113 by Bill Rash, or by consulting the 
numerics section of the July 1981 iAPX 86, 88 Users 
Manual. 

In addition to the 8087 hardware, the 8086 is also sup­
ported by Intel compilers for both Pascal and FOR­
TRAN. Code generated by these compilers can easily be 
comJ:>ined with code generated from the other compiler, 
from the Intei 8086/87188 macro assembler, or the In­
tel PLIM compiler. In addition, these compilers pro­
duce in-line code for the ,8087 when numeric operations 
are required. By producing in-line code rather than calls 
to floating point routines, the software overhead of an 
unnecessary procedure call and return is eliminated. 

The combination of both hardware co-processors and 
software support for the iAPX 86/20 provid,es for 
greater performance of the end product, and a quicker, 
easier development effort. 

I PIC I ,- 8086/8088 ~ 
ClK CPU 

\r-
L IRn J ,- Ra/GTl - -

TEST 8086 aso aSl 

~ FAMilY A 1\ 

t. t t BUS K SYSTEM BUS ~ IV" INTERFACE 
aso aSl COMPONENTS BUSY ~ 

8284A '-- RaJGTO 
CLOCK 

K= 
GENERATOR 

'" ClK ClK 
8087 :::> 

I NDP III .. 
(S 

INT g 

I 
Ra/GTl 

-=-t-I 
I I Ra/GT I 

I I I ,1-
L - ~ClK 

8089 r'r--lOP 

I I " ' 
I- - - ..J' 

Figure 1. Example 86/20 System 

AFN<J2185A 



AP-144 

THREE·DIMENSIONAL GRAPHICS 
FUNDAMENTALS 

The charter in life of a three-dimensional graphics 
package is to take a three-dimensional rendering of an 
object and to transform it such that it can be accurately 
represented on the two-dimensional surface of a 
graphics output device. To fulfill these requirements, 
the graphics package must: 

• AUow for tbe entry' of tbree-dimenslonal data. 
Since all figures inside the package ate represented 
as a series of points in three-dimensional space, 
there must be a way of entering these figures into 
the computer. 

• Perform tbe cnrrent transformation. This 
transformation rotates, translates and scales the 
three-dimensional object throughout three­
dimensional space. Example rotates, translates 
and scales are shown in Figures 2-11. In all 
diagrams, the irrst coordiriate indicated is X, the 
second Y, the third Z. The viewpoint is the loca­
tion of the viewer in three-dimensional space in 
relationship to an arbitrarily chosen but consistent 
origin.. 

Translations are movements of the object in three­
dimensional space.' Example translations are 
shown in Figures 3-5. Figure 3 shows a translation 
of two units in the plus Z direction. Since the view­
point is ten units up along the Z axis, this moves 
the cube one-fifth the distance toward the viewer, 
or in other words, the cube seems to get larger. 
Figure 4 shows the same cube translated two units 
in the plus X direction. Since the cube is four units 
on a side, this moves the cube such that the viewer 
is looking straight do~ one side of the cube. The 
viewer is also looking straight down a side in 
Figure 5. 

Rotations are movements of the object in three­
dimensional space about the three-coordinate 
axis: X, Y, and Z. The rotation of the object must 
specify both the magnitude of the rotation, and 
the axis about which the rotation must take place. 
Example rotates are shown in Figures 6-8. Figure 
6 shows the cube rotated 45 degrees about the Z 
axis. Since the viewpoint is straight up the Z axis, 
the cube is seen to keep its same face towards the 
viewer. Figure 7 shows the cube rotated 45 degrees 
about the X axis. Here, the cube no longer shows 
the same face it has previously. The face previous­
ly turned directly toward the viewer has been 
rotated such tIiilt the edge between this face arid 
anOther face is immediately before the viewer. The 
same is also shown in the rotation about the Y axis 
in Figure 8. ' 

Scaling is the multiplication of all coordinates' of 
the points defiinng a figure by a constant number 
such that the object beCQJIles larger or smiUler. Ex­
ample scales are shown in Figures 9-1 I. This scal­
ing need not be uniformly performed for all 
dimensions of an object. If, for example, the Z 
coordinates of a cube are all scaled to be twice as 
large as they originally were, the , image shown,in 
Figure 9 would be' produced. Notice here that the 
X and Y coordinates have not been altered; only 
the Z coordinates are twice as large as ,they 
originally were, or alternatively, the front and 
back of the cube lire closer and farther away from 
the viewer than in the original, unaltered cube. 
Figure 10 shows this same operation being per­
formed on the X coordinates, while Figure 11 
shows this operation being performed on Y co­
ordinates. 

3-220 

Figure 2. 2)( 2 )( 2 Cube Centered at (0,0,0) 
Viewed from (0,0,10) 

I'\. / 

V " 
Figure 3. Same Cube and Viewpoint, + 2 Z 

Translation 

AFN.Q218/iA 

, , 



AP·144 

Figure 4. Same Cube, Viewpoint, + 2 X Translate Figure 5. Same Cube, Viewpoint, + 2 Y Translate 

B 
Figure 6. Same Cube, Viewpoint, 45 Degree Figure 7. Same Cube, Viewpoint, 45 Degree 

. Rotation About Z· . Rotation About X 

3-221 AFN.()2185A 



Ap·144 

Figure 8. Same Cube, Viewpoint, 45 degree Figure 9. Same Cube, Vlewpont 2 x Scale of Z 
Rotation About Y 

~ / 
....... ./ 

l/ " 
II \ 

Figure10. Same Cube, Viewpoint, 2x Sealeot X Figure 11. Same Cube, Viewpoint, 2 x Seale of Y 

3·222 AFN.(I2185A 



AP-144 

"- / 

/ "-

Figure 12_ 2 x 2 x 2 Cube Centered at (0,0,0) Viewed from (0,0,10) Then from (10,10,0) , 

• Perform the viewing transformation. This 
transformation moves and rotates the three 
dimensional figure according to the viewer's loca­
tion and orientation (the direction the viewer is 
facing) in space. An example of changing the view 
location is shown in Figure 12. Again, this loca­
tion, or viewpoint, is the viewer's location with 
relation to an arbitrarily chosen origin. 

• Perform Z-clipping on the three-dimensional 
data. This insures that only data in front of the 
viewer are displayed. In addition, it allows that 
objects beyond a certain distance from the viewer 
will not be displayed. 

• Project the three-dimensional data onto a two 
dimensional surface. The objects must be pro­
jected 'onto a two-dimensional surface according 
to the laws of perspective. By changing the 
"vanishing point," interesting effects are also 
possible. An example of this is shown in Figure 13. 
Here, the first figure shows exaggerated perspec­
tive (that is, the difference in perceived size be­
tween the front face and the back face of the cube 
is exaggerated), where the second figure shows the 
object with subdued perspective (the difference in 
the perceived sizes of the front and back faces is 
much less than in the first figure). Exaggerated 
perspective is generated for objects close to the 
viewer, while subdued perspective is generated for 
objects distant from the viewer. Note that the 
same figure, with the same dimensions, is shown 
in both figures; only the perspective values have 
been changed. 

• Perform X-Y clipping on the projected data. This 
cuts off lines in the projected data extending 
beyond the specified "window." 

• Perform the window to viewport transformation. 
This takes the two-dimensional projected values 
and scales them according to the relative sizes of 
the "window" and the "viewport.': 

The "window" describes the size of the viewer's portal 
into the data, whereas the "viewport" describes the size 
and position of this portal on the graphics output 
device. Whereas the window's size is determined· by the 
size of the input data, the viewport size is determined by 
the physical characteristics of the graphics display 
device. For example, the viewport coordinates of a cer­
tain CRT display may be constrained to be between 0 
and 1023 in both the X and Y dimensions, whereas the 
window limits are determined only by the maximum size 
of numbers the computer can store. Thus, for maXimum 
generality and utility, floating point numbers must be 
used to represent the three-dimensional figures. 

A good reference to the techniques used in this three­
dimensional graphics implementation can be found in 
Newman and Sproull'. 

3-223 

'Newman, William M. and Robert F. Sproull, Principles oj 
Interactive Computer Graphics, McGraw-Hill Book Com­
pany, New York, 1979. 

AFN-02185A 



AP·144 

Figure 13. Example Cube Shown with Exaggerated Perspective, then with Subdued Perspective 

IMPLEMENTATION 

Three-dimensional graphics systems can be split into 
three f~nctional modules: the input hardware, the pro­
cessing hardware, and the output hardware. The 
graphics software is executed by the processing hard­
ware and is used to receive figure definitions from the 
input hardware, store them in one form or another, and 
manipulate them such that they can be displayed on the 
output hardware. 

Input hardware can range from the common typewriter 
keyboard to sophisticated three-dimensional input 
devices. Output hardware can range from a plotter to a 
storage tube terminal to a bit-mapped raster scan 
display or a vector drawing 'CRT. 

The processing hardware can range from general pur­
pose minicomputers to very fast, specialized graphics -
processing hardware. General purpose computers are 
used because they allow applications programs to be 
written in higher level languages. Specialized hardware 
is sometimes employed when very fast manipulations 
are required, such as in the real time graphics applica­
tions found in flight simulators. This specialized hard­
ware can be used to perform whole matrix transforma­
tions. Many applications do not require figures to be 
drawn real time (on the order of one complete picture 
every 1/30 sec), however, and can be satisfied by the 
performance of the general purpose computer alone. A 
typical application which is satisfied by these latter re-

quirements is a Computer Aided Design (CAD) system. 
However, since these graphics systems often exist in an 
interactive environment, picture processing delays 
greater than a few seconds for simple figures, or greater 
than a few minutes for very complex figures cannot be 
tolerated. Because of these processing requirements, a 
mini-computer with a hardware floating point unit has 
been required to drive these graphics systems. However, 
with the introduction of the 8087, the floating point 
processing performance required by these systems can 
finally be met in a microcomputer solution. 

The microcomputer system used in this three­
dimensional graphics application is a general purpose 
microcomputer embodied in the iAPX 86/12 board 
found in an Intel IntelIec@ Series ,III, development 
system. All routines implemented in this application 
note were written entirely in FORTRAN using the Intel 
FORTRAN 86 compiler. Any iAPX 86120 (or iAPX 
88120) with enough memory can be used to execute the 
programs, however. The amount of memory required 
depends on the number and complexity of the figures to 
be displayed. The source code for all routines used in 
this note are given in the appendix. 

3-224 AFN'()2185A 



AP-144 

SERIES III DEVELOPMENT 

~~~~EDM.Yf~1~ ~C~U~':~ODULE'· 
337
muilimodule

86112 board

Figure 14. Computer System Used In This Graphics Implementation

The graphics output device used was a HP 7225A flat
bed plotter. Communications were performed using the
RS232 serial link on the 86/12 board. The communica­
tions speed of the line to the plotter was 600 baud.
Because of the number of lines drawn in the more com­
plex figures, the physical characteristics of the plotter,
and the communications line speed, the amount of time
required to draw a large picture was a function of the
plotter speed, not the execution speed of the iAPX
86/20. As a result, all times quoted in this note do not
reflect the plotting time. Only the time up to placing the
ASCII character into the buffer of a serial communica­
tions chip is included for all machines quoted. Higher
speed graphics display devices (which are not limited by
the physical characteristics of plotters) can use the speed
of the iAPX 86/20 to full advantage.

The graphics input device used was the standard
alphanumeric keyboard attached to the development
system. This allows entry of figures, as well as control
of the graphics system. Input can also be fetched from
disk storage, however, to allow for greater speed in
defining large figures. A block diagram of the hardware
system used in this implementation is shown in Figure
14.

All routines were run using both the 8087 and the 8087
software emulator.' The 8087 software emulator is a
software package exactly emulating the internal opera­
tion of the 8087 using 8086 instructions. When the
emulator is used, an 8087 is not required. The emulator
is a software product available from Intel as part of the
8087 support library. The performance of the 8087
hardware is much better than that of the software
emulator, as one would expect from a specialized hard­
ware floating point unit.

The 8087 supports various data formats. For real
numbers, these formats are short real (or single preci­
sion), long real (or double precision), and temporary
real (or extended precision). The differences among the

three are in the number of bits allocated to represent a
given floating point number.

In all real numbers, the data is split into three fields: the
sign bit, the exponent field and the mantissa field. The
sign bit shows whether the number is positive or
negative. The exponent and mantissa together provide
the value of the number: the exponent providing the
power of two of the number, and the mantissa pro­
viding the "normalized" value of the number.

A "normalized" number is on~ that always lies within a
certain range. By dividing a number by a certain power
of two, most numbers can be made to lie between the
numbers I and 2. The power of two by which the
number must be divided to fit within this range is the ex­
ponent of the number, and the result of this division is
the mantissa. This type of operation will not work on all
numbers (for example, no matter what one divides zero
by, the result is always zero), so the number system must
allow for these certain "special cases."

As the size of the exponent grows, the range of numbers
representable also grows, that is, larger and smaller
numbers may be represented. As the size of the mantissa
grows, the resolution of the points within this range
grows. This means the distance between any two adja­
cent numbers decreases, or, to put it another way, finer
detail may be represented. Short real numbers provide 8
exponent bits and 23 significand or mantissa bits. Long
real numbers provide 11 exponent bits and 52 signifi­
cand bits. Temporary teal numbers provide 15 exponent
bits and 64 significand bits. These data formats are
shown in Figure 15. Thus, of the three data formats im­
plemented, short real provides the least amount of
precision, while temporary real provides the greatest
amount of precision. These levels of precision represent
only the external mode of storage for the numbers; in­
side the 8087 all numbers are represented to temporary
real precision. Numbers are automatically converted in­
to the temporary real precision when they are loaded in-

3-225 AFN.()2185A

AP-1''44

LONG REAL

. TEMPORARY REAL

'SIGNIFICAND

I.

lsi BIASED

I EXPONENT

63 52'= Ii
lSi

BIASED h EXPONENT

79 64 63 1

NOTES:
S = SIGN BIT (0 = POSITIVE, 1 = NEGATIVE)
.. ::: POSJTION OF IMPLICIT BINARY POINT

SIGNIFICAND

SIGNIFICAND I
0

I == BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL,
N SHORT AND LONG REAL

EXP (NORMALIZED VALUES):

LONG ~\~g l~~~~)
TEMPORARY REAL: 18383 (3FFFH)

Figure 15. Floating Point Data Form~ts

to the 8087. In addition to real fonnat numbers,. the
8087 automatically converts to and from external
variables stored as 16, 32 or 64-bit integers, or 80-bit
binary coded decimal (BCD) numbers.

Memory requirements also increase as precision in­
creases. Whereas a short real number requires only four
bytes of storage (32 bits), a long real number requires
eight bytes (64 bits) and a temporary real number ten
bytes (80 bits). In many floating point processors, pro­
cessing time .also increal'es dramatically as precision is
increased, makil\g this another consideration in the
choice of precision to be used by a routine. The dif­
ferences in 8087 processing time among short real, long
real and temporary real numbers are insignificant com­
pared to the processing time, however, since all opera­
tions are performed to the internal 80-bit precision. This
makes the choice of which' precision to use in an iAPX
86/20 system a function only of memory limitations
and precision requirements. .

Double precision numbers were chosen for this graphics
implementation because they allow a very wide range of
numbers to be represented with high precision. This is
important, since the package allows the user to magnify
small parts of defined figures. Without the precision
gained by using double precision numbers, the image of
the object could easily be distorted under such scrutiny.

Three-Dimensional Figure Description
and User Interface

The graphics user interface implemented in this note is
both functional and simple. It does' not require the use
of specialized three-dimensional input hardware. All in­
put data is keyed in through the keyboard.

The package allows for definition of figures for future
use within the graphics package. This feature could be
useful in generating multiple views of a certain object. It
requires that the object be "defined" at the beginning
of the session, but then allows the user to view the ob­
ject from any location, with any rotation, scale, or
translation.

3-226

Commands to the graphics package consist of a set of
al\)hanumeric commands followed by' the necessary
numeric constants. To enter commands to the graphics
package, one enters an alphanumeric command en­
closed within the' single quotes followed by the ap­
propriate numeric arguments. The maximum number of
arguments required by any command is six. If less than
six arguments are entered on·a line, the line must be ter­
minated by the ' /' character, however. These re­
quirements (having the command enclosed within single
quotes, explicitly terminating the line) are a result of us.­
ing the list-directed input format of,FORTRAN.

Ap·144

The commands recognized by the graphics processor
are:

comment argl. This command instructs the.
graphics processor to ignore the next arg I lines.
This can be used to insert comments within the
graphics commands.

define argl. This command instructs the graphics
processor that the next N lines (up to the enddef
command) are to be entered into an internal buf­
fer for future reference as figure arg I. The
graphics commands are not interpreted, i.e. they
do not cause figures to be drawn as they are
entered. In this way, three-dimensional objects
may be defined, or to put it another way, placed
into an internal display list. Up to ten objects may
be defined using the current version of the pro­
gram. This may be increased to the limits of
available memory. Currently there is internal
storage space for up to 500 total graphics com­
mands. These may be spread in any combination,
among the ten figures. This number may also be
modified to reflect memory restrictions.

enddef. This command terminates a figure defini- .
tion, and returns control back to the main
graphics processor.

call argI. This command causes the graphics pro­
cessor to fetch graphics commands from the inter­
nal buffer of the previously defined figure number
argl.

line argl arg2 arg3 arg4 arg5 arg6. This command
causes a line to be drawn in three-dimensional
space from the point 'argI, arg2, arg3 to the point
arg4, arg5, arg6. The current object rotation. ob·
ject scale, object translation, viewer location, win­
dow, and viewport are used.

plot argl arg2 arg3 arg4. This command causes a
line to be drawn from the endpoint of the last line
plotted to the point argI, arg2, arg3 using the
"pencode" arg4. The current pencodes supported
are '2' (indicating that a solid. line is to be drawn),
and '3' (indicating that no line is to be drawn; this
is, used only to change the location of the plot
head). Additional pencodes could be implemented
allowing for dashed lines, dotted Jines, etc.

ident. This command causes the "current" matrix
to be set to the identify matrix. This causes all
rotates to be set to zero, all translates to be set to
the origin, and all scales to be set to one.

push. This command causes the current matrix to
be pushed onto a 10 location matrix stack. The
current matrix is not altered.

3·227

pop. This command causes the matrix stack to be
popped into the current matrix.

rotate argl arg2 arg3. This command causes the
viewer's perception of the three-dimensional
figure to be rotated around the X, Y, and Z axis
byargl, arg2 and arg3. The angles are in degrees.
The definition of an object is not altered.

translate,argl arg2 arg3. This command causes the
viewer's perception of the three-dimensional
figure to be translated in the X, Y, and Z dire~­
tions by argl, arg2 and arg3. Again, the definition
of an object is not altered. '

scale argl arg2 arg3. This command causes the
viewer's perception of the three-dimensional
figure to be scaled in the X, Y and Z directions by
argl, arg2, and arg3.

window argl arg2. This command sets up the win­
dow parameters. These parameters determine the
visible side to side portion of the projected images.
This amounts to placing an infinitely tall pyramid
within three-dimensional space with the viewing
location located at its apex (looking down). All
objects within this pyramid will be visible; all ob­
jects outside this pyramid will not be visible.

viewport argI arg2,arg3 arg4. This command sets
up the viewport parameters. These parameters
determine the size and location of the above win­
dow on the plotter surface. The center of the area
on the plotter surface is given by argI, arg2 with
the X and Y half sizes given by arg3, arg4. The
plotter is assumed to have an X dimension be­
tween 0 and 12, and a Y dimension qetween 0 and
10. The translation to the dimensions the plotter
recognizes is done in a lower level plotter interface
routine. By perfonning this task in a lower level of
software, the package is made more general.

viewpoint argI arg2 arg3, arg4 arg5 arg6. This
command sets up the "viewing" transformation.
argI, arg2, arg3 represent the location of the
viewer in three,-dimensional space, while arg4,
arg5, prg6 represent the "lookat" location in
three-dimensional space. Together they form a
vector pointing to the area to be viewed whose
length determines. the perspective variables (only
single point perspective is currently implemented).

AFN'()2185A

AP·14~

zclip argi arg2. This command sets up the
"Z-clipping" parameters. These determine the
visible distance in front of the viewer. ArgJ
specifies the near boundary of the viewing area
while arg2 specifies the far boundary of the area.
Together with the window command, it defines it
solid delimiting the visible objects from the not­
visible objects.

cube argJ arg2 arg3 arg4 arg5 arg6. This com·
mand draws a cube centered at argJ, arg2, arg3
with half-widths of arg4, arg5 and arg6.

arrow. This command draws an arrow from
(0,0,0) to (1,0,0).

pyramid argJ arg2 ai'g3 arg4 arg5 arg6. This com­
mand draws a four-sided pyramid whose base is
centered at argJ, arg2, arg3 and whose half-widths
are arg4, arg5, arg6. The X half-width arg4 is used
as the height of the pyramid.

current. This command prints the current matrix
on the terminal.

printder. This command prints the definition of
the given figure.

startt. This command starts the 10 ms timer on the
iSBC 86/12 board.

readt. This command stops the 10 ms timer on the
iSBC 86/12 board and prints the 10 ms count on
the terminal.

end. This command stops execution of the
graphics package, prints the total numbers of
points plotted and "success!!!" on the terminal,
and returns control back to ISIS.

Internal Operation of the Package

All internal operations are performed using 1 by 4 or 4
by 4 double precision real matrices. Points are defined
in 1 by 4 double precision vectors where the first three
coordinates are used to hold the X, Y and Z location of
the poillt. The fourth location is always set to one, and
is used when the point is projected onto a two­
dimensional plane. In most cases, the routine perform­
ing the task outlined is named the same thing as the
name of the task outlined (within the six-character limit
imposed by FORTRAN). The order the routines are
described is roughly the order a line would encounter
them on its way from existing as a three-dimensional en­
tity inside the machine to a line drawn on the bed of a
plotter. All routine names are set in boldface.

THE CURRENT TRANSFORMATION

If each object were to be modified whenever a translate,
rotate, or scale were to be performed, performance of
the package could be quite slow. In addition, the
original definition of the figure would be lost (although
not irreversibly). If there were a method of performing
these three operations at a single time, allowing the
original definition of an object to remain unaltered,
both .the performance and ease of use of the graphics
package would be enhanced.

One way in which these operations can be combined is
by using what is called the "cu~rent" matrix. The' cur­
rent matrix is a 4 by 4 double precision real matrix. It
numeiically represents any combination of rotates,
translates and scales in any order. The matrix is
multiplied by each 1 by 4 point definition vector on its
way to being plotted. The result of this multiplication is
a point that has been rotated, scaled, and translated the
proper amount. If this matrix is the identity matrix, the
point will pass through unaltered. Thus, the identity
matrix represents no scaling~ translating, and rotating.
This multiplication is performed in the routine pline
lines 20 and 21.

When a rotate, scale, or translate command is inter­
preted, the current matrix is multiplied by another 4 by
4 matrix representing only this transformation. Since
matrix multiplication is not commutative, the order
these operations are performed in is preserved. This is
important, because, for example, a rotate before a
translate is not the same as a rotate after a translate
because all rotations are performed pivoting around the
origin (see Figure 16). Initially, the current matrix is set
to the identity matrix. The first operation is performed
relative to state of the current matrix immediately
preceding the operation.

Parameters are set up into the current matrix through
the rotate, scale, translate, ident, push, and pop opera­
tions.Each name describes the function of the opera­
tion performed. The routines performing these tasks (in
order) are: rotate, scale, transl, ident, push, and pop.
Ident is included to allow all rotates and translates to be
set to zero and all scales to be set to one. The push and
pop operations are included in order that figures may
save the state of the current matrix, while subsequently
performing operations altering it. This is important
when a large figure is defined as a set of parts, each of
which may merely be rotations, etc., of a simpler list of
parts. .

3-228' AFN.()21B5A

AP-144

Figure 16. Example Cube Viewed from (0,0,10) First Rotated then Translated then Translated then Rotated.

THE VIEWING TRANSFORMATION

Before an object can J>e plotted, the viewpoint of the
viewer must be known. This information provides the
location of the viewer in three-dimensional space, and
the direction the viewer is pointing. It is incorporated in­
to the 4 by 4 "view" matrix. It is another rotation per­
formed on the object in order that it is viewed from the
proper viewing angle. All points are passed through the
view matrix after they are passed through the current
matrix. What comes out of.these two transformations is
a set of points located in the proper relative positions in
three-dimensional space when the i~ is rotated,
translated, and scaled by, the operations performed on
the current matrix, and is also rotated properly by the
operations set in the view matrix.

The view matrix is set up by the viewpoint command.
This command will plac~ in the view matrix the proper
rotations in order that the image of the obiect will be
correct. The routine performing this task is the viewpn
routine. '

Z·CLlPPING

All points' passed through the current and view matrices
are located at· their proper' locations in three­
dimensioruiJ. space. However, only a portion of this
space is visible to the viewer. Specifically, objects
behind the viewer will not be visible. Every point of an
object has been mappC:d to the viewer's space, however,
including those behind the viewer. These "invisi~le"
points are removed by an operation ca1lell

"Z-clipping." Simply, it examines the Z parameter of
every point being considered and determines if it is in
front of the ·viewer. In addition, one may not wish to
display lines a great distance from the viewer. These
lines may be removed by a similar process. The only
complication of clipping is the action performed if only
part of the line is visible. In this instance, the point
where the line leaves the visible·area must be calculated.
The method used to calculate this point in this im­
plementation is the method of "like triangles."

The Z-clipping parameters are set through the com­
mand zclip in the routine zdip. The arguments to this
command are used to determine the visible distance in
front of the viewer. The first argument sets the
minimum distance in front of the viewer before any line
will be visible. Legal values for this parameter are
anything great\ll' than zero. The second argument sets '.
the far distance beyond which no lines will be visible ..
Any value larger than the first argument may be. used
for this parameter. The clipping itself is performed in
the routine zdipp.

3-229 AFN.()2185A

AP-144

PROJECTION

Projection maps the three-dimensional points previous­
ly encountered and projects them onto a two­
dimensional plane. Only single-point perspective is cur­
rently supported in the pac/<:age. Here, the projection is
performed by using the Z parameter to modify the X
and Y parameters. As the points get more distant, their
deviation from the center of the picture should get
smaller, if the X and Y parameters remain constant.
Most people are aware of this effect. For example, if
you look down a set of railroad tracks, the rails seem to
converge, even though the distance between the rails is
constant (see Figure 17). Two or three-point perspective
would be easy to implement; all one must do is generate ,
the projected X and Y parameters by using the non­
projected X and Y parameters in addition to using the Z
parameter.

This projection is performed in the graphic;s package by
multiplying the 1 by 4 point location vector by a 4 by 4
"projection" matrix. This matrix is simply the identity
matrix except the perspective value is placed in location
(3,4) of the matrix.

Figure 17. Two Rails, Vanishing into the Distance

This value is calculated from the viewpoint parameters.
After the matrix multiply, the only element modified in
the 1 by 4 point definition vector is the last one (the one
which is supposed to have the value of one). After the
multiplication, this location will contain the number
representing the modification which must be performed
on the X and Y parameters of the vector to exhibit the
projection. When this vector is "normalized," the point
will have been projected using the rules of single-point

perspective. This normalization is performed by
dividing every element in the vector by the last element
of the vector. Thus, the Z element of the original vector
has modified the X and Y elements. If two or three­
point perspective is desired, one, must only place
perspective values in locations (1,4) and (2,4) of the pro­
jection matrix; all subsequent processing will be iden- ,
tical. The routines performing these operations are:
vlewpn (sets up vanishing point for perspective), projct
(sets up the projection 'matrix, and performs the
perspective multiplication), and norm (normalizes the
vector).

x-v CLIPPING

Once the data is projected onto a two-dimensional
plane, X-V clipping must be performed. This operation
could also be performed on the three-dimensional data,
but by deferring it until after the data have been pro­
jected, the calculations required are simpler. This is not
true for Z-clipping, since once the, data are projected
onto a plane, the Z parameter is no longer in its original
form.

j

X-Y clipping is performed by comparing X and Y
parameters with the window values set up by the win­
dow command. This comparison is a bit more com­
plicated than the comparison required by Z clipping,
however, as tw'o clipping parameters are involved.
There are nine possible regions in which each endpoint
of a line may reside. For example, some of these regions
are: within the X and Y window regions, less than the X
window region but within the Y region, less than the X
region and less than the Y region, etc. If one or both of
the endpoints of the line are within the visible region,
then at least part of the line will be visible. Also, even if
neither of the endpoints of the line is in the visible
region, part of the line may still be visible. One must
therefore determine whether any part of this line would
be visible. A simple wa,y of performing the task is to
assign a bit of a word for each of less than and greater
than the X Ij,nd Y window limits. This requires four bits.
The value of the X and Y parameters are then each com­
pared with the window limits. If the value exceeds the
limit of the window, the corresponding bit of this point
descriptor is set. After this "code" has been determined
for both of the points, the codes 'for two endpoints are
bit-wise ANDed together (an extension to FORTRAN ,
'77 available in FORTRAN 86 allows this operation). If
the result of this ANDing is zero, then part of the line
would be visible. If, however, it is not zero, then the en­
tire line lies outside the visible area. If only part of the
line is visible, th.en the point where it leaves the visible
area Iriust be calculated. The point where the line leaves
the viewing area is calculated using the same "like
triangle" method used when Z-clipping is performed.

3-230 AFN.()2185A

Af-144

The routines performing these operations are wto\'p
(calls the xycllp routine with the proper parameters),
xyclip (performs the actual clipping), code (returns the
binary code for the point position in relation to the win­
dow), and ppush (calculates the point at which line
leaves the visible area).

WINDOW TO VIEWPORT TRANSFORMATION

Finally, after the points have been processed through all
of the above, comes their day of glory. Because the lines
have been clipped, they are constrained to be within the
given window. Remember, however, that the values for
this window are in "real world" units. These sizes could
be measured in inches or miles. These are not generally
suitable for plotting on a graphics output device. In
order for the "window" to be displayed on the graphics
output device, one more transformation must be per­
formed: the window to viewport transformation. A
viewport represents a physical location and size on the
graphics output device. The viewport command sets up
the appropriate parameters for this transformation. It
requires four arguments, which allow the viewport to be
moved around the graphics display surface, and allow
the size of the viewport to be set. Notice that the
viewport and the window are not constrained to the
same aspect ratios, that is, the ratios between the ver­
tical sizes and ,the horizontal sizes of the window and
viewport need not be the same. If these' ratios are not the
same, the figures will be distorted. Performing this
transformation is simply a matter of scaling the win­
dowed values to fill the viewport. The code performing
this transformation is contai~ed within the wtovp
routine.

PLOTTER INTERFACE

This graphics package was written to interface to a
Hewlett-Packard 7225A flat bed plotter. Communica­
tions were performed through an RS232 serial link at
600 baud. Physically, this is done using the 8251 serial
controller on the iSBC® 86/12 board inside the Intellec@
Series III. The plotter has a smart interface. The com­
mands it accepts are in ASCII, and are on the level of
"lower the pen," and "draw a line from the current pen
position to another pen position." The routines per­
forming these operations are plot (determines the
characters needing to be sent to the plotter), ponum
(converts a floating point number to an ASCII represen­
tation of the integer value of the truncated floating
point number), putout (handles the interface to the 8251
serial controller chip) and plots (initializes the baud rate
generator and 8251 serial controller chip on the iSBd>
86/12 board).

3-231

PERFORMANCE MEASUREMENTS

The above routines were compiled using the Intel FOR­
TRAN 86 compiler and exeucted on an Intellec® Series
III development system. The 8086 hardware consists of
an Intel iSBC® 86/12 board with the 8087 in the
iSBC" 337 card. The iAPX 86120 (the 8086 with the
8087) operate with a clock frequency of 5 MHz. The on
board memory (64K DRAM) inserts between one and
three wait states per memory fetch. In addition, owing
to the size of the memory arrays, the program size, and
the memory reguirements of the Series III, off board
memory was required to run the program.

The times shown in the table do not show the plotting
time; only the time to generate the output that would be
sent to the plotter is given. This is because the physical
speed limitation of the plotter used would not allow the
iAPX 86120 system to produce the plotting commands
at its maximum computational speed. The plotter re­
quired approximately half an hour to 45 minutes to ac­
tually draw the second demonstration picture.

For each line plotted, five 1 by 4 times 4 by 4 matrix
multiplies must be performed along with a non-trivial
amount of other floating point operations, such as
divides and compares. For example, when clipping is
performed, the line endpoint values must be compared
to the clipping parameters. If only part of the line is visi­
ble, then the point the line leaves the visible area must be
calculated. This requires twelve additional floating
point operations. Another example is in the window to
viewport transformation. For each line drawn, four
floating point multiplies, four floating point divides,
and four floating point adds must be performed.

In addition, whenever the rotation, scale, translation or
viewpoint is changed, 4 by 4 matrix multiplies must be
performed. In addition, various trigonometric routines,
such as sines and cosines. must be performed to set up'
the rotation parameters into the matrix.,

The performance measurements are given in Table 1.

Table 1. Performance Measurements

Picture Number
One Two

number of points in picture 117 9131
number of points actually plotted 117 6114
execution time of the 86/2O(sec) 2.84 188
execution time of the 86 with 87 144.77 9801

emulator(sec)
exection time of PDPII/45(sec)2 1.7 120

2A PDPI1I45 mini-computer with 256K MOS RAM, and a
FP11-B floating point unit running the UNIX operating
system during a period of light load. The program was com­
piled using the UNIX F77 FORTRAN compiler.

AFN.()2185A

('

AP·144,

Figure 18. Demonstration Picture 1

The results show that the performance of the iAPX
86/20 is close to the performance of the mini-computer.
The figures drawn are shown in Figure 17 for Picture 1
and Figure 18 for Picture 2. The graphics commands re­
quiredto generate Picture 1 are given in Appendix B.
Picture 2 shows three views of a single shuttle. (Hint:
you are looking out the window of one of the shuttles I)
The shuttle is' defined oll1y once in the input data.
Another point to notice is that each shuttle is a con­
glomeration of parts. For example, the shuttle wing is
dermed only once in input data. The complete shuttle

contains two views of this same ~, translated and
rotated to attach to the appropriate location on the
fuselage of the shuttle itself. The engine nozzles take
this same approach a bit further : The complete nozzle is
defined only once, and is atfached in three places on
each shuttle. In addition, each nozzle is made up of
replications of the same circle scaled and translated
through space. Each circle is, in turn, composed of four
views of one quarter-circle, each rotated a proper
amount to form one complete circle. '

AFN-02185A

AP-144

Figure 19. Demonstration Picture 2

CONCLUSIONS

The routines demonstrated in this note show that the
types of operations required to manipulate and display a
three-dimensional figure on a two-dimensional surface
are far from trivial, involving very many floating point
operations. With the introduction of the iAPX 86/20,
the floating point performance required by this type of
application is finally within the performance limits of
microcomputers selling for a fraction of the cost of the
previously required mini- or maxi-computers. Examples
of systems in which this performance is required are

3-233

Computer Aided Design (CAD) or Computer Aided
Manufacturing (CAM) systems. In addition, the
availability of a full ANSI 77 standard FORTRAN com­
piler (FORTRAN 86) for the iAPX 86120 enhances the
production or transportation of existing software to the
machine. This combination of high performance hard­
ware with high performance software allows the iAPX
86120 to fill applications never before filled by a
microprocessor.

AFN'()2185A

;-,,'

AP-144

APPENDIX A Contents' PAGE'
"

Main Routine ,............................. A· 3
get : A· 4'
proe ::.:..................... A· 4
Ident•. .':'. A· 5
de#.n , A· 6
printd : . '.' . • .. A· 7'
eal/lt •..................................... A· 7
prlntm A· 7
pline A- 8
pplot•.......... A- 9
push ' A· 9
pop "•.. A- 9
rotate. .. A-10
transl A-10
pseale ...•................................ A-11
~Indow A-11
vlewpr A-11
vlewpn A·12
zelip A-13
zelipp • .. A-13.
proJet A·14
norm ,..... A-14
wtovp A·15
!<yelip•..... _ .. A·15
code•... , . , , .. A-16
ppush•...................... A·16
eopym •........ : ,•.. 'A-17
mplot•............................ A·17
eube •....... A-17
arrow•....................... A·18
pyrmd l .••..•..•..•.. A·18
mmult4 ,............................. A-19
mmult1 .. , :...... A·19
plot , :... A-20
ponum _•....... :'...... A-21
plots ...•.................... .' A-22
putout '.. I • • • • • • •• A-22
wastet•.................. A-22

3-234
' ..

1
2
3
4
5
6
7
8
9

10
11
12
11
14
15
16
17
18
19
20

c
c
c
c
c
c
c

AP-144

this is the main routine of the graphics program. basically
it sets up default parameters for the rest of the routines, then
enters an infinite loop, alternatively fetching lines from the input
(using routine getl) and sending them to be processed by the graphics
processo, (proc)

common /windoe/wxh,wyh
common /viewp/vxh,vyh,vxc,vyc
real*8 wxh,wyh,vxh,vyh,vxc,vyc
common /matrix/currm,view,curp
real*A currm(4,4),view(4,4),curp(4)
common /clip/hither,yon,dee
real*8 hither,yon,dee
common /stacks/stackp,sspace
real*8 sspace(10,4,4)
integer stackp
common /defns/dargl,darg2,darg3,darg4,darg5,darg6,darg7,entry,tailp,ends
character*lO dargl(500)
real*8 darg2(500),darg3(500) ,darg4(500) ,darg5(500) ,darg6(500) ,darg7(500)
integer entry(lO),ends(lO)
integer tailp
common /cstack/cnum,cnump
integer cnum(lO),cnump
common /penpos/xpos,ypos,pcount
real*8 xpos,ypos
integer*4 pcount

c initialize the plotting package
21 call plots

c initialize the stack pointer
22 stackp = 1

c set up a few defaults
23 wxh 10.
24 wyh 10.
25 vxh 5.
26 vyh 5.
27 vxc 5.
'28 vyc 5.
29 hither = 1-
30 yon = 100.
31 dee = 10.
32 tailp = 1
33 cnump = 1
34 xpos = -i.
35 ypos = -1.
36 pcount = 0
37 print * , 'GRAPHICS program entered I I I '

c
c initialize the current matrix
c

38 call ident(currm)
c
c and process all the input lines
c

39 100 call getl
40 call proc
41 goto 100
42 end

:3-235

c
c
c
c
c
c
c
c
c
c
c
c

43
44
45
46

47
48
49
50
51
52
53
54

c
c
c
c
c
c

55

56
57
58
59
60
61
62
63
64
65
66

c
c
c
c

67
68
69 100
70
71
72 800
73
74
75
76
77
78
79
80
81
82
83
84
85
86

AP·144

get1(line)

fetches the next line from the input file, and grabs the first 7
things from it, the first being an alpha command contained within
(') and the rest being numbers. If less than 6 number are input
the input line must be terminated by a (I) in order for the
read statement to be correctly interpreted. The arguments are then

placed in the common block "args". When the 'end' command is
encountered, "success" is printed on the terminal, and the
graphics program terminates.

sUbroutine getl
common /args/argl,arg2,arg3,arg4,arg5,arg6,arg7
character*lO argl
real*8 arg2,arg3,arg4,arg5,arg6,arg7

read (S,*)argl,arg2,arg3,arg4,arg5,arg6,arg7
if(argl .eq. 'end') then

endif
return
end

proc

call plot(0.,0.,999)
print '*,'successl11'
stop

proc() does all the processing for a line. It gets its arguments
from the common block args, and does it's thing

subroutine proc

common /matrix/currm,view,curp
real*8 currm(4,4),view(4,4),curp(4)
common /args/argl,arg2,arg3,arg4,arg5,arg6,arg7
character*lO argl
real*8 arg2,arg3,arg4,arg5,arg6,arg7
common /clip/hither,yon,dee
real*8 hither,yon,dee
common /cstack/cnum,cnump
integer cnum(lO),cnump
integer i
integer*4 rtimer,c~untt

determine the command' entered. (HUGE if-then-else if-,etc) and
call the appropriate routine with the correct arguments

if(argl .eq. 'comment') then
i = 1
read(5,800)
i = i + 1
if(i .le. int(arg2» gete 100
format(al)

else if(argl .eq. 'define') then
i = int(arg2)
call defn(i)
call printd(i)

else if(argl .eq. 'call') then
cnum(cnump) = int(arg2)
cnump = cnump + 1
if(cnump .gt. 10) then

endif

print *, 'call nesting level too deep, sorry'
cnump = 10

call callit(cnum(cnump - l),cnump - 1)
cnump = cnump - I

else if(argl .eq. 'line') then

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131

c
c
c
c
c

132
133
134

135
136
137
138 100
139
140
141 110
142
143

AP-144

call pline(arg2,arg3,arg4,arg5,arg6,arg7,2)
el se if (argl • eq. 'plot') then

i = int(arg5)
call pplot(arg2,arg3,arg4,i)

else if(argl .eq. 'ident') then
call ident(currm)

else if(argl .eq. 'push') then
call push(currm)

else if(argl .eq. 'pop') then
. call pop(currm)

else if(argl .eq. 'rotate') then
call rotate(arg2,arg3,arg4,currm)

else if(argl .eq. 'translate') then
call transl(arg2,arg3,arg4,currm)

else if(argl .eq_ .'scale') then
call pscale(arg2,arg3,arg4,currm)

else if(argl .eq. 'window') then
call window(arg2,arg3)

else if(argl .eq. 'viewport') then
call viewpr(arg2,arg3,arg4,arg5)

else if(argl .eq. 'viewpoint') then
call viewpn(arg2,arg3,arg4,argS,arg6,arg7)

else if(argl .eq. 'zclip') then
call zclip(arg2,arg3)

else if(argl .eq. 'cube') then
call cube(arg2,arg3,arg4,argS,arg6,arg7)

else if(argl .eq. 'arrow') then
call arrow

else if(argl .eq. 'pyramid') then
call pyrmd(arg2,arg3,arg4,argS,arg6,arg7)

else if(argl .eq. 'current') then
call printm(currm)

else if(argl .eq. 'printdef') then
i = int(arg2)
call printd (i)

else if(argl .eq. 'startt') then
call stimer

else if(argl ,'eq. 'readt') then
countt = rtimer()
print *,'the time (in seconds) from the last startt is:' ,countt/lOO_

else
print *, 'error, command ',argl, . unknown'

endif

return
end

ident(matrx)

ident() sets the.given 4 X 4 matrix to the identity matrix.

SUbroutine ident(matrx)
real*8 matrx(4,4)
integer i,j

do 100 i=l,4
do 100 j=l,4

matrx(i,j) '0.
continue
do 110 i=l,4

matrx (i, il 1.
continue
return
end

3-237

c
c
c
c
c
c
c
c

144
145
146
147
148
149
150
151
152
153
154

155
156

157 100
c
c
c

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177 150
178
179
180 800
181
182
183

AP·144

subroutine defn(number) defines figure numQer. the defined figure
is contained in a large common block "defns" which contains
enough space for a total of 500 commands. comments are not
stored along with the define commands to save space. the variables
entry and ends contain the starting and ending indexes of the
10 possible defined figures

subroutine defn(number)
integer number
common /defns/dargl,darg2,darg3,darg4,darg5,darg6,darg7,entry,tai1p,ends
character*10 darg1(500)
rea1*8 darg2(500),darg3(500),darg4(500),darg5(500),darg6(500),darg7(500)
integer entry(10),ends(10)
integer tailp
common /args/arg1,arg2,arg3,arg4,arg5,arg6,arg7
character*10 arg1 '
rea1*8 arg2,arg3,arg4,arg5,arg6,arg7
integer i

entry(number) = tailp
print *, 'start of define is at' ,tai1p

call getl

check for terminate of define

if(argl .eq. 'enddef') then
ends(number) = tai1p
print *, 'end of figure define is at' ,tai1p
return

else if(arg1 .ne. 'comment') then
dargl(tailp) argl
darg2(tailp) arg2
darg3(tailp) arg3
darg4(tailp) arg4.
darg5(tailp) arg5
darg6(tailp) arg6
darg7(tailp) arg7

else

endif
goto 10.0
end

tailp = tai1p + 1
if(tailp .gt. 500) then

print *, 'define memory overrun!!!'
tailp = 500

endif

i = 1
read(5,800)
i = i + 1
if(i .1e. int(arg2» goto 150
format(al)

3·238

c
c
c

184
185
186
187
188
189
190
191

192
193 100
194
195 800
196
197
198

c
c
c
c
c

199
200
201
202
203
204
205
206
207
208
209

210
211 100
212
213
214
215
216
217
218
219
220
221
222

c
c
c
c
c

223
224
225

226
227
228 100
229 800
230
231

Ap·144

subroutine printd(number) prints the defined figure commands

subroutine printd(number)
integer number .
common /defns/darg1,darg2,darg3,da~g4,darg5,darg6,darg7,entry,tai1p,ends
character*10 darg1(500)
rea1*8 darg2(500),darg3(500),darg4(500) ,dargS(500l ,darg6(500) ,darg7(SOO)
integer entry(10),ends(10)
integer tai1p
integer i

i = entry(number)
if(i .eq. ends(number» return
write(6,800)darg1(i),darg2(i),darg3(i),darg4(i),darg5(i),darg6(i),darg7(i)
format(a10,6f11.4)
i = i + 1
goto 100
end

subroutine ca11it(number,nest) causes the defined figure number to
be input to the graphics processor, nesting level must be provided
to allow pseudo-recursive type calls •••

subroutine ca11it(number,nest)
integer number,nest
common /defns/darg1,darg2,darg3,darg4,darg5,darg6,darg7,entry,tai1p.ends
character*10 darg1(500) .
rea1*8 darg2(500),darg3(500).darg4(500).darg5(500),darg6(500).darg7(SOO)
integer entry(10).ends(10)
integer tai1p
common /args/arg1.arg2.arg3.arg4.arg5.arg6.arg7
character*10 arg1
rea1*8 arg2.arg3.arg4.arg5.arg6.arg7
integer i (10)

i(nest) = entry(number)
if(i(nest) .eq. ends(number» return
arg1 darg1(i(nest»
arg2 darg2(i(nest»
arg3 darg3(i(nest»
arg4 darg4(i(nest»
arg5 darg5(i(nest»
arg6 darg6(i(nest»
arg7 darg7(i(nest»
call proe
i(nest) = i(nest) + 1
goto 100
end

printm(matrx)

printm prints out the given 4x4 double precision matrix

subroutine printm(matrx)
rea1*8 matrx(4,4)
integer i

do 100 i=l,4
write(6.800)matrx(i.1).matrx(i,2).matrx(i.3).matrx(i.4)

continue
format(4fl5.4)
return
end

3-239

c
c
c
c
c
c

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19

c
c
c

20
21
22
23

c
c
c

24
75

c
c
c

26
?7

c
c
c

28
29 200
30

,AP·144

pline(x.y,z,a,b,c,~)

pline() draws a line from (x,y,z) to (a,b,c) with pencode s, using
the current window, viewpoint, viewport, etc.

subroutine pline(x,y;z,a,b,c,s)
real*8 x;y,z,a,b,c
integer s
common /matrix/currm,view,curp
real*A currm(4,4),view(4,4),curp(4)
logical zclipp,junk
real*B tmpf(4),tmpt(4)

tmpf(l) = x
tmpf(:!) y
tmpf(31 z
tmpf(4) 1.
tmpt(ll a
tmpt(2) b
tmpt(3) c
tmpt(4) 1.
curp(l) a
curp(2) b
curp(3) c
curp(4) 1.

perform translations, and viewing translation

call mmultl(tmpf,currm,tmpf)
call mmultl(tmpt,currm,tmptl
call mmultl(tmpf,view,tmpf)
call mmultl(tmpt,view,tmpt)

perform zclipping on both points .••

if(zclipp(tmpf,tmpt).eq .. false.) goto 200
junk=zclipp(tmpt,tmpf)

project the vector into 2-D

call projct(tmpf)
call projct(tmpt)

do x/y clipping, the window to viewport transform, and plot the vector

call wtovp(tmpf,tmpt,s)
return .
end

3-240

c
c
c
c
c
c
c

31
3?
33
34
35

36
37
38

c
c
c
c
c
c
c

39
40
41
42
43

44
45
46
47
4A
49
0;0
51

c
c
c
c
c
c

52
51
54
55
56

57
58
59
60
61
62
63
64
60;

AP·144

pp1ot(x,y,z,t)

plot a line from the curr~nt position to (x,y,z) using pencode t.
Basically, sets up a call to pline from the current position
to the new position using the appropriate pencode.

subroutine pplot(x,y,z,t)
real*~ x,y,z
integer t
common /matrix/currm,view,curp
real*8 currm(4,4),view(4,4),curp(4)

call pline(curp(1),curp(2),curp(3),x,y,z,t)
return
end

push(matrix)

push() pushes the given matrix onto the matrix stack, checks
for stack overflow, and won't let you!!!! Does not alter the
current matrix.

subroutine push(matrix)
real*8 matrix,sspace(4,4,10)
integer stackp
dimension matrix(4,4)
common /stacks/stackp,sspace

if(stackp .gt. 10) then
print ., 'stack overflow'
return

end if
call copym(sspace(l,l,stackp) ,matrix)
stackp=stackp+1
return
end

pop(matrix)

pop() pops the top of stack into the given matrix. Checks for
stack underflow, and again won't let 'you do it!!!!

subroutine pop(matrix)
rea1*A matrix,sspace(4,4,10)
integer stackp
dime~sion matrix(4,4)
common /stacks/stackp,sspace

stackp=stackp-l
if(stackp .1t. 1) then

end if

print *, 'stack underflow'
stackp = 1
return

call copym(matrix, sspace(1 ,!l, stackp))
return
end

, 3-241

c
c
c
c
c
c
c

1
2
3
4
5

6
7
8
9

10

11

12
13
14
15
16

17

18
19
20
21
22

23

24
25

c
c
c
c
c
c

26
27
28

29
30

31
32
33
34

35

36
37

AP~144

rotate(x,y,z,matrix)

rotate() pre-concatenates- the given (x,y,z) rotation, to the
supplied matrix(usually the current matrix). x,y,z are given

in degrees.

subroutine rotate(x,y,z,matrix)
real*8 x,y,z,matrix
dimension matrix(4,4)
real*8 tmp
dimension tmp(4,4)

call ident(tmp)
tmp(2,2) = cos(x * 0.01745329)
tmp(3,3) tmp(2,2)
tmp(2,3) sin(x * 0.01745329)
tmp(3,2) - tmp(2,3)

call rnrnult4(tmp,matrix,matrix)

call ident(tmp)
tmp(l,l) cos(y * 0.01745329)
tmp(3,3) tmp(l,l)
tmp(3,1) sin(y * 0.01745329)
tmp(1, 3) - tmp(3,1)

call rnrnult4(tmp,matrix,matrix)

call ident(tmp)
tmp(I,I) cos(z * 0.01745329)
tmp(2,2) tmp(I,I)
tmp(I,2) sin(z * 0.01745329)
tmp(2,1) - tmp(I,2)

call,rnrnult4(tmp,matrix,matrix)

return
end

translate(x,y,z,matrix)

translate() pre-concatenates the given tranlation (x,y,z) to the
given matrix(usually the current matrix).

subroutine transl(x,y,z,matrix)
real*8 x,y,z,matrix
dimens-ion matrix(4,4)

real*8 tmp
dimension tmp(4,4)

call ident(tmp)
tmp(4, 1) x
tmp(4,2;) = y
tmp(4,3) = z

call'rnrnult4(tmp,matrix,matrix)

return
end

c
c
c
c
c
c

38
39
40

41
42

43
44
45
46

47

48
49

c
c
c
c
c
c

50
51
52
53

54
55
56
57

c
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72

AP-144

pscale(x,y,z,matrix)

pscale pr~-concatenates the given scaling (x,y,z) onto t~e
given matrix.

subroutine pscale(x,y,z,matrix)
real*8 x,y,z,matrix
dimension matrix(4,4)

real*8 tmp
dimension tmp(4,4)

call ident(tmp)
tmp(l,l) x
tmp(2,2) = y
tmp(3,3) = z

call mmult4(tmp,matrix,matrix)

return
end

window(a,b) viewport(a,b,c,d)

these two routines set up the global variables according to the
given parameters.

subroutine window(a,b)
real*8 a,b
real*8 wxh,wyh
common /windoe/wxh,wyh

wxh - a
wyh - b
ret.urn
end

subroutine viewpr(a,b,c,d)
real*8 a,b,c,d
real*8 vxh,vyh,vxc,vyc
common /viewp/vxh,vyh,vxc,vyc

vxc a
vyc b
vxh c
vyh d
call mplot(vxc - vXh,vyc - vyh,3)
call mplot(vxc + vXh,vyc - vyh,2)
call mplot(vxc + vxh,vyc + vyh,2)
call mplot(vxc - vxh,vyc + vyh,2)
call mplot(vxc - vXh,vyc - vyh,2)
retux:n
end

~243

c
c
c
c
c
c
c

1
2

3
4
5
6
7
8

c
c
c

9
c
c
c

10
c
c
c

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26

27

28
29
30
31
32
33
34

35

36
37
38

AP·144

viewpoint(a,b,c,d,e,f)
i

viewpoint sets up the viewing transformation for the given
to and from points---the eye position is (a,b,c) the lookat
position is (d,e,f).

subroutine viewpn(a,b,c,d,e,f)
,real*8 a, b, c ,d, e, f

real*8 angle
real*8 tmp(4,4),tmpp(4)
common /matrix/currm,view,curp
real*8 currm(4,4),view(4,4),curp(4)
common /clip/hither,yon,dee
real*8 hither,yon,dee

initiali~e the viewing transformation

call ident(view)

move lookat position to origin

call transl(-d,-e,-f,view)

rotate view matrix per the lookat angle

a a - d
b b - e
c c - f
angle - atan2(a,c)
call ident(tmp)
tmp(l,l) cos(angle)
tmp(3,3) tmp(l,l)
tmp(3,1) sin(angle)
tmp(I,3) - tmp(3,1)

call mmult4(vie~,tmp,view)

angle = atan2(b,sqrt(a*a + c*c»
call ident(tmp)
tmp(2,2)cos(angle)
tmp(3,3) tmp(2,2)
tmp(2,3) sin(angle)
tmp(3,2) - tmp(2,3)

call mmult4(view,tmp,view)

a a + d
b b + e
c c + f
tmpp(l) a
tmpp(2) b
tmpp(3) = c
tmpp(4) 1.

call mmultl(tmpp,view,tmpp)

dee = tmpp(3)
return
end

3·244

c
c
c
c
c
c
c
c

39
40
41
42

43
44
,45
46
47
48
49
50
51
52
53
54

c
c
c
c
c
c
c
c

55
56
57
58

59

60
61

6-2

63
64
65
66

c
c
c
c

67

68

69
70
71
72
73
74
75

AP-144

zclip(a,b)

zclip() sets up the global clipping parameters, a is the hither,
b the yon, does not allow the hither plane to be behind the
viewer, nor does it allow the yon to be between the viewer
and the hither.

subroutine zclip(a,b)
real*B a,b
real*a hither,yon,dee
common /clip/hither,yon,dee

if(a .It. 0) then
print *, 'bad hither parameter'
a = 0

end if
if(b .It. a) then

print *, 'bad yon parameter'
b = a + 100

end if
hither = a
yon = b
return
end

zclipping(vectl,vect2)

zclipping() performs the zclipping on vectl using the global
zclipping parameters. Modifies ONLY vectl, returns true if
a portion of the vector indicated by (clipped)vectl and vect2
will be visible in the scene.

logical function zclipp(vectl,vect2)
real*8 vectl(4),vect2(4)
common /clip/hither,yon,dee
real*8 hither,yon,dee

real*8 htr,yn

htr = dee - hither
yn = dee - yon

zclipp = .true.

if(vectl(3) .gt. htr) then
if(vect2(3) .gt. htr) then

zclipp = .false.
else

you must modify the x and y parameters (according to like triangles)
when the z parameter is modified!!!

end if

vectl(l) (vectl(l) - vect2(1»*«htr - vect2(3}}/
(vectl(3) - vect2(3») + vect2(1)

vectl(2) (vectl(2) - vect2(2}}*«htr - vect2(3})/
(vectl(3) - vect2(3}» + vect2(2)

vectl(3) htr
zciipp = .true.

else if(vectl(3) .It_ yn) then
if(vect2(3) .It. yn) then

, zclipp = .false.
else

3-245

76

77

78
79
80
81
82
83

c
c
c
c
c
c

1
2
3
4
5

6

7
8
9

10
11

12
13
14
15

c
c
c
c
c
c

16
17

18
19
20
21
22
23

AP·144

vect1(1)

vect1(2)

(vect2(1) - vect1(1»*«yn - vect1(3»/
(vect2(3) - vect1(3») + vectl(1)
(vect2(2) - vectl(2»*«yn - vect1(3»/
(vect2(3) - vect1(3») + vectl(2)

vect1(3) yn
zclipp = .true.

end if
return
end

'end if

projct(vector)

projct() projects the given vector to a point in 2-D space using
the global "dee" parameter, for single point perspective.

subroutine projct(vector)
,real*8 vector(4)
common /clip/hither,yon,dee
real*8 hither,yon,dee
real*8 tmp(4,4)

call ident(tmp)

if(dee .ne. 0) then
tmp(3,4) 1 / dee

else
tmp(3,4) = - 1000000000.

endif

call mmultl(vector,tmp,vector)
call norm(vector)
return
end

norm(vector)

normU normalizes the given vector.

/

subroutine norm(vector)
real*8 vector(4)

vector(l)
vector(2)
vector(3)
vector(4)
return
end

vector(l) / vector(4)
vector(2) / vector(4)
vector(3) / vector(4)
1.

3-246

24
25
26
27
28
29
30
31
32

33
34
35

36
37
38

39
40
41
42

43
44
45

46
47
48
49

50
51
52
53

54
55

c
c
c
c
c
c
c
c

c
c
c
c
c
c
C

100

105

•

AP·144

wtovp(from,to,pencode)

wtovp() takes the projected. from and to points, and:
1: does x/y clipping on the window
2: does the window to viewport translation
3: plots the transformed points onto the device

subroutine wtovp(from,to,pencde)
real*8 from(4),to(4)
integer pencde
common /windoe/wxh,wyh
real*8 wxh,wyh
common /viewp/vxh,vyh,vxc,vyc
real*8 vxh,vyh,vxc,vyc
logical xyclip
real*8 xp,yp

if(xyclip(from,to» then
xp (from(l» * vxh / wxh + vxc
yp = (from(2» * vyh / wyh + vyc

call mplot(xp,yp,3)
xp (to(l» * vxh / wxh + vxc
yp = (to(2» * vyh / wyh + vyc

call mplot(xp,yp,pencde)
endif
return
end

xyclip(from,to)

xyclip() performs the x/y clipping on both the from and t
vectors in the window cooridinates. Returnes false if
none of the vector would be visible.

logical function xyclip(from,to)
real*8 from(4),to(4)
integer*2 cf,ct

xyclip = .false.
call code(from,cf)
call code(to,ct)

if«cf .and. ct) .ne. 0) goto 105

if(cf .ne. 0) call ppush(cf,from,to)
if(ct .ne. 0) call ppush(ct,to,from)

if((cf + ct) .ne. 0) goto 100
xyclip = .true.

return
end

3-247

c
c
c
c
c
c

1
2
3
4
5
6

7

8
9

10
11
12
13
14
15

c
c
C
c
c
c
c

16
17
18
19
20

21

22

* 23
24
25

26

* 27
28
29

30

* 31
32
33

34

* 35
36
37
38

AP-144

code(vector, flag)

code () returns the binary code in flag for »ector indicating
it's position relative to the window.

subroutine code(vector,f1ag)
rea1*8 vector(4)
integer flag
common /windoe/wxh,wyh
rea1*8 wxh,wyh
rea1*8 tmp

flag = 0

tmp = vector(l)
if(tmp .1t. - wxh) flag = 1
if(tmp .gt. wxh) flag = flag + 2
tmp = vector(2)
if(tmp .1t. -wyh) flag = flag + 4
if(tmp .gt. wyh) flag = flag + 8
return
end

ppush(flag,to, from)

ppush() pushes "to" towards "from" according to flag, which
contains the code returned by code(). used to insure that the

line exits the window at the correct point

subroutine ppush(flag,to,from)
real*8 to(4),from(4)
integer flag
common /windoe/wxh,wyh
real*8 wxh,wyh

if«flag .and. 1) .one. 0) then

endif

to(2)

toll)

((-wxh - from'(1))
/(to(l) - from(1»)*(to(2) - from(2» + from(2)
-wxh

if«flag .and. 2) .ne. 0) then

to(2) = «wxh - from(l»
/(to(l) - from(l»)*(to(2) - from(2» + from(2)

toll) = wxh .
endif
if«flag .an~ 4) .ne. 0) then

endif

toD)

to(2)

«-wyh - from(2»
/(to(2) - from(2»)*(to(1) - from(l» + from(l)
-wyh

if«flag .and. 8) .ne. 0) then

endif
lreturn
end

toll) = «wyh - from(2»
/(to(2) - from(2»)*(to(1) - from(l» + from(l)

to(2) = wyh

3-248

c
c
c
c
c

39
40

41

42
43
44 100
45
46

c
c
c
c
c
c
c

47
48
49

50
51
52

c
c
c
c
c
c

1
2

3
4
5
6
7
8
9

1,.0
11
12
13
14
15
16

Ap·144.

copym(dst,src)

copym() copies the src 4X4 matrix to the dst 4X4 matrix.

sUbroutine copym(dst,src)
real*8 dst(16),src(16)

integer i

do 100 i
dst(i) ,.
continue
return
end

1,16
src(i)

mp1ot(argl,arg2,arg3)

mplot() calls plot with argl,arg2,arg3. inserted as another level
of indirection in order to allow the actual plot commands to be
written to a file, etc.

subroutine mplot(argl,arg2,arg3)
real*8 argl,arg2
integer arg3

call plot(argl,arg2,arg3)
return
end

cube(argl,arg2,arg3,arg4,arg5,arg6)

cubeO generates a. cube centered at (argl,arg2,arg3) with
arg4,arg5,arg6 as it's half widths

subroutine cube(argl,arg2,arg3,arg4,arg5,arg6)
real*8 argl,arg2,arg3,arg4,arg5,arg6

call pline(argl-arg4,arg2-arg5,arg3-arg6,argl+arg4,arg2-arg5,arg3-arg6,2)
call pplot(argl+arg4,arg2+arg5,arg3-arg6,2)
call pplot(argl-arg4,arg2+arg5,arg3-arg6,2)
call pplot(argl-arg4,arg2-arg5,arg3-arg6,2)
call pplot(argl-arg4,arg2-arg5,arg3+arg6,2)
call pplot(argl+arg4,arg2-arg5,arg3+arg6,2)
call pplot(argl+arg4,arg2+arg5,arg3+arg6,2)
call pplot(argl-arg4,arg2+arg5,arg3+arg6,2)
call pplot(argl-arg4,arg2-arg5,arg3+arg6,2)
call pline(argl+arg4,arg2-arg5,arg3-arg6,argl+arg4,arg2-arg5,arg3+arg6,2)
call pline(argl+arg4,arg2+arg5,arg3-arg6,argl+arg4,arg2+arg5,arg3+arg6,2)
call pline(argl-arg4,arg2+arg5, arg3-arg6, argl-arg4,arg2+arg 5,arg3+arg6,2)
return
end

3-249

c
c
c
c
c
c

11

18
19
20
21
22
23
24

c
c
c
c
c
c
c

25
26

21

28
29
30
31

32
33
34
35
36
31
38

AP·144

arrow()

arrow() draws a sort-of arrow from (0,0,0) to (1,0,0)

subroutine arrow()

call pline(0.,O •• 0.,l.,O.,O.,2)
call pline(l.,O.,O., .8, .2,0.,2)
call pline(l., 0., 0., .8, 0., .2,2)
call pline(1.,O.,O.,.8,-.2,O.,2)
call pline(1.,O.,O.,.8,O.,-.2,2)
return
end

pyrmd(argl,arg2,arg3,arg4,arg5,arg6)

pyrmd() draws a pyramid with the center of it's base at
(argl,arg2,arg3) and half x,y,z widths of arg4,arg5,arg6.
The height is the x half width.

subroutine pyrmd(argl.arg2,arg3,arg4,arg5,arg6)
real ~8 argl, arg2, arg3,' arg4, argS, arg6

real*8 height

call pline(argl-arg4,arg2-arg5,arg3-arg6,argl+arg4,arg2-arg5,arg3-arg6,2)
call pplot(argl+arg4,arg2+arg5,arg3-arg6,2)
call pplot(argl-arg4,arg2+argS,arg3-arg6,2)
call pplot(argl-arg4,arg2-arg5,arg3-arg6,2)

height = arg4 - argl
call pline(argl-arg4,arg2-argS,arg3-arg6,argl,arg2,arg3+height,2)
call pline(argl+arg4,arg2-arg5,arg3-arg6,argl,arg2,arg3+height,2)
call pline(argl-arg4,arg2+arg5,arg3-arg6,argl,arg2,arg3+height,2)
call pline(argl+arg4, arg2+argS,arg3-arg6, argl,arg2,arg3+hei ght,2)
return
end

3·250

c
c
c
c
c
c
c
c
c

1
2
3
4
5

6
7
S
9

10
11 110
12

, 13 100
14
15
16
17 120
lS
19

c
c
c
c
c
c
c
c
c

20
21
22
23
24

25
26
27
2S
29 110
30
31 100
32
33
34 120
35
36

AP·144

subroutine mmult4(mpl,mp2,mpr)

subroutine mmult4 multiplies the mpl 4x4 matrix
and multiplies it by the mp2 4x4 matrix. the result is
placed in the mpr 4x4 matrix. internal results are placed
in a temporary matrix, then copied over in order that one o~
the operands may be used as the destination matrix

subroutine mmult4(mpl,mp2,mpr)
real*S mpl(4,4),mp2(4,4),mpr(4,4)
rea1*S acc
real*S temp(4.4)
integer i.j.k

do 100 i=1.4
. do 100 j=1.4

acc = o.
do 110 k=1.4

acc acc + mpl(i.k)*mp2(k,j)
continue
temp(i,j) acc

continue
do 120 i=l,4

do 120 j=1.4
mpr(i,j) temp(i.j)

continue
return
end

subroutine mmu1t1(mp1,mp2.mpr)

subroutine mmu1tl multiplies the mpl 4 position vector
by the mp2 4x4 matrix. the result is put in the mpr 4
position vector. results are calculated into a temporary
vector, then copied over so that'the mpl vector may be used
as the destination of the result

subroutine mmultl(mpl,mp2,mpr)
rea1*S mpl(4),mp2(4.4).mpr(4)
rea1*S acc
real*S temp(4)
integer i, j.k

do 100 j=l,4
acc = O.
do 110 k=I,4

acc = acc + mpl(k)*mp2(k,j)
continue
temp(j) = acc

continue
do 120 i=1.4
mpr(i) = temp(i)
continue
return
end

3-251

c
c
c
c
c
c
C.'
c
c
c
c
c
c
c

1
2
3
4
5
6

7

8
9

10,
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
3S
36
37
38

AP·144

subroutine plot(x,y,penc)

subroutine plot plots a line from the currebt pen position to
the given pen position using 'the pencode given. The possible
pen codes are:

2: pen down
3: pen up
999: terminate plotting

the actual interface described here if for the serial port on the
iSBC 86/12a board connected to an HP722SA flat bed plotter. no
handshaking is done.

subroutine plot(x,y,penc)
real*8 x,y
integer penc
common /penpos/xpos,ypos,pcount
rea:J.*8 xpoS,ypos
integer*4 pcount

pcount = pcount + 1

if(penc .eq. 999) then
call putout('p')
call,putout('U')
call putout(':')

endif

print *,'the number of points plotted is: ',pcount
goto 200

if«xpos.eq.x).and.(ypos.eq.y» then

else

if(penc .eq. 2') then
call putout ('P')
call putout('O')
call putout(':')
c~ll putout('p')
call putout ('U')
call putout(':')

else
goto 200

endif

if(penc .eq. 3) then
call putout('P')
call putout('U')

else if(penc .eq. 2) then
call putout('p')
call putout('O')

else

endif

call putout('P')
calI putout ('U')
call putout(';')
goto 200

3·252

39
40
41
42
43
44
45
46
47
48
49
50
51 200
52

c
c
c
c
c
c
c
c

53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 100
74
75
76

Ap·144

endif
xpos .. x
ypos .. y
return
end

call putout(':')
call putout('P')
call putout('A')
if(x .gt. 12) x = 12
call ponum(x)
call putout(',')
if(y .gt. 10) y = 10
call ponum(y)
call putout(':')

subroutine ponum(number)

subroutine ponum takes the given double prec1s10n real number,
truncates it to integer, then runs the resultant integer out
the iSBC 86/l2a serial port. leading zeros are suppressed.
the maximum number is 99999111

subroutine ponum(number)
real*8 number
character lookup(9)
logical flag
integer multip(5)
integer work -

data lookup/' 1 . , 121 , '3' , 141 I • 5 I I '6 ' , '7 1 , '8 1 I t 9 I /

data multip/10000,lOOO,lOO,lO,l/
flag = • false.
H(Qumber .• lt. 0) number O.
number .. number * 800.
do 100 i = 1,5
work" aint(number / real(multip(i»)
if(work .eq. 0) then

else

endif

if(flag) call putout ('0')

call putout(lookup(work»
flag ... true.

number number - work * multip(i)
continue
if(.not. flag) call putout('O')
return
end

3·253

c
c
c
c
c
c
c
c

77
78
79

80
81
82
83
84

85
8~
87
68
89
90
91
92
93
94
95

c
c
c
c
c
c
c

96
97
98

99 100
100
101

102
103
104

c
c
c
c
c
c

105
106
107

\

AP·144

subroutine plots

subroutine plots iniHalized the isaC86!.12 board baud rate
generator(really part of the 8253 timer) and serial line.
the given numbers will set it up for 600 baud,' 8 bits, no
parity

subroutine plots
common /penpos/xpos,ypos
real*8 xpos,ypos

xpos .. 10000.
ypos .. 10000.
call output(iOd6h,intl(iOb6h»
call output(iOd4h,intl(i80h»
call output(#Od4h,intl(0»

calloutput(iOdah,intl(i72h»
call wastet
call output(#Odah,intl(i25h»
call wastet
call output(iOdah,intl(#62h»
call wastet
call output(.Odah,intl(#Oceh»
call wastet
call output(#Odah,intl(#27h»
return
end

subroutine putout(c)

subroutine putout puts the character given out on the iSBC 86/12 ,
board serial line (checks for transmitter empty, loops on not empt,y,
on empty puts out the character)

subroutine putout(c)
character c
integer*l status

call input(.Odah,status),
status = status .and. 4

if(status .eq. 0) goto 100

call output(#Od8h,intl(ichar(c»)
return
end

subroutine wastet ...
subroutine wastet wastes a little bit of, time while the 8253 gets
its act together

subrou~ine wastet
return
end

3-254

AP-144

APPENDIX B

run :f5:graph
'defin!!' 1 /'
'yiewport' ?'.5, 2.5 ? :1 /
'viewpoint' 10 10 10 " 0 0 /
'windo\/' 10 It\' /
'cube' 0' () 0 '- 2 ? /
'viewport' 7.5 ,?. 5 ? 2 /
'rotate' 15 15 pj I"~
'cubt'" () " 0 2 ? ? /
• viewport , :>.5 7.<; 2 2 /
'ident' /
'vieWpoint' 10 0 0 0 0 0 /
'cube' 0 0 0 2 2 ? /
'vie\'Iport I 7.5 7.5 2 '2 /
'rotate' 30 3() 30 I
, cube I 0 0 0 2 '1 2 /
I en(lcie-f' I
'call' 1 I
'end' I

3-255

1. INTRODUCTION
As state of the art technology has increased the number
of transistors possible on a single integrated circuit,
these devices have attained new, higher levels of both
performance and functionality. Riding this crest are the
Intel 80186 and 80286 microprocessors. While the
80286 has added memory protection and management
to the basic 8086 architecture, the 80186 has integrated
six separate functional blocks into a single device.

The purpose of this note is to explain, through example,
the u.e of the 80186 with various peripheral and mem­
ory diWices. Because the 80186 integrates a DMA unit,
timer unit, interrupt controller unit, bus controller unit
and chip select and ready generation unit with the CPU

, 'f,

on a single chip (see Figure 1), system construction is
simplified since many of the peripheral interfaces are in-
tegrated 'onto the device. '

The 80186 family actually consists oftwo processors: the
80186 and 80188. The only difference between the two
processors is that the 80186 maintains a 16-bit external
data bus while the 80188 has an 8-bit external data bus.
Internally, they both implement the same processor with
the same integrated peripheral components. ThUS, ex­
cept where noted, a1180186 information in this note also
applies to the 80188. The implications of having an ,8-bit
external data bus on the 80188 are explicitly noted in ap­
pendix I. Any parametric values included in this note are
taken from the iAPX 186 Advance Information data
sheet, and pertain to 8Mhz devices.

INT3IiNm

'- ..
'- ..
'- ..
,-..
:~~
'-r-

SROY
AROY
'IUT
HOLD
tlLOA

RIS
RESET

INT2JIIiITllI

li~~LKOUT T Gr,

INT1 TMR OUT 1 TMR OUT 0

TMR IN f TMR IN f
NTI INj"' 1 1

I I 'ExEcUT.oN 'UN~ l l t t
PROGRAMMABLE

X, X.
I TIMERS
I 0 1 2

1.·BIT I MAXCOUNT ~ AW I PROGRAMMABLE REGISTER B :..:
INTERRUPT

CLOCK I CONTROLLER MAX COUNT
GENERATOR I REGISTER A

1.·BIT
GENERAL I CONTROL REGISTERS
PURPOSE I REGISTERS CONTROL I I 1.·BIT

-1 REGISTERS COUNT REGISTER

t n n
INTERNAL BUS

J U U + r-r-
ORQO'
ORQl

PROGRAMMABLE
OMAUNIT
0 1-

CHIP-SELECT 2O·BIT
UNIT SOURCE POINTERS

BUS INTERFACE ,~ 2O-BIT
UNIT 18-BIT DESTINATION SEGMENT POINTERS REGISTERS

80BYTE PROGRAMMABLE I 1.·BlT
CONTROL TRANSFER COUNT PREFETCH

REGISTERS J QUEUE CONTROL

I II-IH I I 1 REGISTERS

l~ l~Ate kl 1 ~A2
LOCK RO ADO- All/S3- LCS PCS5IAl

DT/If IiUS7 AD1S Al91S6 V v

Figure 1. 80188 Block Diagram

3-256·. AFN-210973

AP·186

2. OVERVIEW OF THE 80186

2.1 The CPU

The 80186 CPU shares a common base architecture
with the 8086, 8088 and 80286. It is completely object
code compatible with the 8086/88. This architecture
features four 16-bit general purpose registers (AX,BX,
CX,DX) which may be usedas OPerands in most arith­
metic operations .in either 8 or 16 bit units. It also fea­
tures four 16-bit "pointer" registers (SI,DI,BP,sP)
which may be used both in arithmetic operations and in
accessing memory based variables. Four 16-bit segment
registers (CS,DS,SS,ES) are provided allowing simple
memory partitioning to aid construction of modular pro­
grams. Finally, it has a 16-bit instruction pointer and a
16-bit status register.

Physical memory addresses are generated by the 80186
identically to the 8086. The 16-bit segment value is left
shifted 4 bits and then is added to an offset value which
is derived from combinations of the pointer registers, the
instruction pointer, and immediate values (see Figure
2). Any carry out of this addition is ignored. The result
of this addition is a 20-bit physical address which is pre­
sented to the system memory.

The 80186 has a 16-bit ALU which performs 8 or 16-bit
arithmetic and logical operations. It provides for data
movement among registers, memory and I/O ·space. In
addition, the CPU allows for high speed data transfer
from one area of memory to another using string move
instructions, and to or from an I/O port and memory us­
ing block I/O instructions. Finally, the CPU provides a

I·
I·

SEGMENT VALUE I

OFFSET

PHYSICAL ADDRESS I
I·

wealth of conditional branch and other control
instructions.
In the 80186, as in the 8086, instruction fetching and ill;­
struction execution are performed by separate units: the
bus interface unit and the execution unit, respectively.
The 80186 also has a 6-byte prefetch queue as does the
8086. The 80188 has a 4-byte prefetch queue as does the
8088. As a program is executing, opcodes are fetched
from memory by the bus interface unit and placed in this
queue. Whenever the execution unit requires ~nother in­
struction, it takes it out ofthe queue. Effective processor
throughput is increased by adding this queue~ since the
bus interface unit may continue to fetch instructions
while the execution unit executes a long instruction.
Then, when the CPU completes this instruction, it does
not have to wait for another instruction to be fetched
from memory.

2.2 80186 CPU Enhancements
Although the '80186 is completely object code compati­
ble with the 8086, most of the. 8086 instructions require
fewer clock cycles to execute on the 80186 than on ~he
8086 because of hardware enhancements in the bus m­
terface unit and the execution unit. In addition, the
80186 provides many new instructions which simplify
assembly language programming, enhance the perfor­
mance of high level language implementations, and re­
duce object code sizes for the 80186. These new
instructions are also included in the 80286. A complete
description of the architecture and instruction execution
of the 80186 can be found in volume I of the
iAPX86/ 186 users manual. The algorithms for the new
instructions are also given in appendix H of this note.

16 BITS

"I
18 BITS -I

I
+

'I
=

I
20 BITS -I

Figure 2. Phy.lcal Address Generation In the 80186

3-257 AFN-21 0973

2.3 . DMA Unit

The 80186 includes a DMA unit which provides two
high speed DMA channels. This DMA unit will perform
transfers to or from any combination of 1/0 space and
memory space in either oyteor word units. Every DMA
cycle requires,;two to four bus cycles, one or two to fetch
the data to an internal register, and one or two to deposit
the data. This allows word data to be located on odd
boundaries, or byte data to be moved from odd locations
to even locations: This is normally difficult, since odd
data bytes are transferred on the upper 8 data bits of the
16-bit data bus, while even data bytes are transferred on
the lower 8 data bits of the data bus.

Each DMA channel maintains independent 20-bit
source and destination ppinters which are used to access
the source and destination of the data transferred. Each
of these pointers may independently address either 1/0
or memory space. After each DMA cycle, the pointers
may be independently incremented, decremented, or
maintained constant. Each DMA channel also main­
tains a transfer count which may be used t-o terminate a
series of DMA transfers after a pre-programmed num­
ber of transfers:

2.4 Timers

The 80186 includes a timer unit which contains 3 inde­
pendent 16-bit timer/counters. Two of these timers can
be used to count external events, ,to provide waveforms"
derived from either the CPU clock or an external clock
of any duty cycle, or to interrupt the CPU after a speci- "
fied number of timer "events." The third timer counts
only CPU clocks and can be used to interrupt the CPU
after a programmable number of CPU clocks, to give a
count pulse to either or both of the other two timers after
a programmable number of CPU clocks, or to give a
DMA request pulse to the integrated DMA unit after a
programmable number of CPU clocks.

2.5 Interrupt Controller

The 80186 includes an interrupt controller. This control­
ler arbitrates interrupt requests between all internal and
external sources. It can be directly cascaded as the mas­
ter to two external 8259A interrupt controllers. In addi­
tion, it can be configu~d as a slave controller to an

, external interrupt controller to allow complete compati­
bility with an 80130, 80150, and theiRMX@860perat­
ing system.

2.6 Clock Generator

80186 system timing derives, The CPU clock is external­
ly available, and all timing parameters are referenced to
this externally available signal. The clock generator also
provides ready synchronization for the processor.

2.7 Chip Select and Ready Generation Unit

The 80186 includes integrated chip select logic which
can be used to enable memory or peripheral devices. Six
output lines are used for memory addressing and seven
output lines are used for peripheral addressing.

The memory chip select lines are split into 3 groups for
separately addressing the major memory areas in a typi­
cal 8086 system: upper memory for reset ROM, lower
memory for interrUpt vectors, and mid-range memory
for program memory. The size of each of these regions is
user programmable. The starting location and ending
location of lower memory and upper memory are fixed
at OOOOOH and FFFFFH respectively; the starting loca­
tion of the mid-range memory is user programmable.

Each of the seven peripheral select lines address one of
seven contiguous 128 byte blocks above a programmable
base address. This base address can be located in either
memory or 1/0 space in order that peripheral devices
may be 1/0 or memory mapped. '

Each ofthe programmed chip select areas has associated
with it a set of programmable ready bits. These ready
bits control an integrated wait state generator. This al­
lows a programmable number of wait states (0 to 3) to
be automatically inserted whenever an access is made to
the area of memory associated with the chip select area.
In addition, each set of ready bits includes a bit which
determines whether the external ready signals (ARDY
and SRDY) will be used, or whether they will be ignored
(i.e., the bus cycle will terminate even though a ready
has not been returned on the external pins). There are 5
total sets of ready bits which allow independent ready
generation for each of upper memory, lower memory,
mid-range memory, peripheral devices 0-3 and peripher­
al devices 4-6.

2.8 Integrated Peripheral Accessing

The integrated peripheral and chip select circuitry is
controlled by sets of 16-bit registers accessed using stan­
dard input, output, or memory access instructions.
These peripheral control registers are all located within
a 256 byte block which can be placed in either memory

The 80186 includes a clock gimerator and crystal oscilla- or 1/0 space. Because they are accessed exactly as if
tor. The crystal oscillator can be used with a paTallel res- they were external devices, no new instruction types are
"onant, fundamental moiiecrystal at 2X the desired CPU required to access and control the integrated peripher-
clock speed (i.e., 16 MHz for an 8 MHz 80186), or with also For more information concerning the interfacing
an external oscillator also at 2X the CPU clock. The out- and accessing of the integrated 80f86 peripherals not in-
put of the oscillator is internally divided by two to "pro- cluded in this note, please consult the 80186 data sheet,
vide the 50% duty cycle CPU clock from which all or volilme II of the iAPX86/186'users manual.

3-258 AFN-21 0973

AP-186

3. USING THE 80186

3.1 Bus Interfacing to the 80186

3.1.1 OVERVIEW

The 80186 bus structure is very similar to the 8086 bus
structure. It includes a multiplexed address/data bus,
along with various control and status lines (see Table I).
Each bus cycle requires a minimum of 4 CPU clock cy­
cles along with any number of wait states required to ac­
commodate the speed access limitations of external
memory or peripheral devices. The bus cycles initiated
by the 80186 CPU are identical to the bus cycles initiat­
ed by the 80186 integrated DMA unit.

In the following discussion, all timing values given are
for an 8 MHz 80186. Future speed selections of the part
may have different values for the various parameters.

Each clock cycle of the 80186 bus cycle is called a "T"
state, and are numbered sequentially T1, T 2, T 3' Tw and
T4. Additional idle T states (Ti) can occur between T4
and T, when the processor requires no bus activity (in­
struction fetches, memory writes, I/O reads, etc.). The
ready signals control the number or wait states (Tw) in­
serted in each bus cycle. This number can vary from 0 to
positive infinity.

T,

LINES

DATA

I
I

~~~1 
Tn I 

I L 
I 01 I 02 

I (LOW I (HIGH 

I PHASE) I PHASE) 

I I 

Figure 3. T-state in the 80186 

The beginning of a T state is signaled by a high to low 
transition of the CPU clock. Each T state is divided into 
two phases, phase I (or the low phase) and phase 2 (or 
the high phase) which occur during the low and high lev­
els of the CPU clock respectively (see Figure 3). . 

Different types of bus activity occur for all of the T­
states (see Figure 4). Address generation information 
occurs during T1• data generation during T2, T3, Tw and 

T, T, 

LINES + ____ .;.( 
ADDRESS! t..-____ p_+-__ -;. ___ -++-_......I 

CONTROL -r-----,.....---_ 
SIGNALS 

(RD,WR) ,. 
Figu~e 4. Example Bus Cycle of the 80186 

Table 1. 80186 Bus Signals 

Function Signal Name 

address / data ADO-AD I 5 
address/status A16/S3-AI9-S6,BHE/S7 
co-processor control TEST 
local bus arbitration HOLD,HLDA 
local bus control ALE,RD,WR,DT /R,DEN 
multi-master bus LOCK 
ready (wait) interface SRDY,ARDY 
status information 80-S2 

3-259 AFN-210973 ' 



inter l ______________________________________________________________________ ~ ________ __ 

T 4' The beginning of a bus cycle is signaled by the status 
lines of the processor going from a passive state (all 
high) to an active state in the middle of the T-state im­
mediately before T 1 (either a T 4 or a TJ Because infor­
mation concerning an impending bus cycle occurs 
during the T-state immediately before the first T-state of 
the cycle itself, two different types of T 4 and T j can be 
generated: one where the T state is immediately fol­
lowed by a bus cycle, and one where the T state is imme­
diatly followed by an idle T state. 

During the first type of T 4 or T j , status information con­
cerning the impending bus cycle is generated for the bus 
cycle immediately to follow. This information will be 
available no later than tCHSV (55ns) after the low-to­
high transition of the 80186 clock in the middle of the T 
state. During the second type of T 4 or T j the status out­
puts remain inactive (high), since no bus cycle is to be 
started. This means that the decision per the nature of a 
T 4 or T j state (Le., whether it is immediately followed by 
a T j or a T t ) is decided at the beginning of the T-state 
immediately preceding the T 4 or T j (see Figure 5). This 
has consequences for the bus latency time (see section 
3.3.2 on bus latency). 

3.1.2 PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by the 80186 during T 1 

of a bus cycle. Since the a<ldress and data lines are mul­
tiplexed on the same set of pins,' addresses must be 

T. or 

Tw 

CLOCK 

OUT 

S1:ATUS 
ACTIVE I STATUS 

INFO T3 0t 

Tw 

CLOCK 

<?UT 

STATUS 
ACTIVE 
STATUS 

LINES 

latched during T 1 if they are required to, remain stable 
for the duration of the bus cycle. To facilitate latching of 
the physical address, the 80186 generates an active high 
ALE (Address Latch Enable) signal which can be di­
rectly connected to a transparent latch's strobe input. 

Figure 6 illustrates the physical address generation pa­
rameters of the 80186. Addresses are guaranteed valid 
no greater then tCLAV (44ns) af~er the beginning of T 1, 

and remain valid at least tCLAX (IOns) after the end of 
T I' The ALE signal is driven high in the middle of the T 
state (either T4 or Tj ) immediately preceding TI and is 
driven low in the'middle ofT1, no sooner than tAVAL (30 
ns) after addresses become valid. This parameter 
(tAvAL) is required to satisfy the address latch set-up 
times of address valid until strobe inactive. Addresses 
remain stable on the address/ data bus at least tLLAX (30 
ns) after ALE goes inactive to satisfy address latch hold 
times of strobe inactive to address invalid. 

Because ALE goes high long before addresses become 
valid, the delay through the address latches will be chief­
ly the propagation delay through the latch rather than 
the delay from the latch strobe, which is typically longer 
than the propagation delay. For the Intel 8282 latch, this 
parameter is tivoVo the input valid to output valid delay 
when strobe is held active (high). Note that the 80186 
drives ALE high one full clock phase' earlier than the 
8086 or the 8288 bus controller, and keeps it high 
throughout the 8086 or 8288 ALE high time (Le., the 
80186 ALE pulse is wider). 

T. T, 

. INACTIVE 
STATUS 

T. T, 

ACTIVE 
STATUS 

Figure 5. Active-Inactive Status TransItions in the 80186 

3-260 AFN·21 0973 



CLOCK 

OUT 

ALE __ ..oJ 

AP·188 

AO-A19 ----~r::~~~~~----

NOTES: 
1. tcHLH: Clock high to ALE hlgh=35 ns max 
2. tcLAv: Clock low to address vslld-44 ns max 

3. tcHLL: Ciock high to ALE 10w=35 ns max 
4. tcLAX: Clock low to address invalid (address hold from clock low)= 1 0 ns 

min 
5.lu.Ax: ALE low to address Invalid (address hold from ALE)-30 ns min 
6. tAVAL: Address valid to ALE low (address setup to ALE)-30 ns min 

Figure 6. Addre •• Oeneretlon TIming of trle 80186 

A typical circuit for latching physical addresses is shown 
in Figure 7. This circuit uses 3 8282 transparent octal 
non-inverting latches to dem,ultiplex all 20 address bits 
provided by the 80186., Typically, the upper 4 address 
bits are used only to select among various memory com­
ponents or subsystems, so when the integrated chip se-

lects (see section 8) are used, these upper bits need not 
be-latched, The worst case address generation time from 
the beginning of T \ (including address latch propaga­
tion time (t\vov) of the Intel 8282) for the circuit is: 

tCL~V (44ns) + t lVOV (30ns) = 74ns 

1B8SIGNALS 

A18-

A19 

ADS­

AD15 

ADO­

AD7 
ALE 

/4 , 

/8 , 

, '/8 
, 

8282 
I 

STB 

,- DE 

8282 
I 

STB 

- l5E 

82B2 
I 

STB 

~ OE 

~ 

0 , 

'0 / 

0 / 

LATCHED ADDRESS 
SIGNALS 

/4 
A111-A19 

,8 
A8-A111 

.,s, 
AO-A7 

, Pigure'7. ' Demultlpleidng the 'A~dre •• Bu. of the 80186'" 

3-261., AFN-210973 



AP·188 

Many memory or peripheral devices may not require ad­
dresses to remain stable throughout a data transfer. Ex­
amples of these are the 80130 and 80lS0 operating 
system firmware chips, and the 2186 8K x 8 iRAM. If a 
system is constructed wholly with these types of devices, 
addresses neep not be latched. In addition, two of the pe­
ripheral chip select outputs of the 80186 may be config­
ured to provide latched Al and A2 outputs for 
peripheral register selects in a system which does not de­
multiplex the address/data bus. 

One more signal is generated by the 80186 to address 
memory: BHE (Bus High Enable). This signal, along 
with AO, is used to enable byte devices .connected to ei­
ther or both halves (bytes) of the 16-bit data bus (see 
section 3.1.3 on data bus operation section). Because AO 
is used only to enable devices onto the lower half of the 
data bus, memory chip address inputs are usually driven 
by address bits AI-AI9, NOT AO-AI9. This provides 
512K unique word addresses, or 1M unique BYTE 
addresses. 

Of course, SHE is not present on the 8 bit 80188. All 
data transfers occur on the 8 bits of th~ data bus. 

3.1.3 80186 DATA BUS OPERATION 
/ 

Throughout T 2' T 3' T ... and T 4 of a bus cycle the multi­
plexed address/data bus becomes a 16-bit data bus; 
Data transfers on this bus may be either in bytes or in 
words. All m~mory is byte addressable, that is, the upper 
and lower byte of a 16-bit word each have a unique byte 
address by which they may be individually accessed, 
even though they share a common word address (see 
Figure 3-6). 

All bytes with even addresses (AO = 0) reside on the 
lower 8 bits of the data bus, while all bytes with odd ad­
dresses (AO = I) reside on the upper 8 bits of the data 
bus. Whenever a.!!..l!£!1ess is made to only the even byte, 
AO is driven low, BHE is driven high, and the data trans­
fer occurs on 00-07 of the data bus. Whenever an ae-

cess is made to only the Qdd byte, BHE is driven low, AO 
, is driven high, and the data transfer occurs on 08-015 
of the data bus. Finally, if a word access is perfor~ed to 
an even address, both AO and BHE are driven low and 
the data transfer occurs on 00-015. 

Word accesses are made to the addressed byte and to the 
next higher numbered byte. If a word access is per­
form~ to an odd address, two byte accesses must be per­
formed, the first to access the odd byte at the first word 
address on 08-01S. the second to access the even byte 
at the next sequential word address on 00-07. For ex­
ample, in Figure 8, byte 0 and byte 1 can be individually 
accessed (read or written) in two separate bus cycles 
(byte accesses) to byte addresses 0 and I at word address 
O. They may also be accessed together in a single bus cy­
cle (word access) to ,word address O. However, if a word 
access is made to address I, two bus cycles will be re­
.quired. the first to access byte I at word address 0 (note 
byte 0 will not be accessed), and the second to access 
byte 2, at word address 2 (note byte 3 will not be ac­
cessed). This is why all word data should be located at 
even addresses to maximize processor performance. 

When byte reads are made, the data returned on the half 
of the data bus not being accessed is ignored. When byte 
writes are made, the data driven on the half of the data 
b,us not being written is indeterminate. 

3.1.4 80188 DATA BUS OPERATION 

Because the 80188 externally has only an 8 bit data bus, 
the above discussion about upper andJower bytes of the 
data bus does not apply to the 80188. No performance' 

,improvement will ocCur if word data is placed on even 
boundaries in memory space. All word accesses requirll 
two bus cycles, the first to access the lower byte of the 
word; the second to access the upper byte of the word. 

Any 80188 access to the integrated peripherals must be 
done 16 bits at a time: thus in this special Case, a word 
access will occur in-a single bus cycle in the 80188. The 

___ ~~-=1 
: : : I BYTE ADDRESS SHOWN 

_ IN BYTE FIELD 

o 0 

08-
D15 

DO­
D7 

80188 SIGNAL 
CONNECTIONS 

FigUre 8. Physlca, Memory Byte/Word Aj:ldresslng In the 80~86 

3-262 AFN-21 0973 



AP-186 

external data bus will record only a single byte being 
~ransferred, however. 

3.1.5 GENERAL DATA BUS OPERATION 

Because of .the bus drive capabilities of the 80186 
(200pF, sinking 2mA, sourcing 400uA, roughly twice 
that of the 8086), this bus may not require additional 
buffering in many small systems. If data buffers are not 
used in the system, care should be taken not to allow bus 
contention between the 80186 and the devices directly 
connected to the 80186 data bus. Since the 80186 floats 
the address/data bus before activating any command 
lines, the only requirement on a directly connected de­
vice is that it floats its output drivers after a read BE­
FORE the 80186 begins to drive address information for 
the next bus cycle. T~arameter of interest here is the 
minimum time from RD inactive until addresses active 
for the next bus cycle (tRHAV) which has a minimum val­
ue of 85ns. If the memory or peripheral device cannot 
disable its output drivers in this time, data buffers will 
be required to prevent both the 80186 and the peripheral 
or memorye4,evice from driving these lines concurrently. 
Note, this parameter is unaffected by the addition of 
wait states. Data buffers solve this problem because 
their output float times are typically much faster than 
the 80186 required minimum. 

If buffer,s ar~ reqllired, the 80186 provides a DEN (Data 
ENable) and DT/R (Data Transmit/Receive) signals 
to simplify buffer interfacing. The DEN and DT /R sig-

80188 SIGNALS 

AD8-D15 

DEN 

BUFFERED 

DEVICES 

SELECT 

ADO- AD7 

DT/R 

/8 

~ 
J) 

r-

} 

nals are activated during all bus cycles, whether or not 
the cycle addresses buffered devices. The DEN signal is 
driven low whenever the processor is either ready to re­
ceive data (during a read) or when the processor is ready 
to send data (auring a write) (that is, any time during an 
active bus cycle when address information is not being 
generated on the address/data pins). In most systems, 
the DEN signal should NOT be directly connected to 
the OE input of buffers, since unbuffered devices (or 
other buffers) may be directly connected to the proces­
sor's address/data pins. If DEN were directly coJlnected 
to several buffers, contention would occur during read 
cycles, as many devices attempt to drive the processor 
bus. Rather, itshould be a factor (along with the chip se­
lects for buffered devices) in generating the output en­
able input of a bi-directional buffer. 

The DT /R signal determines the direction of data prop­
agation through the bi- directional bus buffers. It is high 
whenever data is being driven out from the processor, 
and is low whenever data is being read into the processor. 
Unlike the DEN signal, it may be directly connected to 
bus buffers, since this signal does not usually directly en­
able the output drivers of the buffer. An example data 
bus subsystem supporting both buffered and unbuffered 
devices is shown in Figure 9. Note that the A side of the 
8286 buffer is connected to the 80186, the B side to the 
external device. The B side of the buffer has greater 
drive capacity than the A side (since it is meant to drive 
much greater loads). The DT/R signal can directly 
drive the T (transmit) signal of the buffer, since it has 
the correct polarity for this configuration. 

8288 
A 

/8 
OE B 

" 
T 

8286 
A 

OE B 
/8 

/ 

T 

/8 

//8 

/ 

D8-

AD15 

DO­

D7 

BUFFERED 

DATA 

BUS 

UNBUFFERED 

} DATA 

BUS 

Figure 9. Example 80186 Buffered/Unbuffered Data Bus 

3-263 AFN-21 0973 



CLOCK 
I OUT 

ADO-
AD1& "';' ____ .£'1 

AP-186 

1. tClAZ: ~Iock low until address float=35 ns max 
2. IeLRl: Clock low until RD active = 70 ns max 
3. tAZRl: Address float until RD active = 0 ns min 

T, 

4. tovcl:'Data valid until clock low (data input set-up time) = 20 ns min·' . 
5. IelDX: Clock low ,until data invalid ~data input hold time from clock) ~ 10 

. ns min·' ' 
6. IelR"': Clock low until RD high = 10 ns min 
7: tRHAV: RD high until addresses valid = 85 ns min ' . 

. ~. tRHDX: Read high until data invalid (data input hold fromRD) =.0' ns min· 
Input requirements of 80186. all others are output characteristics . , 

FIgure 10. Read Cycle nmlng of the 80188 

, ~" 

3.1.8 CONTROL SIGNALS 

The ~direc.!!Lm:ovides the control signals RD, 
WR, LOCK alld TEST. In addition, the 80186 provides 
the status. signals SO-S2 and S6 from which a1.l other re-

, quired bus'control signals can be generated. 

Note that ihe 80186 does not provide separate I/O and 
memory RD signals. If separate 1./0 read and memory 
real!!ignals are required, they can be synthesized using 
the S2 signal (which is low for all I/O QE!!.rations and 
high for all memory Qperations),and the RD signal (sec 
Figure 1!1. It should be noted that if this approach is 

3.1.8.1 RD and WR 

The RD and WR sls!!.als strobe data to or from memory 
or I/O space. The RD signal is driven low' offthe begin­
~ing oft 2, and is driven high off the beginning offi dur­
mg all memory and I/O reads (see Figure 10). RD will 
not ~me act.ive until the 80186 has ceased driving ad­
dress mformatlOn on the address/data bus. Data is sam­
pled into the processor at the beginning of T4. RD will 
not go inactive until the processor's data hold time 
(10ns) has been satisfied. 

LATCH 

52 ----~D 

used, the S2 signal will require latching, since the S2 sig­
nal (like SO and Sl) goes to a passive state well before 
the beginning ofT4 (where RD goes inactive). IfS2 was 
directly used for this purpose, the type of read command 
(I/O or me~pry) coul~ change just before T4 as S2 goes 
to the passive state (high). The status signals may be 
latched using ALE in an identical fashion as is used to 
latch the address signals (often using the spare bits in 
the address latches). . . 

Often the lack of a seperate I/O and memory RD signal 

. Q t---_----t"-..... 
ALE' ---~ STa 

RD ---------------------~_L~ 

F!gure 11., Generatin~ 1,0 and Memory.llI.-d Signalt from the 80188 
, , .' , 

3 .. 264 AFN-210973 



AP-186 

is not important in an 80186 system. Each of the 80186 
chip select signals will respond on only one of memory or 
I/O accesses (the memory chip selects respond only to 
accesses memory space; the peripheral chip selects can 
respond'to accesses in either I/O or memory space, at 
programmer option). Thus, the chip select signal en­
ables the exter!1al device only during accesses to the 
proper address in the proper space. 

The WR signal is also driven low off the beginni!!&,Qf T 2 

and driven high off the beginning of T 4' Like the RD sig­
nal, the WR signal is active for all memory and I/O 
writes, and also like the RD signal, separate I/O and 
memory writes may ~nerated using the latched S2 
signal along with the WR signal (see Figure 12). More 

importantly, however, is the active going edge of write. 
At the time WR makes its active (high to low) transi­
tion, valid write data is NOT present on the data bus. 
This has consequences when using this signal as a write 
enable signal for DRAMs and iRAMs since both of 
these devices require that the write data be stable on the 
data bus at the time of the inactive ,to active transition of 
the WE signal. In DRAM applications, this problem is 
solved by a DRAM controller (such as the Intel 8207 or 
8203), while with iRAMs this problem may be solved by 
placing cross-coupled NAND gates between the CPU 
and the iRAMs on the WR line (see fl&1re 13). This 
will delay the active going edge of the WR signal to the 
iRAMs by a clock phase, allowing valid data to be driv­
en onto the data bus. 

ADO- I WRITE I ADDRESS 
AD15 ______ ~~J~------~I~D~A~rA~--r+--~~~~~I~N~FO~----

1. tcLDV: Clock low until data valid = 44 ns max 
2. tcvcrv: Clock low until WR active = 70 ns max 
3. tbvCTX: Clock low until WR inactive = 55 ns max 
4. tCHDX: Clock high until data invalid = 10 ns min 

5. WR inactive until data invalid = tcLCH min - tcvCTX + tcHDx 
= 55-55 + 10 

CLKOUT 

= 10n8 

Figure 12. Write Cycle Timing of the 80186 

DELAYED 

WRITE 

(DATA VALID 

ON LEADING EDGE) 

Figure 13. ~ynthe8izi"g Delayed Write from the 80186 

AFN-21 0973 



3.1.8.2 Queue Status Signals • 

If the RD line is externally grounded during reset and 
~erilains grounded during processor operation, the 

, 80186 will enter "queue status" mode. When in this 
mode, the WR and ALE signals become queue status 
outputs, refle'cting the status of the internal prefetch 
queue during each ~lock cycle. These signals are pro­
vided to allow a processor extension (such as the Intel 
8087 floating 'Point processor) to track execution of in­
structions within the 80186. The interpretation of QSO 
(ALE) and QSI (WR) are given in Table 2. These sig­
nals change on the high-to-Iow clock transition, one 
clock phase earlier than on the 8086. Note that since ex­
ecution unit operation is independent of bus interface 
unit operation, queue status lines may change in any T 
state. 

Table 2. 80188 Queue Status 

QS1 QSO Interpretation 

0 0 no operation 

0 1 first byte of instruction taken 
from queue 

1 0 queue was reinitialized 

1 I subsequent byte of instruction 
taken from queue 

Since the ALE, RD, and WR signals are not directly 
available from the 80186 when it is configured in queue 
status m~ these signals must be derived from the sta­
tus lines SO-S2 using an external 8288 bus controller 
(see below). To prevent the 80186 from accidentally en­
tering queue status mode during reset, the RD line is in­
ternally provided with a weak pullup device. RD is the 
ONLY three-state or input pin on the 80186 which is 
supplie;e1 with a pullup or pulldown device. 

3.1.8.3 Status Lines 

. The 80186 provides 3 status outputs which are used to 
indicate the type of bus cycle currently being executed. 
These signals go from an inactive state (all high) to one 
of seven possible active states duringJhe T state immedi­
ately preceding Tl ofa bus cycle (see Figure 5). The pos­
sible status line encodings and their interpretations are 
given in Table 3. The status lines are driven to their inac­
tive state in the T state (T3 or Tw) immediately preced­
ing T 4 of the current bus cycle. 

The status lines may be directly connected to an 8288 
bus controller, which can be used to provide local bus 
control signals or multi-bus control signals (see Figure 
14). Use ofthe 8288 bus copk2!.le!..!!2.es not preclude the 
use of the 80186 generated RD, WR and ALE signals, 
however. The 80186 directly generated signals m~y be 
used to provide local bus control signals, while an 8288 is 
used to pro"ide multi-bus colitrol signals, for example. 

801 .. 

/3 8288 
so·a r, Sij.fi 

,sus CONTROL 

CLOCK 
SIGNALS 

OUT 
CLJ( 

Figure 14. 80188/8288 Bus Controller 
Interconnection 

Table 3. 80188 Status Line Interpretation 

S2 S1 S2 Operation 

0 0 0 interrupt acknowledge 
0 0 1 read I/O 
0 1 0 write I/O 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read memory 
1 1 0 write memory 
1 1 1 passive 

The 80186 provides two additional status signals: S6 
and S7. S7 is equivalent to BHE (see section 3.1.2) and 
appears on the same pin as BHE. BHE/S7 changes 
state, reflecting the bus cycle about to be run, in the mid­
dle of the T state (T 4 or T i) immediately preceding T 1 of 
the bus cycle. This means that BHE/S7 does not need to 
be latched, i.e., it may be used directly as the BHE sig­
nal. S6 provides information concerning the unit gener­
ating the bus cycle. It is time multiplexed with A19, and 
is available during T 2' T 3' T 4 and T ... In the 8086 family, 
all central processors (e.g., the 8086, g088 and 8087) 
drive this line low, while all I/O processors (e.g., 8089) 
drive this line high during their respective bus cycles . 
Following this scheme, the 80186 drives this line low 
whenever the bus cycle is generated by the 80186 CPU, 
but drives it high when the bus cycle is generated by the 
integrated 80186 DMA unit. This allows external de; 
vices to distinguish betwee~ bus cycles fetching data for 
the CPU from those transfering data for the DMA unit: 

Three other status signals are available on the 8086 but 
not on the 80186. They ,are S3, S4, and SS. Taken to­
gether, S3 and S4 indicate the segment register froni 
which the current physical address derives. SS indicates 
the state of the interrupt flip-flop. On the 80186, these 
signals will ALWAYS be low. 

3.1.8.4 TEST and LOCK 

Finally, the 80186 provides a 'TEST input and a LOCK 
output: The TEST input is used in conjunction with the 

3-266 AFN-210973 



processor WAIT instruction. It is typically driven by a 
processor extension (like the 8087) to indicate whether 
it is busy. Then, by executing the WAIT (or FWAIT) in­
struction, the central processor may be forced to tempo­
rarily suspend program execution until the pr~ 
extension indicates that it is idle by driving the 'TEST 
line low. 

The LOCK output is driven 10'Y whenever the data cy­
cles of a LOCKED instruction are executed. A 
LOCKED instruction is generated whenever the LOCK: 
prefix occurs immediately before an instruction. The 
LOCK prefix is active for the single instruction immedi­
ately following the LOCK prefix. This signal is used to 
indicate to a bus arbiter (e.g., the 8289) that a series of 
locked data transfers is occurring. The bus arbiter 
should under no circumstances release the bus while 
locked transfers are occurring. The 80186 will not rec­
ognize a bus HOLD, nor will it allow DMA cycles to be 
run by the integrated DMA controller during locked 
data transfers. LOCKED transfers are used in multi­
processor systems to access memory based semaphore 
variables which control access to shared system re­
sources (see AP-I06, "Multiprogramming with the 
iAPX88 and iAPX86 Microsystems," by George Alexy 
(Sept. 1980». 

On the 80186, the LOCK signal will go active during T) 
of the first DATA cycle of the locked transfer. It is driv­
en inactive 3 T-states after the beginnIng of the last 
DATA cycle of the locked transfer. On the 8086, the 
LOCK signal is activated immediately after the LOCK 
prefix is executed. The LOCK prefix may be executed 
well before the processor is prepared to perform the . 
locked data transfer. This has the unfortunate conse­
quence of activating the LOCK signal before the first 
LOCKED data cycle is performed. Since LOCK is ac­
tive before the processor requires the bus for the data 
transfer, opcode pre-fetching can be LOCKED. Howev­
er,'since the 80186 does not activate the LOCK signal 
until the prOcessor is ready to actually perform the 
locked transfer, locked pre-fetching will not occur with 
the 80186. 

Note that the LOCK signal does not remain active until 
the end of the last data cycle of the locked transfer. This 
may cause problems in some systems if, for example, the 
processor requests memory access from a dual ported 
RAM array and is denied immediate access (because of ' 
a DRAM refresh cycle, for example). When the proces­
sor finally is able to gain access to the RAM array, it 
may have already dropped its LOCK signal, thus allow­
ing the dual port controller to give the other port ,access 
to the RAM array instead. An example circuit which 
can be used to hold LOCK active until a RDY has been 
received by the 80186 is shown in Figure 15. 

3.1.7 HALT TIMING 

A HALT bus cycle is used to signal the World that the 

80186 CPU has executed a HLT instruction. It differs 
from a normal bus cycle in two important ways. 

LOCK --~----------~r-~ 

b---LJ->---4--- LOCK 
52 ----........ _-' 

Figure 15. Circuit Holding Lock Active Until 
Ready is Returned 

The first way in which a HALT bus cycle differs from a 
normal bus cycle is that since the proce~ is entering a 
halted state, none of the control lines (RD or WR) will 
be driven active. Address and data information will not 
be driven by the processor, and no data will be returned. 
The second way a HALT bus cycle differs from, a normal 
bus cycle is that the SO-S2 status lines go to their passive 
state (all high) during T 2 of the bus cycle, well before 
they go to their passive state during a normal bus cycle. 

Like a normal bus cycle, however; ALE is driven active. 
Since no valid address information is, present, the infor­
mation strob~d into the address latches should be ig­
nored. This ALE pulse can be used, however, to latch the 
HALT status from the SO-S2 status lines. 

The processor being halted does not interfere with the 
operation of any of the 80186 integrated peripheral 
units. This means that if a DMA transfer is pending 
while the processor is halted, the bus cycleS associated 
with the DMA transfer will run. In fact, DMA latency 
time will improve while the processor is halted because 
the DMA unit will not be contending with the processor 
for access to the 80186 bus (see section 4.4.1). 

3.1.8 8288 AND 8289 INTERFACING 

The 8288 and 8289 are the bus controller and multi­
master bus arbitration devices used with the 8086 and 
8088. Because the 80186 bus is similar to the 8086 bus, 
they can be directly used with the 80186. Figure 16 

, shows an 80186 interconnection to these two devices. , ' 

The 8288 bus co!!!roller generates control signals (RD, 
WR, ALE, DT/R, DEN, etc.) for an 8086 maximum 
mode system.:.!t derives its information by decoding sta­
tus lines SO-S2 of the processor. Because the 80186 and 
the 8086, drive the same status information on these 
lines, the 80186 can be directly connected to the 8288 
just as in an 8086 system. Using the 8288 with the 80186 
does not prevent using the 80186 control signals directly. ' 
Many systems require both local bus control signals and 
system bus control signals. In this type of system, the 

, 80186 lines could be used as the local signals, with 'the 

3-267 AFN·21 0973 



inter AP-188'-

801 

TO MULn-MASTER BUS 

ADDRESS LATCHES. 

DATA BUFFEIIS 

8288 
'Slf--_-I SO- ALE 
fi S2 DEN 

DT/R 

CLOCKOUT F-t--l-'" CLK 

HI--+!SYSB/MUi..---+ 

Figure 18. 80188/8288/8289 Interconnection , 

8288'lines used as the system signals. Note that in an 
80186 system, the 8288 generated ALE pulse occurs lat­
er than that of the 80186 itself. In many multimaster 
bus systems, the 8288 ALE pulse 'should be used to 
strobe the addresses into the system bus address latches 
to insure that the address hold times are met. 

The 8289 bus arbiter arbitrates the use of a multi-mas­
ter system bus among various devices each of which can 
become the~uLinaster: This component also decodes 
status lines SO-S2 of the processor directly to determine 
when the system bus is required. When the system bus is 
requited, the 8289 forces the processor to wait until it 

has acquired control of the bus, then it allows the ptoces­
sor to drive address, data and control information onto 
the system bus. The system determines when it requires 
system bus resources by an address decode~ Whenever 
the address ,being drive\1 coincides with the address of an 
on-board resource, the system bus is not required and 
thus will not be requested. The circuit shown factors the 
80186 chip select lines to determine'when the system bus 
should be requested, or when the 80186 request can be 
~atisfied using a local resource. ' 

3.1.9 READY INTERFACING 

The 80186 provides two ready lines, a' ~ynchronous 
ready (SRDY) line and an asynchronous ready 
(ARDY) line. These lines signal the ,processor to insert 
wait states (Tw) into a CPU bus cycle. This allows sloWer, 
devices to respOnd to CPU service requests (reads or 
writes). Wait states will only be inserted when both 
ARDY and, SRDY are low, i.e., only one of ARDY or 
SRDY need be active t9 terminate a bus cycle. Any 
number of wait states may be in~erted into a bus cycle . 

• The 80186 will ignore the RDY inputs during any ac­
cesses to the integrated peripheral registers, and to any 
area where the chip select ready bits indicate that, the 
external ready should be ignored. 

The timing required by the two ROY lines is different. 
The AROY line is meant to be used with asynchronous 
ready inputs. Thus, inputs to this line will be internally 
synchronized to the CPU clock before ,being presented to 
the pr~essor. The synchronization circuitry used with 
the ARQY line is shown in Figure 17. Figure 18A and 
188 show valid and invalid transitions ofthe ARDY line 
(and subsequent wait state insertion). The first flip-fl~p 
is used to "resolve" the asynchronous transition of the 
ARDY \ine. It will achieve a definit,e level (either high 
or low) before its output is latched into the second flip-

ARDY 
INPUT r--------~-------~ 

, ' 80186 'I 

I I 
I D Q ..,CD",,1 '--L....J 

I 
I C 

\ I CPU 
, ICLOCK--~~--~------~ L..._____________ __.....l 

1. Asynchronous Resolution Flip Flop 
2. Ready Latch Flip Flop 

FROM SYNCHRONOUS 

READY 

TO BUS 
INTERFACE 
UNIT 

Fisiu~ 17. Asynchronous Re/ldy Circuitry of the 80188 

3-268, AFN-21 0973 



AP-186 

flop for presentation to the CPU. When latched high, it 
allows the level present on the ARDY line to pass direct­
ly to the CPU; when latched low, it forces not ready to be 
presented to the CPU (see Appendix B for 80186 syn-
chronizer information). . 

With this scheme, notice that only the active going edge 
of the ARDY signal is synchronized. Once the synchro­
nization flip-flop has sampled high, the ARDY input di­
rectly drives the RDY flip-flop. Since inputs to this 
RDY flip-flop must satisfy certain setup and hold times, 
it is important that these setup and hold times (tARYLCL 
= 35ns and tcHARYX = 15 ns respectively) be satisfied 

by any inactive going transition of the ARDY line. The 
reason ARDY is implemented in this manner is to allow 
a slow device the greatest amount of time to respond 
with a not ready after it has been selected. In a normally 
ready system, a slow device must respond with a not 
ready quickly after it has been selected to prevent the 
processor from continuing and accessing invalid data 
from the slow device. ·By implementing ARDY in the 
above fashion, the slow device has an additional clock 
phase to respond with a not ready. 

If RDY is sampled active into the RDY flip-flop at the 
beginning of T3 or Tw (meaning that ARDY was sam-

: ~ : ~ : ~ : ~ 

CLOCK~ OUT " 

CD 0 . 
ARDY 

.l.l.l.l.l.Wl.U.Wl.U.Wl.U.UJJ 

1. No set-up or hold times required 
2. tcu.RVX: Clock low to ARDY inactive (ARDY active hold time) = 15 ns min 

: ~ : ~ : ~ : ~ 

CLOCK~ OUT 

CD 5DtD 
ARDY 

==~---II~1.uJJJI 

1. tARYHCH: ARDY valid until clock high (ARDY inactive set-up time to clock 
high) = 20 ns min 

2. No set-up or hold time required ONLY if (j) is guaranteed 
3. tCLARYX: Clock low to ARDY inactive (ARDY active hold time) = 15 ns min 

~ : ~ : ~ : ~ 

:~ 
1. tARYLCL: AHOY low to clock low (ARDY inactive set-up time to clock low) = 

35ns min 
must be satisfied since synchronizing FLIP-FLOP has sampled 
active 

2. tARYHCH: ARDY high to clock high (ARDY active set-up time) = 20 ns min 
must be satisfied ONLY to guarantee recognition at the next clock 
(i.e. to guarantee synchronizing FLIP-FLOP will sample ARDY 
active) 

3. tCLARYX: Clock low to ARDY inactive (ARDY active hold time) = 15 ns 

Figu", 18A. Valid ARDY Transitions 

3-269 AFN-21 0973 



. CLOCK 

OUT 

ARDY 

AP:-188 

I T2 I T", t I 

~:'.'Q): : . 
------'--- I I I 

.1 I I 
I I I , 

• 1 , 

I I 

CD LESS THAN 35 ns 

CLOCK~: T2 ~ T. : ? : 

OUT~0~ 
I I I I 

ARDY, I , I 
I I I I 

1 . Less than 20 ns 
2. Less than 35 ns 

Figure 188. Invalid ARDY Transitions 

pled high into the synchronization flip-flop in the middle 
of a T state, and has remained high until the beginning 
of the next T state), that T state will be immediately fol­
lowed by T4• If ROY is sampled low into the ROY flip­
flop at the beginning of T3 or Tw (meaning that either 
AROY was sampled low into the synchronization flip­
flop OR that AROY was sampled high into the synchro­
nization flip-flop, but has subsequently changed to low 
before the AROY setup time) that T state will be imme­
diately followed by a wait state (Tw)' Any asynchronous 
transition on the AROY line not occurring durin~ the 
above times, that is, when the processor is not "looking 
at" the ready lines, will not cause CPU malfunction. 

Again, for AROY to force wait states to be inserted, 
SROY must be driven low, since they are internally 
ORed together to form the processor ROY signal. 

CLOCK 

OUT 

SRDY 

The synchronous ready (SROY) line requires that ALL 
transitions on this line during T2• T3 or Tw satisfy a cer­
tain setup and hold time (tSRYCL = 35 ns and tCLSRY = 
15 ns respectively). If these requirements are not met, 
the CPU will not function properly. Valid transitions on 
this line, and subsequent wait state insertion is shown in 
Figure 19. The processor looks at this line at the begin­
ning of each T 3 and Tw' If the line is samp,le<iactive at 
the beginning of either .of these two cycles, tll:at cycle will 

1. DeCision: Not ready, T-state will be followed by a wait state 
2. DeciSion: Ready, T-state will not be followed by a wait state 
3. tSRYCl: Synchronous ready stable until clock low (SRDY set-up 

time) ~ 35 ns min 

4. tClSRY: 

Clock low until synchronous ready transition (SRDY hold time) ~ 
15 ns min 

Figure 19. Valid SRDY transitions on the 80186 

3-270 . AFN-21 0973 



AP-188 

be immediately followed by T 4' On tile other hand, if the 
line is sampled inactive at the beginning of either of 
these two cycles, that cycle will be followed by a Two Any 
asynchronous transition on the SRDY line not occurring 
at the beginning of T 3 or Two that is, when the processor 
is not "looking at" the ready lines will not cause CPU 
malfunction. 

3.1.10 BUS PERFORMANCE ISSUES 

Bus cycles occur sequentially, but do not necessarily 
come immediately one after another, that is the bus may 
remain idle for several T states (Ti) between each bus 
access initiated by the 80186. This occurs whenever the 
80186 internal queue is full and no read/write cycles are 
being requested by the execution unit or integrated 
DMA unit. The reader should recall that a separate 
unit, the bus interface unit, fetches opcodes (including 
immediate data) from memory, while the execution unit' 
actually executes the pre-fetched instructions. The num­
ber of clock cycles required to execute an 80186 instruc­
tion vary from 2 clock cycles for a register to register 
move to 67 clock cycles for an integer divide. 

If a program contains many long instructions, program 
execution will be CPU limited, that is, the instruction 
queue will'be constantly filled. Thus, the execution unit 
does not need to wait for an instruction to be fetched. If a 
program contains mainly short instructions or data 
move instructions, the execution will be bus limited. 
Here, the execution unit will be required to wait often 
for an instruction to be fetched before it continues its op­
eration. Programs illustrating this effect and perfor­
mance degradation of each with the addition of wait 
states are given in appendix G. 

All instruction fetches are word (16-bit) fetches from 
even addresses unless the fetch occurs as a result of a 
jump to an'-odd location. This maximizes the utilization 

of each bus cycle used for 'instruction fetching, since 
~ch fetch will access two bytes of information. It is also 
gOod programming practice to locate all word data at 
even locations, so that both bytes of the word may be ac­
cessed in a single bus cycle (see discussion on data bus 
interfacing for further information, section 3.1.3 of this 
note). 

Although the amount of bus utilization, i.e., the percent­
age of bus time used by the 80186 for instruction fetch­
ing and execution required for top performance will vary 
considerably from one program to another, a typical in­
struction mix on the 80186 will require greater bus utili­
zation than the 8086. This is caused by the higher 
performance execution unit requiring instructions from 
the prefetch queue at a greater rate. This also means 
that the effect of wait states is more pronounced in an 
80186 system than in an 8086 system. In all but a few 
cases, however, the performance degradation incurred 
by adding a wait state is less than might be expected be­
cause instruction fetching and execution are performed 
by separate units. 

3.2 Example Memory Systems 
3.2.1 2764 INTERFACE 
With the above knowledge of the 80186 bus, various 
memory interfaces may be generated. One of the sim­
plest of these is the example EPROM interface shown in 
Figure 20. 

The addresses are latched using the address generation 
circuit shown earlier. Note tMt the AO line of each 
EPROM is connected to the Al address line from the 
80186, NOT the AO line. Remember, AO only signals a 
data transfer on the lower 8 bits of the 16-bit data bus! 
The EPROM outputs are connected directly to the ad­
dress/ data in~ of the 80186, and the 80186 RD signal 
is used as the OE for the EPROMs. 

2784 2784 

A13 
A1 

RD 

ADO-AD7 

AD8-AD15 

CE '---- CE 
/13 .... 13 A12 

~ 
A12 

, , AO AO 

OE r OE 
00-07 0G-07 

1 , 
8 J 

, 8 ..... 

Figure 20. Example 2764/60166 Interface 

3-271 AFN-21 0973 



APo186 

The chip enable of the EPROM is driven directly by the 
chip select O1~tput of the 80186 (see sectioll 8). In this 
configuration, . the access time calculation for the 
EPROMs are:' . . 
time from 
address: (3 + N)*tCLCL -tCLAv - tIVOv(8282)' - tDvCL 

= 375 + (N * 125) - 44 - 30 - 20 
= 2~1 + (N * 125) ns 

time from 
chip select: (3 + N)*tCLCL - tCLCSV - tDvCL 

= 375 + (N *125),- 66 - 20 
= 289 + (N * 125) ns 

time from 
RD (OE): (2 + N)tCLCL - tCLRL - tDVCL 

where: 

= 250 + (N· 125) - 70 - 20 
= 160 + (N * 125) ns 

'tCLAV = time from clock low in Tl until addresses 
are valid 

tCLCL = clock period of processor 

tIVov = time from input ,valid of 8282 until output 
valid of 8282 

CLKOUT --"'---"""'-'):>---1""'"""'" 
LCS 

SHE 

AO 

CLKOUT 

WR 

RD 
4.7K 

ARDY 

tDVCL = 186 data vali<\ input setup time until clock 
low time of T 4 

tcLCSV = time from clock low in T 1 until chip selects 
are valid ' 

tcLRL = time from clock low iri T 2 u~til RD goes low 

N = number of wait states inserted 

Thus, for 0 wait state operation, 250ns EPROMs must 
be used. The only significant .J?!!'ameter not included 
above is tRHAVI the time from RD inactive (high) until 
the 80186 begins driving address information. This pa­
rameter is 85ns, which meets the 2764-25 (25Ons speed . 
selection) output float time of 85ns. If slower EPROMs 
are used, a discrete data buffer MUST be inserted be­
tween the EPROM data lines and the address/data bus, 
since these de,?ces may continue to drive data informa­
tion on the mult~plexed address/data bus when ~he 
80186 begins to drive address information for the neJl\t 
bus cycle. 

3.2.2 2186 INTERFACE 

An example interface between the 80186 and 2186 
iRAMs is shown in Figure 21. This memory component 
is almost an ideal match with the 80186, because of its 
large integration, and its not requiring a.ddress latching. 

2188 2188 

CE CE 

WE WE 

OE OE 

AO-A12 AO-AU 

ADO- AD13 
AD15 -----------------~~~~---_4~~--~~~-~ 

Figure 21. Examp!e2186/8Q186Interface 

3-272 AFN-21 0973 



AP-186 

The 2186 internally is a dynamic RAM integrated with 
refresh and control circuitry. It operates in two modes, 
puls£.!!1ode and late cycle mode. Pulse mode is entered if 
the CE signal is low to the device a maximum of 130ns, 
and requires the command input (RO or WE) to go ac­
tive within 90ns after CEo Because of these require­
ments, interfacing the 80186 to the 2186 in pulse mode 
would be difficult. Instead, the late cycle mode is used. 
This affords a much simpler interface with no loss of 
performance. The iRAM automatically selects between 
these inodes by -the nature of the control signals. 

The 2186 is a leading edge triggered device. This means 
that address and data information are strobed into the 
device on the active going (high to 10!1.transition of the 
command signal. This requires both CE and WR be de­
layed until the address and data driven by the 80186 are 
guaranteed stable. Figure 21 shows a simple circuit 
which can be used to perform this function. Note that 
ALE CANNOT be used to delay CE if addresses are not 
latched externally, because this would violate the ad­
dress hold time required by the 2186 (30ns). 

Because the 2186s are RAMs, data bus enables (BHE 
and AO, see previous section) MUST be used to factor 
either the chip enables or write enables of the lower and 
upper bytes of the 16-bit RAM memory system. If this is 
not done, all memory writes, including single byte 
writes, will write to both the upper and lower bytes of the 
memory system. The exampl~siem shown uses BHE 
and AO as factors to the 2186 CEo This may be done, be­
cause both of these signals (AO and BHE) are valid 
when the address information is valid from the 80186. 

The 2186 requires a certain amount of recovery time be­
tween its chip enable going inactive and its chip enable 
going active insure proper operation. For a "normal" cy­
cle (a read or write), this time is tEHEL = 40ns. This 
means that the 80186 chip select lines will go inactive 
soon enough at the end of a bus cycle to provide the re­
quired recovery time even if two consecutive accesses are 
made to the iRAMs.lfthe 2186 CEis asserted without a 
command signal (WE or OE), a "False Memory Cycle" 
(FMC) will be generated. Whenever a FMC is generat­
ed, the recovery time is much longer; another memory 
cycle must not be initiated for 200ns. As a result, if the 
memory system will generate FMCs, CE must be taken 
away in the middle of the T state (T 3 or Tw) immediately 
preceding T 4 ,to insure two consecutive cycles to the 
iRAM will not violate this parameter. Status going pas­
sive (all high) can be used for this purpose. These lines 
will all go high during 'the first phase of the next to last T 
state (either T 3 or Tw) of a bus cycle (see section 3.1.5). 

Finally, since it is a dynamic device, the 2186 requires 
refresh cycles to maintain data integrity. The circuitry 
to generate these refresh cycles is integrated within the 
2186. Because of this, the 2186 has a ready line which is 
used to suspend processor operation if a processor RAM· 

access coincides with an internally generated refresh cy­
cle. This is an open collector output, allowing many of 
them to be wire-OR'ed together, since more than one de­
vice may be accessed at at time. These lines are also nor­
mally ready, which means' that they will be high 
whenever the 2186 is not being accessed, i.e., they will 
only be dri~en low if a processor request coincides with 
an internal refresh cycle. Thus, the ready lines from the 
iRAM must be factored into the 80186 ROY circuit 
only during accesses to the iRAM itself. Since the 2186 
refresh logic operates asynchronously to the 80186, this 
ROY line must be synchronized for proper operation 
with the 80186, either by the integrated ready synchro­
nizer or by an external circuit. The example circuit uses 
the integrated synchronizer associated with the AROY 
processor input. 

The ready lines c;>f the 2186 are active unless a processor 
access coincides with an internal refresh cycle. These 
lines must go inactive soon enough after a cycle is re­
quested to insert wait states into the data c~. The 
2186 will drive this line low within 50ns after CE is re­
ceived, which is early enough to force the 80186 to insert 
wait states if they are required. The primary concern 
here is that the AROY line be driven not active before 
its setup time in the middle of T 2. This is required by the 
nature of the asynchronous ready synchronization cir­
cuitry of the 80186. Since the ROY pulse of the 2186 
may be as narrow as 50ns, if ready was returned after 
the first stage of the synchronizer, and subsequently 
changed state within the ready setup and hold time of 
the high to low going edge of the CPU clock at the end of 
T2, improper operation may occur (see section 3.1.6). 

The example interface shown has a zero wait state RAM 
read access time from CE of: 

where: 

3 * tCLCL - tCLCSV - (TTL delay) - tDVCL 
= 375 - 66 - 30 - 20 ns 

= 259 ns 

tCLCL = CPU clock cycle time 

tCLCSV = time from clock low in T 1 until chip selects 
are valid 

tDVCL = 80186 data in setup time before clock low in 
T4 

The data valid delay from OE active is less than lOOns, 
. and is therefore not an access time limiter in this inter­

face. Additionally, the 2186 data float time from RO in­
active is less than the 85ns' 80186 imposed maximum. 
The CE generation circuit shown in Figure 21 provides 
an address setup time of at least Ilns, and an address 
hold time of at least 35ns (assuming a maximum two 
level TTL delay of less than 30ns). 

3-273 AFN-21 0973 



AP.,186, 

Write cycle address setup and hold times are identical to 
the read cycle times. The circuit shown provides at least 
Iins write data setup and lOOns data hold time from 
WE, easily meeting the Ons setup and 40ns hold times 
required by the 2186. 

For more information concerning 2186 timing and in­
terfacing, please consult the 2186 data sheet, or the ap­
plication note AP-132, "Designing Memory Systems 
with the 8Kx8 iRAM" oy John Fallin and William 
Righter (June 1982). 

3.2.3 8203 DRAM INTERFACE 

An example 8203/DRAM interface is shown in Figure 
22. The 8203 provides all required DRAM control sig­
nals, address multiplexing, and refresh generation. In 
this circuit, the 8203 is configured to interface with 64K 
DRAMs. 

MCS1 

MCSO 

A17-A1 

AROY 

ADO-AD1S 

-
U 
...0/1. 

, 

17/ , 

...--

~ 

./ 

~ -

-

L...-.-...,. 

All 8203 cycles are generated off control signals (RD 
and WR) pro'<'ided by the 80186. These signals will not 
go active until T 2 of the bus cycle. In addition, since the 
8203 clock (generated by the internal crystal oscillator 
of the 8203) is asynchronous to the 80186 clock, all 
memory requests by the 80186 must be synchronized to 
the 8203 before the cycle will be run. To minimize this 
synchronization time, the 8203 should be used with the 
highest speed crystal that will maintain DRAM com­
patibility. Even' if a 25 MHz crystal is used (the maxi­
mum allowed by the 8203) two wait states will be 
required by the example circuit when using 150ns 
DRAMs with an 8 MHz 80186, three wait states if 
200ns DRAMs are used (see timing analysis, Figure 
23). 

The entire RAM array controlled by the 8203 can be se­
lected by one or a group of the 80186 provided chip se­
lects. These chip selects can also be used to insert the 
wait states required by the interface. 

"-

~ 
22!1 220 

8203 U 
SEL WR UPPER LOWER 

BYTE WE BYTE WE 
AO-
A16, WE r--
eo 
SACK' DRAMS' 

XACK 
RO 

1 
/. 

010-15 
8282 000-15 

000-7 

OE 010-7 ~ 

STB 

8282 

000-7 

OE 010·7 -
STB 

Figure 22; Example 8203/DRAM/80186 Interface 

3-274 AFN-21 0973 



AP-186 

T, 

188 ___ -+~~ 
RD 

8203 -----------------:110-----. 
RAS 

8203 
CAS ----+-----r--~~_+_, 

RAM mT.mn~mT.mT.mn~mT.mT.mn~mT.mT.~mT.~mnu----t------------

DATA ~~~~~~~~~~""""""""""~~~'~ __ ~~ ______ ~ 

LATCH ~mm~mmmmmmmm""mmmm""""""""""~~~~~r~~---------
DATA ~~~~~~~~~~~~~~~~~~ __ ~ ____ ___ 

1. tCLEL: CI0Ck low until read low = 70 ns max 
2. tCR: Command active until RAS = 150 ns max· 
3. tcc: Command active until CAS = 245 ns max· 
4. tcAC: Access time from CAS = 85 ns max 
5. tISOU: Input to output delay = 30 ns max 

(j) &@ are 186 specs 
® & @ are 8203 specs 
@ is a 2164A-15 spec 
@ is on 8282 spec 

6. tOVCL: Data valid to clock low (data in set up) = 20 ns min ·Assumes 25MHz 
8203 operation Total Access Time = 70 + 245 +85 +30 +20 = 450 ns (3.6 T-states) 

Figure 23. 8203/2164A-15 Access Time Calculation 

Since the 8203 is operating asynchronously to the 
80186, the RDY output of the 8203 (used to suspend 
processor operation when a processor DRAM request 
coincides with a DRAM refresh cycle) must be synchro­
nized to the 80186. The80186 ARDY line is used to pro­
vide the necessary ready synchronization. The 8203 
ready outputs operate in a normally not ready mode, 
that is, they are only driven active when an 8203 cycle is 
being executed, and a refresh cycle is not being run. This 
is fundamentally different than the normally ready 
mode used by the 2186 iRAMs (see previous section). 
The 8203 SACK signal is presented to the 80186 only 
when the DRAM is being accessed. Notice that the 
SACK output of the 8203 is used,rather than the 
XACK output. Since the 80186 will insert at least one 
full CPU clock cycle between the time ROY is sampled 
active, and the time data must be present on the data 
bus, using the XACK signal would insert unnecessary 
additional wait states, since it does not indicate ready 
until valid data is available from the memory. 

For more information about 8203/DRAM interfacing 
and timing, please consult the 8203 data sheet, or 
AP97 A, "Interfacing Dynamic RAM to iAPX86/88 

Systems Using the Intel 8202A and 8203" by Brad May 
(April 1982). 

3.2.4 8207 DRAM INTERFACE 

The 8207 advanced dual-port DRAM controller pro­
vides a high performance DRAM memory interface 
specifically for 80186 or 80286 microcomputer systems. 
This controller provides all address multiplexing and 
DRAM refresh circuitry. In addition, it synchronizes 
and arbitrates memory requests from two different ports 
(e.g., an 80186 and a Multibus), allowing the two ports 
to share memory. Finally,the 8207 provides a simple in­
terface to the 8206 error detection and correction chip. 

The simplest 8207 (and also the highest performance) 
interface is shown in Figure 24. This shows the 80186 
connected to an 8207 using the 8207 slow cycle, synchro­
nous status interface. In this mode, the 8207 decodes the 
type of cycle to be run directly from the status lines of 
the 80186. In addition, since the 8207 CLOCKIN is 
driven by the CLOCKOUT of the 80186, any perfor­
mance degradation caused by required memory request 
synchronization between the 80186 and the 8207 is not 
present. Finally, the entire memory array driven by the 

3-275 AFN-21 0973 



AP-186 

8207 may be selected using one or a group of the 80186 
memory chip selects, as in the 8203 interface above. 

8018 7 

ClKOUT ClK 

so WR 
+5 

Sf RD PCTC 

52 PCTL 

lMCS PE 

SRDY 

Figure 24. 80186/8207/DRAM Interface 

The 8207 AACK signal may be used to generate a syn­
chronousready signal to the 80186 in the above inter­
face. Since dynamic memory periodically requires 
refreshing, 80186 access cycles may occur simulta­
neously with an 8207 generated refresh cycle. When this 
occurs, the 8207 will hold the AACK line high until the 
processor initiated access is run (note, the sense of this 
line is reversed with respect to the 80186 SRDY input). 
This signal should be factored with the DRAM (8207) 
select input and used to drive the SRDY line of the' 
80186. Remember that only one of SRDY and ARDY 
needs to be active for a bus cycle to be terminated. If 
asynchronous devices (e.g., a Multibus interface) are 
connected to the ARDY line with the 8207 connected to 
the SRDY lille, care must be taken in design of the ready 
circuit such that only one of the RDY lines is driven ac­
tive at a time to prevent premature termination of the 
bus cycle. . 

3.3 HOLD/HLDA Interface 
The 80186 employs a HOLD/HLDA bus exchange pro­
tocol. This protocol allows other asynchronous bus mas­
ter devices (i.e., ones which drive address, data, and 
control infOI:ma tion on the bus) to gain control of the bus 
to perform bus cycles (memory or I/O reads or writes). 

3.3.1 HOLD RESPONSE 

In the HOLD/HLDA protocol, a device r~CJ.uiring bus 
control (e.g., an external DMA device) raises the 
HOLD line. In response to this HOLD request, the 
80186 will raise its HLDA line after it has finished its 
current bus activity. When the external device is finislted 
with the bus, it drops its bus HOLD request. The 80186 
responds by dropping its HLDA line and resuming bus 
operation. 

When the 80186 recognizes a bus hold by driving 
HLDA high, it will float many of its signals (see Figure 
25). ADO - ADI5 (address/data 0 - 15) and DEN (data 
enable) are floated within tCLAZ (35ns) after the same 
clock edge that HLDA is driven active. A16-A19 (ad­
dresU6 - 19), RD, WR, BHE (B~Hl&.h Enable), 
DT /R (Data Transmit/Receive) and SO - S2 (status 0-
2) are floated within tCHCZ (45ns) after the clock edge 
immediately before the clock edge on which HLDA 
comes active. 

CLOCK 

OUT 

I 
. I T. OR T, T, T, 

HOLD ----;---....., ..... ':7------;---

HlDA ---.--.....,1-/--:-' 
AD15·ADO ---.---f--t:,:'+--.:.=.:.:...._----

DEN ____ +-_--' 
A18·A19 

RD,WR,BHE 

DT/R,SO.52 ---:--....1 

Figure 25. Signal Float/HLDA Timing of the 80186 

Only the above mentioned signals are floated during bus 
HOLD. Of the signals not floated by the 80186, some 
have to do with peripheral functionality (e.g., TmrOut). 
Many others either directly or indirectly control bus de­
vices. These signals are ALE (Address Latch Enable, 
see section 3.1.2) and all the chip select lines (UCS, 
LCS, MCSO-3, and PCSO-6). The designer must be 
aware that the chip select circuitry does not look at ex­
ternally generated addresses (see section 10 for a discus­
sion of the chip select logic). Thus, for memory or 
peripheral devices which are addressed by external bus 
master devices, discrete chip select and ready generation 
logic must be used. 

3.3.2 HOLD/HLDA TIMING AND BUS LATENCY 

The time required between HOLD going active and the 
80186 driving HLDA active is known as bus latency. 
Many factors affect this latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and 
interrupt acknow~edge cycles. 

The HOLD request line is internally synchronized by 
the 80186, and may therefore be an asynchronous sig­
nal. To guarantee recognition on a certain clock edge, it 
must satisfy a certain setup and hold time to the ftilling 

3-276 AFN·21 0973' 



AP-186 

edge of the CPU clock. A full CPU clock cycle is re­
quired for this synchronization, that is, the internal 
HOLD signal is not presented to the internal bus arbi­
tration circuitry until one full clock cycle after it is 
latched from the HOLD input (see Appendix B for a dis-

cussion of 80186 synchronizer~). If the bus is idle, 
HLDA will follow HOLD by two CPU clock cycles plus 
a small amount of setup and propagation delay time. 
The first clock cycle synchronizes the input; the second 
signals the internal circuitry to initiate a bus hold. (see 
Figure 26). 

HOLD 

HLDA ------------~ 

Many factors influ'¥lce the number of clock cycles be­
tween a HOLD request and a HLDA. These may make 
bus latency longer than the best case shown above. Per­
haps the most impor,tant factor is that the 80186 will not 
relinquish the local bus until the bus is idle. An idle bus 
occurs whenever the 80186 is not performing any bus 
transfers. As stated in section 3.1.1, when the bus is idle, 
the 80186 generates idle T-states. The bus can become 
idle only at the end of a bus cycle. Thus, the 80186 can 
recognize HOLD only after the end of its current bus cy­
cle. The 80186 will normally insert no T j states between 
T 4 and T 1 of the next bus cycle if it requires any bus ac­
tivity (e.g., instruction fetches or I/O reads). However, 
the 80186 may not have an immediate need for the bus 
after a bus cycle, and will insert T j states independent of 
the HOLD input (see section 3.1.7). 

1. tHVCL: Hold va Id until clock low"; 25 ns min 
2. tcLHAV: Clock low until HLDA active = 50 ns max 

Figure 26. 80186 Idle Bus Hold/HLDA Timing 
When the HOLD request is active, the 80186 will be 

,CLOCK 

OUT 

HOLD ______ oJ 

HLDA ------~-----~-----~ 
1. Decision: No additional internal bus cycles required, idle T-states will be 

inserted after T 4 

2. Greater than 25 ns (tHvCL) 

3. Less than 50 ns (IcLHAV) 
4. HOLD request internally synchronized 

T.OR 
: Tw : T. : T, 

CLOCK 

OUT 

HOLD 

~l 
I I I 

I I 

HLDA ----------------------------------
1. Decision: Additional internal bus cycles required. no idle T-states will be 

inserted, Hold not active soon enough to force idle T-states 
2. Greater than 25 ns (tHvCL): not required since it will not get recognized 

anyway 
3. HOLD request internally synchronized 

Figure 27. HOLD/HLDATlmlng in the 80186 

3-277 AFN-21 0973 



AP-186 

T.,T. or 

Tw 
T.or 

Tw T, 

1. HOLD request internally synchronized 
2. Decision: HOLD request active, idle t-states will be inserted at end of 

current bus cycle 
3. Greater than 25 ns 
4. Less than 50 ns 

Figure 27A. HOLD/HLDA Timing in the 80186 

forced to proceed from T 4 to T j in order that the bus may 
be relinquished. HOLD must go active 3 T-states before 
the end of a bus cycle to force the 80186 to insert idle T­
states after T 4 (one to synchronize the request, and one 
to signal the 80186 that T 4 of the bus cycle will be fol­
lowed by idle T-states, see section 3.1.1). After the bus 
cycle has ended, the bus hold will be immediately ac­
knowledged. If, however, the 80186 has already deter­
mined that an idle T-state will follow T4 of the current 
bus cycle, HOLD need go active only 2 T-states before 
the end of a bus cycle to force the 80186 to relinquish the 
bus at the end of the current bus cycle. This is because 
the external HOLD request is not required to force the 
generation of idle T-states. Figure 27 graphically por­
trays the scenarios depicted above. 

An external HOLD has higher priority than both the 
80186 CPU or integrated 0 MA unit. However, an exter­
nal HOLD will not separate the two cycles needed to 
perform a word access when the word accessed is located 
at an odd location (see section 3.1.3). In addition, an ex­
ternal HOLD will not separate the two-to-four bus cy­
cles required to perform a DMA transfer using the' 
integrated controller. Each of these factors will add ad­
ditional bus cycle times to the bus latency of the 80186. 

Another factor influencing bus latency time is locked 
transfers. Whenever a locked transfer is occurring, the 
80186 will not recognize external HOLDs (nor will it 
recognize internal DMA bus requests). Locked trans­
fers are programmed by preceding an instruction with, 
the LOCK prefix. Any transfers generated by such a 
prefixed instruction will be locked, and will not be sepa­
rated by any external bus requesting device, String in­
structions may be locked. ,Since string transfers may 

require thousands of bus cycles, bus latency time will 
suffer if they are locked. 

The final factor affecting bus latency time is interrupt 
acknowledge cycles. When an external interrupt con­
troller is used, or if the integril ted interrupt controller is 
used in iRMX 86 mode (see section 6.7.4) the 80186 will 
run two interrupt acknowledge cycles back to back. 
These cycles are automatically "locked" and will never 
be separated by any bus HOLD, either internal or exter­
nal. See section 6.5 on interrupt acknowledge timing for 
more information concerning interrupt acknowledge 
timing. 

3.3.3 COMING OUT OF HOLD 
After the 80186 recognizes that the HOLD input has 
gone inactive, it will drop its HLDA line in a single 
clock. Figure 28 shows this timing. The 80186 will insert 
only two T j after HLDA has gone inactive, assuming 
that the 80186 has internal bus cycles to run. During the 
last T j , status information will go active concerning the 
bus cycle about to be run (see section 3.1.1). If the 
80186 has no pending bus activity, it will maintain all 
lines floating (high impedance) until the last T j before it 
begins its first bus cycle after the HOLD. 

3.4 Differences Between the 8086 bus and 
the 80186 Bus 

The 80186 bus was defined to be upward compatible 
with the 8086 bus. As a result, the 8086 bus interface 
components (the 8288 bus controller and the 8289 bus 
arbiter) may be used directly with the 80186. There are 
a few significant differences between the two processors 
which should be considered. 

\ 

3-278 AFN-21 0973 . 



Ap·186 

CLOCK 

OUT 

T, 

HOLD ---.;0 

T, 

HLDA ----~----~~ 

ADG-AD15 

DEN------~------~----~--~~~L---..... 

A18/53-A19/S8 

RD,WR,BHE ----.-:------:-----'--....J( 
DT/R,5O-52 '---:-----

1. HOLD Internally synchronized 
2. Greater than 25 ns 
3. Less than 50 ns 
4. Lines come out of float only if a bus cycle is pending 

Figure 28. 80186 Coming out of Hold 

CPU Duty Cycle and Clock Generator 

The 80186 employs an integrated clock generator which 
provides a 50% duty cycle CPU clock (1/2 of the time it 

. is high, the other 1/2 of the time it is low). This is differ­
ent that the 8086, which employs an external clock gen­
erator (the 8284A) with a 33% duty cycle CPU clock 
(1/3 of the time it is high, the other 2/3 of the time, it is 
low): These differences manifest themselves as follows: 

1) No oscillator output is available from the 80186, 
as it is available from the 8284A clock generator. 

2) The 80186 does not provide a PCLK (50% duty 
cycle, 1/2 CPU clock frequency) output as does 
the 8284A. 

3) The clock low phase of the 80186 is narrower, 
and the clock high phase is wider than on the 
same speed 8086. 

4) The 80186 does not internally factor AEN with 
RDY. This means that if both RDY inputs 
(ARDY and SRDY) are used, external logic 
must be used to prevent the RDY not connected 
to a certain device from being driven active dur­
ing an access to this device (remember, only one 
RDY input needs to be active to terminate a bus 
cycle, see section 3.1.6). 

5) The 80186 concurrently provides both a single 
asynchronous ready input and a single.synchro­
nous ready input, while the 8284A provides ei-

ther two synchronous ready inputs or two 
asynchronous ready inputs as a user strapable 
option. 

6) The CLOCKOUT (CPU clock output signal) 
drive capacity of the 80186 is less than the CPU 
clock drive capacity of the 8284A. This means 
that not as many high speed devices (e.g., 
Schottky TTL flip-flops) may be connected to 
this signal as can be used with the 8284A clock 
output. 

7) The crystal or external oscillator used by the 
80186 is twice the CPU clock frequency, while 
the crystal or external oscillator used with the 
8284A is three times the CPU clock frequency. 

Local Bus Controller and CO!'trol Signals 

The 80186 simultaneously provides both local b.!!;i con­
troller outputs (RD,..Flh..ALE, DEN and DT /R) and 
status outputs (SO, Sl, S2) for use with the 8288 bus 
controller. This is different from the 8086 where the lo­
cal bus controller outputs (generated only in min mode) 
are sacrificed if status outputs ( generated only in max 
mode) are desired. These differences will manifest 
themselves in 8086 systems and 80186 systems as 
follows: 

1) Because the 80186 can simultaneously provide 
local bus control signals and status outputs, 
many systems supporting both a system bus (e.g., 

3-279 AFN-21 0973 



AP-186 

a Multibusl!!» and a local bus will not require two 
separate external bus controUers, that is, the 
80186 bus control signals may be used to control 
the local bus while the 80186 status signals are 
COnC1il'ently connected to the 8288 bus control­
ler to'drive the control signals of the system bus. 

2) The ALE signal of the 80186 goes active a clock 
phase earlier on the 80186 then on the 8086 or 
8288. This minimizes address propagation time 
through the address latches, since typically the 
delay time through these latches from inputs val­
id is less than the propagation delay from the 
strobe input active. 

3) The 80186 RD input must be tied low to provide 
queue status outputs from the 80186 (see Figure 
29). When so s.!!:!Eped into "queue status mode," 
the ALE and WR outputs provide queue status 
information. Notice that this queue status infor­
mation is available one clock phase earlier from 
the 80186 than from the 8086 (see Figure 30). 

80186' 

QSO ALE 

QS1 WR 

~ 
RD 

Figure 29. Generating Queue Status Information 
from the 80186 

HOLD/HLDA vs. RQ/GT 

As discussed earlier, the 80186 uses a HOLD/HLDA 
type of protocol for exchanging bus mastership (like the 
8086 in min mode) rather than the RQ/GT protocol 
used by the 8086 in max mode. This allows compatiblity 
with Intel's the new generation of high performance/ 
high integration bus master peripheral devices (for ex-

CLOCK 

OUT 

ample the 82586 Ethernet· controller or 82730 high 
performance CRT controller/text coprocessor). 

'. Status Inf.~rmation 

The 80186 does not provide S3-S5 status information. 
On the 8086, S3 and S4 provide information regarding 
the segment register used to generate the physical ad­
dress of the currently executing bus cycle. S5 provides 
information concerning the state of the interrupt enable 
flip-flop. These status bits are always low on the 80186. 

Status signal S6 is used to indicate whether the current 
bus cycle is initiated by either the CPU or a DMA de­
vice. Subsequently, it is always low on the 8086. On the 
80186, it is low whenever the current bus cycle is initiat­
ed by the 80186 CPU, and is high when the current bus 
cycle is initiated by the 80186 integrated DMA unit. 

Bus Drive 

The 80186 output drivers will drive 200pF loads. This is 
double that of the 8086 (lOOpF). This allows larger sys­
tems to be constructed without the need for bus buffers. 
It also means that it is very important to provide good 
grounds to the 80186, since its large drivers can dis­
charge its outputs very quickly causing large current 
transients on the 80186 ground pins. 

Misc. 

The 80186 does not provide early and late write signals, 
a.s does the 8288 bus controller. The WR signal generat­
ed by the 80186 corresponds to the early write signal of 
the 8288. This means that data is not stable on the ad­
dress/ data bus when this signal is driven active. 

The 80186 also does not provide differentiated i/q and 
memory read and write command signals. If these sig­
nals are desired, an external 8288 bus controller may be 
used, or the S2 signal may be used to synthesize differ­
entiated commands (see section 3.1.4). 

"Ethernet is a registered trademark of Xerox Corp. 

186 --------~------~~--_h~~~--h/~~~----

QS ________ ~------~----~'~~----~~--------

8086 -----;.-----i-----~~--4~---QS __________________________ ~ ____ ~'L_ __ __ 

1. 80186 changes queue status off falling edge of elK 
2. 8086 changes queue status off rising edge of elK 

Figure 30. 80186 and 8086 Queue Status Generation 

3-280 AFN-21 0973 



AP-186 

. 4. DMA UNIT INTERFACING 

The 80186 includes a DMA unit which provides two in­
deperident high speed DMA channels. These channels 
operate independently of the CPU, and drive all inte­
grated bus interface components (bus controller, chip se­
lects, etc.) exactly as the CPU (see Figure 31). This 
means that bus cycles initiated by the DMA unit are ex­
actly the same as bus cycles initiated by the CPU (ex­
cept that S6 = 1 during all DMA initiated cycles, see 
section 3.1). Thus interfacing with the DMA unit itself 
is very simple, since except for the addition of the DMA 
request connection, it is exactly the same as interfacing 
to the cpu. 

EXTERNAL ADDRESS/DATA, 

CONTROL, CHIP SELECTS, 
ETC. 

BUS INTERFACE 

" 

DMA 

REQUESTS 

Figure 31. 80186 CPU/DMA Channel 

Internal Model 

4.1 DMA Features 

Each of the two DMA channels provides the following 
features: 

Independent 20-bit source and destination pointers 
which are used to access the I/O or memory location 
from which data will be fetched or to which data will 
be deposited 

Programmable auto-increment, auto-decrement or 
neither of the source and destination pointers after 
each DMA transfer 

Programmable termination of DMA activity after a 
. certain number of DMA transfers 

Programmable CPU interruption at DMA termina­
tion 

Byte or word DMA transfers to or from even or odd 
memory or I/O addresses 

Programmable generation of DMA requests by: 

1) the source of the data 

2) the destination of the data 

3) timer 2 (see section 5) 

4) the DMA unit itself (continuous DMA requests) 

4.2 DMA Unit Programming 

Each of the two DMA channels contains a number of 
registers which are used to control channel operation. 
These registers are included in the 80186 integrated pe­
ripheral control block (see appendix A). These registers 
include the source and destination pointer registers, the 
transfer count register and the control register. The lay­
out and interpretation of the bits in these registers is giv­
en in Figure 32. 

The 20-bit source and destination pointers allow access 
to the complete 1 Mbyte address space of the 80186, and 
that all 20 bits are affected by the auto-increment or 
auto-decrement unit of the DMA (Le., the DMA 
channels address the full 1 Mbyte address space of the 
80186 as a flat, linear array without segments). When 
addressing I/O space, the upper 4 bits of the DMA 
pointer registers should be programmed to be O. If they 
are not programmed 0, then the programmed value 
(greater than 64K in I/O space) will be driven onto the 
address bus (an a,rea of I/O space not accessable to the 
CPU). The data transfer will occur correctly, however. 

After every DMA transfer the 16-bit DMA transfer 
count register it is decremented by 1, whether a byte 
transfer or a word transfer has occurred. If the TC bit in 
the DMA control register is set, the DMA ST /STOP 
bit (see below) will be cleared when this register goes to 
0, causing all DMA activity to cease. A transfer count of 
zero allows 65536 (216) transfers. 

The DMA control register (see Figure 33) contains bits 
which control various channel characteristics, including 
for each of the data source and destination whether the 
pointer points to memory or I/O space, or whether the 
pointer will be incremented, decremented or left alone 

. after each DMA transfer. It also contains a bit which se­
lects between byte or word transfers. Two synchroniza­
tion bits are used to determine the source of the DMA 
requests (see section 4.7). The TC bit determines wheth­
er DMA activity will cease after a programmed number 
orDMA transfers, and the INT bit is used to enable in­
terrupts to the processor when this has occurred (note 
that an interrupt will not be generated to the CPU when 
the transfer count register reaches zero unless both the 
INT bit and the TC bit are set). 

The control register also contains a start/stop 
(ST /STOP) bit. This bit is used to enable DMA 
transfers. Whenever this bit is set, the channel is 

\ 3-281 AFN-21 0973 



AP-186 

OFFSET 

DEH 
DCH 
DAH 

D8H 
D8H 

D4H 
D2H 

DOH 
CEH 

CCH 

CAH 
C8H 

C6H 

C4H 

C2H 
COH 

15 

15 

15 

15 

15 

15 

(1) CONTROL REGISTER LAYOUT: 

x 

X 

Ie 

Ie 

X 

I I I I 

X 

I I I I 

Ie 

Ie 

X 

I '1 I X I I I 
0 

119 16 
, 0 

119 18 

0 

X 

I I I xl I I 
0 

Ie 119 18 

0 
Ie 119 18 

0 

CONTROL WORD 

TRANSFER COUNT 

DESTINATION POINTER 

SOURCE POINTER CHANNEL 1 t 
CH~NNELOl 

CONTROL WORD 
TRANSFER COUNT 

DESTINATION POINTER 

SOURCE POINTER 

-----DESTINATION SOURCE . SYNCHRONIZATION 

Figure 32. 80186 DMA Register Layout 

Figure 33. DMA Control Register 

"armed," that is, a DMA transfer will occur whenever a 
DMA request is made to the channel. If this bit is 
cleared, no DMA transfers will be performed by the 
channel. A companion bit, the CHG/NOCHG bit, 

. allows the contents of the DMA control register to be . 
changed without modifying the state of the start/stop 
bit. The ST /STOP bit will only be modified if the 
CHG/NOCHG bit is also set during the write to the 
DMA control register. The CHG/NOCHG bit is 
write only. It will always be read back as a I. Becaase 
DMA transfers could occur immediately after the 
ST /STOP bit is set, it should only be set only after all 
other DMA contr911er registers have been programmed. 
This bit is automatically cleared when the transfer count 
register reaches zero and the TC bit in the DMA control 
register is set, or when the transfer count register 
reaches zero and unsynchronized DMA transfers are 
programmed. 

All DMA unit programming registers are directly 
accessable by the CPU. This means the CPU can, for ex­
ample, modify the DMA source pointer register after 
137 DMA transfers have occurred, and have the new 
pointer value used for the 138th DMA transfer. If more 
than one register in the DMA channel is being modified 
at any time that a DMA request may be generated and 
the DMA ch~nnel is enabled (the ST /STOP bit in the 
control register is set), the register programming values 
should be placed in memory locations and moved into 
the DMA registers using a locked string move instruc­
tion. This will prevent a DMA transfer from occurring 
after only half of the register values have changed. The 
above also holds true if a read/modify/write type of op­
eration is being performed (e.g., ANDing off bits in a 
pointer register in a single AND instruction to a pointer 
register mapped into memory space). . 

.3-282 AFN-21 0973 



AP-186 

1 Tn 1 T, T. T, Tw Tw T. T, T. T, T4 
CLOCK 1 1 

OUT~ 
I 1 

~ 
I 

1 I I \ ORO I I I I 
I 1 I I 1 

ADO- I 1 I 
100 

I 
1 ~ CD 0: 

A015 I : CD: 
1 I I I ' I 

RO 
I \ I I I I 
1 :\ I I 
1 I 
1 I I 

WR 
1 1 1 

:\ If 
I I 

1 . Source address 
2. Source data 
3. Destination address 
4. Destination data 

NOTE: Wait states are inserted by the bus condition during the bus cycle, not by the DMA controller 

Figure 34. Example DMA Transfer Cycle on the 80186 

4.3 DMA Transfers 
Every D MA transfer in the 80186 consists of two inde­
pendent bus cycles, the fetch cycle and the deposit cycle 
(see Figure 34). During the fetch cycle, the byte or word 
data is accessed from memory or I/O space using the ad­
dress in the source pointer register. The dllta accessed is 
placed in an internal temporary register, which is not ac­
cessible to the CPU. During the deposit cycle, the byte 
or word data in this internal register is placed in memory 
or I/O space using the address in the destination pointer 
register. These two bus cycles will not be separated by 
bus HOLD or by the other DMA channel, and one will 
never be run without the other except when the CPU is 
RESET. Notice that the bus cycles run by the DMA 
unit are exactly the same as memory or I/O bus cycles 
run by the CPU. The only difference between the two is 
the state of the S6 status line (which is multiplexed on 
theA19 line): on all CPU initiated bus cycles, this status 
line will be driven low; on all DMA initiated bus cycles, 
this status line will be driven high. 

4.4 DMA Requests 
Each DMA channel has a single DMA request line by 
which an external device may request a DMA transfer. 
The synchronization bits in th,e DMA control register 
determine whether this line is interpreted to be connect­
ed to the source of the DMA data or the destination of 
the DMA data. All transfer requests on this line are syn­
chronized to the CPU clock before being presented to in-

ternal DMA logic. This means that any asynchronous 
transitions of the DMA request line will not cause the 
DMA channel to malfunction. In addition to external 
requests, DMA requests may be generated whenever the 
internal timer 2 times out, or continuously by program­
ming the synchronization bits in the DMA control regis­
ter to call for unsynchronized DMA transfers. 

4.4.1 DMA REQOEST TIMING AND LATENCY 

Before any DMA request can be generated, ~he 80186 
internal bus must be granted to the DMA unit. A certain 
amount of time is required for the CPU to grant this in­
ternal bus to the DMA unit. The time between a DMA 
request being issued and the DMA transfer being run is 
known as DMA latency. Many of the issues concerning 
DMA latency are the same as those concerning bus la-. 
tency (see section 3.3.2). The only important difference 
is that external HOLD always has bus priority over an 
internal DMA transfer. Thus, the latency time of an in­
ternal DMA cycle will suffer during an external bus 
HOLD. 

Each DMA channel has a programmed priority relative 
to the other DMA channel. Both channels may be pro­
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other channel. 
Ifboth channels are active, DMA latency will suffer on 
the lower priority channel. If both channels are active 
and both channels are of the same programmed priority, 
DMA transfer cycles will alternate between the two 
channels (Le., the first channel will perform a fetch and 

3-283 AFN-21 0973 



ORQ 

AP-186 

To or 

Ta or To or 

T,or I Taor I T,or I I 
I I I 

T, or I T, or I Ta or I I T 
I I I I I' 
I Tw or I Tw or I Tw or I To or I of OM A 

\ I T, I T, I T, I T, i CYCLE 

~""0" .{,\~ I I I ; 
0~~, 

I 
I 
I I I I I 
I I. .1 I I 
I I <D I I I 
I I I I I 
I. .1 I I I 
I CD I I I I 

1. tOROCL = DMA request to clock low = 25 ns min to guarantee recognition 
2. Synchronizer resolution time 
3. DMA unit priority arbitration, etc. time 
~. Bus Interface Unit latches DMA request and decides to run DMA cycle 

Figure 35. DMA Request Timing on the 80186 (showing minimum response time to request) 

deposit, followed by a fetch and deposit by the second 
channel, etc). 

!he mini.mu~ timing required to generate a DMA cycle 
IS shown In Figure 35. Note that the minimum time from 
DRQ becoming active until the beginning of the first 
DMA. cycle is 4 CPU clock cycles, that is, a DMA re­
quest IS sampled 4 clock cycles before the beginning of a 
bus cycle to determine if any DMA activity will be re­
quired. This time is independent of'the number of wait 
states inserted in the bus cycle. The maximum DMA la­
tency is a function of other processor activity (see 
above). 

AOOR. t--__ 

LATCH 

80186 A6 

Also notice that if DRQ is sampled active at 1 in Figure 
3~, the DMA cyclll will be executed, even if the DMA 
request goes inactive before the beginning of the first 
~MA cycl.e. This does not mean that the DMA request 
IS latched Into the processor such that any transition on 
the D~A request line wiIl cause a DMA cycle eventual­
ly. QUite the contrary, DMA request must be active at a 
certain time before the end of a bus cycle for the DMA 
request to be recognized by the processor. If the DMA 
request line goes inactive before that window then no 
DMA cycles will be run. . ' 

OMAOEVICE \ 

ALE~-----------~ 
ACKNOWLEDGE 

PCSOr-------------'~----...t CHIP tEL 

ORQO OMA REQUEST 

Figure 36.' DMA Acknowledge Synthesis from the 80186 

3-284 AFN-21 0973 



AP-186 

4.5 DMA Acknowledge 
The 80186 generates no explicit DMA acknowledge sig­
nal. Instead, the 80186 performs a read or write directly 
to the DMA requesting device. If required, a DMA ac­
knowledge signal can be generated by a decode of an ad­
dress, or by merely using one of the PCS lines (see 
Figure 36). Note ALE must be used to factor the DACK 
because addresses are not guaranteed stable when chip 
selects go active. This is required because if the address 
is not stable when the PCS goes active, glitches can 
occur at the output of the DACK generation circuitry as 
the address lines change state. Once ALE has gone low, 
the addresses are guaranteed to have been stable for at 
least tAVAL (30ns). 

4.6 Internally Generated DMA Requests 
There are two types in internally synchronized DMA 
transfers, that is, transfer initiated by a unit integrated 
in the 80186. These two types are transfers in which the 
DMA request is generated by timer 2, or where DMA 
request is generated by the DMA channel itself. 

The DMA channel can be programmed such that when­
ever timer 2 reaches its maximum cdUnt, a DMA re­
quest will be generated. This feature is selected by 
setting the TDRQ bit in the DMA channel control regis­
ter. A DMA request generated in this manner will be 
latched in the DMA controller, so that once the timer re­
quest has been generated, it cannot be cleared except by 
running the DMA cycle or by clearing the TDRQ bits in 
both DMA control registers. Before any DMA requests 
are generated in this mode, timer 2 must be initiated and 
enabled. 

A timer requested DMA cycle being run by either DMA 
channel will reset the timer request. Thus, if both chan­
nels are using it to request a DMA cycle, only one DMA 
channel will execute a transfer for every timeout o( tim­
er 2. Another implication of having a single bit timer 
DMA request latch in the DMA controller is that if an­
other timer 2 timeout occurs before a DMA channel has 
a chance to run a DMA transfer, the first request will be 
lost, i.e., only a single DMA transfer will occur, even 
though the timer has timed out twice. 

The.DMA channel can also be programmed to provide 
its own DMA requests. In this mode, DMA transfer cy­
cles will be run continuously at the maximum bus band­
width, one after the other until the preprogrammed 
number of DMA transfers (in the DMA transfer count 
register) have occurred. This mode is selected by pro­
gramming the synchronization bits in the DMA control 
register for unsynchronized transfers. Note that in this 
mode, th,e DMAcontroller will monopolize the CPU 
bus, i.e., the CPU will not be able to perform opcode 
fetching, memory operations, etc., while the DMA 
transfers are occurring. Also notice that the DMA will 
only perform the number of transfers indicated in the 

maximum count register regardless of the state of the 
TC bit in the DMA control register. 

4.7 Externally Synchronized DMA 
Transfers 

There are two types of externally synchronized DMA 
transfers, that is, DMA.transfers which are requested by 
an external device rather than by integrated timer 2 or 
by the DMA channel itself (in unsynchronized trans­
fers). These are source synchronized and destination 
synchronized transfers. These modes are selected by 
programming the synchronization bits in the DMA 
channel control register. The only difference between 
the two is the time at which the DMA request pin is sam­
pled to determine. if another DMA transfer is immedi­
ately required after the currently executing DMA 
transfer. On source synchronized transfers, this is done 
such that two source synchronized DMA transfers may 
occur one immediately after the other, while on destina­
tion synchronized transfers a certain amount of idle 
time is automatically inserted between two DMA trans­
fers to allow time for the DMA requesting device to 
drive its DMA request inactive. 

4.7.1 SOURCE SYNCHRONIZED 
DMA TRANSFERS 

In a source synchronized DMA transfer, the source of 
the DMA data requests the DMA cycle. An example of 
this would be a floppy disk read from the disk to main 
memory. In this type of transfer, the device requesting 
the transfer is read during the fetch cycle of the DMA 
transfer. Since it takes 4 CPU clock cycles from the time 
DMA request is sampled to the time the DMA transfer 
is actually begun, and a bus cycle takes a minimum of 4 
clock cycles, the earliest time the DMA request pin will 
be sall)pled for another DMA transfer will be at the be­
ginning of the deposit cycle of a DMA transfer. This al­
lows over 3 CPU clock cycles between the time the 
DMA requesting device receives an acknowledge to its 
DMA request (around the beginning ofT2 of the DMA 
fetch cycle), and the time it must drive this request inac­
five (assuming no wait states) to insure that IlDother 
DMA transfer is not performed if it is not desired (see 
Figure 37). . 

4.7.2 DESTINATION SYNCHRONIZED 
DMA TRANSFERS 

In destination synchronized DMA transfers, the desti­
nation of the DMA data requests the DMA transfer. An 
example of this would be a floppy disk write from main 
memory'to the disk. In this type of transfer, the device 
requesting the transfer is written during the deposit cy­
cle of the DMA transfer. This causes a problem, since 
the DMA requesting device will not receive notification 
of the DMA cycle being run until 3 clock cycles before 
the end of the DMA transfer (if no wait states are being 

3-285 " AFN-21 0973 



Ap·186 

FETCH CYCLE DEPOSIT CYCLE 

T, T, 

DRQ --~----+-----~--~--\ 

80186 DECISION: 

1. Current DMA source synchronized transfer will not be immediately 
followed by another DMA transfer 

DEPOSIT CYCLE 

T, 

80186 Decision: 

NEXT 

DMA 
TR~SFER 

T, : T. 

1. Current DMA destination synchronized transfer will be followed 
immediately by another DMA transfer 

Figure 37. Source & Destination Synchronized DMA Request Timing 

inserted into the deposit cycle of the D MA transfer) and 
it takes 4 clock cycles to determine whether another 
DMA cycle should be run immediately following the 
current DMA transfer. To get around this problem, the 
DMA unit will relinquish the CPU bus after each desti­
nation synchronized DMA transfer for at least 2 CPU 
clock cycles to allow the DMA requesting device time to 
drop its DMA request if it does not immediately desire 
another immediate DMA transfer. When the bus is re­
linquished by the DMA unit, the CPU may resume bus 
operation (e.g., instruction fetching, memory or I/O 
reads or writes, etc.) Thus, typically, a CPU initiated 
bus cycle will be inserted between each destination syn­
chronized DMA transfer. If no CPU bus activity is re­
quired, however (and none can be guaranteed), the 
DMA unit will insert, only 2 CPU clock cycles between 
the deposit cycle of one DMA transfer and the fetch cy­
cleofthenext DMA transfer. This means that the DMA 
destination requesting device must drop its DMA re­
quest at least two clock cycles before the end of the de­
posit cycle regardless of the number of wait states 
inserted into the bus cycle. Figure 37 shows the DMA 
request going away too late to prevent the immediate 
generation of another DMA transfer. Any wait states in­
serted in the deposit cycle of the DMA transfer will 

lengthen the amount of time from the beginning of the 
deposit cycle to the time DMA will be sampled for an­
other DMA transfer. Thus, if the amount of time a de­
vice requires to drop its DMA request after receiving a 
DMA acknowledge from the 80186 is longer than the 0 
wait state 80186 maximum (100 ns), wait states can be 
inserted into the DMA cycle to lengthen the amount of 
time the device has to drop its DMA request after receiv­
ing the DMA acknowledge. Table 4 shows the amount of 
time between the beginning of T 2 and the time DMA re­
quest is sampled as wait states are inserted in the DMA 
deposit cycle. 

Table 4. DMA Request Inactive Timing 

Max Time(ns) 
Number of For DRQ Inactive 
Wait States From Start of T 2 

0 100 

1. 225 

2 350 

3 475 

3-286 AFN-21 0973 



AP-186 

DMA FETCH CYCLE 

DRQ 
(ALWAYS 

HIGH) 

NMI / I' + 0) CD 
I 
I 

DHLT . 
(INTERNAL 
REGISTER 

Bin 

1. DMA request synchronization 
2. Decision: Will DMA cycle be run? 

Answer: No DMA request is active but DHLT is set 
(from NMI request) 

3. NMI synchronization time 

DMA DEPOSIT CYCLE 

I . 
I I I 
I. I I. .1 
I CD CD I 

., 
/ 

4. Logic delay time from synchronized NMI until DHLT set (note: DHLT is in 
the interrupt control status register) 

Figure 38. NMI and DMA Interaction 

4.8 DMA Halt and NMI 
Whenever a Non-Maskable Interrupt is received by the 
80186, all D MA activity will be suspended after the end 
of the current DMA transfer. This is performed by the 
NMI automatically setting the DMA Halt (DHLT) bit 
in the interrupt controller status register (see section 
7.3.1). The timing ofNMI required to prevent a DMA 
cycle from occurring is shown in Figure 38. After the 
NMI has been serviced, the DHLT.bit should be cleared 
by the programmer, and DMA activity will resume ex­
actly where it left off, i.e., none of the DMA registers 
will have been modified. The DMA Halt bit is not auto­
matically reset after the NMI has been serviced. It is 
automatically reset by the IRET instruction. This DMA 
halt bit may also be set by the programmer to prevent 
DMA activity during any critical section of code. 

4.9 Example DMA Interfaces 

4.9.1 8272 FLOPPY DISK INTERFACE 

An example DMA Interface to the 8272 Floppy Disk 
Controller is shown in Figure 39. This shows how a typi­
cal DMA device can be interfaced to the 80186. An ex­
ample floppy disk software driver for this interface is 
given in Appendix C. . 

The data lines of the 8272 are connected, through buff­
ers, to the 80186 ADO-AD7 lines. The buffers are re­
quired because the 8272 will not float its output drivers 
quickly enough to prevent contention with the 80186 
driven address information after a read from the 8272 
(see section 3.1.3). 

DMA acknowledge for the 8272 is driven by an address 
decode within the region assigned to PCS2. If 
PCS2 is assigned to be active between I/O locations 
OSOOH and OS7FH, then an access to I/0 location 
OSOOH will enable only the chip select, while an access to 
I/O location OSIOH will enable both the chip select and 
the DMA acknowledge. Remember, ALE must be fac­
tored into the DACK generation logic because addresses 
are not guaranteed stable when the chip selects become 
active. If ALE were not used, the DACK generation cir­
cuitry could glitch as address output changed state while 
the chip select was active. 

Notice that the TC line of the 8272 is driven by a very 
similar circuit as the one generating DACK (except for 
the reversed sense of the output!). This line is used toter­
minate an 8272 command before the command has com­
pleted execution. Thus, the TC input to the 8272 is 
software driven in this case. Another method of driving 
the TC input would be to connect the DACK signal to 
one of the 80186 timers, and· program the timer to out-

3-287 AFN-21 0973 



Ap·186 

ORO r- 0 Or--- 0 oJ 
7474 7474 

C. CL C. CL 

I 1 ORO 

CLKOUT ~ ClK 

PCS2 CS 

ALE Dr- DACK 

ADDR 
lATCH 8272 U 
~ TC ~ 

FLOPPY 

DISK 

NTERFACE AO 

DATA 
DBO· 

/ / AD7·ADO 
8/ 

BUF· 
8/ DB7 

FER 

RD RD 

WR WR 

RESET RESET 

C. ~ 7474 CLOCK INPUT 

CL ~ 7474 CLEAR INPUT 

Figure 39. Example 8272/80186'DMA Interface 

put a pulse to the 8272 after a certain number of DMA 
cycles have been run (see next section for 80186 timer 
in1'ormation). 

The above discussion assumed that a single 80186 
PCS line is free to generate aU 8272 select signals. If 
more than one ch~lect is free, however, different 
S0186 generated PCS lines could be used for each 
function. For example, PCS2 could be used to select 
the-S272, PCS3couid be used to drive the DACK line 
of the 8272, etc. 

DMA requests are delayed by two clock periods in going 
from the 8272 to the 80186. This is requir~ the 8272 
tRQR (time from DMA request to DMA RD going ac· 
tive) spec of 800ns min. This requires 6.4 80186 CPU 

clock cycles (at S MHz), well beyond the 5 minimum 
provided by the 80186 (4 clock cycles to the beginning of 
the DMA buscychl to the beginning ofT 2 of the DMA 
bus cycle where RD will go active). The two flip-flops 
add two complete CPU clock cycles to this response 
time. 

DMA request will go away 200ns after DACK is pre­
sented to the 8272. During a DMA write cycle (Le., a 
destination synchronized transfer), this is not soon 
enough to prevent the immediate generation of another 
DMA transfer if no wait states are inserted in the depos­
it cycle to the 8272. Therefore, at least 1 wait state is re­
quired by this interface, regardless of the data access 
parameters of the 8272. 

3-288 AFN·21 097.3 



inter AP·188 

4.9.2 8274 SERIAL 
COMMUNICATION INTERFACE 

An example 8274 synchronous/asynchronous serial 
chip/80l86 DMA interface is shown in Figure 40. The 
8274 interface is even simpler than the 8272 interface, 
since it does not require the generation of a DMA ac­
knowledge signal, and the 8274 does not require the 
length of time between a DMA request and the PMA 
read or write cycle that the 8172 does. An example serial 
driver using the 8274 in DMA mode with the 80186 is 
given in Appendix C. 

. , 

8274 
DRQO TxDROe 

DRQ1 RxDRQ. 

,..- ADDR / 
LATCH 2' 

AO,A1 

// 
A" 8288 

ADO-AD7 
Ao/ DATA / DBO·DB7 
8' BUFFER t' 

RD RD 

WR WR 

RESET RESET 

Figure 40. Example 8274/80188 DMA Interface 

The data lines of the 8274 are connected through buffers 
to the 80186 ADO-AD7lines. Again, these are required 
not because of bus drive problems, but because the 8274 

, will not float its drivers before the 80186 will begin driv­
ing address information on its address/data bus. If both 
the 8274 and the 8272 are included in the same 80186 
system, they could share the same data bus buffer (as 
could any other peripheral devices in the system). 

The 8274 does not require a DMA acknowledge signal. 
The first read from or write to the data register of the 
8274 after the 8274 generates the DMA request signal 
will clear the DMA r~uest. The time between when the 
control signal (RD or WR) becomes active and 
when the 8274 will drop its DMA request during a 
DMAwrite is 150ns, which will require at leasfone wait 
state be inserted into the DMA write cycle for proper op­
eration of the interface. 

5. TIMER UNIT INTERFACING 

The 80186 includes a timer unit which provides three in­
dependent 16-bit timers. These timers operate indepen­
dently of the CPU. Two of these have input and output 
pins allowing counting of external events and generation­
of arbitrary waveforms. The third tilller can be used as a 
timer, as a prescaler £Or the other two timers, or as a 
DMA request source. 

5.1 Timer Operation 
The internal timer unit on the 80186 could be modeled 
by a single counter element, time multiplexed to three 
register banks, each of which contains different control 
and count values. These register banks are, in turn, dual 
ported between the counter element and the 80186 CPU 
(see Figure 41). Figure 42 shows the timer element se­
quencing, and the subsequent constraints on input and 
output signals. If the CPU modifies one of the timer reg­
isters, this change will affect the counter element the 
next time that register is presented to the counter ele­
ment. There is no connection between the sequencing of 
the counter, element 'through the timer register banks 
and the Bus Interface Unit's sequencing through T­
states. Timer operation and bus interface operation are, 
completely asynchronous. 

5.2 Timer Registers 
Each timeds controlled by a block ofregisters (see Fig­
ure 43). Each of these registers can be read or written 
whether or not the timer is operating. All processor ac­
cesses to these registers are synchronized to all counter 
element accesses to these registers, meaning that one 
will never read a count register in which only half of the 
bits 'have been modified. Because of this synchroniza­
tion, one wait state is atttomatically inserted into anyac­
cess to the timer registers. Unlike the DMA unit, 
locking accesses to timer registers will not prevent the 
timer's counter element from accessing the timer 
registers. 

Each timer has a 16-bit count register. This. re'gister is 
incremented for each timer event. A timer event can be a 
low-to-high transition on the external pin (for timers 0 
and I), a CPU clock transition (divided by 4 because of 
the counter element multiplexing), or a time out of timer 
2 (for timers 0 and 1). Because the count register is 16 
bits wide, up to 65536 (216) timer pents can be counted 
by a single timer/counter. This register can be both, read 
or written whether the timer is or is not operating. 

Each timer includes a maximum count register. When­
ever the timer count register is equal to the maximum 
count register, the count register will be reset r.o zero, 
that is, the maximum count value will never be stored in 
the count register. This maximum count value may be 
written while the timer is operating. A maximum count 

3.289 AFN·21097! , 



intel@ AP-186 

nMERIN 
o 

TIMER IN 
1 

CPU 

T. T, 
IN IN 

DMA 

REQUEST 

Figure 41. 80188 Timer Model 

nMERO 

SERVICED , 
nMER,1 

SERVICED 

nMER2 

SERVICED DEAD 

T.OUT 

T,OUT 

TIMER 0 

SERVICED 

nMEROUT ----------------------------------~.r_------~---------------------o 

nMEROUT 
1 

" 1. Timer in 0 resolution time 
2. Timer in 1 resolution time 
3. Modified count value written into 80186 timer 0 count register 
4. Modified count value written into 80186 timer 1 count register 

Figure 42. 80188 Counter Element Multiplexing and Timer Input Synchronization . 
• r ' 

3-290 AFN-21 0973 



AP-186 

OFFSET 

SOH 

52H 

54H 
56H 
58H 

SAH 

SCH 
SEH 
60H 

62H 

64H 

66H 

_ CO~T~GISTER ______ 

MAX COUNT REGISTER A 
TIMER 0 

- MAX COUNT REGISTERB - - --

- CONTROL ReGISTER1iL - - - -

_ CO~ ~GIS'I!!! ______ 

MAX COUNT REGISTER A 
TIMER 1 ------------MAX COUNT REGISTER B 

- CONTROL REGISTER-d) - - - -

COUNT REGISTER ------------MAX COUNT REGISTER 
TIMER 2 ------------X X X 

- CONTROL REGISTERli - - --

CD CONTROL REGISTER LAYOUT 

15 o 

Figure 43. 80186 Timer Register Layout 

value of 0 implies a maximum count of 65536, a maxi­
mum count value of 1 implies a maximum count of 1, 
etc. The user should be aware that only equivalence be­
tween the count value and the maximum count register 
value is checked, that is, the count value will not be 
cleared if the val~e in the count register is greater than 
the value in the maximum count register. This could only 
occur by programmer intervention, either by setting the 
value in the count register greater than the value in the 
maximum count register, or by setting the value in the 
maximum count register to be less than the value in the 
count register. If this is programmed, the timer will 
count to the maximum possible count (FFFFH), incre­
ment to 0, then count up to the value in the maximum 
count register. The TC bit in the timer control register 
will not be set when the counter overflows to 0, nor will 
an interrupt be generated from the timer unit. 

Timers 0 and 1 each contain an additional maximum 
count register. When both maximum count registers are 
used, the timer will first count up to the value in maxi­
mum count register A, reset to zero, count up to the val­
ue in maximum count register B, and reset to zero again. 
The ALTernate bit in the timer control register deter­
mines whether one or both maximum count registers are 
used. If this bit is low, only maximum count register A is 
used; maximum count register B is ignored. If it is high, 
both maximum count register A and maximum count 
register B are used. The RIU (register ill use) bit in the 

, timer control register indicates which maximum count 
register is currently being used. This bit is 0 when maxi­
mum count register A is being used, 1 when maximum 
count register B is being used. This RIU bit is read only. 
It is unaffected by any write to the timer control register. 
It will always be read 0 in single maximum count regis-

3-291 

ter mode (since only maximum count register A will be 
used). 

Each timer can generate an interrupt whenever the tim­
er count value reaches a maximum count value. That is, 
an interrupt can be generated whenever the value in 
maximum count register A is reached, and whenever the 
value in maximum count register B is reached. In addi­
tion, the MC (maximum count) bit in the timer control 
register is set whenever the timer count reaches a maxi­
mum count value. This bit is never automatically 
cleared, i.e., programmer intervention is required to 
clear this bit. If a timer generates a second interrupt re­
quest before the first interrupt request has been ser­
viced, the first interrupt request to the CPU will be lost. 

Each timer has an EN able bit in the timer control regis­
ter. This bit is used to enable the timer to count. The tim­
er will count timer events only when this bit is set. Any 
timer events occurring when this bit is reset are ignored. 
Any write to the .timer control register will modify the 
ENable bit only if the INHibit bit is also $et. The timer 
ENable bit will not be mOdified by a write to the timer 
control register if the INHibit bit is not set. The INHibit 
bit in the timer control register allows selective updating 
of the timer ENable bit. The value of the INHibit bit is 
not stored in a write to the timer control register; it will 
always be read as a 1. 

Each timer has a CONTinuou~ bit in the timer control 
register. If this bit is cleared, the timer ENable bit will 
be automatically cleared at the end of each timing cycle. 
If a single maximum count register is used, the end of a 
timing cycle occurs when the count value resets to zero 
after reaching the value in maximum count register A. If 
dual maximum count registers are used, the end of ·a 

AFN-21 0973 



timing cycle occurs when the count value resets to zero 
after reaching the value in maximum count register B. If 
the CONTinuous bit is set, the ENable bit in the timer 
control register will never be automatically reset. Thus, 
after each timing cycle, another 'timing cycle will auto­
matically begin. For example, in single maximum count 
register mode, the timer will count up to the value in 
maximum count register A, reset to zero, count up to the 
value in maximum count register A, reset to zero, ad in­
finitum. In dual maximum count register mode, the tim­
er will count up the the value in maximum count register 
A" reset to zero, count up the value in maximum count 
register B, reset to zero, count up to the value in maxi­
mum count register A, reset to zero, et cetera. 

5.3 Timer Events 

Each timer counts timer events. All timers can use a 
transition of the CPU clock as an event. Because of the 
counter element multiplexing, the timer count value will 
be incremented every fourth CPU clock. For timer 2, 
this is the only timer event which can be used. For timers 
o and I, this event is selected by clearing the EXTernal 
and Prescaler bits in the timer control register. 

Timers 0 and 1 can use timer 2 reaching its maximum 
count as a timer event. This is selected by clearing the 
EXTernal bit and setting the Prescaler bit in the timer 
control register. When this is done, the timer will incre­
ment whenever timer 2 resets to zero having reached its 
own maximum count. Note that timer 2 must be initial-' 
ized and running for the other timer's value to be 
incremented. 

Timers 0 and 1 can also be programmed to count low-to­
high transitions on the external input pin. Each transi­
tion on the external pin is synchronized to the 80186 
clock before it is presented to the ·timer circuitry, and 
may, therefore, be asynchronous (see ApPendix B for in­
formation on 80186 synchronizers). The timer counts 
transitions on the input pin: thejnput value must go low, 
then go high to cause the timer to increment. Any transi­
tion on this line is latched. If a transition occurs when a 
timer is not 'being serViced' by the counter element, the 
transition on the input line will be remembered so that 
when the timer does get serviced, the input transition 
will be counted. Because of the counter element multi­
plexing, the maximum rate at which the timer can count 
is 1/4 of the CPU clock rate (2 MHz with an 8 MHz 
CPU clock). 

5.,4 Timer Input Pin Operation 
'Timers 0 and I each have individual timer input pins. 
Alliow-to-high transitions on these input pins are syn­
chronized,latched, and presented to the counter element 
when the particular timer is being serviced by the 
counter elemen( 

Signals on t4is input can affect timer operat~on in three 
different ways. Tile manner in which th~ pin signals are 
used is determined by the EXTernal and RTG (retrig-

ger) bits in the timer Control register. If the EXTernal 
bit is set, transitions on the input pin will cause the timer 
count value to increment if the timer is enabled (the EN­
able bit in the timer control register is set). Thus, the 
timer counts external events. If the EXTernal bit is 
Cleared, all timer increments are caused by either the 
CPU clock or by timer 2 timing out. In this mode, the 
RTG bit determines whether the input pin will enable 
timer operation, or whether it will retrigger timer 
operation. ' 

If the EXTernal bit is low and the RTG bit is also low, 
the timer will count internal timer events only when the 
timer input pin is high and the ENable bit in the timer 
control register is set. Note that in this mode, the pin is 
level sensitive, not edge sensitive. A low-to-high transi­
tion on the timer input pin is not required to enable timer 
operation. If the input is tied high, the timer will be con­
tinuallyenabled. The timer enable input signal is com­
pletely independent of the ENable bit in the timer 
control register: both must be high for the timer to 
count. Example uses for the timer in this mode would be 
a real time clock or a baud rate generator. 

If the EXTernal bit is low and the RTG bit is high, the 
tinier will act as a digital one-shot. In this mode, every 
low-to-high transition on the timer input pin will cause 
the timer to reset to zero. If the tiiner is enabled (i.e., the 
ENable bit in the timer control register is set) timer op­
eration will begin (the timer will count CPU-clock tran­
sitions or timer 2 timeouts). Timer operation will cease 
at the end of a timer cycle, that is, when the value in the 
maximum count register A is reached and the timer 
count value resets to zero (in single maximum count reg­
ister mode, remember that the maximum count value is 
never stored in the timer count register) or when the val­
ue in maximum count register B is reached and the timer 
count value resets to zero (in dual maximum count regis­
ter mode). If another low-to-high transition occurs on 
the input pin before the end of the timer cycle, the timer 
will reset to zero and begin the timing cycle again re­
gardless ofthe state of the, CONTinuous bit in the timer 
control register the RIU bit will not be changed by the 
input transition. If the CONTinuous bit in the timer 
control register is cleared, the timer ENable bit will 
automatically be cleared at the end of the timer cycle. 
This means that any additional transitions on the input 
pin will be ignored by the timer. If the CONTinuous bit 
in the timer control register is set, the timer will reset to 
zero and begin another timing cycle for every low-to­
high transition on the input pin, regardless of whether 
the timer had reached the end of a timer cycle, ~use 
the timer EN able bit WOUld, not have been cleared at the 
end of the timing cycle. The timer will also continue 
counting at the end of a timer cycle, whether or not an­
other transition has occurred on the input pin. An exam­
ple use of the timer in this mode is an alarm clock time 
olit ~ignal or interrupt. 

3-292 AFN-21 0973 



AP-186 

5.5 Timer Output Pin Operation 
Timers 0 and I each contain a single timer output pin. 
This pin can perform two functions at, programmer op­
tion. The first is a single pulse indicating the end of a 
timing cycle. The second is a level indicating the maxi­
mum count register currently being used. The timer out­
puts operate as outlined below whether internal or 
external clocking of the timer is used. If external clock­
ing is used, however, the user should remember that the 
time between an external transition on the timer input 
pin and the time this transition is reflected in the timer 
out pin will vary depending on when the input transition 
occurs relative to the timer's being serviced by the 
counter element. 

When the timer is in single maximum count register 
mode (the ALTernate bit in the timer control register is 
cleared) the timer output pin will go low for a single 
CPU clock the clock after the timer is serviced by the ' 
counter element where maximum count is reached (see 
Figure 44). This mode iluseful when using the timer as 

TIMER OSERVICED 

a baud rate generator. 

When the timer is programmed in dual maximum count 
register mode (the ALTernate bit in the timer control 
register is set), the timer output pin indicates ,which 
maximum count register is ~eing used. It is low if maxi­
mum count register B is being used for the current 
count, high if maximum count register A is being used. 
If the timer is programmed in continuous mode (the 
CONTinuous bit in the timer control register is set), this 
pin could generate a waveform of any duty cycle. For ex­
ample, if maximum count register A contained 10 and 
maximum count register B contained 20, a 33% duty cy­
cle waveform would be generated. 

5.6 Sample 80186 Timer Applications 
The 80186 timers can be used for almost any application 
for which a discrete timer circuit would be used. These 
include real time clocks, baud rate generators, or event 
counters. 

I~NAL ................................... u-""""""~~""""""""""""""_ 
COUNT 
VALUE 

MAXCOUNT-1 

TMR OUT ------------..,., 
PIN 

TIMER 
I 0 

Figure 44. 80186 Timer OUt Signal 

801" 

+5V r---
TIMER 

TMRIN1 
0 -----TMROUT1 

TMRINO 

+5V , 

TMRINJ 

TMROUTO T xC } SERIAL • 
RxC CONTROLLER 

Figure 45. 80186 Real Time Clock figUre 46. ' 80186 Baud Rate Generator 

3-293 ' AfN.210973 



AP-186. 

80188 0 
JL .0 

hUGHT 
TMRINO 0 l' 

Figure 47. 

5.6.1 80186 TIMER REAL TIME CLOCK 

The sample program in appendix D shows the 80186 
timer being used with the 80186 CPU to form a real 
time clock. In this implementation, timer 2 is pro­
grammed to provide an interrupt to the CPU every milli­
second. The CPU then increments memory based clock 
variables. 

5.6.2 80186 TIM~R BAUD RATE GENERATOR 

The 80186 timers can also be used as baud rate gener­
ators for serial communication controllers (e.g., the 
'8274). Figure 46 shows this simple connection, and the 

DMA 

code to program the timer as' a baud rate generator is in­
cluded in appendix D. 

5.6.3 80186 TIMER EVENT COUNTER 

The 80186 timer can be used to count events. Figure 47 
shows a hypothetical set up in which the 80186 timer 
will count the interruptions in a light source. The num­
ber of interruptions can be read directly from the count 
register of the timer, since the timer counts up, i.e., each 
interruption in the light source will cause the timer 
count value to increase. The code to set up the 80186 
timer in this mode is included in appel1dix D. 

TIMER TIMER TIMER 
012 1 INTO INT1 INT2 INT3 NMI 

TIMER 
CONTROL REG. 

DMAO 
CONTROL REG. -

DMA1 
CONTROL REG. 

EXT. INPUT 0 
CONTROL REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

INTERRUPT 
PRIORITY 
RESOLVER 

INTERRUPT 
REQUEST TO 
PROCESSOR 

INTERNAL ADDRESS/DATA BUS 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN-SERVICE 
REG. 

PRIOR. LEY. 
MASK REG. 

INTERRUPT 
STATUSREQ. 

Figure 48. 80186 Interrupt Controller Block Diagrall) . 

3-294 AFN-21 0973 



~P·186 

6. 80186 INTERRUPT CONTROLLER 
INTERFACING 

The 80186 contains an integrated interrupt controller. 
This unit performs tasks of the interrupt contro.ller in a 
typical system. These include synchronization of inter­
rupt requests, priortization of interrupt requests, and re­
quest type vectoring in response to a CPU interrupt 
acknowledge. It can be a master to two external 8259A 
interrupt controllers or can be a slave to an external in­
terrupt controller to allow compatibility with the iRMX 
86 operating system, and the 80130/80150 operating 
system firmware chips. 

6.1 Interrupt Controller Model 

The integrated interrupt controller block diagram is 
shown in Figure 48. It contains registers and a control 
element. Four inputs are provided for external interfa<;:­
ing to the interrupt controller. Their functions change 
according to the programmed mode of the interrupt con­
troller. Like the other 80186 integrated peripheral regis­
ters, the interrupt controller registers are available for 
CPU reading or writing at any time. 

6.2 Interrupt Controller Operation 

The interrupt controller operates in two major modes, 
non-iRMX 86 mode (referred to henceforth as mas~er 
mode), and iRMX 86 mode. In master mode the inte­
grated controller acts as the master interrupt controller 
for the system, while in iRMX 86 mode the controller 

operates as a slave to an external interrupt controller 
which operates as the master interrupt controller for the 
system. Some of the interrupt controller registers and in­
terrupt controller pins change definition between these 
two modes, but the basic charter and function of the in­
terrupt controller remains fundamentally the same. The 

, difference is when in master mode, the interrupt control­
ler presents its interrupt input directly to the 80186 
CPU, while in iRMX 86 mode the interrupt controller 
presents its interrupt input to an external controller 
(which then presents its interrupt input to the 80186 
CPU). Placing the interrupt controller in iRMX 86 
mode is done by setting the iRMX mode bit in the pe­
ripheral control block pointer (see appendix A). 

6.3 Interrupt Controller Registers 

The interrupt controller has a number of registers which 
are used to control its operation (see Figure 49). Some of 
these change their function between the two major 
modes of the interrupt controller (master and iRMX 86 
mode). The differences are indicated in the following 
section. If not indicated, the function and implementa­
tion of the registers is the same in the two basic modes of 
operation of the interrupt controller. The method of in­
teraction among the various interrupt controller regis­
ters is shown in the flowcharts in Figures 57 and 58. 

6.3.1 CONTROL REGISTERS 

Each source of interrupt to the 80186 has a control regis­
ter in the internal controller. These n:gisters contain 

MASTER MODE OFFSET ADDRESS ,RMXS6N Mode 

INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INT1 CONTROL REGISTER 

INTO CONTROL REGISTER 

DMA 1 CONTROL REGISTER 

DMAO CONTROL REGISTER 

TIMER CONTROL REGISTER -----------------------INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER -----------0-----------

3EH CD 

3CH ===========0=========== 3AH TIMER 2 CONTROL REGISTER 

3SH 

36H 

34H 

TIMER 1 CONTROL REGISTER 

DMA 1 CONTROL REGISTER 

DMAO CONTROL REGISTER 

32H TIMER 0 CONTROL REGISTER 

30H INTERRUPT CONTROLLER STATUS REGISTER 

2EH 

2CH 

~AH 

INTERRUPT REQUEST REGISTER -----------------------IN SERVICE REGISTER 

PRIORITY MASK REGISTER 

2SH MASK REGISTER 

26H ===========0=========== 24H -'- _____ ____ -<11 _____ _____ _ 
22H ______ ~!~F.!.C_E~I..!'!~S!E-" _____ _ 

20H INTERRUPT VECTOR REGISTER 

1. Unsupported in this mode: values written mayor may not be stored 

Figure 49. '80186 Interrupt Controller Registers 

3-295 AFN-21 0973 



AP-J86 

15 o 
SPECIAL CAS- LEVEL 

I I FULLY MASK 
0 CADE TRIG. . PRIORITY BITS NESTED en t BITQ) MODEQ) MODEQ) 

BIT I l 
1. This bit present only in INTO-INT3 control registers 
2. These bits present only in INTO-INT1 control register 

Figure 50. Interrupt Controller Control Register 

15 MASTER MODE o 15 IRMX" 88 MODE o 

x x 

Figure 51. 80188 Interrupt Controller In-Service, Interrupt Request and Mask Register Format 

three bits which select one of eight different interrupt 
priority levels for the interrupt device (0 is highest prior­
ity, 7 is lowest priority), and a mask bit to enable the in­
terrupt (see Figure 50). When the mask bit is low, the 
interrupt is enabled, when it is high, the interrupt is 
masked. 

There are seven control registers in the 80186 integrated 
interrupt controller. In master mode, four of these serve 
the external interrupt inputs, one each for the two DMA 
channels, and one for the collective timer interrupts. In 
iRMX 86 mode, the external interrupt inputs, are not 
used, so each timer can have its own individual control 
register. 

8.3.2 REQUEST REGISTER 

The interrupt controller includes an interrupt request 
register (see Figure 51). This register contains seven ac­
tive bits, one for each interrupt control register. When­
ever an interrupt request is made by the interrupt source 
associated with a specific control register, the bit in in­
terrupt request register is set, regardless if the interrupt 
is enabled, or if it is of sufficient priority to cause a pro­
cessor interrupt. The bits in this register which are asso­
ciated with integrated peripheral devices (the DMA and 
timer units) can be read or written, while the bits in this 
register which are associated with the external interrupt 
pins can only be read (values written to them are not 
stored). These interrupt request bits are automatically 
cleared when the interrupt is acknowledged. 

8.3.3 MASK REGISTER AND PRIORITY 
MASK REGISTER 

The interrupt controller contains a mask register (see 
Figure 51). This register contains a mask bit for each in­
terrupt source associated with an interrupt control regis­
ter. The bit for an interrupt source in the mask ·register is 

identically the same bit as is provided in the interrupt 
control register: modifying a mask bit in the control reg­
ister will also modify it in the mask register, and vice 
versa. 

The interrupt controller also contains a priority mask 
register (see Figure 52). This register contains three bits 
which indicate the priority of the current interrupt being 
serviced. When an interrupt is acknowledged (either by 
the processor running the interrupt acknowledge or by 
the 'processor reading the interrupt poll register, see be­
low), these bits are set to the priority of the device whose 

~ interrupt is being acknowledged (which will never be 
lower than the previous priority programmed into these 
bits). They prevent any interrupt oflower priority (as set 
by the priority bits in the interrupt control registers for 
interrupt sources) from interrupting the processor. 
These bits are automatically set to the priority of the 
next lowest interrupt when the End Of Interrupt is is­
sued by the CPU to the interrupt controller (or all 1 's if 
there is no interrupt pending, meaning that interrupts of 
all priority levels are enabled). This register may be read 
or written. 

I ,. , 
.1~x ___ x ___ x ___ x ___ x_·_I~P2~I_P1~1~~1 

Figure 52. 80188 Interrupt Controller Priority 
Mask Register Format 

8.3.4 IN-SERVICE REGISTER 

The interrupt controller contains an in-service register 
(see Figure 51). A bit iii the in-service register is associ­
ated with each interrupt control register so that when an 
interrupt request by the device associated with the con-

3-296 AFN-21 0973 



inter AP-186 

trol register is acknowledged by the processor (either by 
the processor running the interrupt acknowledge or by 
the processor reading the interrupt poll register) the bit 
is set. The bit is reset when the CPU issues an End Of 
Interrupt to the interrupt contro!ler. This register may 
be both read and written, i.e., the CPU may set, in-ser­
vice bits without an interrupt ~ver occurring, or may re­
set them without using the EOI function of the interrupt 
controller. 

J. 

6.3.5 POLL AND POLL STATUS REGISTERS 

The interrupt controller contains both a poll register and 
a poll status register (see Figure 53). Both of these regis· 
ters contain the same information. They have a single bit 
to indicate an interrupt is pending. This bit is set if an 
interrupt of sufficient priority has been received. It is 
automatically cleared when the interrupt is acknowl­
edged. If (and only if) an interrupt is pending, they also 
contain information as to the interrupt type of the high­
est priority interrupt pending. 

15 

x x 
SO-S4 ~ interrupt type 

Figure 53. 80186 Poll & Poll Status 
Register Format 

o 

Reading the poll register will acknowledge the pending 
interrupt to the interrupt controller just as if the proces­
sor had acknowledged the interrupt through interrupt 
acknowledge cycles. The processor will not actually run 

15 MASTER MODE o 

J:::OSPEC'x SO-54 - Interrupt type 

any interrupt acknowledge cycles, and will not vector 
through a location in the interrupt vector table. Only the 
interrupt request, in-service and priority mask registers 
in the interrupt controller are set appropriately. Reading 
the poll status register will merely transmit the status of 
the polling bits without modifying anyofthe other inter­
rupt controller registers. These registers are read only: 
data written to them i§ not stored. These registers are 
not supported in iRMX 86 mode. The state of the bits in 
these registers in iRMX 86 mode is not defined. Howev­
er, accessing the poll register location when in iRMX 86 
mode will cause the interrupt controller to "acknowl­
edge" the interrupt (i.e., the in-service bit and priority 
level mask register bits will be set). 

6.3.6 END OF INTERRUPT REGISTER 

The interrupt controller contains an End Of Interrupt 
register (see Figure 54). The programmer issues an End 
Of Interrupt to the controller by writing to this register. 
After receiving the End Of Interrupt, the interrupt con­
troller automatically resets the in-service bit for the in­
terrupt and the priority mask register bits. The value of 
the word written to this register determines whether the 
End Of Interrupt is specific or non-specific. A non-spe- . 
cific End Of Interrupt is specified by setting the non­
specific bit in the word written to the End Of Interrupt 
register. In a non-specific End Of Interrupt, the in-ser­
vice bit of the highest priority interrupt set is automati­
cally cleared, while a specific End Of Interrupt allows 
the in-service bit cleared to be explicitly 'specified. The 
in-service bit is reset whether the bit was set by an inter­
rupt ackn~wledge or if it was set by the CPU writing the 

15 IRMX86 MODE o 

x x x x x 
, LO-L2 = Interrupt priority level 

Figure 54. 80186 End of Interrupt Register Format 

I I x x x 
15r DHLT 

x 
o 

x 

Figure 55. 80186 Interrupt Status Register Format 

15 o 
x x x 

Figure 56. 80186 Interrupt Vector Register Format (iRMX 86 mode only) 

AFN-21 0973 



AP-186 

bit directly to the in-service register. If the highest prior­
'. ity interrupt is re~et, the priority mask register bits will 
/ change to reflect the next lowest priority interrupt to be 

serviced. If a less than highest priority interrupt in-ser­
vice bit is reset, the priority mask register bits will not be 
modified (because the highest priority interrupt being 
serviced has hot changed). Only the specific EOI is sup­
ported in iRMX 86 mode. This register is write only: 
data written is not stored and cannot be read back. 

6.3.7 INTERRUPT STATUS REGISTER 

The interrupt controller also contains an interrupt status 
register (see Figure 55). This register contains four sig­
nificant bits. There are three bits used to show which 
timer is causing an interrupt. This is required because in 
master mode, the timers share a single interrupt control 
register. A bit in this register is set to indicate which tim­
er has generated an interrupt. The bit associated with a 
timer is automatically cleared after the interrupt re­
quest for the timer is acknowledged. More than one of 
these bits may be set at a time. The fourth bit in the in­
terrupt status register is the DMA baIt bit. When set, 
this bit prevents any DMA activity. It is automatically 
set whenever a NMI is received by the interrupt control­
ler. It can also be set explicitly by the programmer. This 
bit is automatically cleared whenever the IRET instruc­
tion is executed. All significant bits in this register are 
read/write. 

6.3.8 INTEFlRUPT VECTOR REGISTER 

Finally, in iRMX 86 mode only, the interrupt controller 
contains an interrupt vector register (see Figure 56). 
This register is used to specify the 5 most significant bits 
of the interrupt type vector placed on the CPU bus in re­
sponse to an interrupt acknowledgement (the lower 3 
significant bits of the interrupt type are determined by 
the priority level of the device causing the interrupt in 
iRMX 86 mode). 

6.4 Interrupt Sources 
The 80186 interrupt controller receives and arbitrates 
among many different interrupt request sources, both 
internal and external. Each interrupt source may be pro­
grammed to be a different priority level in the interrupt 
controller. An interrupt request generation flow chart is 
shown in Figure 57. Such a flowchart would be followed 
independently by each interrupt source. 

6.4.1 INTERNAL INTERRUPT SOURCES 

The internal interrupt sources are the three timers and 
the two DMA channels! An interrupt from each of these 
interrupt sources is latched in the interrupt controller, so 
that if the condition causing the interrupt is cleared in 
the originating integrated peripheral device, the inter­
rupt request will remain pending in the interrupt con­
troller. The state of the pending interrupt can be 
obtained by reading the interrupt request register of the 

interrupt controller. For all internal interrupts, the 
latched interrupt request can be reset by the processor 
by writing to the interrupt request register. Note that all 
timers share a common bit in the interrupt request regis­
ter in master mode. The interrupt controller status regis­
ter may be read to determine which timer is actually 
causing the interrupt request in this mode. Each timer 
has a unique interrupt vector (see section 6.5.1). Thus 
polling is not required to determine which timer has 
caused the interrupt in the interrupt service routine. 
Also, because ,the timers share a common interrupt con­
trol register, they are placed at a common priority level 
as referenced to all other interrupt devices. Among 
themselves they have a fixed priority, with timer 0 as the 
highest priority timer and timer 2 as the lowest priority 
timer. 

6.4.2 EXTERNAL INTERRUPT SOURCES 

The 80186 interrupt controller will accept external in~ 
terrupt requests only when it is programmed in master 
mode. In this mode, the external pins associated with the 
interrupt controller may serve either as direct interrupt 
inputs, or as cascaded interrupt inputs from other inter­
rupt controllers as a programmed option. These options 
are selected by programming the C and SFNM bits iii 
the INTO and INTI control registers (see Figure 50). 

When programmed as direct interrupt inputs, the four 
interrupt inputs are each controlled by an individual in­
terrupt control register. As stated earlier, these registers 
contain 3 bits which select the priority level for the inter­
rupt and a single bit which enables the interrupt source 
to the processor. In addition each of these control regis­
ters contains a bit which selects either edge or level trig­
gered mode for the interrupt input. When edge triggered 
mode is selected, a low-to-high transition must occur on 
the interrupt input before an interrupt is generated, 
while in level triggered mode, only a high level needs to 
be maintained to generate an interrupt. In edge trig­
gered mode, the input must remain low at least 1 clock 
cycle before the input is "re-armed." In both modes, the 
interrupt level must remain high until the interrupt is 
acknowledged, i.e., the interrupt request is not latched 
in the interrupt controller. The status of the interrupt in-

, put can be shown by reading the interrupt request regis­
ter. Each of the external pins has a bit in this register 
which indicates an interrupt request on the particular 
pin. Note that since interrupt requests on these inputs 
are not latched by the interrupt controller, if the external 
input goes inactive, the interrupt request (and also the 
bit in the interrupt request register) will also go inactive 
(low). Also, if the interrupt input is in edge triggered 
mode, a low-to-high transition on the input pin must oc-

, -cur before the interrupt request bit will be set in the in­
terrupt request register. 

If the C (Cascade) bit of the INTO or INTI control reg­
isters are set, the interrupt input is cascaded to an exter­
nal interrupt controller. In this mode, whenever the 

3-298 AFN-21 0973 



AP-186 

Figure 57. 80186 Interrupt Request Sequencing 

interrupt presented to the INTO or INTl line is ac­
knowledged, the integrated interrupt controller will not 
provide the interrupt type for the interrupt. Instead, two 
INTA bus cycles will be run, with the INT2 and INT3 
lines providing the interrupt acknowledge pulses for the 
INTO and the INTl interrupt requests respectively. IN­
TO/INT2 and INTl/INT3 may be individually pro­
grammed into, cascade mode. This allows 128 
individually vectored interrupt sources if two banks of.9 
external interrupt controllers each are used. 

6.4.3 iRMX11l 86 MODE INTERRUPT SOURCES 

When the interrupt controller is configured in iRMX 86 
mode, the integrated interrupt controller accepts inter-

rupt requests only from the integrated peripherals. Any 
external interrupt requests must go through an external 
interrupt controller. This external interrupt controller 
requests interrupt service directly from the 80186 CPU 
through the INTO line on the 80186, In this mode, the 
function of this line is not affected by the integrated in­
terrupt controller. In addition, in iRMX 86 mode the in­
tegrated interrupt controller must request interrupt 
service through this external interrupt controller. This 
interrupt request is made on the INT3 line (see section 
6.7.4 on external interrupt connections). 

6.5 Interrupt Response 
The 80186 can respond to an interrupt in two different 
ways. The first will occur ifthe internal controller is pro-

3-299 AFN-21 0973 



AP-186 

GENERATE INTA 
CYCLES FOR 

EXTERNAL 
INTERRUPT 

CONTROLLER 

YES 

PROVIDE HIGHEST 
PRIORITY INTERRUPT 

VECTOR ON 
INTERNAL BUS 

1. Before actual interrupt acknowledge is run by CPU 

WAIT FOR NEXT 
INTERRUPT 

ACKNOWLEDGE 

PLACE INTERRUPT 
TYPE ON INTERNAL '" 

BUS DURING SECOND \!I 
INTACYCLE 

2. Two interrupt acknowledge cycles will be run, the interrupt type is read by 
the CPU on the second cycle 

3. Interrupt acknowledge cycles will not be run, the interrupt vector address is 
placed on an internal bus and is not available outside the processor 

4. Interrupt type is not driven on external bus in iRMX86 mode 

Figure 58. 80186 Interrupt Acknowledge Sequencing 

viding the interrupt vector information with the control­
ler in master mode. The second will occur if the CPU 
reads interrupt type information from an external inter­
rupt controller or if the interrupt controller is in iRMX 
86 mode. In both of these instances the interrupt vector 
information driven by the 80186 integrated interrupt 
controller is not available outside the 80186 
microprocessor. 

In each interrupt mode, when the integrated interrupt 
controller receives an interrupt response, the interrupt 
controller will automatically set the in-service bit and 
the priority mask bits and reset the interrupt request bit 
in the integrated controller. The priority mask bits will 
prevent the controller from generating any further inter­
rupts to the CPU from sources of lower priority until the 
higher priority interrupt service routine has run. In ad­
dition, unless the interrupt control register for the inter­
rupt is set in Special Fully Nested Mode, the interrupt 
controller will prevent any interrupts· from occurring 
from the same interrupt fine until the in-service bit for 
that line has been cleared. 

6.5.1 INTERNAL VECTORING, MASTER MODE 

In master mode, the interrupt types associated with all 
the interrupt sources are fixed and unalterable. These 
interrupt types are given in Table 5. In response to an in-' 
ternal CPU interrupt acknowledge the interrupt con­
troller will generate the vector address rather than the 
interrupt type. On the 80186 (like the 8086) the inter­
rupt vector address is the interrupt type multiplied by 4. 
This speeds interrupt response. 

In master mode, the integrated interrupt controller is 
the master interrupt controller of the system. As a re­
sult, no external interrupt controller need know when 
the integrated controller is providing an interrupt vector, 
nor when the interrupt acknowledge is taking place. As a 
result, no interrupt acknowledge bus cycles will be gen­
erated. The first external indication that an interrupt 
has been acknowledged will be the processor reading the 
interrupt vector from the interrup(vector table in .low 
memory. 

3-300 AFN-21 0973 



inter AP-186 

Table 5. 80186 Interrupt Vector Types 6.5.2 INTERNAL VECTORING, iRMX'" 86 MODE 

Interrupt Vector Default 
Name Type Priority 

timer 0 8 Oa 
timer 1 18 Ob 
timer 2 I? Oc 
DMAO 10 2 
DMAI 11 3 
INTO 12 4 
INT 1 13 5 
INT2 14 6 
INT 3 15 7 

Because the two interrupt acknowledge cycles are not 
run, and the interrupt vector address does not need be be 
calculated, interrupt response to an internally vectored 
interrupt is 42 clock cycles, which is faster then the in­
terrupt response when external vectoring is required, or 
if the interrupt controller is run in iRMX 86 mode. 

If two interrupts of the same programmed priority occur, 
the default priority scheme (as shown in table 5) is used. 

T, 

CLKOUT 

In iRMX 86 mode, the interrupt types associated with 
the various interrupt sources are alterable. The upper 5 
most significant bits are taken from the interrupt vector 
register, and the lower 3 significant bits are taken from 
the priority level of the device causing the interrupt. Be­
cause the interrupt type, rather than the interrupt vector 
address, is given by the. interrupt controller in this mode 
the interrupt vector address must be calculated by the 
CPU before servicing the interrupt. 

In iRMX 86 mode, the integrated interrupt controller 
will present the interrupt type to the CPU in response to 
the two interrupt acknowledge bus cycles run by the pro­
cessor. During the first interrupt acknowledge cycle, the 
external master interrupt controller determines which 
slave interrupt controller will be allowed to place its in­
terrupt vector on the microprocessor bus. During the 
second interrupt acknowledge cycle, the processor reads 
the interrupt vector from its bus. Thus, these two inter­
rupt acknowledge cycles must be run, since the integrat­
ed controller will present the interrupt type information 
only when the external interrupt controller signals the 
integrated controller that it has the highest pending in­
terrupt request (see Figure 59). The 80186 samples the 

T, T, T, 

I I 

~S2 ---~~------~------~;~----+------~------~---~+---___ ;~---_+I~+-~---~ 
I I I I I I 

INTO INTERRUPT ACKNOWLEDGE INTt;RRUPT A~KNOWU;DGE 
(HIGH) --_:__--i----i---i----i----i--~--_:__-"_"1M-_i_--

INT3 -----~----~----~----~----~--_;----_r------_r-----~~--r_---­
(HIGH) 

~--+---~~/~~--+---~----~---~--~----~---~~r-­
CAS CD 80188 SLAVE ____ ~ __ ~-J,~~ ___ ~ __ ~ ____ ~ __ ~~~ __ _+~---~~--

SLAVE --+--~--. 
SELECT CD 

INTA ~'-_"-----:'_--'-'/ \'---'-_--'--_.......,1 
I LOCR4 r 
I~---~------~----r_--___ ----_+-----~----~----+_------~J 
I 

1. SLAVE SELECT = INn 
2. INTA = INT2 
3. Driven by external interrupt controller 
4. SLAVE SELECT must be driven before Phase 2 of T 2 of the second INTA 

cycle ___ . 
5. SLAVE SELECT read by 80186 

Figure 59. 80186 IRMX·86 Mode Interrupt Acknowledge Timing 

3-:301 AFN-21 0973 



so- S2 

INTA 

. ADO-AD7 --~----~I----~----~~--~----~----~----~--t-~~ __ ~ 
I 
I I 

~--+:-.----+-----~----~----~----~----~----~--~I : 
I INTERRUPT TYPE 

(FROM EXTERNAL 
CONTROLLER) 

Figure 60. 80186 Cascaded Interrupt Acknowledge Timing 

SLAVE SELECT line during the falling edge of the 
clock at the beginning of T 3 of the second interrupt ac­
knowledge cycle. This input must be stable 20ns before 
and IOns after this edge. 

These two interrupt acknowledge cycles will be run back 
,to back, and will be LOCKED with the LOCK output 
active (meaning that DMA requests and HOLD re­
quests will not be honored until both cycles have been 
run). Note that the two interrupt acknowledge cycles 
will always be separated by two idle T states, and that 
wait states will be inserted into the interrupt acknowl­
edge cycle if a ready is not returned by the processor bus 
interface. The two idle T states are inserted to allow 
compatibility with the timing requirements of an exter­
nal 8259A interrupt controller. 

Because the interrupt acknowledge cycles must be run in 
iRMX 86 mode, even for internally generated vectors, 
and the integrated controller presents an interrupt type 
rather than a vector address, the interrupt response time 
here is the same as if an externally vectored interrupt 
was required, namely 55 CPU clocks. 

6.5:3 EXTERNAL VECTORING 

External interrupt vectoring occurs whenever the 80186 
interrupt controller is placed in cascade mode, special 
fully nested mode, or iRMX 86 mode (and the integrat­
edcontroller is not enabled by the external master inter­
rupt controller). In this mode, the 80186 generates two 
interrupt acknowledge cycles, reading the interrupt type 

off the lower 8 bits of the address/data bus on the second 
interrupt acknowledge cycle (see Figure 60). This inter­
rupt response is exactly the same as the 8086, so that the 
8259A interrupt controller can be used exactly as it 
would in an 8086 system. Notice that the two interrupt 
acknowledge cycles are LOCKED, and that two idle T­
states are always inserted between the two interrupt ac­
knowledge bus cycles, and that wait states will be 
inserted in the interrupt acknowledge cycle if a ready is 
not returned to the processor. Also notice that the 80186 
provides two interrupt acknowledge signals, one for in­
terrupts signaled by the INTO line, and one for inter­
rupts signaled by the INTI line (on the INT2/INTAO 
and INT3/INTA1 lines, respectively). These two inter­
rupt acknowledge signals are mutually exclusive. Inter­
r.!!l?t acknowledge status will be driven on the status lines 
(SO-S2) when either INT2/INTAO or INn/ 
INTA1 signal an interrupt acknowledge. 

6.6 Interrupt Controller External 
Connections 

The four interrupt signals can be'programmably config­
ured into 3 major options. These are direct interrupt in­
puts (with the integrated controller providing the 
interrupt vector), cascaded (with an external interrupt 
controller providing the interrupt vector), or iRMX 86 
mode. In all these modes, any interrupt presented to the 
external lines must remain set until the interrupt is 
acknowledged. 

3-302 AFN-21 0973 



AP-186 

8.8.1 DIRECT INPUT MODE 

~hen ~he Cascade mode bits are cleared, the interrupt 
IDput lines are configured as direct interrupt input lines 
(see Figure 61). In this mode an interrupt source (e.g., 
an 8272 floppy disk controller) may be directly connect­
ed to the interrupt input line. Whenever an interrupt is 
received on the input line, the integrated controller will 
do nothing unless the interrupt is enabled, and it is the 
highest priority pending interrupt. At this time, the in­
terrupt controller will present the interrupt to the CPU 
and wait for an interrupt acknowledge. When the ac­
knowledge occurs, it will present the interrupt vector ad­
dress to the CPU. In this mode, the CPU will not run any 
interrupt acknowledge cycles. 

INTERRUPT 

SOURCES 

. 

80186 

INTO 

INT1 

INT2 

INT3 

Figure 81. 80188 Non-Cascaded 
Interrupt Connection 

These lines can be individually programmed in either 
edge or level triggered mode using their respective con­
trol registers. In edge triggered mode, Ii low-to-high 
transition must occur before the interrupt will be gener­
a!ed to the CPU, while in level triggered mode, only a 
high level must be present on the input for an interrupt 
to be generated. In edge trigger mode, the interrupt in­
put must also. ~ low for at least 1 CPU clock cycle to 
IDsure recogmtlon. In both modes, the interrupt input 
must remain active until acknowledged. 

8.8.2 CASCADE MODE 

When the Cascade mode bit is set and the SFNM bit is 
cleared, the interrupt input lines are configured in cas­
cade mode. In this mode, the interrupt input line is 
paired with_ an interrupt acknowledge line .. The INT2/ 
INTAO and INT3/INTAllines are dual purpose; they 
~an function· as direct input lines, or they can function as 
IDter!1lpt acknowledge outputs. INT2/INTAO provides 
the IDterrupt acknowledge for an INTO input, and 
INt3/INTAI provides the interrupt acknowledge for 
an INTI input. Figure 62 shows this connection. 

When programmed in this mode, in response to an inter­
rupt.request on the INTO line, the 80186 will provige 
two IDterrupt acknowledge pulses. These pulses will be 
provided on the INT2/INTAO line, and will also be re­
flected by interrupt acknowledge status being generated' 

on the SO-S2 sta.tus lines. On the second pulse, the inter­
~upt type will be read in. The 80186 externally vectored 
IDterrupt response is covered in more detail in section 
6.5. 

8259A 80188 

INT INTO 

INTA INT2 

8259A 

INT INTl 

• INTA INT3 

Figure 82. 80186 Cascade and Special Fully 
Nested Mode Interface 

INTO/INT2/INTAOand INTI/INT3/INTAI maybe 
individually programmed into interrupt re­
quest/acknowledge pairs, or programmed as direct in­
puts. This means that INTO/INT2/INTAO may be 
programmed as an interrupt/acknowledge pair, while 
INTI and INT3/INTAI each provide separate inter­
nally vectored interrupt inputs. 

When. a~ interrupt is received on a cascaded interrupt, 
the prlOnty mask bits and the in-service bits in the par­
ticular interrupt control register will be set into the in­
ter~upt. controller's mask and priority mask registers. 
ThiS Will prevent the controller from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Also, since the in-service bit is set, any subse­
quent interrupt requests on the particular interrupt 
input line will not cause the integrated interrupt control­
ler to generate an interrupt request to the 80186 CPU. 
This means that if the external interrupt controller re­
ceives a higher priority interrupt request on one of its in­
terrupt request lines and presents it to the 80186 
interrupt request line, it will not subsequently be pre­
sented to the 80186 CPU by the integrated interrupt 

, controller until the in-service bit for the interrupt line 
has been cleared. 

8.6.3 SPECIAL FULLY NESTED MODE 

When both the Cascade mode bit and the SFNM bit are 
set, the interrupt input lilies are configured in Special 
Fully Nested Mode. The external interface in this mode 
is exactly as in Cascade Mode. The only difference is in 
the conditions allowing an interrupt from the external 
interrupt controller to the integrated interrupt control­
ler to i~tetrupt the ~0186 CPU. 

When an interrupt is received from a special fully nested 

3-303 AFN-2l 0973 



AP-186 

mode interrupt line, it will interrupt the 80186 CPU if it 
is the highest priority interrupt pending regardless of the 
state of the in-service bit for the interrupt source in the 
interrupt controller. When an interrupt is acknowledged 
from a special fully nested mode interrupt line, the pri­
ority mask bits and the in-service bits in the particular 
interrupt control register will be set into the interrupt 
controller's in-service and priority mask registers. This 
will prevent the interrupt controller from generating an 
80186 CPU interrupt request from a lower priority in­
terrupt. Unlike cascade mode, however, the interrupt 
controller will not prevent additional interrupt requests 
generated by the same external interrupt controller 
from interrupting the 80186 CPU. This means that if 
the external (cascaded) interrupt controller receives a 
higher priority interrupt request on one of its interrupt 
request lines and presents it to the integrated control­
ler's interrupt request line, it may cause an interrupt to 
be generated to the 80186 CPU, regardless of the state 
of the in-service bit for the interrupt line . 

. If the SFNM mode bit is set and the Cascade mode bit is 
not also set, the controller will provide internal interrupt 
vectoring. It will also ignore the state ofthe in-service bit 
in determining whether to present an interrupt request 
to the CPU. In other words, it will use the SFNM condi­
tions of interrupt generation with an internally vectored 
interrupt response, i.e., if the interrupt pending is the 
highest priority type pending, it will cause a CPU inter­
rupt regardless of the state of the in-service bit for the 
interrupt. 

6.6.4 iRMX™ 86 MODE 

When the RMX bit in the peripheral relocation register 
is set, the interrupt controller is set into iRMX 86 mode. , 

80186 ..r-ARDY "'\. l 
INTO 

INT2 

INT1 

INT3 

ADO-AD7 

RD 

WR 

PCSA 
/ 

In this mode, all four interrupt controller input lines are 
used to perform the necessary handshaking with the ex­
ternal master interrupt controller. Figure 63 shows the 
hardware configuration of the 80186 interrupt lines 
with an extern!V controller in iRMX 86 mode. 

80186 , 8259A. 

INTO INT 
1-

INT2 INTA 

0 
CASCADE 

INT1 ADDR. 
DECODE 

INT3 

Figure 63. 80186 iRMX86 Mode Interface 

Because the integrated interrupt controller is a slave 
controller, it must be able to generate an interrupt input 
for an external interrupt controller. It also must be sig­
naled when it has the highest priority pending interrupt 
to know when to place its interrupt vector on the bus. 
These two signals are provided by the INTJ/Slave In­
terrupt Output aJ;ld INTI/Slave Select lines, respective­
ly. The external master interrupt controller must be able 
to interrupt the 80186 CPU, and needs to know when the 
interru~est is acknowledged. The INTO and 
INT2/INTAO lines provide these two functions. 

8259A-2 

INT 

INTA 

00-07 

RD 

WR SP 
CS 

t 

OTHERARD 

/ 
a/ 

+5V 

U 

Y 

10 

EXTERNAL. 

INTERRUPTS 

Figure 64. 80186/8259A Interrupt Cascading 

3-304 AFN-21 0973 



AP-186 

6.7 Example 8259A/Cascade Mode 
Interface 

Figure 64 shows the 80186 and 8259A in cascade inter­
rupt mode. The code to initialize the 80186 interrupt 
controller is given in Appendix E. Notice that an "inter­
rupt ready" signal must pe returned to the 80186 to pre­
vent the generation of wait states in response to the 
interrupt acknowledge cycles. In this configuration the 
INTO and INT2 lines are used as direct interrupt input 
lines. Thus, this configuration provides 10 external in­
terrupt lines: 2 provided by the 80186 interrupt control­
ler itself, and 8 from the external 8259A. Also, the 
8259A is configured as a master interrupt controller. It 
will only receive interrupt· acknowledge pulses in re­
sponse to an interrupt it has generated. It maybe cas­
caded again to up to 8 additional 8259As (each of which 
would be configured in slave mode). 

6.8 Example 80130 iRMX'" 86 Mode 
Interface 

Figure 65 shows the 80186 and 80130 connected in 
iRMX 86 mode. In this mode, the 80130 interrupt con­
troller is the master interrupt controller of the system. 

80186 

ALE ADDR 

,... lATCH 

2 6 
80130 

ADO-AD15 ADO-AD15 

ClK ClK 

MMCS2 MEMCS 
IRO-

PCS3 IOCS IR7 

SO-52 
/3 

SO-52 / 

!HE BHE 
INT 

INTO I 
INT3 

The 80186 generates an interrupt request to the 80130 
interrupt controller when one of"the 80186 integrated 
peripherals has created an interrupt condition, and that 
condition is sufficient to generate an interrupt from the 
80186 integrated interrupt controller. Note that the 
80130 decodes the interrupt acknowledge status directly 
from the 80186 status lines; thus, the INT2/INTAO 
line of the 80186 need not be connected to the 80130. 
Figure 65 uses this interrupt acknowledge signal to en­
able the cascade address decoder. The 80130 drives the 
cascade address on AD8-ADI0 during Tl of the second 
interrupt acknowledge cycle. This cascade address is 
latched into the system address latches, and if the proper 
cascade address is decoded by the 8205 decoder, the 
80186 INTI/SLAVE SELECT line will be driven ac­
tive, enabling the 80186 integrated interrupt controller 
to place its interrupt vector on the internal bus. The code 
to configure the 80186 into iRMX 86 mode is presented 
in appendix E. 

6.9 Interrupt Latency 

Interrupt latency time is the time from when the 80186 
receives the interrupt to the time it begins to respond to 
the interrupt. This is different from interrupt response 

L8 /7 
/ / 

+5 

/ 

AO-A15 

v3 AS-A 10 

INTERRUPT 

REQUESTS 

8205 -.1 
E2 E3 

INT2 E1 

INT1 7 

Figure 65. 80186/80130 IRMX86 Mode Interface 

/ 
3-305 AFN-21 0973 



Ap:'186 

time, which is the time from when the ptocessofactually 
begins processing the interrupt to when it actually ex­
ecutes the first instruction of the interrupt service rou­
tine. The factors affecting interrupt latency are the 
instruction being executed and the state of the interrupt 
enable flip-flop. i 

Interrupts will be acknowledged only if the interrupt en­
able flip-flop in the CPU is set. Thus, interrupt latency 
will be very long indeed if interrupts are never enabled 
by the processor! 

When interrupts are enabled in the CPU, the interrupt 
. latency is a function of the instructions being executed. 
Only repeated instructions will be interrupted before be­
ing completed, and those only between their respective 
iterations. This means that the interrupt latency time 
could be as long as 69 CPU clocks, which is the time it 
takes the processor to execute an integer divide instruc­
tion (with a segment override prefix, see below), the 
longest single instruction on the 80186. 

Other factors can affect interrupt latency. Ali interrupt 
will not be accepted between the execution of a prefix 
(such as segment override prefixes and lock prefixes) 
and the instruction. In addition, an interrupt will not be 
accepted between an instruction which modifies any of 
the segment registers and the instruction immediately 
following the instruction. This is required to allow the 
stack to be changed. If the interrupt were accepted, the 
return address from the interrupt would be placed on a 
stack which was not valid (the Stack Segment register 
would have been modified but the Stack Pointer register 
would not have been). Finally, an interrupt will not be 
accepted between the execution of the WAIT instruction 
and the instruction immediately following it if the TEST 
input is active. If the WAIT sees the TEST input in­
active, however, the interrupt wifJ be accepted, and the 
WAIT will be re-executed after the interrupt return. 
This is required, since the WAIT is used to prevent ex­
ecution by the 80186 of an 8087 instruction while the 
8087 is busy. 

x, 

x, 

7. CLOCK GENERATOR 

The 80186 includes a clock generator which generates 
the main clock signal for all 80186 integrated compo­
nents, and all CPU synchronous devices in the 80186 
system. This clock generator includes a crystal oscilla­
tor, divide by two counter, reset circuitry, aru:l ready gen­
eration logic. A block diagram of the clock generator is 
shown in Figure 66. 

7.1 Crystal Oscillator 
The 80186 crystal oscillator is a parallel resonant, 
Pierce oscillator. It was designed to be used as shown in 
Figure 67. The capacitor values shown are approximate. 
As the crystal frequency drops, they should be in­
creased, so that at the 4 MHz minimum crystal frequen­
cy supported by the 80186 they take on a value of 30pE 
The output of this oscillator is not directly available out­
side the 80186. 

80186 
x, r-----~~-----, 

x, r--------1 

r 20pF 

Figure 67. 80186 Crystal Connection 

7.2 Using an External Oscillator 
. An external oscillator may be used with the 80186. The 
external frequency input (EFI) signal is connected di­
rectly to the XI input of the oscillator. X2 should be left 
open. This oscillator input is used to drive an internal di-

CPU CLOCK & 

CLOCKOUT 

ARDY ---------1--1r-;;;.=--, CPU 

READY 
SRDY -------1'"""1.:==:::::::1 

~------------~--~~ 
CPU RESET 

& 

RESET OUTPUT 

Figure 66: ·80186 Clock Generator Block Diagram 

3-<306 AFN-21 0973 



AP-186 

Figure 68. 80186 Clock Generator Reset 

vide-by-two counter to generate the CPU clock signal, 
so the external frequency input can be of practically any 
duty cycle, so long as the minimum high and low times 
for the signal (as stated in the data sheet) are met. 

7.3 Clock Generator 
The output of the crystal oscillator (or the external fre­
quency input) drives a divide by two circuit which gener­
ates a 50% duty cycle clock for the 80186 system. All 
80186 timing is referenced to this signal, which is avail­
able 01) the CLKOUT pin of the 80186. This signal will 
change state on the high-to-Iow transition of the EFI 
signal. 

7.4 Ready Generation 
The clock generator also includes the circuitry required 
for ready generation. Interfacing to the SRDY and 
ARDY inputs this provides is covered in sectiQn 3.1.6. 

7.5 Reset 
The 80186 clock generator also provides a synchronized 
reset signal for the system. This signal is generated from 
the reset input (RES) to the 80186. The clock generator 
synchronizes this signal to the clockout signal. 

The reset input signal also resets the divide-by-two 
counter. A one clock cycle internal clear pulse is gener­
ated when the RES input signal first goes active. This 
clear pulse goes active beginning on the first low-to-high 
transition of the Xl input after RES goes active, and 
goes inactive on the next low-to-high transition of the Xl 
input. In order to insure that the clear pulse is generated 
on the next EFI cycle, the RES input signal must satisfy 
a 25ns setup time to the high-to-Iow EFI input signal 
(see Figure 68). During this clear, clockout will be high. 
On the next high-to-Iow transition of Xl, clockout will 
go low, and will change state on every subsequent high­
to-low transition of EFl. 

The reset signal'presented to the rest of the 80186, and 
also the signal present on the RESET output pin of the 
80186 is synchronized by the high-to-Iow transition of 
the clockout signal of the 80186. This signal remains ac-

tive as. long as the RES input also remains active. After 
the RES input goes inactive, the 80186 will begin to 
fetch its first instruction (at memory location FFFFOH) 
after 6 1/2 CPU clock cycles (i.e., T 1 ofthe first instruc­
tion fetch will occur 6 1/2 clock cycles later). To insure 
that the RESET output will go inactive on the next CPU 
clock cycle, the inactive going edge of the RES input 
must satisfy certain hold and setup times to·the low-to­
high edge of the clockout signal of the 80186 (see Figure 
69). 

~'~~ 
RES ____ -.I 

RESET -----------.\ ... __ _ 

Figure 69. 80186 Coming out of Reset 

8. CHIP SELECTS 

The 80186 includes a chip select unit which generates 
hardware chip select signals for memory and I/O ac­
cesses generated by the 80186 CPU and DMA. units. 
This unit is programmable such that it can be used to 
fulfill the chip select requirements (in terms of memory 
device Or bank size and speed) of most small and medi­
um sized 80186 systems. 

The chip selects are driven only for internally generated 
bus cycles. Any cycles generated by an external unit 
(e.g., an external DMA controller) will not cause the 
chip selects to go active. Thus, any external bus masters 
must be responsible for their own chip select generation. 
Also, during a bus HOLD; the 80186 does not float the 
chip select lines. Therefore, logic must be included· to en­
able the devices which the external bus master wishes to 
access (see Figure 70). 

3-307 AFN-210ll73 



AP-186 

80186 CHIP SELECT~ MEMORY or I/O 
""EX"'T .. E ... R .. NA .. L"l"Y,;G ... E .. NE,,;R .. /Ii. ... T"'ED ..... CHuol .. P"S;;;EL .. E"'C>?T ~ DEVICE CHIP SELECT 

Figure 70. 80186/External Chip Select/Device Chip Select Generation 

8.1 Memory Chip Selects 

The.80186 provides six discrete chip select lines which 
are meant to be connected to memory components in an 

, 80186 system. These signals are named UCS, LCS, 
and MCSO-3 for Upper Memory Chip Select, Lower 
Memory Chip Select and Midrange Memory Chip Se­
lects 0-3. They are meant (but not limited) to be con­
nected to the three major areas of the 80186 system 
memory (see Figure 71). 

~I 
FFFFF 

STARTUP 

ROM 

MCS3 { 

---
MCS2 { 

PROGRAM 

MEMORY 

MCSl { 

---

MCSO { 

---

=/ 
INTERRUPT 

VECTOR 

TABLE 
0 

Figure 71. 80186 Memory Areas & Chip Selects 

As could be guessed by their names, upper memory, low­
er memory, and mid-range memory chip selects are de­
signed to address upper, lower, and middle areas of 
memory in an 80186 system. The upper limit of UCS 
and the lower limit of LCS are fixed at FFFFFH and 
OOOOOH in memory space, respectively. The other limit 
of these is set by the memory size programmed into the 
control register for the chip select line. Mid-range mem­
ory allows both the base address and the block size of the 
memory area to be programmed. The only limitation is 
that the base address must be programmed to be an inte­
ger multiple of the total block size, For example, if the 
block size was 128K bytes (4 32K byte chunks) the base 
address could be 0 or 20000H, but not 10000H. 

, The memory chip selects are <;ontrolled by 4 registers in 
the peripheral control block (see Figure 72). These in­
clude 1 each for UCS and LCS, the values of which de­
termine the size of the memory blocks addressed by 
these two lines. The other two registers are used to con­
trol the size and base address of the mid-range memory 
block. 

On reset, only l)CS is active. It is programmed by reset 
to be active for the top 1 K memory block, to insert 3 wait 
states to all memory fetches, and to factor external 
ready for every memory fetch (see section 8.3 for more 
information on internal ready generation). All 'other 
chip select registers assume indeterminate states after 
reset, but none of the other chip select lines will be active 
until all necessary registers for a signal have been ac­
cessed (not necessarily written, a read to an uninitialized 
register will enable the chip select function controlled by 
tha~ register). 

( 

8.2 Peripheral Chip Selects 

The 80186 provides seven discrete chip select lines 
which are meant to be connected to peripheral compo­
nents in an 80186 system. These signals are named 
PCSO-6. Each of these lines is active for one of seven 
contiguous 128 byte areas in memory or I/O space 

, above a programmed base address. 

The peripheral chip selects are controlled by two regis­
ters in the internal peripheral control block (see Figure 
72). These registers allow the base address ofthe periph­
erals to be set, and allow the peripherals to be mapped 
into memory or I/O space. Both of these registers must 
be accessed before any of the peripheral chip selects will 
become active. 

A bit in the MPCS register allows PCS5 and PCS6 
to become latched Al and A2 outputs. When this option 
is selected, PCS5 and PCS6 will reflect the state of Al 
and A2 throughoUt a bus cycle. These are provided to al­
low external peripheral register selection in a system in 
which the addresses are not latched. Upon reset, these 
lines are driven high. They will only reflect Al and A2 
after both PACS and MPCS have been accessed (and 
are programmed to provide Al and A2!). 

8.3 Ready Generation 

The 80186 includes a ready generation unit. This unit 
generates an internal ready signal for all accesses to 
memory or I/O areas to which the chip select circuitry of 
the 80186 responds. 

3-308, AFN-210973 



om_I" II I 'ell . AP-186 

OFFSET: 

AOH 

A2H 

UPPER MEMORY SIZE 

LOWER MEMORY SIZE 

CD 
CD 

A4H 

ASH 

ASH 

PERIPHERAL CHIP SELECT BASE ADDRESS CD 

UMCS 

LMCS 

PACS 

MMCS 

MPCS 

MID-RANGE MEMORY BASE ADDRESS G} 
MID-RANGE MEMORY SIZE I ~ I ~ I CD 

1. Upper memory ready bits 
2. Lower memory ready bits 
3. PCSO-PCS3 ready bits 
4. Mid-range memory ready bits 
5. PCS4-PCS6 ready bits 
6. MS: 1 = Peripherals active in memory space 

o = Peripherals active in I/O space 
EX:1 = 7 PCS lines 
0= PCS5 = A1. PCS6 = A2 

Not all bits of every field are used 

Figure 72_ 80188 Chip Select Control Registers 

For each ready generation area, 0-3 wait states may be 
inserted by the internal unit. Table 6 shows how the 
ready ~~trol bits should be programmed to provide this. 
In additIon, the ready generation circuit may be pro­
grammed to ignore the state of the external ready (i.e., 
only the internal ready circuit will be used) or to factor 
the state of the external ready (i.e., a ready will be re­
turned to the processor only after both the internal ready 
circuit has gone ready and the external ready has gone 
ready). Some kind of circuit must be included to gener­
ate an external ready, however, since upon reset the 
ready generator is programmed to factor external ready 
to all accesses to the top lK byte memory block. If a 
ready was not returned on one of the external ready lines 
(ARDYor SRDY) the processor would wait forever to 
fetch its first instruction. 

Table 6. 80186 Wait State Programming 

R2 R1 RO Number of Wait States 

0 0 0 o + external ready 
0 o _ 1 1 + external ready 
0 1 0 2 + external ready 
0 1 ' 1 3 + external ready 
1 0 0 o (no external ready required) 
1 0 1 1 (no external ready required) 
1 1 0 2 (no external ready required) 
1 1 1 3 (no external ready required) 

8.4 Examples of Chip Select Usage 

Many examples of the use of the chip select lines are giv­
en in the bus interface section of this note (section 3.2). 
These ex~mples s?ow how simple it is to use the chip se­
lect functIOn provided by the 80186. The key point to re­
member when using the chip select function is that they 
are only activated during bus cycles generated by the 
80186 CPU or DMA units. When another master has 
the ?~s, it must generate its own chip select function. In 
addition, whenever the bus is given by the 80186 to an 
external master (through the HOLD/ HLDA arrange­
ment) the 80186 does NOT float the chip select lines. 

8.5 Overlapping Chip Select Areas 
Generally, the chip selects of the 80186 should not be 
~rogrammed such that any two areas overlap. In addi­
tIOn, none of the programmed chip select areas should 
overlap an~ of the locations of the integrated 256-byte 
control register block. The consequences of doing this 
are: 

Whenever two chip select lines are programmed to 
respond to the same area, both will be activated dur­
ing any. access to that area. When this is done, the 
ready bits for both areas must be programmed to the 
same value. If thisis not done, the processor response 
to an access in this area is indeterminate .. 

If any oj; the chip select areas overlap the integrated 
256-byte control register block, the tinting on the 

3-309 AFN-210!i73 



AP-186 

chip select line is altered. As always, any valuesre­
turned on the external bus from this access are ig­
nored. 

9. SOFTWARE IN AN 80186 SYSTEM 

Since the 80186 is object code compatible with the': 8086 
and 8088, the software in an 80186 system is very simi­
lar to that in an 8086 system. Because of the hardware 
chip select functions, however, a certain amount of inf­
tialization code must be incfuded when using those func~ 
tions on the 80186. 

9.1 System Initialization in an 
80186 System 

Most programmable components of a computer system 
must be initialized before they are used. This is also true 
for the 80186. The 80186 includes circuitry which di­
rectly affects the ability of the system to address mem­
oryand I/O devices, namely the chip select circuitry. 
This circuitry must be initialized before the memory 

. areas and peripheral devices addressed by the chip select 
signals ate used. 

Upon reset, the UMCS register is programmed to beac­
tive for all memory fetches within the top lK byte of 
memory space. It is also programmed to insert three 
wait states to all memory accesses within this space. If 
the hardware chip selects are used, they· must be pro­
grammed before the processor leaves this lK byte area 
of memory. If a jump to an area for which the chips are 
not selected occurs, the ,microcomputer system wiII 
cease to operate (since the processor will fetch garbage 
from the data bus). Appendix F shows a typical initial­
ization sequence for the 80186 chip select unit. 

Once the chip selects have been properly initialized, the 
rest of the 80186 system may be initializedmuch like an 
8086 system. For example, the interrupt vector table 
might get set up, the interrupt controller initialized, a 
serial I/O channel initialized, and the main program be­
gun. Note that the integrated peripherals included in the 
80186 do not share the same programming model as the 
standard Intel peripherals used to implement these 
functions in a typical 8086 system, i.e., different values 
must be programmed into different registers to achieve 
the same function using the integrated peripherals. Ap­
pendix F shows a typical initialization sequence for an 
interrupt driven system using the 80186 interrupt 
controller. 

9.2 Initialization for iRMX'" 86 System 

Using the iRMX 86 operating system with the80186 re­
quires an external 8259A and an external 8253/4 or al­
'ternatively an external 80130 OSF component. These 
are required because the operating system is interrupt 
driven, and expects the interrupt control1er and timers to 
have the register moc;leI of these external devices. This 

model is not the same as is implemented by the 80186. 
Because of this, the 80186 interrupt controller must be 
placed in iRMX 86 mode after reset. This initialization 
can be done at anytime after reset before jump to the 
root task of iRMX 86 System is actually performed. If 
need be, a small section of code which initializes both 
the 80186 chip selects and the 80186 interrupt controller 
can be inserted between the reset vector location and the 
beginning of iRMX 86 System (see Figure 73). In this 
case, upon reset, the processor would jump to the 80186 
initialization code, and when this has been completed, 
would jump to the iRMX 86 initialization code (in the 
root task). It. is important that the 80186 hardware be 
initialized before iRMX 86 operation is begun, since 
some of the resources addressed by the 80186 system 
may not be initialized properly by iRMX 86 System if 
the initialization is done in the reverse manner. 

8086 80186 

FFFF:O 

Figure 73.iRMX-S6 Initialization with 
SOS6 & S01S6 

9.3 Instruction Execution Differences 
Between the 8086 and 80186 

There are a few instruction execution differences be­
tween the 8086 and the 80186. These differences are: 

Undefined Opcodes: 

When the opcodes 63H,64H,65H,66H,67H,FIH, 
FEH XXlIlXXXB arid FFH XXlllXXXB 
are executed, the 80186 will exeCJlte an illegal in­
struction exception, interrupt type 6. The 8086 
will ignore the opcode. 

OFH opcode: 

When the opcode OFH is encountered, the 8086 
will execute a pop CS, while the 80186 will ex­
ecute an illegal instruction exception, interrupt 
type 6. 

Word Write at Offset FFFFH: 

'When a word write is performed at offset 
FFFFH in a segment, the 8086 will write one 
byte at offset FFFFH, and the other at offset 0, 
while the 80186 will write one byte at offset 

3-310 AFN-21 0973 



inter AP-186 

FFFFH, and the other at offset 10000H (one 
byte beyond the end of the segment). One byte 
segment underflow will also occur (on the 80186) 
if a stack PUSH is executed and the Stack Point­
er contains the value 1. 

Shift/Rotate by Value Greater Then 31: 

Before the 80186 performs a shift or rotate by a 
value (either in the CL register, or by an immedi­
ate value) it ANDs the value with lFH, limiting 
the number of bits rotated to less than 32. The 
8086 does not do this. 

LOCK prefix: 

The 8086 activates its LOCK signal immediately 
after executing the LOCK prefix. The 80186 
does not activate the LOCK signal until the pro­
cessor is ready to begin the data cyCles associated 
with the LOCKed instruction. 

Interrupted SJring Move Instructions: 

If an 8086 is interrupted during the execution of· 
a repeated string move instruction, the return 
value it will push on the stack will point to the 
last prefix instruction before the string move in­
struction. If the instruction had more than one 
prefix (e.g., a segment override prefix in addition 
to the repeat prefix), it will not be re-executed 
upon returning from the interrupt. The 80186 
will push the value of the first prefix to the re­
peated instruction, so long as prefixes are not re­
peated, allowing the string instruction to 
properly resume. 

Conditions causing divide error with an integer 
divide: 

The 8086 will cause a divide error whenever the 
absolute value of the quotient is greater then 
7FFFH (for word operations) or if the absolute 
value of the quotient is greater than 7FH (for 
byte operations). The 80186 has expanded the 
range of negative numbers allowed as a quotient 

by 1 to include 8000H and 80H. These numbers 
represent the most negative numbers representa­
ble using 2's complement arithmetic (equaling 
-32768 and -128 in decimal, respectively). 

ESC Opcode: 

The 80186 may be programmed to cause an in­
terrupt type 7 whenever an ESCape instruction 
(used for co-processors like the 8087) is execut­
ed. The 8086 has no such provision. Before the 
80186 performs this trap, it must be pro­
grammed to do so. 

These differences can be used to determine whether the 
program is being executed on an 8086 or an 80186. 
Probably the safest execution difference to use for this 
purpose is the difference in multiple bit shifts. For exam­
ple, if a multiple bit shift is programmed where the shift 
count (stored in the CL register!) is 33, the 8086 will 
shift the vafue 33 bits, whereas the 80186 will shift it 
only a single bit. . 

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language 
programming of the processor, and enhance the perfor­
mance of ·higher level languages running on the proces­
sor. These new instructions are covered in depth in the 
8086/80186 users manual and in appendix H of this 
note. 

10. CONCLUSIONS 
The 80186 is a glittering example of state-of-the art in­
tegrated circuit technology applied to make the job of 
the microprocessor system designer simpler and faster. 
Because many of the required peripherals and their in­
terfaces have been cast in silicon, and because of the 
timing and drive latitudes provided by the part, the de­
signer is free to concentrate on other issues of system de­
sign. As a result, systems designed around the 80186 
allow applications where no other processor has been 
able to provide the necessary performance at a compara­
ble size or cost. 

3-311 AFN-21 0973 



APPENDIX A . . . . . . . . . . . . . . .. 58 

APPENDIX B . . . . . . . . . . . . . . .. 60 

APPENDIX C· . . . . . . . . . . . . . . .. 61 
APPENDIX D . . . . . . . . . . . . . . .. 64 
APPENDIX E . . . . . . . . . . . . . . .. 68 
APPENDIX F .. . . . . . . .. . . . . .. 70 
APPENDIX G . . . . . . . . . . . . . . .. 72 
APPENDIX H . . . . . . . . . . . . . . .. 76 
APPENDIX I . . . . . . . . . ... . . . . .. 78 

) 

3-312 



AP-186 

APPENDIX A: PERIPHERAL CONTROL 
BLOCK 
All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained 
within an integrated peripheral control block. The regis­
ters are physically located within the peripheral devices 
they control, but are addressed as a single block of regis­
ters. This set of registers fills 256 contiguous bytes and 
can be located begjnning on any 256 byte boundary of 
the 80186 memory or I/O space. A map of these regis­
ters is shown in Figure A-I. 

A.1 Setting the Base Location of the 
Peripheral Control Block 

In addition to the control registers for each of the inte­
grated 80186 peripheral devices, the peripheral control 

block contains the peripheral control block relocation 
register. This register allows the peripheral control block 
to be re-Iocated on any 256 byte boundary within the 
processor's memory or I/O space. Figure A-2 shows the 
layout of this register. 

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the 
Pllripheral control block, any time the location of the pe­
ripheral control block is moved, the location of the relo­
cation register will also move. 

In addition to the peripheral control block relocation in­
formation, the relocation register contains two addition­
al bits. One is used to set the interrupt controller into 
iRMX86 compatibility mode. The other is used to force 
the processor to trap whenever an ESCape (coprocessor) 
instruction is encountered. 

OFFSET 

Relocation Register FEH 

DMA Descriptors Channel 1 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

DAH 

DOH 

CAH 

COH 

A8H 

AOH 

66H 

60H 
SEH 

S8H 
56H 

SOH 

3EH 

20H. 

Figure A-1. 80186 -Integrated Peripheral Control Block 

3-313 AFN-21 0973 



AP-186 

11 . 10 9 8 7 6 5 4 3 2 o 
OFFSET: FEH Relocation Address "'its R1Q-R8 

ET 
MilO 
RMX 

= ESC Trap I No ESC Trap (1/0) , 
= Register block located In Memory 1110 Space (1/0) 
= Master Interrupt Controller mode I IRMX compatible 

Interrupt Controller mode (0/1) 

Figure A-2. 80186 Relocation ~egl8ter Layout 

Because the relocation register is containeQ within the 
peripheral control block, upon reset the relocation regis­
ter is automatically programmed with the value 20FFH. 
This means that the peripheral control block will be lo­
cated at the very top (FFOOH to FFFFH) of I/O space. 
Thus, after reset the relocation register will be located at 
word location FFFEH in I/O space. 

If the user wished to locate the peripheral control block 
starting at memory location 10000H he would program 
the peripheral control register with the value II OOH. By 
doing this, he would move all registers within the inte­
grated peripheral control block to memory locations 
10000H to 100FFH. Note that since the relocation reg­
ister is contained within the peripheral control block, it 
too would move to word location 100FEH in memory 
space. 

A.2 Peripheral Control Block Registers' 
Each of the integrated peripherals' control and status 
registers are located at a fixed location above the pro­
grammed base location ,of the peripheral Control block. 
There are many locations within the peripheral control 
block which are not assigned to any peripheral. If a write 
is made to any of these locations, the bus cycle will be 
run, but the value will not be stored in any internalloca­
tion. This means that if a subsequ~nt read is made to the 
same location, the value written will not be read back. 

The processor will run an external bus cycle for any 
memory or I/O cycle which accesses a location within 
the integrated control' block. This means that the ad­
dress, data, and control information will be driven on the 
80186 external pins just as if a "normal" bus cycle had 

. been run. Any information returned by an external de~ 
vice will be ignored, however, even if the access was to a 
location which does not correspond to any of the inte-

grated peripheral control registers. The above is also 
true for the 80188, except that the word access made to 
theintegrated registers will be performed in a single bus 
cycle, with only the lower 8 bits of data being driven by 
the write cycle (since the upper 8 bits of data are non­
existant on the external data bus!) 

The processor internally generates a ready signal when~ 
ever any of the integrated peripherals are accessed; thus 
any external ready signals are ignored whenever an ac­
cess is made to any location within the integrated pe­
ripheral register control block. This ready will also be 
returned if an access is made to a location within the 256 
byte area of the periperal control block which does not 
correspond to any integrated peripheral control register. 
The processor will insert 0 wait states to any access with­
in the integrated peripheral control block except for ac­
cesses to the timer registers. ANY access to the timer 
control and counting registers will incur I wait state. 
This wait state is required to properly multiplex proces­
sor and counter element accesses to the timer control 
registers. ' 

All accesses made to the integrated peripheral control 
block must be WORP accesses. Any write to the inte­
grated registers will modify all, 16 bits of the register, 
whether the opcode specified a byte write or a word 
write. A byte read from an even location should cause no 
problems, but the data returned when a byte read is per­
formed from an odd address within the peripheral con­
trol block is undefined. This is true both for the 80186 
AND the 80188. As stated above, even though the 
80188 has an external 8 bit data bus, internally it is still 
a 16 bit machi'ne. Thus, the word accesses performed to 
the integrated registers by the 80188 will each occur in a 
single bus cycle with only the lower 8 bits of data being 
driven on the external data bus (on a write). 

3-314 AFN-21 0973 



AP·186 

APPENDIX B: 80186 SYNCHRONIZATION 
INFORMATION 

Many input signals to the 80186 are asynchronous, that 
is, a specified set up or hold time is not required to insure 
proper functioning of the device. Associated with each of 
these inputs is a synchronizer which samples this exter­
nal asynchronous signal, and synchronizes it to the in­
ternal 80186 clock. 

B.1 Why Synchronizers Are Required 

Every data latch requires a certain set up and hold time 
in order to operate properly. At a certain window within 
the specified set up and hold time, the part will actually 
try to latch the data. If the input makes a transition 
within this window, the output will not attain a stable 
state within the given output delay time. The size of this 
sampling window is typically much smaller than the ac­
tual window specified by the data sheet, however part to 
part variation could move this window around within the 
specified window in the data sheet. 

Even if the input to a data latch makes a transition while 
a data latch is attempting to latch this input, the output 
of the latch will attain a stable state after a certain 
amount of time, typically much longer than the normal 
strobe to output delay time. Figure B-1 shows a normal 
input to output strobed transition and one in which the 
input signal makes a transition during the latch's sample 
window. In order to synchronize an asynchronous signal, 
all one needs to do is to sample the signal into one data 
latch, wait a certain amount of time, then latch it into a 
second data latch. Since the time between the strobe into 
the first data latch and the strobe into the second data 
latch allows the first data latch to attain a steady state 
(or to resolve the asynchronous signal), the second data 
latch will be presented with an input signal which satis­
fies any set up and hold time requirements it may have. 
Thus, the output of this second latch is a synchronous 
signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer 
fails to resolve the asynchronous transition within the 
time between the two latch's strobe signals. The rate of 
failure is determined by the actual size of the sampling 

STROBE I 
INPUT --~S~EY.~-u~p~n~M~E-!·HOLD TIME 

m 
I 

ACTUAL SAMPLING INSTANT 

INVALID III ___ --I 

INPUT ~ 
RESPONSE ------,. RESOLUTION TIME ., 

VALID~ 
INPUT 

RESPONSE -------...11 

Figure B-1. Valid & Invalid Latch Input 
Transitions & Responses 

window of the data latch, and by the amount of time be­
tween the strobe signals of the two latches. Obviously, as 
the sampling window gets smaller, the number of times 
an asynchronous transition will occur during the sam­
pling window will drop. In addition, however, a smaller 
sampling window is also indicative of a faster resolution 
time for an input transition which manages to fall within 
the sampling window. 

B.2 80186 Synchronizers 

The 80186 contains synchronizers on the RES, 
TEST, TmrInO-l, DRQO-l, NMI, INTO-3, ARDY, and 
HOLD input lines. Each of these synchronizers use the 
two stage synchronization technique described above 
(with some minor modifications for the ARDY line, see 
section 3.1.6). The sampling window of the latches is de­
signed to be in the tens of pico-seconds, and should allow 
operation of the synchronizers with a mean time be­
tween failures of over 30 years assuming continuous 
operation. 

AFN-21 0973 



AP-186 

APPENDIX C: 80186 EXAMPLE DMA INTERFACE CODE 

$modl86 
name 

This file contains an example procedure which initializes the 80186 DMA 
controller to perform the DMA transfers between the 80186 system the the 
8272 Floppy Disk Controller (FDC). It assumes that the 80186 
peripheral control block has not been moved from its reset location.' 

argl equ 
arg2 equ 
arg3 equ 
DMA.FROM_LOWER equ 

, DMA.FROM_UPPER equ 
DMA.TO_LOWER equ 
DMA.TO_UPPER equ 
DMA.COUNT . equ 
DMA.CONTROL equ 
DMA.TO_DISK..CONTROL equ 

DMA.FROM.DISK..CONTROLequ 

FDCDMA equ 
FDCJ)ATA equ 
FDCBTATljS equ 

cgroup group 

word ptr [BP + 4] 
word ptr [BP + 6] 
word ptr [BP + 8] 
OFFCOh 
OFFC2h 
OFFC4h 
OFFC6h 
OFFC8h 
OFFCAh 
01486h 

OA046h 

6B8h 
688h 
680h 

code 

DMA register locations 

destination synchronization 
source to memory, incremertted 
destination to I/O 
no .terminal count 
byte transfers 

source synchronization 
source to I/O 
destination to memory, incr 
no terminal count 
byte transfers 
FDC DMA address 
FDC data register 
FDC status register 

code segment public 'code' 
public seLdma.. 
assume cs:cgroup 

seLdma (offset,to) programs the DMA channel to point one side to the 

seLdma.. 

disk DMA address, and the other to memory pointed to by ds:offset. If 
'to' = 0 then will be a transfer from disk to memory; if 
'to' = 1 then will be a transfer from memory to disk. The parameters to 
the routine are passed on the stack. 

proc near 
enter 0,0 
'push AX 
push BX 
push DX 
test arg2,i 

jz from..disk 
performing a transfer from memory to the disk controller 

mov 
rol 

AX,DS 
AX,4 

3-316 

set stack addressability 
save registers used 

check to see direction of 
transfer 

get the segment value 
gen the upper 4 bits of the 
physical address in the lower 4 
bits of the register 

AFN-21 0973 



"nf_l® II 1'eI . 

no_carryj"rom: 

from..disk~ 

mov 
mov 
out 
and 

add 
mov 
out 
jnc 
inc 
mov 
mov 
out 

mov 
mov 
out 
xor 
mov 
out 
mov 
mov 
out 
pop 
pop 
pop 
leave 
ret 

AP-188 

BX,AX 
DX,DMA.FROM.UPPER 
DX,AX 
AX,OFFFOh 

AX,argl 
DX,DMA.FROM..LOWER 
DX,AX 
no_carryj"rom 
BX 
AX,BX 
DX,DMA.FROM_UPPER 
DX,AX 

AX,FDC_DMA 
DX,DMA.TO_LOWER 
DX,AX 
AX,AX 
DX,DMA.TO_UPPER 
DX,AX 
AX,DMA.TOJ>ISK.CONTROL; 
DX,DMA.CONTROL .' , 
DX,AX 
DX 
BX 
AX 

save the result ... 
prgm the upper 4 bits of the 
DMA source register 
form the lower 16 bits of the 
physical address 
add the offset 
prgm the lower 16 bits of the 
DMA source register 
check for carry out of addition 
if carry out, then need to adj 
the upper 4 bits of the pointer 

prgm the low 16 bits of the DMA 
destination register 

zero the up 4 bits of the DMA 
destination register 

prgm the DMA ctl reg 
note: DMA may begin immediatly 
after this word is output 

performing a transfer from the disk to memory 

mov AX,DS 
rol AX,4 
mov DX,DMA. TO_UPPER 
olit DX,AX 
mov BX,AX 
and AX,OFFFOh 
add AX,argl 
mov DX,DMA.TO_LOWER 
out DX,AX 
jnc no_carry _to 
inc BX 
mov AX,BX 
mov DX,DMA.TO_UPPER 
out DX,AX 

no_carry _to: 
mov AX,FDCJ>MA 

mov DX,DMA.FROM..LOWER 
out DX,AX 
xor AX,AX 
mov DX,DMA.FROM.UPPER; 
out DX,AX 
mov AX,DMA.FROMJ>ISK.CONTROL 
mov DX,DMA.CONTROL 

3-317 AFN-210973 



AP-186 

out OX,AX 
pop OX 
pop BX 
pop AX 
leave 
ret 

seLdma_ endp 

code . ends 
end 

3-318 AFN-21 0973 



AP·188 

APPENDIX D: 80186 EX.~MPLE TIMER INTERFACE CODE 

$modlS6 
name example.SOlS6.timer.code 

this file contains .example SO lS6 timer routines. The first routine 

argl 
arg2 
arg3 
timer.2int 

sets up the timer and interrupt controller to cause the timer 
to generate an interrupt every 10 milliseconds, and to service 
interrupt to implement a real time clock. Timer 2 is used in 
this example because no input or output signals are required. 
The code example assumes that the peripheral control block has 
not been moved from its reset location (FFOO·FFFF in I/O space). 

equ word ptr [BP + 4] 
equ word ptr [BP + 6] 
equ word ptr [BP + S] 
equ 19 

timer.2control . equ OFF66h 
timer.2malLcti equ OFF62h 
timer.inLcti equ OFF32h 
eoLregister equ OFF22h 
interrupLstat equ OFF30h 

data segment 
public hour.,minute.,second.,msec.. 

msec_ db ? 
hour_ db ? 
minute.. db ? 
second.. db ? 
data ends 

cgroup group code 
dgroup group data 

code segment 
public seUime. 
assume cs:code,ds:dgroup 

seuime(hour,minute,second) sets the time variables, initializes the 
SO lS6 timer2 to provide interrupts every 10 milliseconds, and 
programs the interrupt vector for timer 2 

; 
seLtime. proc near 

enter 0,0 
push AX 
push OX 
push SI 
push OS 

xor AX,AX 

mov OS,AX 

mov S1,4 * timer2int 

3-319 

timer 2 has vector type 19 

i'lterrupt controller regs 

public 'data' 

public 'code' 

set stack addressability 
save registers used 

set the interrupt vector 
the timers have unique 
interrupt 
vectors even though they share 
the same control register 

AFN·21 0973 



AP-186 

mov DS: [SI] ,offset timer.2Jnterrupuoutine 
inc SI 
inc SI 
mov DS:[SI],CS 
pop DS 

mov AX,argi set the time values 
mov hour.,AL 
mov AX,arg2 
mov minute.,AL 
mov AX,arg3 
mov seconci,AL 
mov msec.,O 

mov DX,timer2.rnalLcti set the max count value 
mov AX,2oo00 10 ms / 500 ns (timer 2 counts 

at 1/4 the CPU clock rate) 
out DX,AX 
mov D X, timer2.con trol set the control word 
mov AX, 111 000000000000 1 b enable counting 

generate interrupts on TC 
continuous counting 

out DX,AX 

mov DX,timer.inLcti set up the interrupt controller 
mov AX,OOOOb unmask interrupts 

highest priority interrupt 
out DX,AX 
sti enable processor interrupts 

pop SI 
pop DX 
pop AX 
leave 
ret 

seUime. endp 

timer2Jnterrupuoutine proc far 
push AX 
push DX 

cmp msec.,99 see if one second has passed 
jae bump.second if above or equal. .. 
inc msec. I 

jmp resetinLcti 
bump.second: 

mov msec.,O reset millisecond 
cmp second.,59 see if one minute has passed 
jae bump.minute 
inc second. 
jmp resetinLcti 

bump.minute: 
mov second.,O 
cmp minute.,59 see if one hour has passed 
jae bump.hour 
inc minute. 
jmp resetinLcti 

3-320. AFN·210973 



bump_hour: 

reseLhour: 

reseLinLctl: 

timer2jnterrupuoutine 
code 

$modl86 
name 

mov 
cmp 
jae 
inc 
jmp 

AP-186 

minute_,O 
hour_,12 
reseLhour 
hour_ 
reseLinLcti 

mov hour_,1 

mov 
mov 
out 

pop 
pop 
iret 
endp 
ends 
end 

OX,eoLregister 
AX,8000h 
OX,AX 

OX 
AX 

this file contains example 80186 timer routines. The second routine 
sets up the timer as a baud rate generator. In this mode, 
Timer 1 is used to continually output pulses with a period of 
6.5 usec for use with a serial controller at 9600 baud 
programmed in divide by 16 mode (the actual period required 
for 9600 baud is 6.51 usec). This assumes that the 80186 is 
running at 8 MHz. The code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFF in I/O space). 

timer Lcontrol 
timer LmalLcnt 

equ OFFSEh 
equ OFFSAh 

see if 12 hours have passed 

non-specific end of interrupt 

code segment public 'code' 
assume cs:code 

seLbaudO initializes the 80186 timer! as a baud rate generator for 
a serial port running at 9600 baud 

seLbaud. proc near 
push AX 
push OX 

mov OX,timerl..malLcnt 
mov AX,13 
out OX,AX 
mov OX,timerLcontrol 
mov AX, 11 0000000000000 1 b 

out OX,AX 

pop OX 
pop AX 

3<-321 

save registers used 

set the max count value 
SOOns * 13 = 6.5 usee 

set the control word 
enable counting 
no interrupt on TC 
continuous counting , 
single max count register 

AFN-21 0973 



set-baud.. 
code 

$mod186 
name 

"ret 
endp 
ends 
end 

AP-186 

example.80186_count-code 

this file contains example 80186 timer routines. The third routine 
sets up the timer as an external event counter. In this mode, 
Timer 1 is used to count transitions on its input pin. After 
the timer has been set up by the routine, the number of 
events counted can be directly read from the timer count 
register at location FF58H in I/O space. The timer will 
count a maximum of 65535 timer events before wrapping 
around to zero. This code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFFin I/O space). 

; 
timer Lcontrol equ OFF5Eh 
timer LmalLcnt equ 'OFF5Ah 
timer LcnLreg equ ' OFF58H 

code segment 
assume cs:code 

set-countO initializes the 80186 timerl as an Civent counter 

set-count- proc near 
push AX 
push OX 

mov OX,timerLmalLcnt 
mov, AX,O 

out OX,AX 
mov OX,timerLcontrol 
mov AX,II 000000000001 0 I b 

out DX,AX 

xor AX,AX 
mov OX,timerLcnueg 
out OX,AX 

pop OX 
pop AX 
ret 

set-count- endp 
code ends 

end 

3-322 

public 'code' 

save registers used 

set the max count value 
allows the timer to count 
all the way (0 FFFFH 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 
external clocking 

zero AX 
and zero the count in the timer 
count register 

AFN-21 0973 



AP-186 

APPENDIX E: 80186 EXAMPLE 
INTERRUPT CONTROLLER INTERFACE 
CODE 

$mod186 
name example..80 1 86interrupLcode 

This routine configures the 80186 interrupt controller to provide 

, 

two cascaded interrupt inputs (through an external 8259A 
interrupt controller on pins INTO/INT2) and two direct 
interrupt inputs (on pins INTI and INTJ). The default priority 
levels are used. Because of this, tlie priority level programmed 
into the control register is set the Ill, the level all 
interrupts are programmed to at reset. 

intO.control 
inLm~sk 

equ 
equ 

OFF38H 
OFF28H 

code 

setinL 

setinL 
code 

$mod186 
name 
, 

segment 
assume CS:code 
proc near 
push OX 
push AX 

mov AX,OIOOIIIB 

mov OX,intO.control 
out OX,AX 

mov AX,01001101B 

mov OX,inLmask 
out OX'AX 
pop AX 
pop OX 
ret 
endp 
ends 
end 

example..80 1 86interrupLcode 

/ ; This routine configures. the 80186 interrupt controller into iRMX 86 
mode. This code does not initialize any of the 80186 
integrated peripheral control registers, nor does it initi~lize 
the external 8259A or 80130 interrupt controller. 

relocation..reg 
, 
code 

seLrmlL 

equ 

segment 
assume 
proc 
push 
push 

mov 
in 
or 
out 

OFFFEH 

CS:code 
near 
OX 
AX 

OX,relocation..reg 
AX,OX 
AX,OlooOOooooOOOOOOB 
OX,AX 

3-323 

public 'code' 

cascade mode 
interrupt unmasked 

; now unmask the other external 
; interrupts 

public 'code' 

read old contents of register 
set the RMX mode bit 

AFN.21 0973 



seumx. 
code 

pop 
pop 
ret 
endp 
ends 
end 

AX 
OX 

3-324 AFN-210973 



AP·186 

A~PENDIX F: 80186/8086 EXAMPLE 
SySTEM INITIALIZATION CODE 

name exampleJ!O I 86.systemJnit 

This file contains a system initialization routine for the 80186 
or the 8086. The code determines whether it is running on 
an 80186 or an 8086, and if it is running on an 80186, it 
initializes the integrated chip select registers. 

restart segment at 

This is the processor reset address at OFFFFOH 

org 0 
jmp far ptr initialize 

restart ends 

extrn monitor:far 
init..hw segment at 

assume CS:init..hw 

This segment initializes the chip selects. It must be located in the 
\ top IK to insure that the ROM remains selected in the 80186 

system until the proper size of the select area can be programmed. 
, 
UMCS-feg equ OFFAOH 
LMCS-feg equ OFFA2H 
PACS-fcg equ OFFA4H 
MPCS-1"eg equ OFFA8H 
UMCS_value equ OF800H 
LMCs..vaiue equ 07F8H 
PACS_value equ 72H 
MPCS_value equ OBAH 

initialize proc far 
mov AX,2 
mov CL,33 
shr AX,CL 
test AX,I 
jz noL80186 

mov DX,UMCS-feg 
mov AX,UMCs..value 
out DX,AX 

mov DX,LMCS-feg 
mov AX,LMcs..value 
out DX,AX 

mov DX,PACS-feg 

mov AX,PACs..value 
out DX,AX 

3·325 

OFFFFh 

OFFFOh 

chip select register locations 

64K, no wait states 
32K, no wait states 
peripheral base at 4OOH, 2 1(I's 
PCS5 and 6 supplies, 
peripherals in I/O space 

determine if this is an 
8086 or an 80186 (checks 
to see if the multiple bit 
shift value was ANDed) 

progralll the UMCS register 

program the LMCS register 

set up the peripheral chip 
selects (note the mid-range 
memory chip selects are not 
needed in this system, and 
are thus not initialized 

AFN-210973 



AI~·186 

moy DX,MPC8.reg 
moy AX,MPCS_value 
out DX,AX 

Now that the chip selects are all set up, the main program of the 
cqmputer may be ~ecuted. 

noL80186: 

initialize 
iniLhw 

• 'If 

jmp 
endp 
ends 
end 

far ptr monitor 

3~326. . AFN-21 0973 



AP·186 

APPENDIX G: 80186 WAIT STATE 
PERFORMANCE 
Because the 80186 contains seperate bus interface and 
execution units, the actual performance of the processor 
will not degrade at a constant rate as wait states are add­
ed to the memory cycle time from the processor. The ac­
tual rate of performace degradation will depend on the 
type and mix of instructions actually encountered in the 
user's program. 

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of 
the processor. These programs show the two extremes to 
which wait states will or will not effect system perfor­
mance as wait states are introduced. 

Program 1 is very memory intensive. It performs many 
memory reads and writes using the more extensive mem­
ory addressing modes of the processor (which also take a 
greater number of bytes in the opcode for the instruc­
tion). As a result, the execution unit must constantly 
wait for the bus interface unit to fetch and perform the 
memory cycles to allow it to continue. Thus, the execu­
tion time of this type of routine will grow quickly as wait 
states are added, since the execution time is almost total­
ly limited to the speed at which the processor can run bus 
cycles. 

Note also that this program execution times calculated 
by merely su~ming up the number of clock cycles given 
in the data sheet will typically be less than the actual 
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data 
sheet assume that the opcode bytes have been prefetched 
and reside in the 80186 prefetch queue for immediate 
access by the execution unit. If the execution unit cannot 

access the opcode bytes immediatly upon request, dead 
clock cycles will be inserted in which the execution unit 
will remain idle, thus increasing the number of clock cy­
cles required to complete execution of the program. 

On the other hand, program 2 is more CPU intensive. It 
performs many integer multiplies, during which time 
the bus interface unit can fill up the instruction pre­
fetch queue in parallel with the execution unit perform­
ing the mUltiply. In this program, the bus interface unit 
can perform bus operations faster than the execution 
unit actually requires them to be run. In this case, the 
performance degradation is much less as wait states are 
added to the memory interface. The execution time of 
this program is closer to the number of clock cycles cal­
culated by adding the number of cycles per instruction 
because the execution unit does not have to wait for the 
bus interface unit to place an opcode byte in the prefetch 
queue as often. Thus, fewer clock cycles are wasted by 
the execution unit laying idle for want of instructions. 
Table G-l lists the execution times measured for these 
two programs as wait states were introduced with the 
80186 running at 8 MHz. 

Table G-1 

Program 1 Program 2 
# of Exec Exec 
Wait Time Perf Time Perf 

States (~sec) Degr (~sec) Degr 

0 505 294 

1 595 18% 311 6% 
2 669 12% 337 8% 

3 752 12% 347 3% 

Smod186 
name example_waiLstate_performance 

This file contains two programs which demonstrate the 80186 performance 
degradation as wait states are inserted. Program 1 performs a 
transformation between two types of characters sets, then copies 

cgroup 
dgroup 
data 

the transformed characters back to the original buffer (which is 64 
bytes long. Program 2 performs the same type of transformation, however 
instead of performing a table lookup, it multiplies each number in the 
original 32 word buffer by a constant (3, note the use of the integer 
immediate multiply instruction). Program "nothing" is used to measUre 
the call and return times from the driver program only. 

group code 
group data 
segment public 'data' 

3-327 AFN-21 0973 



AP-186 

Ltable db 256 dup (?) 
Lstring db 64 dup (?) 
m..array dw 32 dup (?) 
data ends 

code segment public 'code' 
assume eS:cgroup,DS:dgroup 
public benclLl,benclL2,nothing., waiLstate-.seLtimer_ 

bench:. 1 proc near 
push SI ; save registers used 

,{ 
push ex 
push ax 
push AX 

mov eX,64 translate 64 bytes 
mov SI,O 
mov BH,O 

loop_back: 
mov BL,Lstring[SI] get the byte 
mov AL,Ltable[BX] translate byte 
mov Lstring[SI],AL and store it 
inc SI increment index 
loop loop_back do the next byte 

pop AX 
pop ax 
pop ex 
pop SI 
ret 

benclL! endp, 

benclL2 proc near 
push AX save registers used 
push SI 
push ex 

mov eX,32 multiply 32 numbers 
mov SI,offset m..array 

loop_back.2: 
imul AX,word ptr [SI],3 immediate multiply 
mov word ptr [SI],AX 
inc SI 
inc SI 
loop loop_back.2 

pop ex 
pop SI 
pop AX 
ret 

benclL2. endp 

3-328 AFN-?10973 



nothing.. 

nothing.. 

proc 
ret 
endp 

AP-186 

near 

wait.state(n) sets the -80186 LMCS register to the number of wait states 
(0 to 3) indicated by the parameter n (which is passed on the stack). 
No other bits of the LMCS register are modified. 

wait.state_ proc near 
enter 0,0 
push AX 
push BX 
push DX 

mov BX,word ptr [BP + 4] 
mov DX,OFFA2h 

contents 
in AX,DX 

and AX,OFFFCh 
and BX,3 
or AX,BX 
out DX,AX 

pop DX 
pop BX 
pop AX 
leave 
ret 

waiLstate.. endp 

seLtimerO initializes the 80186 timers to count microseconds. Timer 2 
is set up as a prescaler to timer 0, the microsecond count can be read 

directly out of the timer 0 count register at location FF50H in I/O 
space. 

seLtimer_ proc near 
push AX 
push DX 

mov DX,Off66h 
mov AX,4000h 
out DX,AX 

mov DX,Off50h 
mov AX,O 
out DX,AX 

mov DX,Off52h 
mov ' AX,O 
out DX,AX 

3-329 

set up stack frame 
save registers used 

get argument 
get current LMCS register 

and off existing ready bits 
insure ws count is good 
adjust the ready bits 
and write to LMCS 

tear down stack frame 

stop timer 2 

clear timer 0 count 

timer 0 counts up to 65535 

AFN-21 0973 



mov OX,Off56h enable timer 0 
mov AX,OcOO9h 
out OX,AX 

mov OX,Off60h clear timer 2 count 
mov AX,O 
out OX,AX 

mov OX,Off62h set maximum count of timer 2 
mov AX,2 
out OX,AX 

mov OX,Off66h re-enable timer 2 
mov AX,OcOOlh 
out OX,AX 

pop OX 
pop AX 
ret 

seLtimer_ endp 
code ends 

end 

3-330 AFN-21 0973 



AP-186 

APPENDIX H: 80186 NEW INSTRUCTIONS 

The 80186 performs many additional instructions to 
those of the 8086. These instructions appear shaded in 
the instruction set summary at the back of the 80186 
data sheet. This appendix explains the operation of these 
new instruclions. In order to use these new instructions 
with the 8086/186 assembler, the "$modI86" switch 
must be given to the assembler. This can be done by plac­
ing the line: "$modI86" at the beginning of the assem­
bly language file. 

PUSH immediate 

This instruction allows immediate data to be pushed 
onto the.processor stack. The data can be either an im­
mediate byte or an immediate word. If the data is a byte, 
it will be sign extended to a word before it is pushed onto 
the stack (since all stack operations are word 
operations). 

PUSHA,POPA 

These instructions allow all of the general purpose 
80186 registers to be saved on the stack, or restored from 
the stack. The registers saved by this instruction (in the 
order they are pushed onto the stack) are AX, CX, DX, 
BX, SP, BP, SI, and DI. The SP v.alue pushed onto the 
stack is the value of the register before the first PUSH 
(AX) is performed; the value popped for the SP register 
is ignored. 

This instruction does not save any of the segment regis­
ters (CS, DS, SS, ES), the instruction pointer (IP), the 
flag register, 'or any of the integrated peripheral 
registers. 

lMUL by an immediate value 

This instruction allows a value to be multiplied by an im­
mediate value. The result of this operation is 16 bits 
long. One operand for thi:> instruction is obtained using 
one of the 80186 addressing modes (meaning it can be in 
a register or in memory). The immediate value can be 
either a byte or a word, but will be sign extended if it is a 
byte. The 16-bit result of the multiplication can be 
placed in any of the 80186 general purpose or pointer 
registers. 

This instruction requires three operands: the register in 
which the result is to be plac~d, the immediate value, 
and the second operand. Again, this second operand can 
be anyofthe 80186 general purpose registers or a speci-
fied memory location. . 

shifts/rotates by an immediate value 

The 80186 can perform multiple bit shifts or rotates 
where the number of bits to be shifted is specified by an 

immediate value. This is different from the 8086, where 
only a single bit shift can be performed, or a multiple 
shift can be performed where the number of bits to be 
shifted is specified in the CL register. 

All of the shift/rotate instructiohs of the 80186 allpw 
the number of bits shifted to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the 
number of bits specified modulus 32 (i.e. the maximum 
number of bits shifted by the 80186 multiple bit shifts is 
31). 

These instructions require two operands: the operand to 
be shifted (which may be a register or a memory location 
specified by any of the 80186 addressing modes) and the 
number of bits to be shifted. 

block input/output 

The 80186 adds two new input/output instructions: INS 
and OUTS. These instructions perform block input or 
output operations. They operate similarly to the string 
move instructions of the processor. 

The INS instruction performs block input from an I/O 
port to memory. The I/O address is specified by the DX. 
register; the memory location is pointed to by the DI reg­
ister. After the operation is performed, the DI register is 
adjusted by 1 (if a byte input is specified) or by 2 (if a 
word input is specified). The adjustment is either an in­
crement or a decrement, as determined by the Direction 
bit in the flag register of the processor. The ES segment 
register is used for memory addressing, and cannot be 
overridden. When preceeded by a REPeat prefix, this in­
struction allows blocks of data to be moved from an I/O 
address to a block of memory Note that the I/O address 
in the DX register is not modified by this operation. 

The OUTS instruction performs block output from 
memory to an I/O port. The I/O address is specified by 
the DX register; the memory location is pointed to by the 
SI register. After the operation is performed, the SI reg­
ister is adjusted by 1 (if a byte output is specified) or by 
2 (if a word output is specified). The adjustment is either 
an increment or a decrement, as determined by the Di­
rection bit in the flag register of the processor. The DS 
segment register is used for memory addressing, but can 
be overridden by using a segment override prefix. When 
preceeded by a REPeat prefix, this instruction allows 
blocks of data to be moved from a block of memory to an 
I/O address. Again note that the I/O address in the DX 
register is not modified by this operation. 

Like the string move instruction, these two instructions 
require two operands to specify whether word or byte op­
erations are to take place. Additionally, this determina­
tion can be supplied by the mnemonic itself by adding a 
"B" or "w" to the basic mnemonic, for example: . 
INSB ; perform byte input 
REP,OUTSW ; perform word. block output 

3-331 
AFN-21 0973 



AP.188 

\ 
\ 

. BOUND' 

The 80186 supplies a BOUND instruction to facilitate 
bound checking of arrays. In this instruction, the ca:Jcu­
lated index into the:array is placed in one of the general 
purpose registers of the 80186. Located in two adjacent 
word memory locations are the lower and upper bounds 
for the array index. The BOUND instruction compares 
the register contents to the memory locations, and if the 
value in the. register is not between the values in the 
memory locations, an interrupt type 5 is generated. The 
comparisons performed are SIGNED comparisons. A 
register value equal to either the upper bound or the low­
er bound will not cause an interrupt. 

This instruction requires two.arguments: the register in 
which the calculated array index is placed, and the word 
memory location which contains the lower bound of the 
array (which can be specified by anyofthe 80186 mem­
ory addressing modes). The memory location containing 
the upper bound of the array must follow immediatly the 
memory location containing the lower bound of the 
array. 

ENTER and LEAVE 

The 80186 contains two instructions which are used to 
build and tear down stack frames of higher level, block 
structured languages. The instruction used to build 
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is: 

PUSH BP 

iflevel = 0 then 
BP:= SP; 

/* save the previous frame 
pointer * / 

else tempi := SP; /* save current frame pointer 
*/ 

? 

BP~ BEFORE 

SP-

temp2:= level-I; . 
do while temp2 > 0 /* copy down previous 

BP:= BP- 2; 
. PUSH [BP]; 
BP:= tempi; 
PUSHBP; 

1* in the save area * / 
SP:= SP - disp; 

/* local variables" / 

frame*/ 
/* pointers * / 

1* put current level 
pointer "'/ 

1* create space on the 
for * / 

level 

frame 

stack 

Figure H-I shows the layout of the stack before and 
after this operation. 

This instruction requires two operands: the first value 
(disp) specifies the number of bytes the local variables of 
this routine require. This is an unsigned value and can be 
as large as 65535. The second value (level) is an un­
signed value which specifies the level of the procedure. It 
can be as great as 255. 

The 80186 includes the LEAVE instruction to tear down 
stack frames built up by the ENTER instruction. As can 
be seen from the layout of the stack left by the ENTER 
instruction, this involves only moving the centents of the 
BP register to the SP register, and popping the old BP 
value from the stack. 

Neither the ENTER nor the LEAVE instructions save 
any of the 80186 general purpose registers. If they must 
be saved, this must be done in addition to the ENTER 
and the LEAVE. In addition, the LEAVE instruction 
does not perform a return from a subroutine. If this is 
desired, the LEAVE instruction must be explicitly fol-
lowed by the RET instruction. . 

AFTER 

BP ----' OLDBP 
, 
I-

OLD FRAME 

. PTRS. 

CURRENT FRAME I--PTR' 

LOCAL 

VARIABLE 

SP-
AREA 

Figure 1-1-1. ENTER Instruction Stack Frame 

a:-332 AFN-21 0973 



AP-186 

APPENDIX I: 80186/80188 DIFFERENCES 

The 80188 is exactly like the 801 86, except it has an 8 bit 
external bus. It shares the same execution unit, timers, 
peripheral control block, interrupt controller, chip se­
lect, and DMA logic. The differences between the two 
caused by the narrower data bus are: • 

The 80188 has a 4 byte prefetch queue, rather than 
the 6 byte prefetch queue present on the 80186. The 
reason for this is since the 80188 fetches opcodesone 
byte at a time, the number of bus cy,<les required to 
fill the smaller queue of the 80188 is actually greater 
than the number of bus cycles required to fill the 
queue of the 80186. As a result, a smaller queue is 
required to prevent an inordinate number of bus cy­
cles being wasted by prefetching opcodes to be dis­
carded during a jump. 

AD8-ADI5 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is pre­
sent on these lines throughout the bus cycle of the 
80188. Valid address information is not guaranteed 
on these lines during idle T states. 

BHE/S7 is always defined HIGH by the 80188, 
since the upper half of the data bus is non-existant. 

The DMA controlle£ of the 80188 only performs 
byte transfers. The B/W bit in the DMA control 
word is ignored. 

Execution times for many memory access instruc­
tions are increased because the memory access must 
be funnelled through a narrower data bus. The 
80188 also will be more bus limited than the 80186 
(that is, the execution unit will be required to wait 
for the opcode information to be fetched more often) 
because the data bus is narrower. The execution time 
within the processor, however, has not changed be­
tween the 80186 and the 80188. 

Another important point is that the 80188 internally is a 
16-bit machine. This means that any access to the inte­
grated peripheral registers of the 80188 will be done in 
16-bit chunks, NOT in 8-bit chunks. All internal periph­
eral registers are still 16-bits wide, and only a single read 
or write is required to access the registers. When an ac­
cess is made to the internal registers, only a single bus 
cycle will be run, and only the lower 8-bits of the written 
data will be driven on the external bus. All accesses to 
registers within the integrated peripheral block must be 
WORD accesses. 

3-333 
AFN-21 0973 



iAPX 86/10 
16-BIT HMOS MICROPROCESSOR 

8086/8086-2/8086-1 

• Direct Addressing Capability 1 
MByte of-Memory 

• -Architecture Designed for Powerful 
Assembly Language and Efficient 
High Level Languages. 

• 14 WOl'd, by 16·Blt Register Set with 
Symmetrical Operations 

• 24 Operand Addressing Modes 

• Bit, Byte, Word, and Block Operations 

• 8 and 16·Blt Signed and Unsigned 

Arithmetic In Binary or Decimal 
Including Multiply and Divide 

• Range of Clock Rates: 
5 MHz for 8086, 
8 M Hz for 8086·2, 

10'MHz for 8086·1 

• MULTIBUS,TM System Compatible 
Interface 

• Available In EXPRESS 
- Standard Tempera~ure Range 
-Extended TemperahJre Ral)ge 

The Intel iAPX 86/10 high performance 16-bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is 
implemented in N-Channel, depletion load, silicon gate technology (HMOS),.and packaged in a 40-pin CerDIPpackage. 
The iAPX 86/10 operates in both single processor and multiple processor configurations to achieve high performance 
levels. 

EXECUTION UNIT BUS INTERFACE UNIT 

-l 1- REL-OCATION 1 
REGISTER fiLE REGISTER FILE 

DATA 
POINTER AND 

INDEX REGS 
~B WORDS) 

SEGMENT 
REGISTERS 

AND 
INSTRUCTION 

POINTER 
(5 WORDS) 

'---"""-"--- BHEISI 

HAGS 

6 BYTE 
INSTRUCTION 

QUEUE 

1E5T_,-----""""'----, 
IN1-- -__ 

NMt- --

A01GT01W CONTROL & TlMI~+G 

HOLO_ 

HlOA--'--I_-._.-_...---""'7" 

I I 
RESET READY MNIM)( GND 

V" 

J ~ OTIA O'EN ALE 

I 

2 aSoQS, 

Figure 1. iAPX 86/10 CPU Block Diagram 

GND Vee 
A014 ADtS 

A013 A16/53 

, AD12 A17IS4 

ADt1 AlB/55 

AOtO A19/S6 

AD9 BHE/S7 

ADS MN/MX 

AD7 Rii 
AD6 RQliffij (HOLD) 

ADS ROIGTl (HLDA) 

ADO LOCK (WA) 

AD3 52 (MliO) 

AD2 51 (OT/R) 

AD1 so (DEN) 

ADO aso (ALE) 

NMI aS1 (INTA) 

INTR TEST 

elK READY 

GND RESET 

40 LEAD 

Figure 2. iAPX 86/10 Pin Configuration 



IAPX 86/10 

Table 1. Pin Description 

The following pin function descriptions are for iAPX 86 systems in either minimum or maximum mode. The "Local 
Bus" in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional 
bus buffers). 

Symbol Pin No. Type Name and Function 

AD,5-ADo 2-16,39 I/O Address Data Bus: These lines constitute the time multiplexed memoryllO address (T,) 
and data (T 2, T 3, Tw, T 4l bus. Ao Is analogous to SHE for the lower byte of the data bus, 
pins DrDo. I~ is LOW during T, when a byte is to be transferred on the lower portion of 
the bus in memory or I/O operations. Eight-bit oriented devices tied to the lower half 
would normally use Ao to condition chip select functions.,(See ~.) These lines are 
active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold 
acknowledge. " 

A,g1Ss, 35-38 0 Address/Status: During T, these are the four most signi-
A,a/S5, ficant address lines for memory operations. During I/O 
A17iS4, operations these lines are LOW. During memory and I/O 

A17/5 4 A1e15 3 Characteristics 
A,e/S3 operations, status information is available on these 

lines during T 2, T 3, T w, and T 4: The status of the interrupt o (LOW) 0 Alternate Data 

enable FLAG bit (55) is updated at the beginning of each 0 1 Stack 
1 (HIGH) 0 Code or None 

ClK cycle. A17/S4 and A,slS3 are encoded as shown. 1 1 Data 

This information indicates which relocation register is 
86 IS 0 
(LOW) 

presently being used for data accessing. 

These lines float to 3-state OFF' during local bus "hold 
acknowledge." 

SHE/57 34 0 BUB High Enable/Status: During T, the bus high enable 
signal (SHE) should be used to enable data onto the 
most significant half of the data bus, pins 0'5-08' Eight- BHr Ao Characteristics 

bit oriented devices tied to the upper half of the bus 
0 0 Whole word 

would normally use SHE to condition chip select func- 0 1 Upper byte from! 
tions. SHE is LOW during T, for read, write, and inter- to odd address 

rupt acknowledge cycles when a byte is to be transfer- 1 0 Lower byte froml 

red on the high portion of the bus. The 57 status informa- ta even address 

tion is available during T 2, T 3, and.T 4. The signal is active 
1 1 None 

LOW, and floats to 3-state OFF in "hold." It is LOW dur-
, 

ing T, for the first interrupt acknowledge cycle. 

RD 32 0 Read: Read strobe indicates that the processor is performing a memory of I/O read cy-
cle, depending on the state of the 52 pin. This signal is used to read devices which 
reside on the 8086 local bus. RD is active lOW during T 2, T 3 and T w of any read cycle: 
and is guaranteed to remain HIGH in T2 until the 8086 local bus has floated. 

This signal floats to 3-state OFF in "hold acknowledge." 

READY 22 I READY: is the acknowledgement from the addressed memory or I/O device that it will 
complete the data transfer. The READY signal from memory/IO is synchronized by the 
8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY in-
put is not synchr,onized. Correct operation Is not guaranteed if the setup and hold 
times are not met. 

,INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last clock cy-
cle of each instruction to determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software resetting the inter-
rupt enable bit. INTR is internally synchronized. This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input is LOW execution 
continues, otherwise the p~0.cessor waits in 'an "Idle" state. This input is synchronized' 
internally during each clock cycle on the leading edge of CLK. 

3-335 AFN,01497Q 



iAPX 86110 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

NMI' 17 I Non·maskableinterrupt: an edge triggered input which causes a type 2 interrupt. A 
subroutine is vectored to via an interrupt vector lookup table located in system 
memory. NMI is not maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This input is internally syn· 
chronized. 

RESET 21 I Reset: causes the processor to immediately terminate its present activity. The signal 
must be active HIGH for at least four clock cycles. It restarts execution, as described in 
the Instruction Set description, when RES!:T returns lOW. RESET is internally syn· 
chronized. 

ClK 19 I Clock: provides the basic timing for the processor and bus controller. It is asymmetric 
with a 33% duty cycle to provide optimized internal timing. 

Vee 40 Vcc: -+ 5V power supply pin. 

GND 1,20 Ground 

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The two 
modes are discussed in the following sections . 

. The following pin function descriptions are for the 808618288 system in maximum mode (i.e., MNIMX = Vss). Only the 
pin functions which are unique to maximum mode are described; all other pin functions are as described above. 

52,51, So 26·28 a Status: active during T 4, T1, and T 2 and is. returned to the 
passive state (1,1,1) during T3 or during Twwhen READY S2 s, So Characteristics 

is HIGH. This status is used by the 8288 Bus Controller o (lOW) 0 0 Interrupt 

to generate all memory and 110 access control signals. Acknowledge 

Any change by 82,8;, or So during T 4 is used to indicate 0 0 , Read 110 Port 
0 , 0 Wnte 110 Port 

the beginning of a bus cycle, and the return to the pas· 0 , , Hart 

sive state in T 3 or Tw is used to indicate the end of a bus '(HIGH) 0 0 Code Access 

cycle. 
, 0 , Read Memory , 1 0 Write Memory 

These signals float to 3-state OFF in "hold acknowl- 1 1 1 Passive 

edge." These status lines are encoded as shown. 

RQ/GTo, 30, 31 110 Request/Grant: pins are used by other local bus masters to force the processor to 
RQ/<IT1 release the local bus at the end of the processor's current bus cycle. Each pin is 

bidirectional with RQ/GTo having higher priority thim RQ/GT1.IRQ/GT has an internal 
pull-up resistor, so may be left unconnected. The request/grant sequence is as follows 
(see Figure 9): . 
1. A pulse of 1 ClK wide from another local bus master indicates a local bus request 

("hold") to the 8086 (pulse 1). 

2, During a T4 orTI clock cycle, a pulse 1 ClK wide from the 8086 to the requesting master 
(pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter 
the "hold acknowledge" state at the next ClK. The CPU's bus interface unit is discon-
nec,~ed logically from the local bus during "hold acknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8086 (pulse 3) that 
the "hold" request is about to end and that the 8086 can reclaim the local bus at the 
nextCLK. 

Each master-master exchange of the local bus is a sequence of 3 pulses. There must 
be one dead ClK cycle after each bus exchange. Pulses are active lOW. 

lithe request is made while the CPU is performing a memory cycle, it will release the local 
bus during T4 of the cycle when all the following conditions are met: 

1. Request occurs on or before T2. 

2. Current cycle is not the low byte of a word (on an odd address). 
3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence. 
4, A locked instruction is not currently executing. 

3-336 AFN-01497D 



IAPX 86/10 

Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

If the local bus is idle when the request is made the two possible events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle wilLstart within 3 clocks. Now the four rules for a currently active 

memory cycle apply with condition number 1 already satisfied. 

rnrn< 29 0 LOCK: output indicates that other system bus masters are not to gain control of. the 
system bus while LOCK i~ active LOW. The LOCK signal is activated by the "LOCK" 
prefix Instruction and remains active until the completion of the next instruction. This 
signal is active LOW, and floats to 3-state OFF in "hold acknowledge." 

QS" QSo 24, 25 0 Queue Status: The queue status QS, QSa CHARACTERISTICS 
Is valid during the CLK cycle ~(LOW) 0 No Operation 
after which the queue operation 

~ (HIGH) 
1 First Byte of Op Code from Queue 

is performed. 0 Empty the Queue 
QS, and QSo provide status to 1 1 Subsequent Byte from Queue 
allow external tracking of the 
internal 8086 instruction queue. 

The following pin function descriptions are for the 8086 in minimum mode (i.e., MN/MX = Vee)' Only the pin functions which 
are unique to minimum mode are described; all other pin functions are as described above. 

MilO 28 0 Status line: logically equivalent to S2 in the maximum mode. It is used to distinguish a 
memory access from an I/O access. MliO becomes valid in the T 4 preceding~ bus cycle 
and remains valid until the final T 4 of the cycle (M = HIGH, 10 = LOW). MilO floats to 
3-state OFF in local bus "hold acknowledge." 

WA' 29 0 Write: indicates that the proces~r is performing a write memory or write, I/O cycle, 
depending on the state of the MilO signal. WR is active forT2, T3 and Twof any write cy-
cle. It is active LOW, and floats to 3-state OFF in local bus "hold acknowledge." 

INTA 24 0 INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during 
T 2, T 3 and T w of each interrupt acknowledge cycle. 

ALE 25 0 Address Latch Enable: provided by the processor to latch the address into the 82821 
8283 address latch. It is;a HIGH pulse active during T, of any bus cycle. Note that ALE 
is never floated. 

DT/R 27 0 Data Transmit/Receive: needed in minimum system that desires to use an 8286/8287 
data bus transceiver. It is used to control the direction of data flow through the 
transceiver. Logic~y DT/R is equivalent to 51 in the maximum m~de, and its timing is 
the same as for MilO. (T = HIGH, R = LOW.) This Signal floats to 3-state OFF in local bus 
"hold acknowledg!"." . 

DEN 26 0 Data Enable: provided as an output enable for the 8286/8287 in a minimum system 
which, uses the transceiver. DEN is active LOW during each memory and I/O access and 
for INTA cycles. For a read or INTA cycle it is active from the middle of T 2 until the mid-
dle of T 4, while for a write cycle it is active from the beginning of T 2 until the middle of 
T4. DEN floats to 3-state OFF in local bus "hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus "hold." To be acknowl-
HLDA edged, HOLD must be active HIGH. The processor receiving the "hold" request will 

issue HLDA (HIGH) as an acknowledgement inthe middle 6f a T, clock cycle. Simul-
taneous with the issuance of HLDA the processor will float the local bus and control 
lines. After HOLD Is detected as being LOW, the processor will LOWer the HLDA, and 
when the processor needs to run another cycle, it will 'again drive the local bus and 
control lines. 

The same rules as for RQIGT apply regarding when the local bus will be released. 

HOLD is not an asynchronous input. External synchronization should be provided if the 
system cannot otherwise guarantee the setup time. 

3-337 AFN·01497D 



IAPX 86/10 

FUNCTIONAL DESCRIPTION 

GENERAL OPERATION 

The internal functions of the iAPX 86/10 processor are 
partitioned logically into two processing units. The first is 
the Bus Interlace Unit (BIU) and the second is the Exe­
cution Unit (EU) as shown in the block diagram of 
Figure 1. 

These units can interact directly but for the most part 
perform as separate asynchronous operational process­
ors. The bus interface unit provides the functions related 
to instruction fetching and queuing, operand fetch and 
store, and address relocation. This unit also provides the 
basic bus control. The overlap of instruction pre-fetching 
provided by this unit serves to increase processor perfor­
mance through improved bus bandwidth utilization. Up to 
6 bytes of the instruction stream can be queued while 
waiting for decoding and e~ecution. 

The instruction stream queuing mechaniSm allows the' 
BIU to keep the memory utilized very efficiently. When· 
e~er there is space for at least 2 bytes in the queue, the 
BIU will attempt aword fetch memory cycle. This greatly 
reduces "dead time" on the memory bus. The queue 
acts as a First·ln·First·Out (FIFO) buffer, from which the 
EU extracts instruction bytes as required. If the queue is 
empty (following a branch instruction, for example), the 
first byte into the queue immediately becomes available 
to the EU. 

The execution unit receives pre·fetched instructions 
from the BIU queue and provides un·relocated op~rand 
addresses to the BIU. Memory operands are passed 
through the BIU for processing by the EU, which passes 
results to the BIU for storage. See the Instruction Set 
description for furthllr register set and architectural 

. descriptions. 

Memory Segment Register 
Reference Need Used 

MEMORY ORGANIZATION 
The processor provides a 20-bit address to memory which 
locates the byte b~ing re~erenced. The memory is orga­
nized as a linear array of up to 1 million bytes, addressed 
as OOOOO(H) to FFFFF(H). The memory is logically divided 
into code, data, extra data, and stack segments of up to 
64K bytes each, with each segment falling on 16-byte 
boundaries. (See Figure 3a.) 

All memory references are made relative to base 
addresses contained in high speed segment registers. The 
segment types were chosen based on the addressing 
needs of programs. The segment register to be selected is 
automatically chosen according to the rules of the follow­
ing table. All information in one segment type share the 
same logical attributes (e.g. code or data). By structuring 
memory into relocatable areas of si m i lar characteristi cs 
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or odd 
address boundaries and are thus not constrained to 
even boundaries as is the case in many 16-bit com· 
puters. For address and data operands, the least signifi· 
cant byte of the word i's stored in the lower valued 
address location and the most significant byte in the 
next higher address location. The BIU automatically per· 
forms the proper number of memory accesses, one if 
the word operand is on an even byte boundary and two if 
it is on an odd byte boundary. Except for the perfor· 
mance penalty, this double access is transparent to the 
software. This performance penalty does not occur for 
instruction fetches, only word operands. 

Physically, the memory is organized as a high bank 
(DwDaJ and a low bank (07-00) of 512K 8-bit bytes 
addressed in parallel by the processor's address lines 

A19 - A1. Byte data with even addresses is transferred on 
the 07-00 bus lines while odd addressee byte eata (Ao 
HIGH) is transferred on the 015-08 bus lines. The process-

. or provides two enable signals, BHE and Ao, to selectively 
allow reading from or writing into either an odd byte 
location, even byte locatien, or both. The instruction 
stream is fetched from memory as words and is addressed 
internally by the processor to the byte level as necessary. 

Segment 
Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (SS) All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a 
segment override. 

3-3313 AFN-01497D 



inter IAPX 86/10 

..r----::t FFFFF H 

641.. D} CODE SEGMENT 

-L XXXXOH ,--

'I--

r I 
... OFfSET 

} STACK SEGMENT 

SEGMENT t1 REGISTER FilE 

CS 
55 
OS 
ES 

} DATA SEGMENT 

I---

}EXTRA DATA SEGMENT 

~OOOOOH 

Figure 3a. Memory Organization 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the start­
ing byte of the word is on an even or odd address, 
respectively_ Consequently, in referencing word oper­
ands performance can be optimized by locating data on 
even address boundaries. This is an especially useful 
technique for using the stack, since odd address refer­
ences to the stack may adversely affect the context 
switching time for interrupt processing or task multi· 
plexing. , 
Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) Locations from address 
FFFFOH through FFFFFH are reserved for operations 
including a jump to the initial program loading routine. 
Foliowing'RESET, the CPU will always begin execution 
at location FFFFOH where the jump must be, Locations 
OOOOOH through 003FFH are reserved for interrupt 
operations. Each of the 256 possible interrupt types has 
its service routine pointed to by a 4-byte pointer element 

consisting of a 16-bit segment address and a 16-bit off­
set address. The pointer elements are assumed to have 
been stored at the respective places in reserved memory 
prior to occurrence of interrupts. 

RESET BOOTSTRAP 
PROGRAM JUMP 

1 

INTERRUPT POINTER 
FOR TYPE 255 

'. 
INTERRUPT POINTER 

FOR TYPE 1 

INTERRUPT POINTER 
FOR TYPE 0 

FFFFFH 

FFFFOH 

3FFH 

3FCH 

7H 

4H 
3H 

OH 

Figure 3b. Reserved Memory Locations 

MINIMUM AND MAXIMUM MODES 
The requirements for supporting minimum and maximum 
iAPX 86/10 systems are sufficientiy different that they 
cannot be done efficiently with 40 uniquely defined 
pins. Consequently, the 8086 is equipped with a strap 
pin (MN/MX) which defines the system configuration. 
The definition of a certain subset of the pins changes 

'dependent on the condition of the strap pin. When 
MN/MX pin is strapped to GND, the 8086 treats pins 24 
through 31 in maximum mode. An 8288_bi:!.S £,ontroller 
interprets status information coded into SO,S"S2 to gen­
erate bus timing and control Signals compatible with 
the MULTIBUS™ architecture. When the MN/MX pin Is 
strapped to Vee, the 8086 generates bus control signals 
itself on pins 24 through 31, as shown in parentheses in 
Figure 2. Examples of minimum mode and maximum 
mode systems are shown in Figure 4. 

3-339 AFN-01497D 



IAPX 86/10 

Vee ID1 
_CLOCK MN/MX Vee 

GENERATOR - ClK M/iO 

r- FIn READY iiiI'i'A 

r' RDY 

- RESET Ali 
L W1! 

ND r-l.-..., I 
DT/A -----, I 

G 

I WAIT I DEN - --, I I 
I STATE I I I r-----, I 
I GENERATOR I 8086 CPU 

I I I I 
ALE STB I L ___ ...l 

GND~ OE 
I I 

8282 
I I 

ADo-AD15 ~DD~ LATCH 

4 
AOOR 

A'S-A'9 2 OR 3 
I 

BHE -~ 
I I I 

I I J---:-l I 
I I L T----' I 
I gOE 8286 II I 

TRANSCE'VER I DATA 

I (2, 11_ hIT 1 TTl 1l I I BHE 

L ___ Y 
OPTIONAL CSOH CSO~ WE 00 CE OE CS RDWR 

FOR INCREASED 
DATA BUS DRIVE 2142 RAM (4) 2716-2 PROM (2) MCS·SO 

PERIPHERAL 
(2) (2) 

1Kx8 I 1KxS 2Kx8 I 2KxB 

Figure 4a. Minimum Mode iAPX 86/10 lYplcal Configuration 

o Vee i Ul I 82_ 
MN/MX OND ClK MRliC 

CLOCK .. ClK iO SO MwTC GENERATOR 

f-oFln - READY S, S, AMWC -N.C 
_ RESET So So 8288 -IORC 

T Dnv r--
BUS __ 

" ' , D'::N CTRLR lowe 

ND r"':'I--, 8086 .-- Dl/R AIOWC _N.C 
CPU 

ALE INTA 

Q 

I WAIT I 
I STATE I coeR -NC r---:1 
I GENERA TOR I I L ___ ...l STB 

I 
GND- f-;- OE 

8282 I 
ADo-AD,s 

~DDRIDAr--v 
LATCH 

~DDR A16-A19 (2 OR 3) 

8Rl; ~ r-- J-r-

4>= T 

DE 
8286 

TRANSCEIVER DATA 

----'\ 
(2) }dl 1 TT II "HE 

eSOH CSOL WE 00 CE OE es lIOWli 

2142 RAM (4) 2716·2 PROM (2) MCS·80 
PERIPHERAL 

(2' (2) 
1Kx8 I lKxB 2K )( 8 I 2K x 8 

Figure 4b. Maximum Mode iAPX 86/10 Typical Configuration 

3-340 AFN·01497D 



intJ IAPX 86/10 

BUS OPERATION 
The 86/10 has a combined address and data bus com­
monly referred to as a time multiplexed bus. This tech· 
nique provides the most' efficient use of pins on the 
processor while permitting the use of a standard 40·lead 
package. This "local bllS" can be buffered directly and 
used throughout the system with address latching pro· 
vided on memory and 110 modules. In addition, the bus 
can also be demultiplexed at the processor with a single 
set of address latches if a standard non-multiplexed bus 
is desired for the system. 

Each processor bus cycle consists of at least four ClK 
cycles. These are referred to as T 10 T 2, T 3 and T 4 (see 
Figure 5). The address is emitted from the processor 
during T, and data transfer occurs on the bus during T 3 
and T 4' T 2 is used primarily for changing the direction of 
the bus during read operations. In the event that a "NOT 
READY" indication is given by the addressed device, 
"Wait" states (T w) are inserted between T 3 and T 4. Each 
inserted "Wait" state is of the same duration as a ClK 
cycle. Periods can occur between 8086 bus cycles. 
These are referred to as "Idle" states (TI) or inactive ClK 
cycles. The processor uses these cycles for internal 
housekeeping. 

During T, of any bus cycle the ALE (Address latch 
Enable) signal is emitted (by either the processor or the 
8288 bus controller, depending on the MN/MX strap). At 
the trailing edge of this pulse, a valid address and cer­
tain status Information for the cycle may be latched. 

5tatus bits ~, 5" and 52 are used, in maximum mode, 
by the bus controller to identify the ,type of bus transac· 
tion according to the following table: 

82 S; So CHARACTERISTICS 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 1 0 Write 110 
0 1 1 , Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

5tatus bits 53 through 57 are multiplexed with high­
order address bits and the BHE signal, and are therefore 
valid ,during T 2 through T 4' 53 and 54 indicate which 
segment register (see Instruction 5et description) was 
used for this bus cycle in forming the address, accord· 
ing to the following table: 

3-341 

84 83 CHARACTERISTICS 

o (lOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

55 is a reflection of the P5W interrupt enable bit. 56=0 and 
57 is a spare status bit. 

1/0 ADDRESSING 

In the 86/10, I/O operations can address up to a maximum 
of 64K I/O byte registers or 32K I/O word registers. The 
I/O address appears in the same format as the memory 
address on bus lines A'5-Ao. The address lines A19-A16 

are zero in I/O operations. The variable I/O instructions 
which use register OX as a pointer have full address capa­
bility while the direct I/O instructions directly address one 
or two of the 256 1/0 byte locations in page 0 of the I/O 
address space. . 

110 ports are addressed in the same manner as memory 
locations. Even addressed bytes are transferred on the 
07-00 bus lines and odd addressed bytes on DI5-Da. 
Care must be taken to assure that each register within 
an 8-bit peripheral located on the lower portion of the 
bus be addressed as even. . 

AFN·01497D 



Cl.k 

ADDR/ 
STATUS 

ADDR/DATA 

iiii,iiiii 

READY' 

ortii' ' 

iAPX 86/10 

,.0------ (4 + NWAIT):O Tey ______ .... -11 •. ______ (C + NwAITJ:: Tey -------1°1 
T, T2 T3 TWAIT T4 T1 _ T2 T3 TWAIT T4 

\~-

-----8,-__ D_A_TA_O_U_T_ID_"_-D_~ __ ...J>-~ 

READY 

WAIT WAIT 

Figure 5. Basic System Timing 

3-342 AFN-01497D 



inter IAPX 86/10 

EXTERNAL INTERFACE 
PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished with 
activation (HIGH) of the RESET pin. The 8086 RESET is 
required to be HIGH for greater than 4 ClK cycles. The 
8086 will terminate operations on the high-going edge of 
RESET and will remain dormant as long as RESET is 
HIGH. The low-going transition of RESET triggers an 
internal reset sequence for approximately 10 ClK cycles. 
After this interval the 8086 operates normally beginning 
with the instruction in absolute location FFFFOH (see 
Figure3Bl. The details ofthis operation are specified in the 

. Instruction Set description of the MCS-86 Family User's 
Manual. The RESET input is internally synchronized to the 
processor clock. At initialization the HIGH-to-lOW trans­
ition of RESET must occur no sooner than 50 I's alter 
power-up, to allow complete initialization of the 8086. 

NMI may not be asserted prior to the 2nd ClK cycle fol­
lowing the end of RESET. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts and 
software aspects of hardware interrupts are specified in 
the Instruction Set description. Hardware interrupts can 
be ClaSSified as non-maskable or maskable. 

Interrupts result in a transfer of control to a new pro­
gram location. A 256-element table containing address 
pointers to the interrupt service program locations 
resides in absolute locations 0 through 3FFH (see 
Figure 3b), which are reserved for thiS purpose. Each 
element in the table is 4 bytes in size and corresponds 
to an interrupt "type" An interrupting device supplies 
an 8-bit type number, during the interrupt acknowledge 

sequence, which is used to "vector". through the ap­
propriate element to the new interrupt service program 
location. 

NON·MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable interrupt 
pin (NMI) which has higher priority than the maskable in­
terrupt request pin (INTR). A typical use would be to ac­
tivate a power failure routine. The NMI is edge-triggered 
on a lOW-to-HIGH tranSition. The activation of this pin 
causes a type 2 interrupt. (See Instruction Set descrip­
tion.) 

NMI is required to have a duration in the HIGH state of 
greater than two ClK cycles, but is not required to be 
synchronized to the clock. Any high-going transition of 
NMI is latched on-chip and will be serviced at the end of 
the current instruction or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide, and variable shift instruc­
tions. There is no specification on the occurrence of the 
low-going edge; it may occur before, during, or after the 
servicing of NMI. Another high-going edge triggers 
another response if it occurs after the start of the NMI 
procedure. The signal must be free of logical spikes in 
general and be free of bounces on the low-going edge to 
avoid triggering extraneous responses. 

MASKABLEINTERRUPTPNT~ 

The 86/10 provides a single interrupt request input (INTR) 
which can be masked internally by software with the 
resetting of the interru~t enable FLAG status bit. The 
interrupt request signal IS level triggered. It is internally 
synchronized during each clock cycle on the high-going 
edge of elK. To beresponded to, INTR must be present 
(HIGH) during the clock period preceding the end of the 
current instruction or the end of a whole move for a 
blOCk-type instruction. During the interrupt response 
sequence further interrupts are disabled. The enable bit 
is reset as part of the response to any interrupt (INTR, 
NMI, software interrupt or single-step), although the 

T, I T2 T3 T4 JT I \ T, T, T3 I • 

ALE £\'---_--------./ J\'-----
\ J I i ( 

/ 

r i ~ \ \ 

\ J I TYPE VECTOR 'r-I I 

INTA 

\ FLOAT 
ADo-AD,s ~>-c::.::.----------------i 

Figure 6. Interrupt Acknowledge Sequence 

3-343 AFN-014970 



IAPX 86/10 

FLAGS register which is automatically pushed onto the 
stack .reflects the state of the processor prior to the 
interrupt. Until the old FLAGS register is restored the 
enable bit will be zero unless specifically set by an 
Instruction. 

During the response sequence (figure 6) the processor 
executes two successive (back-to-back) interrupt 
acknowledge cycl~s. The 8086 emits the LOCK signal 
from T2 of the first bus cycle until T2 of the second. A 
local bus "hold" request will not be honored until the 
end of the second bus cycle. In the second bus cycle a 
byte Is fetched from the external interrupt system (e.g., 
8259A PIC) which identifies the source (type) of the 
interrupt. This byte is multiplied by four and used as a 
pOinter into the interrupt vector lookup table. An INTR 
signal left HIGH will be continually responded to within 
the limitations of the enable bit and sample period. The 
INTERRUPT RETURN instruction includes a FLAGS pop 
which returns the status of the original interrupt enable 
bit when it restores the FLAGS. 

HALT 
When a software "HALT" instruction is executed the 
processor Indicates that it is entering the "HALT" state 
in one of two ways depending upon which mode is 
strapped. In minimum mode, the processor issues one 
ALE with no qualifying bus control signals. In Maximum 
Mode, the processor issues appropriate HALT status on 
S~,So and the 8288 bus controller issues one ALE. The 
8086 will not leave the "HALT" state when a local bus 
"hold" is entered while in "HALT". In this case, the 
processor reissues the HALT indicator. An interrupt 
request or RESET will force the 8086 out of the "HALT" 
state. 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the proc­
essor when directly consecutive bus cycles are required 
during the execution of an instruction. This provides the 
processor with the capability of performing read/modify/ 
write operations on memory (via the Exchange Register 
With Memory instruction, for example) without the 
possibility of another system bus master receiving 
intervening memory cycles. This is useful in multi­
processor system configurations to accomplish "test 
and set lock" operations. The LOCK signal is activated 
(forced LOW) in the clock cycle following the one in 
which the software "LOCK" prefix instruction is 
decoded by the EU. It is deactivated at the end of the 
last bus cycle of the instruction following the "LOCK" 
prefix instruction. While LOCK is active a request on a 
RQ/GT pin will be recorded and then honored at the end 
of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to the interrupts and general I/O 
capabilities, the 8086 provides a single software­
testable input known as the TEST signal. At any time the 
program may execute a WAIT instruction. If at that time 
the TEST signal is inactive (HIGH), pr.ogram execution 
becomes susp~nded while the processor waits for TEST 

to become active. It must remain active for at least 5 
CLK cycles. The WAIT instruction Isre-executed 
repeatedly until that time. This activity does not con­
sume bus cycles. The processor remains in an idle state 
while waiting. All 8086 drivers go to 3-state OFF if bus 
"Hold"is entere". If interrupts are enabled, they may 
occur while the processor is waiting. When this occurs 
the processor fetches the WAIT instr,uction one extra 
time, processes the interrupt, and then re-fetches and 
re-executes the WAIT instruction upon returning from 
the interrupt. 

BASIC SYSTEM TIMING 
Typical system configurations for the processor 
operating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In minimum 
mode, the MN/MX pin is strapped to Vee and the proc­
essor emits bus control signals in a manner similar to 
the 8085. In maximum mode, the MN/MX pin is strapped 
to Vss and the processor emits coded status informa­
tion which the 8288 bus controller uses to generate 
MUL TIBUS compatible bus control signals. Figure 5 il­
lustrates the signal timing relationships. 

AX AH AL ACCUMULATOR 

BX BH BL BASE 

CX CH CL COUNT 

OX DH DL DATA 

~~ 
STACK POINTER 

BP BASE POINTER 

SI SOURCE INDEX 

01 DESTINATION INDEX 

I I. I INSTRUCTION POINTER 

FLAGSH I FLAGSL STATUS FLAGS 

CS CODE SEGMENT 

OS DATA SEGMENT 

- SS STACK SEGMENT 

ES EXTRA SEGMENT 

Figure 7. IAPX 86/10 Register Model 

SYSTEM TIMING - MINIMUM SYSTEM 
The read cycle begins In T, with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (low­
going) edge of this signal is used to latch the address 
information, which is valid on the local bus at this time, 
into the 8282/8283 latch. The BHE and Ao signals 
address the low, high, or both bytes. From T, to T4 the 
M/iO signal indicates a memory or 110 operation. At T 2 
the address is removed from the local bus and th,e bus 
goes to a high impedance state. The read control signal 
is also asserted at T 2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to the 
local bus. Some time later valid data will be available on 
the bus and the addressed device will drive the READY 
line HIGH. When the processor returns the read signal 

3-344 AFN·01497D 



inter IAPX 86/10 

,to a HIGH level, the addressed device will again 3·state 
its bus drivers. If a transceiver (8286/8287) is required to 
buffer the 8086 local bus, signals DTiR and DEN are pro· 
vided by the 8086. 

A write cycle also begins with the assertion of ALE and 
the emission of the address. The M/iO signal is again 
asserted to indicate a memory or I/O write operation. In 
the T 2 immediately following the address emission the 
processor emits the data to be written into the 
addressed location. This data remains valid until the 
middle of T 4' During T 2, T 3, and T w the processor asserts 
the write control signal. The write (WR) si'gnal becomes 
active at the beginning of T 2 as opposed to the read 
which is delayed somewhat into T2 to provide time for 
the bus to float. 

The BHE and Ao signals are used to select the proper 
byte(s) of the memoryllO word to be read or written 
according to the following table: 

BHE AD CHARACTERISTICS 

0 0 Whole word 

0 1 Upper byte froml 
to odd address 

1 0 Lower byte froml 
to even address 

1 1 None 

I/O ports are addressed in the same manner as memory 
location. Even addressed bytes are transferred on the 
0 7-00 bus lines and odd addressed bytes on DI5-De. 

The basic difference between the interrupt acknowl· 
edge cycle and a read cycle is that the interrupt 
acknowledge signal (INTA) is asserted in place of the 

read (AD) signal and the address bus is floated. (See 
Figure 6.) In the second of two successive INTA cycles, 
a byte of information is read from bus lines 07-00 as 
supplied by the interrupt system logic (i.e., 8259A Prior· 
ity Interrupt Controller). This byte identifies the source 
(type) of the interrupt. It is multiplied by four and used 
as a pointer into an interrupt vector lookup table, as 
described earlier. 

BUS TIMING-MEDIUM SIZE SYSTEMS 

Formedium size systems the MN/MX pin is connected to 
Vss and the 8288 Bus Controller is added to the system as 
well as an 828218283 latch for latchi ng the system address, 
and a 8286/8287 transceiver to allow for bus loading 
greater than the 8086 is capable of han·dling. Signals ALE, 
DEN, and DT/R are generated by the 8288 instead of the 
processor in this configuration although their timing re­
mains relatively the same. The 8086 status outputs (52, 51' 
and So) provide type-of-cycle information and become 
8288 inputs. This bus cycle information specifies read 
(code, data, or I/O), write (data or I/O), interrupt acknowl­
edge, or software hall. The 8288 thus issues control 
signals specifying memory read or write, I/O read or write, 
or interrupt acknowledge. The 8288 provides t.wo types of 
write strobes, normal and advanced, to be applied as re­
quired. The normal write strobes have data valid at the 
leading edge of write. The advanced write strobes have 
the same timing as read strobes, and hence data isn't valid 
at the leading edge of write. The 8286/8287 transceiver 
receives the usual T and DE inputs from the 8288's DT/R 
and DEN. 

The pOinter into the interrupt vector table, which is 
passed during the second INTA cycle, can derive from 
an 8259A located on either the local bus or the system 
bus. If the master 8259A Priority Interrupt Controller is 
positioned on the local bus, a TTL 'gate is required to 
disable the 828618287 transceiver when reading from the 
master 8259A during the interrupt acknowledge 
sequence and software "poll". 

3-345 AF,N-01497D 



iAPl,C 86/10 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. , - 65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground ............... ; .. - 1.0 to/ + 7V 
Power Dissipation ........................ 2.5 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (SOS6: TA = O°C to 70°C, Vcc = 5V ± 10%) 
(SOS6-1: TA = O°C to 70°C, Vcc = 5V ± 5%) 
(SOS6-2: TA = O°C to 70°C, Vee = SV ± S%) 

Symbol Parame.er Min. Max. Units Tesl Conditions 

VIL Input low Voltage -0.5 +O.S V 

VIH Input High Voltage 2.0 Vce + O.S V 

VOL Outputiow Voltage 0.4S V IOL=2.~ rnA 

VOH Output High Voltage 2.4 V 10H= -400 "A 

lee Power Supply Current: SOS6 340 
SOS6-1 360 mA TA=2SoC 

SOS6-2 ~ 3S0 

'll Input leakage Current ±10 ,.,A OV .. VIN .. Vee 

'LO 
Output leakage Current ± 10 ,.,A 0.45V .. Vour " Vee 

Vel Clock Input loV( Voltage -O.S +0.6 V 

VeH Clock Input High Voltage 3.9 Vee + 1.0 V 

Capacitance of Input Buffer 
CIN (All input except 15 pF fc= 1 MHz 

ADo- AD15, RQ/GT) 

CIO 
Capacitance of 110 Buffer 15 pF fc= 1 MHz 
(ADo- AD 15, RQ/GT) 

3-346 AFN·01497D 



inter iAPX 86/10 

A.C. CHARACTERISTICS (8086: TA = O°C to 70°C, VCC = 5V ± 10%) 
(8086-1: TA = O°C to 10°C, Vcc = 5V ± 5%) 
(8086-2: TA = O°C to 70°C, Vcc = 5V ± 5%) 

MINIMUM COMPLEXITY SYSTEM 
TIMING REQUIREMENTS 

Symbol Parameter 8086 8088·1 (Preliminary) 8088-2 

Min. Max. Min. Ma ... Min. 

TCLCL ClK Cycle Period 200 500 100 500 125 

TClCH ClKlowTime 118 53 68 

TCHCL CLK'High Time 69 39 44 

TGH1CH2 CLK Rise Time 10 10 

TCL2Cll CLKFall Time 10 10 

TDVCL Data in Setup Time 30 5 20 

TCLDX Data in Hold Time 10 10 10 

TRtvCL ROY Setup Time 35 35 35 
into 8284A (See 

Notes 1. 2) 

TCLRIX ROY Hold Time 0 0 0 
into 8284A (See 
Notes 1. 2) 

TRYHCH READY Setup 118 53 68 
Time Into 8086 

TCHRYX READY Hold TIme 30 , 20 20 
into 8086 

TRYlCl READY Inactive to -8 -10 -8 
CLK (See Note 3) 

THVCH HOLD Setup Time 35 20 20 

TINVCH INTR. NMI. TEST 30 15 15 
Setup TIme (See 
Note 2) 

TILIH Input R,se Time 20 20 
(Except ClK) 

-
TIHIL Input Fall TIme 12 12 

(Except ClK) 

3-347 

Test 
Units Conditions 

Ma ... 

500 ns 

ns 

ns 

10 ns From 1.0Vto 
3.5V 

10 ns From 3.5Vto 
1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

I 
ns 

ns 

ns 

20 ns From O.8Vto 
2.0V 

12 ns From 2.0Vto 
O.8V 

AFN-01497D 



intJ 
A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Pereme'er 8088 

Min. Max. 

TCLAV Address Valid Delay 10 110 

TCLAX Address Hold Time 10 

TCLAZ Address Float TCLAX 60 
Delay 

TlHll ALE Width TClCH-2O 

TCllH ALE Active Delay 80 

TCHll ALE Inactive Delay 85 

TlLAX Address Hold Time TCHCl-l0 
to ALE Inactive 

TClDV Data Valid Delay 10 110 

TCHDX Data Hold Time 10 

TWHDX Data Hold Time TClCH-30 
AfterWR 

TCVCTV Control Active 10 110 
Delay 1 

TCHCTV Control Active 10 110 
Delay 2 

TCVCTX Control Inactive 10 110 
Delay 

TAZRl Address Float to 0 
READ Active 

TCLRL RD Active Delay 10 165 

TClRH RD Inactive Delay 10 150 

TRHAV RD Inactive to Next TClCl-45 
Address Active 

TClHAV HlDA Valid Delay 10 160 

TRlRH RDWidth 2TClCl-75 

TWlWH WRWidth 2TClCl-60 

TAVAl Address Valid to TClCH-60 
ALE low 

TOlOH Output Rise Time 20 

TOHOl Output Fall Time 12 

NOTES: 
1, Signal at 8284A shown for reference only. 

IAPX 86/10 

8088·' (Prellmlnery) 8088-2 

Min. Mex. Min. 

10 50 10 

10 10 

10 40 TeLAX 

TClCH-l0 TClCH-l0 

40 

45 

TCHCl-l0 TCHCl-l0 

10 50 10 

10 10 

TClCH-25 TClCH-30 

10 50 10 

10 45 10 

10 50 10 

0 0 

10 70 10 

10 60 10 

TClCl-35 TClCl-4O 

10 60 10 

2TClCl-4O 2TClCl-50 

2TClCl-35 2TClCl-40 

TClCH-35 TClCH-4O 

20 

12 

2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK, 
3. Applies only to T2 state. (8 ns into T3). 

3-348 

Tes' 
Unit. Conditions' 

Max. 

60 ns 

ns 

50 ns 

ns 

50 ns 

55 ns 

ns 

60 ns ·CL = 2G-loo pF 

ns for all 8086 Out-
puts (In addl-

ns tion to 8086 sail-
load) 

70 ns 

60 ns 

70 ns 

ns 

100 ns 

80 ns 

ns 

100 ns 

ns 

ns 

ns 

20 ns .Fro;" 0,8V to. 
2,OV 

12 ns From 2,OV to 
0.8V 

AFN,01497D 



inter iAPX 86/10 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUTIOUTPUT 

A C TESTING INPUTS ARE DR1VEN AT 2 4V FOR A LOGiC '1" AND 0 45V FOR 
A LOGIC 0' TIMING MEASUREMENTS ARE MADE AT 1 5V FOR BOTH A 
LOGIC '1" AND '0" 

WAVEFORMS 

DEVICE 
UNDEA 

i}C'=100PF 
TEST 

C, INCUJDES JIG CAPACITANCE 

MINIMUM MODE 
T1 T2 T3 Tw T4 * 

VCHv---'\ _TCLC~ TCH1CH2-i !- --j.1 TCL2CL1~, n-
CLK (8214A oulpuQ J \ I ~Il 1 

VC~ ----..- - ~ I~ 
~ TCHCTV .1::. - TCHCL I- TCLCH -

MIlO X. 
~~_--~------+=TC~L~D~Vr---~'----~------~----~-T-C-H-DX-_-+-x~r~-------

ALE 

ADY (8214A l.puQ 
see NOTE 4 

TCLAY-
TCLAX· r-

JAI, A11-A11 57-S3 

TCLLH- I: TLH~L-:::: 

f r--
--1----tJ. ~ TALL I::~-+----~CC-----+----+--~----+--_-J'~ - --

TCHLL -I V,H ...., - ,:;WCt, 

VIL -- • _f-+ 1.--r~~C":LA:-l'l"'~-~+---+--~---

!--TLLAX 

TRYLCl- -

---I 
--h 

-TCHRYX 
,..---+...,. 

ReAD CYCLe 

(NOTE 1) 

(Wli, iNfl = VOH) 

AD 

TCLAV-

__ TAVAL _ 
TLLAX __ l.- _ 

TRYHCH­
~I 

-TCLAZ 
_TCLAX 

A15-ADo 

---'------r---:-.. _ FLOAT .I' 
-

TDVCL--r-TCLDX-

DATA IN 

TCLRH- 1-

~ 

__ ,__ ____ T AZRL - --------I 
~--+----------r-JI 

.=L r- TCHCTV TCLRLI----~r---+----TALRH 

Flo:~ 
TRHAV 

--TCHCTV 

I 
I 

DTIIl ' \. 

~--------------r-~----------r---~J 
TCVCTV- { TCVCTX-

~ __________ -J 

3-349 AFN.()1497D 



WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

CLK (8284A OutpuQ 

WRITE CYCLE 

,,",OTE 1) 

(RD. iNTA. 
DTIR'=VOH) 

M/iO 

ALE 

DEN 

INTA CYCLE OTfR 

(NOTES 1 & 3) 

RD, WR=VOH 
JR!=Vod 

SOFTWARE HALT-

RD. WR. INTA = VOH 
DT/R = INDETERMINATE 

NOTES: 

TeLAY 

iAPX86/10 

INVALID ADDRESS 

1. All signals switch between VOH and VOL unless otherwise specified. 

TW 

SOF.TWAAE HALT, 

2. ROY is sampled near the end of T2. T3• Tw to determine if Tw machines states are to be inserted. 

TCLCH 

r-­
I 

3. Two INTA cycles run back-to-back. The 8086 LOCAL AOORIOATA BUS is floating during both IN~A cycles. Control signals shown 
for second INTA cycle. 

4. Signals at B2B4A are shown for reference only. 
5. All timing measurements are made at 1.SV unless otherwise noted. 

3-350 . AFN-01497D 



inter IAPX 86/10 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Perameter 8088 80'1-' (Preliminary) 808t-~ (Prellmlnery) 

Min. Max. Min. Ma .. Min. 

TClCl ClK Cycle Period 200 500 100 500 125 

TCLCH ClKLowTlme 118 53 88 

TCHCl ClK j.Ugh Time 69 39 44 

'TCH1CH2 CLKRlseTlme 10 10 

TCL2Cll CLK Fall Time 10 10 

TDVCl Data In Setup Time 30 5 20 

TClDX Data In Hold Time 10 10 10 

TR1VCl ROY Setup Time 35 35 35 
into 8284A (See 
Notasl.2) 

TClR1X ROY Hold Time 0 0 0 
Into 8284A (Sea 

-Nolasl.2) 

TRYHCH READY Setup Time 118 53 88 
inl08088 

TCHRYX READY Hold Time 30 20 20 
into 8088 

TRYlCl READY Inacllve 10 -8 -10 -8 
ClK (See Note 4) 

TINVCH Setup Time for 30 15 15 
Recognition (INTR. 
NMI. TEST) (Sea 
Note 2) 

TGVCH RQJGT Setup Time 30 12 15 

TCHGX Frei Hold Time Into 40 20 30 
8088 

nLiH Input Rise Time 20 20 
(Except ClK) 

TIHll Input Fall Time 12 12 
(Except elK) 

NOTES: 
1. Signal at 8284A or 8288 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
S. Applies only to TS and walt states. 
4. Applies only to T2 state (8 liS into TS). 

3-351 

Ma .. 

500 

10 

10 

20 

12 

Teat 
"Unit. Condition. 

n. 

ns 

no 

ns From 1.OVto 
3.SV 

ns From 3.5Vto 
1.OV 

ns 

no 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8V to 
2.OV 

ns From 2.0Vto 
0.8V 

AFN.()1497D 



A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES . 

Symbol Parameter BOB6 

MIn. Max. 

TCLML Command Active 10 35 
Delay (See Nota 1) 

. TCLMH Command InactIve 10 35 
Delay (See Nota 1) 

TRYHSH READY Active to 110 
Status Passive (See 
Nota 3) 

TCHSV Status Active Delay 10 110 

TCLSH StatU8 Inactive 10 130 
Delay 

TCLAV Address Valid 10 110 
Delay 

TCLAX Address Hold Time 10 

TCLAZ Address Float Delay TCLAX 60 

TSVLH Status Valid to ALE 15 
High (See Nota 1) 

TSVMCH Status Valid to 15 
MCE High (See 
Note 1) 

TCLLH CLK Low to ALE 15 
Valid (See Nota 1) 

TCi.MCH CLK Low to MCE 15 
High (See Note 1) 

TCHLL ALE Inactive Delay 15 
(See Note 1) 

TCLMCL MCE Inactive Delay 15 
(See Note 1) 

TCLDV Data Valid Delay 10 110 

TCHDX Data Hold Time 10 

TCVNV Control Active 5 45 
Delay (See Nota 1) 

TCVNX Control InactIve 10 45 
Delay (See Nota 1) 

TAZRL Address Float to 0 
Read Active 

TCLRL RD Active Delay 10 165 

TCLRH RD Inac;tive Delay 10 150 

TRHAV RD Inactive to TCLCL-45 
Next Address Active 

TCHDTL Dinsction Control 50 
Active Delay (See 
Notal) 

TCHDTH Diractlon Control 30 
InactIve Delay (See 
Notal) 

TCLGL GT Active Delay 0 65 

TCLGH GT Inactive Delay 0 65 

TRLRH RDWldth 2TCLCL-75 

TOLOH Output Rlsa TIme 20 

TOHOL Output Fall TIme 12 

JAPX 86/10 

'Teat 
. 8088-1 (PrelimInary) 8086-2 (P7e"ml,'!!.I!' Units Conditions 

Min. Max. Min. MalL 

10 35 10 35 n. 

10 35 10 35 n. 

45 65 n8 

I 

10 45 10 60 ns 

10 55 10 70 ns 

10 50 10 60 ns 

10 10 ns 

10 40 TCLAX 50 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 ns 

15 15 n8 CL ~ 2O-100pF 
lor all 8086 Out· 

15 15 ns puis (In add~ 
tlon to 6OB6 sail· 
load) 

10 50 10 60 ns 

10 10 ns 

5 45 5 45 ne 

10 45 10 45 ne 

0 0 ns 

10 70 10 100 ne 

10 60 10 60 n. 

TCLCL-35 TCLCL-4O n. 

50 50 n8 

30 30 ne 

0 45 0 50 n. 

0 45 0 50 ns 

2TCLCL-4O 2TCLCL-50 ne 

20 20 ns FromO.6Vto 
2.OV 

12 I 12 ne From2.OVto 
0.6V 

3-352 
/ AFN'()1497D 



inter 
WAVEFORMS 

MAXIMUM MODE 

CLK 

QSo.QS, 

1i.11.1!O (EXCEPT HALT) 

. 1 ALE (8288 OUTPUT) 

SEE NOTE 5 

RDY (I2I4A INPUT) 

READY ~ INPUT) 

READ CYCLE 

RD 

DT/R 

8288 OUTPUTS 1 iiiiIIe OR RlIR! 
SEE NOTES 5,1 

, DEN 

I~PX 86/10 

TCVNX 

30353 AFN.()1497D 



intJ iAPX86/10 

WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 
T1 T, T, T. 

Tw 

eLK 

\ 

'''''----
§2,!;,§i) (EXCEPT HAL 1) 

WRITE CYCLE TCHDX--

AD15-ADo DATA 

TCVNX-
DEN 

TClMH-

8288 ourrurs 
SEE NOTES 5,6 AMWC OR .iJOi.iiC 

_-TClMH 

MWi'COR lowe 

INTACYCLE 

AD1S-ADO 
(SEE NOTES 3 I 4) 

FLOAT 

.... 0U11'IJ1S 

MeEI 
I'l>-m 
DT/A 

SEE NOTES 5,61 'NTA 

DEN 

TSVMCH-

TCLMCH-

SOFTWARE HALT - I 

-'~~-'''--:::.''::J ~ ___ '_N_VA_L_'D_A_D_D_R_ES_S_' __ _ 

~ /r----.,.-----"T\-- -----
\~. ---~ '-------

NOTES: 
1. All signals switch between VOH and'VOL unless otherwise specified. 
2. ROY is sampled near the end of T2, T3, Tw to determine if Tw machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycle. 

r-­
I 

o-TCHDTH 

4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for pointer 
address is shown for second INTA cycle. 

S. Signals at 8284A or 8288 are shown for reference only. 
6. The issuance of the 8288 command and control Signals (MRDC, MWTC; AMWC, IORC, IOWC, AIOWC, INTA and DEN) lags the 

active high 8288 CEN. . 
7. All timing measurements are made at 1.SV unless otherwise noted. 
8. Status inactive in state just prior to T4. 

3-3~4 AFN·01497D 



intJ 
WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

HMI 

INTR 

NOTE 1 SETUP REQUIREMENTS FOR ASYNCHRO­
NOUS SIGNALS CNL Y TO GUARANTEE RECOGNITION 
AT NEXT eLK 

BUS LOCK SIGNAL TIMING (MAXIMUM MODE ONLY) RESET TIMING 

Any elK CYCle--1 Any elK Cycle _I 
'co 

Ct.K 

CLK 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

1 THE COPROCESSOR MAY NOT DRIVE THE BUSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKING'CONTENTION 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLy) 

CLKLrC~~R2CYCLES 

HaLO ~~, I_THVC" 

HLDA i------"------;,YI---,LHAV --I~ TCLHAV 

, -l~..:.::TCL::::A2_· ---i'----~ 
I-______ ... _._--I~:,.., ___ -',,_ - COPRO;,..:-SS_OR _____ ..J 

3-355 

N CLKCYCLES 

AFN·01497D 



IAPX88/10 "I,' 

Table 2. Instruction Set Summary 

DATA TRAISFER 
HV=.", 7 85 43 Z I 0 71543Z I 0 18543210 7114321 D DlC DlcflllllnI 78&4 sri D 115 43 2 I. 785 4 3210 71141210 
AeOIl'er/memoryIO/lrom r89lS!er 10001 Dd \II .. , ' .. "m Reglslef/memory , 1 , 1 , , 1 \II modO 0 1 ,'m 
Immt4111. 10 regrster/memory I I DOD 1 '\II 1lI0II000 "m dala dala Ilw 1 Register 01001 " Immedlaleto reglsltr 1011 \II ". data dalallw 1 ilEa-Change sign 1I110l1w modO 11 "m 
M.mory10 atcumulator 1010000 w addrlaw addrhlgh 

C.P ..... " Acclimulatoriornernory 1010001 w addrlow addlhlgh 

I\eGlslerlmemory to segment reglsler 10001" 0 rnod 0 reo Aeolsterlm.moryan(!rlglSta' 001 II 0 d w mod __ f811 rim 

Segmenl register loreglsleflmemory 10001100 mCHIOreg: "m 
Immediate With reglsler/memory 100000 s w modl" "m dala data IlIw 01 
ImmedlslewllhaccumulalOl 00'11 lOw dala dalallYi t 

PUIfI ~ ,.... .. I ASCUad/uSllorsllblracl 001 I 1 I 11 
AlIglster/memory 1111 till mod 1 10 rIm IMI Decimal adJoSI lor lub\racl 00101111 
Register 01010'ttI MUl MuJllpJylllnslgneif) 1111011w modI 0 0 "m 
,Segl'l)enlreglster 000 reg 11 0 'IUllnlt1lermulllplY(Slgn8il) 11110llw modlO I "m 

UN ASCII ad,1l$1 lor multiply 11010100 00001010 
POI ~ PIli 

OiVDIYldetun$lgnedl 111101lw modI! 0 "m 
Reglslerlmemory 1000 I 1 11 modO 0 0 ". IDIVlntegrrd.vtdelslgnedl 1 I I 1 q 11 W modI 11 "m 
Reglsler 01011 ". UO ASCII adJusl lordlv.de 11010101 00001010 
Segmentreglsler 000relll11 

CIW Conyetl byle 10 word 10011000 

rclS = bd\lltt CWD COnyerl word 10 double word 10011 001 

Reglsler/memorywllh reglstef 1000011 w mod 109 ,'m 
Regl,terwllhaccumulalor 10010 rag 

III-Input from 

Flx,dport III 0010 W port 

Vaflableporl 1110110 w 

LOGIC 
OUT=OUIPUIIO NOTlnYar! 111 '0" w modO I 0 "m 
F,uclporl 1110011w pori SNL/SA1 Shill logicallalllhmelic lelt I 1 0 '00 v ~ mod 1 00 "m 
var\lbleport 1110111w SNRSMlloglcalfighl 110 I 0 0 Y W modI 0 1 "m 
JLAT-Translale byte to At 11 0 101 I t SAl Shltlanlhmellcflghl 1 10 100 v W mod 111 "m 
LE"~Load EA 10 rlgllter 10001101 mod 109 ROLRolalelett I 10 I 00 v w modO 0 0 rim 
lI'~Load pomter 10 OS 11000101 m,' 10, IIOItROIale"ghl 11 0 1 0 0 v w modO 01 "m 
,",1=toidpol"terIOES 11000100 m,' 10, ICLRolileltifoughcarryliaglell 11 0 I 00 v w modO 1 0 rim 
W1F-load AH wrth flag' 10011111 IICIiRolatelhloughcaffyugh! 11 0 1 OOnl' modO 11 "m 
IIHF·S!oreAHmtoltags 10011110 

'IJIfIF-Pushliags 10011100 •• 0 .od 
NPF-Popllags 10011101 Reg /mem~r~ and feglstef tOtilher 00100 Od w mod 'og "m 

Immediate 10 rtglster/memoly 1000000 w modI 00 f/m do. daladw I 

lmmedlale10 accumulalOf 0010010111 dala dalallw 1 

TEST AItd IUIII:IIon to 11q •• 10'111111 
ARITHMETIC Reglster/memor~ and register 1000010 w mod '" "m 

II "D-'" Immed'atedalaandreglslerlmemory tIll 0" w mOdO 0 0 "m data datallw 1 

lieu Imemory With ~Ister 10 !Ither 000000 d w mod 'og "m Immediate dalaand accumuJalOf tOt O! 00 1'1 data dalallw 1 

,m_,ale 10 "Dlslerfmemory 1 0 0 0 0 0 5 W modO 0 0 rim dala datalfsw 01 
Immedlale 10 accumulalor 00000 lOw do. dala" wI O' Dr 

Reg Imemoryandre{listerlotllller 00001 Od w- mod '" "m 
AIIC"MtI .... arry Immecllaleto reglster/memolY 1000000 w modO 0 I "m data dalallw' 
RIO lmemory wltb register lotltller 000 tOO d w mod 109 "m Immedlaletoaccumulatol 0000110 w , .. , datallw"! 
Immedlaleloregl.terlmemory 1000005111 modO 1 0 rIm do. datalfsw·Ol 

ImmedIate 10 accumulator 00010 tOw data dalallw 1 IO. helm".r 
RaCl/m'maryand reg,slef10 ellhef 0011 0 0 d w mod 10, "m 

'R =1.,. ... Immedlale 10 Itglst.rlmemor~ 1000000 w mocl1 to rim data d8l11lw 1 

"'Dlster/memot~ 1111111 w modO 00 11m Imm.dl.leto'accumulalof 0011010 w dala datallw t 
Regiater 01000 reg 
AU-ASCII Id,ust lor Idd 00110111 

DU-DeClmalldJUsllorldd 00100111 

SUI = MlracI 
fIeg Imlmory and rlgJlIIt to elll\tr 00 I 0 1 Od 1'1 mod 10, "m 
tmmtd!ltefromrllllst.r/memory 1000005 w modI O! "m , .. dalaIf sW'OI STRINa MANIPULATION 

tmmecllateft'omaccumulator 001011 0 w data datallw 1 AE'~R,pe'l 1111 00 It 

MOV,,"Movebyte!word 10100! 0 w .... _"""- CMPS=Comparebyle/word 1 (I I 0011 w 

RllffmemoryalHlrtllllltrlo.l1tter 000110 d w mod ,og "m SCAS"Scanbytefword 1 (I! 0 11 t w 

Imm.cllatlfromrtOISltrlm.mory 100000 S w modO 11 ,'m dala dall lis w·Ol LODS-Load bytefwd to ALIAX 101011 0 w 

ImlMCl'lltltomac:cumulator 00011 tOw data datallw-l , STDS=Slor bylt/wd I~m ALIA 10 I 0 I 0' w 

Mnemonics ©Intel, 1978 

3-356 AFN'()1497D 



IAPX 86/10 

Table 2, Instruction Set Summary (Continued) 

COITROl TlAllFER 
CAI.L· CIII' 71143210 71143210 71141210 

Direct wlttlln segment 

Indtrect wlthm segment 

DI"ctiotersegment 

Indlfectmtersegment 

JM •• U.OOIIdlU, .. 1 Ju.,: 
OUlct wlthm segment 

OI,ect .. ,lhlnsegment·short 

IndtreCI Wllhm segment 

Dlrectftersegment 

Indirect mterst9menl 

lET • R,lIIf1IlnIm CALL 
Wlthlnsqmenl 

Within seQ adchng _mmed to SP 

Intersegment 
Int.fslgment adding Immediate to SP 
Jl/JZ=Jumpon equal/zero 
~L/J'II .. Jumpon lesslnol grealer 

or equal 
JLE/JllaJump on less or aquilinot 

greater 
"I/JlA£zJulTlp on below/nol above 

or equal 
JIE/JIA~~~~",~ below or equal I 

JPlJPl=Jump on panty/panty even 

JO .. Jump on overflow 

.II"Jump0" Slon 
JIE/JIZ..,Jump on not equal/not zero 
.. IUJ8E"Jumponnolless/grealer 

or equal 
JIU/JI:Jumpon not less orequalJ 

greater 

Al - 8-blt accumulator 
AX - 18-blt accumulator 
CX • Count ragister 
OS • Data segmant 
ES • Extra segmant 
Abova/balow ralars to unsigned value 
Greater = more positive. 

1 1 101000 

11111111 

10011010 

11111111 

11101001 

11101011 

11111111 

11101010 

11111111 

11000011 

11000010 

11001011 

11001010 

01110100 

01111100 

01111110 

01 1 10010 

01110110 

01 I 11010 

011 10000 

011 11000 

01110101 

01111101 

I) 1 1 11 1 1 1 

Less = less positive (more negative) signed values 
If d = 1 then "to" reg, If d .. 0 then ''from'' reg 
If w = 1 then word lnatructlOn; If w· 0 then byte instruction 

" mod - 11 then rIm IS traated as a REG ',eld 

dlsp-Iow 

mod 010 rIm 

oftsll·low 

seg·low 

mod 0 1 1 "m 

dlsplow 

dlsp 

mod 1 00 rim 

oUsel·low 

seg·low 

mod 101 rim 

dala·low 

data·low 

dlsp 

dlsP 

dlSP 

dlsp 

dlsP 

dlSP .... 
dlsp 

dlsP 

dlsp 

dlsP 

" mod· 00 than olSP • 0'. dlsp·low and dlsp·hlgh are absent 

dlsp·hlgh 

ottset·hlQh 

seg·high 

dlsp·tllgh 

ollset·hlgh 

seg·hlgh 

data·hlgh 

datahlllh 

If mod - 01 t~en OISP - dosp·low slgn-extended to l~b1ts. dlsp-hlgh IS absent 
" mod - 10 then olSP - dlsp·hlgh dlsp·low 

" rIm = 000 then EA - (BX) + (SI) + olSP 
" rIm = 001 then EA = (BX) + (01) + olSP 
~ rIm = 010 then EA - (BP) + (SI) + OISP 
if rIm = 011 then EA· (BP) + (01) + OISP 
Itr/m = 100 then EA - (SI) + olSP 
" rIm' 101 then'EA = (01) + OISP 
" rIm = 110 then EA· (BP) + olSP' 
~ rIm' 111 then EA = (BX) + OISP 
OISP 'ollows 2nd byte of instruction (be'ore data " requored) 

'except If mod -00 and rIm = 110 then EA - dlsp·hlgh. dlsp·low 

Mnemonocs©tntel, 1978 

111432 I 0 7.6432 I 0 
JII/JAI·Jump on nol blliowlabove 

or equal 
JHE/JA-Jumll on not below or 

equallabove 
J.PI~PO~Jump on not parlpar odd 

JIG·Jump on not overflow 

JI. Jump on not sign 

LOO' Loop ex times 
LDO'ZlLDOPf Loop while zero/equal 
LDOI'NZILOOPNE LOOp .... hlle nol 

zerofequal 
Jell-Jump on ex zero 

INT Inllrrupl 
Typespecilled 

Type ~ 

II'O-Interrupt onoverllow 

IIIETlnlerruplreturn 

PROCESSOR CONTROL 
eLi: Clear carry 

CMC Complement carry 

aTC Sel carry 

eLO Clear dlrechon 

ITO Set direction 

eLi Clear Interrupt 

ITI Setmtarrupt 

HLT Hall 

01 110011 dlsp 

01110111' do, 
01 11 1011 dlsP 
01 11 000 , dlsp 

01111001 dlsp 

1 11 00010 dlsP' 

11 10000 I dlsp 

11100000 dlsP 

1 11 00011 dlsp 

11001101 type 

11 001 100 

1 10011 to 
t 1 00111 1 

1111 1000 

1 1 11 0 1 0 1 

11111001 

11111100 

1 1 I 11 101 

1 11 11 010 

I 1 1 11 0 11 

1 11 10 I 0 0 

1001 1011 WAIT Wall 

E8CEscapeiloelliernaldevicel 

LOCI( Bus lock prell x 

1 1011 M X II: modx x x rIm, 
11110000 

" S W = 01 the,n 16 bits of Immediate data 'orm the operand 
" s w = t 1 then an Immediate data byte IS soon extended to 

form the 16·bot operand 
d V = 0 then "count"' = 1. " v = 1 then "count"· 10 (Cl) 
x = don't care 
Z IS usad 'or strmg promltlves 'or comparoson with Z.F FLAG 
SEGMENT OYE~RIDE PREFIX 

10 0 1 reg 1 1 01 ' 

REG IS assigned accordmg to the 'ollowlng table 

18-BIt (w -II 
000 AX 
001 CX 
010 OX 
011 BX 
100 SP 
101 BP 
110 SI 
111 01 

8-81t (w - DI 
000 AL 
001 CL 
010 oL 
011 BL 
100 AH 
101 CH 
110 oH 
111 BH 

SlgMent 
00 ES 
01 CS 
10 SS 
11 Os 

Instructions which reference the flag register file as a 16-blt object use 
Ithe symbol FLAGS to represent the fole 

FLAGS = X X X X (OF) (OF) (IF) (Tf) (SF) (ZF) X IAF) X (PF) X (CF) 

3-357 AFN.()1497D 



inter ,. 

iAPX 186 
.HIGH INTEGRATION 16~BIT MICROPROCESSOR 

• Integrated Feature Set 
-Enhanced 8086-2 CPU 
-Clock Gem;trator 
-2 Independent, High-Speed DMA 

Channels 
-Programmable Interrupt Controller 
-3 Programmable 16-blt Timers 
-Programmable Memory and 

• Direct Addressing Capability to 
1 MByte of Memory 

• Completely Object Code Compatible 
with All Existing IAP~ 86, 88 Software 
-10 New Instruction Types 

Peripheral Chip-Select Logic 
-Programmable wait State Generator 

• Complete System Development 
Support 
-Development Software: Assembler, 

PL/M, Pascal, Fortran, and System 
Utilities -Local Bus Controller 

• Available In 8 MHz (80188) and cost 
effective 6 MHz (80186-6) versions. 

• Hlgh·Performance Processor 
-2 Times the Performance of the 

Standard IAPX 86 
-4 MByte/Sec Bus Bandwidth 

Interface 

INT3/1NTAI 

-In.Clrcult.Emulator (l2ICE™·188) 
-iRMXTM 86,88 Compatible (80130 

OSF) 

• High Performance Numerical 
" Coprocessing Capability Through 

8087 Interface 

INT2!iIi'I'Aii 
TMR OUT 1 TMR OUT 0 

rD~LKOUT TT NTI T INJTO TMRIN t TMRIN t 
L 1 

'-~ 
'-+ 
'-+ 
,- ... 
::: ... '-

SRDY 
ARDY 
TaT 
HOLD 
HLDA 

liES RESET 

I J 'ExecUTION iiNiT] l J • • PROGRAMMABLE TIMERS X, x- I 0 1 2 
IS·BIT I MAX COUNT ~ AW I PROGRAMMABLE REGISTERB :... 

CLbCK I 
INTERRUPT MAX COUNT CONTROLLER GENERATOR I REGISTER A 

IS·BIT GENERAL I CONTROL REGISTERS 
PURPOSE I 

REGISTEAS CONTROL i I lIS-BIT 
..J REGISTERS COUNT REGISTER 

It D D {' 
INTERNAL BUS 

J U U ~ r-r-
PROGRAMMABLE DMAUNIT 

0 1 
CHI_LECT 2O-BIT UNIT SOURCE POINTERS 

BUS INTERFACE L) ,2Q·BIT 16-BIT DESTINATION UNIT SEGMENT REGISTERS POINTERS 
6-BYTE PROGRAMMABLE I lS·BIT 

PREFETCH Rc;.~~~,:-S TRANSFER COUNT 
QUEUE f±t (1 = I IIIH 

lJ-N ~A!e ucs 1 ;kS6/A2 
, Ll)Cj( ~ AOO-' AI8iS3- LCS PCSSiil1 , 

DT/A" HE/S7 AD15 AI9/S6 ..:::L 
MCSO-3 PCSO-4 

Figure 1. IAPX 186 Block Diagram 

DRQO DRQl 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than CircUitry EmbOdied In an Intel Product No Other CtrcUlt Patent licenses are Implied 
InformatIon COntained Herein Supercede Previously Pubhshed Specifications On These DeVICes From Intel. JULY 1983 
©INTELCORPORATION,I983 3.358 ORDER NUMBER: ~1D461-D03 

, , 



inter IAPX 186 

The Intel iAPX 186·(80186 part number) is a highly integrated 16-bit microprocessor. The iAPX 186 effectively 
combines 15-20 of the most common iAPX 86 system components onto one. The 80186 provides two times 
greater throughput than the standard 5 MHz iAPX 86. The iAPX 186 is upward compatible with iAPX 86 and 88 
software and adds 10 new instruction types to the existing set. 

Symbol 

Vee,Vee 

Vss, Vss 

RESET 

X1,X2 

CLKOUT 

RES 

TOP BOTTOM 

Som~~LJUIUL~UULJUULJUULJUU"~ 

51 
52 

ARDV 
CLitOUT 

RESET 
X2 
Xl 

v •• 
ALflQSO 

RD/QSMD 
WR/QSl 

BHE 
Al91S6 
Al8/S5 
A17/S4 

TMR IN 1 
TMRINO 
DRQl 

1 DRQO A 16153 Ort:".,n rl nln n 
~~~~~~1~ ~~1~~~~~~ 

" ~ ~b~!~~~gg~S~~!Qa8
PIN NO.1 MARK ~c~c~c~c> ~c~~cc c c

Figure 2. 80186 Pll;lout Diagram

Table 1. 80186 Pin Description

Pin No. Type Name and Function

9,43 I System Power: + 5 volt power supply.

26,60 I System Ground.

57 0 Reset Output indicates that the 80186 CPU if being reset, and can be used as a system
reset. It is active HIGH, synchronized with the processor clock, and lasts an integer
number of clock periods corresponding to the length of the Rrn signal.

59,58 I Crystal Inputs, X1 and X2, provide an external connection for a fundamental mode
. parallel resonant crystal for the internal crystal oscillator. X1 can interface to an

external clock instead of a crystal. In this case, minimize the capacitance on X2 or
drive X2 with complemented X1. The input or oscillator frequency is internally divided
by two to generate the clock signal (CLKOUn.

56 0 Clock Output provides the system with a 50% duty cycle waveform. All device pin
timings are specified relative to CLKOUT. CLKOUT has sufficient MOS drive capabilities
for the 8087 Numeric Processor Extension.

24 I System Reset causes the 80186 to immediately terminate its present activity, clear the
internal logie, and enter a dormant state. This signal may be asynchronous to the
80186 clock. The 80186 begins fetching instructions approximately 7 clock cycles
after Rrn is returned HIGH. RES is required to be LOW for greater than 4 clock
cycles and is internally synchronized. For proper initialization, the LOW-to-HIGH transi-
tion of Rrn must occur no sooner than 50 microseconds after power up. This input
is ptovided with a Schmitt-trigger to facilitate power-on Rrn generation via an RC
network. When RES occurs, the 80188 will drive the status lines to an inactive level
for one clock, and then tri-state them.

3-359 AFN'()2217C

·N I·
I. '-e-

Symbol

fEST

TMR IN O.
TMR INl

TMR OUTO.
TMR OUT 1

ORQO
ORQl

'NMI

INTO.INT1.
INT2/INTAO
INT3/INTAl

A19/S6,
A18/S5,
A17/S4,
A16/S3

AD15-ADO

BHE/S7

Pin
No.

47

20
21

22
23

18
19

46

45.44
42
41

65
66
67
68

10-17.
1-8

64

IAPX 186'

Table 1. 80186 Pin Description (Contlnued)

Type Name and Function

I fEST is examined by the WAIT instruction. If the TEST input is HIGH when
"WAIT" execution begins. instruction execution will suspend. TEST will be
resampled until it goes LOW. at which time execution will resume. If interrupts
are enabled whilethe80186 is waiting for TEST, interrupts will be serviced, This
input is synchronized internally,

I Timer Inputs are used either as clock or control signals. depending upon the
I programmed timer mode. These inputs are active HIGH (or LOW-to-HIGH

transitions are counted) and internally synchronized,

0 Timer outputs are used to provide single pulse or continuous waveform gener-
0 ation, depending upon the timer mode selected.

I OMA Request is driven HIGH by an' external device when it desires that a
I DMA channel (Channel 0 or 1) perform a transfer. These signals are active

HIGH. level-triggered. and internally synchronized. --
I , Non-Maskable Interrupt is an edge-triggered input which causes a type 2

interrupt. NMI is, not maskable internally. A transition from a LOW to HIGH
initiates the interrupt at the next instruction boundary. NMI is latched inter-
nally. An NMI duration of one clock or more will guarantee service. This input is
internally synchronized.

I Maskable Interrupt Requests can be requested by strobing one of these pins.
I/O When configured as inputs, these pins are active, HIGH. Interrupt Requests are
I/O synchronized internally. INT2 and INT3 may be configured via software to

provide active-LOW interrupt-acknowledge output signals. All interrupt inputs
may be configured via software to be either edge- or level-triggered. To ensure
recognition, all interrupt requests must remain active until the interrupt is
acknowleged. When iRMX mode is selected, the function of these pins

. changes (see Interrupt Controller section of this data sheet).

0 Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the four most
0 significant address bits during T1. These signals are active HIGH. During T2,
0 T3, Tw, and T4, status information is available on these lines as encoded
0 below:

I I
Low

I
High

I S6 Processor Cycle DMA Cycle

S3,S4, and S5 are defined as LOW during T2-T4.

I/O Address/Data Bus (0-15) signals constitute the time mutiplexed memory or I/O
address (T1) and data (T2' T3. TW, and T4) bus. The bus is active HIGH. AO is
analogous to BHE for the lower byte of the data bus, pins D7 through DO. It is
LOW during T1 when a byte is to be transferred onto the lower portion of the
bus in memory or I/O operations.

0 During T1 the Bus High Enable signal should be used to determine if data is to
be enabled onto the most significant half of the data bus. pins D15-D8. BHE is
LOW during T1 for read, write, and interrupt acknowledge cycles when a byte is
to be transferred on the higher half of the bus. The S7 status information is
available during T2, T3, and T4. S7 is logically equivalent to BHE. The signal is
active LOW. and is tristated OFF during bus HOLD.

BHE and AO Encodings

BHE Value AO Value Function

0 0 Word Transfer
0 1 Byte Transfer on upper half of data bus (D15-D8)
1 0 Byte Transfer on lower half of data bus (D7-Do)
1 1 Reserved

3-360 AFN.()2217C

inter IAPX 186

Table 1. 80186 Pin Description (Continued)

Pin
Symbol No. Type Name and Function

ALE/QSO 61 0 Address Latch Enable/Queue Status 0 is provided by the 80186 to latch the
address into the 8282/8283 address latches. ALE is active HIGH. Addresses are
guaranteed to be valid on the trailing edge of ALE. The ALE rising edge is
generated off the rising edge of the CLKOUT immediately preceding T1 of the
associated bus cycle, effectively one-half clock cycle earlier than in the stan-
dard 8086. The trailing edge is generated off the CLKOUT rising edge in T1 as
in the 8086. Note that ALE is never floated.

WR/QS1 63 0 Write Strobe/Queue Status 1 indicates that the data on the bus is to be written
into a memory or an I/O device. WR is active for T2, T3, and Tw of any write
cycle. It is active LOW, and floats during "HOL.D." It is driven HIGH for one clock
during Reset, and then floated. When the 80186 is in queue status mode, the
ALE/QSO and WR/QS1 pins provide information about processor/instruction
queue interaction.

QS1 QSO Queue Operation
0 0 No queue operation
0 1 First opcode byte fetched from the queue
1 1 Subsequent byte fetched from the queue
1 0 Empty the queue

RD/QSMD 62, 0 Read Strobe indicates thatthe 80186 is performing a memory or I/O read cycle.
Fill is active LOWforT2, T3, and Tw of any read cycle. It is guaranteed notto go
LOW in T2 until after the Address Bus is floated. RD is active LOW, and floats
during "HOLD." RD is driven HiGH for one clock during Reset, and then the
output driver is floated. "A weak internal pull-up mechanism on the RD line hols
it HIGH when the line is not driven. During RESET ~ pin iuampled to
determine whether the 80186 should provide ALE, WR, and RD, or if the
Queue-Status should be provided. Fill should be connected to GND to provide
Queue-Status data.

ARDY 55 I Asynchronous Reljdy informs the 80186 that the addressed memory space or
I/O device will complete a data transfer. The ARDY input pin will accept an
asynchronous input, and is active HIGH. Only the riSing edge is internally
synchronized by the 80186. This"means that the falling edge of ARDY must be
synchronized to the 80186 clock. If connected to. Vee, no WAIT states are
inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be
active to terminate a bus cycle.

SRDY 49 I Synchronous Ready must be synchronized externally to the 80186. The use of
SRDY provides a relaxed system-timing specification on the Ready input. This
is accomplished by eliminating the one-half clock cycle which is 'required for
internally resolving the signal level when using the ARDY input. This line is
active HIGH. If this line is connected to Vee, no WAIT states are inserted.
Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active
before a bus cycle is terminated. If unused, this line should be tied LOW.

LOCK 48 0 LOCK output indicates that other system bus masters are not to gain control of
the system bus while LO~K is active LOW. The LOCK signal is requested by the
LOCK prefix instruction and is activated at the beginning of the first data cycle'
associated with the instruction following the LOCK prefix. It remains active
until the completion of the instruction following the LOCK prefix. No pre-
fetches will occur while LOCK is asserted. LOCK is active LOW, is driven HIGH
for one clock during RESET, and then floated. If unused, this line should be
tied LOW.

3-361 "'FN·O~17C

IAPX186

Table 1. 80186 Pin Description (Continued)

Pin
Symbol No. Type Name and Function

SO,S1,S2 52-54 0 Bus cycle status SO-52 are encoded to provide bus-transaction information:

80186 Bus Cycle Status Information

S2 S1 SO Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 Halt
1 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

The status pins float during "HOLD."
S2 may be used as a logical M/IO indicator, and 51 as a DT/R indicator.
The status lines are driven HIGH for one clock during Reset, and then floated
until a bus cycle begins.

HOLD (input) 50 I HOLD Indicates that another bus master is requesting the local bus. The
HLDA (output) 51 a HOLD input is active HIGH. HOLD may be asynchronous with respect to the

80186 clock. The 80186 will issue a HLDA (HIGH) in response to a HOLD
re~uest at the end of T4 orTl. Simultaneous with the issuance of HLDA, the
80 86 will float the local bus and control lines. After HOLD is detected as
being LOW, the 80186 will lower HLDA. When the 80186 needs to run
another bus cycle, it will again drive the local bus and. control lines.

UCS 34 a Upper Memory Chip Select is an active LOW output whenever a memory
reference is made to the defined upper portion (1 K-256K block) of memory.
This line is not floated during bus HOLD. The address range activating UCS is
software programmable.

LCS 33 a Lower Memory Chip Select is active LOW whenever a memory reference is
made to the defined lower portion (1K-256K) of memory. This line is not
floated during bus HOLD. The address range activating LCS is software
programmable.

MCSO-3 38,37,36,35 a Mid-Range Memory Chip Select sign~ls are active LOW when a memory
reference is made to the defined mid-range portion of memory (8K-512K).
These lines are not floated during bus HOLD. The address ranges activating
1\ii'CSli-3 are Software programmable.

PCSO 25 a Peripheral Chip Select signals 0-4 are active LOW when a reference is made to

1'CS1-4 27,28,29,30 a
the defined peripheral area (64K byte I/O space). These lines are not floated
during bus HOLD. The address ranges activating PCSO-4 are software
programmable.

PCS5/A1 31 a Peripheral Chip Select 5 or Latched A 1 may be programmed to provide a sixth
peripheral chip select, or to provide an internally latched A 1 signal. The
address range activating PCS5 is software programmable. When programmed
to provide latched A 1, rather than PCS5, this pin will retain the previously
latched value of A1 during a bus HOLD. A1 is active HIGH.

PCS6/A2 32 a Peripheral Chip Select 6 or Latched A2 may be programmed to provide a
seventh peripheral chip select, or to provide an internally latched A2 signal.
The address range activating PCS6 is softwa~ogrammable. When pro-
grammed to provide latched A2, rather than PCS6, this pin will retain the
previously latched value of A2 during a bus HOLD. A2 is active HIGH.

DT/R 40 a Data Transmit/Receive controls the direction of data flow through the external
8286/8287 data bus transceiver. When LOW, data is transferred to the 80186.
When HIGH the 80186 places write data on the data bus.

DEN 39 a Data Enable is provided as an 8286/8287 data bus transceiver output enable.
DEN is active LOW during each memory and I/O access. DEN is HIGH whenever
DT/R' changes state.

•
3-362 AFN'()2217t.

inter IAPX 186

FUNCTIONAL DESCRIPTION

Introduction

The following Functional Description describes the
base architecture of the iAPX 186. This architecture
is common to the iAPX 86, 88, and 286 microproces­
sor families as well. The iAPX 186 is a very high
integration 16-bit microprocessor. It combines 15-20
of the most common microprocessor system compo­
nents onto one chip while providing twice the perfor­
mance of the standard iAPX 86. The 80186 is object
code compatible with the iAPX 86, 88 microproces­
sors and adds 10 new instruction types to the exist­
ing iAPX 86, 88 instruction set.

iAPX 186 BASE ARCHITECTURE

The iAPX 86, 88, 186, and 286 family all contain the
same basic set of registers, instructions, and
addressing modes. The 80186 processor is upward
compatible with the 8086, 8088, and 80286 CPUs.

Register Set

. The 80186 base architecture has fourteen registers
as shown in Figures 3a and 3b. These registers are
grouped into the following categories.

General Registers
Eight 16-bit general purpose registers used to con­
tain arithmetic and logical operands. Four of these
(AX, BX, CX, and OX) can be used as 16-bit registers
or split into pairs of separate 8-bit registers.

1&-81T
REGISTER

NAME
7 07

AH

DH

0

AL

DL

SPECIAL
REGISTER

FUNCTIONS

}
MULTIPLY/DIVIDE
1/0 INSTRUCTIONS

Segment Registers
Four 16-bit special purpose registers select, at any
given time, the segm'ents of memory that are immedi­
ately addressable for code, stack, and data. (For
usage, refer to Memory Organization.)

Base and Index Registers
Four of the general purpose registers may also be
used to determine offset addresses of operands in
memory. These registers may contain base ad­
dresses or indexes to particular locations within a
segment. The addressing mode selects the specific
registers for operand and address calculations.

Status and Control Registers
Two 16-bit special purpose registers record or alter
certain aspects of the 80186 processor state. These
are the Instruction Pointer Register,. which contains
the offset address of the next sequential instruction
to be executed, and the Status Word Register, which
contains status and control flag bits (see Figures 3a
and 3b).

Status Word Description

The Status Word records specific characteristics of
the result of logical and arithmetic instructions (bits
0,2,4,6,7, and 11) and controls the operation of the
80186 within a given operating mode (bits 8, 9, and
10). The Status Word Register is 16-bits wide. The
function of the Status Word bits is shown in Table 2.

15 0

OS DATA SEGMENT SELECTOR

BYTE
ADDRESSABLE
(8·BIT
REGISTER
NAMES
SHOWN)

1
::
cx

BX

BP

CH CL

BH SL

) LDOPISHIFTJREPEATICOUNT

} BASE REGISTERS

CS ~ CODE SEGMENT SELECTOR

SS STACK SEGMENT SELECTOR

ES 'EXTRA SEGMENT SELECTOR

SEGMENT REGISTERS

SI

01

SP -,
15

-

GENERAL
REGISTERS

} INDEX REGIST~RS
) STACK POINTER

15 0

F I I STATUS WORD

IP I------~. INSTRUCTION POINTER

STATUS AND CONTROL
REGISTERS

Figure 3a. 80186 General Purpose Register Set

3-363 AFN'()2217C

inter iAPX 186·

STATUS FLAGS

CARRY -----------------------,

PARITY -------------------,

AUXILIARYCARRY ----------------,

ZERO ------------,

~ INTEL RESERVED

CONTROL FLAGS

'------ TRAP FLAG

'--------- INTERRUPT ENABLE
'----------- DIRECTION FLAG

Figure 3b. Status Word Format

Table 2. Status Word Bit Functions manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are
summarized in Figure 4.

Bit Name Function Position
0 CF Carry Flag-Set on high-order bit

carry or borrow; cleared otherwise

2 PF Parity Flag-Set if low-order 8 bits
of result contain an even number of
1-blts; cleared otherwise

4 AF Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

6 ZF Zero Flag-Set if result is zero;
cleared otherwise

7 SF Sign Flag-Set equal to high-order
bit of result (0 if positive, 1 if negative)

8 TF Single Step Flag-Once set, a Sin-
gle step interrupt occurs after the
next instruction executes,. TF is
cleared by the single step Interrupt.

9 IF Interrupt-enable Flag-When set,
maskable interrupts Will cause the
CPU to transfer control to iln inter-
rupt vector specified location,

10 OF Direction Flag-Causes string
instructions to auto decrement
the appr,opriate index register
when set. Clearing OF causes
auto' increment.

11 OF Overflow Flag-Set if the signed
result cannot be expressed
within the number of bits in the
destination operand; cleared
otherwise

Instruction Set

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/logical, string

3-364

An 80186 instruction can reference anywhere from
zero to several operands. An operand can reside in a
register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later.
in this data sheet.

Memory Organization

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K
(216) 8-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a
16-bit base segment and a 16-bit offset. The 16-bit
base values are contained in one of four internal
segment registers (code, data, stack, extra). The
physical address is calculated by shifting the base
value LEFT by four bits and adding the 16-bit offset
value to yield a 20-bit physical address (see Figure 5).
This allows for a 1 MByte physical address size.

All instructions that address operands in memory
must specify the base segment and the 16-bit offset
value. For speed and compact instruction encoding,
the segment register use,d for physical address gen­
eration is implied by the addressing mode used (see
Table 3). These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.

AFN'()2217C

IAPX186

GENERAL PURPOSE MOVS Move byte or word string

MOV Move byte or word INS Input bytes or word string

PUSH Push word onto stack OUTS Output bytes or word string

POP Pop word off stack CMPS Compare byte or word string

PUSHA Push all registers on stack SCAS Scan byte or word string

POPA Pop all registers from stack LODS Load byte or word string

XCHG Exchange byte or word STOS Store byte or word string

XLAT Translate byte REP Repeat

INPUT/OUTPUT REPE/REPZ Repeat while equal/zero

IN Input byte or word REPNE/REPNZ Repeat while not equal/not zero

OUT Output byte or word
LOGICALS

ADDRESS OBJECT
NOT "Not" byte or word

LEA Load effective address
AND "And" byte or word

LDS Load pOinter using DS
OR "Inclusive or" byte or word

LES Load pOinter using ES
XOR "Exclusive or" byte or word

FLAG TRANSFER TEST "Test" byte or word
LAHF Load AH register from flags SHIFTS
SAHF Store AH register in flags

SHUSAL Shift logical/arithmetic left byte or word
PUSHF Push flags onto stack

SHR Shift logical right byte or word
POPF Pop flags off stack

SAR Shift arithmetic right byte or word

ROTATES
ADDITION ROL Rotate left byte or word

ADD Add byte or word ROR Rotate right byte or word
ADC Add byte or word with carry RCL Rotate through carry left byte or word
INC Increment byte or word by 1 RCR Rotate through carry right byte or word
AAA ASCII adjust for addition

DAA Decimal adjust for addition FLAG OPERATIONS
SUBTRACTION STC Set carry flag

SUB Subtract byte or word CLC Clear carry flag

SBB Subtract byte or word with borrow CMC Complement carry flag

DEC Decrement byte or word by 1 STD Set direction flag

NEG Negate byte or word CLD Clear direction flag

CMP Compare byte or word STI Set interrupt enable flag

AAS ASCII adjust for subtraction CLI Clear interrupt enable flag

DAS Decimal adjust for subtraction EXTERNAL SYNCHRONIZATION
MULTIPLICATION HLT Halt until interrupt or reset

MUL Multiply byte or word unsigned WAIT Wait for TEST pin active

IMUL Integer multiply byte or word ESC Escape to extension processor

AAM ASCII adjust for multiply LOCK Lock bus during next instruction

DIVISION NO OPERATION
DIV Divide byte or word unsigned NOP No operation

IDIV Integer divide byte or word HIGH LEVEL INSTRUCTIONS
AAD ASCII adjust for division ENTER Format stack for procedure entry

CBW Convert byte to word LEAVE Restore stack for procedure exit

CWD Convert word to doubleword BOUND Detects values outside prescribed range

Figure 4. IAPX 186 Instruction Set

3-365 AFN-02217C

iAPX186

I,

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/JNBE Jump if above/not below nor equal CALL Call procedure

JAE/JNB Jump if above or equal/not below RET Return from procedure

JB/JNAE Jump if below/not above nor equal JMP Jump

JBE/JNA Jump if below or equal/not above

JC Jump if carry ITERATION CONTROLS
JE/JZ Jump if equal/zero

JG/JNLE Jump if greater/not less nor equal LOOP Loop

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero

JUJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0

JNC Jump if not carry

JNE/JNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd INT Interrupt

JNS Jump if not sign INTO Interrupt if overflow

JO Jump if overflow IRET Interrupt return

JP/JPE Jump if parity/parity even

JS Jump If sign

Figure 4. iAPX 186. Instruction Set (continued)

To access operands that do not reside in one of the
four immediately available segments, a full 32-bit
pOinter can be used to reload both the base (seg­
ment) and offset values.

t[SH='F=TL=E:FT~4!,BI!!,TS{1 ~'='~3 ~4::J1 ~i~~ ENT}
I 1 2 3 4 ! 0 I .. " ___ .,0 kgg~CE~~
19 t 0 I 0 0 2 2 IOFFSET

[~Iro~~o ~, =Z' 1-1 ... _~':S::5 =J 0
~ 0

I, , 3 6 2 I PHYSICAL ADDRESS

" + 0
TO MEMORY

Figure 5. Two Component Address

Table 3. Segment Register Selection Rules

Memory Segment
Reference Register Implicit Segment
Needed Used Selection Rule

Instructions Code (CS) Instruction prefetch and
immediate data.

Stack Stack (SS) All stack pushes and
pops; any memory refer-
ences which use BP Reg-
ister as a base register.

External Extra (ES) All string instruction
Data references which use
(Global) the. 01 register as an

index.

Local Data Data (OS) All other data references.

3-366

MODULE A

r - --,
I I

BiBODE

DATA

MODULE B r,.-,--i----,

PROCESS
STACK

PROCESS
DATA
BLOCK 1

PROCESSD
DATA
BLOCK 2

I I
L ___ J

MEMORY

CPU

CODE

DATA

STACK

EXTRA

SEGMENT
REGISTERS

Figure 6. Segmented Memory Helps
Structure Software

AFN.()2217C .

inter IAPX 186

Addressing Modes

The 80186 provides eight categories of addressing
modes to specify operands. Two addressing modes
are provided for instructions that operate on register
or immediate operands:,

• Register Operand Mode: The operand is located in
one of the 8- or 16-bit general registers. "

• Immediate Operand Mode: The operand is in­
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicity
chosen by the addressing mode or explicitly chosen
by a segment override prefix. The offset, also called
the effective address, is calculated by summing any
combination of the following three address
elements:

• the displacement (an 8- or 16-bit immediate value
contained in the instruction);

• the base (contents of either the BX or BP base
registers); and

• the index (contents of either the SI or 01 index
registers).

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements
define the six memory addressing modes, described
below.

• Direct Mode: The operand's offset is contained in
the instruction as an 8- or 16-bit displacement
element.

• Register Indirect' Mode: The operand's offset is in
one of the registers SI, 01, BX, or BP.

• Based Mode: The operand's offset is the sum of an
8- or'16-bit displacement and the contents of ,a
base register (BX or BI:').'

• Indexed Mode: The operand's offset is the sum of
an 8- or 16-bit displacement and the contents of an
index register (SI or 01).

• Based Indexed Mode: The operand's offset is the
sum of the contents of a base register and an index
register.

• Based Indexed Mode with Displacement: The
operand's offset is the sum of a base register's
contents, an index register's contents, and an 8- or ,
16-bit displacement. '

'Data Types

The 80186 directly supports the following data types:
,

• Integer: A signed binary numeric value contained
in an 8-bit byte or a 16-bit word. All operations
assume a 2's complement representation. Signed

32- and 64-bit integers are supported using the
iAPX 186/20 Numeric Oata Processor.

• Ordinal: An unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word.

• Pointer: A 16~ or ~2-bit quantity, composed of a
16-bit Offset component or a 16-bit segment base
component in addition to a 16-bit offset
component.

• String: A contiguous sequence of bytes or words.
A string may contain from 1 to 64K bytes.

• ASCII: A byte representation of alphanumeric and
control characters using the' ASCII standard of
character representation.

• BCD: A byte (unpacked) representation of the de­
cimal digits 0-9.

• Packed BCD: A byte (packed) representation of
two decimal digits (0-9). One digit is stored in each
nibble (4-bits) of the byte.

• Floating Point: A signed 32-, 64-, or 80-bit real
number representation. (Floating point operands
are supported using the iAPX 186/20 Numeric Oata
Processor configuration.)

In general, individual data elements must fit within
defined segment limits. Figure 7 graphically
represents the data types supported by the iAPX 186.

1/0 Space

The I/O space consists of 64K 8-bit or 32K 16-bit
ports. Sepa'rate instructions address the I/O space
with either an' 8-bit port address, specified in the
instruction, or a 16-bit port address in the OX regis-'
ter. 8-bit port addresses are zero eXtended such that
A1s-Aa arEi LOW. I/O port addresses OOF8(H) through

, OOFF(H) are reserved.

Interrupts

An interrupt tranSfers, execution to a new program­
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to
allow resumption of the interrupted program. Inter­
rupts fall into three classes: hardware initiated, INT
instructions, and instruction exceptions. Hardware
initiated interrupts occur in response to an external
input and are' classified as non-maskable or
maskable.

3-367 ilFN·02217C

IAPX 186

7 •
SIGNED rrnTfTTl

BYTE U-.:..--I
SIGN BIT ~I--I

MAGNITUDE

7 •
UNSIGNED rrrrrrrn

BYTE L-.:....-J
~-
MAGNITUDE

1514+ 1 87 0 0

S:~=g II' iii j,j Iii iii iii
SIGN BIT...J L.I L-=M'iis,;~AG;;;N;;;IT",UDn;E;---'

SIGNED 31 +3 +2 1615 +1 0

~~:~~'Ilii I li'li'! I"l Iii 'Ii i 'I'il Ii' ')
SIGNBITJ ... IL..;;M-=SB=--__ M"'A"'G""NITU=D~£----....

+7 +6 +5 +4 +3 +2 +1
SIGNED 63 48 47 3~1 16 15

w~~"if.1I I I 1 I I
SIGN BIT jL.,'-..::M=SB=----;::M~AG:;ON;;;ITU;;;D:;;;E,-----....J

15 +1 0

UN~~gli Ii liill' Ii I' I 'I
,LMSB

MAGNITUDE

BINARY 7 +N 0
CODED rrrrrrrn
DECIMAL~

(BCD) DI~C: N

7 +N 0

ASCII~
ASCII

CHARACTER.
+N

PACKED~
BCD L--L.....I

l----I
MOST
SIGNIFICANT DIGIT

7 +1 07 0 '0

(iiiliiiJi"Jiill
BCD BCD

DIGIT 1 DIGIT 0

7 +1 07 0 0

1'"I! Ii I"'jii')
ASCII ASCII

CHARACTER, CHARACTER.

7 +1 07 0

liii Iilil'" I'ii I
l----I
LEAST

SIGNIFICANT DIGIT

715 +N 0 715 +1 0715 0 0

,STRING ~ ••• 'I'iilii')"'j"')
BYTEIWORD N BYTE/WORD I BYTEIWORD 0

31 +3 +2 1615 +1 0

POINTER I iii I', iii iii Iii iii iii i i,1 I iii Iii i I
I I

SELECTOR OFFSET
79+9 +8 +7 +6 +5 +4 +3 +2 +1 o •

FL~:r~ II
SIGN BIT 'I-,_A--.... ----L-........ ---'L...-........ ---'_ --'_ ...

EXPONENT MAGNITUDE

NOTE:
'SUPPORTED BY iAPX 188/20 NUMERIC DATA PROCESSOR
CONFIGURATION.

Figure 7. iAPX 186 Supported Data Types

Programs may cause an interrupt with an INT In­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction
processing, is detected while attempting to execute
an instruction. If'the exception was caused byex­
ecuting an ESC instruction with. the ESC trap bit set
in the relocation register, the return instruction will
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the
return address from an exception will point' at the
instruction immediately following the instruction
causing the exception.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt.
Interrupts 0-31, sOlne of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the
80186 predefined types and default priority levels.
For,each interrupt, an 8-bit vector must be supplied
to the 80186 which identifies the appropriate table
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and non­
cascaded external interrupts will generate their own
vectors through the internal interrupt controller. INT
instructions contain or imply the vector and allow
access to all 256 interrupts. Maskable hardware in­
itiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence.
Non-maskable hardware interrupts use a predefined
internally supplied vector.

Interrupt Sources

The 80186 can service interrupts generated by soft­
ware or hardware. The software interrupts are
generated by specific instructions (INT, ESC, unused
OP. etc.) or the results of condition,S specified by
instructions (array bounds check, INTO, DIV, IDIV,
etc.). All interrupt sources are serviced by an indirect
call through an element of a vector table. This vector
table is indexed by using the interrupt vector type
(Table 4), multiplied by four. All hardware-generated

, interrupts are sampled at the end of each instruction.
Thus, the softWare interrupts will begin service first.
Once the service routine is entered and interrupts
are enabled, any hardware source of sufficient
priority can in~errupt the service routine in progress.

The, software generated 8Q186 interrupts are
described below.

DIVIDE ERROR EXCEPTION (TYPE 0)
Generated when a DIV 6r IDIV instruction quotient
cal'!not be expressed in the number of bits in the
destination.

3-368 AFN.02217C

IAPX 186

Table 4. 80186 Interrupt Vectors

Vector Default Related
Interrupt Name Type Priority Instructions

Divide Error 0 *1 DIV,IDIV
Exception

Single Step 1 12**2 All
Interrupt

NMI 2 1 All
Breakpoint 3 *1 INT

Interrupt
INTO Detected 4 *1 . INTO

Overflow
Exception

Array Bounds 5 *1 BOUND
Exception

Unused-Opcode 6 *1 Undefined
Exception Opcodes

ESC Opcode 7 '*1'*'*'* ESC Opcodes
Exception

Timer 0 Interrupt 8 2A****
Timer 1 Interrupt 18 28****
Timer 2 Interrupt 19 2C****
Reserved 9 3
DMA 0 Interrupt 10 4
DMA 1 Interrupt 11 5
INTO Interrupt 12 6
INT1 Interrupt 13 7
INT2 Interrupt 14 8
INT3 Interrupt 15 9

NOTES:
'1. These are generated as the result of an instruction

execution .
. "2. This is handled as in the 8086.
.. ··3. All three timers constitute one source of request to the

interrupt controller. The Timer interrupts all have the same
default priority level with respect to all other interrupt
sources. However, they have a defined priority ordering
amongst themselves. (Priority 2A is higher priority than
2B.) Each Timer interrupt has a separate vector type
number. .

4. Default priorities for the interrupt sources are used only if
the user does not program each source into a unique
priority level. ".

'''5. An escape opcode will cause a trap only if the proper bit is
set in the peripheral control block relocation ~egister.

SINGLE·STEP INTERRUPT (TYPE 1)
Generated after most instructions if the TF flag is set.
Interrupts will not be generated after prefix instruc­
tions (e.g., REP), instructions which modify segment
registers (e.g., POP DS), or the WAIT instruction.

NON·MASKABLE INTERRUPT-NMI (TYPE 2)
An external interrupt source which cannot be
masked. .

BREAKPO.INT INTERRUPT (TYPE 3)
A one-byte version of the INT instruction. It uses 12
as an index into the service routine address table

. (because it is a type 3 interrupt). .

INTO DETECTED OVERFLOW EXCEPTION
(TYPE 4)
Generated during an INTO instruction if the OF bit is
set.

ARRAY BOUNDS EXCEPTION (TYPE 5)
Generated during a BOUND instruction if the array
index is outside the array bounds. The array bounds
are loc~ted in memory at' a location indicated by one
of the instruction operands. The other operand indi­
cates the value of the index to" be checked.

" UNUSED OPCODE EXCEPTION (TYPE 6)
Generated if execution is attempted on undefined
opcodes.

ESCAPE OPCODE EXCEPTION (TYPE 7)
Generated if execution is attempted of ESC opcodes
(D8H-DFH). This exception will only be generated if a
bit in the relocation register is set. The return ad­
dress of this exception will point to the ESC instruc­
tion causing the exception. If a segment override
prefix preceded the ESC instruction, tlie return ad­
dress will point to the segment override prefix.

Hardware-generated interrupts are divided into two
groups: maskable interrupts and non-maskable in­
terrupts. The 80186 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition,
maskable interrupts may be generated by the 80186
integrated DMA controller and the integrated timer
unit. The vector types for these interrupts is shown in
Table 4. Software enables these inputs by setting the
interrupt flag bit (IF) in the Status Word. The interrupt
controller is discussed in the peripheral section of
this data sheet.

Further maskable interrupts are disabled while
servicing an interrupt because the IF bit is reset as
part of the response to an interrupt or exception. The
saved Status Word will reflect the enable status of the
processor prior to the interrupt. The interrupt flag
will remain zero unless specifically set. The interrupt
return instruction restores the Status Word, thereby
restoring the original status of IF bit. If the interrupt
return re-enables interrupts, and another interrupt is
pending, the 80186 will immediately service the
highest-priority interrupt pending, I.e., no instruc­
tions of the main line program will be executed.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt (NMI) is also provided.
This interrupt is serviced regardless ofthe state of
the IF bit. A typical use of NMI would be to activate a
power failure routine. The activation of this input

3-369 AFN.()2217C

"m_1" III-e- . IAPX186

causes an interrupt with an internally supplied vector
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at· the
beginning of an NMI interrupt to prevent maskable
interrupts from being serviced.

Single-Step Interrupt

The 80186 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is called
the single-step interrupt and is controlled by the
single-step flag bit (TF) in the Status Word. Once this
bit is set, an internal single-step interrupt will occur
after the next instruction has been executed. The
interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer controHo the next instruc­
tion to be single-stepped.

Initialization and Processor Reset

Processor initialization or startup is accomplished
by driving the RES input pin Law. RES forces the
80186 to terminate all execution and local bus ac­
tivity. No instruction or bus activity will occur as long
as RES is active. After RES becomes inactive and an
internal processing· interval, elapses, the 801.86
begins execution with the instruction at physicallo­
cation FFFFO(H). RES also sets some registers to
predefined values as shown in Table 5.

Table 5. 80186 Initial Register State after RESET

Status Word , F002(H)
Instruction Pointer OOOQ(H)
Code Segment FFFF(H)
Data Segment OOOO(H)
Extra Segment OOOO(H)
Stack Segment OOOO(H)
Relocation Register 20FF(H)
UMCS FFFB(H)

iAPX 186 CLOCK GENERATOR

The iAPX 186 provides an on-chip clock generator
for both internal and external clock generation. The
clock generator features a crystal oscillator, a divide­
by·two counter, synchronous and asynchronous
ready inputs, and reset circuitry. .

Oscillator

The oscillator circuit of the iAPX 186 is designed to
be used with a parallel resonant fundamental mode
crystal. This is used as the time base for the iAPX 186:
The crystal frequency selected will be double the
CP\J clock frequency. Use of an LC or RC circuit is not

recommended with this oscillato·r. If an external oscil­
lator is used, it can be connected directly to input pin
X1 in lieu of a crystal. The output of the oscillator is
not directly available outside the iAPX 186. The
recommended crystal configuration is shown in
Figure 8.

X,r-----------~

c::::::J x MHz CRYSTAL

80186 T 20pF

Figure 8. ·Recommended iAPX 186 Crystal
Configuration

Clock Generator

16

12

The iAPX 186 clock generator provides the 50% duty
cycle processor clock for the iAPX 186. It does this by
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, ·the
state of the clock generator will change on the falling
edge of the oscillator signal. The CLKOUT pin pro­
vides the processor clock signal for use outside the
iAPX 186. This may be used to drive other system
components. All timings are referenced to the output
clock.

READY Synchronization

The iAPX 186 provides both synchronous and asyn­
chronous ready inputs. Asynchronous ready syn­
chronization is accomplished by circuitry which
samples ARDY in the middle of T2, T3 and again in
the middle of each T w until ARDY is sampled
HIGH. One·half CLKOUT cycle of resolution time is
used. Full synchronization is performed only on the
rising edge of ARDY, I.e." the falling edge of ARDY
must be synchronized to the CLKOUT signal if it
will occur during T2, T3 or Tw. High-to-LOW transi·
tions of ARDY must be performed synchronously
to the CPU Clock.

A second ready input (SADy) is provided to inter­
face with externally synchronized ready signals.
This input is sampled at the end of T2, T3 and again
at the end of each'T"" until it is sampled HIGH. By
using this input rather than the asynchronous
ready input, t.he half-clock cycle resolution time
penalty is eliminated.

AFN·02217C

IAPX 186

This input must satisfy set-up and ho.ld times to.
guarantee pro.per o.peratio.n o.f the circuit.

In additio.n, the iAPX 186, as part o.f the integrated
chip-select Io.gic, has the capability to. pro.gram WAIT
states fo.r memo.ry and peripheral blo.cks. This is dis­
cussed in the Chip Select/Ready Lo.gic descriptio.n.

RESET Logic

The iAPX 186 pro.vides bo.th a RES input pin and a
synchro.nized RESET 'pin fo.r use with o.ther system
co.mpo.nents. The RES input pin o.n the iAPX 186 is
pro.vided with hysteresis in o.rder to. facilitate po.wer­
o.n Reset generatio.n via an RC netwo.rk. RESET is
guaranteed to. remain active fo.r at least five clo.cks
given a RES input o.f at least six clo.cks. RESET may
be delayed up to. two. and o.ne-half clo.cks behind
RES. •

Multiple iAPX 186 pro.cesso.rs may be synchro.nized
thro.ugh the RES input pin, since this input resets
bo.th the pro.cesso.r and divide-by-two. internal co.unt­
er in the clo.ck generato.r. In o.rder to. insure that the
divide-by-two. ceunters all begin ceunting at the
same time, the active geing edge ef RES must satisfy
a 25 ns setup time befere the falling edge ef the
80186 clo.ck input. In additien, in o.rder to. insure that
all CPUsbegin executing in the same clo.ck cycle, the
reset must satisfy a 25 ns setup time befere the rising
edge o.f the CLKOUT signal ef all the precessers.

LOCAL BUS CONTROLLER

The iAPX 186 prevides a lecal bus ce~treller to.
generate the local bus centrel signals. In additien, it
empleys a HOLD/HLDA pretecel fo.r relinquishing
the Io.cal bus to. ether bus master!? It alse'pro.vides
centro.l lines that can be used to. enable external
buffers and to. direct the flew ef data en and eff the
lecal bus.

Memory/Peripheral Control

The iAPX 186 prevides ALE, RD, and WR bus centre I
signals. The RD and WR Signals are used to. strebe
data frem memo.ry to. the iAPX 186 er to. strebe data
frem the iAPX 186 to. memery. The .ALE line prevides
a strebe to. address latches fer the multiplexed ad­
dress/data bus. The iAPX 186 lecal' bus centreller
does no.t previde a memery/l/O signal. If this is re­
quired, the user will have to. use the 52 signal (which
will require external latching), make the memery and
1/0 spaces no.no.verlapping, er use enly the in­
tegrated chip-select circuitry.

3-371

Transceiver Control

The iAPX 186 generates two. co.ntrel Signals to. be
cennected to. 8286/8287 transceiver chips. This capa­
bility allew's the additien ef transceivers fer extra
buffering witho.ut adding external legic. These co.n­
trellines, DT/R and DEN, are generated to. contro.l the
flo.w ef data thro.ugh the transceivers. The eperatio.n
o.f these signals is shewn in Table 6.

Table 6. Transceiver Control Signals Description

Pin Name Function

l5E!'l (Data Enable) Enables the output drivers of
the transceivers. It is active
LOW during memory, 1/0, or
INTA cycles,

DT/R (Data Transmit/ Determines the direction of
Receive) travel through the transceivers.

A HIGH level directs data away
from the processor during write
operations, while a LOW level
directs data toward the proces-
sor during a read operation.

Local Bus Arbitration

The iAPX 186 uses a HOLD/HLDA system o.f lecal bus
exchange. This prevides an asynchro.neus bus ex­
change mechanism. This means multiple masters
utilizing the same bus can eperate at separate clo.ck
frequencies. The iAPX 186 provides a single
HOLD/HLDA pair threugh which all o.ther bus mas­
ters may gain co.ntro.l ef the lecal bus. This requires
external circuitry to. arbitrate which external device
will gain centro.l ef the bus fremthe iAPX 186 when
there is mere than ene alternate lecal bus master.
When the iAPX 186 relinquishes centro.l ef the lecal
bus, it fleats DEN, RD, WR, SO-52, LOCK, ADO­
AD15, A16-A19, SHE, and DT/R to. allew ano.ther
master to. drive these lines directly.

The iAPX 186 HOLD latency time, i.e., the time be­
tween HOll!> request and HOLD ackno.wledge, is a
functien of the activity o.ccurring in the pro.cesso.r
when the HOLD request is received. A HOLD request'
is the highest-prio.rity activity request which the pre­
cesser may receive: higher than instructio.n fetching
er internal DMA cycles. Ho.wever, if a DMA cycle is in
pro.gress, the iAPX 186 will co.mplete the transfer
befo.re relinquishing the bus. This implies that if a
HOLD request is received just as a DMA transfer
begins, the HOLD latency time can be as great as 4
bus cycles. This will o.ccur if a DMA wo.rd transfer
eperatio.n is taking place fro.m an edd address to. an
edd address. This is a to.tal o.f 16 clocks er mo.re,"if
WAIT states are required. In additien, if lecked trans­
fers are performed, the HOLD latency time will be
increased by the length ef the lecked transfer.

AFN'()2217C

·nt:.....l· III-e- IAPX186 '

Local Bus Controller and Reset

Upon receipt of a RESET pulse from the RES input,
the local bus controller will perform the following
actions:
• Drive DEN, RD, and WR HIGH for one clock cycle,

then float.

NOTE: RD is also provided with an internal pull-up
device to prevent the processor from Inadvertently
entering Queue Status mode during reset.

• Drive SO-S2 to the passive state (all HIGH) and
then float.

• Drive LOCK HIGH and then float.
• Tristate ADO-15, A16-19, BHE, DT/R.
• Drive ALE LOW (ALE is never floated).
• Drive HLDA LOW

INTERNAL PERIPHERAL INTERFACE

All the iAPX 186 integrated peripherals are con­
trolled via 16-bit registers contained within an inter­
nal 256-byte control block. This control block may be
mapped into either memory or I/O space. Internal
logic will recognize the address and respond to the
bus cycle. During bus,cycles to internal registers, the
bus controller will signal the operation externally
(i.e., the RD, WR, status, address, data, etc., lines will
be driven as in a normal bus cycle), but 015-0, SRDY,
and ARDY will be ignored. The base address of the
control block must be on an even 256-byte boundary
(i.e., the lower 8 bits of the base address are all
zeros). All of the defined registers within this control
block may be read or written by the 80186 CPU at any
time. The location of any register contained within
the 256-byte control block is determined by the cur­
rent base address of the control block:

The control block base address is programmed via a
16-bit relocation register contained within the con­
trol block at offset FEH from the base address of the
control block (see Figure 9). It provides the upper 12
bits of the base address of the control block. Note

, that mapping the control register block into an ad­
dress range corresponding to a chip-select range is
not recommended (the chip select circuitry is dis­
cussed later in this data Sheet). In addition, bit 12 of
this register determines whether the control block
will be mapped into I/O or memory space. If this bit is
1, the control block will be located in memory space,
whereas if the bit is 0, the control block, will be lo­
cated in 1/0 space. H the control register block is
mapped into I/O space, the upper 4 bits ,of the base
address must be programmed as 0 (since I/O ad-
dresses are only 16 bits wide). .

In addition to providing relocation information for
the control block, the relocation register contains
bits which place the interrupt controller into iRMX
mode, and cause the CPU tojnterrupt upon en­
countering ESC instructions. At RES'ET, the reloca­
tion register is set to 20FFH. This.causes the control
block to start at FFOOH in I/O space. An offset map
of the 256-byte control register block is shown in
Figure 10.

The integrated iAPX 186 peripherals operate semi­
autonomously from the CPU. Access to them for the
most part is via software read/write of the control and
data locations in the control block. Most of these
registers can be both read and written. A few
dedicated lines, such as interrupts and DMA request
provide real-time communication between the CPU
and peripherals as in a more conventional system
utilizing discrete peripheral blocks. The overall inter­
action and function of the peripheral blocks has not
substantially changed.

CI1IP-SELECT/READY GENERATION
LOGIC

The iAPX 186 contains logic which provides pro­
grammable chip-select generation for both
memories and peripherals. In addition, it can be pro­
grammed to provide READY (or WAIT state) genera­
tion. It can also provide latched address bits A1 and
A2. The chip-select lines are active for all memory
and I/O cycles in their programmed areas, whether
they be generated by the CPU or by the integrated
DMA unit.

Memory Chip Selects

The iAPX 186'provides 6 memory chip select outputs
for 3 address areas: upper memory, lower memory,
and midrange memory. One each is provided for up­
per memory and lower memory, while four are pro­
vided for midrange memory.

The range for each chip select is user-programmable
and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 128K
(plus 1 K and 256K for upper and lower chip selects).
In addition, the beginning or base address of the
midrange memory chip select may also be selected.
Only one chip select maybe programmed to be ac­
tive for any memory location at a time. All chip select
sizes are in bytes, whereas iAPX 186 memory is ar­
ranged in wor,ds. Ihis means that if, for example" 16
64K x 1 memories are used, the memory block size
will be 128K, not 64K.

3-372

IAPX 188

15 14 13 12 11 10 7 o
Relocation AddreBS BIIII Rl9-R8

ET - ESC Trep 1 No ESC Trap (1/0)
MIlO - Rqlater block located In Memory 1110 $pace (110)
RMX - Meater Intenupt Controller mode IIRMX competlble

Intenupt Controller mode (011)

Figure 9. Relocation Register

Relocation Register

DMA Descriptor. Channell

DMA Descriptor. Channel 0

Chip-Select Control Register.

Timer 2 Control Register.

Timer 1 Control Registers

Timer 0 Control Registers

Interrupt Controller Register.

OFFSET

FEH

DAH

DOH

CAH

COH

A8H

AOH

aaH

60H
5EH

58H
56H

SOH

3EH

20H

Figure 10. Internal Register Map

Upper Memory CS

The iAPX 186 provides a chip select, called UCS, for
the top of memory. The top of memory is usually used
as the system memory because after reset the iAPX
186 begins executing at memory location FFFFOH.

The upper limit of memory defined by this chip select
is always FFFFFH, while the lower limit is program­
mable. By programming the lower limit, the size of
the select bloqJ< is also defined. Table 7 shows the
relationship between the base address selected and
the size of the memory block obtained.

3-373

Table 7. UMCS'Programmlng Values

Starting
Address Memory UMCS Value
(Base Block (Assuming

Address) Size RO=R1 =R2=0)

FFCOO 1K FFF8H
FF800 2K FFB8H
FFOOO 4K FF38H
FEOOO 8K FE38H
FCOOO 16K FC38H
F8000 32K F838H
FOOOO 64K F038H
EOOOO 128K E038H
cocoa 256K C038H

The lower limit of this memory block is defined in the
UMCS register (see Figure 11). This register is at
offset AOH in the internal control block. The legal
values for bits 6-13 and the resulting starting ad­
dress and memory block sizes are given in Table 7.
Any combination of bits 6-13 not Shown in Table 7
will result in undefined operation. After reset, the
UMCS register is programmed for a 1K area. It must
be reprogrammed if a larger upper memory area is
desired. '

Any internally generated 20-bit address whose upper
16 bits are greater than or equal to UMCS (with bits
0-5 '''0'') will cause UCS to be activated. UMCS bits
R2-RO are used to specify READY mode for the area
of memory defined by this chip-select register, as
explained below.

Lower Memory CS

The iAPX 186 provides a chip select for low memory
called LCS. The bottom of memory contains the inter­
rupt vector table, starting at location OOOOOH.

The lower limit of memory defined by this c~ip select
is always OH, while the upper limit is programmable.
By programming the -upper limit, the size of the
memory block is also defined. Table 8 shows the
relationship between the upper address selected and
the,size of the memory block obtained.

AFN·02217C

IAPX 186

Table 8. LMCS Programming Values

Memory LMCS Value
Upper Block (Assuming

Address Size RO=R1 =R2=O)

003FFH 1K 0038H
007FFH 2K 0078H
OOFFFH 4K 00F8H
01FFFH 8K 01F8H
03FFFH 16K 03F8H
07FFFH 32K 07F81'f
OFFFFH 64K OFF8H
1FFFFH 128K 1FF8H '
3FFFFH 256K 3FF8H

The upper limit of this memory block is defined in the
LMCS, register (see Figure 12). This register is at
offset A2H in the internal control block. The legal
values for bits 6-15 and the resulting upper address
and memory block sizes are given in Table 8. Any
combination of bits 6-15 not shown in Table 8 will
result in undefined operation. After reset, the LMCS
re~ister value is undefined. However, the [CS chip-

, select line will not become active until the LMCS
, register is accessed.

Any internally generated 20-bit address whose upper
16 bits are less than or equal to LMCS (with bits 0-5
"1 ") will cause LCS to be active. LMCS register bits
R2-RO are used to specify the READY mode for the
area of memory defined by this chip-select register.

Mid-Range Memory CS
The iAPX 186 provides four MC(S lines which are
active within' a user-locatable memory block. This
block can be located anywhere within the iAPX 186
1 M byte memory address space exclusive of the
areas defined by UCS and LCS. Both the base ad­
dress and size of this memory block are

, programmable.

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is determined

by bits 8-14 of the MPCSregister (see Figure 13).
This register is at location ASH in the internal control
block. One and only one of bits 8-14 must be set at a
time. Unpredictable operation of the MCS lines will
otherwise-occur. Each of the four chip-select lines is
actiye for one of the four equal contiguous divisions
of the mid-range block. Thus, if the total block size is
32K, each chip select is active for 8K of memory with
MeSO being active for the first range and MCS3
being active for the last range.

The EX and MS in MPCS relate to peripheral
functionality as descibed a later section.

Table g. MPCS Programming Values

Total Block Individual MPCS Bits
Size Select Size 14-8

8K 2K 00000018
16K 4K 00000108
32K 8K 00001008
64K 16K 00010001;1
128K 32K 00100008
256K 64K 01000008
512K 128K 10000008

The base address of the mid-range memory block is
defined by bits 15-9 of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal
control block. These bits correspond to bits A19-A13
of the' 20-bit memory address. Bits A12-AO of the
base address are always O. The base address may be
set at any integer multiple of the size of the total
memory block selected. For example, if the mid­
range block size is 32K (or the size of the block for
which each MCS line is active is 8K), the block could
be located at 10000H or 18000H, but not at 14000H,
since the first few integer multiples of a 32K memory
block are OH, 8000H, 10000H, 18000H, etc. After
reset, the contents of both of these registers is un­
defined. However, none of the MCS lines will be ac­
tive until both the MMCS and MPCS registers are
accessed.

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

OFFSET: AOHI 1 I 1 I u I u I u I u I u I u I u I u I
A19 All

~Igure 11. UMCS Register

15 14 13 12 11 10' 9 8 6' 5 3 2 1 0

OFFSET: A2H I 0 lou I u u u u u I u U 1 I 1 I 1 I R2 I Rl I RO I
~A~1~9~~~~~~~~~~~~~~A~1~1~~~~~~~~~~

Flgu,re 12, LMCS Register

3-374 AFN~17C

inter IAPX 186

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSET: A8H I 1 1 M6 1 M5 1 M4 I M3 I M2 I Ml 1 MO 1 EX 1 MS 1 1 I. 1 1 1 1 R2 1 Rl 1 RO I

Figure 13. MPCS Register

15

OFFSET: ASH lui u 1 u 1 u 1 U u 1 u 1 1 1 1 1 1 1 1 I 1
A19 A13

Figure 14. MMCS Register

MMCS bits R2-RO specify READY mode of operation
for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT
states.

The 512K block size for the mid-range memory chip
selects is a special case. When using 512K, the base
address would have to be at;either locations OOOOOH
or 80000H. ·If it were to be programmed at OOOOOH
when the LCS line was programmed, there would be
an internal conflict between the LCS ready genera­
tion logic and the MCS ready generation logic.
Likewise, if the base address were programmed at
80000H, there would be a conflict with the UCS ready
generatior:llogic. Since the LCS chip-select line does
riot become active until prograi'Tlmed, while the UCS
line is active at reset, the memory base can be set
only at OOOOOH. If this base address is selected,
however, the LeS range must not be programmed.

Peripheral Chip Selects

The iAPX 186 can generate chip selects for up to
s!lven peripheral devices. These chip selects are ac­
tive for seven contig uous blocks of 128 bytes above a
programmable base address. This base address may
be located in either memory or I/O space.

Seven CS lines called PCSO-6 are generated by the
iAPX 186. The base ~ddress is user-programmable;

however it can only be a multiple of 1K bytes, I.e., the
least significant 10 bits of the starting address are
alwaysO.

PCS5 and PCS6 can also be programmed to provide
latched address bits A1, A2. If so programmed, they
cannot be used as peripheral selects. These outputs
can be connected directly to the AO, A1 pins used for
selecting internal registers of 8-bit peripheral chips.
This scheme simplifies the hardware interface be­
cause the 8-bit registers of peripherals are simply
treated as 16-bit registers located on even bound­
aries in I/O space or memory space where only the
lower 8-bits of the register are significant: the upper
8-bits are "don't cares."

The starting address of the peripheral chip-select
block is defined by the PACSregister (see Figure 15).
This register is located at offset A4H in the internal
control block. Bits 15-6 of this register correspond to
bits 19-10 of the 20-bit Programmable Base Address
(PBA) of the peripheral chip-select block. Bits 9-0 of
the PBA of the peripheral chip-select block are all
zeros. Ifthe chip-select block is located in I/O space,
bits 12-15 must be programmed zero, since the I/O
address is only 16 bits wide. Table 10 shows the
address raflge -of each peripheral chip select with
respect to the PBA contained in PACS register.

15 6

OFFSEr: A4H lui u 1 u u I u I u lui u lui u 1 1
A19 Al0

Figure 15. PACS Register

3-375 AFN·02217C

IAPX 186

The user should program bits 15-6 to correspond to
the desired peripheral base location. PACS bits 0-2
are used to specify READY mode for PCSO-PCS3.

Table 10. PCSAddress Ranges

PCS Line Active between Locations

PCSO PBA -PBA+127
PCS1 PBA+128 -PBA+255
PCS2 PBA+256 -PBA+383
PCS3 PBA+384 -PBA+511
PCS4 PBA+512 -PBA+639
PCS5 PBA+640 - PBA+ 767
PCS6 PBA + 768 - PBA +895

The mode of operation of the peripheral chip selects
is defined by the MPCS register (which is also used to
set the size of the mid-range memory c~ip-select
block, see Figure 16). This register is located at offset
A8H in the internal control block. Bit 7 is used to
select the function of PCS5 and PCS6, while bit 6 is
used to select whether the peripheral chip selects
are mapped into memory or I/O space. Table 11 de­
scribes the programming of these bits. After reset,
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines
will be active until both of the MPCS and PACS regis­
ters are accessed.

Table 11. MS, EX Programming Values

Bit Description

MS 1 = Peripherals mapped into memory space.
0 = Peripherals mapped into 1/0 space.

EX 0 = 5 pes lines. A1, A2 provided.
1 = 7 PCS lines. A1, A2 are not provided.

MPCS bits 0-2 are used to specify READY mode for
PCS4-PCS6 as outlined below.

READY Generation Logic -

The iAPX 186 can generate a "READY" signal inter­
nally for each of the memory or peripheral CS lines.
The number of WAIT states to be inserted for each
peripheral or memory is programmable to provide
0-3 wait states for all accesses to the area for which
the chip select is active. In addition, the iAI;'X 186 may
be programmed to either ignore external READY for

each chip-select range individually or to factor exter­
nal READY with the integrated ready generator.

READY control consists of 3 bits for each CS line or
group of lines generated by the iAPX 186. The inter­
pretation of the ready bits is shown in Table 12.

Table 12. READY Bits Programming

R2 R1 RO Number of WAIT States Generated

0 0 0 o wait states, exterflal ROY also used.
0 0 1 1 wait state inserted, external ROY also

used.
0 1 0 2 wait states inserted, external RDYaiso

used.
0 1 1 3 wait states inserted, external RDYaiso

used.
1 0 0 o wait states, external ROY ignored.
1 0 1 1 wait state inserted, external ROY

ignored.
1 1 0 2 wait states inserted, external RD) .

ignored. .
1 1 1 3 wait states inserted, external RD)

ignored.~

The internal ready generator operates in parallel with
external READY, not in series if the external READY
is used (R2 = 0). This means, for example, if the
internal generator is set to insert two wait states, but
activity on the externai"READY lines will insert four
wait states, the processor will only insert four wait
states, not six. This is because the two wait states
generated by the internal generator overlapped the
first two wait states generated by the external ready
signal. Note that the external ARDYand SRDY lines
are always ignored during cycles accessing internal
peripherals.

R2-RO of each control word specifies the READY
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS
set the PCSO-3 READY. mode, R2-RO of MPCS set
the PCS4-6 READY mode.

Chip Select/Ready logic and Re~et

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions:

• All chip-select outputs will be driven HIGH .
• Upon leaving RESET,' the iJCS line will be pro­

grammed to provide chip selects to a 1 K block with
the accompanying READY control bits set at 011 to

15 14 13 12 11 10 9 8 7 6 5 2 1 0

OFFSET: A8HI1 IM6IMslM4IM3IM2IM1IMoIExIMsI1 1111 IR21R11ROI

Figure 16. MPCSReglster

3-376 AFN·02217C

intJ IAPX 186

allow the maximum number of internal wait states
in conjunction with external Ready consideration
(Le., UMCS resets to FFFBH).

• No other chip select or READY control registers
have any predefined values after RESET. They will
not become active until the CPU accesses their
control registers. Both the PACS and MPCS regis­
ters must be accessed before the PeS lines will
become active.

DMA CHANNELS

The 80186 DMA controller provides two independent
high-speed DMA channels. Data transfers can occur
between memory and I/O spaces (e.g., Memory to
I/O) or within the same space (e.g., Memory to
Memory or I/O to I/O). Data can be transferred either
in bytes (8 bits) or in words (16 bits) to or from even or
odd addresses. Each DMA channel maintains both a
20-bit source and destination pointer which can be
optionally incremented or decremented after each
data transfer (by one or two depending on byte or
word transfers). Each data transfer consumes 2 bus
cycles (a minimum of 8 clocks), one cycle to fetch
data and the other to store data. This provides a
maximum data transfer rate of one Mword/sec or 2
MBytes/sec.

. DMA Operation

Each channel has six registers in the control block
which define each channel's specific operation. The
control registers consist of a 20-bit Source pointer (2
words), a 2Q-bit Destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. The
format of the DMA Control Blocks is shown in Table
13. The Transfer Count Register (TC) specifies the
number of DMA transfers to be performed. Up to 64K
byte or word transfers can be performed with auto­
matic termination. The Control Word defines the
channel's operation (see Figure 18). All registers may
be modified or altered during any DMA activity. Any
changes made to these registers will be reflected
immediately in DMA operation ..

Table 13. DMA Control Block Format

Register Name

Control Word
Transfer Count
Destination Pointer (upper 4

bits) ,
Destination Pointer
Source Pointer (upper 4 bits
Source Pointer

TIMER REQUEST

DMA
CONTROL

LOGIC

INTERRUPT
REQUEST

Register Address

Ch.O Ch.1

CAH DAH
CBH DBH
C6H D6H

C4H D4H
C2H D2H
COH DOH

Figure 17. DMA Unit Block Diagram

3-377 !\FN-02217C

IAPX 186

15 14 13

Ml DESTINATION
10 DEC INC

x ~ DON'T CARE,

Figure 18. DMA Control Register

DMA Channel Control Word Register

Each DMA Channel Control Word determines the
mode of operation for the particular 80186 DMA
channel. This register specifies:

• the mode of synchronization;
• whether bytes or words will be transferred;
• whether interrupts will be generated after the last

transfer;
• whether OMA activity wi" cease after a pro-

grammed number of DMA cycles; .
• the relative priority of the DMA channel with

respect to the other DMA channel;
• whether the source pointer will be incremented,

decremented, or maintained constant after each
transfer;

• whether the source pointer addresses memory or
I/O space;

• whether the destination pOinter will be incre­
mented, decremented, or maintained constant af­
ter each transfer; and

• whether the destination pointer wi" address
memory or I/O space,

The DMA channel control registers may be changed
. while the channel is operating. However, any

changes made during operation will affect the cur­
rent DMA transfer ..

DMA Control Word Bit Descriptions

8/W: Byte/Word (0/1) Transfers.

ST/STOP: Start/stop (1/0) Channel.

CHG/NOCHG: Change/Do not change (1/0)
ST/STOP bit. If this bit is set when
writing to the control word, the
ST/STOP bit will be programmed by
the write to the control word. If this
bit is cleared when writing the con­
trol word, the ST/STOP bit will not
be altered. This bit is not stored; it
will always be a 0 on read.

INT:

TC:

SYN:
(2 bits)

Enable Interrupts to CPU on Trans­
fer Count termination.
If set, DMA will terminate when the
contents of the Transfer Count reg­
ister reach zero. The ST/STOP bit
will also be reset at this point ff TC is
set. If this bit is cleared, the DMA
unit wi" decrement the transfer
count register for each OMA cycle,
but the DMA transfer will not stop
when the contents of the TC register
reach zero.
00 No synchronizati0l'1.

NOtE: The ST bit will be cleared
automatically when the contents
of the TC register reach zero re­
gardless of the state of the TC bit.

01 Source synchronization.
10 Destination synchronization.
11 Unused.

SOURCE:INC Increment source pOinter by 1 or 2
(depends on S/W) after each
transfer.

M/iD Source pointer is in M/IO space
(1/0) .

DEC Decrement source pointer by 1 or 2
(depends on 8/W) after each
transfer.

DEST: INC Increment destination pointer by 1
,or 2 (S/W) after each transfer.

P

3-378

M/IO Destination pointer is in M/IO space
(1/0).

DEC Decrement destination pointer by l'
or 2 (depending on S/W) after each

, transfer.

Channel priority-relative to other
channel.
o low priority.
1 high priority.

Channels will alternate cycles if
both set at same priority level.

AFN'()2217C

inter IAPX 186

TDRQ

Bit 3

0: Disable DMA requests from timer
2.

1: Enable DMA requests from timer
2.

Bit 3 is not used.

If both INC and DEC are specified for the same
pointer, the pointer will remain constant after each
cycle.

DMA Destination and Source Pointer
Registers
Each DMA channel maintains' a 20-bit source and a
2o-bit destination pointer. Each of these pointers
takes up two full 16-bit reQisters in the peripheral
control block. The lower four bits of the upper regis­
ter contain the upper four bits of the 20-bit physical
address (see Figure 18a). These pointers may be
individually incremented or decremented after each
transfer. If word transfers are performed the pointer
is incremented or decremented by two. Each pointer
may point into' either memory or I/O space. Since the
DMA channels can perform transfers to or from odd
addresses, there is no restriction on values for the
pointer registers. Higher transfe~ rates can be ob­
tained if all word transfers are performed to even
addresses, since this will allow data to be accessed in
a single memory access.

DMA Transfer Count Register
. Each DMA channel maintains a Hl·bit transfer
count register (TC). This register is decremented
after every DMA cycle, regardless of the state of
the TC bit in the DMA Control Register. If the TC bit
In the DMA control word is set or unsynchronlzed
transfers are programmed, however, DMA activity
will terminate when the transfer count register
reaches zero.

HIGHER
REGISTER
ADDRESS

LOWER
REGISTER
ADDRESS

15

xxx

A1S-A12

. xxx = DON'T CARE

xxx

A11-A8

DMA Requests

Data transfers may be either source or destination
synchronized, that is either the source of the data or
the destination of the data may request the data
transfer. In addition, DMA transfers may be un­
synchronized; that is, the transfer will take place
continually until the correct number of transfers has
occurred. When source or unsynchronized transfers
are performed, the DMA channel may begin another
transfer immediately after the end of a previous DMA
transfer. This allows a complete transfer to take place
every 2 bus cycles or eight clock cycles (assuming no
wait states). No prefetching occurs when destination
synchronization is performed, however. Data will not
be fetched from the source address until the destina­
tion device signals that It is ready to receive it. When
destination synchronized transfers are requested,
the DMA controller will relinquish control of the bus
after every transfer. If no other bus activity is in­
itiated, another DMA cycle will begin after two pro­
cessor clocks. This is done to allow the destination
device time to remove its request if another transfer
is not desired. Since the DMA controller will relin­
quish the bus, the CPU can initiate a bus cycle. As a
result, a complete bus cycle will often be inserted
between destination synchronized transfers. These
lead to the maximum DMA transfer rates shown in
Table 14.

Table 14. Maximum DMA Transfer Rates

Type of
Synchronization

Selected CPU Running CPU Halted

Unsynchronized 2MBytes/sec 2MBytes/sec
Source Synch 2MBytes/sec 2MBytes/sec
Destination Synch 1.3MBytes/sec 1 .5MBytes/sec

xxx A19-A18 '

A7-A4 A3-AO

0

Figure 18a. DMA Memory Pointer Register Format

.3-379, AFN-02217C

inter iAPX186

DMA Acknowledge

No explicit DMA acknowledge pulse is provided.
Since both source and destination pointers are
maintained, a read from a requesting source, or a
write to a requesting destination, should be used as
the DMA acknowledge signal. Since the chip-select
lines can be programmed to be active for a given
block of memory or I/O space, and the DMA pointers
can be programmed to point to the, same given block,
a chip-select line could be used to indicate a DMA
acknowledge.

DMA Priority

The DMA channels may be programmed such that
one channel is always given priority over the other, or
they may be programmed such as to alternate cycles
when both have DMA requests pending. DMA cycles
always have priority over internal CPU cycles except
between locked memory accesses or word accesses
the odd memory locations; however, an external bus
hold takes priority over an internal DMA cycle. Be­
cause an interrupt request canno~ suspend Ii DMA
operation and the CPU cannot access memory dur­
,ing a DMA cycle, interrupt latency time will suffer
during sequences of continuous DMA cycles. An
NMI request, however, will cause aU 'internal DMA
activity to halt. This allows the CPU to quickly
respond to the NMI request.

DMA Programming

DMA ,cycles will occur whenever the ST/STOP bit of
the Control Register is set. If synchronized transfers

TIMER 0

are programmed, a ORO must also have been
generated. Therefore, the source and destination
transfer pOinters, and the transfer count register (if
used) must be programmed before this bit is set.

.Each DMA register may be modified while the chan­
nel is operating. If the CHG/NOCHG bit is cleared
w~en the cOfltrol register is written, the ST/STOP bit
of the control register will not be modified by the
write. If multiple channel registers are modified, it is
recommended that a LOCKED string tran,sfer be
used to prevent a DMA transfer from occurring be- '
tween updates to the ,channel registers.

DMA Channels and Reset

Upon RESET, the DMA channels will perform the
following actions:

• The Start/Stop bit for each channel will be reset to
STOP.

• Any transfer in progress is aborted.,

TIMERS

The 80186 provides three internal 16-bit programma­
ble timers (see Figure 19). Two of these are highly
'flexible and are connected to four external pins (2
per timer). They can be used to count external
events, time external events, generate nonrepetitive
waveforms, etc. The third timer is not connected to
any external pins, and is useful for real-time coding
and time delay applications. In addition, this third
timer can be used as a prescaler to the other two, or
as a DMA request source.

DMA
REQ.

T2
INT.
REQ.

MAX COUNT VAWE MAX COUNT VAWE TIMER 2

I-:::-~~A~=-:.""l CLOCK ""MAX""""'~CO~U';~~T""\!""'I\W~E

ALL 18 lIT REGISTERS

I
MODE/CONTROL

WORD

INTERNAL ADDRESS/DATA IUS

MAX COUNT VAWE

Figure 19., Timer Block Diagram

3-380 AFN-02217C

inter IAPX 186

Timer Operation

The timers are controlled by 11 16-bit registers in the
Internal peripheral control block. The configuration
of these registers is shown in Table 15. The count
register contains the current value of the timer. It can
be read or written at any time independent of
whether the timer Is running or not. The value of this
register will be incremented for each timer event.
Each of the timers is equipped with a MAX COUNT
register, which defines the maximum count the timer
will reach. After reaching the MAX COUNT register
value, the timer count value will reset to zero during
that same clock, i.e., the maximum count value is
never stored in the count register itself. Timers 0 and
1 are, in addition, equipped with a second MAX
COUNT register, which enables the timers to alter­
nate thElir count between two different MAX COUNT
values programmed by the user. If a single MAX
COUNT register is used, the timer output pin will
switch LOW for a single clock, 2 clocks after the.
maximum count value has been readhed. In the dual
MAX COUNT register mode, the output pin will indi­
cate which MAX COUNT register is currently in use,
thus allowing nearly complete freedom in selecting
waveform duty cycles. For the timers with two MAX
-COUNT registers, the RIU bit in the control register
determines which is used for the comparison.

Each timer gets serviced every fourth CPU-clock
cycle, and thus can operate at speeds up to one­
quarter the internal clock frequency (one-eighth the
crystal rate). External clocking of the timers may be
done at up to a rate of one-quarter of the internal
CPU-clock rate (2 MHz for an 8 MHz CPU clock). Due
to internal synchronization and pipelining of the
timer circuitr,y, a timer output may take up to 6 clocks
t9 respond to any individual clock or gate input.

Since the count registers and the maximum count
registers are all 16 bits wide, 16 bits of resolution are
provided. Any Read or Write access to the timers will
add one wait state to the minimum four-clock bus
cycle, however. This Is needed to synchronize and
coordinate the internal data flows between the inter­
nal timers and the internal bus.

The timers have several programmable options.

• All three timers can be set to halt or continue on a
terminal count.

• Timers 0 and 1 can select between internal and
external clocks, alternate between MAX COUNT
registers and be set to retrigger on external events.

• The timers may be programmed to cause an inter­
rupt on terminal count. .

These options are selectable via the timer mode/
control word.

Timer Mode/Control Register

The mode/control register (see Figure 20) allows the
user to program the specific mode of operation or
check the current programmed status for any of the
three integrated timers.

Table 15. Timer Control Block Format

Register Offset

Register Name Tmr.O Tmr.1 Tmr.2

Mode/Control Word 56H 5EH 66H
Max Count B 54H 5CH not present
Max Count A 52H 5AH 62H
Count Register 50H 58H 60H

15 14 13 12 11 5 4 2 1 0

EN I iNti liNT I RIU I 0 1· 1 MC 1 RTG I p I EXT I ALT ICONTI

/

Figure 20. Timer Mode/Control Register

3-381 AFN'()2217C

·n+~r I • • ae-' IAPX 186

ALT:
The ALT bit determines which o(two MAX COUNT.
registers is used for count comparison. If ALT = 0,
register.A for that timer is always used, while if ALT =
1, the comparison will alternate between register A
and register 8 when each maximum cqunt is
reached. This alternation allows the,user to ~hange
one MAX COUNT register while the other is being
used, and thus provides a method of generating non­
repetitive waveforms. Square waves and pulse out­
puts of any duty cycle are a subset of available
signals obtained by 'not changing the final count
registers. The ALT bit also determines the function of
the timer output pin. If ALT is zero, the output pin will
go LOW for one clock, the clock after the maximum
count is reached; If ALT is one, the output pin will
reflect the current MAX COUNT register being used
(0/1 for 8/ A).

CONT:
Setting the CONT bit causes the associated timer to
run continuously, while resetting it causes the timer
to halt upon maximum count. If' CONT = 0 and ALT
=1, the timer will count to the MAX COUNT register A
value, reset, count to the register 8 value, reset, and
halt.

EXT:
The external bit selects between internal and exter­
nal clocking for the timer. The external signal may be
asynchronous with respect to the 80186 clock. If this
bit is set, the timer will count LOW-to-HIGH trans­
itions on the input pin. If cleared, it will count an
internal clock while using the inp,ut pin for control. In
this mode, the function of the external pin is defined
by the RTG bit. The maximum input to output transi­
tion latency time may be as much as 6 crocks.
However, clock inputs may ~e pipelined as closely
together as every 4 clocks without losing clock
pulses.

P:
The prescaler bit is ignored unless internal clocking
has been selected (EXT = 0). If the P bit is a zero, the
timer will count at one-fourth the internal CPU clock
rate. If the P bit is a one, the output of timer 2 will be ,
used as a clock for the timer. Note that the user mu~t
initializ~ and start timer 2 to obtain the prescaled
clock.

RTG:
Retrigger bit is only active for internal clocking (EXT
= 0). In this case it determines the control function
provided by the input pin.

If RTG = 0, the input level-gates the internal clock on
and oft. If the input pin is HIGH, the timer will count; if

the input pin is LOW, the timer will hold its value. As
indicated previously, the input signal may be asyn­
chronous with respect to the 80186 clock.

When RTG' = 1, the input pin detects LOW-to-HIGH
transitions. The first such transition starts the timer
running, clearing the timer value to zero on the first
clock, and then incrementing thereafter.' Further
transitions on the input pin will again reset the timer
to zero, from which it will start counting up .again. If
CONT = 0, when the timer has reached maximum
count, the EN tlit will be cleared, inhibiting further
timer activity.

EN: '
The enable bit provides programmer control over the
timer's RUN/HALT status. When, set, the timer is ,en­
abled to increment subject to. the inP!Jt pin CO!'l­
straints in the internal clock mode (discussed
previously). When cleared, the timer will be inhibited
from counting. All input pin transitions during the
time EN is zero will be ignored. If CONT is zero .. the
EN bit is automatically cleared upon maximum
count.

INH:
The Inhibit 'btt allows for selective updating of the
enable (EN) bit. If INH is a one during the write to the

. mode/control word, then the state of the EN bit will
be modified by the write. If INH is a zero during the
write, the EN bit will be unaffected by the operation.
This bit is not stored; it will always be a 0 on a read.

INT:
When set, the INT bit enables interrupts from the
·timer, which will be generated on every terminal
count. If the timer is configured in dual MAX. COUNT
register mode, an interrupt· will be 'ge~rated each
time the value in MAX COUNT register A is reached,
and each time the value in MAX COUNT register 8 is
reached. If this enable bit is cleared after the inter­
rupt request has'been generated, but before a pend­
ing interrupt is serviced, the interrupt request will
still be in force. (The request is latched in the Inter­
rupt Controller.)

Me:
The Maximum Count bit is set whenever the timer,
reaches its final maximum count value. If the timer is
configured in dual MAX COUNT register mode, this
bit will be set each time the value in MAX COUNT
register A is reached, and each time the value in MAX
COUNT register 8 is reached, This bit is set regard­
less of the timer's interrupt-enable bit. The MC bit
gives the' user the ability to monitor timer status
through software instead of through interrupts.
Programmer Intervention is required to clear this
bit.

3-382 AFN.()2217C

inter IAPX 186

RIU:
The Register In Use bit indicates which MAX COUNT
register is currently being used for comparison to the
timer count value. A zero value indicates register A.
The RIU bit cannot be written, 'I.e., its value is not
affected when the control register is written. It is
always cleared when the ALT bit is zero.

Not all mode bits are provided fortimer 2. Certain bits
are hardwired as indicated below:

ALT = 0, EXT = 0, P = 0, RTG = 0, RIU = 0

Count Registers

Each of the three timers has a 16-bit co~nt register.
The current contents of this register may be read or
written by the processor at any time. If the register is
written into while the timer is counting, the new value
will take effect in the current count cycle.

Max Count Registers

Timers 0 and 1 have two MAX COUNT registers, while
timer 2 has a single MAX COUNT register. These con-,
tain the number of events the timer will count. In
timers 0 and 1, the MAX COUNT register used can
alternate between the two max count values
whenever the current maximum count is reached,
The condition which causes a timer to reset is equiv­
alent between the current count value and the max
count being used. This means that if the count is
changed to be above the max count value, or if the
max count value is changed to be below the current
value, the timer will not reset to zero, but rather will
count to its maximum value, "wrap around" to zero,
then count until the max count is reached.

Timers and Reset

Upon RESET, the Timers will perform the following
actions:

• All EN (Enable) bits are reset preventing timer
counting.

• All SEL (Select) bits are reset to zero. This selects
MAX COUNT register A, resulting in the Timer Out
pins going HIGH upon RESET.

INTERRUPT CONTROLLER

The 80186 can receive interrupts from a number of
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on
a priority basis, for individual service by the CPU.

Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers
or by mask bits within the interrupt controller. The
80186 interrupt controller has its own control regis­
ters that set the mode of operation for the controller.

The interrupt controller will resolve priority among
requests that are pending simultaneously. Nesting is
provided so interrupt service routines for lower
priority interrupts may themselves be interrupted by
higher priority interrupts. A block diagram of the
interrupt controller is shown in Figure 21.

The interrupt controller has a spepial iRMX 86 com­
patibility mode that allows the use of the 80186
within the iRMX 86 operating system interrupt struc­
ture. The controller is set in this mode by setting bit
14 in the peripheral control block relocation register
(see iRMX 86 Compatibility Mode section). In this
mode, the internal 80186 interrupt controller func­
tions as a "slave" controller to an el(ternal "master"
controller. Special initialization software must be in­
cluded to properly set up the 80186 interrupt control­
ler in iRMX 86 mode.

MASTER MODE OPERATION

Interrupt Controller External Interface

For external interrupt sources, five dedicated pins
are provided. One of these pins is dedicated to NMI,
non-maskable interrupt. This is typically used for
power-fail interrupts, etc. The other four pins may
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line
and an ,interrupt acknowledge line (called the
"cascade mode") along with two other input lines
with internally generated interrupt vectors, or as two
interrupt input lines and two dedicated interrupt ac­
knowledge ouput lines. When the interrupt lines are

,configured in cascade mode, the 80186 interrupt
controller will not generate internal interrupt
vectors.

External sources in the cascade mode use externally
generated interrupt vectors. When an interrupt is
acknowledged, two INTA cycles are initiated and the
vector is read into the 80186 on the second cycle. The
capability to interface to external 8259A program­
mable interrupt controllers is thus provided when the
inputs are configured in cascade mode.

3-383 AFN·Q2217C

IAPX 186

Interrupt Controller Modes of Operation

The basic modes of operation of the interrupt con­
troller in master mode are similar to the 8259A.
The interrupt controller responds identically to inter­
nal interrupts in all three modes: the difference is
only in the interpretation of function of the four exter­
nal interrupt pins. The interrupt controller is set into
one of these three modes by programming the cor­
rect bits in the INTO and INT1 control registers. The
modes of interrupt controller operation are as
follows:

Fully Nested Mode
When in the fully nested mode four pins are used as
direct interrupt requests. The vectors for these four
inputs are generated internally. An in-service bit is
provided for every interrupt source. If a lower-priority
device requests an interrupt while the in-service bit
(IS) is set, no interrupt will be generated by the inter­
rupt controller. In addition, if another interrupt re­
quest occurs from the same. interrupt source while
the inservice bit is set, no interrupt will be generated
by the interrupt controller. This allows interrupt ser­
vice routines to operate with interrupts enabled with­
out being themselves interrupted by lower-priority
interrupts. Since interrupts are enabled, higher­
priority interrupts will be serviced.

When a service routine is completed, the proper IS
bit must be reset by writing the proper pattern to the
EOI register. This is required to allow subsequent
interrupts from this interrupt source and to allow
servicing of lower-priority interrupts. An EOI com­
mand is issued at the end of the service routine just

TIMER TIMER TIMER DMA

before the issuance of the return from interrupt in­
struction. If the fully nested structure has been
upheld, the next highest-priority source with its IS bit
sel is then serviced.

Cascade Mode
The 80186 has four interrupt pins and two of them
have dual functions. In the fully nested mode the four
pins are used as direct interrupt inputs and the cor­
responding vectors are generated internally. In the
cascade mode, the four pins are configured into in­
terrupt input-dedicated acknowledge signal pairs.
The interconnection is shown in Figure 22. INTO is an
interrupt input interfaced to an 8259A, while
INT2/INTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is true
for INT1 and I NT3/1NTA 1. Each pair can selectively be
placed in the cascade or non-cascade mode by pro­
gramming the proper value into INTO and INT1 con­
trol registers. The use of the dedicated acknowledge
signals eliminates the need for the use of external
logic to generate INTA and device select signals.

The primary cascade mode allows the capability to
serve up to 128 external interrupt sources through
the use of external master and slave 8259As. Three
levels of priority are created, requiring priority
resolution in the 80186 interrupt controller, the mas­
ter 8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these
levels. When the interrupt service routine is com­
pleted, up to three end-of-interrupt commands must
be issued by the programmer.

o 1 2 1 INTO INT1 INT2 INT3 NMI

DMAO
CONTRDL REG.

DMA1
CONTROL REG.

EXT. INPUT 0
CONTROL REG.

EXT. INPUT 1
CONTROL REG.

EXT. INPUT 2
CONTROL REG.

INTERRUPT
PRIORITY

RESOLVER

INTERRUPT
REQUEST REG.

INTERRUPT
MASK REG.

IN·SERVICE
REG.

PRIOR. LEII.
MASK REG.

INTERRUPT
STATUS REG.

Figure 21. Interrupt Controller Block Diagram

3-384 AFN.().2217C

IAPX 186

Special Fully Nested Mode
This mQde is entered by setting the SFNM bit in INTO
or INT1 control register. It enables complete nestabil­
ity with external 8259A masters. Normally, an inter­
rupt request from an interrupt source will not be
recognized unless the in-service bit for that source is
reset. If mote than one interrupt source is connected
to an external interrupt con,roller, all of the interrupts
will be funneled through the same 80186 interrupt
request pin. As a result, if the external interrupt con­
troller receives a higher-priority interrupt, its inter­
rupt will not be recognized by the 80186 controller
until the 80186 in-service bit is reset. In special fully
nested mode, the 80186, interrupt controller will allow
interrupts from an external pin regardless of the·
state of the in-service bit for an interrupt source in
order to allow multiple interrupts from a single pin.
An in-service bit will continue to be set, however, to
inhibit interrupts from other lower-priority 80186 in­
terrupt sources.

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines.
Software polling of the external master's IS register
is required to determine if there is more than one bit
set. If so, the IS bit in the 80186 remains active and
the ,next interrupt service routine is entered.

Operation in a Polled Environment

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor
disables interrupts and then polls the interrupt con­
troller whenever it is convenient. Polling the inter­
rupt controller is accomplished by reading the Poll
Word (Figure 31). Bit 15 in the poll word indicates
to the processor that an interrupt of high enough
priority is requesting service. Bits 0-4 indicate to
the processor the type vector of the highest­
priority source requesting service. Reading the
Poll Word causes the In-Service bit of the highest­
priority source to be set.

It is desirable to be able to read the Poll Word ihfor­
mation without guaranteeing service of any pending
interrupt, i.e., not set the indicated in-service bit. The
80186 provides a Poll Status Word in addition to the
conventional Poll Word to allow this to be done. Poll
Word information is duplicated in the Poll Status
\(\lord, but reading the Poll Status Word does not set
the associated in-service bit. These words are lo­
cated in two adjacent memory locations in the regis­
ter file.

Master Mode Features

Programmable Priority
The user can program the interrupt sources into any
of eight different priority levels. The programming is
done by placing a 3-bit priority level (0-7)< in the
control register of each interrupt source. (A source
with a priority level of 4 has higher priority over all
priority levels from 5 to 7. Priority registers contain­
ing values lower than 4 have greater priority.) All
interrupt sources have preprogrammed default
priority levels (see lable 4).

If two requests with the same programmed priority
level are pending at once, the priority ordering
scheme shown in Table 4 is used. If the serviced
interrupt routine reenables interrupts, it allows other
requests to be serviced.

End-of-Interrupt Command'
The end-of-interrupt (EOI) command is used by the
programmer to reset the In-Service (IS) bit when an
interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the
EOI register. There are two types of EOI commands,
specific and nonspecific. The nonspecific command
does not specify which IS bit is reset. When issued,
the interrupt controller automatically resets the IS bit
of the highest priority source with an active service

.routine. A specific EOI command requires that the
programmer send the interrupt vector type to the

interrupt controller indicating which source's IS bit is
to be reset. This command is used when the fully
nested structure has been disturbed or the highest
priority IS bit that was set does not belong to the
service routine in progress.

Trigger Mode
The four external interrupt pins can be programmed
in either edge- or level-trigger mode. The control
register for each external source has a level-trigger
mode (LTM) bit. All interrupt inputs are active HIGH.
m the edge sense mode or the level-trigger mode, the

. interrupt request must remain active (HIGH) until the
interrupt request is acknowledged by the 80186 CPU.
In the edge-sense mode, if the level remains high
after the interrupt is acknowledged, the input is dis­
abled and no further requests will be generated. The
input level must go LOW for at least one clock cycle to
reenable the input. In the level-trigger mode, no such
provision is made: holding the interrupt input HIGH
will cause continuous interrupt requests.

3-385 AFN'())!217C

" inter iAPX186,

Interrupt Vectoring "
The 80186 Interrupt Controller will generate inter­
rupt vectors for the integrated OMA channels and
the integrated Timers. In addition, the Interrupt Con­
troller will generate interrupt vectors for the external
interrupt lines if they are not configured in Cascade
or Special Fully Nested Mode. The interrupt vectors
generated are fixed and cannot be changed (see
'Table 4).

Interrupt Controller Registers

The Interrupt Controller register model is shown in
Figure 23. It contains 15 registers. All registers can
both be read or written unless specified otherwise.

In-Service Register
This register can be read from or written into. The
format is shown in Figure 24. It contains the In­
Service bit for each of the interrupt sources. The
In-Service bit is set to indicate that a source's service
routine is in progress. When an In-Service bit is set,
the interrupt controller will not generate interrupts to
the CPU when it receives interrupt requests from
devices with a lower programmed priority level. The
TMR bit is the In-Service bit for all three timers; the
DO and 01 bits are the In-Service bits for the two OMA
channels; the 10-13 are the In-Service bits for the
external interrupt pins. The IS bit is set when the
processor acknowledges an interrupt request either
by ar interrupt acknowledge or by reading the poll
register. The IS bit is reset at the end of the interrupt
service routine by an end-of-interrupt command is­
sued by the CPU.

80186
IfiITO

INTAO

Interrupt Request Register
The internal interrupt sources have interrupt request
bits insi,de the interrupt controller. The format of this
register is shown in Figure 24. A read from this regis­
ter yields the status of these bits. The TMR bit is the
logical OR of a/l timer interrupt requests. DO and 01
are the interrupt request bits for the OMA channels.

the state of the external interrupt input pins is also
indicated. The state of the external interrupt pins is
not a stored condition inside the interrupt controller,
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly
when an interrupt request is given to the interrupt
controller, so if edge-triggered mode is selected, the
bit in the register will be HIGH only after an inactive­
to-active transition. For internal interrupt sources,
the register bits are set when a request arrives and
are reset when, the processor acknowledges the
requests.

Mask Register
This is a 16-bit register that contains a mask bit for
each interrupt source. The format for this register is
shown in Figure 24. A one in a bit position corres­
ponding to a particular source serves to mask the
source from generating interrupts. These mask bits
are the exact same bits which are used in the individ­
ual control registers; programming a mask bit using
the mask register will also change this bit in the
individual control registers, and vice versa.

INT

8259A
PIC

iNTA

Figure 22. Cascade Mode Interrupt Connection

3-386 AFN'()2217C

inter

INT3 CONTROL REGISTER

INT2 CONTROL REGISTER

INT1 CONTROL REGISTER

INTO CONTROL REGISTER

OMA 1 CONTROL REGISTER

DMA 0 CONTROL REGISTER

TIMER CONTROL REGISTER

INTERRUPT STATUS REGISTER

INTERRUPT REOUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER

EOI REGISTER

OFFSET

3EH

3CH

3AH

38M

36H

34H

32H

30H

2EH

2CH

2AH

28H

26H

24H

22H

IAPX186

Priority Mask Register
This register is used to mask all interrupts below
particular interrupt priority levels_ The format of this
register is shown in Figure 25. The code in the lower
three bits of this register inhibits interrupts of
priority lower (a higher priority number) than the
code specified. For example, 100 written into this
register masks interrupts of level five (101), s'ix (110),
and seven (111). The register is reset to seven (111)
upon RESET so all interrupts are unmasked.

Interrupt Status Register
This register contains general interrupt controller
status information. The format of this register is
shown in Figure 26. The bits in the status register
have the following functions:

DHLT: DMA Halt Transfer; setting this bit halts all
DMA transfers. It is automatically set
whenever a non-maskable interrupt occurs,
and it is reset when an IRET instruction is·
executed. The purpose of this bit is to allow
prompt service of all rion-maskable inter­
rupts. This bit may also be set by the CPU.

Figure 23. Interrupt Controller Registers
(Non-IRMX 86 Mode)

IRTx: These three bits represent the individual
timer interrupt request bits. These bits are
used to differentiate the timer interrupts,
since the timer IR bit in the interrupt re­
quest register is the "OR" function of all
timer interrupt requests, Note that setting
anyone of these three bits initiates an inter­
rupt request to the interrupt controller.

15 14 10 8 7

o I 0

Figure 24. In-Service, Interrupt Request, and Mask Register Formats

15 14

o I 0 I]
Figure 25. Priority Mask Register Format

15 14 7 4 3 2 1 0

I DHLT 1 0 1 0,,1 0 1 0 o 1 0 IIRT211RT111RTO I

Figure 26. Interrupt Status Register Format

AFN'()2217C

IAPX 186

Timer, DMA 0, 1; Control Reglaters
These registers are the control words for all the inter­
nal. interrupt .sources. The format for these registers
is shown in Figure 27. The three bit positions PRO,
PR1, and PR2 represent the programmable priority
level of the interrupt source. 'The MSK bit inhibits
interrupt requests from ·the interrupt source. The
MSK bits. in. the· individual control registers are the
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also
modify them in the Mask Register, and vice versa.

INTO-oINT3 Control Registers
These registers are the control words for the four
externalJnput pins. Figure 28 shows the format of the
INTO and INTl Control registers; Figure 29 shows the
format of the INT2 and INT3 ContrQI registers. In
cascade mode or special fully nested mode, the con­
trol words for INT2 and INT3 are not used.

The bits in the various control registers are encoded
as follows:

PRO-2: Priority programming information. Highest
Priority = 000, Lowest Priority = 111

LTM: Level-trigger mode bit. 1 = level-triggered;
o = edge-triggered. Interrupt Input levels
are active high. In level-triggered mode, an
interrupt is generated whenever the exter­
nal line is high. In edge-triggered mode, an

. interrupt will be generated only when this

15 14

o I 0 I

level is preceded by an inactive-to-active
transition on the line. In both cases, the
level must remain active until the interrupt
is acknowledged.

MSK: Mask bit, 1 = mask; 0 = non mask.

C: Cascade mode bit, 1 = cascade; 0 = direct

SFNM: Special fully nested mode bit, 1 = SFNM

EOI Register
The end of the interrupt register isa command regis­
ter which can only be written into. The format of this
register is shown in Figure 30. It initiates an EOI
command when written to by the 80186 CPU.

The bits in the EOI register are encoded as follows:

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in
Table 4. For example, to reset the In-Service
bit for DMA channel 0, these bits should be
set to 01010, since the vector type for DMA
channel 0 is 10. Note that to reset the single
In-Service bit for any of the three timers, the
vector type for timer 0 (8) should be written
in this register .

4 3 2 1 0

Figure 27. Tlmer/DMA Control Register Formats

15 14 7. 6 5 4 3 2 1 0

o I 0 I o ISFNMI c I LTM I MSK I PR2\ PR1 \ PRO I

Figure 28. INTO/INT1 Control Register Formats

15 14 4 3 2 1 0

o I 0 I .. \0 \ LTM IMsKI ~R2\ PR1\ PRO I

FigUre 29. INT2/INT3 Control Register Formats

3-388 AFN'()2217C

intJ IAPX 186

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = O.

Poll and Poll Status Registers
These registers contain polling information. The for­
mat of these registers is shown in Figure 31. They can
only be read. Reading the Poll register constitutes a
software poll. This will set the IS bit of the highest
priority pending interrupt. Reading the poll status
register will not set the IS bit of the highest priority
pending interrupt; only the status of pending inter­
rupts will be provided.

Encoding of the Poll and Poll Status register bits are
as follows:

Sx: Encoded information that indicates the
vector type of the highest priority interrupt­
ing source. Valid only wt'len INTREQ = 1.

INTREQ: This bit· determines if an interrupt request is
present. Interrupt Request = 1; no Interrupt
Request = O.

iRMX 86 COMPATIBILITY MODE

'This mode allows iRMX 86-80186 compatibility. The
interrupt model of iRMX 86 requires one master and
multiple slave 8259As in cascaded fashion. When
iRMX mode is used, the internal 80186 interrupt con­
troller will be used as a slave controiler to an external
master interrupt controller. The internal 80186 re­
sources will be monitored through the internal inter­
rupt controller, while the external controller
functions as the sy.stem master interrupt controller.

Up,on reset, the 80186 interrupt controller will be in
the non-iRMX 86 mode of operation. To set the con­
troller in the iRMX 86 mode, bit 14 of the Relocation
Register should be set.

Because of pin limitations caused by the need to
interface to an external 8259A master, the internal
interrupt controller will no longer accept external
inputs. There are however, enough 80186 interrupt
controller inputs (internally) to dedicate one to each
timer. In this mode, each timer interrupt source has
its own mask bit, IS bit, and control word.

The iRMX 86 operating system requires peripherals
to be assigned fixed priority levels. This is incom­
patible with the normal operation of the 80186 inter­
rupt controlier. Therefore, the initialization software
must program the proper priority levels for each
source. The required priority levels for the internal
interrupt sources in iRMX mode are shown in Table
16.

Table 16. Internal Source Priority Level

Priority Level Interrupt Source

0 Timer 0
1 (reserved)
2 DMAO
3 DMA1
4 Timer 1
5 Timer 2

These level assignments must remai!,) fixed in the
iRMX 86 mode of operation.

iRMX 86 Mode External Interface

The configuration of the 80186 with respect to an
external 8259A master is shown in Figure 32. The
INTO input is used as the 80186 CPU interrupt input.
INT3 functions as an output to send the 80186 slave­
interrupt-request to one of the 8 master-PIC-inputs.

Figure 30. EOI Register Format

15 14 13,

Figure 31. Poll Register Format

3-389 AFN-02217C

IAPX 186

8259A
MASTER

INTA
11'10

80186 INT. IN
INT

1
IR7 -

<==REQUESTSFROM
OTHER SLAVES

80186 CASO-2

INTO t. :>

I JNT1 'SLAVE SELECT CASCADE

I ADDRESS DECODER

INT2 f--

INT3
80186 SLAVE INTERRUPT OUTPUT

Figure 32. iRMX 86 Interrupt Controller Interconnection

'Correct master-slave interface requires decoding of
the slave addresses (CASO-2). Slave 8259As do this
internally. Because of pin limitations, the 80186 slave
address will have to be decoded externally. INT1 is
used as a slave-select input. Note that the slavevec­
tor address is transferred internally, but the READY
input must be supplied externally.

INT2 is used as an acknowledge output, suitable to
drive the INTA input of an 8259A.

Interrupt Nesting

iRMX 86 mode operation allows nesting of interrupt
requests. When an interrupt is acknowledged, the
priority logic masks off all priority levels except
those with equal or higher priority. .

Vector Generation in the iRMX 86 Mode

Vector generation in iRMX mode is exactly like that of
an 8259A slave. The interrupt controller generates an
8-bit vector which the CPU multiplies by four and
uses as an address into a vector table. The significant
five bits of the vector are user-programmable while
the lower three bits are generated by the priority
logic. These bits represent the encoding of the
priority level requesting service. The significant five
bits of the vector are programmed by writing to the
Interrupt Vector register at offset 20H. '

Specific End-of-Interrupt

In iRMX mode the specific EOI command operates to
reset an in-service bit of a specific priority. The user
supplies a 3-bit priority-level value that points to an
in-service bit to be reset. The command is executed
by writing the correct value in the Specific EOI 'regis­
ter at offset 22H.

Interrupt Controller Registers
in the iRMX 86 Mode

All control and command registers are located inside
the internal peripheral control block. Figure 33
shows the offsets of these registers.

End-of-Interrupt Register
The end-of-interrupt register is a command register
which can only be written. The format of this register
is shown in Figure 34. It initiates an EOI command
when written by the 80186 CPU.

The bits in the EOI register are encoded as follows:

Lx: Encoded value indicating the priority of the
IS bit to be reset.

In-Service Register
This register can be read from or written into. It
contains the in-service bit for each of the internal

3-390 AFN.()2217C

IAPX 186

interrupt sources. The format for this register is
shown in Figure 35. Bit positions 2 and 3 correspond
to the DMA channels; positions 0, 4, and 5 corre­
spond to the integral timers. The source's IS bit is set
when the processor acknowledges its interrupt re­
quest.

'nterrLlpt Request Reg'''er
This register indicates. which internal peripherals
have interrupt requests pending. The formaf of this
register is shown in Figure 35. The interrupt request
bits are set when a request arrives from an internal
source, and are reset when the processor acknowl­
edges the request.

Mask Reglst.r
This register contains a mask bit for each interrupt
source. The format for this register is shown in Fig­
ure 35. If the bit in this register corresponding to a
particular interrupt source is set, any interrupts from
that source will be masked. These mask bits are
exactly the same bits which are used in the individual
control registers, i.e., changing tFie state of a mask
bit in this register will also change the state of the
mask bit in the individual Interrupt control register
corresponding .to the bit.

Control Registers
These registers are the control words for all the inter­
nal interrupt sources. The format of these registers is
shown in Figure 36. Each of the timers and both of
the DMA channels have their own Control Register.

The bits of the Control Registers are encoded as
follows:

prx: 3-bit encoded field indicating a priority level
for the source; note that 'each source must
be programmed at specified levels.

msk: mask bit for the priority level indicated by prx
bits.

LEVEL I CONTIKII. flEQllTER
(TIMER 2)'

\.EVEL 4 CONTROL REGISTER
(TIMER')

LEVEL 3 CONTROL REGlrrER
(aMA') •

LEVEL 2 CONTROL REGISTER
(DMAO)

LEVEL 0 CONTROL REGISTER
(TIMER 0)

INTERRUPT STATUS RIiGISTER

INTERRUPT~EQUEST REGISTER

I_RVlCE REGISTER

PRIORITY-I.EVEL MASK REGISTER

MASK REGISTER

SPECIFIC EOI REGISTER

INTERRUPT VECTOR REGISTER

OFFSET
3AH

38H

34H

32M

SOH

2EH

2CH

ZAH

28H

22H

20H

Figure 33. Interrupt Controller Registers
(IRMX 86 Mode)

I: 1 : 1 :1 : I: 1 : 1 ~ 1 ,: I: 1

Figure 34. Specific EO' Register Format

Figure 35. In-Serv1c~ Interrupt Reque.t, and Mok Register Format

3-391 AFN.()2217C

IAPX 186"

Interrupt Vector Register , '
This' reg!$~r provl.c;I~ t~e. upper fi~e ,bits of the inter­
rupt vector address. The format of this register is ,
shown in Figure 37. The interrupt controller Itself,
provides ttie lower three bits of the interrupt vector
as determined by the priority level of the interrupt
request.
The fqrmat of the bits In this r8Qister is:, ,
tx: 5-blt field indicating the upper five bits 'of the

vector address.

Priority-Level Mask Register ,
This register indicates the lowest priority-level inter-
rupt which will be serviced. "
The encoding of the bits in this register is:
1'T1x: 3-bit encoded field indication priority-level

value. All levels of lower priority will be
masked.

Interrupt Status Register
This register is defined exactly as in Non-IRMX
Mode. (See Fig. 26.)

Interrupt Controller and Reset

Upon RESET, the Interrupt controller will perform the
foHowlng actions: ' ' '

• All SFNM bits reset to 0, implying Fully Nested
Mode.

• All PR bits in the various control registers set to 1.
This places 'all sources at 'lowest priority (level
111).

• All LTM bits reset to 0, resulting In edge-sense
mode.

• All Interrupt Service bits reset to O.
• All Interrupt Request bits reset to O.
• All MSK (Interrupt Mask) bits Sl3t to 1 (mesk).
• All C (Cascade) bits reset to 0 (non-casc~de).

• All PRM (Priority Mask) bits set to ,1, I,mplying no
levels m~ked.

• Initialized to non-IRMX 86 mode.

.,

I : I : I: 1 : 1 : I':'H~ H

15 14 13

Figure 36. Control Word r=orn:'at,

1 : 1 : 1 : 1 : 1 : I: 1 : 1 ' 1 : 1

Figure '37. Interrupt Vector Register Format

·1 : 1 : 1 : 1 : I : I : I~ I : I : 1

, Figure 38., Priority Leve' Mask Reglste~

3-392 AFN-02217C ,

IAPX 186

18 MHz

r01
Vee X1 X2

~
UCS

~
8282 OR ADDRESS RESET

RES ADO-

~F ~ =::
ROM

"::.-
AD15
. ALE I-- STB or· r ~ {

80188

t
1m
\Wi r PROGRAM

RAM

~3
BHE c---

SRDY
CT+

5V

ARDY

NMI ~ -
HOLD

~ ~ .. LOW RAM

~ I

TMRINO '----+5V £
TMROUTO ,

~
CLOCK

8288 OR <=> ;:> 8287 DO-D7 TRANSCEIVER ."

DEN
~ ~t

SERIAL T
·1/0

DTlii

f;)1
ERMINAL

JiC§ij
A1
A2

INTO I

k:=>8DI
DISK

INTERFACE
INn HARDWARE

SK

PCS4
DRQO

Flgure·39. TyplcallAPX 186 Computer

3..393 AFN.Q2217C

Vee

r1
~

iAPX 186

16 MHz

rD~
Xl

m

X2
UCS CS

AD RESET

Uf
ROM

8282 OR

.~ 8283

G LATCH

STB OE
STB liE LOW

ALE + -= RAM

LCS CS

BHE
Wi!

1\

l:, 8282 OR -"> ADDRESS ADO-AD19 8283 JlUS
LATCH

STB OE

~~-STB lIE
80188 + +

NMI

~ ~ ----",
8288 OR

HOLD 8287 DATA BUS
TRANSCEIVER

TOE· --r+-bil-
t, :t:J CLKOUT

DT/R
CLK

"--- ALE
8288

SO--S2 ---v'
S0-52 BUS BUS CONTROL
CONTROLLER COMMANDS

r-- -- CEN
lOB AEN

-:;- 1
r

~ SO-S2 AEN
8289 \

CLKAR~ER
'> :~~I+~~~ION

PCSQ ../ SYSB/RESe
I'CS1 lOB

n.+SV LOCK LOCK RESB

SRDY ~ ARDY , r '-..f .
XACK

Figure 40. Typical iAPX 188 Multi-Master Bus Interface

3-394

~

MULTI
MAST ER

EM SYST
BUS

AFN-02217C

inter IAPX,186

PACKAGE
The 80186 is housed in a 68-pin, leadless JEOEC type
A hermetic chip carrier. Figure 41 illustrates the
package dimensions.

NOTE: The lOT 3M Textool 68-pin JEOEC Socket
is required for 12ICETM_186 operation See Figure
42:for details.

,050BSC
[TYP

tW

,039 TYP (99) PI.CS [m
t

I ~ Ic.OO6

I

1

Figure 41. 80186 JEDEC Type A Package

\ 3-395 AFN'()2217C

I"n+,:-.f . •• .;e. ,1

PC BOARD PATTERN

~ ~PINNOl

~~l:~~~~1!~ +"
lJ ~fE~\TATION a. FRONT
iT': PIN CLR HOLE'" •

DEVICE PADS :cJ . FOR I .029 DIA ~ 1 DO
SHOWN FOR -~7+1 (0.74)- ,..:::-'i. ('5.4)
CONTACT !+)" -!' ~. 100 I
LOCATION ~ I I .,r;I (2 54) TVP

~~;~-:'~T ~~>-~~~~~~?I-+ ~
..:2.!! illl.~'ri.~.1.."~"... 1.00 (O.38)-:J:i l- .! 2') TVP

.020:=r (20.32)
(0.51) 8 SPCSO.100TOL NON ACCUM TYP 4 PLes

CONTACT TAil (2.")

INPX 186

,
268-5400-00

GUIDE 80SS
3 Ples

~-----------~:'~)SQ----------~.~II
~
I

J
-'1.--1= ,1------;-\, +j} +----

-tSOCKET ORIENTATION PIN 1">- -
I ~

~
I

ALUMINUM LID
(HEATSINK PROVISIONS OPTIONAL)

NOTE: Physical dimensions shown are for reference only. Plea.e consult 3M 1extool for comptete mformation on the socket.

Figure 42. Textool 68 Lead Chip Carrier Socket

3-396

INDEX

'i-~FAONT

\
OPEN

AFN'()2217C

IAPX 186

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature under Bias O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin with

Respect to Ground -1.0V to +7V
Power Dissipation •....................... 3 Watt

"NOTICE: Stresses above those listed under
"Absolute Maximum Ratings" may qause permanent
damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tiona/ sections of this speCification is not impHed.
Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.

D.C. CHARACTERISTICS (TA = 0°-70°C, Vee = 5V ±10%)
Applicable to 80186 (8 MHz) and 80186-6 (6 MHz)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input Low Voltage - 0.5 +0.8 Volts

VIH Input High Voltage 2.0 Vcc + 0.5 Volts
(All except X1 and (fiES)

VIH1 Input High Voltage (RES) Vee + 0.5 Volts

VOL Output Low Voltage 3.0 0.45 Volts I. ~ 2.5 rnA for SO-52
la ~ 2.0 rnA for all other outputs

VOH Output High Voltage 2.4 Volts loa ~ -400 ~

Icc Power Supply Current 550 rnA Max measured at T A ~ O°C
450 ~

lu Input Leakage Current ±10 !iA OV < VIN < Vee

ILO Output Leakage Current ±10 ~A 0.45V < VOUT < Vee

VCLO Clock Output Low 0.6 Volts la ~ 4.0 rnA

VCHO Clock Output High 4.0 Volts loa ~ -200 ~A

Veu Clock Input Low Voltage -0.5 0.6 Volts

VCHI Clock Input High Voltage 3.9 Vcc +,1.0 Volts

CIN Input Capacitance 10 pF

CIO 110 Capacitance 20 pF

PIN TIMINGS
A.C. CHARACTERISTICS (TA = 0°-70°C, Vee = 5V ± 10%)
80186 Timing Requirements, All Timings Measured At 1.5 Volts Unless Otherwise Noted.
Applicable to 80186 (8 MHz) and 80186-6 (6. MHz)

Symbol Parameter Min. Max. Units Test Conditions

TDVCL Data in Setup (A/D) 20 ns

TCLDX Data in Hold (A/D) 10 ns

TARYHCH Asynchronous Ready
(A READY) active setup
time' 20 ns I

TARYLCL AREADY inactive setup
time 35 ns

TCHARYX AREADY hold time 15 ns

TSRYCL Synchronous Ready
(SREADY) transition setup
time 35 ns

TCLSRY SREADY transition hold
time 15 ns

THVCL HOLD Setup" 25 n5

TINVCH INTR, NMI, TEST, TIMERIN,
Setup" 25 ns

TINVCL' DRQO, DRQ1, Setup" 25 ns

"To guarantee recognition at next clock.
3-397 AFN·02217e

"m .. .f' III"E!- .

A.C. CHARACTE.RISTICS (Continued) ...

80186·Master Interface Timing Responses

IAPX186

. 80188 (8 MHz) 80188-6 (6 MHz)

Symbol Parameters Min. Max. Min. Max.

TCLAV Address Valid Delay 5 44 5 63

TCLAX Address Hold 10 10

TCLAZ Address Float Delay TCLAX 35 TCLAX 44

TCHCZ Command Lines Float Delay 45 56

TCHCV Command Lines Valid Delay
(after float) 55 76

TLHLL ALE Width TCLCL-35 TCLCL·35

TCHLH ALE Active Delay 35 44

TCHLL ALE Inactive Delay 35 44

TLLAX Address Hold to ALE Inactive TCHCL·25 TCHCL.30

TClOV Data Valid Delay 10 44 10 55

TClOOX Data Hold Time 10 10

TWHDX Data Hold after WR TCLCL-40 TCLCL-50

TCVCTV Control Active Delay j 5 70 5 87

TCHCTV Control Active Delay 2 10 55 10 76

TCVCTX Control Inactive Delay 5 55 5 76

TcvDEx DEN Inactive Delay
(Non-Write Cycle) 70 87

TAZRL Address Float to RD Active 0 0

TCLRL RD Active Delay 10 70 10 87

TCLRH RD Inactive Delay 10 55 10 76

TRHAV RD Inactive to Address Active TCLCL·40 T CLCL.~O

TCLHAV HLDA Valid Delay 10 50 10 67

TRLRH RDWidth 2TcLCL·50 2TcLCL·50

TWLWH WRWidth 2TcLCL.40 2TcLCL.40

TAVAL Address Valid to ALE Low TCLCH·25 TCLCH-45

TCHSV Status Active Delay 10 55 10 76

TCLSH Status Inactive Delay 10 55 10 76

TCLTMV Timer Output Delay 60 75

TCLRO Reset Delay 60 75

TCHQSV Queue Status Delay 35 44

80186 Chip·Select Timing Responses

Symbol Parameter Min. Max. Min. Max.

TCLCSV Chip-Select Active Delay 66 80

Tcxcsx Chip-Selct Hold from
Command Inactive 35 35

TCHCSX Chip-Select Inactive Delay 5 35 5 47

3"398

Units Test Conditions

ns CL = 20-200 pF all outputs

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns 100 pF max

ns

ns r

Units Test Conditions

ns

ns

ns

AFN.(I2217C

A.C. CHARACTERISTICS (Continued)

80186 CLKIN Requirements

IAPX 186

80186 (8 MHz) 80186·6 (6 MHz)
Symbol Parameter Min. Max. Min. Max.
TCKIN CLKIN Period 62.5 250 83 250

TCKHL CLKIN Fall Time 10 10

TCKLH CLKIN Rise Time 10 10

TCLCK CLKIN Low Time 25 3;3

TCHCK CLKIN High Time 25 33

80186 CLKOUT Timing (200 pF load)

Symbol Parameter Min. Max. Min. Max.
TCICO CLKIN to CLKOUT Skew . 50 62.5

TCLCL CLKOUT Period 125 500 167 500

TCLCH CLKOUT Low Time 1/2 TCLCL-7.5 112 TCLCL-7.5

TCHCL CLKOUT High Time 112 TCLCL-i.5 112 TCLCl-7.5

TCH1CH2 CLKOUT Rise Time 15 15

TCL2CL1 CLKOUT Fall Time 15 15

3-399

Units Test Conditions

ns

ns 3.5 to 1.0 volts

ns 1.0 to 3.5 volts

ns 1.5 volts

ns 1.5 volts

Units Test Conditions

ns

ns

ns 1.5 volts

ns 1.5 volts

ns 1.0 to 3.5 volts

ns 3.5 to t. volts

AFN.Q2217C

IAPX186

WAVEFORMS

MAJOR CYCLE TIMING
VCH T3 Tw

. ~ --,~ ~H1~ArTCUCL6
~ "U = r--\ v:--' _TCH~ 1-, .. v"'3)I':i'Ci:Cii:' .

CL • ,........ ...~.

CLKOUT

11-
Tel .IN_

~LAX:::::
rcLD1 := - ""Wt!7 I-rc 'J -NDTE1

, 'II ",\,0. B,-So ~
So .11

A

.. ,
~ ~

,

t /r--LE
.J f+T~ ~L";: TCH~ :Lj~ ~~ I~ ~

.. _.
~ I+-

WRITE CYCLE

RQ,iNTA,
DT/R = VOH

AD,5-A Do

N

-
AD,5-A Do

INTACYCLE -~-{ IR DT

iii,~=VOH
IS"I: = VOL

TA

N

SOF!]!!ARE HAIl"-DE!!. =Vo to
RD, WR, INTA, DT/R = Yo OH

~
1 LCS

MCS

-

TCLAV_

-

I 1A,5~Ao 1\
DATAOU1 TCI~ I--

,y~, -1 ,~

~ .-I'~ 1
,~y~,y - -

I

i+-TCLAZ ~;nv;.;i_ ~1 CLDX , 1/ POINTEI \
FLOAT AI "\

FLOAT

TeHCTV j..-TCHCTV

jl.

I
~ ~ 'I NDTE2 VI

[1 TCVCTX- -j .v.v,

(j
I

t I ADDRESS

'I~ -
._'TCLCBV TCXCSX- -

3-400 AFN-02217C

WAVEFORMS (Continued)

MAJOR CYCLE TIMING (Continued)

BHE/S7,A19/S8-Al81S3

READ CYCLE

NOTES.

ADj.-ADo

DEN

PCS,
MC!I ~-----11-~ I
[CS,
MCS

IAPX 186

TCLRL~---'~---4---

1. Following a Wrile cycle, Ihe Local Bus IS floaled by Ihe 80186 only when Ihe
80186 enlers a "Hold Acknowledge" stale.

2 INTA occurs one clock later in RMX-mode.
3 Status inactive just pnor to T4

3-401

r-­
I

AFN·02217C

WAVEFORMS (Continued)

ClKOUT

ClKOUT

~
INTO·3

TIMERIN

-- TClAV _

iAPX 186

3-402 AFN.()2217C

inter

WAVEFORMS (Continued)

HOLD-HLDA TIMING

cutOUT

CLKOUT~.
THVCL

.. -+--1--
HOLD

HlOA

AD15-AIIO ----
80188 Imil----

A19/S6-A1&1S3, ----
Ii1'l, WI\, 80188
H,---:--
DT/A,

52-SO

IAPX 188

T,

iTCLAV

--
)--- 80188 __ ..J r TCHCV

--.....
)--- 80188 __ ..J

3-403 AFN-02217C' '-

~n+ . .;...J •.
I •• w.e- IAPX 186

WAVEFORMS (Continued)

TIMER ON 80186
i---TCKIN---t--

ClKIN

TCKLH

TCHICH2

ClKOUT ---+o'>l<.o---TCHCl--_

i-------TClCl -------1

TIMERIN

I .
---J

TINVCH

~~
. TIMEROUT __ ~:~~~~~~~~~~~~~~~~~~~~~~~_2 ___ 6_CLO_C_KS ___________ -I __ ~

80186 INSTRUCTION TIMINGS

The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following
assumptions:

• The opcode, along with any data or displacement
required for execution of a particular instruction,
has been prefetched and resides in the queue at
the time it is needed.

• No wait states or bus HOLDS occur.

• All word-data is located on even-address
boundaries.

All jumps and calls include the time required to fetch
the opcode of the next instruction at the destination
address.

3-404

All instructions which involve memory reference can
require one (and in some cases, two) additional
clocks above the minimum timings shown. This is
due to the asynchronous nature of the handshake
between the BI.U and the Execution unit .

AFN-02217C

IAPX 186

INSTRUCTION SET SUMMARY

Clock
FUNCTION FORMAT Cycles Comments

DA1II TRANSFER
MOV = Move:
Register to ReglsteriMemory 11 000100w mod reg rim 2112
Reglsterlmemory to register 11 000101w mod reg rim 219
Immediate to reglsterlmemory 11 10001 1 w modOOO rim data I datalfw=1 I 12-13 8/16-bit
Immediate to register 11 01 1 w reg data datalfw = 1 I 3-4 8/16-bit
Memory to accumulator 11 010000w addr·low addr·high I 9
Accumulatorto memory 11 010001w addr·low addr·high I 8
Reglsterlmemory to segment register 11 00 0 1 1 1 0 modO reg rim 219
Segment regISter to 'registerlmemory 11 0001100 mod 0 reg rim 2/11

PUSH = Push:
Memory 11 11111111 mod 11 0 rim I 16
Register 10 1 0 1 0 reg I 10
Segment register 10 0 0 reg 1 1 0 I 9

POP = Pop:
Memory 11 00 0 1 1 1 11 modOOO rim I 20
Register 10 101 1 reg I 10
Segment register 10 ° 0 reg 1 1 11 (reg*OI) 8

XCHG = Exchange:
Reglsterlmemory with register 11 0OOO11wl mod reg rim I . 4/17
Register with accumulator 11 00 1 0 reg I 3

IN = Inputfrem:
Fixed port 11 1 1 001 0 wi port I 10
vanable port 11 1101 lOW I 8

OUT = Output to:
Fixed port 11 1 1 001 1 wi port I 9
variable port 11 1101 11 wi 7
XUT = Translate byte to AL 11 101011 1\ 11
LEA = Load EA to register 11 00 0 1 1 0 1 mod reg rim I 6
LOS = Load pOIOter to OS 11 1 0 0 0 1 0 1 mod reg rim ·1 (mod * 11) 18
LES = Load painter to ES 11 1000100 mod reg rim I (mod * 11) 18
UHF = Load AH with flags 11 00 1 1 1 1 1 2
SAHF = Store AH IOto flags 11 00 1 1 1 1 0 3
PUSHF = Push flags 11 00 1 1 1 0 0 9
POPF = Pop flags 11 00 1 1 1 0 1 8

SEGMENT = Sagmant OVa,flda:

CS 10 0 1 0 1 1 1 ° I 2

ss 10 0 1 1 ° 1 1 0 I 2

os 10 0 1 1 1 1 1 0 I 2

ES 1001001101 2

Shaded areas indicate instructions not,available in iAPX 86,88 microsystems.

3-405 AFN.Q2217C

inter IAPX186 j¥)OO~[bOIi\1JOOO~OOW .

INSTRUCTION SET SUMMARY (Continued)

Clock
FUNCTION FORMAT Cycles Comments

ADD = Add:
Reglmemory with register to either 10 00 0 0 0 d w I mod reg rim 3/10
Immediate to reglster/memory It 00000 s wi mod 000 rim data datalfsw=Ot 4/16

Immediate to accumulator 10 00 0 0 lOw I data datalfw=f 3/4 8/16-bit

ADC = Add with carry:
Reglmemory with register to either 10 00 tOO d wi mod reg rim 3/10
Immediate to reglsterlmemory 1100000swi modOt 0 rim data dataifsw=Ol 4/16
Immediate to accumulator 10001010wl data datalfw=l 3/4 8/16-bit

INC = Increment:
Reglsterlmemory 11 111111 wi modOOO rim 3/15

Register 10 1 0 0 0 reg I 3

SUB = Subtracl:
Reglmemory and register to erther 10 0 1 0 1 0 d wi mod reg rim I 3/10
Immediate from register/memory 1100000swl mod 1 01 rim I data datarfsw=OI 4/16
Immediate from accumulator 10010110wl data I data Ilw= 1 3/4 8116-bit

SBB = Subtract with borrow:
Reg/memory and register to either 1000110d w i mod reg rim 3/10
Immediate from register/memory 11 00000 s wi modOll rim data datalfsw=OI 4/16

Immediate from accumulator 10001110wl data datallw=1 3/4 8/16-bit

DEC= Decremenl:
RegISter/memory 11 111111 wi modOOl rim 3/15
RegISter 10 1 0 0 1 reg I 3

CMP= Compar.:
Register/memory with register 10 01 1 1 01 wi mod reg rim 3/10
Register with register/memory 10011100wl mod reg rim 3/10
Immediate with reglSterlmemory I~ 0 0 0 0 0 s wi mod 111 rim data data lIs w=O 1 3/10
Immediate with accumulator 10 0 1 1 1 lOw I data ' datallw=1 3/4 8/16-bit
NEG = Change Sign 11 11 1 01 1 wi mod 0 11 rim 3
AAA = ASCII adlust for add 10 0 1 1 0 1 1 11 8
DAA = DeCimal adlust lor add 10 0 1 0 0 1 1 11 4
AAS "" ASCII adjust for subtract 10 0 1 1 1 11 11 7
DAS = Decimal adlust lor subtract 10 0 1 0 1 1 1 11 4

MUL = Multiply (unSigned) 11 11 1 01 1 wi modl00 rim
RegISter-Byte 26-28
RegISter-Word 35-37
Memory-Byte 32-34
Memory-Word 41-43

IMUL = Integer multiply (Signed) 11 11 1 0 1 1 wi mod 1 01 rim
RegISter-Byte 25-28
RegISter-Word 34-37
Memory-Byte 31-34
Memory-Word 40-43

OIV = D,v,de (unSigned) 11 1 1 1 0 1 1 mod 11 0 rim
ReglSte,Byte 29
RegISter-Word 38
Memory-Byte 35

Shaded areas indicate instructions not available In iAPX 86, 88 microsystems.

3-406 AFN'()2217C

IAPX 186

INSTRUCTION SET SUMMARY tr' +; ...

FUNCTION

IDIV ~ Integer divide (signed)
Register-Byte
Register-Word
MemorY'Byte
Memory-Word
AAM ~ ASCII adlust for multiply

AAD ~ ASCII adlustfor divide

CBW ~ Convert byte to word

CWD ~ Convert word to double word

LOGIC
ShiftlRotate Instructions:
ReglsterlMemory,by 1

ReglsterlMemory by Cl

AND~And:

Reg/memory and register to either

Immediate to register/memory

Immediate to accumulator

TEST = And function to flags, no result:
Register/memory and register

Immediate data and register/memory

Immediate data and accumulator

OR=Or:
Reg/memory and T,eglSter to either

Immediate to register/memory

Immediate to accumulator

XOR = Exclusive or:
Reg/memory and register to either

Immediate to register/memory

Immediate to accumulator

NOT ~ Invert reglsterlmemory

STRING MANIPULATION:
MOVS ~ Move byte/word

CMPS ~ Compare bytelword

SCAS ~ Scan byte/word

LOOS ~ load bytelwd to ALiAX

FORMAT

11 1 1 1 0 1 1 w I mod 111 rim

11 10101001000010101

11 1 0 1 0 1 0 11000010101

11 00 1 1 0 0 o I
11 00 1 1 0 0 tI

11 1 0 1 0 0 0 w I mod m rim

11 1 0 1 0 0 1 w I mod TTl rim

TTT Instruction
o 0 0 Ral
o 0 1 RaR
o 1 0 RCl
o 1 1 RCR
loa SHLISAl
1 0 1 SHR
1 1 1 SAR

10 0 1 0 0 0 d wi mod reg rim

11000000wl mod 1 00 rim data

10010010wl data datalfw~1

11 000010wl mod reg TIm

11 11 1 01 1 wi mod 000 TIm data

11 010100wl data datalfw~ 1

1000010dwi mod reg rim

11000000wl modOOl rim data

10000110wl data datalfw~1

1001100 dw i mod reg rim

11000000wl mod 110 rim data

10011010wl data datalfw ~~ 1

11 1 1 1 0 1 1 wi mod 0 10 rim

11 010010wl

11

datalfw~ 1

datalfw= 1

datalfw~1

datalf w ~ 1

Shaded areas indicate instructions not available in IAPX 86, 88 microsystems.

3-407

Clock
Cycles

44-52

53-61
50-58
59-67

19
15

2
4

2115

5+n117 +n

3/10

4/16

3/4

3/10

4/10

314

3110

4/16

314

3/10

4/16

3/4

3

14

22
15
12

Comments

8/16-bit

8/16-bit

8/16-bit

8/16-bit

AFN.Q2217C

intJ IAPX 186

INSTRUCTION SET SUMMARY IcnlntlnlJAtI

FUNCTION

Repeated by count In CX
MOYS ~ Move string

CMPS ~ Compare stnng

SCAS ~ Scan stnng

lOOS = Load stnng

CAll=CaU:
Direct within segment

Register/memory
mdlrect within segment
Drrect Ifltersegment

Indirect Intersegment

JMP = Unconditional jump:
Short/long

Direct within segment

FORMAT

11

11

11

11

11

11

111001 11010010y;]

111001 z 11010011wl

1 1 0 1 00 0 dlsp-Iow dlsp-hlgh

111 111 1 I mod 0 10 rim

00 1 1 0 1 segment offset

segment selector

1111111 mod 0 11 rim (mod, 11)

1 1 0 1 0 1 dlsp-Iow

1 1 0 1 0 0 dlsp-Iow dlsp-hlgh

RegIster/memory Indirect within segment[CfTT 1 1 1 mod 1 00 rim

Direct Intel segment 11 1 1 0 1 0 1 o I segment offset ' I
I segment selector

Indirect mtersegment 11 111111 11 mod 1 01 rm-] (mod ± 11)

RET = Retu.n ITom CALL:
WIthin segment 11 1 0 0 0 0 1 11
Within seg adding Immed to SP 11 1 0 0 0,0 1 01 data-low data-high

Intersegment [} 1 0 0 1 0 1 11

Intersegmentaddmg Immediate to SP 11 1 0 0 1 0 1 o I data-low data-high

Shaded areas indicate instructions not available In iAPX 86, 88 microsystems.

3-408

Clock
Cycles

8+8n
5+22n
5+15n
6+11n

14'
13/19

23

38

13
13

11/17

13

26

16
18
22

25

Comments

AFN-02217C

inter IAPX 186

INSTRUCTION SET SUMMARY (Continued)

Clock
FUNCTION FORMAT Cycles Comments

JE/Jl = Jump on equ~lrero 10 1 1 1 0 1 0 0 dlsp 4/13 JMP not
JLlJNGE ~ Jump on lesslnot grealer orequ~ 10 1 1 1 1 1 0 0 dlsp 4/13 taken/JMP

JLElJNG ~ Jump on less orequallnol greater 10 1 1 1 1 1 1 0 disp taken
4/13

JB/JNAE ~ Jump on belowlnolabove orequal 10 1 1 1 0 0 1 0 dlsp 4/13
JBE/JNA ~ Jump on below or equallnOI abo,e 10 1 1 1 0 1 1 0 dlsp 4/13
JP/JPE ~ Jump on p,"~lpan~ even 10 1 1 1 1 0 1 0 dlsp 4/13
JO ~ Jump on ove~ow 10 1 1 1 0 0 0 0 dlSp 4/13
JS ~ Jump on sign 10 1 1 1 1 00 0 dlsp 4/13
JNElJNl ~ jump on nol equallnol rero 10 1 1 1 0 1 0 1 dlsp 4/13
JNLlJGE ~ Jump on notleSSIgreater or equal 10 1 1 1 1 1 0 1 disp 4/13
JNLElJG ~ Jump on nol less or equallgrealer 10 1 1 1 1 1 1 1 dlsp 4/13
JNB/JAE ~ Jump on not belowlabove orequal 10 1 1 1 0 0 1 1 dlsp 4/13
JNBElJA ~ Jump on nol belo. or equallabove 10 1 1 1 0 1 1 11 dlsp 4/13
JNP/JPO ~ Jump on nol parlpar odd 10 1 1 1 1 0 1 1 dlsp 4/13
JNO ~ Jump onnot11'le~ow 10 1 1 1 0 0 0 1 dlsp 4/13
JNS~Jumponnolslgn 10 1 1 1 1 00 1 dlsp 4/13
JeXl ~ Jump on eXzero 11 1 1 0 0 0 1 1 dlsp 5/15
LOOP ~ loop ex limes 11 1 1 0 0 0 1 0 dlsp 6/16 LOOP not
LOOPZlLOOPE ~ loop while zerolequal 11 1 1 0 0 0 0 1 disp 6/16 taken/LOOP
LOOPNZlLOOPNE ~ loop while nol rerolequal 11 1100000 dlsp 6/16 taken

INT ~ Inlerrupt:
Type specIfied 11 1 0 0 1 1 0 1 I 1ype 47
Type 3 11 1 0 0 1 1 0 0 I 45 if INT. taken/
INTO ~ Interrupt on overflow 11 1 0 0 1 1 1 0 I 48/4 if INT. not

taken

IRET ~ Interrupt return 11 1 0 0 1 1 1 tJ 28

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

"3-409 AFN.022)7C

inter iAPX 186

INSTRUCTION SET SUMMARY (Continued)

Clock
FUNCTION FORMAT Cycles . Comments

PROCESSOR CONTROL
CLC ~ Clear carry 11 1 1 1 1 0 0 0 I 2
CMC ~ Complement carry 11 1 1 1 0 1 0 1 I 2
STC ~ Set carry 11 1 1 1 1 00 1 I 2
CLO ~ Clear direction 11 1 1 1 1 1 0 0 I 2
STD ~ Set directIOn 11 1 1 1 1 1 0 1 I 2
CLI ~ Clear Interrupt 11 1 1 1 1 0 1 0 I 2
STI ~ Set interrupt 11 1 1 1 1 0 1 1 I 2
HLT~Halt 11 I 1 1 0 1 0 0 I 2
WAIT~Walt 11 00 1 1 0 1 1 I 6 if test = 0
LOCK ~ Bus lock prefix .11 1 1 1 0 0 0 0 I 2

ESC ~ Processor ExtenSion Escape 11 o011TTTI mod LLL rim I 6
(TTT LLL are opcode to processor extenSion)

Shaded areas indicate instructions not available in iAPX 86, 88 mlcrosystems.

3-410 AFN'()2217C

inter IAPX 186

FOOTNOTES

The effective Address (EA) of the memory operand is
computed according to the mod and rim fields:

if mod = 11 then rim is treated as a REG field

if mod = 00 then OISP = 0', disp-Iow and disp-high

are absent

if mod = 01 then OISP = disp-Iow sign-extended to

16-bits, disp-high is absent

if mod = 10 then OISP = disp-high: disp-Iow

if rim = 000 then EA = (BX) + (SI) + OISP

if rim = 001 then EA = (BX) + (01) + OISP

if rim = 010 then EA = (BP) + (SI) + OISP

if rim = 011 then EA = (BP) + (01) + OISP

if rim = 100thenEA = (SI) + OISP

if rim = 101 then EA = (01) + OISP

if rim = 110 then EA = (BP) + OISP'

if rim = 111 then EA = (BX) + OISP

OISP follows 2nd byte of instruction (before data if
required)

'except if mod = 00 and rim = 110 then EA = disp·hlgh: disp·low

NOTE:
EA CALCULATION TIME IS 4 CLOCK CYCLES FOR ALL MODES, AND IS INCLUDED
IN THE EXECUTION TIMES GIVEN WHENEVER APPROPRIATE.

SEGMENT OVERRIDE PREFIX

10 0 1 reg 1 1 01

reg is assigned according to the following:

Segment
reg Register

00 ES
01 CS
10 SS
11 OS

REG is assigned according to the following table:

16-Bit (w = 1) S-Bit(w = 0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 OL

011 BX 011 BL

100 SP 100 AH

101 BP 101 CH

110 SI 110 OH
111 01 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op- .
erands of the string primitive operations (those ad­
dressed by the 01 register) are computed using the ES
segment, which may not be overridden.

3-411 AFN·02217C

iAPX 88/10
8-BIT HMOS MICROPROCESSOR

8088/8088-2
• 8·Bit Data Bus Interface

• 16-Bit Internal Architecture
• Direct Addressing Capability to 1

Mbyte of Memory

• Direct Software Compatibility with
IAPX 86110 (8086 CPU)

• 14·Word by 16·Bit Register Set with
Symmetrical Operations

• 24 Operand Addressing Modes

• Byte, Word, and Block Operations

• 8·Blt and 16-Blt Signed and Unsigned
Arithmetic In Binary or Decimal,
Including Multiply and Divide

• Compatible with 8155·2, 8755A·2 and
8185-2 Multiplexed Peripherals

• Two Clock Rates:
5 MHz for 8088
8 MHz for 8088·2

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The Intel®,iAPX 88/10 is a new generation, high performance microprocessor implemented in N-channel, depletion load,
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and
16-bit microprocessors. It is directly compatible with iAPX 86/10 software and 8080/8085 hardware and peripherals.

MEMORY INTERFACE

C·BltS
MIN

(MAX 1
MODE MODE

GND Vee
A14 A1S

INSTRUCTION
A13 A16/S3

STREAM BYTE
QUEUE A12 A17IS4

All Al8/SS

A1G A19/S6

BUS
CS

A9 SSG (HIGH)
INTERFACE SS A8 MN/MX

UNIT
OS AD7 ii1i
IP AD6 HOLD (Ra/G'I'O)

ADS HlDA (Ra/em)

A·BUS AD4 iNA (LOCK)

AD3 101M (82)

AD2 DTili (5')
AH Al ADl DEN (SO)
BH Bl ADO ALE (QSO)
CH Cl

1NfA
DH Dl NMI (QS1)

EXECUTION
UNIT SP INTR TEST

BP ClK READY

SI GND RESET

01 FLAas

Figure 1. iAPX 88/10 CPU Functional Block Diagram Figure 2. IAPX 88/10 Pin Configuration

Intel Corporation Assumes No Reaponaibilty for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Circuit Patent Licensee 8l'e Implied,

© INTEL CORPORATION. 1980

3-412 AFN.()0826D

IAPX 88/10

Table 1. Pin Description

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in
these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus
buffers).

Symbol Pin No. ~pe Name and ~unctlon

AD7-ADO 9-16 I/O Address Data Bus: Thesll lines constitute the time multiplexed memory/IO
address (T1) and data (T2, T3, TW,and T4) bus. These lines are active HIGH and
float to 3-state OFF during interrupt acknowledge and local bus "hold acknowl-
edge".

A15-A8 2-8,39 0 Addres. Bus: These lines provide address bits 8 through 15 for the entire bus
cycle (T1-T4). These lines do not have to be latched by ALE to remain valid.
A15-A8 are active HIGH and float to 3-state OFF during interrupt acknowledge
and local bus "hold acknowledge".

A19/S6, A18/S5, 34-38 0 Address/Status: During T1, these are the four
A17/S4, A16/S3 most significant address lines for memory op-

erations. During I/O operations, these lines are
lOW. During memory and I/O operations. status
information is available on these lines during
T2. T3. Tw. and T4. S6 is always low. The status of S4 53 CHARACTERIST~JL.

the interrupt enable flag bit (S5) is updated at o (LOW) 0 Alternate Data
0 , Stack

the beginning of each clock cycle. S4 and S3 are 1 (HIGH) 0 Code or None , , Data

encode1 as shown. 56 IS o (LOW)

This information indicates which segment reg-
ister is presently being used for data accessing.

These lines float to 3-state OFF during local bus
"hold acknowledge".

RD 32 0 Read: Read strobe indicates that the processor is performing a memory or I/O
read cycle, depending on the state of the 10/~ pin or S2. This signal is used to
read devices which reside on the 8088 local bus. RD is active lOW during T2. T3
and Tw of any read cycle. and is guaranteed to remain HIGH in T2 until the 8088
local bus has floated.

This signal floats to 3-state OFF in "hold acknowledge".

READY 22 I READY: is the acknowledgement from the addressed memory or I/O device that
it will complete the data transfer. The ROY signal from memory or I/O is syn-
chronized by the 8284 clock generator to form READY. This Signal is active
HIGH. The 8088 READY input is not synchrbnized. Correct operation is not
guaranteed if the set up and hold times are not met.

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last
clOCk cycle of each instruction to determ ine ifthe processor shou Id enter into an
interrupt acknowledge operation. A subroutine is vectored to via an interrupt
vector lookup table located in sYstem memory. It can be internally masked by
software resetting the interrupt enable bit. INTR is internally synchronized. This
signal is !jctive HIGA:.

TEST 23 I 'fES'f: inp\lt is examined by the "wait for test" instruction. If the TEST input is
LOW, execution continues, otherwise the processor waits in an "idle" state. This
input is synchronized internally during each clock cycle on the leading edge of
ClK.

NMI 17 I Non-Maskable Interrupt: is an edge triggered input which causes a type 2
interrupt. A subroutine is vectored to via an interrupt vector lookup table located
in system memory. NMI is not maskable internally by software. A transition from
a lOW to HIGH initiates the interrupt at the end of the current instruction. This
input is internally synchronized.

3-413 AFN.(l()826D

\

iAPX 88/10

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

RESET 21 I RESET: causes the processor to immediately terminate its present activity. The
signal must be active HIGH for at least four clock cycles. It restarts execution, as
described in the instruction set description, when RESET returns LOW. RESET
is internally synchronized.

eLK 19 I Clock: provides the basic timing for the processor and bus controller. It is
asymmetric with a 33% duty cycle to provide optimized internal timing.

Vee 40 Vee: is the +5V ±10% power supply pin.

,GND 1,20 GND: are the ground pins.

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The
two modes are discussed in the following sections.

The fol/owing pin function descriptions are for the 8088 minimum mode (i.e., MN/MX = Vee). Only the pin functions which
are unique to minimum mode are described; aI/ other pin functions are as described above.

10/M 28 0 Status Line: is an inverted maximum mode S2. It is used to distinguish Ii
memory access from an 1/0 access. 101M becomes valid in the T4 preceding a
bus cycle and remains valid until the final T4 of the cycle (I/O=HIGH, M= LOW).
101M floats to 3-state OFF in local ,bus "hold acknowledge".

WR 29 0 Write: strobe indicates that the processor is performing a writememory or write
1/0 cycle, depending on the state of the 101M signal. WR is active forT2, T3, and
Tw of any write cycle. It is active LOW, and floats to 3-state OFF in local b\ls "hold
acknowledge" .

INTA 24 0 INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW
during T2, T3, and Tw of each interrupt acknowledge cycle.

ALE 25 a Address Latch Enable: is provided by the processor to latch the address into
the 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of
any bus cycle. Note that ALE is never floated.

DT/R 27 a Data Transmit/Receive: is needed in a minimum system that desires to use an
828618287 data bus transceiver. It is used to control the direction of data flow
through the transceiver. Logically, DT/R is equivalent to 51 in the maximum
mode, and its timing is the same as for 101M (T=HIGH, R=LOW). This signal
floats to 3-state OFF in local "hold acknowledge".

DEN 26 0 Data Enable: 'is provided as an output ,enable for the 8286/8287 in a minimum
system which uses the transceiver. DEN' is active LOW during each memory and,
1/0 access, and for INTA cycles. For a read or INTA cycle, it is active from the
middle of T2 until the middle of T4, while for a write cycle, it is active from the
beginning ofT2 until the middle ofT4. DEN floats to 3-stateOFF during local bus
"hold acknowledge".

HOLD,HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus "hold". To be
acknowledged, HOLD must be active HIGH. The processor receiving the "hold"
r,equest will",ssue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or
TI clock cycle, Simultaneous with the issuance of HLDA the processor will float
the local bus and control lines, After HOLD is detected as being LOW, the
processor lowers HLDA, and when the processor needs to run another cycle, it
will again drive the local bus and control lines.

Hold is not an asynchronous input. External synchronization should be
provided if the system cannot otherwise guarantee the set up time.

ssa 34 0 Status line: is logically equivalent to SO in th~ r~ ~~~
~-maximum mode. The combination of SSO, 101M ,,"0"' , ,

and DT/R allows the system to completely de- ' 0

j"ow'
' ,

code the current bus cycle status. ' , , ,
, 0

~;;~,~' ' ,

3-414 AFN-00826D

iAPX 88/10·

Table 1. Pin Description (Continued)

The following pin function descriptions are for the 8088, 8228 system in maximum mode (i.e., MN/MX =GND.) Only the pin
functions which are unique to maximum mode are described; all other pin functions are as described above.

Symbol Pin No.

52,51, SO 26-28

RQ/GTO,
RQ/GT1

,I

30,31

~pe

o

I/O

Name and Function

Status: is active during clock high of T4, T1,
and T2, and is returned to the passive state
(1,1,1) during T3 or during Tw when READY is
HIGH. This status is used by the 8288 bus con­
troller to generate all memory and I/O access
control signals. Any change by 52, 51, or SO
during T4 is used to indicate the beginning of a
bus cycle, and the return to the passive state in
T3 or Tw is used to indicate the end of a bus
cycle.

These signals float to 3-state OFF during "hold
acknowledge". During the first clock cycle after
RESET becomes active, these signals are active
HIGH. After this first clock, they float to 3-state
OFF.

" ~ (LOW) , ,
1 (HIGH)

, ,

" , , , , , , , ,

.. CMARACT£RISTtCB , Inte,ruplAcknowledge , ReaclVOporl , WrlleVOport , Hell , Code.~C"' , RNdmemory , Wrllamemory , PellllV8

Request/Grant: pins are used by other local bus masters to force the processor
to release the local bus at the end of the processor's current bus cycle. Each pin
is bidirectional with RQ/GTO having higher priority than RQ/GT1. RQ/GT has an
internal pull-up resistor, so may be left unconnected. The request/grant se­
quence is as follows (See Figure 8):

1. A pulse of one ClK wide from another local bus master indicates a local bus
request ("hold") to the 8088 (pulse 1).

2. DUring a T4 or TI clock cycle, a pulse one clock wide from the 8088 to the
requesting master (pulse 2), indicates that the 8088 has allowed the local bus
to float and that it will enter the "hold acknowledge" state at the next ClK.
The CPU's bus interface unit is disconnected logically from the .local bus
during "hold acknowledge". The same rules as for HOLD/HOLDA apply asfor
when the bus is released.

3. A pulse one ClK wide from the requesting master indicates to the 8088 (pulse
3) that the "hold" request is about to end and that the 8088 can reclaim the
local bus at the next ClK. The CPU then enters T4.

Each master-master exchange of the local bus is a sequence of three pulses.
There must be one idle ClK cycle after each bus exchange. Pulses are active
lOW.

If the request is made while the CPU is performing a memory cycle, it will release
the local bus during T4 of the cycle when all the following conditions are met:

1. Request occurs on or before T2.
2. Current cycle is not the low bit of a word.
3. Current cycle is not the first acknowledge of an interrupt acknowledge

sequence.
4. A locked instruction is not currently executing.

If the local bus is idle when the request is made the two possible events will
follow:

1. local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently

active memory cycle apply with condition number 1 already satisfied.

3-415 AFN·00826D

intJ· IAPX.88/10

Table 1. Pin De.crlptlon (Contlnue.d)

Symbol Pin No •. ~e ' Name and Function

LOCK 29 0 LOCK: indicates that other system bus masters are not to gain control of the
system bus while LOCK is active (LOW). The LOCK signal is activated by the
"LOCK" prefix Instruction and remains active until the completion of the next
instruction. This signal is active LOW, and floats to 3-state off in "hold acknowl-
edge".

051,050 24, 25 0 Queue Status: provide status to allow external as, QSO CHARACTERISTICS
tracking of the internal 8088 instruction queue. o (LOW) 0 No operation

0 , Firs! byte of opcode from queus

The queue status is valid during the ClK cycle 1 (HIGH) 0 Empty the queue , , Sublsequent byte from Queue

after which the queue operation is performed.

- 34 0 Pin 34 is always high in the maximum mode.

3-416 AFN.00826D

intJ IAPX 88/10

FUNCTIONAL DESCRIPTION

Memory Organization
The processor provides a 20-bit address to memory which
locates the byte being referenced. The memory is orga­
nized as a linear array of up to 1 million bytes, addressed
as OOOOO(H) to FFFFF(H). The memory is logically divided
into code, data, extra data, and stack segments of up to

'64K bytes each, with each segment falling on 16-byte
boundaries. (See Figure 3.)

All memory references are made relative to base
addresses contained in high speed segment registers. The
segment types were chosen based on the addressing
needs of programs. The segment register to 'be selected is
automatically chosen according to the rules of the follow­
ing table. All information in one segment type s/:uire the
same logical attributes (e.g. code or data), By structuring
memory into relocatable areas of similar characteristics
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd ad­
dress boundaries. For address and data operands, the
least significant byte of the word is stored in the lower
valued address location and the most significant byte in

~FFFFFH

:CD} CODE SEGMENT

_-L XXXXOH

r--'---t---i

} STACK SEGMENT

SEGMENT t
REGISTER FILE 0 (MSB

E~~;~~~~~=~W=;-R_D~t:':-YT:SB:Ei J DATA SEGMENT
OS
ES

}EXTRA DATA S.aMENT

'---+----1
"'C-..--..:;(" OOOOOH

Figure 3. Memory Organization

Memory Segment Register
Reference Need Used

the next higher address location. The BIU will auto­
matically execute two fetch or write cycles for 16-bit
operands.

Certain locations in memory are reserved for specific
CPU operations. (See Figure 4.> Locations from ad­
dresses FFFFOH through FFFFFH are reserved for
operations including a jump to the initial system initial­
,ization routine. Following RESET, the CPU will always
begin execution at location FFFFOH where the jump
must be located. Locations OOOOOH through 003FFH are
reserved for interrupt operations. Four-byte pOinters
consisting of a 16·bit segment address and a 16-bit off­
set address direct program flow to one of the 256 possi­
ble interrupt service routines. The pointer elements are
assumed to have been stored at their respective places
in reserved memory prior to the occurrence of inter­
rupts.

Minimum and Maximum Modes
The requirements for supporting minimum and maxi­
mum 8088 systems are sufficiently different that they
cannot be done efficiently with 40 uniquely defined
pins. Consequently, the 8088 is equipped with a strap
pin (MN/MX) which defines the system configuration.
The definition of a certain subset of'the pins changes,
dependent on the condition of the strap pin. When the
MN/MX pin is strapped to GND, the 8088 defines pins 24
through 31 and 34 in maximum mode. When the MN/MX
pin Is strapped to Vee, the 8088 generates bus control
signals Itself on pins 24 through 31 and 34.

FFFFFH
RESET BOOTSTRAP

PROGRAM JUMP
FFFFOH

• •
INTERRUPT POINTER

3FFH

FOR TYPE 255
3FOH

•

7H
INTERRUPT POINTER

FOR TYPE 1 4H
INTERRUPT POINTER 3H

FOR TYPE 0
OH

Figure 4. Reserved Memory Locatlon~

Segment
Selection Rule

Instructions CODE (CS) Automatic with all instruction prefetch.

Stack STACK (55) All stac"k pushes and pops. Memory references relative to BP
base register except data references.

Local Data DATA (OS) Data references when: relative to stack, destinatibn of string
operation, or explicitly overridden.

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a
segment override.

3-417 AFN.()(l826D .'

x".

IAPX 88/10 ~OO~Il..OIMIOoo~rmw

The minimum ,mode 8088 can be used with either a
multiplexed or d~multiplexed b,us. The multiplexed bus
configuration Is compatible with the MCS-85™ multi­
plexed bus peripherals (8155, 8156, 8355, 8155A, and
8185), This configuration (See Figure 5) provides the user
with a minimum chip count system. This architecture'
provides the 808/3 processing power in a highly integrated
form.' ,

The demultiplexed mode requires one latch (for 64K 'ad­
dressabillty) or two latches (for a full megabyte of ad­
dressing). A third latch can be used for buffering if the
address bus loading requires It. An 8286 or 8287 trans­
ceiver can also be used if data bus buffering is required.
(See Figure 6.l The 8088 provides DEN and DTiR to con-

trol the transceiver, ,and ALE to latch the addresses.
This configuration of the minimum mode provides the
standard demultiplexed bus structure with heavy bus
buffeting and relaxed bus timing requirements. , ,

The maximum mode employs the 8288 bus ,controller.
(See E!.gure 7'> The 8288 decodes status lines SO, 81,
and S2, and provides the system with all bus control
signals. Moving the bus control to the 8288 provides
better source and sink current capability to the control
lines, and frees the 8086 pins for extended large system
features. Hardware lock, queue status, and two request!
grant interfaces are provided by the 8086 ion m~imum
mode. These features allow co-processors in local bus
and remote bus configurations.

3-418 AFN·OO826D

intJ iAPX 88/10

A /\
vi'

vee

I
~~ CE POR!W

WA

RD
PORTw.

8156 B •

ALE PORT W
DATAl C 16)

ADOR
Y IN-

IO/~ TIMER

RESET
OUT f--

"-
At- A1' ADDR lOW

Y AD
A

"""'"
ADo - AD7 ADDR/DATA ALE W ~ eLK

~ ~~ PORT
CE A

~=
to.

A8-10
8088 -V - READY

8355 18755A

MN/MX -Vee DATA
ADOR

rD1 ALE - ~ -V

W Vee 101M PORT
RESET iiii ~ - ~ RESET B

XI X2
eLk WR -

READY f-- 10ili - iDA 3 c

- RlS .! ! ! t -t RESET I- Vss Vee Voo PROG

OND WA

iiii

CE I
8185

ALE

~I- CS,CE.

\-- AS,Ag

ADo1

~ J t
v" v"

~ 'V

Figure 5. Multiplexed Bus Configuration

3-419 AFN.Q0828D

I-
T

i Ul
8Z84A
CLOCK CLK MN/Ili GENERAT:OA

on READY IOJM

RESEr RI!
ROY WI!

GND -CPU iNTi

01'/11

I!EII
AlE

ADo-AD,
.\a-A"

INTR

I-
T

D rUl
B284A ~ MNIf1,X
CLOCK L SO GENERATOR C K

m READY S;
REseT SO

ROY

GND
CPU

AD!)-ADr
A,-A"

INT

. iAPX88110

r-Vce ,

51 r---:l
~- srB I

GNO_~ OE 8282
I
I

LATCH ADDRESS rDDAIDA~ (1,20A3)

J
I

[[I [[I
•

I
•

I
[):T I OE

8286 L TRANSCEIVER DATA

J1l ill liTT III F I WOE 001 I ~IIB Rl!ml
-1\ 2142 RAM (2) 2116 2 PROM MeS 80

~
PERIPHERAL

-V INTS:~:~PT I--CONTROL

INT

Ifl--'RO-1
~ IV----:-

Figure 6. Demultlplexed Bus Configuration

GND eLK MRDe

SO MWTC

S; AMWC -NC

SO 8288 lORe
r- DEN C~~~R lowe

- OTiA Alowe -NC

ALE INTA

r---:l
I

ST.
I

GHD- - OE 8282 I
~ODRIOA~

LATCH ADDRESS
(1,20R3)

~

I

p= T

I OE
8286

TRANSCEIVER DATA

F ill 1JJ liJf JJ
I

WE~II ~II B Rl!m I
~ 2142 RAM (2) 27162 PROM Mes 80

• PERIPHERAL
8259A

!-INTERRUPT
CONTROL

~

F'R.o,

Figure 7 .• Fully Buffered System Using Bus Controller

3-420 AFN·00826D

inter IAPX 88/10

Bus Operation
The 8088 address/data bus is broken into three parts -
the lower eight address/data bits (ADO-AD7), the middle
eight address bits (A8-A15), and the upper four address
bits (A16-A19). The address/data bits and the highest
four address bits are time multiplexed. This technique
provides the most efficient use of pins on the proc·
essor, permitting the use of a standard 40 lead package.
The middle eight ,address bits are not multiplexed, i.e.
they remain valid throughout each bus cycle. In addi·

tion, the bus can be demultiplexed at the processor with'
a single address latch if a standard, non·multiplexed
bus is desired for the system.

Each pro~essor bus cycle consists of at least four eLK
cycles. These are'referred to as T1, T2, T3, and T 4. (See
Figure 8). The address Is emitted from the processor
during T1 and data transfer occurs on "the bus during T3
and T4. T2 is used primarily for changing the direction of
the bus during read operations. In the event that a "NOT
READY" Indication Is given by the addressed device,

!------(4+NwAIr)_TCY ______ j--_____ (4+NWAIT)_TCV _____ -:-!
T. 13 TWAIT I T4 T1 T2 f3

elK

GOES INACTIVE IN THE STATE

~ ~\'-------'----Ll.a~//U//ffZ ~'. \
ADDRISTATUS

ADJ)R

ADORIDATA -----8'-__ D_AT_A_OU_T_ID_7.D_O) __ ~>---cx=

READV

DTIR

--MEMORY ACCESS TIME

\'--_---'1

Figure 8. Basic System Timing

3-421. AFN.()()826D

inter iAPX8BI10

"wait" states (Tw) are Jnserted between T3 and T4. Each
inserted' "wait" state is of the same duration as a ClK
cycle. Periods can occur between 8088 driven bus cycles.
These are referred to as "idle" states (Ti), or inactive ClK
cycles. The processor uses these cycles for internal
housekeeping.

OuringT1 of any bU's cycle, the ALE (address latch enable)
signal is emitted (by either the processor or the 8288 bus
controller, depending on the MN/MX strap). At the trailing
edge of this pulse, a valid address and certain status
information for the cycle may be latched.

Status bits SO, 51, and S2 are used by the bus controller, in
maximum mode, to identify the type of bus transaction
according to the following table:

52 S; -
CHARACTERISTICS 50

o (lOW) 0 0 Interrupt Acknowledge
0 0 1 Read 1/0
0 1 0 Write 1/0
0 1 1 Halt
1 (HIGH) 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

Status bits S3 through S6 are multiplexed with high order
address bits and are therefore valid during T2 through T4.
S3 and S4 indicate which segment register was used for
this bus cycle in forming the address according to the
following table:

54 53 CHARACTERISTICS

o (LOW) 0 Alternate Data (extra segment)
0 1 Stack
1 (HIGH) 0 Code or None
1 l' Data

S5 is a reflection of the PSW interrupt enable bit. S6 is
always equal to O.

1/0 Addressing

In the 8088, I/O operations can address up to a maximum
of 64K I/O registers. The I/O address appears in the same
format as the memory address on bus lines A 15-AO. The
address lines A 19-A 16 are zero in I/O operations. The vari­
able I/O instructions, which use register OX as a pointer,
have full address capability, while the direct I/O instruc­
tions directly acjdress one .Qr two of the .256 I/O .byte
locations in page 0 of the I/O address space. I/O ports are
addressed In the same manner as memory locations.

Designers familiar with the 8085 or upgrading an 8085
design should note that the 8085 addresses I/O with an
8-bit address on both halves of the 16-bit address bus. The
8088 uses a full l6-bit address on its lower 16 address
lines.

EXTERNAL INTERFACE

Processor Reset and Initialization

Processor initfalization or start up is accomplished with
activation (HIGH) of the RESET pin. The 8088 RESET is
required to be HIGH for greater than four clock cycles. The
8088 will terminate operations on the high-going edge of
RESET and will remain dormant as lorig as RESET is HIGH.
The low-going transition of RESET triggers an internal
reset sequence for approximately 7 clock cycles. After this
interval the 8088 operates normally, begiilM1jng wiltt· ~e
instruction in absolute location FFFFOH. (See Figure 4.)
The RESET input is internally synchronized to the proces­
sor clock. At initialization, the HIGH to lOW transition of
RESET must occur no sooner than 50 p.safter power up, to
allow complete initialization of the 8088.

If INTR is asserted sooner than nine clock cycles after the
end of RESET, the processor may execute one instruction
before responding to the interrupt.

All 3-state outputs float to 3-state OFF during RESET.
Status is active in the idle state for the first clock after
RESET becomes active and then floats to 3-state OFF.

Interrupt Operations
Interrupt operations fall into two classes: software or
hardware initiated. The software initiated interrupts and
software aspects of hardware interrupts are specified in
the instruction set description in the iAPX 88 book or the
iAPX 86,88 User's Manual. Hardware interrupts can be
classified as nonmaskable or maskable.

Interrupts result in a transfer of control to a new program
location. A 256 element table containing address pointers
to the interrupt service program locations resides in abso­
lute locations 0 through 3FFH (see Figure 4), which are
reserved for this purpose. Each element in the table is 4
bytes in size and corresponds to an interrupt "type." An
interrupting device supplies an 8-bit type number, during
the interrupt acknowledge sequence, which is used to
vector through the appropriate element to the new inter­
rupt service program location.

Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt
(NMI) pin which has higher priority than the maskable
Interrupt request (INTR) pin. A typical use would be to
activate a power failure routine. The NMI is edge-triggered
on a lOW to HIGH transition. The activation of this pin
causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state of
greater than two clock"cycres, but is'",o"l'"required"IG'-be
synchrOnized to the clock. Any higher going transition ot.
NMI is latched on-chip and will be serviced at the end of
the current instruction or between whole moves (2 bytes in
the case of word moves) of a block type instruction. Worst
case response to NMI would be for multiply, divide, and
variable shift instructions. There is no specification on
the occurrence of the low-going edge; it may occur

3-422 AFN-00826D

IAPX 88/10

before, during, or after the servIcing of NMI.
Another high-going edge triggers another response if it
occurs after the start of the NMI procedure. The signal
must be free of logical spikes in general and be free of
bounces on the low-going edge to avoid triggering ex·
traneous responses.

Maskable Interrupt (I~TR)
The 8088 provides a single Interrupt request Input (INTR)
which can be masked Internally by software with the
resetting of the Interrupt enable (IF) flag bit. The in·
terrupt request signal Is level triggered. It Is Internally
synchronized during each clock cycle on the high·going
edge of CLK. To be responded to, INTR must be present
(HIGH) during the clock period preceding the end of the
current instruction or the end of a whole move for a
block type instruction. During interrupt response se·
quence, further interrupts are disabled. The enable bit is
reset as part of the response to any Interrupt (INTR,
NMI, software interrupt, or single step), although the
FLAGS register which is automatically pushed onto the
stack reflects the state of the processor prior to the in·
terrupt. Until the old FLAGS register is restored, the
enable bit will be zero unless specifically set by an in·
struction.

During the response sequence (See Figure 9), the proc­
essor executes two successive (back to back) interrupt
acknowledge cycles. The 8088 emits the LOCK signal
(maximum mode only) from T2 of the first bus cycle until
T2 of the seoond. A local bus "hold" request will not be
honored until the end of the second bus cycle. In the
second bus cycle, a byte is fetched from the external in·
terrupt system (e.g., 8259A PIC) which identifies the
source (type) of the interrupt. This byte is multiplied by
four and used as a pointer into the Interrupt vector
lookup table. An INTR signal left HIGH will be continual­
ly responded to within the limitations of the enable bit

and sample period. The interrupt return instruction in­
cludes a flags pop which returns the status of the
original interrupt enable bit when it restores the flags.

HALT

When a software HALT instruction is executed, the
processor indicates th.at it is entering the HALT state in
one of two ways, depending upon which mode is
strapped. In minimum mode, the processor issues ALE,
delayed by one clock cycle, to allow the system to latch
the halt status. Halt status is available on 10iM', DT/R,
and 550. In maximum mode, the processor issues ap­
propriate HALT status on 52, 51, and SO, and the 8288
bus controller issues one ALE. The 8088 will not leave
the HALT state when a local bus hold is entered while in
HALT:ln this case, the processor reissues the HALT in·
dicator at the end of the local bus hold. An interrupt re­
quest or RESET will force the 8088 out of the HALT
state.

Read/Modify/Write (Semaphore) Operations
via LOCK

The LOCK status Information is provided by the proc·
essor when consecutive bus cycles are required during
the execution of an instruction. This allows the proc­
essor to perform read/modify/write operations. on
memory (via the "exchange register with memory"
instruction), without another system bus master receiv­
ing intervening memory cycles. This is useful in multi­
processor system configurations to accomplish "test
and set lock" operations. The ~ signal is activated
(LOW) in the clock cycle following decoding of the
LOCK prefix instruction. It is deactivated at the end of
the last bus cycle of the instruction following the LOCK
prefix. While LOCK is active, a request on a RQ/lTI pin will
be recorded, and then honored at the end of the LOCK.

T, I T2 T3 T.. T, I T2 T,

ALE ~~_---,---,n,--__

FLOAT
ADo-AOr

\1...--. __ ----11

Figure 9. Interrupt Acknowledge Sequence

3-423 AFN·00826D

inter, IAPX, 88/10 '

External Synchronization via TEST

As an alternative to Interrupts. the 8088 provides ..
single software-testable Input pin (TEST). This Input Is
utilized by executing a WAIT Instruction. The single
WAIT Instruction Is repeatedly exeouted until the ~
,Input goes active (LOW). The execution of WAIT does
not consume bus cycles once the queue Is full.

If a local bus request occurs during WAIT execution, the
8088 3-states all output drivers. If Interrupts are enabled.
the 8088 will recognlz~ Interrupts and process them.
The WAIT Instruction Is then refetched, and reexecuted.

Basic System Timing
In minimum mode, the MN/MX pin is strapped to Vee
and the processor emits bus control signals compatible
with the 8085 bus structure. In maximum mode, the
MN/MX pin is strapped to GND and the processor emits
coded status information which the 8288 bus controller
uses to generate MULTIBUS compatible bus control
signals.

System Timing - Minimum System
(See Figure ,8'> ,

The read cycle begins in 11 with the assertion of the ad­
dress latch enable (ALE) signal. The trailing (lOW going)
edge of this signal is used to latch the address informa­
tion, which is valid on the address/data bus (ADO-AD7)
at this time, into the 8282/8283 latch.,Address lines A8
through A15 do not need to be 'latched because they re­
main valid throughout the bus cycle, From Tl to T4 the
10fM signal indicates a memory or I/O operation. At T2
the 'address is removed from the address/data bus and
the bus goes to a high impedance state. The~ad con­
trol signal is also asserted at T2. The read (RD) signal
causes the addressed device to enable its data bus
drivers to the local bus. Some time later, valid data will
be available on the bus and the addressed device Will
drive the READY line HIGH. When the processor returns
the read signal to a HIGH level, the addressed device
will again 3-state its bus drivers. If a transceiver
(8286/8287) is required to buffer the 8088 local bus,
signals DT/A" and DEN are provided by the 8088. '

A write cycle also begins with the assertion of ALE and
the emission of the address. The 101M" signal is again
asserted to indicate a memory or I/O write operation. In
T2, immediately following the address emission, the
processor emits the data to be written into the ad­
dressed location. This data remains valid until at least
the middle of T4. During T2, T3, and Tw, the processor
asserts the write control signal. The write (Vim) signal
becomes active at the beginning of T2, as opposed to
the read, whicH is delayed somewhat into T2 to provide
time for the bus to, float. ,

The basic difference between the inferrupt acknowl­
edge cycle and a read cycle is that the interrupt
acknowledge (lNTA) signal is asserted in place of the
read (AD) signal and the address bus is Jloated. (See
Figure 9.>:.In the second of two successive INTA cycles,

a byte of information is read from the data bus, as sup
plied by the Interrupt system logic (i:e. 8259A priority In­
terrupt controller). This byte identifies the source (type)
of the Interrupt. It ~s multiplied by four and used as a
pointer into the Interrupt vector lookup table, as de­
scribed earlier.

Bus Timing - Medium Complexity Systems

'(See Figure 10'>

For medium complexity syStems, the MN/MX pin Is con­
nected to GND and the 8288 bus controller Is added to
the system, as well as an 828218283 latch for latching
the system addres~, and an 828618287 transceiver to
allow for bus loading greater than the 8088 Is capable of
handling. Signals ALE, DEN, and DTIA are generated by
the 8288 instead of the processor in 'this configuration,
although their timing remains relatively the same. The
8088 status outputs (52, SI, and SO) provide type of
cycle Information and become 8288 inputs. This bus
cycle information speCifies read (code, data, or 110),
write (data or 110), interrupt acknowledge, or software
halt. The 8288 thus issues control slg(1als specifying
memory read or write, I/O read or write" or Interrupt
acknowledge. The 8288 provides two types of write
strobes, normal and advanced, to be applied as required.
The normal write strobes have data valid at the leading
edge of write. The advanced write strobes have the
same timing as read strobes, and hence, data is not
valid at the leading edge of write. The 828618287 trans·
ceiver receives the usual T and OE inputs from the
8288's DT/R and DEN outputs.

The pOinter into the interrUPt vector table, whi,ch is
passed during the second INTA cycle, can derive from
an 8259A located on either the local bus or the system
bus. If the master 8289A prioJity interrupt controller is
positioned on the local bus, a TTL gate is required to
disable the 8286/8287 transceiver when reading from the
master 8259A during the interrupt acknowledge se­
quence and software "poll".

The 8088 Compared to the 8086

The 8088 CPU Is an 8-bit processor designed arouncf the
8086 internal structure. Most Internal functions of the
8088 are identical to the equivalent 8086 functions. The
8088 handles the external bus the same way the 8086
does with the distinction of ha(1dllng only 8 bits at a
time. Sixteen-bit operands are fetched or written in two
consecutive bus cycles. Both processors will appear
Identical to the software engineer, with the exception of
execution time. The Internal register structure is iden­
tical and all instructions have the same end result. The
differences between the 8088 and 8086 are outlined
below. The engineer who is unfamiliar with the 8086 is
referred to the iAPX 86, 88 User's Manual. Chapters 2 and
4, for function description and instruction set information:
Internally, there are three differences between the 8088
and the 8086. All changes are related to the 8-bit bus in­
tertace.

3-424 AFN.ooe26D

intJ IAPX 88/10

• The queue length Is 4 bytes in the 8088, whereas the
8086 queue contains 6 bytes, or three words. The,
queue was shortened to prevent overuse of the bus by
the BIU when prefetching instructions. This was re­
quired because of the additional time necessary to
fetch instructions 8 bits at a time.

• To further optimize the queue, the prefetchlng algo­
rithm was changed. The 8088 BIU will fetch a new in­
struction to load into the queue each time there Is a 1
byte hole (space available) In the queue. The 8088
waits until a 2-byte space is available.

• The internal execution time of the instruction set is
affected by the 8-bit interface. All 16-bit fetches and
writes from/to memory take an additional four clock
cycles. The C~U is also limited by the speed of in­
struction fetches. This latter problem only occurs
when a series of simple operations occur. When the
more sophisticated instructions of the 8088 are being
used, the queue has time to fill and the execution pro­
ceeds as fast as the execution unit will allow.

The 8088 and 8086 are completely software compatible
by virture of their identical execution units. Software
that is system dependent may not be completely trans­
ferable, but software that is not system dependent will
operate equally as well on an 8088 or' an 8086.

The hardware interface of the 8088 contains the major
differences between the two CPUs. The pin assign­
ments are nearly identical, however, with the following
functional changes:

• A8-A15 - These pins are only address outputs on the
8088. These address lines are latched Internally and
remain valid throughout a bus cycle in a manner
similar to the 8085 upper address lines.

• BHE has no meaning on the 8088 and has been elimi­
nated.

• ~ provides the S() status information in the mini­
mum mode. This output occurs on pin 34 in minimum
mode only. Dr/R, IO/~l, and SSO provide the complete
bus status in minimum mode.

• loiM has been inverted to be compatible with the
MCS-85 bus structure.

• ALE is delayed by one clock cycle in the minimum
mode when entering HALT, to allow the status to be
latched with ALE.

, \

3-425 AFN-00B26D

,.

"n+ -,I" III-e-

8088

8288

eLK

Q51,Q50

52,51,SO

AI9/56-AI6/S3

ALE

ROY 8284

READY 8088

AD7-ADO

8088 A15-A8

RD

DT/R

8288 MRDe

DEN

iAPX88/10

T, T. T, T.

~ / / H-..

'>(

/ / / / / \~ -=-====
A19-A16 56-53

'\
,-

/' --

.
A7-AO DATA IN -C

X A15-A8

I

\.

Figure 10. Medium Complexity System TImIng

3-426 AFN·00826D

iAPX 88/10

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O·C to 70·C
Storage Temperature -65·C to + 150·C
Voltage on Any Pin with

Respect to Ground - 1.0 to + 7V
Power Dissipation 2.5 Watt

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended perio,ds may affect device
reliability.

D.t. CHARACTERISTICS (8088: TA = O°C to 70·C, Vee = 5V ±10%)"
(8088-2: TA = O·C to 70·C, Vee = 5V ±5%)

Symbol Parameter Min. Max. Units Test Conditions

Vil Input Low Voltage -0.5 +0.8 V

VIH Input High Voltage 2.0 Vee +0.5 V

VOL Output Low Voltage 0.45 V IOl = 2.0mA

VOH Output High Voltage 2.4 V IOH = -400 /LA
8088 340

Icc Power Supply Current: 8088-2 350 mA TA = 25°C
P8P88 250

III Input Leakage Current ±10 /LA OV,,;VIN,,;Vee

ILO Output Leakage Current "t10 /LA
0.45V ,.; VOUT ,.;
Vee

Vel Clock Input LowVoltage -0.5 +0.6 V

VeH Clock Input High Voltage 3.9 Vce+ 1.O V

Capacitance if Input Buffer
CIN (All input except 15 pF fc = 1 MHz

ADo-AD7, RO/GT

CIO
Capacitance of I/O Buffer

15 pF fc = 1 MHz
(ADo-A~, RO/GT

"Note: For Extended Temperature EXPRESS Vcc=5V±5%

3-427 AFN.Q0826D

iAPX 88/10

A.C. CHARACTERISTICS (8088: TA = O°C to 70°C, Vee = 5V ±10%)­
·(8088-2: TA = O°C to 70°C, Vee =5V ±5%)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

I 8088 8088-2

Symbol Parameter Min. Max. Min.

TClCl ClK Cycle Period 200 500 125

TClCH ClK low Time 118 68

TCHCl ClK High Time 69 44

TCH1CH2 ClK Rise Time 10

TCl2Cl1 ClK Fall Time 10

TDVCl Data in Setup Time 30 20

TClDX Data in Hold Time 10 10

ROY Setup Time
TR1VCl into 8284 (See 35 35

Notes 1, 2)

ROY Hold Time
TClR1X into 8284 (See 0 0

Notes 1, 2)

TRYHCH
READY Setup 118 68 Time into
8088

TCHRYX
READY Hold Time

30 20 into 8088

TRYlCl
READY Inactive to

-8 -8
ClK (See Note 3)

THVCH HOLD Setup Time 35 20

INTR, NMI, TEST
TINVCH Setup Time (See 30 15

Note 2)

TlLlH
Input Rise Time

20
(Except ClK)

TIHll
Input Fall Time

12 (Except ClK)

-Note: For Extended Temperature EXPRESS Vcc=5V±5%

3-428

,

Max. Units
Test

Conditions

500 ns

ns

ns

10
From 1.0V

ns to 3.5V

10
From 3.5V

ns to 1.0V

ns

ns

ns

ns

ns

ns

ns

ns

ns

.20
From 0.8V

ns
t02.0V

12
From 2.0V

\ ns to 0.8V

AFN·00826D

infef iAPX 88/10

A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES •

8088

Symbol Parameter Min.

TCLAV AddressValid Delay 10

TCLAX Address Hold Time 10

TCLAZ Address Float Delay TCLAX

TLHLL ALE Width TCLCH-20

TCLLH ALE Active Delay

TCHLL ALE Inactive Delay

TLLAX
Address Hold Time to

TCHCL-10 ALE Inactive

TCLDV Data Valid Delay 10

TCHDX Data Hold Time e10

TWHDX Data Hold Time After WR TCLCH-30

TCVCTV Control Active Delay 1 10

TCHCTV Control Active Delay 2 10

TCVCTX Control Inactive Delay 10

TAZRL
Address Float to READ

0 Active

TCLRL RD Active Delay 10

TCLRH RD Inactive Delay 10

TRHAV
RD I nactive to Next

TCLCL-45 Add ress Active

TCLHAV HLDA Valid Delay 10

TRLRH RDWidth 2TCLCL-75

TWLWH WRWidth 2TCLCL-60

TAVAL Address Valid to ALE Low TCLCH-60

TOLOH Output Rise Time

TOHOL Output Fall Time

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR
A LOGIC 0 THE CLOCK IS DRIVEN AT 4 3V AND 025V TIMING MEASURE­
MENTS ARE MADE AT 1 SV FOR BOTH A LOGIC 1 AND 0

8088-2

Max. Min. Max. Units Test Conditions

110 10 60 ns

10 ns

80 TCLAX 50 ns

TCLCH-10 ns

80 50 ns

85 55 ns

TCHCL-10 ns

110 10 60 ns CL = 20-100 pF for

10 ns all 8088 Outputs
in addition to

TCLCH-30 ns internal loads

110 10 70 ns

110 10 60 ns

110 10 70 ns

0 ns

165 10 100 ns

150 10 80 ns

TCLCL-40 ns

160 10 100 ns

2TCLCL-50 ns

2TCLCL-40 ns

TCLCH-40 ns

20 20 ns From 0.8V to 2.0V

12 12 ns From 2.0V to 0.8V

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~CL01DDPF rEST

~

CL INCLUDES JIG CAPACITANCE

3-429 AFN.Q0826D

intel" iAPX 88/10

WAVEFORMS

BUS TIMING-MINIMUM MODE SYSTEM
T1 T2

VCH~I---h:CTCLCL __ TCH1CH21

elK (8284 Output) ~

~ TCHCTV • C. I~
101M. SSO _+-_-..,:--JI'--:-__ + ____ +-__ +-__ -4 __ -+ ___ +_.-J

A1s-Aa A15 - As (Float during INTA)

-+---+-J.J'-~--~----+_--+_---+--_4----~JJ
:=,TfLDV -TCLAX-TClAV-- TCHDX ---

TCLLH- r TLH~L-=:
r--

.I
/

TCHLL _ c.-'-+--4-+---+_-T-R-1V-C-l+--+----+---..J- ---

ALE

ROY (8284 Input)

SEE NOTE 5

I-TAVAL- :r~~ ~W~~~~~ I' -::;.: !--TCLR1X

READ CYCLE

(NOTE 1)

(WR. iNTA = VOH)

'~R.'-+-----+J
1r-__ -_h-TCHRyX

TRYHCHl - '--+----+-------

AD7-ADO

-TcIAZ CTDVCL--TCLDX-

-I-----"""Jr--A-D-'.-A-DO+-' _~FLOAT! DATA IN l4----:F""L"'OA"'T::-r-{ rJ,
TAZRL-->; - TCLRH- --i f--- TRHAV-I

-+------~--,J

'+--+ ____ +--J~ -=_ r- TCHCTV TCLRL 1---1--+--+;- TRLRH ---+--1

ri -~ I
~ _______ -+~~ ______ ~ __ ~..J

TCVCTV- -{f. TCVCTX - 1
'--____ -J

TCHCTV

3-430 AFN-00826D

iAPX 88/10

WAVEFORMS (Continued)

BUS TIMING-MINIMUM MODE SYSTEM (Continued)

elK (8284 Output)

WRITE CYCLE

NOTE 1

INTA CYCLE

NOTES 1,3

(RD, WR = VOH)

SOFTWARE HALT -

DEN,REi,WR,INTA = VOH

. DTJii INDETERMINATE

ACT-ADO

AC7- ADo

DTIR

INVALID ADDRESS SOFTWARE HALT

relAV

NOTES: 1 ALL SIGNALS SWITCH BETWEEN VOH AND VOL UNLESS OTHERWISE
SPECIFIED.

2. ROY IS SAMPLED NEAR THE END OF T2, T3, Tw TO DETERMINE IF Tw
MACHINES STATES ARE TO BE INSERTED.

3. TWO INTA CYCLES RUN BACK·TO·BACK, THE 8088 LOCAL ADDR/DATA
BUS IS FLOATING DURING BOTH INTA CYCLES CONTROL SIGNALS
ARE SHOWN FOR THE SECOND INTA CYCLE

4. SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ONLY.
5. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE

NOTED.

3-431 AFN·00826D

IAPX 88/10

A.C. CHARACTERISTICS

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)

TIMING REQUIREMENTS

8088

Symbol Parameter Min.

TClCl ClK Cycle Period 200

TClCH ClK low Time 118

TCHCl ClK High Time 69

TCH1CH2 ClK Rise Time

TCL2Ct1 ClK Fall Time

TDVCl Data In Setup Time 30

TClDX Data In Hold Time 10

TR1VCl
ROY Setup Time into 8284

35 (See Notes 1. 2)

TClR1X
ROY Hold Time into 8284

0 (See Notes 1 , 2)

TRYHCH
READY Setup Time into

118 8088

TCHRYX READY Hold Time into 8088 30

TRYlCl
READY Inactive to ClK (See

-8
Note 4)

Setup Time for Recognition
TINVCH (INTR, NMI, TEST) 30

(See Note 2)

TGVCH RQ/GTSetup Time 30

TCHGX RQ Hold Time into 8086 40

TILIH
Inpllt Rise Time
(Except ClK)

TlHll Input ~all Time (Except ClK)

NOTES:
1. Signal at 8284 or 8288 shown for reference only.

Max.

500

10

10

20

12

8088·2

Min.

125

68

44

20

10

35

0

.68

20

-8

15

15

30

2. Setup requirement for asynchronous signal only to guarantee recognition at next elK.
3. Applies only to T2 state (8 ns into T3 state).
4. Applies only to T2 state (8 ns into T3 state).

3-432

Max. Units Test Oondltlons

500 ns

ns

ns

10 ns From 1.0V to 3.5V

10 ns From 3.5V to 1.0V

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

20 ns From 0.8V te' 2.01f1

12 ns From 2.0V to 0.8V

AFN·OO826D

inter

A.C. CHARACTERISTICS
TIMING RESPONSES

Symbol Parameter

TClMl
Command Active Delay (See
Note 1)

TClMH
Command Inactive Delay (See
Note 1)

TRYHSH
READY Active to Status Passive
(See Note 3)

TCHSV Status Active Delay

TClSH Status Inactive Delay

TClAV , Address Valid Delay
TClAX Address Hold Time

TClAZ Address Float Delay

TSVlH
Status Valid to ALE High (See
Note 1)

TSVMCH
Status Valid to MCE High (See
Note 1)

TOllH
ClK low to ALE Valid (See
Note 1)

ClK low to MCE High (See
TClMCH Note 1)

TCHll ALE Inactive Delay (See Note 1)

TClMCl MCE Inactive Delay (See Note 1)

TClDV Data Valid Delay

TCHDX Data Hold Time

TCVNV
Control Active Delay (See
Note 1)

TCVNX
Control Inactive Delay (See
Note 1)

TAZRl Address Float to Read Active

TClRl RD Active Delay

TClRH RD Inactive Delay

TRHAV
RD Inactive to Next Address
Active

TCHDTl
Direction Control Active Delay
(See Note 1)

TCHDTH
Direction Control Inactive Delay
(See Note 1)

TClGl GT Active Delay

TClGH GT Inactive Delay

TRlRH RDWidth

TOlOH OUfput Rise Time

TOHOl Output Fall Time
\

IAPX 88/10

8088

Min. Max.

10 35

10 35

110

10 110

10 130

10 110
10

TClAX 80

15

15

15

15

15

15

10 110

10

5 45

10 45

.0
10 165

10 150

TClCl-45

59

30

85

85

2 rClCl-75

20

12

3-433

8088·2

Min. Max. Units Titst Conditions

10 35 ns

10 35 ns

65 ns

10 60 ns

10 70 ns

10 60 ns
10 ns

TClAX 50 ns

15 ns

15 ns

15 ns .
15 ns

15 ns

15 ns Ct. = 20·100 pF for

10 60 ns all 8088 Outputs
in addition to

10 ns internal loads

5 45 ns

10 45 ns

- 0 ns
(

10 100 ns

10 80 ns

TClCl-40 ns

50 ns

30 ns

50 ns

50 ns

2TClCL 50 ns

20
From 0.8Vto

ns 2.0V

12
From 2.0V to

' ns 0.8V

AFN,00826D

IAPX88/10
4,

I

WAVEFORMS

BUS TIMING-MAXIMUM MODE T, T.

I---TCLCL-TCH1CH21 r- --j i-TCL2CL1 Tw •

CLK VCH,r--"\ r--\ n r" r-\'
VCL...! ~ 1''---- --- i -! "----

QSo,QS,

r.,I1,SO (EXCEPT HAL n

1
ALE (8288 OUT pun

SEE NOTE 5

ROY (8284 INPUn

READ CYCLE.

AD7-ADo

RD

DTIA

8288 OUTPUTS I MiiiiC OR Il!Iil:
SEE NOTES 5,6

DEN

TCLAV· . C I---- TCHCL _TCLCH_'

I' -..,.---t--' I
I-' TCHSV

\-----­
'------

_ I--TCLAV I----i TCLDV TCHDX- ,0-

------1 -'I--.. TCLAX -h r.:.lr--I---+-+-+--f---+"""\Ir----
A,ltA'8 I

TSVLH ~ _ I.-
TCLLH. .1 TCHLL

____ ¥JIr-~~,I~--~--~~+--4--~~-J.~==
14 I-T~1VCL

~K '!;~~~~~\~~
TRVLCL __

1 - -TCHRYX

TTRYHSH-

-l-
.... TCLAX t---::T!::,RY"'"H""CH,.,._J

-TCLAZ ~ I
ADt-ADo l--±Ff('-:O~AT=--=.K.I\

TAZRL- -

,/

-
TDVCL--TCLDX-

DATA IN
FLOAT I'

TCLAH i-----t--+rTAHAV---i

rI+----

TCHDTH _ _____ m_H_D_TL_l-_~,rr-r---~T~C~LR-Lr---~---------+---JI~
\ I--H----TRLRH------l-----II \

~--~-------~-~~
-

TCLMH- r;.
Y f-j
~~~-----~. 

TCLML-

TCVNV-

______ ~ ____ _J 

TCVNX-

3-434 AFN.00826D 



inter IAPX 88/10 

WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM 

CLK 
VCH r-\ r--'I MODE SYSTEM 

(USING 8288) r VCl f-----I - J~ ~n-
12. ii. SOIEXCEPT ~ALT) 

WRITE CYCLE 

DEN 

8'" OUIP\IIS 
see NOTES 5,8 AMWC; OR AIOWC 

SOFTWARE 

MWTC OR lowe 

INTA CYCLE 

A'S-Aa 
(SEE NOTES 3,4) 

82111 OUIP\IIS 
SEe NOTES 5,6 

AOt·ADO 

MCEI 
i'Imi 

DT/R 

INTA 

DEN 

TCLAV-

FLOAT 

-
TSVMCH-

TCLMCH---

------il////I ,- note 8} ----_. 
I- TCI..O~1::" ~ i--rCLSH TCHDX- -- TCLAK 

A DATA 

TCYNV- ~ TCVNX- -
- i-TCLML TCLMH- I-

_ {TCL,ML - _TCLMH 

RESERVED FOR \ 
CASCADE ADDR FLOAT FLOAT 

/-JTrZ \ f=0VCL- !-TCLDX 

V POINTER 

/I i FLO'{) 
~ FLOAT 

~I' iCLMCl-1 

/ r--

tJ d"= \ I 

/ \-
----

TCHDTH 

TCLMl- 0 \ 
{1MH - TCVNV -

TCVNX---HALT - (DEN = voufm,JlIU)C,mRC,MWTC,AMWC,IOWC,ATOWC,ifffA,OT/" = VOH 

AD1- ADO.A,s- Aa 
INVALID ADDRESS 

TelAY 

~ jr----------........ , -- -----
\~--~ \._-----

NOTES' 1 ALL SIGNALS SWITCH BETWEEN YOH AND VOL UNLESS OTHERWISE 
SPECIFIED. 

2. ROY IS SAMPLED NEAR THE END OF T2, f3, Tw TO DETERMINE IF Tw 
MACHINES STATES ARE TO BE INSERTED. 

3. CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA 
CYCLES. 

4. TWO INTA CYCLES RUN BACK·TO-BACK. THE 8088 LOCAL ADDRIOATA 
BUS IS FLOATING DURING 80TH INTA CYCLES CONTROL FOR 
POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE. 

5. SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY 
6. THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS 

1!I1IIll:, 1!WTl:. A'MWe. =.IOWC. ~.1liTA AND DEN) LAGS THE 
'ACTIVE HIGH 8288 CEN. 

7. ALL TIMING MEASUREMENTS ARE MADE AT 1 5V UNLESS OTHERWISE 
NOTED 

8. STATUS INACTIVE IN STATE JUST PRIOR TO T4• 

3-435 AFN-00826D 



inter 

WAVEFORMS (Contin'ued) 

ASYNCHRONOUS 
SIGNAL R~OGNITION 

NMI 

lNTR 

NOTE: 1. SETUP REQUIREMENTS FOR ASYNCHRONOUS 
S.oNALS ONLY TO GUARANTEE RECOGNITION AT NEXT elK 

iAPX88/10 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLy) 

Any elK cycle--j 

CLK 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLy) 

1 __ '""""'''-' __ >o""'~ 

... JrCLGL_ 
~ 

Prirlllousgrani 
A1t1StAl~'~:: 1-' ____________ ----/ 

A01-AOo .... 
~~ 1-1 ---------------/ 

NOT( 1 THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION 
SHOWN WITHOUT RISKINQ CONTENTION 

COPROCESSOR 

JSEE NOTE 1) 

ijOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLy) 

~
_"LKCYCLE_ 

ell'. -

\ _I _THVCH <SEE NOTEI" 

HOlD~ 

~_'OR2CYCr1 ~ 

,,~,~~.-J I~~ 
--TelHAV \I~J _;CLHAV 

\ 

HLOA 

I-----------II-------l--' , >-+----1 
1__----------,I----~'·r-~T~'~lA~Z,----~I---------, 

"18 COPROCESSOR 

3-436 

1 

AFN-008260 



inter IAPX 88/10 

IAPX 86/10, 88/10 
INSTRUCTION SET SUMMARY 

OATA TRAMBIER ........ 
RegIster/memory lolhomre9,sler ~o (! w jmod lell ~ 
ImmeO,31e10 reglsleflmemory (1100011w!modOOO I,m! ~da~~~ 
ImmedIate 10 1~9'Slef 1 0 1 I w reg dala ,I w 1 

Memory 10 aCCymulalor 1 0 1 0 0 0 0 w ado! low attar nIgh 

Accumulator 10 memory I 1 0 1 0 0 0 1 VI \ add. low add, hIgh 

IleO,Sltfimemo,'/ 10 segmem regIster LiiITi_:.. 10 Imod O,~ 11m I 
Seijmenl reg,sIer 10 reglster/memorV Q(i(i(j1-, 0 0 I mod O~ 

PUSN .... 
Aeglslerlmemory 

Regls!e. 

Segmenl regiSter 

pop .... 
ileglster/memorV 

Rtg"ler 

Segmenl register 

XCMS hetlanD' 
Reg'sterlmemo1ywllh regIster 

Register w.'~ accumulator 

IN=I~pul from 

F,ullpo!l 

Vaflabttport 

OUT' OulpullO 

F'Keaport 

Vaflableporl 

ILAY,TransJalebyleloAL 

UA·LoadEAtoreo,ster 

LOl'LoadpolnlertoOS 

l£l·LoadpolnlerlofS 

LAIiF-loadAH WIlli lIags 

IIIIIF StoreAHlnlOfiaos 

",1IIf"Push flailS 

P8Pf,Popllalis 

AAITKMETIC 
ADD Uci 

11111111 mOd~ 
01010 ". OOOreQl10 

10001111 modO 0 0 ,m 
01011 '" 
OOO/egll! 

\ 1000011 w Imod ',m~ 
~ 

~~ 
POll 

H 10 11 Ow 

111001 I w pon 

1 I 1011 1 w 

11010111 

10001101 mo' ". 11000101 ". 11000100 ". 10011111 

10011110 

100111 0 a 
10011101 

Reo /memory Wllh reglsler to elmel 100ci-o o-o-a~ilm;;;;~l 
tmmed,ale 10 regIster/memory 1 00000 s w mod 000 I m ~ .. ~~~" _J dat~ ~l""<'_W"~ 
Immedlille10 accumulalOr ~!1u_._~""l. _ ~dt" II ~....!=:J 

IIEC .'111/11 
Reglstel/memorv 

RegIster 

.16 Change slg(l 

eM' Campau 
RegIster memory and regIster 

Imme{hM~ WIth reglste' 'memory 

Immedlale WIth accumulator 

111543210 1I50rlO 71543%10 71143%10 

1" 1 1 1 1 1 w !mOdO 0 1 rim! 

~ 
Iiii::' 0 11 w :m(ldO~ 

100000 s W mod 11 I rim data dala Ilsw 01 

001 I 1 lOw 

AlSASCliadlust10rsublract ~ 

~u: :::~p~~ al:I~:,~::rd~ublracl F.:"::~:~: 'i"; ~: ::-:+-m::,,-;-, 70 0;-0 C-, :em' 
INUl Inteller mu1hply ISlgned\ 11 I I I 0 \ 1 W ! mod I 0 \ 'm 

UM ASClladluSllor multiply '1010' 0 0 0000' 010 

DIV D,v,de runSlgnedl \ I 1 10' I W mod 110 ,m 

IDIV Inlegrrdtvlde ISlqnedl I 11 , 1011 w Imod 1 I , ,m I 
UOASClladlusllordlvlde )I'OIOlOllooo~ 
caw Convert Oyle to WOld , 001 tOO 0 

CWO Con~erl wora to aouolewo,d , 001 100 , 

LOGIC 
NOT Inverl ["1'"'-'-0 11 ~~,~ 
SilL/SAL Shill logIcal a"lhmell( lett l' 0 1 0 0 V W moo 100 1m 

5HR Shltlloglcal IIghl I I 0 100 v w mod 1 0 1 t m 

SAR S~llI 311lhmellc IIghl I 1 0 I 0 0 v w mod 1 I 1 ,m 

AOl Rotale lell I 10 I 0 0 v ~ modO 0 0 , m 

MOR Rotate "9"t 1 1 0 1 0 0 v W moao 0 I 1m 

RCt ROlatelnrougllcMrV Itag lett 1 10100 v w modO 1 0 ,'m 

RCA Rolale Ihlough rarry IIgnl I 10100 v W modO I , 

AND And 

Reg memo'~ and reqlSler to ellhe, F[i"T~o~,:,::o~o~o~,;;w +-1 m~"~"", • .;,;;;4---,;:;:---,----,=c::-;, 
Immealate 10 'eglster .. ~,emory 1 0 0 0 0 0 0 w mOd 1 0 0 rim data data II w I 

0010010 w 

OR " ReQ Imemoryand ,eglster toerlhe, 000010 d w mo' ". "m 
Immed,ale 10 reqlster,memory 1000000 W modO 0 I dm AIM: Add willi tarry data II w I 

ReQ Imemory With regIster to either ~OO"~ ;rmOd-ieg"~ 

ImmedIate 10 rfQlste,'memory lii 0 0 0 0 ~ w I mod 0 ~~-"-~ j~l~ t1 s W o~J 
Immed,ate to accumulator ~.~L"_" ~l __ aalal 1 w I ] 

su. SUMrKt 
lleQlmemorYlndrelO!tS!eflofltntr 

Immedlitehom register/memory 

tmmedlale hom accumulator 

'II. ·lIIItnctwlttl ........ 

MnemonICS ©Intel, 1978 

00 \ 0 t 0 d W mod reg r m 

Immedlalelo accumulator 

'OR hclu,lv"r 
ReQ {memory and reQlster10 e,tner 

tmmedlaleto reglsler/memory 

Immedlalelo accumulato' 

STAING MANIPULATION 
REP=Reput 

MOVS=Mov~ by1e/word 

tMPS=Compare byte/word 

SCAS=ScanbVle/word 

LOOS=LoiKl byte/wd 10 AliAX 

STOS='ilor bVle/wd trom ALIA 

3-437 

0000110 W 

001100 d w ". 1000000 W mOdt 1 0 

0011010 w 

1111001Z 

to 1001 t w 

1010 tIl w 

10101 lOw 

1010 I 0 1 w 

data II wI 

dm 
"m 

AFN-Q0826D 



iAPX 88/10 

INSTRUCTION SET SUMMARY (Continued) 

CONTROL TBAISFER 
CALL· Coli. 1 8 ~"3 21 0 11543210 

DIrect wltllIn segment 11101000 dlsplow 

IndlreclwithmSe{lmenl 1 "11111 mod 010 rim 

Dlrectmtersegment 1001'010 ollsel·low 

seg-Iow 

Indirect Intersegment 1 1 1 1 1 " 1 mod 01 , "m 
JM' =, UnandtttDftl1 Jail,: 
Direct wlthm segment "'101001 dlsp-Iaw 

Olrecl III/llhm segmenl-short 11101011 dlsp 

Indlrect.wllhmsegmenl 11" , 1 1 1 1 Imod 100 "m 
Olfullnlersegmenl 1'1'0'0101 0115ellow 

1 seg-Iow 

Indlrecllntersegment 1'1" 1 1 , 1 I mod 1 0 1 "m 
RET " Return IrDm CALL 
Wl1I'IInsegment, 1" 0 0001 1 I 
Wlth,nseg addmgImmedto SP 1,1000010! 

Intersegment !,1001011! 

Intersegment adding Immediate to Spi'l 0010 I 0 I 
JE/Jl'Jumpon eQuallzero 
Jl/J.IIE~Jump on less/not greater 

or equal 
JU/J.8~Jumpon less or equal/not 

greater 
JI/JllAf>Jump on below/not above 

or equal 
JIElJ"~~~~Co~~ below or eQuall 

JP/JPE:Jump on parity/panty eyen 

JO~Jump on overflow 

J8~Jump on Sign 

JIE/JIIIZ=Jump on nOI eQuallnOI zero 
JIIIlIJII=Jump on not leSS/Qreater 

or equal 
J.U./J'~Jumpon nol less or equal! 

greater 

Fatlnolll: 

Al '" 8-bIt accumulator 
AX '" 160M accumulator 
CX '" Count register 
OS ~ Data segment 
ES '" Extra segment 

01110100 

01111100 

101 1 11 11 0 1 

011 10010 

011 101 10 

01111010 

1011 1 0000 I 
10" I 1000 I 
01110101 

01111101 

!01111111 ! 

Above/below refers to unsIgned value 
Greater'" more POSItive, 
less", less POSitive (more negative) Signed values 
Ifd'" 1 then "to" reg,lfd =Othen"'from" reg 

If w" 1 then word Instrl,lctlOn, If w '" 0 then byte mstructlon 

If mod", 11 then rIm IS treated as a REG field 

data low 

data low 

dlsp 

dlSp 

dlsp 

dlsP 

dlsp 

dlSP 

OISP 

dlSp 

dlsp 

dlsp 

"'iCJ 

If mod'" 00 then DISP '" 0·, dlsp·low and dlsp-hlgh are absent 

1 8 5 .. 3 21 0 

dlsphlgh 

otfse!-hlgh 

seg-hlgh 

dlsphlgh 

otlse~ 
seghlgh] 

dalahlgCl 

d~=:J 

If mod", 01 then DISP '" dlsp-Iow slgn·extended to 16-blts, dlsp·hlgh IS absent 
11 mod ~ 10 then OISP ~ dlSp-hlgh dlSp-low 

II rim ~ IJOO then EA ~ (BX) • (SI) • DlSP 
II rim ~ 001 then EA ~ (BX) • (01) • OISP 
11 rim ~ 010 then EA ~ (BP) • (SI) • OISP 
.1 rim ~ 011 then EA ~ (BP) • (01) • OISP 
II rim ~ 100 then EA ~ (SI) .0tSP 
il rim ~ 101 then EA ~ (01) .OISP 
11 rim ~ 110 then EA ~ (BP) • OISp· 
11 rim ~ 111 then EA ~ (BX) • OISP 
DISP follows 2nd byte of tnstruchon (before data If reqUIred) 

°exceptl1 mod ~ 00 and r 1m ~ 110 then EA ~ dlSp-hlgh dlSp-low 

Mnemonics© Intel, 1978 

18543210 7 8 5" 3 2 1;0 
J"/JAE Jump on not below/above 01110011 dlsp , orequat 
J"E/JA Jump on nOI below or 01110111 dlsp equal/above 

10111101'1 I JIP/JPO Jump on nol par/par odd dlsp 

JIO Jump on nOloverflow 1011100011 dlsp 1 
JIS Jump on nOI sign 101 11 1001 1 dlSp ] 
lOOP LoopCX Itrnes '1'00010 drsp 

lOOPIILOOPE loopwhllezerOlequal 1110000' dlsp 
LOOPNZlLOOPNE Loop "'hlle not 1,100000 dlsp zero/eQua' 
JCXZ Jump on CX zero 11 100011 dl5p 

INT '"terrupl 
Typespecl'led 1 10011 0 1 type 

Type 3 11001100 

IIilTO Interrupt eln overflow 1'10011'0 ! 
IRn Inlerruplrelurn ~2iJ 

PROCESSOR CONTROL 
ClCClealcarry F'lOoJ] 
CMC Complement carry ~~ 
STC Sel carry 11 1 1 1001 

ClDCleardllection 11111100 

STDSeldtreclion [." 1 11 1 0 1 

CLiCleiHon'errupl [~ 1 1 I 1 0 1 0 i 
STrSellnlerrupl ~Q 
HlTHal 1 1'1110100 I 
WAIT Watl li2JLiJiiiJ 
ESC Escape {to e~ternal devlcel L'~~d~-x~~/ffi] 
LOCK 8us lock Dreltx U"""111oooO"l 

If s w = 01 then 16 bits of Immediate data form the operand 
If s w = 11 then an Immediate data byte IS sign ext~nded to 

form the 16-bIt operand 
II v -= 0 then "count" = 1. If v = 1 then -'count" 10 (el) 
x = don't care 
Z IS used for strtng prtmltlVes lor comparison With Z.F FLAG 

SEGMENT OVERRIOE PREFIX 

10 0 1 reg 1 I 01 

REG IS assIgned accordtng to the follOWing table 

t""I· .2! Balli.· 0) 

000 AX 000 AL 
001 CX 001 CL 
010 OX 010 DL 
011 BX 011 BL 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 DH 
111 01 111 BH 

Segment 

00 ES 
01 CS 
10 SS 
lIDS 

InstructIOns which reference the flag register file as a 16-blt object use the symbol FLAGS to 
represent the file 

FLAGS· X X X X (OF) (OF) (IF) (TF) (SF) (IF! X (AF) X (PF) X (CF) 

3-438 AFN·00826D 



inter 
iAPX 188 

HIGH INTEGRATION 8-BIT MICROPROCESSOR 

• Integrated Feature Set 
-Enhanced 8088-2 CPU 
-Clock Generator 
-2 Independent, High-Speed DMA 
. Channels 
-Programl'flable Interrupt Controller 
-3 Programmable 16-blt Timers 
-Programmable Memory and 

- 2 MByte/Sec Bus Bandwidth 
Interface 

• Completely Object Code Compatible 
with All Existing iAPX 86, 88 Software 
-10 New Instruction Types 

• Direct Addressing Capability to 
1 MByte of Memory 

Peripheral Chip-Select Logic 
-Programmable Wait State Genera~or 

• Complete System Development 
Support 

-Local Bus Controller 
• 8-Bit Data BusJnterface; 16-bit internal 

architecture 
• Atailabla in 8MHz (80186) and cost 

effective 6 MHz (80186-6) versions 

• High-Performance 8 MHz Processor 
-2 Times the Performance of the 

Standard iAPX 88 

rD~LKOUT TT 
1 I 'ExECUTION uNiTJ 
X, X, 

I 
16~Brr 1 
ALU 

I 

CLOCK I 
GENERATOR I 16·BIT, 

GENERAL I 
PURPOSE I REGISTERS 

.J 
I)' 11 

INT311NTA1 

-Development Software: Assembler, 
PL/M, Pascal, Fortran, and System 
Utilities 

-In-Circuit-Emulator (ICE™ -188) 
-IRMXTM 86, 88 Compatible (80130 

OSF) 
• High Performance Numerical 

Coprocessing Capability Through 8087 
Interface 

INT2IINTAO 

INn TMR OUT 1 TMR OUT 0 

TMRIN I TMRIN i 
Nr' 

INITO 1 1 
! --. t 

PROGRAMMABLE 
TIMERS , 

0 1 2 

PROGRAMMABLE 
MAXCOUNT~ 
REGISTERB :--

INTERRUPT 
CONTROLLER MAX COUNT 

REGISTER A 

CONTROL REGISTERS 

CONTROL i I 16·BIT 
REGISTERS COUNT REGISTER 

(r { 
INTERNAL BUS DROO 

DR01 

r-j-oo 

;=~ 
.-j-oo 

I~f. 
r_ 

SRDY 
ARDY 

Tm 
HOLD 
HLDA 

AR 
RESET 

J 'u 

BUS INTERFACE 16-BIT 
UNIT SEGMENT 

REGISTERS 

... BYTE 
PAEFETCH 

QUEUE 

1 111H~ 1.1 DEN 
LOCK 

DTII! 67 AD17 A1B/Si 
.AS A15 

U ! .--1-
PROGRAMMABLE 

DMAUNIT 
0 1 

CHIP-SELECT 2O-BI1 
UNIT SOURCE POINTERS 

~ 2O-BIT 
DESTINATION 

POINTERS 

PROGRAMMABLE I 16·81T 
CONTROL 

REGISTERS 11 TRANSFER COUNT 

CONTROL 
REGISTERS 

r±t * 1-UCS PCS6/A2 

LCS PCS5iAl 

'II 'II 

Figure 1. iAPX 188 Block Diagram 
Intel Corporation Assumes No ResponSibility for the use of Any CirCUItry Other Than CirCUitry Embodied In an Intel Product No Other CrrcUit Patent licenses are miphecl 
©INTEL COR~ORATION, 1982 

3-439 
\ V 

OCTOBER 1982 
ORDER NUMBER, 210706-001 



iAPX 188 

The Intel iAPX 188 (80188 part number) is a highly integrated microprocessor with an 8-bit data bus interface and a 
16-bit internal architecture to give high performance. The iAPX 188 effectively combines 15-20 of the most common 
iAPX 88 system components onto one. The 80188 provides two times greater throughput than the standard 5 MHz 
IAPX 88. The iAPX 188 is upward compatible with iAPX 86 and 88 software and adds 10 new instruction types to the 
existing set. 

TOP 

Symbol Pin No. ~ 

Vcc,Vcc 9,43 I 

Vss, Vss 26,60 I 

RESET 57 0 

X1, X2 59,58 I 

CLKOUT 56 0 

RES 24 I 

BOTTOM 

~m52~lJUIUlJUULJUU 

S1 
52 

ARDY 
CLKOUT 

RESET 
X2 
Xl 

vss 
ALEIOSO 

RD/OSMD 
WR/OSl 

S7 
A19/S6 
Al81S5 
A17/S4 
Al61S3 

" /' 
PIN NO.1 MARK ............. 

Figure 2. 80188 Pinout Diagram 

Table 1. 80186 Pin Description 

Name and Function 

System Power: + 5 volt power supply. 

System Ground. 

TMR IN 1 
TMRINO 
DROl 

... DROO 

Reset Output indicates that the 80186 CPU is being reset, and can be used as a system 
reset. It is active HIGH, synchronized with the processor clock, and lasts an integer 
number of clock periods corresponding to the length of the RES signal. 

Crystal Inputs, X1 and X2, provide an external connection for a fundamental mode 
parallel resonant crystal for the internal crystal oscillator. XI can Interface to an 
external clock instead of a crystal. In this case, minimize the capacitance on X2 or 
drive X2 with complemented XI. The input or oscillator frequency is internally divided 
by two to generate the clock signal (CLKOUT). 

Clock Output provides the system with a 50% duty cycle waveform. All device pin 
timings are specified relative to CLKOUT. CLKOUT has sufficient MaS drive capabilities 
for the 8087 NumeriC Processor Extension. 

System Reset causes the 80186 to immediately terminate its present activity, clear the 
internal logic, and enter a dormant state. This Signal may be asynchronous to the 
80186 clock. The 80186 begins fetching instructions approximately 7 clock cycles 
after RES is returned HIGH. RES is required to be LOW for greater than 4 clock 
cycles and is internally synchronized. For proper initialization, the LOW-Io-HIGH transi-
tion of RES must occur no sooner than 50 microseconds after power up. This input 
is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC 
network. When RES occurs, the 80188 will drive the status lines to an inactive level 
for one clock, and then Iri-state them. 

3-440 AFN-01483A 



iAPX 188 

Table 1. 80188 Pin Description (Continued) 

Pin 
Symbol No. Type Name and Function 

fESi' 47 I fESi' IS examined by the WAIT Instruction. If the TEST Input IS HIGH when 
"WAIT" execution begins, instruction ex~cution will suspend TEST will be 
resampled until It goes LOW, at which time execution will resume. If Interrupts 
are enabled while the 80188 is waiting for TEST, interrupts will b,e serviced. This 
Input is synchronized internally. 

TMR IN 0, 20 I Timer Inputs are used either as clock or control signals, depending upon the 
TMR IN1 21 I programmed timer mode. These Inputs are active HIGH (or LOW-to-HIGH 

transitions are counted) and Internally synchrOnized. 

TMR OUT 0, 22 0 Timer outputs are used to provide single pulse or continuous waveforrh gener-
TMR OUT 1 23 0 atlon, depending upon the timer mode selected. 

DRaO 18 I DMA Request IS driven HIGH by an external device when It desires that a 
DRa1 19 I DMA channel (Channel 0 or 1) perform a transfer. These signals are active 

HIGH, level-triggered, and internally synchrOnized. 

NMI 46 I Non-Maskable Interrupt IS an edge-triggered input which causes a type 2 
Interrupt. NMI is not maskable internally. A transition from a LOW to HIGH 
initiates the interrupt at the next instruction boundary. NMI is latched Inter-
nally. An NMI duration of one clock or more Will guarantee service. This input is 
Internally synchronized. 

INTO,INT1, 45,44 I Maskable Interrupt Requests can be requested by strobing one of these pins. 
INT2/INTAO 42 I/O When configured as Inputs, these PinS are active HIGH. Interrupt Requests are 
INT3/INTA1 41 I/O synchronized internally. INT2 and INT3 may be configured via software to 

provld'e active-LOW interrupt-acknowledge output Signals. All interrupt inputs 
may be configured via software to be either edge- or level-triggered. To ensure 
recognition, all Interrupt requests must remain active until the interrupt is 
acknowleged. When iRMX mode IS selected, the function of these pins 
changes (see Interrupt Controll,er section of thiS data sheet). 

A19/56, 65-68 0 Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the four most' 
A18/55, 0 Significant address bits during T1. These signals are active HIGH. During T2, 
A,17/54, 0 T3, Tw, and T4, status Information is available on these lines as encoded 
A16/53 0 below: 

I I 
Low 

I 
High I 56 Processor Cycle DMA Cycle 

53,54, and 55 are defined as LOW during T2-T4 

AD7-ADO 2,4,6,8, I/O Address/Data Bus (0-7) signals constitute the time mutiplexed memory or I/O 
11,13,15,17 address (T1) and data (T2' T3, Tw, and T4) bus. The bus IS active HIGH. 

A15-AB 1,3,5,7 0 Address-only Bus (8-15), containing valid address from T1-T4. The bus is active 
10,12,14,16 HIGH. 

57 64 0 This signal is always HIGH to indicate that the 80188 has an 8-bit data bus, and is 
tri-state OFF during bus HOLD. 

3-441 ,AFN'()1483A 



"""'_1' II'I"e'i 

Symbol 

ALE/QSO 

WR/QSl 

RD/QSMD 

ARDY 

SROY 

LOCK 

Pin 
No. 

61 

63 

62 

55 

49 

48 

IAPX 1"88 

Table 1. 80188 Pin Description (Continued) 

Type Name and Function 

0 Address Latch Enable/Queue Status 0 is provided by the 80188 to latch the 
address into the 828218283 address latches. ALE is active HIGH. Addresses are 
guaranteed to be valid on the trailing edge of ALE. The ALE rising' edge is 
generated off the rising edge of the CLKOUT immediately preceding T1 of the 
associated bus cycle, effectively one-half clock cycle earlier than in the stan-
dard 80188 The trailing edge is generated off the CLKOUT rising edge in T1 as' 
in the 80188 Note that ALE is never floated. 

0 Write Strobe/Queue Status 1 indicates that the data on the bus is to be written 
into a memory or an I/O device. WR is active for T2. Ta. and Tw 9f any write 
cycle. It is active LOW. and floats during "HOLD." It is driven HIGH for one clock 
during Reset. and then floated. When the 80188 is in queue status mode, the 
ALE/QSO and WR/QSl pins provide information about processor/instruction 
queue interaction. 

QSl QSO Queue Operation 
0 0 No queue operation 
0 1 First opcode byte fetched from the queue 
1 1 Subsequent byte fetched from the queue 
1 0 Empty the queue 

0 Read Strobe indicates that the 80188 is performing a memory or I/O read cycle. 
Frn is active LOWforT2, Ta. and Tw of any read cycle. It is guaranteed notto go 
LOW in T2 until after ttle Address Bus is floated. RD is active LOW. and floats 
during "HOLD." RD is driven hliGH for one clock during Reset. and then the 
output driver is floated. Aweak internal pull-up mechanism on the RD line hols 
it HIGH when the line is not driven. During RESET the pin Is sampled to 
determine whether the 80188 should provide ALE. WR. and Frn. or if the 
Queue-Status should be provided. RD should be connected to GND to provide 
Queue-Status data. 

I I Asynchronous Ready informs the 80188 that the addressed memory space or 
I/O device will complete a data transfer. The ARDY input pin will accept an 
asynchronous input. and is active HIGH. Only the riSing edge is internally 
synchronized by the 80188. This means that the falling edge of ARDY must be 
synchronized to the 80188 cloCk. If connected to Vee. no WAIT states are 
inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be 
active to terminate a bus cycle. If unused. this line sholtld be tied low. 

I Synchronous Ready must be synchronized externally to the 80188. The use of 
SRDY provides a relaxed system-timing specification on the Ready input. This is 
accomplished by eliminating the one-half clock cycle which is required for internally 
resolving the signal level when using the ARDY Input. This line is active HIGH. If thiS 
line is connected to Vee. no WAIT states are inserted. Asynchronous ready (ARDY) 
or synchronous ready (SRDY) must be active before a bus cycle is terminated. If 
unused. this line should be tied low. 

0 LOCK output indicates that other system bus masters are not to gain control of the 
system bus while LOCK is active LOW. The LOCK signal is requested by the LOCK 
prefix instruction and is activated at the beginning of the first data cycle associated 
with the instruction following the LOCK prefix. It remains active until the,completion 
ofthe instruetion following the LOCK prefix. No prefetches will occur while LOCK is 
asserted. LOCK is' active LOW. is driven HIGH for one clock during RESET. and 
then floated. If unused. this line should be tied low. 

3-442 AfN~1483A 



intJ IAPX 188 

Table 1. 80188 Pin Description (Continued) 

Pin 
Symbol No. Type Name and Function 

SO,81,S2 52-54 0 Bus cycle status SO-52 are ,encoded to provide bus-transaction information: 

80188 Bus Cycle Status Information 

52 51 SO Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 ~rite I/O 
0 1 1 alt 
1 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

The status pins float during "HOLD." 
S2 may be used as a logical MilO indicator, and 51 as a DTIFi indicator. 

'. The Status lines are driven HIGH for one clock during Reset, and then floated 
until a bus cycle begins. 

HOLD (input) 50 I HOLD indicates that another bus master is requesting the local bus. The HOLD 
HLDA (output) 51 0 input is active HIGH. HOLD may be asynchronous with respect to the 80188 

clock. The 80188 will issue a HLDA in response to a' HOLD request at the end of 
T4 or TI. Simultaneous with the issuance of HLDA, the 80188 will float the local 
bus and control lines. After HOLD is detected as being LOW, the llO188 will 
lower HLDA. When the 80188 needs to run another bus cycle, it will again drive 
the local bus and control lines. 

UCS 34 0 Upper Memory Chip Select is an active LOW output whenever a memory 
reference is made to the defined upper portion (1K-256K block) of memory. 
This line is not floated during bus HOLD. The address range activating OCS is 
software programmable. 

LCS 33 0 Lower Memory' Chip Select is active LOW wheneve'r a memory· reference is 
made to the defined lower portion (1K-256K) of memory. This line is not 
floated during bus HOLD. The address range activating LCS is software 
programmable. 

~-3 38,37,36,35 0 Mid-Range Memory Chip Select signals are active LOW when a memory 
reference is made to the defined mid-range portion of memory (8K-512K). 
These lines are not floated during bus HOLD. The address ranges activating 
MCSO-3 are software programmable. 

PCSO-4 25,27-30 0 Peripheral Chip Select signals 0-4 are active LOW when a reference is made to 
the defined peripheral area (64K byte I/O space). These lines are not floated 
during bus HOLD. The address ranges activating PCSO-4 are software 
programmable. 

PCS5/A1 31 0 Peripheral Chip Select 5 or Latched A 1 may be programmed to provide a sixth 
peripher.al chip select, or to provide an internally latched A 1 signal. The 
address range activating J5CS5 is software programmable. When programmed 
to provide latched A1, rather than PCS5, this pin will retain the previously 
latched value of A1 during a bus HOLD. A1 is active HIGH. 

PCS61A2 32 0" Peripheral Chip Select 6 or Latched A2 may be programmed to provide a 
seventh peripheral chip select, or to provide an internally latched A2 signal. 
The address range activating PCS6 is softwa!!...E!0grammable. When pro-
grammed to provide latched A2, rather than PCS6, this pin will retain the 
previously latched value of A2 during a bus HOLD. A2 is active HIGH. 

DT/R 40 0 Data Transmit/Receive controls the dirl!ction of data flow through the external 
8286/8287 data bus transceiver. When LOW, data is transferred to the 80188. 
When HIGH the 80188 places write data on the data bus. 

DEN 39 0 Data Enable is provided as an 8286/8287 data bus transceiver output enable. 
i5Eiii is active LOW during each memory and I/O access. i5Eiii h~ HIGH whenever 
DTlR changes state. ' 

3-443 AFN'()l483A 



iAPX 188 

FUNCTIONAL DESCRIPTION 

Introduction 

The following Functional Description describes the 
base architecture of the iAPX 188. This architecture is 
common to the iAPX 86, 88, and 286 microprocessor 
families as well. The iAPX 186 is a very high integration 
8-bit microprocessor. 'It combines 15-20 of the most 
common microprocessor systel)1 components onto one 
chip while providing twice tl1e performance of the 
standard iAPX 88. The 80188 is object code compatible 
with the iAPX 86, 88 microprocessors and adds 10 new 
instruction types to the existing iAPX 86, 88 instruction 
set. 

iAPX 188 BASE ARCHITECTURE 

The iAPX 86, 88, 186, 188, and 286 family all contain the 
same basic set of registers, instructions and addressing 
modes. The 80188 processor is upward compatible 
with the 8086,.8088, 80186, and 80286 CPUs. 

Register Set 

The 80188 base architecture has fourteen registers 
as shown in Figures 3a and 3b. These registers are 
grouped into the following categories. 

General Registers 
Eight 16-bit general purpose registers used to con­
tain arithmetic and logical operands. Four of these 
(AX, ex, CX, and OX) can be used as 16-bit registers 
or split into pairs of separate 8-bit registers. 

16·BIT 
REGISTER 

NAME 

AH 

DH 

7 0 

AL 

DL 

SPECIAL 
REGISTER 

FUNCTIONS 

1/0 INSTRUCTIONS 

Segment Registers 
Four 16-bit special purpose registers select, at any 
given time, 'the segments of memory that are immedi­
ately addressable for, code, stack, and data. (For 
usage, refer to Memory Organization.) 

Base and Index Registers 
Four of the general purpose registers may also be 
used to determine offset addresses of operands in 
memory. These registers m~y contain base ad­
dresses or indexes to particular locations within a 
segment. The addressing mode selects the specific 
registers for operand and address calculations. 

Status and Control Registers 
Two 16-bit special purpose registers record or alter 
certain aspects of the 80188 processor state. These 
are the Instruction Pointer Register, which contains 
the offset address of the next sequential instruction 
to be executed, and the Status Word Register, which 
contains status and control flag bits (see Figures 3a 
and 3b). 

Status Word Description 

The Status Word records specific characteristics of 
the result of logical and arithmetic instructions (bits 
0, 2, 4, 6, 7, and 11) and controls the operation of the 
80188 within a given operating mode (bits 8, 9, and 
10). The Status Word Register is 16-bits wide. The 
function of the Status Word bits is shown in Table 2. 

15 0 

OS DATA SEGMENT SELECTOR 

BYTe 
ADDRESSABLE 
18·BIT 
REGISTER 
NAMES 
SHOWN) 

I AX 

OX 

CX 

BX 

BP 

CH 

BH 

CL 

BL 

1 MULTIPLY/DIVIDE 

LOOPISHIFTIREPEAT/COUNT 

} BASE REGISTERS 

CS ~ CODe SEGMENT SELECTOR 

SS . STACK SEGMENT SELECTOR 

ES EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

SI 

01 

SP 

15 

GENERAL 
REGISTERS 

o 

} INDEX REGISTERS 

) STACK POINTER 

15 0 

F I I STATUS WORD 
IP 1-------1 INSTRUCTION POINTER 

STATUS AND CONTROL 
REGISTERS 

Figure 3a. 80188 General Purpose Register Set 

3-444 AFN-01483A 



IAPX 188 

STATUS FLAGS 

CARRY ------------------------, 

PARITY -------------~----__, 

AUXILIARY CARRY -----------------, 

ZERO -----------.-, 
SIGN -----------, 

CONTROL FLAGS 

'------- TRAP FLAG 
'--------- INTERRUPT ENABLE 

'--_________ OIRECTION FLAG 

~ INTEL RESERVED 

Figure 3b. Status Word Format 

Table 2. Status Wo~d Bit Functions manipulation, control transfer, high-level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

Bit Name Function Position 
0 CF Carry Flag-Set on high-order bit 

carry or borrow; cleared otherwise 

2 PF Panty Flag-Set If low-order 8 bits 
of result contain an even number of 
1-blts; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

6 ZF Zero Flag-Set If result IS zero, 
cleared otherwise 

7 SF Sign Flag-Set equal to high-order 
bit of result (0 If positive, 1 If negallVe) 

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next Instruction executes. TF is 
cleared by the single step Interrupt 

9 IF Interrupt-enable Flag-When set, 
maskable Interrupts will cause the 
CPU to transfer control to an Intet-
rupt vector specified location. 

10 OF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index register 
when set. Clearing OF causes 
auto increment. 

11 OF Overflow Flag-Set if the signed 
result cannot be expressed 
within the number of bits in the 
destination operand; cleared 
otherwise 

Instruction Set 

The instruction set is divided into seven categories; 
data transfer, arithmetic, shift/rotate/logical, string. 

An 80188 instruction can reference anywhere from 
zero to several operands. An operand can reside in a 
register, in the instruction itself, or in memory. Spe­
cific operand addressing modes are discussed later 
in this data sheet. 

Memory Organization 

Memory is organized in sets of segments. Each seg­
ment is a linear contiguous sequence of up to 64K 
(216) 8-bit bytes. Memory is addressed using a two­
component address (a pointer) that consists of a 
16-bit base segment and a 16-bit offset. The 16-bit 
base values are contained in one of four internal 
segment registers (code, data, stack, extra). The 
phYSical address is calculated by shifting the base 
value LEFT by four bits and adding the 16-bit offset 
value to yield a 20-bit physical address (see Figure 5). 
This allows for a 1 MByte physical address size. 

All instructions that address operands in memory 
must specify the base segment and the 16-bit offset 
value. For speed and compact instruction encoding, 
the segment register used for physical address gen­
eration is implied by the addressing mode used (see 
Table 3). These ruies follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 

3-445 AFN-01483A 



iAPX'188 

GENERAL PURPOSE , MOVS Move byte or word string 

MOV Move byte or word INS Input bytes or word string 

PUSH Push word onto stack OUTS Output bytes or word string 

POP Pop word off stack CMPS Compare byte or word string 

PUSHA Push all registers on stack SCAS Scan byte or word string 

paPA Pop all registers from stack LaDS Load byte or word string 

XCHG Exchange byte or word STOS ' Store byte or word stnng 

XLAT Translate byte REP Repeat 

INPUT/OUTPUT REPE/REPZ Repeat while equal/zero 

IN Input byte or word REPNE/REPNZ Repeat while not equal/not zero 

OUT Output byte or word 
LOGICALS 

ADDRESS OBJECT 
,NOT "Not" byte or word 

LEA Load effective address 
AND "And" byte or word 

LDS Load pointer using DS 
OR "Inclusive or" byte or word 

LES Load pOinter using ES 
XOR "Exclusive or" byte or word 

FLAG TRANSFER 
TEST "Test" byte or word 

LAHF Load AH register from flags 
SHIFTS 

SAHF Store AH register in flags 
SHUSAL Shift logical/arithmetic left byte or word 

PUSHF Push flags ont6 stack 
SHR Shift logical right byte or word 

POPF Pop flags off stack 
SAR Shift arithmetic right byte or word 

ROTATES 
ADDITION ROL Rotate left byte or word 

ADD Add byte or word ROR Rotate right byte or word 
ADC Add byte or word with carry RCL Rotate through carry left byte or word 
INC Increment byte or word by 1 RCR Rotate through carry right byte or word 
AAA ASCII adjust for addition 

DAA DeCimal adjust for addition FLAG OPERATIONS 

SUBTRACTION STC Set carry flag 

SUB Subtract byte or word CLC Clear cany flag 

SBB Subtract byte or word with borrow CMC Complement carry flag 

DEC Decrement byte or word by 1 STD Set direction flag 

NEG Negate byte or word CLD Clear direction flag 

c:;MP Compare byte or word STI Set interrupt enable flag 

AAS ASCII adlustfor subtraction CLI Clear interrupt enable flag 

DAS DeCimal adjust for subtraction EXTERNAL SYNCHRONIZATION 

MULTIPLICATION HLT Halt untit Interrupt Or reset 

MUL Multlplybyte or word unsigned WAIT Wait for TEST pin active 

IMUL Integer multiply byte or word ESC Escape to extension processor 

AAM ASCII adjust for multiply LOCK Lock bus during next Instruction 

DIVISION NO OPERATION 

DIV Divide byte or word unsigned Nap No operation 

IDIV Integer divide byte or word HIGH LEVEL INSTRUCTIONS 
AAD ASCII adjust for division ENTER Format stack for procedure entry 

CBW Convert byte to word LEAVE Restore stack for procedure eXit 

CWD Convert word to doubleword BOUND Detects values outside prescribed range 

Figure 4. iAPX 188 Instruction Set 

3-446 AFN-01483A 



iAPX 188 

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 
JAlJNBE Jump If abovelnot below nor equal CALL Call procedure 

JAE/JNB Jump If above or equal/not below RET Return from procedure 

JB/JNAE Jump if below/not above nor equal JMP Jump 

JBE/JNA Jump If below or equal/not above 

JC Jump if carry ITERATION CONTROLS 
JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal LOOP Loop 

JGE/JNL Jump If greater or equal/not less LOOPE/LOOPZ Loop If equal/zero 

JUJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop If not equal/not zero 

JLE/JNG Jump if less or equal/not greater JCXZ Jump If register CX = 0 

JNC Jump If not carry 

JNE/JNZ Jump If not equal/not zero INTERRUPTS 
JNO Jump If not overflow 

JNP/JPO Jump If not parity/panty odd INT Interrupt 

JNS Jump If not sign INTO Interrupt if overflow 

JO Jump If overflow IRET Interrupt return , 

JP/JPE Jump If panty/panty even 

JS Jump If sign 

Figure 4. iAPX 188 Instruction Set (continued) 

To access operands that do nOt reside in one of the 
four immediately available segments, a full 32-bit 
pointer can be used to reload both the base (seg­
ment) and offset values. 

lH'FTLEFT4BITSI 1 2 3 4 I~~~~ENT} 
15 0 LOGICAL 

I 1 2 3 4 : 0 I ";'1 ----i ADDRESS 

19 to. 0 0 2 2. IOFFSET 

[~[I~o~O~2:!2jl .•. __ ~1~5::J 0 
15 0 

11 2 3 6 2 I PHVSICAL ADDRESS 

19 o 
TO MEMORY 

Figure 5. Two Component Address 

Table 3. Segment Register Selection Rules 

Memory 
Reference 

Segment 
Register Implicit Segment 

Needed Used Selection Rule 

Instructions Code (CS) Instruction prefetch and 
immediate data. 

Stack Stack (SS) All stack pushes and 
pops; any memory refer-
ences which use BP Reg-
ister as a base register. 

External Extra (ES) All string instruction 
Data references which use 
(Global) the 01 register as an 

index. 
Local Data Data (OS) All other data references. 

3-447 

MODULE A 

r - - -, 
I I 

§ODE 

DATA 

MODULE B f-------t----, 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

PROCESSD 
DATA 
BLOCK 2 

I I 
l ___ J 

MEMORY 

CPU 

CODE 

DATA 

STACK 

EXTRA 

SEGMENT 
REGISTERS 

Figure 6. Segmented Memory Helps 
Structure Software 

AFN-01483A 



IAPX 188 

Addressing Modes 

The 80188 provides eight categories of addressing 
modes to specify operands. Two addressing modes 
are provided for instructions that operate on register 
or immediate operands: . 

• Register Operand Mode: The operand is located in 
one of the 8- or 16-bit general registers. 

• Immediate Operand Mode: The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two 16-bit components: a seg­
ment base and an offset. The segment base is sup­
plied by a 16-bit segment register either implicity 
chosen by the addressIng mode or explicitly chosen 
by a segment override prefix. The offset, also called 
the effective address, is calculated by summing any 
combination of the following three address 
elements: 

• the displacement (an 8- or 16-bit immediate value 
contained in the instruction); 

• the base (contents of either the BX or BP base 
registers); and 

• the index (contents of either the 51 or 01 index 
registers). 

Any carry out from the 16-bit addition is ignored. 
Eight-bit displacements are sign extended to 16-bit 
values. 

Combinations of these three address elements 
define the six memory addressing modes, described 
below. 

• Direct Mode: The operand's offset is contained in 
· the instruction as an 8- or 16-bit displacement 

element. 

• Register Indirect Mode: The operand's offset is in 
one of the registers 51, 01, BX, or BP. 

• Based Mode: The operand's offset is the sum of an 
8- or 16-bit displacement and the contents of a 
base register (BX or BP). 

• Indexed Mode: The operand's offset is the sum of 
an 8- or 16-bit displacement and the contents of an 
index register (51 or 01). 

• Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an index 
register. 

• Based Indexed Mode with Displacement: The 
operand's offset is the sum of a base register's 
contents, an index register's contents, and an 8- or 
16-bit displacement. 

Data Types 

The 80188 directly supports the following data types: 

• Integer: A signed binary numeric value contained 
in an 8-bit byte or a 16-bit word. All operations 
assume a 2's complement reptesentation. Signed 

32- and 64-bit integers are supported using the 
iAPX 188/20 Numeric Data Processor. 

• Ordinal: An· unsigned binary numeric value con­
tained in an 8-bit byte or a 16-bit word. 

• Pointer: A 16- or 32-bit quantity, composed of a 
16-bit offset component or a 16-bit segment base 
component in addition to a 16-bit offset 
component. 

• String: A contiguous sequence of bytes or words. 
A string may contain from 1 to 64K bytes. 

• ASCII: A byte representation of alphanumeric and 
control characters using the ASCII standard of 
character representation. 

• BCD: A byte (unpacked) representation of the de­
cimal digits 0-9. 

• Packed BCD: A byte (packed) representation of 
two decimal digits (0-9). One digit is stored in each 
nibble (4-bits) of the byte. 

• Floating Point: A signed 32-, 64-, or 80-bit real 
number representation. (Floating point operands 
are supported using the iAPX 188/20 Numeric Data 
Processor configuration.) 

In general, individual data elements must fit within 
defined segment limits. Figure 7 graphically 
represents the data types supported by the iAPX 188. 

I/O Space 

The I/O space consists of 64K 8-bit or 32K 16-bit 
ports. Separate instructions address the I/O space 
with either an 8-bit port address, specified in the 
instruction, or a 16-bit port address in the OX regis­
ter. 8-bit port addresses are zero extended such that 
A1s-Aa are LOW I/O port addresses OOF8(H) through 
OOFF(H) are reserved. 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Status Word) are saved on the stack to 
allow resumption of the interrupted program. Inter, 
rupts fall into three classes: hardware initiated, INT. 
instructions, and instruction exceptions. Hardware' 
initiated interrupts occur in response to an external 
input and are classified as non-maskable or 
maskable. 

3-448 



7 0 

SIGNED rrrrrrrrI 
BYTE L.L.....!--I 

SIGN SIT J L..-.--..J 
MAGNITUDE 

7 0 
UNSIGNED ('TTT1'TTT1 

SVTE L-:...-...J 
~ 
MAGNITUDE 

1!:11. +1 e 1 0 

S~~:g II iii iii Iii iii iii 
SIGN SIT J .... 1 L.;:M"iiS:r.AG"'N:;;;,TMoUn.DE;---' 

SIGHED 31 +3 +2 1615 +1 0 

~~:~~ II iii iii Iii II iii Iii 'I iii Iii iii iii 
SIGN SITJ I..IL...;;M"'S"-S __ -=-==.-___ --' 

MAGNITUD~ 

. +7 +6 +5 +4 +3 +2 +1 
SIGNED 63 48 47 3231 Hi 1!) 0 

w~~~11 I I J I I 
SIGN SIT J,L..'-.;:M""SS"----:M"AG';;'NW,TOOU;;;D.-E ____ -' 

15 +1 0 

UNS:~~g Ii, iii iii iii Iii r I 
,Lyse 

MAGNITUDE 

BINARY 7 +N 0 
CODED rrrrTT"l 

DECIMAL L-:...-...J 
(SCD) DI~~~ N 

7 +N 0 

ASCII~ 
ASCII 

CHARACTERN 

7 +N 0 
PACKED J'TTTTTTTl 

SCD '----L.....J 
l-l 
MOST 
SIGNIFICANT DIGIT 

715 +N 0 

STR~NG c::!::J ... 
SVTEWORDN 

7 +1 07 0 

1"'111111111"11 
SCD SCD 

DIGIT 1 DIGIT 0 

7 +1 07 0 

liil/iiill"I"r I 
ASCII ASCII 

CHARACTER, CHARACTERo 

7 +1 07 0 0 

liiilii"lii'I"'1 
l-l 
LEAST 

SIGNIFICANT DIGIT 

715 +1 0715 0 0 

l'''liiiriiliii I 
SVTE WORD 1 SVTE WORD 0 

31 +3 +2 1615 +1 0 

POINTER Iii iii iii iii Iii iii i 'I i,1 iii iii iii I 
SELECTOR OFFSET 

79+9 +8 +7 +6 +5 +4 +3 +2 +1 

EXPONENT MAGNITUDE 

NOTE: 
'SUPPORTED BY IAPX 188/20 NUMERIC DATA PROCESSOR 

CONFIGURATION 

Figure 7. IAPX 188 Supported Data Types 

IAPX 188 

3-449 

Programs may cause an interrupt with an INT in­
struction. Instruction exceptions occur when an un­
usual condition, which prevents further instruction 
processing, is detected while attempting to execute 
an instruction. If the exception was caused by ex­
ecuting an ESC instruction with the ESC trap bit set 
in the relocation register, the return instruction will 
point to the ESC instruction, or to the segment over­
ride prefix immediately preceding the ESC instruc­
tion if the prefix was present. In all other cases, the 
return address from an exception will point at the 
instruction immediately following the instruction 
causing the exception. 

A table containing up to 256 pointers defines the 
proper interrupt service routine for each interrupt. 
Interrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. Table 4 shows the 
80188 predefined types and default priority levels. 
For each interrupt, an 8-bit vector must be supplied 
to the 80188 which identifies the appropriate table 
entry. Exceptions supply the interrupt vector inter­
nally. In addition, internal peripherals and non­
cascaded external interrupts will generate their own 
vectors through the internal interrupt controller. INT 
instructions contain or imply the vector and allow 
access to all 256 interrupts. Maskable hardware in­
itiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. 
Non-maskable hardware interrupts use a predefined 
internally supplied vector. 

Interrupt Sources 

The 80188 can service interrupts generated by soft­
ware or hardware. The software interrupts are 
generated by specific instructions (INT, ESC, unused 
Op, etc.) or the results of conditions spepified by 
instructions (array bounds check, INTO, Ol\/, 101\/, 
etc.). All interrupt sources are serviced by an indirect 
call through an element of a vector table. This vector 
table is indexed by using the interrupt vector type 
(Table 4), multiplied by four. All hardwar~generated 
interrupts are sampled at the end of each instruction. 
Thus, the software interrupts will begin 'service first. 
Ol'1ce the service routine is entered and Jnterrupts 
are enabled, any hardware source of sufficient 
priority can interrupt the service routine in progress. 

The software generated 80188 interrupts are described 
below. 

DIVIDE ERROR EXCEPTION (TYPE 0) , 
Generated when a OIV or JDIV instruction quotient 
cannot be expressed in the number of bits in the 
destination. 

AFN-<l1483A 



iAPX 188 

Table 4. 80188 Interrupt Vectors 

Vector Default Related 
Interrupt Name Type Priority Instructions 

Divide Error 0 '1 DIV,IDIV 
Exception 

Single Step 1 12"2 All 
Interrupt / 

NMI 2 1 All 
Breakpoint 3 '1 INT 

Interrupt 
INTO Detected 4 '1 INTO 

Overflow 
Exception 

Array Bounds 5 '1 BOUND 
Exception 

Unused-Opcode 6 '1 Undefined 
Exception Opcodes 

ESC Opcode 7 '1'" ESC Opcodes 
Exception 

Timer 0 Interrupt 8 2A .... 
Timer 1 Interrupt 18 2B .... 
Timer 2 Interrupt 19 2C .... 
Reserved 9 3 
DMA 0 Interrupt 10 4 
DMA 1 Interrupt 11 5 
INTO Interrupt 12 6 
INTl Interrupt 13 7 
INT2 Interrupt 14 8 
INT3 Interrupt 15 9 

NOTES: 
'1. These are generated as the result of an instructIOn 

execution. 
"2 This IS handled, as In the 8088 

.... 3 All three timers constitute one source of request to the 
interrupt controller The Timer Interrupts all have the same 
default Priority level With respect to all other Interrupt 
sources. However, they have a defined priority ordering 
amongst themselves (Priority 2A IS higher Priority than 
26.) Each Timer Interrupt has a separate vector type 
number 

4. Default priorities for the Interrupt sources are used only if 
the user doe~ not program each source Into a unique 
Priority level 

"'5. An escape opcode Will cause a trap only If the proper bit is 
set In the peripheral control block relocation register. 

SINGLE-STEP INTERRUPT (TYPE 1) 
Generated after most instructions if the TF flag is set. 
Interrupts will not be generated after prefix instruc­
tions (e,g., REP). instructions which modify segment 
registers (e.g., POP OS), or the WAIT instruction. 

NON-MASKABLE INTERRl,IPT-NMI (TYPE 2) 
An external interrupt source which cannot be 
masked. 

BREAKPOINT INTERRUPT (TYPE 3) 
A one-byte version of the INT instruction, It uses 12 
as an index into the service routine address table 
(because it is a type 3 interrupt). 

INTO DETECTED OVERFLOW EXCEPTION 
(TYPE 4) 
Generated during an INTO instruction if the OF bit is 
set. 

ARRAY BOUNDS EXCEPTION (TYPE 5) 
Generated during a BOUND instruction if the array 
index is outside the array bounds', The array bounds 
are located in memory at a location indicated by one 
of the instruction operands. The other operand indi­
cates the value of the index to be checked. 

UNUSED OPCODE EXCEPTION (TYPE 6) 
Generated if execution is attempted on undefined 
opcodes. 

ESCAPE OPCODE EXCEPTION (TYPE 7) 
Generated if execution is attempted of ESC opcodes 
(08H-OFH). This exception will only be generated if a 
bit in the relocation register is set. The return ad­
dress of this exception will point to the ESC instruc­
tion causing the exception. If a segment override 
prefix preceded the ESC instruction, the return ad­
dress will point to the segment override prefix. 

Hardware-generated interrupts are divided into two 
groups: maskable interrupts and non-maskable in­
terrupts. The 80188 provides maskable hardware in­
terrupt request pins INTO-INT3. In addition, 
maskable interrupts may be generated by the 80188 
integrated OMA controller and the integrated timer 
unit. The vector types for these interrupts is shown in 
lable 4. Software enables these inputs by setting the 
interrupt flag bit (IF) in the Status Word. The interrupt 
controller is discussed in the peripheral section of 
this data sheet. 

Further maskable interrupts are disabled while 
servicing an interrupt because the IF bit is reset as 
part of the response to an interrupt or e>sception. The, 
saved Status Word will reflect the enable status of the 
processor prior to the interrupt. The interrupt flag 
will remain zero unless specifically set. The interrupt 
return instruction restores the Status Word, thereby 
restoring the original status of IF bit. If the interrupt 
return re-enables interrupts, and another interrupt is 
pending, the 80188 will immediately service the 
highest-priority interrupt pending, i.e., no instruc­
tions of the main line program will be executed. 

NOh-Maskable Interrupt Request (NMI) 

A non-maskable interrupt (NMI) is also provided. 
This interrupt is serviced regardless of the state of 
the IF bit. A typical use of NMI would be to activate a 
power failure routine. The activation of this input 

3450 AFN-01483A 



iAPX 188 

causes an interrupt with an internally supplied vector 
value of 2. No external interrupt acknowledge se­
quence is performed. The IF bit is cleared at the 
beginning of an NMI interrupt to prevent maskable 
interrupts from being serviced. 

Single-Step Interrupt 

The 80188 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is called 
the single-step interrupt and is controlled by the 
single-step flag bit (TF) in the Status Word. Once this 
bit is set, an internal single-step interrupt will occur 
after the next instruction has been executed. The 
interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single-stepped. 

Initialization and Processor Reset 

Processor initialization or startup is accomplished by 
driving the RES input pin LOW. RES forces the 80188 to 
terminate all execution and local bus activity. No 
instructionor bus activity will occur as long as RES is 
active. After RES becomes inactive and an internal pro­
cessing interval elapses, the 80188 begins execution 
withthe instruction at physical location FFFFO(H). RES 
also sets some registers to predefined values as shown 
in Table 5. ; 

Table 5. 80188 Initial Register State after RESET 

Status Word F002(H) 
Instruction Pointer OOOO(H) 
Code Segment FFFF(H) 
Data Segment OOOO(H) 
Extra Segment OOOO(H) 
Stack Segment OOOO(H) 
Relocation Register 20FF(H) 
UMCS' FFFB(H) 

THE 80188 COMPARED TO THE 80186 

The 80188 CPU is an 8-bit processor designed around 
the 80186 internal structure. Most internal functions of 
the 80188 are identical to the equivalent 80186 func­
tions. The 80188 handles the external bus the same 
way. the 80186 does with the distinction of handling 
only 8 bits at a time. Sixteen bit operands are fetched 
or written in two consecutive bus cycles. Both proces­
sors will appear identical to the software engineer, 
with the exception of execution time. The internal 
register structure is identical and all instructions have 

3-451 

the same end result. The differences between the 
80188 and 80186 are outlined below. Internally, there 
are three differences between the 80188 and the 
80186. All changes are related to the 8-bit bus interface. 
• The queue length is 4 bytes in the 80188, whereas 

the 80186 queue contains 6 bytes, or three words. 
The queue was shortened to prevent overuse of the 
bus by the BIU when prefetching instructions. This 
was required because of the additional time neces­
sary to fetch instructions 8 bits at a time. 

• To further optimize the queue, the prefetching algo­
rithm was changed. The 80188 BIU will fetch a new 
instruction to load into the queue each time there is 
a l-byte hole (space available) in the queue. The 
80186 waits until a 2-byte space is available. 

• The internal execution time of the instruction is 
affected by the 8-bit inte·rface. All 16-bit fetches and 
writes from/to memory take an additional four clock 
cycles. The CPU may also be limited by the speed of 
instruction fetches when a series of simple opera­
tions occur. When the more sophisticated instruc­
tions of the 80188 are being used, the queue has 
time to fill and the execution proceeds as fast as the 
execution unit will allow. 

The 80188 and 80186 are completely software compat­
ible by virture of their identical execution units. Soft­
ware that is system dependent may not be completely 
transferable, but software that is not system depen­
dent will operate equally well on an 80188 or an 80186. 

The hardware interface of the 80188 contains the 
major differences between the two CPUs. The pin 
assignments are nearly identical, however, with the 
following functional changes. 
• A8-A15- These pins are only address outputs on 

the 80188. These address lines are latched internally 
and remain valid throughout a bus cycle in a manner 
similar to the 8085 upper address lines. 

• BHE has no meaning on the 80188 and has been 
eliminated. 

iAPX 188 CLOCK GENERATOR 

The iAPX 188 provides an on-chip clock generator 
for both internal and external clock generation. The 
clock generator features a crystal oscillator, a divide­
by-two counter, synchronous and asynchronous 
ready inputs, and reset circuitry. 

AFN-01483A 



iAPX 188 

Oscillator 

The oscillator circuit of the iAPX 188 is designed to 
be used with a pa~allel resonant fundamental mode 
crystal. This is used as the time base for the iAPX 186. 
The crystal frequency selected will be double the 
CPU clock frequency. Use of an LC or RC circuit is not 
recommended with this oscillator. If an external oscil­
lator is used, it can be connected directly to input pin 
X1 in lieu of a crystal. The output of the oscillator is 
not directly available outside the iAPX 188. The 
recommended crystal configuration is shown in 
Figure 8. 

..,...... 20pF 

-
X, -a x MHz CRYSTAL 

X, -T-
80188 ::E: 20pF 

':;" 

80186 (8 MHz) 

80186-6 (6 MHz) 

Figure 8_ Recommended iAPX 188 Crystal 
Configuration 

Clock Generator 

x 

16 

12 

The iAPX 188 clock generator provides the 50% duty 
cycle processor clock for the iAPX 188. It does this by 
dividing the oscillator output by 2 forming the sym- . 
metrical clock. If an external oscillator is used, the 
state of the clock generator will change on the falling 
edge of the oscillator signal. The CLKOUT pin pro­
vides the processor clock signal for use outside the 
iAPX 188., This may be used to drive other system 
components. All timings are referenced to the output 
clock. 

READY Synchronization 

The iAP~ 188 provides both syncbronous and asynch­
ronous ready inputs. Asynchronous ready synchroniza­
tion is accomplished by circuitry which samples ARDY 
in the middle ofT2, T3 and again inthe middle of each Tw 
until ARDY is sampled HIGH. One-half CLKOUT cycle 
of resolution time is used. Full synchronization is per­
formed only onthe rising edge of ARDY, i.e., the falling 

edge of ARDY must be synchronized to the CLKOUT 
signal if it will occur during T2, T3 or Tw. HIGH-to-LOW 
tra'lsitions of ARDY must be performed synchronously 
to the CPU clock. 

A second ready input (SRDY) is provided to interface 
with externally synchronized ready signals. This input is 
sampled at the end of T 2, T3 and again atthe end of each 
Tw until it is sampled HIGH. By using this input rather 
than the asynchronous ready input, the half-clock cycle 
resolution time penalty is eliminated. 

This input must satisfy set-up and hold times to 
guarantee proper operation of the circuit. 

In addition, the iAPX 188, as part of the integrated 
chip-select logic, has the capability to program WAIT 
states for memory and peripheral blocks. This is dis-

. cussed in the Chip Select/Ready Logic description. 

RESET Logic 

The iAPX 188 provides both a RES input pin and a 
synchronized RESET,pin for use with other system 
components. The RES input pin on the iAPX 188 is 
provided with hysteresis in order to facilitate power­
on Reset generation via an RC network. RESET is 
guaranteed to remain active for at least five clocks 
given a RES input of at least six clocks. RESET may 
be delayed up to two and one-half clocks behind 
RES. 

Multiple iAPX 188 processors may be synchronized 
through the RES input pin, since this input resets 
both the processor and divide-by-two internal count­
er in the clock generator. In order to insure that the 
divide-by-two counters all begin counting at the 
same time, the active going edge of RES must satisfy 
a 25 ns setup time before the falling edge of the 
80188 clock input. In addition, in order to insure that 
all CPUs begin executing in the same clock cycle, the 
reset must satisfy a 25 ns setup time before the rising 
edge of the CLKOUT signal of all the processors. 

3-452 AFN-01483A 



inter IAPX 188 

Oscillator 

The oscillator circuit of the iAPX 188 is designed to 
be used with a parallel resonant fundamental mode 
crystal. This is used as the time base for the iAPX 186. 
The 'crystal frequency selected will be double the 
CPU clock frequency. Use of an LC or RC circuit is not 
recommended with this oscillator. If an external oscil­
lator is used, it can be connected directly to input pin 
X1 in lieu of a 'crystal. The output of the oscillator is 
not directly available outside the iAPX 188. The 
recommended crystal configuration is shown in 
Figure 8. 

~2OPf. 

X, 

515 MHz CRYSTAL 

x, -==r=-
80188 ~ -:r::-20 pl. 

-=-

Figure 8. Recommended IAPX 188 Crystal 
Configuration 

Clock Generator 

The iAPX 188 clock generator provides the 50% duty 
cycle processor clock for the iAPX 188. It aoes this by 
dividing the oscillator output by 2 forming the sym­
metrical clock. If an external oscillator is used, the 
state of the clock generator will change on the falling 
edge of the oscillator signal. The CLKOUT pin pro­
vides the .processor clock signal for use outside the 
iAPX 188., This may be used to drive other system 
components. All timings are referenced to the output 
clock. 

READY Synchronization 

The iAPX 188 provides both synchronous and asynch­
ronous ready inputs. Asynchronou$ ready synchroniza­
tion is accomplished by circuitry which samples ARDY 
in the middle of T 2, T3 and again in ~he middle of each Tw 
until, ARDY is sampled HIGH. One-half CLKOUT cycle 
of resolution time is used. Full synchronization is per­
formed only onthe rising edge of ARDY, I.e., the falling 

eqge of ARDY must be synchronized to the CLKOUT 
signal if it will occur during T2, T3 or Tw. HIGH-to-LOW 
transitions of ARDY must be performed synchronously 
to the CPU clock. 

A second ready input (SRDY) is provided to in,erface 
with externally synchronized ready signals. This input is 
sampled at the end of T2, T3 and again at the end of each 
Tw until it is sampled HIGH. By Using this input rather 
than the asynchronous ready input, the half-clock cycle 
resolution time penalty is eliminated. 

This input must satisfy set-up and hold times to 
guarantee proper operation of the circuit. 

3453 

In addition, the iAPX 188, as part of the integrated 
chip-select logic, has the capability to program WAIT 
states for memory and peripheral' blocks. This is dis­
cussed in the Chip Select/Ready Logic description: 

RESET Logic 

The iAPX 188 provides both a RES input pin and a 
synchronized RESET pin for use with other system 
components. The RES input pin on the iAPX 188 is 
provided with hysteresis in order to facilitate power­
on Reset generation via an RC network. RESET is 
guaranteed to remain active for at least five clocks 
given a RES input of at least six clocks. RESET may 
be delayed up to two and one-half 'clocks behind 
RES. 

Multiple iAPX 188 processors may be synchronized 
through the RES input pin, since this input resets 
both the processor and divide-by-two internal count­
er in the clock generator. In order to insure that the 
divide-by-two counters all begin counting at the 
same time, the active going edge of RES must satisfy 
a 25 ns setup time before the falling edge of the 
80188 clock input. In addition, in order to insure that 
all CPUs begin executing in 'the same clock cycle, the 
reset must satisfy a 25 ns setup time before the rising 
edge of the CLKOUT signal of afl the processors. 

AFN-01483A 



IAPX 188 

INTERNAL PERIPHERAL INTERFACE 

All the iAPX 188 integrated peripherals are con­
trolled via 16-bit registers contained within an inter­
nal 256-byte control block. This control block may be 
mapped into either memory or 1/0 space. Internal 
logic will recognize the address and respond to the 
bus cycle. During bus cycles to internal registers, the 
bus controller will sigl1al the operation externally 
(i.e., the RD, WR, status, address, data, etc., line~ will 
be driven as in a normal bus cycle), but 07-0, SROY, 
and AROY will be ignored. The base address of the 
control block must be on an even 256-byte boundary 
(i.e., the lower 8 bits of the base address are all 
zeros). All of the defined registers within this control 
block may be read or written by the 80188 CPU at any 
time. The location of any register contained within 
the 256-byte control block is determined by the cur­
rent base address of the control block. 

The control block base address is programmed via a 
16-bit relocation register contained within the con­
trol block at offset FEH from the base address of the 
control block (see Figure 9). It provides the upper 12 
bits of the base address of the control block. Note 
that mapping the control register block into an ad­
dress range corresponding to a chip-select range is 
not recommended (the chip select circuitry is dis­
cussed later in this data sheet). In addition, bit 12 of 
this register determines whether the control block 
will be mapped into 1/0 or memory space. If this bit is 
1, the control block wi II be .Iocated in memory space, 
whereas if the bit is 0, the control block will be lo­
cated in 1/0 space. If the control register blOCk is 
mapped into I/O space, the upper 4 bits of the base 
address must be programmed as 0 (since 1/0 ad­
dresses are only 16 bits wide). 

In addition to providing relocation information for 
'the control block, the relocation register contains 
bits which place the interrupt controller into iRMX 
mode, and cause the CPU to interrupt upon en­
countering ESC instructions. At RESET, the reloca­
tion register is set to 20FFH. This causes thf3 control 
block to start at FFOOH in 1/0 space. An offset map 
of the 256-byte control register block is shown in 
Figure 10. 

The integrated iAPX 188 peripherals operate semi­
autonomously from the CPU. Access to them for the 
most part is via software readlwrite of the control and 
data locations in the control block. Most of these 
registers can be both read and written. A few 
dedicated lines, such as interrupts and DMA request 
provide real-time communication between the CPU 
and peripherals as il1 a more conventional system 
utilizing discrete peripheral blocks. The overall inter­
action and function of the peripheral blocks has not 
substantially changed. The data access from/to the 
256-byte internal control block will always be 16-bit 
and done in one bus cycle. 

CHIP-SELECT/READY GENERATION 
LOGIC 

The iAPX 188 contains logic which provides pro­
grammable chip-select generation ·for both 
memories and peripherals. In addition, it can be pro­
grammed to provide READY (or WAIT state) genera­
tion. It can also provide latched address bits A1 and 
A2. The chip-select lines are active for all memory 
and 1/0 cycles in their programmed areas, whether 
they be generated by the CPU or by the integrated 
DMA unit. 

Memory Chip Selects 

The iAPX 188 provides 6 memory chip select outputs 
for 3 address areas: upper memory, lower memory, 
arid midiange memory. One each is provided for up~ 
per memory and lower memory, while four are pro­
vided for midrange memory. 

The range for each chip select is user-programmable 
and can be set ~o 2K, 4K, 8K, 16K, 32K, 64K, 128K 
(plus 1 K and 256K for upper and lower chip selects). 
In addition, the beginning or base address of the ' 
midrange memory chip select may also be selected. 
Only one chip select may be programmed to be ac­
tive for any memory location at a time. All chip select 
sizes are in bytes. 

AFN-Il1483A 



IAPX 188 

15 14 13 12 11 10 9 I 7 

OFFSET: FEHI ET !AMX! X !MIlO! Aelocatlon Add .... Bits R1B-RI 

ET = ESC Trap 1 No ESC Trap (110) 
MIlO = Aeglator block Iocaled In Mamory 1 ~O sto- (1/01 
RMX = Normal Interrupt Conlroller mode IIAMX compatible 

Interrupt Conlroller mode (11/1) 

Figure 9. Relocation Register 

Relocation Register 

DMA Deocrlptoro Channell 

DMA DellCrlptora Channel 0 

Chlp-Selecl Conlrol Reglstero 

Timer 2 Conlrol Reg_a 

Timer 1 COnirol Reglatero 

Timer 0 Control Reglstera 

Interrupt COnlroller Reg_a 

,OFFSET 

FEH 

DAH 

DOH 

CAH 

COH 

AIH 

AOH 

88H 

80H 
5EH 

58H 
56H 

SOH 

3EH 

20H 

Figure 10. Internal Register Map 

Upper Memory CS 

The. iAPX 188 provides a chip select,'called UCS, for 
the top of memory. The top of memory is usually used 
as the system memory because after re,set the iAPX 
188 begins executing at memory location FFFFOH. 

The upper limit of memory defined by this chip select 
is always FFF'FfH, whiia the lower limit is program­
mable. By programming the lower limit, the size of 
the select block is also .defined. Table 7 shows the 
relationship between the base address selected and 
the size of the memory block obtained. 

3-455 

Table 7. UMCS Programming Values 

Starting 
Address Memory UMCS Value 

(Base Block (Assuming 
Address) Size RO=R:I =R2=0) 

FFCOO 1K FFF8H 
FF800 2K FFB8H 
FFOOO 4K FF38H 
FEOOQ 8K FE38H 
FCOOO 16K FC38H 
F8000 32K F838H 
FOOOO 64K F038H 
EOOOO 128K E038H 
COOOO 256K C038H 

The lower limit cif this memory block is defined' in the 
UMCS register (s~e Figure 11). This register is at 
olfset AOH in the internal control block. The legElI 
values for bits 6-13 and the "resulting starting ad­
dress and memory block sizes are given in Table 7. 
Any combination of bits 6-13 not shown in Taple 7 
will result in undefined operation. After reset, the 
UMCS register is programmed for a 1 K area. It must 
be reprogrammed if a larger upper memory area ill 
desired. 

Any internally generated 2Q-bit address whose upper 
16 bits are greater than or equal to UMCS (with bits 
0-5 "0") will cause UCS to be activated. UMCS bits 
R2-RO are used to specify READY mode for' the area 
of memory defined by this 'chip-select register, as 
explained below. . . 

Lower Memory es 
The iAPX 188 provides a chip select for low memory 
called LCS. The bottom of memory contains the inter­
rupt vector table, starting at location OOOOOH. 

The lower limit of memory defined by this chip select 
is always OH, while the upper limit is programmable. 
By' programming the upper limit, the size of the 
memory block is also defined. Table 8 shows the 
relationship between the upper address selected and 
the· size Of the memory block obtained. 

AFN'()I483A 



iA~X 188 

15 ,14 13 12 11 10 9 8 7 6 4 '2 1 0 

OFFSET: ASH I 1 I Me I M5 I M4 I M3 I M2 I Ml I MO I EX I M~ I 1 I 1 I 1 I R2 I Rl I RO • I 

Figure 13. MPCS Register 

15 9 0 

OFFSET: A6H I u I u I u I u I u I U u I 1 I 1 I 1 I 1 I 1 I 1 I R2 I Rl I RO I 
A19 A13 

Figure 14. MMCS Register 

MMCS bits R2-RO specify READY mode of operation 
for all mid-range chip selects. All devices in mid­
range memory must use the same number of WAIT 
states. 

The 512K block size for the mid-range memory chip 
selects isa special case. When using 512K, the base 
address would have to be at either locations OOOOOH 
or 80000H. If it were to be programmed at OOOOOH 
when the LCS line was programmed. there would be 
an internal conflict between the LCS ready genera­
tion logic and the MCS ready generation logic. 
Likewise, if the base address were programmed at 
80000H, there would be a conflict with the UCS ready 
generation logic. Since the LCS chip-select line does 
not beCome active until programmed, while the UCS 
line is active at reset, the memory base can be set 
only at OOOOOH. If this base address is selected, 
however, the LCS range must not be programmed. 

Peripheral Chip Selects 

The iAPX 188, can generate chip selects for up to 
seven peripher~1 devices. These chip selects are ac­
tive for seven contiguous blocks of 128 bytes above a 
programmable base address. This base address may 
be located in either memory or I/O space. 

Seven CS lines called PCSO-6 are generated by the 
iAPX 188. The base address is user-programmable; 

however itean only be a multiple of 1 K bytes, I.e., the 
least significant 10 bits of the starting address are 
always O. 

PCS5 and PCS6 can also be programmed to provide 
latched address bits A 1, A2. If so programmed, they 
cannot be used as peripheral selects. These outputs 
can be connected directly to the AO, A 1 pins used for 
selecting internal registers of 8-bit peripheral chips. 
This scheme ,simplifies the hardware interface' be­
cause the 8-bit registers of peripherals are simply 
treated as 16-bit registers located on even bound­
aries in I/O space or memory space where only the 
Iqwer 8-bits of the register are significant: the upper 
8-bits are "don't cares." 

The starting address of the peripheral chip-select 
block is defined by the PACS register (see Figure 15). 
This register is located at offset A4H in the internal 
control block. Bits 15-6'01 this register correspond to 
bits 19-10 of the 20-bit Programmable Base Address 
(PBA) of the peripheral chip-select block. Bits 9-0 of 
the PBA of the peripheral chip-select block are all 
zeros. If the chip-select block is located in I/O space, 
bits 12-15 must be programmed zero, since the I/O 
address is only 16 bits wide. Table 10 shows the 
address range of each peripheral chip select with 
respect to the PBA contained in PACS register. 

15 5 3 0 

OFFSET: A4H I u I u I u u 1 u 1 u u 1 u lui u 1 1 11 I 1 1 R2 1 Rl I RO I 
A19 Al0 

Figure 15. PACS Register 

3-456 AFN~l483A 



IAPX 188 

The user should program bits 15-6 to correspond to 
the desired peripheral base location. PACS bits 0-2 
are used to specify READY mode for PCSO-PCS3. 

Table 10. PCS Address Ranges 

PCS Line Active between Locations 

PC SO PBA -PBA+127 
PCS1 PBA+128 -PBA+255 
PCS2 PBA+256 -PBA+383 
PCS3 PBA+384 -PBA+511 
PCS4 PBA+512 -PBA+639 
PCS5 PBA+640 - PBA+ 767 
PCS6 PBA+ 768 - PBA+895 

The mode of operation of the peripheral chip selects 
is defined by the MPCS register (which is also used to 
set the size of the mid-range memory ch'ip-select 
block, see Figure 16). This register is located at offset 
ASH in the internal control block. Bit 7 is used to 
select the function of PCS5 and PCS6, while bit 6 is 
used to select whether the peripheral chip selects 
are mapped into memory or I/O space. Table 11 de­
scribes the programming of these bits. After reset, 
the contents of both the MPCS and the PACS regis­
ters are undefined, however none of the PCS lines 
will be.active until both of the MPCS and PACS regis­
ters are accessed. 

Table 11. MS, EX Programming Values 

Bit Description 

MS 1 = Peripherals mapped into memory space. 
0 = Peripherals mapped mto I/O space. 

EX 0 = 5 PCS lines. A1, A2 provided. 
1 = 7 PCS lines. A 1, A2 are not provided. 

MPCS bits 0-2 are used to specify READY mode for 
PCS4-PCS6 as outlined below. 

READY Generation Logic 

The iAPX 188 can generate a "READY" Signal inter­
nally for each of the memory or peripheral CS lines. 
The number of WAIT states to be inserted for each 
peripheral or memory is programmable to provide 
0-3 wait states for all accesses to the area for which 
the chip select is active. In addition, the iAPX 188 may 
be pr09rammed to either ignore external READY for 

each chip-select range individually or to factor exter­
nal READY with the integrated ready generator. 

READY control consists of 3 bits for each CS line or 
group of lines generated by the iAPX 188. The inter­
pretation of the ready bits is shown in Table 12. 

Table 12. READY Bits Programming 

R2 R1 RO Number of WAIT States Generated 

0 0 0 o wait states, external ROYaiso used. 
0 0 1 1 wait state inserted, external ROY also 

used. 
0 1 0 2 wait states inserted, external ROYaiso 

used. 
0 1 1 3 wait states inserted, external ROYaiso 

used. 
1 0 0 o wait states, external ROY ignored. 
1 0 1 1 wait state inserted, external ROY 

ignored. 
1 1 0 2 wait states inserted, external ROY 

ignored. 
1 . 1 1 3 wait states inserted, external ROY 

ignored. 

The internal ready generator operates In parallel with 
external READY, not in series if the external READY 
is used (R2 = 0). This means, for example, if the 
internal generator is set to insert two wait states, but 
activity on the external READY lines will insert four 
wait states, the processor will only insert four wait 
states, not six. This is because the two wait states 
generated by the internal generator overlapped the 
first two wait states generated by the external ready 
signal. Note that the external ARDYand SRDY lines 
are always ignored during cycles accessing internal 
peripherals. 

R2-RO of each control word specifies the READY 
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS 
set the PCSO-3 READY mode, R2-RO of MPCS set 
the PCS4-6 READY mode. 

Chip Select/Ready Logic and Reset 

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions: 

• All chip-select outputs will be driven HIGH. 
• Upon leaving RESET, the UCS line will be pro­

grammed to provide chip selects to a 1 K block with 
the accompanyi~g READY control bits set at 011 to 

15 14 13 12 11· 10 9 8 7 6 2 1 0 

OFFSET: A8H I 1 I M6 I M5 I M41 M3 I M21 M1 I MO I EX I MS I 1 I 1 I 1 I R2 I R1 I RO I 

Figure 16. MPCS Register 

3-457 AFN-01483A 



inter iAPX 188 

SOURCE 
DEC INC 

Figure 18. DMA Control Register 

DMA Channel Control Word Register 

Each DMA Channel Control Word determines the 
mode of operation for the particular 80188 DMA 
channel. This register specifies: 

• the mode of synchronization; 
• whether interrupts will be generated after the last 

transfer; 
• whether DMA activity will cease after a pro­

grammed number of DMA cycles; . 
• the relative priority of the DMA channel with 

respect to the other DMA channel; 
• whether the source pointer will be incremented; 

decremented, or. maintained constant after each 
transfer; 

• .whether the. source pointer addresses memory or 
I/O space; 

• whether the destination pointer will be incre­
mented,decremented, or maintained constant af­
ter each transfer; and 

• whether the destination pointer will address 
.nemory or 110 space. 

The DMA channel control registers may be changed 
while the channel is operating. However, any 
changes made during operation will affect the cur­
rent DMA transfer. 

DMA Control Word Bit Descriptions 

ST/STOP: Start/stop (1/0) Channel. 

CHG/NOCHG: Change/D.o not change (1/0) 
ST/STOP bit. If this bit is set when 
writing to the control word, the 
STiSTOP bit will be programmed by 
the write to the control "ford. If this 
bit is cleared when writing the con­
trol word, the ST/STOP bit will not 
be altered. This bit is not stored; it 
will always bj! a 0 on read. 

3-458 

INT: 

TC: 

SYN: 
(2 bits) 

SOURCE:INC 

Mira 

DEC 

Enable Interrupts to CPU on byte 
count terminatio"n. 

If set, DMA will terminate when the 
contents of the Transfer Count reg-
ister reach zero. The ST/STOP bit 
will also be reset at this point if TC is 
set. If this bit is cleared, the DMA 
unit will decrement the transfer 
count register for each DMA cycle, 
but the DMA transfer will not stop 
when the contents of the TC register 
reach zero. 

00 No synchronization. 
NOTE: The ST bit will be cleared 
automatically when the contents 
of the TC register reach zero re­
gardless of the state of the TC bit. 

01 Source synchronization. 
10 Destination synchronization. 
11 Unused. 

Increment source pointer by 1 after 
each transfer. 

Source pointer is in MilO space 
(1/0). 

Decrement source pointe( by 1 after 
each transfer. 

DEST: INC Increment· destination pointer by 1 
after each transfer. 

P 

M!IO Destination pointer is in M/IO'space 
(1/0). 

DEC Decrement destination pointer by 1 
after each transfer. 

Channel priority-relative to other 
channel. 

o low priority. 
1 high priority. 

Channels will alternate cycles if 
both set at same priority level. 

AFN-01483A 



iAPX 188 

allow the maximum number of internal wait states 
in conjunction with external Ready consideration 
(i.e., UMCS resets to FFFBH). 

• No other chip select or READY control registers 
have any predefined values after RESET. They will 
not become active until the CPU accesses their 
control registers. Both the PACS and MPCS regis­
ters must be accessed before the PeS lines will 
become active. 

DMA CHANNELS 

The 80188 DMA controller provides two independent 
high-speed DMA channels. Data transfers can occur 
between memory and I/O spaces (e.g., Memory to I/O) 
or within the same space (e.g., Memory to Memory or 
I/O to I/O). Each DMA channel maintains both a 20-bit 
source and destination pointer whicl) can be optionally 
incremented or decremented after each data transfer. 
Each data transfer consumes 2 bus cycles (a minimum 
of 8 clocks), one cycle to fetch data and the other to 
store data. This provides a maximum data transfer rate 
of one MByte/sec. 

DMA Operation 

Each channel has six registers in the control block 
which define each channel's specific operation. The 
control registers consist of a 20-bit Source pointer (2 
words), a 20-bit Destination pointer (2 words), a 16-
bit Transfer Counter, and a 16-bit Control Word. The 
format of the DMA Control Blocks is shown in Table 
13. The Transfer Count Register (TC) specifies the 
number of DMA transfers to be performed. Up to 64K 
byte transfers can be performed with automatic termi­
nation. The Control Word defines the channel's opera­
tion (see Figure 18). All registers may be modified or 
altered during any OllilA activity. Any changes made to 
these registers will be reflected immediately in DMA 
operation. 

Table 13. DMA Control Block Format 

Register Name 

Control Word 
Transfer Count 
Destination Pointer (upper 4 

bits) 
Destination Pointer 
Source Pointer (upper 4 bits 
Source Pointer 

DMA 
CONTROL 

LOGIC 

TIMER REQUEST 

1---__ INTERRUPT 
'-_..,....._...J REQUEST 

Register Address 

Ch.O Ch.1 

CAH DAH 
C8H D8H 
C6H D6H 

C4H D4H 
C2H D2H 
COH DOH 

Figure 17. DMA Unit Block Diagram 

3-459 AFN-01483A 



iAPX 188 

TDRQ 0: Disable DMA requests from timer 
2. 

1: Enable DMA requests from timer 
2. 

Bit3 Bit 3 is' not used. 

If both INC and DEC are specified for the same 
pointer, the pointer will remain constant after each 
cycle. 

DMA Destination and Source Pointer 
Registers 

Each DMA channel maintains a 20-bit source and a 
20-bit destination pointer. Each of these pOinters takes 
up two full 16-bit registers in the peripheral control 
block. The lower four bits of the upper register contain 
the upper' four bits of the 20-bit physical address (see 
Figure 18a). These pOinters may be individually incre­
mented or decremented after each transfer. Each pOin­
ter may poi nt into either memory or I/O space. Since the 
DMA channels can perform transfers to or from odd 
addresses, there is no restriction on values for the poin­
ter registers. 

DMA Transfer Count Register 

Each DMA channel maintains a 16-bit transfer count 
register (TC). This register is decremented after every 
DMA cycle, regardless of the state of the TC bit int he 
DMA Control Register. If the TC bit in the DMA control 
word is set or unsynchronized transfers are pro­
grammed, DMA activity will terminate when the transfer 
count register reaches zero. 

HIGHER 
REGISTER 
ADDRESS 

xxx xxx 

LOWER 
REGISTER 
ADDRESS 

A15-A12 All-A8 

15 

xxx " DON'T CARE 

D.MA Requests. 

Data transfers may be either source or destination 
synchronized, that is either the source of the data or 
the destination of the data may request the data 
transfer. In addition, DMA transfers may be un­
synchronized; that is, the transfer will take place 
continually until the correct number of transfers has 
occurred. When source or unsynchronized transfers 
are performed, the DMA channel may begin another 
transfer immediately after the end of a previousDMA 
transfer. This allows a complete transfer to take place 
every 2 bus cycles or eight clock cycles (assuming no 
wait states). No prefetching occurs when destination 
synchronization is performed, however. Data will not 
be fetched from the source address until the destina­
tion device Signals that it is ready to receive it. When 
destination synchronized transfers are requested, 
the DMA controller will relinquish control of the bus 
after every transfer. If no other bus activity is in­
itiated, another DMA cycle will begin after two pro­
cessor clocks. This is done to allow the destination 
device time to remove its request if another transfer 
is not desired. Since the DMA controller will relin­
quish the bus, the CPU can initiate a bus cycle. As a 
result, a complete bus cycle will often be inserted 
between destination synchronized transfers. These 
lead to the maximum DMA transfer rates shown in 
Table 14. 

Table 14, Maximum DMA Transfer Rates 

Type of 
I Synchronization 

CPU Halted I Selected CPU Running 

Unsynchronized 1 M Bytes/sec 1 M Bytes/sec 
Source Synch 1 M Bytes/sec 1MBytes/sec 
Destination Synch .65MBytes/sec .75MBytes/sec 

XXX A19-A16 

A7-A4 A3-AO 

Figure 18a, DMA Memory Pointer Register Format 

3-460 AFN-01483A 



inter IAPX 188 

Table 8. LMCS Programming Values 

Memory LMCS Value 
Upper Block (Assuming 

Address Size RO=R1 =R2=O) 

003FFH 1K 0038H . oo7FFH 2K 0078H 
OOFFFH 4K 00F8H 
01FFFH 8K 01F8H 
03FFFH 16K 03F8H 
07FFFH 32K 07F8H 
OFFFFH 64K OFF8H 
1FFFFH 128K 1FF8H 
3FFFFH 256K 3FF8H 

The upper limit of this memory block is defined in the 
LMCS register (see 'Figure 12). This register is at 
offset A2H in the internal control block. The legal 
values for bits 6-15 and the resulting upper address 
and memory block sizes are given in Table 8. Any 
combination of bits 6-15 not shown in Table 8 will 
result in undefined operation, After reset, the LMCS 
register value is undefined. However, the LCS chip­
select line will not become active until the LMCS 
register is accessed. 

Any internally generated 20-bit address whose upper 
16 bits are less than or equal to LMCS (with bits 0-5 
"1 ") will cause LCS to be active. LMCS register bits 
R2-RO are used to specify the READY mode for the 
area of memory defined by this chip-select register. 

Mid-Range Memory CS 
The iAPX 188 provides four MCS lines which are 
active within a user-locatable memory block. This 
block can be located anywhere within the iAPX 188 
1 M byte memory address space exclusive of the 
areas defined by UCS and LCS. Both the base ad­
dress and size of this memory block are 
programmable. 

The size of the memory block defined by the mid­
range select lines, as shown in Table 9, is determined 

by bits 8-14 of the MPCS register (see Figure 13). 
This register is at location A8H in the internal control 
block. One and only one of bits 8-14 must be set at a 
time. Unpredictable operation of the MCS lines will 
otherwise occur. Each of the four chip-select lines is 
active for one of the four equal contiguous divisions 
of the mid-range block. Thus, if the total block size is 
32K, each chip select is active for 8K of memory with 
MCSP being active for the first range and MCS3 
being active for the last range. 

The EX and MS in MPCS relate to peripheral 
functionality as descibed a later section. 

Table 9. MPCS Programming Values 

Total Block Individual MPCS Bits 
Size Select Size 14-8 

8K 2K 00000018 
16K 4K 00000108 
32K 8K 00001008 
64K 16K 00010008 
128K 32K 00100008 
256K 64K 01000008 
512K 128K 10000008 

The base address ,of the mid-range memory block is 
defined by bits 15-9, of the MMCS register (see Fig­
ure 14). This register is at offset A6H in the internal 
control block. These bits correspond to bits A19-A13 
of the 20-bit memory address. Bits A12-AO of the 
base address are always O. The base address may be 
set at any integer multiple of the size of the total 
memory block selected. For example, if the mid­
range block size is 32K (or the size of the block for 
which each MCS line is active is 8K), the block could 
be located at 10000H or 18000H, but not at 14000H, 
since the first few integer multiples of a 32K memory 
block are OH, 8000H, 10000H, 18000H, etc. After 
reset, the contents of both of these registers is un­
defined. However, none of the MCS lines will be ac­
tive until both the MMCS and MPCS registers are 
accessed. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OFFSET: AOHI 1 I 1 I u I u I u I u I u I u I u I u I 1 I 1 I 1 I R2 I Rl I RO I 
A19 All 

15 14 13 

OFFSET: A2H I 0 lou 
A19 

Figure 11. UMCS Register 

12 ·11 10 9 2 1 0 

u I iI u u I u I u lu I 1 I 1 I 1 I R2 I Rl I RO I 
All 

Figure 12. LMCS Register 

3-461 '-. AFN-01483A 



IAPX 188, 

DMA Acknowledge 

No explicit DMA acknowledge pulse is provided. 
Since both source and destination pointers a~e 
maintained, a read from a requesting source, or a 
write to a requesting destination, should be used as 
the DMA acknowledge signal. Since the chip-select 
lines ,can be programmed to be active for a given 
block of memory or I/O space, and the DMA pointers 
can be programmed to point to .the same given block, 
a chip-select line could be used to indicate a DMA 
acknowledge. 

DMA Priority 

The DMA: channels may be programmed such that 
one channel is always given priority over the other, or 
they may be programmed such as to alternate cycles 
when both h'ave DMA requests pending. DMA cycles 
always have priority over internal CPU cycles except 
between locked memory accesses or word accesses 
the odd memory locations; however, an external bus 
hold takes priority over an internal DMA cycle. Be­
cause an interrupt request cannot suspend a DMA 
operation and the CPU cannot access memory dur­
ing a DMA cycle, interrupt latency time will suffer 
during sequences, of continuous DMA cycles. An 
NMI request, however, will cause all internal DMA 
activity to halt. This allows the CPU to quickly 
respond to the NMI request. 

DMA Programming 

DMA cycles will occur whenever the ST/STOP bit of 
the',Control Register is set. If synchrohized transfers 

TIMERO ' 

MAX COUNT VAWE 
A 

are programmed, a ,ORO must also "'ave been, 
generated. Therefore, the source and destination 
transfer pointers, and the transfer count register (if 
use,d) must be programmed before this bit is s~t. 

Each DMA register may be modified while the cha'l­
oel is operating. If the CHG/NOCHG bit is cleared 
when the control register is written, the ST/STOP bit 
of the control register will not be modified by the 
write. If multiple channel registers are modified, it is 
recommended that a LOCKED string transfer be 
used to prevent a DMA transfer from occurring be­
tween updates to the channel registers. 

DMA Channels and Reset 

Upon RESET, the DMA channels will perform the 
following actions: 

• The Start/Stop bit for each channel will' be reset to 
STOP., 

• Any transfer in progress is aborted~ 

TIMERS 

The 80188 provides three internal 16-bit programma­
ble timers (see Figure 19). Two of these are highly 
flexible and are connected to four external pins (2 
per timer). They can be used to count external 
events, time external events, generate nonrepetitive 
waveforms, etc. The'third timer is not connected to 
any external pins, and is useful for real-time coding 
and time delay applications. In addition, this third 
timer can be used as a prescaler to the other two, or 
as a DMA request source. 

TIMER 2 

DMA 
REO. 

·12 
INT. 
REO. 

CLOCK MAX COUNT VALUE 
B 

MAX COUNT VAWE 

ALL 16 BIT REGISTERS 

MDDEICONTROL 
WORD 

INTERNAL ADDRESS/DATA BUS 

Figure 19. Timer Block Diagram 

3-462 AFN..Q1483A 



inter IAPX 1,88 

Timer Operation 

The timers are controlled by 11 16-bit registers in the 
internal peripheral control block. The configuration 
of these registers is shown in Table 15. The count 
register contains the current value of the timer. It can 
be read or written at any time independent of 
whether the timer is running or not. The value of this 
register will be incremented fo~ each timer event. 
Each of the timers is equipped with a MAX COUNT 
register, which defines the maximum count the timer 
will reach. After reaching the MAX COUNT register 
value, the timer count value will reset to zero during 
that same clock, i.e., the maximum count value is 
never stored in the count register itself. Timers 0 and 
1 are, in addition, equipped with a second MAX 
COUNT register, which enables' the timers to alter­
nate their count between two different MAX COUNT 
values programmed py the user. If a single MAX 
COUNT register is used, the timer output pin will 
switch LOW for a single clock, 2 clocks after the 
maximum count value has been reached. In the dual 
MAX COUNT register mode, the output pin will'indi- • 
cate which MAX COUNT register is currently in use, 
thus allowing nearly complete freedom in selecting 
waveform duty cycles. For the timers with two MAX 
COUNT registers, the RIU bit in the control register 
dete~mines which is used for the comparison. 

Each timer gets serviced every fourth CPU-clock 
cycle, and thus can operate at speeds up to one­
quarter the internal clock frequency (one-eighth the 
crystal rate). External clocking of the timers may be 
done at up to a rate of one-quarter of the internal 
CPU-clock rate (2 MHz for an 8 MHz CPU clock). Due 
to internal synchronization and pipelining of the 
timer circuitry, a timer output may take up to 6 clocks 
to respond to any individual clock or gate input. 

Since the count registers and the maximum count 
registers are all 16 bits wide, 16 bits of resolution are 
provided. Any Read or Write access to the timers will 
add on~ wait state to the minimum four-clock bus 
cycle, however. This is needed to synchronize and 
coordinate the internal data flows between the inter­
nal timers and the internal bus. 

The timers have several programmable o~tions. 

• All three timers can be set to halt or continue on a 
terminal count. 

• Timers 0 and 1 can select between internal and 
external clocks, alternate between MAX COUNT 
registers and be set to retrigger on external events. 

• Tile timers may be programmed to cause an inter­
rupt on terminal,count. 

These options are selectable via the timer model 
control word. 

Timer Mode/Control Register 

The mode/control register (see Figure 20) allows the 
user to program the specific mode of operation or 
check the current programmed status for any-of the 
three integrated timers. ' 

Table 15. ,Timer Control Block Format 

Register Offset 

Register Name Tmr.O Tmr.1 Tmr.2 

Mode/Con.trol Word 56H 5EH 66H 
Max Count B 54H 5CH not present 
Max Count A 52H 5AH 62H 
Count Register 50H 58H 60H 

15 14 13 12 11 , 5 4 3 2 1 0 

EN I iNti liNT I RIU I 0 1····1 Me I RTG I p I EXT I ALT ICONTI 

Figure 20. Tlmerl Mode/Control Register 

3-463 AFN-01483A 



iAPX 188 

ALT: 
The ALT bit determines' which of two MAX COUNT 
registers is used for count comparison. If ALT = 0, 
register A for that timer is always used, while if ALT = 
1, the comparison will alternate between register A 
and register B when each maximum count is 
reached. This alternation allows the user to change 
one MAX COUNT register while the other is being 
used, and thus provides a method of generating non­
repetitive waveforms. Square waves and pulse out­
puts of any duty cycle are a subset of available 
signals obtained by not changing the final count 
registers. The ALT bit also determines the function of 
the timer output pin. If ALT is zero, the output pin will 
go LOW for one clock, the clock after the maximum 
count is reached. If ALT is one, the output pin will 
reflect the current MAX COUNT register being used 
(0/1 for B/ A). 

CONT: 
Setting the CaNT bit causes the associated timer to 
run continuously, while resetting it causes the timer 
to halt upon maximum count. If CaNT = ° and ALT 
=1, the timer will count to the MAX COUNTregister A 
value, reset, count to the register B value, reset, and 
halt. 

EXT: 
The external bit selects between internal and exter~ 
nal clocking for the timer. The external signal may be 
asynchronous with respect to the 80188 clock. If this 
bit is set, the time( will count LOW-to-HIGH trans­
itions on the input pin. If cleared, it will count an 
internal clock while using the input pin'for control. In 
this mode, the function of the external pin is defined 
by the RTG bit. The maximum input to output transi­
tion latency time may be as much as 6 clocks. 
However, clock inputs may be pipelined as closely 
together as every 4 clocks without· losing clock 
pulses. 

P: 
The prescaler bit is ignored unless internal. clocking 
has been selected (EXT = 0). If the P bit is a zero, the 
timer will count at one-fourth the internal CPU clock 
rate. If the P bit is a one, the output of timer 2 will be 
used as a clock for the timer. Note that the user must 
initialize and start timer 2 to obtain the prescaled 
clock. 

RTG: 
Retrigger bit is only active for internal clocking (EXT 
<=0). In this case it determines the control function 
provided by the input pin. 

If RTG = 0, the input level gates the internal clock on 
and 9ft If the input pin is HIGH, the timer will count; if 

the input pin is LOW, the timer will .hold its value. As 
indicated previously, the input signal may be asyn­
'chronous with respect to the 80188 clock. 

When RTG = 1, the input pin detects LOW-to-HIGH 
transitions. The first such transition starts the timer 
running, tlearing the timer value to zero on the first 
clock, and then incrementing thereafter. Further 
transitions on the input pin will again reset the timer 
to zero, from which it will stl;lrt counting up again. If 
CaNT = 0, when the timer has reached maximum 
count, the EN bit will be cleared, inhibiting further 
timer activity. 

EN: 
The enable bit provides programmer control over the 
timer's RUN/HALT status. When set, the timer is en­
abled to increment subject to the input pin con­
straints in the internal clock mode (discussed 
previously). When cleared, tJ:le timer will be inhibited 
from counting. All input pin transitions during the 
time EN is zero will be ignored. If CaNT is zero, the 
EN bit is automatically 'cleared upon maximum 
count. 

INH: 
The inhibit bit allows for selective updating of the 
enable (EN) bit. If INH is a one during the write to the 
mode/control word, then the state of the EN bit will 
be modified by the write. If INH is a zero during the 
write, the EN bit will be unaffected by the operation. 
This bit is not stored; it will always be a ° on a read. 

I 

INT: 
When set, the,lNT bit enables interrupts from the 
timer, which will be generated on every terminal 
count. If the timer is configured in dual MAX COUNT 
register mode, an interrupt will be generated each 
time the value in MAX COUNT register A is reached, 
and each time the value in MAX COUNT register B is 
reached. If this enable bit is cleared after the inter­
rupt request has been generated, but before a pend­
ing interrupt is serviced,. the interrupt request will 
still be in force. (The request is latched in the Inter­
rupt Controller.) 

Me: 
The Maximum Count bit is set whenever the timer 
reaches its final maximum count value. If the timer is 
configured in dual MAX COUNT register mode, this bit 
will be set each time the value in MAX COUNT register 
A is reached, and each time the value in MAX COUNT 
register B is reached. This bit is set regardless of the 
timer's interrupt-enable bit. The MC bit gives the user 
the ability to monitor timer status through software 
instead of through interrupts. Programmer interven­
tion is required to clear this bit. 

3-464 AFN-Ol483A 



iAPX 188 

RIU: 
The Register In Use bit indicates which MAX COUNT 
register is currently being used for comparison to the 
timer count value. A zero value indicates register A. 
The RIU bit cannot be written, i.e., its value is not 
affected when the Control register is written. It is 
always cleared when the ALT bit is zero. 

Not all mode bits are provided for timer 2. Certain bits 
are hardwired as indicated below: 

ALT = 0, EXT = 0, P = 0, RTG = 0, RIU = 0 

Count Registers 

Each of the three timers has a 16-bit count register. 
The current contents of this register may be read or 
written by the processor at any time. If the register is 
written into while the timer is counting, the new value 
will take effect in the current count cycle. 

Max Count Registers 

Timers 0 and 1 have two MAX COUNT registers, while 
timer 2 has a single MAX COUNT register. These con­
tain the number of events the timer will count. In 
timers 0 and 1, the MAX COUNT register used can 
alternate between the two max count values 
whenever the current maximum count is reached. 
The condition which causes a timer to reset is equiv­
alent between the current count value and the max 
count being used. This means that if the count is 
changed to be above the max count value, or if the 
max count value is changed to be below the current 
value, the timer will not reset to zero, but rather will 
count to its maximum value, "wrap around" to zero, 
then count until the max count is reached. 

Timers and Reset 

Upon RESET, the Timers will perform the following 
actions: 

• All EN (Enable) bits are reset preventing timer 
counting. 

• All SEL (Select) bits are reset to zero. This selects 
MAX COUNT register A, resulting in the Timer Out 
pins going HIGH upon RESET. 

INTERRUPT CONTROLLER 

The 80188 can receive interrupts from a number of 
sources, both internal and external. The internal in­
terrupt controller serves to merge these requests on 
a priority basis, for individual service by the CPU. 

Internal interrupt sources (Timers and DMA chan­
nels) can be disabled by their own control registers 
or by mask bits within the interrupt controller. The 
80188 interrupt controller has its own control regis­
ters that set the mode of operation for the controller. 

The interrupt controller will resolve priority among 
requests that are pending simultaneously. Nesting is 
provided so interrupt service routines for lower 
priority interrupts may themselves be interrupted by 
higher priority interrupts. A block diagram of the 
interrupt controller is shown in Figure 21. 

The interrupt controller has a special iRMX 86 com­
patibility mode that allows the use of the 80188 
within the iRMX 86 operating system interrupt struc­
ture. The controller is set in this mode by setting bit 
14 in the peripheral control block relocation register 
(see iRMX 86 Compatibility Mode section). In this 
mode, the internal 80188 interrupt controller func­
tions as a "slave" controller to an external "master" 
controller. Special initialization software must be in­
cluded to properly set up the 80188 interrupt control­
ler in iRMX 86 mode. 

NON-iRMX MODE OPERATION 

Interrupt Controller External Interface 

For external interrupt so"Urces, five dedicated pins 
are provided. One of these pins is dedicated to NMI, 
non-maskable interrupt. This is typically used for 
power-fail interrupts, etc. The other four pins may 
function either as four interrupt input lines with inter­
nally generated interrupt vectors, as an interrupt line 
and an interrupt acknowledge line (called the 
"cascade mode") along, with two other input lines 
with internally generated interrupt vectors, or as two 
interrupt input lines and two dedicated interrupt ac­
knowledge ouput lines. When the interrupt lines are 
configured in cascade mode, the 80188 interrupt 

'controller will' not generate internal interrupt 
vectors. 

3-465 

External sources in the cascade mod'e use externally 
generated interrupt vectors. When an interrupt is 
acknowledged,two INTA cycles are initiated and the 
vector is read into the 80188 on the second cycle. The 
capability to interface to external 8259A program­
mable interrupt controllers is thus provided when the 
inputs are configured in cascade mode. 

AFN-01483A 



iAPX 188 

Interrupt Controller Modes of Operation 

The basic modes of operation of the interrupt con­
troller in non-iRMX mode are similar to the 8259A. 
The interrupt controller responds identically to inter­
nal interrupts in all three modes: the difference is 
only in the interpretation of function of the four exter­
nal interrupt pins. The interrupt controller is set into 
one of these three modes by programming the cor­
rect bits in the INTO and INT1 control registers. The 
modes of interrupt controller operation are as 
follows: 

Fully Nested Mode 
When in the fully nested mode four pins are used as 
direct interrupt requests. The vectors for these four 
inputs are generated internally. An in-service bit is 
provided'for every interrupt source. If a lOwer-priority 
device requests an interrupt while the in-service bit 
(IS) is set, no interrupt will be generated by the inter­
rupt controller. In addition, if another interrupt re­
quest occurs from the same interrupt source while 
the inservice bit is set, no interrupt will be generated 
by the interrupt controller. This allows interrupt ser­
vice routines to operate with interrupts enabled with­
out being themselves interrupted by lower-priority 
interrupts. Since interrupts are enabled, higher­
priority interrupts will be serviced. 

When a service routine is completed, the proper IS 
bit must be reset by writing the proper pattern to the 
EOI register. This is required to allow subsequent 
interrupts from this interrupt source and to allow 
servicing of lower-priority interrupts. An EOI com­
mand is issued at the end of the service routine just 

TIMER TIMER TIMER DMA 

before the issuance of the return from interrupt in­
struction. If the fully nested structure has been 
upheld, the next highest-priority source with its IS bit 
set is then serviced. 

Cascade Mode 
The 80188 has four interrupt pins and two of them 
have dual functions. In the fully nested mode the four 
pins are used as direct interrupt inputs and the cor­
responding vectors are generated internally. In the 
cascade mode, the four pins are configured into in­
terrupt input-dedicated acknowledge signal pairs. 
The interconnection is snown in Figure 22. INTO is an 
interrupt input interfaced to an 8259A, while 
INT2/INTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is true 
for INT1 and INT3/INTA1. Each pair can selectively be 
placed in the cascade or non-cascade mode by pro­
gramming the proper value into INTO and INT1 con­
trol registers. The use of the dedicated acknowledge 
signals eliminates the need for the use of external 
logic to generate INTA and device select signals. 

The primary cascade mode allows the capability to 
serve up to 128 external interrupt sources through 
the use of external master an,d slave 8259As. Three 
levels of priority are created, requiring priority 
resolution in 'the 80188 interrupt controller, the mas­
ter 8259As, and the slave 8259As. If an external inter­
rupt is serviced, one IS bit is set at each of these 
levels. When the interrupt service routine is com­
pleted, up to three end-of-interrupt commands must 
be issued by the programmer 

o 1 2 1 INTO INTl INT2 INT3 NMI 

OMAO 
CONTROl REG. 

DMAl 
CONTROL REG, 

EXT. INPUT 0 
CONTROL REG. 

EXT. INPUT 1 
CONTROL REG, 

EXT.INPUT 2 
CONTROL REG, 

INTERRUPT 
PRIORITY 
RI!SOLVER' 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN·SERVICE 
REG. 

PRIOR. LEY. 
MASK REG. 
INTERRUPT 

STATUS REG, 

Figure 21. Interrupt Controller Block Diagram 

3-466 AFN-01483A 



inter IAPX 188 

Special Fully Nested Mode 
.This mode is entered by setting the SFNM bit in INTO 
or INn control register. It enables complete nestabil­
ity with external 8259A masters. Normally, an inter­
rupt request from an interrupt source will not be 
recognized unless the in-service bit for that sou~ce is 
reset. If more than one interrupt source is connected 
to an external interrupt controller, all of the interrupts 
will be funneled through the same 80188 interrupt 
request pin. As a result, if the external interrupt con­
troller receives a higher-priority interrupt, its inter­
rupt will not be recognized by the 8.0188 controller 
until the 80188 in-service bit is reset. In special fully 
nested mode, the 80188 interrupt controller will allow 
interrupts from an 'external pin regardless of the 
state of the in-service bit for an interrupt source in 
order to allow multiple interrupts from a single pin. 
An in-service bit will continue to be set, however, to 
inhibit interrupts from other lower-priority 80188 in­
terrupt sources. 

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines. 
Software polling of the external master's IS register 
is required to determine if there is more than one bit 
set. If so, the IS bit in the 80188 remains active and 
the next interrupt service routine is entered .• 

Operation in a Polled Environment 

The controller may be used in a polled mode if inter­
rupts are undesirable. When polling, the processor dis­
ables interrupts and then polls the interrupt controller 
whenever it is convenient. Polling the interrupt con­
troller is accomplished by reading the Poll Word (Figure 
31). Bit 15 in the poll word indicates to the processor 
that an interrupt of high enought priority is requesting 
service. Bits 0-4 indicate to the processor the type vec­
tor of the highest-priority source requesting service. 
'Reading the Poll Word causes the In-Service bit of the 
highest-priority source to be set. 

It is desirable to be able to read the Poll Word infor­
mation without guaranteeing service of any pending 
interrupt, i.e., not set the indicated in-service bit. The 
80188 provides a Poll Status Word in addition to the 
conventional. Poll Word to allow this to be done. Poll 
Word information is duplicated in the Poll Status 
Word, but reading the Poll Status Word does not set 
the associated in-service bit. These words are lo­
cated in two adjacent memory 10catio'1s in the regis­

·ter file. 

Non-iRMX Mode Features 

Programmable Priority 
The user can program the interrupt sources into any 
of eight different priority levels. The programming is 
done by placing a 3-bit priority level (0-7) in the 
control register of each interrupt source. (A source 
with a priority level of 4 has higher priority over all 
priority levels from 5 to 7. Priority registers contain­
ing values lower than 4 have greater priority.) All 
interrupt sources have preprogrammed default 
priority levels (see Table 4). 

If two requests with the same programmed priority 
level are pending at once, the priority ordering 
scheme shown in Table 4 is used. If the serviced 
interrupt routine reenables interrupts, it allows other 
requests to be serviced. 

End·of-Interrupt Command 
The end-of-interrupt (EOI) command is used by the 
programmer to feset the In-Service (IS) bit when an 
interrupt service routine is completed. The-EOI com­
mand is issued by writing the proper pattern to the 
EOI register. There are two types of EOI commands, 

, specific and nonspecific. The nonspecific command 
does not specify which IS bit is reset. When issued, 
the interrupt controller automatically resets the IS bit 
of the highest priority source with an active service 
routine. A specific EOI command requires that the 
programmer send the interrupt vector type to the 

interrupt controller indicating which source's IS bit is 
to be reset. This command is used when the fully 
nested structure has been disturbed or the highest 
priority IS bit that was set does not belong to the 
service routine in progress. 

Trigger Mode 
The four external interrupt pins can be programmed 
in either edge- or level-trigger mode. The control 
register for each external source has a level-trigger 
mode (LTM) bit. All interrupt inputs are active HIGH. 
In the edge sense mode or the level-trigger mode, the 
interrupt request must remain active (HIGH) until the 
interrupt request is acknowledged by the 80188 CPU. 
In the edge-sense mode, if the level remains high 
after the interrupt is acknowledged, the input is dis­
abled and no further requests will be generated. The 
input level must go LOW for at least one clock cycle to 
reenable tne input. In the level-trigger mode, no such 
provision is made: holding the interrupt input HIGH 

,will cause continuous interrupt requests. 

3-467 
! 

AFN..Q1483A 



"mer' I "',, 
, .' fAPX 188 

Interrupt Vectoring 
The 80188 Interrupt Controller will generate inter­
'rupt vectors for the integrated OMA channels and 
the integrated Timers. In addition, the Interrupt Con­
troller will generate interrupt vectors'for the external 
interrupt lines if they are not configured in Cascade 
or Special Fully Nested Mode. The interrupt vectors 
generated are fixed -and cannot be changed (see 
Table 4). 

Interrupt Controller Registers 

The Interrupt Controller register model is shown in 
Figure 23. It contains 15 registers. All registers can 
both be read or written unless specified otherwise. 

In-Serv1ce Register 
This register can be read from or written into. The 
format is shown in Figure 24. It contains the In­
Service bit for each of the interrupt sources. The 
In-Service bit is set to indicate that a source's service 
routine is in progress. When an In-Service bit is set, 
the interrupt controller will not generate interrupts to 
the CPU when it receives interrupt requests from 
devices with a lower programmed priority level. The 
TMR bit is the In-Service bit for ~II three timers; th, 
DO and 01 bits are the In-Service bits for the two DMA 
channels; the 10-13 are the In-Service bits for the 
external interrupt pins. The IS bit is set when, the 
prOcessor,acknowledges an interrupt request either 
by an interrupt acknowledge or by reading the poll 
register. The IS bit is reset at the end of the interrupt 
service routine by ah end-of-interrupt command is­
sued by the CPU. 

80188 
INTO 

IRTXii 

Interrupt Request Register' 
The internal interrupt sources have interrupt request 
bits inside the interrupt controller. The format of this 
register is shown in Figure '24. A read from this regis­
ter Yields the status of theSe bits. The TMR bit is the 
logical OR of all timer interrupt requests. DO and 01 
are the interrupt request bits for the OMA channels. 

, , 

The state of the external interrupt inp\lt pins is also 
indicated. The state of the external interrupt pins is 
not a stored, condition inside the interrupt controller, 
therefore the external interrupt bits cannot be writ­
ten. The external interrupt request bits show exactly 
when an'interrupt request is given to the interrupt 
controller, so if edge-triggered mode is selected, the 
bit in the register :.viii be HIGH only after an inactive­
to-active transition. For internal interrupt sources, 
the register bits are set whena request arrives and 
.are reset when the processor acknowledges the 
requests. 

Mask Register 
This is a 16-bit register that contains a mask bit for 
,each interrupt source. The format for this register is 
shown in Figure 24. A one in a bit position corres­
ponding to a particular source serves to mask the 
source from generating interrupts. These mask bits 
are the exact same bits which are used in the individ­
ual control registers; programming a mask bit using 
the mask register will also change this bit in the 
individual control registers, and vice versa. 

INT 
8259A 

PIC 
rNTA 

Figure 22. Cascade Mode Interrupt Connection 

3-468 AF~1483A 



inter 

INT3 CONTROL REGISTER 

INn CONTROL REGISTER 

INn CONTROL REGISTER 

INTO CONTROL REGISTER 

DMA 1 CONTROL REGISTER 

DMA 0 CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN·SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER 

OFFSET 

3EH 

3CH 

3AH 

38H 

38H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

26H 

24H 

22H 

IAPX 188 

Pr.lorlty Mask Register 
This register is used to mask all interrupts below 
particular interrupt priority levels. The format of this 
register is shown in Figure 25. The code in the lower 
three bits of this register inhibits interrupts of 
priority lower (a higher priority number) than the 
code specified. For example. 100 written into this 
register masks interrupts of level five (101). six (110). 
and seven (111). The register is reset to seven (111) 
upon RESET so all interrupts are unmasked. 

Interrupt Status Register 
This register contains general interrupt controller 
status information. The format of this register is 
shown in Figure ,26. The bits in the status register 
have the following functions: 

DHLT: DMA Halt Transfer; setting this bit halts all 
DMA transfers. It is automatically set 
whenever a non-maskable interrupt occurs. 
and it is reset when an IRET instruction is 
executed. The purpose of this bit is to allow 
prompt service of all non-maskable inter­
rupts. This bit may also be set by the CPU. 

Figure 23. Interrupt Controller Registers 
(Non-iRMX 86 Mode) 

IRTx: These thr~e bits represent the individual 
timer interrupt request bits. These bits are 
used to differentiate the timer interrupts. 
since the timer IR bit in the interrupt re­

.Jest register is the "OR" function of all 
timer interrupt requests. Note that setting 
anyone of these three bits initiates an inter­
rupt request to the interrupt controller. 

15 14 10 9 8 7 6 4 3 2 1 0 

o 0 o I 0 o )3 

Figure 24. In-Service, Interrupt Request, and Mask Register Formats 

15 14 3 2 1 0 

o I 0 I 

Figure 25. Priority Mask Register Format 

15 14 7 • 4 3 2 1 0 

o I 0 I 0 o I 0 IIRT211RTlIIRToi 

Figure 26. Interrupt Status Register Format 

3-469 AFN-01483A 



inter IAPX 1pa 

Timer, DMA 0, 1; Control Registers 
These registers are the control words for all the inter­
nal interrupt sources. The format for these registers 
is shown in Figure 27. The three bit positions PRO, 
PR1, and PR2 represent the progr·ammable priority 
level of the interrupt source. The MSK bit inhibits 
interrupt requests from the interrupt source. The 
MSK bits if! the individual control registers are the 
exact same bits as are in the Mask Register; modify­
ing them in the individual control registers will also 
modify them in the Mask Register, and vice versa. 

INTO-INT3 Control Registers 
These registers are the control words for the four 
external input pins. Figure 28 shows the format of the 
INTO and INT1 Control registers; Figure 29 shows the 
format of the INT2 and INT3 Control registers. In . 
cascade mode or special fully nested mode, the con­
trol words for INT2 and INT3 are not used. 

The bits in the various control registers are encoded 
as follows: 

PRO-2: Priority programming information. Highest 
priority = 000, lowest priority = 111. 

LTM: Level-trigger ,mode bit. 1 = level-triggered; 
o = edge-triggered. Interrupt Input levels 
are active high. In level-triggered mode, an 
interrupt is generated whenever the exter­
nalline is high. In edge-triggered mode, an 
interrupt will be generated only when this 

15 14 

o 0 

level is preceded by an inactive-to-active 
transition on the line. In both case.s, the 
level must remain active until the interrupt 
is acknowledged. 

MSK: Mask bit, 1 = mask; 0 = nonmask. 

C: Cascade mode bit, 1 = cascade; 0 = direct 

SFNM: Special fully nested mode bit, 1 = SFNM 

EOI Register 
The end of the interrupt register is a command regis­
ter which can only be written into. The format of this 
register is shown in Figure 30. It initiates an EOI 
command when written to by the 80188 CPU. 

The bits in the EOI register are encoded as follows: 

Sx: Encoded information that specifies an in­
terrupt source vector type as shown in 
Table 4. For example, to reset the In-Service 
bit for DMA channel 0, these bits should be 
set to 01010, since the vector type for DMA 
channel 0 is 10. Note that to reset the single 
In-Service bit for any of the three timers, the 
vector type for timer 0 (8) should be written 
in this register. 

3 2 1 0 

I ~----------------------------------------------------------------~ 
Figure 27. Timer/DMA Control Register Formats 

15 14 7 6 5 4 3 2 1 0 

o I 0 o I SFNMI c I LTMIMSKI PR21 PRll PRO I 

Figure 28. INTO/INT1 Control Register Formats 

15 14 4 3 2 1 0 

o I 0 o I LTM I MSKI PR21 PR11 PRO I 

Figure 29. INT2/INT3 Control Register Formats 

3-470 AFN-Q1483A 



inter IAPX 188 

NSPEC/: A bit that determines the type of EOI com-
SPEC mand. Nonspecific = 1, Specific = O. 

Poll and Poll Status Registers 
These registers contain polling information. The for­
mat of these registers is shown in Figure 31. They can 
only be read. Reading the Poll register constitutes a 
software poll. This will set the IS bit of the highest 
priority pending interrupt. Reading the poll status 
register will not set the IS bit of the highest priority 
pending interrupt; only the status of pending inter­
rupts will be provided. 

Encoding of the Poll and Poll Status register bits are 
as follows: 

Sx: Encoded information that indicates the 
vector type of the highest priority interrupt­
ing source. Valid only when INTREO = 1. 

INTREO:This bit determines if an interrupt request is 
present. Interrupt Request = 1; no Interrupt 
Request = O. 

iRMX 86 COMPATIBILITY MODE 

This mode allows iRMX 86-80188 compatibility. The 
interrupt model of iRMX 86 requires one master and 
multiple slave 8259As in cascaded fashion. When 
iRMX mode is used, the internal'80188 interrupt con­
troller will be used as a slave controller to an external 
master interrupt controller. The internal 80188 re­
sources will be monitored through the internal inter­
rupt controller, while the external controller 
functions as the system master interrupt controller. 

Upon reset, the 80188 interrupt controller will be in 
the non-iRMX 86 mode of operation. To set the con­
troller in the iRMX 86 mode, bit 14 of the Relocation 
Register should be set. 

/ 

15 14 13 

1:;:e~1 0 I 0 

Because of pin limitations caused by the need to 
interface to an external 8259A master, the internal, 
interrupt controller will no longer accept external 
inputs. There are however, enough 80188 interrupt 
controller inputs (internally) to dedicate one to each 
timer. In this mode, each timer interrupt source has 
its own mask bit, IS bit, and control word. 

The iRMX 86 operating system requires peripherals 
to be assigned fixed priority levels. This is incom­
patible with the normal operation of the 80188 inter­
rupt controller. Therefore, the initialization software 
must program the proper priority levels for each 
source. The required priority levels for the internal 
interrupt sources in iRMX mode are shown in Table 
16. 

Table 16. Internal Source Priority Level 

Priority Level Interrupt Source 

0 Timer 0 
1 (reserved) 
2 DMAO 
3 DMA1 
4 Timer 1 
5 Timer 2 

These level aSSignments must remain fixed in the 
iRMX 86 mode of operation. 

iRMX 86 Mode External Interface 

The configuration of the 80188 with respect to an 
external 8259A master is shown in Figure 32. The 
INTO input is used as the 80188 CPU interrupt input. 
INT3 functions as an outpu~ to send the 80188 slave­
interrupt-request to one of the 8 master-PIC-inputs. 

Figure 30. EOI Register Format 

15 14 13 

. Figure 31. Poll, Register Format 

3-471 AFN-Il1483A 



inter iAPX 188 

80188 INT. IN 

80188 

INTO 

INTI SLAVE SELECT 

INT2 I--

8259A 
MASTER 

INTA 
IRO 

INT 

1 
IR7 

CASO-2 r:. 
I CASCADE L ADDRESS DECODER 

1\ 

~REQUESTSFROM 
'-.....--OTHER SLAVES 

INT3 
80188 SLAVE INTERRUPT OUTPUT l 

Figure 32. iRMX 86 Interrupt Controller Interconnection 

Correct master-slave interface requires decoding of 
the slave addresses (CASO-2). Slave 8259As do this 
internally. Because of pin limitations, the 80188 slave 
address will have to be decoded externally. INT1 is 
used as a slave-select input. Note that the slave vec­
tor .address is transferred internally, but the READY 
input must be supplied externally. 

INT2 is used as an acknowledge.output, suitable to 
drive the iNiA input of an 8259A. 

Interrupt Nesting 

iRMX 86 mode operation allows nesting of interrupt 
requests. When an interrupt is acknowledged, the 
priority logic masks off all priority levels except 
those with equal or higher priority. 

Vector Generation in the iRMX 86 Mode 

Vector generation in iRMX mode is exactly like that of 
an 8259A slave. The interrupt controller generates an 
B-bit vector which the CPU multiplies by four and 
uses as an address into a vector table. The significant 
five bits of the vector are user-programmable while 
the lower three bits are generated by the priority 
logic. These bits represent the encoding of the 
priority level requesting service. The significant five 
bits of the vecto~ are programmed by writing to the 
Interrupt Vector register at offset 20H. -

3-472 

Specific End-of-Interrupt 

In iRMX mode the specific 1;'01 command operates to 
reset an in-service bit of a specific priority. The user 
supplies a 3-bit priority-level value that points to an 
in-service bit to be reset. The command is executed 
by writing the correct value in the Specific EOI regis­
ter at offset 22H. 

Interrupt Controller Registers 
in the iRMX86 Mode 

All control and command registers are located inside 
the internal peripheral control block. Figure 33 
shows the offsets of these registers. 

End-of-Interrupt Register 
The end-of-interrupt register is a co.mmand register 
which can only be written. The format of this register 
is shown in Figure 34. It initiates an EOI command 
when written by the 80188 CPU. 

The bits in the EOI register are encoded as follows: 

Lx: Encoded value indicating the priority of the 
IS bit to be reset. 

In-Service Register 
This register can be read from or written into. It 
contjiins the in-service bit for each of the internal 

AFN..Q1483A 



intJ IAPX 188 

interrupt sources. The format for this register is 
shown in Figure 35. Bit positions 2 and 3 correspond 
to the DMAchannels; positions 0, 4, and 5 corre­
spond to the integral timers. The source's IS bit is set 
when the, processor acknowledges . its interrupt re­
quest. 

Interrupt Request Register 
This register indicates which internal peripherals 
have interrupt requests pending. The format of this 
register is Shdwn in Figure 35. The interrupt request 
bits are set when a request arrives from an internal 
source, and are reset when the processor acknowl­
edges the request. 

Mask Register 
This register contains a mask bit for each interrupt 
source. The format for this register is shown in Fig­
ure 35. If the bit in this register corresponding to a 
particular interrupt source is set, any interrupts from 
that source will be masked. These mask bits are 
exactly the same bits which are used in the individual 
control registers, i.e., changing the state of a mask 
bit in this register will also change the state of the 
mask bit in the individual interrupt contrQI register 
corresponding to the bit. 

Control Registers 
These registers are the control words for all the inter­
nal interrupt sources. The format of these registers is 
shown in Figure 36. Each of the timers and both of 
the DMA channels have their own Control Register. 

The bits of the Control Registers are encoded as 
follows: 

prx: 3-bit encoded field indicating a priority level 
for the source; note that each source must 
be programmed at specified levels. 

msk: mask bit for the priority level indicated by prx 
bits. 

OFFSET 

LEVEL 5 CONTROL REGISTER 
(TIMER 2) 3AH 

LEVEL 4 CONTROL REGISTER 
(TIMER 1) 

38H 

LEVEL 3 CONTROL REGISTER 
(DMA1) 38H 

LEVEL 2 CONTROL REGISTER 
(DMAO) 34H 

LEVEL 0 CONTROL REGISTER 
(TIMER 0) 32H 

INTERRUPT STATUS REGISTER 30H 

INTERRUPT REQUEST REGISTER 2EH 

IN·SERVICE REGISTER 2CH 

PRIORrrY·LEVEL MASK REGISTER 2AH 

MASK REGISTER 28H 

SPECIFIC EOI REGISTER 22H 

INTERRUPT VECTOR REGISTER 2DH 

Figure 33. Interrupt Controller Registers 
(iRMX 86 Mode) 

1 : 1 : 1 : 1 : 1 : 1 : 1 ~ 1 ,: I : °1 

Figure 34. Specific EOI Register Format 

1 : 1 : 1 : H":'I ~ 1 ~ 1 : 1":'1 

Figure 35. In-Service, Interrupt Request, and Mask Register Format 

3-473 AFN...Q1483A 



"<, ' 

IAPX188 

Interrupt Vector Register 
This register provides the upper five bits of the inter­
rupt vector address. The format of this register is 
shown in Figure 37. The interrupt controller itself 
provides the lower three bits of the interrupt veotor 
as determined by the priority level of the interrupt 
request. 

The format of the bits in this register is: 

tx :5-bit field indicating the upper five bits of the 
vector address. 

Priority-level Mask Register 
This register indicates the lowest priority-level inter­
rupt which will be serviced. 

The encoding of the bits in this register is: 

mx: 3-bit encoded field'indication priority-level 
value. All levels of lower priority will be 
masked. . 

Interrupt'Status Register 
This register is defined exactly as hi non-iRMX mode 
(see Figure 26). 

Interrupt Controller and Reset 
, " ."' 

, • ," ! 

Upon RESET, the interrupt controller \Viii perform the 
following actions: 

• All SFNM bits reset to 0, implying FUlly' Nested 
Mode. 

• All PR bits in the various control registers set to 1. 
This places all sources at lowest priority (ievel 
111). . ' 

• All LTM bits' ~eset to 0, resulting in' ~dge-sense 

mode. 
• All Interrupt Service bits reset to O. 
• All Interrupt Request bits reset to '0. 
• All MSK (Interrupt Mask) bits set to 1 (mask). 
• All q (Cascade) bits reset to 0 (non-cascade). ' 
• All PRM (Priority Mask) bits 'set to 1, implying no 

levels masked. .., 

• Initialized to non-iRMX 86 mode. 

I : I : I : I : I : I':'H ~ H 
Figure 38. Control Word Formllt 

Figure 37. Interrupt Vector Register Format 

Figure 38. Priority' Level Mask Register 

3-474 AFN.()1483A 



IAPX 188 .. 

16 MHz 

rD1 
Vcr. Xl X2 

~ 
UCS 
~ 

8282 OR ADORESS RESET 
RES ADo-AD7, .... 8283 ROM 

.;- All-A15 
'-<- f~' ~ ALE - ~' I STB OE {f , -

80166 

{ 
liD 
Wli 

r PROGRAM 

I 
RAM 

~3 

SRDY tr~5V 
ARDY 

NMI h ~ 
HOLD h t--

LOW RAM 

~ II 

I TMRINO f---- ~5V 
( 

TMR OUT 0 t 

~ 
CLOCK 

~ 
82116 OR 

~ 8287 ~ DO-D7 TRANSCEIVER s; 
T OE SERIAL T 

---1 
'liD 

m ~ )-
ERMINAL 

Al 
A2 

INTO I 

~8DIS DISK 
INTERFACE 

INTl HARDWARE 
K 

PCS4 
,DRQa 

Figure 39. TypicallAPX 188 Computer 

3-475 AFN-Q1483A 



inter IAPX'188 

16 MHz 

~D~ 
Vee Xl X2 

UCS CS 

f1 AD RESET 

uI 
ROM 

REI 

.l 8282 OR 

~ 8283 
lATCH rLb STB OE, 

STB DE lOW 

ALE • -;:- RAM 

LCS CS 

WR 

/\ 

b 8282 OR --'> ADDRESS ADCl-AD7 8283 
AS-.!'15 ~ 

lATCH 
-v BUS 

STB OE 
~~-STB i5! 

80188 , t 

NMI 

~ '-~ 
8286 OR 

HOLD 8287 DATA BUS 
TRANSCEIVER 

T ~ 

I 1 , 
DTIR 

ClKOUT ClK 
'-- ALE 

DEN 
8288 

SO-S2 ,...., SO-82 BUS > BUS CONTROL 
CONTROLLER COMMANDS 

-- I----- CEN 
lOB AEN 

-;:- 1 
I 

~ SO-S2 AEN 
8289 

ClK AR'::feR > ~~~T+~~~ION L--f "'\ PCSo J SYSBIRru 
PCSl lOB 

;l. -5V lOCK i:OCK RESB 

SRDY FD-r-&= ARDY [ ""l 
XACK 

Figure 40. TypicallAPX 18aMu"I-Maater Bua interface 

3-476 

V'-
f'.-

MULTI 
MAST ER 

EM SYST 
BUS 

AFN-Q1483A 



IAPX188 

PACKAGE 
The 80188 is housed in aS8-pin, leadlessJEOECtype 
A hermetic chip cartier. Figure 41 illustrates the 
package dimensions. 

NOTE: The lOT 3M Textool 68-pin JEOEC Socket 
is required for ICE™ operation. See Figure 42 for 
details. 

~-----ilG+~~~M[OJ-----1 

* 

Figure 41. 80188 JEDEC Type A Package 

3-477 AFN~1483A 



PC BOARD PATTERN 
•. ~ JPlNNOl 

l:/ ~EK,.e;ATloN .r:I FRONT 
~~~t~t~t\-:'fi1. 
• • PIN CLR HOLE".,.--;i •

OEVICE PADS f.-j FOR I .021 CIA .r:1 1 00
SHOWN FOR -E/7+(o'74)-.r:1-~ -
CONTACT E> I .r:1 "~.O)
LOCATION ~ I .r:1 ~:) TVP

~::~A~~T ~)s~~)~~~~.:!-l
CO.~ 1ti L Jo --=:.r (fii) TVP

.020:J ,,0.32)
(0.51) I spes • .J!!!. TOl NON ACCUM TVP , PLes

CONTACT TAIL ,UO)

IAPX 188

GUIDE BOSS :- --';:j~)so---- -I
3 !'Les ~ r-lIrre:J'lXa::HX!OIl!:B:lD!XEOIl!l::BlF"'('n

'rEST PROBE POINT

\

INDEX

r+, • -----;-+-1------- ~- FRONT
.... 4- /,

_'1\:1,- I ' I ' ,
SOCKET ORIENTATION PIN ~..,...

'j '-

ALUMINUM LID
(HEATSINK PROVISIONS OPTIONAL)

\
OPEN

NOTE: Phyelcal dlmenltonlMown for reference onlJ. PIeaIe conl.1t 3M TtxtooI tor comP inlonMtion on the IIOCbt.

Figure 42. Textool 68 Lead Chip Carrier Socket

3-478 AFN.QI483A

intJ IAPX 188

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature under Bias· O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin with

Respect to Ground -1.0V to + 7V
Power Dissipation 3 Watt

D.C. CHARACTERISTICS (TA - 0°-70°C. Vee - 5V < 10%)

Symbol Parameter Min.

VIL Input LowVoltage - 0.5

VIH Input High Voltage 2.0
(All except X1 and (~)

VIH1 Input High Voltage (RES)

VOL Output Low Voltage 3.0

VOH Output High Voltage

Icc Power Supply Current

lu Input Leakage Current

ILO Output Leakage Current

VCLO Clock Output Low

VCHO Clock Output High 4.0

Veu Clock Input Low Voltage -0.5

VCHI Clock Input High Voltage 3.9

CIN Input Capacitance

Cia 1/0 Capacitance

PIN TIMINGS

*NOTlCE: Stresses above those listed under
"Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.

Max. Units Test Conditions

+0.8 Volts

Vee + 0.5 Volts

Vee + 0.5 Volts

0.45 Volts la - 2.5 rnA for 'Sl:)-~
la - 2.0 rnA for all other outputs

2.4 Volts loa - -400 /LA

550 rnA Max measured at T A _ O°C
450 TA _ 70°C

±10 ~ OV < VIN < Vee

±10 /LA 0.45V < Vour < Vec

0.6 Volts la - 4.0 rnA

Volts loa - -200~

0.6 Volts

Vcc+1.0 Volts

10 pF

20 pF

A.C. CHARACTERISTICS (TA = 0°-70°C, Vee = 5V ± 10"10)
80188 Timing Requirements All Timings Measured At 1.5 Volts Unless Otherwise Noted.

Symbol Parameter Min. Max. Units Test Conditions.

TDVCL Data in Setup (AID) 20 ns

TCLDX Data in Hold (AID) 10 ns

TARYHCH Asynchronous Ready
(AREADY) active setup
time* 20 ns

TARYLCL AREADY inactive setup
time 35 ns

TCHARYX AREADY hold time 15 . ns

TSRYCL Synchronous Ready
(SREADY) transition setup
time 35 ns

TCLSRY SREADY transition hold
time 15 ns

THVCL HOLD Setup' 25 ns

TINVCH INTR, NMI, TEST, TIMERIN,
Setup' 25 ns

TINVCL DRQO, DRQ1, Setup' 25 ns

*To guarantee recognition at next clock.

3-479 AFN-01483A

IAPX 188

A.C. CHARACTERISTICS (Continued)
, , '

80188iMaster Interface Timing Re$ponses

80188 (8 MHz) 80188-6 (6 MHz)
Symbol Parameters Min. Max. Min. Max. Units 1est Conditions

TcLAV Address Valid Delay 5 44 5 63, ns Cl = 20-200 pF all outputs

TClAX Address Hold 10 10 ns

TClAZ Address Float Delay TClAX 35 TClA)(44 ns

TCHCZ Command Unes Float Delay 45 56 ns

TCHCV Command Lines Valid Delay
(after float) 55 76 ns

TLHll ALE Width TClCl-35 TCLCl-35 ns

TCHLH ALE Active Delay 35 44 ns

TCHll ALE Inactive Delay 35 44 ns

TllAX Address Hold to ALE Inactive TCHCl-25 TCHCl-30 ns

TClOV Data Valid Delay 10 44 10 55 ns

TClOOX Data Hold Time 10 10 ns

TWHDX Data Hold after WR TCLCl-40 TCLCl-50 ns

TCVCTV Control Active Delay 1 5 70 5 87 ns

TCHCTV Control Active Delay 2 10 55 10 76 ns

TCVCTX Control Inactive Delay 5 55 5 76 ns

TCVDEX DEN Inactive Delay
(Non-Write Cycle) itO 87 ns

TAZRl Address Float to RD Active 0 0 ns

TClRl RD Active Delay 10 70 10 87 ns

TCLRH RD Inactive Delay 10 55 10 76, ns

TRHAV RD Inactive to Address Active TClCL-40 TClCl-50 ns

TCLHAV HlDA Valid Delay 10 50 10 67 ns

TRlRH RD Width 2TclCl_50 2TCLCL-50 ns

TWLWH WRWidth 2TCLCl-40 2TclCL-40 ns

TAVAl Address Valid to ALE Low TCLCH-25 TCLCH-45 ns

TCHSV Status Active Delay 10 55 10 76 ns

TCLSH Status Inactive Delay 10 55 10 76 ns

TClTMV Timer OU1Put Delay 60 75 ns 100 pF max

TClRO Reset Delay 60 75 ns

TCHQSV Queue Status Delay 35 44 ns

80188 Chip-Select Timing Responses .
Symbol Parameter Min. Max. Min. Max. Units Test Conditions

TCLCSV Chip-Select Active Delay " 66 80 ns

Tcxcsx Chip-Selct Hold from
Command Inactive 35 35 ns

TCHCSX Chip-Select Inactive Delay 5 35 5 47 ns

3-480 AFN-01483A

inter

A.C. CHARACTERISTICS (Continued)

i80188 ClKlN Requirements

Symbol Parameters

TCKIN ClKIN Period

TCKHl ClKIN Fall Time

TCKLH ClKIN Rise Time

TCLCK CLKIN low Time

TCHCK CLKIN High Time

80188 CLKOUT Timing (200 pi: load)

Symbol Parameter

TclCO ClKIN to ClKOUT Skew

TCLCl ClKOUT Period

TClCH CLKOUT low Time

TCHCl ClKOUT High Time

TCH1CH2 ClKOUT Rise Time

TCL2Cll ~ ClKOUT Fall Time

IAPX 188

80188 (8 MHz) 80188-6 (6 MHz)

Min. Max. Min. Max. UniIB Test Conditions

62.5 250 83 250 ns

10 10 ns 3.5 to 1.0 volts

10 10 ns 1.0 to 3.5 Yolts

25 33 ns 1.5 Yolts

25 33 ns 1.5 Yolts

Min. Max. Min. Max. Units Test Conditions

50 62.5 ns

125 500 167 500 ns

\2 T ClCl-7.5 \2 TClCl-75 ns 1.5 volts

\2 T CLCL-7.5 \2 TCLCl-7.5 ns 1.5 volts

15 15 ns 1.0 to 3.5 Yolts

,15 15 ns 3.5 to 1. Yolts

3-481 AFN-01483A

int f,
~.,'I~ , IAPX 188

WAVEFORMS

MAJOR CYCLE TIMING

VCH T, T.

t~7.d; ., I_T,., 1"' T~Ii:~-

CLKOUT r--\ ~J
I-"W :3)1~ ("-"'\

-y;;'TCHS,i- ,

SMO
... "" .. - j-

\ \\.
r-' TCHCZ Tel ~AV_ II_rc I.AX::::

rCLD1 :::: - ~ f-. 1

W' A1D-A,S s,,-S3
• A,./s"-A,,/S, 'I

1- -T iw,
~~ --

ALE

~ :~~t~ TCH~ i:u~ :: I::: TCLAZ_ +-.-
'T

~OX
At-~ A7,100 DATAOU1 -I

WRITE CYCLE .
AwAe A,;-Ae

V-
I I\-Rii.INTA.

DT/R = VOH I- ~-- "c1

~ - TLLAl j -'l-
DEN

.~,~ - .
/ WIi , r-- ro- TCLAZ ~ :CLDX

AD7Ao, \ \.
FLOAT A_no

/'I~
I FLOAT A15"Ae

INTA CYCLE ...:::::;......,.1 ... TCHCTV
1- .~"'"

DT/R ~ l-
I

~ . I - A
INTA I NOTE 2 V II RD. WR = VOH

[j ,~.~ 1-/ ,

DEN rJ I
SOF'!!'[ARE HALT-DE~ =Volo t RD. WR. INTA. DT/R = VOH . INVAUD ADDRESS

POS, TCLAV_ ' I';;=-
1-MCS

- LCS, - _TCLCSV TCXCSX- f--MCS

3-482 AFN-ol483A

WAVEFORMS (Continued)

MAJOR CYCLE TIMING (Continued)

CLKOUT

A19/S6-Al61S3

READ CYCLE

'l-.OTES

ALE

TCHLH

AD,-ADo

DT/A

PCS,
MCS --------+_~
LCS,
MCS

iAPX 188

1 Following a Wrtte cycle, the Local Bus IS floated by the 80188 only when the
80188 enters a "Hold Acknowledge" state
INTA occurs one clock later In RMX~mode

Status inactIve lust prtor to T4

3-483 AFN-01483A

iAPX 188'

WAVEFORMS (Continued)

ClKOUT

- TClAV - TClAV

CLKOUT

TINVCl- -

M+.
INTO-3,

TIMERIN:--______ --.J

CLKOUT ,

QSO, QS1

3-484 AFN-Q1483A

IAPX 188

WAVEFO.RMS (Continued)

HOLD-HLDA TIMING

T, T,

CLKOUT

ARDY

TARYLCL- _

CLKOUT

CLKOUT

HLDA

- rTCLAV

AD7-ADO, --~
A15-AS 80186)--- 80186

jjHi
__ J r-TCHCV

A19/S6-A161S3, --,
iiii,WR, 80186 }--- 80186 . __ J

57,

DT/ii,
52-SO

3-'485 AFN-014B3A

IAPX 188·

WAVEFORMS (Continued)

TIMER ON 80188
!---TCKIN---'!-

ClKIN

TCKHl TCKlH

TCHICH2

ClKOUT
'k'"----TClCH---+O.,j4---TCHCl----ri->\o..

i--------TClCl -------+1

TIMERIN

I
~

TINVCH

K".'~

TIMEROUT __ ::~~~~~~~~~~~~~~~~~~~~~~~_2_-_6 C_l_O_C_KS ______ -..,. ____ ---'l __ ~

80188 INSTRUCTION TIMINGS

The following instruction timings represent the mini­
mum execution time in clock cycles for each instruc­
tion. The timings given are based on the following
assumptions:

• The opcode, along with any data or displacement
required for execution of a particular instruction,
has been prefetched and resides in the queue at
the time it is needed.

• No wait states or bus HOLDS occur.

• All word-data is I~cated on even-address
boundaries.

All jumps and calls include the time required to fetch
the opcode of the next instruction at the destination
address.

All instructions which involve memory reference can
require one (and in some cases, two) additional
clocks above the minimum timings shown. This is
due to the asynchronous nature of the handshake
between the BIU and the Execution unit.

, 3486 AFN-01483A

inter IAPX 188

INSTRUCTION SET SUMMARY

Clock
fUNCTION FORMAT Cycle. Comments

DATA TRANSFER
MOV=Mon:
Register to RegISter/Memory 1'000'00w mod reg rim I 2112'
Reglste"memory to register 1'000'0'W mod reg rim 2Ig'

Immediate to reglsterlmemory l' 100011 w modOOO rim data I datalfw~1 I 12-13' 8116-blt

Immediate to register l' 01 1 w reg data datalfw-l I 3-4 8116-bit

Memory to accumulator I' 0 1 1i 0 00 w addr·low ' addr·hlgh I g*

Accumulator to memory 1'0'000'W addr·low addr·hlgh I S*

Reglsterlmemory to segment register l' 00 0 1 1 1 0 mod 0 reg rim 2113
Segment register 10 reglste[lmemory l' 00 0 1 1 0 0 mod 0 reg [1m 2115 ,
PUSH = Push:
Memory 1""'" '1 modll0 rim I 20
Register 10 1 0 1 0 reg I 14
Segment register 10 00 reg 1 1 0 I 13

POP = Pop:
Memory l' 00 0 1 1 1 1 I modOOO [1m I 24
Register 10 1 0 1 1 reg I 14
Segment register 10 0 0 reg 1 1 1 I (reg*OI) 12

leHG = b1:hlnge:
Register/memory with register l' 0000,11 wi mod reg [1m I 4/17*
Register wllh accumulator l' 00 1 0 reg I 3

IN = Input lrom:
FIXed port l' 110010 wi port I 10*
vanable port l' 1 1 0 1 lOw I S*

OUT = Output 18: ,
FIXed port l' 1 1 00 1 1 w port I g*

vanable port l' 1101 11 w 7"

ILAT ~ Translate byte to AL l' 1 0 1 0 1 1 1 15

LEA ~ Load EA to register l' 00 0 1 1 0 1 modre!! [1m I , 6

LOS ~ Load pOinter to OS l' 1 0 0 0 1 0 1 mod reg [1m I (mod" 11) 26

LES = Load pOinter to ES 1'1000100 mod reg [1m I (mod" 11) 26

LAHF ~ Load AH with flags l' 00 1 1 1 1 1 2

SAHF ~ Store AN Into flags l' 00 1 1 1 1 0 3

PUSHF = PuSh flags l' 00 1 1 1 0 0 13

POPF ~ Pop lIags l' 001110 q 12
"

8E8I1E11T = Segment OVerride
.,

CS 100 1 0 1 1 1 0 I 2

55 1001 10 1 1 0 I 2

os 1001 1 1 1 1 [] 2 ,
ES· 10 0 I' 0 0 1 1 0 I 2

, .. " Shaded areas Indicate Instructions nl>t available In IAPX 86, 88 mlcrbsystems,
"Note: Clock cycles shown for byte t(an'sfer, For word operations,'adci' 4 Clock cycles for all memory transfers,

. '3-487 .

IAPX 188

INSTRUCTION SET SUMMARY (Continued)

Clock
FUNCTION FORMAT Cycles Comments

ARITlfMETIC
ADD = Add:
Reglmemory with register to either 10 00 0 0 0 d wi mod reg rm I 3/10'
Immediate to reglster:memory 1100000swi modOOO rm I data I datall s W - 01 I 4/16"
Immediate to accumulator 10000010wl data I datalfw~1 I 3/4 8116-blt

ADC = Add with earry:
Reglmemory with register to either 10 00 tOO d wi mod re2 rm I 3/10"
Immediate to reglste"memory 1100000swi mod 0 1 0 r:m I data I datalfsw~OI I 4/16'
Immediate to accumulator 10 00 1 0 lOw I data I datalf w ~ 1 I 3/4 8/16-bit

INC = Increment:
Register/memory 11 '11111 wi modOOO r'm I 3/15"
Register 10 1 0 0 0 reg I 3

SUB = Sublfact:
Reg/memory and reglsterto either 10 0 1 0 1 0 d wi mod reg rim I 3/10'
Immediate from reglsterlmemory 11 OOOOOs wi modl0l r'm I data I datalfsw~OI I 4/16'
Immediate from accumulator 10010110wl data I datalf w - 1 I 3/4 8116-bit

S88 = Sublfact with borrow:
Reg/memory and register to Mher 10 00 1 1 0 d wi mod reg rm I 3/10"
Immediate from register/memory 1100000swi modOll rim I data I datalfsw~OI I 4/16"
Immediate from accumulator 10 00 1 1 lOw I data I datalfw = 1 I 3/4 8116-bit

DEC = Decrement:
Register/memory 11 111111 wi modOOl r:m I 3/15'
Register 10 1 0 0 1 reg I 3

CMP = Compare:
Register/memory With register 10 01 1 1 01 wi mod reg r:m I 3/10"
Register With register/memory 10011100wl mod reg rim I 3/10'
Immediate With register/memory 1100000swl mod 111 rim I data I dat.,fs w - 0 1 I 3/10'
Immediate With accumulator 10 01 1 1 lOw I data I datalfw=1 I 3/4 8116-bit
NEG = Change sign 11 11 1 011 wi modOll rim I 3
AM = ASCII adlust for add 10 0 1 1 0 1 1 1 I 8
DAA = DeCimal adlust for add 10 0 1 0 0 1 1 11 4
AAS = ASCII adlust for subtract 10 01 1 1 11 11 7
PAS = DeCimal adlust for subtract 10 0 1 0 1 1 1 11 4

MUL = Multiply (unsigned) 11 t'1 1011 wi mod 1 00 rim I
Register-Byte 26-28
Register-WOrd 35-37
Memory-Byte 32-34
Memory-WOrd 41-43"

IMUL = Integer multiply (signed) 11 11 1011 wi mod 1 01 rim I
Register-Byte 25-28
Register-WOrd 34-37
Memory-Byte 31-34
Memory-WOrd 40-43'

.'.'
DIV = Olvlde (unsigned) 11 1 1 1 0 1 1 wi mod 11 0 rim I
Register-Byte 29
Register-Word 38
Memory-Byte 35
Memory-WOrd 44'

Shaded areas Indicate Instructions not available In IAPX 86,88 mlcrosystems.
"Note,: Clock cycles shown for byte transfer. For word ooerations, add 4 clock cycles for all memory transfers.

3488 AFN-oI483A

IAPX188

INSTRUCTION SET SUMMARY 'Ctlntlln .. ,,"

FUNcnllN

IDi,; Integer divide (signed)
Register-Byte
Register-WOrd
Memory-Byte
Memory-WOrd
MM; ASCII adlustfor multiply

MD ; ASCII adlust for divide

caw; Convert byte to word

CWO; Convert word to double word

LOGIC
SbIIllR lnstructlons:
Register/Memory by 1

Register/Memory by CL

AND = AmI:
Reg/memory and register to either

Immediate to reglsterlmemory

Immediate to accumulator

TEST = An.lunctlon 10 n •••. no ... ult:
Register/memory and register

Immediate data and reglsterlmemory

Immediate data and accumulator

OR=Or'
Reg/memory and register to either

Immediate to register/memory

Immediate to accumulator

lOR = Exclusive or:
Reg/memory and register to BIther

Immediate to register/memory

Immediate to accumulator

NOT = Invert register/memory

STRING MANIPUlAnON'
MOYS; Move bytelWord

CMPS ~ Compare byte/word

seAS ; Scan byt~/word

LOOS ; Load byte/wd to AUAX

FORMAT

11 1 1 1 0 1 1 w I mod 111 r'm

1110101001000010101

\1 1 0 1 0.1 0 1 I 0 0 0 0 1 0 1 0 I
11 00 1 1 00 0 I
11 00 1 1 00 1 I

m Instruellon
o 0 0 ROL
001 "ROR
o 1 0 RCL
01 1 RCR
1 00 SHUSAL
1 01 SHR
1"1 1 SAR

10 0 1 0 0 0 d wi mod reg rim

bOOOOOOwl modl00 rim data

I~ 01 0 0 lOw I data datalfw-l

11000010wl mod reg rim

11 11 101 1 w I modOOO rim data

11010100wl data datalfw ~ 1

1000010d WI mod reg rim

11000000wl modOOl rim data

10 00 0 1 lOw I data datalfw-l

1001100dwi mod reg rim

11000000wl modll0 rim I data

10011010wl data I datalfw- 1

11 11 101 l' wi modOl0 rim I

datalfw~1

datalfw~1

datalfw= 1

datalfw~ 1

Shaded areas indicate instructions not available in iAPX 86. 88 microsystems.

Clock
Cycle.

44-52

53-61
50-58
59-67"

19
15
2
4

2/15"
5+n/17+n"

3/10'
4/16"

Comments

3/4 8116-bit

3/10'
4/10'

3/4 8116-bit

3/10'
4/16·

3/4

3/10·

4/16'
3/4
3.

14*
22*
15'

12*

8116-bit

8116-bit

"Note: Clock cy.cles shown for byte transfer. For word operations. add 4 clock cycles for all memory transfers.
\ ,

3-489

iAPX 188

INSTRUCTION SET SUMMARY Ir"_.di_.

FUNCTION FORMAT

Repeated by count In ex
MOVS Move string 11 11 1 0 0 1 11010010wl

CMPS Compare strmg 11 11 1 0 0 1 zl1010011wl

SCAS Scan stnng 11 11 1 0 0 1 z 11 0 1 0 1 1 1 wi

LOOS Load strmg 11 11 1 0 0 1

CONTROL TRANSFER

CALL=CaU:
Direct wlthm segment 11 1 1 0 1 0 0 0 I dtsp·low dtSp-hlgh

Register memory 11 111 111 1 I modOl0rm
Indirect within segment
Direct Intersegment 11 00 1 1 0 1 I segment offset

I segment selector

Indirect mtersegment 11 111111 1 mod011rm (mod = 111

JMP = Uncondillonal Jump:
Short long 11 1 1 0 1 0 1 1 I dlsp-Iow

Direct wlthm segment 11 1 1 0 1 0 0 1 I dlsp-Iow dtSp-hlgh

ReQlster memory indirect wlthm segment 11 111111 I modl00 rm

Direct Intersegment 11 1 1 0 1 0 1 o I segment offset

I segment selector

Indirect mtersegment 11 111111 1 mod101rm (mod = 111

RET = Return from CALL'
Wlthm segment 11 1 0 0 0 0 1 11

Within seg adding Immed to SP 11 1 0 0 0 0 1 o I data-low dala-hlgh

Intersegment 11 1 0 0 1 0 1 1 I
Intersegmenl adding Immediate to SP 11 1 0 0 1 0 1 o I data-low data-high

Shaded areas Indicate Instructions not availa.ble in IAPX 86.88 mlcrosystems_ .

Clock
Cycles

8+8n'
5+22n'
5+15n'
6+11 n'

18
17/27

31

54

13
13

11/21

13

34

20
22

30
33

Comments

'Note: Clock cycles shown for byte transfer. For word operations, add 4 clock cycles for all memory transfers.

3-490 AFN-Q1483A

iAPX 188

INSTRUCTION SET SUMMARY (Continued)

Clock
FUNCTION FORMAT Cycles Comments

JElJZ = Jump on equal zelO 10 1 1 1 0 1 0 0 I dlsp 4/13 JMP not
JLlJNGE ~ Jump on less not greater or equal 10 1 1 1 1 1 0 0 I dlsp 4/13 taken/JMP

JLElJNG ~ Jump on less or equal not greater 10 1 1 1 1 1 1 0 I disp taken
4/13

JBIJNAE ~ Jump on llelow not above or equal 10 1 1 1 0 0 1 0 I <lisp 4/13
JBElJNA ~ Jump on llelow or equal,no1 above 10 1 1 1 0 1 1 0 drsp 4/13
JPIJPE ~ Jump on pa,,~ pa,,~ even 10 1 1 1 1 0 1 0 dlsp 4/13
JO ~ Jump on overlow 10 1 1 1 0 00 0 dlsp 4/13
JS ~ Jump 011 Sign 10 1 1 1 1 00 0 dlsp 4/13
JNE/JNZ ~ Jump on not equal notlero 10 1 1 1 0 1 0 1 dlsp 4/13
JNLlJGE ~ Jump on not less greater or equal 10 1 1 1'1 1 0 1 dlsp 4/13
JNLEIJG ~ Jump on no1less orequal greater 10 1 1 1 1 1 1 1 dlsp 4/13
JNBIJAE ~ Jump on not llelow ,boveorequal 10 1 1 1 0 0 1 1 dlsp 4/13
JNBElJA ~ Jumpon not below orequal ,b"" 10 1 1 1 0 1 1 11 disp 4/13
JNPIJPO ~ Jumpon not par par odd 10 1 1 1 1 0 1 1 dlsp 4/13
JNO ~ Jump on not overlo. 10 1 1 1 0 00 1 dlsp 4/13
JNS ~ Jump on not sign 10 1 1 1 1 00 1 dlsp 4/13
JCXZ ~ Jump on ex lero 11 1 1 0 0 0 1 1 dlsp 5/15
lOOP ~ loop ex times 11 1 1 0 0 0 1 0 dlsp 6/16 LOOP not
LOOPZlLOOPE ~ loop while zero equal 11 1 1 0 0 0 0 1 dlsp 6/16 taken/LOOP
LOOPNZlLOOPNE ~ loop while not zero equal 11 1100000 dlsp 6/16 taken

INT = Inlerrupl:
Type specIfied 11 1 0 0 1 1 0 1 I type 47
Type 3 11 1 0 0 1 1 0 0 I 45 if INT. takenl
INTO ~ Interrupt on overflow 11 1 0 0 1 1 1 0 I 48/4 if INT. not

taken

IRET ~ Interrupt return 11 1 0 0 1 1 1 11 28

Shaded areas indicate instru.ctions not available iri iAPX 86, 88 microsystems.

3-491 AFN-01483A

inter, IAPX,18,8

INSTRUCTION SET SUMMARY (Continued)

Clock
FUNCTION FORMAT Cycles Comments

PROCESSOR CONTROL
CLC = Clear carry 11 1 1 1 1 00 0 2
CMC = Complement carry 11 11 1 0 1 0 1 2
STC = Set carry 11 1 1 1 1 00 1 2

CLO = Clear directIOn 11 1 1 1 1 1 0 0 2
STO = Set directIOn 11 1 1 1 1 1 0 1 :2
Cli = Clear Interrupt It 1 1 1 1 0 1 0 2
STI = Set Interrupt 11 1 1 L 1 01 1 2
HLT=Halt 11 1 1 1 0 1 0 0 2
WAIT = Walt 11 00 1 1 0 1 1 6 if test = 0

LOCK = Bus lock prefix 11 1 1 1 0 0 0 0 2

ESC = Processor ExtenSion Escape 11 0011TTT mod LLL r m I 6
(TTT LLL are opcode to processor extenSion)

Shaded areas indicate instructions not available ih iAPX 86, 88 microsystems.

3-492 AFN-oH.83A

inter IAPX 188

FOOTNOTES

The effective Address (EA) of the memory operand is
computed according to the mod and rim fields:

if mod = 11 then rim is treated as a REG field

if mod = 00 then OISP = 0', disp-Iow and disp-high

are absent

if mod = 01 then OISP = disp-Iow sign-extended to

16-bits, disp-high is absent

if mod = 10 then OISP = disp-high: disp-Iow

if rim = 000 then EA = (BX) + (SI) + OISP

if rim = 001 then EA = (BX) + (01) + OISP

if rim = 010 then EA = (BP) + (SI) + OISP

if rim = 011 then EA = (BP) + (01) + OISP

ifrlm = 100 then EA = (SI) + blsP

if rim = 101 then EA = (01) + OISP

if rim = 110 then EA = (BP) + OISP'

if rim = 111 then EA = (BX) + OISP

OISP follows 2nd byte of instruction (before data if
required)

'except if mod = 00 and rim = 110thenEA = dlsp-hlgh:dlSp·low.

EA calculation time is 4 clock cycles for all modes, and
is included in the execution times, given whenever
appropriate.

SEGMENT OVERRIDE PREFIX

10 0 1 reg 1 1 0 I

reg is assigned according to the following:

Segment
reg Register

00 ES
01 CS
10 SS
11 OS

REG is assigned according to the following table:

16-Blt (w = 1) B-Bit(w = 0)
000 AX 000 AL

001 CX 001 CL

010 OX 010 DL

011 BX 011 BL

100 SP 100 AH

101 BP 101 CH

110 SI 110 OH

111 01 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination opi
erands of the string primitive operations (thos~ ad­
dressed by the 01 register) are computed using the ES
segment, which may not be overridden.

AFN-<lI483A

"'}. f:'·,,·,

8089
8 & 16·BIT HMOS 1/0 PROCESSOR

• High Speed DMA Capabilities Including
I/O t~ Memory, Memory to I/O,Memory
to Memory, and I/O ·to I/O

• IAPX 86,;88 Compatible: Removes I/O
Overhead from CPU In IAPX 86/11 or
$8/11 Configuration

• Allows Mixed Interface of 8- & 16-Blt
Peripherals, to 8- & 16-Blt Processor
Busses

• 1 Mbyte Addressabllity

• Memory Based Communication with
CPU

• Supports LOCAL or REMOTE I/O
Processing

• Flexible, Intelllgent DMA Functions
Including Translation, Search, Word
Assembly/Disassembly

• MULTIBUS™ Compatible System
Interface

.. Available in EXPRESS
- Standard Temperature Ran~e

The Intel~ 8089 is a revolutionary concept in microprocessor input/output processing. Packaged in a 4o-pin DIP package,
the 8089 IS a high performance processor implemented in N-channel, depletion load silicon gate technology (HMOS)., The
8089's instruction set and capabilities are optimized for high speed, flexible and efficient I/O handling. It allows easy
interface of Intel's 16-bit iAPX '86' and 8-bit iAPX 88 microprocessors with 8- and '16-bit peripherals. In the REMOTE
configUration, ttie 8089 bus is user definable allowing it to be cpmpatible With any 8/1&.bit Intel microprocessor, interfacing
easily to the Intel multiproce~sor system bus standard MULTI BUST •.

The 8089 performs the function of an intelligent DMA controller for the Intel iAPX 86, 88 family and with It~ processing
power, can remove I/O overhead from the iAPX 86 or iAPX 88. It may operate completely in parallel with a GPU, giVing
dramatically improved performance in I/O intensive applications. The 8089 provides two I/O'channels, each supporting a
transfer rate up to 1.25 mbyte/sec at the standard clock frequency of 5 MHz. Memory based commUnication between the
lOP and CPU enhances system flexibility and encourages software modularity, yielding more reliable, easier to develop
systems.

OMA REO,

OMA

OMA RE02

OMA
TERMINATE2

110 CHANNEL 1

110 CH~NNEl 2

CPU

r-=--"l
I I
I I
I I
I r-=l1
IL=-.J 1

L_ :=..J

ASSEMBLY,
OISASSEMBL V

INSTRUCTION
FETCH UNIT

Figure 1. 8089 1/0 Processor Block Diagram

STATUS

ADDRESSI
DATA

A111011

A101010

Ail ..
AilDI

A3I03

A21D.

SINTR2

eLK

.ESET
'---_ ..
Figure 2.

8089 Pin Configuration

Intel Corporation A •• um •• No R •• ponllbllty tor the U •• at Any CirCUitry Other Than Circuitry Embodied In an Intel Product No Other CirCUit Patent Licen ••• .,elmphed

'''INTEL CORPORATION, 1980 . •

3-494

inter 8089

. ___ -r----.-_________ li_8_b_le_1_,_P,In Description

Symbol Type Nam. and Function

Ar}-A151
00-015

A16-A19/
S3-S6

BHE

50.51.52

READY

I/O MuHlplexecl Addr ••• and Dlda au.: The
function of these lines are defllJed by the
state of §>, ~ and ~ lines. The pins are

, floated after reset and when the bus is not
acquired. A8-A 15 are stable on transfers to a
physical 8-bit data bus (ssme bus as 8088),
and are multiplexed with data on transfers to
a 16-bit phYSical bus.

o Addr ... and Status: Multiplexed most
significant address lines and status in­
formation. The address lines are active only
when addreSSing memory. Otherwise, the
status lines are active and are encoded as
shown below. The pins are floated after reset
and when the bus is not acquired.
S8S5S4S3
1 1 0 0 DMA cycle on CH1
1 1 0 1 DMA cycle on CH2
1 1 1 0 Non-DMA cycle on CH 1
1 1 1 1 Non-DMA cycle on CH2

o Bus High Enabl.: The Bus High Enable is
used to enable data operations on the most
significant half of the data bus (08-015). The
signal is active low when a byte is to be
transferred on the upper half of the data bus.
The pin is floated after reset and when the
bus is not acquired. BHE does not have to be
latched.

o Status: These are the status pins that define
the lOP activity during any given cycle. They
are encoded as shown below:
iUiSii
o 0 0 Instruction fetch; I/O space
o 0 1 Data fetch; I/O space
o 1 0 Data store; I/O space
o 1 1 Not used
1 0 0 Instruction fetch; System Memory
1 0 1 Data fetch; System Memory
1 1 0 Data store; System Memroy
1 1 1 Passive

The status lines are utilized by the bus
controller and bus arbiter to generate all
memory and I/O control signals. The signals
change during T4 if a new cycle is to be
entered while the return to passive state in T3
or Tw indicates the end of a cycle. The pins
are floated after system reset and when the
bus is not acquired.

I Ready: The ready, signal received from the
addressed device indicates that the device is
ready for data transfer. The signal is active
high and is synchronized by the 8284 clock
generator.

Symbol • Type

mCK 0

RESET I

CLK I

CA I

SEL I

DRQI-2 I

RQ/GT I/O

SINTRI-2 0

EXT1-2 I

Vee

Vss

3-495

Nam. and Function

. LocII: The lock output signal indicates to the
bus controller that the bus is needed for more
than one contiguous cycle. It is set via the
channel control register. and during the TSL
instruction. The pin floats after resel and
when the bus is not acquired. This output is
active low.

Re .. t: The receipt of a reset signal causes
the lOP to suspend all its activities and enter
an idle state until a channel attention IS
received. The signal must be active for at
least four clock cycles.

Clock: Clock prOVides all timing needed for
internal lOP operation.

Channel Attention: Gets the attention of the
lOP. Upon the falling edge of this signal. the
SEL input pin is examined to determine
Master/Slave or CH1/CH2 information. ThiS
input is active high.

S.lect: The first GA received after system
reset informs the lOP via the SEL line, whe-
ther it is a Master or Slave (0/1 for Mas-
ter/Slave respectively) and starts the in-
itialization sequence During any other CA
the SEL line signifies the selection of
CH1/CH2. (0/1 respectively.)

Data Request: DMA request inputs which
Signal the lOP that a peripheral is ready to
transfer/receive data using channels 1 or 2
respectively. The signals must be held active
high until the appropriate fetch/stroke IS
initiated.

Request Grant: Request Grant Implements
the communication dialogue reqUired to ar-
bitrate the use of the system bus (between
lOP and CPU, LOCAL mode) or I/O bus when
two lOPs share....!!'e same bus (REMOTE
mode). The RQ/GT signal...!! a'£!lve low. An
internal pull-up permits RQ/GT to be left
floating if not used.

Signal Interrupt: Signal Interrupt outputs
from channels 1 and 2 respectively. The
interrupts may be sent directly to the CPU or
through the 8295A interrupt controller. They
are used to indicate to the system the
occurrence of user defined events.

External Termlnata: External terminate
inputs for chamiels 1 and 2 respectively. the
EXT signals will cause the termination of the
current DMA transfer operation If the chan-
nel is so programmed by the channel control
register. The Signal must be held active high
until termination is complete.

VoHage: +5 vol.t power input.

Ground.

AFN'()0840E'

FUNCTIONAL DESCRIPTION
The 8089 lOP has been designed to remove 1/0 proces­
sing, control and high speed transfers from the central
processing unit. Its major capabilities Include that of In­
Itializing and maintaining peripheral components and
supporting versatile DMA. This DMA function boasts
'flexible termination conditions (such as external termi­
nate, mask compare, single transfer and byte count ex­
pired). The DMA function of the 8089 lOP uses a two cy­
cle approach where the Information actually flows
through the 8089 lOP. Tl1is approach to DMA vastly sim­
plifies the bus timings and enhances compatibility with
memory and peripherals, In addition to allowing opera­
tions to be performed on the data as it Is transferred.
Operations can Include such constructs as translate,
where the 8089 automatically vectors through a lookup
table and mask compare, both on the "fly".

The 8089 is functionally compatible with Intel's IAPX 86, 86
family. It supports any combination of 8116-bit busses. In
the REMOTE mode It can be used to complement other
Intel, processor families. Hardware and communication
architecture are designed to provide simple mechanisms
for system upgrade.

The only direct communication between the lOP and
CPU is handled by the Channel Attention and Interrupt
lines. Status Information, parameters and task pro­
grams are passed via blocks of shared memory, slmpli-

, fying hardware interface and encouraging structured'
programming.

) .,
The 8089 can be u~d in applications such as file and
buffer management in' hard disk or floppy disk control. It
can also provide for soft error recovery routines and scan

control. CRT control, such as cursor control and auto
scrolling, is simplified with the 8089. Keyboard control,
communication control and general 1/0 are just a few of
the typical applications for the 8089. '

Remote and Local Modes
Shown In Figure 3 Is the 8089 In a LOCAL configuration.
The IAPX 86 (or IAPX 88) is used In.its maximum mode. The
8089 and IAPX 88 reside on the same lOcal bus, sharing the
same set of system buffers. Peripherals located on the
system bus can be addressad by either the iAPX 86 or the
8089. The 8089 requests ~he use of the LOCAL bus by
means of the RQlGT line. This performs a similar function
to that of HOLD and HLDA on the Intel 8085A, 8080A and
iAPX 88 minimum mode, but is implemented on one
physical line., When the iAPX 86 relinquishes the system
bus, the 8089' uses the same bus control, latches and
transceiver components to generate the system address,
control and data lines. This mode allows a more
economical system configuration at the expense of
reduced CPU thruput due to lOP bus utilization.

A typical REMOTE configuration is shown in Figure 4. In
this mode, the lOP's bus Is physically separated from
the system bus by means of system buffersllatches. The
lOP maintains its own local bus and can operate out of
local or system memory. The system bus interface con-
tains the following components: '

• Up to three 8282 bufferllatches to latch the address to
the system bus.

• Up .to two 8286 devices bidirectionally buffer the
system data bus.

·1~-~'·~N.:;::~~ .:K ErNe
_. ,ft fi = i6Ji!~=~=====::ti~===t:==+;==t;===
:: ~1.:"~m~T._o'_"_·~~~r-~IN_e __ t-________ -jH-______ r-__ -jH-_It-___ ___ r- ~DY iHI a!LE liM

@CC O -ClOCk

T TO •

......
iIlIIIT

• N.
....T

NOn! ~LY ONILATCH IS "UDED tF CONAGUIIID WITH" YO ONLY 14K
ADDREUING .. UIEO ONLY ONE TIItAJftIC!fYI!II .. NEEDED IF VStffG A
PHY8tCAL , DATA -.

Figure 3_ 'lYpicallAPX 86111, 86111 Configuration with 8088 In LOcAL Mode, 808i, aOas In MAX Mode

3-496 AFN.o084OE

inter 8089

• An 8288 bus controller supplies the control signals
necessary for buffer operation as well as MRDC
(Memory Read) and MWTC (Memory Write) signals.

• An 8289 bus arbiter performs all the functions
necessary to arbitrate the use of the system bus. This
is used in place of the Ra/GT logic In the LobAL
mode. This arbiter decodes type of cycle information
from the 8089 status lines to determine if the lOP
desires to perform a transfer over the "common" or
system bus.

The peripheral devices PER1 and PER2 are supported on
\heir own data and address bus. the 8OS9'communicates
with the peripherals without affecting system bus opera­
tion. Optional buffers may be used on the local bus when
capacitive lo',ding conditions so dictate. I/O programs and
RAM buffers may also reside on the local bus to further
reduce system bus utilization.

COMMUNICATION MECHANISM
Fundamentally, communication between, the CPU and
lOP is performed through messages prepared in shared
memory. The CPU can cause the 8089 to execute a pro·
gram by placing it in the 8089's memory space andlor
directing the 8089's atlenlion to it by asserting a hard·
ware Channel Attention (CA) signal to the lOP, ac·
tivating the proper 110 channel. The SEL Pin indicates to

the lOP which channel is being addressed. Communlca·
tlon from the lOP to the processor can be performed in a
similar manner via a system interrupt (SINTR 1,2), if the
CPU has enabled interrupts for this purpose. Addition·
ally, the 8089 can store messages in memory regarding
its status and the status of any peripherals. This com·
municatlon mechanism is supported by, a hierarchial
data structure to provide a maximum amount of flexi·
bility of memory use with the added capability of handl·
ing muitiple lOP's. .

Illustrated in Figure 5 is an overview of the communica·
tion data structure hierarchy that exists for the 8OS9 1/0
p~ocessor. Upon the first CA from RESET, if the lOP is
initialized as the BUS MASTER, 5 bytes of information are
read into the 8089 starting at location FFFFS (FFFFS,
FFFF8-FFFFB) where the type of system bus (1S-bit or 8-
bit) and pOinters to the' system configuration block are
obtained. This is the only fixed location the 8089 accesses.
The remaining addresses are obtained via the data struc-.
ture hierarchy. The 8089 determines addresses in the
same manner as does the iAPX 8S; i.e., a 16-bit relocation
pointer is offset left 4 bits and added to the 16-bit address
offset, obtaining a 2Q-bit address. Once these 20-bit ad­
dresses are formed, they are stored as such. as all the 8089
address registers are 20 bits long. After the system con­
figuration pOinter address is formed. the 8089 lOP ac­
cesses the system configuration block.

~OC.L ____ . ____ . __ ~·----_____ fsU~t.CL~.--1_~~---

,-------+~-------li1 :uS: H--+-+--} :~~~::tON MEMORY
ROM/RAM

T

Figure 4. Typical REMOTE Configuration

3-497

ARBITRATION SIGNALS

so A"lN

CPU
SYSTEM

BUS

AFN-D0840E

infef 8089

ADDRESS
INCREASE

• SYSTEM
CONFIGURATION
BLOCK

CONTAOl
BLOCK

PARAMETER
BLOCK

OB RELOCATION

BUSY I CCW

PI ADDRESS

PI RELQCATION

BUSY CCW

PB ADDRESS

PI RElOCATION f-------

TASK BLOCK J
1'-' ----,,.

lOP TASK .1 T PROGRAM T

LOCATION
FFFF6

CHANNEL ,

CHANNEL
2

Figure 5. Communication Data Structure Hierarchy

The System Configuration Block (SCB), used only duro
ing startup, points to the Control' Block (CB) and provides
lOP system configuration data via the SOC byte. The
SOC byte initializes lOP I/O bus width to 8/16, and
defines one of two lOP RO/GT operating modes. For
Ra/GT mode 0, the lOP is typically initialized as SLAVE
and has its FiO/CIT line tied to a MASTER CPU (typical
LOCAL configuration). In this mode, the CPU normally
has control of the bus, grants control to the lOP as-need­
ed, and has the bus restored to it upon lOP task comple-

I tion (lOP request...:CPU grant-lOP done). For RO/GT
mode 1, useful ohly in remote mode between two lOPs,
MASTERISLAVE designation ,is used only to initialize
bus control: from then on, each 10,P requests and grants
as the bus is needed (IOPI request-IOP2 grant-IOP2
request-IOPI grant). Thus, each lOP retains bus con·
trol until the other requests it The completion of in·
itialization is signalled by the lOP clearing the BUSY
flag in the CB. This type of startup allows the user to
have the startup pOinters in ROM with the SCB in RAM.
Allowing the SCB to be in RAM gives the user the flex·
ibility of being able to initialize multiple lOPs.

The Control Block furnishes bus control Initialization for
the lOP operation (CCW or Channel Control Word) and
provides pOinters to the Parameter Block or "data"
memory for both channeis 1 and 2, The CCW is retrieved
and analyzed upon all CA's other than ,the first after a
reset. The CCW byte is decoded to determine channel
operation.

The Parameter Block contains the address of the, Task
Block and acts as a messge center between the lOP and
CPU. Parameters or variable information is passed from
the CPU to its lOP in this block to customize the soft·
ware interface to the peripheral device, It is also used
fot transferring data and status information between the
lOP and CPU.

The Task Block contains the instructions for the respec·
tive channel. This block can reside on the local bus of

the'IOP, allowing ,the lOP to operate concurrently with
the CPU, or reside in system memory.

The advantage of this type of communication between
the processor, lOP and peripheral, is that it allows for a
verr clean method for llie operating system to handle
I/O routines. Canned programs or "Task B,locks" allow
for execution of general purpose 110 routines with the
status' and peripheral command information being
passed via the Parameter Block ("dafa" memory). Task
Blocks (or "program" memory) can be terminated' or
restarted by the CPU, if need be. Clearly, the flexibility
of this communication lends itself to modularity and ap­
plicability to a large number of peripheral devices and
upward compatibility to future end user systems and
microprocessor families.

Register Set

The 8089 maintains separate regillters for its two I/O channels
as well as some cOmmon registers (see Figure 6). There are
sufficient regisJers for each channel to sustain its own DMA
transfers, and process its own instruction stream. The basic
DMA pointer registers (GA, GB-20 bits each), can pointto either,
the system bus or local bus, DMA source or destination, and
can be autoincremented_ A third register set.(GC) can be used
to allow translatidn during the DMA process through a lookup
table it points to. The channel control register, which may be
accessed only by a MOV, or MOVI instruction, determines the
mode of the channel operation, Additionally, registers are pro­
vided for a masked compare during the data transfer and can
be set up to act as one of the termination conditions. Other
registers are also provided_ Many of these registers can be used
as general purpose registers during program execution, when
the lOP is not performing DMA cycles_

USER PROGRAMMABl(

1A019 0

G P ADDRESS A (GA)

G P ADDRESS 8 (GB)

G.P. ADDRESS C (GC)

TASK POINTER (TP)

___ 1 BIT POINTER TO EITHER I/O OR SYSTEM MEM()RY SPACE

" 0
INDEX (IX)

BYTE COUNT (BC)

MASK COMPARE (MC)

C:HANNEL CONTAOL ICC)

NON USER PROGRAMMABLE
(AL WAYS POINTS TO SVSTEM MEMORy)

19 1 P I PAAAMETER POINTER (PP)

I CHANNEL CONTROL POINTER (CP) I

Figure 6. Register Model

Bus Operation
The 8089 utilizes the same bus structure as the
iAPX 86, 88 in their maximum mode configurations (see
Figure 7). The address is time multiplexed with the data
on the first 16/8 lines. A16 through A19 are time multi­
plexed with four status lines S3-S6. For 8089 cycles, 54
and S3 determine what type of cycle (DMA versus non­
DMA) is being performed on channels 1 or 2. S5 and S6

3-498 AFN-00840E

8089

are a unique code assigned to the 8089 lOP, enabling
the user to detect which processor Is performing a bus
cycle In a multiprocessing ~nvlronment.

The first three status lines, 50-52, are used with an 8288
bus controller to determine If an Instruction fetch or
data transfer Is being performed in 1/0 or system
memory space.

DMA transfers require at least two bus cycles with each
bus cycle requiring a minimum of four clock cycles. Ad·
ditlonal clock cycles are added If walt states are re­
quired. This two cycle approach simplifies considerably
the bus timings In burst DMA. The 8089 optimizes the
transfer between two different bus widths by using
three bus cycles versus four to transfer 1 word. More
than one read (write) Is performed when mapping an
8-bit bus onto a 18-blt bus (vice versa). For example, a
data transfer from an 8-bit peripheral to a 16·blt physical
location In memory is performed by first doing two
reads, with word assembly within the lOP assembly
register file and then one write.

As can be expected, the data bandwidth of the lOP is a
function of the physical bus width of the system and 1/0
busses. Table 2 gives the bandwidth. latency and bus
utilization of the 8089. The system bus is assumed to be

18-blts wide with either an 8-blt peripheral (under byte
coluRln) or 16·blt peripheral (word column) being shown.

•
The latency refers to the worst case response time by
the lOP to a DMA request, without the bus arbitration
times. Notice that the word transfer allows 50% more
bandwidth. This occurs since three bus cycles are re-'
qulred to map 8-blt data Into a 18-blt location, versus two
for a 16·blt to 16-blt transfer. Note that It Is possible to
fully saturate the system bus In the LOCAL mode
whereas In the I3EMOTE mode this Is reduced to a max·
Imum of 50%. .

Table 2. Achievable 5 MHz 8089 Operations with
a 16-Blt System Bus .

Local IIemoIe

8yt. Word 8yte Word

Bandwidth 830KBIS t250 KBIS 830 KBIS 12!iO KBIS

Latency 1.012.4,.sec' 1.012.4 ,.sec' 1.0/2.4,.sec' I .012.4 ~eec'

System Bu.
2.4~c 1.6,.sec 0.8 ,.sec 0.8~.ec

PER PER PER PER
Ut,lization

TRANSFER TRANSFER TRANSFER TRANSFER

'2.4 ~ec If interleaving with olher channel and no walt stale •• 1~sec If
channel Is waiting for raquest.

i-----, (01 + NwM'f).Tar----+----(o1 +Nwfun-'Of-----I

HI...,..

T, T, I Ts tWA" I T. Tl Ta " t.... I T.

eLK

ADDMTATU'

x-
I

flE"DY I

I ~:\\:! . r \ \. /~T 'D'
WAR .NT

DTli '-+-----'--+-~/
'\ j '-----t--'

iii_

,'-----'/
fitOTl' HIS SfMLI (I •• NON IIUUlI'LEXIDI THROUGHOUT lEACH TMMIflfI,

CYCLE "·~I MI. ALIO I'AILE Ott TUNSfPl TO A pttYltCAl • In" -
Flg~re 7. 8089 Bus Operation

3-499

/

"­
\

L

AFN-OC84OE

8089

ABSOLUTE MAXIMUM RATINGS'"

Ambient Temperature Under Bias O·C to 70·C
Storage Temperature , .. -65·C to + 150·C
Voltage on Any Pin with-
, Respeci to Ground. - 1.0 to + 7V
Power Dissipation 2.5 Watt

*NOTICE: Stresses above those listed under "Absolute
MaKimum Ratings" may cause permanent damage to the
device, This is a stress rating only and functional opera­
tion of the device at these or any other. conditions above
those indicated iiI the operational sections of this
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability. .

D.C. CHARACTERISTICS (TA = o·c to 70·C. Vee = sv :!:10%)

Symbol Parameter Min. Max. Units Test Co.nditions

V1l Input Low Voltage -0.5 +0.8 V

VIH Input High Voltage 2.0 Vcc+ 1.0 V

VOL Output Low Voltage 0.45 V IOl=2.0 mA

VOH Output High Voltage 2.4 V IOH = -400",A

Icc Power Supply Current 3S0' rnA TA =2S·C

III Input Leakage Current(l) :!: 10 /AA OV < VIN < Vee

ILO Output Leakage Current ± 10 /AA 0.4SV .;; VOUT '" Vee

VCl Clock Input Low Voltage -O.S +0.6 V

VCH Clock Input High Voltage 3.9 Vcc+ 1.0 V

Capacitance of Input Buffer
C IN (All input except 15 pF fc = 1 MHz

ADo- AD , 5. RQ/Gf)

Cia
Capacita[lce ~I~ Buffer 15 pF fc = 1 MHz
(ADo - AD ,5• RQ/GT)

A.C. CHARACTERISTICS (TA = o·c to 70·C. Vee = sv ±10%)

8089/8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS

Symbol Parameter Min. Max. Units T •• I Condilions

TClCL ClK Cycle Penod 200 500 ns

TClCH ClK low Time ('/, TClCl) - 15 ns

TCHCl CLK High Time ('hTClCl)+ 2 ns

TCH1CH2 CLK Rise Time 10 ns From 1 OV 103 5V

TCl2Cll ClK Fall Time 10 ns From35Vtol0V

TDVCL ,eata In Setup Time 30 ns
--r---o' TClDX Data In Hold Time 10 I ns

TI31VCl ROY Selup Time Into 8284 (See Notes 1. 2) 35 ns
-

TClR1X ROY Hold Time Into 8284 (See Notes 1. 2) 0 ns

TRYHCH READY Setup Time Into 8089 1'/,TClCl) - t5 ns

TCHRYX READY Hold Time Into 8089 30 ns

TRYlCL READY Inactive to ClK (See Note 4) -8 ' ns
1.-

TlNVCH Setup Time Recognition (ORO 1.2 RESET. Ext 1.2) ISee Note 21 30 . ns

TGVCH ROIGT Setup Time 30 . ns

TCAHCAl CA Width 95 ns

TSlVCAl SEl Setup Time 75 <15

-'
TCAlSlX SEl Hold Time 0 ns

TCHG?< GT Hold Time Into 8089 40 ns

TlllH Input Rise Time (Except ClK) 20 ns ~rom O.BV to 2.0V

TIHll Input Fall TII1)8 (Except CLK) t2 ns From 2.0V to O.BV

3-500 AFN.fJOa40E

8089

A.C. CHARACTERISTICS (Continued)

TIMING RESPONSES

Symbol Parameler Min, Max. Units T.st Conditions

TCLML Command 'Active Delay (See Note 11 10 35 ns

TCL'MH Command InactIVe Delay (See Note 1) 10 35 ns

TRYHSH READY Active to Status PaSSive (See Note 31 110 ns

TCHSV Status Active Delay 10 110 ns

TCLSH Status Inactive Delay 10 130 ns

TClAV Address Valid Delay , 10 110 ns

TCLAX Address Hold Time 10 ns

TClAZ Address Float Delay TCLAX 80 ns

TSVLH Status Valid to ALE High (See Note 11 15 ns
--

TCLlH ClK low to ALE Valid (See Note 11 15 ns CL= 150pF
TCHlL ALE Inactive Delay (See Note 11 15 ns

TCLDV Data Valid Delay 10 110 ns
:----.

TCHDX Data Hold Time 10 ns
-

TCVNV Control Active Delay (See Note 1) 45 ns

10 45 ns TCVNX Control Inactive Delay (See Note 11
~. -~-------------~~-------+-----+---~

TCHDTl DifectlOn Control Active Delay (See Note 11 50 ns
r-------~------------------------~----_+_--_+--_4

30 ns

85 ns
--

85 ns

150 ns

~;:H-T-;:;~;c;~~:ct:::: (:~:=-------------1.-------0--------1r------ CL = 100 pF
TCLGH ~RQ InactIVe Delay __ + ______ ---+ ______ ----I __ N __ ot_e_5_:_C-=L_=_30----'P_F __ ~

I-TCLsRV_---L -SlNTR val;;JD,;i;--------------- ----------+'------------t--------f-------/---- CL = 100 pF

20 ns r--rOLOH T -OutP~; RlseT;;;;;------------- From' 0.8V to 2.0V

NOTES: 1 Signal at 8284 or 8288 shown tor reference only
2 Setup requirement for asynchronous signal only to guarantee recogmtlon at next elK
3 Aphes only to T3 and TW states

12 ns

4 Applies only to T2 State
5 Applies only If RQ/GT Mode 1 Cl '=3Opf. 2 7 Kn pull up t~ Vee

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOA A lOGIC 1 AND 0 45V FOR
A lOGIC 0 THE CLOCK IS DRIVEN AT 4 3V AND 025V TIMING MEASURE"
MENTS ARE MADE AT 1 5V FOR 80TH A LOGIC 1 AND 0

3-501

DEVICE

~C'=100PF
UNDER

TEST

':"

CL ,,- l00pF
CL INCLUDES JIG CAPACITANCE

AFN-oo&IOE

inter "J

WAVEFORMS

8089 BUS TIMING USING 8288

ClK

I At-A, ON TRANSFERS
SEE NOTE 7 TO AN .. IMT "HYSICAl IUS

ANDBHl

1i.I1.SO (EXCEPT HAL TI

SEE NOTE 4

I ALE (8288 OUTPUTI

\ RDY (8284 INPUTI

READY (8089 INPUT)

READ - (MWTC,AMWC,IOWC,AIOWC = YOH)

SEE NOTE 7 I
AND ABOVE AOn ADO

(IHE) ,

8211 OUTPUTS

SEE NOTES ., 5

WAITE - (AD,MRDC,iORC,DTIA - YOH)

SEE NOTE 7 ,
AND A~~ \ AD,s ADo

._ OUTPIIIS

SEE NOTES 4,5

DEN

A'iWc OR AiOWC

--_ TCHSV .. reLSH

FLOAT
(SEE NOTE 3)

~--~---+---~----+--1-+vnn//!J~~nr//+----r\\- ----

J- TClAV' flTClDV TCHDX- ~ --.:.-
----1t-~1 TClAX - r-+--+--!--+---+-----Ir-"II Lr X A'9 A'6 S.~s, I.~
---=TS=V:-'::-H-it-"7:"r II • { (SEE NOTE 3) C - TCHll

TellH r--

~----~---+~---r---f-----t--~J~---

illlk'!w-~-~
TCHRYX

TRYHSH -Ir-f-'---t--.

- TClAX - Tbd _

__ T_C_lA_V_-+-Ilr-. t. r_+ __ -+T_C_l_AZ",1- r -TDVCl-- TClDX-I l
~ AIS Ao FLOAT Jkr---~DA~T~A~,Nj---.'!l---:F::-L'::OA~T=--4c'

----t-T...,CI'HDTL _ _ - t.lCHDTH

y--+-~ __ -+_~J
_____ r-~-_1-TC-l-M-l-_1-""\~ TCLMH-

l'CYNV- r.-
---+-+-----I---t----tJ'

TCVNX- -
TCHDX-

FLOAT

~ DATA OUT
NOTE 3)

-TClAXI-­

TClAV- ll-r-_+-_--I-I-TC_l_D,II-r-'-, +---+-------t---+-,.' rr- A,sAo

TCVNX- .1
\

TClMH~ I-

TCVNV- r.::::.lr--+---+------+----t-,I

_-+-+--'---+-----j-'.l I
-~ _1-TClMl

----t-t----t--hl\
~~--4-------_4JI

___ --I--I __ -+ __ -t ___ i-__ -~~TClMl - -TClMH

I
I,o\USlGI<MI.SSW!TCHiETWEENVOHNrlDVOlUNLESSO'FH!IIWIS£I'lCIFIEO
2 MI' 1$ SAMPLED NEAA TH' ENOOF Tl Ts 'tw TO IJE'TERMINE IF Tw MACHIN(STI,TES AFiE TO lIE IHSEFITED
! FOLLOWING "WAITE Cl"CLf DA'''AEMJlltNS VAUDON 'fl1E L<lC.lL IUS UNTIL A lOCAlBUfl MASTEFI Dt:ClOES TO _ ANOTHE"_

Cy'ClE THE LOCAL IUS IS FLa..TED I' THE WHEN Tto(.... ENTEAS A NiQUEST 8IIS ACIINDWLEDG! STATE 'SlGNALSII.TUIiIOJI __ SHOWWFOAflEFEREt4CEONLY ______ _

5 ~~:;:::C":eaeCOfollMANOANDCONTROlSIGNAL'iIMADC MWTC A_C IDAC lOWe AIOWe INTA AND DENI LAG$ THE

8 ALL TIMING MEiltSlJltEMENTSARE M4I)E AT 15~UNlESSDTtlEIIWIlIENOTED
1 """A,~AFlESTAIIIU;DNTAANSHA$TOAN81ITPHTSICAl(lA'AIUS,e A"

DON't flOAT ON A FlUD ~1I0M AN '111 PHTSICAL aus OA MUlTIPLU WITH
OATA ON A WAITE to AN .IIT PH'SIGAL IUS m IS STAILE 'NON
MULtl~LUEDIFOA"Ll TA"NSFEAS '

3-502 AFN.Q0840E

inter 8089

WAVEFORMS (Continued)

ASYNCHRONOUS SIGNAL RECOGNITION

ClK

~
NEGAllVE EOOE TAIQGERED 1 SETUP REQUIREMENTS FOA ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE

RECOGNITION AT NEXT elK
2 ALL INPUTS EXCEPT CA ARE lATCHED ON A elK EDGE THE CAo INPUT IS

3 ORO BECOMING ACTIYE OREATER THAN 30 nl AFTEATHE RISING EDGE OF CU(
WilL GUARANTEE NON RECOGNITION uNTIL THE NEXT RISING CLOCK EDGE

BUS LOCK SIGNAL TIMING AND SINTR TIMING

REQUEST/GRANT SEQUENCE TIMINGS

8089 AS SLAVE IMODE 0)

~rr r -1
8089 AQ OUTPUTJ L _sat" INPUT

ITO MASTER) (FROM MASTER)

8089 AEOIUUTS BUS 8089 WAITS FOliA 8US I
TCHGX-+- ~8089 nOATS STATUS BUS

8089 AS MASTER (MODE') ~ ;

loveH TclGL --1 ""'-TCLGH

\

8089 FLOATS
AID BUS

B089M INPUT
(FROM CURRENT SLAVE)

--
8019 Gf OUTPUT

(OLD MASTER BECOMES NEW SLAVE)

CLK

'-----_TClS.Vj~ 51"T.":_ ~

8089 RELEASE OUTPUT
(TO MASTER)

8019 RELEAses BUS

8089 AS MASTER (MODEI~)
TCHGX

__-TGVCH

l..- 8089
1
FLOATS AID BUS

I -.:I ..-TelOH

-+---TCLGL I TeHGX I 1,-----<1-----1-- r
)L..-'''-'-=Ilf=T-OU-T-PUT-J

, 8039 RQ INPUT
(FROM C~RRENT SLAVE)

'CPU provides active pull,up

(OLD MASTER BECOMES NEW SLAVE)

3-503

lOll RELEASE INPUT
(TO MASTER)

AFN.()0840E

WAVEFORMS (Continued)

EXTERNAL TERMINATE SETUP TIMING

elK

EXT1.2: I-_______ -'

SEL SETUP AND TIMING
TCAHCAL-

CA \

_TSLVCAL_I-TCALSLX_
aIEL ' •

3-504 AFN-G084OE

8089

8089 INSTRUCTION SET SUMMARY

Data Tran.f
POINTER INSTRUCTIONS OPCODE

7 0 7 0

LPD P,M Load Pointer PPP from Addressed Location P P P 0 o A A 1 1 0 0 0 1 OMM
LPDI P,I Load POinter PPP Immediate 4 Bytes P P P 1 000 1 000 0 1 000
MOVPM,P Store Contents of Pointer PPP in Addressed Location P P P 0 o A A 1 1 0 0 1 1 OMM
MOVPP,M Restore Poi nter P P P 0 o A A 1 100 0 1 1MM

MOVE DATA OPCODE

MOV M,M Move from Source to Destination Source- 000 0 OAAW 1 001 OOMM
Destination- o 0 0 0 OAAW 1 100 11M M

MOV R,M Load Register RRR from Addressed Location R R R 0 o A AW 1 000 OOMM
MOV M,R Store Contents of Register RRR in Addressed Location R R R 0 OAAW 100 0 o 1 M M
MOVI R Load Register RRR Immediate (Byte) Sign Extend RRR wb 00 W 001 1 o 0 0 0
MOVI M Move Immediate to Addressed Location 000 wb AAW o 1 0 0 11M M

Control Transfer
CALLS OPCODE

7 07 0
'CALL Call Unconditional 11 o 0 dd A AwI1 00·1 1 1MMI

JUMP OPCODE

JMP Unconditional 100 dd OOW 001 0 000 0
JZ M Jump on Zero Memory 000 dd A AW 1 1 1 0 o 1 M M
JZ R Jump on Zero Register RRR dd o 0 0 0 1 0 0 o 1 0 0
JNZ M Jump on Non-Zero Memory 000 dd AAW1 1 1 0 OOMM
JNZ R Jump on Non-Zero Register R R R dd 000 o 1 0 0 o 0 0 0
JBT Test Bit and Jump if True B B B dd AAO 1 0 1 1 11M M
JNBT Test Bit and Jump if Not Hue B B B dd A A 0 1 0 1 1 10MM
JMCE Mask/Comllare and Jump on Equal 000 dd A A 0 1 0 1 1 OOMM
JMCNE Mask/Compare and Jump on Non-Equal 000 dd A A 0 1 0 1 1 o 1 M M

Arithmetic and LogiC Instrllctions
INCREMENT,DECREMENT OPCODE

7 07 0

INC M Increment Addressed Location o 0 0 a OAAW 1 1 1 0 1 OMM

INC R Increment Register R R R 0 000 a o 0 1 1 1 000

DEC M Decrement Addressed Location o 0 0 0 o A AW 1 1 1 0 1 1 M M

DEC R Decrement Register R R R 0 000 0 001 1 1 100

AFN-Q084()E

Arithmetic and Logic Instructions

ADD OPCODE

7 o 7 0
ADDI M,I ADD Immediate to Memory 000 wb AAW 1 1 0 0 OOMM
ADDI R,I ADD Immediate to Register ARR wb OOW 10 0 1 0 00 0 0
ADD M,R ADD Register to Memory R R R 0 OAAW 1 101 OOMM
ADD R,M ADD Memory to Register R R R 0 OAAW ,1 0 1 0 OOMM

AND OPCODE

'ANDI M,I AND Memory with Immediate 000 wb AAW 1 100 10M M
ANDI R,I AND Register with Immediate RRR wb OOW o 0 1 0 1 000
AND M,R AND Memory with Register R R R 0 OAAW 1 1 0 1 1 OMM
AND R,M AND' Register with Memory R R R 0 OAAW 1 0 1 0 1 OMM

OR OPCODE

ORI M,I OR Memory with Immediate 000 wb AAW 1 1 0 0 0 1MM
ORI R,I OR Register with Immediate R R R wb AAW o 0 1 0 0 100
OR M,R OR Memory with Register R R R 0 OAAW 1 1 0 1 o 1 M M
OR R,M OR Register with Memory R R R 0 OAAW 101 0 o 1 M M

NOT OPCODE

NOT R Complement Register R R R 0 000 0 o 0 1 0 1 100
NOT M Complement Memory o 0 0 0 o A AW, 1 1 0 1 11M M
NOT R,M ,Complement Memory, Place in Register R R R 0 o A AW 101 0 11M M

Bit Manipulation and Test Instructions

BIT MANIPULATION OPCODE
7 07 0

SET Set the Selected Bit ls B B 0 OAAol111 1 o 1 M M I
CLR Clear the Selected Bit IB B B 0 OAAOl111 1 10 MMI

TE,ST OPCODE

TSL Test and Set Lock 10 0 0 1 1AAol1 o 0 1 0 1MMI

Control

Control OPCODE
7 07 0

HLT Halt Channel Execution o 0 1 0 o 0 0 0 o 1 0 0 1 000
SINTR Set Interrupt Service Flil'i' Flop o 1 0 0 o 0 0 0 000 0 000 0
NOP No Operation o 0 0 0 000 0 o 000 000 0
XFER Enter DMA Transfer o 1 1 0 o 0 0 0 o 000 O_~
WID Set Source, Destination Bus Width; S,D 0 = 8, 1 = 16 1 S D 0 000 0 o 000 o 0 0 0

3-506 AFN{)0840E

8088

·AAField in call instruction can be 00,01,10 only.
"OPCODE Is second byte fetched.

All Instructions consist of at least 2'bytes, while some
,Instructl~)ns may use up to 3 additional bytes to specify
literals and displacement da~a. The definition of the
various fields within each instruction is given below:

a 7

PPP III

MM Base Pointer Select

00 GA
01 GB
10 GC
11 PP

RRR Register Field

The RRR field specifies a 16-bit register to be used in
the instruction. If GA, GB, GC or TP, are referenced by
the RRR field, the upper 4 bits of the registers are load·
ed with the sign bit (Bit 15). PPP registers are used as
20·bit address pointers.

RRR

000 rO GA
001 r1 GB
010 r2 GC
011 r3 BC ; byte count
100 r4 TP ; task block
101 r5 IX ; index register
110 r6 CC ; channel control (mode)
111 r7 Me ; mask/compare

See Nollie 1,2

PPP

000 pO GA
001 p1 GB
010 p2 GC
100 p4 TP ; task block pointer

Note 1, logical and arithmetic Instructions should not be usad to update the
CC reglater (I,e,-onIyMOV and MOVllnstructions shculd be usad)

2, A 20-blt register (GA, GB. GC or 1P) that Is Initialized as 8 16-b~·IIO
space pointer must be asved 8t even addresaes when using MOVP or
CALL Instructions. ' ,

NOTES:

BBB Bit Select Field

The bit select field replaces the RRR field in bit manipu­
lation instructions and Is used to select a bit to be oper­
ated on by those instructions. Bit 0 is the least signifi­
cant bit.

wb

01 1 byte literal
10 2 byte (word) literal
dd
01 1 byte displacement
10 2 byte (word) displacement.

AA Field

00 The selected pointer contains the operand address.
01 The operand address is formed by adding an 8;bit,

unsigned, offset contained in the instruction to the
selected pOinter. The contents of the pOinter are un­
changed.

10 The operand address is formed by adding the con­
tents of the Index register to the selected pointer.
Both registers remain unchanged.

11 Same as 10 except the Index register is post auto­
incremented (by 1 for 8-bit transfer, by 2 for 16-bit
transfer).

W Width Field

o The selected operand Is 1 byte long.
The selected operand is' 2 bytes long.

Additional Bytes

OFFSET : 8-bit unsigned offset.
SDISP : 8116-bit signed displacement.
LITERAL: 8/16-bit literal. (32 bits for LOPI)'

The order in which the above optional bytes appear in lOP
instructions is given below:

OFFSET I

Offsets are treated as unsigned numbers. Literals and
displacements are sign extended (2'8 complement).

3-507 AFl'I-ooIMOE

8087
NUMERIC DATA COPROCESSOR

• High Performance Numeric Data Coprocessor

• Adds Arithmetic, Trigonometric, Exponential,
and logarithmic Instructions to the Standard
iAPX 86 and iAPX 186 Instruction Set For All
Data Types

• All 24 Addressing Modes Available with
8086, 8088/80186, 80188 CPUs.

• Conforms To Proposed IEEE Floating
Point Standard

• CPU/8087 System Supports 8 Data 1\tpes: 8-,
16-, 32-, 64-Bit Integers, 32-, 64-, 80-Bit
Floating Point, and 18-Digit BCD Operands

• Adds 8 x 80-Bit Individually Addressable
Register Stack

• 7 Built-in Exception Handling Functions

• MUlTIBUS System Compatible Interface

The 8087 Numeric Data Coprocessor provides the instructions and data types needed for high performance
numeric applications, providing up to 100 times the performance of a CPU alone. The 8087 is implemented
in N-channel, depletion load, silicon gate technology (HMOS), housed in a 40-pin package. Sixty-eight numeric
processing instructions are added to the iAPX' 86, 186 instruction sets, and eight 80-bit registers are added
to the register set. The 8087 conforms to the proposed IEEE Floating Point Standard.

The two-chip numeric data processing systems are refered to as follows;
iAPX 86/20-16-bit 8086 CPU with 8087
iAPX 88/20-8-bit 8088 CPU with 8087
iAPX 186-16-bit 80186 CPU with 8087
iAPX 188-8-bit 80188 CPU with 8087

~m t=== 16)

'"
~'"

Figure 1. 8087 Block Diagram

GND
(A14)AD14 2

(A13)AD13 3

(A12)AD12 •

(A11)AD11 5

(A10)AD10 6

(A9)AD9 1

(AI) ADB •

': BHE/S7

iiiilCi'f1
INT
iiOmo
NC
NC
52
S1
so
QSO

BUSY

22 READY
21 RESET L-__J

Figure 2. 8087 Pin Configuration

Intel Corporation Assumes No Resppnsibilty for the Use of Any CirCUitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied.
© INTEL CORPORATION, 19S3. ' 'MARCH 1983

3-508 AFN'()1820E

inter 8087

Table 1. 8087 Pin Description

Symbol '1WIe Name and Function

ADtS-ADO I/O Add_ Data: These lines constitute the time multiplexed memory address (T 1) and dais (T 2, T 3. T w, T 4l bus.
AO Is analogous to BHE fOr the lower byte of the data bus. pins 07 -DO. It is LOW during T 1 when a byte
is to be transterred on the lower portion of the bus In memory operations. Eight-bit .riented devices tied
to the lower half of the bus would normally use AO to condition chip select functions. These lines are active
HIGH. They are inpuVoutput lines for 8087 -driven bus cycles and ara inputs which the 8087 monitors when the
CPU is in control of the bus. A IS-AS do not require an address latch in an iAPX 88/20. The 8087 will supply
an address for the T1-T4 period.

AI9/S6. 110 Add_ Memory: During T 1 these are the four most significant address lines for memory operations. During
AI8!SS. memory operations, status information is available on these lines during T2• T3, Tw. and T4. For 8087 controlled
A17/S4, bus cycles. S6. S4, and S3 are reserved and currenliy one (HIGH), while S5 is always LOW. These lines
A16/S3 are inputs which the 8087 monitors when the CPU is in control of the bus.

BHElS7 110 Bu. High Enable: During T 1 the bus high enable signal (BHE) should be used to e~able data onto the most
significant half of the data bus. pins 015-08. Eight-bit-orlented devites tied to the upper half of the bus
would normally use BHE to condition chip select functions. BHE is LOW during Tl for read and write cycles
when a byte is to be transferred on the high portion of the bus. The S7 status information is available during
T 2, T 3. T w. and T 4. The signal is active LOW. S7 is an input which the 8087 monitors during the CPU-controlled
bus cycles.

S2. SI. SO 110 Status: For 8087 -driven bus cycles. these status lines are encoded as follows:

S2 S1 SO . o (LOW) X X Unused
1 (HIGH) 0 a Unused
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1. Passive

Status is driven active during T4• remains valid during Tl and T2• and is returned to the passive state (I, 1. 1)
during T 3 or during Tw when READY is HIGH. This status is used by the 8288 Bus Controller (or the 82188
Advanced Bus Controller with a 186/188 CPU) to generate all memory access control Signals. Any change
in 82. SI, or SO during T4 is used to indicate the beginning of a bus cycle, and the return to the passive
state in T 3 or T w is used to indicate the end of a bus cycle. These signals are monitored by the 8087 when
the CPU is in control of the ·bus.

RQ/GTO I/O RequestlGrant: This requesVgrant pin is used by the 8087 to gain control of the local bus from the CPU for
operand transfers or on behalf of another bus master. It must be connected to one of the two processor request!
grant pins. The request grant sequence on this pin is as follows:

1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either the 8087 or the master
connected to the 8087 RQ/GT1 pin.

2. The 8087 walts for the grant pulse and when it is received will either initiate bus transfer activity in the clock
cycle following the grant or pass the grant out on the RQlGTl pin in this clock if the in~ial request was for
another bus master.

3. The 8087 will generate a release pulse to the CPU one clock cycle after the completion of the last 8087 bus cycle
or on receipt of the release pulse from the bus master on RQ/GTI.

For iAPX 186 systems, the same sequence applies except RQ/GT signals are converted to appropriate HOLD,
HLDA signals by the 82188 Advanced Bus Controller. This is to conform with iAPX 186's HOLD. HLDA
bus exchange protocol.

3-509 AFN'()l82OE

8087

Table 1. 8087 Pin Description (Continued)

Symbol ~pe Name and Function

RQ/GTI 110 Request/Grant: This requesVgrant pin is useQ by another local bus master to force the 8087 to request
the local,bus. If the 8087 is not in control of the bus when the request is maQe the requesVgrant sequence
is passeQ through the 8087 on the RQ/GTO pin one, cycle later, Subsequent grant anQ release pulses are
also passeQ through the 8087 with a two ,and one cloc~ delay, respectively, for resynchronization. RQ/GT1
has an internal pullup resistor, and so may be left unconnected. If the 8087 has control of the bus the requestl
grant sequence is as follows:

1. A pulse 1 ClK wide from anoth'er local bus master indicates a lecal bus request to the 8087 (pulse 1).
2. During the 8087's next T4 or T1 a pulse 1 ClK wide from the 8087 to the requesting master (pulse 2)

indicates that the 8087 has allowed the local bus to float and that it will enter the "RQ/GT acknowledge"
state at the next ClK. T~e 8087's control unit is disconnected logically from the local bus during "RQ/GT
acknowledge."

3. A pulse 1 ClK wide from the requesting master indicates to the 8087 (pulse 3) that the "RQ/GT" request
is about to end and .that the 8087 can reclaim the local bus at the next ClK.

Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one dead ClK
cycle after each bus exchange. Pulses are active lOW.

For iAPX 186 systems, the RQ/GTI line may be connected to the 82188 Advanced Bus Controller. In this case,
a third processor with a HOLD, HlDA bus exchange system may acquire the bus from the 8087. For this
configuration, RQ/GTI will only be used if the 8087 is the bus master.

QSI", QSO I QS1, QSO: QSl and QSO provide the 8087 with status to allow tracking of the CPU instruction queue.

QS1 QSO
o (lOW) 0 No Operation
0 1 First Byte of Op Code from Queue
1 ,(HIGH) 0 Em pty the Queue
1 1 Subsequent Byte from Queue

INT 0 Interrupt: This line is used to indicate that an unmasked exception has occurred during numeric instruction
execution when 8087 interrupts are enabled. This signal is typically routed to an 8259A for 8086 systems
and to INTO for iAPX 186 systems. INT is active HIGH.

BUSY 0 Busy: This signal indicates that the 8087 NEU is executing a numeric instruction. It is connected to the CPU's
TEST pin to provide synchronization. In the case of an unmasked exception BUSY remains active until the
exception is cleared. BUSY is active HIGH.

READY I Ready: READY is the acknowledgment from the addressed memory device that it will complete the data
transfer. The ROY signal 'from memory is synchronized by the 8284A Clock Generator to form READY for
8086 systems. For iAPX 186 systems, ROY is synchronized by the 82188 Advanced Bus Controller to form
READY. This signal is active HIGH.

RESET I Reset: RESET causes the processor to immediately terminate its present activity. The ~ignal must be active
HIGH for at least four clock cycles. RESET is internally synchronized.

ClK I Clock: The clock provides the basic timing for the processor and bus controller. It is asymmetric with a
33% duty cycle to provide optimized internal timing.

Vce Power: Vcc is the +5V power supply pin.

GND Ground: GND are the ground pins.

NQTE:
For the pin descriptions 01 the 8086, 8088, 80186 and 80188 CPU's, reference the respective data sheets (iAPX 86/10, iAPX 88/10,
iAPX 186, iAPX 188).

3-510 AFN'()1820E

inter 8087

APPLICATION AREAS

The 8087 provides functions meant specifically for high
performance numeric processing requirements. Trigo­
nometric, logarithmic, and exponential functions are
built into the coprocessor hardware. These funCtions
are essential in scientific, engineering, navigational,
or military applications.

The 8087 also has capabilities meant for business or
commercial computing. An 8087 can process Binary
Coded Decimal (BCD) numbers up to 18 digits without
roundoff errors. It can also perform arithmetic on inte­
gers as large as 64 bits ± 10,8).

PROGRAMMING LANGUAGE SUPPORT

. Programs for the 8087 can be written in Intel's high­
level languages for iAPX 86, 88 and iAPX 186, 188
Systems; ASM-86 (the iAPX 86, 88 assembly language),
PUM-86, FORTRAN-86, and PASCAL-86.

RELATED INFORMATION

For iAPX 86/1 0, iAPX 88/1 0, iAPX 186 or iAPX 188 details,
. refer to the respective data sheets.

FUNCTIONAL DESCRIPTION

The 8087 Numeric Data Processor's architecture is
deSigned for high performance numeric computing in
conjunction with general purpose processing.

CPU

The 8087 is a numeric processor extension that pro­
vides arithmetic and logical instruction support for a
variety of numeric data types. It also executes numerous
built-in transcendental functions (e.g., tangent and log
functions). The 8087 executes instructions as a copro­
cessor to a maximum mode CPU. It effectively extends
the register and instruction set of the system and adds
several new data types as ·well. Figure 3 presents the
registers of the CPU-8087. Table 2 shows the range of
data types supported by the 8087. The 8087 is treated
as an extension to the CPU, providing register, data
types, control, and instruction capabilities at the hard­
ware level. At the programmers level the CPU and the
8087 are viewed as a single unified processor.

System Configuration

As a coprocessor to an 8086 or 8088, the 8087 is wired
in parallel with the CPU as shown in Figure 4. Figure
5 shows the iAPX 186 system configuration. The CPU's
status (SO-52) and queue status lines (QSO-QS1)
enable the 8087 to monitor and decode instructions
in synchronization with the CPU and without any CPU
overhead. For iAPX 186 systems, the queue status
signals of the iAPX 186 are synchronized to 8087
requirements by the 82188 Advanced Bus Controller.
Once started, the 8087 can process in parallel with,
and independent of, the host CPU. For resynchroniza­
tion, the 8087's BUSY signal informs the CPU that the
8087 is executing an instruction and the CPU WAIT
instruction tests this signal to insure that the 8087 is
ready to execute subsequent instructions. The 8087

8087
DATA FIELD

AX '~5 FILE' 0 I R1 I--"'S;=~N+7--,8 =='-'=!!.-t-----'===----I
BX i R2 ~-~---+__-------___1
CX 'R3
OX i R4 f--t----t----------I
51 AS DI . I R.~-~---+------------1

BP : R7~-+_---+_-------~
SP I R8 '--_l..-___ ..L..... _______ --I

TAG FIELD
64 63 o 1 0

EXPONENT SIGNIFICANO

i
IP

fLAGS

L __ ,

I
I
I
L... ____ --,

~~~I------41 i 
I 

15 

.,cONTROL REGISTER 
STATUS REGISTER 

TAG WORD 

~ INSTRUCTION POINTER _ 

~ DATA POINTER -

Figure 3. CPU-SOS7 Architecture 

3-511 AFN'()1820E 



can Interrupt t~e CPU when. It detects an error or 
exception. The 8087's Interrupt request line Is typically 
routed to the CPU through an 8259A Programmable 
Interrupt Controller for 8086, 8088 systems and INTO 
for IAPX, 188. 

The 8087 uses one of the request/grant lines of the 
IAPX 86, 88. architecture (typically R'Q1GT1)to obtain 
control of the local bus for data transfers. The other 
request/grant line Is available for general system use 
(for Instance by an I/O processor In LOCAL mode). 
A bus master .can also be connected to the 8087's 
R'Q1GT1 line. In this cOl1figuratlon the 8087 will pass 
the request/grant handshake signals between the CPU 
and the attached master when the 8087 Is not In control 
of the bus and will relinquish the bus to the master 
directly when the 8087 Is In control. In this way two 
additional masters can be configured In an IAPX 86, 
88/20 system; one will share the 8086 bus with the 
8087 on a first come· first served basis, and· the second 
will be guaranteed to be higher In priority than the 8087: 

For IAPX 186 systems, R'QIGTO and R'Q1GT1 are con-

8087 

nected to the corresponding Inputs of ·the 82188 
Advanced Bus Controller. Because the lAP>< has a HOLD, 
HLDA bus exchange protocol, an Interface Is needed 
which will translate R'QIGT signals to corresponding • 
HOLD, HDLA signals and visa versa. Ol)e of the funtlons 

. of the 82188 ABC Is to provide this translation. R'QIGTO 
Is translated to HOLD, HLDA signals which are then 
directly connected to the IAPX 186. The R'Q1GT1 line Is 
also translated Into HOLD, HLDA signals (referred to as 
SYSHOLD, SYSHLDA signals) by the 82188 ABC. This 
allows a third processor (using a HOLD, hiLDA bus 
exchange protocol) to gain control of the bus. Unlike an 
IAPX 86/20 system, R'Q1GT1 Is only used when the 
8087 has bus control. If the third processor requests 
the bus when the current bus master Is the 186, the 
82188 ABC will directly pass the request onto the 186 
without going through the 8087. The third processor 
has the highest bus priority In the system. If the 8087 
requests the bus while the third processor has bus 
control, the grant pulse will not be Issued until the 
third processor releases the bus (using SYSHOLD). 
In this configuration, the third processor has the highest 
priority, the 8087 has the next highest, and the 186 
has the lowest bus priority. 

liIble 2. 8Q87 Data ~pes 
--

Data 
Range Precision Most Significant Byte 

Formats 
7 ___ £ili~ 017 017 017 017 017 017 01 

Byte Integer 102 8 Bits' 17 101 Two's Complement 

Word Integer 104 16 Bits 115 101 T~o's Complement 

Short Integer 109 32 Bits 131 101 Two's Complement 

Long Integer 1018 64 Bits 163 
11 Two's 

10 Complement 

Pa'cked BCD 1018 18 Digits 5·1- 0 170,.1 10 1 Dol 

Short Real 10±38 24 Bits SI E7 EolFl F231 Fa Implicit 

Long Real 10±308 53 Bits 5 lEla EoTFl F5~ Fa Implicit 

Temporary Real 10±4932 64 Bits sIE14 EolFo F631 

Integer: I Real: (_1)S(2E-BIAS)(FooFl" .) 

Packed BCD: (-l)S(017" .00) Bias;127 for Short Real 
1023 for Long Real 
16383 for Temp Real 

3-512 AFN'()18l!OE 



inter 8087 

Bus Operation 

The 8087 bus structure, operation and timing are 
identical to all other processors in the iAPX 86, 88 
series (maximum mode configuration). The address is 
time multiplexed with the data on the first 16/8 lines 
of the addressldata bus. A16 through A19 are time 
multiplexed with four status lines S3-S6. S3, S4 and 
S6 are always one (HIGH) for 8087 -driven bus cycles 
while S5 is always zero (LOW). When the 8087 is 
monitoring CPU bus cycles (passive mode) S6 is also 
monitored by the 8087 to differentiate 8086/8088 activity 
from that of a local 1/0 processor or any other local 
bus master. (The 8086/8088 must be the only processor 
on the local bus to drive S6 LOW.) S7 is multiplexed 
with and has the same value as SHE for all 8087 
bus cycles. 

The first three status lines; SO-~, are used with an 
8286 bus controller or 82188 Advanced Bus Controller 
to determine the type of bus cycle being run: 

S2 Sf SO 
0 X X Unused 
1 0 0 Unused 
1 0 1 Memory Data Read 
1 1 0 Memory Data Write 
1 1 1 Passive (no bus 

cycle) 

Programming Interface 

The 8087 includes the standard iAPX 86/10, 88/10 
instruction set for general data manipulation and pro­
gram control. It also includes 68 numeric instructions 
for extended precision integer, floating point, trigono­
metric, logarithmic, and exponential functions. Sample 
execution times for several 8087 functions are shown 
in Table 3. Overall system performance is 100 times 
that of an iAPX 86/10 class processor for numeric 
instructions. 

Any instruction executed b, the 8087 is the combined 
result of the CPU and 8087 activity. The CPU and the 
8087 have specialized functions and registers providing 
fast concurrent operation. The CPU controls Overall 
program execution while the 8087 uses the coprocessor 
interface to recognize and perform numeric operations. 

Table 2 lists the eight data types the 8087 supports 
and presents the format for each type. Internally, the 
8087 holds all numbers in the temporary real format. 
Load and store instructions automatically convert 
operands represented in memory as 16-, 32-, or 64-bit 
integers, 32- or 64"bit floating point numbers or 18-
digit packed BCD numbers into temporary real format 
and vice versa. The 8087 also provides the capability 
to control round off, underflow, and overflow errors 
in each calculation. 

Computations in the 8087 use the processor's register 
stack. These eight 80-bit registers provide the equivalent 
capacity of 20 32-bit registers. The 8087 register set 
can be accessed as a stack, with instructions operating 
on the top one or two stack elements, or as a fixed 
register set, with instructions operating on explicitly 
designated registers. 

Table 5 lists the 808Ts instructions by class. All appear 
as ESCAPE instructions to the host. Assembly language 
programs are written in ASM-86, the iAPX 86, 88 as­
sembly language. 

Table 3. Execution Times for Selected iAPX 86/20 
Numeric Instructions and Corresponding 
iAPX 86/10 Emulation 

Approximate Execution 
Time (/Ls) 

Floating Point 
Instruction iAPX 86/20 iAPX 86/10 

(5 MHz 
Clock) Emulation 

Add/Subtract 17 1.600 
Multiply (single 

preciSIOn) 19 1.600 
Multiply (extended 

precision) 27 2,100 
Divide 39 3,200 
Compare 9 1,300 
Load (double precision) 10 1,700 
Store (double precision) 21 1,200 
Square Root 36 19,600 
Tangent 90 13,000 
Exponentiation 100 17,100 

3-513 AFN'()1820E 



NUMERIC PROCESSOR 
EXTENSION ARCHITECTURE 

8087 

As Shown in Figure 5, the 8087 is internally divided 
into two processing elements, the control unit (CU) 
and the numeric execution unit (NEU). The NEU exe­
cutes all numeric instructions, while the CU receives 
and decodes instructions, reads and writes memory 
operands and executes 8087 control instructions. The 
two elements are able to operate independently of one 
another, allowing the CU to maintain synchronization 

with the CPU while the NEU is busy processing a 
numeric instruction. 

Control Unit 

The CU keeps the 8087 operating in synchronization 
with its host CPU. 8087 instructions are intermixed with 
CPU instructions in a single instruction stream. The CPU 
fetches all instruCtions from memory; by monitoring the 
status (SO-S2, S6) emitted by the CPU, the control unit 
determines when an instruction is being fetched. The 

Figure 4. iAPX 86/20, 88/20 System Configuration 

8284A 
CLOCK 

GENERATOR 

82!i9A 
PiC 

INT 1-1 --~"ljNTR 

elK H---...... --lcLK ~o:: 

'------,.-+--~INT 

i- _ -. elK ~~8~ 

..... __ ....J 

IAPX86 
BUS 

INTERFACE 
COMPONENTS 

Figure 5. iAPX 186, 188 System Configuration 

1 :OOSOIlUSYINT 

.. ,," .. ,'" :: ----1 1 I I 
0&11_0S1 

OSOI""-OSIl 

HUI,l,_HlOA 

HOlO_HOlJ) 

TEST INTO 

L-__ ---' 

" I ; r----------~ 
\ L ___ ..JSVSHOlD : 

L I I !'-'\ 
____ ~SVSMlDA 1< > 

I I '.;-v' 
I I L __________ ...J 

3-514 

",P~186 

.~ 

INTERFillCE 
COr.lPONE"ITS 

MUL TIM ASTER 
SYSTEM 

BUS 

AFN'()1820E 



CU monitors the Data bus in parallel with the CPU tQ 
obtain instructions that pertain to the 8087. 

The CU maintains an instruction queue that is identical 
to the queue in the host CPU. The CU automatically 
determines if the CPU is an 8086/186 or an 8088/188 
immediately after reset (by monitoring the SHE/S7 line) 

land matches its queue length accordingly. By monitor­
ing the CPU's queue status lines (OSO, OS1), the CU 
obtains and decodes instructions from the queue in 
synchronization with the CPU. 

A numeric instruction appears as an ESCAPE instruction 
to the CPU. Both the CPU and 8087 decode and execute 
the ESCAPE instruction together. The 8087 only 
recognizes the numeric instructions shown in Table 5. 
The start of a numeric operation is acomplished when 
the CPU executes the ESCAPE instruction. The instruc­
tion mayor may not identify a memory operand. 

The CPU does, however, distinguish between ESC 
instructions that reference memory and those that 
do not. If the instruction refers to a memory operand, 
the CPU calculates the operand's address using any 
one of its available addressing modes, and then per­
forms a "dummy read" of the word at that location. 
(Any location within the 1 M byte address space is 
allowed.) This is a normal read cycle except thaUhe 
CPU ignores the data it receives. If the ESC instruc­
tion does not contain Ii memory reference (e.g. an 
8087 stack operation), the CPU simply proceeds to 
the next instruction. 

An 8087 Instruction can have one of three memory 
reference options; (1) not reference memory; (2) 
load an operand word from memory into the 8087; or 

. (3) store an operand word from the 8087 jnto 
memory. If no memory reference is required, the 
8087 simply executes its instruction. If a memory 
reference is required, the CU uses a "dummy read" 
cycle initiated by the CPU to capture and save the 
address that the CPU places on the bus. If the in­
struction is a load, the CU additionally captures the 
data word when it becomes available on the local 
data bus. If data required 'is longer than one word, 
the CU' immediately obtains the bus from the CPU 
using the request/grant protocol and reads the rest 
of the information in conseq.ltive bus cycles. In a 
store operation, the CU captures and saves the store 
address as in a load, and ignores the data word that 
follows in the "dummy read" cycle. When the 8087 is 
ready to perform the store, the CU ob,tains the bus 
from the CPU and writes the operand starting at the 
specified address. 

8087 

Numeric Execution Unit 

The NEU executes all instructions that involve the 
register stack; these include arithmetiC, logical, 
transcendental, constant and data transfer instruc­
tions. The data path in the NEU is 84 bits wide (68 
fraction bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers to be performed at 
very high speeds. • 

When the NEU begins executing an instruction, it 
activates the 8087 BUSY signal. This Signal can be 
used in conjunction with the CPU WAIT instruction 
to resynchronize both processors when the NEU has 
completed its current instruction. 

Register Set 

The iAPX 86/20 register set is shown in Figure 3. Each 
of the eight data registers in the 8087's register stack 
is 80 bits and is divided into "fields" corresponding 
to the 8087's temporary real data type. 

At a given point in time the TOP field in the control word 
identifies the current top-of-stack register. A "push" 
operation decrements TOP by 1 and loads a value into 
the new top register. A "pop" operation stores the value 
from the current top register and then increments TOP 
by 1. Like CPU stacks in memory, the 8087 register 
stack grows "down" toward lower-addressed registers, 

Instructions may address the data registers either 
impliCitly or explicitly. Many instructions operate on 
the register at the top of the stack. These instruc­
tions implicitly address the register pointed to by the 
TOP. Other instructions allow the programmer to 
explicitly specify the register which is to be used. 
Explicit register addressing is "top-relative." . 

Status Word 

The status word shown in Figure 6 reflects the over­
all state of the 8087; it may be stored in memory and 
then inspected by CPU code. The status word is a 
16-bit register divided into fields as shown in Figure 
6. The busy bit (bit 15) indicates whether the NEU is 
either executing an instruction or has an interrupt 
request pending (B = 1), or is idle (B = 0). Several 
instructions which store and manipulate the status 
word are executed exclusively by the CU, and these 
do not set the busy bit themselves. 

3-515 AFN'()1820E 



intJ 8087 

15 

I B IC.' TOP IC,IC,IC.I'RI X IPEIUEIOEIZEIOEI'E I 

(l)IR IS set If any unmasked exception bit 18 set. cleared otherwise 

(2)See Table 3 for condition code interpretation 
(S)Top Values 

000 :: Register 0 IS Top of Stack 
001 = Register! IS Top of Stack 

111 = Register 7 IS Top of Stack 

I 
EXCEPTION FLAGS (1 • EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST'" 

CONDITION CODEII ! 

TOP OF STACK POINTER'" 

NEU BUSY 

Figure 6. 8087 Status Word 

The four numeric condition code bits (Co-C3) are similar 
to flags in a CPU: various instructions update these bits . 
to reflect the outcome of 8087 operations. The effect of 
these instructions on the condition code bits is sum­
marized in Table 4. 

Bits 14-12 of the status word point to the 8087 regis­
ter that is the current top-ot-stack (TOP) as 
described above. 

Bit 7 is the interrupt request bit. This bit is set if any 
unmasked exception bit is set and cleared other­
wise. 

Bits 5-0 are set to indicate ,that the NEU has 
detected an exception while executing an instruc­
tion. 

Tag Word 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the 8087's performance. The tag 

word can be used, however, to interpret the contents 
of 8087 registers. 

Instruction and Data Pointers 

The instruction and data pointers (see Figure 8) are 
provided for user-written error handlers. Whenever 
the 8087 executes an NEU instruction, the CU saves 
the instruction address, the opera'nd address (if 
present) and the instruction opcode. 8087 instruc­
,tions can store this data into memory. 

TAG VAlUES! 
00 '" VALID 
01 ;: ZERO 
10 ., SPECIAL 

.11 :: EMPTY 

Figure 7. 6087 Tag Word 

3-516 AFN'()1820E 



8087 

Table 4a. Condition Code Interpretation 

Instruction 
C3 ~ Type 

Compare, Test 0 0 
0 0 
1 0 
1 1 

Remainder C1 0 

U 1 

Examine 0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 1 , 
1 1 
1 1 
1 1 

NOTES: 
1. ST = Top of stack 
2. X = value is not affected by instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n 

Table 4b. Condition Code Interpretation after 

FPREM Instruction As a Function of 
Dividend Value 

Dividend Range Q2 Q1 00 
Dividend < 2 • Modulus C3l Cl l Co 
Dividend < 4 • Modulus C3l Cl Co 
Dividend;;. 4 • Modulus C2 Cj Co 

NOTE: 

C1 

X 
X 
X 
X 

90 

U 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

1. Previous value of indicated bit, not affected by FPREM 
instruction execution. 

3-517 

Co 

0 
1 
0 
1 

C2 

U 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

15 

Interpretation 

ST > Source or 0 (FTST) 
ST < Source or 0 (FTST) 
ST = Source or 0 (FTST) 
ST is not comparable 

Complete reduction with 
three low bits of quotient 
(See Table 4b) 
Incomplete Reduction 

Valid, positive unnormalized 
Invalid, positive, exponent =0 
Valid, negative, unnormalized 
Invalid, negative, exponent =0 
Valid, positive, normalized 
Infinity, positive 
Valid, negative, normalized 
,Infinity, negative 
Zero, positive 
Empty 
Zero, negative 
Empty 
Invalid, positive, exponent = 0 
Empty 
Invalid, negative, exponent = 0 
Empty 

CONTROL WORD 

STATUS WORD I 

TAG WORD 

INSTRUCTION POINTER (15-0) 

MEMORY 
OFFSET 

+0 

+2 

+4 

+6 

INSTRUCTION .)1 1 I INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) +8 

DATA POINTER (15-0) +10 

DATA POINTER I 
(19-16) 0 +12 

15 1211 

Figure 8. 8087 Instruction and Data Pointer 
Image in Memory 

AFN'()l82OE 



intJ 8087 

Control Word 

The 8087 provides several processing options which 
are selected by loading a word from memory into the 
control word. Figure 9 shows the format·and encod­
ing of the fields in the control word: 

The low order byte of this control word configures 
8087 Interrupts and exception masking. Bits 5-0 of 
the control word contain individual masks for each 
of the six 'exceptions that the 8087 recognizes and 
bit 7 contains a general mask bit for all 8087 in­
terrupts. The high order byte of the control word 
configures the a087 operating mode including 
precision, rounding, and infinity controls. The preci­
sion. control bits (bits 9-8) can be used to set the 
8087 internal operating precision at less than the 
default of temporary real precision. This can be use­
ful in providing compatibility with e/irlier generation 
arithmetic processors of smaller precision than the 
8087. The rounding control bits (bits 11-;10) provide 
for directed rounding and true chop as well as the 
unbiased round to nearest mode specified in the 
proposed IEEE standard. Control over'closure of the 
number space at infinity is also provided (either 
affine clOSUre, ±oo, or projective closure, 00, is treated 
as unsigned, may be specified). 

15 

Exception Handling 

. The 8087 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause an interrupt if unmasked 
·and interrupts are enabled. 

If interrupts are disabled the 8087 will Simply con­
tinue execution regardless of whether the host 
clears the exception. If a specific exception class is 
masked and that exception occurs, however, the 
8087 will post the exception in the status register 
and perform an on-chip default exception handling 
procedure, thereby allowing processing to continue. 
The exceptions that the 8087 detects are the 
following: 

1. INVALID OPERATION: Stack overflow, stack' un­
derflow, indeterminate form (0/0, 00- 00, etc.) or 
the use of a Non-Number (NAN) as an operand. 
An expon!3nt value is reserved and any bit pattern 
with this value in the exponent field is termed a 
Non-Number and causes this exception. If this 
exception is masked, the 8087's default response 
is to generate a specific NAN called INDEFINITE, 
or to propagate already existing NANs as the cal­
culation result. 

I xxx Ilcl RC I PC I M I X IPMluMIOMIZMIDMllM I 

(1)Preclslon Control 
00= 24 bits 
01 '" Reserved 
10 = 53 bits ' 
11 = 64 bits 

(2lRoundtng Control 
,00 = Round to Nearest or Even 
01 = Round Down (toward - to) 
10 = Round Up (toward + to) 
11 = Chop (truncate toward zero) 

I 

, 

Figure 9. 8087 Control Word 

3-518 

EXCEPTION MASKS (1 = EXCEPTION IS MASKED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

, %ERO DIVIDE 

OVERF~OW. 

UND~RFLOW 

PRECISION 

(RESERVE!!) -

INTERRUPT MASK (1 = INTERRUPTS ARE MASKED) 

PRECISION CONTROL(1 ) 

ROUNDING CONTROLla) 

INFINITY CONTROL (0 = PROJECTIVE. 1 = AFFINE) 

(RES~RVED) 

AFN'()1820E 



8087 

2. OVERFLOW: The result is too large in magnitude 
to fit the specified format. The 8087 will generale 
an encoding for infinity if this exception is 
masked. 

3. ZERO DIVISOR: The divisor is zero while the divi­
dend is a non~infinite, non-zero number. Again, 
the 8087 will generate an encoding for infinity if 
this exception is masked. 

4. UNDERFLOW: The result is non-zero but too 
small in magnitude to fit in the specified format. If 
this exception is masked the 8087 will 
denormalize (shift right) the fraction until the ex-

ponent is in range. This process is called gradual 
underflow. 

5. DENORMALIZED OPERAND: At least one o~ the 
operands or the result is denormalized; it has the 
smallest exponent but a non-zero signiflcand. 
Normal processing continues if this exception is 
masked off. 

6. INEXACT RESU.LT: If the true result is not exactly 
representable in the specified format, the. r~sult 
is rounded according to the rounding mode, and 
this flag is set. If this exception is masked, pro­
ceSSing will simply continue. 

3'-519 AFNo0182OE 



8087 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ..........• O"C to 7IrC 
Storage Temperature •................ -65·C to +150"C 
Voltage on Any Pin with 

Respect to Ground ......... ' .......•... -1.0V to + TV 
Power Dissipation ............ ' ................ 3.0 watt 

*NOTIC~: S~ress88 above those listed under Absolute 
Maximum Ratings may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi­
mum rating'condltions for extended periods may affect 
device reliability. 

D.C. CHARACTERISTICS (TA = O"C to 70"C, Vee =+5V :t5%) 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 Vee +0.5 V 

VOL Output low Voltage 0.45 V IOL = 2.0 rnA 

VOH Output High Voltage 2.4 V IOH = -400 p.A 

Icc Power Supply Current 475 rnA TA = 25°C 

III Input leakage Currel!t :t10 p.A OV ... VIN'" Vee 

ILO Output leakage Current :t10 p.A 0.45V ... VOUT'" Vee 

VeL Clock Input low Voltage -0.5 +0.6 V 

VeH Clock Input High Voltage 3.9 Vee + 1.0 V 

CIN Capacitance of Inputs 10 pF fc = 1 MHz 

CIO CapaCitance of I/O Buffer 
(ADO-15, A16-A19, BHE, S2-80, 15 pF fc = 1 MHz 
RQfGT) and ClK 

GoUT Capacitance of Outputs 
BUSY,INT " 10 pF fc = 1 MHz 

A.,C. CHARACTERISTICS (TA = O"C to 70"C, Vee = +5V :t5%) 

TIMING REQUIREMENTS 8087 8087·2 
Symbol Parameter Min. Max. Min. Max. Units Test Conditions 
TClCl ClK Cycle Period 200 500 125 500 ns 

TClCH ClKlowTime 118 68 ns 

TCHCl ClK High TIme 69 44 ns 

TCH1CH2 ClK Rise Time 10 10 ns From 1.0V to 3.5V 

TCl2Cl2 ClKFall Time 10 10 ns From 3.5V to 1.0V 

TDVCl Data In Setup TIme 30 20 ns' 
TClDX Data In Hold Time 10 10 ns 
TRYHCH READY Setup Time 118 68 ns 

TCHRYX READY Hold TIme 30 20 ns 
TRYlCl READY Inactive to OlK" -8 -8 ns 

TGVCH RQfGT Setup TIme 30 15 ns 

TCHGX RQfGT Hold Time 40 30 ns 

TaVCl as()'1 Setup TIme 30 30 ns 

TClQX as()'1 Hold TIme 10 , 10 ns 

TSACH Status Active Setup Time 30 30 ns 

TSNCl Status Inactive Setup TIme 30 30 ns 

TILIH Input Rise Time (Except ClK) 20 20 ns From O.8V to 2.0V 
TIHll Input Fall Time (Except ClK) 12 12 ns From 2.0V to O.8V 

"See Note 3 
3-520 AFN.()182QE 



8087 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 8087 8087·2 

Symbol Parameter Min. 
TClMl Command Active Delay (See Note 1) 10 

TClMH Command Inactive Delay (See Note 1) 10 

TRYHSH Ready Active to Status Passive 
. (See Note 2) 

TCHSV Status Active Delay 10 

TClSH Status Inaetive Delay 10 

TClAV Address Valid Delay 10 

TClAX Address Hold Time 10 

TClAZ Address Float Delay TClAX 

TSVLH Status Valid to ALE High (See Note 1) 

TClLH ClK low to ALE Valid (See Note 1) 

TCHll ALE Inactive Delay (See Note 1) 

TClDV Datil Valid Delay 

TCHDX Data Hold Time 

TCVNV Control Active Delay (See Note 1) 

TCVNX Control Inactive Delay (See Note 1) 

TCHBV BUSY and INT Valid Delay 

TCHDTl Direction Control Active Delay 
(See Note 1) 

TCHDTH Direction Control Inactive Delay 
(See Note 1) 

TClGl RO/GT Active Delay 

TClGH RO/GT Inactive Delay 

TOlOH Output Rise Time 

TOHOl Output Fall Time 

NOTES: 
1. Signal at 8284A or 8288 shown for reference only. 
2. Applies only to T 3 and wait states. 
3. Applies only to T 2 state (8 ns into T 3). 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 J5--TESTPOINTS_1~ 
0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1" AND 0 45V FOR 
A LOGIC"O" 

10 

10 

5 

10 

10 

0 

0 

3-521 

Max. Min. Max. Units Test Conditions 
35 10 35 ns CL=20-100pF for all 

35 , 10 35 ns 8087 Outputs (In addl· 
to 8087 self·load) 

110 65 ns 

110 10 60 ns 

130 10 70 ns 

110 10 60 ns 

10 ns 

80 TCLAX 50 ns 

15 15 ns 

15 15 ns 

15 15 ns 

110 10 60 ns 

10 ns 

45 5 45 ns 

45 10 45 ns 

150 10 85 ns 

50 50 ns 

30 30 ns 

85 0 50 ns Cl = 40pF (in addi· . 

85 0 50 ns 
,ion to 8087self·load) 

20 20 ns From 0.8V to 2.0V 

12 12 ns From 2.0V to 0.8V 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER IC'"'00'. TEST 

-= 
CL INCLUDES JIG CAPACITANCE 

AFN'()I820E 

( 



inter 

WAVEFORMS 

MASTER MODE 

CLK 

S;,s,.S; 

READY (aa17 INPUT) { 
(BUNDTE!) 

READ CYCLE 

8288 0U11'UTS 
(SEE NOTES 6, 7, 9) 

::c v 

VCL 

TCLAV 

TSYLH-I 
TCLLH_ 

t - \ 

TCLAV--

T, 
I 

8087 

T' o 

I--;- TCLCL ~H1CH2 -- I-~ 

'. 1""1 r--1 
';;;';;' ___ ~CHCL I 

l::I TCLAX_ ~DV 

.I BHE, At.-A.,. .X 
I::"" ~TCHLL 

Y '\ 
• TRYLCL -

TRjSH-I 

f ,---
fTLAZ 

Au-Ao 

FL7 
TCHDTL_ .\'+ 

'\ 
TCLML __ .r-

\ 
TCYNY ..... II--,. 

T, 

04-TCL2CLl 
Tw 

d~~~ 
V!~ flllSEE NOTE 5) .. 

-- .I~ , CHDX 

S,-S, 
l' FLOAT 

(SEE NOTE 3) 

,..--, , 
----

04-

... -10 !o-TCHRYX 

'( 
TRYHCH ~ 

t+-TDYCL TCLDX 

DATA IN 
\I 

FLOAT 

TCHDTH-+ 

11= 
TCLMH_ F \ 

-; 

~ • 
TCYNX __ 

WRITE CYCLE TCLAV !:::.::1 TCLDV :j -- T CHDX 

X A"-A,, X DATA OUT 
LOAT 

TCVNV_ TCYNX ::::l (SE,E NOTE 

8288 OUTPUTS 
(SEE NDTES .. 7) 

NOTES: 

{~:: 
MWTC 

TCLML-+ 

'\ 

1 ALL SIGNALS SWITCH BETWEEN VOl AND VOH UNLESS OTHERWISE SPECiRED 

TCLMH 

~ 
TCLML ::l TCLMH 

~ \. 

2 READY IS SAMPLED NEAR THE END OF T 2. T 3 AND T W TO DETERMIN~ IF T W MACHINE STATES ARE TO BE INSERTED 

3 THE lOCAL BUS FLOATS ONLY IF THE 8087 IS RETURNING CONTROl TO THE 8086/8088 

4 ALE AlSES AT LATER OF (TSVLH. TCLLH) 

5 STATUS INACTIVE IN STATE JUST PRI()R TO T 4 

6 SIGNALS AT 8284A OR 8288 ARE SHOWN FOR REFERENCE ONLY 

7 THE ISSUANCE OF 8?88 COMMAND AND CONTROl SIGNALS (MRDC. MWTc. AMWC AND DEN) LAGS THE ACTIVE HIGH 8288 CEN 

8 ALL TIMING MEASUREMENTS ARE MADE AT 1 5V UNLESS OTHERWISE NOTED 

9 REFER TO THE 82188 ADVANCE BUS CONTROLLER FOR 186. 188 SYSTEMS 

3-522 

3) 

AFN.fJ1S20E 



8087 

WAVEFORMS (Continued) 

PASSIVE MODE T, 

ClK 

AO'!I-ADo 

READY I IN~~ 

RESET TIMING 

1 r~o---->50~sec'-----t 

VCC ~---- ~2G ClK CYCLES ----I 

ClK 

RESET 

REQUEST/GRANT 0 TIMING 

ClK 

AD,s-AO o 
A,g/Se-A"/S3 

52,5,,80 

SHE/S7 

=::4 elK CYCLES 

CPU 

8087 TRACKS 
CPU ACTIVITY 

NOTE THE CPU PROVIDES ACTIVE PULLUP OF ROIGTO, SEE TCLGH SPEC 

3-523 

8087 READY TO 
EXECUTE INSTRUCTIONS 

AFN'()1820E 



intJ 8087 

WAVeFORMS (Continued) 

REQUEST/GRANT1 TIMING 

CLK 

AD1s-ADo 
A1I/S.-A1,1S, 
82.51.10 

~S7 ---------------~----~: ~:-------- ALTERNATE MASTER 

(SEE NOTE) 

NOTE ALTERNATE MASTER MAY NOT DRIVE THE BUSES OUTSIDE OF THE REGION 
SHOWN WITHOUT RISKING BUS CONTENTION 

BUSY AND INTERRUPT TIMING 

CLK ~~------------£f 
BUSY, INT ..... -----------

TCHBV "------------

3-524 AFN.()11!2OE 



inter 8087 

Table 5. 8087 Extanei0n81D the 86/1861~ctions Sets 

Data Transfer 

FLD = LOAD 

Inleger/Real Memory 10 ST(O) 

Long Inleger Memory 10 ST(O) 

Temporary Real Memory 10 
ST(O) 

BCD Memory 10 ST(O) 

ST(,) 10 ST(O) 

FST = STORE 

1 MF 

Opllonal 
8,18811 

Dleplacement 

ESCAPE MF 11 MOD 0 0 0 R/M[==~I~P==: 

L.E_S_C_A_P_E_~_1_1--,I>--M_O_D_1_0_1 __ Rl_M--,[ = = 

ESCAPE 0 1 1 I 

ESCAPE 1 1 1 1 

ESCAPE 0 0 1 1 

MOD 1 0 0 RIM 1_ = = 
1 1 0 0 0 ST(I) 1 

ST(O) to Integer/Real Memory I ESCAPE MF 1 1 MOD 0 1 0 RIM 1= = = ~I~P = J 
ST(O) 10 ST(,) 1 ESCAPE 1 0 1 1 1 1 0 1 0 ST(I) 1 

FSTP = STORE AND POP 

ST(O) 10 Integer/Real Memory 

ST(O) to Long Inleger Memory 

ST(O) 10 Temporary Real 
Memory 

ST(O) 10 BCD Memory 

ST(O) 10 ST(,) 

FXCH = Exchange ST(,) and 
ST(O) 

Comparison 
FCOM = Compare 

ESCAPE MF 11 MOD 0 1 1 R/M[::~I~P:J 
L.E_S_C,.-A_P_E_1_1_1---1I_M_O_D_l_1 __ 1 _R/_M ..... I_ = = ~I~P = : 

L.E_S_C_A_P_E_0_1_1---1I>--M_O_D_1_1 __ ' _R/_M ..... [ : : ~I~: : 

~E=S=C=A=P=E=1=1=1~1 =M=O=D=1=1=0=R=/M~[ : ~ '~I~ ~ ] 

11 1 0 1 1 ST(,) I ESCAPE 1 0 1 

I ESCAPE 0 0 1 , 1 0 0 , ST(,) I 

Inleger/Real Memory 10 ST(O) I ESCAPE MF 0 I MOD 0 1 0 RIM [ ~ ~ ~I~P ~ J 
ST(i) 10 ST (0) 

FCOMP = Compare and Pop 

Inleger/Real Memory to ST(O) 

ST(,) to ST(O) 

FCOMPP = Compare ST(') to 
ST<,O) and Pop Twice 

FTST = Test ST(O) 

FXAM = Examine ST(O) 

MnemonICs@ln'''1982 

I ESCAPE 0 0 0 1 1 1 0 1 ci ST(,) 1 
, ) 

:=1 E=S=C=A=PE=M=F==O=o 4'1 =M=O=D=0=1=1=R=/M===jI_ -DI~P = =: 
I ESCAPE 0 0 0 I 1 1 0 1 1 ST(,) I 

I ESCAPE 1 , 0 I 1 , 0 1 1 0 0 1 I 
, I ESCAPE 0 0 1 I 1 1 1 0 0 1 0 0 1 

I ESCAPE 0 0 1 I 1 1 1 0 0 1 0 1 1 

3-525 

Clock Count Ranga 
32 811 32 all 64 811 
Real Inleger Real 

00 01 10 

36-56 52-60 40-60 
+EA +EA +EA 

60-68 +EA 

53-65 +I;A 

290-310 +EA 

17-22 

18811 
Integer 

11 

46-54 
+EA 

84-90 82-92 96-104 80-90 
+EA +EA +EA +EA 

15-22 

66-92 84-94 96-106 
+EA +EA +EA 

94-105 + EA 

52-58 +EA 

520-540 +EA 

17-24 

~ 10-15 

60-70 16-91 65-75 
+EA +EA +EA 

40-50 

63-73 • 80-93 
+EA +EA 

45-52 

45-55 

38-48 

12-23 

67-77 
+EA 

82-92 
+EA 

72-86 
+EA 

74-88 
+EA 

AFN-01820E 



inter 8()87 

'llble 5. 8087 ElmInslons to the 86/1,6 Instruction Sets (cont.) 

I Optional Clock Count Range 
8,18 Bit 32 Bit 32 Bit 84 Bit 18 Bit 

Const,nts DI.placamant Re.1 Integer Re.1 Intager 

I MF = 00 01 10 11 

FLDZ = LOAD + 0 0 onto ST(O) , I ESCAPE 0 0 1 I 1 1 1 0 1 1 1 0 I 11-17 

FLD1 = LOAD + 1 0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 0 I 15-21 

FLDPI = LOAD 1T Into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 1 1 I 16-22 

FlOUT = LOAD 1092 10 onto I ESCAPE 0 0 1 11 1 1 0 1 0 0 1 I 16-22 
ST(O) 

FLDL2E = LOAD 1092 e onto I ESCAPE 0 0 1 11 1 1 0 1 0 1 0 I 15-21 
ST(O) 

FLDLG2 = LOAD 109'0 2 onto 
ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 0 I 18-24 

FLDLN2 = LOAD 109.2 onto I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 1 I 17-23 
ST(O} 

Arithmetic 

FADD ~ Add Ilion 

I I [ - - - -, 
Integer/Real Memory With ST(O) ESCAPE MF . 0 MOD 0 0 0 RIM DISP .! 90-120 108-143 95-125 102-137 - - - +EA +EA +EA +EA 

ST(I) and ST(O) I ESCAPE d P 0 I 1,1 0 0 0 ST(I) I 70-100 (Note 1) 

FSUB = Subtraction 

I I [ - - - -, 
Integer/Real Memory With ST(O) ESCAPE MF 0 MOD 1 0 R RIM DISP 90-120 108-143 95-125 102-137 - - - .J +EA +EA +EA +EA 

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 1 0 R R/M I 70-100 (Note 1) 

FMUL = Multlpllcallon - - -
Integer/Real Memory With ST(O) I ESCAPE MF 0 I MOD 0 0 1 RIM [ DISP 

-, 
110-125 130-144 112-168 124-138 

- - - ..! +EA +EA +EA +EA 

ST(I) and ST(O) I ESCAPE d P 0 I 1 1 0 0 1 R/M I 90-145 (Note 1) 

FDIV = DIVISion -
I I I - - - -, 

Integer/Real Memory With ST(O) ESCAPE MF 0 MOD 1 1 R RI~ DISP I 215-225 230-243 220-230 224-238 
- - +EA +EA +EA +EA 

ST(I) and ST(O) I ESCAPE d P 0 I 1 1 1 1 R RIM I 193-203 (Note 1)' 

FSQRT = Square Root of ST(O) I ESCAPE 0 0 1 I 1 1 1 1 1 0 1 0 I 180-186 

FSCALE = Scale ST(O) by ST(I) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1 I 32-38 

FPREM = Partial Remaonder of I ESCAPE 0 0 1 1'1 1 1 1 1 0 0 0 I 15-190 
ST(O) -ST(I) , 

I I I 
, 

FRNDINT = Round ST(O) to ESCAPE 0 0 1 1 1 1 1 1 1 0 0 ,16-50 
Integer 

NOTE: 
1. If P= 1 then add 5 clocks'. 

3-526 AFN-OI820E 



FXTRACT = Extract 
Components 01 5t(0) 

FABS = Absolute Value 01 
5T(0) 

FCHS = Change 51gn 01 5T(0) 

Transcendental 
FPTAN = Partial Tangent 01 
5T(0) 

FPATAN = Partial Arctangent 
olST(O) -ST(I) 

F2XMl = 2STtOI _l 

FYL2X = ST(I)· Log2 
[ST(O)) 

FYL2XPl = ST(1)· Log2 
[ST(O) +11 

Processor Control 

FIN IT = Initialized 8087 

FENI = Enable Interrupts 

FOISI = Disable Interrupts 

FLOCW = Load Control Word 

FSTCW ~ Store Control Word 

FSTSW = Store Status Word 

8087 

'IlIble 5. 8087 Extensions to the 86/186 Instructions Sets (cant.) 

ESCAPE 0 0 1 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 1 

1 1 1 1 0 1 0 0 

o 0 0 0 

o 0 0 0 0 

1 1 1 1 0 0 1 0 

Optional 
8,16 Bit 

Displacement 

----~--------------~ 

ESCAPE 0 0 o 0 

ESCAPE 0 0 o 000 

ESCAPE 0 0 000 

ESCAPE 0 0 o 0 

ESCAPE 0 000 

ESCAPE 0 o 0 0 0 0 

ESCAPE 0 o ° ° 0 

L-E_S_C_AP_E __ O_O_---'-_M_O_D ___ O __ R_/M_--'I __ ~I~~ h 

RIM--=:] ~ ~ ~I~~ ~ ~: L-__________ ~ __________ _ ESCAPE ° ° MOD 

L-E_S_C_A_P_E __ O __ L-M_O_D _____ R_I_M_--J[ ~ ~I~~ ~ J 
FCLEX = Clear Exceptions ESCAPE ° 1 1 ° ° ° 1 ° 1 L-__________ ~ ______________ ~ 

-------
FSTENV = Sto,e EnVironment ESCAPE ° ° MOD ° RIM 1 __ ~~~ h: 
FLOENV = Load EnVironment ~ESCAPE ° ° MOD ° ° RIM DISP: 

FSAVE = Save State L-E_S_C_A_P_E __ O __ '-M_O_D ____ O __ R/_M __ .JI- - DiSp - : 

FRSTOR = Restore State 

FINCSTP = Increment Stack 
POinter 

FDECSTP = Decrement Stack 
POinter 

L-E_S_C_A_PE __ ° _-'-,_M-O-D---O-O-R-I-M------'L ~~~ = ~ 

ESCAPE ° ° ° 
ESCAPE ° 0 ° ° 

3-52.7 

Clock Count Range 

27-55 

10-17 

10-17 

30-540 

250-800 

310-630 

gOO-lIDO 

700-1000 

2-8 

2-8 

2-8 

7-14 + EA 

12-18 +EA 

12-18 +EA 

2-8 

40-50 + EA 

35-45 +EA 

197-207+EA 

197-207+EA 

6-12 

6-12 

AFN'()l820E 



8087 

'!lIble 5. 8087 Extensions to the 861186 Instructions Sets (cont.) 

FFREE = Free ST(I) ESCAPE 1 0 1 I 1 1 000 ST(I) 

FNOP = No Operallon ESCAPE o 0 1 l' 1 0 1 000 o I 
FWAIT = CPU Walt lor 6067 1 ' 0 0 1 1 0 1 1 I 

'n = number of times CPU examines TEST line before 6067 lowers BUSY. 

NOTES: 
1. if mod=OO then OISP=O', disp-Iow and disp-high are absent 

if mod =01 then DISP=disp-low sign-extended to 16-bits, disp-high is absent 
if mod=10 then OISP=disp-high; disp-Iow 
if mod = 11 then rIm is treated as an ST(i) field 

2. if rIm =000 then EA=(BX) + (SI) +DISP 
if r/m=001 then EA=(BX) + (01) +OISP 
if r/m=010 then EA=(BP) + (SI) +OISP 
if r/m=011 then EA=(BP) + (01) +OISP 
if r/m=100 then EA=(SI) + OISP 
if r/m=101 then EA=(OI) + OISP 
if r/m=110 then EA=(BP) + OISP 
ifr/m=:111 then EA=(BX) + OISP 

'except if mod =000 and r/m=110 then EA =disp-high; disp-Iow. 
3. MF= Memory Format 

00-32-bit Real 
01-32-blt Integer 
10-64-bit Real, 
11-16-bit Integer 

4. ST(O)= Current stack top 
ST(i) ith register below stack top 

5. d= Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

6. P= Pop 
O-No pop 
1-PopST(0) 

7. R= Reverse: When d=1 reverse the sense of R 
O-Destination (op) Source 
1-Source (op) Destination 

8. For FSQRT: -0 "" ST(O) "" +x 
For FSCALE: _2'5 "" ST(1) < +2'5 and ST(1) integer' 

For F2XM1: 0"" STiO) "" 2-1 
For FYL2X: 0 < ST(O) <x 

-x < ST(1) < + x 
For FYL2XP1: 0 "" IST(O)I < (2 - \/2)/2 

-x < ST(1) <x 
For FPTAN: O· "" ST(O) ""1T14 
For FPATAN: 0"" ST(O) < ST(1) < +x 

3-528 

Clock Count Range 

!H6 

10-16 

3+5n' 

AFN'()I82OE 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

iRMX 86 OPERATING SYSTEM PROCESSORS 

• High-Performance 2-Chip Data 
Processors Containing Operating 
System Primitives 

'lYpes: Jobs, 'DIsks, Segments, 
Mailboxes, Regions 

• 35 Operating System Primitives 
• Standard iAPX 86/10, 88/10 Instruction 

Set Plus Task Management, Interrupt 
Management, Message Passing, 
Synchronization and Memory 
Allocation Primitives 

• Built-In Operating System Timers and 
Interrupt Control Logic Expindable 
From 8 to 57 Interrupts 

• Fully Extendable To and Compatible With 
iRMX® 86 

• 8086/80150/80150-218088/80186/80188 
Compatible At Up To 8 MHz Without 
wait States 

• Supports FIVe Operating System Data 
• MULTIBUS® ~ystem Compatible Interface 

The Intel iAPX 86/30 and iAPX 88/30 are two-chip microprocessors offering general-purpose CPU (8086) 
instructions combined with real-time operating system support. They provide a foundation for multiprogram­
ming and multitasking applications. The iAPX 86/30 consists of an iAPX 86/10 (16-bit 8086 CPU) and an 
Operating System Firmware (OSF) component (80130). The 88/30 consists of the OSF and an iAPX 88110 (8-bit 
8088 CPU) .. (80186 or 80188 CPUs may be used In place of the 8086 or 8088.) 

Both components of the 86/30 and 88/30 are implemented in N-channel, depletion-load, silicon-gate technol­
ogy (HMOS), and are housed in 40-pin packages. The 86/30 and 88/30 provide all the functions of the iAPX 86/10, 
88110 processors plus 35 operating system primitives, hardware support for eight interrupts, a system timer, a 
delay timer and a baud rate gel'\erator. • 

8284A 
CLOCK 
DRIVER 

RDY 

1-------, 
I I 
I 8088 I 

CLOCK OR I I 8086 

I INTERRUPT STATUS I 
: I 

BUS 
INTERFACE I 

I 
I r-~IN~TE~RR~U~PT--~S~~U~u~s--------~~ ______ ~ 

CS,LlR r---

I 
I 

BAUDAATE 
TIMER 

80130 

DELAY 
TIMER 

SYSTEM 
TIMER 

INTERRUPT 
REQUESTS 

IAPX 86130. 88/30 

FIgure 1. IAPX 86130, 88/30 Block Diagram 

PROGRAM 
MEMORY 

DATA 
MEMORY 

Intel Corporation Assume. No R.8pon8lbllty for the U.e of Any CirCUitry Other Than Circuitry Embodied In an Intel Product No Other CirCUit Patent Llcenaea are Implied 
©INTELCORPORATION 1981 . OCTOBER 1981 

. 3-529 210216-002 



inter 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

MAX I MAX I MODE MODE 
8086 8088 

Vss Vee Vss Vee 

AD14 AD1S (A14) A014 AD15 (Al5) 

AD13 BHE (Al3) AD13 A161S3 

AD12 IR7 (Al2) AD12 A17/S4 

ADn IR6 (All) AD11 A18/SS 

AD10 IRS (A10) AD10 Al91S& 

AD9 IR4 (A9) AD9 BHE/S7 (HIGH) 

AD8 IR3 (AS) AD8 MN/iilil 

AD7 IR2 AD7 AD 
AD6 IRl AD6 RQ/GTO 

ADS IRO ADS RQ/GT1 

AD. INT AD4 LOCK 

AD3 52 AD3 Sl! 

AD2 51 AD2 S1 

ADl SO AD1 !!O 

ADO ACK ADO OSO 

MEMeS LIR NMI OSl 

IOCS SYSTICK INTR TEST 

ClK DELAY CLK READY 

Vss BAUD Vss RESET 

Figure 2. iAPX 86/30, 88/30 Pin Configuration 

Table 1. 80130 Pin Description 

Symbol Type Name and Function 

AD1S-ADo I/O Address Data: These pins constitute the time multiplexed memory address (T1) and 
data (T2, T3, T W, T4') bus. These lines are active HIGH. The address presented during T1 of 
a bus cycle will be latched internally and interpreted as an 80130 internal address if 
MEMC8 or IOC8 is active for the invoked primitives. The 80130 pins float whenever it is 
not chip selected, and d~ive these pins onlyduringT2-T4 of a read cycle andT1 of an INTA 
cycle. 

BHE/87 Bus High Enable: The 80130 uses the BHE signal from the processor to determine 
whether to respond with data on the upper or lower data pins, or both. The signal is active 
LOW. BHE is latched by the 80130 on the trailing edge of ALE. It controls the 80130 output 
data as shown. 

BHE Ao 
0 0 Word on AD1S-ADo 
0 1 Upper byte on AD1S-ADs 
1 0 Lower byte on AD7-ADO 
1 1 Upper byte on AD7-ADo 

82,81,80 I Status: For the 80130, the status pins are used as inputs only. 80130 encoding follows: 

82 8 1 80 

0 0 0 INTA 
0 0 1 lORD 
0 1 0 10WR 
0 1 1 Passive 
1 0 0 Instruction fetch 
1 0 1 MEMRD 
1 1 X Passive 

3-530 AFN.Q2059A 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 1. 80130 Pin Description (Continued) 

Symbol Type Name and Function 

ClK I Clock: The system clock provides the basic timing for the processor and bus controller. 
It is asymmetric with a 33% duty cycle to provide optimized internal timing. The 80130 
uses the system clock as an input to the SYSTICK and BAUD timers and to synchronize 
operation with the host CPU. 

INT 0 'Interrupt: INT is HIGH whenever a valid interrupt request is asserted. It is normally used 
to interrupt the CPU by connecting it to INTR. 

IRT'':IRo I Interrupt..Requests: An interrupt request can be generated by raising an IR input (lOW 
to HIGH) and holding it HIGH until it is acknowledged (Edge-Triggered Mode), or just by a 
HIGH level on an IR input (level-Triggered Mode). 

ACK 0 Acknowledge: This line is lOW whenever an 80130 resource is being accessed. It is also 
lOW during the first INTA cycle and second INTA cycle if the 80130 is supplying the 
interrupt vector information. This signal can be used as a bus ready acknowledgement 
and/or bus transceiver control. 

MEMCS I Memory Chip Select: This input must be driven lOW when a kernel primitive is being 
fetched by the CPU. AD13-ADo are used to select the instruction. 

IOCS I Input/Output Chip Select: When this input is low, during an lORD or IOWR cycle, the 
80130's kernel primitives are accessing the appropriate peripheral functiqn as specified 
by the following table: 

BHE A3 A2 A1 Ao 

0 X X X X Passive 
X X X X 1 Passive 
X 0 1 X X Passive 
1 0 0 X 0 Interrupt Controller 
1 1 0 0 0 Systick Timer 
1 1 0 1 0 Delay Counter 
1 1 1 0 0 Baud Rate Timer 
1 1 1 1 0 Timer Control 

LlR 0 Local Bus Interrupt Request: This sig'nal is lOW when the interrupt request is for a 
non-slave input or slave input programmed as being a local slave. 

Vee Power: Vee is the +5V suppLy pin. 

Vss Ground: VSS is the ground pin. 

SYSTICK 0 System Clock Tick: Timer 0 Output. Operating System Clock Reference. SYSTICK is 
normally wired to IR2 to implement operating systefD timing interrupt. 

DELAY 0 DELAY Timer: Output of timer 1. Reserved by Intel Corporation for future use. 

BAUD 0 Baud Rate Ge,nerator: 8254 Mode 3 compatible output. Output of 80130 Timer 2. 

FUNCTIONAL DESCRIPTION ment which constantly controls the telephone traffic 
in a multiphone office, file servers/disk. subsystems 
controlling and coordinating multiple disks and mul-

The increased performance and memory space of 
iAPX 86/10 and 88/10 microprocessors have proven 
sufficient to handle most of today's single-task or 
single-device control applications with performance 
to 'spa~e, and have led to the increased use of these 
microprocessors to control multiple tasks or devices 
in real-time. This trend has created a new chailenge 
to designers-development of, 'real-time, mUltitask­
ing application systems and software. Examples of 
such systems include control systems that monitor 
and react to external events in real-time, multifunc­
tion desktop and personal computers, PABX equip-

_ tiple disk users, and transaction processing 'systems 
such as electronics funds transfer. 

3-531 

The iAPX 86/30, 88/30 Operating System 
Processors 

The Intel iAPX 86/30, 88/30 Operating System Pro­
cessors (OSPs). were developed to help solve this 

AFN·02059B 



80130/80130-2 
iAPX 86/30, 88/30, ,186/30, 188130 

r-----------------------------~----I 
1 OPERATING SYSTEM UNIT , I 
I I 
I 

00·7 I 
I r I 8 

PROGRAMMABLE 
1 INTERRUPT 

LOGIC I INTERRUPT INP UTS 

I 

I 
INTERRUPT our 

CONTROL 
STORE 

t 2 SYSTEM ~ SYSTEM 

I TIMER 

I 
I 

hl I 
I 08·15 

I r-- DELAY DELAY 

I r-- TIMER 

I )I I 
1 

~ 
I 

I 1 
I I 
I BAUD RATE BAUD RA 
1 GENERATOR 1 
I I 
1 1 

TE 

f------------- ------ - -------------1 
I 1 
I <-- 1 
I t1'-- CLOCK 

I 
I - 1 3 ,. DATA - BUS ~ STATUS I BUFFER INTERFACE 

& AND 1 4 

I ADDRESS CONTROL ~BUSCON 
ADDRESS! I LATCH 

TROL 

DATA BUS I ~ LOCAL 
I I INTERRU PT 
1 CONTROL UNIT 1 {mil c __________________________________ ~ 

Figure 3. OSF Internal Block Diagram 

problem. Their goal IS to simp'tify the design of multi­
tasking application systems by providing a well­
defined, fully debugged set of operating system 
primitives implemented directly ,in the hardware, 
thereby removing the burden of designing multitask­
ing operating' system primitives from the application 
programmer. 

Both the 86/30 and the 88/30 asps are two-chip sets 
consisting of a main processor, an 8086 or 8088 CPU, 
and the Intel 80130, Operating. System Firmware 
component (aSF) (see Figure 1 ).,The 80130 provides 
a set of multitasking kernel primitives, kernel control 
storage, and the additional support hardware, in­
cluding system timers and interrupt control, re­
quired by these primitives. From the application 
programmer's viewpoint, the aSF extends the base 
iAPX 86, 88 architecture by providing 35 operating 
system primitive instructions, arid supporting five 
new system data types, making the aSF a logical and 

easy-to-use architectural extension to .iAPX 86, 88 
system ~esigns. 

The OSP Approach 

The asp system data types (SDTs) and primitive in­
structions allocate, manage and share low-level pro­
cessor resources in an efficient manner. For 
example, the asp implements task context manage­
ment (managing a task state image consisting of 
both hardware register set and software control in­
formation) for either the basic 86/10 context or the 
extended 86/20 (8086+8087) numerics context. The 
asp manages the entire task state image both while 
the task is actively executing and while it is inactive. 
Tasks can be created, put to sleep for specified peri­
ods,-suspended, executed to perform their func­
tions, and dynamically deleted when their functions 
are complete. ' 

3-532 AFN·02059B 



inter 80130180130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

The Operating System Processors support event­
oriented systems designs. Each event may be pro­
cessed by an individual responding task or along 
with other closely related events in a common task. 
External events and interrupts are processed ~y the 
OSP interrupt handler primitives using its built-in 
interrupt controller subsystem as they occur in real­
time. The multiple tasks and the multiple events are 
coordinated by the OSP integral scheduler whose 
preemptive. priority-based scheduling algorithm 
and system timers organize and ~nitor the process­
ing of every task to guarantee that events are pro­
cessed as they occur in order of relative importance. 
The 86130 also provides primitives for intertask com­
munication (by mailboxes) and for mutual exclusion . 
(by regions). essential functiol')s for_ multitasking 
applications. 

Programming Language Support 

Programs for the OSP can be written in ASM 86/88 or 
PUM 86/88, Intel's standard system languages for 
iAPX 86,88 systems. 

The Operating System Processor Support Package 
(IOSP 86) provides an interface library for applica­
tion progral"(1s written in any model of PUM-86. This 
library also provides 80130 configuration and in­
itialization support as well as complete user 
documentation. 

OSF PROGRAMMING INTERFACE 

The' OSF provides 35 operating system kernel 
primitives which implement multitasking, interrupt 
management, free memory management, intertask 
communication and synchronization. Table 4 shows 
each primitive, and Table 5 gives the execution per­
formance of typical primitives. 

OSP primitives are executed by a combination of 
CPU and OSF (80130) activity. When an OSP primi­
tive is called by an application program task, the 
iAPX CPU registers and stacks are used to perform 
the appropriate functiQns and relay the results to the 
application programs. 

OSP Primitive Calling Sequences 

A standard, stack-based, calling sequence is used to 
invoke the OSF primitives. Before a primitive is 
called, its operand parameters must· be pushed on 
the task stack. The SI register is loaded with the 
offset of the last parameter on the stack. The entry 
code for the primitive is loa(:led into AX. The primitive 
invocation call is made with a CPU software interrupt 

(Table 4). A representative ASM86 sequence for call­
ing a primitive is shown In Figure 4. In PUM the OSP 
programmer uses a call to invoke the primitive. 

SAMPLE ASSEMILY LANGUACI~ PRlllmVE CALL 

;PIlIIH PARAIIETER 1 
;PU8H PARAIIETER 2 

PUSH PH ;PUsH M.w.ETER N 
PUSH BP ;STACK CALLING ~TION 
IIOYBP,8P 
LEA Sl,88:NUMJlY1'ES.J'ARAII + 2[BP) 

;SS:SI POINTS TO FIRST 
;PARAMETERON STACK 

MOV AX, ENTRY CODE ;AX SETS PRlllrmIE ENTRY CODE 
INT 184 ;OSF INTERRUPT 

08P PRIMmVE INVOKED 

;POP PARAMETERS 
;ex CONTAINS EXCEPTION CODES 
;OL CONTAINS PARAMETER NUIlBER 
; THAT CAU8EO IXCEPT10N (IF 
; ex IS NON ZERO) 
;AX CONTAINS WORO RETURN VALUE 
;ES:BX CONTAINS POINTER 
; RETURN YAWE 

Figure 4. ASM/88 OSP Calling Convention 

OSP Functional Description 

Each major function of the OSP is described below. 
These are: 

Job and Task Management 
Interrupt Management 
Free Memory Management 
Intertask Communication 
Intertask Synchronization 
Environmental Control 

The system data types (or SOTs) supported by the 
OSP are capitalized in the de"cription. A short 
description of each SOT appears in Table 2. 

JOB and TASK Management 

Each OSP JOB is a controlled environment in which 
the applications program executes and the OSF sys­
tem data types reside. Each individual application 
program is normally a separate OSP JOB, whether it 
has one initial task (the minimum) or multiple tasks. 
JOBs partition the system memory into pools. Each 
memory pool provides the storage areas in which the 
OSP will allocate TASK state images and other sys­
tem data types created by the executing TASKs, and 
free memory for TASK working space. The OSP sup­
ports multiple executing TASKs within a JOB .by 
managing the resourC8!l used by each, including the 
CPU registenl. NPX registers, stacks, the system data 
types, and the available .f~ memory sPace pool. 

3-533 AFN-020!i9B 



inter,)- 80130/8b130·2 I 

iAPX86/30,88130;186/30,188/30 

When a TASK is created .. the OSP allocates memory 
(from the free memory of its JOB environment) for 
the TASK's stack and data area and initializes the 
additional TASK attributes such as the TASK priority 
level and its error handler location. (As an option, the 
caller of CREATE TASK may assign_previously 
defined stack and data areas to the TASK.) Task 
priorities are integers between 0 and 255 (the lower 
the 'priority number the higher the scheduling 
priority of the TASK). Generally, priorities up to 128 
will be assigned !o TASKs which are to process inter­
rupts. Priorities above 128 do not cause interrupts to 
be disabled, these priorities (129 to 255) are appro­
priate for non-interrupt TASKs. If an 8087 Numerics 
Processor Extension is used, the error recovery inter­
rupt level assigned to ,it will have a higher p,riority 
than ,a TASK executing on it, so that error handling is 
performeci correctly. 

EXECUTION STATUS 
A TASK has an execution status or execution state. 
The OSP provjdeS five execution states: RUNNING, 
READY, ASL.EEP, SUSPENDED, and ASLEEP­
SUSPENDED. 

- A TASK is RUNNING if it has control of the 
processor. 

- A TASK is READY if it is not asleep, suspended, or 
asleep-suspended. For a TASK to become the run­
ning (executing) TASK, it must be the highest 
priority TASK in the ready state. 

- A TASK is ASLEEP if it is waiting for a request to 
be granted or a timer event to occur. A TASK may 
put itself into the ASLEEP state. 

- A TASK is SUSPENDED if it is placed there by 
another TASK or if it suspends' itself. A TASK may 
have multiple-suspensions, the count of suspen­
sions is managed by the OSP as the TASK suspen­
sion depth. 

- A TASK is ASLEEP-SUSPEf\,IDED if it is both 
waiting and suspended. 

,- , 

TASK attributes, the CPU register values, and the 
8087 register values (if the 80.87 is configured into 
the application) are maintain4\ld _ by the OSP in the 
TASK state image. Each TAS~ will have a unique 
,TASK state'image. 

SCHEDULING 
The OSP schedules the prOCessor time amohg the 

the OSP switches the control of the processor to the 
higher priority TASK. First, 'ihe OSP saves the outgo­
ing (lower priority) TASK's state including CPU regiS­
ter values in its TASK state image. Then, it restores 
the CPU registers from the TASK state image of the 
incoming (higher priority) TASK. Finally, it causes the 
CPU to start or resume executing the higher priority 
TASK. 

TASK scheduling is performed by the OSp. The OSP's 
priority-oriented preemptive scheduler determines 
which TASK executes by comparing their relative 
priorities. The scheduler insures that the highest 
priority TASK with a status of READY will execute. A 
TASK will continue to execute until an interrupt with a 
higher priority occurs, or until it requests unavailable 
resources, for which it is willing to wait, or until it 
makes specific resources available to a higher 
prio~ity TASK waiting for those resources. 

TASKs can become READY by receiving a message, 
receiving control, receiving an interrupt, or by timing 
out. The OSP always monitors the status of all the 
TASKs (and interrupts) in the system. Preemptive 
scheduling allows the system to be responsive to the 
external environment while only devoting CPU re­
sources to TASKs with work to be performed. ' 

TIMED ,WAIT 
The OSP timer hardware facilities support timed 
waits and timeouts. Thus, in many primitives, a TASK 
can specify the length of time it is prepared to wait 
for an event to occur, for the desired resources to 
become available or for a message to be received at a 
MAILBOX. The timing interval (or System Tick) can 
be adjusted, with a lower li~it of 1 millisecone. 

APPLICATION CONTROL OF TASK EXECUTION 
Programs may alter TASK execution status and 
priority dynamically. One TASK may suspend its own 
execution or the execution of another TASK for a 
period of time, then resume its execution later. Multi­
ple suspensions are provic;led. A suspended TASK 
may be suspended again. 

The eight OSP Job and TASK management primitives 
are: 

CREATE JOB Partitions system resources and 
creates a TASK execution 
environment. 

various TASKs on the basis of priority. A TASK has an CREATE TASK Creates a TASK state image. 
Specifies the location of the 
TASK code instruction stream, 
its execution priority, and the 
other TASK attributes. 

execution priority relative to all other TASKs in the 
system, which the OSPmaintains -for eacb TASK in its 
TASK state image. When a TASK 'of higher priority 
than the executing TAS~ becomes ready to execute, . 

3-534 AFN-02059B 



inter 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

DELETE TASK Deletes the TASK state image, 
removes the instruction stream 
from execution and deallocates 
stack resources. Does not delete 
INTERRUPT TASKS. 

SUSPEND TASK Suspends the specified TASK or, 
if already suspended, in­
crements its suspension depth 
by one. Execute state is 
SUSPEND. 

RESUME TASK Decrements the TASK suspen­
sion depth by one. If the sus­
pension depth is then zero, 
the primitive changes the task 
execution status to READY, 
or ASLEEP (if' ASLEEP/ 
SUSPENDED). 

SLEEP Places the requesting TASK in 
the ASLEEP state for a specified 
number of System Ticks. (The 
TICK interval can be configured 
down to 1 millisecond.) 

SET PRIORITY Alters the priority of a TASK. 

Interrupt Management 

The asp supports up to 256 interrupt levels or­
ganized in an interrupt vector, and up to 57 external 
interrupt sources of which one is the NMI (Non­
Maskable Interrupt). The asp manages each inter­
rupt level independently. The OSF INTERRUPT 
SUBSYSTEM provides two mechanisms for interrupt 
management: INTERRUPT HANDLERs and INTER­
RUPT TASKs. INTERRUPT HANDLERs disable all 
maskable interrupts and should be used only for 
servicing interrupts that require little processing 
time. Within an INTERRUPT HANDLER only certain 
OSF Interrupt Management primitives (DISABLE, 
ENTER INTERRUPT, EXIT INTERRUPT, GET LEVEL, 
SIGNAL INTERRUPT) and basic CPU instructions 
can be used, other asp primitives cannot be. The 
INTERRUPT TASK approach permits all asp 
primitives to be issued and masks only lower priority 
interrupts. 

Work flow between an INTERRUPT HANDLER and an 
INTERRUPT TASK assigned to the same level is 
regulated with the SIGNAL INTERRUPT and WAIT 
INTERRUPT primitives. The flow is asynchronous. 
When an INTERRUPT HANDLER signals an INTER­
RUPT TASK, the INTERRUPT HANDLER becomes 
immediately available to proces~ another interrupt. 
The number of interrupts (specified for the level) the 

INTERRUPT HANDLER can queue for the INTER­
RUPT TASK can be limited to the value specified in 
the SET INTERRUPT primitive. When the INTER­
RUPT TASK is finished processing, it issues a WAIT 
INTERRUPT primitive, and is immediately ready to 
process the queue of interrupts that the INTERRUPT 
HANDLER has built with repeated SIGNAL INTER­
RUPT primitives while the INTERRUPT TASK was 
processing. If there were no interrupts at the level, 
the queue is empty and the INTERRUPT TASK is 
SUSPENDED: See the Example (Figure 5) and Fig­
ures 6 and 7. 

asp external INTERRUPT LEVELs are directly 
related to internal TASK scheduling priorities. The 
asp maintains a single list of priorities including 
both tasks and INTERRUPT LEVELs. The priority of 
the executing TASK automatically determines which 
interrupts are masked. Interrupts are managed by 
INTERRUPT LEVEL number. The asp supports eight 
levels directly and may be extended by means of 
slave 8259As to a total of 57. 

The nine Interrupt Management asp primitives are: 

DISABLE Disables an external INTER­
RUPT LEVEL. 

ENABLE Enables an external INTER­
RUPT LEVEL. 

ENTER INTERRUPT Gives an Interrupt Handler 
its own data segment, sepa­
rate from the data segment 
of the interrupted task. 

EXIT INTERRUPT Performs an "END of INTER­
RUPT" operation. Used by 
an INTERRUPT HANDLER 
which does not invoke an IN­
TERRUPT TASK. Reenables 
interrupts, when the INTER­
RUPT HANDLER gives up 
control. 

GET LEVEL Returns the interrupt level 
number of the executing IN­
TERRUPT HANDLER. 

RESET INTERRUPT Cancels the previous as­
signment made to an' 
interrupt level by SET IN­
TERRUPT primitive request. 
If an INTERRUPT TASK has 
been assigned, it is also 
deleted. The interrupt level 
is disabled. 

SET INTERRUPT Assigns an INTERRUPT 
HANDLER to an interrupt 
level and, optionally, an IN­
TERRUPT TASK. 

j-535 AFN·020598 



intJ 80130/80130-2 
iAPX 86/30,88/30, 186/30, 188/30 

r CODE EXAMPLE A INTERRUPT TASK TO KEEP TRACK OF TIME-Of.DAY 
DECLARE SECOND$COUNT BYTE, 

MINUTE$COUNT BYTE, 
HOURS$COUNTlIYTE; 

TIME$TASK: PROCEDURE; 
DECLARE TIME$EXCEPT$CODE WORD; 
AC$CYCWCOUNT-O; 
CAll RQ$SET$INTERRUPT(AC$INTERRUPT$LEVEL., 01HI, 

@AC$HANDLER,O,@TIMESEXCEPT$CODEI; 
CALL RO$RESUMESTASK(INITSTASK$TOKEN,@TIME$EXCEPT$CODEI; 
DO HOUR$COUNT-O TO 23; 

DO MINUTI!$COUNT-O TO 59; 
DO SECDND$COUNT.,O TO 59; 

CALL RO$WAIT$INTERRUPT(AC$INTERRUPT$LEVEL, 
@TIMESEXCEPT$CODEI; 

IF SECOND$COUNT MOD 5-0 
THEN CAll PROTECTED$CRT$OUT(BELI; 

ENO, r SECOND LOOP '/ 
END; r MINUTE LOOP '/ 

END; r HOUR LOOP '/ 
CALL RO$RESET$INTERRUPT(AC$INTERRUPT$LEVEL., @TIMESEXCEPT$CODEI; 
END TIMESTASK; 

r CODE EXAMPLE B INTERRUPT HANDLER TO SUBDIVIDE A.C. SIGNAL BY 60. '/ 
DECLARE AC$CYCLE$COUNT BYTE; 
AC$HANDLER: PROCEDURE INTERRUPT 51; 

DECLARE AC$EXCEPT$CODE WORD; 
AC$CYCLESCOUNT-ACSCYCLE$COUNT +1, 
IF AC$CYCLE$COUNT> -80 THEN DD; 

AC$CYCLE$COUNT -0; 
CALL RO$SIGNALSINTERRUPT(AC$INTERRUPT$LEVEL.,@AC$EXCEPT$CODEI; 
END, 

END AC$HANDLER; 

INTERRUPT 
HANDLER CALLS 
EXIT$INTERRUPT 

NO 

Figure 5. OSP Examples 

CONTROL RETURNS TO AN 
APPLICATION TASK 

INTERRUPT 
HANDLER CALLS 

SIGNALSINTERRUPT 

INTERRUPT TASK 
COMPLETES INTERRUPT 

SERVICING 

INTERRUPT TASK 
CALLS 

. WAIT$INTERRUPT 

Figure 6, Interrupt Handling Flowchart 

3-536 AFN·O:!059B 



inter _ 80130/80130-2 
iAPX 86/30, 88/30,186/30,188/30 

BUFFERS~ , 

~~@"OBTAINS 
[:]

= ~ ~U~~~::R 
~ , 

I , 

-- J INTERRUPT ~ 
........ , TASK ,-.... 

/ " ./ "-
/ '--- "-

INTERRUPT 

<D STARTS FILLING 
EMPTY BUFFER 

(]) WHEN FULL. CALLS 
SIGNAL$INTERRUPT 
TO START ,TASK ON 
FULL BUFFER 

/ \ 
I \ 
I _-1 , , " \ 

, , 
© CALLS I INTERRUPT I 

WAITSINTERRUPT \ TASK I 
TO WAIT FOR NEXT \ /, 
FULL BUFFER >.... ,...,~ -- - -" --, 

@ PROCESSES 
FULL BUFFER 

Figure 7. Multiple Buffer Example 

SIGNAL INTERRUPT Used by an INTERRUPT 
HANDLER to activate an In­
terrupt Task. 

WAIT INTERRUPT Suspends the calling Inter­
rupt Task until the INTER­
RUPT HANDLER performs a 
SIGNAL INTERRUPT to in­
voke it. If a SIGN.AL INTER­
RUPT for the task has 
occurred, it is processed. 

FREE MEMORY MANAGEMENT 

The OSP Free Memory Manager manages the 
memory pool which is allocated to each JOB for its 
execution needs. (The CREATE JOB primitive al­
locates the new JOB's memory pool from the 
memory pool of the parent JOB.) The memory pool is 
part of the JOB resources but is not yet allocated 
between the tasks of the JOB. When- a TASK, MAIL­
BOX, or REGION system data type structure is 
created within that JOB, the OSP implicitly allocates 
memory for it from the JOB's memory pool, so that a 
separate call to allocate memory is not required. OSP 
primitives that use free memory management .im­
plicitly include CREATE JOB, CREATE TASK" 
DELETE TASK; CREATE MAILBOX, DELETE MAIL­
BOX, CREATE REGION, and DELETE REGION. The 

CREATE SEGMENT primitive explicitly allocates a 
memory area when one is needed by the TASK. For 
example, a TASK may explicitly allocate a SEGMENT 
for use as a memory buffer. The SEGMENT length 
can be any multiple of 16 bytes between 16 bytes and 
64K bytes in length. The programmer may specify 
any number of bytes from 1 byte to 64 KB, the OSP 
will transparently round the value up to the appropri­
ate segment size. 

The two explicit memory allocation/deallocation 
primitives are: 

CREATE SEGMENT 

DELETE SEGMENT 

Allocates a SEGMENT of spe­
cified length (in 16-byte-long 
paragraphs) from the JOB 
Memory Pool. 

Deallocates the SEGMENT's 
memory area, and returns-it 
to the JOB memory pool. -

Intertask Communication 

The OSR has built-in intertask synchronization and 
communication, permitting TASKs to pass and share 
information with each other. OSP MAILBOXes con­
tain controlled handshaking facilities which guaran­
tee that a complete message will always be sent from 
a Sending TASK to a receiving TASK. Each MAILBOX 
consists of two interlocked queues, one of TASKs 

3-537 AFN·02059B 



80130/80130.2 \ , 
iAP~ 86/30, 88/30, 186/30, 188130 

and the other of Messages. Four OSP primitives for 
intertask synchronization and communication are 
'provided: 

CREATE MAILBOX Creates intertask message 
exchange. 

pELETE MAILBOX Deletes an intertask mes­
sage exchange. 

RECEIVE MESSAGE CallingTASKreceivesames­
sage from the MAILBOX. 

SEND MESSAGE Calling TASK sends a 
message to the MAILBOX. 

The CREATE MAILBOX primitive allocates a MAIL­
BOX for use as an information exchange between 
TASKs. The OSP will post information at the MAIL­
BOX in a FIFO (First-In First-Out) manner when a 
SEND MESSAGE instruction is issued. Similarily, a 
message is retrieved by the OSP if a TASK issues a 
RECEIVE MESSAGE primitive. The TASK which 
creates the MAILBOX may make it available to other 
TASKs to use. 

If no message is available, the TASK attempting to 
receive a message may choose to wait for one or 
continue executing. • 

The queue management method for the task queue 
(FIFO or PRIORITY) determines which TASK in the 
MAILBOX TASK queue will receive a message from 
the MAILBOX. The method is specified in the 
CREATE MAILBOX primitive. 

Intertask Synchronization and Mutual 
Exclusion 

Mutual exclusion is essential to multiprogramming 
and multiprocessing systems. The REGION system 
data type implements mutual exclusion. A REGION is 
represented by a queue of TASKS waiting to use a 
resource which must be accessed by only one TASK 
at a time. The OSP provides primitives to use 
REGIONs to manage mutually exclu!!5ive' data and 
resources. Both critical code sections and shared 
data structures can be protected by these primitives 
from simultaneous use by more than one task. 
REGIONs support both FIFO (First-In Fir!!5t-Out) or 
Priority queueing disciplines for the'TASKS seeking 
to enter the REGION. The REGION SOT can also be 
used to implement software locks. 

! . , . . 
Multiple REGIONs are allowed, and are automatically 
exited in the reverse order of entry. While i,n a 
REGlqN; a TASK ca,nnot be suspended by its~1f or 
any other TASK, and the~by avoids de~dlock. ' 

There are five OSP primitives for mutual exclusion: 

CREATE REGION' Create a REGION (lock). 

SEND CONTROL Give up the REGION. 

ACCEPT CONTROL Request the REGION, but do 
not wait if it is not available. 

RECEIVE CONTROL Request a REGION, wait if 
not immediately availlible. 

DELETE REGION' Delete a REGION. 

The OSP also provides dynamic priority adjustment 
for TASKs within priority REGIONs:, If a higher­
priority TASK issues a RECEIVE CONTROL primitive, 
while,a (lower-priority) TASK has the use of the same 
REGION, the lower-priority TASK will be trans­
parently, and temporarily; elevated to the waiting 
TASK's priority until it relinquishes the REGION via 
SEND CONTROL. At that point, since it is no longer 
using the critical resource. the TASK wjll have its 
normal priority restored. 

OSP Control Facilities 

The OSP also includes system primitives that provide 
both control and customization capabilities to a mUl­
titasking system. These primitives are used to control 
the deletion of SOTs and the recovery of free memory 
in a system, to allow interrogation of operating sys­
tem status, and to provide uniform mean, of adding 
user SOTs and type managers. 

DELETION CONTROL 
Deletion of each OSP system data type is explicitly 
controlled by the applications programmer by set­
ting a deletion attribute for that structure. For exam­
ple, if a SEGMENT is to be kept in memory until DMA 
activity is completed, its deletion attribute should be 
disabled. Each TASK, MAILBOX, REGION, and SEG­
MENT SOT is created with its deletion attribute en­
abled (i.e., they may be deleted). TwoOSP primitives 
control the deletion attribute: ENABLE DELETION 
and DISABLE DELETION. 

ENVIRONMENTAL CONTROL, 
The OSP provides 'inquiry and control operations 
which help the user interrogate the application envi­
rO,nment and implement flexible exception har;Jdling. 
These features aid in run-time decision mak'ing and 
In application err!,r processing and rec()yery. There 
are five OS~ environmental con,trol primitives. , 

OS~ENSIONS 
The OSP architecture.is defined to allow new user­
d~fined System Da,a Types' and the primitives tp ma7 
nipulate them to be ~dded to o,SP capabili~ie~ 

3-538 AFN·02059B 



inter 80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

provided by the built-in System Data Types. The type 
managers created for the user-defined SDTs are 
called user OS extensions and are installed, i{l the 
system by the SET OS EXTENSION primitive. Once 
installed, the functions of the type manager may be 
invoked with user primitives conforming to the OSP 
interface. For well-structured extended architec­
tures, each OS extension should support a separate 
user-d~ined system data type, and every OS,exten­
sion should provide the same calling sequence and -
program interface for the 'user as is provided for a 
built-in SDT. The type manager for the extension 
would be written to suit the needs of the application. 
OSP interrupt vector entries (224-255) are reserved 
for user OS extensions and are not used by the OSP. 
After assigning an interrupt number to the extension, 
the extension user may then call it with the standard 
OSP call sequence (Figure 4), and the unique 
software interrupt number assigned to the 
extension. 

ENABLE DELETION Allows a specific SEGMENT, 
TASK, MAILBOX, or REGION 
SDT to be deleted. 

DISABLE DELETION 

GET TYPE 

GET TASK TOKENS 

GET EXCEPTION 
HANDLER 

SEl EXCEPTION 
HANDLER 

SET OS EXTENSION, 

SIGNAL.. EXCEpT!ON 

Prevents a specific SEG­
MENT, TASK, MAILBOX, or 
REGION SDT from being 
deleted. 

Given a token, for an in­
stance of a system data type, 
returns the type code. 

Returns to the caller infor­
mation about the current 
task environment. 

Returns information about 
the calling TASK's current in­
formation handler: its ad­
dress, and when it is used. 

PrOVides the address and 
usage of an exception 
handler for a TASK. 

Modifies one of the interrupt 
vector entries reserved for 
OS extensions (224-255) to 
point to a u'ser OS extension 
procedu~e. 

For use in OS extension er­
ror procesSing. 

EXCEPTION HANDLING 

The OSP supports exception handlers. These are 
similar to CPU exception handlers such as OVER­
FLOW alrd ILLEGAL OPERATION. Their purpose is to 

allow the OSP primitives to report parameter errors 
in primitive calls, and errors in primitive usage. Ex­
ception handling procedures are flexible and can be 
,individually programmed by the application. In gen­
eral, an exception handler if called wiH perform one 
or more of the following functions: 

-Log the Error. 
-Delete/Suspend the Task that caused the 

exception. 
-Ignore the error, presumably because it is not 

serious. 

An EXCEPTION HANDLER is written as a procedure. 
If PLM/86 is used, the "compact," "medium" or 
"large" model of computation should be specified for 
the compilation of the program. The mode in which 
the EXCEPTION HANDLER operates may be speci­
fied in the SET EXCEPTION HANDLER primitive. The 
return information from a primitive call is shown in 
Figure 4. CX is used to return standard system error 
conditions. Table 7 shows a list of these conditions, 
using the default EXCEPTION HANDLER of the OSP. 

HARDWARE DESCRIPTION 

The 80130 operates in a closely coupled mode with 
the iAPX 86/10 or 88/10 CPU. The 80130 resides on 
the CPU local multiplexed bus (Figure 8). The main 
processor is always configured for maximum mode 
operation. The 80130 automatically selects between 
its 88/30 and 86/30 operating ,modes. 

The 80130 used in the 86/30 configuration, as shown 
in Figure 8 (or a similar 88/30 configuration), 
operates at bQth 5 and 8 MHz without requiring pro­
cessor wait states. Wait state memories are fully sup­
ported, however. The 80130 may be configured with 
both an 8087 NPX and an 8089 lOP, and provid~s 
full context control over the 8087. 

The 80130 (shown in Figure 3) is internally divided 
into a control unit (CU) and operating system unit 
(08U). The OSU contains facilities for OSP kernel 
support including the system timers for scheduling 
and timing waits, and the interrupt controller for 
interrupt management support. 

iAPX86130, iAPX 88/30 System 
Configuration 

The 80130 is both I/O and memory mapped to the 
local CPU bus. The CPU's status 80/·S2I Is 
decOded along with 10CSI (with BHE' and AD3-
ADo) or MEMCs/ (with AD13-ADo). The pins are 
Internally latched. See Table 1 for the decoding of 
these lines. ' 

AFN-0205llB 



intJ 80130/80130-2 . 
iAPX 86/30, 88/30, 186/30, 188/30 

Memory Mapping 

Address lines A19-A14 can be used to form MEMCS/ 
since the 80130's memory-mapped portion is aligned 
along a 16K-byte boundry. The 80130 can reside on 
any 16K-byte boundry excluding. the highest 
(FCOOOH-FFFFFH) and lowest (OOOOOH-003FFH). The 
80130 control store code is position-independent ex­
cept as limitecj above, in order to make it compatible 
with many decoding logic designs. AD13-ADo are 
decoded by the 80130's kernel control store. 

I/O Mapping 

The I/O-mapped portion of the 80130 must be aligned 
along. a 16-byte boundry. Address lines A15-~ 
should be used to form 10CS/. 

System Performance 

The approximate performance of representitive OSP 
primitives is given in Table 5. These times are shown 
for a typical iAPX 86/30 implementation with an 8 
MHz clock. These execution times are very compara­
ble to the execution times of similar functions in 
minicomputers (where available) and are an orner of 
magnitude faster than previous generation 
microprocessors. 

Initialization 

Both application system initialization and OSP­
specific initialization/configuration are required to 
use the OSp. Configuration is based on a "database" 
provided by the user to the iOSP 86 support package. 
The OSP-specific initialization and configuration in­
formation area is assigned to a user memory address 
adjacent to the 80130's memory-mapped location. 
{See Application Note 130 for further details.) The 
configuration data defines whether 8087 support is 
configured in the system, specifies if slave 8259A 
interrupt controllers are used in addition to the 
80130, and sets the operating system time base (Tick 
Interval). Also located in the configuration area are 
the exception handler control parameters, the ad­
dress location of the (separate) application system 
configuration area and the OSP extensions in use. 
The OSP application system configuration area may 
be located anywhere in the user memory and must 
include the starting address of the application in­
struction code to be executed, plus the locations of 
the RAM memory blocks to be managed by the OSP 
free memory manager. Complete application system 
support and the required 80130 configuration sup­
port are provided by the iAPX 86/30 and iAPX 88/30 
OPERATING SYSTEM PROCESSOR SUPPORT 
PAcKAGE (iOSP 86). 

RAM Requirements 

The OSP manages its own interrupt vector, which is 
assigned to low RAM memory. Working RAM storage 
is required as stack space and data area. The 
memory space must be allocated in user RAM. 

OSP interrupt vector memory locations OH-3FFH 
must be RAM based. The OSP requires 2 bytes of 
allocated RAM. The processor working storage is 
dynamically allocated from free memory. Approxi­
mately 300 bytes of stack should be allocated for 
each OSP task. 

TYPICAL SYSTEM CONFIGURATION 

Figure 8 shows the processing cluster of a "typical" 
iAPX 86/30 or iAPX 88/30 OSP system. Not shown are 
subsystems likely to vary with the application. The 
configuration includes an 8086 (or 8088) operating in 
maximum mode, an 8284A clock generator and an 
8288 system controller. Note that the 80130 is located 
on the CPU side of any latches or transceivers. See 
Intel Application Note 130 for further details on 
configuration. 

OSPTimers 

The OSP Timers are connected to the lower half of 
the data bus and are addressed at even addresses. 
The timers are read as two successive bytes, always 
LSB followed by MSB. The MSB is always latched on 
a read operation and remains latched until read. 
Timers are not gatable. 

Baud Rate Generator 

The baud rate generator is 8254 compatible (square 
wave mode 3). Its output, BAUD, is initially high and 
remains high until the Count Register is loaded. The 
first falling edge of the clock after the Count Register 
is loaded causes the transfer of the internal counter 
to the Count Register. The output stays high for N/2 
[(N+1)/2 if N is odd] and then goes low for N/2 
[(N -1 )/2 if N is odd]. On the fall i ng edge of the clock 
which signifies the final count for the output in low 
state, the output returns to high state and the Count 
Register is transferred to the internal counter. The 
whole process is then repeated. Baud Rates are 
shown in Table 6. 

The baud rate generator is located at OCH (12), rela­
tive to the 16-byte boundary in the I/O space in which 
the 80130 qomponent is located ("OSF" in the follow­
ing example), the timer c.ontrol word is .located at 

3-540 AFN-020598 



inter 80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

+. 
8 

1'- CONTROL 

f- ClK iIO 8288 
Ill!e-- I"'" 

PEN 
'---

8088 

BHE ~ BHE 
A" AI. LOCAL 

~RESS/~~ 8282 AND . 
ADDRESS . SYSTEM 

~ . RESOURCES 
INTR ADO 

AO 
'---

-=- , 

~ 
DIS 

8286 

~- DO 

iIOvt 
~ OE 

INT ----L. eLK AD~~ 
AOO I-Y------NiCs DECODE ~ 

I I lOGIC 
MEMCs 

" , ill 
LlR 
IRO . /I . r- INTERRUPT REQUESTS , 
IR7 

SYSTICK ~ IR2 

Figure 8. Typical OSP Configuration 

relative address, OEH(14). Timers are addressed with 
IOCS=O. Timers 0 and 1 are assigned to the use by 
the OSp, and should not be altered by the user. 

For most baud-rate generator applications, the com­
mand byte 

OB6H ReadlWrite Baud-Rate Delay Value 

will be used. Atypical sequence to set a baud rate 
of 9600 using a count value of 52 follows (see 
Table 6): 

MOV AX,.OB6H 

OUT OSF+14,AX 
MOV AX,52 
OUT OSF+12,AL 
XCHG AL,AH 
OUT OSF+12,AL 

;Prepare to Write Delay to 
Timer 3. 
;Control Word. 

;LSB written first 

;MSB written after. 

The 80130 timers are subset compatible with 8254 
timers. 

3-541 

Interrupt Controller 

The Programmable Interrupt Controller (PIC). is also 
an integral unit of the 80130. Its eight input pins 
handle eight vectored priority interrupts. One of 
these pins must be used for the SYSTICK time func­
tion in timing waits, using an external connection as 
shown. During the 80130 initialization and configura­
tion sequence, each 80130 interrupt pin is individu­
ally programmed as either level or edge sensitive. 
External slave 8259A interrupt controllers can be 
used to expand the total number of OSP external 
interrupts to 57. 

In addition to standard PIC funtions, 80130 PIC unit 
has an LlR output signal, which when low indicates 
an interrupt acknowledge cycle. LlR =0 is provided to 
control the 8289 Bus Arbiter SYSB/RESB pin. This 
will avoid the need of requesting the system bus to 
acknowledge local bus non-slave interrupts. The 
user defines the interrupt system as part of the 
configuration. 

AFN·02059B 



inter 80130/8013d~2 
iAPX '86/30, 88130, 186/30, 188/30 

INTERRUPT SEQUENCE 
The OSP interrupt sequence is as follows: 

1. One or more of the interrupts is set by a low-to­
high transition on edge-sensitive IR inputs or by a I 

high input on level-sensitive IR inputs. 

2. The 80130 evaluates these requests, and sends an 
INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an interrupt acknowledge cycle which is en­
coded in S2-S0' 

4. Upon receiving the first inter~upt acknowledge 
from the CPU, the h,ighest-priority interrupt is set 
by the 80130 and the corresponding edge detect 
latch is reset. The 80130 does not drive the ad­
dress/data bus during this bus cycle but does 
acknowledge the cycle by making ACK=O and 
sending the LlR value for the IR input being 
acknowledged. 

/ 

5. The CPU will then initiate a second interrupt ac­
knowledge cycle. During this cycle, the 80130 will 
supply the cascade address of the interrupting 
input at T1 on the bu~ and also release an 8-bit 
pointer onto the bus if appropriate, where it is 
read by the CPU. If the 80130 does supply the 
pointer, then ACK will 'be low for the cycle. This 
cycle also has the value LlR for the IR input being 
acknowledged. 

6. This completes the interrupt cycle. The ISR bit 
remains set until an appropriate EXIT INTERRUPT 
primitive (EOI command) is called at the end of 
the Interrupt Handler. 

OSPAPPLICATION EXAMPLE 

Figure 5 shows an application of the OSP p~imitives 
to keep track of time of day in a simplified example. 
The system design uses a 60 Hz A.C. signal as a time 
base. The power supply provides a TTL-compatible, 

signal which drives one of 80130 edge-triggered in~ 
terrupt request pins once each AC. cycle. The Inter­
rupt Handler responds to the interrupts, keeping 
track of one second's AC. cycles. The Interrupt Task 
dounts the seconds and after a day deletes itself. In 
typical systems it might perform a data logging oper­
ation once each day. The,lnterrupt Handler and Inter­
ruptTask are written as separate modular programs. 

The Interrupt Handler will actually service interrupt 
59 when it occurs. It simply' counts each interrupt, 
and at a count of 60 performs a SIGNAL INTERRUPT 
to notify the Interrupt Task that a second has elapsed. 
The Interrupt Handler (ACS HANDLER) was assigned 
to this level by the SET INTERRUPT primitive. After 
doing this, the Interrupt Task performed the Primitive 
RESUME TASK to resume the application task (IN ITS 
TASKS TOKEN). 

The main body of the task is the counting loop. The 
InterruptTask is signaled by the SIGNAL INTERRUPT 
primitive in the Interrupt Handler (at interrupt level 
ACS INTERRUPTS LEVEL)" When the task is sig­
nalled by the Interrupt Handler it will execute the 
loop exactly one time, increaSing the time count 
variables. Then it will execute the WAIT INTERRUPT 
primitive, and wait until awakened by the Interrupt 
Handler. Normally, the task will now wait some period 
of time for the next signal. However, since the inter­
face between the Handler and the Task is asyn­
chronous, the handler may have already queued the 
interrupt for servicing, the writer of the task does not 
have to worry about this possibility., 

At the end of the day, the task will exit the loop and 
, execute RESET INTERRUPT, which disables the, in­

terrupt level, and deletes the interrupt task. The OSP 
now reclaims the memory used by the Task and 
schedules another task. If an exception occurs, the 
coded value for the exception is available in TIMES 
EXCEPTS CODE after the execution of the primitive. 

A typical PL/M-86 calling sequence is illustrated by 
the call to RESET INTERRUPT shown in Figure 5. 

'3-542 AFN,02059B 



inter 80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 2. OSP System Data 'tYpe Summary ! 

Job Jobs are the means of organizing the program environment and resources. An application consists of 
one or more jobs. Each iAPX 86/30 system data type is contain!ld in some job. Jobs are independent of 
each other, but they may share access to resources. Each job has one or more tasks, one of which is an 
initial task. Jobs are given pools of memory, and they may create subordinate offspring jobs, which 
may borrow memory from th'eir parents. ' 

Task Tasks are the means by which computations are accomplished. A task is an instruction stream with its 
own execution stack and private data. Each task is part of a job and is restricted to the resources 
provided by its job. Tasks may perform general interrupt handling as well as other computational 
functions. Each task has a set of attributes, which is maintained for it by the iAPX 86/30, which 
characterize its status. These attributes are: 

its containing job 
its register context 
its priority (0-255) 
its execution state (asleep, suspended, ready, running, asleep/suspended). 
its suspension depth 
its user-selected exception handler 
its optional 8087 extended task state 

Segment Segments are the units of memory allocation. A segment is a physically contiguous sequence of 
16-byte, 8086 paragraph-length, units. Segments are created dynamically from the free memory 
space of aJob as one of its Tasks requests memory for its use. Asegment is deleted when it is no longer 
needed. The iAPX 86/30 maintains and manages free memory in an orderly fashion, itobtains memory 
space from the pool assigned to the containing job of the requesting task and returns the space to the 
job memory pool (or the parent job pool) when it is no longer needed. It does not allocate memory to 
create a segment if sufficient free memory is not available to it, in that case it returns an error 
exception code. 

Mailbox Mailboxes are the means of intertask communication. Mailboxes are used by tasks to send and 
receive message segments. The iAPX 86/30 creates and manages two queues for each mailbox. One 
of these queues contains message segments sent to the mailbox but not yet received by any task. The 
other mailbox queue consists of tasks that are waiting to receive messages. The iAPX 86/30 operation 
assures that waiting tasks receive messages as soon as messages are available. Thus at any moment 
one or possibly both of two mailbox queues will be empty. 

Region Regions are the means of serialization and mutual exclusion. Regions are, familiar as "critical code 
regions." The iAPX 86/30 region data type consists of a queue of tasks. Each'task waits to execute in 
mutually exclusive code or to access a shared data region, for example to update a file record. 

Tokens The asp interface makes use of a 16-bitTOKEN data type to identify individual OSF data structures. 
Each of these (each instance) has its own unique TOKEN. When a primitive is called, it is passed the 
TOKENs of the data structures on which it will operate. 

3-543 AFN·02059B 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 3. System Data ~pe Codes and Attributes 

S.D.T. Code Attributes 

Jobs 1 Tasks 
Memory Pool 
S.D.T. Directory 

Tasks 2 Priority 
Stack 
Code 
State 
Except!on Handler 

Mailboxes 3 Queue of S.D.T.s 
(generally segments) 
Queue of Tasks 
waiting for S.D.T.s 

Region 5 Queue of Tasks 
waiting for mutually 
exclusive code or 
data 

Segments 6 Buffer 
Length 

Table 4. OSP Primitives 
.... _-

Class OSP Interrupt Entry Code Parameters 
Primitive Number In AX On Caller's Stack -.---

J 
0 CREATE JOB 184 0100H 'See 80130 User Manual 
B 

CREATE TASK 184 0200H Priority, IP Ptr, Data Segment, Stack 
Seg, Stack Size Task Information, 

T ExcptPtr 
A DELETE TASK 184· 0201H TASK, ExcptPtr 
S SUSPEND TASK 184 0202H TASK, ExcptPtr 
K RESUME TASK 184 0203H TASK, ExcptPtr 

SET PRIORITY 184 0209H TASK, Priority, ExcptPtr 
SLEEP 184 0204H Time Limit,ExcptPtr 

DISABLE 190 0705H Level, ExcptPtr 
I ENABLE 184 0704H Level #, ExcptPtr 
N ENTER INTERRUPT 184 0703H Level #, ExcptPtr 
T EXIT INTERRUPT 186 NONE Level # ,ExcptPtr 
E GET LEVEL 188 0702H Level #, ExcptPtr 
R RESET INTERRUPT 184 0706H Level #, ExcptPtr 
R SET INTERRUPT 184 0701H Level, Interrupt Task Flag Interrupt 
U Handler Ptr, Interrupt Handler DataSeg 
P ExcptPtr 
T SIGNAL INTERRUPT 185 NONE Level, ExcptPtr 

WAIT INTERRUPT 187 NONE Level, ExcptPtr 

S 
E 
G CREATE SEGMENT 184 0600H Size, ExcptPtr 
M DELETE SEGMENT 184 0603H SEGMENT. ExceptPtr 
E 
N 
T 

3-544 AFN·02059B 



80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 4. OSP Primitives (Continued) 

Class OSP Interrupt Entry Code Parameters 
Primitive Number In AX On Caller's Stack 

M CREATE MAILBOX 184 0300H Mailbox flags, ExcplPlr 
A DELETE MAILBOX 184 0301H MAILBOX, ExcplPtr 
I RECEIVE MESSAGE 184 0303H MAILBOX, Time Limit ResponsePtr, 
L ExcptPtr 
B SEND MESSAGE 184 0302H MAILBOX,Message Response, ExcptPtr 
0 
X 

R ACCEPT CONTROL 184 0504H REGION, ExcptPlr 
E CREATE REGION 184 0500H Region Flags, ExcptPtr 
G DELETE REGION 184 0501H REGION, ExcptPtr , 
I RECEIVE CONTROL 184 0503H REGION, ExcptPtr 

,0 SEND CONTROL 184 0502H ExcptPtr 
N 

E DISABLE DELETION 184 0OO1H. TOKEN,ExcptPtr 
N ENA'BLE DELETION 184 0OO2H TOKEN,ExcptPtr V 
I GET EXCEPTION 

R 
\ HANDLER 184 0800H Ptr,.ExcptPtr 

0 GET TYPE 184 OOOOH TOKEN,ExcptPtr 
N GET TASK TOKENS 184 0206H Request, ExcptPtr 
M SET EXCEPTION 
E HANDLER 184 0801H Ptr, ExcptPtr 
N SET OS EXTENSION 184 0700H Code,lnstPtr, ExcptPtr 
T SIGNAL 
A EXCEPTION 184 0802H Exception Code, Parameter Number, 
L 

StackPtr,O,O,ExcptPtr 

NOTES: 
All parameters are pushed onto the OSP stack. Each parameter is one word. See Figure 3 for Call Sequence. 

Explanation 01 the Symbols 

JOB OSP JOB SOT Token 
TASK OSPTASK SOT Token 
REGION OSP REGION SOT Token 
MAILBOX OSP MAILBOX SOT Token 
SEGMENT OSP SEGMENT SOT Token 
TOKEN Any SOT Token 

Level 
ExcptPtr 
Message 
Ptr 
Seg 

Interrupt Level Number 
Pointer to Exception Code 
Message Token 
Pointer to Code,Stack etc. Address 
Value Loaded into appropriate Segment Register 
Value Parameter, '-. 

3-545 AFN·02059B 



80130/80130·2 
iAPX 86/30, 811/30, 186/30, 188/30 

'Table 5. OSP Primitive Performance Examples 

Datatype Class Primitive Execution Speed" 
(microseconds) 

JOB CREATE JOB 2950 
TASK CREATE TASK (no preemption) 1360 

SEGMENT CREATE SEGMENT 700 
MAILBOX SEND MESSAGE (with task switch) 475 

SEND MESSAGE (no task switch) 265 
RECEIVE MESSAGE (task waiting) 540 
RECEIVE MESSAGE (message waiting) 260 

REGION SEND CONTROL 170 
RECEIVE CONTROL 205 

'8 MHz iAPX 86/30 OSP Configuation, 

Table 6. Baud Rate Count Values (16X) 

Baud 8 MHz Count 5 MHz Count 
Rate Value Value 

300 1667 1042 
600 833 521 

1200 417 260 
2400 208 130 
4800 104 65 
9600 52 33 

AFN·0205QB 



80130/80130·2 
iAPX 86/30, 88/30, 186/30, 188/30 

Table 7a. Mnemonic Codes for Unavoidable Exceptions 

E$OK Exception Code Value = 0 
the operation was successful 

E$TIME Exception Code Value = 1 
the specified time limit expired before completion of the operations was possible 

E$MEM Exception Code Value = 2 
insufficient nucleus memory is available to satisfy the request 

E$BUSY Exception Code Value - 3 
specified region is currently busy 

E$LlMIT Exception Code Value - 4 
attempted violation of a jOb, semaphore, or system limit 

E$CONTEXT Exception Code Value = 5 
the primitive was called in an illegal context (e.g., call to enable for an already enabled 
interrupt) 

E$EXIST Exception Code Value = 6 
a token argument does not currently refer to any object; note that the object could have 
been deleted at any time by its owner 

E$STATE Exception Code Value = 7 
attempted illegal state transition by a task 

E$NOT$CONFIGURED Exception Code Value - 8 
the primitive called is not configured in this system 

E$INTERRUPT$SATURATION Exception Code Value - 9 
The interrupt task on the requested level has reached its user specified saturation point 
for interrupt service requests. No further interrupts will be allowed on the level until the 
interrupt task executes a WAIT$INTERRUPT. (This error is only returned, in line, to 
interrupt handlers.) 

E$INTERRUPT$OVERFLOW Exception Code Value = 10 
The interrupt task on the requested level previously reached its saturation point and 
caused an E$INTERR\.JPT$SATURATION condition. It subsequently executed. an 
ENABLE allowing further interrupts to come in and has received another SIG-
NAL$INTERRUPTcall, bringing it over its specified saturation point for interrupt service 
requests. (This error is only returned, in line, to interrupt handlers). 

Table 7b. Mnemonic Codes for Avoidable Exceptions 

E$ZERO$DIVIDE Exception Code Value = 8000H 
divide by zero interrupt occurred . 

E$OVERFLOW Exception Code Value = 8001 H 
overflow interrupt occurred 

E$TYPE Exception Code Value - 8002H 
a token argument referred to an object tha was not of required type 

E$BOUNDS Exception Code Value - 8003H 
an offset argument is out of segment bounds 

E$PARAM Exception Code Value - 8004H 
a (non-token,non-offset) argument has an illegal value 

E$BAD$CALL Exception Code Vallie - 8005H 
an entry code for which there is no corresponding primitive was passed 

E$ARRAY$BOUNDS = 8006H Hardware or Language hilS detected an array overflow 

E$NDP$ERROR Exception Code Value = 8007H , 

an 8087 (Numeric data Processor) error has been detected; (the 8087 status information 
is contained in a parameter to the exception handler) 

3-547 AFN·02059B ' 



-n+_r I •• ,'e'· ' 80130/~0130·2 
iAPX 86/30,88/30,186/30,188/30 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bins ...•..... O°C to 70°C 
Storage Temperature ................. -65°C to 150°C 
Voltage on Any PJn With 

Respect to Ground .......•.......... :"'1.0V to + 7V 
Power Dissipation .......................... 1.0 Watts 

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 4.5 to 5.5V) 

Symbol Parameter Min. 

V,L Input low Voltage - 0.5 

V,H Input High Voltage 2.0 

VOL Output low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

III Input leakage Current 

ILR IR Input load Current 

ILO Output leakage Current 

VCLI Clock Input low 

VCHI Clock Input High 3.9 

C'N Input CapaCitance 

C,O 1/0 Capacitance 

ICLI Clock Input leakage Current 

·NOTlCE: Stresses above those listed under Absolute 
Maximum Ratings may cause permanent damage'to the 
device. This is a stress rating only and functional operation 
of the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating con­
ditions for extended period may affect df!vice reliability. 

Max. Units Test Conditions 

0.8 V 

Vcc +.5 V 

0.45 V 10L = 2mA 
V 10H = - 400"A 

200 mA TA = 25 C 

10 "A 0< Y'N < Vcc 
10 "A Y'N = Vcc 

-300 JlA Y'N = 0 
10 !lA .45 = Y'N = Vcc 
0.6 V 

V 

10 pF 

15 pF 

10 "A Y'N = Vee 
150 "A Y'N = 2.5V 
10 !lA Y'N = OV 

A.C. CHARACTERISTICS (TA = O-WC, Vcc = 4.5-5.5 Volt, Vss = Ground) 

80130 80130-2 
Symbol Parameter Min. Max. Min. Max. Units Test Conditions 

TCLCL ClK Cycle Period 200 - 125 - ,ns 
TCLCH ClK low Time 90 - 55 - ns 

TCHCL ClK High Time 69 2000 44 2000 ns 

TSVCH Status Active Setup Time 80 - 65 - 'ns 

TCHSV Status Inactive Hold TIme 10 - 10 - ns 

TSHCL Status Inactive Setup Time 55 - 55 - ns 
TCLSH Status Active Hold TIme 10 - 10 - ns 

TASCH Address Valid Setup Time 8 - 8 - ns 

TCLAH Address Hold Time 10 - 10 - ns 

TCSCL Chip Select Setup Time 20 - 20 - ns 
TCHCS Chip Select Hold Time 0 - 0 - ns 

TDSCL Write Data Setup Time 80 - 60 - ns 

TCHDH Write Data Hold Time 10 - 10 - ns 

TJWH IR low Time 100 - 100 - ns 

TCLDV Read Data Valid Delay - 140 - 105 ns CL = 200pE 

TCLDH Read Data Hold TIme' 10 - 10 - ns 

TCLDX Read Data to Floating 10 100 10 100 ns 
TCLCA Cascade Address Dalay Time - 85 - 65 ns 



intJ 80130/80130-2 
iAPX 86/30, 88/30, 186/30, 188/30 

A.C. CHARACTERISTICS (Continued) 

80130 80130-2 
Symbol Parameter Min. Max. Min. Max. 

TCLCF Cascade Addresse Hold Time 10 - 10 -
T,AVE INTA Status t Acknowledge - 80 - 80 

TCHEH Acknowledge Hold Time 0 - 0 -
TCSAK Chip Select to ACK - 110 - 110 

TSACK Status to ACK - 140 - 140 

TAACK Address to ACK - 90 - 90 

TClOO Timer Output Delay Time - 200 - 200 

TClaoi Timer1 Output Delay Time - 200 - 200 

TJHIH INT Output Delay - 200 - 200 

T'RCl IR Input Set Up 20 

WAVEFORMS 
A.C. 

elK 

SYSTICK, 
DELAY, BAUD 

CLK 

IR 

INT 

~-~/ 
. 1 •• _' T_C_LO_D_-.;· .. I 

______________ ~x~ ____ _ 

TJLJH ....-

3-549 

Units Notes 

ns 

ns 

ns 

ns 

ns 

ns 

ns Cl ~ 100pF 

ns Cl~100pF 

ns 

ns 

AFN-02059B 



80.130/80130·2 inter iAPX 86/30, .88/30,t8~/30, 188/3.0 

WAVEFORMS 
A.C. 

ClK 

T4 T1 T2 I T3 I 
I TW 

~~ 
TelCH I 

/ / 
, 

..,j 

.TCHSV_

1 

TSVCH TCLCL TClSH I:SHC~ 

0 

\ I I I 
52, $1, S 

H ~ 
SHe: A, ,,-A(, VAllO X-----

'T' TCSCl 

BHE,AD 

s"TS 

I rosel TE CYCLE WR' 

I ADDRESS VALID 'f.J1f.J.IX WRITE OATAVALfO 

~l -j r-TCSAK 

TAACK ~ 
I 

TelDx o CYCLE f4-I reLDV ~H-J \ FLOAT 
READ DATAVAUD W. ADDRESS VALID 

K I 
I 

TSACK \ 
TACVCLE a I~ G) CASCADE ADDRESS 

FLOAT 
POINTER ® -AD, --I 

AD 

REA 

2ND IN 

AO'5 

TIAVE 

K ® 

'R \ @ 

TlAVE I 
NOTES 
1 CASCADE ADDRESS PRESENTED ON ADa, AD9 AND AD10 CORRESPONDING TO CASO, CAS1 

AND CAS2 RESPECTIVELY AD11 "AD15 LINES ARE ACTIVE AND HAVE UNKNOWN VALUES ADO-AD7 
ARE TRISTATE 

2 POINTER VALUE IS ACTIVE ONLY If POINTER IS GENERAiED FROM THE 80150 AND NOT FROM 
EXTERNAL SLAVE UNIT 
ACTIVE lOW ONLY WHEN POINTER DATA IS BE!NG SUPPliED BY THE 80150 
LOW ONLY FOR LOCAL INTERRUPT 

3:550 ' 

T4 

I 

I 

~s 

/ 

TCHOH 

H 
I 
I ,.---

.F9 
FLOAT 

~ 

flOAT 

I 
--1 f--rCHEH 

I 
-.j I-- TCHEH 

AFN·02059B 



80150/80150·2 
iAPX 86/50, 88/50, 186/50, 188/50 

CP/M-86* OPERATING SYSTEM PROCESSORS 

• High·Performance Two·Chip Data 
Processors Containing the Complete 
CP/M·86 Operating System 

• Standard On· Chip BIOS (Basic 
Input/Output System) Contains Drivers 
for 8272A, 8274, 8255A, 8251A 

• BIOS Extensible with User· Supplied 
Peripheral Drivers 

• User Intervention Points Allow Addition 
of New System Commands 

• Memory Disk Makes Possible Diskless 
CP/M·86 Systems 

• No License or Serialization' Required 

• Built·in Operating System Timers and 
Interrupt Controller 

• 8086/80150/80150·2/8088/80186/80188 
Compatible At Up To 8 MH% Without 
wait States 

The Intel iAPX 86/50, 88/50, 186/50, and 188/50 are two-chip microprocessors offering general-purpose 
CPU instructions combined with the CP/M-86 operating system. Respectively, they consist of the 8- and 
16-bit software compatible 8086,8088, 80186,"and 80188 CPU plus the 80150 CP/M-86 operating system 
extension. 
CP/M-86 is a single-user operating system designed for computers based on the Intel iAPX 86, 88, 186, 
and 188 microprocessors. The system allows full utilization of the one megabyte of memory available for 
application programs. The 80150 stores CP/M-86 in its 16K bytes of on-'chip memory. The 80150 will run 
third-party applications software written to run under standard Digital Research CP/M-86. 
The 80150 is implemented in N-Channel, depletion-load, silicon-gate technology (HMOS), and is housed 
in a 40-pin package. Included on the 80150 are the CP/M-86 operating system, Version 1.1, plus hardware 
support for eight interrupts, a system timer, a delay timer, and a baud rate generator. 
·CPfM-8a IS a trademark of Digital Research, Inc 

8284A 
CLOCK 
DRIVER 

ROY 

1-' ------1 

CLOCK 

INTERRUPT 

8088 
OR 

8086 

STATUS 

INTERRUPT STATUS 

BAUD RATE 
TIMER 

DELAY 
TIMER 

I 
I 

I 
I 

I 
BUS 

INTERFACE 

CS LIR 1_-----' 

INTERRUPT 
REOUESTS 

_J~ 
SYSTEM 
TIMER 

LAPX 86150, 88150 

PROGRAM 
MEMORY 

Figure 1. iAPX 86150, 88/50 Block Diagram 

DATA 
MEMORY 

Thefallowlng are trademarks of Intel Corporation and Itsaffll18tesand may be used only to Identlfylntel products BXp, CREDIT, I, ICE, le$, 1m, Inslte, Intel, INTEL, InteleVISlon, Intelllnk, 
~~e~II~~'~~~~: ~~~~:~O~~~~P~: ~~~~h~5c~~~:~~~lrJn~~~~g~lrR~~~;:e~~;~~~,~~~~2~e~~g~~~~u~:~~::~n~~:~~~u~~:~y~~~~~t:~~~;t~~~' =~~~~~~~~b~~::a~~:~'t~~~~t~:r:~e 
of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Patent Licenses are Implied ©INTEL CORPORATION, 1982 SEPTEMBER 1982 

" ORDER NUMBER: 210705-002 

3-551 



inter 80150/80150-2 ~ 
iAPX 86150,88/50,186/50, 188/50 b.\@Wb.\OO©~ OOOIF@mU~b.\'iiO@OO 

MAX I:EI MODE -Vss Vee, ,Yss Vee 

AD14 AD15 AD14 AD15 

AD13 iHE AD13 AII113 

AD12 IAT AD12 AD17/84 

AD11 IAt AD11 A11185 

AD10 lAS AD10 AI_ 

IA4 AD9 .HEIST (HIGH} 

01.08 1A3 A08 MNlMX 

ADT IA2 ADT AD 
AD6 IAI AD6 lmIiTi 

ADS lAO ADS iiOiCffi 
AD4 INT ADO LOCK 
AD3 iii AD3 H 
AD2 51 ' AD2 il 
ADI iii ADI !Ill 

ADO ACK ADO OSO 

MEMCs IiA NMI OSI 

IOCS SYSTICK INTA fEST 
ClK DELAY ClK READY 

V,, SAUD Vss AESET 

Figure 2. IAPX 86150, 88/50 Pin Configuration 

Table 1. 80150 Pin Description 

Symbol Type Name and Function /\', 
AD1s-ADo I/O Address Data: These pins constitute the time multiplexed memory address (T1) and 

data (T 2, T 3, Tw, T 4) bus. These lines are active HIGH. The address presented during 
T1 of a bus cycle will be latched internally and interpreted as an 80150 internal 
address if MEMCS or 10CS is active for the invoked primitives. The 80150 pins float 
whenever it is not chip selected, and drive these pins only during T2- T4 of a read 
cycle and T1 of an INTA cycle. 

imEfS7 I Bus High Enable: The 80150 uses the BHE signal from the processor to determine 
whether to respond with data on the upper or lower data pins, or both. The signal is 
active LOW. BHE is latched by the 80150 on the trailing edge of ALE. It controls the 
80150 output data as shown. 

BHE Ao 
0 0 Word on AD1s-ADo 
0 1 Upper byte on AD15 - ADs 
1 0 Lower byte on AD7-ADo 
1 1 Upper byte on-AD7-ADo 

S2,S1,SO I Status: F~r the 80150, th'e status pins are used as inputs only. 80150 encoding follows: 

S2 S1 So 

0 0 0 INTA 
0 0 1 lORD 
0 1 0 10WR 
0 1 1 Passive 
1 0 0 Instruction fetch 
1 0 '1 MEMRD .. 1 1 X Passive 

" . 
3-552 AFN·OI48TA 



80150/80150-2 
iAPX 86150,88/50,186/50,188/50 

Table 1. 80150 Pin Description (Continued) 

Symbol Type Name and Function 

ClK I Clock: The system clock provides the basIc timing for the processor and bus controller. 
It is asymmetric with a 33% duty cycle to provide optimized internal timing. The 80130 
uses the system clock as an input to the SYSTICK and BAUD timers ancj to synchronize 
operation with the host CPU 

INT 0 Interrupt: INT is HIGH whenever a valid interrupt request is asserted. It is normally used 
to interrupt the CPU by connecting It to INTR. 

IR7-IRo I Interrupt Requests: An Interrupt request can be generated by raiSing an IR input (lOW 
to HIGH) and holding ii HIGH until it is acknowledged (Edge-Triggered Mode), o.r just by a 
HIGH level on an IR input (level-Triggered Mode). 

ACK 0 Acknowledge: This line is lOW whenever an 80150 resource is being accessed. It is 
also lOW during the first INTA cycle and second INTA cycle if the80150 IS supplYing 
the interrupt vector information. This signal can be used as a bus r.eady acknowl· 
edgement and/or bus transceiver control. 

MEMCS I Memory Chip Select: This input must be driven lOW when a kernel primitive is being 
fetched by the CPU AD,3-ADo are used to select the Insfrucllon. 

IOCS I Input/Output Chip Select: When this input is low, during an lORD or IOWR cycle, the 
80150's kernel primitives are accessing the appropriate peripheral function as speci· 
fied by the following table: 

BHE A3 A2 A, Ao 

0 X X X X Passive 
X X X X 1 Passive 
X 0 1 X X Passive 
1 0 0 X 0 Interrupt Controller 
1 1 0 0 0 Systlck Timer 
1 1 0 1 0 Delay Counter 
1 1 1 0 0 Baud Rate Timer 
1 1 1 1 0 Timer Control 

LlR 0 Local Bus Interrupt Request: This Signal IS lOW when the Interrupt request IS for a 
non-slave Input or slave Input programmed as being a local slave. 

Vee Power: Vee IS the +5V supply Pin. 

VSS Ground: VSS is the ground Pin 

SYSTICK 0 System Clock Tick: Timer 0 Output. 

DELAY 0 DELAY Timer: Output of timer 1 

BAUD 0 Baud Rate Generator: 8254 Mode 3 compatible output. Output of 80150 Timer 2. 

The 80150 breaks new ground in operating system 
software-on· silicon components. It is unique 
because it is the first time that an industry· 
standard personal/small business computer 
operating system is being put in silicon. The 
80150 contains Digital Research's CP/M-86 
operating system, which is designed for Intel's 
line of software· and interface-compatible iAPX 
86, 88, 186, and 188 microprbcessors. Since the 
entire CP/M-86 operating system is contained on 
the chip, it is now possible to design a diskless 
computer that runs proven and commonly 
available applications software. The 80150 is a 

true operating system extension to the host 
microprocessor, since' it also integrates key 
operating system·related peripheral functions 
onto the chip. 

. MODULAR DESIGN 
Based on a proven, modula.r design, the system in· 
cludes the: 

• CCP: Console Command Processor 

The CCP . is the human interface to the 
operating system and performs decoding and 

3-553 AFN-01467A 



'80150/80150 .. 2 
iAPX 86150,88/50, 186/50;188/50 L!\[Q)WL!\[);!)(Q:~ D[);!)IF@~~L!\m@[);!) 

execution of user commands. 

• BOOS: Basic Disk Operating System 

The BOOS is the logical, invariant portion of the 
operating system; it supports a named file 
system with a maximum of 16 logical drives, 
containing up to 8 megabytes each for a poten­
tial of 128 megabytes of on-line storage. 

• BIOS: Basic Input/Output System 

The physical, variant portion of the operating 
system, the BIOS contains the. system­
dependent input/output device ~andlers. 

CP/M* COMPATIBILITY 
CP/M-86 files are completely compatible with 
CP/M for 8080- and 8085-based microcomputer 
systems. This simplifies the conversion of soft· 
ware developed under CP/M to take full advantage 
of iAPX 86, 88, 186, 188~based systems. 

The user will notice no significant difference be­
tween CP/M and CP/M-86. Commands such as 
DIR, TYPE, REN, and ERA respond the same way 
in both systems. 

CP/M-86 uses the iAPX 86, 88, 186, 188 register~ 
corresponding to 8080 registers for system call 
and return parameters to further simplify software 
transport. The 80150 allows application code and 
data segments to overlap, making the mixture of 
code and data that often appears in CP/M applica­
tions acceptable to the iAPX 86, 88, 186, 188. 

Unique Capabilities of CP/M·8S in Silicon 
1. CP/M-86 'on- a-chip reduces ·software develop­

ment required by the system designer. It can 
change the implementation of the operating 
system into the simple linclusion of the 80150 
on the CPU board. 

As described. later, the deSigner can either 
simply incorporate the Intel chip without the 
need for writing even a single line of additional 
code, or he can add additional device drivers by 
writing only the small amount of additional 
code required. 

2. The 80150 is the most cost-effective way to im­
plement CP/M-86 in a microcomputer. The in­
tegration of CP/M-86 with the 16K bytes of 
system memory it requires, the two boot ROMS 

, required in a diskette-basedCP/M-86, and the,! 
on-chip peripherals (interrupt controller and 
timers) lead to s~vings in software, parts cqSt, 
board space, and interconnect wiring. ;' 

3. The reliability of the microcomputer i~ in-

creased significantly. Since CP/M-86 is now 
always in the system as a standard hardware 
operating system, a properly functioning 
system diskette is not, required. CP/M-86 in 
hardware can no longer be overwritten acciden­
tally by a runaway program. System reliability 
is enhanced by the decreased dependence on 
floppy disks and fewer chips a'nd interconnec­
tions required by the highly integrated 80150 . 

4. The microcomputer system boots up CP/M-86 
on power-on, rather than requiring the user to 
go through a complicated boot sequence, thus 
lowering the user expertise required. 

5. Diskless CP/M-based systems are now easy to 
deSign. Since CP/M is already in the microcom­
puter hardware, there is no need for a disk drive 
in the system if it i~ not desired. Without a disk 
drive, a system is more portable, simpler to use, 
less costly, and more reliable. 

6. The administrative costs associated with 
distributing CP/M-86 are eliminated. Since 
CP/M-86 is now resident on the 80150 in the 
microcomputer system, there is no end-user 
licensing required nor is there any serialization 
requirement for the 80150 (because no CP/M 
diskette is used). 

7. End-users will value having their CP/M 
operating system resident in their computer 
rather than on a diskette. They will no longer 
have to back up the operating system or have a 
diskette working properly to bring the system 
up in CP/M, increasing their confidence in the 
integrity, reliability, and usability of the system. 

80150 FUNCTIONAL DESCRIPTION 
The 80150 is a processor extension that is fully 
compatible with the 8086, 8088, 80186, and 80188 
microprocessors. When the 80150 is combined 
with the microprocessor, the tWO-chip set is 
called an Operating System Processor and is 
denoted as the iAPX 86/50,88/50, 186/50, or 188/50. 
The basic system configuration is shown in 
Figure 1. The 80150 connects directly to the multi­
plexed address/data bus and runs up to 8 MHz 
,Without wait states. 

, A. Hardware. Figure 3 is a functional diagram of 
the 80150 itself. CP/M-86 is stored in the 
16K-bytes of control store. The timers are com­
patible with the standard 8254 timer. The inter­
rupt controller, with its eight programmable.in­
terrupt inputs and one interrupt output, is 
compatible with the 8259A Programmable In­
terrupt Controller. External slave 8259A inter-

·CP/M IS a regIstered trademark of Dlglt~1 Research, Inc 

3-554 AFN·01467A 



, inter, 80150/80150-2 
iAPX 86150,88/50,186/50;188/50 

I-----------~----------------------, 
I OPERATING SYSTEM UNIT I 
I I 
I 

DO-7 I 
I I 
I r I 8, 
I 

PROGRAMMABLE / I INTERRUPT I 
I LOGIC I INTERRUPT INP UTS 

I 
I 
I INTE"RRUPT OUT 
I 

CONTROL I 

: 
STORE I 

~ 
I 

i 

I 
SYSTEM ~ SYSTEM 
TIMER I 

I' 

1d 
I 
I 

: 
08-15 I 

~ 
DELAY DELAY 

I TIMER I 
I I 
I 

~ 
I 

: I. 
I 

: BAUD RATE ~ BAUORA 
GENERATOR I 

: .::I I 
I 

TE 

f-------- - ------------ -- - -- - - --------'-j 
I I 
I <-- I 
I ~ CLOCK 
I 
I DATA 

I 3 '. BUS ~ STATUS I BUFFER 

I INTERFACE 

< Z • { AND 

~BUSCON I ADDRESS CONTROL 

ADDRESS I LATCH 
TROl 

DATA BUS I ~ LOCAL 
I I INTERRU PT 
I I CONTROL UNIT L __________________________________ ~ iORl 

Figure 3. 80150 Internal Block Diagram 

rupt controllers can be cascaded with the 
S0150 to expand the total number of interrupts 
to 57. 

B. Software. Digital Research's version 1.1 of 
CP/M·S6 forms the basis of the ·S0150'. CP/M 
consists of three major parts: the Console 
Command Processor (CCP), the Basic Disk 
Operating System (BOOS), and the Basic In· 
put/Output System (BIOS). Details on CP/M·S6 
are provided in Digital Research's CPIM·86 
Operating System User's Guide and CPIM·86 
Operating System System Guide. 

CCP - Console Command Processor 
The CCP provides all of the capabilities provided 
by Digital Research's CCP. Built·in commands 
have been expanded to include capabilities nor· 
mally included as transient utilities on the Digital 

, Research CP/M~86 diskette.' Commands are pro· 

vided to format diskettes, transfer files between 
devices (based on Digital Research's Peripheral 
Interchange Program PIP), and alter and display 
I/O device and file status (based on Digital 
Research's STAT). 

·Through User Intervention POints, the standard 
CP/M-S6 CCP is enhanced to allow the user to add 
new built·in commands to· further customize a 
CP/M·B6 system. 

BOOS - Basic Disk Operating System 
Once the CCP has parsed a command, it sends it 
to the BOOS, which performs system services 
such as managing disk directories and files. 
Some of the standard BOOS functions provide: 

Console Status 
Console Input and Output 
List Output 
Select Drive 
Set Track and Sector 

',,3~555 AFN 01467B ! 



80150/80.150·2 
iAPX 86150,88/50,186/50,188/50 

Read/Write Sector 
Load Program 

The BOOS in the 80150 provides the Same func­
tions as, the standard Digital Research CP/M-86 
BOOS. 

BIOS - Basic Input/Output System 
The BIOS contains the system-dependent I/O 
drivers. The 80150 BIOS offers two fundamental 
configuration options: ' 

1. A predefined configuration which supports 
minimum cost CP/M-86 microcomputer 
systems and which requires no operating 
system development by the system designer. 

2. An OEM-configurable mode, where the 
designer can choose among several drivers of-

8088/8086180186180188 I--- 801bO 
CPU 

fered on the 80150 or substitute or add any ad­
ditional device drivers of his choice. 

These two options negate the potential software­
on-silicon pitfall of inflexibility in system design. 
The OEM can customize the end system as 
desired. 

The predefined configuration offers a choice 
among several peripheral chip drivers included on 
the 80150. Drivers for the following chips are in­
cluded in the 80150 BIOS: 

8251A 

8274 

8255A 

8272A 

Universal Synchronous/ 
Asynchronous Receiver/Transmit­
ter (USART) 
Multi-Protocol Serial Controller 
(MPSC) 
Programmable Parallel Interface 
(PPI) 
Floppy Disk Controller 

FLOPPY DISK 

I 
8272A 

ADDRESSIDATA BUS 

8251A 8255A 

I I 
CONSOLE PRINTER 

Figure 4_ Predefined' Configuration 

3-556 AFN 014678 



80150/80150-2 
iAPX 86150,88/50,186/50, 188/50 ~@'¥l~OO©~ OOO!p@OO~~ii'O@~ 

• 
Even in the predefined configuration, the system 
designer (or end user, if the system designer 
desires) may select parameters such as the baud 
rates for the console and printer, and the floppy 
disk size (standard 8" or 51A" mini-floppy) and 
format (FM single density or MFM double density, 
single-sided or double-sided). 

Drivers for the 80150 on-chip timers and interrupt 
controller are also included in the BIOS. 

The 80150 takes advantage of the 80186 and 80188 
on-chip peripherals in an iAPX 186/50 or 188/50 
system. For example, the integrated DMA controller is 
used. Also fully utilized are the integrated memory chip 
selects and I/O chip selects. 

Since all microcomputer configurations cannot 
be anticipated, the OEM-conflgurable mode 
allows the system designer to use any set of 
peripheral chips desired. This configuration is 
shown in Figure 5. ' 

By simply changing the jump addresses in a con­
figuration table, the designer can also gain the 
flexibility of adding custom BIOS drivers for other 

80881808~':."J86180188 f-- 80150 

peripheral chips, such as bubble memories or 
more complex CRT controllers. These drivers 
would be stored in memory external to the 80150 
itself. By providing the configl,lrability option, the 
80150 is applicable to a far broader range of 
designs that it would be with an inflexible BIOS. 

MEMORY ORGANIZATION 
When using the predefined configuration of the 
80150. BIOS, the 80150 must be placed in the top 
16K of the address space of the microprocessor 
(starting at location FCOOOH) so that the 80150 
gains control when the microprocessor is reset. 
Upon receipt of control, the 80150 writes a con­
figuration block into the bottom of the micro­
processor's address space, which must be in 
RAM. The 80150 uses the area after the inter­
rupt vectors for system configuration information 

, and scratch-pad storage. 

When using the OEM-configurable mode of the 
80150.BIOS, the 80150 is placed on any 16K boun-

FLOPlDISK 

8272A OTHER 
PERIPHERALS 

ADDRESS/DATA BUS 

8251A 8255A 8274 

I I I 
ASYNCHRONOUS _ KEYBOARD, SYNCHRONOUS UNE, 

COMMUNICATIONS, PARALLEL PRINTER SERIAL PRINTER, 
CONSOL~ CONSOLE 

SERIAL PRINTER 

Figure 5. OEM Configurable System 

3-557 AFN 014678 



inter 80150/80150.~2 
iAPX 86150,88/50,186/50,188/50. L!),[Q)WL!),OO©rg UOOI¥@iruli'!.iJL!),1rO@OO 

daryof memory except the highest (FCOOOH) or 
lowest (OOOOOH). The user writes interface code (in 
the form of a simple boot ROM) to incorporate and' 
link additional features and changes into the 
standard 80150 environment. The configuration 
block may be located as desired in the address 
space, and its size may vary widely depending on 
the application. 

Memory Disk 
A unique capability offered by the 80150 is the 
Memory Di,sk. The Memory Disk Consists of a 
block of RAM whose Size can be selected by the 
designer. The Memory Disk is treated by the 
BOOS as any standard floppy disk, and is one of 
the 16 disks that CPIM can address. Thus files can 
be opened and closed, programs stored, and 
statistics gathered on the amount of Memory Disk 
space left. 

The Memory Disk opens the possibility of a par-' 
table low-cost diskless microcomputer or network 
station. Applications software can be provided in 

I 

61 
eLK 

eLK 52 
so 

8086 

I BHE 
A19 , 

I !NT ADO , I 

INT 52 
eLK so 

a number of ways: 

a. t.elephone lines via a modem. 
b.ROM-based soft,ware. 
c. a network. 
d. bubble memory based software. 
e. low-cost cassettes. 

TYPICAL SYSTEM CONFIGURATiON 
figure 6 shows the processing cluster of a 
"typical" iApX 86/50 or iAPX 88/50 OSP system. 
Not shown are subsystems likely to vary with the 
application. The configuration includes an 8086 
(or 8088) operating in maximum mode, an 8284A 
clock generator and an 8288 system controller. 
Note that the 80150 is located on the CPU side of 
any latches or transceivers. 

Timers 
The Timers are connected to the lower half of the 
data bus and are addressed at even addresses. 
The timers are read as two successive bytes, 

CONTROL 

SHE 
A19 LOCAL 

AND 
SYSTEM 

RESOURCES 
AO 

015 

8286 

00 

Figure 6. Typical OSP Configuration 

3-558 AFN 01467B 



80150/80150-2 
iAPX 86150,88/50,186/50,188/50 

always LSB followed by MSB. The MSB is always 
latched on a read operation and remains latched 
until read. Timers are not gatable. An external 
8254 Programmable Interval Timer may be added 
to the system. 

Baud Rate Generator 
The baud rate generator operates like an 8254 
(square wave mode 3). Its output, BAUD, is initially 
high and remains high until the Count Register is 
loaded. The first falling edge of the clock after the 
Count Register is loaded causes the transfer of 
the internal counter to the Count Register. The 
output stays high for N/2 [(N + 1)/2 if N is odd] and 
then goes low for N/2 [(N - 1)/2 if N is odd]. On the 
falling edge of the clock which signifies the final 
count for the output in low f state, the output 
returns to high state and the Count Register is 
transferred to the internal counter. The baud rates 
can vary from 300 to 9600 baud. 

The baud rate generator is located at OCH (12), 
relative to the 16-byte boundary in the I/O space in 
which the 80150 component is located. The timer 
control word! is located at relative address, 
OEH(14). Timers are addressed with lacs = O. 
Timers 0 and 1 are assigned to use by the aSP, 
and should not be altered by the user. 

The 80150 timers are subset compatible with 8254 
timers. 

Interrupt Controllet 
The Programmable Interrupt Controller (PIC), is 
also an integral unit of the 80150. Its eight input 
pins handle eight vectored priority interrupts. One 
of these pins must be used for the SYSTICK time 
function In timing walts, using an external con· 
nection as shown. During the 80150 initialization 
and configuration sequence, each 80150 interrupt 
pin is individually programmed as either level or 
edge sensitive. El(ternal slave 8259A interrupt 
controllers can be used to expand the total 
number of interrupts to 57. 

In addition to standard PIC functions, the 80150 
PIC unit has an LlR output signal, which when low 
indicates an interrupt acknowledge cycle. LlR = 0 
is provided to control the 8289 Bus Arbiter 
SYSB/RESB pin. This wi" avoid the need of re­
questing the system bus to acknowledge local 
bus non-slave interrupts. The user defines the in­
terrupt system as part oUhe configuration. 

INTERRUPT SEQUENCE 
The interrupt sequence is as follows: 

1. One or more of the interrupts is set by a low­
to-high transition on edge-sensitive IR inputs 
or by a high input on level-sensitive IR inputs. 

2. The 80150 evaluates these requests, and 
sends an INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT and responds 
with an interrupt acknowledge cycle which is 
encoded in S2 - SO. 

4. Upon receiving the first intefrupt acknowledge 
from the CPU, the highest-priority interrupt is 
set by the 80150 and the corresponding edge 
detect latch is reset. The 80150 does not drive 
the address/data bus during this bus cycle but 
does acknowledge the cycle by making 
ACK = 0 and sending the LlR value for the IR 
input being acknowledged. 

5. The CPU wi" then initiate a second interrupt 
acknowledge cycle. During this cycle, the 
80150 wi" supply the cascade address of the 
interrupting input at T 1 on the bus and also 
r.elease an 8-bit pOinter onto the bus if ap­
propriate, where it is read by the CPU. If the 
80150 does supply the pointer, then ACK wi" 
be low for the cycle. This cycle also has the 
value LlR for theiR input being acknowledged. 

6. This completes the interrupt cycle. The ISR bit 
remains set until an appropriate EXIT INTER­
RUPT primitive (EOI command) is called at the 
end of the Interrupt Handler. 

AFN 014678 



80150/80150-2 &.@\Vl&.~(\;~ O~IP@IruIMl&''ii'O@~ 
iAPX 86150,88/50,186/50,188/50 

ABSOLUTE MAXIMUM RATINGS· 

, Ambient Temperature Under Bias ........ O·C to 70·C 
Storage Temperature ................. -65°C to 150'C 
Voltage on Any Pin With 

Respect to Ground ......... ~ . - 1.0V to + 7V 
Power Dissipation ......... . 1 OWatts 

D.C. CHARACTERISTICS (T A = O°C to 70°C V cc = 4.5 to 5.5V) 

Symbol Parameter Min. 

V'L Input Low Voltage - 0.5 

V,H Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High VoHage 2.4 

Icc Power Supply Current 

III Input Leakage Current 

IlR IR Input Load Current 

ILO Output Leakage .Current 

Vcu Clock Input Low 
VCHI" Clock Input High 3.9 

C'N Input Capacitance 

C,O 1/0 Capacitanc;e 

ICLI Clock Input Leakage Current 

'NOTICE: Stresses above those listed under Absolute 
Maximum Ratings may cause permanent damage to the 
device. ThIs is a stress rating only and functional operation 
of the device at these or any other condItions above those 
indicated in the operational seciions of this specIficatIOn 
is not implied. Exposure to absolute maxImum rating con­
ditIons for extended penod may affect devIce reliabIlity. 

Max. Units Test Conditions 

0.8 V 

Vcc +.5 V 

0.45 V 10l = 2mA 
V 10H = -400MA 

200 rnA T, = 25 C 

10 MA 0"" Y'N < Vce 
10 MA Y,N - Vcc 

-300 MA Y'N = 0 
10 ~A .45 "" Y'N <0 VCC 
0.6 V 

V 

10 pF 

15 pF 

10 MA Y'N = Vee 
150 MA Y'N = 2.5V 
10 MA Y,N = OV 

A.C CHARACTERISTICS (T, - 0-70°C Vec = 4 5-5 5 VoH Vss = Ground) -

80150 80150-2 

Symbol Parameter Min. Max. Min. Max. UnitS Test Conditions 

TClCl CLK Cycle Period 200 - 125 - ns 

TClCH CLKLowTime 90 - 55 - ns 

TCHCl CLK High Time 69 2000 44 200.0 ns 

TSVCH Status Active Setup Time 80 - 65 ns 

TCHSV Status Inactive Hold Time 10 - 10 - ns 

TSHCl Status Inactive Setup Time 55 - 55 - ns 

TClSH Status Active Hold Time 10 - 10 - ns 

TASCH Address Valid Setup Time 8 - 8 - ns 

TCLAH Address Hold Time 10 - 10 - ns 

TCSCl Chip Select Setup Time 20 - 20 - ns ". 

TCHCS Chip Select Hold TIme 0 - 0 - ns 

TOSCl Write Data Setup TIme 80 - 60 - ns 

TCHOH Write Data Hold Time 10 - 10 - ns 

TJlJH IRLowTIme 100 - 100 ns 

TCLDV Read Data Valid Delay - 140 - 105 ns CL - 200 pF 

TCLOH Read Data Hold TIme 10 - 10 - ns 

TCLDX Read Data to Roating 10 100 10 100 ns 

TCLC' Cascade Address Delay Time - 85 - 65 ns 

AFN 014678 



inter 80150/80150-2 
iAPX 86150,88/50,186/50,188/50 &'IQ)W&'OO©[g ~OOIF©OO~&'ii~©OO 

WAVEFORMS 

A.C. 

T4 T1 T2 T4 

TW 

• TCHCL TelCH 

ClK 
TCHSV TSVCH TCLCl=--__ --l 

52.51 so-+----~--4_+-----~--------~------------------+_--~------~----+_------~-------------

I 
F~ 

BriE A A VALID -----
SHE. Ao"-ro. 

'" 

lCSCl 

MEMCS"TS 

r- TOSCL __ WAITE CYCLE 

I ADDRESS VALID 

~~T -I I ........ TCSAK 

TAACK 

READ CYCLE 

I FLOAT 
AD,!>-ADo ADDRESS VALID 

I AC,K 
TSACK 

2ND INTA CYCLE TClCF 

I~ 
CD CASCADE ADDRESS 

FLOAT 
AD'5-ADo 

TIAVE 

TIAVE 

NOTES 
1 CASCADE ADDRESS PRESENTED ON ADS, AD9 AND A010 CORRESPONDING TO CASO. CASt 

AND CAS2 RESPECTIVELY ADt 1 -AOtS LINES ARE ACTIVE AND HAVE UNKNOWN VALUES ADO·AC7 
ARE TRISTATE • /" 

2 POINTER VALUE IS ACTIVE ONLY IF POINTER IS GENERATED FROM THE 80150 AND NOT FROM 
EXTERNAL SLAVE UNIT 
ACTIVE LOW ONLY WHEN POINTER DATA IS BEING SUPPLIED BY THF 80150 
LOW ONLY FOR LOCAL INTERRUPT 

. , 

TCHCS 

WRITE DATA VALID 

POINTER CD FLOAT 



inter 
8282/8283 

OCTAL LATCH 

• Address Latch for'iAPX 86, 88, 186, 
188, MCS·80®, MCS·85®, MCS·48® 
Famlies 

• High Output Drive Capability for 
Driving System Data Bus 

• Fully Parallel 8·Bit Data Register and 
Buffer 

• Transparent during Active Strobe. 

• 3·State Outputs 

• 20·Pin Package with 0.3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

• Available in. EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The 8282 and 8283 are 8·bit bipolar latGhes with 3·state output buffers. They can be used to Implement latches, buffers, 
or multiplexers. The 8283 invertll the input data at its outputs while the 8282 does not. Thus, all of the principal periph· 
eral and input/output functions of a microcomputer system can be implemented with these devices. 

DIS 

Ole 7 

Figure. 1. Logic Diagrams Figure 2. Pin Configurations 

3-562 



inter 

Pin 

STB 

5E 

010-017 

000-007 
(8282) 
DOO-~7 
(8283) 

8282/8283 

Table 1. Pin Description 

Description 

STROBE (Input). STB Is an Input control 
pulse used to strobe data at the data Input 
pins (Ao-A7) into the data latches. This 
signal Is active HIGH to admit input data. 
The data is latched at the HfGH to LOW 
transltl6n of STB. 

OUTPUT ENABLE (Input). 5E is an input 
control signal which when active LOW 
enables the contents of th'e data latches 
onto the data output pin (Bo-B7)' OE being 
Inactive HIGH forces the output buffers to 
their high Impedance state, 

DATA INPUT PINS (Input). Data presented 
. at these pins satisfying setup time reo 
quirements when STB is strobed and 

,latched Into the data input latches. 

DATA OUTPUT PINS (Output). When OE Is 
true, the data in the data latches is pre-
sented as Inverted (8283) or non·inverted 
(8282) data onto the data 0l!tput pins. 

FUNCTIONAL DESCRIPTION 

The 8282 and 8283 octal latches are 8·blt latches with 
3·state output bUffers. Data having satisfied the setup 
time requirements is latched into the data latches by 
strobing the STB li'1e HIGH to LOW. Holding the STB 
line in its active HIGH state makes the latches appear 
transparent. Data is presented to the data output pins by 
activating,the OE input line. When OE is Inactive HIGH 
the output buffers are in their high impedance state. 
Enabling or disabling the output buffers will not cause 
negative·golng transiepts to appear on the data output 
bus. ' 

3-563 AFN·OO727E 



.. 

inter 828218283 ': F .: <' 

ABSOLUTE MAXIMUM RATINGS· 

Temperatura Under Bias ....•.. ; .... , .• : .O·C to 70·C 
Storage Temj:lerature •............ "-65·C to + 150·C 
All Output and Supply Voltages ......•• - 0.5V to + 7V 
All Input Voltages ................... - 1.0V to + 5.5V 
Power Dissipation.' .. ; •..................•.. 1 Watt 

, ' 

'NOTICE: StresseS above those listed IInder "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functlQnal opere· 
tlon of the device at these or any.othe,.corditlons above 
tho,se indicated in the op.e.rational sections of this specifI­
cation Is not Implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. . 

D.C. CHARACTI:RISTICS (Vcc = 5V ±10%. TA = O"C to 70"C) 

Symbol Parameter Min. ~ax. Unit. Test Condition. 

Ve Input Clamp Voltage _1 V Ie = -5 rnA 

Icc Power Supply Current 160 mA 

IF Forward Input Current -0.2 mA VF = 0.45V 

IR Reverse Input Current 50 ',.A VR = S.25V 

VOL Output low Voltage .45 V IOL = 32mA ,'. 

VOH Output High Voltage 2.4 . V IOH = -5 mA 

IOFF, Output Off Current ±50 ,.A VOFF = 0.45 to 5.25V 

VIL Input low Voltage 0.8 V Vee = 5.0V See Note 1 

VIH Input High Voltage 2.0 V Vee=5.0V See Note 1 

F= 1 MHz 
CIN Input CapaCitance 12 pF ValAs = 2.5V. Vee = 5V 

TA=25°C 
NOTE: 

1. Output loading ioL = 32 mAo 10H ~ -5 mAo CL = 300 pF.' 

A.C. CHARACTERISTICS (Vcc = 5V ±10"/o. TA = o·c to 70·C (See Note 2) 
loading: Outputs-IOl = 32 mAo IOH = -5 mAo Cl = 300 pP) 

Symbol Parameter Min. Max. Units Test Conditions 

TIVOV Input to Output Delay (See Note 1) 
-Inverting 5 22 ns 
-Non-Inverting 5 30 ns. 

TSHOV STB to Output Delay 
-Inverting 10 40 ns 
-Non-Inverting 10 45 'ns 

TEHOZ Output Disable Time 5 18 ns 

TELOV Output Enable Time 10 30 ,ns 

TIVSl Input to STB Setup Time 0 ns 

TSLIX Input to.STB Hold Time 25 ns 

TSHSl STB High Time 15 ns 

TOlOH Input. Output Rise Time 20 ns From O.BV to 2.0V 

TOHOl Input. Output Fall Time 12 ns From 2.0V to O.BV 

NOTE: . 'Ct. = 200 pF for plastiC 8282/8283. 
1. See waveforms and test load circuit on following page. 
2. For Extended Temperature EXPRESS the Preliminary Maximum Values are TIVOV = 25 vs 22, 35 vs 30; 

TSHOV = 45, 55; TEHOZ = ~5; TElOV = 50. 

3-564 AFN'()0727E 



8282/8283 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 =>( .. __ TESTPOINTS_"''C 

0.4' 

A.C. TESTING. INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "'" AND O.4SV FOR 
A LOGIC "0" TIMING MEASUREMENTS ARE MADE AT '.5V FOR BOTH A 
LOGIC "'" AND "0." INPUT RISE AND FALL TIMES ARE MEASURED FROM 
O.8V TO 2.OV AND ARE DRIVEN AT 5ns ::t 2ns 

OUTPUT TEST LOAD CIRCUITS 

1.5V 

3312 

OUT 0---r 300pF* 

3-STATE TO VOL 

*200 pF for plastic 828218283. 

1.5V 

1802 

OUT 0-----.. r 3OOpF* 

3·STATE TO VOH 

3-565 

2.14V 

52.72 

OUT 0--

r300PF* 

SWITCHING 

, AFN·00727E 



828218283 

WAVEFORMS 

INPUTS \I V 
"- 1\. 
_nVSL __ f.TSLIX • 

• 
If \ 

:....J' TSHSL~I\ ) 
STB 

. 
V \ 

- I \ 
f.TIVOV- -~~"- ----C= VOH-.1V 

\V ~------.<\ VOL +.1V 

OUTPUTS 

SEE NOTE 1. 
!---TSHOV-

NOTE: 1. OUTPUT MAY BE MOMENTARILY INVALIO FOLLOWING THE HIGH GOING STB TRANSITION. 

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED. 

10 

pF LOAD 

Output Da"y va. CapaCitance 

pFLOAD 

AFN·00727,E 



8284A/8284A·1 
CLOCK GENERATOR AND DRIVER FOR 

iAPX 86, 88 PROCESSORS 

• Generate. the System Clock for the 
IAPX.86, 88 Processors: 
5 MHz, 8 MHz with 8284A 
10 MHz with 82a4A-1 

• Uses a.Crystal or a TTL Signal for 
Frequency Source 

• Provides Local READY and Multibus™ 
READY Synch~nizatlon 

• 18·Pin Package 

RES 

X1 
XTAl 

OSCilLATOR 
X2 

Fie 

EFI 

CSYNC 

RDY1 

AEN1 

RDY2 

AEN2 

FF1 

ASYNC 

0 

+3 

SYNC 

·8284A/8284A-1 Block Diagram 

3-567 

• Single +5V Power Supply 

• Generates System Reset Output from 
Schmitt Trigger Input 

•. Capable of Clock Synchronization with 
Other 8284As 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

D 

RESET. 

OSC 

PClK 

ClK 

READY 

RDY1 

READY EFI 

8284A18284A-1 Pin 
Conflguratl.on 



intef 8284A18284A-1 

Table 1. Pin Description 

Symbol 'IftIe Name and Function 

AE;\h, I Addre •• Enable: AEN Is an active lOW 
AEN2 signal. AEN serves to qualify its respective 

Bus Ready Signal (RDYl or RDY2). AENl 
validates RDVl while AEN2 validates RDY2, 
Two AEN signal inputs are useful in system 
configurations which permit the processor to 
acc'ess two Multi-Master System, Busse~ 
non Multi-Master configurations the AEN 
signal inputs 'are tied true (lOW). 

RDY1, I BUI Ready: (Transfer Complete). RDY Is an 
RDY2, active HIGH signal which Is an indication from 

a device located on the system data bus that 
data has been received, or is available. RDYl 
is qualified by AENl while RDY2 is qualified 
by~. 

ASYNC I Ready Synchronization Select: ASYNC is an 
input which defines the synchronization 
mode of the READY logic. When ASYNC Is 
low, two stages of READY synchronization 
are provided. When A~YNC IS left op'en 
(internal pull-up resistor is provided) or HIGH 
a single stage of READY syncl;lronization is 
provided. 

READY 0 Ready: READY Is an active HIGH Signal 
which is the synchronized RDY signal Input. 
READY is cleared after the guaranteed hold 
time to the processpr has been met. 

Xl, X2 I Cryatalln: Xl and X2 are the pins to which a 
crystal is attached. The crystal frequency is 3 
times the desired processor clock frequency. 

F/C I Frequency/Cryatal Select: F/C Is astrapping 
option. When strapped lOW, Fie permits the 
processor's ,!:!ockto be generated by the crys-
tal. When F/C is strapped HIGH, ClK is gener-
ated from the EFI Input. 

EFI I External Frequency: When F/C is strapped 
HIGH, CLK Is generated from the Input fre-
quency appearing on this pin. The input 
signal is a square wave 3 times the frequency 
of the desired CLK output. 

FUNCTIONAL DESCRIPTION 
General 

The 8284A Is a single chip clock generatorldriver for the 
IAPX 86, 88 processors. The chip contains a crystal­
controlled oscillator, a divlde-by-three counter, com­
plete MULTIBUSTM "Ready" synchronization and reset 
logiC. Refer to Figure 1 for Block Diagram and Figure 2 
for Pin Configuration. 

Oscillator 

The oscillator circuit of the 8284A is designed primarily 
for use with an external series resonant, fundamental 
mode, crystal from which the basic operating frequency 
Is derived. 

SYmbol 'IftIe Name and Function 

CLK 0 Prace.lor Clock: ClK Is the clock output 
used by the pro~r and all devices which 
directly connect t the processor's local bus 
(i.e., the bipolar support chips and other MOS 
devices). ClK hes an output frequency which 
Is 'AI pf the crystal or EFllnput frequency and a 
'AI duty cycle. An output HIGH of 4.5 volts 
(Vcc= 5V) Is provided on this plri to drive MOS 
deviceS. , 

PClK 0 Peripheral CIocIl: PCLK Is a TTL level pe- , 
rlpheral clock signal whose output frequency 
is 'h that of CLK and has a 50% duty cycle. 

OSC 0 Oscillator Output: OSC is the TTL level out-
put of the internal oscillator circuitry. Its fre-
quency Is equal to that of the crYstal. 

RES I Reset In: ~ Is an active lOW signal which 
is used to generate RESET. The 8284A 
provides a Schmitt trigger input so that an RC 
connection can be used to establish the 
power-up reset of proper duration. 

RESET 0 Reaet: RESET Isan active HIGH signal which 
is used to reset the 8086 family processors. Its 
timing characteristics are determined by 
RES. 

CSYNC I Clock Synchronization: CSYNC is an active 
HIGH signal which allows multiple 8284A8 to 
be synchronized to provide clocks that are in 
phase. When CSYNC is HIGH the internal 
counters are reset. When CSYNC goes lOW 
the internal counters are allowed to resume 
counting. CSYNC needs to be externally syn-
chronized to EFI. When using the internal os-
cillator CSYNC:: should be hardwired to 
ground. 

GND Ground. 

Vcc Power: +5V supply. 

The crystal frequency should be selected at three times 
the required CPU clock. Xl and X2'are the two crystal 
input crystal connections. For the most stable operation 
of .the oscillator (OSC) output circuit, two series resistors , 
(Rl = R2 = 510 0) ~s shown in the waveform figures are 
recommended. The output of the oscillator is buffered and 
brought out on OSC so that ,other system timing signals 
can be derived from this stable, crystal-controlled source. 

For systems which have aVec ramp time ;;..lV/ms andlor 
have inherent board capacitance between Xl or X2, ex­
ceeding 10 pF (not including 8284A pin capacitance), the 
two 5100 resistors should be used. This circuit provides 
optimum stability for the oscillator in such extreme condi­
tions. It is advisable to limit stray capacitances to less than 
10 pF on Xl and X2 to minimize deviation from operating 
at the fundamental frequency. 

3-568 AFN'()1472D 



I 

intJ 8284A/8284A~ 1 

Clock Generator 
The clock generator consists of a synchronous divide­
by-three counter with a special clear input that inhibits 
the count,lng_ This clear Input (CSYNC) allows the out­
put clock to be synchronized with an external event 
(such as another 8284A clock). It is necessary to syn­
chronize the CSYNC input to the EFI clock external to 
the 8284A. This Is accomplished with two Schottky flip­
flops. The counter output is a 33% duty cycle clock at 
one-thin! the input frequency. 

The FIe input is a strapping pin that selects either the 
crystal oscillator or the EFI input as the clock for the +3 
counter. If the EFI input is selected as the clock source, 
the oscillator section can be used independently for 
another clock source. Output is taken from OSC. 

Clock Outputs 
The ClK output is a 33% duty cycle MOS clo~ driver 
designed to drive the iAPX 86, 88 processors directly. 
PClK is a TTL level peripheral clock signal whose out­
put frequency is 1;2 that of ClK. PClK has a 50% duty 
cycle. 

Reset Logic 
The reset logic provides a Schmitt trigger input (FiES) 
an'd a synchronizing flip·flop to generate the Jeset 
timing. The reset signal Is synchronized to the falling 
edge of ClK. A simple RC network can be used to 
provide power-on reset by utilizing this function of the 
8284A. 

READY Synchronization 
Two READY Inputs (RDY1, RDY2) are provided to accom­
modate two Multi-Master system busses. Each input 
has a qualifier (AEN1 and AEN2, respectively). The AE1ii 
signals validate their respective, ROY signals. If a Multi-

CLOCK 
SyNCHRONIZE >--+---+-1 0 Q 

EFI >-..... -I>c-~ > t 
~ ~------

Master system Is not being u sed" the AEliI, pin should' be 
tied lOW. 

Synchronization is required for all asynchronous active­
going edges of either RI?Y input to guarantee that the 
ROY setup and hold times are met. Inactive-going edges 
of ROY In normally ready systems do not require syn­
chronization but must satisfy ROY setup lind hold as a 
matter of proper system design .. 

The ASYNC input defines two modes of. READY syn· 
chronization operation. 

When ASYNC is lOW, two stages of synchronization 
are provided for active READY input signals. Positive­
going asynchronous READY inputs will first besyn­
chronized to flip-flop one at the riSing edge of ClK 
and then synchronized to flip-flop two at the next falling 
edge of ClK, after which time the READY output will go 
active,{HIGH). Negative-going aSynchronous READY in­
puts will be synchronized directly to flip-flop two at the 
falling edge of ClK, after which time the READY output 
will go inactive. This mode of operation is intended for use 
by asynchronous (normally not ready) devices in the sys­
tem which cannot be guaranteed by design to meet the 
required ROY setup timing, T R1VCL, on each bus cycle. 

When ASYNC is high or left open, the first READY flip­
flop is bypassed in the READY synchronization logic. 
READY inputs are synchronized by flip-flop two on the 
falling edge of ClK before they are presented. to t~e 
processor. This mode is available for synchronous 
devices that can be guaranteed to meet the required 
ROY setup time. 

ASYNC can be changed.on every bus cycle to select the 
appropriate mode of synchronization for each device in 
the system. 

o 
Q 

Figure 3_ CSYNC Synchronization' 

AFN·01472D 



8284A/8284A-' 

ABSOLUTE MAXIMUM RATINGS· 'NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional oper~-

Temperature Under Bias ................. O·C to 70·C tion of the device at these or any other conditio;1s above 
storage Temperature .............. -65·C to + 150·C those indicated i~ the operational sections of thissPecifi-
All Output and Supply Voltages ......... - 0.5 V to + 7V cation is not implied. Exposure ~o, absolute maximum 
AI/Input Voltages ................... -1.0V to + 5.5V rating conditions for extended periods may affect device 
PO,wer Dissipation ......... : .. ' ........ " .... 1 Watt reliability. . . 

D.C. CHARACTERISTICS (T A= O·Cto 70·C, Vcc';'" 5V ± 10%) 

Symbol Parameter Min. Mai. Units Test' Conditions 

IF Forward Il'lput Current (ASYNC) -1.3 mA , VF=0.45V 
Other Inputs -0.5 mA VF=0.45V 

IR Reverse Input Current (ASYNC) 50 ~ VR=Vcc 
Other Inputs 50 ~ VR=5.25V 

Vc Input Forward Clamp Voltage -1.0 V Ic= -5mA 

Icc Power Supply Current 162 mA 

VIL l(lput LOW Voltage 0.8 V 

VIH Input HIGH Voltage 2.0 V 

VIHR Reset Input HIGH Voltage .2.6 V 

VOL Output ,LOW Voltage 0.45 V 5mA 

VOH Output HIGH Voltage CLK 4 V -1mA 
Other Outputs 2.4 V -1mA 

VIHR- VILR RES Input Hysteresis' 0.25 V 

A.C. CHARACTERISTICS (TA=O·C to 70·C, Vcc=5V± 10%) 

TIMING REQUIREMENTS , 
Symbol Parameter, Min. Max. Units Test Conditions 

tEHEL External Frequency HIGH Time 13 ns 90% -90% VIN 

tELEH External Frequency LOW Time 13 ns 10% -10% VIN 

tELEL ' EFI Period 33 ns (Note 1) 

XTAL Frequency 12 25 t-AHz 

tRlVCL RDY1, RDY2 Active Setup to CLK 35 ns ASYNC=HIGH 

tRlVCH RDY1, RDY2 Active Set4P to CLK 35 ns ASYNC=LOW 

tRlVCL RDY1, RDY2 Inactive Setup to CLK 35 ns 

tCLR1X RDY1, RDY2 Hold to CLK 0 ns 

tAYVCL ASYNC Setup to CLK 50 ns 

tCLAYX ASYNC Hold to CLK 0 ns 

tAlVRlV AEN1, A'E'N2 Setup to RDY1, RDY2 15 ns. 

tCLA1X AEN1, AEN2 Hold to.CLK 0 ns 

tYHEH CSYNC Setup to EFI 20 ns 

tEHYL CSYNCHold to EFI 10 ns 

tYHYL CSYNC Width 2·tELEL ns 

tl1HCL m Setup to CLK 65 ns (Note 1) 

tCLllH RES Hold to CLK 20 ns (Note 1) 

3-570 AFN'()1472D 



inter 8284A/8284A-1 

A.C. CHARACTERISTICS (Continued) 
TIMING RESPONSES 

Symbol Parameter Min. 8284A 

tCLCL Ct,.K Cycle Period 125 

tCHCL CLK HIGH Time (Y3 tCLcLl+2 

tCLCH ClK lOW Time (% tCLcLl-15 

tCH1CH2 ClK Rise or Fall Time 
tCL2CL1 

tpHPL PClK HIGH Time tCLCL -20 

tpLPH PClK lOW Time tCLCL -20 

tRYLCL Ready Inactive to ClK (See Note 3) -8 

tRYHCH Ready Active to ClK (See Note 2) (% tcLcLl-15 

tCUL ClK to Reset Delay 

tCLPH ClK to PClK HIGH DELAY 

tCLPL ClK to PClK lOW Delay 

tOLCH OSC to ClK HIGH Delay -5 

tOLCL OSC to ClK lOW Delay 2 

tOLoH Output Rise Time (except ClK) 

tOHoL Output Fall Time (except ClK) 

NOTES: 

1. Setup and hold necessary only to guarantee recognition at next clock. 

2. Applies only to T3 and TW states. 

3. Applies only to T2 states. 

Min. 8284A·1 

100 

39 

53 

tcLCL-20 

tcLCL -20 

-S' 

53 

-5 

2 

Max. Un". Test Conditions 

ns 

ns 

ns 

10 ns . 1.0V to 3.5V 

ns 

ns 

ns 

ns 

40 ns 

22 ns 

22 ns 

22 ns 

35 ns 

20 ns From O.SV to 2.0V 

12 ns From 2.0V to O.8V 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

A C. TESTING. INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND a 45V 
FOR A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 1.5V FOR 
BOTH A LOGIC "1" AND "0." INPUT RISE AND FALL TIMES (MEASURED 
BETWEEN a.sv AND 2 av) ARE5 ± 2 NS. 

3-571 

..., VL = '.oav 

~l == 3~5n 

DEVICE 
UNDER ,..--------1 

rEST 

I CL 

CL = 100pF FOR CLK 

CL = 30pF FOR READY 

AFN-01472D 



WAVEFORMS 

CLOCKS AND RESET'SIGNALS 

NAME 
EFI 

OSC 

ClK 0 

PClK 0 

CSYNC I 

8284A18284A.1 "I", ' 

RESET 0 ______ ~,~--~------~--~~~t: 
NOTE: All TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTID. 

READY SIGNALS (FOR ASYNCHRONOUS DEVICES) 

ClK 

RDY1,2 

READY 

tRYHCH 

3-572 AFN.o1472D 



intJ 8284A/8284A-1 

WAVEFORMS (Continued) 

READY SIGNALS (FOR SYNCHRONOUS DEVICES) 

eLK 

RDY1,2 

IA1AtV 

MYNe ______ J' 

READY 

tRYLCL 

X1 ClK I lOAD .1 
24 MHz $ L (SEE NOTE 1) 

X2 . 
FIe 

Rl "" I 
..1: 

CSYNC 

":" ":" R 1 = R2 = 5100. 

Clock High and Low Time (Using X1, X2}. 

1 
PULSE I EFI elK I lOAD I 

GENERATOR I L (SEE NOTE 1) 

VL 
F/C! 

/ 

r CSYNC 

-

Clock High and Low Time (Using EFI) 

3-573 AFN.Q1472D 



inter 8284A/8284A~1 

NOTES: 
1 CL=l00pF 
2 CL=30pF 

VCC 

AEm ClK 

X1 

24MHz CJ READY 

X2 

RDY2 OSC 

FIC 
AEN2 
CSYNC 

Ready to Clock (Using X1, X2) 

~~--~EFI ClK~----~ 

FIC 
Al:J'fj 

r------t RDY2 
AEN2 

CSYNC READYi--------f 

Ready to Clock (Using EF,I) 

3-574 AFN·01472D 



8286/8287 
OCTAL BUS TRANSCEIVER 

• Data Bus Buffer Driver for iAPX 
86,88,186,188, MCS·80™, NlCS·85™, 
and MCS·48™ Families 

• High Output Drive Capability for 
Driving System Data Bus 

• Fully Parallel 8·Bit Transceivers 

• 3·State Outputs 

• 20·Pln Package with 0.3" Center 

• No Output Low Noise when Entering 
or Leaving High Impedance State 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs 
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met. 

AO vcc AO vce . 

A1 BO A1 110 
B1 ifi 
B2 52 
B3 IJ3 
B4 ii4 
Bs as 
B6 lIS 
B7 B7 

GND T GND T 

Figure 1. Logic Diagrams Figure 2. Pin Configurations 

3-575 



8286/8287 

Table 1. Pin Description 

Symbol lYPe Name and Fu"ctlon 

T I Transmit: T Is an input contr~1 signal used to control the direction of the transceivers. When HIGH, 
it configures the transceiver's 80-8;- as outputs with Ao-A7 as inputs. T LOW configures Ao-A7 as 
the outputs with Bo-8;- serving as the Inputs. 

OE I Output Enable: OE is an input control signal used to enable the appropriate output driver (as 
selected by n onto its respective bus. This Signal is active LOW. 

Ao-A7 I/O Local Bus Da .. Pins: Thase pins serve to either present data to or accept data from the processor's 
local bus depending upon the state of the T pin. 

80-87(8286) 1/0 System Bus Da .. Pins: These pins serve to either present data to or accept data from the system 
B;i-B7(8287) bus depending upon the state of the T pin. 

FUNCTIONAL DESCRIPTION 

The 8286 and 8287 transceivers are 8-bit transceivers with 
high impedance outputs. With T active HIGH and DE ac­
tive LOW, data at the Ao-A7 pins is driven onto the Bo-B7 
pins. With T inactive LOW and Of active LOW, data at the 

Bo-B7 pins is driven onto the Ao-A7 pins. No output low 
glitching will occur whenever the transceivers are enter­
ing or leaving the high Impedance state. 

3-576 AFN·Ol5060 



inter 8286/8287 

TEST LOAD CIRCUITS 

1.5V 1.SV 2.14V 

~= 680 ~n~ 
OUT OUT OUT 

I 300PF
' 

r 300pF' 

3·STATE TO VOL 3·STATE TO VOL SWITCHING 

B OUTPUT A OUTPUT B OUTPUT 

1.SV 1.SV 2.28V 

1802 900Q ~"~ 
OUT OUT OUT 

rOOPF 

3-STATE TO VOH 3·STATE TO VOH SWITCHING 

B OUTPUT A OUTPUT A OUTPUT 

'200 pF for plastic 8286/8287 

; 

3-577 AFN.()1506D 



intJ 8286/8287 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias .•...•...•..••..• O·C to 70·C 
Storage Temperature ....•........ - 65·C to + 150·C 
All Output and Supply V,oltages ...•...• - 0.5V to + 7V 
All Input Voltag~s .................. - 1.0V to + 5.5V , 
Power Dlsslp~tlon ..•.•••..••..••.•.•.•••.•. 1 Watt 

*NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause perm,anent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not Implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (Vcc = +5V ±10%, TA= O"C to 70"C) 

Symbol Parameter Min Max Units Test Conditions 

Vb Input Clamp Voltage -1 V Ic=-5 mA 

Icc Power Supply Current-8287 130 mA 
-8286 160 mA 

IF Forward Input Current -0.2 mA VF=0.45V 

IA Reverse Input Current 50 ~ VA= 5.25V 

VOL Output Low Voltage -BOutputs .45 V IOL =32 mA 
-A Outputs .45 V IOL = 16 mA 

VOH Output High Voltage -B Outputs 2.4 - V IOH=-5 mA 
-A Outputs 2.4 V IOH=-l mA 

IOFF Output Off Current IF VOFF=0:45V 
IOFF Output Off Current IA VQFF=5.25V 

VIL Input Low Voltage -A Side 0.8 V Vee = 5.0V, See Note 1 
-8 Side 0.9 V Vee = 5.0V, See Note 1 

VIH Input High Voltage 2.0 V Vee = 5.0V, See Note 1 

F= 1 MHz 
CIN Input Capacitance 12 pF VBIAS =2.5V, Vee=5V 

TA=25·C 

NOTE: 
1. B OutpUts-IoL = 32 mA, IoH = -'5 mA, Or.. = 300 pP: A OutPUts-IoL = 16 mA, IoH = -1 mA, Or.. = 100 pF. 

A.C. CHARACTERISTICS (Vee = +5V ±lO%,TA = O"C to 70·C) (See Note 2) 

Loading: B Outputs-loL = 32 mA, IOH = -5 mA, CL "" 300 pP 
A Outputs-IOL = 16 mA, IOH = -1 mA, CL = 100 pF 

Sy",bol Parameter Min Mex Unite 

TIVOV Input to Output Delay 
Inverting 5 22 ns 
Non-Inverting 5 '30 ns 

TEHTV Transmit/Receive Hold Time 5 ns 

TTVEl Transmit/Receive SetuD 10 ns 
TEHOZ Ojjtput Disable Tlme 5 16 ns 
TElOV OutDut Enable Time ' 10 30 ns 
TOlOH I Input, Output Rise Time 20 ns 

TOHOl Input, Output Fall Time 12 ' ns 

. Or.. - 200 pF for plastiC 6266/6287 
'NOTE: • 
1. See waveforms and test load circuit on following pagll., 
2. For Extended Tllmparature El(PRESS the Preliminary Maximum Values are TIVOV = 25 vs 22, 35 vs 30; 

TEHOZ = 25; TElOV = 50. .' 
I 3-578 

Test C:ondHlons 

(See Note 1) 

From 0.6 V to 2.0V 

From 2.0V to 6.0V 

AFNoQl506D 



inter 8286/8287 

WAVEFORMS 

INPUTS 
'W 
11\ 

V, \ 
J I\, 

-TiyOY_ - 'TEHOZ - TELOY-'-

C VOH - .W 

\V 
~------JI\ VOL +.W . OUTPUTS 

f---TEHTY- I--TTVEL 

T----~r-----

NOTE: 

1. All timing measurements are made at 1.5V unless otherwise noted. 

8287 8286 

40 

10 

200 400 soo 800 1000 

pF LOAD pF LOAD 

Output Delayver.u. Capacitance 

a-:S79 AFN·OI506D 



." inter " .. ,'. 

8288 
: ',I 

BUS CONTROLLER 
FOR iAPX 86, 88 PROCESSORS 

• Bipolar Drive Capability 

• Provides Advanced Commands 
• Provides Wide Flexibility In System 

Configurations 

• 3-State Command Output Drivers 

• Conflgurable for Use with an I/O Bus 
• Facilitates Interface to One or TWo 

Multl~Master Busses 

• Available In EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intell!> 8288 Bus Controller is a 20-pin bipolar component for use with medlum-ta-Iarge iAPX 86, 88 processing 
, systems. The bus controller provides command and control timing generation as well as bipolar bus drive capability while 

optimizing system' performance. 

'A strapping option on the bus controller configures it for use with a,multi-master system bus and separate VO bus. 

{~- iii1Ii5!: 

STA~: !!-- STATUS -. MWfC lOB VCC 
DECODER 

COM· so S2 AMWC ClK 
MAND MULTIBUS'M 

SIGNAL 10RC COMMAND 51 52 
GENER· iOWC SIGNALS 
ATOR DT/R MCElPDEN 

AIOWC 

iNTA 
ALE DEN 

AEN CEN 

MRD~ INTA 

{CLK- DT/R} , AMWC 10RC 

• CONTROL ADDRESS LATCH. DATA 
CDNTROL AEN CONTROL SIGNAL DEN TRANSCEIVER, AND MWTC AIOWC 

INPUT CEN- LOGIC GENER· MCElPDEN INTERRUPT CONTROL 
ATOR ALE SIGNALS GND iOWC 

108-

+5V GND 

Figure 2. 
Figure 1. Block Diagram Pin Configuration 

" 

3-580 



8288 

Teble1. Pin Description 

Symbol 1P Name and Funcllon Symbol ~e N ..... and Funcllon 

Vcc Power: +5V supply. AlOWC 0 Advanced I/O Write Command: The 

GND Gtound. AIOWC Issues an 110 Write Command 
earlier In the machine cycle to give 116 

So. s,. S2 I Stetul Input Plnl: These pins are tha devices an early Indlcstlon of a write In-
status input pins from the 8086. 8086 or struction. Its timing Is the sema as a read 
8089 procaseors. The 8288 decodes thess command signal. AIOWC is active LOW. 
Inputa to generate command and control 
Signals at the appropriate time. When 
thess pins are not In use (passive) they ara 
all HIGH. (See chart under Command and 
Control logic.) 

'IOWC 0 110 Write Command: This command line 
'instructs an I/O device to read the data on 
the data bus. This signal Is active LOW. 

10RC 0 110 Read Command: This command line 

CLK l Clock: This Is a 'clock signal from the 
8284 clock generator and serves to estab-
lish when command and control signals 

instructs an I/O device to drive Its data 
onto the data bus. This Signal Is active 
LOW, 

ara generated.' AMWC , 0 Advanced Memory Write Com· 

ALE 0 Addre .. Latch Enable: This signal 
serves to atrobe an address Into the 
address latches. This signal Is active HIGH 
and latching occurs on the tailing (HIGH 
to LOW) transition. ALE Is intended for 
use with transparant 0 type latches. 

mand: The AMWC Issues a mamo,ry write 
command earlier In the machine cycle to 
give memory devices an early Indication 
of a write Instruction. Ita tlmlnMc the 
same. a read command Signal. II 
active LOW.' , 

DEN 0 Da. Enable: This Signal serves to en-
able data transcelvars onto either the 
local or syatem data bus. This Signal Is 
active HIGH. 

MWTC 0 Memory Write Command: Thil' com-
mand line instructs the memory to record 
the data pressnt on the data bUI. This 
8ignal Is active LOW. 

DT/R 0 Data "InInllllltJR_lve: This signal .... 
tabllshes the direction of data flow 
through the transceivers. A HIGH on this 
,line indicates Transmit (write to 110 or 

MRDC 0 Memory Read Command: This com· 
mand line Instructs the memory to drive 
Its data onto the data bus. This signal ia 
active LOW. 

memory) and a LOW indicates Receive INTA 0 Interrupt ADIen_ledge: This command 
(Read). 

AEN I Addre81 Enable: AEN enables command 
outputs of the 8288 Bus Controller et least 
115 ns sfter it becomes active (LOW). AEN 
going inactive immedlatell2:.Btates the 
command output drivers. AEN does not 

line tells an interrupting device that Its 
interrupt has be'en acknowledged and 
that it should drive vectoring informatIOn 
onto the data bus. This signal is active 
LOW. 

M9E1PDEN 0 This Is a dual function pin. 
affect the I/O command lines If the 8288 is MCE (tOB II tied LOW): Master Cascade 
In the 110 Bus mode (lOB tied HIGH). Enable occurs during an interrupt se-

CEN I Command Enable: When this Signal Is 
LOW all 8288 command outputs and the 
DEN and PDEN control outputs ara forced 
to their Inactive state. When this Signal is 
HIGH. thess same outputs are enabled. 

quence and serves to read a Cascade 
Address from a master PIC (Priority Inter-
rupt Controller) onto the data bus. The 
~ignal'is active HIGH. 
PDEN (lOB II tied HIOH): Peripheral 
Data Enable enables the data bus trans-

lOB I Input/Outpul aul Mode: When the lOB is celver for the 110 bus that DEN performs 
strapped HIGH the 8288 functions In the 
I/O Bus mode. When it Is strapped LOW. 

, 
for the system bus. POEN is active LOW. 

the 8288 functions in the System Bus 
mode. (See sections on 110 Bus and Sys-
tem Bus modes). 

3-581 AFN'()1504C 



intel 

FUNCTIONAL DESCRIPTION 

Command and Control Logic 
The command logic decodes the three 8086, 8088 or 8089 
CPU status lines (So. 81, S2l to determine what command 
is to be issued. 

This chart shows the meaning of each status "word". 

s; S; SO Processor Siale 8288Command 

0 0 0 InterruotAcknowledae INTA 
0 ,,0 1 Read I/O Port iORc 
0 1 0 Write I/O Port iOWc,AIOWC 
0 1 1 Halt None 
1 0 0 Code Access MRoC 
1 0 1 Read Memory MRDC 
1 1 0 Write Memorv ' , MWTC;AMWC 
1 1 1 Passive None 

8288 

The command is issued in one of two ways dependent 
on the nnode of the 8288 Bus Contrqller. 
I/O Bus Mode - The 8288 is fn the I/O Bus mode if the 
lOB pin is strapped HIGH. In the 1/0 ,Bus mode all I/O 
command lines (IORC, 10WC, AIOWC, INTA) are always 
enabled (i.e., not dependent on AEN). When an I/O com· 
mand is initiated by the processor, the 8288 immediately 
activates the command lines using PDEN and DTIR to 
control the I/O bus transceiver. The I/O command lines 
should not be used to control the system bus in this 
configuration because no arbitration is present. This 
mode allows one 8288 Bus Controller to handle two ex· 
ternal busses. No waiting is involved when the CPU 
wants to gain access to the I/O bus. Normal memory ac· 
cess requires.a "Bus Ready" signal (AEN LOW) before it 
will proceed. It is advantageous to use the lOB mode if 
I/O or peripherals dedicated to one processor exist in a 
multi·processor system. 

System Bus Mode - The 8288 is in the System Bus mode 
if the lOB pin is strapped LOW. In this mode no command 
is issued until 115 ns after the AEN Line is activated 
(LOW). This mode assumes bus arbitration logic will in­
form the bus controller (on the AEN line) when the bus is 
free for use. Both memory and I/O commands wait for bus 
arbitration. This mode is used when only one bus exists. 
Here, both I/O and memory are shared by more than one 
processor. 

COMMAND OUTPUTS 
The advanced write commands are made available to in­
itiate write procedures early in the machine cycle. This 
signal can be used to prevent the processor from enter­
ing an unnecessary wait state. 

The command outputs are: 

MRDC - Memory Read Command 
MWTC - Memory Write Command 
10RC - I/O Read Command 
10WC - I/O Write Command 
AMWC - Advanced Memory Write Command 
AIOWC - Advanced I/O Write Command 
INTA - Interrupt Acknowledge 

INTA (Interrupt Acknowledge) acts as an I/O read during 
an interrupt cycle. Its purpose is to inform an inter­
rupting device that·its Interrupt is being acknowledged 
and that it should place vectoring information onto the 
datil bus. 

CO,NTROL OUTPUTS 
The control outputs 01 the 8288 are Data Enable (DEN), 
Data Transmit/Receive (DTii'i) and Master Cascade 
Enable/Peripheral Data Enable (MCE/PDEN). The DEN 
signal determines wherr the external bus should be 
enabled onto the local bus and the DT/R determines the 
direction of data transfer. These two signals usually go 
to the chip select and direction pins of a transceiver. 

The MCE/PDEN pin changes function with the two 
modes of the 8288. When the 8288 is in the lOB mode 
(lOB HIGH) the PDEN signal'serves as a dedicated data 
enable signal for the I/O or Peripheral System bus. 

INTERRUPT ACKNOWLEDGE AND MCE 
The MCE signal is used during an interrupt acknowl­
edge cycle if the 8288 is in the System Bus mode (lOB 
LOW). During any interrupt sequence there are two inter­
rupt acknowledge cycles that occur back to back. Dur­
ing the first interrupt cycle no data or address transfers 
take place. Logic should be provided to mask off MCE 
during this cycle. Just before the second cycle begins 
the MCE signal gates a master Priority Interrupt Con­
troller's (PIC) cascade address onto the processor's 
local bus where ALE (Address Latch Enable) strobes it 
into the address latches. On the leading edge of the 
second interrupt cycle the addressed slave PIC gates an 
interrupt vector onto the system data bus where it is 
read by the processor. 

If the system contains only one PIC, the MCE signal is 
not used. In this case thesecooo Interrupt Acknowledge 
signal gates the interrupt vector onto the processor bus. 

ADDRESS LATCH ENABLE AND HALT 
Address Latch Enable (ALE) occurs during each machine 
cycle and serves to strobe the current address into the 
~d~ss latches. ALE also serves to strobe the status (So, 
51, S2l into a latch for halt state decoding. 

COMMAND ENABLE 
The Command Enable (CEN) input acts as a command 
qualifier for the 8288. If the CEN pin is high the 8288 
functions normally. If the CEN 1Jin is pulled LOW, all 
command lines are held in their inactive state (not 
3'state). This feature can be used to implement memory 
partitioning and to eliminate address conflicts between 
system bus devices and resident -bus devices. 

AFN·01504C 



8288 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias .................. O·C to 70·C 
Storage Temperature ............... -65·C to +150·C 
All Output and Supply Voltages ......... -0.5V to + 7V 
All Input Voltages .................... -1.0V to +5.5V 
Power Dissipation ........................... 1.5 Watt 

·NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at th.ese or any other conditions above 
those indicated in the operational sections of thisspecifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect'device 
reliability. 

D.C. CHARACTERISTICS (Vee = 5V ± 10%, TA = O·C to 70·C) 

Symbol Parameter Min. Max. 

Ve Input Clamp Voltage -1 

Icc Power Supply Current :!30 

IF Forward Input Current -0.7 

IR Reverse Input Current 50 

VOL Output low Voltage 
Command Outputs 0.5 
Control Outputs 0.5 

VOH Output High Voltage 
Command Outputs 2.4 
Control Outputs 2.4 

V1L Input low Voltage 0.8 

VIH Inp_ut High Voltage 2.0 

10FF Output Off Current 100 

A.C. CHARACTERISTICS (Vee = 5V ± 10%, TA = O·C to 70·C)* 

TIMING REQUIREMENTS 

Symbol Parameter Min. Max. 

TClCl ClK Cycle Period 100 

TClCH ClK low Time 50 

TCHCl ClK High Time' 30 

TSVCH Status Active Setup Time 35 

TCHSV Status Inactive Hold Time 10 

TSHCl Status Inactive Setup Time 35 

TClSH Status Active Hold Time 10 

Unit Test Conditions 
V Ie = -5 mA 

mA 

mA VF = 0.45V 

/LA VR = Vee 

V IOL = 32 mA 
V IOL=16mA 

V 10H =-5mA 
V 10H = -1 mA 

V 

V 

/LA VOFF = 0.4 to 5.25V 

Unit Test Conditions 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

• Note: For Extended Temperature EXPRESS the Preliminary Values are TClCl= 125; TClCH =50; TCHCl=30; 
TCVNX=50; TCllH, TClMCH=25; TSVlH, TSVMCH=25.· . 

3-583 AFN-01504C 



8288 

A.C. CHARACT.ERISTICS (Continued) 
TIMING RESPONSES -' 

Symbol Parameter Min. Max. Unit 

TCVNV Control Active Delay , 5 45 ns 

TCVNX Control Inactive Delay 10 45 ns 

TCLLH, ALE MCE,Active Delay (from CLK) 20 ns 
TCLMCH 

TSVLH, ALE MCE Active Delay (from 20 ns 
TSVMCH Status) 

TCHLL ALE Inactive Delay 4 15 ns 

TCLML Command Active Delay 10 35 ns 

TCLMH Command Inactlve'Delay 10 35 ns 

TCHDTL Direction Control Active Delay 50 ns, 

TCHDTH Direction Control Inactive Delay 30 ns 

TAELCH Command Enable Time 40 ns 

TAEHCZ Command Disable Time 40 ns 

TAELCV Enable Delay Time 115 200 ns 

TAEVNV AENto DEN 20 ns 

TCEVNV CEN to DEN, PDEN 25 ns 

TCELRH CEN to Command ' TCLML ns 
TOLOH Output, Rise Time 20 ns 

TOHOL OutPut, Fall Time 12 ns 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUTIOUTPUT 

A C TESTING'INPUTS ARE DRIVEN AT 2,4V FOR A LOGIC "I" AND 0 45Y 
FOR A LOGIC "0" THE CLOCK IS DRIVEN AT 4 3V AND 02SV TIMING 
MEASUREMENTS ARE MADE AT 1 5V FOR BOTH A LOGIC "I" AND "0," 
~N~1~~SE AND FALL TIMES ARE S±2 NS. MEASURED BETWEEN OBV 

TEST LOAD CIRCUITS-3-STATE COMMAND OUTPUT TEST LOAD 

1.SV 

oo'~'~ 
r~PF 

3-STATE TO HIGH 

15V 

J 33Q 

OUT~ 

I 300PF 

3-STATE TO LOW 

2.14V 

-~." 
r

300PF 

COMMAND OUTPUT 
TEST LOAD 

Teat CondHlona 

.MRDC 

lORd 

MWTC IOL = 32 rnA 

IOWC IOH = -5mA 

INTA CL = 300pF 

AMWC 

~ 

~ho, 'I IOL = 16 rnA 

IOH = -1 rnA 

CL=80pF 

From 0.8V to 2.0V 

From 2.0V to 0.8V 

228V 

1,,42 

OUT~ 
r~PF 

CONTAOL OUTPUT 
TEST LOAD 

~FN-OI504C 



inter 8288 

WAVEFPRMS 

STATE _--T4~ _--T, T, - 13-0-

n -TCLCLn Io--TCLCH-V""""\ LF / r-.. / ~ 
CLK 

TCHSV- i- - TSVCH - TCHCl.- -I-ig,;; TSHCl 
1,0 3'> - ~~ 

\ J / 1\ ~ 

ADDR WRITE CD VALID DAlA VAliD 
ADDRESSIDATA 

TCLLH_ r M i..-TCHLL TSVLH 

Ir ' , ALE 

-
\ 
~ 

- -TClMl - I--TCLML 

\ 
r\ 

- -TCVNV 

I 
I / 

TCVNX-

NOTEI< 

I 
I 

DEN (WRITE I 

POEN (WRITE I 

I DT/R (READ 
(INTA I 

MeE 

TCVNV-

TCHDTH- .1:=' ----[J -I 1 ----

Ii 11° 
I--+j LTsvMeT 

TCLMCH-

1 ADQRESSIDATA BUS IS SHdwN ONLY FOR REFERENce PURPOSES 

\ 

i-

V 
J 

\ 
1\ 

TCHDTL 

~ TCVNX 

2 LEADING EDGE OF ALE AND MCE IS DETERMINED BY THE FALLING EDGE OF eLK ~ STATUS GOING ACTIVE. WHICHEVER OCCURS LAST 
3 AU. TIMING MEASU~MENTS ARE MADE AT 1 5V UNLESS SPECIFIED OTHE~lse 

T4-

V""\ 
~ '---- 3-? VL<; SO'itA 

10 ~., IaeQ 

r-TCLMH 

V, 
/ 

V 
/ 

\ 
~ 

I--

V 
/ 

\ 
!\ 

- I--TCVNX 

:; 
J 

-
V 

TCHOTH- I--
( 

AFN-01504C 



inter 8288 

WAVEFORMS (Continued) 

DEN, PDEN QUALIFICATION TIMING 

\V 
Jr\ 

CEN 

\11 
II\. 
I---rAEV~ ~-

DEN 
\ \11 
Ir\ II\. 

!+----rCEVNV_ 

, \1{ 
jl\. 

ADDRESS ENABLE (AEN) TIMING (3·STATE ENABLE/DISABLE) 

VOH 

CO~':::~~-------------'I 

CEN--------------,=-::;:-~I 

NOTE: CEN must be I,!w or valid prior to T2 to prevent the command from being generated. 

3-586 AFN.()l504C 



inter 
8289/8289·1 
BUS ARBITER 

• Provides Multl·Master System Bus 
Protocol 

• Synchronizes IAPX 86, 88 Processors 
with Multl·Master Bus ' 

.10MHz Version, 8289-1, Fully Compatible 
with 10MHz iAPX 86 or 8MHz iAPX 186 
Based Systems 

• Provides Simple Interface with 8288 
Bus Controller 

• Four Operating Modes.for Flexible 
System Configuration· 

• Compatible with Intel Bus Standard 
~ULTIBUSTM 

, 
• Provides System Bus Arbitration for 

8089 lOP in Remote Mode 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel 8289 Bus Arbiter is a 20-pin, 5-volt-only bipolar component for use with medium to large iAPX 86, 88 multi­
master/multiprocessing systems. The 8289 provides system bus arbitration for systems with multiple bus masters, such as 
an 8086 CPU with 8089 lOP in its REMOTE mode, while providing bipolar buffering and drive capability. 

REsa 

iCLR 
jji/if 

GND 

I 12 
8088/8088/8089 { Ii 

STATUS Iii 

1 
LOCK 

eLK 

PROCESSOR CiIllLCK 
. CONTROL REsa 

ANYROST 

. loa 

VCC 

Figure 2. Pin Diagram 

INIT 1 BCLK 
BREO MUL TlBUSTM 
BPRN COMMAND 
BPRO SIGNALS 

BUSY 
CBRO 

AEN } SYSTEM 

L~=~~=~~~~~~ SIGNALS SYSBliiHi 

+5V 

, 
Figure 1. Block Diagram 

3-587 

CONTROU 
STRAPPING 

OPTIONS 

GND VCC 

MULTIBUS 
INTERFACE 

• SYSB/IInB } SYSTEM 
J:EN SIGNALS 

Figure 3. Functional Pinout 



8289/8289-1 .( 

Table .1. Pin Description 

Symbol TYpe Name and Function Symbol TYpe Name and Function 

Vcc Power: +5V supply ±10%. AEN 0 Address Enable: The output of the 8289 

GND Ground. , Arbiter to the proces~or's address latches, 
to the 82M Bus Controller and 8284A 

SO,SI,$2 I Status Input Pins: The status input pins Clock Generator. AEN serves to instrucfthe 
from an 8086, 8088 or 8089 processor. The Bus Controller and address latches when 
8289 decodes these pins to initiate'bus re- to tri-state their output drivers. 
quest and surrender actions. (See Table 2.) 

SYSB/ I System Bus/Resident Bus: An input 
ClK I Clock: From the 8284 clock chip and RESB sign,al when the arbiter is configured in the 

serves to establish when buS arbiter ac-
tions are initiated. 

lOCK I Lock: A processor generated signal which 
when activated (low) prevents the arbiter 
from sUrrendering the multi-master system 
bus to any other bus artiter, regardless of 
its priority. 

CRalCK I Common Request Lock: An active low 
signal which, prevents the' arbiter from sur-
rendering the multi-master system bus to 
any other bu~ter requesting the bus 
through the CBRa input pin. 

S.R. Mode (RESB is strapped high) which 
determines when· the multi-master system 
bus is requested and multi-masier system 
bus surrendering is permitted. The signal 
is intended to originate from a form of 
address-mapping circuitry, as a decoder or 
PROM attached to. the resident address 
bus. Signal transitions and glitches are 
permitted on this pin from <1>1 ofT4 to <I> 1 of 
T2 of the processor cycle. During the 
period from <l>tofT2 to <I> 1 ofT4,onlyclean 
transitionslare permitted on this pin (no 
glitches). If a glitch occurs, the arbiter may 

RESB I Resident Bus: A strapping option to con- capture or miss it, and the· mUlti-master 
figure the arbiter to operate in systems hav- system bus may be requested or surren-
ing both a multi-master system bus and a dered, depending upon the state of the 
Resident Bus. Strapped high, the multi- glitch. The arbiter requests the multi-
master system bus is requested or s~ 
dered as a function of the SYSB/RESB 

master system bus il'\ the S.A. Mode when 
the state olthe SYSB~ pin is high and 

input· pin. Strapped low, the SYSB/RE;SB permits the bus to be surrendered when. 
input is ignored. this pin is low. 

ANYRaST I Any Request: A strapping option Which CBRa I/O Common Bus Request: An input signal 
permits the multi-master system bus to be which instructs the arbiter if there are any 
surrendered to a lower priority arbiter as if 'other arbiters of lower priority requesting 
it were an arbiter of higher priority (i.e., the use of the multi-master system bus. 
when a lower priority arbiter requests the 
use of the multi-master system bus, the bus The CBRa pins (open-collector output) of 
is surrendered as soon as it is possible). all the 8289 Bus Arbiters which surrender 
When ANYRaST is strapped low, the bus is to the multi-master system bus upon re-
surrendered according to Ta~f ANY- quest are connected together. 
RaST is strapped high and CBRa is ac-
tivated, the bus ispurrendered at~d of 
the present bus cycle. Strapping CBRa low 

The Bus Arbiter running the current trans-
fer cycle will not itself pull the CBRa line 

and ANYRaST high forces the 8289 arbiter low. Any other arbiter connected to the 
\ to surrender the multi-master system bus CBRa line can request the mUlti-master 

after each transfer cycle. Note that when 
surrender occurs BREQ is driven false 

system bus. The arbiter presently running 
the current transfer cycle drops its BREa 

(high). signal and surrenders the bus whenever 

lOB I 10 Bus: Pi strapping option which confi-
gures the 8289 Arbiter to operate In sys-
tems having both an .10, Bus (Peripheral 
Bus) and a multi-master system bus. The 
arbiter requests and surrenders the use of 

the proper surrender conditions exist. 
StrappIng CBRa low and ANYRaST high 
allows the multi-master system bus to be 
surrendered aft~r each transfer cycle. See 
the pin definition of ANYRaST. 

the multi-master system bus as a function INIT I Initlall~e: An active low mUlti-master sys-
of the status line, 82. The multi-master sys- tem bus input signal used to reset all the 
tem bus is permitted. to be slll'rendered bus arbiters on the multi-master system 
w,hile the processor is performing 10 com- bus. After initialization, no arbiters have 
mands and is requested whenever the pro- the use of the multi-master system bus. 
cessor performs a memory command. 
Interrupt cycles are assumed as· coming 
from the peripheral bus and are treated as 
an 10 command. 

3-588 AFN-00839D 



inter 8289/8289-1 

Table 1. Pin Descriptions (Continued) 

Symbol 1P Name and Funcllon 

BClK I Bu. Clock: The multi-master system bus 
clock to which all multl-master system bus 
interface signals are synchronized. 

BREQ 0 Bua Requeat: An active low output signal 
In the parallel Priority Resolving Scheme 
Which the arbiter activatas to requast the 
use of the multi-master system bus. 

BPRN I Bu. Priority In: The active low signal re-
turned to the arbiter to Instruct itthat it may 
acquire the multi-master system bus on the 
next falling edge of BelK. BPRN indicatas 
to the arbiter that It is the highest priority 
requesting arbiter presently on the, bus. 
The loss of BPRN instructs the arbiter that 
it has lost priority to a higher priority 
arbiter. 

'FUNCTIONAL DESCRIPTION 

The 8289 Bus Arbiter operates in conjunction with the 
8288 Bus Controller to interface iAPX 86, 88 processors to 
a mlliti-master system bus (both the iAPX 86 and iAPX 88 
are configured in their max mode). The processor is un­
aware of the arbiter's existence and issues commands as 
though it has exclusive use of the system bus. If the pro­
cessor does not have the use of the multi-master system 
bus, the arbiter prevents the Bus Controller (8288), the 
data transceivers and the address latches from accessing 
the system bus (e.g. all bus driver outPllts are forced into 
the high impedance state). Since the command sequence 
was not issued by the 8288, the system bus will appear as 
"Not Ready" and the processor will enter wait states. The 
processor will remain in Wait until the Bus Arbiter ac­
quires the use of the mUlti-master system bus whereupon 
the arbiter will allow the bus controller, the data transceiv­
ers, and the address latches to access the system. Typi­

'cally, once the command has been issued and a data 
transfer has take~ place, a transfer acknowledge' (XACK) 
is returned to the processor to indicate" READY" from the 
accessed slave device. The processor then completes its 
transfer cycle. Thus the arbiter serves to multiplex a pro­
cessor (or bus master) onto a multi-master system bus and 
avoid contention problems between bus masters. 

Arbitration Between Bus Masters 

In general, higher priority masters'obtaln the bus when a 
lower priority master completes its present transfer 
cycle. Lower priority bus masters obtain the blls when a 
higher priority master is not accessing the system bus. 
A strapping option (ANYRaST) is provided to allow the 
arbiter to surrender the bus to a lower prlortw master as 
though It were a master of higher priority. If there are no 
'other bus masters requesting the bus, the arbiter main­
tains the bus so. long as its processor has not entered 

Symbol 1P Name and FunClion 

BPRO 0 BUll Priority Out: An active low output 
signal used in the serial priority resolving 
scheme where BPRO Is dalsy-chalned to 
BPRN of the next lower priority arbiter. 

BUSY I/O BU8Y: An active low open collector 
mUlti-master system bus interface signal 
used to Instruct all the arbiters on the bus 
when the mUlti-master system bus is avail-
able. When the mUlti-master system bus Is 
available the highest requesting arbiter 
(dete!!!!!!!!,d by BPRN) seizes the bus and 
pulls BUSY low to keep other arbiters off of 
the bus. When the arbiter is done with the 
bus, it releases the BUS'Y Signal, permitting 
it to go high and thereby allowing another 
arbiter to acquire the multi-master system 
bus. 

the HALT State. The arbiter will not voluntarily surrender 
the system bus and has 10 be forced off by another 
master's bus request, the HALT State being the only ex­
ception. Adpltional strapping options permit other 
modes of operation wherein the mUlti-master system 
bus is surrendered or requested under different sets of 
conditions. 

Priority Resolving Techniques 

Since there can be many bus masters on a multi-master 
system bus, some means of resolving priority between 
bus masters simultaneously requesting the bus must be 
provided. The 8289 Bus Arbiter provides several resolv­
ing techniques. All the techniques are based on a priori­
ty concept that at a given time one bus master will have 
priority above all the rest. There are provisions for using 
parallel priority resolving techniques, serial priority 
resolving techniques, and rotating. priority techniques. 

PARALLEL PRIORITY RESOLVING 
The parallel priority resolving technique uses a separate 
bus request line (EmEt\') for each arbiter on the multi­
master system bus, see Figure 4. Each BREa line enters 
Into a priority encoder which generates the binary ad­
dress of the highest priority BREa line which is active. 
The binary address is decoded by a decoder to select 
the corresponding Ei'i5Riii (Bus Priority In) line to be 
returned to the highest priority requesting arbiter. The 
arbiter receiving priority (EiPRN true) then allows its 
associated bus master onto the mUlti-master system 
bus \l.s soon as it becomes available (i.e., the bus is no 
longer busy). When one bus arbiter gaiQS priority oller 
another arbiter it cannot immediately seize the bus, it 
must ~alt unti' the present.bus transaction is complete. 

3-589 AFN-00839D 



inter 8289/8289'·1 

Upon completing its transaction the present bus occu­
pant recognizes that it no longer has priority and sur­
renders the bus by releasing BUSY. BUSY is an active 
low "OR" tied signal line which goes to every bus arbiter 
on.the system bus.When BDSY goesinactive{high), the 
arbiter whlph presently has bus priority (EiPFiN true) then 

seizes the bus and pulls BUSY low to keep other arbiters 
off of the bus. See waveform timing diagram, Figure 5. 
Note that all'multl-master system bus transactions are 
synchronized to the bus clock (BClK). This allows the 
parallel priority resolving circuitry or any other priority 
resolving scheme employed to settle. 

74148 
PRIORITY 
ENCOOER 

74138 
HOB 

DECODER 

Figure 4. Parallel Priority Resolving Technique 

CD HIGHER PRIORITY BUS ARBITER REQUESTS THE MUL TI·MASTER SYSTEM BUS. 
® ATTAINS PRIORITY' _ . 

@ LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

@) HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 5. Higher Priority Arbiter obtaining the Bus from a Lower Priority Arbiter 

3-590 AFN·00839D 



, intJ . 8289/8289-1 

SERIAL PRIORITY RESOLVING 
The serial priority resolving technique eliminates the 
need for the priority encoder-decoder arrangement by 
daisy-chaining the bus arblteFs together, connecting the 
higher priority bus arbiter's Ei'i5RO (Bus Priority Out) out­
put to the BPRN of the next lower priority. See Figure 6. 

caRa: : BUSY 

THE NUMBER OF ARBITERS THAT MAY BE DAISY CHAINED TOGETHER IN THE 
SERIAL PRIORITY RESOLVING SCHEME IS A FUNCTION OF BCLK AND THE PROPA 
GATION DELAY FROM ARBITER TO ARBITER NORMALLY, AT 10 MHz ONLY ,ARBI· 
TER MAY BE DAISY·CHAINED 

Figure 6. Serial Priority Resolving 

ROTATING PRIORITY RESOLVING 
The rotating priority resolving technique Is similar to 
that of the parallel priority resolving technique except 
that priority is dynamically re-asslgned. The priority en­
coder Is replaced by a more complex circuit which ro­
tates priority between requesting arbiters thus allowing 
each arbiter an equal chance to use the multi-master 
system bus, over time. 

Which Priority Resolving Technique To 
Use 

There are advantages and disadvantages for each of the 
techniques described above. The rotating priority 
resolving technique requires substantial external logic 
to Implement while the serial techniql!e uses no exter­
nal logic but can accommodate only a limited number of 
bus arbiters before the daisy-chain propagation delay 
exceeds the multl-master's system bus clock (BCLK). 
The parallel priority resolving technique is in general a 
good compromise between the other two techniques. It 
allows for many arbiters to be present on the bus while 
not requiring too mUCl:h logic to Implement. 

*In some system configurations it is possible for a non-I/O Processor to 
have access~to more than one Multi·Master System Bus, see 8289 
Application Note. 

8289 MODES OF OPERATION 

There are two types of processors in the iAPX 86 family. An 
Input/Output processor (the 8089 lOP) and the iAPX 86/1 0, 
88/10 CPUs. Consequently, there are lwo basic operating 
modes in the 8289 bus arbiter. One, the lOB (I/O Peripheral 
Bus) mode, permits the processor access to both an I/O 
Peripheral Bus and a multi-master system bus. The sec­
ond, the RESB (ReSident Bus mode), permits the pro­
cessor to communicate over both a Resident Bus and a 
multi-master system bus. An I/O Peripheral Bus is a bus 
where all devices on that bus, including memory, are 
treated as I/O devices and are addressed by I/O com­
mands. All memory commands are directed to another 
bus, the multi-master system bus. A Resident Bus can 
issue both memory and I/O commands, but it is a distinct 
and separate bus from the multi-master system bus. The 
distinction is that the Resident Bus has only one master, 
providing full availability and being dedicated to that one 
master. . 

The lOB strapping option configures the 8289 Bus Ar­
biter into the lOB mode and the strapping option RESB 
configures it into the RESB mode. It might be noted at 
this point that if both strapping options are strapped 
false, the arbiter interfaces the processor to a multi­
master system bus only (see Figure 7). With both op­
tions strapped true, the arbiter interfaces the processor 
to a multi-master system bus, a Resident Bus, and an 1/0 
Bus. 

In the lOB mode, the processor communicates and con­
trols a host of peripherals over the Peripheral Bus. When 
the 110 Processor needs to communicate with ·system 
memory, it does so over the system memory bus. Figure 
8 shows a possible 110 Processor system configuration. 

The iAPX 86 and iAPX 88 processors can communicate 
with a Resident Bus and a multi-master system bus. Two 
bus controllers and only one Bus Arbiter would be needl'ld 
in such a configuration as shown in Figure 9. In such a 
system configuration the processor would have ~ccess to 
memory and· peripherals of both busses. Memory map­
ping techniques are applied to select which bus is to be 
accessed. The SYSB/RESB input on the arbiter serves to 
instruct the arbiter as to whether or not the system bus is 
to be accessed. The signal connected to SYSB/RESB also 
enables or disables commands from one of the bus 
controllers. 

3-591 

A summary of the modes that the 8289 has, along with 
its response to Its status lines inputs, is summarized in 
Table 2. 

AFN'()0839D 



inter 8289/8289-1 

Table 2. Summary of 8289 Modes, Requesting and Relinquishing the Multl·Master System Bus 

Stalus Lines From ~ RESB (Mode) Only lOB Mode RESB Mode 

8086 or 8088 or 8089 Only lOB = High RESB - High lOB - Low RESB - High 

S2 iii Sci lOB;' Low SYSB/RESB = High SYSB/RESB = Low SYSB/RESB = High SYSB/RESB = Low 

1/0 
0 0 0 x 
0 0 1 x 

COMMANDS 
0 1 0 x 

HALT 0 1 1 X x 

1 0 0 
MEM 

1 0 1 
COMMANDS 

1 1 ,0 

IDLE 1 1 1 x x 

NOTES: 
1, X = Multi·Master System Bus is allowed to be Surrendered. 
2. ~ = Multl·Master System Bus is Requested. 

x x x 
x x x 
x x x 

x x x 

x x 
x x 
x x 

x x x 

Multi·Master System Bus 

Single 

~ 
lOB = High 
RESB = Low 

x 

x 

Mode Pin --
Strapping Requested" Surrendered' 

Single Bus 10B= Hig.h Whenever the processor's 
HLT + TI' CBRO+ HPBROt Multi·Master Mode RESB= Low status lines go active 

RESB Mode Only 10B= High SYSB/FfESIi = High' (SYSB/FfESIi = Low + TI) • 
RESB=High ACTIVE STATUS CBRO+ HLT + HPBRO 

lOB Mode Only 10B=low Memory Commands 
(110 Status + TI) • CBRO + 

RESB=Low HLT+HPBRO 

10B=Low (Memory Command) • 
«110 Status Commands) + 

lOB Mode·RESB Mode SYSB/FfESB = LOW» • CBRO 
RESB= High (SYSB/RESB= High) 

+ HPBROt + HLT 

NOTES: 
• LOCK prevents surrender of Bus to any other arbiter, CRQlCK prevents surrender of Bu,s to any lower priority arbiter. 

"Except for HALT and Passive or IDLE Status. 
t HPBRQ, Higher priority Bus request or iiPRN = 1. 
1. lOB Active low. 
2. RESB Active High. 
3. + is read as "OR" and. as "AND." 
4. TI = Processor Idle Status 52, 61.]0 = 111 
5. HLT= Processor Halt Status 52,51, m1=OII 

3-592 AFN·00839D 



inter 

PRoe 
LOCA 

8289/8289-1 

rD~ 
..... RDy'bJ 

CLOCk AEN2 ":' 

JREADY 
ROY1 

ClK AEN1 8289 
.us 

ARBITER 

READY 

~~-I31" ClK Vce 

.... " 11ii·Sl!AEN,RES'~ 
CPU 

A::~~: ~ 
J~~ AEN 

STATUS 150,81,&2) 8288 

I BUS 
CONTROLLER 
ClK 

! .-- ALE 
10811 CS STB 

DEN DTIA _ 

ESSOR 
ADDRESS I I -

LATCH 
I, BUS 

~ (2 OR 3) I I XCVR 

I 
DiIABLE 

C3 DflR 

TRANSCEIVER 
828618287 

I~ 

< XACK MULTI MASTER SYSTEM 8US 

MULTI MASTER 
CONTROL BUS 

MULTI MASTER 
SYSTEM 
COMMAND 
BUS 

MUL Tt·MASTER 
SYSTEM 
ADDRESS 
'US 

MULTI-MASTER 
SYSTEM 
DATA 
.us 

Figure 7. Typical Medium Complexity CPU System 

MULTI·MASTER 
SYSTEM BUS 

XACK (liD BUS~ >-
..... 
CLOCK 

-----RDY1 1------______ '--___ -( XACK MULTI MASTER SYSTEM BUS 

'0 ~ COMMAND 
BUS ". 

'0 
ADDRESS 

'us 

'0 
DATA 
'us 

READY 
eLK 

READYCLK 

808!! 

'0' 

6289 
'us 

ARBITER 

'''' 
~

MULTIMASTER 

CONTROL 
-- BUS 

________ ==;> MULTI MASTER 
SYSTEM ____________ DATA 

'us 

Figure 8. Typical Medium Complexity JOB System 

3-593 AFN·QQ839D 



inter 

RESIDENT BUS 

8289/8280.1 

o 
..... M"'I>--------, 
.= 

~~ENTIUS--------IRDY2 RDY1i-------t-------- XACK MPf,.'t-MASTERSYSTEM IUS 

MULTI MAS115R svmM 
IUSCONTRCH. 

RIII--+--ycc 

RESIDENT COMMAND "::===:;::===l BUS \ 

RESIDENT ADDRESS 1'----' 
, BUS \--------i 

RESIDENT DATA"::====:::::=~ IUS '\ 

·IY ADDHfQ ANOTtlER 1211 ARMER AND CONNlcnNCI ITS AlN TO THI till 
WHOIlAR 18 PAEII!NTU GROUNDm, THI! PROCE8IOR COULD HAve: ACe_ 
TO TWO MULTI-MASTER lUBES. 

Mum MAlTER SYSTEM 
COMMAND IUS 

MULTI MASTEa smlM 
ADDRES8IUS 

MULTI·MASTIR 8Y~ 
DAT.aus 

Figure 9. 8289 Bus Arbiter Shown In System-Resident Bus Configuration 

3-594 

MULTi MASTER 
SYSTEM IUS 

AFN·00839D' 



intJ 8289/8289-1 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias ....... '" .. , ... O·C to 70·C 
Storage Temperature .............. - 65·C to + 150·C 
All Output and Supply Voltages ........ - 0.5V to + 7V 
All Input Voltages .................. - 1.0V to + '5.5V 
Power Dissipation ......................... 1.5 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional cipera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = o·c to 70·C, Vee = +5V ±10%) 

Symbol Parameter Min. Max. Units 

Vc Input Clamp Voltage -1.0 V 

IF Input Forward Current -0.5 mA 

IR Reverse Input Leakage Current 60 ".A 

VOL Output Low Voltage 
BUSY, CBRO 0.45 V 
AEN 0.45 V 
BPRO,BREO 0.45 V 

VOH Output High Voltage 
BUSY,CBRO Open Collector 

All Other Outputs 2.4 

Icc Power Supply Current 165 

V1L Input Low Voltage .8 

V1H Input High Voltage 2.0 

Cln Status Input Capacitance 25 

Cln (Others) Input Capacitance 12 

A.C. CHARACTERISTICS (Vee = +5V ±10%, TA = O·Cto 70·C) 

TIMING REQUIREMENTS 

Symbol . Parameter 8289 Min. 8289·1 Min. 

TCLCL CLK Cycle Period 125 100 

TCLCH CLKLowTime 65 53 

TCHCL CLK High Time 35 26 

TSVCH Status Active Setup 65 55 

TSHCL Status Inactive Setup 50 45 

THVCH Status Active Hold 10 10 

THVCL Status Inactive Hold 10 10 

TSYSBL BUSyt ,tSetup to BCLK,t 20 20 

TCBSBL CBROt ,tSetup to BCLK,t 20 20 

TBLBL BCLK Cycle Time 100 100 

TBHCL BLCK High Time 30 30 

TCLLL1 LOCK Inactive Hold 10 10 

TCLLL2 LOCK Active Setup 40 40 

TPNBL BPANt,t to BCLK Setup Time 15 15 

TCLSR1 SYSB/RESB Setup 0 0 

TCLSR2 SYSB/RESB Hold 20 20 

TIVIH Initialization Pulse Width 3TBLBL+ 3TBLBL+ 
3 TCLCL' 3 TCLCL 

3-595 

V 

mA 

V 

V 

pF 

pF 

Max. 

TCLCL-10 

TCLCL-10 

.65[TBLBL] 

Test Condition 

Vcc=4.50V, Ic= -5 mA 

Vee = 5.50V, VF = 0.45V 

Vee = 5.50, VR = 5.50 

IOL= 20 mA 
IOL= 16 mA 
IOL= 10 mA 

IOH=400 ".A 

Unit Test Condition 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

AFN-00839D 



8289/8289-1 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 

TBLBRL BCLK to BREq D~lay~ t 

T8LPOH BCLK to BPROH (See Note 1) 

TPNPO BPRN~ tto BPRO~ tDelay 
(See Note 1) 

TBLBYL BCLK to BUSY Low 

TBLBYH BCLK to BUSY Float (See Note 2) 

TCLAEH CLK to AEN High 

TBLAEL BCLK to AEN Low 

TBLCBL BCLK to CBRO Low 

TRLCRH BCLK to CBRO Float (See Note 2) 

TOLOH Output Rise Time 

TOHOL Output Fall Time 

~ t Denotes that spec applies to both transitions of the signal. 

NOTES: 

Min. Max. Unit Test Condition 

35 ns 

40 ns 

25 ns 

60 ns 

35 ns 

65 ns 

40 ns 

60 ns 

35 ns 

20 ns From O.BV to 2.0V 

12 ns From 2.0V to O.BV 

1. BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRON. 
2. Measured at .5V above GND. . 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 JS_TEST POINTS~'X= 
0.45 , 

A,C. TESTING INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND 045V 
FOR A LOGIC "0" THE CLOCK IS DRIVEN AT 4 3V and 025V TIMING 
MEASUREMENTS ARE MADE AT , 5V FOR BOTH A LOGIC "'" AND "0" 
INPUT RISE ANtlFALL TIMES (MEASURED BE1WEEN 0 8V AND 2 OV) ARE 
DRIVEN AT 5 ± 2 NS 

A.C. TESTING LOAD CIRCUIT 

OEVICE 

~CL~'OOPF 
UNDER 

TEST 

CL ", 100pF 
CL INCLUDES JIG CAPACITANCE 

3.596 AFN-00839D 



WAVEFORMS 

eLK 

~ 
(lEE NOTE t) 

SYSllJi!IIii 

.iEN 
(SEE NOn: 3) 

PROCESSOR eLK RELATED 

IUS eLK RELATED 

....... 
(IISIm'1) 

1IP1I1l #2 
(1PlIR #3) 

NOTES: 

8289/8289-1 

1 LOCK ACTIVE CAN OCCUR DURING ANY STATE. AS LONG AS THE 
RELATIONSHIPS SHOWN ABOVE WITH RESPECT TO THE ClK ARE MAINTAINED 
lOCK INACTIVE HAS NO CRITICAL TIME AND CAN BE ASYNCHRONOUS 
:cFiQCCK HAS NO CRITICAL TIMING AND IS CONSIDERED AN ASYNCHRONOUS 

~~~~G~ SYSB/RESB PIN IS PERMITTED DURING THIS TIME AFTER</> 2 OF 
T1, AND BEFORE </>1 OF T4, SYSBIReSBSHOUlD BE STABLE.

3 AEN lEADING eDGE IS RELATED TO BClK, TRAILING EDGE TO CLK THE
TRAILING EDGE OF AEN OCCURS AFTER BUS PRIORITY IS LOST

ADDITIONAL NOTES:

The signals related to ClK are typical processor signals, and do not relate to the depicted sequence of events of the
signals referenced to BClK. The signals shown related to the BClK represent a hypothetical sequence of events for
illustration. Assume 3 bus arbiters of priorities 1, 2 and 3 configured m serial priority resolving scheme as shown m
Figure 6. Assume arbiter 1 has the bus and is holding busy low. Arbiter #2 detect~rocessor wants the bus and
pulls· low BREQ#2. If BPRN#2 is high (as shown), arbiter #2 will pull low CBRQ Ime. CBRQ signals to the higher priority
arbiter #1 that a lower priority arbiter wants the bus. [A higher priority arbiter would be granted BPRN when It makes
the bus request rather than having to wait for another arbiter to release the bus through CIm'O]." Arbiter #1 will relin­
quish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering its iiPROO (tied to
~ and releasing BUSY. Arbiter #2 now sees that it has Priority from BPAiiili2 being low and releases CBRQ' As
soon as BUSY signifies the bus is available (high), arbiter #2 pulls BUSY low on next falling edge of BClK. Note that if
arbiter #2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by
lowering its BPRO #2 [TPNPOj .

• *Note that even a higher pnorlty arbiter which IS acqumng the bus through SPAN Will momentarily dtop CEiRQ until It has acqUired the bus

3-597 AFN·00839D

iAPX286
'Microprocessors

Microprocessors
Section

4

"nt_II!> I •• ~ iAPX 286/1 0 ~[Q)W~OO©~ DOO~@OOIiYil~'iJD@OO

HIGH PERFORMANCE MICROPROCESSOR
WITH MEMORY MANAGEMENT AND PROTECTION

(80286,80286-6,80286-4)
• High Performance

Processor (Up to six times iAPX 86)
• Large Address Space:

-16-Megabytes Physical
-1 Gigabyte Virtual per Task

• Integrated Memory Management, Four­
Level Memory Protection and Support
for Virtual Memory and Operating
Systems

• Two iAPX 86 Upward Compatible
Operating Modes:
-iAPX 86 Real Address Mode
-Protected Virtual Address Mode

• Range of clock rates
-8 MHz for 80286
-6 MHz for 80286-6
-4 MHz for 80286-4

• Optional ProCessor Extension:
-iAPX 286/20 High Performance 8O-blt

Numeric Data Processor

• Complete System Development
Support:
-Development Software: Assembler,

PLlM, p",scal, FORTRAN, and System
Utilities

-In-Circuit-Emulator (ICE T. -286)

• High Bandwidth Bus Interface
(8 Megabyte/Sec)

• Available In EXPRESS:
-Standard Temperature Range

The iAPX 286/10 (80286 part number) is an advanced, high-performance microprocessor with specially optimized
capabilities for multiple user and multi-tasking systems. The 80286 has built-in memory protection that supports
operating system and task isolation as well as program and data privacy within tasks. An 8 MHz iAPX 286/ 1 0 provides
up to six times greater throughout than the standard 5 MHz iAPX 86/10. The 80286 includes memory management
capabilities that map up to 230 (one gigabyte) of virtual address space per task into 224 bytes (16 megabytes)
of physical memory.

The iAPX 286 is upward compatible with iAPX 86 and 88 software. Using iAPX 86 real address mode, the 80286 is
object code compatible with existing iAPX 86, 88 software. In protected virtual address mode, the 80286 is source
code compatible with iAPX 86, 88 software and may require upgrading to use virtual addresses supported by the
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 performance
and execute a superset of the iAPX 86 and 88's instructions.

The 80286 provides special operations to support ihe efficient implementation and execution of operating systems.
For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and
stflrt execution of the new task. The 80286 also supports virtual memory systems by providing a segment-not-present
exception and restartable instructions.

; ADDRESSUNrr(AU) - - - - - - - - - - - - - - - - - - -,
I
I
I
I
I SEGMENT
I BASES

I
I SEGMENT
I SIZES

I
I

I
I
I
I

I
I
I
I L __

A23 - Ao,
SHE, MilO

PEACt\.

PEREa

READY, HOLD

S1, so, CODJINTA

LOCK, HLDA

RESET

, elK I _

I EXECUTION UNIT (EU) , vee
~_._~_=_--_-_-_-~-_-_-__ -_-_-_-_-_-~-~-~-~-~-~-_-__ -_-__ -_-_-__ · __ ~~~~ ____ ~~~~~~~~r_-CAP

Figure 1. 80286 Internal Block Diagram

ThefollowlngaretrademarkSof Intel Corporation and Its affiliates and may be used only to Identify Intel products exp, CREDIT, I, ICE. leS, 1m, InSlte, Intel, INTEL, Intelevlslon, Intelhnk,

~~~~~~'~~~.' ~~~~:~~~~~P~.' ~~~~h~SC~~~:~~~;Jn~~~~~~lrR~;~;~~~~~~~,~~i~2i6e~~~~~~~u~;C:~:;:~~;:::;~::~u~~:~Y~~~~~:~~~;;':~' =~~~~~~~~b~~:;~~:'~t~~~~t::~~e 
of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Patent LlcenSf:lS are Implied @INTEL CORPORATION, 1983 

4-1 
NOVEMBER 1983 

ORDER NUMBER: 210253·006 



IAPX286/10 

Component Pad View-As viewed from 
underside of component when mounted on 
the board. 

P.C. Board View-As viewed from the 
component side of the P.C. board. 

A, 

A, 
A, 

ClK 
Vee 

RESET 

A3

0

[ 

Au 18 

CAP 

mIl5iI 
Irn§V 

N.C. 

NC. 

,INTR 
N.C 

NMI 
Vss 

PEREQ 

Vee 
II!A5'I 
HOLD 

:&I~g5Id:Bg&&&4&' 
L.JLjLJL.JLJUlJLJLJLJLJL.JU L.,J L..JLJ L: 

r 

5~ L .. 
r A, L 
r A, 

" r ClK J L 

" r Vee 

" r RESET 
" " A3 

" 
" r 
J " " r 

" r 
J 

" [ 
" r 
J L 

" r 
J L 

" J 
9, 

~""""'nr"n'nr'nr'..., 
An 

f1,r lr1r1f lr lrlr lr1rlr lr lrlr, rlr, r 

• .. PIN NO 1 MARK\ tD Z Z > liO IiUUJ!;/a1~99~ I 

~ .. 
I 
1 

NOTE: N.C. pads must not be connected. 

Figure 2. 80286 Pin Configuration 

Table 1. Pin Description 
The following pin function descriptions are for the 80286 microprocessor: 

Symbol Type Name and Function 

elK I System Clock provides the fundamental timing for iAPX 286 systems. It is divided by two Inside 
the. 80286 to generate the processor clock. The internal divide-by-two circuitry can 
be synchronized to an external clock .generator by a lOW to HIGH transition on the RESET 
Input. . 

015-00 I/O Data Bus inputs data during memory, 1/0, and interrupt acknowledge read cycles; outputs data 
during memory and 110 write cycles. The data bus is active HIGH and floats to '3ostate OFF during 
bus hold acknowledge. 

A23-Ao 0 Address Bus outputs physical memory and 1/0 port addresses. AO is lOW when data is to be 
transferred on pins 07-0' A23-A16 are lOW during 1/0 transfers. The ac;ldress bus is active HIGH 
and floats to 3-state OFF during bus hold acknowledge. 

SHE 0 Bus High Enable indicates transfer of data on the upper byte of the data bus, D15d1.:... Eight-bit 
oriented devices assignec!..!Q.. the upper byte of the data bus would normally use SHE to con-
dition chip select functions. SHE is active lOW and floats to 3-state OFF during bus hold acknowledge. 

BHE and AO Encodlngs 
BHEValue AD Value Function 

0 0 Word transfer 
0 1 Byte transfer on upper half of data bus (015-8) 
1 0 Byte 1ransfer on lower half of data bus (07-0) 
1 1 Reserved 

I . 

4-2 AFN-020600 



IAPX 286/10 

Table 1 Pin Description (Cont ) 

Symbol 'TYPe Name and Function 
81.S0 0 Bus Cycle Status Indicates Initiation of a bus cycle anCi. along with M/lO and CODjI'm'A. defines 

the type of bus cycle. The bus Is In a T s state whenever one or both are LOW. ST and SO are 
active LOW and float to 3-state OFF during bus hold acknowledge. 

80286 Bus Cycle Status Definition 
COD/INTA MilO S1 SO Bus cycle Initiated 
o (LOW) 0 0 0 Interr,up! acknowledge 
0 0 0 1 Reserved 
0 0 1 0 Reserved 
0 0 1 1 None; not a status cycle 
0 1 0 0 IF A 1 = 1 then halt; else shutdown 
0 1 '0 1 Memory data read 
0 1 1 0 Memory data write 
0 1 1 1 None; not a status cycle 
1 (HIGH) 0 0 0 Reserved 
1 0 0 1 110 read 
1 0 1 0 1I0wnte 
1 0 1 1 None, not a status cycle 
1 1 0 0 Reserved 
1 1 0 1 Memory instruction read 
1 1 1 0 Reserved 
1 1 1 1 None; not a status cycle 

M/IO 0 Memory/IO Select distinguishes memory access from I/O access. If HIGH during T $. a memory 
cycle or a halt/shutdown cycle is in progress. If LOW. an 1/0 cycle or an interrupt acknowledge cycle 
is in progress. M/iO floats to 3-state OFF during bus hold acknowledge. 

COD/INTA 0 Code/Interrupt Aeknowledge distinguishes instruction fetch cycles from memory data read cycles, 
Also distinguishes interrupt acknowledge cycles from 1/0 ;gcles. COD/W' floats to 3-state OFF' 
during bus hold acknowledge. Its timing is the same as MI , . . 

LOCK 0 Bus Loek indicates that other system bus masters are not to gain control· of the system bus following 
the current bus cycle. The LOCK signal may be activated explicitly by the "LOCK" instruction prefix 
or automatically by 80286 hardware during memory XCHG instructions. interrupt acknowledge. or 
descriptor table access. LOCK is active LOW and floats to 3-state OFF during bus hold acknowledge. 

READY I Bus Ready terminates a bus cycle. Bus eycles are extended without limit until terminated by READY 
LOW. READY is an active LOW synchronous input requiring setup and hold times relative to the 
system clock be met for correct operation. READY is ignored during bus hold acknowledge. 

HOLD I Bus Hold Request and Hold Aeknowledge control ownership of the 80286 local bus. The HOLD 
HLDA 0 input allows another local bus master to request control of the local bus. When control is granted. the 

80286 will float its bus drivers to 3-state OFF and then activate HLDA. thus entering the bus hold 
acknowledge condition, The local bus will 'remain granted to the requesting master until HOLD 
becomes inactive which results in the 80286 deactivating HLDA and regaining control of the local 
bus. This terminates the bus hold acknowledge condition. HOLD may be asynchronous to the system 
clock. These signals are active HIGH, 

INTR I Interrupt Request requests the 80286 to suspend its current program execution and service a 
pendjng external request. Interrupt requests are masked whenever the interrupt enable bit in the 
flag word is cleared. When the 80286 responds to an interrupt request. it performs two interrupt 
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt. To 
assure program interruption. INTR must remain active until the first interrupt acknowledge cycle is 
completed. INTR is sampled at the beginning of each processor cycle and must be active HIGH at 
least two processor cycles before the current Instruction ends in order to interrupt before the next 
instruction. INTR is level sensitive. active HIGH. al)d may be asynchronous to the system clock. 

NMI I Non-maskable Interrupt Request interrupts the 80286 with an internally supplied vector value of 
2. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80286 flag word 
does not affect this input. The NMI input is active HIGH. may be asynchronous to the system clock. 
and is edge triggered after internal synchronization. For proper recognition. the input must have 
been previously LOW for at least four system clock cycles and remain HIGH for at least four system 
clock cycles. 

~-3 AFN-02060D 



inter ' ',' , , ~, 
I,~ ~. ~ ,:. ': IAPX, 2$6,( 10 

Table1. Pin Description (COnI) 
'" 

Symbol "IYpe Name and FUnction 
PEREQ I PrCICeIIOr Extenlloll,O/Ierand Rlqulltiand ,AcknowlWge extend the memory management and protection 

, PEACK, 0 capabilities ,of, the 80286 to processor extensions. The PEREQ input requests the 80286 to perform a daIP 
operand transfer ,for a processor extension. :rne ~'outliut signals the processor extension when the 
requested operand is being transferred. PEREQ is active HIGH and HOlts to 3-state OFF during bus hold 
e.c:I<!1OWIedge. ~ may be asynchronous to the system Clock. ~ Is active LOW. ' 

BUSY I Proceleor ElItenlion BUIY and E"or indicate the operating condition of a processor extension 
ERROR I to the,80286. An active BUSY Input stops 80286 program execution on WAIT and some ESC, 

InStrUctions until BUSY becomes inactl1RWb~H). The 80286 may be Interrupted while waiting 
for BUSY to b8c0me Inactive. An active Input causes the 80286 to perform a processor 
extenslpn Interrupt when executlnQ WAIT or some ESC Instructions. These inputs are active 
LOW and may be asynchronous to the system clock. 

RESET I System Reset clears the internal logic of the 80286 and is active HIGH. The 80286 may be re-
initialized at any time with a LOW to HIGH transition on RESET which remains active for more than 
16 system ciock cycles. During RESET active, the outpulpins of.the 80286 enter the stete shown 
below: 

80286 Pin Stat. During R.s.t 
Pln1lll1ue PlnNamee 

1 (HIGH) SO~l, PE@..A23-AO,SHE,lOCK 
o (LOW) Mil ,eOD/INTA, HLDA 
3-stateOFF 015-0 0 

Operation of the 80286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transi-
tion of RESET must be synchronous to the system clock. Approximately 50 system clock cycles are 
required by the 80286 for internal initiallzatlons before the first bus cycle to fetch code from the 
power-on execution addrellS is performed, 

A LOvit to HIGH transition of RESET synchronous to the system clock will end a processor 
cycle at the second HIGH to LOW transition of the system clock, The LOW to HIGH transition 
of RESET may be asynchronoull to the system clock; however, in this case it cannot be pred~ 
termined which pl)ase of the processor clock will occur during the next system clock period. 
Synchronous LOW to HIGH transitions of RESET are required only for systems where the 
processor clock must be phase synchronous to another clock_ ' 

Vss I Syatem Ground: 0 Volts. 

Vee I System Power: + 5 VoH Power Supply. 
CAP I Substrate Filter Capacitor: a 0.047/Lf ± 20% 12V capacitor must be connected between this pin 

and ground. This capacitor filters the output of the internal substrate bias generator. A maximum DC 
leakage current of 1 jL8 is allowed through the caPaCitor. 

For correct operation of the 80286, the substrate bias generator must charge this capacitor to its 
operating Y9ltage. The capacitor chargeup time is 5 milllse~nds (max.) after Vee and CLK reach 
their specified AC and DC parameters. RESET may be applied to prevent spurious activity by the 
CPU during this time, After 1hiS time; the' 80286 processor clock can be phase synchronized to 
another clock by pulsing RESET LOW !lynchrorious to the system clock. 

" 

AFN-02060D 



\ 

inteIe . IAPX 286/10 

FUNCTIONAL DESCRIPTION 
Introduction 
The 80286 is an advanced, high-performance micro­
processor with specially optimized capabilities for mUl­
tiple user and multi-tasking systems. Depending on the 
application, the 80286's performance is up to six times 
faster than the standard 5 MHz 8086's, while providing 
complete upward software compatibility with Intel's iAPX 
86,88, and 186 family of CPU's. 

The 80286 operates in,two modes:'iAPX 86 real address 
mode and protected virtual address mode. Both modes 
execute a superset of the iAPX 86 and 88 instruction set. 

In iAPX 86 real address mode programs use real ad­
dresses with up to one megabyte of address space. Pro­
grams use virtual addresses in protected virtual address 
mode, also called protected mode. In protected mode, 
the 80286 CPU automatically maps 1 gigabyte of virtual 
addresses per task into a 16 megabyte real address 
space. This mode also provides memory protection to 
isolate the operating system and ensure privacy of each 
tasks' programs and data. BOtti modes provide the same 
base instruction set, registers, and addressing modes. 

The following Functional Description describes first, the 
base 80286 architecture common to both modes, sec­
ond, iAPX 86 real address mode, and third, protected 
mode. 

IAPX 286/10 BASE ARCHITECTURE 
The iAPX 86, 88, 186, and 286 CPU family all contain 
the same basic set of registers, instructions, and ad­
dressing modes. The 80286 processor is upward com­
patible with the 8086, 8088, and 80186 CPU's. 

III-BIT 
REGISTER 

HAIlE 
7 07 

AH 

(8-IIIT DX DH 

o 
AL 

DL 

SPECIAL 
REGISTER 

FUNCTIONS 

} 
MULnPLYlDIYlDE 
UO INSTRUcnDNS 

Register Set 
The 80286 base architecture has fifteen registers as 
shown in Figure 3. These registers are grouped into the 
following four categories: 

General Registers: Eight 16-bit general purpose reg­
isters used to contain arithmetic and logical oPerands. 
Four of these (AX, ex, CX, and OX) can be used either' 
in their entirety as 16-bit words or split into pairs of sep­
arate 8-bit registers. , 

Segment'Reglsters: Four 16-bit special pUipOse reg­
isters select, at any given time, the segments of memory 
that are immediately addressable for code, stack, and 
data. (For usage, refer to Memory Organization.) 

Base and Index Registers: Four of the general pur­
pose registers may also be used to determine offset ad­
dresses of operands in memory. These registers may 
contain base addresses or indexes to particular loca­
tions within a segment. The addressing mode deter­
mines the specific registers used for operand address 
calculations. 

Status and Control Reglstera: The 3 16-bit 'Special 
purpose registers in figure 3A record or control cer­
tain aspects of the 80286 processor state including 
the Instruction Pointer, which contains the offset 
address of the next sequential instr.uction to be 
executed. 

,. 0 

os DATA SEGMENT SELECTOR :~ESSABLE 1 AX 
-REGISTER 
HAIlES CX 
SHOWN) ax 

CH 

BH 

BP 

CL 

BL 

) LOOPiSHlFTIREPEAT COUNT 

} BASE REGISTERS 

CS ~ CODE SEGMENT SELECTOR 

SS STACK SEGMENT SELECTOR 

ES. EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

51 

DI 

SP .. 
GENERAL 

REGISTERS 

~ INDEX REGISTERS 

) STACK POINTER 

o 

; ~ ::UC11ONPOWTER 

- MSW t:=::::j IlACHINESTATUS WORD 

STATUS AND CONTROL 
REGISTERS 

Figure 3. Register Set , 

4-5 AFN-02060D 



inteI· IAPX286/10 

STATUS FLAGS: 

CARRY 
PARITY I 

AUXlUARY CARRY 
ZERO 

L 
SIGN 

t OVERFLOW ~, 
15 14 13' 12 11 10 I 8 • 4 3 2 1 0 

FLAGS, f\\\\'11 NT I IOPL I OF I OF I IF I TF I SF I ZF f\\\\'11 AF f\\\\\1 PF f\\\\'11 CF I 

1 COfmK)I. FLAGS, 
TftAPFLAG 
INTERRUpt ENABlE 
DlREc110N FL4G 

~F1ELD8' 

110 PRIVILEGE LEVEL 
NESTED TASK FLAG 

TASK SWITCH ~ INTEL RESERVED 
PROCESSOR EXTENSION EIIULATED ---..... 
MONITOR PIIOCESSOII EXTEN'ION _~ __ -" 

PRDTE~ENA8LE---________ ~ 

Figure 3a. Status and Control Register Bit Functions 

Flags Word Description 
The Flags word (Flags) records specific characteristics 
of the result of logical and arithmetic instructions (bits 0, 
2, 4, 6, 7, and 11) and controls the operation of the 80286 
within a given operating mode (bits 8 and 9). Flags is a 
16-bit register. The function of the flag bits is given in 
Table 2. 

Instruction Set 
The instruction set is divided into seven categories: data 
transfer, arithmetic, shift/rotate/logical, string manipula­
tion, control transfer, high level instructions, and pro­
cessor control. These categories are summarized in 
Figure 4. 

An 80286 instruction can reference zero, one, or two 
operands; where, an operand resides in a register, in the 
instruction itself, or in memory. Zero-operand instruc­
tions (e.g. NOP and HLT) are usually qne bYte long. One­
operand instructions (e.g. INC and DEC) are usually two 
bytes long but some ar.e encoded in only one byte. One­
operand instructions may referenc~ a register or mem­
ory location. Two-operand instructions permit the follow­
ing six types of instruction operations': 

-Regis\er to Register 
-Memory to Register 
--':'Immediate to Register 
-Memory to Memory 
~Register to Memory 
-Immediate to Memory 

4-6, 

Table 2. Flags Word Bit Functions 

Bit Name Function Position 
0 CF Carry Flag-Set on high-order bit 

carry or borrow; cleared otherwise 
2 PF Parity Flag-Set if low-order 8 bits 

of result contain an even number of 
, l-bits; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

6 ZF Zero Flag-8et If result is zero; 
cleared otherwise 

7 SF Sign Flag-Set equal to high-order 
bit of result (0 if positive, 1 if negative) 

11 OF Overflow Flag-Set if result is a too-
large positive number or a too-small 
negative number (exclu~ing sign-bit) 
to fit in destination operand; cleared 
otherwise 

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next instruction executes. TF is 
cleared by the single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter-
rupt vector specified location. 

10 OF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index registers 
when set. Clearing OF causes 
auto increment. 

AFN-02060D 



IAPX 286/10 

Two-operand instructions (e.g. MOV and ADD) are usu­
ally three to six bYtes long. Memory to memory opera­
tions are provid8ct by a special class of string instructions 
requiring one to three bytes. For detailed instruction for­
mats and encodings refer to the instruction set summary 
at the end of this document. 

For detailed operation and usage of each Instruction, set 
Appendix of iAPX 286 PrOQramnier's Reference Manual 
(Order No. 210498) . 

GENERAL PURPOSE 

MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push all registers on stack 
POPA Pop all registers from stack , 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 
OUT Output byte or word 

ADDRESS OBJECT 
LEA Load effective address 

LOS Load pointer using OS 

LES Load pointer using ES 

FLAG TRANSFER 
LAHF Load AH register from flags 
SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Figure 4a. Data Transfer Instructions 

MOVS Move,byte or word string 
INS Input bytes or word string 
OUTS Output bytes or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 
LOOS L.oad byte or word string 

STOS Store byte or word string 

REP Repeat 

REPElREPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not equal/not zero 

Figure 4t. String Instructions 

4-7 

ADDtnONv 

ADD Add byte or word 

ADC Add byte or word with carry 
INC Increment byte or word by 1 

AM ASCII adjust for addition 

OM Decimal adjust for addition 

,$UBTRACnON 

SUB Subtract byte or word , 
SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 
OAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 

IMUL Integer multiply byte or word 

MM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

MD ASCII adjust for division 

CBW Convert byte to word 

CWO Convert word to doubleword 

Figure 4b. Arithmetic Instructions 

,LOGICALS 

NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical/arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

ROTATES 
.ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Figure 4d. Shift/Rotate/logical Instructions 

AFN.()2()6()O 



IAPX 286/10 

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 
JAlJNBE Jump if above/not below nor equal CALL Call procedure 
JAE/JNB Jump if above or equal/not below RET Retum from procedure 
JBlJNAE Jump if below/not above nor equal JMP Jump 

~BElJNA Jump if below or equal/not above 

JC Jump if carry ITERATION CONTROLS 
JElJZ Jump if equall.zero 

JG/JNLE Jump if greater/not less nor equal LOOP Loop 

JGE/JNL Jump if greater or equal/not less LOOPEILOPPZ Loop if equal/zero 

JUJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero 

JLElJNG Jump if less or equal/not greater JCXZ Jump if registerCX = 0 
JNC Jump if not carry 
JNElJNZ Jump if not equal/not zero INTERRUPTS 
JNO Jump if not overflow 
JNP/JPO Jump if not parity/parity odd INT Interrupt 

JNS Jump if not sign INTO Interrupt if overflow 

JO Jump if overflow IRET Interrupt retum 
JP/JPE Jump if parity/parity even 
JS Jump if sign 

Figure 4e. Program Transfer Instructions 

FLAG OPERATIONS 
STC Set carry flag 
CLC Clear carry flag 
CMC Complement carry flag 

STD Set direction flag 

CLD Clear direction flag 

STI Set interrupt enable flag 
CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 
HLT Halt until interrupt or reset 
WAIT Walt for BlffiY not active 
ESC Escape to extension processor 
LOCK Lock bus during next instruction 

NO OPERATION 
NOP No operation 

EXECUTION ENVIRONMENT CONTROL 
LMSW I Load machine status word 
SMSW I Store machine status word 

Figure 4f. Processor Controllnsttuctions 

ENTER Format stack for procedure entry 
LEAVE Restore stack for procedure exit 
BOUND Detects values outside prescribed range 

Figure 4g. High Level Instructions 

4-8 

Memory Organization 
Memory is organized as sets of variable length seg­
ments. Each segment is a linear contiguous sequence 
of up to 64K (216) 8-bit bytes. Memory is addressed us­
ing a two-component address (a pointer) that consists 
of a 16-bit segment selector, and a 16-bit offset. The 
segment selector indicates the desired segment in 
memory. The offset component indicates the desired byte 
address within the segment. 

I 
31 

32-81T POINTER 
~ 

SEGMENT I OFF,SET I 
1615 0 

T 

~I"' 

OPERAND 
SELECTED 

J J 
'X.o 'X.o 

MEMORY 

SELECTED 
SEGMENT 

Figure 5. TWo Component Address 

AFN·02060D 



IAPX 288/10 

Table 3. Segment Register Selection Rules 

Memory Segment Register Implicit Segment . 
Reference Needed Used Selection Rule 

Instructions Code(CS) " Automatic witli instruction prefetch 
Steck Stack (SS) All stack pushes and pops. Any memory reference which uses BP as a 

base register. 
Local Data Data (OS) All data references except when relative to stack or string destination 
External (Global) Data Extra (ES) Alternate data segment and destination of string operation 

All instructions that address operands in memory must' 
specify the segment and the offset. For speed and com· 
pact instruction encoding, segment selectors are usu­
ally stored in the high speed segment registers. An 
instruction need specify only the desired segment reg­
ister and an offset in order to address a memory operand. 

Most instructions need not explicitly specify which seg­
ment register is used. The correct segment register is 
automatically chosen according to the rules of Table 3. 
These rules follow the way programs are written (see 
Figure 6) as independent modules that require areas for 
code and data, a stack, and access to extemal data areas. 

Special ,segment override instruction prefixes allow 
the Implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 
To access operands not residing in one of the four 
immediately available segments, a full 32-bit pointer 
or a new segment selector must be loaded. 

Addressing Modes 
The 80286 provides a total, of eight addressing modes 
for instructions to specify operands. Two addressing 
modes are provided for instructions that operate on reg­
ister or immediate operands: 

, Register Operand Mode: The operand is located in 
one of the 8 or 16-bit general registers. 

Immediate Operand Mode. The operand is included 
,in the instruction. 

Six modes are provided to specify the location of an op­
erand in a memo", segment. A'memory operand ad­
dress consists of two 16-bit components: segment 
selector and offset. The segment selector is supplied by 
a segment register either implicitly chosen by the ad­
dreSSing mode o~ explicitly chosen by a segment over­
ride prefix. The offset is calculated by summing any 
combination of the following three address elements: 

the displacement (an 8 or 16-bit immediate value 
contained in the instruction) 

the base (contents of either the BX or BP base 
registers) 

the Index (contents of either the SI or 01 index registers) 

4-9 

r---, 
I I 

MODULEA~ 
G 

MODULEB 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

I I 
I I 

CODE 

DATA 

I I 
I I 

I I 
I I 

~~:7D 
I I L ___ J 

MEMORY 

CPU 

L CODE 

L- DATA 

Ii 
STACK 

EXTRA 

SEGMENT 
REGISTERS 

Figure 6. Segmented Memory Helps 
Structure Software 

Any carry out from the 16-bit addition is ignored. Eight­
bit displacements are sign extended to 16-bit values. 

Combinations of these three address elements define 
the six memory addressing modes; described below. 

Direct Mode: The operand's offset is Contained in the 
instruction as an 8 or 16-bit displacement element. 

Register Indirect Mode: The operand's offset is in one 
of the registers SI, 01, BX, or BP. 

'Based Mode: The operand's offset is the sum of an 8 or 
16-bit displacement and the contents of a base register 
(BXor BP). '. 

AFN-G20600 



IAPX 286/10 

Indexed Mode: The operand's offset is the sum of an 8 
or 16-bit displacement and the contents of an index reg­
ister (SI or 01). 

Based Indexed Mode: The operand's offset is the sum 
of the contents of a base register and an index register. 

Based Indexed Mode with Displacement: The oper­
and's offset is the sum of a base register's contents, an 
index register's contents, and. an 8 or 16-bit displacement. 

Data Types 
The 80286 directly sup~or:ts the following data types: 
Integer: A signed binary numeric value con­

tained in an 8-bit byte or a 16-bit word. 
All operations assume a 2's comple­
ment representation. Signed 32 and 64-
bit integers are supported using the iAPX 
286/20 Numeric Data Processor. 

Ordinal: 

Pointer: 

String: 

ASCII: 

BCD: 

An unsigned binary numeric value con­
tained in an 8-bit byte or 16-bit w~rd. 

A 32-bit quantity, composed of a seg­
ment selector component and an offset 
component. Each component is a 16-bit 
word. . 

A contiguous sequence of bytes or 
words. A string may contain from 1 byte 
to 64K bytes. 

A byte representation of alphanumeric 
and control characters using the ASCII 
standard of character representation. 

A byte (unpacked) representation ofthe 
decimal digits 0-9. 

Packed BCD: A byte (packed) repr~sentation of two 
decimal digits 0-9 storing one digit in 
each nibble of the byte. 

Floating Point: A signed 32, 64, or 80-bit real number 
representation. (Floating point operands 
are supported using the iAPX 286/20 
NumericProcessor configuration.) 

Figure 7 graphically represents the data types sup­
ported by the iAPX 286. 

1/0 Space 
The I/O space consists of 64K 8-bit or 32K 16-bit ports. 
I/O instructions address the I/O space with either an 8-
bit port address, specified in the instruction, or a 16-bit 
port address in the OX register. 8-bit port addresses are 
zero extended such that A1S-Aa ~re LOW. I/O port ad­
dresses 00F8(H) throughOOFF(H) are reserved. 

4-;10. 

7 • 
SIGNED ITTTTTTTI 

BYTE LL-!.-.J 
SIGN BIT ~ l....---.:.J 

MAGNITUDE 

7 • 
UNSIGNED JTTTTTTT1 

BYTE L-:.-.J 
~ 
MAGNITUDE 

1514+ 1 87 0 0 

SI~=gll"I'ill'ill"'1 
SIGN BIT ~ ,-' L-"M"iis,;~AG;;;N;;;ITU;;;D;;;E'--..J 

SIGNED 31 +3 +2 1615 +1 0 

~~:~~ II iii iii Iii iii iii iii Iii i I II i I I' iii 
SIGN BITJ,LMSB I 

MAGNITUDE 

+7 +6 +5 +4 +3 +2 +1 
SIGNED 63 48 47 32 3t 1816 0 

~~';f.1I J I T I I J 
SIGN BITJ,L..'-..::M""SB:.-.--uMAG=N;;;IT;;;UDME;-------J' 

15 +1 0 

UNS~~~g C' I' "I' II I I I I I 
I Mae I 

MAGNITUDE 

BINARY 7 +N • 
CODED JTTTTTTT1 

DECIMAL L-:.-.J 
(BCD) D::'~f N 

7 +N 0 

ASCII~ 
ASCII 

. CHARACTER. 

+N 
PACKED frn-rr,,1 

BCD L..1..---l 
'---J 
MOST 
SIGNIFICANT DIGIT 

7115 +N 0 

STRING~ ••• 

BYTEIWORDN 

7 +1 07 0 

1'111"111111"1 I 
BCD BCD 

DIGIT 1 DIGIT 0 

7 +1 07 0 

lilillill"'IIi'1 
ASCII ASCII 

CHARACTER, CHARACTER • 

7 +1 0.7 0 0 

liiillill"'I'iI) 
'---J 
LEAST 

SIGNIFICANT DIGIT 

7115 +1 07/15 0 0 

lilllilll'll'i") 
BYTEIWORD 1 BYTElWORD 0 

31 +3 +2 1615 +1 0 

POINTER I' iii iii Iii' I iii Iii iii iii iii Iii i I 
I I I 

SELECTOR OFFSET 
79+9 +8 ,+7 +6 +5 +4 13 +2 +1 0 0 

EXPONENT MAGNITUDE 

·Supported by IAPX 286120 Numeric Data Processor Conflturatlon 

Figure 7. IAPX 286 Supported Data Types 

AFN-02060D 



IAPX286/10 

Table 4. Interrupt Vector Assignments 

Interrupt Related 
Does Return Address 

Function . Point W Instruction 
Number Instructions Causing Exception? 

Divide error exception 
Single step interrupt 
NMI interrupt 

Breakpoint interrupt 
INTO detected overflow exception 
BOUND range exceeded exception 
Invalid opcode exception 
Processor extension not available exception 

Intel reserved-do not use 
Processor extension error interrupt 
lintel reserved-do not use 

User defined 

Interrupts 
An interrupt transfers execution to a new program loca­
tion. The old program address (CS:IP) and machine state 
(Flags) are saved on the stack to allow resumption 
of the interrupted program. Interrupts fall into three 
classes: hardware initiated, INT instructions, and instruc­
tion exceptions. Hardware initiated interrupts occur 
in response to an external input and are classified 
as non-maskable or maskjlbla. Programs may cause 
an interrupt with an .lNT instruction. Instruction excep­
tions occur when an unusual condition, which pre­
vents further instruction processing, is detected while 
attempting to execute an instruction. The return ad­
dress from an exception will always point at the in­
struction causing the exception and include any leading 
instruction prefixes. 

A table containing up to 256 pointers defines the proper 
interrupt service routine for each interrupt. Interrupts 0-
31, some of which are used for instruction exceptions, 
are reserved. For each Interrupt, an 8-bit vector must be 
supplied to the 80286 which identifies the appropriate 
table entry. Exceptions supply the interrupt vector inter,­
nally. INT instructions contain or imply the vector and 
allow access to all 256 interrupts. Maskable hardware 
initiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. Non­
maskable hardware interrupts use a predefined inter­
nally supplied vector. 

MASKABLE INTERRUPT (INTR) 
The 80286 provides a maskable hardware interrupt re­
quest pin, INTR. Software enables this input by setting 

0 DIV,IDIV \ Yes 

1 All 

2 'INT 2 or NMI pin 

3 INT3 
4 INTO No 

5 BOUND Yes 

6 Any undefined opcode Yes 

7 ESC or WAIT Yes 

8-15 
16 ESC or WAIT 
17-31 
32-255 

4-11 

the interrupt flag bit (IF) in the flag word. All 224 user· 
defined interrupt sources can share this input, yet they 
can retain separate interrupt handlers. An 8-bit vector 
read by the CPU during the interrupt acknowledge se­
quence (discussed in System Interface section) identi­
fies the source of the interrupt. 

Further maskable interrupts are disabled while servic­
ing an interrupt by resetting the IF but as part of the 
response to an interrupt or exception. The saved flag 
word will refleCt the enable status of the processor prior 
to the interrupt. Until the flag word is restored to the flag 
register, the interrupt flag will be zero unless specifically 
set. The interrupt return instruction includes restoring 
the flag Word, thereby restoring the original status. of IF. 

NON-MASKABLE INTERRUPT REQUEST'(NMI) 
A non-maskable interrupt input (NMI) is also provided. 
NMI has higher priority than INTR. A typical use of NMI 
would be to activate a power failure routine. The activa­
tion of this input causes an interrupt with an internally 
supplied ve(;tor value of 2. No external interrupt ac­
knowledge sequence is performed. 

While executing the NMI servicing procedure, the 80286 
will service neither further NMI requests, INTR re­
quests, nor the processor extension segment overrun 
interrupt until an interrupt return (lRET) instruction is ex­
ecuted or the CPU is reset. If NMI occurs while currently 
servicing an NMI, its presence will be saved for servic­
ing after executing the first IRET instruction. IF is cleared 
at the beginning of an NMI interrupt to inhibit INTR 
interrupts. 

AFN·02060D 



IAPX286/10 

SINGLE STEP INTERRUPT 

The 80286 has an internal interrupt that allows pro­
grams to execute one instruction at a time .. ltis called the 
single step interrupt and is controlled by the single step 

. flag bit (TF) in the flag word. Once this bit is set, an inter­
nal single step interrupt will occur after the next instruc-
tion has been executed. Th,e interrupt clears the TF bit 
and uses an internally supplied vector of 1. The IRET 
instruction is used to set the TF bit and transfer control 
to the next instruction to be single stepped. 

Interrupt Priorities 
When simultaneous interrupt requests occur, they are 
processed in a fixed order as shown in Table 5 .. Interrupt 
processing involves saving the flags, return address, and 
setting CS:IP to point at the first instruction of the inter­
rupt handler. If other interrupts remain enabled they are 
processed before the first instruction of the current in­
terrupt handler is executed. The last interrupt processed 
is therefore the first one serviced. 

Table 5. Interrupt Processing Order 

Order Interrupt 

1 Instruction exception 

2 Single step 
3 NMI 
4 Processor extension segment overrun 
5 INTR 
6 INT instruction 

Initialization and Processor Reset 
Processor initialization or start up is accomplished by 
driving the RESET input pin HIGH. RESET forces the 
80286 to terminate all execution and local bus activity. 
No instruction or bus activity will occur as long as RE­
SET is active. After RESET becomes inactive and an 
internal processing interval elapses, the .60286 begins 
execution ,in real address mode with the instruction at 
physical location FFFFFO(H). RESET also sets some 
registers to predefined values as shown as shown in . 
Table 6. . 

Table 6. 80286 Initial Register State after RESET 

Fiag wOrd 0002(H) 
Machine Status Word FFFO(H) 
Instruction pointer FFFO(H) 
Code segment FOOO(H) 
Data segment OOOO(H) 
Extra segment OOOO(H) 
Stack segment' OOOO(H) 

Machine Status Word Description 
The machine status word (MSW) records when a task 
switch takes place and controls the operating mode of 
the 80286. It is a 16-bit register of which the lower four 
bits are used. One bit places the CPU into protected 
mode, while the other three bits, as shown in Table 7, 
control the processor extension interface. After RESET, 
this register contains FFFO(H) which places the 80286 
in iAPX 86 real address mode. 

Table 7. MSW Bit Functions 

Bit Name Function Position 
0 PE ~rotected mode !nable places the 

80286 into protected mode and can 
not be cleared except by RESET. 

1 MP Monitor Qrocessor extension al-
lows WAIT instructions to cause a 
processor extension not present 
exception (number 7). 

2 EM Emulate processor extension 
causes a processor extension not 
present exception (number 7) on 
ESC instructions to allow emulat-
ing a processor extension. 

3 TS Iask l!.witched indicates the. next 
instruction using a processor ex-
tension will cause exception 7, al-
lowing software to test whether the 
current processor extension con-
text belongs to the current task. 

The LMSW and SMSW instructions can load and store 
the MSW in real address mode. The recommended use 
of TS, EM, and MP is shown in Table 8. 

Table 8 Recommended MSW Encodings For Processor Extension Control' 

Instructions 
TS MP EM Recommended Use Causing, 

EXc8!)tion 7 

0 0 0 Initial encoding after RESET. iAPX 286 operation is identical to ' None. 
iAPX 86,88. . . 

0 0 1 '. No processor eXtension is available. Software will emulate its function. ESC 
1 0 1 No processor extension is available. Software will emulate its function. The current ESC 

processor extension context may belong to another task. . 
0 1 0 A processor extension exists. None 
1 1 0 A processor extension exists. The current processor extension context may belong to ESC or 

another task. The Exception 71 on WAIT allows software to test for an error pending WAIT 
from a previous processor extenSion operation, 

4-12 AFN-02060D 



IAPX 286/10 

Halt 
The HLT instruction stops program execution and pre­
vents the CPU from using the local bus until restarted. 
Either NMI, INTR with IF = 1, or RESET will force the 
80286 out of halt. If interrupted, the saved CS:IP will 
point to the next instruction after the HLT. 

iAPX 86 REAL ADDRESS MODE 
The 80286 executes a fully upward-compatible superset 
of the 8086 instruction set in real address mode. In real 
address mode the 80286 is object code compatible with 
8086 and 8088 software. The real address mode archi­
tecture (registers and addressing modes) is exactly as 
described in the iAPX 286/10 Base Architecture section 
of this Functional Description. 

Memory Size 
Physical memory is a contiguous array of up to 
1,048,576 bytes (one~abyte) addressed by pins 
Ao through A19 and BHE. A20 through A23 may be 
ignored .• 

Memory Addressing 
In real address mode physical memory is a contiguous 
array of up t'1 1,048,576 bytres (one megabyte) addressed 
by pins Ao through A19 and SHE. A20 through A23 may be 
ignored. 

The selector portion of a pointer is interpreted as the 
upper 16 bits of a 20-bit segment address. The lower 
four bits of the 20-bit segment address are always zero. 
Segment addresses, therefore, begin on multiples of 16 
bytes. See Figure 8 for a graphic representation of ad­
dress formation. 

All segments in real address mode are 64K bytes in size 
and may be read, written, or executed. An el\ception or 
interrupt can occflr if data operands or instructions at­
tempt to wrap around the end of a segment (e.g. a word 
with its low order byte at offset FFFF(H) and its high 
order byte at offset OOOO(H)). If, in real address mode, 
the information contained in a segment does not use the 
full 64K bytes, the unused end of the segment may be 
overlayed by another segment to reduce physical mem­
ory requirements. 

Reserved Memory Locations 
The 80286 reserves two fixed areas of memory in real 
address mode (see Figure 9); system initialization area 
and interrupt table area. Locations from addresses 
FFFFO(H) thorugh FFFFF(H) are reserved for system 
initialization. Initial execution begins at location FFFFO(H). 
Locations OOOOO(H) through 003FF(H) are reserved for 
interrupt vectors. 

4-13 

15 0 

I I I OFFSET 
... OOOO_..JI--__ O_F_FS_E_T __ ... ADDRESS 

...-........... 

~ 0 

20-BIT PHYsiCAL 
MEMORY ADDRESS 

SEGMENT 
ADDRESS 

Figure 8. IAPX 86 Real Address Mode Address 
Calculation 

~~ 

~~ 

RESET BOOTSTRAP 
PROGRAM JUMP 

· · · 
INTERRUPT POINTER 

FOR VECTOR 255 

· · · 
INTERRUPT POINTER 

FOR VECTOR 1 

INTERRUPT POINTER 
FOR VECTOR 0 

~~ 

~~ 

FFFFFH 

FFFFOH 

3FFH 

3FCH 

7H 

4H 
3H 

OH 

,INITIAL CS:IP VALUE IS FOOO:FFFO. 

Figure 9. iAPX 86 Real Address Mode Initially 
Reserved Memory Locations 

AFN-02060D 



IAPX 286/10 

Table 9. Real Address Mode Addressing interrupts 

Function Interrupt Related Return Address 
. Number Instructions Before Instruction? 

Interrupt table limit too small exception 8 INT vector is not within table limit Yes 

Processor extension segment overrun 9 ESC with memory operand extend· No 
interrupt ' ing beyond offset FFFF(H) I 

Segment overrun exception 13 Word memory reference with offset Yes 
= FFFF(H) or an attempt to exe· 
cute past the end of a segment 

Interrupts' 
Table 9 shows the interr,upt vectors reserved for excep­
tions and interrupts which indicate an addressing error. 
The exceptions leave the CPU in the state existing be­
fore attempting to execute the failing instruction (except 
for PUSH, POP, PUSHA,or POPA). Refer to the next 
section on protected mode initialization for a discussion 
on exception 8. 

Protected Mode Initialization 
To prepare the 80286 for protected mode, the LlDT in­
struction is used to load the 24-bit interrupt table base 
and 16-bit limit for the protected mode interrupt table. 
This instruction can also set a base and limit for the in­
terrupt vector table in real address mode. After reset, 
the interrupt table base is in.itialized to'OOOOOO(H) and 
its size set t003FF(H). These values are compatible 
with iAPX 86, 88 software. LlDT should only be exe­
cuted in preparation for protected mode. 

Shutdown 
Shutdown occurs when a severe error is detected that' 
prevents further instruction processing by the CPU. 
Shutdown arid halt are externally signalled via a halt bus 
operation. They can be distinguished by A1 HIGH for halt 
and A1 LOW for shutdown. In real address mode, shut­
down can occur under two conditions: 

• Exceptions 8 or 13 happen and the lOT limit does not 
include the interrupt vector. 

• A CALL INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 

An NMI input can bring the CPU out of shutdown if the 
lOT limit is at least OOOF(H) and 'SP is greater than 
0005(H), otherwise shutdown can only be exited via the 
RESET input. . 

PROTECTED VIRTUAL ADDRESS MODE 
The 80286 executes a fully upward-compatible superset 
of the 8086 instruction set in protected virtual address 
mode (protected mode). Protected mode also provides 
memory management and protection mechanisms and 
associated instructions. 

The 80286 enters protected virtual address mode from 
real address mode by setting the PE (Protection En­
able) bit of the machine status word with the Load Ma­
chine Status Word (LMSW) instruction. Protected mode . 
offers extended physical and virtual memory address 
space, memory protection mechanisms, and new oper­
ations to support operating systems and virtual memory. 

All registers, instructions, and addressing modes de­
scribed in the iAPX 286/10 Base Architecture section of 
this Functional Description remain the same. Programs 
for the iAPX 86, 88, 186, and real address mode 80286 
can be run in'protected mode; however, embedded con­
stants for segment selectors are different. 

Memory Size 
The protected mode 80286 provides a 1 gigabyte virtual 
address space per task mapped into a 16 megabyte 
physical address space defined by the address pins A23-
Ao and SHE. The virtual address space may be larger 
than the physical address space since any use of an 
address that does not map to a physical memory loca­
tion will cause a restartable exception. 

Memory AddtessiAg 
As in real address mode, protected mode uses 32-bit 
pointers,. consisting of 16-bit selector and offset com­
ponents. The selector, however, speci(ies an index into 
a memory resident table rather than the upper 16-bits of 
a real memory address. The 24-bit base address of the 

. AFN-02060D 



IAPX 288/10 

desired segment is obtained from the tables in memory. 
The H)-bit offset is added to the segment base address 
to form the physical address as shown in Figure 10. The 
tables are automatically referenced by the CPU when­
ever a segment register is loaded with a selector. All 
iAPX 286 instructions which load a segment register will 
reference the memory based tables without additional 
sOftware. The memor1y based tables contain 8 byte val­
ues called descriptors. 

DESCRIPTORS 

Descriptors define the use of memory. Special types of 
descriptors also define new functions for transfer of con­
trol and task switching. The 80286 has segment de­
scriptors for code, stack and data segments, and syste~ 
control descriptors for special system data segments and 
control transfer operations. Descriptor accesses are 
performed as locked bus operations to assure descrip­
tor integrity in multi-processor-systems. 

CPU 

=\-
I SEGMENT 

SEGMENT DESCRIPTOR 
DESCRIPTOR TABLE 

CODE AND DATA SEGMENT DESCRIPTORS (S = 1) 
Besides segment base addresses, code and data de­
scriptors contain other segment attributes including 
segment size (1 to 64K bytes), access rights (read only, 
read/write, execute only, and execute/read), and pres­
ence in memory (for virtual memory systems) (See Fig~ 
ure 11). Any segment usage violating a segment attribute 
indicated by·the segment descriptor will prevent the 
memory cycle and cause an exception or interrupt. 

Code or Data Segment Descriptor 

07 

+7 INTEL RESERVED' +8 

PIDPLjsl TYPE H BASEn-1. +4 

+3 BASE1~ +2 

+1 UMIT1s..G o 

" .7 
Figure 10. Protected Mode Memory Ad~ressln~ -Muot be oot to 0 far .-potoblilly with IAPX 388. 

Access Rights Byte Definition 

Bit Name Function > 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory. , 
P=O No mapping to physical memory exists, ba~ and limit are not used. 

6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL). 

4 Segment Descrip- 5 = 1 Code or Data (includes stacks), segment descriptor 
tor (5) 5=0 System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Data segment descriptor type is: }" 2 Expansion Direc- EO = 0 Expand up segment, offsets must be ~ limit. 
=ment tion (ED) ED;' 1 Expand down segment, offsets must be > limit. 

1 Writeable (W) W = 0 Data segment may not be written into. (S = 1, 

W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Codo Sogm"" """lpIo< typo., J " 
2 Conforming (C) C = 1 Code segment may only be executed when CPL ~ DPL' gocte ant 

and CPL remains unchanged. ' " egm ' 

1 Readable (R) R=O Cd' t tb d (S=1, o e segmen may no • e rea . 'E _ 1) 
R-1 'Code'segment may be read. -

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register or used 

by selector test instructions, 

Figure 11. Code, and Data Segment Descriptor Formats 

4-15 AFN·02060D 



IAPX286'i10 

Code and data (including stack data) are stored in two 
types of segments: code segments and data segments. 
Both types are identified and defined by segment descrip­
tors (S = 1). Code segments are identified by the execu­
table (E) bit set to 1 in the descriptor access rights byte. The 
!}ccess rights byte of both code and data segment descrip­
tor types have three fields in common: present (P) bit, 
Descriptor Privilege Level (DPL) , and accessed (A) bit. 
If P = 0, any attempted use of this segment will cause 
a not-present exception. DRL specifies the privilege level 
of the segment descriptQr. DPL controls when the descrip­
tor may be used by a task (refer to privilege discussion 
below). The A bit shows whether .the segment has been 
previously accessed for usage profiling, a necessity for 
virtual memory systems. The CPU will always set this bit 
when accessing the descriptor. 

Data segments (S = 1 , E = 0) may be either read-only or 
read-write as controlled by the W bit of the access rights 
byte. Read-only (W = 0) data segments may not be writ­
ten into. Data segments may grow in two directions, as 
determined by the Expansion Direction (ED) bit: up­
wards (ED = 0) for data segments, and downwards 
(ED = 1) for a segment containing a stack. The limit field 
for a data segment descriptor is interpreted differently 
depending on the ED bit (see Figure 11). 

A code segment (S=1, E=1) may be execute-only 
or execute/read as determined by the Readable (R) 
bit. Code segments may never be written into and 
execute-only code segments (R=O) may not be read. 
A code segment may also have an attribute called 
conforming (C). A conforming code segment may be 
shared by programs that execute at different privi­
lege levels. The DPL of a conforming code segment 
defines the range of privilege levels at which the 
segment may be executed (refer to privilege discus­
sion belOW). The limit field identifies the last byte of 

, a code segment. 

SYSTEM SEGMENT DESCRIPTORS (S = 0, TYPE = 1-3) 
In addition to code and data segment descriptors, the pro­
tected mode 80286 defines System Segment Descriptors. 
These descriptors define speCial system data segments 
which contain a table of descriptors (Local Descriptor 
Table Descriptor) or segments which contain the execu­
tion state of a task (Task State Segment Descriptor). 

Rgure 12 gives the formats for the special system data 
segment descriptors. The descriptors contain a 24-bit 
base address of the segment and a 16-bit limit. The 
access byte defines the type of descriptor, its state and 
privilege level. The descriptor contents are valid and the 
segment is in physical memory if P = 1. If P = 0, the 
segment is not valid. The DPL field is only used in Task 
State Segment descriptors and indicates the privilege 
level at which the descriptor may be used (see Privilege). 
Since the Local DescriptorTable descriptor may only be 
used by a special privileged instruction, the DPL field is 
not used. Bit 4 of the access byte is 0 to indicate that it 

System Segment DeSCriptor 
• 7 

+7 INTEL _ERYED" +6 

+5 pl DPLJol i nr~l BASEoo-.. +4 

+3 BAS~15-0 +2 

, +1 UMIT, .... 

,. • 7 

"Muot be HI to a lor _,"bUlly wtth IAPX 318. 

System Segment Descriptor Fields 
Name Value Description 
TYPE 1 Available Task State Segment (TSS) 

2 Local Descriptor Table 
3 Busy Task State Segment (TSSI 

P 0 Descriptor contents are not valid 
1 DeSCriptor contents are valid 

DPL 0-3 DeSCriptor Privilege Level 
BASE 24-bit Base Address of special system data 

number segment in real memory 
LIMIT 16-bit Offset of last byte in segment 

number 

Figure 12. System Segment Descriptor Format 

is a system control descriptor. The type field specifiee 
the descriptor type as indicated in Figure 12. 

GATE DESCRIPTORS (S = 0, TYPE = 4-7) 

Gates are used to control access to entry points within 
the target code segment. The gate' descriptors are call 
gates, task gates, interrupt gates and ~ gates. Gates 
provide a level of indirection between the source and 
destination of the control transfer. This indirection allows 
the OPU to automatically perform protection checks and 
control entry point of the destination. Call gates are used 
to change privilege levels (see Privilege), task gates are 
used to perform a task switch, and interrupt and trap 
gates are used to specify interrupt service routines. The 
interrupt gate disables interrupts (resets IF) while the 
trap gate does not. 

Figure 13 shows the format of the gate descriptors. The 
descriptor contains a destination pointer that pOints to 
the descriptor of the target segment and the entry point 
offset. The destination selector in an interrupt gate, trap 
gate, and call gate must refer to a code segment de­
scriptor. These gate descriptors contain the entry pOint 
to prevent a program frotn constructing and using an 
illegal entry pOint. Task gates may only refer to a task 
state segment. Since task gates invoke a task switch, 
the destination offset is not used in the task gate. 

4-16 

Exception 13 is generated when the gate is used if a 
destination selector does not refer to the correct de-

AFN-020600 



IAPX 286/10 

Gate Descriptor 

07 

+7 INTEL RESERVED' +6 

+5 PIDPLIOI TYPE Ix x xl ~g~,\;4-0 +4 

+3 DESTlNAnON SELECTOR'5-' IXX +2 

+1 DESnNATION OFFSET ,5-0 ,. • 7 

'Mull be .ot to 0 lor _"'bliity wllt1lAPX 388. (X I. don'\ clrl) 

Gate Descriptor Fields 
Name Value Description 

4 -Call Gate 

TYPE 5 -Task Gate 
6 -Interrupt Gate 
7 -Trap Gate 

P 0 -Descriptor Contents-are not 
valid 

1 -Descriptor Contents are 
valid 

DPL 0-3 Descriptor Privilege Level 
WORD Number of words to copy 
COUNT 0-31 from callers stack to called 

procedures stack. Only used 
with call gate. 
Selector to the target code 

DESTINATION 16-bit segment (Call, Interrupt or 

SELECTOR selector Trap Gate) 
Selector to the target task 
state segment (Task Gate) 

DESTINATION 16-bit Entry point within the target 
OFFSET offset code segment 

Figure 13. Gate Descriptor Format 

scriptor type. The word count field is used in the call gate 
descriptor to indicate the number of parameters (0-31 
words) to be automatically copied from the caller's stack 
to the stack of the called routine when a control transfer 
changes privilege levels. The word count field is not used 
by any other gate descriptor. 

The access byte format is the same for all gate descrip­
tors. P = 1 indicates that the gate contents are valid. P 
= 0 indicates the contents are not valid and causes ex-

ception 11 if referenced. DPL is the descriptor privilege 
level and specifies when this descriptor may be used by 
!l task (refer to privilege discussion below). Bit 4 must 
equal 0 to indicate a system control descriptor. The type 
field specifies the descriptor type as indicated in Figure 
13. 

SEGMENT DESCRIPTOR CACHE REGISTERS 

A segment descriptor cache register is assigned to each 
of the four segment registers (CS, SS, OS, ES). Segment 
descriptors are automatically loaded (cached) into a seg­
ment descriptor cache register (Figure 14) whenever the 
associated segment register is loaded with a selector. 
Only segment descriptors may be loaded into segment 
descriptor cache registers. Once loaded, all references 
to that segment of memory use the cached descriptor 
information Instead of reaccessing the descriptor. The 
descriptor cache registers are not visible to programs. 
No instructions exist to store their contents. They only 
change when a segment register is loaded. 

SELECTOR FIELDS 

A protected mode selector has three fields: descriptor 
entry index, local or global descriptor table indicator (TI), 
and selector privilege (RPL) as shown in Figure 15. These 
fields select one of two memory based tables of descrip­
tors, select the appropriate table entry and allow high· 
speed testing of the selector's privilege attribute (refer 
to privilege discussion below). 

SELECTOR 

II INDEX 
! ! , ! , 

15 3 2 1 0 

BITS NAME FUNcnON 

1-0 REQUESTED INDICATES SELECTOR PRIVILEGE 
PRIVILEGE LEVEL DESIRED 
LEVEL 
(RPL) 

2 TABLE n = 0 USE GLOBAL DESCRIPTDR TABLE 
INDICATOR (GDT) 
(TI) TI = 1 USE LOCAL DESCRIPTOR TABLE 

(LDT) 

15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE 

Figure 15. Selector Fields 

PRoGRAM VISIBLE r - - -- - - - - - ";.R'oGR;M;V-;;I;Li" - - - - - - - ---, 

I I 
I ~~g~~ SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE SEGMENT SELECTORS 

~~ i I I I 
15 0 I 47 40 39 16 15 

SEGMENT REGISTERS I SEGMENT DESCRIPTOR CACHE REGISTERS I 
(LOADED BY PROGRAM) L ______ (~~~~CA~L: ~~~B~ c~ _________ J 

Figure 14. Descriptor Cache Registers 

4-17 AFN-02060D 



IAPX 286/10 

LOCAL AND GLOBAL DESCRIPTOR TABLES 
Two tables of descriptors. called descriptor tables. con­
tain all descriptors accessible by a task at any given time. 
A descriptor table is a linear array of up to 8192 descrip­
tors. The upper 13 bits of the selector value are an index 
into a· descriptor table. Each table has a 24-bit base reg­
ister to locate the descriptor table in physical memory 
and a 16-bit limit register that confine descriptor access 
to the defined limits of the table as shown in Figure 16. A 
restartable exception (13) will occut if an attempt is made 
to reference a descriptor outside the table limits. 

One table. called the Global Descriptor Table (GOT). 
contains descriptors available to all tasks. The other ta­
ble. called the Local Descriptor Table (LOT). contains 
descriptors that can be private to a task. Each task may 
have its own private LOT. The GOT may contain all de­
scriptor types except interrupt and trap descriptors. The 
LOT may contain only segment. task gate. and call gate 
descriptors. A segment cannot be accessed by a task if 
its segment descriptor does not exist in either descriptor 
table at the time of access. 

"V MEMORY "V 

Figure 16. Local and Global Descriptor 
Table Definition 

The LGDT and LLDT instructions load the base and limit 
of the global and local descriptor tables. LGDT and LLDT 
are privileged, i.e. they may only be executed by trusted 
programs operating at level O. The LGDT instruction loads 
a six byte field containing the 16·bit table limit and 24·bit 
physical base address of the Global Descriptor Table as 
shown in Figure 17. The LDT instruction loads a, sele,ctor 
which refers to a Local Descriptor Table descriptor con· 
taining the base address and limit for an LDT, as shown 
in Figure 12. 

o 7 

+5 INTEL RESERVED' I BASE23-16 +4 

+3 BASE15-o +2 

+1 LlM1T'5-0 

15 • 7 

*Must be s.t to 0 for compatibility with IAPX 386. 

Figure 17. Global Descriptor Table and Interrupt 
Descriptor Table Data Type 

INTERRUPT DESCRIPTOR TABLE 

The protected mode 80286 has a third descriptor table, 
called the Interrupt Descriptor Table (IDT) (see Figure 
18), used to define up to 256 interrupts. It may contain 
only task gates. interrupt gates and trap gates. The IDT 
(Interrupt Descriptor Table) has a 24·bit physical base 
and 16-bit limit register in the CPU. The privileged LlDT 
instruction loads these registers with a six byte value, of 
identical form to that of the LGDT instruction (see Figure 
17 and Protected Mode Initialization). 

CPU 

J 15 0 
..---
IIDTLIMIT 

I 
lOT BASE 

23 0 

"\.. MEMORY '\, r 
t" 

GATE FOR 
INTERRUPT #n 

GATE FOR 
INTERRUPT #n·1 

· · · 
GATE FOR 

. INTERRUPT #1 

GATE FOR 
INTERRUPT #0 

~ ~ 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

Figure 18. Interrupt Descriptor Table Definition 

References to lOT entries are made via INT instruc-' 
tions, external interrupt vectors. or exceptions. The lOT 
must be at least 256 bytes in size 40 allocate space for 
all reserved interrupts. 

Privilege 
The 80286 has a four-level hierarchical privilege system 
whiCh controls the use of privileged instructions and ac­
cess to descriptors (and their associated segments) within 
a task. Four-level privilege, as shown in Figure 19. is an 
extension of the user/supervisor mode commonly found 
in minicomputers. The privilege levels are numbered 0 
through 3. Level 0 is the most privileged level. Privilege 

4-18 AFN-02060D 



IAPX 286/10 

HIGH SPEED 
OPERATING 
SYS1Ell 
INTeRFACE 

NarE: PI. BECOMES NUMERICALLY LOWER AS PRMLEGE LEVEl 
INCRUSESI 

Figure 19. Hierarchical Privilege Levels 

levels provide protection within a task. (Tasks are isolated 
by providing private LOT's for each task.) Operating 
system routines, interrupt handlers, and other system soft­
ware can be included and protected within the virtual 
address space of each task using the four levels of privi­
lege. Each task in the system has a separate stack for 
each of its privilege levels. 

Tasks, descriptors, and selectors have a privilege level 
attribute that determines whether the descriptor may be 
used. Task privilege effects the use of instructions and 
descriptors. Descriptor and selector privilege only effect 
access to the descriptor. 

TASK PRIVILEGE 

A task always executes at one of the four privilege 
levels. The task ptivilege level at any specific instant 
is callep the Current Privilege Level (CPL) and is 
defined by the lower two bits of the CS register. CPL 
cannot change during execution in a single code seg­
ment. A task's CPL may only be changed by control 
transfers through gate descriptors to a new code 
segment (See Control 'Transfer). Tasks begin executing 
at the CPL value specified by the code segment selec­
tor within TSS when the task is initiated via a task 
switch operation (See Figure 20). A task executing at 
Level 0 can access all data segments defined in the 
GOT and the task's LOT and is considered the most 
trusted level. A task executing a Level 3 has the most 
restricted access to data and is conSidered the least 
trusted level. 

DESCRIPTOR PRIVILEGE 
Descriptor privilege is specified by the Descriptor Privi-

lege Level (DPL) field of the descriptor access byte. DPL 
specifies the least trusted task privilege level (CPL) at 
which a task may access the descriptor. Descriptors with 
DPL = 0 are the most protected. Only tasks executing 
at privilege level 0 (CPL = 0) may access them. De~ 
scriptors with DPL = 3 are the least protected (i.e. have 
the least restricted access) since tasks can access them 
when CPL = 0, 1,2, or 3. This rule applies to all descrip­
tors, except LOT descriptors. 

SELECTOR PRIVILEGE 
Selector privilege is specified by the Requested Privi­
lege Level (RPL) field in the least significant two bits of a 
selector. Selector RPL may establish a less trusted priv­
ilege level than the current privilege level for the use of a 
selector. This level is called the task's effective privilege 
level (EPL). RPL can only reduce the scope of a task's 
access to data with this selector. A task's effective privi­
lege is the numeric maximum of RPL and CPL. A selec­
tor with RPL = 0 imposes no additional restriction on its 
use while a selector with RPL = 3 can only refer to seg­
ments at privilege Level 3 regardless of the task's CPL. 
RPL is generally used to verify that pointer parameters 
passed to a more trusted procedure are not allowed to 
use data at a more privileged level than the caller (refer 
to pointer testing instructions). 

Descriptor Access and Privilege Validation 
Determining the ability of a task to access a segment 
involves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL, 
RPL, and DPL. The two basic types of segment ac­
cesses are control transfer (selectors loaded into CS) 
and data (selectors loaded into OS, ES or SS). 

DATA .SEGMENT ACCESS 
Instructions that load selectors into OS and ES must 
refer to a data segment deSCriptor or readable code seg­
ment descriptor. The CPL of the task and the RPL of the 
selector must be the same as or more privileged (nu­
merically equal to or lower than) thap the descriptor DPL. 
In general, a task can only access data segments at the 
same or less privileged levels than the CPL or RPL 
(whichever is numerically higher) to prevent a program 
fro~ accessing data it cannot be trusted to use. 

An exception to the rule is a readable conforming code 
segment. This type of code segment can be read from 
any privilege level. 

If the privilege checks fail (e.g. DPL is numerically less 
than the maximum of CPL and RPL) or an incorrect type 
of descriptor is referenced (e.g. gate descriptor or exe­
cute only code segment) exception 13 occurs. lithe seg­
ment is not present, exception 11 is generated: ' 

4-19 AFN-020600 



'w_r 
.~ .. lAPX286/10 

Instruotions that load selectors into SS must refer to data 
segrnent descriptors for writable data segments. The 
descriptor privilege (D~L) and RPL must equal CPL. All 
other descriptor types or a privilege level violation will 
cause exception 13. A not present fault causes excep­
tion 12. 

CONTROL TRANSFER 

Four types of control transfer can occur when a selector 
i,; loaded into CS by a control transfer operation (see 
Table 10). Each transfer type can only occur ifthe o~er­
ation which loaded the selector references the correct 
descriptor type. Any violation of these descriptor usage 
rlJles (e.g. JMPthrough a call gate or RETto a Task State 
Segment) will cause excep!ion 13. 

llhe ability to reference a descriptor for control transfer 
il; also subject to rules of privilege. A CALL or JUMP 
instruction may only reference a code segment descrip­
tor with DPL equal to the task CPL or a conforming seg­
ment with DPL of equal or greater privilege than CPL. 
The RPL of the selector used to reference the code de­
scriptor must have as much privilege as CPL. 

RET and IRET instructions may only reference code 
segment descriptors with descriptor privilege equal to or 
less privileged than the task CPL. The selector loaded 
into CS is the return address from the stack. After the 
return, the selector RPL is the task's new CPL. If CPL 
changes, the old stack pOinter is popped after the return 
address. 

When a JMP or CALL references a Task State Segment 
descriptor, the descriptor DPL must be the same or less 
privileged than the task's CPL. Reference to a valid Task 

State Segm,ent descriptor causes a task switch (see Task 
Switch' Operation). Reference to a Task State Segment 
descriptor at a more privileged level than the task's CPL 
generates exception 1:3~ 

When an instruction or interrupt references a gate de­
scriptor, the gate DPL must have the same' or less privi­
lege than the task CPL. If DPL is at a more privileged 
level than CPL, exception ,13 occurs, If the destination 
selector co,ntained in the gate references a code seg­
ment descriptor, the code segment descriptor DPL must 
be the same or more privileged than the task CPL. If not" 
Exception 13 is issued. After the control transfer, the 
code segment descriptors DPL is the task's new CPL. If 
the destination selector in the gate references a task 
state segment, a task switch is automatically performed 
(see Task Switch qperation). 

The privilege rules on"control transfer require: 
-JMP or CALL direct to a code segment (code seg­

ment descriptor) can only be to a conforming segment 
with DPL of equal or greater privilege than CPL or a 
non-conforming segmel')t at the same privilege level. 

-interrupts within the task or calls that may change 
privilege levels, can only transfer control through a 
gate at the same or a less privileged level than CPL to 
a code segment at the same or more privileged level 
thanCPL. 

-return instructions that don't switch tasks can only re­
turn control to a code segment at the same or less 
privileged level. 

-task switch can be performed by a call, jump or inter­
rupt which references either a task gate or task state 
segment at the same or less privileged level. 

Table 10. Descriptor Types Used for Control Transfer 

Control Transfer lYpes 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level Interrupt 
within task may change CPL. 

Intersegment to a lower privilege level (changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag word) = 0 
"NT (Nested Task bitofflag word) = 1 

I 

Operation lYpes 

JMP, CALL, RET, IRET' 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IREr 

CALL,JMP 

CALL,JMP 

IRET" 
Interrupt Instruction, 
Exception, External 
Interrupt 

4-20 

Descriptor Descriptor 
Referenced Table 
Code Segment GOT/LOT 

Call Gate GOT/LOT 

Trap or lOT 
Interrupt 
Gate 

Code Segment GOT/LOT 

Task State GOT 
Segment 

Task Gate GOT/LOT 

Task Gate lOT 

AFN·02060D 



IAPX288/10 

PRIVILEGE LEVEL CHANGES 
Any control transfer that changes CPL within the task, 
causes a change of stacks as part ofthe operation. Initial 
values of 55:5P for privilege levels 0, 1, and 2 are kept 
in the task state segment (refer to TaSk Switch Opera­
tion). During a JMP or CALL control transfer, the new 
stack pointer is loaded into the 55 and 5P registers and 
the previous stack pOinter is pushed onto the new stack. 

When returning to the original privilege level, its stack is 
restored as part of the RET or IRET instruction opera­
tion. For subroutine calls that pass parameters on the 
stack and cross privilege levels, a fixed number of words, 
as specified in the gate, are copied from the previous 
stack to the current stack. The inter-segment RET in­
struction with a stack adjustment value will correctly re­
store the previous stack pOinter upon return. 

Protection 
The 80286 includes mechanisms to protect critical in­
structions that affect the CPU execution state (e.g. HLn 
and code or data segments from improper usage. These 
protection mechanisms are grouped into three forms: 

Restricted usage of segments (e.g. no write allowed 
to read-only data segments). The only segments 
available for use are defined by descriptors in the Lo­
cal Descriptor Table (LOT) and Global Descriptor Tac 
ble(GDT). . 

Restricted ~ to. segments via the rules of privi­
lege and descriptor usage. 

Privileged instructions or operations that may only be 
executed at certain privilege levels as determined by 
the CPL and 110 Privilege Level (IOPL). The 10PL is 

- defined by bits 14and 130ftheflag word. 

These checks are performed for all instructions and can 
be split into three categories: segment load checks (Ta­
ble 11), operand reference checks (Table 12), and privi­
leged instruction checks (Table 13). Any violation of the 
rules shown will result in an exception. A not-present 
exception related to the stack segment causes excep­
tion 12. 

The IRET and POPF instructions do not perform some of 
their defined functions if CPL is noJ of sufficient privilege 
(numerically small enough). Precisely these are: 

• The IF bit is not changed if CPL > IOPL 
• _The IOPL field ofthe flag word is not changed if CPL > O. 

No exceptions or other indication are given when these 
conditions occur. 

Table 11 
Segment Register Load Checks 

Error Description Exception 
Number 

Descriptor table limit exceeded 13 
Segment deSCriptor not-present 11 or 12 
Privilege rules violated 13 

Invalid descr'iptorlsegment type seg-
ment register load: 

-Read only data segment load to 
SS 

-Special control descriptor load to 
OS,ES,SS 13 

-Execute only segment load to 
OS, ES, SS 

-Oata segment load to CS 
-Read/Execute code segment 

loadtoSS 

Table 12 Operand Reference Checks 

Error Description Exception 
Number 

Write into code segment 13 
Read from execute-only code 
segment 13 
Write to read-only data segment 13 
Segment limit exceedEld' 120r13 

Note 1: Carry out in offset calculations is ignored. 

Table 13. Privileged Instruction Checks 

Error Description Exception 
Number 

CPL oF 0 when executing the following 
instructions: 13 

LlOT, LLOT, LGOT, LTR, LMSW, 
CTS,HLT 

CPL > IOPL when executing the fol-
lowing instructions: 

INS, IN, OUTS, OUT, STI, CLI, 
13 

LOCK 

EXCEPTIONS 
The 80286 detects several types of exceptions and inter­
rupts, in protected mode (see Table 14). Most are restart­
able after the exceptional condition is removed. Interrupt 
handlers-for most exceptions can read an error code, 
pushed on the stack after the return address, that identi­
fies the selector involved (0 if none). The return address 
normally points to the failing instruction, including all 
leading prefixes. For a processor extension segment over­
run exception, the return address will not point .at the 
ESC instruction that caused the exception; however, the 
processor extension registers may contain the address 
of the failing instruction. 

! . 

4-21 AFN-Q2060D 

) -

---'-_ ... _-_... . .--. _.-._ .. 



..... _P ... ...,. .. IAPX '2861 10 

Table 14 Protected Mode Exceptions 
Return Always Error Interrupt Function Address Restart- Code Vectqr . Atr=alUng able? on Stack? Instruction? 

8 Double exception detected Yell N02 Yes 
9 Processor extension segment oVerrun No N02 No 

10 Invalid task state segment 'Yes Yes Yes 
11 Yes Yes Yes Segment not present 
12 Stack segment overrun or stack segment not present Yes Yes1 Yes 
13 General protection Yes N02 Yes 

NarE 1: When a PUSHA or POPA instruction attempts to wrap around the Slllck segment, the machine state after the 
exception JNiIl not be restartable because stack segment wrap around is not permitted. This condition is identified 
by the value of the saved SP being eighe[ OOOO(H), 0001 (H), FFFE(H),. or FFFF(H). .' 

HarE 2: These exceptions Indicate a violation to privilege rules or usage rules has occurred. Restart is generally not 
attempted under those conditions. 

These exceptions indicate a violation to privilege rules 
or usage rules has occurred. Restart is generally not 
attempted under those conditions. 

All these checks are performed for all Instructions and 
can be split into three categories: segment load checks 
(Table 11), operand reference checks (Table 12), and 
privileged instruction checks (Table 13). Any violation 
of the rules shown will result in an exception. A 
not-present exception causes exception 11 or 12 and 
is restartable. . . 

Special Operations 
TASK SWITCH OPERATION 
The 80286 provides a built-in task switch operation which 
saves the entire 80286 execution state (registers, ad­
dress space, and a link to the previous task), loads a 
new execution state, and commences execution in the 
new' task. Like gates, the task switch operation is in­
voked by executing an inter-segment JMP or CALL in­
struction which refers to a Task State Segment (TSS) or 
task gate descriptor in·the GOT or LOT. An INT n instruc­
tion, exception, or external interrupt may also invoke the 
task switch operation by selecting a task gate descriptor 
in the associated lOT descriptor entry. 

The TSS descriptor points at a segment (see Figure 20) 
containing the entire 80286 execution state while a 
task gate descriptor contains a TSS selector. The limit 
field of the descriptor must be >002B(H). 

Each task must have a TSS associated with it. The cur­
rent TSS is identified by a special register in the 80286 
called the Task Register (TR). This register contains a 
selector referring to the task state segment descriptor 
that defines the current TSS. A hidden .base and limit 
register .associated with TR are loaded whenever TR is 
loaded with a new selector. 

The IRET instrLiction is used to return c6ntrol to the 
task ~hat called the current task or was interrupted. 
Bit 14 in the flag egister is called the Nested Task (NT) 
bit. It controls the function of the IRET instruction. If 
NT = 0, the IRET iostruction performs the regular cur­
rent task return by popping values off the stack; when 

NT = 1, IRET performs a task switch operation back 
to the previous task. -

When a CALL, JMP, or INT instruction initiates a task' 
switch, the old and new TSS will be marked busy and 
the back link field of the new TSS set to the old TSS 
selector. The NT bit of the new task is set by CALL or 
INT initiated task switches. An interrupt that does not 
cause a task switch will clear NT. NT may also be set 
or cleared by POPF or IRET instructions. 

The task state segment is marked busy by changing, 
the descriptor type field from Type 1 to Type 3. Use 
of a selector that references a busy task state segment 
causes Exception 13. 

PROCESSOR EXTENSION CONTEXT SWITCHING 
The context of a processor extension (such as the 80287 
numerics processor) is not changed by the task switch 
operation. A processor extension context need only be 
changed when a different task attempts to use the pro­
cessor extension (which still contains t~e context of a 
previous taSk). The 80286 detects the first use of a pro­
cessor extension after a task switch by causing the pro­
cessor extension not present exception (7). The interrupt 
handler may then decide whether a context change is 
necessary. 

Whenever the 80286 switches tasks, it sets'the Task 
Switched (TS) bit of the MSW. TS indicates that a pro~ 
cessOr extension context may belong to a different task 
than the current one. The processor extension not pres­
ent exception (7) will occur when attempting to execute 
an ESC or WAIT instruction if TS = 1 and a processor 
extension is present (MP = 1 in MSW). 

POINTER TESTING INSTRUCTIONS 
The iAPX 286 provides several instructions to speed 
pdinter testing and consistency checks for maintain­
ing system integrity (see Table 15). These instruc­
tions use the memory management hardware to 
verify that a selector value refers to an appropriate 
segment without risking an exception. A condition 
flag (ZF) Indicates' whether use of the selector or 
segment will cause an exception. 

4-22 AFN-02060D 



IAPX 286/10 

~ '" 
CPU INTEL RESERVED 

TYPE DESCRIPTION 

TASK REGISTER plrHTYp~1 } TRD--- SYSTEM 
BASE .... ,. 1 AN AVAILABLE TASK STATE 

... SEGMENT SEGMENT. MAY BE USED AS 
DESCRIPTOR THE DESTlNAlION OF A TASK .. • BASE, ... SWITCH OPERATION • r---------., 

I PROGRAM INVISIBLE I 3 A BUSY TASK STATE SEGMENT. 

I .. • I U!'IIT, ... CANNOT BE USED AS THE 

I I H 
DESTINATION OF A TASK 

UMIT I SWITCH. 
I ------ ------------ _...J 

: I BASE 

I .. • I ~ ~~. 
11..--- --- --' BYTE 

15 0 OFFSET 

TASK LDT SELECTOR 42 

DSSELECTOR 40 P DESCRIPTION 

SSSELECTOR 38 
1 BASE AND LIMIT FIELDS ARE VALID 
0 SEGMENT IS NOT PRESENT IN 

I 
CSSELECTOR 38 MEMORY, BASE AND LIMIT ARE NOT 

, DEFINED 
ESSELECTOR 34 

DI 32 

$I 30 

BP 28 CURRENT 
J TASK 

SP 26 STATE 

BX 24 

TASK DX 22 
STATE 
SEGMENT CX 20 

AX 18 . 

FLAG WORD 18 

IP (ENTRY POINT) 14 

SSFOR CPL 2 12 

SPFORCPL2 10 

sS FOR CPL 1 8 INITIAL 
STACKS 

SP FOR CPL 1 6 FOR CPLO,1,2 

SSFORCPLO 4 

SP FOR CPLO 2 

BACK LINK SELECTOR TO TSS 0 

~ ~ 

Figure 2Q. Task State Segment and TSS Registers 

4-23 AFN-02060D 



.. 

IAPX 286/10 

Table 15. 80286 Pointer Test Instructions 

Instruction Operands Function 
ARPL Selector, Adjust Requested Privi-

Register lege Level: adjusts the RPL 
of the selector. to the nu-
meric maximum of current 
selector RPL value and the 
RPL value in the register. 
Set zero flag if selector RPL 
was changed by ARPL. 

VERR Selector VERify for Read: sets the 
zero flag if the segment re-
ferred to by the selector can 
be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment re-
ferred to by the selector can 
be written. 

LSL Register, Load Segment Umit: reads 
Selector the segment limit into the 

register if privilege rules and 
descriptor type allow. Set 
zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the descriptor access rights 

byte into the register if priv-
ilege rules allow. Set zero 
flag if successful. 

DOUBLE FAULT AND SHUTDOWN 

If two separate exceptions are detected during a single 
instruction execution. the 80286 performs the double 
fault exception (8). If an exception occurs during pro­
cessing of the double fault exception. the 82086 will en­
ter shutdown. Ouring shutdown no further instructions 
or exceptions are processed. Either NMI (CPU remains 
in protected mode) or RESET (CPU exits protected mode) 
can force the 80286 out of shutdown. Shutdown is exter­
nally signalled via a HALT bus operation with AI HIGH. 

PROTECTED MODE INITIALIZATION 

The 80286 initially executes in real address mode 
after RESET. To allow initialization code to be placed 
at the top of physical memory. A23-20 will be HIGH 
when' the 80286 performs membry references 
relative to the CS register until CS is changed. A23-20 
will be zero for references to· the OS. ES, or SS 
segments. Changing CS in real address mode will 
force A23-20 LOW whenever CS is used again. The 
initial CS:IP value of FOOO:FFFO provides 64K bytes 
of code space for initialization code without chang­
ingCS. 

Protected mode operation requires several regis­
ters to be initialized. The GOT and lOT base regis­
ters must .refer to a valid GOT and lOT. After 
executing the LMSW instruction to set PE. the 80286 
must immediately execute an intra-segment JMP 
instruction to clear the instruction queue of instruc­
tions decoded in real address mode. 

To force the 80286 CPU registers to match the initial 
protected mode state assumed by software, execute 
a JMP instruction with a selector referring to the 
initial TSS used in the system. This will load the task 
register, local descriptor table register. segment 
registers and initial general register state. The TR 
should point at a valid TSS since any task switch 
operation involves saving the current task state. 

SYSTEM INTERFACE 
The 80286 system interface appears in two forms: a 
local bus and a system bus. The local bus consists of 
address, data. status. and control signals at the pins of 
the CPU. A system bus is any buffered version of the 
local bus. A system bus may also differ from the local 
bus-in terms of coding of status and control lines and/or 
timing and loading of signals. The iAPX 286 family in­
cludes several devices to generate standard system 
buses such as the IEEE 796 standard Multibus'" . 

Bus Interface Signals and Timing 
The iAPX 286 microsystem local bus interfaces the 80286 
to local memory and 110 components. The interface has 
24 address lines, 16 data lines, and 8 status and control 
signals. 

The 80286 CPU, 82284 clock generator, 82288 bus 
controller, 82289 bus arbiter, 8286/7 transceivers, 
and 8282/3 latches provide a buffered and decoded 
system bus interface. The 82284 generates the 
system clOCk and synchronizes REAOY and RESET. 
The 82288 converts bus operation status encoded 
by the 80286 into command and bus control signals. 
The 82289 bus arbiter generates Multibus bus 
arbitration signals. These components can provide 
the timing and electrical power drive levels required 
for most system bus interfaces including the Multibus. 

PhYSical Memory and 1/0 Interface 
A maximum of 16 megabytes of physical memory can 
be addressed in protected mode. One megabyte can be 
addressed in real address mode. Memory is accessible 
as bytes or words. Words consist of any two consecutive 
bytes addressed with the least significant byte stored in 
the lowest address. 

Byte transfers occur on either half of the 16-bit local data 
bus. Even bytes are accessed over 07..,0 while odd bytes 
are transferred over 015-8. Even-addressed words are 
transferred over 0 15-0 in one bus cycle, while odd-ad­
dressed words require two bus operations. The first 
transfers data on 0 15-8. and the second transfers data 
on 07-0. Both byte data transfers occur automatically, 
transparent to software. 

Two bus signals. Ao and SHE. control transfers over the 
lower and upper halves of the data bus. Even address 

.4-24 AFN-02060D 



IAPX286J10 

byte transfers are indicated by Ao LOW and BRE' HIGH. 
Odd address byte transfers are indicated by Ao HIGH 
and SHE LOW. Both Ao and SHE are LOW for even ad­
dress word transfers. 

The I/O address space contains 64K addresses in both 
modes. The I/O space is accessible as either bytes or 
words, as is memory. Byte wide peripheral devices may 
be attached to either the upper or lower byte of the data 
bus. Byte-wide I/O d,vices attached to the upper data 
byte (015-8) are accessed with odd I/O ac.idresses. De­
vices on the lower data byte are accessed with even 1/0 
addresses. An interrupt controller such as Intel's 8259,A 
must be connected to the lower data byte (D,.-() for proper 
return of the interrupt vector. 

Bus Operation 
The 80286 uses a double frequency system clock (CLK 
input) to control bus timing. All signals on the local bus 
are measured relative to the system CLK input. The CPU 
divides the system clock by 2 to produce the internal 
prOCessor clock, which determines bus state. Each pro~ 
cessor clock is composed of two system clock cycles 
named phase 1 and phase 2. The 82284 clock generator 
output (PCLK) identifies the next phase ofthe propessor 
clock. (See Figure 21.) 

CLK 

_ONESYSTEM~ 
CLKCYCLE ~ 

PCLKy ,\-__ ---:lV 

Figure 21. System and Processor 
Clock Relationships. . 

Six types of bus operations..are supported; memory read, 
memory write, I/O read, I/O write, interrupt acknowl­
edge, and halt/shutdown. Data can be transferred at a 
maximum rate of one word pertwo processor clock cycles. 

The iAPX 286 bus has three basic states: idle (Tj), send 
status (T s), and perform command (T d. The 80286 CPU' 
also has a fourth Iocal·bus state called hold'(T h). T h in­
dicates that the '80286 has surrendered contr61 of the 
local bus to another bus master in response to a' HOLD 
request.· . 

Each bus state is one processor clock long. Figure 22 
shows the four 80286 local bus states and allowed 
transitions. 

RESET 

Figure 22. 80286 Bus States 

Bus States 
The idle (Tj) state indicates that no data trans~rs are 
in progress or requested. The first active state T s is 
signaled by status line "Sf or SO going LOW and identi­
fying phase 1 of the processor clock. During T s, the 
command encoding, the address, and data (fpr a write 
operation) are available on the 80286 output pins. -The 
82288 bus controler decodes the status signals and 
generates Multibus compatible read/write command 
and local transceiver contrOl. signals. 

After T s,the perform command· (T c> state is entered. 
Memory or I/O devices respond to the bus Operation 
during T c, either transferring read ·data to the CPU or 
accepting write data. T c states may be repeated as 
often as necessary to assure sufficient time for the 
memory or I/O device to respon~. The READY signal 
determines whether T c is repeated. A repeated T c 
state is called a wait state. 

During hold (Th), the 80286 will float all address, data, 
and status output pins enabling another bus master 
to use the local bus. The 80286 HOLD input signal 
is used to place the 80286 into ~he T h state. The 
80286 HLDA output signal indicates that the CPU has 
entered T h; . . . . 

Pipelined Addressing 
The 80286 uses.a local bus interlace with pipelined 
timing to. allow as much time as possible. for data 
access. Pipelined timing. allows a new bus operation 
to be initiated eV9fY two processor cycles,while allow­
ing each individual bus operation to last for three 
processor .cYcles. .' . 

The timing of the address outputs is pipelined such that 
the address of the next bus oper~tion be<¥omes available 

.. during the current bu~ ope~ation. Or in other words, the 
first clock of the next bus operation is overlapped with 
the last clock of the current bus operation. Therefore, 
address decode and routing logic can operate in ad-

i\FN-02060D 



, IAPX 286/10 

T, F READ BUS CYClE N' ~.. IREADBUSC~N+1"8 
T5 -- - -~Tc ....-T.~..---Tc 

"" l~ </11 1 4t2 e111 I dtI I ,M I 4Q 

elK 

PROCCLK 

On - Do -- -- - - - - - - - - - - - - - - - - -- - - - --c:::>------------------c::>-
VALID READ VALlO REAO 

DATA(N) DATA (N+1. 

PtPeuNING: VALID ADDRESS (N + 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (N), 

Figure 23. Basic Bus Cycle 

, vance of the next bus operation. External address latches 
may'hold the address stable for the entire bus operation, 
and provide additional AC and DC buffering. 

The 80286 does not maintain the address of the current 
bus operation during all Tc states. Instead, the address 
for the next bus operation may be emitted during phase 
2 of any T c' The address remains valid during phase 1 
of the first T c to guarantee hold time, relative to ALE, for 
the address latch inputs. 

Bus Control Signals 
The 82288 bus controller provides control signals; ad­
dress latch enable (ALE), ReadlWrite commands, data 
transmit/receive (DTIR) , and data enable (DEN) that 
control the address latches, data transceivers, write en­
able, and output enable for memory and I/O systems. 

The Address Latch Enable (ALE) output determines when 
the address may be latched. ALE provides at least one 
system CLK period of address hold time from the end of 
the previous bus operation until the address for the next 
bus operation appears at the latch outputs. This address 
hold time is required to support tI('Iultibus® and common 
memory systems. 

The data bus transceivers are controlled by 82288 out­
puts Data Enable (DEN) and Data Transmit/Receive (DT/ 
R). DEN enables the data transceivers; while DT/R con­
trols transceiver direction. DEN and DT/R are timed to 
prevent bus contention between the bus master, data 
bus transceivers, and system data bus tranceivers. 

Command Timing Controls 
Two system timing customization options, command ex­
tension and command delay, are provided on the iAPX 
286 local bus. 

Command extension allows additional time for external 
devices to respolJd to a command and is analogous to 
inserting wait states on the 8086. External logic can con­
trol the duration of any bus operation such that the op­
eration is only as long as necessary. The REJmV' input 
signal can extend any bus operation for as long as 
necessary. 

Command delay allows an increase of address or wrjte 
data setup time to system bus command active for any 
bus operation by delaying when the system bus com­
mand becomes active. Command delay is controlled by 
the 82288 CMDLY input. After Ts, the bus controller 
samples CMDLY at each failing edge of CLK. If CMDLY 
is HIGH, the 82288 will not activate the command signal. 
When CMDLY is LOW, the 82288 will activate the com­
mand signal. After the command becomes active, the 
CMDLY input is not sampled. 

When a command is del;:tyed, the available response 
time from command active to return read data or accept 
write data is less. To customize ~ystem bus timing, an 
address decoder can determine which bus operations 
require delayingtM command. The CMDLY input dotTS 
not affect the timing of ALE, DEN, or DTIR. 

4-26 AFN-02060D 



IAPX 286/10 

1+------- READ BUS CYCLE N -1'-' ------.\+----1 READ BUS CYCLE Nil 1----.I 

ClK 

PROC----' 
ClK 

ALE ___ J 

~ Rl) COMMAND 
EX1 

CMOLY ___ oJ 

~ Rl) 'COMMANDi 
EX2 

CMDlV 

• 
Figure 24. CMDLY Controls the Leading Edge of Command Signal. 

Figure 24 illustrates four uses of CMDlY. Example 1 
shows delaying the read command two system ClKs for 
cycle N-1 and no delay for cycle N, and example 2 shows 
delaying the read command one system ClK for cycle 
N-1 Flnd one system ClK delay for cycle N. 

Bus Cycle T-ermination 
At maximum transfer rates, the iAPX 286 bus alternates 
between the status and command states. The bus status 
signals become inactive after T s so that they may cor­
rectly signal the start of the next bus operation after the 
completion ofthe current cycle. No external indication of 
T C exists on the iAPX 286 local bus. The bus master and 
bus controller enter T c directly after T s and continue ex­
ecuting T c cycles \:Intil terminated by READ'? 

READY Operation 
The current bus master and 82288 bus controller ter­
minate each bus operation simultaneously to achieve 
maximum bus operation bandwidth. Both are informed 
in advance by READY active (open-collector output 
from 82284) which identifies the last T c cycle of the 

current bus operation. The bus master and bus con­
troller must see the same sense of the ~ signal, 
thereby requiring R'EAl5? be synchronous to the 
system clock. 
Synchronous Ready 
The 82284 clock generator provides READ'? synchro­
nization from both synchronous and asynchronous 
sources (see Figure 25). The synchronous ready input 
(SROY) of the clock generator is sampled with the falling 
edge of ClK at the end of phase 10f each T c. The state 
ofSROY is then broadcast to the bus master and bus 
controller via the READ'? output line. 

Asynchronous Ready 

Many systems have devices or subsystems that are 
asynchronous to the system Clock. As a result; their 
SR~ outputs cannot be guaranteed to meet the 82284 

setup and hold time requirements. But the 
82284 asynchronous ready input (AROYl is designed 

. to accept such signals. The ARn'Y input is sampled at 
the beginning of each T c cycle by 82284 synchroniza­
tion logic. This provides one system ClK cycle time to 
resolve its value before broadcasting it to the bus 
master and bus controller. . 

4-27 AFN·02060D 



.... '-.. .... ' , IAPX 286/10 

• 

CLK 

PROCCUC 

IIDIIY (SEE NOTE 1.) (SEE NOTE 2.) 

-~\1i\\1i'i%\W> ~ 
(SEE NOTU.) 

NOTES: , 
1. ~isactivelow 
2. Ifsm5'i'EN is high. the state of IDIDV will not effect READY 
3. AFiDYEN is active low 

. Figure 25. Synchronous and Asynchronous Ready 

ARDY or ARDYEN must be HIGH at the end of T s. 
ARDY cannot be used to terminate bus cycle with 
no wait states. 

Each ready input of the 82284 has an enable pin 
(SRDYEN and ARDYENj to select whether the current 
bus operation will be terminated .by the synchronous or 
asynChronous ready. Elther,of the ready inputs may ter­
minate a bus operation. These enable inputs are active 
low and have-the same timing as their respective 'ready 
inputs. Address decode logic usually selects Whether 

. the current bus operation should be terminated byARDY 
orSRO'? 

Data Bus,Control 
Figures 26, 27, and 28 show, how the DTIR, DEN. data 
bus, and address signals operate for different combina­
tions of read, write, and idle bus operations. DT/R goes 
active (LOW) for a read ·operaton. DT/R remains HIGH ' 
before, durihg, and between write operations. 

The data bus is driven with write data during the second 
phase of T s. The delay in write data timing allows the 
read data drivers, from ,a previous read cycle, sufficient 
time to enter 3-state OF,F before the 80286 CPU begins 
driving the local data bus for write operations. Write data 
wilt always remain valid for one system clock past the 
last T c to provide sufficient hold time for Multibus or other 
similar memory or 1/0 systems. During write-read or write-

, idle sequences the data bus enters 3-state OFF during 
the second phase of the processor cycle after the last 
T c' In a write-write sequence the data bus does not enter 
3-state OFF between T c and T s. 

Bu~Usage 
. The 80286 local bus may be used for several functions: 

instruction data transfers, data transfers by other bus 
masters, instruction fetching, processor e~en~i9n data 
transfers, interrupt acknowledge, and hait/shutc:!oWri. This 
section describes local bus activities which have special 
signals or requirements. . . . 

4-28 AFN-020600 



ner IAPX 286/10 

-------------------------------------------------------

~ READ BUS CYCLE, 'I' WRITE BUS CYCLE ~ --T. ______ 4-----T5-----' -+---Tc------" 4--15--" +---Te ......____T, 
I d>2 ,~1 1</12 1<1>1 I tb2 <1>' 1</I2! <11'" dI2 <111 ,~ 

CLK 

SO.91 

MADe 

MWTC 

DEN ________________ ~--------J, 

DTIR 

Figure 26. Back to Back Read-Write Cycles 

WRITE CYCLE READCVCLE 

ClK 

D,s-Do ---------- YAUD WRITE DATA 

DEN -------' 
DTIR 

Figure 27. Back to Back Write-Read Cycles 

AFN-020600 



"inteI'" , ·IAPX·2861'10 

WAITE CYCLE N-1 

eLK 

DEN ______ ---J 

~H ______________________________________ _ 

PT/R 

Figure 28. Back to Back Write-Write Cycles 

HOLD and HLDA 
HOLD and HLDA allow another bus master to gain con­
trol of the 10cCl-1 bus by placing the 80286 bus into the T h 

. state. The sequence of events required to pass control 
between the 80286 and another local bus master are 
shown in Figure 29. 

In this example, the 80286 is initially in the T h state as 
signaled by HLDA being active. Upon leaving T h, as sig­
naled by HLDA going inactive, a write 'Operation is started. 
During the write operation another local bus master re­
quests the local bus from the 80286 as shown by the 
HOLD signal. After completing the write operation, the 
80286 performs one T, bus cycle, to guarantee write data 
hold time, then enters T h as signaled by HLDA going 
active. 

The CMDLY signal and AFIDY' ready are used to start 
and stop the write bus command, respectively. Note that 
SRD'Y mu§t be inactive or disabled by SRDYEN to guar­
antee AFIDY' will terminate the cycle. 

Instruction Fetching 
The 80286 Bus Unit (BU) will fetch instructions ahead of 
the current instruction being executed. This activity is 
called prefetching. It occurs when the local bus would 
otherwise be idle and obeys the following rules: 

A prefetch bus operation starts when at least two bytes 
of the 6-byte prefetch queue are empty. 
The prefetcher normally performs word prefetches in­
dependent of the byte alignment of the code segment 
base in physical memory. 
The prefetcher will perform only a byte code fetch op­
eration for control transfers to an instruction beginning 
on a numerically odd physical address. 
Prefetching stops whenever a control transfer or HLT 
instruction is decoded by the IU and placed into the 
instruction queue. 

In real address mode, the prefetcher may fetch up 
to 6 bytes beyond the last control transfer or HL T 
in.struction in a code segment. 

In protected mode, the prefetcher will never cause a 
segment overrun exception, The prefetcher stops at 
the last physical memory word of the code segment. 
Exception 13 will occur if the program attempts to ex­
ecute beyond the last full instruction in the code 
segment. 

If the last byte of a code segment appears on an even 
physical memory address, the prefetcher will read the 
next physical byte of memory (perform a word code 
fetch). The value of this byte is ignored and any at­
tempt to execute it causes exception 13. 

AFN-02060D 



NOTES: 

IAPX 286/10 

BUS HOLD ACKNOWLEDGE WRITE CYCle 

BUS CYCLE TYPE 

elK 

HOLD 

HLDA, 

(SEE NOTE 1.) ------------S;-·SO 
r-_______ --------.!.S=.E.!'~~1:L 

MIlO, -----'-----------

(see NOTe 2.) 

:ct~~~~t»»---------
COD/INTA 

(SEE NOTE 3) 

BHE, LOCK ------------------·~==t~~==J~~~~~~~~~~~~---------
0" - 00 -------------------------'<'-_______ VA_l-'D------...L»>-" --------

::~~E~~Y,f//J$~~ 
NOT READY NOT READY 

Mwfc ' .... _-------' 
~H -------------------------------------------------------------

iOTiR 

DEN ' ..... _---
AlE _______________ ~~, ______________________ __ 

15 ~ STATUS CYCLE 
Te = CqMMAND CYCLE 

1. Status lines are not driven by 80286, yet remain high due to pullup resistors In 82288 and 82289 dUring HOLD state 

2. Address, M/iO and COD/INTA may start floating dUring any TC depending dn when Internal 80286 bus arbiter deCides to release bus to 
external HOLD. The float starts In ",2 of TC 

3. i3RE and LOCK may start floating after the end of any TC depending on when mternal 80286 bus arbiter deCides to release bus to external 
HOLD. The float starts In ",1 of TC 

4. The minimum HOLD to HLDA time IS shown. Maximum IS one T H longer 

5 The earhest HOLD time IS shown It Will always allow a subsequent memory cycle If pending IS shown 

6. The minimum HOLD to HLDA time IS shown. Maximum IS a funcllon of the Instrucllon, type of bus cycle and other machine status (I e , 
In/errupts, Walts, Lock, etc.) 

7 Asynchronous ready allows termination of the cycle SynChronous ready does not signal ready In thiS example Synchronous r~ady state 
IS Ignored after ready IS signaled via the asynchronous "'put 

Figure 29. Multibus Write Terminated by Asynchronous Ready with Bus Hold 

4-31 AFN-02060D 



IAPX 286/10 

Processor Extension Transfers 
The processor extension interface uses I/O port 
addresses 00F8(H), OOFA(H), and OOFC(H) which are 
part of the 1/0 port address range reserved by Intel. 
An ESC instruction with Machine Status Word bits 
EM = 0 and TS = 0 will perform 1/0 bus operations to 
. one or more of these 1/0 port addresses independent 
of the value of 10PL and CPL. 
ESC instructions with memory references enable the 
CPU to accept PEREa inputs for processor extension 
operand transfers. The CPU will determine the operand 
starting address and read/write status of the instruction. 
For each operand transfer, two or three bus operations 
are performed, one word transfer with I/O port address 
OOFA(H) and one or two bus operations with memory. 
Three bus operations are required for each word oper­
and aligned on an odd byte address. 

Interrupt Acknowledge Sequence 
Figure 30 illustrates an interrupt acknowledge sequence 
performed by the 80286 in response to an INTR input. 
An interrupt acknowledge sequence consists of two 
INTA bus operations. The first allows a master 8259A 
Programmable Interrupt Controller (PIC) to determine 
which if any of its slaves should return the interrupt 
vector. An eight bit vector is read on 00-07 of the 
80286 during the second INTA bus operation to select 

. an interrupt handler routine from the interrupt table. ' 

The Master Cascade Enable (MCE) signal of the 82288 
is used to enable the cascade address drivers, during 
INTA bus operations (See Figure 30), onto the local ad­
dress bus for distribution to slave interrupt controllers via 
the system address bus. The 80286 emits the mcK 
signal (active LOW) during T s of the first INTA bus oper­
ation. A local bus "hold" request will not be honored until 
the end of the second INTA bus operation. 

Three idle processor clocks are provided by the 80286 
between INTA bus operations to allow for the minimum 
INTA to INTA time and CAS (cascade address) out delay 
of the 8259A. The second INTA bus operation must al­
ways have at least one extra Testate added via logiC 
controlling READY. A23-Ao are in 3-state OFF until after 
the first Te state of the second INTA bus operation. This 
prevents bus contention between the cascade address 
drivers and CPU address drivers. The extra Testate al­
lows time for the 80286 to resume driving the address 
lines for subsequent bus operations. 

4-32 

Local Bus Usage Priorities 
The 80286 local bus is shared among several internal 
units and external HOLD requests. In case of simUlta­
neous requests', their relative priorities are: 

(Highest) , Any transfers which assert mcK either ex­
plicitly (via the LOCK instruction prefix) or 
implicitly (I.e. segment descriptor access, 
interrupt acknowledge sequence, or an 
XCHG with memory). . 

The second of the two byte bus operations 
required for an odd aligned word operand. 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 
Processor extension data operand transfer 
via PEREa input. 
Data transfer performed by EU as part of an 
instruction. 

(Lowest) An instruction prefetch request from BU. The 
EU will inhibit prefetching two processor 
clocks in advance of any data transfers to 
minimize waiting by EU for a prefetch to finish. 

Halt or Shutdown Cycles 
The 80286 externally indicates halt or shutdown condi­
tions as a bus operation. These conditions occur due to 
a HLT instruction or multiple protection exceptions while 
attempting to execute one Instruction. A halt or shut. 
down bus operation is signalled when ST, SO and COOt 
rnTA are LOW and MIID is HIGH. Al HIGH indicates 
halt, and Al LOW indicates shutdown. The 82288 bus 
controller does not issue ALE, nor is READY required to 
terminate a halt or shutdown bus operation. 

During halt or shutdown, the 80286 may service PEREa 
or HOLD requests. A processor extension segment 
overrun exception during shutdown will inhibit further 
service of PEREa. Either NMI or RESET will force the 
80286 out of either halt or shutdown. An INTR, if inter­
rupts are enabled, or a processor extension segment 
overrun exception will also force the 80286 out of halt. 

AFN-020600 



IAPX 286/10 

1

4-----INTA CYCLE 1~ , 
BUS CYCLE TYPE I Tc T8 I Tc I Tc TI I To 

~ I ~ _ I ~ ~ I ~ ~ I ~ ~ t ~ ~ J ~ 

I 

NOTES: 

ClK 

Mlill, CODIINTA 

I!RE »»»>>>>- ------ ---- -< ..... __ DO_N_'T_CA_RE_-J>- - - - - -- -- - - -c:::= 
(SEE NOTE 1,) -

015 - DO w~~V~~1E} - - - - - - - 0 -- --- -- - -- --- - - --- - - {VECTOR}- - -
ON D7·DO 

(SEE NOTE 2.) (SEE NOTE 3.) 

REAllY S%\\\ mZ7IOVO/l \\\\\\ mmliOlOlOllOlVOOlmmlW \\\\\\ nnm 
NOT READY READY NOT READY READY 

INTA \ I \ r-
MCE 1\ 1\ 

ALE n n 
DTIIi \ / \ I 

DEN / \ / L-

1. Data is ignored. 

2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width. 

3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive A23 - Ao, BHE, and LOCK until 'after the first 
TCstate. 

The CPU imposed one/clock delay prevents bus cQntention between cascade address buffer being disabled by MCE t and address 
outputs. -

Without the wait state, the 80286 address will not be valid for a memorr cycle started immediately after the second INTA cycle. The 
8259A also requires one wait state for minimum INTA pulse width. " , 

4. LOCK is active for the first INTA cycle to preventthe 82289 from releasIng the bus between INTAcycles in a multi·master system. 

5. A23 - Ao eXi,ts 3·state OFF during 4>2 of the second T c in the INTA cycle. 

Figure 30. Interrupt Acknowledge Sequence 

AFN·02060D 



VCC I 
91011 

rDfl ±S% ~ 
X, X, .~ N 

RES ~~ 1-'-----1H--..J 

VCC 

~iC 
Vee 

REseT 

AEN 

M8 

CMDlY 

SO 

S1 

IAPX286/10 

MADe 
MWTe 

IOAC 
lowe 
INTA 

ALE 
MCE 

r----------.. MEMORV READ 

r----------.. MEMORY WRITE 

r---~------.lfOREAD 
f----+ ....... -----.lfOWRITE 

f----+-+-..-----. INTERRUPT ACKNOWLEDGE 

~----, 

DEN ::I~ READV r--IH-"t-..J 
4- PCLK eLK elK DTIR r---READY r­

I r 
..J I 

- - ~ t- .... ADVANCED,MEMORY 

- - EFI TI 82288 BUS _ 
- ~_ FIC CONTROLLER ~ 

- - ~ DECODE t- .... AND 110 CHIP SELECTS 
r - .1'..,) IOPTIONALI, 

I ,.." 'I I -" 
: MilO I ~ r-

SYNC READV - SRDV RESET I I 1 t _ J II I r 

.J I L ____ .I 

ENABLE _ SADVEN ,r- I I 
ASVNC READV _ AADV I I RESET MilO I I I 

ENABLE _ AROVEN I I LOCK I--. I , I ~ ADDRESS BUS 82284 I I .... eLK CODIINTA L ~ ....J I I 
CLOCK r-- READY I I I 

Vee GENERATOR:: t-:-- 51 A23_ Ao f-''--'-......... -'-.L.-L-'-.L-.-"'\. O~:~!3 

I' J I I ,-j- so , ~ LATCH 

~I r - - _____ .J I I , ;; ............ NMI BHE I 

'
HOLD 

20Kn I r-------J I I_ t I, r - - - 1-'-, ~~~~R' CAS ... , 

I I I I I II 8USV INTR I--''--+H-+-+------IINT , 

Ao I--
es I-- CHIP SELECT 

L--~~--t--tl-:-- --+++- PEACK' INTA 
I I I I I r,. - - -...1-'1- PEREa CAPt-;1 '------+tWA 
I I I I I I I ["" - - ...I 80286 I #=: '----,----~AD 
" I I I I I r - - ..J CPU !.L + ,------\ SPIEN 

I I I, I I I r- 0,,-00 -= l 
' I I I I I, I I , I 

._U_:_:_UJ_UJ_ -, J' 
I 80287 ,---- ---

I PROCESSOR !.- -t.. - - -
I EXTENSION ,.. ... - - -

~Do-~~59A 
INTERRUPT 

CONTROLLER 

---:: oe 8286 , IOPTIONALI I 
L. ____________ J -, ., 

8287 
TRANS­
CEIVER 

'-------~T 

~DATA 
f"r-YBUS 

Figure 31. Basic iAPX 286 System Configuration 

SYSTEM CONFIGURATIONS 
The versatile bus structure of the iAPX 286 microsys­
tern, with a full complement of support chips, allows flex­
ible configuration of a wide range of sy!\tems. The basic 
configuration, shown in Figure 31, is similar to an iAPX 
86 maximum mode system. It includes the CPU plus an 
8259A interrupt controller, 82284 clock generator, and 
the 82288 Bus Controller. The iAPX 86 latches (8282 
and 8283) and transceivers (8286 and 8287) may be 
used in an iAPX 286 microsystem. 

As indicated by the dashed lines in Figure 31 , the ability 
to add processor extensions is an integral feature of iAPX 
286 microsystems. The processor extension interface 
allows external hardware' to perform special functions 
and transfer data concurrent with CPU execution of other 
instructions. Full system integrity is maintained because 
the 80286 supervises all data transfers and instruction 
execution for the processor extension. 

The iAPX 286/20 numeric data processor which in­
. cludes the 80287 numeric processor extension (NPX) 

4-34 

uses this interface. The iAPX 286/20 has alf the instruc­
tions and data types of an iAPX 86/20 or iAPX 88/20. 
ThEl80287 NPX can perform numeric calculations and 
data transfers concurrently with CPU program execu­
tion. Numerics code and data have the same integrity as 
all other information protected by the iAPX 286 protec­
tion mechanism. 

The 80286 can overlap c.hip select decoding and ad­
dress propagation during the data transfer ·for the pre­
vious bus operation. This information is latched into the 
8282/3's by ALE during the middle of a Ts cycle. The 
latched chip select and address information· remains 
stable during the bus operation while the next cycles 
address is being decoded and propagated into the sys­
tem. Decode logic can be Implemented with a high speed 
bipolar PROM. 

The optional decode logic shown in Figure 31 takes ad­
vantage of the overlap between address and data of the 
80286 bus cycle to generate advanced memory and 10-
select signals. This minimizes system performance 

AFN-02060D 



910n 
± .% 

IAPX 286/10 

2Ol(r"-++--l>--+f::TRESB B~~~ === ) 
~~~~YS aREO - MULTIBUS 

~ CROLet(BPRO ~ aus ARBITRATION
I ---~ SO BfflN __

~ 51 BUSY 4-------+

'-----+--t-t-.~READY CBRO -

~ ell(LOCK_

r+-II-t-H-lAEN M 10 t--
82289 SLOCK t-- f­

BUS ARBITER

V"

AE"
M.

MRDe

MWTC

10RC

lowe
INTA

so ALE

-

Figure 32. Multibus System Bus Interface

degradation caused by address propogation and de­
code delays. In addition to selecting memory and 110,
the advanced selects may be used with configurations
supporting local and system buses to enable the appro­
priate bus interface for each bus cycle. The COD/Tf\!TA
and MOO signals are applied to the decode logic to dis­
tinguish betWeen interrupt, 110, code and data bus cycles.

connected to its CMDlY input to delay the start of c.om­
mands one system ClK as required to meet Multibus
address and write data setup times. This arrangement
will add at least one extra Testate to each bus operation
which uses the Multibus.

A second 82288 bus controller and additional latches
and transceivers could be added to the local bus of Fig­
ure 32. This configuration allows tlie 80286 to support
an on-board bus for local memory and peripherals, and
the Multibus for system bus interfacing.

By adding the 82289 bus arbiter chip the 80286 provides
a Multibus system bus interface as shown in Figure 32.
The ALE output of the 82288 for the Multibus bus is

4-35 AFN·02060D

IAPX286/10

DATA D1. - Do

eo_
CPU I elK

STATUS iiO. ii. M/iO

DECODE

DRAM
2118.2184

8287

MUL TlBUS SELECT

r.--r-XACK
1lU..T18US
COIIMAJiI)

(IIRDC. MWTC)

LOCAL
SELECT L.-':-_-{ I-+---:SELE=CT~

'--____ ADiiiiESS
ADDRESS An - Ao. BHE. LOCK

Figure 33. IAPX 286 System Configuration with Dual-Ported Memory

Figure 33 shows the addition of dual ported dynamic
memory between the Multibus system bus and the iAPX
286 local bus. The dual port interface is provided by the
8207 Dual Port DRAM Controller. The 8207 runs syn­
chronously with the CPU to maximize throughput for lo­
cal memory references. It also· arbitrates between
r~quests from the local and system buses and performs

functions such as refresh, initialization of RAM, and read!
modifylwrite cycles. The 8207 combined with the 8206
Error Checking and Correction memory controller pro­
vide for single bit error correction. The dual-ported
memory can be combined with a standard Multibus sys­
tem bus interface to maximize performance and protec­
tion in multiprocessor system configurations.

'lible 16. 80286 Systems Recommended Pull up Resistor Values

80286 Pin and Name Pullup Value Purpose

4-~

5-80 20KO ± 10% Pull 50, ~, and PEACK inactive during 80286 hold perlo~s
6-PEACK
53 ...:.ERRC.5R 20KO ± 10% Pull ERFIDR and BO§Y inactive when 80287 not p~sent

(or temporarily removed from socket)
"

54-BO§Y

63-READY 9100 ± 5% Pull READY inactive wilhin raquired minimum time (eL = 150pF,
IR:5 7mA)

4-36 AFN-02060D

IAPX 286/10

PACKAGE
The 80286 is packaged in a 68-pin, leadless JEDEC
type A hermetic leadless chip carrier. Figure 34 illus­
trates the package, and Figure 2 shows the pinout.

PIN NO. 18

[

"~_ ' __j"'--PIN N01 MARK

(24.38)

130
(3.30)

18CHES
(MIWMElERS)

Figure 34. JEDEC Type A Package

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 700C

StorageTemperatur!il·•... -65°Cto + 150°C

Voltage on Any Pin with
Respect to Ground -1.0 to + 7V

Power Dissipation ;' 3.6 Watt

"NOTICE: Stresses above those listed under "Absolute Max·
imum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de·
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied.
Exposure to. absolute maximum rating conditions for ex·
tended periods may affect device reliability.

D.C. CHARACTERISTICS (T A = oDe to 55°e. Vee = 5V. ± 5%)

4 MHz 6 MHz 8 MHz
-4 -4 -6 -6

$yin Parameter Min Max Min Max Min Max Unit Test Condition

Vll Input LOW Voltage -.5 .8 -.5 .8 -.5 .8 V
VIH Input HIGH ,Voltage 2.0 Vr.c+ .5 2.0 Vrr. +.5 2.0 Vrr. +.5 V

Vile ClK Input lOW Voltage -.5 .6 -.5 .6 -.5 .6 V
VIHC CLK Input HIGH Voltage 3.8 Vcc +·5 3.8 Vcc+~5 3.8 Vrr.+ .5 V

VOL Output lOW Voltage .45 .45 .45 V IOl =2.0mA
VOH Output HIGH Voltage 2.4 '2.4 2.4 V IOH = -4oo"A
III Input leakage Current +-10 +-10 +-10 "A OVSVIN<VCC

ILO Output leakage Current. +-10 +-10 +-10 "A .45V <Vo.rrsVcc

lee Supply Current (turn on, O°C) 600 600 600 "A Note 1

CCLK . ClK Input CapaCitance 12 12 12 pF Fr:=IMHz •
CIN Other Input Capaqitance 10 10 10 pF Fr:='IMHz

Co InpuUOulput Capacitance 20 20 , 20 ilF Fc=IMHz
NOTE 1: Low temperature Is worst cass.

4-37 AFN'()2060D

IAPX,286/10

- --- ---- --
A.C. CHARACTERISTICS (T A = DOC to 55°C, Vee = 5V, ± 5%) , ,

At; timings are referenced to O.8V and 2.0V points of signals as illustrated In dataaheet waveforms, unless otherwise noted,

4 MHz 6 MHz 8 MHz
-4 -4 -6 -6

Sym Parameter Min Max Min Max Min Max
1 System Clock (ClK) Period 124 250 83 250 62 250
2 System Clock (ClK) lOW Time 30 210 20 250 15 225
3 System ,Clock (ClK) HIGH Time 40 220 25 230 25 235

17 System Clock (ClK) Rise Time 10 10 10
18 System Clock (ClK) Fall Time 10 10 10
4 Asynch. Inputs Setup Time 40 30 20
5 Asynch, Inputs Hold Time 40 30 20
6 RESET Setup Time 40 25 20
7 RESET Hold Time 0 0 0
8 Read Data Setup Time 30 20 10
9 Read Data Hold Time 10 8 5

10 ~SetupTime 75 50 38.5
11 mDY Hold Time 50 35 25
12 StatuslPEACK Valid Delay 0 80 0 55 0 . 37.5
13 Address Valid Delay 0 120 0 80 0 60
14 Write Data Valid Delay 0 100 0 65 0 50
15 Address/Status/Data Float Delay 0 120 0 80 0 60
16 HlDA Valid Delay 0 120 0 80 0 60

-
NOTE: 1: Asychronous Inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY, This spaclficatlon Is given only for testing

purposes, to assure reCogmtion at a specific elK edge

NOTE: 2: Delay from 0 BV on the CLK. to 0 BV or 2 OV or float on the output as appropriate for valid or floabng condition
NOTE: 3: Output load C1 ; 100pF
rIOT~: 4: Aoat condition occurs when out~ut current IS less than ILO In magmtude

82284 Timing Requirements
82286-6 822284

~ymbol Parameter Min. Max. Min. Max.

11 SR'D'Y /SRDYEN setup time 25 15

12 SRDY /SRDYEN hold time 0 0

13 ARDY/ARDYEN setup time 5 0

14 ARDY/ARDYEN hold time 30 16

19 PClKdelay 0 45 0 45
(
\

NOTE': These times are given for testing purposes to assure a predetermllJed action

82288 Timing Requirements
82288-6 ' 82288

Symbol Parameter Min. Max. Min. Max.

12 CMDl.:Y setup time 25 20

13 CMl;)lT hold time 0 0

30 Command delay I Command Inactive 3 30 3 20
FromClK I,'

29 . , Command Active 3 40 3 20

16 ALE active delay 3 25 3 15

17 ALE inactive delay 35 20

19 DTfR read active delay 40 0 20

22 . DT fR read inactive delay 5 45 10 40

20 .DEN' read active delay 10 50 10 40

21 OlEN read inactive delay 3 40 3 11\

23 DEN write active -delay 35 30

24 DEN write inactive delay 3 35 3 30

Unit Test Condition
ns
ns atO.6V
ns at3.2V
ns 1.0Vto3.5V
ns 3.5Vto 1.0V
ns Note 1
ns Note 1
ns
ns
ns
ns
ns

,
n$
ns Note 2 Note 3
ns Note 2 Note 3
ns Note 2 Note 3
ns Note 2 Note 4
ns Note 2 Note 3

Units Test Conditions

ns

ns

ns 'See note 1

ns See note 1
CL = 75pF

ns IOL=5ma
'loH = '-1 rna

Units ,.. Conditions
ns
ns

CL - 300 pF max
n$ IOL = 32 rna max

IOH =5 rna max

liS

ns
ns

ns CL = 150 pF
ns IOL = 16 rna max
ns' IOH = -1 ml! max
ns
ns

AFN-<Y<!06Ou

IAPX 286/10

WAVEFORMS

MAJOR CYCLE TIMING

READ
BUS CYCLE TYPE

$1 • SO

AZ3-Ao 71'rrrTT7Trl""'riTmr-l---+---+--..,.mm~+---+----+---h
Mlro, CODIINTA :J.I..I..I..I.IJ.I..I..iJ'J.J.I..I..I.UIf\....j __;;+=.==+ __ ~'VJ.m~+-__ +=.:...;~ ___ I-"I..I..I.U\.+-_..::.;+;..,;,:~ __

lI!Alfy

SJWY +S"RIJYEN

~ llIIlV+_

pelK

ALE

CMDLY

!iWTl:

m

""""

DTIR

DEN

4;-39 AFN-02060D

int..:..P .'-e- .

WAVEFORMS (Continued)

80286 ASYNCHRONOUS INPUT SIGNAL nMING"

BUS CYCLE TYPE

CLK

PCLK
(8I!E NOTE '.)

INTR,NIII

:::f=.) 1.U.1.U."f':!-''I'--f-Jf'l.l.l.UJ..I.UJ.

IAPX288/10

. 80286 RESET INPUT nMiNG AND
SUBSEQUENT PROCESSOR CYCLE PHASE

CLK

RESET

CLK

RESET

NOTES:
NOTE 1: When RESET meets the setup time shown, the next ClK

will start or repeat ~ of a processor cycle.
1. PClK Indicates whiCh prooessor cycle phase will occur on the

next ClK. PClK may not Indicate the correct phase until the first
bus cycle is performed.

2. These Inputs are asynchronous. The setup and hOld times shown
assure recognition for testing purposes.

EXmNG AND ENTERING HOLD

BUS CYCLE TYPE

CLK

HLDA ___ +",1

alE,LOCK
"0. - lAo (8EE NOTE S.)

(8EENOTE4.)

M/iO, ------------
~/IRA ~~~----+_---5~~~~~'

i [PCLK ___ J

NOTES:
1. These Signals may not be driven by the 80286 during the time shown. The worst case In terms of Istest float time Is shown.
2. The data bus will bs driven as shown n the last Cycle before T(IR the diagram was a write T C.
3. The 80286 floats Its status ptns during T H' External 20Ko resistors keep these Signals high (sse Table 16).
4 ~ HOLD..!!9!!,8st set up to HLOA, refer to Figure 29.

_ 5. BHE and LOCK are driven at this time but will not bscome valid until T S.
6 The data ~us will remain In 3-stale OfF W a read cycle is performe,d

4-40 AFN-020600

IAPX 286/10

WAVEFORMS (Continued)

80286 PEREQlPEACK TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE

CLK

Au - Ao
MlIlI
coollllTl

PEREQ

ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED. 80286 TRANSFERS 1O/FIIOM MEMORY BY1E-AT-A-nME WIn! TWO MEMORY CYCLES.

NOTES:
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus operation

will be either a memory read at operand address or 1/0 read at port address OOFA(H).
2. To prevent a second processor extension data operand transfer. the worst case maximum time (Shown above) is: 3X(D-@max

-@non . The actual. configuration dependent. maximum time is: 3X (D-@max-@mln. + A X 2 XeD
A is the number of extra T c states added to either the first or second bus operation of the processor extension data operand transfer
sequence.

INITIAL 80286 PIN STATE DURING RESET

BUS CYCLE TYPE

CLK

RESET

BItE

M/iO

COOIINTA

LOCK

DATA

HLDA

NOTES:

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

-..:---..,s----------

IF HOLD IS !!lZI ACTIVE (SEE NaM 4)

1. Setup time for RESET i may be violated with the consideration that ¢1 of the procesaor clock may begin one system elK oeriod later
2. Setup and hOld times for RESET t must be met lor proper operation. but RESET t may occur during ¢ 1 or ¢2.
3. The data bus is only guaranteed to be in 3-state OFF at the time shown.
4. HOLD Is acknowledged dunng RESET. causing HUlA to go active and the appropriate pins to float ij HOLD remains active while RESET goes

inactove. the 80286 remains in HOLD state and will not psrlorm any bus accessas until HOLD IS de-activiated .

. 44~ AFN-020600

, " IAPX 286/10

BYTE1 , BYTE 2 BYTE 3 BYTE 4 BYTES BYTES

.-:-rT""'::"':'T-1rT:..r":"T,..,":"'::' -- -----.,.- - --- -- ... - -- -- - -"T- --- ---.,

LOW DlSPIDATA : HIGH DlSPIDATA : LOW DATA HIGH DATA

REGISTER OPERANDIREGISTERS TO USE IN OFFSET CALCULATION

'---- REGISTER OPERANOIEXTENSION OF OPCODE
L-____ REGISTER MOOEIMEMORY MODE WITH DISPLACEMENT LENGTH

'------- WORDIBYTE OPERATibN
'----____ OIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER

'------------'-- OPERATION (INSTRUCTION) CODE

A. SHORT OPCODE FORMAT EXAMPLE

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES

B. LONG OPCODE FORMAT EXAMPLE

Figure 35. 80286 Instruction Format Examples

80286 INSTRUCTION SET SUMMARY
Instruction Timing Notes
The instruction cl6ck counts listed below establish the
maximum execution rate of the 80286. With no delays in
bus cycles, the actual clock count of an 80286 program
will average 5%' more than the calculated clock count,
due to instruction sequences which execute faster than
they can be fetched from memory.

To calculate elapsed times for instruction sequences,
multiply the sum of all instruction clock counts, as listed
in the table below, by the processor clock period. An 8
MHz processor clock has a clock period of 125 nanosec­
onds and requires an 80286 system clock (eLK input) of
16MHz.

Instruction Clock Count Assumptions
1. The instruction has been prefetched, decoded, and

is ready for execution. Control transfer instruction clock
counts include all time required to fetch, decode, and
prepare the next instruction for execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.

4. No exceptions occur during instruction execution.

Instruction Set Summary Notes
Addressing displacements selected by the MOD field
are not shown. If necessary they appear after the In­
struction fields shown.

Above/below refers to unsigned value
Greater refers to positive signed value

Less refers to,iess positive (more negative) signed values

if d ,= 1 then to register; if d = 0 then from register

4-42

if w = 1 then word instruction; if w = 0 then byte
instruction

if s = 0 then 16-bit immediate data form the operand
if s = 1 then an immediate data byte is sign-extended

to form the 16-bit operand

x don't care

z used for string primitives fQr comparison with ZF
FLAG

If two clock counts are given, the smaller refers to a reg­
ister operand and the larger refers to a memory operand
• = add one clock if offset calculation requires sum-

ming 3 elements
n = number oftimes repeated

m = number of bytes of code in next instruction
level (L)-Lexical nesting level of the procedure

AFN-02060D '

IAPX 286/10

The following comments describe possible exceptions,
side effects; and allowed usage for instructions in both
operating modes of the 80286.

REAL ADDRESS MODE ONLY

1. This is a protected mode instruction. Attempted ex:
ecution in ,real address mode will result in an unde­
fined opcode exception (6).

2. A segment overrun exception (13) will occur if a word
operand reference at offset FFFF(H) is attempted.

3. This instruction may be executed in real address
mode to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain O.

5. Processor extension segment overrun interrupt (9)
will occur if the operand exceeds the ,segment limit.

EITHER MODE

6. An exception may occur, depending on the value of
the operand.

7. mcK is automatically asserted regardless of the
presence or absence of the LOCK instruction prefix.

8. U5CK does not remain active between all operand
transfers.

PROTECTED VIRTUAL ADDRESS MODE ONLY

9. A general protection exception (13) will occur if the
memory operand can not be used due to either a
segment limit or access rights violation. If a stack
segment limit is violated, a stack segment overrun
exception (12) occurs.

10. For segment load operations, the CPL, RPL, and
OPL must agree with privilege rules to avoid an ex­
ception. The segment must be present to avoid a

4-43

not-present exception (11). Ifthe SS register is the
destination, and a segment not-present violation
occurs, a stack exception (12) occurs.

11. All segment descriptor accesses in the GOT or LOT
made by this instruction will automatically assert
mcK to maintain descriptor integrity in multipro­
cessor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protec­
tion exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL
~ O.

14. A general protection exception (13) occurs if
CPL> IOPL.

15. The IF field of the flag word is not updated if
CPL > IOPL. The IOPL field is updated only if
CPL = O.

16. Any violation of privilege rules as applied to the se­
lector operand do not cause a protection exception;
rather, the instruction does not return a result and
the zero flag is cleared.

17. If the starting address of the memory operand vio­
lates a segment limit, or an invalid acc,ess is at­
tempted, a general protection exception (13) will
occur before the ESC instruction is executed. A stack
segment overrun exception (12) will occur if the stack
limit is violated by the operand's starting address. If
a segment limit is violated during an attempted data
transfer then a processor extension segment over­
run exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET or
IRET instruction must be in the defined limit of
a code segment or a general protection excep­
tion (13) will occur.

AFN-020600

, lAPX ~86/ 1() £1WMCI OOOrF@OOli'iJA1(I1COO
"],1 1

80286 INSTRUCTION SET SUMMARY
CUlCKCDUNT ,

Real I'nIIIIIId RnI '=' FUNCTION FORMAT Add VI_I MIl
Mo •• Add Modi Add

lIiMIt ' ' IIIdI

=~':~R
,

ReQisterto ReQlsterlMemory 11 00 0 1 00 w 'mod!:!i rim 2,3- 2)- 2 9

ReQlster/memory to register 11 00 0 1 01 w mod reg rim 2,5- 2,5- 2 9

Immedlsta 10 regl,ster/memory 11 100011 w modOOO rim data I datalfw=1 I 2,3- 2,3- 2 9

, Immedlatelo,register 11 01 1 w reg dsta datalfw=1 I 2 2

Memory 10 accumulator 11 0'1 0 000 w :"addr-Iow addr-hlgh ' I 5 5 2 9

Accumulator 10 memory 11 01 000 1 w addr-Iow addr-hlgh I 3 3 2 9

ReQister/memory to segment register 'II 0001 11 0 mod 0 reg rim 2,5- 17,19- 2 9,10,11

Segmenl register to registerlmemory 11 000 1 1 0 0 mod 0 reg rim 2,3- 2,3- 2 9

PUSH = Po ... :
Memory '11 1 1 1 1 11 1 I modll0 rim I 5- 5- 2 9

RegIster 10 101 0 reg I 3 ,3 2 9

Segmenl register (0 00, reg liii1 3 3 2 9

pop = Pop:
Memory 11 0001 1 1 1 I modOOO rim I 5- 5- 2 9

RegIster 10 101 1 !!I! I 5 5 2 9

Segment regIster ,10 0 0 reg 1 1 1 I ' (reg.,OI) 5 20 2 9,10,11

XCHG = ExchIftIe:
Register/memory with register 11000 01'1 wi mod reg rim I 3,5- 3,5- 2,7 7,9

RegISter wrth accumulator 11 001 0 reg I 3 3

'IN = Input lroll!:
11 110010 wi Fixed port port I 5 5 14

variable port 11 1101 lOw I 5 5 14

OUT = Output to:
FIXed port 11 110011 wi port I 3 3 14

vartable port 11 1101 1 1 wi 3 3 14

XlAT = Trenslate byte 10 AL 11 101 01 1 1 I 5 5 9

LEA = Load EA to register 11 0001 1 0 1 mod reg rim I 3- 3-

LDS=i.oad polnterlo OS 11 1 0 0 0 1 0 1 mod reg rim I (mod., 11) 7- 21- 2 9,10,11

LES = Load poInter 10 ES 1110 00100 mod reg rim I (mod., 11) 7- 21- 2 9,10,11

lAHF = Load AH with flags 11 001 1 1 1 1 2 2

SAHF = Store AH Into flags 11 00 1 1 1 1 0 2 2

PUSHF = Posh flags 11 001 1 1 0 0 3 3 2 9

POPF = Pop flags 11 0 (11 1 1 0 1 5 5 2,4 9,15

Shaded areas indicate instructions not aval able in iAPX 86, 88 microsystems.

4-44 AFN-02060D I

infer IAPX 286/10 £lWAOO©~ OOOIF@~IMI£"ii'O@OO

80286 INSTRUCTION SET SUMMARY

Raal ProIICI8d

FUNCTION FORMAT Addreu Vlrlual
Moda Addrea

Mode

ADD = Add:
Reglmemory willl regi&ter to eilller 10 000 0 0 d wi mod reg rim 2,7· 2,7"

Immediate to regi&ter/memory l' 0 0 0 0 0 s w I mod OM rim data dataifsw=OI 3,7· 3,7·

Immediate to accumulator 10000010wl data dataffw=1 3 3

ADC = Add wl\ll ceny:
Reglmemory with register to either 10 00 1 00 d wi mod reg rim 2,7· 2,7· 9

Immediate to reglsterlmemory l' 000 0 0 s wi modOl0 rim data data ils w = 01 3,7· 3,7· 2

Immediate to accumulator 10 00 1 0 lOw I data dataifw=1

INC = Incremant:
Registerlmemory l' 111111 wi modOOO rim 2,7· 2,7·

Register 10 1000 reg I
SU8 = Subtree!:
Reglmemory and register to eilller 10 01 0 1 0 d wi mod reg rim 2.7. 2,7·

Immediate from registerlmemory l' 00000 s wi madl01 rim data datailsw=OI 3,7" 3,7"

Immediate from accumulator 10 01 0 1 lOw I data dataifw=1

S88 = Subtree! wllb borrow:
Reglmemory and register to erther 1000110d w i mod reg rim 2,r 2,r·

Immediate from registerlmemory l' OOOOOs wi modOll rim data datalfsw=OI 3,7· 3.7"

Immediate from accumulator 10 00 1 1 lOw I data dataifw=1 3

DEC = Decrement: .
Registerlmemory l' 111111 wi modOOl rim 2,r 2,7·

Register 10 1001 reg I 2 2

CMP = Compare:
Register/memory with register 1001 1 101 wi mod reg rim 2,6· 2,6·

Register with registerlmemory 10011100wl mod reg rim 2,r 2,7"

Immediate with registerlmemory l' 00000 s wi modlll rim data datalfsw=OI 3,S· 3,S·

Immediate with accumulator 10 01 1 1 lOw I data datalfw=1 3

NEG = Change sign l' 11 1 011 wi modOll rim 2 r-
AM = ASCII adlustfor add 10 01 1 0 1 1 1 I
IIAA = Decimal adjust,for add 10 01 001 1 '1
AAS = ASCII adjust for subtract 10 01 1 1 1 1 1 I
PAS = Decimal adjust for subtract 10 01 0 1 1 1 1 I
MUL= Multiply (unsigned)' l' 11 1 011 wi modl00 rim
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16· IS·
Memory-Word 24· 24·

IMUL = Integer muttiply (Signed): l' 11 1 011 wi madl01 rim
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16· IS·
Memory-Word 24· 24·

DIY = Divide (unsigned): modl10 rim
Register-Byte 14 14 6 S
Register-Word 22 22 6 6
Memory-Byte lr 17· 2,S S,9
Memory-Word 25' 25' 2,S ,6,9

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems,

4-45 AFN-020600

.. .\,

IAPX 286/10

80286 SETSUMMARYI"~'nTII~IIAnl

FUNCTION

(Conllnuedl:

IDIV ~ Integer divide (signedl:
Register-Byte
Register-Word
Memory-Byte
Memory-Word
AAM ~ASC!I adlust/or multiply

AAD = ASCII adlustfor divide

CBW = Convert byte to word

CWD = Convert word to double word

LOGIC
ShlftJRlllate InllrucHona:
RegisterlMemory by 1

RegisterlMemory by CL

A/tD=And:
Reglmemory and register to either

Immediate to reglster/mamory

Immediate to accumulator

TEST =And lunction to flags, no result
Reglsterlmemory and register

Immediate data and registerlmemory

Immediate data and accumulator

DR = Or:
Reg/memory and register to either

Iminedlate to reglsterlmemory

Immediate to accumulator

XOR = Exclusive or:
Reglmemory and register to either

Immediate to reglsterlmemory

Immediate to accumulator

NOT = Invert reglsterlmemory

STRING MANIPULATION:
MOYS = Move bytelword

CMPS ~ Compare byteJword

SCAS = Scan byte/word

LODS"; Load byteJwd to AUAX

FORMAT

11 1 1 1 0 1 1 w I mod 111 rim

11 101 01 0 0 I 00001 0 1 0 I
111 0 1 ()'1 0 1 I 0 0 0 0 1 0 1 0 I
11001110001

11 00 1 1 00 1 I

'11 101 000 w I mod m rim

11 101 001 w I mod m rim

m Instruction
o 0 0 ROL
o 0 1 ROR
o 1 0 RCL
o 1 1 RCR
1 00 SHUSAL
1 01 SHR
1 1 1 SAR

11000010wl mod reg rim

11 11 1 011 w I modOOO rim data

11010100wl data datalfw~l

loaool0dwl mod reg rim

11000000wl mod 00 1 rim data

10000110wl data datalfw~l

1001100 dw i mod reg rim

11000000wl modl10 rim data

1001fOl0wl data dataifw~ 1

11 1 1 1 01 1 wi modOl0 rim

11 010010wl

11 01 00 1 1 wi

11 0101 11 wi

11 01 0 1 lOw I

dataifw=l

dataifw~l

dataifw~l

Shaded ar~as indicate instr~ctions not available in iAPX 86,88 microsystems,

4-46,

Real
Add,.sa

Mode

17 17
25 25
20- 20-
28- 28-
IS IS

14 14

2 2

2,7- 2,7-

5+n,8+n' 5+0,8+n*

2,r

3,7-

3

2,S-

3,S-

2,7<

3,7<

3

2,7-

3,7<

3

2,7<

2,7-

3.7'

2,S-

3,6-

2,r

3,7<

3

2,7<

3,7<

3

2,r

Real Protected
Add,.sa VlrlQal
Mode Add,.sa

Mode'

6 6
6 6

2,6 6,9
2,6 6,9

AFN-02060D

80286 INSTRUCTION SET SUMMARY

FUNCTIIIN

Repeated by count in ex
MOVS ~ Move string

eMPS ~ Compare stnng

SCAS ~ Scan string

LODS ~ Load string

CONTROL TRANSFER

CALL = Call:

FORMAT

Direct within segment 11 1 1 a 1 a a a

ReQlster/memoty 11 111111
indirect within segment
D!rect intersegment 11 a a 1 1 a 1

Protected Mode Only (Direct inllnegment):
Via call gate to same privilege level
Via call gate to different privilege level, no parameters
Via call gate to different privilege level, x parameters
ViaTSS
Via task gate

Indirect intersegment 11 111111

Pro\8cted Mode Only (Indirect Intenegment):
Via call gate to same privilege level
Via call gate to different privilege level, no parameters _
Via cal.1 gate to different privilege level, x parameters
ViaTSS
Via task gate

JMP = Unconditional jump:
Short/long 11 1 1 a 1 a 1 1

Direct within segment 11 1 1 a 1 a a 1

Reglsterlmemory indirect within segment 11 111111

Direct Intersegment 11 1 1 a 1 a 1 a I
Pnlllcted Mode Only (Direct intenegment):

I
Via call gate to same pnvilege level
ViaTSS
Via task gate

Indirect Intersegment 11 111111

Pnlllcted Mode Only (Indirect Intenegment):
Via call.oate to same privilege level
ViaTSS
Via task gate

RET = Retum 110m CALL:
Within segment 11 1 a a a a 1 11

Within seg adding Immed to SP 11 1 a a 0 0 1 01

Intersegment 11 100 1 01 11

Intersegment adding Immediate to SP 11 1 a 0 1 0 1 a I
Protected Mode Only (RET):

To different level

IAPX 286/10

dlsp-Iow dlsp-high

modal a rim

segment offset

segment selector

modOll rim (mod" 11)

dlsp-Iow

dlsp-Iow disp-high

mod 100 rim

segment offset

segment selector

modl01 rim (~od" 11)

data-low data-high

data-low data-high

Shaded areas indicate instructions not available in iAPX 86,88 microsystems,

4-47

Real Pnltected Real Protected
Address Virtual Address VlrIuIl
Mode Addren Mode Addre ..

Mode Modi

5+4n 5+4n 2 9

5+9n 5+9n 2,8 8,9

5+8n 5+8n 2,8 8,9

5+4n 5+4n 2,8

2 18

2,8 8,9,18

13+m 26+m 11,12,18

41+m 8,11,12,18
82+m 8,11,12.18

86+4xtm 8,11,12,18
177tm 8,11,12,18
182+m 8,11,12,18

16+m 29+m' 8,9,11,12,18

44+m" 8,9,11,12,18
83+m' 8,9,11,l2,18

9O+4x+m' 8,9,11,12,18
180+m' 8,9,11,12,18
185+m' 8,9,11,12,18

7+m 7+»> 18

7+m 7+m 18

7+m,ll+m' 7+m,11+m' 9,18

II+m 23+m 11,12,18

38+m 8,11,12,18
175+m 8,11,12,18
t80+m 8,11,12,18

15+m' 2i+m' 8,9,11,12,18

41+m' 8,9,11,1 18
178+m' 8,9,11
183+m' 8,9,11,

11+m II+m 8,9,18

II+m l1+m 8,9,18

15+m 25+m 8,9,11,12,18

IS+m 8,9,11,12,18

55+m 9,11,12,18

AFN-02060D

Her· 'II\PX 286/10. £@W£OO©~ DOOIF(Q)OOU1i"IJ(9)OO

80286 INSTRUCTION SET SUMMARY

FUNCTION FORMAT Add
Mode

JElJZ = Jump 00 equaVlero 10 1 1 1 0 1 0 0 I dlsp 7+mor3 7+mor3 18
JUJNGE = Jump on lesS/llotgrearer or equ~ 10 1 1 1 1 1 0 0 I disp 7+mor3 7+mor3 18
JLElJNG = Jump on less orequaVllotgreater 10 1 1 1 1 1 1 0 I disp 7+mor3 7+mor3 18
JB/JNAE = Jumpon bitowmotabove orequ~ 10 1 1 1 0 0 1 0 I disp 7+mor3 7+mor3 18
JBElJNA = Jump on beloworequavnotabove 10 1 1 1 0 1 1 0 I disp 7+mor3 7+mor3 18
JP/JPE = Jurnpon panty/parityeven 10 1 1 1 1 0 1 0 disp 7+mor3 7+mor3 18
JO = Jump oooverflow 101110000 disp 7+mor3 7+mor3 18
JS = Jump 00 s~n 10 1 1 1 1 00 0 disp 7+mo,3 7+mor3 18

JNElJNZ = Jump on notequallnotztrO 10 1 1 1 0 1 0 1 disp 7+mor3 7+mor3 18

JNUJGE = Jumpon not ~sslgreaterorequ~ 10 1 1 1 1 1 0 1 disp 7+mor3 7+mor3 18

JNLElJG = Jump onnotless or equaligreater 10 1 1 1 1 1 1 1 disp 7+mor3 7+mor3 18

JNB/JAE = Jumpon not below/aboiloreq~ 10 1 1 1 0 0 1 disp 7+mor3 7+mor3 18

JNBElJA = Jumpoo not below orequali!bove 10 1 1 1 0 1 1 disp 7+mor3 7+mor3 18

JNPIJPO = Jump 00 not pal/par odd 10 1 1 1 1 01 1 I disp 7+mor3 7+mor3 18

JNO = Jump onnotove~ow 10 1 1 1 0 00 1 disp 7+mor3 7+morS 18

JNS = Jumpon not sign 10 1 1 1 1 00 1 disp 7+morS 7+morS 18

LOOP = loop ex times 11 1 1 0001 0 disp 8+mor4 8+mor4 18

LOOPZlLOOPE = loopwhHezeroiequal 11 1 1 0 0 0 0 1 disp 8+mor4 8+mor4 18

LOOPNZlLOOPNE = loopwhi. not ztrOIeq~ 11 1100000 disp 8+mor4' 8+mor4 18

, JCXZ = Jump on CXzero 11 11 0001 1 disp 8+mor4 8+mor4 18

INT = Interrupt:
Type specified 11 1 0 0 1 1 0 1 I type 23+m 2,7,8

TypeS 11 1 0 0 1 1 0 0 I 23+m 2,7,8

INTO = Interrupt on overflow 11 1 POll 1 01 24+mor3 2,6,8
13Hno 1311no

Protected Mode Only: IntIIru~1 Interrupti

Via interrupt or trap gate to same pnvllege level 40+m 7,8,11,12,18
Via interrupt or trap gate to fit different privilege level 78+m 7,8,11,12,18
Via Task Gate 167+m 7,8,11,12,18

II\ET = Interrupt return 11 1 0 0 1 1 1 11 17+m SI+m 2,4 8,9,11,12,15,18

Protected Mode Only:
To different privilege level 55+m 8,9,11,12,15,18
To different task INT = 1) 169+m 8,9,11,12,18

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4 ... 48 AFN-02060D

80286 INSTRUCTION

FUNCTION

PROCESSOR CONTROL
CLC = Clear carlY

CMC = Complement carlY

I STC=SetcarlY

CLD = Clear direction

STD = Set direction

CU = Clear interrupt

sn = Set interrupt

HLT=Halt

WAIT = Walt

LOCK = Bus lock prefiX

ESC = Processor Extension Escape

IAPX 286/10

FORMAT

11 1 1 1 1 00 0

11 1 1 1 010 1

11 1 1 1 1 00 1

11 1 1 1 1 1 0 0

11 1 1 1 1 1 0 1

11 1 1 1 1 01 0

11 1 1 1 1 01 1

1 1 1 0 1 0 0

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

4-49

9-20' 9-20'

Real
Address
Mode

5,8

Protected
Virtual
Address
Mode

14

14

13

14

8,17

11.13

1I
9,13,

, ,lI

$;11,1& ,

•
9.11.13

$

, .. 13 '
,9

, 1M'l.1$

9'.11,1$

8,9

9.11,16
.,1M$.

AFN-02060D

W ... J~ .. • '''ttl , ~,' IAPX.286/10 ,

Footnotes

The effective Address (EA) of the memory operand is
computed according to the mod and rIm fields:

if mod = 11 then rIm is treated as a REG field
if mod = 00 then OISP = 0·, disp-Iow and disp-high
are absent .;
if mod = 01 'then OISP = disp-Iow sign-extended to
16-bits, disp-high is ab~ent
if mod = 10thenOlSP = disp-high:disp-Iow

if rIm = 000 then !=A = (BX) + (SI) + OISP
if rIm = 001 then EA = (BX) + (01) + OISP
if rIm = 010 then EA = (BP) + (SI) + OISP
if rIm = 011 then EA = (BP) + (01) + OISP
if rIm = 100 then EA = (SI) + OISP
itrlm = 101 then EA = (01) + OISP
if rIm = 110 then EA = (BP) + OISp·
if rIm = 111 then EA = (BX) + OISP

OISP follows 2nd byte of instruction (before data if
required)

*exceplifmod = 00 and rim = 110thenEA = disp-hlgh:disp-Iow:

SEGMENT OVERRIDE PREFIX

100 1 reg 1 1 01

reg is assigned according to the following:

Segment
reg Register

00 ES
01 CS
10 SS
11 OS

REG is assigned according to the following table:

16-Blt(w = 1) 8-Blt(w = 0)
000 AX 000 AL
001 CX 001 CL
010 OX 0100L
011 BX 011 BL
100 SP
101 BP
110 SI
111 01

100 AH
101 CH
110 OH
111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op­
erands of the string primitive operations (those ad- .
dressed by the 01 register) are computed using the ES
segment, which may not be overridden.

4-50· AFN-Q2060D

PC BOARD PATTERN

IAPX 286/10

QUIDEIOSS
3 PLCS

J
-i~~~I-_-I-_----+'1'+I--------

~SOCKET ORIENTATION PIN ~
I '-
I

'G.
I

ALUMINUM LID
(HEATSINK PROVISIONS OPTIONAL) ,

Figure 36. Textool 68 Lead Chip Car,rier Socket

4-51

INDEX

\
OPEN

AFN-02060D

*ri+...:.r I.~'~'

80287
80-Bit HMOS

NUMERIC PROCESSOR EXTENSION
80287-3 -

• High Performance 80-Blt Internal
Architecture

• Implements Proposed IEEJE Floating
Point Standard 754

• ExpandslAPX 286/10 Datatypes to
Include 32-, 64-, 80-Bit Floating Point,
32-, 64-Blt Integers and 18-Di91t BCD
Operands

• Object Code Compatible with 8087

• Built-in Exception, Handling
)

• Operates iri Both Real and Protected
Mode IAPX 286 Systems '

• Protected, ,Mode Operation Completely
Conforms ,to the IAPX '2,a6 Memory
Manage,ment and Protection
Mechanisms '

• Dlrectiy ExtendslAPX 286/10 Instruction
Set to TrigonometriC, Logarithmic,
Exponential and Arithmetic Instructions
for All Datatypes

• 8x80-BU, Individually Addressable,
Numeric Register Stack

• Available In EXPRESS-Standard
Temperature Range

Th~ Inte~ 80287 is a high performance numerics processor extension that extends the iAPX 286/10 '
architecture with floating point, extended integer and BCD data types. The iAPX,286/20 computing system
(80286 with 80287:> fully conforms to the proposed IEEE Floating Point Standard. Using a numerics
oriented architecture, the 80287 adds over fifty mnemonics to the iAPX 286/20 instruction set, making the
iAPX 286/20 a complete sQlution for high performance numeric processing. The 80287 is implemented in
N-channel, depletion load, silicon gate technology (HMOS) and packaged in a 40-pin ceramic package.
The iAPX 286/20 is object code compatible with the iAPX 86/20 and iAPX 88/20.

CKM
BUS INTERFACE UNIT NUMERIC exEcUTION UNIT HLOA

r-~---T~-------------~

'I I FAACT~~~ j

I I

N.C. CLK2N

PUCK

R_T

013 iiJil
012 H_

Vee CLK

Vss CMD1

MiCROCODE D11 \Iss
D10 CMDO
N.C. iiPiiii
Dt iiPiiii
De IRROR
07 iiiiY
De PlMQ

1-------1::: Dt DO
1M

I
STATUS

os

I I . ~

L ____ --;- L _____ -_ ~BI~ _-~ ____ .J NOTE:
N.C. PINS MUST NOT BE CONNECTED.

Figure 1. 80287 Block Diagram Figure 2. ,80287 Pin Configuration

Intel Ccrporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
, Patent Licenses are Implied. ' , OCTOBER 1983
© INTEL CORPORATION, 1983. ORDER NUMBER: 210920-002

4-52, ,

80287

Table 1. 80287 Pin Description

Symb"ols ·Type Name and Function

ClK I Clock input: this clock provides the basic timing for internal 80287 opera-
tions. Special MOS level inputs are required. The 82284 or 8284A ClK
outputs are compatible to this input.

,.
CKM I Clock Mode signal: indicates whether ClK input is to be divided by 3 or

used directly. A HIGH input will cause ClK to be used directly. This input
may be connected to Vcc or Vss as appropriate. This input must be either
HIGH or lOW 20 ClK cycles before RESET goes lOW.

RESET' I System Reset: causes the 80287 to immediately terminate its present ac-
tivity and enter a dormant state. RESET is required to be HIGH for more than
480287 ClK cycles. For proper initialization the HIGH-lOW transition must
occur no sooner than 50 itS after Vee and ClK meet their D.C. and A.C.
specifications.

015-00 1/0 Data: 16-bit bidirectional data bus. Inputs to these pins may be applied
asynchronous to the 80287 clock.

BUSY 0 Busy status: asserted by the 80287 to indicate that it is currently executing
a command.

ERROR 0 Error status: reflects the ES bit of the status word. This signal indicates
that an unmasked error condition exists.

PEREa 0 Processor Extension Data Channel operand transfer request: a HIGH on
this output indicates that the 80287 is ready to transfer data. PEREa will be
disabled upon assertion of PEACK or upon actual data transfer, whichever
occurs first, if no more transfers are required.

PEACK I Processor Extension Data Channel operand transfer ACKnowledge: ack-
nowledges that the request signal (PEREa) has been recognized. Will
cause the request (PEREa) to be withdrawn in case there are no more
transfers required. PEACK may be asynchronous to the 80287 clock.

NPRD I Numeric Processor Read: Enables transfer of data from the 80287. l'his
input may be asynchronous to the 80287 clock.

NPWR I Numeric Processor Write: Enablestransfetof data to the 80287. This input
may be asynchronous to the 80287 clock.

NPS1, NPS2 I Numeric Processor Selects: indicate the CPU is performing an ESCAPE instruc-
tion. Concurrent assertion of these signals (i.e., ~ is lOW and NPS2 is
HIGH) enables the 80287 to perform floating point instructions. No data trans-
fers involving the 80287 will occur unless the .device is selected via these
lines. These inputs may be asynchronous to the 80287 clock.

CMD1, CMDO I Command lines: These, along with select inputs, allow the CPU to di rect the
operation of the 80287.
These inputs may be asynchronous to the 80287 clock.

4-53 210920-002

"nt_I@> I •• 'e'

Symbols

ClK286

S1,SO_
COD/INTA

HlDA

READY

Vss

Vee
.

Type

I

I

I

I

I

I

80287

Table 1. 80287 Pin Description (cont.)

Name and Function

CPU Clock: This input provides a sampli ng edge for the 80287 inputs S1, SO,
COD/iNTA, READY, and HlDA. It must be connected to the 80286 ClK input.

Status: These inputs must be connected to the corresponding 80286 pins.

Hold Acknowledge: This input informs the 80287 when the 80286 controls
the local bus. It must be connected to the 80286 HlDA output.

Ready: The end ota bus cycle is signaled by this input. It must be connected
to the 80286 READY input.

System gtound, both pins must be connected to groun~.

+5V supply

FUNCTIONAL DESCRIPTION . effectively extends the register and instruction set
of an iAPX 286/1.0 system for existing iAPX 286
data types and adds several new data types as well.
Figure 3 presents the program visible register
model of the iAPX 286/20. Essentially, the 80287
can be treated as an additional resource or an
extension to the iAPX 286/1 0 that can be used as a
single unified ,system, the iAPX 286/20.

The 80287 Numeric Processor Extension (NPX)
provides arithmetic instructions for a variety of
numeric data types in iAPX 286/20 systems. It also

, executes numerous built-in transcendental func­
tions (e.g., tangent and log functions). The 80287
executes instructions in parallel with a 80286. It

80287
STACK: TAG FIELD

80288

o I ~~~7~8~~~~M~"~ ____ ~~~~ ____ ~0 1 0
EXPONENT SIGNIFICAND

15 FILE: 79

AX I R1 SIGN

8X I R2
CX I

R3
DX I

R~

SI I
RS

DI I
R8

8P I
R7

SP I R8 I
15

L_O',

I IP I ! FLAGS

CS§5' ,L __ ~_:
DS, I

) ES . I
SS 'I

15 o
CONTROL REGISTER

STATUS REGISTER

TAO'WORD

f- ,INSTR,:!CTION POINTER_

~ DATA POINTER -

Figure 3. IAPX 286/20 Architecture

4-54 210920.002
\ .

80287

The 80287 has two operating modes similar to the
two modes of the 80286. When reset, 80287 is in
the real address mode. It can be placed in the
protected virtual address mode by executing the
SETPM ESC instruction. The 80287 cannot be
switched back to the real address mode except by
reset. In the real address mode, the iAPX 286/20 is
completely software compatible with iAPX 86/20,
88/20.

Once in protected mode, all references to memory
for numerics data or status information, obey the
iAPX 286 memory management and protection
rules giving a fully protected extension of the
80286 CPU. In the protected mode, iAPX 286/20
numerics software is also completely compatible
with iAPX 86/20 and iAPX 88/20.

SYSTEM CONFIGURATION
As a processor extension to an 80286, the 80287
can be connected to the CPU as shown in Figure 4.
The data channel control signals (PEREQ,
PEACK), the BUSY signal and the NPRD, NPWR
signals, allow the NPX to receive instructions and
data from the CPU. When in the protected mode, all
information received by the NPX is validated by the
80286 memory management and protection unit.
Once started, the 80287 can process in parallel
with and independent of the host CPU. When the
NPX detects an error or exception, it will indicate
this to the CPU by asserting the ERROR. signal.

The NPX uses the processor extension request and
acknowledge pins of the 80286 CPU to implement
data tram,fers with memory under the protection
model of the CPU. The full virtual and physical
address space of the 80286 is available. Data for
the 80287 in memory is addressed and represented
in the same manner as for an 8087.

The 80287 can operate either directly from the CPU
clock or with a dedicated cloc.k. For operation with
the CPU clock (CKM=O), the 80287 works at one­
third the frequency of the system clock (Le., for an
8 MHz 80286, the 16 MHz system clock is divided
clown to 5.3 MHz). The 80287 provides a capability
to internally divide the CPU clock by three to pro-

. duce the required internal clock (33% duty cycle).
To use a higher performance 80287 (8 MHz), an
8284A clock drJver and appropriate crystal may be
used to directly drive the 80287 with a 1/3 duty
cycle clock.on the ClK input (CKM=1).

HARDWARE INTERFACE
Communication of instructions and data operands
between the 80286 and 80287 is handled by the
CMDO, CMD1, FJI5ST, NPS2, f\lI5RO, and f'1FIWR sig­
nals. 1/0 port addresses 00F8H, OOFAH, anc;l OOFCH
are used by the 80286 for this communication. When
any of these addresses are used, the FJI5Sl input
must be LOW and NPS2 input HIGH. The IORC" and
JOWC outputs of the 82288 identify 1/0 space trans­
fers (see Figure 4). CMDO should be connected to
latched 80286 A 1 and CMD1 should be connected to
latched 80286 A2. The sr, SO, CODIifiITA,READY,
HlDA, and eLK pins of the 80286 are connected to
the same named pins on the 80287. .

1/0 ports OOF8H to OOFFH are reserved for the
80286/80287 interface. To guar.antee correct oper­
ation of the 80287, programs must not perform any
1/0 operations to these ports.

The PEREQ, PEACK, BUSY, and ERROR signals of
the 80287 are connected to the same-named 80286
input. The data pins of the 80287 should be directly
connected to the 80286 data bus. Note that all bus
drivers connected to the 80286 local bus must be

. inhibited when the 80286 reads from the 80287.
The use of COD/INTA and M/iQ in the decoder·
prevents INTA bus cycles from disabling the data
transceivers.

PROGRAMMING INTERFACE
Table 2 lists the seven data types the 80287 sup­
ports and presents the format for each type. These
values are stored in memory with the least signifi­
cant digits at the lowest memory address. Pro­
grams retrieve these values by generating the
lowest address. All values should start at even
addresses for maximum system performance.

Internally the 80287 holds all numbers in the tem­
porary real format. load instructions automati~
cally convert operands represented in memory as
16-, 32-, or 64-bit integers, 32- or 64-bit floating
point number or 18-digit packed BCD numbers
into temporary real format. Store instructions per­
form the 'reverse type conversion.

80287 computations use the processor's register
stack, These eight 80-bit registers provide. the
equivalent capacity of 40 16-bit registers, The
80287 register set can be accessed as a stack, with

4-55 210920-002

VCc
2OKo

RESET I-H--,
iiiiDv Ht-+--,

82284 CLK r- ~ -

Vee
I

~: 20Kn

80287

20Kn

.51 r- .

SOf--<
I ADDRESS

r--~J~.::.--+-----~~~~~~~~~~~5~l:~~~~~IT~~~~~~~I·~c~~~rc~-
A15-Ao

t--++--I RESET

~I-H-r~-+-I-;~
ClK ClK

51 51 80286

SO So DwOo -r--
M/iO MliO

t- ERROR PEREQ-r-

8.2288 r- iUlW PEAcK ~
COD/iii'i'A HlDA A2 Al AO El

DEN~~~+-~-+-+---+-----T---+-~

I-- fi 8205

r-- Er3 __ O'+-....
~+-~I r-----~

D~RI-~-r+-I--I-+---+-----t---+-r-I
AlEI-~-r+-I--I-+---+-----t---+-r-I

iORC
COD/INTA_ HlDA

1-r--+-+-_--IICl~ D D

Q Q

~
IQ

'---I-I-IRESET PEACK - r--.
L---+-IHiiEAoY PEREQ - ;==n

4-----+-1--151 915-00 -DATA 8::
t----t-+--IClK286 T ~

L--I---+-I--ISO 80287 t_,....---------------r-r-""""'8287

'-----+---+-I......-fiiiPiiD NPS2 -Vee -
L-----------t-----I-+-iNPWR ~t_----------------~

r-ERROR CMDlt_------------------~

~ iUlW CMDO~--------------------~
ClK CKM

r---,
:r:--I I /
C' 8284A ------<>~
:i:_J I L ___ .J

Figure 4. iAPX 286/20 System Configuration.

4-56· 210920-002

"n+._1 II!> I •• ~

Data
Formats

Word Integer

Short Integer

Range

104

109

80287

Table 2. 80287 Datatype Representation In Memory

Most Significant Byte HIGHEST ADDRESSED BYTE

Precision

01 7 017 017 01 7 017 017 017 017 017 o I 7

16 Bits ;1 J (TWO'S 5 MAGNITUDE COMPLEMENT)

15 0

32 Bits sj MAGNITUDE I (TWO'S
COMPLEMENT)

31 0

Long Integer 1019 64 Bits 51 MAGNITUDE I (TWO'S
COMPLEMENT)

63 0

MAGNITUDE .
Packed BCD 1018 18 Digits 5\ x I d17 d 16 d 15 d'4 d'3 d 12 d'l dlO dg dB ,d, d6 d s d, d3 d, d,

79 72

.
Short Real 10±38 24 Bits ;\ BIASED \ 5 EXPONENT SIGNIFICAND I

31 23'- 0
Ii

Long Real 1o±308 53 Bits 51 BIASED I SIGNIFICAND I EXPONENT

63 52'- 0 I.

BIASED Temporary Real 10±4932 64 Bits 51 EXPONENT ill SIGNIFICAND

NOTES:
(1) S = Sign bit (0 = positive. 1 = negative)
(2) dn = Decimal digit (two per byte)

79

(3) X = Bits have no significance; 8087 ignores when load­
ing, zeros when storing.

(4) 1 = Position of implicit binary point
(5) I '" Integer bit of significand; stored in temporary real,

implicit in short and long real

instructions operating onlhe top one or two stack
elements, or as a fixed register set, with instruc­
tions operating on explicitly designated registers,

Table 6 lists the 80287"s instructions by class. No
special programming tools are necessary to use
the 80287 since all new instructions and data types
are direQtly Suppo(ted by the iAPX 286 assembler

64 ·63'

(6) Exponent Bias'(normalized values):
Short Real: 127 (7FH)
Long. Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH) s .

(7) Packed BCD: (-1) (017" .00)

(8) Real: (-1)S(2E-BIAS)(Fo F1. , .)

and appropriate high level languages. All iAPX
86/88 development tools .which support the 8087
can also be used to develop software for the iAPX
286/20 in real address mode.

. .
Table ~ gives the execution times of SO{T1e typical
numeric instructions. ,

4-57 210920-002

do I
0'

I
0

80287

Table 3. Execution Time for Selected 80287 In.tructlons

Floating Point Instruction

Add/Subtract

Multiply (single precision)

Multiply (extended precision)

Divide

Compare

Load (double precision)

Store (double precision)

Square Root

Tangent

Exponentiation

SOFTWARE INTERFACE
The iAPX286/20 is programmed as a single pro­
cessor. All communication between the 80286 and
the 80287 is transparent to software. The CPU au­
tomatically controls the 80287 whenever a numeric
instruction is executed. All memory addressing
modes, physical memory, and virtual memory of
the CPU are available for use by the NPX.

Since the NPX operates in parallel with the CPU,
any errors detected by the NPXmay be reported
after the CPU has executed the ESCAPE instruc­
tion which caused it. To allow identification of the
failing numeric instruction, the NPX contains two
pointer registers which identify the address of the
failing numeric instruction and the numeric
memory operand if appropriate for the instruction
encountering this error. .

INTERRUPT DESCRIPTION

Several interrupts of the iAPX 286 are used to
report exceptional conditions while executing
numeric programs in either real or protected
mode. The interrupts and their functions are
'shown in Table 4.

Approximate Execution
Time (MS)

80287
(5 MHz Operation)

14/18

19

27

39

9

10

21

36

90

, 100

PROCESSOR ARCHITECTURE
As shown in Figure 1, the NPX is internally divided
into two processing elements, the ,bus interface
unit (BIU) and the numeric execution unit (NEU).
The NEU executes all numeric instructions, while
the BIU receives and decodes instructions, re­
quests operand transfers to and from memory and
executes processor control instructions. The two
units are able to operate independently of one
another allowing the BIU to maintain asynchro­
nous communication with the CPU while the NEU
is busy processing a numeric instruction.

BUS INTERFACE UNIT
The BIU decodes the ESC instruction executed by the
CPU. If the ESC code defines a, math instruction, the
BIU transmits the formatted instruction to the NEU. If
the ESC code defines an administrative instruction,
the BIU executes it independently of the NEU. The
parallel operation of the NPX with the CPU is normally
transparant to the user. The BIU generates the BUSY
and ERROR signals for 80826/80287 processor syn­
chronization and error notification, respectively.

The 80287 executes a single numeric instruction at
a time.' When executing most ESC instructions, the

4-58 210920.002

80287

-'ble 4. 80286 Interrupt ~rs Reserved for NPX

Interrupt Number Interrupt, Function

7 An ESC Instruction was encountered when EM or TS of the 80286 MSW was set.
EM=1 indicates that softw'are emulatlon'of the instruction is required. When TS is
set, either an ESC or WAIT instruction will cause interrupt 7. This indicates that the
current NPX context may not belong to the current task.

9 The second or subsequent words of a numeric operand in memory exceeded a
segment's limit. This interrupt occurs after executing an ESC instruction. The saved
return address will not point at the numeric instruction causing this interrupt. After
processing the addressing error, the iAPX 286 program can be restarted at the
return address with IRET. The address of the failing numeric instruction and
numeric operand are saved in the 80287. An interrupt handh!r 10r this interrupt must
execute FNINIT before any other ESC or WAIT instruction.

13 The starting address of a numeric operand is not in the segmenfs limit. The return
address will pOint at the ESC instruction, including prefixes, causing this error. The
80287 .has not executed this instruction. The instruction and data address in 80287
refer to a previous, correctly executed, In~ruction.

16 The previous numeric instruction ca,used an unmasked numeric error. The address
of the faulty numeric instruction or numeric data operand is stored in the 80287.
Only ESC or WAIT instructions can cause this interrupt. The 80286 return address
will point at a WAIT or ESC instruction, including prefixes, which may be restarted
after clearing,the error condition in the NPX.

80286 tests the BUSV pin and waits until the 80287
indicates that it is not busy before initiating the com­
mand. Once initiated, the 80286 continues program
execution while the 80287 executes the ESC instruc­
tion. In iAPX 86/20 systems, this synchronization is
achieved by plaCing a WAIT instruction before aoESC
instruction. For most ESC instructions, the iAPX 286/20
does not require a WAIT instruction before the ESC
opcode. Hgwever, the iAPX 286/20 will operate cor­
rectly with these WAIT instructions. In all cases, a WAIT
or ESC instruCtion should be inserted after any 80287
store to memory (except FSTSW and FSTCW) or load
from memory (except FLDENV or FRSTOR) before the
80286 reads or changes the value to be sure the
numeric value .has already been written or read by
the NPX.

Data transfers between memory and the 80287,
when needed, are controlled by the PEREQ
PEACK, NPRD, NPWR, NPS1, NPS2 signals. The
80286 does the actual data transfer with memory
through its processor extension data channel.
Numeric data transfers with memory performed by
the 80286 use the same timing as any other bus

cycle. Control signals for the 8Q287 are generated
by the 80826 as shown in Figure 4, and meet the
ti,ming requirements shown in the AC require­
ments section.

NUMERIC EXECUTION UNIT
The NEU executes all instructions that 'involve the
register stack; these include arithmetic, logical, tran­
scendental, constant and data transfer instructions.
The data path in the NEU is 84 bits wide (68 slgnifl­
cand bits, 15 exponent bits and a sign bit) which
allows internal operand transfers to be performed at
Very high sPeeds.

When the NEU beaing executing an instruction, it
activates the BIU U Y-signal. This signal isused
in conjunction with the CPU WAIT instruction or
automatically with most of the ESC instructions to
synchronize both processors.

REGISTER SET
The 80287 register set iSShown in Figure 5. Each of
the eight data regist~rs in the 8087's register stack

4-59 210920-0~

inter 80287

79 78

SIGN EXPONENT

DATA FIELD

6483

15

TAG FIELD
o 1 0

SIGNIFICAND

.

o
CONTROL REGISTER

STATUS REGISTE.R
TAG WORD

I- INSTRUCTION POINTER ...

I- DATA POINTER -

Figure 5. 80287 Register Set

is 80 bits wide and is divided into "fields" corre­
sponding to the NPX's temporary real data type.

At a given point in time the TOP field in the status
word identifies the current top-of-stack register. A
"push" operation decrements TOP by 1 and loads a
value into the new top register. A "pop" operation
stores the value from the current top register and
then increments TOP by 1. Like 80286 stacks in
memory, the 80287 register stack grows "down"
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instructions
implicitly address the register pOinted by the TOP.
Other instructions allow the programmer to explicitly
specify the register which is to be used. This explicit
register addressing is also "top-relative."

STATUS WORD
The 16-bit status word (in the status register)
shown in Figure 6 reflects the overall state of the
80287. It may be read and inspected by CPU code.
The busy bit (bit 15) indicates whether the NEU is
executing an instruction (B = 1) or is idle (B = 0).

The instructions FSTSW, FSTSW AX, FSTENV, and
FSAVE which store the status word are executed
exclusively by the BIU and do not set the busy bit
themselves or require ,the Busy bit be cleared in
order to be executed.

The four numeric condition code bits (CO-C3) are
similar to the flags in a CPU: instructions that perform
arithmetic operations update these bits to reflect the
outcome of NPX operations. The :effect of these
instructions on the condition code bits is summarized
in Tables 5a and 5b.

Bits 14-12 of the status word point to the 80287 regis­
ter that is the current top-ol-stack (TOP) as described
above. Figure 6 shows the six error flags in bits 5-0 of
the status word. Bits 5-0 are set to indicate that the
NEU has detected an exception while executing an
instruction. The section on exception handling explains
how they are set and used.

Bit 7 is the error summary status bit. This bit is set if
any unmasked exception bit is set and cleared other­
wise. If this bit is set, the ERROR signal is asserted.

4-60 210920-002

80287

15 o
I B Ic.d TOP I ~ I c,j eoll;sl x I pEluEloElzEIDEllE I

I EXCE PTION FLAGS (1 = EXCEPTION HAS OCCURRED)
I

INVALID OPERATION"
DENORMALIZED OPERAND"

ZERO DIVIDE"
OVERFLOW"
UNDERFLOW"
PRECISION"

(RESE RVED)

ERRO R SUMMARY STATUS(')

ITION CODel2l COND
TOP
NEU

OF STACK POINTER(3)
BUSY

g:ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE.
(3)~~~ ~~~~~: FOR CONDITION CODE INTERPRETATION.

000 = Regiater 0 la Top 01 Stack
001 = Regiater 1 ia Top 01 Stack . . .
111 ='Reglster 71s Top 01 Stack

"For definitions, see the section on exception handling

Figure 6. 80287 Status Word

TAG WORD

The tag word marks the content of each register as
shown in Figure 7. The principal function of the tag
word is to optim~e the NPX's performance. The eight
two-bit tags in the tag word can be used, however. to
interpret the contents of 80287 registers.

INST.RUCTION AND DATA POINTERS

The instruction ,and data pointers (See Figures 8a
and 8b) are provided for user-written error hand­
lers. Whenever the 80287 executes a new instruc­
tion, the BIU saves the instruction address, the
operand address (if present) and the instruction
opcode. 80287 instructions can store this data into
memory.

The instruction and ~ata pointers appear in one of
two formats depending on the operating mode of
the 80287. In real mode, thes,e values are the 20-bit
physical address and 11-bit opcode formatted like
the 8087. lri p~otected mode, these values are the
3~-bit virtual addresses used by the progra&n

4-61

which executed an ESC instruction. The' same
FLDENV/FSTENV/FSAVE/FRSTOR instructions as
those of the 8087 are used to transfer these values
between the 80287 registers and memory.

The saved instructi'on address in the 80287 will
point at any prefixes which preceded the instruc-'
tion. This is different than in the 8087 which only
pointed at the ESCAPE instruction opcode.

CONTROL WORD

The NPX provides several processing options
which are selected by loading a word from memory
into the control word. Figure 9 shows the format
and encoding of ffelds in the control word.

The low order byte of this control word configures
the 80287 error and exception masking. Bits 5-0 of
the controi word contain individual masks for each
of the six exceptions that the 80287 recognizes.
The high order byte of the control w,ord configures
the 80287 operating mode including, precision,

210920-002

;

".'

Table Sa. Condition Code Interpretation

Instruction
Ca ~ C1 Type

"

Compare, Test 0 " 0 X
0 0 X
1 0 X
1 l' X

Remainder 01 0 Oq

U 1 U

Examine 0 0
.

0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 ' , 1
1 1
1 1
1 1
1 : 1

NOTES:
1. ST = Top of stack
2. X = value is not affected by instruction
3. U = vlllue is undefined following instruction
4. Qn' = QUotient bit n

Table 5b. Condition Code Interpretation after

FPREM Instruction Aa a Function of

Dividend Value
"

Dlvlilend Range ' ~ Q, .'00
Dividend < 2 • Modulus C:l C1 00
,Dividend < 4, • Modulus' C:l ,01 00
Dividend ... 4 • Modulus ~, '01 ' 00 ,.

NOTE:'

0
0
1

'1

1. Previous vallie ot indicated bit, not affected by F,PREM.
, Instruction execution'. '

Co, Interpretation,

0 ST > Source or 0 (FTST)
1 ST < Source or 0 (FTST)
0 ,ST = Source or 0 (FTST)
1 ST is not comparaole

~ Complete reduction with
three low bits of quotient
(See Table 5b),

U Incomplete Reduction

0 Valid, positive unnormalized
1 Invalid, ,positive, exponent =0
0 Valid .. negative, unnormalized '
1 Invalid, negative, exponent =0
0 Valid, positive, normaiized
1 Infinity, positive
0 Valid, negative, normalized
1 Infinity, negative
0 Zero, positive
1 Empty . 0 Zero, negative

" 1 Empty
0 Invlllid, positive, exponent = 0
1 Empty
0 Invalid, negative, exponent = 0
1 Emp,ty

"

rounding, ,and infinity control. Th~ precision con­
trol bits (bits ,9-8) can be, used to set the 80287
in~ernal, operating pr.ecision 'at less, than the
~efault of temporary real (SO-bit) precision. This
qan I>e uS,eful in Pfoviding comp$tibility with, the
early generation arithmetic processors of small';II:
preciSion than the 80287. The rounding 'control
bits (bits 11-10) provide for directed rounding and
tl'uechop as well'as'the'unbiased roiJnd to nellrest
even mode specified in the IEEE'standafd~' C,ontrol
over closure'of the numbar space at infinity is also
provided '(either affine closure: ± 00, or projective
clOSUre: 00, is traatedas' unslgned, mily be
specified). ' ",'. ," "

, 4-62 21092Il-002

80287

NOTE: The index i of tag (i) is D.21 top-relative. A program
typically uses the "top" field of Status Word to deter­
mine which tag(i) field refers to logical top of stack.

TAG VALUES:
00 = VALID
01 = ZERO
10 = INVALID or INFINITY
11 = EMPTY

Figure 7. 80287 Tag Word

MEMORY OFFSET

15 o

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IPOFFSET . +6

CS SELECTOR

DATA OPERAND OFFSET +10

DATA OPERAND SELECTOR +12

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory

EXCEPTION HANDLING

The 80287 detects six different exception conditions
tHat can occur during instruction execution. Any or
all exceptions will cause the assertion of external
ERROR Signal and ES bit of the Status Word if the
appropriate exception masks are· not set.

The exceptions that the 80287 detects and the 'default'
, procedures that will be carried out if the exception is
masked, are as follows:

Invalid Operation: Stack overflow, stack underflow,
indeterminate form (0/0, 00, -00, etc) or the use of a
Non-Number (NAN) as an operand. An exponent value
of all ones and non-zlilro significand is reserved to
identify NANs. If this exception is masked, the 80287
default response is to generate a specific NAN called

INDEFINITE, or to propogate already existing. NANs
as the calculation result.

Overflow: The result is too large in magnitude to
fit the specified format. The 80287 wi II generate an
encoding for infinity if this exception is masked.

Zero Divisor: The divisor is zero while the divi­
dend is a non-infinite, non-zero number. Again, the
80287 will generate an encoding for infinity if this
exception is masked.

Underflow: The result is non-zero but too small in
magnitude to fit in the specified format. If this
exception is masked the 82087· Will denormalize
(shift right) the fraction until'the exponent is in
range. The process is called gradual underflow.

4-:63 2109~o-002

"nt_Ie I •• 'e" 80287

15
, ,

CONTROL WORD

STATUS WORD

TAO WORD

INSTRUCTION POINTIER (15-0)

INSTR~CTIOt\1 I INSTRUCTION
POINTE (111-18) 0 OPCODE (10-0)

DATA POINTER (15-0)

DATA POINTER I '
(111-18) 0

15 1211

o

o

MEMORY
OFFSet.

+0

+2

+4

+8

+8

+10

+12

Figure 8b. Real Mode 80287 In8tructlon and Data Pointer Image In Memor,

~ ~

I x x x I I C I R C I PC I x I xjPMJuMI0MlzMIDM[1a.U

I EXCEPTION MASKS (1 =EXCEPTION IS MASKED)

INVALID 'OPERATION
DENORMALIZED OPERAND
ZERO DIVIDE
OVERFLOW
UNDERFLOW
PRECISION

(RESERVED)

(RESERVED)
L-.L ______________ PRECISION CONTROL (1)

L...L ________________ ROUNDING CONTROL(,21

1..-_____________ .,-____ INFINITY CONTROL (0 = PROJECTIVE, 1 = ~FFINE)
L-.L~ __ '--___________ __""" __ __:"- (I:IESERVED)

(11~CONlRol

00 = 24 BITS (SHORT REAl.)
01 = RESERVED
10 = 53 BITS (lONG REAL)
11 = 84 BITS (TEMP REAL)

, 12l!!Q!!!!llm!!i CONTROL ' ,

00 = ROUND TO NEAREST OR EVEN
01 = ROUND DOWN (TOWARD -x)
10 = ROUND UP (TOWARD +x)
11 = CHOP (TRUNCATE TOWARD ~RO)

Figure 9. 80287 Control Word

4-64

, "

21092O-OOl!

80287

Denormallzed Operand: At least one of the
operands is denormalized; it has the smallest ex­
ponent but a non-zero significand. Normal pro­
cessing continues if this exception is masked off.

Inexact Result: The true result is not exactly repre­
sentable in the specified format, the result is rounded
according to the rounding mode, and this flag is set.
If this exception is masked, processing will simply
continue.

If the error is not masked, the corresponding error
bit and the error status bit (ES) in the control word
will be set, and the ERROR output signal will be
asserted. If the CPU attempts to execute another
ESC or WAIT instruction, exception 7 will occur.

The error condition must be resolved via an inter­
rupt service routine. The 80287 saves the address
of the floating point instruction causing the error
as well as the address of the lowest memory loca­
tion of any memory operand required by that
instruction.

IAPX 86/20 COMPATIBILITY:
iAPX 286/20 supports portability of iAPX 86/20
programs when' it is in the real address mode.
However,. because of differences in the numeric
error handing techniques, error handling routines
may neE!d to be changed. The differences between
an iAPX 286/20 and iAPX 86/20 are:

1. The NPX error signal does not pass through an
interrupt controller (8087 INT signal does).

. Therefore, any interrupt controller oriented in­
structions for the iAPX 86/20 may have to be
deleted. -

2. Interrupt vector 16 must pOint at the numeric
error handler routine.

3. The saved floating point instruction address in
the 80287 includes any leading prefixes before
the ESCAPE opcode. The correspo~ding saved
address of the 8087 does not include leading
prefixes. '

4. In protected mode, the format of the saved in­
struction and operand pointers is different than
for the 8087. The instruction opcode is not
saved-it must be read from memory if needed.

5. Interrupt 7 will occur when executing ESC in­
structions with eitherTS or EM of MSW=1.lfTS
of MSW=1 then WAIT will also cause interrupt
7. An interrupt handler should be added to han­
dle this situation.

6. Interrupt 9 will occur if the second or subse­
quent words of a floating point operand fall
outside a segment's size. Interrupt 13 will occur
if the starting address of a numeric operand
falls outside a segment's size. An interrupt
handler should be added to report these pro­
gramming errors.

In the protected mode, iAPX 86/20 application
code can be directly ported via recompilation if the
286 memory protection rules are not violated.

4-65 21092Q:-002

802.87

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias ... O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Ahy Pin with '.
Re,'pectto Ground -1.0 to +7V
Power Dissipation 3.0 Watt

·NOTlCE: Stresses above those listed under Ab­
solute Maximum Ratings may cause permanent
damage to the deviGe. This is a stress rating 'only
and functional operation of the device at these or
any pther conditions above those indicated in the
operational sections of. this specification, is not
implied. Exposure to absolute maximum, rating
conditions for extended periods may affect device
reliability. ,

D.C. CHARACTERISTICS TA = O°C to 70°C, Vee = 5V, +/-5%
5 MHz

Symbol Parameter ·3 Min -3 max Unit Test Conditi()ns

Vil Input lOW Voltage -.5 .8 V

VIH Input HIGH Voltage 2·0 Vcc +.5 V

VllC Clock Input lOW Voltage '
. CKM=1: . -.5 .8 V ,

CKM=O: -.5 .6 V

VIHC Clock Input HIGH Voltage
CKM=1: 2.0 Vee + 1 V
CKM=O: 3.8 Vcc + 1 V

VOL Output lOW Voltage .45 V IOl =3.0mA

VOH Output HIGH Voltage 2.4 . V ' IOH = -400 pA.

lu Input leakage Current ±10 pA. OV :::;VIN :::;Vee

!LO Output leakage Current ±10 pA. .45V :::; VoUT :::; Vcc

Icc Power Supply Current 475 mA

CIN I~put CapaCitance 10 pF Fc= 1 MHz

Co Input/Output Capacitance
(00-015)

20 pF Fc= 1 MHz

CClK ClK Capacitance 12 pF Fc= 1 MHz

4456 210920-002

80287

A.C. CHARACTERISTICS (T A = O°C to 70°C, Vcc + 5V,=/-5%)'
TIMING REQUIREMENTS
A.C. timings are referenced to 0.8V and 2.0V points on signals unless otherwise noted.

. 5 MHz

Symbol Parameter -3 Min -3 max Unit Test Conditions

TCLCL ClK Period
CKM=1: 200 500 ns
CKM=O: 62.5 250 ns

TCLCH ClKlOWTime .
CKM=1: 118 ns

\
At 0.8V

CKM=O: 15 230 ns At 0.6V

TCHCL ClK HIGH Time
CKM=1: 69 ns At 2.0V
CKM=O: 20 235 ns At 3.8V

TCH1CH2 ClK Rise Time 10 ns 1.0V t03.5V if CKM = 1.

TCL2CL1 ClK Fall Time 10 ns 3.5V to 1.0V if CKM = 1.

TOVWH Data Setup to NPWR Inactive 75 ns

TWHOX Data Hold from J\I15iiiVR Inactive 30 ns

TWLWH,
TRLRH J\I15iiiVR, msFID Active Time 95 ns At 0.8V

TAVRL, Command Valid to f\JI5WR or
TAVWL msFID Active 0 ns

TMHRL Minimum Delay from PEREQ
Active to msFID Active 130 ns

TKLKH PEACK Active Time 85 ns AtO.8V

TKHKL PEACK Inactive Time 250 ns At 2.0V

TKHCH J5EACI(Inactive to f\JI5WR, fiIJ5RO
Inactive 50 ns

TCHKL i'lPWR, NJ5Fit5 Inactive to PEACK
Active -30 ns

TWHAX, Command Hold from f\JI5WR,
TRHAX . fiIJ5RO Inactive 30 ns

TKLCL J5EACR . Active Setup to ~,
fiIJ5RO Active . 50 ns

T2CLCL ClK286 Period 62.5 ns

T2CLCH ClK286 lOW Time 15 ns AtO.8V

T2CHCL ClK286 HIGH Time 20 ns At2.0V

T2SVCL 'SO, 'ST Setup Time to ClK286 22.5 ns

T2CLSH 'SO, 'ST Hold Time from ClK286 0 ns

"

4-67 210920-002

A.C. CHARACTERISTICS, continued
nMING REQUIREMENTS

Symbol Param

TCIVCL COD!INTA Setup Time to COO86

TCLCIH COD/INTAHoldTimefromClK286

TRVCL READY Setup Time to CLK286

TCLRH READY Hold Time from ClK286

THVCL HlDA Setup Time to CLK286 '
/

TCLHH HlDA Hold Time from CLK286

Tlvct, NPWR, NPRD to ClK Setup Time

TCUH ' NPWR, NPRD from ClK Hold Time

TRSCL RESET to ClK Setup Time

, TCLRS RESET from ClK Hold Time

A.C. CHARACTERISTICS,
nMING RESPONSES

Symbol Parameter

TRHQZ RJ5RD Inactive to Data Float

TRLQV RJ5RD Aqiive to Data Valid

TILBH , EmmA Active to lIDS\' Inactive

TWLBV RPWR Active to lIDS\' Active

TKLML ~ Active to J5'E'Rm Inactive

TCMDI Command Inactive Time
Write-to-Write
Read-to-Read
Write-to-Read
Read-to-Write

TRHQH Data Hold from NPRD Inactive

NOTES:

80287

5 MHz

-3 Min -3 max Unit Test Conditions

0 ns

0 ns

38.5 ns

25 ns !

0 ns
0

O· ns

70 ns NOTE 1

45 ns NOTEt

20 ' ns NOTE 1

20 ns NOTE 1

5 MHz

-3 Min -3 max Unit Test Conditions

37.5 ns NOTE 2'

60 ns NOTE 3

100 ns NOTE 4

100 ns , NOTE 5

127 ' ns NOTE 6

95 ns At2.0V ,
250 ns At2.0V
105 .' ns At2.0V
95 ns At2.0V

5
\

ns NOTE 7

1. This is an asynchronous input. ,,(his specification is given for testing purposes only, to assure recognition at a specific eLK edge:
2. Roat condition occurs when output current is less than ILO on DO-015.
3. 00-015 loading: CL = 100pF.
4. BUSY loading: CL = 100pF.
5. SiJSY loading: CL = 100pF.
6. On last data transfer of numeric instruction.

, 7. 00-015 loading: CL = 100pF.

4~8 210920-002

"

80287

WAVEFORMS (conl)

DATA TRANSFER nMING (INITIATED ~ 80288)

c:Mt!It CMD1
II/JIIf,NPS2

NPRD

Do-D, 5

Do-D, 5

}.

TAVRL \ -/.
\.

TAVWL

\

DATA MAY CHANGE -

VALID

I+--TRLRH TRHAX

/ \ .. -:l TRHQZ_
TRLQV I- _TRHQH_

///V DATA OUT
\.\.\.'\ VALID

_TWLW~ .. TWHAX

/
-:I

!D~'!I! TWHDX

'J.
-' K DAtA MAY CHANGE DATA IN

VALID -:I

TWLBN I:::: I

~

~ __________________ -J~~ ______________________ __

DATA CHANNEL TIMING (INmATED BY 80287)

•

}
DATA
TRANSFER
FROM
80287

I DATA
TRANSFER
TO
80287

,

C~~==:~
I TAVWL

VALID -.. y"",-,------
TWHAX ~ TAVRL

PEREQ ~_TM_H_R_L ______ ~ __________ ~~~------~~----------~~----fi-' ,-- TKLCL -

r------TKLKH-----I~

210920-002

• I J' 80a87
c.

WAVEFORMS (conl)

. ERROR OUTPUT TIMING

:~----------l...,c-=1
80288 STATUS TIMING

~---- T • ..,.....----.j..----- 'Tc -----I~

CLK286

. CODliN'!'A

HLDA
-----llf-'l ---

NOTES:
1. This input transition occurs before TS.
2. This input transition. occurs after Te.

210920-002

80287

WAVEFORMS '(Reset,~, RJ5RDare Inputsasynchronousto ClK. Timing requirements on this page

are given fortesting purposes only, to assure recognition ata specific CLKedge.)

, ClK, RESET TIMING (CKM = 1) \,

, 1 . $1 1 $2·1 $1 I $2

Cl~L __ ---.......---11 1
(lFCKM = 1)-

RESET

ClK
(IFCKM = 1)

NPRD,
NPNR

\ elK, NPRD, NPNR TIMING (CKM = 1)

-
\\\\\\\\\

CLK, RESET TIMING (CKM = 0)

NOTE: Reset must meet timing shown to guarantee known phase of Internal + 3 circuit

NPRD,
NPWR

CLK, NPRD, NPWR TIMING (CKM = 0) I 11>2 .

4-71

1\---

21CJ920.002 ,

inteI-' "

I

Data Tranaf.r

FLD = LOAD

Intager/Real Memory to ST(O)

Long Integer Memory to ST(O)

Temporary Real Memory to
ST(O)

BCD Memory to ST(O)

ST(I) to ST(O)
"'

FST= STORE

ST(O) to Integer/Real Memory

ST(O) to STeil

F6TP = STORE AND POP

,ST(O) to Integer/Real Memory

ST(O) to Long Integer Memory

, ST(O) to Temporary Real
Memory

ST!O) to BCD Memory

ST(O) to ST(,)

FXCH - Exchange STeil and
ST(O)

Comparison
FCOM = Compare

Integer/Real Memory to ST(O)

ST(I) to ST (0)

FCOMP = Compare and Pop

Integer/Real Memory to SilO)

ST(I) to ST(O)

FCOMPP = Compare ST(I) to
ST(O) and Pop lWlce

FTST = Test ST(O)

FXAM = Examine lIT(O)

'" Mnemonlcs@ Intel 1982

I.

802117

T!lble 6. 80287 Extensions to the 80286 Instruction Set
---_.

,.

1 MF

I ESCAPE MF

, ~~APE 1

I 'ESCAPE 0

1 ESCAPE 1

1 ESC"PE' 0

1 ESCAPE MF

'I ESCAPE 1

I ESCAPE MF

I ESCAPE 1

1 I
1 1 I
1 1 I
1 1 I
0 1 I

1
I

0 1
1

1 I
1 1 1

IESCAPE 0 11 I

Optional
.,1881t

D,lapI_ment

=

MOD 0 0 0 RIM [=.=.~I~P=.j

MOD 1 0 1 RIM I: =:=:PI~P= ::

MOD 1 0 1 RIM [=.= ~I~P=.=:

MOD 1 0 0 RIM [=.= ~i~p= J
1 1 0 0 0 ST(i) I

MOD 0 1 0 R/M C=.=.~·I~P=:J
1 1 0 1 0 STeil I

MOD 0,1 1 R/M [= =.EI~P=.J
MOD 1 1 1 RIM I~ = = ~i~p~.J
MOD 1 1 1 ~= = = ~I~ = J

-ECAPE .. : lilMOD.l 1 0 RIM [='=:'~i~= J
~- 1 0 1 11 1 0 1 1 ST(I)I

I ESCAPE 0 0 1 I 1 1 0 0 1 5":(1) I

-
Clock Count Range

328" 328It· ,1481t
R.al Integer R.al

GO 01 10

38-56 52-60 40-60

60-66

,
53-65

2~10

17-22

64-90 62-92 96-104

15-22 ,

86-92 84-94 98-106

94-105

52-58

520-540

17-24

10-15

I ESCAPE MF ~ I MOD 0 1 0 RIM [~ ~. ~I~~~ J s0-10 78-91 65-75

I ESCAPE' 0 0 0 I 1 1 0 1 0 ST(I) I 40-50

"

I ESCAPE MF 0 I MOD 0 1 1 RIM

I ESCAPE 0 0 0 I 1 1 0 1 1 ST(I)

I

I ESCAPE 1 1 0 I 1 1 0 1 1 0 0 1 45-55

IESCA~E 0 P 1 I 1 1 1 0 0 1 0 0 , 38-48

I ESCAPE 0 0 1 I 1 1 1 0 0 1 0 1 12-23

,4-72
I

1181t
Integ.,

11

48-54

SO-90

82-92

72-86

2109204102

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

I Optional Clock Count Range
B.18 Bit 32 Bit 32 Bit 84 Bit 111 Bit

Constants Displacement Raal Integer Real Integer

I MF = 00 01 10 11

FLDZ = LOAD + 0.0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 1 0 I 11-17

FLDI = LOAD + 1.0 into ST(O) I ESCAPE 0 0 1 1 1 1 0 1 0 0 0 I 15-21

FLDPI = LOAD" Into ST(O) I ESCAPE 0 0 1 1 1 1 0 1 0 1 1 I 16-22

FLDL2T = LOAD log2 10 Into I ESCAPE 0 0 1 1 1 1 0 1 0 0 1 I 16-22
ST(O)

FLDL2E = LOAD log2 e into I ESCAPE 0 0 1 1 1 1 0 1 0 1 0 I 15-21
ST(O)

FLDLG2 = LOAD log,o 2 into
ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 0 I 18-24

FLDLN2 = LOAD log.2 into I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 1 I 17-23
ST(O)

Arithmetic

FADD = Addition

IntegerlAeal Memory with ST(O) I ESCAPE MF 0
1

MOD 0 0 0 RIM r DISP·
i

90-120 108-143 95-125 102-137
- - - _I ,

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 0 0 0 ST(i) I 70-100 (Note 1)

FSUB = Subtraction

I I [
- _.- -,

102-137 IntegerlAeal Memory with ST(O) ESCAPE MF 0 MOD 1 0 A AIM DISP 90-120 108-143 95-125 - - - .!

ST(i) and ST(O)
1

ESCAPE d P 0
1

1 1 1 0 A RIM
1

70-100 (Note 1)

FMUL = Multiplication - - -
IntegerlAeal ~emory with ST(O)

1
ESCAPE MF 0 I MOD 0 0 1 AIM

1-
DISP

-,
110-125 130-144 112-168 124-138 - - - -'

ST(i) and ~T(O) I ESCAPE d P 0 I 1 1 0 0 1 RIM I 90-145 (Note 1)

FDIV = Division

I I r - - - -1
IntegerlAeal Memory With ST(O) ESCAPE MF 0 MOD 1 1 A RIM· DISP , 215-225 230-243 220-230 224-238

._.-

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 1 1 A RIM
1

193-203 (Note 1)

FSQRT = Square Aoot of ST(O) I ESCAPE 0 0 1 I 1 1 1 1 1 0 1 0 I 180-186

FSCALE = Scale ST(O) by ST(I) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1 I 32-38

FPREM = Partial Aemainder of
ST(O) +ST(I)

I ESCAPE 0 0 1 I 1 1 1 1 1 0 0 0 I 15-190

FRNDINT = Aound ST(O) to I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 0 I 16-50
Integer

NOTE:
1. If P=1 then add 5 clocks.

4-73 210920-002

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

,Optional Clock Count Range
8,16 Bil

Displacement

FXTRACT ~ Extract ESCAPE 0 0 1 1 1 1 1 0 l' 0 0 27-55
Components of St(O)

FABS ~ Absolute Value of ESCAPE 0 0 0 0 0 0 1 10-17
ST(O)

FCHS ~ Change Sign of ST(O) ESCAPE 0 0 0 0 0 ~ 10-17

Transcendental

FPTAN ~ Partial Tangent of ESCAPE 0 0 1 1 1 1 1 0 0 1 0 30-540
ST(O) •

FPATAN ~ Partial Arctangent ESCAPE 0 0 0 250-800
of ST(O) -ST(I)

F2XM1 ~ 2STlO)_1 I ESCAPE 0 0 0 0 0 310-630

FYL2X ~ ST(I) • Log2 ESCAPE 0 0 0 0 900-1100
[ST(O)l

FYL2XP1,~ ST(I)' L092 ESCAPE 0 0 0 700-1000
rST(O) +1]

ProceSSOr Control

FINIT ~ Initlahze NPX I ESCAPE 0 0 0 0 I 2-8 .,
FSETPM ~ Enter Protected [ESCAPE 0 0 0 0 0 I . 2-8
Mode

FSTSW AX ~ Store Control ESCAPE 0 0 0 0 0 10-16
Word

FLDCW ~ Load Control Word ESCAPE 0 0 MOD 0 RIM [~ ~I~~ ~J 7-14

FSTCW ~ Store Control Word ESCAPE 0 0 MOD R/M~ _ ~ ~I~~~ ~: 12-18

FSTSW "" Store Status Word ESCAPE 1 0 MOD 1 1 RIM I DISP I 12-18 I -------

FCLEX ~ Clear Exceptions ESCAPE 0 1 1 0 0 0 1 0 I 2-8

- - - - - _.-
FSTENV ~ Store Environment ESCAPE 0 0 MOD 0 RIM I DISP I 40-50 i -------

FLDENV ~ Load EnVironment ESCAPE 0 0 MOD 0 0 RIM I DISP I 35-45 ______ J

FSAVE ~ Save State ESCAPE 0 MOD 0 RIM I DISP

I
205-215 __ __ ._ J

FRSTOR ~ Restore State ESCAPE 0 MOD 0 0 RIM I~~~~~J 205-215

FINCSTP ~ Increment Stack
POinter ESCAPE 0 0 0 l' 1 1 6-12

FDECSTP ~ Decrement Stack
POinter

I ESCAPE 0 0 0 1---0] 6-12

4-14 210920-002

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont)

FFREE = Free ST(i) ESCAPE 1. 0 1 I 1 1 0 0 0 ST(i)

FNOP = No Operation ESCAPE 0 0 1 I 1 l' 0 1 0 0 0 0 I

NOTES:
1. If mod =00 then DISP=O·, dlsp-Iow and dlsp-hlgh are absent

If mod=01 then DISP=dlsp-low sign-extended to 16-blts, dlsp-hlgh Is absent
If mod=10 then DISP=dlsp-hlgh; dlsp-Iow
If mod=11 then rIm Is treated as an ST(I) field

2. If rIm =000 then EA=(BX) + (51) +DISP
if r/m=001 then EA=(BX) + (01) +DISP
if r/m=010 then EA=(BP) + (51) +DISP
if r/m=011 then EA=(BP) + (01) +DISP
If r/m=100 then EA=(SI) + DISP
If r/m=101 then EA=(DI) + DISP
if r/m=110 then EA=(BP) + DISP
If r/m=111 then EA=(BX) + DISP

·except If mod=OOO and r/m=110 then EA =dlsp-hlgh; dlsp-lolI\(.
3. MF= Memory Format

00-32-blt Real
01-32-blt Integer
10-64-blt Real
11-16-blt Integer

4. ST(O)= Current stack top
ST(I) ith register below stack top

5. d= Destination
O-Destlnatlon Is $T(O)
1-Destinatlon Is ST(I)

6. P= Pop
O-No pop
l-PopST(O)

7. R= Reverse: When d=1 reverse the sense of R
O-Destlnatlon (op) Source
1-Source (op) Destination

8. For FSQRT: -0 .,;; ST(O) .,;; +00
For FSCALE: _215 .,;; ST(1) < +215 and ST(l) integer
For F2XM1: 0'.,;; ST(O) of; 2-1

For FYL2X: 0 < ST(O) <00
-00 < ST(1) < + 00

For FYL2XP1: 0.,;; IST(O)I < (2 -V2)/2
-00 < ST(1) < 00

For FPTAN: 0.,;; ST(O) ";;'TT/4
For FPATAN: 0.,;; ST(O) < ST(1) < +00

9. ESCAPE bit pattern Is 11011.

4-75

Clock Count Range

9-16

10-16

82284
CLOCK GENERATOR AND READY INTERFACE

FOR iAPX 286 PROCESSORS
. (82284, 82284-6)

• Generates System Clock for iAPX 286
Processors

• Uses Crystal or TTL Signal for Frequency
Source

• Provides Local READY and MultiblJs*
READY Synchronization

• 18-pin Package .

• Single + 5V Power Supply

• Generates System Reset Output from
. Schmitt Trigger Input

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range ~

The 82284 is a clock generator/driver which provides clock signals for iAPX 286 processors and support compo­
nents. It also contains logic to supply READY to the CPU from either asynchronous or synchronous sources and
synchronous RESET from an asynchronous input with hysteresis.

RESET

D
SYNCHRONIZER

X1 --l--r-::--,
X2-I L=-J
EFI-+-----'

Fie -+--------'

ARDYEN -+--or~

ARDY -+--d.~

SRDYEN -+--<f",,",\
SRDY -+---ct.~

S1--t--<II~

so -+--<11.-'

'Figure 1. 82284 Block Diagram

• Multir>us is a patented bus of Intel

RESET

ClK

READY

PC~K

ARDY VCC

SRDY ARDYEN
SRDYEN ~1

READY SO
EFI N.C.
F/C PClK

X, RESET
X2 RES

GND ClK

Figure 2.
82284 Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any CircUItry Other Than CircUitry Embodied In an Intel Product. No Other CirCUit Patent Licenses are Implied

© INTEL CORPORATiON 1982 4-76
NOVEMBER 1983

Order Number 210453M002

intJ '82284

Table1. Pin Description

The following pin function descriptions are for the 82284 clock generator.

Symbol Typtl Name and Function
ClK a SYltem Clock Is the signal used by the processor and support.devlces which must be synchro-

nous with the processor. The frequenby ,of the ClK output, has twice the desired Internal pro-
cessor clock frequency. CLK can drive both TIL and MaS level inputs. _

Fie I FrequencyiCrylle1 Select Is a strapping option to select the source for the ClK output. When
F!C is strapped lOW, the Internal crystal oscillator drives CLK. When FIC Is strapped HIGH,
the EFllnput drives the CLK output. .

X1,X2 I Cry,talln are the pins to "1'hlch a parellel resonant fundamental mode crystal]s attached for
the Internal oscillator. When FIC Is lOW, the internal oscillator will drive the ClK output at the
crystal frequency. The crystal freq~ency must be twice the desired Internal processor clock'

- frequency.
EFI I External Frequency In drives ClK when the FIC Input Is strapped HIGH. The EFllnput fre-

quency must be twice the desired internal processor clock frequency.
PClK a Pertpheral Clock Is an output which provides a 50% duty cycle clock with 1/2 the frequency of '

CLK. PlCK will be in phase With the internal processor clock following the first bus cycle after
the processor has been reset. '

ARDYEN I A~ynchronous Ready Enable is an active lOW Input which qualifies the ARDY InPt.
A DYEN selects ARDY as the source of ready for the current bus CYCle. Inputs to ARDY N
may be applied asynchronously to ClK. Setup and hold times are given to assure a guaranteed
response to synchronous inputs.

ARDY I Asynchronous Ready is an active lOW input used to terminate the current bus cycle. The
ARDY input 1$ qualified by ARDYEN. Inputs to ARDY may be applied asynchronously to ClK.
Setup and hold times are given to assure aguaranteed response to synchronous Inputs.

SRDYEN I :~nchronous Ready Enable is an active lOW input which qualifies SRIDY. SRDYEN selects
DY as the source for READY to the CPU for the current bus cycle. Setup and hold times

must be satisfied for proper operation.
SRDY I Synchronous Ready is an active lOW Input used to terminate the current bus cycle. The SRDY

input is qualified by the SRDYEN input. Setup and hold times must be satisfied for proper oper-
ation.

READY a R~adY is an active lOW output which ~nals the current bus cycle is to be completed'., The
S DY, SRDYEN, ARDY, ARDYEN, Sf, S and RES inputs control REAdy as explained later in
the READY generator section. READY is an open collector output requiring an external.300
ohm pullup resistor.

SO,'S1 I Status inputs prepare the 82284 for a su~t bus cycle. 'SO and S1 synchronize PClK to
the internal processor clock and control READY. These inputs have pullup resistors to keep'
them HIGH if nothing is driving them. Setup and hold times must be satisfied for proper oper-
ation. "

RESET a R'set is an active HIGH output which is derived from the RES input. RESET is used to force the
system into an initial state. When RESET is a,ctive, READY will be active (lOW). '

RES I Reset In Is an active lOW Input which generates the system reset signal RESET. S~s to
RES may be applied asynchronously to ClK. A Schmitt trigger input is provided on E, so

", that an RC Circuit can be used to provide a time delay. Setup and hold times are given to assure
a guaranteed response t9 synchronous inputs .

Vee ' . System Power: +5V power supply \,

GND ~ System Ground: 0 volts

FUNCTIONAL DESCRIPTION ready synchr.onization logic and system reset genera-

Introduction

The 82284 generates the clOCk, ready, and reset sig­
nals required for iAPX 286 processors and support
components. Th~ 82284'is p'aekaged 'in an 18-pin DIP .
and contains a cry:stal controlled oscillator, MqS
clock generator, peripheral clock generator; Multlbus ,

4-77

tion 10flic. '

Clock Generator

The plK outPut provides the basic timing control for'
an'iAPX 286 system. ClK has output characteristics
sufficient to. drive MOS devices. ClK is generated' by
either an 'internal crystal oscillator or an external
source as selected by the Ftc strapping option. When

210453-003
• AFN-007866

intJ 82284.

F(C is lOW, the crystal oscillator drives the ClK out­
put. When FIe is HIGH, the EFI input drives theClK
output.

The 82284 provides a second clock output (PClK) for
peripheral devices. PClK is CL.K divided by two.
PClK has a duty cycle of 50% and TIL output drive
characteristics. PClKis normally synchronized to the
internal processor clock.

After reset, the PClK signal may be out of phase with
the internal processor.cloc:k. The ST and SO signals of
the first bus cycle are used to synchronize PClK to
the internal processor clock. The phase of the PClK
output changes by extending its HIGH time beyond
one system clock (see waveforms). PCLK is forced
HIGH whenever either SO or ST were active (lOW) for
the two previous ClK cycles. PClK continues to os­
cillate when both SO and ST are HIGH.

Since the phase of the internal processor clock will
not change except during reset, the phase of PClK
will not change except during the first bus cycle after
reset.

Oscillator

The oscillator circuit of the 82284 is a linear Pierce os­
cillator which requires an external parallel resonant,
fundamental mode, crystal. The output of the oscilla­
tor is internally buffered. The crystal frequency cho­
Sen should be twice the required internal processor
clock frequency. The crystal should have a typical
load capacitance of 32 pF.

X1 and.x2 are the oscillator crystal connections. For
stable operation of the oscillator, two loading capacitors
are recommended, as shown in Table 2. The .sum of
the board capacitanceand loading capacitance should
equal the values shown. It is advisable to limit stray
board capacitances (not including the effect of the
loading capacitors or crystal capacitance) to less than
10 pF between the X1 and X2 pines. Decouple Vec and
GND as close to the 82284 as possible.

SEE TABLE
2 FOR

CAPAClmR
VALUES

CJ
Xl

X2

• ClK

82284

READY

10
ClK

Vee iAPX286
CPU or

910, SUPPORT
II COMPC;>NENT

READY
18

Vcr;

DECQUPLlNG· I CAPACITOR

Figure 3. Recommended Crystal and mDV
Connectio~s

Reset Operation

The reset logic provides the RESET output to force
the system into a known, initial state. Whent~e FfES
input is active (lOW), the RESET output becomes ac­
tive (HIGH). m is synchronized internally at the fail­
ing edge of ClK before generating the RESET output
(see wavefon:ns). Sync~ronization of the RES
input introduces a one Or two ClK delay before affect-

. ing the RESeT output.

4-78

At power up, a system does not have have a stable Vee
and ClK. To prevent spurious activity, RES should be
asserted until Vee and ClK stabilize at their operating
values. iAPX 286 processors and support components
also require the.ir RESET inputs be HIGH a minimum of
16 ClK cycles. An RC network, as shown in Figure 4,
will keep RES lOW long enough t'1 satisfy both needs.

·vcc

10Kn
11

82284

RES

+

l r1O
•
F

Figure 4. lYpical RC RES Timing Circuit

A Schmitt trigger input with hysteresis on "FiE"S as­
sures a single transition of RESET with an RC circuit
on RES. The hysteresis separates the input voltage
level at which the circuit output switches between
HIGH to lOW from the input voltage level at which the
circuit output switches between lOW to HIGH. The
FfES HIGH to lOW input transition voltage is lower
than the "FiE"S lOW to HIGH input transition voltage.
As long as the slope of the RES input voltage remains
in the same direction (increasing or decreasing)
around the "FiE"S input transition voltage, the RESET
output will make a single transition.

Ready Operation

The 82284 accepts two ready sources for the system
ready signal which terminates the current bus.cycle.
Either a synchronous (SRDY) or asynchronous ready
(ARDY) source may be used. Each ready input has an
enaple (SRDYEN and ARDYEN) for selecting the type
of ready source required to terminate the current bus

! cycle. An address dec:ode~ would normally select one
of the enable inputs.

210453·003
AFN-007B6B

intJ 82284

READY is enabled (lOW), if either SFfi5'Y +
SRDYEN = 0 or ARDY + ARDYEN = 0 when sam­
pled by the 82284 'AEAi5Y generation logic. READY
will remain active for at least two ClK cycles.

The READY output has an open-collector driver allowing
other ready circuits to be wire or'ed with it, as shown in
Figure 3. The ~ signal of an iAPX 286 system
requires an external 910 ohm ± 5% pull-up resistor. To
force the R"EADY signal inactive (HIGH) at the start of a
bus cycle, the READY output floats when either ST or 'SO
are sampled lOW at the falling edge of ClK. Two system
clock periods are allowed for the pull-up resistor to pull
the R"EADY signal to V1H• When RESET is'active, R"EADY
i,s forced active one ClK later (see waveforms).

Figure 5 illustrates the operation of SRIW and

SRDYEN. These inputs are sampled on the falling
edge of ClK when 'Sf and 'SO are inactive and PClK is
HIGH. READY is forced active when both smw and
SRDYEN are sampled as lOW.

Figure 6 shows the operation of ARm and ARDYEFJ.
These inputs are sampled by an internal synchronizer
at each falling edge of ClK. The output of the synchro­
nizer is then sampled when PClK is HIGH. If the syn­
chronizer resolved both the AROY and ARDYEFJ have
been resolved as active, the SRD'Y and SRDYEN' inputs
are ignored. Either ARDV or ARDYEFJ mustbe HIGH at
end of T s (see figure 6).

READY remains active until either Sf or 'SO are sam­
pied lOW, or the ready inputs are sampled as inac­
tive.

liIIble 2 82284 Crystal Loading Capacitance values

Crystal Frequency C1 Capacitance C2 Capacitance
(pin 7) (pin 8)

1 to8MHz 60pF 40pF
,8to16MHz 25pF 15pF

NOTE: Capacitance values must include stray board capacitance.

To To T,

CLK

PCLK

VI. -------.l~-----~f_--------t_--r---­ARDYEN

:;:---~---~~
READY -~-----~

, Figure 5. Synchronous Ready Operation

4-79
210453·003
AFN-007868

82284

T,

, eLK

PCLK

READY --______ ~

Figure 6. Asynchronous Ready Operation,

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias ooe to 70°C

Storage Temperature -65°C to +150oe
All Output and Supply Voltages -0.5V to + 7V

All Input Voltages -1.0V to + 5.5V

Power Dissipation . 1 Watt

*Notice: Stresses above those listed under "Absolute
Maxmum Ratings" may cause permanent damage to
the device, This iS,a stress rating only and functional
operation of the device at these or any other condi­
tions above those indica.ted in the operational sec­
tions of this specification is not implied. Exposure to
absolute maximum rating conditions for extended
periods may affect device relia~ility.

D.C. CHARACTERISTICS (T A = ooe to 70°C, Vee = 5V, ± 10%)

6.MHz

-6 -6
Sym Parameter Min Max

V1L Input lOW Voltage .S

. V1H jnput HIGH Voltage 2.0

V1HR ~ and EFllnput HIGH Voltage 2.6

VHYS RES Input hysteresis 0.25

VOL RESET, PClK Output lOW Voltage .45

VOH R/::SET, PClK Output HIGH Voltage 2.4

" VOlR READY, Output lOWVoltage .45

. VOlC ClK Output lOW Voltage .45

·VOHC ClK Output HIGH Voltage 4.0

Vc Input Forward Clamp Voltage -1.0

IF Forward Input Current -.5

IR Reverse Input Current 50

Icc Power Supply Current 145

C1 Input Capacitance 10

·4-80

8 MHz

Min Max

.S

2.0

2.6

0.25

.45

2.4

.45

.45

4.0

-1.0

-.5

50

145

10

Unit

V

V

V

V

V

V

V

V

V
. V'

mA

uA

mA

pF

ll!st Condition

IOl-5mA

IOH=-lmA

IOl-7mA

IOL -5mA

IOH = -SOO!LA

Ic--5mA

VF-·45V

VR=VCC'

Fc -lMHz

210453-003
AFN-00186B ,

82284

A.C. CHARACTERISTICS (T A = O°C to 70°C. Vee = 5V, ± 100/0)
It; timings are referenced to O.8V and 2.0V points of signals as Illustrated in datasheet
waveforms, unl_ oth_1se noted.

6 MHz 8 MHz

-8 -8
Sym Peralll8ler Min Max Min Max

1 EFI to ClK Delay 35 30

2 EFI lOW Time 35 32

3 EA HIGH Time 35 28

4 eLK Period 83 '500 62 500

5 CLKlOWTime 20 15

6 CLK HIGH Time 25 20

7 ClK Rise Time 10 10

8 ClK Fall Time 10 10

9 Status Setup Time 28 22.5

10 Status Hold Time 0 0

11 S'RiW or mmYEIiI Setup Time 25 15

12 S'RiW or SRDYEN Hold Time 0 0

13 ARDV or ARDYEIiI Setup Time 5 0

14 ARDY or ARDYEIiI Hold Time 30 16

15 RES Setup Time 25 16

16 RES Hold Time 10 0

17 REiIiDY Inactive Delay 5 5

18 READY' Active Delay 0 33 0 24

19 PClKDelay 0 45 0 40

20 RESET Delay 0 50 0 40

21 PClK lOW Time t4-20. t4-13.

22 PCLK HIGH Time t4-20. t4-13.

NOTE 1: ClK loadin9: C1 = 150pF.

Unit Test Condition

ns at 1.5V Note 1

ns at 0.8V Note 1

ns at 2.0V Note 1

ns

ns at 0.6V Note 1 Note 2

ns at 3.8V Note 1 Note 2

ns 1.0Vto,3.5V'Note 1

ns 3.5V to 1.0V Note 1

ns Note 1

ns Note 1

ns Note 1

ns Note 1

ns Note 1 Note 3

ns Note 1 Note 3

ns Note 1 Note 3

ns Note 1 Note 3

ns at 0.8V Note 4

ns at 0.8V Note 4

ns Note 5

ns Note 5

ns Note 5 Note 6

ns Note 5 Note 6

NOTE 2: With the internal crystal oscillator using recommended crystal and capacitive loading, or with the EA input meeting specifications
t2, and t3. Use a parallel-resonant; fundamental mode crystal. The recommenQed crystal loading for ClK frequencies of 8-
16MHz !'Ire 25pF from pin X1 to ground, and 15pF from pin X2 to ground. These recommended values are ± 5pF and include
all stray capacitance. Decouple V co and GND as close to the 82284 as possible.

NOTE 3: This Is an asynchronous input. This specification Is given for testing purposes only, to'assure recognition at specific ClK edge.

NOTE 4: READY loading: 10L = 7mA, CL = 150pF. In system application, use 910 ohm ±5% pullup resistor to meet 80286,80286-6 and
80286-4 timing requirements.

NOTE 5: PClK and RESET loading: Q = 75pF.

NarE 6: t4 refers to any allowable ClK period.

4-81 \
210463-003
AFN-007BB8

Waveforms

82284

ClK as a Function of EFI

EFI

elK

NOTE: The EFI input LOW and HIGH times as shown are required to
guarentee the elK lOW and HIGH times shown.

RESET and READY Timing as a Function of RES
with S1 and SO HIGH

NOTE 1: This is an asynchronous Input. The setup and hold times
shown are required to guarantee the response shOwn.

NOTE 2: Tie 910 ohm ±5% pullup resistor to the READY output

READY and PClK Timing with RES HIGH

NOTE 1: This is an asynchronous input. The setup and hold times
shown are required to guarantee the response shown.

NOTE 2: Tie 910 ohm ±5% pullup resisior to the READY output

4-82
210453-003

AFN-007868

82288
BUS CONTROLLER

FOR iAPX 286 PROCESSORS
(82288, 82288-6)

• Provides Commands and Control for
Local and System Bus

• Offers Wide Flexibility In System
Configurations

• Flexible Command Timing

• Optional Multibus· Compatible
Timing

• Control Drivers with 16 rna IOL and
3·State Command Drivers with
32 rna IOL

• Single + 5V Supply

The Intel 82288 Bus Controller is a 20-pin HMOS component for use in iAPX 286 microsystems. The bus
controller provides command and control outputs with flexible timing options. Separate command out­
puts are used for memory and 1/0 devices. The data bus is controlled with separate data enable and direc­
tion control Signals.

Two modes of operation are possible via a strapping option: Multibus compatible bus cycles, and high
speed bus cycles.

STATUS

[
So
51

. M/iO

r;::::::::::::::;-----;::==:=:::;,
STATUS

DECODER COMMAND
OUTPUT
LOGIC

CLK-+-......
CONTROL

INPUTS

CEN/AEN

CENL

CMDLY

READY

MB

3-STATE
COMMAND
OUTPUTS

INTA] IORC

iOWC
MRDC

MWTC

Figure 1. 82288 Block Diagram

*Multibus is a patented bus of Intel.

READY· VCC

eLK 19 So

51 18 M/iO
82288

MCE 17 DT/R

ALE 16 DEN

MB 15 CEN/AEN

CMDLY 14 CENL

MRi5C 13 INTA

MWTC 12 iOiiC

GNO 11 IOWC

Figure 2. 88228 Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied tn an Intel Product. N? Other CIrcuit Patent Licenses are Implied.

©INTElCORPORATlON,1982 4-83
NOVEMBER 1983

Order Number 210471-003

82288

Table 1. Pin Description

The following pin function descriptions are for the 82288 bus controller.

Symbol ,Type

ClK I

SO, S1 I

M/iO I

MB I

.

CENL I

CMDLY I

F!EADV I

Name and Function '.
System Clock provides the basic timing control for the 82288 in an IAPX 286 micrO.
system. Its frequency is twice the Internal processor clock frequency. The falling edge
of this i",put Signal establishes when inputs are sampled and command and control
outputs change.

Bus Cycle Status starts a bus cycle and, along with MilO, defines the type of bus cycle.
These Inputs are active lOW. A bus cycle is started when either S'i or SO Is sampled
lOW at the falling edge of ClK. These Inputs have pullups sufficient to hold them HIGH
when nothing drives them. Setup and hold times must be met for proper operation.

iAPX 286 Bus Cycle Status Definition

MilO S1 SO Type 01 Bus Cycle

0 0 0 Interrupt acknowledge
0 0 1 I/O Read
0 1 0 I/O Write
0 1 1 None; Idle
1 0 0 Halt or shutdown
1 0 1 Memory read
1 1 0 Memory write
1 1 1 None; Idle

Memory or 110 Select determines whether the current bus cycle is in the memory space or I/O
space. When LOW, the current bus cycle is in the I/O space. Setup and hold times must be met
for proper operation.

Multibus Mode Select determines timing of the command and control outputs. When HIGH, the
bus, controller operates with Multibus-compatible timings. When LOW, the bus controller optimizes
thEl command anp control output timing for short bus cycles. The function of the CEN/AEN input
pin is selected by this Signal. This input is intended to be a strapping option and not dynamically
changed. This input may be connected to Vee or GND.

Command Enable Latched is a bus controller select signal which enables the bus controller to
respond to the current bus cycle being initiated. CENL is an active HIGH input latched internally
at the end of each T s cycle. CENL is used to select the appropriate, bus controller for each bus
cycle in Ii system where the CPU has more than one bus it can use. This input may be connected
to Vce to select this 82288 for all transfers. No conlrol inputs affect CENL Setup and hold times
must be met for proper operation.

Command Delay allows delaying the start of a command. CMDLY is an active HIGH input. If sampled
HIGH, the command output is not activiated and CMDLY is again sampled lit the next CLK cycle.
When sampled LOW the selected command is enabled. If READY is detected LOW'be'ore the
command output is activated, the 82288 will terminate the bus cycle, even If AO command was
issued. Setup and hold times must be satisfied for proper operation. This input may be connected
to GND if no delays are required before starting a command. This input has no effect on 82288
control outputs.

READY' indicates the end 01 the current bus cycle. READY is an active lOW input. Multibus mode
requires at least one wait state to allow the command outputs to become active. REAO"i' m.ust be
LOW during reset, to force the 82288 into the idle state. Setup and hold times must be met for
proper operation. The 82284 drives REiiOY LOW during RESET.

4-84
210471-003

AFN-00787A

Symbol Type

CEN/AEN I

ALE 0

MCE 0

DEN 0

DTiR 0

10WC 0

10RC 0

MWTC 0

,
MRDC 0

INTA 0

VCC

GND

82288

Table 1. Pin Description (Cont.)

Name and Function

Command Enable/Address Enable controls the command and DEN outputs of the bus
controller. CEN/AEN inputs may be asynchronous to CLK. Setup and hold times are
given to assure a guaranteed response to synchronous inputs. This input may be con·
nected to VCC or GND.

When MB is HIGH this pin has the A8ii function. AEN is anactive LOW input which In·
dlcates that the CPU has been granted use of a shared bus and the bus controller com·
mand outputs may exit 3-state OFF and become ipactive (HIGH). AEN tilGH indicates
that the CPU does not have control of the shared bus and forces the command outputs
into 3·state OFF and DEN inaCti~OW). AEN would normally be controlled by an
82289 bus arbiter which activates N when that arbiter owns the bus to which the bus
controller is attached.

When MB is LOW this pin has the CEN function. CEN is an unlatched active HIGH input which
allows the bus controller to activate its command and DEN outputs. With MB LOW, CEN LOW
forces the command and DEN outputs inactive but does not tristate them.

Address Latch Enable controls the address latches used to hold an address stable duro
ing a bus cycle. This control output Is active HIGH. ALE will not be issued for the halt
bus cycle and is not affected by any of the control inputs.

Master Cascade Enable signals that a cascade address from a master 8259A interrupt
,controller may be placed onto the CPU address bus for latching by the address laiches
under ALE control. The CPU's address bus may then be used,to broadcast the cascade
address to slave interrupt controllers so only one of them will respond to the interrupt
acknowledge cycle. This control output is active HIGH. MCE is only active during inter-
rupt acknowledge cycles 'and is not affected by any control input. USing MCE to enable
cascade address drivers requires latches which save the cascade address on the falling
edge of ALE,

Data Enable controls when data transceivers connected to the local data bus should
be enabled. DEN is an active HIGH control output. 'DEN is delayed for write cycles kn
the Multibus mode.

Data Transmit/Receive establishes the direction of data flow to or from the local data
bus. When HIGH, this control output indicates that a write bus cycle i~being performed.
A LOW indicates a read bus cycle. DEN is always inactive when DT/R changes states.
This output is HIGH whIm no bus cycle is active. DT/R is not affected by any of the con-
trol inputs.

110 Write Command il'1structs an I/O device to read the data on the data bus. This com-
mand output is active LOW. The MB and CMDLY inputs control when this output
becomes active. READY controls when it becomes inactive.

110 Read Com'mand instructs an I/O device to place data onto the data bus. This com-
mand output is active LOW. The MB and CMDLY inputs control when this output
becomes active. READY controls when it becomes inactive.

, ,

Me~ory Write Command instructs a memory device to read, the data on the data bus.
This command output is active LOW. The MB and CMDLY inputs control when this out-
put becomes active. READY controls when it becomes inactive.

Memory Read Command instructs the memory device to place data onto the data bus.
This command output is active LOW. The MB and CMDL Y. inputs control when this out-
put becomes active. READY controls when it becomes inactive.

Interrupt Acknowledge tells an interrupting device that its interrupt request is being
acknowledged. This command output is active LOW. The MB and CMDLY inputs con-
trol when this output becomes active. READY controis when it becomes inactive.

System Power: + 5V power supply

System Ground: 0 volts

4-85

,

210471-003

AFN.Q0787A

inter 82288

FUNCTIONAL DESCRIPTION

'Introduction
The 82288 bus' controller is used in iAPX 286
systems to provide 'address latch control, data
transceiver control,' and standard level·type com·
mand outputs. The command outputs are timed

,and have sufficient drive capabilities for large TTL
buses 'and meet' all IEEE·796 requirements for
Multibu8. A special Multibus mode is provided to
'statisfy all address/data setup and hold time reo
quirements. ,Command timing may be tailored to ,
special needs via a CMDlY input to determine the
start of a command and READY to determine the
end of a co.mmand.

_ Connection to multiple buses are supported with'
a late !led enable input (CENl). An, address
decoder can determine which, If any, b,us con·
troller should be enabled for the bus cycle. This
input is latched to allow an address decoder to
take full /ldvantage of the pipelined timing on the
iAPX 286 local bus.

Buses sha'red by several bus controllers are sup­
ported. An AEN input prevents the bus controller,

from driving the shared bus command and data'
signals except when enabled by anex~e,nal bUS

. arbiter such as the 82289.

Separate DEN and OT/R outputs control the data
transceivers, for all, buses. Bus c,ontention is
eliminated by disabling DEN before changing
DT/R. The DEN ~Iming allows sufficient time for
tristate bus drivers to enter 3·state OFF before
enabling other drivers onto the same bus.

The term CPU refE/rs to. any iAPX 286 processor or
iAPX 286 support component which may become
an iAPX286 local bus master and thereby drive the
82288 status inputs.

Processor Cycle Definition
Any CPU which drives the local bus uses an. internal
clOCk which is one half the frequency of the system
clock (ClK) (see Figure 3). Knowledge of the phase
of the local ,bus master internal clock is required for
proper operation of,the 'iAPX 286 local bus. The local
bus master informs the bus controller of its internal
clock phase when it: asserts the status signals. Status
signals are always asserted beginning in Phase 1 of

. the local bus master's internal clock.

ONE PROCESSOR CLOCK CYCLE

I----ONE BUS T STATE--,---.-+l

VeH

CLK 11 VeL

...-...----+""
POLK ' 82284

(FOR REFERENCE)

Figure,3. ClK Relationship to the Processor,Clock and Bus T·States

4-86
210471-003

AFN.()Q78,7A

intJ 82288

Bus State Definition
The 82288 bus controller has three bus states (see
Figure 4): Idle (TI) Status (T sl and Command (T d.
Each bus state is two ClK cycles long. Bus state
phases correspond to the internal CPU processor
clock phases.

The TI bus state occurs when no bus cycle Is cur­
rently active on the iAPX 286 local bus. This state
may be repeated indefinitely. When contro,! of the
local bus is being passed between masters, the
bus remains In the TI state.

READY .
NEW CYCLE

Figure 4. 82288 Bus states

veH
ClK

Vel

51-Sli V'H
FROM
CPU VIL

Bus Cycle Definition
The 51 and SO inputs signal the start of a bus cy­
cle. When either input becomes lOW, a bus cycle
is started. The T5 bus state is defined to be the two
ClK cycles during which either 51 or 50 are active
(see Figure 5). These inputs are sampled by the
82288 at every failing edge of ClK. When. either 51
or stl are sampled lOW, the next ClK cycle is con­
sidered the second phase of the internal CPU clock
pycle.

The local bus enters the Tc bus state after the T5
state. The shortest bus cycle may have one T5 state
and one T c state. longer bus cycles are f9rmed by
repeating Tc states. A repeated Tc bus state is
called a wait state.

The READY input determines whether the current
Tc bus state is to be repeated. The. Rt:AuY input
has the same timing and effect for all bus cycles.
READY is sampled at the end .of each T c bus state
to see if it is active. If sampled HIGH, the Tc bus
state is repeated, This is called inserting a wait
state. The control and command outputs do. not
change during w/!-it state~

When READY is sampled lOW, the current bus cy­
cle is terminated. Note that the bus controller may
enter the T 5 bus state directly from T c if the status
lines are sampled active at the next falling edge of
CLK.

Figure 5. Bus Cycle Definition

4-87
210471-003

AFN-Q0787A

$2288

Ta~le 2. Command and Control Outputs for Eac~ Type of Bus Cycle

Type of MIlO S.1 SO
Bus Cycle

Interrupt Acknowledge 0 0 0

I/O Read 0 0 1
1/0 Write 0 1 0

None; idle 0 1 1

Halt/Shutdown 1 0 0
Memory Read 1 0 1

Memory Write 1 1 0

None; idle, 1 1 1

Operating Modes
Two types of buses are supported by the 82288:
Multibus and non·Multibus .. When theMS input is
strapped HIGH, Multibus timing is used. In
Multibus mode, the 82288 delays command and
data activation tq meet IEEE·796 requirements on
address to command active and write data to com·
mand active setup timin'C. Multibus mode requires
at least one wait state in the bus cycle since the
command outputs are delayed. The non·Multibus
mode does not delay any outputs and does not re­
quire wait states. The MS input affects the timing
of the command and DEN outputs.

Command and Control Outputs
The type of bus cycle performed by the local bus
master is encoded in the M/iO, 51, and SO inputs.
Different command and control outputs are ac­
tivated depending on the type of bus cycle. Table 2
indicates the cycle decode done by the 82288. and
the effect on command, DT/R, ALE, DEN, and MCE
outputs.

Command. DT/R ALE,DEN MCE
Activated State Issued? Issued?

INTA LOW YES YES

10RC LOW. YES NO

10WC HIGH· YES' NO

None HIGH NO NO

None • HIGH NO NO

MRDC LOW YES NO

MWTC HIGH YES NO

'None HIGH NO NO

Sus cycles come in three forms: read, write', and
halt. Read bus cycles include memory read, 110
read, and interrupt acknowledge. The timing of the
associated read command outputs (MRDC, 10RC,
and INTA), control outputs (ALE, DEN, DT/R) and
control inputs (CEN/AEN, CENL, CMDLY, MS, and
READY) are identical for all read bus cycles. Read

, cycles differ only in which command output is ac­
tivated. The MCE control output is only asserted

. during interrupt acknowledge cycles.

4-88

Write bus cycles activate different control and
command outputs with different timing than read
bus cycl·es. Memory write and ~O write are write
bus cycles whose timing for ~ommand outputs
(MWi'C and iOWC), control outputs (ALE, DEN,
DT/R) and control inputs (CEN/AEN, CENL, CMDL Y,
MS, and READY) are identical. They differ only in
which command output is activated.

Halt bus cycles are different because no command
or control output is activated. All control inputs are
ignored until the next bus cycle is started via 51
and SO.

210471-003

AFN-00787A

intJ 82288
I

Figures 6-10 show the basic command and control
output timing for read and write bus cycles. Halt
bus cycles are not shown since they activate no
outputs. The basic idle-read-idle and idle-write-idle
bus cycles are shown. The signal label CMD
represents the appropriate command output for
the bus cycle. For Figures 6-10, the CMDLY input is
connected to GND and CENL to Vee. The effects of
CENL and CMDLY are described later in the sec­
tion on control inputs.

Figures 6, 7 and 8 show non-MuJtibus cycles. MB is

T,

ClK

I----READ BUSCYCLE----+j

I T. I Te I

AlE ____ --J

connected to GND while CEN is connected to Vee· DEN
Figure 6 shows a read cycle with no wait states while ______ +---J
Figure 7 shows a write cycle with one wait state. The
READY input is shown to illustrate how wait states
are added.

CMD-------~

T,

Figure 6_ Idle-Read-Idle Bus Cycles with MB = 0

I" Ts

WRITE BUS CYCLE ::::::I
Te IWAIT~ATE I T, T,

ClK

AlE _____ 1"

DEN _____ J

VOH
DTIR -------i------+------;-------

CMD ------~~

Figure 7_ lelle-Write·ldle Bus. Cycles with MB = 0

4-139
210471-003

AFN'()0787A

82288

. Bus cycles can occur back to back.wlth no T, bus
states between Te and Ts. Back to back cycles do
not affect the timing of the command and control
outputs. Command and control outputs always
reach the states shown for the same clock edge
(within Ts, Te, or following bus state) of a bus cycle.

A special case in control timing occurs for back to
back write cycles with MB = O. In this case, DTtR
al1d DEN remain HIGH between the bus cycleS'(see
Figure 8). The command and ALE output timing
does not change.

Figures 9 and 10 show a Multibus cycle with
MB=1. Ael and'CMDLY are connected to GND.
The effects of CMDLY and AEN ate described later
in the section on control inputs. Figure 9 shows a
read cycle with one wait state and Figure 10 shows
a write cycle with two. wait states. The second wait
state of the write cycle is shown only for example
purposes and Is not required. The READY input is
shown to Illustrate how wait states are added.

To.

elK

• AlE ____J

DEN -------\--1-'

DT/II-------T"""\.\

Tc

,
.. ~IQ)W~OO©~ DOOIP@OOIMl~il'D@OO

. 1ST WRITE CYCLE -1-2ND WRITE CYCLE

Tc I T. I. To

CLK

i1.i!ii---f"""'\

V~ __ +-_______ 4-
DEN

v~ _.....,.+-_______ +_

DT/iii

CMD ___ .J

Figure 8. Write·Wrlte Bus Cycles with MB = 0

Tc T,

Figure 9. . Idle·Read·ldle Bus Cycles with MB = 1

4-90
210471-003

AFN.Q0787A

inter 82288

T, To Tc Tc Tc T,

ClK

!1.§lj--""'\

AlE _____ .J

DEN ________ ~

Figure 10. Idle-Write-Idle Bus Cycles with MB = 1

The MB control input affects the timing of the com­
mand and DEN outputs. These outputs are
automatically delayed in Multibus mode to satisfy
three requirements:

1),,5G ns minimum setup time for valid address
before any command output becomes active.

2) 50 ns minimum setup time for valid write data
before any write command output becomes ac·
tive.

3)65 ns maximum time from when any read com­
mand becomes inactive until the slave's read
data drivers reach 3-state OFF.

Three signal transitions are delayed by MB = 1 as
compared to MB = 0: '

1)The HIGH to LOW transition of the read com-
mand 'outputs (IORC, MRDC, and INTA) are
delayed one CLK cycle.

2) The HIGH to LOW transition of the write com­
mand outputs (IOWC and MWTC) are delayed
two CLK cycles.

3)The LOW to HIGH transition of DEN for write
cycles is delayed one CLK cycle.

4-91

Back to back bus cycles with MB = 1 do not
change the timing of any of the command or con­
trol outputs. DEN always becomes inactive be­
tween bus cycles with M B = 1.

Except for a halt or shutdown bus cycle, ALE will
be issued during the second half of Ts for any bus
cycle. ALE becomes inactive at the end of the Ts
to allow latching the address to keep it ,stable dur­
ing the entire bus cycle. The address outputs may
change during Phase 2 of any Te bus state. ALE is
not affected by any control input.

Figure 11 shows how MCE is timed during inter­
rupt acknowledge (INTA) bus cycles. MCE is one
CLK cycle longer than ALE to hold the cascade
address from a master 8259A valid after the falling
edge of ALE. With the exception of 'the MCE con·
trol output, an INTA, bus cycle is identical in tim­
ing to a read bus cycle. MCE is not affected by any
control input.

210471-003
AFN-00787A

82288

T. Tc

ClK

ALE ----'t-....

Figure 11. MCE Operatl,on for an INTA Bus Cycle

Control Inputs
The control inputs can alter the basic timing of
command outputs, allow interfacing to multiple
buses, and share a bus between different
masters. For many iAPX 286 systems, each CPU
will have more than one bus which may be used to
perform a bus cycle. Normally, a CPU will only
have one bus controller active for each bus cycle.
Some buses may be shared by more than one CPU
~i.e. Multibus) requiring only one of them use the
bus at a time.

Systems with multiple and shared buses use two
control input signals of tbe 82288 bus controller,
CENL and AEN (see Figure 12). CENL enables the
bus controller to control the current bus cycle.
The AEN input prevents a bus controller from driv­
ing its command outputs. AEN HIGH means that
another bus controller may be driving the shared
bus.

In Figure 12, two buses are shown: a local bus and
a Multibus. Only one bus is used for each CPU bus
cycle. The CENL inputs of the bus controllers
select which bus controller is to perform the bus
cycle. An address decoder determines which bus
to use for each bus cycle. The 82288 connected to
the shared Multibus must be selected by CENL
and be given access to the Multibus by AEN.
before it will begin a Multibus operation.

CENL must be sampled HIGH at the end of the Ts
bus state (see waveforms) to enable the bus con­
troller to activate its command and control out­
puts. If sampled LOW t~ commands and DEN
will not go active and DT/R will remain HIGH, The
bus controller will ignore the CMDLY, CEN, and
READY inputs until another bus cycle is started
via S1 and ~. Since an address decoder is com­
monly used to identify which bus is required for
each bus cycle, CENL is latched to avoid the need
for latching its input.

The CENL' input can affect the DEN control out­
put. When MB=O, DEN normally becomes active
during Phase 2 of Ts in write bus cycles. This tran­
sition occurs before CENL is sampled. If CENL is
sampled LOW, the DEN output will be forced LOW
during Tc as shown in the timing waveforms.

When MB = 1, CEN/AEN becomes AEN. AEN con­
trols when the bus controller command outputs
enter and exit 3-state OFF. AEN is intended to be
driven by a bus arbiter, like the 82289, which
assures only one bus controller is driving the
shared bus at any time. When AEN makes a LOW

, to HIGH transition, the command outputs im­
mediately enter 3-state OFF and DEN is forced In­
active. An inactive DEN should force the local
data transceivers connected tei the shared data
bus into 3-state OFF (see Figure 12). The LOW to
HIGH transition of AEN sho~ld only occur during
T" or T s bus states.

The HIGH to LOW transition of AEN signals that
the bus controller may now drive the shared bus
command Signals. Since a bus cycle may be ac­
tive or be in the process of starting, AEN can
become active during any T-state. AEN LOW im­
mediately allows DEN to go to the appropriate

, state. Three CLK edges later, the command out­
puts will go active (see timing waveforms). The
Multibus requires this delay for the address and
data to be'valid on the bus before the commands
become active.

When M B = 0, CEN/AEN becomes CEN. CEN is an
asynchronous input which immediately affects
the command and DEN outputs. When CEN
makes a HIGH to LOW transition, the commands

4-92
210471-003

AFN.Q0767A

inter 82288

and DEN are immediately forced inactive. When
CEN makes a LOW to HJGH transition, the com·
mands and DEN outputs immediately go to the
appropriate state (see timing waveforms). READY
must stili become active to terminate a bus cycle
if CEN remains LOW for a selected bus controller
(CENL was latched HIGH).

rD~
XI X2

READY
8RDY ARDY

~
SiiiiYeN 82284 - ARDYEN

CMD

ADDRESS
DATA

¢:::
READY

CMD
ClK 82288

MIlo
51,SO

CENl

MB CEN

J, +!v

ADDRESS

DECODER

n
II
A ...

ClK iiEAiiY ii, so

\

I-

I

~

MIlO
so
ii

ClK READY MIlO
51,SO

80288

Some memory or 1/0 systems may require more
address or write data setup time to command ac·
tive than provided by the basic command output
timing. To prQvide flexible command timing, the
CMPL Y input can delay the activation of com'·
mand outputs. The CMDL Y input must be
sampled LOW to activate the command outputs.
CMDL Y does not affect the control outputs ALE,
MCE, DEN, and DT/A.

XACK

9100",~

READY COMM ANDS

ClK 82288
CMD -)

MIlo DEN V-81. so
DTIR ,. CENl ALE

MB AEN

Jv
!

READY AEN

ClK 82289 CON TROl

MIlo CNTl

81,SO

SYSlRE8B

/sTi"
,...,

2OKO I
J'O L +5V

~ ADD RESS

t-
8283

V
II

l~
/ OE

r---
DAT

D, .. !-- ~) 8287

A

V

Figure 12. System Use of AEN and CENL

4-93
210471-003'

AFN.Q0787A:

82288

CMDL Y is first sampled on the falling edge of the
CLK ending Ts. If sampled HIGH, the command
output is not activated, and CMDL Y is again
sampled on the next falling edge of CLK. Once
sampled LOW, the proper command output
becomes active immediately if MB = O. If MB = 1,
the proper command goes active no earlier than
shown in Figures 9 and 10.

READY can terminate a bus cycle before CMDLY
allows a command to be isSued. In this case no
commands are issued and the bus controller will
deactivate DEN and DTfR in the same manner as if
a command had been issued.

Waveforms Discussion
The waveforms show the timing relationships of in­
puts and outputs and do not show all possible tran­
sitions of all Signals in all modes. Instead, all
Signal timing relationships are shown via the
general cases. Special cases are shown when
needed. The waveforms provide some functional
descriptions of the 82288; however, most func­
tional descriptions are provided in Figures 5
through 11.

To find the timing specification for a signal transi­
tion in a particular mode, first look for a special
case in the waveforms. If no special case applies,
then use a timing specification for the same or
related fUnction in another mode.

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias O·C to 70·C
Storage Temperature - 65·C to + 150·C
Voltage on Any Pin with

Respect to G N D : - O.5V to + 7V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Ab­
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this speeification is not im­
plied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA ~ DOC 10 lO°C, Vee ~ 5V, ±10%)

6 MHz

-6 -6
Symbol Parameter Min. Max.

VIL Input LOW Voltage -.5 .8

V,IH Input HIGH Voltage 2.0 Vee +.5

VILe ClK Input lOW Voltage -.5 .6

VIHC ClK Input HIGH Voltage 3.8 Vce +.5

VOL Output lOW Voltage
Command Outputs .45
Control Outputs .45

VOH Output HIGH Voltage
Command Outputs 2.4
Control Outputs 2.4

If Input Current (SO and Sl inputs) -5

IlL Input leakage current (all
other inputs) ±10

ILO Output leakage Current ±10

Icc Power Supply Current 100

CeLK ClK Input Capacitance 12

CI Input CapaCitance 10

Co InpuVOutput CapaCitance 20

NOTE: 1. Command Outputs are INTA, IORC, IOWC, MRDC, MWRC.
2. Control Outputs are DT/A, DEN, ALE and MCE.

4-94

8MHz

Min. Max.

-.5 .8

2.0 Vee +.5

-5 .6

3.8 Vee +.5

.45

.45

2.4
24

-5

±10

±10

100

12

10

20

Units

V

V

V

V

V
V

V
V

rnA

"A
~A

rnA

pF

pF

pF

Test Conditions

IOL ~ 32mA Note 1
IOL ~ 16mA Note 2

IOH ~ - 5mA Note 1
IOH ~ -lmA Note 2

VI ~ .45V

OV:s VIIN:s Vee

.45V :s VOUT :s Vee

Fe ~ 1 MHz

Fe ~ 1 MHz

Fe ~ 1 MHz

210471-003

AFN·00787A

inter

A.C. CHARACTERISTICS
(TA = O°C to 70°C, Vcc = 5V, ±10%)

82288

AC timings are referenced to O.BV and 2.0V points of signals as illustrated in data sheet waveforms, unless otherwise noted.

6 MHz BMHz

-6 -6 I
Sym Parameter Min. Max. Min. Max. Unit Test Condition

1 ClK Period 83 250 62 250 ns

2 ClK HIGH Time 25 235 20 235 ns at 3.8V

3 ClKlOWTime 20 225 15 230 ns at 0.6V

4 ClK Rise Time 10 10 ns 1.0Vto 3.5V

5 ClK Fall Time 10 10 ns 3.5Vto 1.0V

6 MilO and Status Setup Time 28 225 ns

7 MilO and Status Hold Time 0 0 ns

8 CENL Setup TIme 30 20 ns

9 CENl Hold TIme 0 0 ns

10 READY Setup Time 50 38.5 ns

11 READY Hold Time 35 25 ns

12 CMDlY Setup Time 25 20 ns

13 CMDlY Hold Time 0 0 ns

14 AEN Setup Time 30 25 ns Note 3

15 AEN Hold Time 0 0 ns Note 3

16 ALE, MCE Active Delay from ClK 3 25 3 15 ns Note 4

17 ALE, MCE Inactive Delay from ClK 35 20 ns Note 4

18 DEN (Write) Inactive from CENl 35 35 ns Note 4

19 DT IR lOW from ClK 40 20 ns Note 4

20 DEN (Read) Active from DT/R 10 50 10 40 ns Note 4

21 DEN (Read) Inactive Diy from ClK 3 40 3 35 ns Note 4

22 DT IR HIGH from DEN Inactive 5 45 10 40 ns Note 4

23 DEN (Write) Active Delay from ClK 35 30 ns Note 4

24 DEN (Write) Inactive Diy from ClK 3 35 3 30 ns Note 4

25 DEN Inactive from CEN 40 25 ns Note 4

26 DEN Active from CEN 35 25 ns Note 4

27 DT/R HIGH from ClK
(when CEN = lOW) 50 50 ns Note 4

28 DEN Active from AEN 35 30 ns Note 4

29 CMD Active Delay from ClK 3 40 3 20 ns Note 5

30 CMD Inactive Delay from ClK 3 30 3 20 ns Note 5

31 CMD Inactive from CEN 35 25 ns Note 5

32 CMD Active from CEN 45 25 ns Note 5

33 CMD Inactive Enable from AEN 40 40 ns Note 5

34 CMD Float Delay from AEN 40 40 ns Note 6

NOTE: 3. AEN and MB are asynchronous inputs. This specification is for testing purposes only, to assure recognition at a specific ClK edge.
4. Control output load: CI = 150pF.
5. Command output load: CI = 300pF.
6. Float condition occurs when output curre~t is less then ILO in magnitude

.4-95
210471-008

AFN'()0787A

I •

82288

WAVEFORMS

•
ClK CHARACTERISTICS

ClK

STATUS, ALE, MCE, CHARACTERISTICS

14----Ta-_of+----Tc--

CLK

MliO,ii,so ---+=.I

AlE __ --...., ___ +.:!

MCE ______ --I

CENl, CMDlY, DEN CHARACTERISTICS WITH MB = 0 AND CEN = 1 DURING WRITE CYCLE

ClK

DEN_...,...... __ +-'

CENl

4-96
210471-003

AFN-007lI7A

82288

WAVEFORMS (Continued)

READ CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

ClK

DT/ii---+~

DEN __ -+=--J

CENl

WRITE CYCLE CHARACTERISTICS WITH MB=O AND CEN=1

ClK

DEN. ______
J

vOH---------+f--+----II~-__t -----
DT/ii

CENl

4-97
210471-003

AFN.Q0787A

82288 '

WAVEFORMS (Continued)

CEN CHARACTERISTICS WITH MB = 0

ClK

CEN

DEN

DT/R ___________
II
___ -+-J

KEN CHARACTERISTICS WITH MB = 1

CLK

m

DEN ___ J

'NOTE 1: AErii Is an asynchronous input. ill setup and hold time Is specified to guarantee the response shown in the waveforms.

\,

4-98 210471-003

iAPX432
Micromainframe™

Microprocessors
Section

5

I'{ r
0" I

,.

t ,.

/

intJ
iAPX 43201/iAPX 43202

FAULT TOLERANT GENERAL DATA PROCESSOR

• Range of Performance
- Adding Processors Increa ...

Performance
- No Software Changes Required

• Large Add,... Space:
- 16 Megabytes Physical Memory
- 1 Terabyte Virtual Memory

• Capability-Based Addressing for
Maximum Dependability
- Most Software F~ults Trapped

Before Damage Occurs
- Debugging nme Reduced
- Leads to Highly-Reliable, Robust

Systems

• Memory Management Support On-Chlp

• Symmetrical Instruction Set for all 8-,
18-, and 32-b1t Data Types

• IEEE Standard 32-, 64-, and 8O-Bit
FIoaUng-Polnt Operations

• Master/Checker Pairs Detect Hardware
Errors Automatically

• Quad Modular Redundancy Ensures
Immediate Recovery From Hardware
Faults

The iAPX 432 Micromainframe is a 32-bit multiprocessor specifically designed for those critical applications
which demand absolute software reliability or hardware fault tolerance. At the heart of the system is the iAPX
432 General Data Processor (GOP) consisting of two VLSI components, the iAPX 43201 and iAPX 43202.
Together with the other members of the iAPX 432 component family (i.e., the 43203 Interface Processor, the
43204 Bus Interface Unit, and the 43205 Memory Control Unit) the GOP can be used to build a fault-tolerant
computer system that sustain any single-point failure and yet continue to operate correctly, without interrup­
tion.

Intel 432 systems offer a range of performance: by adding or removing GOPs, the throughput of a 432-based
product can be increased to support more users or reduced to save hardware cost with no change to software.
Thus, a family of end products with differing levels of performance can be developed from identical hardware
modules using the same software.

The iAPX.43201 and iAPX 43202 are fabricated with Intel's highly reliable +5-Volt, depletion load, N-channel,
silicon gate HMOS technology and each is housed in a 68-pin JEOEC Type A package. See Figures 1 and 2 .

.... - -
~~!¥9~~!lllilll!~ ,hllil!!lua ~9h!~¥

IOC,

m
IOC
He
OOUT
ICS -IOC

vee

¥IS

-]
.., ..

I!¥ PtN NO.1

, I
I pUI~n¥¥ PlUO.'...... ¥HU¥!g'
,'--__ --I. i II01E: N.C. podo not be comocIad. L..I ___ ~

171873-1 , 171873-2

Figure 1. 43201 Pin AssIgnment, Instruction Figure 2. 43202 Pin Assignment, Execution Unit
Decoder IMlcroinstructlon Sequencer

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. November 1983
@1nt8lCorporation, 1983. 5-1 Order Number: 171873-002

IAPX 43~1I1APX 43202
.'., "

Table 1 summarizes all signal groups, signal names and their active states, and whether br not they are
monitored by the Hardware Error Detection circuitry.

. , Table 1. Pin Description

Symbol Type Name and Function .
Processor Packet Bus Group

AC015 I/O Add /Control/Data Un .. : These 16 bidirectional
ACOo signals carry physical memory addresses, control information

(access length and type), and data to and from the memory bus.

Whe~ the GOP is in checker mode, the ACO pins are monitored by
the hardware error detection logic and are in the high impedance
state.

PRO 0 Processor Packet Bus Request: is issued to gain access to the
bus. Normally low, the PRO pin is brought high during the same
cycle as when the first double-byte of address information appears
on the ACO pins. PRO remains high for only one cycle during the
access, unless an address development fault occurs. In that case,
the GOP leaves PRO high for a second cycle to indicate it has

, detected an addreSSing or segments rights fault in completing the
, address generation.

,PRO is checked by the hardware detection logic and remains in a
high impedance mode when the GOP is in checker mode.

ICS I Interconnect Status: carries information on errors" data
synchronization, and interprocessor communication. The
interpretation of this signal depends on the current cycle of the bus
transaction. See page 39 for a complete description.

BOUT 0 Enable Buffers for Output controls the direction of external
buffers, if any are used. When BOUT is assert9d, it indicates that the'
buffers must be directed to carry information outbound from the

. GOP.

System Group

Vee I Power: These four pins supply 5-volt pow~r to the GOP, and all
must be connected; the pins are not connected together within the
GOP.

Vss I Ground: These five pins provide the ground reference for the GOP,
and all must be connected; the pins are not connected together
within the GOP.

Ar:AFm I Alarm: monitors the condition of an unusual, system-wide condition
such as power failure. Alarm is sampled on the rising edge of CLKA.

FATAL 0 Fatal: is asserted by the GOP under microcode control when the
GOP is unable to continue due to various error or fault conditions.
Once FATAL is asserted, it can only be reset by the assertion of
INIT. '"

Pro< I Processor Clock: The assertion, of PCIJ< for one cycle causes the
system timer within the GOP to decrement. Assertion of J5C[j(fQr >

two or more cycles causes the system timer to be reset. PrnJ(must
remain unasserted for at least 10 clock ~cles before being
asserted again. The GOP samples PrnJ(on the rising edge of
CLKA·

5-2 171873.002

inter IAPX 43201/1APX 43202

Table 1. Pin Description (Continued)

Symbol Type Name and Function

System Group (Continued)

CLR I Clear: Assertion of CLR results in a microprogram trap causing the
GOP to immediately terminate any bus transactions or internal
operAtions in progress. The GOP resets to a known state, asserts
FAT L, and awaits an IPC for initialization. The IPC is not serviced
for at least four clock cycles following the assertion of ~.

Response to CLR is disabled by the first CLR assertion and is
reenabled when the GOP receives the first IPC (or INIT assertion).

The GOP samples CLR on the rising edge of CLKA.

INIT I Initialize: Assertion of INIT resets the internal state of the GOP and
starts execution of the initialization microcode. INIT must be
asserted for a minimum of 10 clock cycles. After the INIT pin returns
to its nonasserted state, the GOP initializes all of its internal
registers and windows, and waits for a 10ca11PC. INIT is sampled on
the rising edge of CLKA.

MASTER I Master: This signal determines whether the 43202 is to function as'
a master or a checker. In master mode, the 43202 functions
normally and drives all of its outputs. In checker mode, AC015-
ACOo and PRO enter a high impedance state and BOUT is
unconditionally low. A 43202, whether master or checker, monitors
the AC015-ACOo and PRO lines and compares the data on them to
its internally generated result, signaling disagreement on the HERR
line. For normal operation, MASTER .should be left unconnected or
tied high.

HERR 0 Hardware Error: This. signal is asserted by the GOP to indicate
disagreement between data appearing on the AC015-AC~Q and
PRO pins and the internally generated result of the GOP. ERR is
valid duringCLKA and can normally be asserted ~ GOP and
every clock cycle, except immediately following CLA. HERR , \ requires an external 2.2 k!l nominal pullup resistor.

CLKA I Clock A:. is a square-wave clock which must operate continuously
to preserve the operating state of the GOP.

CLKs I Clock B: is a square-wave clock whjch operates at the same
frequency as CLKA, but lags it by 90 degrees. CLKs must operate
contim,tously to preserve the operating state of the GOP.

Intra-GOP Group

156-150 N/A Interchlp Status Lines: carry microprogram information from the
43202 back to the 43201. The lines are not checked by the
hardware detection logic.

,...10-,...115 N/A . Microinstruction Bus Lines: carry microinstructions from the
43201 to the 43202. They are not checked by hardware detection
logic.

ROROM I Read ROM: This Sign~ is used to read the microprogram from the
43201 ROM. If RORO is h.eld low when INIT goes high, the 43201
enters a diagnostic mode, and the microinstruction sequencer steps
through the microprogram ROM, sequentially displaying (but not
executing) the microinstrucvons on the ,...115-,...10 lines. While
ROROM is useful for testing, it should be tied to Vee for normal
operation.

5-3 171873.002

IAPX 432011IAPX43202

FUNCTIONAL DESCRIPTION

Introduction

The iAPX 432 Micromainframe is a 32-bit multiproc­
essor eapecially design8d for those critical applica­
tions which demand absolute software reliability or
hardware fault tolerance. By developing the 432, In­
tel has broken with three decades of, tradition that
have defined how computers operate, and redrawn
the line separating functions of hardware and soft­
ware. Many operations that 432 processors perform
automatically Would be done by the operating sys­
tem in conventional machines. The development of
the :432 was driven by two major objectives: to re­
duce the cost of software over the life cycle of the
product, and to develop a computer with unprece­
dented reliability. From any perspective,the 432 is
an uncommon machine.

Similar to many mainframe computers, processing in
the 432 is divided between a central system, which
handles data processing, and one or more peripher­
al subsystems, which transfer data to and from 110
devices. There are two types of processors, General
Data Processors (GOPs) and Interface Processors
(IPs), and two types of support components, Bus In­
terface Units (BIUs) and Memory Control Units
(MCUs). Together, these VLSI components can be
used to build a fauH-tolerant-computer system that is
able to sustain any single-point failure of a compo­
nent or bus, and yet continue to operate correctly,
without program interruption and without software in­
tervention.

This concem for reliability in the 432's design is not
limited to automatic recovery from hardware fauHs,
but extends to software as well. The 432 processors
can detect hundreds of different software fauH con­
ditions from an attempt to divide by zero or execute
data, to complex faults involving several indepen­
dent processes. While most computers do not de­
tect these faults at all, the 432 is able to tr;ap and
identify most fauHs before serious damage can 0c­
cur. As a consequence, 432-based systems are eas­
ier to debug, and systems shipped to end-users will
prove substantially more reliable. '

Another important advantage of the 432 is the ability
to tailor the throughput of the system to meet the
price/performance requireme,nts of each application
or end-user. A family of products, for example, can
be developed using' the- same hardware modules,
Simply adding or removing boards as the application'
requires. The end-user, for example, could buy an
entry-level system with only two processors. The'
system would run more slowly than the high-end
system, but it would also cost much less. Later,

when the user's needs grew, additional General
I Data Processors could be installed 'to h~le the
heavier load on the system. No n8Eid to change soft­
ware; all the programs that the user had developed
would still be compatible. In fact, if at any time, one
of the processors failed, the user could remove it,
and the remaining processors in the system would
continue to execute programs correctly while a re-
placement was sought. '

This unprec8dented flexibility is possible only be­
cause the 432 takes a unique approach to architec­
ture, one clO$ely tied to the structure of programs.
The processors are no longer passive entities, re­
sponding only to software, but they can execute
many functions automatically to keep the system
working efficiently and reliably.

ARCHITECTURE

This section describes the architecture of the iAPX
432; thet is, the 'machine-level programmer's view of
the computer. As a rule, only compiler writers actual-,
Iy deal with the 432 at this level; however, many ap­
plicatiEln programmers-wllo typically code in Ada­
will find this discussion valuable for getting a "feel"
for the operation of the underlying machine. Bear in
mind that this 'discussion does not cover all pro­
gramming facilities and some of the concepts have
been simplified for the sake of clarity and space; a
complete description of the architecture can be
found in the IAPX 432 General Data Processor Ar­
chHecture Reference Manual.

Since the 432 Is a muHiprocessor system, with spe­
cialized typ8s of Processors optimized for different
kinds of work, the architecture of the GOP is differ­
ent from the Interface Processor. At the same time,
these dive,rse processors (and their associated soft­
ware) must cooperate with each other to accomplish
the overall task of the 'system. Therefore, the de­
signs of the GOP and IP share an architectural foun­
dation, the 432' com~on base architecture. The
overall arrangement is illustrated in Figure 3.

Common Base Architecture

The common base architecture of the 432 is the
glue that binds multiple processors, of the same and
different types, together in a coherent system.
Therefore, the common base architecture defines
"global" facilities used by all processors, software,
and support components (i.e., iAPX 43204 Bus Inter­
face Unit and iAPX 43205 Memory Control Unit).
These facilities include addressing, protection, ob­
ject management, communication, timekeeping, and
exception processing.

5-4 171873-002

IAPX 43201/1APX 43202

Objects

Memory protection systems can be considered in
terms of boxes into which information can be locked
and keys which can open the boxes. The 432's box­
es and keys correspond to the logical units found in
many high-level programming languages (e.g., Ada,
Pascal); in other words, programming units and pro­
tection units match. Boxes are variable in size, each
box containing one obJect; the object may be an '
array, a record, a list element, the text of a proce-

t.. _______ .A

ACD
IUS

ACD
IUS

dure-in fact, any logical entity which should be
uniquely identified and protected.

Keys in the 432 are called access descriptors and
are manifested in high level languages as pointers
(instances of access variables in Ada). Whenever
storage for a new object is allocated, whether by the
linker or program statements, the processor auto­
matically boxes the object (in its own segment),
manufactures a unique key (access descriptor), and
returns the key to the creating procedure. A brief
introduction to objects can be found in Table 2.

171873-3

Figure 3. A typical 432 system with two memory buses, two General Data Proceuors,
and a single peripheral subsystem for 1/0

Table 2. Introducing Objects

1. All Information In an IAPX 432 system Is contained In objects. _
, Even the instruction pointer, status flags, and other information used by the GOP are contained

in objects .

. 2. Each obJect can have two parts, a data part and an ace ... part.
The data part can contain any information except accesses. Data in the data part can be added,
assigned, manipulated as bit fields, or used for any purpose other than accessing an object. The
access part can contain only acceaa descriptors (ADs). ADs are used for referencing objects
and can only be modified in caref~JIy controlled ways.

3~ ObJects can be created with different lengths.
An object can have from 0 to 65,536 bytes in its data part, and from 0 to 16,384 ADs in\ its access
part. Any. reference, to an object is automatically checked to ensure that it falls within the bounds
of the object.

5-5 171873-002

'\

IAPX 43201/1APX 43202

Table 2. Introducing Objects (Continued)

4. t:;ach object has a fixed ty.,..
The type of an object is determinec;l when the object is created. An objecfs type can be used to
define the operations allowed on thfit object. Sofuv8re can define new object types at run-time.

5. Objects ,:an be local to a program or subprogram call.
, Each object is created at a particular level that specifies whether the object is global, or limited in'
scope to a particular program or subprogram activation.

6. Objects' can Qnly ,be read or written via aceess descriptors.
To acCeSs data in an object, you must speCify an AD that references the object and also specify
the offset within the objects data part to the field accessed.

7. A procedure call can only access those objects It has ADs for.
Each activation of a program or procedure is itself represented by a context object. The
instructions executed by the context can only access those objecfs for which the context has
ADs or can obtain ADs.

8. Access deScriptors can provld~ restricted access to objects.
Each AD specifies several rights bits, including read rights and write rights. To read from an
object requires read rights set on the AD used;'to write to an object requires write rights on the
AD used. Different module activations can have ADs for the same object, but with different rights.

Storage

Address Spaces There are several distinct address
spaces in a iAPX 432 system. Each peripheral sub­
system, for example, has a local memory space, and
typically, a local 110 space. A portion of each Aeriph­
eral subsystem memory space is mapped by an In­
terface Processor into the central system. Proces­
sors (and DMA controllers) in a peripheral subsys­
tem can gain access to central system data by read­
ing and writing these local mapped address spaces.

The central' system is divided into two 16-Megabyte
physical address spaces, the mem(jrY space and
the Interconnect space. For the most part, the in­
terconnect space consists of hardware registers
used by the Bus Interface and Memory Control Units
to maintain fault-tolerant systems. The MCU, for ex­
ample, logs the number of memory errors it has de­
tected and corrected in a register that processors
are able to read by addressing the interconnect
space.

GDPs use the instruction MOVE FROM INTERCON­
NECT SPACE to read these registers and MOVE TO
INTERCONNECT SPACE to write to them. Peripher­
al subsystem software can gain access to the inter­
connect space through Window 1. All other 432 in­
structions and commands reference, the, memory
space.

5-6

Logical addressing To operate on a data item, a
GOP instruction (or IP command) presents a logical
address as shown in Figure 4. For a GOP, a data
item is an integer, character, or real number. In the
case of an IP data transfer, such data items are sim­
ply bytes or double bytes. The logical address of a
data item consists of an access descriptor and a
displacement (offset) into that object. The several
ways of specifying these components, particularly
the displacement, give rise to the GOP's addressing
modes, Which are described in a later section.

Physical Translation GDPs translate logical ad­
dresses into 24-bit physical address; programs have
no way to generate physical addresses directly. As
shown in FigUre 5, the essence 9f the translation is
finding the physical base address of the target ob­
ject ahd adding the displacement component to it.

As you'll recall, associated with each 432 prQCedure
(or function) is an object reference Ii!lt (set of keys)
called access descriptors;, this array of access de-'
scriptors defines the objects that are currently ad­
dressable by the procedu(e. The access descriptor
in tum selects an entry in an object table. This entry,
called an object deSCriptor, ,oontains the ,base ad­
dress of the target Qbject.

171873-002

intJ lAP X 43201/1APX 43202

I OPERAND
OFFSET

LOGICAL ADDRESS'

ACCESS
DESC,RIPTOR

OBJECT
ADDRESSING

r "\

SELECTED
DATA

OBJECT
171873-4

Figure 4. Simplified View of Logical Addressing

The focal point of the translation procedure is the
object table. (Naturally, only the operating system's
memory manager has a reference to the object table
itself.) Every object in a system is represented by a
single object descriptor, which contains its base ad­
dress and other descriptive information. Conversely,
there may be many access descriptors for a single
object scattered among the access descriptor lists
of all programs that have access to that object. Mov­
ing an object (to compact physical memory, for ex­
ample), only requires updating its object descriptor,
regardless of how many programs hold references
to it.

Note that to improve performance, 432 processors
automatically maintain two groups of physi~1 ad­
dresses on chip. The addresses of frequently used
System objects, such as the object table, are always
immediately available. In addition, the processors
cache exploits the tendency of most programs to
clustertheir references to a few objects at a time.

5-7

Virtual Memory Support Three' fields in object de­
scriptors aid a 432 executive's virtual memory man­
ager. The allocated bit indicates whether real mem­
ory is associated with the object. When the virtual
memory manag,er swaps an object out to external
storage, it clears this bit first. The hardware checks
the allocated bit during address translation; if it is
clear, the hardware faults, and control, passes to the
memory manager. The memory marriager can then
swap the object back into physical rhemory, set the
allocated bit, and return control to the instruction
that faulted.

The accessed bit is set by the hardware when an
object is referenced by an instruction. By periodically
checking and clearing this bit in all object descrip­
tors, the virtual memory manager can gain insight
into the frequency with, which each object is being'
used. This information can then be used to select
objects to be swapped out, for example, on a least­
recently-used basis.

171873-002

inter IAPX 43201/1APX 43202

The altered bit is set by hardware when an object is
updated. If a virtual memory manager decides to
swap an object that has not been altered, and it
knows that a copy already exists in external storage,
it can save time by discarding the memory-resident
copy without swapping it. Both the accessed and
altered bits are also cached on-chip to keep object
table references to a minimum.

Protection and Access Control The services pro­
vided by modern operating systems typically take
the form of procedures that can be called by user
ptocesses. Since most computers do not provide
procedure-level protection as a matter of course, a
special arrangement is necessary 10 protect operat­
ing system procedures from their callers <an OS pro­
cedure runs in the same process as its caller). .

MEMORY REFERENCE

ACCESS
SELECTOR

PROGRAM'S ACCESS
ENVIRONMENT

SYSTEM·WIDE TABLE OF
OBJECT DESCRIPTORS

REFERENCED
OBJECT

Figure 5. two-Level Address Mapping

5-8

OFFSET

171873-5

171873-002

IAPX 43201/1APX 43202

The usual approach is to confer privilege upon OS
procedures while denying it to user processes. In

. effect, privilege is a second lock that operating sys­
tem procedures can apply to boxes containing their
information. If a computer has one privilege level
(e.g., privileged supervisor, unprivileged user) then
one key opens any privilege lock. A 4-level privilege
scheme (e.g. kemel, executive, supervisor, user)
provides more locks, one for each level. Each privi­
leged key, however, not only opens all locks of the
same level, but is effectively a master key for all
lower privilege levels. ,

Privilege thus provides an asymmetric form of pro­
tection: information stored at a given level is protect­
ed from lower-level procedures only, not from proce­
dures at the same or higher levels; in fact a proce­
dure at the lowest level runs on an unprotected ma­
chine.

The 432's protection system, in contrast, is symmet­
ric: every procedure-part of the operating system
or not-is equally protected from every other be­
cause every procedure has access only to those ob­
jects it absolutely needs. The 432's run-time protec­
tion system is based on limiting the distribution of
information and controlling the manner in which ac­
cessible information is referenced. Each object is
protected as a unit, and each executing procedure
has a unique access environment that specifies ex­
actly which objects it may use, and in what manner it
may use them. At the same time, the system is flex­
ible enough to permit straightforward sharing of in­
formation between cooperating processes.

Umlted Access Environments At any given point
in time, a procedure's access list constitutes its cur­
rent access environment. Since addresses can only
be constructed from the access deSCriptors on this
list, it is impossible for a procedure to gain access to
any ,object for which it does not hold an access de-
scriptor. r

A procedure creates an initial access environment
(called a context) for a procedure as part of its exe­
cution of the. CALL instruction that invokes the pro­
cedure. (Actually, the entire context is not created
each time a procedure is called, rather, to increase
performance, each process is given a set of inactive
,contexts after compilation. When a procedure is
called the context is "filled in" with the parameters •
for that activation.) This initial environment includes
references for all objects that could be ascertained
at compile-time: objects containing constants and
statically allocated variables, and any procedures
called by ttlis procedure. In addition, the processor
creates a reference to any parameters passed by
the caller, to free storage from which new objects
may be allocated, and to an operand stack for use in
evaluating expressions in this activation.

As the procedure executes, it may modify its own
aCcess environment. For example, it may create a
new object, it may receive an object reference from
another process, or it may delete an object refer­
ence that is no longer needed. Notice that while the
procedure may create new data at will, the only way
for it to obtain access to data outside its initial envi­
ronment is through the explicit cooperation of anoth­
er process (i.e., through the interprocess communi­
cation facility called ports).

By entering a new context for each procedure acti­
vation, the 432 provides inherent support for reen­
trant and recursive programming. The complete
change'in ac;cess environments caused by the pro­
cedu,e invocation ensures that the called procedure
inherits no part of its caller's environment, except for
the parameters that have been passed to it. When
the called procedure retums, the processor switches
back to the caller's environment.

Integral Sharing Sharing is the other Side of protec­
tion. To be able to share pieces of memory among
processes in a controlled way is an important capa­
bility for a computer. Popular procedures and pro­
grams (especially editors and compilers) are often
executed by,many processes simultaneously; shar­
ing a single copy of the code among all processes
not only saves memory, but reduces virtual memory
I/O traffic and disk space requirements.

The ability to share data is as important as sharing.
instructions; some applicationll, especially control­
oriented ones, are most easily implemented as mul­
tiple processes sharing key data structures. The ai­
tematives to memory sharing (maintaining separate

. copies for each process or sharing a file instead of
memory) are often too wasteful, too complicated, or
too slow to be practical in applications where the
processes must have fast access to up-to-date infor­
mation.

Unfortunately, most computer addressing schemes
favor either protection or sharing. To protect proc­
esses from each other, many computers map them
into separate address spaces; sharing an item then
requires construction of a bridge between the two
address spaces, which-when done at alt--provides
an awkward and incomplete facility. Other comput­
ers run processes in the same address space, en­
abling sharing but sacrificing protection (i.e., proc­
esses share everything).

The 432 haS a single address space; every object in
this space is potentially sharable by every process in
the system. Protection is Obtained by restricting the
object each procePure can address to the subset it
"needs to know" to perform its function; at any time
the subset is defined by the procedures list of ac­
cess descriptors.

5-9 171873'()()2

,
/

IA'PX '43201tJAPX 43202
, ,\

An object is shared if procedures in more than one
process has references.for it (conversely, an. object
is private if there is only a single reference for it).
The references can be provided by the compiler or
can be obtained at run-time. (Note that interprocess
sharing is a requirement of Ada and other languages
that support concurrent programming.)

Typing Given that a procedure has access to an
object (has a reference for it), the protection system
insures the basic integrity of that object. That is, in­
struction references to the object are checked to
make certain that they make sense for that object.
By typing each object, the 432 hardware can posi­
tively determine what an object is; this, in turn, im­
plies which operations (i.e., instructions) are valid for
the object and which are not. In order to maintain
good performance, however, the individual data
items (e.g., characters, integers, etc.) within an ob­
ject are typed and typed-checked af compile-time,
not run-time.

Types of Objects There are five classes of objects
that are used in a 432 system:

• System objects'

• Generic objects
• Dynamic-type objects

• Refinements of any of these objects

• Interconnect objects

System' objects have specific uses and formats
recognized by 432 processors, and serve as the
backbone of the architecture and the operating sys­
tem. The 432 provides a very high-level of support
for operating system functions because the proces­
sors are able to recognize and manipulate system
objects. Processors operate on system objects in
two ways: by executing high-level instructions on be­
half of the operating system, and by executing cer­
tain functions on their own initiative, without soft­
ware intervention.

The structure of a high-level program is reflected in
the type and function of system objects. An Ada
package, for example, is represented within the 432
as a domain object. The domain object contains a
list of procedures, functions, and data' associated
with the Single package;.and like a package, is divid­
ed into prlva~e and public parts. 'Procedures in the
public part of a domain correspond to procedures
which are declared in the specification part of a
package, and which are accessible to outside users.
The private part of the domain, in contrast, corre­
sponds to those data :structures, functions, and pro­
cedures within the implementation section (body).
No outside user can operate on, or directly call,
these structures ..

Instruction and data objects are good examples of
the protection that an object-based architecture pro­
.vides. Instructions contained in an instruction object
cannot be manipulated as data, and likewise, the
entries in a data object cannot be fetched by a proc­
essor for. execution. Further, both the instruction and
data objects.are hidden from users in the sense that
access to them is provided only through a procedure
call.

The type managers for system objects are combina­
tions of hardware and operating system software, so
application programmers have no need to under­
stand the internal organizations (representations) of
these Objects. A few of them, however, are corner­
stones of the 432 architecture and it is worthwhile to
examine them from a functional point of view. In­
struction objects, from which processors fetch a
procedure's machine instructions, have already
been. mentioned. Later in this section storage re­
source and port objects will be discussed.

Processor and process objects are used, natural­
ly, to manage processors and processes. There is
one processor object for each GOP and IP in the
system. At itlltialization time, each processor obtains
a reference for its own processor object, which it
holds on-chip indefinitely. There is also one process
object for each process (task) in the system. A proc­
essor object contains 'an access descriptor for a
process object. Dispatching a new process to run on
a processor amounts to changing this access de­
scriptor. The entire set of system objects is de­
scribed briefly in Table 3 and illustrated in Figure 6.

Generic objects An object whose type is generic is
one that has no special significance to the hardware;
its system type is effectively "none." Creating gener­
ic objects is faster than creating other types of ob­
jects and requires no special privilege. In languages
such as Ada or Pascal, executing a NEW operation
creates a record referenced by a pOinter. In the 432,
the operation creates a generic object and an ac-

. cess descriptor to reference it.

Dynamic-Typed Objects OEM-developed software
added to a computer needs protection for exactly
the same reasons that the operating system does.
Coexisting with unknown programs that have been
written by fallible (and sometimes malicious) end-US­
ers, the OEM software must keep running correctly
and must prevent the disclosure or alteration of sen­
sitive information belonging to either the OEM or the
end-user. The principal weakness of conventional
protection systems is that the hardware vendor mo­
nopolizes the protection facilities of the machine,
leaving only interprocess protection for the OEM or
end-user. In the 432, full protection can be extended
to every new facility, whether added by Intel, the
OEM, a software vendor, or th~ end-user.

5-10 171873-002

IAPX 43201/1APX 43202

Table 3. IAPX 432 System Objects

Instruction Object
contains GOP instructions; the GOP will fetch instructions only from instruction objects.

Domain
represents a program module (package) and references subprograms (instruction objects) and
data objects in the module. .

Context
represents a program or subprogram activation (call) and defines the access environment of the
call, i.e., the set of objects that the activation can reference.

Type Definition Object (TDO)
represents a software-defined object type, and can contain attributes of the type (e.g., the type
name).

Type Control Object (TCO)
represents type-specific privileges, such as the right to create objects of a particular type or to
gain access to objects of a particular ty~e. '

Object Table I

contains the object descriptors used in object addressing and memory management.

Storage Resource Object (SRO) "
represents a free storage pool used to create new objects; references an.object table that will
contain the new object's descriptor, a physical storage object from which the neW segment will
be allocated, and a storage claim object that limits allocation from this SRO.

Physical Storage Object (PSO)
specifies free storage blocks in memory.

Storage Claim Object (SCO)
limits the number of bytes that can be allocated from a set of SROs that reference this Soo.

Process

Port

represents a program or subprogram activation that can execute concurrently (in parallel) with
other processes.

provides communication between concurrent activities. A port includes a queue of messages
sent to the port but not yet received, and a queue of blocked activities waiting to receive
messages (at an empty port) or to send me~ages (at a port with a full message queue).

Carrier
represents an activity in communication with other concurrent activities via ports. carriers carry
messages to and from ports.

Processor Object .
contains attributes and state information for an iAPX 432 processor (e.g., a GOP). Because
programs in an iAPX 432 system can only manipulate information in objects, all information
about a processor thafmust be visible to software must be contained in an object.

Processor Communication Object .
used by the iAPX 432 interprocessor communication mechanism to transfer messages between
processors.

5-11 171873.()()2

(

inteI" IAPX 43201ltAPX 43202

O8.IECT TAIIlE DIRECTORY Oa..ECT O8.IECT TAIILE O8.IECT

o i •

~~ii~~~I1~~~~~l· RV 1

•••••••••••••• _.......... 0 Fence

STORAGE REtOURCE OIl.lECT
PROCEtSOROII.IECT

4
2
a
F_

a
STOIIADE ClAIM OIl.lECT 1

2
3
4

F 5
a • . (l'REtERVED) i

7

I ::J='t!.0ull
10
11
12
13
14
15 ,.
17 ,.
" PHl'SICAl STOIlAGE O8.IECT . (P_ED) .

I I

PROCESSOR COMMUNICATION O8.IECT ,.
14
12 (PREfERVED)
10
8 • 8 • 4 4
2 • 0 0

F F_
0 0

i (PREfERVED) II
I

171873-6

Figure 6. 432 System Objects (Reserved areas are used by .
processors; preserved areas are available to system software)

5-12 171873-002

IAPX 4320111APX 43202

PORT OII.IECT

E ==JII I'
12
10
I
I ,

---I:

CARRIER OBJECT

F_
o
I
I

.
If

~
II] PllIOR/PCI
10 CARRIER
II FAULT
II ARIA
I.
II
10

rWlIL_--t:
• I
o
F_

o
I
I
a
• I
I
7
I

i

DOMAIN OBJECT

i

INITRUCT_ OBJECT

Figure 6. 432 System Objects (Reserved areas are used by
proc:,ssora; preserved areas are available to system software) (Continued)

5-13

171873-7

171873-002

intJ iAPX 4320111APX 43202

PROCESS oeJECT

r-----~~~----~~ gi 31 '
31

~---t rz _ ...
:' =001 :ze
2<

'IIr---I~
II ..

-"!!.!~=-l ~:J AlloctItktn
- ~O Fault Are.

I
<

~] Stack SAO

3

E==~: 7
8] Proc ...
• FlUlt 10 Ace ... Are,

"tlH~~~==~ 11 F 12

· I

I
=

!

(PRESERVED) T
CON,TEXT OBJECT

OPERAND STACK i
WORKING STORAGE AREA =

12 I.
I
I] Intlml", < C_
2 Prae"tor o Inform.tfon

• 1

•
Fene,

E~~~~L

(PRESERVED)

CONTEXT MESSAGE OBJECT

• •
!~ J ::::=';'.Ck
12
13

I I 2
• (PRESERVED) •

1·····a •.. a.:s==-lII .. s.&= ~ Fane'

• (PRESERVED) i 1

r-__ F;,;A,;;U,;;LT;.,;;DA,;,;T,;,;A.;,A;;,;R,;;EA.;... __ ... ft+ ••

FIRST FAULT DATA ITEM

1------------1 :::

i~~§~··:ze
n':IS
".:12
•• 20
•• 11
ft+1'
n+1'
"+12

SVSTEM TYPE DIRECTORV OBJECT

n+10

•••
•• 2

I :¥ Fence
• AD TO TDO FOR wECt TYPE 0 I 0

= 0 • oj

lib TO TDO FOR oiJECY TYPE n I n

= 8 = I AD TO TOO FOR OBJECT TY~E m I m

= (PRESERVED) i

TVPE DEFINITION OBJECT

I I · ·

EXTENDED TYPED OBJECT

i I i
= (pRESERVED) = l=n ~F_.
• AD TO DE'iAiNd TDO I 0

· I
(PRESERVED) · I

TYPE CONTROL OBJECT

iii · I
(PRESERVEDI · I

REFINEMENT CONTROL OBJECT

I ·

Figure 6. 432 System Objects (Reserved areas are used by
processors; preserved areas are available to system software) (Continued)

, I

5-14

171873-8

171873·002

IAPX 43201/1APX 43202

If base typing protects the 432's addressing mecha­
nism, and system typing protects the 432's system
objects, dynamic-typing can be viewed as protecting
users from one another. In essence, dynamic-typing
enables a programmer to define a specific type of
object including the operations that are valid for it,
and then have the hardware enforce the definition,
just as it would for any of the system objects.

When a type manager creates a dynamic-type ob­
ject for a user, it returns an access descriptor for
that object. When the user subsequently wishes to
manipulate the object, it passes the access descrip­
tor as a parameter in a call to one of the type man­
ager's operations. Dynamic-typing prevents the user
from manipulating the object's representation direct­
ly; the user holds a reference for the object, but the
object is effectively "sealed" from access. Only the
type manager can "unseal" the object; any other
attempt to operate on the object's contents is abort­
ed by the hardware.

Refinement Occasionally, it is convenient to define
a new object that is a subset of an existing object. A
"personnel record," for example, might contain
"public" information such as name and department,
and "private" information, such as salary. A process

REFINEMENT DESCRIPTOR

with access to the complete record may want to
send only the public part to another process. It may
do so by creating what is called a refinement of the
object (see Figure 7).

Interconnect Objects Groups of hardware registers
within the interconnect space are represented as In­
terconnect Objects, and can be accessed by the
GOP only through the MOVE TO INTERCONNECT
and MOVE FROM INTERCONNECT operators
(Note: an Interface Processor gains access by open­
ing Window 1 onto ah Interconnect Object). Inter­
connect objects have no access descriptors.

Rights and Bounds Each access descriptor con­
tains a set of rights which further defines how the
holder of the reference may use the referenced ob­
ject (see Figure 8). These base and system rights
are set when the holder is given the reference. Base
rights define whether the object may be read-only,
write-only, either or neither. A user with a reference
to a system object, for example, will be unable to
read or write the object. System rights are system­
type-specific; for example, the system rights for a
port object indicate whether the holder may send a
message to the port, or receive a message from the
port. . .

OBJECT DESCRIPTOR

THE SHADED PARTS OF THE REFINED
. OBJECT CANNOT IE ACCESSED USING

THE REFINEMENT

171873-9

Figure 7. Refinement Object

5-15 171873-002

intJ IAPX 43201/iAPX 43202'

31 2018 18 15

I
12 bill IXIX\X\X\ 12 bill

.>

\ X X X 11 \

I ACCESS VALID

TYPE RIGHTS

SEGMENT INDEX

DELETE RIGHTS

UNCHECKED COPY RIGHTS

READ RIGHTS

WRITE RIGHTS

DIRECTORY INDEX

171873-10

Figure 8. Access Descriptor Format

A type manager may define up to five rights for the
dynamic-typed object it manages. It may selectively
grant rights to a user when it creates an object and
returns the reference for it. When a type manager
receives a reference. for an object, it may compare
the rights in the reference to the operation request­
ed by the user. The manager of a "bank account"
object, for example, may permit all users to credit
and debit bank accounts, but only a few may be
granted the >right to close an account.

Finally, the hardware performs a bounds check to
insure that the displacement component of a logical
address in fact falls within the target object. This is
done by simply comparing the displacement to the
object's length (contained in the object descriptor).

For improved performance, the hardware holds
length and rights information for frequently-used ob­
jects, as well as their physical base addresses, and
virtual memory control information, on chip.

Object Management

Reference Manipulation A procedure sometimes
needs to manipulate the entries in its access de­
scriptor list (as opposed to the objects the list refer­
ences). The common base architecture defines op­
erations that permits copying an access descriptor
from one "slot" to another, and for nulling an access
descriptor. This last operation is used to delete the
reference to an object that is no longer needed. An­
other ,operation permits a procedure to inspect an
access descriptor, for example, to examine the
rights bits. A procedure may similarly inspect the ob­
ject table entry indexed by an access descriptor to
see, for example, if the object is dynamic-typed (i.e.,
the entry is for a type control object, rather than an
object descriptor).

Object Cr~atlon and Deletion Free storage in cen­
tral system memory is accounted for in system ob­
jects called storage resource objects, or SROs.
SRCs are lists of unallocated blocks of memory.
Given a, reference to an SRO, a procedure can cre­
ate a new object dynamically; the instructions that
create new objects automatically update the SRO
from which storage is obtained.

Objects have "lifetimes": they come into being and
occupy storage, and they also disappear, giving up
their storage. The 432 common. base architecture
distinguished between short-term and long-term ob­
jects. A short-term object exists for the lifetime of
the procedure that creates it; that is, it is allocated
when the procedure is called and it is deallocated
when the procedure returns. An operand stack, for
example, is automatically created when a procedure
is called, and a procedure may create an object to
pass as a parameter to another procedure. A long­
term object exists after its creating procedure re­
tlo!rns; in fact, it lives indefinifely, until there are no
object references left for it. A type manager "create"
operation will create a long-term object.

As mentioned, short-term objects are deallocated
automatically by the hardware when the creating
procedure returns to its caller. Long-term objects are
deallocated by a software routine called a garbage
collector. This operating system routine sweeps
through memory looking for objects that no longer
have references left to them. When such an object is
found, the garbage collector reclaims the storage
occupied by the object by removing the object's de­
scriptor from the object table and returning the stor­
age block(s) occupied by the object to the SRO from
which it was allocated.

171873'()02

IAPX 43201/1APX 43202

Garbage collection is a complex operation; most
conventional systems let garbage accumulate until a
request for memory allocation cannot be satisfied.
Then they halt normal execution, collect garbage,
. and resume operation. To avoid this suspension of
service, the 432 architecture defines a reclamation
bit in each object descriptor. By setting the reclama­
tion bit whenever it copies an object reference, the
hardw,are permits garbage to be collected on-the-fly,
in parallel with normal execution. The operating sys­
tem performs garbage collection automatically, re­
lieving programmers of much of the burden of stor­
age management.

Mutual Exclusion It is perfectly possible for two
, processes to hold references for the same object

(see Figure 9, for example). If both processes only
read the object they need not coordinate their oper­
ations. Consider, however, an object that accumu­
lates ·the total number of transactions handled by
several processes. Every so often each of these
processes adds the number of transactions it has
handled in the preceding time period to a field in this
object. Although the addition is performed in a Single
machine instruction, at least three memory access­
es are required to complete the operation: 1) read
the old total; 2) read the increment; 3) write the new
total. The integrity of the total is in jeopardy when
two processes update it at nearly the same time.

PROCESS
A

1 1
DATA DATA

OBJECT OBJECT
1 2

The 432 has three classes of mutual exclusion
mechanisms: 110 locks, object locks, and indivisible
operations. Each object's storage descriptor con­
tains a bit called the 110 lock.. When an Interface
Processor opens a window on the object, it checks
to see that the object is not already liD-locked, and
then it locks it for the duration of the 110 transfer.
Software running on a GOP may check for an 110
lock by inspecting an object's storage descriptor.

An object lock field may be defined for any data
object. Processes that update such an object agree
by convention not to update the object without first
locking it, and further agree to unlock the object as
soon as exclusion is no longer required. The LOCK
OBJECT is conditional: it returns a value that indi­
cates if the object was successfully locked (i.e., was
not locked by another process). A process should
refrain from accessing the object until it successfully
locks it. In general, an object's type manager will
take care of locking and unlocking the objects it
manages, eliminating the need for object users to
know anything about locks.

Note that a processor locks a 432 system object
when it needs exclusive access to it during the exe­
cution of a high-level operation. This prevents anoth­
er processor, or. an executive routine, from interfer­
ing with a critical operation on the object.·

PROCESS
B

! ! 1
DATA DATA

OBJECT OBJECT
3 4

171873-11

Figure 9. Two processes can share access to the same object. In the figure,
both Processes A and B can access Data Object 3. In .these cases,

some mutual exclusion mechanism must be used to prevent Inconsistent updating.

5-17 171873-002

IAPl(43201/1APX 43202

Often an object only needs to be locked for the du­
ration of one instruction. The common base archi­
tecture defines o,*,rators that permit addition and bit
field insertion (1 to 32 bits) to be performed IndIvIsI­
bly. When an indivisible operator is executed, the
processor signals a read-modify-write bus cycle; the
system memory controller must not permit a second
RMW-write access to the target memory until the
updated value has been written back into memory.
Thus, the integrity of a shared value is guaranteed
so long as programs that update it do so with indivis­
ible operations.

While a refinement is effectively a new object that is
a contiguous subset of an existing one, it actually
requires only a new access descriptor, thereby sav­
ing storage and execution time. A process with a
reference to a refinement has no knowledge of the
"underlying" refined object. The process that creat­
ed the refinement, however, can "retrieve" the re­
fined object from a reference to the refinement.

Process Communication

Except as they hold references to the same objects,
432 processes are completely independent of one
another. Two processes may execute alternately on
the same processor, or they may execute simulta­
neously on different processors. The 432 interpro­
cess communication facility enables processes to '
communicate with each other by transmitting access
descriptors (as messages) through memory during
execution.

Since any object reference can be transmitted, proc­
ess communication is an extremely efficient and ver-

PROCESS A PORT

satile facility; it provides the basis for 1/0 operations
and process dispatching in. addition to more tradi­
tional message passing. Process communication
can also be used to implement another form of mu-
tual exclusion. .

A complete transmission' consists o,f' a send and a
corresponding receive. Since processes execute
asynchronously with' respect to each other, the
time at which a process desires to send a message
is unrelated to the time at which another process is
ready to receive a message. Further, the rates at
which processes send and receive are, for the most
part, unpredictable. This is in contrast to the syn­
chronous communicatioh of procedures within the
same process, which may pass object references as
parameters in ordinary call and return operations. A
call effectively suspends execution of the caller and
starts execution of the called procedure; a return ter­
minates the called procedure and resumes the call­
er. 432 interprocess communication, on the other
hand, allows the communicating processes to run
concurrently.

The 432 port object provides the synchronization
and buffering needed for asynchronous process
communication. Conceptually, a port is a queue; two
processes with references to the same port have a
channel over which they can communicate. A proc­
ess wishing to transmit a message executes a SEND
operator, which copies the access descriptor to the
port (see Figure 10). A processes ready to obtain the
message executes a RECEIVE operator, which
moves the access descriptor at the head of the
queue to the receiver's object reference list, thereby
making the object accessible and deleting it from the
queue.

PROCEsSB

~) ACCESS § DESCRIPTORS

:J

171873-12

1) Both Process A and Process B have an access descriptor for the port. while A has an access
deSCriptor for the target object.

Figure 10. Simple Message Transmission

5-18 171873-002

inter IAPX 43201llAPX 43202

171873-13

2) A sends message to port; an acce~s descriptor for the target object is queued.

171873-14

3) B receives message from port; Processes A and B now have access to the target object.

Figure 10. Simple Message Transmission (Continued)

When a port is created, it is given a queuing disci­
pline, which may be first-in-first-out (FIFO), or priori­
ty/deadline. A send to a FIFO port inserts the mes­
sage at the back of the queue. A send to a priority/
deadline port inserts the message according to pri­
ority and deadline parameters associated with it
(and the messages already enqueued, if any). Inser­
tion is done so that the highest priority messages
are at the front of the queue; within a priority level,
messages with the shortest (least) deadline are
placed in front. A receive operation always takes the
message at the front of the queue.

The simple SEND and RECEIVE operators are un­
conditional: they imply that the executing processes
is willing to block if the port is full (or empty). A
SEND to a full port or a RECEIVE at an empty port
enqueues a reference to the sender's process ob­
ject at the port; further execution of the process is
blocked while it effectively waits at the port. When
SENDs and RECEIVEs executed by other processes
make it possible to complete the original operation,
the process is automatically unblocked and execu­
tion may resume. A process waiting at a port due-to
a blocked RECEIVE, for example, is unblocked

5-19

when another process SENDs a message to that
port. .

The CONDITIONAL SEND and CONDITIONAL RE­
CEIVE operators, in contrast, never block: these op­
erators return a value that indicates whether the op­
eration was "successful." This signal gives the proc­
ess the option of doing some other work and at­
tempting the send or receive later. Other operators,
called SURROGATE SEND and SURROGATE RE­
CEIVE enable even more sophisticated forms of in­
terprocess communication.

A port is also useful as a mutual exclusion mecha-_
nism. Processes that periodically require exclusive
access to a shared object can designate a port to
hold a single "key" to the object; the key can simply
be a null access descriptor. When a process needs
to obtain exclusive access; it does a receive opera­
tion on the port to pick up the key. (If the key is in
use, the process blocks at the port.) When it actually
receives the key, the process has' exclusive access
to the shared object. As soon as it has finished with
the object, the process sends the key back to the
port, making it available to other proces~es.

171873-002
I

IAPX 43201/1APX 43202

Interprocessor Communication
To coordinate the actiVities of multiple processors,
all 432 processors can receive and respond to a set
of predefined messages (see Table 4). For the most
part, these messages are sent by processors on
their own initiative. System software may also send
a message to a particular processor, or may broad-'
cast a message to all processors in the system.

When a system's memory manager moves an object
or swaps it out of memory, for example, it will broad­
cast a "flush cache" message to all processors.
This eliminates the possibility that a GOP will refer­
ence the object with an on-chip cache address
whiCh has been made invalid by the action of the
memory manager. Sending a message to a proces­
sor requires a reference (with proper system rights)
to that processor's process object; by controlling
distribution of process object references, system
software can likewise limit the ability to send proces­
sor messages.

Table 4 contains the Interprocessor Communication
message codes in decimal along with a short de­
scription of the message:

Table 4. IPC Message Codes
0 Wakeup

1 Start

2 Stop

3 Accept Global IPCs

4 Ignore Global IPCs

5 Requalify Object Table Cache

6 Reset Processor

7 Requalify Processor

8 Requalify Process'

9 Requalify C.ontext

10 Requality Data Object Cache

11 Enter Normal Mode

12 Enter Alarm Mode

13 Enter Reconfiguration Mode .

14 Enter Diagnostic Mode

Timekeeping

The central system runs on a Single time standard
which is reflected in the on-chip clock of every 432
processor. The on-chip clock is a 16-bit accumulator
which is driven by the PClK signal. All 432 proces­
sors are tied to PClK, which is independent of the
,component (ClKA, ClKB) clocks. When PClK is as­
serted by an external timing source, all processor
clocks inctement ("tick") in unison.

PClK's frequency, at thus the duration of one sys­
tem unit, is set according to the resolution required
by the application; 200 microseconds is a typical val­
ue. As discussed later, the system unit provides the
basis for GOP processing and dispatching.

Each GOP process object contains a clock field that
is automatically maintained by the hardware. A proc­
ess clock indicates the number of system time units
that the process has been bound to a processor (i.e,
how long it has been executing). Using a 200 micro­
second clock, a process clock can accumUlate over
236 hours before turning over. Process clocks can
be read by software and provide the basis for execu­
tion-time charging algorithms and for adaptive proc­
ess scheduling.

Exceptions
, Software Faults Most modern computers provide a
facility for detecting errors during execution; for ex­
ample, many CPUs detect arithmetic overflow or an
application program's attempt to execute a "privi­
leged" instruction. The 432 extends this concept
into a comprehensive, structured software fault sys­
tem (see Table 5).

A software fault is an exceptional condition uncov­
ered by a processor during execution. It may be a
simple computational error (e.g., square root of a
negative number), an attempted protection violation,
or a condition that requires off-line handling though
,not an error or violation. Whatever the source, the
architecture recognizes that normal computation
cannot continue until the exceptional condition is re­
solved.

The architecture defines software fault detection
and fault reporting; that is, the notification that a
fault has occurred and provision of information de­
scribing it. Software fault handling, which may in­
clude fault recovery in many cases, is the province
of application or-more frequently-system soft-

• ware. A software fault may be detected at any time:
dunng the execution of an instruction or command,
while a processor is performing an operation on its
own initiative, during an IP data transfer, and, so
forth. A processor reports a software fault by first
recording descriptive information in the predefined
fault Information area of a system object. This in­
formation describes the nature of the fault and pro­
vide additional information that may assist software
in recovering from it The fault handler examines the
fault information and takes "appropriate action," as
defined by the application .. This may vary considera­
bly according to the application and the nature of the
fault.

5-20 1718730()()2

.IAPX 43201/1APX 43202

Table 5. Detectable Software Faults

General Fault Groups

Memory Reference Faults:
Segment Overflow Fault
Memory Overflow Fault
Read Rights Fault
Write Rights Fault
Bus Error

Instruction Fetch Fault

Data Part Cache Qualification Faults
Data Part Access Faults: '

Access Descriptor Validity Fault
Object Descriptor Type Fault

Object Table Qualification Faults:
Object Descriptor Type Fault
Object Type Fault

Access Environment Altered Faults:
Access Descriptor Validity Fault
Object Descriptor Fault

Data Operator Fault Groups

Domain Error Fault
Overflow Fault
Underflow Fault
Inexact Fault

Non-Instruction Interface Faults

Initialization:
Object Qualification Faults (Processor)
Object Qualification Faults

(Object Table Directory)

IPC Faults
Object Qualification Faults (PCO)
PCO Response Count Fault .
PCO Lock Fault

Idle:
Delay Port Service Faults

Process Binding:
Object Qualification Faults (Carrier)
PrOcess Lock Faults
Process Qualification Faults
Port Operation Faults

Process Selection:
Delay Port Service Faults
Object Qualification Faults
Port Operation Faults

Object Operator Faults

Branch
Branch True
Branch False:

Instruction POinter Overflow Fault
Instruction Object Displacement Fault

Branch Indirect:
Instruction Object Displacement Fault

Branch Intersegment
Branch Intersegment without Trace
Branch Intersegmenf and Link:

Object Qualification Faults (Instructions)
Instruction Object Displacement Fault

Copy Access Descriptor:
Store Access Descriptor Faults

Null Access Descriptor:
Destination Delete Rights Fault

Amplify Rights:
TCO Type Rights Fault
Object Qualification Faults (TCO)
Type Fault
Race Condition Fault

Retrieve Type Definition:
Source AD Validity Faults
Store Access Descriptor Faults

Create Refinement:
Source AD Validity Fault
Object Descriptor Type Fault

5-21

Offset and Length Compatibility Fault
Refinement Overflow Fault
Level Fault

Create Typed Refinement:
TCO Type Rights Fault
Source AD Va.lidity Fault
Object Descriptor Type Fault
Type Fauit
Offset and Length Compatibility Fault
Refinement Overflow Fault
Level Fault

Create Typed Object:
Descriptor Allocation Faults
Object Qualification Faults (TeO)
TCO Type Rights Fault
Level Fault
Segment Allocation Faults
Store Access Descriptor Faults

171873-002

IAPX 4320111APX, 43202

Table s.. Detectable.Software Faults (Continued)

Inspect Object: .
Access Path Object Descriptor Fault

Lock Object:
Source Representation Rights Fault

Unlock Object:
Source Representation Rights Fault
Object Lock ID/Type Fault

Call
Call through Domain:

Object Qualification Faults (Domain)
Domain Access Index Over'flow F'ault
Instruction Object Type Rights Fault
Object Qualification Faults (Instructions)
Context Parameters Size Fault
Context Type Rights Fault
Object Qualification Faults. (Context)
Instruction Object Displacement Fault

Return:
Context Type Rights Fault
Context Qualification Faults
Object Qualification Faults (PSO)
Object Qualification Faults (Object Table)
PSO Lock Fault
Instruction Object Displacement Fault

Block Move:
Offset Overflow

The common base architecture recognizes that
some faults are more serious than. other~; indeed
certain faults, such as "not allocated" (i.e., an object
needs to be swapped in from external. storage) will
be routine in many systems. Accordingly, software
faults are divided into levels based on their impact
on the system and the amount of information re­
quired to resolve them. This permits software to pro­
vide a response that is appropriate to the severity of
the problem and to minimize the disruption that han­
dling the fault may have on the rest of the system.

In general, the philosophy is to keep the unaffected
parts of the system running while the fault is handled
outside the normal flow of execution. Processors
record fault information in the system object that
corresponds to the fault-level; for example, informa­
tion describing a process-level. fault is recorded in
the process object. .,

A context is a single instance of a prQcedure in exe­
cution. A context-level fault is one that can normal­
ly be handled within the process (i.e., by application
code). Ada, for example, permits programmers to

Return and Fault:
Return Fault

Send
Receive
Conditional Send
Conditional Receive
Delay Process

. Send Process:
Port Type Rights Fault
Level Fault

Surrogate Send
Surrogate Receive:

Surrogate Carrier Validity Fault
Surrogate Carrier Type Rights Fault
Destination Port Type Rights Fault
Port Type Rights Fault
Level Fault

Sell Process Mode:
Process Object Type Rights Fault
Process Object Access Mismatch Fault

Send to Processor:
PCO Type Rights Fault
Object Qualification Fau1'ts (PCO)

Move to' Interconnect
Move from Interconnect:

Odd Displacement Fault
Odd Interconnect Descriptor Base Address Fault
Object Qualification Faults (Interconnect)

write exception handlers that will respond to GDP
context-level faults.

A process-level fault prevents the current process
from continuing until the fault is handled, but does
not affect other processes. GDPs and IPs respond
to this situation similarly. Generally, the procedure is
to remove the offending pr.ocess from the set of ac­
tive processes by sending its process object to a
fault po'Pt and then dispatching the next ready proc­
ess.

Each process is associated with a fault port; a fault
port is an ordinary port that queues messages that
happen to be references to "broken" processes. An
operating system fault process can receive these
process objects and attempt to "repair" them, that
is, recover from the fault. For example, if the fault
process determines that the fault is "object not allo­
cated," it can notify tl;le system's virtual memory
manager to swap in the needed object. When this
has been done, the fault process can send the proc­
ess off to its dispatching port (see "Scheduling and
Dispatching").

5-22 171873-002

IAPX 43201/1APX 43202

A proceuor.lievel fault threatens (but might not ab­
solutely prevent) continued execution by the proces­
sor. The GOP and IP respond to this situation differ­
ently, but the basic procedure is to run a processor
diagnostic program.

. ALARM has been asserted, the GOP will complete
its current instruction and then invoke a designated
software process (waiting at the ALARM port).

Data Types
At the final level, the processor cannot do anything,
not even record fault information. It therefore halts
and asserts its FATAL pin. Software on some other
processors might monitor this pin; for example, it
could be routed to an interconnect register and peri­
odically sampled. A halted processor can be restart­
ed by hardware (asserting its INIT pin) or software
(sending a START IPC).

Interrupts. Each 432 processor has an ALARM pin
which can be asserted to signal the occurence of an
extremely high priority external event. A typical ex­
ample is imminen. power failure. In general, when

The memory formats of the GOP's eight basic data
types are illustrated in Figure 11. Any data type may
be stored on any byte boundary (performance is im­
proved, however, when data is aligned on physical
memory boundaries). The types are divided into four
classes: character, 9rdinal (unsigned integElr), inte­
ger, and real. These data types corrEtspond directly
to the "primitive" types defined in most high level
languages. Implementing the essential types in hard­
ware, with a choice of storage requirements for each
class, helps ensure that compiler-generated code
sequences are both compact and fast.

D CHARACTER
(8 bltsj

.. SHORT ORDINAL L.L...-.J (16 bltsj

I ORDINAL
___ _ -'_ (32 bits)

.. SHORT I~TEGER L.J---1 (16 bits) ,

I INTEGER
(32 bits) -....... --'-.........

I SHORT REAL
(32 bits) __ --'_11

I REAL
_....jII.... _ _ _L-.... _..L--I (84 bits)

I TEMPORARY 'REAL

---__ _ L--'_ _.L._L..-...I. (80 bits)

Figure 11. IAPX 432 GOP Computational Data Types

5-23

TEXT CHARACTERS
BOOLEANS

UNSIGNED
INTEGERS

SIGNED
INTEGERS

FLOATING
POINT
NUMBERS

171873-15

17187~2

IAPX 43201/1APX 43202

Table 6 give~ the attributes of the numeric data,
types. Of particular note is the temporary-real data
type. The extra range and pr8cision of this type con­
tributes to the production of consistently safe, reli­
able floating-point algorithms. As its name implies,
the temporary-real type is intended for holding inter­
mediate computational results. The inputs and out­
puts of a calculation should be defined as short-real
or real, according to the range and' accuracy of the
available data. All intermediate results should be
held in temporary-real, with the final conversion to
the output' at the end o~ the computation.

Extremely large and small values are most likely to
occur in intermediate computations; . using tempo­
rary-real for these makes overflow and underflow ex­
ceedingly unlikely in most applications. 'Temporary­
real's extended precision also prevents round-off er­
rors from accumulating during long computations;
the only significant round-off occurs at the conver­
sion from temporary-real to the real or short-real for­
mat of the final result.

·Instructlon Set

Table 7 shows the instructions the GDP provides for
its data types. The symmetry of the instruction set

with respect to data types. simplifies compilercade
generation.

In the data transfer group, the ZERO and ONE in­
structions write a constant into an operand. MOVE
copies a variable, popping the stack if it is the
source, pushing it if it is the destination. SAVE cop­
ies the stack top without popping the stack;. it can be
used to duplicate the stack top.

The logical instructions perform the customary oper­
ations. XNOR is the complement of XOR (exclusive
OR): where XOR returns 1-bits when corresponding
bits are unequal, XNOR returns 1-bits when corre­
sponding bits are equal. It is thus the Boolean equiv­
alent of "equals."

In the arithmetic group, the REMAINDER instruction
performs exact modulo division; it is very useful for
reducing an argument to a periodic transcendental
function (e.g. tangent) to the range accepted by the
function without !ntroducing round-off error.
SQUARE ROOT executes in about the same time as
ordinary division; programmerS need not contort al­
gorithms to eliminate time-consuming square roots.

Table 6. Numeric Data Type.

Data Type
SIgnificant Approximate Range Dlglts*

Character 2 0s:xS:255
Short-Ordinal 4 o s: x s: 65,535
Ordinal 9 o s: x s: 4,294,967,295
Short-Integer 4 -32,768 s: x s: 32,767
Integer ,9 -2,147,483,648 s: x s: 2,147,483,647
Short-Real 6-7 8.43 x 10-37 s:lxls: 3.37 X 1038 .
Real 15-17 4.19 X 10-31)7 s:/x/s: 1.67 X 10308
Temporary-Real 19 3.4 X 10-4932 s: X s: 1.2 X 104932

• Decimal equivalent

, 5-24 1718f'3-002

MOVE .{
OPERATORS.

LOGICAL {
OPERATORS

ARITHMETIC
OPERATORS

BIT-FIELD {
INSERT

RELATIONAL

OPERATORS

CONVERSION
OPERATORS

WHERE: X .
(BLANK)

IAPX 43201/1APX 43202

Table 7. IAPX 432 Operators and Computational Data Types
DataTypee

Operaton Ch8r_ Short 0rdInI01 Short
OrdInal Integer

MOVE X X X X
SAVE X X X X

ZERO X X X X
ONE X X X X

AND X X X -
INCLUSIVE OR X X X -
EXCLUSIVE OR X X X -
EQUIVALENCE X X X -
NOT X X X -

ADO X X X X

SUBTRACT X X X X
MULTIPLY X X X

DMDE X X X

REMAINDER X' X X
INCREMENT X X X X
DECREMENT X X X X

NEGATE - - - X
ABSOLUTE VALUE - - -
SQUARE ROOT
INDEX - - X -

EXTRACT X X -
INSERT X X -
SIGNIFICANT BIT X X -

EQUAL X X X X
NOT EQUAL X X X X
EQUAL ZERO X X X X
NOT EQUAL ZERO X X X X
LESS THAN X X X X
LESS THAN OR EQUAL X X X X
POSITIVE - - - X
NEGATIVE - - - X
MOVE IN RANGE X

TO CHARACTER -
TO SHQRT ORDINAL X -
TO ORDINAL -
TO SHORT INTEGER -
.:ro INTEGER X X X X
TO SHORT REAL

TO REAL

TO TEMPORARY REAL X X X

Means the operator IS available for the given date type .
Means the operator is available for the given date type and for instructions
in which one Of the operaods is a temporary real.
Means the operator is not available and would be of little or no use H it were.
Means the operator Is not availabte.

5-25

Integer

X
X

X
X

-
-
-
-
-
X

X
X

X

X
X
X

X

-
-
-

X

X
.X

X

X
X

X
X
X

X
X

X
X

-

X

Short
Reel

X

X
X

-

-
-
-
-
-

*

*

*

*

-
-
-
X

X

-

-
-
-

X

X

X
X

X

X

-

X

Real
Temp.
Real

It X

X X

X X

- -

- -
- -
- -
- -
- -
. X

* X /

* X

* X

- X

- -
- -
X X

X X
X

- -

- -
- -
- -

X X

X X

X X
X X

X X

X X

X

,
X

X

- X

X -

171873-002

/ ,

IAPX 4320MAPX43202

The bit field instructions, EXTRACT,and INSERT BIT
FIELD, make the manipulation of packed bit field
re~rds simple and rapid. The SIGNIFICANT BIT in­
struction returns the position of the "leftmost" 1-bit
in an ordinal or short-ordinal. Note that the INSERT
BIT FIELD is an indivisible operation; once the in­
struction starts to run, no other processor can per­
form an indivisible operation on the field until its new
value has been written into memory.

The instructions in the comparison group assert a
condition existing in a single variable (e.g., EQUAL
ZERO) or between two variables (e.g., GREATER
THAN). These in,structions return a Boolean value
TRUE or FALSE according to the truth of the asser­
tion. Conditional branching is effected by following a
comparison with BRANCH TRUE or BRANCH
FALSE instruction.

The GOP has the full complement of 432 common
base instructions plus addition data processing op­
erations. Some of these permit changing the flow of
control in a program by conditibnal and uncondition­
al, and by calling a procedure. Others facilitate the
manipulation of composite objects (objects made up
of other objects), access to data declared global to
all procedures in a process, and setting precision
and rounding modes for real number computations.
Finally, two of the instructions give a GOP program
acr.ess to the interconnect space.

Instruction Formats
'The 432's instruction codes have been designed to
minimize the space the instructions occupy in mem­
ory and still allow,for efficient encoding. In order to
achieve the best efficiency in storage, the instruc­
tions are encoded without regard for byte, word, or
other artificial bOOndaries. The instructions may be
viewed as a linear sequence of bits in memory, with
each' instruction occupying exactly the number of
bits required for its complete specification.

Processors view these instructions as composed of
fields of varying numbers of bits that are organized
to present information to the Instruction Decoder in
the sequence required for decoding. A unified form
for all instructions allows instruction decoding of all
instructions to proceed in the same manner.

In general, GOP instructions consist of four main
fields. These fields are called the class field, the for­
mat field, the reference field, and the opcode field. ,
The reference field, in turn, may contain several oth­
er fields, depending upon the number and the com­
plexity of the operand references in the instruction.
The fields of a GOP instruction are stored in memory
in the following formal

The class field is either 4-01' 6-bits long, depending
on its encoding. The class field speqifies the number
of ~perands required by the instruction and the prim­
itive types of the operands. The class field may indi­
cate 0, 1, 2, or 3 operands. If the class field indicates
one or more references, a format field is required to
specify whether the references are implicit or explicit
and their uses. '

In the case of explicit references, the format field
can indicate whether or not the reference is direct or
indirect. Further, the format field may indicate that a
single operand plays more th~n one role in the exe­
cution of the instruction. As an exampl~, consider an
instruction to increment the value of an integer in
memory. The instruction begins with a class field
specifying that the operator is of order two and that
the two operands occupy a word of storage; next,
the format field indicates that a single referenpe
specifies a logical address to be used both for fetch­
ing the source operand and for storing the result; it is
followed by an explicit data reference to the integer
to be incremented; and finally the instruction ends
with an opcode field for the order-two operator IN­
CREMENT INTEGER.

It is possible for a format field to indicate that' an
instruction contains fewer explicit data references
than are indicated by the instruction's class field. In
this case, the other data refefences are implicit, and
the corresponding source or result operands are ob­

,tained from (or returned to) the top of the operand
stack. Consider the following statement:

A = A +B*C

The instruction fragment for this statement consists
of two instructions and has'the following form:

\ I opcode I reference I format I class I \
- Increasing address

171873-16

Assume that A, B, and C are integer operands. The
first class field (the rightmost field shown above)
sp~cifies that the operator requires three references
and that all three references are to word operands.

The first format field contain$ a code specifying two
explicit data referen¢es supplying only two source
operands. The destination is referenced implicitly so

" that the result ot'the multiplication is pushed on the
operand stack, The second class field is identical to
the first and specifies three required references by
the operator, all to word operands. The second for­
mat field specifies one explicit data reference to be
used for both the first source operand and the desti­
nation. The second source operand is referenced
implicitly and popped from the operand stack when
the instruction is executed.

5-26 171873-002

IAPX 43201/1APX 43202

The reference fields themselves can be of various
lengths and can appear in varying numbers (consis­
tent, of course, with the specifications in the class
and format fields. If implicit references are specified,
reference fields for them will not appear. Direct ref­
erences will require more bits to specify than indirect
references.

Following the class, format, and reference fields, the
opcode field appears. The opcode fi8ld specifies the
operator to be applied to the operands specified in
the preceding fields.

Addressing Modes
The operands (data items) that a GDP instruction is
to operate on are encoded in the instruction as data
references conSisting of two parts: a base part and
an Index part. The entire data reference can there­
fore be viewed as having three components: an ac­
cess selection component, Which selects an object;
a base part of the operand offset, which provides a
byte displacement to the base of the area of memo­
ry within the selected object; and an index part of
the operand offset, which specifl9s a particular oper­
and within that area.

The addressing is very flexible since each part of the
operand offset can be specified directly or indirectly.
A direct base or direct index has its value specified
directly in the data reference encoding. When indi­
rection is used, however, the value of the base or
index is given by a short-ordinal value located within
the currently. accessible object.

There are four possible combinations of direct and
indirect base and index parts, and'each combination
results in a different mode of reference (see Figure
12). Each of the four combinations has been used to
name a data reference mode indicating the kind of
data strllcture for which the reference would usually
be used. The scalar, record, static array, and dynam­
ic array modes correspond roughly to the direct,
base, indexed, and base-plus-index modes found in
~. 'ny compuf"'s; aI' ,-... ~,,~ - _." indepenr.' '~!y

available for any operand specified in an instruction.

As shown in Figure 13, the displacement component
.. , _""'~' L..... ""I~...,ded d~"~';'&'J"'" :::.!c~:..1

collie from base and index variables in memory (in­
cluding the stack), or may consist of one direct and
one indirect value. Choosing' between direct and in­
j!r£':.~ .:;: .. , '''':.:::.t:on: ;~:~:.~:!~ ~:;:_ .. ~~ ... ::1 t".t~.':': ::-'
mation is fixed at compile-time and what may ,be
computed during ex~ution.

·N-:.~v ;;~ .. ~ ':, ... "::._.:.. ;ndex value (used to sell..';; an
array element) is expressed naturally as the element

number to be accessed. The hardware automatically
scales the index according to the data type being
manipulated by the instruction to cal~late the actual
byte displacement. For example, to address the third
element of a vector, the indirect index variable would
contain the value 3 for any type of vector-charac­
ter, integer, real, etc.

A fifth addressing mode is implicitly specified when a
data reference is expected (according to the "num­
ber of references" field), but none is encoded in the
instruction. The data reference in this case is the
operand on top of the stack. If the operand is the
source, it is automatically popped from the stack; if
the operand is the destination, the result of the oper­
ation is pushed onto the stack.

Large Array Indexing

The maximum size of the data part of an object is
65,636 (64K) bytes, but of course, some applications
require arrays that are larger. The INDEX ORDINAL
operator is used to access these large .arrays.

The large array is mapped (at compile-time) into a
series of objects, each with data parts that are 2,048
bytes (2K) long. All these objects are directly acces':
sible in the current logical access environment. The
INDEX ORDINAL operator works as follows:

Given:

• The size of each element in the array (i.e., a
scale factor)

• The access selector for the base segment of
the array

• the ordinal index for the desired array element

The operator computes:

• The access selector for the appropriate 2K
data object that contains the indexed array ele- .
ment

• The displacement into the data part of that ob-
ject in the array element

The resulting short-6rdinal values can then be used
with-the indirect acceSs selection mode and the rec­
ord, statiC· array, or dyn,mic array data reference
mo~:;s to .::.~cess t~~ ;;::ray e~:::"".·ont. Of course, this
whole process is invisible, to the typical 432 pro­
grammer who uses Ii high-level language and leaves
the choice of machine instructions to the compiler.

5-27 171873-002

IAPX 43201/iAPX 43202
.-------------" ... -.~ ... -

INDEX

DISPLACEMENT
(BASE AND

INDEX ARE SAME
DIRECT VALUE)

INDEX
(INDIRECT AND SCALED)

SASE
(DIRECT)

(
DIHECT

DIRECT SCALAR

INDIRECT STATIC
ARRAY

SCALAR

STAnc ARRAY ELEMENT

BAS!S

.&

INDEX
(DIRECT)

BASE
(INDIRECT)

INDIRECT

RECORD
ITEM

DYNAMIC
ARRAY

INDEX
(INDIRECT AND SCALED)

BASE
(INDIRECT)

Figure 12. Addressing Modes

5-28

\

171873-17

RECORD ITEM

DYNAMic ARRAY ELEMENT
111873-18

171873'()()2

IAPX 43201/1APX 43202

DATA ITEM INDEX LENGTH

DISPLACEMENT (7 OR 18 BITS) X

DATA SEGMENT

70R.ll

V///////////////-

I
SELECTOR

(MAV BE DIRECT OR IN,?IRECTI

A. SCALAR DATA REFERENCE MODE

DISPLACEMENT LENGTH

:
BASE DISPLACEMENT DATA ITEM OFFSET IX (SPECIFIED (7 OR 16 BITS) INDIRECTL V) i

I-S8BITS 70RlniTS , DATA SEGMENT

TOP OF
OPERAND STACK

OR
VARIABLE IN SAME

DATA SEGMENT
OR

VARIABLE IN ANOTHER
DATA SEGMENT

'l///////////////.

'" DISPLACEMENTTO BASE
OF RECORD REFERENCED

I
SELECTOR

B. RECORD ITEM REFERENCE MODE

Figure 13. Modes of Displacement Generation' .

5-29

171873-19

REC
REFER

ORO
ENCED

~ MENT
ECORD
RENCED

OFR
REFE

171873-20

171873-002

,

IAPX 43201/1APX 43202

BASE LENGTH

ELEMENT I~DEX

X (SPECIFIED BASE DISPLACEMENT
INDIRECTLY

1-368ITS OOR 16 BITS
DATA SEGMENT

TOPOF
OPERAND STACK

OR
VARIABLE IN SAME

DATA SEGMENT
OR

VARIABLE IN ANOTHER

I V/////////////, I DATA SEGMENT

~

SCALlNGBt@
DATA TYPE

ELEMENT
DISPLACEMENT I

SELECTOR

C. STATIC ARRAY ELEMENT REFERENCE MODE

BASE DISPLACEMENT ELEMENT INDEX
(SPECIFIED (SPECIFIED
INDIRECTLY) INDIRECTLY)

1-36 BITS i 1-36B11S

DATA SEGMENT

TOPOF TOPOF
OPERAND STACK OPERAND STACK

OR OR
VARIABLE IN SAME VARIABLE IN SAME

DATA SEGMENT DATA SEGMENT
OR OR

VARIABLE IN ANOTHER VARIABLE IN ANOTHER '-'/////////////\ I DATA SEGMENT DATA SEGMENT

,

ELEMENT OF
ARRAY

REFERENCED

ARRAY
REFERENCED

SCALIN~~J DATA TYPE

~ ELEMENT OF
ARRAY

REFERENCED

I
SELECTOR

D. DYNAMIC ARRAY ELEMENT REFERENCE MODE

Figure 13. Modes of Displacement Generation (Continued)

5-30

171873-21

171873-22

171873-002

inter IAPX 43201/1APX 43202

SCheduling and Dispatching

In most systems there 'will be more processes to run
than there are processors. The procedure by which

- processes "take turns" running on GDPs is called
dispatching and scheduling. Each processor is as­
signed to a dispatching port, from which it obtains
its work, that is, the processes it executes. A dis­
patching port is an ordinary port object; it so hap­
pens that the access descriptors queued there are
for process objects and processor objects. The as­
signment of processors to dispatching ports is de­
fined by the application; usually all processors share
one port, but each may have its own, or a proces­
sor's dispatching port may be changed by operating
system software during execution.

PROCESS SCHEDULING

,
NORMAL

Scheduling and dispatching are performed in two
loops as shown in Figure 14. To maximize processor
utilization, low-level scheduling and dispatching are
performed automatically by the processor with no
software intervention. Every process has four SChed­
uling parameters; these are initially set by the oper­
ating system when a process is created. The param­
eters are:

1) priOrity, the relative urgency of the process;

2) deadline, the amount of time that may pass
before the process must have a turn on the
processor; ,

3) service period, the duration of one turn;

4) pertod count, the number of turns the proc­
ess should be given before examining its
scheduling parameters.

PROCESSOR DISPATCHING

, DISPATCH.
PORT

DISPATCH.PORT
BINDING

TIME SLICE PROCESS GET NORMAL GET NORMAL
EXHAUSTED EXECUTION WORK WORK

SHORT·TERM SCHEDULING

GET WORK AT A SPECIAL
DISPATCHING PORT .

DIAGNOSTIC k SCHEDULER
SCHED.PORT r-- PROCESSOR- PROCESS

PROCESS LEVEL FAULT EXECUTION

LONG·TERM SCHEDULING
ALARM PROCESS I ALARM SIGNAL EXECUTION

FAULT rl I PROCESS FAULT.PORT 10-
RECONFIGUAATION

RECONFIGUAATION PROCESS

FAULT PROCESSING SIGNAL EXECUTION

-
"

.- I
COMIlUNICATlON.PORT ~ , I ,-

INTERPROCESS COMMUNICATION

171873-23

Figure 14. Process scheduling and processor dispatching: The left half of the diagram describes
~Ible states of a process, while the right half describes possible states of a processor.

5-31 171873-002

, ,1

IAPX ,43201/IAPX' 43202

All time values are based on the system time unit.
These parameters give operating system software
great flexibility in setting system scheduling policy
(or policies), and even altering a policy during execu­
tion.

Like the messages at any priority/deadline port,
processes waiting for service at a dispatching port
are ordered by deadline within priority; the highest­
priority-least-deadline process is at the front of its
queue. A GOP dispatching operation consists simply
of "receiving" this process. The processor loads its
on-chip service timer with the process's service peri­
od value and runs the processor for one service pe­
riod. (Assertion of the PCLK pin increments the
processor clock and decrements the service period
as well.) At the end of the service period, the GOP
decrements the process's period count, updates the
process's process clbck with the number of time
units given to it, and schedules the process for an­
other turn. If the period count has not yet expired,
this is done by sending the process to its dispatching
port. The send operation inserts the process into the
queue according to its scheduling parameters.

If the process blocks before its period expires (be­
fore the service timer goes to zero), the,period count
and the process clock are also updated (with the
number of actual units received), but the process is
sent to a communication port instead of a dispatch­
ing port.

High-level scheduling is performed by the operating
system; it gives the executive the opportunity to ex­
amine the system's performance and perhaps adjust
its scheduling algorithms. When a process has ex­
hausted all its service periods, the processor sends
the process to a scheduling port instead of a dis­
patching port. The operating system scheduler re­
ceives the process, sets its scheduling and service
parameters -again, and sends the process back to
the dispatching port, where the low-Ie",el cycle be­
gins again.

When a GOP attempts to dispatch a process and
none is available, the processor queues itself (that
is, its processor object) at the dispatching port and
"sleeps" until a proce~s arrives. (A sleeping proces­
sor is almost completely idle; in It multiprocessor
configuration this helps to reduce contention for use
of the memory bus.) The processor that sends a
process to the dispatching port also "wakes up" the
sleeping processor (by means of an IPC); the awak­
ened processor then dispatches the newly-arrived
process. Operating system software may periodical­
ly check dispatching ports for idle processors and
reassign them to dispatching ports that are more
heavily loaded.

Designing Fault-Tolerant Systems

When used together, the five components in the
iAPX 4.32 family provide all the logic necessary to
build a system that will tolerate the failure of any
single component or bus, yet continue to execute
programs without error and without interruption. No
software intervention is required: fault detection, iso­
lation, and reconfiguration of the .system is per­
formed entirely by the hardware.

Each GOP is able to detect hardware errors auto­
matically because of a capability known as Function­
al Redundancy Checking. (FRC),so called because
a second or redundant GOP checks the operations
of the first or master GOP. Functional Redundancy
Checking .provides the low-level hardware support
upon which hardware fault-tolerant modules are
constructed.

During initialization, each GOP is assigne,d to oper­
ate as either a master or a checker (see Figure 15).
While a master operates in a conventional manner, a
checker' places all output pins that are being
checked into a high-impedance state. Those pins
which are to be checked on a master and checker
are parallel-connected, pin for pin, such that the
checker is able to compare its master's output pin
values with its own. If on any cycle, the values differ,
the checker asserts HERR and the faulty compo­
nents can be immediately disabled. Thus, any hard­
ware errors can be detected as they occur and be­
fore they have had the opportunity to corrupt the
operation of other components in the system.

MASTER

--r- INPUTS OUTPUTS I----'r-

'-+
CHECKED

I-INPUTS ,OUTPUTS

HEiiR
CHECKER 171873-24

Figure 15. Function redundancy checking
detects hardware errors a~omatlcally.

WhileFRC can be used alone to provide automatic
error detection, a completely fault-tolerant system
must also be able to reconfigure itself, replacing the
set of failed components with another pair that is still
working .. In order to do so, the 432's architecture
enables two pairs of master/checker components to
be combined to form primary and shadow proces­
sors in a configuration known as Quad Modular Re­
dundancy (QMR). See Figure 16.

5-32 171873-002

IAPX 43201/IAPX 43202

r - - - - - - - - - - - --.,

r- -- ----,
I
I
I.
I
I
I
I
I
I
I

MEMORYBUS I ______ .J

,.------,

MEMORY BUS L _____ :...J

QMR
PROCESSOR

MODULE

FAe
PROCESSOR

MODULE

BASIC -
PROCESSOR

MODULE

figure 18. Fault Tolerant AHemativ ..

5-33

HARDWARE
RECOVERY

HARDWARE
SELF·CHECKING

SOFnlAR~PROGRAMMABLE
flECONFIGURATION

171873-25

171873-002 I

, IAPX 43201/1APX 43202

Every module in a QMR system is paired with anoth­
er self-checking module of the same type. The pair
of self-checking modules operates in lock step and
provides a complete and current backup for a/l state
information 1n the module. The mechanism is known
as module shadowing because a shadow is ready to
fill in if the primary fails (or vice versa). Fault detec­
tion and recovery occurs transparently to both appli­
cation and system software. When a fault is detect­
ed, the faulty pair is automatically disabled, and the
remaining pair takes over. Only then is system soft­
ware notified that a failure has occured.

A more complete discussion of the fault-tolerant ca­
pabilities of the iAPX 432 can be found in the IAPX
43204·IAPX 43205 Fault Tolerant Bus Interface
and Memory Control Units data sheet (Order Num­
ber 210963).

HARDWARE IMPLEMENTATION'

The iAPX 432 General Data Processor is organized
as a three-stage microprogram-controlled pipeline.
The first stage is the Instruction Decoder, the sec-

r;::=====~>lINSTRUCTION DECODER

ACOIS .. ,ACDo PRO ICS

ond the Microinstruction Sequencer, and the third
the Execution Unit. The first two stages of the pipe­
line are physically located on the iAPX 43201 with
the third stage on the iAPX 432Q2. Each stage, how­
ever, can be consider-ed an independent subproces- '
sor that operates until the pipeline is full, and then
h,,1ts and waits for more work to do.

Instruction Decoder

The general task facing the Instruction Decoder (see
Figure 17) is to interpret the macroinstruction stream
both to extract logical addresses and to determine
the next microinstruCtion sequence to be initiated. In '
dOing so, it performs the following functions:

• Receives macroinstructions
• Processes variable length fields

• Extracts logical ad~resses
• Generates sta~ng addresses for the micro-in­

struction procedures
• Generates microinstructions for simple opera­

tions

MASTER }IIIUI

BUFFER
AND

HARDWARE
CHECKING

LDGIC

.115

.10

I<~====::=I" ISo
. i

_____ ~ ______ .l

171873-26

Figure 17. 43201 Block Diagram

5;'34 , 171873-002

lAP X 43201/1APX 43202

The Instruction Decoder requests words from mem­
ory as they are needed, from one to ten bytes in a
single access. Depending upon the complexity of
the instruction, a 432 instruction may range from a
few bits long to several hundred bits long, extending
over many words.

A GOP instruction is composed of a variable number
of fields and each field may contain a variable num­
ber of bits. In most cases, the encoding of a field
specifies its length. The 10 determines when an in­
struction boudary has been reached so it can prop­
erly begin decoding the nel(t instruction.

In some cases, the interpretation of one field may
depend upon the value of some previous filed. The
intrepretation of the opcode (the last field in an in­
struction), for instance, depends on the value of the
class field (the first field) in the instruction. The 10
therefore saves enough information about each in­
struction to properly interpret each filed.

, Since a GOP instruction may contain an explicit ref­
erence to some location in memory, the logical ad­
dress information must be transfered to the Refer-,
ence Generation Unit in order to generate the cor­
rect physical address of the operand. As with all
fields in of a GOP instruction, the length of logical
address fields is variable. Consequently, the 10 for­
mats the logical addrt:lss and stores it until needed
by the Reference Generation Unit.

Since branch instructions occur frequently, it is im­
portant to minimize the startup time for the GOP af­
ter a branch has occurred. Since an instruction may

r---------------

I
I
I

begin on any bit, the GOP is able to begin decoding
at any point in a segment.

Microinstruction' Sequencer

The Microinstruction Sequencer (MS) decides which
microinstruction should be sent to the Execution
Unit (EU) for each cycle. In doing so, it per:forms the
following functions:

• Executes microcode sequences out of an on-
chip, 4k by 16-bit ROM

• Responds to bus control Signals

• Invokes macroinstruction fetches

• Issues microinstructions to the EU

• Initiates interprocessor communication and
fault handling sequences

The MS chooses from two sources of microinstruc­
tions: they may come from either the 10 or from the
ROM in the MS. After issuing one microinstruction,
the MS then computes the address in ROM (if any)
for the next microinstruction. Since the EU may re­
quire differing lengths of time to complete some mi­
croinstructions, the MS waits for the requested oper­
ation to be completed before issuing the next one.

Execution Unit

The iAPX 43202 contains the third stage of the GOP
pipeline-the Execution Unit (see Figure 18). The
EU receives microinstructions from the 43201 and
routes them to one of the two independent subpro-

-------~-------~
I
1
1

r---...;;01:"""-l-_...!._MASTER
PROCESSOR
PACKET BUS

~_~CO:N~TR:OL~~~ ____ ~~

L _________________________________ ~

BOUT les PRQ ACD 15 ACDo 171873-27

Flgur~ 18. 43202 Block Diagram

5-35 171873-002

IAPX 43201/1APX 43202

cessors that comprise it: the Data Manipulation Unit
(DMU) and the"Reference Generation Unit (RGU).

While the EU executes most microinstructions in
one clock cycle, each of the subprocessors has an
associated sequencer that may run for many cyc;les
in response to certain microinstructions. These se­
quencers are invoked, for example, for floating oper­
ations in the OMU and Processor Packet bus trans­
actions in the RGU.

The OMU contains the registers and arithmetic logic
to perform the following functions:

• Hardware recognition of nine data types

• 16- and 32~bit multiply, divide, and remainder
through a built-in state machine

• Control functions for 32-, 64-, and BO-bit float­
ing point arithmetic.

The RGU performs the following functions:

• Translates 40-bit virtual addresses into 24-bit
physical addresses

• Enforces the capability-based protection sys-
tem -

•. Sequences B-, 16-, 32-, 64-, and BO-bit memo­
ry accesses

• Controls on-chip top-of-stack register

PROCESSOR
PACKET BUS

GROUP

BOUT

PRQ

ICS

ACO
ACO,

VCC vss

I

When a reference to a given memory segment has
been translated from its logical representation to a
physical address, a cache in the RGU maintains the
physical base address as· well as tbe length of the
segment. Further references to the same segment
reuse this information for additional address transla­
tions. A least-recently-used algorithm is implement­
ed in hardware to determine which segment base­
le!'lgth pair to replace when a new segment is refer­
enced. To further increase performance, the top 16-
bit element in the operand stack is cached in the
OMU.

In enforcing capability-based addressing, every
memory reference is checked by the RGU to see if it
is within the -length of its segment, and the type of
access (read, write, etc.) is verified to make certain
that the object has the proper rights to perform the
operation.

The iAPX 43201 and iAPX 43202 components to­
gether form a GOP. Figure 19 shows a logical repre­
sentation with both units interfacing to the Processor
Packet bu~ as a single processor. Figure 20, in turn,
shows the physical layout.

CLOCK GROUP .
'CLKA ClKB'

GOP
lOGIC

SYMBOL

.

,

ALARM

FATAL

PCi:K

iNI'i'

ClR

MASTER

REJiR

SYSTEM
GROUP

171873-28

Figure 19. GOP Block Diagram

5-36 171873-002

IAPX 4320111APX 43202

I11III111 ~~I~~~~lllgillil~ 111111111. (1;llig;I¥~~d~ I~
NC 1= "IISH"IIOI=

HC

;nil 1= ~
9"-

NC~
HC

1= NC
ICSI-

VIIO VlIO ~
lOUT

PRO 1= ICS
vee vee vee PRO

ACD

NC
vee
ACDIS

PIN NO. I MARK

171873-29

Figure 20. GDP Interconnect

PROCESSOR PACKET
BUS DEFINITION

Processors sharing the same memory must contend
for access to that memory over one or more system
buses. Therefore, efficient bus utilization is essential
in a multiprocessing system. A simple and efficient
approach to building a 432 interconnect system is to
use the iAPX 43204 Bus Interface Unit; the VLSI
component provides the necessary circuitry to inter­
connect 432 processors with from one to eight
memory buses. Some system deSigners, however,
may prefer to take other approaches to the intercpn­
nect design to optimize the cost/performance ratio
of the hardware for their specific application. With
that requirement in mind, Intel formulated an iAPX
432 packet bus protocol which supports a wide
range of system bus architectures.

To reduce bus occupancy and increase the perform­
ance range of 432 systems, the packet bus protocol
separates processor requests and replies into sepa­
rate packets. A pfocessor can issue a request pack­
et and leave the system bus free until the reply pack­
et is returned from memory.

As a second method of maximizing the efficiency of
bus utilization, the packet bus protocol allows varai­
ble length packets of data. If a processor wishes to
read a 64-bit operand, it can be done with a single
request and reply packet. Thus, fewer individual
storage requests are required to process long oper­
ands. This aspect of the protocol enables proces­
sors to interface easily to 16-bit, 32-bit, or even 64-
bit system buses.

This section de$cribes the 19 signal lines that com­
pose the Processor Packet bus and their timing rela­
tionships. While this section defines all valid bus ac­
tivities, the processors do not necessarily perform all
allowed activities; nevertheless, slaves to the Proc­
essor Packet bus must aupport all state transitions
to ensiJre compatibility (see Figure 21).

The Processor Packet bus consists of three control
lines:

5-37

• PRQ (Processor Packet bus request)

'. BOUT (Enable Buffers for Output)

• les (Interconn~t Status)

171873-002

inter IAPX 43201/1APX.43202

• Note that the broken transitions in the GOP state diagram are
not generated by the GOP component pair.

Initial State Next State Trigger

Ti T1 Bus cycle desired
Ti No bus cycle desired

T1 T2 Unconditional

T2 T3 ICShigh
Tw ICSlow
T1 Canceled, Access Pending
Ti Canceled, No Access Pending

T3 T3 Additional transfer rE;lquired, ICS high
Tw Additional transfer required,.ICS low
Tv All transfers completed, no overlapped access

Tvo Current write with overlapped access

Tv Ti No access pending
T1 Access pending

Tvo T2 Unconditional

Tw Tw ICSlow
T3 ICShigh

Figure 21. Proc,ssor Packet Bus State Diagram

5-38

171873-30

171873-002

IAPX 43201/1APX 43202

PRO has two functions whose use depends upon
the application; for example, PRO either indicates
1\'Ie first cycle of a transaction on the bus or the can­
cellation of a transaction initiated during the previous
cycle. Of the three control lines, BOUT has the sim­
plest function, serving as a direction control for buff­
ers in larger systems which require more electrical
drive than the processor components can provide.
The ICS signal has three different interpretations de­
pending on the state of the Processor Packet bus
transaction. It may indicate whether or not:

• An interprocessor communication (IPC) is wait­
ing,

• A slave requires more time to service the proc­
essor's request, or

• A bus error has occurred.

The bus also includes 16 three-state Address/Con­
trol/Data lines (ACD1S-ACDo). These lines emit in­
formation to specify the type of cycle being initiated;
transmit addresses, data to be written, and control
information; and during a read operation, receive
data returned to the processor. Details of the ACD
operation are summarized below.

Address/Control/Data Lines

In the first cycle (T1 or Tvo) of a Processor Packet
bus transaction (indicated by the rising edge of
PRO), the eight high-order ACD bits (ACD1S-'
ACDs)specify the type of the current transaction. In
this first cycle, the low-order ACD bits (ACD7-ACDo)
contain the least significant eight bits of the 24-bit
address.

During the next cycle (T2), the remainder of the ad·
dress is presented on the ACD pins, aligned so that
the most significant byte of the address is on
ACD1S-ACDs while the mid-significant byte is on
ACD7-ACDo. If PRO, is asserted during T2, the ac­
cess is cancelled and the ACD lines are not defined.

During the third bus cycle (T3 or Tw) of a Processor
Packet bus transaction, the processor presents a
high impedance to the ACD lines for read transac­
tions and asserts data for write transactions.

Once the bus has entered T3 or Tv, the sequence of
state transactions depends. on the type of cycle re­
quested during the preceding T1 or Tvo. Accesses
ranging in length from 1 ,to 10 bytes may be request·
ed (see Table 8). If a transfer of more than one dou­
ble byte has been requested, T3 must be entered for
every double byte that is transferred. ICS dictates
whether the processor simply enters T3 or first en­
ters Tw to wait.

After all data is transferred, the processor enters ei­
ther Tv or Tvo. Tvo can be entered only when the
processor is prepared to accomplish an immediate
write transfer (overlapped access). During Tvo, the
ACD lines contain address and specification infor­
mation aligned in the same fashion as T1. If the
processor does not require an overlapped access,
the bus state move to Tv (the ACD lines will be high
impedance). After Tv, a new bus cycle can be initiat­
ed with T1, or the processor may enter the idle state
(Ti).

Table 8. ACD Specification Encoding

ACD ACD ACD ACD ACD ACD ACD ACD
15 14 13 12 11 10 9 8

Access Op RMW Length Modifiers

0- 0- 0- 000- 1 Byte ACD15=0:
Memory Read Normal 001- 2 Bytes OO-Inst Seg

010- 4Bytes Access
011- 6 Bytes 01-Stack Seg
100- 8 Bytes Access

1- 1- 1- 101-10 Bytes 1 O-Context Ctl
, Interconnect Write RMW 110-16 Bytes* SegAccess

Space 111-32 Bytes* 11-0ther

ACD15= 1:
*Not implemented OO-Reserved

01-Reserved
10-Reserved
ll-Interconn

Register

5-39 171873'()02

/

IAPX43201/iAPX 43202

Interconnect Status (ICS)

As discussed earlier, ICS has three possible inter­
pretations depending on the current state of the bus
transaction (see Table 9). Even so, under most con­
ditions ICS indicates whether or not an IPC is pend­
ing; a valid low during any of these cycles with IPC
significance signal the processor that an IPC has
been received. While an iAPX 432 processOr is only
required to record and service one IPC or reconfigu­
ration request at a time, logic in the interconnect
system must record and sequence multiple (and
possibly simultaneous) IPC occurrences and recon­
figuration requests. Thus, the logic that implements
ICSmust accommodate global and 10caliPC arrivals
and requests for reconfiguration as individual
events:

Table 9. les Interpretation

State Significance Level
High Low

Ti. Tl, T2 IPC
NolPC IPC
Waiting Waiting

T3,Tw Stretch Don't Stretch
Stretch

Tv, Tvo Err Bus. Error No Error

1. Assert IPC significance on ICS for the arrival of an
IPC or reconfiguration request.

2. When the iAPX 432 processor reads interconnect
address register 2, . it will respond to one of the
status bits for the IPC or reconfiguration request sig­
nalled on ICS in the following order:

BIT 2 (1 = reconfigure, 0';' do. not reconfigure)

BIT 1 (1 =globallPC pending, O=no global I PC)
\

BIT 0 (1 = local IPC pending, 0 = no local IPC)

3. The logic in the interconnect system must clear
the highest order status bit that was serviced by the
iAPX 432 processor, and if an additional IPC mes- .
sage has arrived, the interconnect logic must signal
an additional IPC to the processor bY setting ICS
high for at least one cycle and then setting ICS low
for at least one cycle, while ICS has IPC signifi­
cance.

Processor Packet Bus Request (PRQ)

PRQ is normally low and goes high only during T1,
T2. and Tvo. High levels during Tvo and T1 indicate
the first cycle of an access. A high level during T2
indicates that the current cycle is to be cancelled.
See Table 10.

Table 10. PRQ Interpretation

State PRQ CondHlon

Ti 0 Always
Tl 1 Initiate access
T2 0 Continue access

1 Csncel access
T3 0 Always
Tw 0 Always
Tv 0 Always
Tvo 1 Initiate overlapped access

Enable Buffers for Output (BOUT)

BOUT is provided to control external buffers· when
they are present. Table 11 and Figures 22 through
27 show its state under various conditions.

Processor Packet Bus Timing

Each timing diagram shown on the following pages
illustrates the timing relationships on the Processor
Packet bus during various types of transactions. This
approach to transfer timing allows maximum time for
the transfer to occur and yet guarantees hold time.

Any agent connected to the Processor Packet bus is
recognized as either a processor (a GDP or IP) or a
slave (e.g., the memory subsystem).

In all transfers between a processor and a slave, the
data to be driven is clocked for three-quarters of a
cycle before it is sampled. This allows adequate time
for the transfer and ensures sufficient hold time after
sampling. The BOUT timing is unique because BOUT
functions as a direction control for external buffers.

Detailed set-up and hold times can be found in the
AC Characteristics section.

Table 11. BOUT Interpretation

Low-to-Hlgh High-to-Low High-to-Low
BOUT Always High Transition Transition Transition

or Low or Low or High

Write T1, T2, T3, Tw, Tvo Ti None Tv
Read T1, T2 Ti, Tv T3,Tw None

5-40 171873·002

inter IAPX 43201/1APX 43202

NOMINAL WRITE CYCLE

"

.,
5 eLKA CYCLES

T, , T. T2 T~ Tv T, T,

eLKA

ACD" ..• ACDt .oooo.oo •• oo{ ADDR/II'EC >{ ADDR >{ WRITE DATA } •••• oooooo.oooooo •••• { ADDRISPEC}{ ADDR }ooo ••

PRO / \

ICS IPC X H'C X IPC Y STRETCH ~ ERR X IPC

lOUT --' \ /

ACDfIACD. ACDrACDo State
Hi-Z Hi-Z n
Spec Lo-adr T1
Hi-adr Mid-adr T2
Hi-c:tata 1 * Lo-data1 T3
Hi-Z Hi-Z Tv
Hi-Z Hi-Z n
Spec Lo-adr T1
Hi-adr Mid·adr T2

ACD1SACDa ACDrACDo Stata
Hi-Z Hi-Z Tv"
Spec Lo-adr T1
Hi-adr Mid-adr T2
Hi-data1* Lo-data1 T3
Spec Lo-adr Tvo
Hi-adr Mid-adr T2
Hi-da,,1 Lo-data1 T3

*Undefinad if SIngle byte write
·*(Preaeded by read cycle),

Figure 23. Minimum Write Cycle Timing

5-41

/ \-

X IPC X IPC x::

171873-31

I 171873-002

T,

CL~A

ACD ACD. ___ ~ ______ _

PRO ___ J

ICS IPC

lOUT --.l

Hi-Z
Spec
Hi-adr
Hi-datal
Hi-data2
Hi-data2
Hi-Z
Hi-Z

CLKA

T,

Hi-Z
La-adr
Mid-adr
Lo-datal
Lo-data2
Lo-data2
Hi-Z
Hi-Z

\.

ACD1S···ACDo ••• -._----

PRO

ICS IPC

BOUT --1

AC~lJACDe ACDrACDo
Hi-Z Hi-Z
Spec LcHdr
Hi-adr Mid-adr
Hi-data* Lo-datal
Hi-Z Hi-Z
Hi-Z Hi-Z
Spec La-adr

·UndefilJ4ld H $Ingle byte read

T,

Stille

Ti
T1
T2
T3
Tw
T3
Tv
TI

IAPX "3201/1APX 43~a

TZ T, Tw

Figure 24. Stretched Write Cycle Timing

I

MINIMUM READ CYCLE

5 CLKA CYCLES

T, TZ T. Tv

T, Tv T,

''---171873-33

-\
T, T,

___ J --------.;-------{ ADDA/SPEC >C

,'------,
171873-34

State
Ti
Tl
T2
T3
Tv
Ti
T1

Figure 25.. . Minimum Read. Cycle Timing

5-42 171873-002

IAPX 4320111APX 43202

IIINIIIUIi READ CYCLE ,IUFFERED SYSTEIII \. • CLM CYCLES

T, T, T, t. Ta Tv T,

CLKA

ACD1I ... ACDo ------------< .. DOR/.PEC X ADOIIII ~----------------{ fllUODATA).----------------< ADH

PRO I \ r-
IcaX fPC X fPC X IPC ~ STRETCH / STRETCH '< ERR X fPC x::

IOur-../ \ I
171873-35

ACDllACDa ACD7ACDo State
Hi-Z HI-Z Ti
Spec UMIdr T1
Hi-adr ~ T2
Hi-Z HI-z Tw
H1-dala1* Lo-data1 T3
HI-Z HI;"Z Tv
HI-Z HI-Z Ti

'Undeflned if single byte read

Figure 26. Stretched Read Cycle Timing

I· 2 CLKA CYCLES

T, T, '2 T, T, T, Ty T,

elKA

ACO" .• ACo, ______ _ __________________________ _

~ __ _J~~~~~~~~~~~~

• PRO--i \~--------------------------
CANCEL

ACD
HI-Z Hi-Z TI
Spec UMIdr T1
UndefInad Undefined T2·*
Spec L.o-adr Tt
Hi-adr Mid-adr T2
HI-daIa* Lo-data T3
HI-Z Hi-Z Tv
HI-Z HI-Z TI
·UndefIned if single byte write

* * Acceea Cancelled
tHew Acceea Started (Slave must support IhI8 aub8equent

IICC8IIe even though all proc8II8O!'8 may not Implement Il)

Figure 27. Minimum Fau~ Acceu Cycle

5-43

171873-38

171873-002

IAPX 43201/1APX 43202

Package

The iAPX 43201 and iAPX 43202 are both packaged in a 68-pin, leadless JEDEC type A hennetic chip carrier.
Figure 28 illustrates the package, and Figures 1 and 2 show the pinol.!ts.

.0lI0

..,-__ (lr

1
-:-~

.100

T
.038

(0.18)

PIN NO. 11

f ~
1 ~ ~
t ~

~ __ Eo

I

.

1
4.38) D (2

I

PlNNO'l~' "'-PIN NO. 1 M
I

ARK

.880 .

Figure 28. JEDEC Type A Package

5-44

.130
(3.38)

_.084
(2.3')

\ .ou
-(1.81)

171873-37

171873-002

IAPX 43201/1APX 43202

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O"C to 70·C
Storage Temperature - 65·C to + 150·C
Voltage on Any Pin with

Respect to Ground -1 to + 7V
Power Dissipation 2.5W

* Notics: stresses sbov8 thosslisted under "Absolute Msxi­
mum Ratings" may causs permanent dsmage to the device.
This is a stress rating only and functional operation of the
device at thess or any other conditions above thoss indicat­
ed in the operational ssctions of this specification is not
implied. Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (y '55. = OV V , '-CC_= 5V ± 10%)

Symbol Parameter Min Max Units

VllC Input Low Voltage Clocks -0.3 +0.5 V

VIHC* Input High Voltage Clocks 3.5 Vcc+0.5 V

VILI Input Low Voltage Intra-GOP Bus -0.3 0.7 V

VIHI Input High Voltage Intra-GOP Bus 3.0 Vee+ 0.5 V

Vll· Input Low Voltage -0.3 0.8 V

VIH Input High Voltage 2.0 Vcc+0.5 V

VOLI Output Low Voltage Intra-GOP Bus - 0.35 V
(lOll = 0.1 mA)

VOHI Output High Voltage Intra-GOP Bus 3.25 Vee V
(IOHI = 0.1 mA)

VOL Output Low Voltage - 0.45 V
(IOl ** = 2.0 mA)

VOH Output High Voltage 2.4 Vee V
(IOH = -400 p.A: 43201

- 800 p.A: 43202)

lee Power Supply Current - 500 mA
(sum of aU Vee pins)

III Input Leakage Current - ±10 p.A

Oll Output Leakage Current - ±10 p.A

*For operation at 5 MHz or slower, the GOP may be operated with VIHC minimum of 2.7V.
**IOL for FI'EFiR" = 0.4 mA; for FATAL = 4 mA .

5-45 171873-002

IAPX '43201/1APX 43202

IAPX 43201 AC CHARACTERISTICS (Vee = 5V ± 10% T A = O"C to 70"C) ,

,Symbol Descrlptlo,n 5 MHz 7MHz 8 MHz

Min Max Min Max Min

tcv Clock Cycle Time 200 500 143 500 125

tr, tf Clock Rise and Fall Times 0 10 0 10 0

t1, t2, Clock Edge Delay Times 45 250 32 250 26
. ta, t4

toe Input Signal to Clock Setup 5 - 5 - 5

toH Clock to Input Signal Hold Time 35 - 30 - 25

teo Clock to Output Signal Delay Time - 85 - 65 -
toH Clock to Output Signal Hold Time 20 - 17 - 15

TIE Input Enable Time 10 10 - 10

151 Input Signal to Init Setup Time 10 - 10 - 10

tiS Init to Input Signal Hold Time , 20 - 17 - 15

The above specifications are subject to the following, definitions and test conditions:

1. Note that tcy=t1 + 12 + t3 + t4 + 2*tr + 2*tf.

2. Pins under consideration were subjected to the following purely capacitive loading:

C1 = 25pF on HERR

C1 = 50pF on uI15 ... u110, IS6 ... ISO

C1 = 70pF on all remaining pins.

Max

500

10,

250

-
-
55

-
-
-
-

Units'

ns

ns

ns

ns

ns

ns

ns

tcv
ns

ns

3. All timings are measured with respect to the switching level of 1.5 Volts. The switching point of ClKA and
ClKs is referenced,. to the 1.8 Volt level.

4. ClKA and ClKs must be continuously applied for the 43201 to retain its state.

iAPX 43202 AC CHARACTERISTICS (Vee = 5V ± 10% T A = O"C to 70" C) ,

Symbol Description 5 MHz 7MHz 8 MHz
Units

Min Max Min Max Min Max

tcv Clock Cycle Time 200 500 143 500 125 500 ns
(teV=t1 +t2+la+4 + 2tr+2tt>

tr, tf Clock Rise and Fall Times 0 10 0 10 0 10 ns

t1,12, Clock Pulse Widths 45 250 32 250 26 250 ns
t3, t4

toe Signal to Clock Setup Time 5 - 5 - ,5 - ns

tOH Clock to Signal Hold Time ' 35 - 30 - 25 - ns

te~ Clock to Signal Delay Time - 85 - 65 - 55 ns

toH Clock to Signal Output Time 20 - 17 - 15 - ns

tOF Clock to Signal Data Float Tllne - 75 - 75 - 55 ns

5-46

inter IAPX 43201/1APX 43202

The timing characteristics given below assume the following loading on ouput pins. loading is given in'terms of
a fixed capacitance plus a DC current load.

Pins
HERR
BOUT
PRC
ISs··.ISo
~CD15 ... ACDo

Loading
90 pF 101 = 8 mA., Open Drain
70 pF 101=8 mA.,loh=800 /JoA
70 pF 101 = 4 mA., loh = 800 /JoA
50 pF MOS only
70 pF 101=4 mA.,loh=800 /JoA

All output delays are measured with respect to the falling edge of ClKA except for BOUT. BOUT output delays
are measured with respect to the rising edge of ClKA.

All timings are measured with respect to the switching level of 1.5 Volts. The switching point of ClKA and
ClKs is referenced to the 1.8V level.

The 43202 is not capable of DC operation. For continuous data and logic state retention the ClKA and ClKs
signals must be present.

IAPX 43201/43202 Capacitance

Symbol Parameter

CIN Input CapaCitance
COUT - Output Capacitance ,

Conditions:fc=1 MHz, VIN=OV, Vcc=5V, TA=25°C
Outputs in High Impedance State

WAVEFORMS:

ClKA

ClKS

171873-38

.43201 Clock Input Specification

ClKA

ACD15 ••• ACDO
(FROM MEMORY) __ ..I~~:I::;~'-I _____ _

~t::...!!L.
CLA.ALAAM

ICS

'ac 'OH

171873-40

IAPX 43201' Input Timing (CLKAl

, 5-47

Typical Unit

6 pF
12 pF

ClKA

171873-39

43201 Output Timing Specification

ClKS

ACD1S",ACDO -----" r....,r--... r--­
IFROM 43202),
PRO

INVALID

tDC tDH

INVALID

171873-47

IAPX 43201 Input Timing (CLKB)

171873-002

IAPX 43201/1APX 43202

WAVEFORMS (Continued):

,115-,10 _____ -'_ _ ~---"----""'----+--..n._+--J'o-----

lSI

HEAA
_______ ~\~\-------------'C-D-~~~ _______ f~IOH

171873-41

43201 Hardware Error Detection Timing

ClLKA

INIT
171873-42

43201 Initialization Timing

171873-43

43201 Microcode Interrogate Timing

5-48 171873-002

IAPX 43201/1APX 43202

WAVEFORMS (Continu8d):

ClKA

ClK8

171873-44

43202 Clock Input Specification

ClKA

All OUTPUT PINS
EXCEPT BOUT

80UT

43202 Output Timing Specification

ClKA

ACD15 ••• ACOO
(READ TIMING I

HARDWARE ERROR DETECTION
INPUT TIMING AND INPUT TIMING

-----JI~-'r~~------

FOR All INPUTS EXCEPT ACD15 .•• ACDO ______ -'II'-iI-"Ilo __ _

43202 Input Timing Specification

5-49

171873-45

171873-48

171873-002

inter IAPX, 4320'111APX 432.02

iAPX 432. General Data Processor Operator Set Summary

Character Operators Short-Integer Operators Integer Operators

Move Character Move Short Integer Move Integer
Zero Character Zero Short Integer Zero Integer
One Character I One Short Integer One Integer
Save Character Save Short Integer Save Integer

AND Character Add Short Integer Add Integer
OR Character Subtract Short Integer Subtract Integer
XOR Character Increment Short Integer Increment Integer
XNOR Character Decrement Short Integer Decrement Integer
Complement Character . Negate Short Integer Negate Integer

. Multiply Short Integer Multiply Integer
Add Character Divide Short Integer Divide Integer
Subtract Character Remainder Short Integer Remainder Integer
Increment Character
Decrement Character Equal Short Integer Equal Integer

Not Equal Short Integer Not Equal Integer
Equal Character Equal Zero Short Integer Equal Zero Integer
Not Equal Character Not Equal Zero Short Integer Not Equal Zero Integer
Equal Zero Character Less Than Integer
Not Equal Zero Character Less Than Short Integer Less Than or Equal Integer
Less Than Character Less Than or Equal Short Integer Positive Integer
Less Than or Equal Character Positive Short Integer Negative Integer
Convert Character to Short Ordinal Negative Short Integer Move in Range Integer

Move in Range Short Integer Convert Integer to Short Integer
Convert Short Integer to Integer Convert Integer to Ordinal

Convert Integer to Temporary Real
Convert Integer to Ch, :"acter

'Co(lvert Integer to Short Ordinal

Short-ordlnal Operators Ordinal Operators Short-Real Operators

Move Short Ordinal Move Ordinal Move Short Real
Zero Short Ordinal Zero Ordinal Zero Short Real
One Short Ordinal One Ordinal Save Shol1 Real
Save Short Ordinal Save Ordinal

Add Short Real-Short Real
AND Short Ordinal AND Ordinal Add Short Real-Temporary Real
OR Short Ordinal OR Ordinal Add Temporary Real-Short Real
XOR Short Ordinal XOROrdinal Subtract Short Real-Short Real
XNOR Short Ordinal XNOR Ordinal Subtract Short Real-Temporary Real
Complement Short Ordinal Complement Ordinal Subtract Temporary Real-Short Real

Extract Ordinal
Multiply Short Real-Short Real

Extract Short Ordinal Multiply Short Real-Temporary Real
I nsert Short Ordinal Insert Ordinal Multiply Temporary Real-Short Real
Significant Bit Short Ordinal Significant Bit Ordinal Divide Short Real-Short Real

Add Short Ordinal Add Ordinal
Divide Short Real-Temporary Real
Divide Temporary Real-Short Real

Subtract Short Ordinal Subtract Ordinal Negate Short Real
Increment Short Ordinal Increment Ordinal Absolute Value Short Real
Decrement Short Ordinal Decrement Ordinal
Multiply Short Ordinal Multiply Ordinal
Divide Short Ordinal Divide Ordinal
Remainder Short Ordinal Remainder Ordinal

Index Ordinal
Equal Short Ordinal Equal Ordinal
Not Equal Short Ordinal Not Equal Ordinal
Equal Zero Short Ordinal Equal Zero Ordinal
Not Equal Zero Short Or1''',11 Not Equal Zero Ordinal
Greater Than Short Ordinal Less Than Ordinal
Greater Than or Equal Short Ordinal Less Than or Equal Ordinal

,

i
Convert Short Ordinal to Integer Convert Ordinal to Integer

Convert Ordinal to Temporary Real I

5 .. 50 171873-002

IAPX 43201/1APX 43202

IAPX 432. General Data Processor Operator Set Summary (Continued)

Short-Real Operators Real Operatqre Tempo~ry-Real Operatore

Equal Short Real Move Real ,Move Temporary Real
Equal Zero Shor,t Real Zero Real Zero Temporary Real
Less Than Short Real Save Real Save Temporary Real
Less Than or Equal Short Real
Positive Short Real Add Real-Real Add Temporary Real
Negative Short Real Add Real-Temporary Real Subtract Temporary Real

Add Temporary Real-Real Multiply Temporary Real
Convert Short Real to Temporary Real Subtract Reai-Real Divide Temporary Real

Subtract Real-Temporary Real Remainder Temporary Real
Subtract Temporary Real-Real Negate Temporary Real
Multiply Real-Real Squara Root Temporary Real
Multiply Real-Temporary Real Absolute Value Temporary Real
Multiply Temporary Reai-Real
Divide Real-Real Equal Temporary Real
Divide Real-Temporary Real Equal Zero Temporary Real
Divide Temporary Real-Real Greater Than Temporary Real
Negate Real Greater Than or Equal Temporary Real
Absolute Value Real Positive Temporary Real

Negative Temporary Real
Equal Real
Equal Zero Real Convert Temporary Real to Ordinal
Less Than Real Convert Temporary Real to Integer
Less Than or Equal Real Convert Temporary Real to Short Real
Positive Real Convert Temporary Real to Real
Negative Real

Convert Real to Temporary Real

Access Descriptor Movement Type and
Operatore Rights Manipulation Operatore

Copy Access DesCriptor Amplify Rights
Null Access Descriptor Restrict Rights

Retrieve Type Definition

Refinement Operatore Object Creation Operetore Access Path Inspection Operatore

Create Generic Refinement Create Object Inspect Access Descriptor
Create Typed Refinement Create Typed Object Inspect Object

.Equal Access
Move to Embedded Data Value
Move from Embedded Data Value

Access Interlock Operetore Branch Operatore Interconnect Operatora

Lock Object Branch Move to Interconnect
Unlock Object Branch True Move from Interconnect
Indivisibly Add Short Ordinal Branch False
Indivisibly Add Ordinal Branch Indirect
Indivisibly Insert Short Ordinal Branch Intersegment
Indivisibly Insert Ordinal Branch Intersegment without Trace

Branch Intersegment and Link
Breakpoint

Process Communication Processor Communication Context
Operatore Operatore Operatore

Send Reed Processor Status and Clock Enter Environment
Receive Send to Processor Copy Process Globals
Conditional Send Set Context Mode
Conditional Receive Call
Surrogate Send Call through Domain
Surrogate Receive Return
Delay Process Return and fault
Read Process Clock Adjust Stack Pointer
Send Process Block Move
Set Proooss Mode

5-51 171873'()()2

iAPX 4320ViAPX 43202

Additional Information .

M9re information about the iAPX 432 Micromain".
frame architecture can be found in the following pub­
lications:

• iAPX 432 General Data Processor Architec­
ture Reference Manual (Order Number
171860) .

• iAPX 432 Interface Processor Architecture
~eference Manual (Order Number 171863)

• iAPX 432 Interconnect Architecture Refer­
ence Manual (Order Number 172487)

Information on the electrical characteristics of other
432 components can be found in the following publi­
cations:

• iAPX 43203 Interface Processor Data Sheet
(Order Number 171874)

• iAPX 43204/43205 Fault Tolerant Bus Inter­
face and Memory Control Units (Order Num­
ber 210963)

• iAPX 43204/43205 BIUlMCU Electrical
Specifications (Order Number 172867)

5-52 171873-002

intJ
iAPX 43203

FAULT TOLERANT INTERFACE PROCESSOR

• Multiprocessor Architecture Offers
Fully Independent I/O

• High-Speed Data Channel Buffers
Burst-Mode Transfers

• Software-Controlled Windows Provide
Protected Access to 432 Memory

• 16-Blt Data Bus Interfaces Easily to
MULTIBUS~ Systems

• Multiple Interface Processors Expand
I/O Capacity

• Master/Checker Pairs Detect Hardware
Errors Automatically

• Quad Modular Redundancy Ensures
Immediate Recovery From Hardware
Faults

The Intel 43203 Interface Processor (IP) provides an independent and decentralized 1/0 channel for iAPX 432
Micromainframe systems by mapping a portion of a peripheral subsystem's address space onto central system
memory. The 43203 IP can be used with the other members of the iAPX component family (i.e., the
43201/43202 General Data Processor, the 43204 Bus Interface Unit, and the 43205 Memory Control Unit) to
design a completely fault-tolerant computer system.

The 43203 is a VLSI device, fabricated with Intel's highly reliable + 5 volt, depletion load, N-channel, silicon
gate HMOS technology, and is packaged in a 68-pin, leadless JEDEC hermetic chip carrier. Refer to Figure 1
for the JEDEC chip carrier representation of the 43203 pin configuration.

PAD VIEW

V~r-~L~L~~J~~L~~JWI~I~L~L~~I~

AD7
AD6

AD5
AD4

AD3

AD2

ADI
ADO
VSS
PSA

iiiiiN
N.C.

NOTE: N.C. _ must not be _ '

HDA
SYNC

NAK
BOUT

ICS

PAQ
N.C.

VCC

ACD15

ACD14

ACD13
ACD12

ACDll

ACD10

ACD6
ACD8

VSS

Figure 1. IAPX 43203 Interface Processor Pin Configuration

Intel Corporation assumes no respon8lblli1y for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are Implied. November 1983
@)Intel Corporation, 1983. 5-53 Order Number: 171874-002

IAPX43203

Table 1 lists a summary of aU signal groups, signal names and their active states, and whether or not they are
monitored by the Hardware Error Detection circuitry.

Table 1. Pin Description

Symbol Pin No. Type Name and Function

Processor Packet Bus Group

\ ACD15 1-8 1/0 Address/Control/Data Lines: These 16 bidirectional
ACDo 60-69 signals carry physical memory addresses, control information

(access length and type), and data to and from the memory
bus.

When the IP is in checker mode, the ACD pins are monitored
by the hardware error detection logic and are in the high
impedance state.

PRO 57 0 Processor Packet Bus Request: is issued to gain access to
the bus. Normally low, the PRO pin is brought high during the
same cycle as the first double-byte of address information
appears on the ACD pins. PRO remains high for only one
cycle during the access, unless an address development
fault occurs. In that case, the IP leaves PRO high for a
second cycle to indicate it has detected an addressing or
segments rights fault in completing the address generation.

PRO is checked b~ the hardware detection logic and remains
in a high impedance mode when the IP is in checker mode.

ICS 56 I Interconnect Status: carries information on errors, data
synchronization, and interprocessor communication. The
interpretation of this signal depends on the current cycle of
the bus transaction. See page 21 for a complete description.

BOUT 55 0 Enable Buffers for Output: controls the direction of
external buffers, if any are used. When BOUT is asserted, it
indicates that the buffers must be directed to carry
information outbound from the IP.

System Group

Vee 12,34,59 Power: These three pins supply 5-volt power to the IP, and
• all must be connected; the pins are not connected together

within the IP.

Vss 9,48,68 Ground: These three pins provide the ground reference for
the IP, and all must be connected; the pins are not
connected together within the IP.

ALARM 19 I Alarm: monitors the condition of an unusual, system-wide
condition such as power failure. Alarm is sampled on the
rising edge Of CLKA.

FATAL 16 0 Fatal: is asserted by the IP under microcode control when
the IP is unable to continue due to various error or fault
conditions. Once FATAL is asserted, it can only be reset by
the a,ssertion of INIT.

I When INIT is asserted, the FATAL pin functions as an input.
During initialization, the IP samples the state of FATAL to
determine if the 432 system side should be placed in

. MASTER or CHECKER mode. See INIT description.

5-54 171874-002

IAPX43203

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function
SyMem Group (Continued)

PcrK 15 I Proceuor Clock: The assertion of i5CiJ(for one cycle
causes the system timer within the IP to decrement Assertion
of PcrK for two or more cycles causes the system timer to be
reset.l5CD< must remain unasserted for at least 10 clock
cycles before being asserted again. The IP samples PCLK on

-' the rising edge of CLKl'.
QR 18 I Clear: Assertion of rn::Fi results in a microprogram trap

causing the IP to immediately teiminate any bus transactions
or internal operations in progress. The IP resets to a known
state, asserts FATAL, and awaits an IPC for initialization. The
IPC is not seNiced for at least four clock cycles following the
assertion of rn::Fi. .
Response to CLR is disabled by the first CLR assertion and is
reenabled when the IP receives the first IPC (or iNiT
assertion).

The IP samples CLR on the rising edge of CLKA.

INIT , 13 I Initialize: Assertion of INIT resets the internal state of the IP
and starts execution of the initialization microcode. iNiT must
be asserted for a minimum of 8 clock cycles. After the INIT pin
returns to its non asserted state, the IP initializes all of its
internal registers and windows, and waits for a locallPC. INIT
is sampled on the rising edge of CL,KA.

During iNiT assertion, the IP samples the FATAL and HERR
pins to establish the mode (MASTER or CHECKER) for each
of the bus interfaces to the IP. See accompanying table;

Representation of MASTER/CHECKER
Modes at Initialization

FATAL HERR IAPX432 Peripheral
Side Subsystem Side

0 0 MASTER MASTER
0 1 MASTER CHECKER
1 0 CHECKER MASTER
1 1 CHECKE,R CHECKER

Hi:RR 17 0 Hardware Erron This line is used to signal a discrepancy
between a value internally computed by a checker and that
output by the master. The sampling for errors occurs at the
most appropriate time for each of the pins being checked.

, HERR iS,an oi1en drain output and requires an external pullup
resistor. Nominally, the output is held low, but released upon
the detection Qf a discrepancy. The timing of HERR depends
on the source of the error. Once HERR is high, it remains high
until external logic forces it low again; When HERR goes low,
the present error condition is cleared and HERR is
immediately capable of detecting and signalling another error.

I When iNiT is asserted: the HERR pins becomes an input.
During initialization, the IP samples HERR to establish the
mode (MASTER or CHECKER) of thS bus interface to the
peripheral subsystem. See the discussion of INIT.

5-55 171874-002

IAPX43203

.
\.

Table ,1. Pin DescrlRtion (Continued)

,Symbol Pin No. Type Name and Function
System Group (Continued)

CLKA 11 I Clock A: is a square-wave clock which must operate
continuously to preserve the operating state of the IP.

CLKs 10 I Clock B: is a square-wave clock which operates at the same
frequency as CLKA, but lags it by 90 degrees. CLKs must
operate continuously to preserve the operating state of the IP.

Peripheral Subsystem Bus Group

AD1S· 26·42 I/O Address/Data: These pins constitute a multiplexed address
ADo and data input! output bus. When the Attached Processor bus

is idle or during the, first part of an access, these pins normally
view the bus as an address. The address is checked
asynchronously to see if it matches anyone of the five window
address ranges. The address is latched on the falling edge of
ALE, thereby maintaining the state of match or no match for the
remainder of the access cycle. The addresses are unlatched on
the falling edge of OE.

Once SYNC has pulsed high, the AD1S-ADo pins become data
input and output pins. When WR is high (read mode) and OE is
asserted, data is accessed in the IP and the output buffers are
enabled onto the AD pins. When WR is low (write mode), data

. is sampled by the IP after the rising edge of SYNC and while
CLKAis high.

The address is always a 16·bit unsigned number. Data may be
either a or 16 bits as defined by BHEN and ADo. The a-bit data
may be transferred on either the high-(AD15"ADa) or the low
(ADo·AD7) byte, while the opposite byte is tristated.

During the clock in which write data is sampled, data must be
set up before the rising edge of CLKA and must be held until
the falling edge of that clock cycle. Read data is driven out from
a CLKA high and should be sampled on the next rising edge of
C~KA.

Hardware error detection is not done synchronously to CLKA;
rather, it is sampled on the falling edge of OE. The internal AD
pin hardware error detection signal is then clocked and output
as HERR. Even at this point, it may !lot be synchronous with
CLKA and so should.be externally synchronized.

BFiEFJ 23 I B~e High Enable: This pin, together with ADo, determines
wether a or 16 bits are to be accessed, and if it is a bits,
whether it is to be accessed on the upper or lower byte
position. BHEN is latched by the falling edge of ALE and

, unlatched by the falling edge of OE. See accompanying table
for decodir;lg.

Bus Data Controls

iREN ADo Description

0 0 16·bit access
,0 1 a bits on upper byte, lower byte tristated
1 0 a bits on lower byte, upper byte tristated
1 , 1 a bits on lower byte, upper byte tristated

5-56 171874-002

IAPX43203

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and FuncUor'l

PerIpheral Subsystem Bus Group (Continued)

CS 20 I Chip select: specifies that this IP.is selected and that a read or write
cycle is requested. CS is latched by the falling-edge of ALE and

. unlatched by the falling edge of OE.

WR 21 I Write: specifies whether the access is to be a read or a write. iiVR" is
asserted high for a read and low for a write. The pin is latched by the
falling edge of ALE and unlatched by the falling edge of OE.

PS Timing Group
ALE .45 I Address Latch Enable: The rising edge of ALE sets a flip-flop that

enables XACK to become active. The fallin~gBH~ ALE latches the
address on the AD15-ADo pins and latches W, N, and C!.

OE 46 I Data Output Enable: During a read cycle OE enables read data on the
AD15-ADo pins when it is asserted. The falling edge of OE signifies the
end of an access eyclliP (for either a read or a write) by:

1. Resetting the XACK ernlble flip-flop, thereby terminating XACK.

2. Terminating i5ER (if a read cycle).

3. Opening address latches Wit BHEN, and CS.
SYNC 53 I Synchronized Qualifier Signal: A rising edge on this signal must be

=ronized to the IP CLKA falling edge. SYNC qualifies the address,
BH , CS, and WR, indicating a valid condition. SYNC also initiates any
intemallP action to process an access.

In a read access, SYNC starts the request for data to the IP, and in a
. write access, data is expected one or two CLKA cycles after SYNC

pulses high. At initialization time, IP microcode sets the write sample
delay to the slowest operation, two CLKA cycles after SYNC, but this
can be changed to one clock cycle by making a function request to the
IP to change the write sample delay.

When the hoIdlhoid-acknowledge mechanism of the IP is used, and
once HDA has pulsed high, a SYNC pulse is required to qualify the hold
acknowledge, since the HDA pin can be asynchronous ..

PS SynchronIZatIon Group

XAeK· 49 0 ,Transfer Acknowledge: Thi,s signal is used to acknowledge that a data
transfer has taken place.

For random or local accesses, XACK indicates that a transfer to or from
432 system memory has been completed.

For buffered accesses where the XACK-Delay is not in the advanced
mode, XACR signifies that the transfer from/to the prefetch/postwrite
buffer in the IP has been completed.

For bt,.Iffered accesses which use advanced acknowledge mode
(XD =0) the formation of an advanced XAeK Signal is requested. This
enables the IP to interface with a peripheral subsystem without wait
states. The acknowledge will be advanced if the access is a read
operation and the buffer contains the required data, or the access is a
write operation and the buffer contains sufficient space to accept the
write data. Of course, tt'le access must also be valid.

q-57 171874-002

IAPX43203

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function
PS Synchronization Group (Continued)

NAK 54 o

If XACK is preceded by a low pulse on NAK, then XACK signifies that
the access encountered a fault. If the access was a random access,
other than window 4, the window is placed in a faulted state and any
further attempts to access the window are ignored by the IP.

If the .IP is programmed to be in advanced acknowledge mode (XD = 0)
and XACR is not returned before the peripheral subsystem issued
SYNC, then XACK will be postponed until valid data has been
established on the AD15-ADo bus.

Five conditions affecting XACK behavior are:

1. XACK-Delay, user-programmable through an IP function request.
This parameter establishes the minimum operating XACK-delay with
respect to the SYNC signal. See accompanying table.

2. XACK-enable-flip-flop, set by the rising edge of the ALE signal and
reset by the falling edge of the OE signal.

3. InternallP registers. These are used to determine validity of the
peripheral subsystem acCess and establish access modes.

4. Type of access behavior: Random or Buffered, Memory or
Interconnect.

5. Bus faults, nonexistent memory, etc.

Hardware error detection occurs during the first clock of SYNC
assertion.

XACK Timing Parameters
Inhibit WR XD1 XDo XACK Formation Mode

0 X 0 0 Advanced Acknowledge
(XACK can occur before SYNC).

0 1 0 1 Rising edge of SYNC
0 0 0 1 Rising edge of SYNC plus 1 Clock
0 1 1 0 Rising edge of SYNC plus 1 Clock
0 0 1 0 Rising edge of SYNC plus 2 Clocks
1 X 1 0 Rising edge of SYNC plus 2 Clocks
1 X 0 1 Rising edge of SYNC plus 2 Clocks
X X 1 1 Illegal condition

Note: X = don't care condition

Negative Acknowledge: This signal precedes XACK b~east one­
half clock cycle, indicating that Ii transfer did not occur. NAK pulses low
for only one clock period.

When the IP is in physical mode and making an, interconnect access,
negative acknowledge may be used to indicate that the access was
made to a nonexistent interconnect address. This will allow a
subsystem processor to determine the system configuration at system

\ initialization .

. 5-58 '171874-002

IAPX43203

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function
PS Synchronization Group (Continued)

\ NAK can also be used to set a status bit and cause a special interrupt to
transmit the information back to the system.

NAK is driven synchronously from the falling edge of CLKA. Hardware
error defection occurs while CLKA is high.

INH1 47 0 Inhibit: can be used to override other memories in the peripheral
subsystem whose address space is overlapped by an IP window. INH1
is asserted asynchronously by nonclocked logic when a valid mappable
address is detected.

,
After initialization, the IP microcode sets the INH1 mode for each
window by loading registers in the IP for each window. Once the
subsystem is allowed to make a function request, it can selectively
enable or disable the inhibit'mode on each winaow. INH1 is gated off by >

OS. ,
\ The selection of inhibit mode for window 0, when in buffered mode,

causes a built-in XACK-delay which delays the acknowledge from going
active until two clock periods after the rising edge of SYNC. This was
done to facilitate the use of most MULTIBUS systems using INH1, as rAe require that the acknowledge be delayed. When the Advanced

K mode is programmed, the inhibit mode should not be used on
window 0 when in buffered mode, since the acknowledge will not be
effectively delayed.

Hardware error detection occurs during the first clock of SYNC
assertion.

PS Control Group
DEN 50 0 Data Enable: This signal enables the external data buffers used in

systems where the address and data are not multiplexed (e.g., a
MUL TIBUS system). DEN assertion begins no sooner than the first
clock of SYNC assertion while CLKA is high, givEn that a valid,
mappable address range has been detected. D N is terminated either
with the falling $ige of OE or after XACK assertion. .

Hardware error detection occurs during the first clock of SYNC
assertion.

HLD 51 0 Hold Requast: The hold/hold-acknowledge mechanism is an
intelocking mechanism between the peripheral subsystem and the IP.
HLD is used by the IP to gain control of the subsystem bus to ensure
that no subsystem processors will make an access to the IP while it
alters internal registers.

HLD is put out synchronously with the rising edge of CLKA. Hardware
error detection sampling occurs while CLKA is low.

In certain systems, it may not be necessary to use the HLD function
interlocking. In those cases, HDA can be tied high and no SYNC pulse
will be required for HDA qualification. The hardware detects this
condition by noting that the HDA pin was high a half~clock before HLD
requests a hold. In this mode, the HLD output still functions and can be
monitored if desired. '

5-59 171874-002

IAPX43203

Table 1. Pin Description (Continued)

Symbol PinHo. Type Name and Function

PS Control Group (Continued)

HDA 52 I Hold Acknowledge: When the IP1s request for a hold has been granted
by the peripheral subsystem, HDA is asserted. The signal need only be
a high pulse and can be asynchronous to ClK", but must be followed by .
a SYNC pulse in order to qualify it synchronously.

INT 44 0 Interrupt:This signal is used to interrupt the Attached Processor to
request servicing. The output is a pulse two ClKA'S wide, and is driyen
synchronously from the rising edge of ClKA. Hardware error detection
occurs while ClKA is low.

PSR 24 0 Peripheral Subsystem Re .. t: is asserted by the IP under microcode
control. When asserted, the peripheral subsystem should be reset.
When used for debugging, it may be desirable to use this pin to set a
status bit in an external register or perhaps to cause a special interrupt.
PSR is normally asserted by the IPwhen the peripheral subsystem is
believed to be faulty and will not respond to other means o1.control.

PSR is issued synchronously with the rising edge of ClKA. Hardware
error qetection sampling occurs while ClKA is low.

FUNCTIONAL DESCRIPTION

As its name implies, the 43203 Interface Processor
is a logical and physical interface which links a pe­
ripheral subsystem to the iAPX 432 central system.
(The internal architecture of the IP is illustrated in
Figure 2.) The peripheral subsystem functions as an
independent and decentralized 110 channel much in
the same way as 110 channels in traditional main­
frames.

iAPX432
SYSTEM

The diagram in Figure 3 represents the IP as a logi-·
cal device and illustrates the signal interface to the
Processor Packet Bus (left side) and the peripheral
subsystem (right side). The IP is connected to the
peripheral subsystem bus so that it ocqupies a con­
tiguous range of memory addresses, up to 64k bytes
in length. A peripheral subsystem reference to one
of these addresses is a reference to the IP, and

PERIPHERAL
SUBSYSTEM

AC015 ACOO <===--==::.')1 DATA
ACQUISITION

UNIT 1<:===:=:::> A015 ADO

IAPX
.32

CONTROL

EXECUTION
UNIT

eLKA, elKB

~----''--'---IIREIj.C!l.WII

PERIPHERAL
SUBSYSTEM
CONTROL

ALE, OE, SYNC

HlO, HOA

INH1, XACR, RAR:
INT

L--_ r-r-- PS~

Figure 2. iAPX 43203 IP Functional BI~k Diagram

5-60

171874-2

171874-002

intJ IAPX43203

the IP responds to tile address like a memory. The
IP also provides an interrupt request line which is
routed to its Attached Processor (AP) in the periph­
eral subsystem. The "other side" of the IP is con­
nected to the' central system in exactly the same
manner as an iAPX 432 General Data Processor
(GDP). By means of these connections, the IP links
the peripheral subsystem physically to the central
system; at the same time, it is positioned to monitor
all data flow across the system boundary.

It is important to recognize that the lP is an Inter­
face mechanism, not an active device in the sense
of a CPU. The IP does not fetch instructions; in­
stead, it executes commands issued by AP software.
Although physically connected only by a bus and in­
terrupt line, the relationship of the IP and AP is very
close. Indeed, it is often convenient to think of them
as constituting a logical I/O processor.

Peripheral Subsystems

A computer system based on the iAPX 432 Micro­
mainframe consists of a 432 central system and one
or more peripher~1 subsystems. Figure 4A illustrates
a hypothetical configuration, which employs two pe­
ripheral subsystems. The 432 system hardware is
composed of one or more General Data Processors
(GDPs), one or more Interface Processors (IPs), and

VCC VSS (GND)

A ~

<
" .. ACDl5-11 -{ PACKET PRQ

BUS GROUP ICS
BOUT

ALARM

FATAL
;;c[j(

iNiT 43203
IP

LOGIC
SYMBOL

SYSTEM CiJi
GROUP

ClKA
ClKB

HERR

IAPX 432 SY STEM

a common memory shared by the processors. In
rnost 432 systems, including all fault-tolerant sys­
tems, the prQcessors and memory are interconnect­
ed through multiple iAPX 43204 Bus Interface Units
(BIUs) and iAPX 43205 Memory Control Units
(MCUs). (See Figure 4B.)

Software in a 432 system can be viewed as a collec­
tion of one or more processes that execute on the
GDPs. A fundamental principle of the 432 architec­
ture is that the 432 environment is self-contained;
neither processors nor processes have any direct
contact with the "outside world." In concept, the
432 system is enclosed by a wall that protects ob­
jects in memory from possible damage by uncon­
trolled I/O operations.

In a 432-based system, the bulk of processing re­
quired to support input/output operations is delegat­
ed to peripheral subsystems; this includes device
control, timing, interrupt handling, and buffering. A
peripheral subsystem is an autonomous computer
system with its own memory, I/O d,evices and con­
trollers, at least one processor, and software. The
number of peripheral subsystems employed in any
given application depends on how I/O-intensive the
application is: the number may be varied as needs
change and is independent of the number of GDPs
in the system.

A Jo

'" .. ADl5-0 } ~ BHEN BUS

cs GROUP

Wli

ALE
} PS TIMING

OE GROUP
SYNC

INH1
} PS SYNCHRONIZATION

lCACK ' GROUP

NAK

I5'EFi
HLD

HDA } Noomoc
GROUP

INT

PSR

PE RIPHERAl SUBSYSTEM

171874-3

FIgure 3. IAPX 43203 IP Logic Symbol

5-61 171874-002

IAPX43203

~32/PS, BOUNDARY

432/ps' BOUNDARY

Figure 4A. A Logical View of a 432 System and 2 Peripheral Subsystems

--------,
PROCESSOR I

MODULE I

1.---....,
I

GDP 1 GDP

I
1'--...,....
I

171874-4

~---+---r--~~~--~------~--~------~----------~--_~t~D
,

, I , I.. ________ .J

ACD
BUS

ACD
BUS

Figure 4B. A Physical View of a 2 Bus System
wlt~ 2 General Data Processors and 1 Peripheral Subsystem

,5-62

171874-5

171874'()02

inter IAPX43203

A peripheral subsystem resembles a conventional
mainframe channel in that it assumes responsibility
for low-level 110 device support and executes in par­
allel with system processors. Unlike a simple chan­
nel, however, each peripheral subsystem can be
configured with a complement of hardware and soft­
ware resources that precisely fits application cost
and performance requirements.

The IP is driven by peripheral subsystem software.
To support the transfer of information through the
wall that separates a peripheral subsystem from the
432 central system, the IP provides a set of soft­
ware-controlled windows. A window is used to ex­
pose a single object (typed data structure) in 432
system memory so that its contents may be trans­
ferred to or from the peripheral subsystem. To pre­
serve the integrity of the capability-based protection
mechanisms in the 432 central system, the IP pro­
vides the peripheral subsystem with windowed ac­
cess only to the data part of 432 objects.

In addition, an IP provides a set of functions Which
are also invoked by peripheral subsystem software.
While their operations vary considerably, these func­
tions (and the returned results) generally petmit ob-

jects in 432 memory to be manipulated as entities,
and they enable communication between system
processes and software executing in a peripheral
subsystem.

It is important to note that both the window and func­
tion facilities utilize and strictly enforce 432 address­
ing and protection systems. Thus, a window pro­
vides protected access to an object and a function
provides a protected method by which peripheral
subsystem software can interact with the 432 sys­
tem.

Basic 1/0 Model

As Figure 5 illustrates, input/output operations in a
432 system are based on the notion of passing mes­
sages between processes executed within the
432's central system and device tasks executed in
a peripheral subsystem. A device task can be
thought of as the operation of peripheral subsystem
hardware and software responsible for managing an
110 device. In contrast, the 1/0 device itself either
produces or consumes data. For example, an 110
device may be a real device (e.g., a terminal), a file,
or a pseudo-device (e.g., a spooler) .

...-432 SYSTEM - M.---PERIPHERAL SUBSYSTEM ---•• ~

(0)

PROCESS

(1)

(5)

(0) Process running on GOP needs 110 service.

(4)

(1) Process formulates message describing .service, sends it to device tasks.
(2) Device task receives service order, interprets it.
(3) Device task transfers date according to service order parameters.

(3)

DEVICE
TASK

I/O
DEVICE

171874-6

(4) Device task formulates reply message Containing result of transfer operation, sends it back to originating process.
(5) Originating process receives reply, interprets it, executes accordingly.

Figure 5. Basic 1/0 Service Cycle

5-63 171874-002

iAPX43203

A message sent from a GDP process requesting 1/0
service contains information that describes the re­
quested operation (e.g., "read file XYZ") . .The device
task interprets the message and carries out the op­
eration. If an operation generates input data, the de­
vice task returns the task as a message to the origi­
nating process. (The device task may also return a
message to positively acknowledge completion of a
request.)

The'432's object-based architecture provides a very
general and powerful mechanism for passing mes­
sages between processes. While a given peripheral
subsystem mayor may not have its own message
facility, there is no requirement that it be inherently
compatible with the 432. By interposing a peripheral
subsystem interface through the IP, the standard
432 interprocess communication system can func-!
tion with any device task (see Figure 6).

. Attached Processor

Almost any general-purpose processor, such as the
iAPX 86, iAPX 186, or iAPX 286, can be used as an
Attached Processor in an iAPX 432 system, and it
need not be dedicated exclusively to working with
the Interface Processor. It might, for example, also
execute device task software or user applications.
Although multiple IPs can service a single AP for
increased 1/0 throughput, only one processor (if a
peripheral subsystem uses multiple processors)
should be designated to serve as the AP. Other
processors (or active agents, such as OMA control­
lers) may be given access to IP windows, but con­
trol of the IP should be centralized with the AP.

As Figure 7 shows, the AP is "attached" to the IP in
a logical sense only. The physical connections are·
standard bus signals 'and one interrupt line (which
would typically be routed to the AP via an· interrupt'
controller).

Continuing the concept of the logical 110 processor,
the AP fetches instructions, provides the instructions
needed to alter the flow of execution, and performs
arithmetic, logiC, and data transfer operations within
the peripheral subsystem.

The IP completes the logical 110 processor by pro­
viding data paths between the peripheral subsystem
and the central 432 system. In effect, the IP also
extends the AP's instruction set so that software
running on the logical 1/0 processor can operate in
the 432 system.

As shown in Figure 7, the IP provides both a periph­
eral subsystem bus interface and a standard 432
processor packet bus interface. By bridging the two
buses, the IP provides the hardware link that permits
data to flow between the 432 central system and .the

The IP connects to the 432 central system in exactly
the same way as a 432 GOP. Thus. in addition to
being able to access 432 system ,memory, the IP
supports other 432 hardware"based facilities, includ­
ing interprocessor communication (IPC), alarm sig­
naling, and functional redundancy checking.

On the peripheral subsystem side, the IP provides a
very general bus interface that can be adapted to
any standard microprocessor bus, including Intel's
MUL TIBUS and MUL TIBUS II architectures, as well
as the component buses of the MCS-85 and iAPX
86 families. The IP is connected to the peripheral
subsystem bus as if it were a memory component; it
occupies a block of memory addresses up to 64k
bytes long. Like memory, the IP usually behaves
passively within the peripheral subsystem and is
driven by peripheral subsystem memory references
that fall within its address range.

While the IP generally responds like a memory com­
ponent, the IP's interrupt signal notifies its AP that
an event requiring attention has occurred. Interrupt­
handling software on the AP then reads the status
information provided by the IP to determine the na­
ture of the event.

To summarize, the Attached Processor and the In­
terface Processor interact with each other by means
of address references generated by the AP and in­
terrupts generated by the IP. Since the IP responds
to memory references, other active peripheral sub­
system agents (bus masters), such as OMA control­
lers, may obtain access to 432 system memory via
the IP's windows.

Peripheral Subsystem Interface

A peripheral subsystem interface is a combination of
hardware and software that acts as an adaptor, en­
abling . message-based communiqation between a
process in the 432 system and a device task in a
peripheral subsystem. '

The peripheral subsystem interface is managed by
software, known generically as the I/O controller.
The 1/0 controller executes on the Attached Proces­
sor and uses the facilities of the AP and IP to control
the flow of data between the 432 central system and
the peripheral subsystem.

The 432· hardware imposes no constraints on the
structure of the 1/0 controller. To help simplify the
organization and modification of software, imple­
menters may wish to consider arranging it asa col­
lection of tasks running under the control of a multi- "
tasking operating system. Intel's iMAX operating
system for the 432, for example, provides interfaces,
to either the iRMX-86 or iRMX-88 operating sys-
tems. .

5-64 171874-002

IAPX43203

........ _____ 432 SYSTEM ------..j ______ PERIPHERAL SUBSYSTEM ______ ~

PROCESS

171874-7

Figure 6. Peripheral Subsyst,m I~terface

..... 1-------432 SYSTEM ------........ 1----- PERIPHERAL SUBSYSTEM -----4.~

432
MEMORY'

r------- -----------
I
I

INTERFACE
PROCESSOR

UJ
:>
ID

OPTIONAL
DMA r--..,...~ CONTROLLER

:Ii ---------------, LOGICALVO ,

~ ! PROCESSOR

iil ~1J~~=R ;
a '---r-.... l
:r: INTERRUPT I __________ ~ ______________ J

II:

~

Figure 7. Peripheral Subsystem Interface Hardware

5-65

PS
MEMORY

171874-8

171874-002

IAPX43203

This type of organization supports an asynchronous
message-based communication faCility. Extending
this approach to the device task results in a consis­
tent, system-wide communication model. However,
communication within the I/O controller and be­
tween the I/O controller and device tasks is com­
pletely application-defined. It might be implemented
via synchronous procedure calls with "messages"
passed in the form of parameters.

However it is structured, the I/O controller interacts
with the 432 central system through three major fa­
cilitiesprovided by the Interface Processor: execu-

, tion environments, windows, and functions.

Execution Environments

Within the 432 system the Interface Processor pro­
vides a process addressing environment supporting
the operation of the I/O controller. This environment
is embodied as a set of system objects that are
used and manipulated by the IP. At any time, the 1/0
controller is represented in 432 memory by IP proc­
ess objects and their associated context objects.
Like a GOP, the IP is itself represented by a proces­
sor object. Representing the IP and its. controlling
software in this way creates an, execution environ­
ment analogous to the environment of a process
running on a GOP. This environment provides a
standard framework for addressing, protection, and
communication within the 432 system.

Like a GOP, an IP supports multiple process environ­
ments. The 1/0 controller selects the environment in
which a function is to be executed. This permits, for
example, the establishment of separate environ­
ments corresponding to the individual device tasks

, in the peripheral subsystem. If an error occurs while
the IP controller is executing a function on behalf of
one device task of the 1/0 controller, that error is
confined to the associated process, and processes
associated with other device tasks are not affected.

Windows

Every transfer of data between the 432 central sys­
tem and a peripheral subsystem is performed
through an IP window. A window defines a corre­
spondence, or mapping, between a subrange of
consecutive peripheral subsystem memory address­
es (within the range of addresses occupied by the
IP) and the data part of an object in 432 system
memory (see Figure 8). When'an agent in the pe­
ripheral subsystem (e.g., the 1/0 controller) reads a
windowed address, it obtains data from the associat-

, ed object; writing into a windowed address transfers
data from the peripheral subsystem to the windowed

object. The action of the IP, in mapping the peripher­
al subsystem address to the systemobjeot, is trans­
parent to the agent ml!oking the reference. As far as it
is aware, it is simply reading or writing memory.

Since a window is referenced as memory, any indi­
vidual transfer may be made between an object and
peripheral subsystem memory, an object and a pe­
ripheral subsystem register, or an object and an 1/0
device. While the latter might be appealing from the
standpoint of efficiency, it should be used with cau­
tion.

Using a window to connect an I/O device and an
object in 432 memory directly has the undesirable
effect of propagating real-time constraints imposed
by the device beyond the subsystem boundary into,
the 432 central system and may seriously compli­
cate error recovery. Then too, there is only a finite
number of windows and most applications will need
to manage them as scarce resources not always in­
stantly available. This means that at least some 1/0
device transfers may need to be buffered in periph­
eral subsystem memory until a window becomes
available. It may be simplest to buffer all 1/0 device
transfers in memory and use the windows to transfer
data between the peripheral subsystem memory and
432 system memory at regular intervals.

There are four IP windows that can be mapped onto
four different objects. The 1/0 controller may alter
the windows during execution to obtain access to
different objects, References to windowed subrang­
es may be interleaved in time and may be driven by
different agents in tlie peripheral subsystem. For ex­
ample, the AP and a OMA controller may be driving
transfers concurrently, subject to the same bus arbi­
tration constraints that would apply if they were ac­
cessing memory.

Functions

A fifth window, the control window, provides the 1/0
controller with access to the Interface Prooessor's
function request faCility. The 1/0 controller re­
quests the execution of an IP function by writing op­
erands and an opcode into predefined locations in
the control window's subrange. This procedure is
very similar to writing commands and data to a mem­
ory-mapped peripheral oontroller (e.g., a floppy disk
controller), Upon completion of the function, the IP
interrupts the AP and provides status information
that the IP controller can read through the control
window: The IP can respond concurrently to transfer
requests to the other four windows while it is exe~ut­
ing a function. In addition, data transfers through
windows 0 through 3 may be interleaved with func­
tion request sequences through the control window.

5-66 171874-002

IAPX43203

- PERIPHERAL SUBSYSTEM MEMORY SPACE _1_ MAIN SYSTEM MEMORY SPACE_

-ro-

LOCAL ME MORY ADDRESSES

NORMAL MEMORY
~

I
~

IP WINDOW MAPS SUBRANGE OF
{PERIPHERAL SUBSYSTEM ADDRESS

ONTO AN OBJECT IN MAIN MEMORY.

INTERFACE PROCE :

I OBJECT

,~,oo",u1
SUBRANGE I

WINDOWED MEMORY REFERENCE «'h

!

-

-'--
171874-9

Figure 8. Interface Processor Window

The IP'S function set permits the 110 controller to:

• Alter windows

• Exchange messages with GOP processes

• Manipulate objects

These functions can be viewed as extensions to the
Attached Processor's instruction set that enable the
lID controller to operate in the 432 central system.

The combination of the IP's function set and win­
dows, the AP's instruction set, and possibly addition­
al facilities provided by a peripheral subsystem Qper­
ating system, permits greater flexibility in designing
lID systems. By using the more sophisticated IP
functions, powerful 110 controllers capable of reliev­
ing the .432 system of much I/O-related processing
can be built.

5-67 171874·002

IAPX43203

"
1/0 Data Flow Summary

Figure 9 summarizes the relationship of hardware
and software components that cooperate to move
data between an 1/0 device and 432 system memo­
,ry. Notice how the peripheral subsystem interface
not only ~es the 432 central systemlperipheral
subsystem boundary, but also hides the characteris­
tics of one system from the other. As far as a device
task is concerned, its job is to move data between
memory and an 110 device; ij may be Completely
unaware that it is connected to a 432 system.

This means that existing device tasks may be uti­
lized in a 432 system with little or no modification,
and that programmers working on device tasks need
not be trained in the operation of the 432. Similarly,
a GOP process that needs an 1/0 service need have
no knowledge of the details and characteristics of
the target 1/0 device. As far as it is concerned, it
"performs" 1/0 in the same way that it communi­
cates with a cooperating process--by sending and
receiving messages through the 432 interprocess
communication facility.

Other IP Facilities

The preceding sections have described the Inter­
face Processor as it is used most of the time. The IP
also has two additional capabilities that are used in
special circumstances: physical reference mode and
interconnect access.

Physical Reference Mode
"

Normally, an IP operates in logical reference mode
using capability-based addressing. In other words, it
utilizes an access descriptor to specify a particular
432 object rather than a physical locatiOn In memo­

, ry. Thera are times, however, when logical referenc­
ing is impossible because the objects used by the
hardware to perform logical-to-physical address
translation are absent (or, less likely, damaged). In
these situations, the IP can be used in physical refer­
ence mode.

An IP operating in physical reference mode circum­
vents the protection mechanisms of the 432 system.
The IP provides a, reduced set of functions, and
makes no distinction between the data part and the
access part of an object. In physical mode, a window
maps directly onto a range of contiguous physical

.PERIPHERAL SUISYSTEMiPEIUPHERAL SUBSYSTEM INTERFACE, _I_ 432 SYSTEM---+-

. <PORT OIJECT> (1)

INPUT _ I - OUTPUT

I/O MESSAGE OBJECT
DEVICE 8U~R OBJECT (11---

~ON I COPY DATA II COPY DATA II COPY REFERENCE II
LOCA~: Ips I/O SPACE I I PI MEMORY I I 432 SYSTEM MEMORY

CONTROLUNG
SOFTWARE

SUPPORTING
HARDWARE

I DEVICE TASK 1.1 IP CONTROUER

I DlVlCI! COI'fflIO[[P 121 I I .toP + IP C3I

NOTES: (1) ONLY OBJECT REFERENCE IS MOVED TO AND FROM PORT.
(2) SUPPORTING PROCESSOR IS DEFINED BY APPUCATION;MAY BE

AP,ASEPARATE PROCESSOR; MAY INCLUDE A ow. CONTROll.ER.
(3) MAY ALSO INC~UDE A DMA CONTROLLER.

figure 9. I/O Data Flow Summary

; 5-68, '
'.

'~

II
II

OBJECT

COPY REFERENCE

GDP PIIOCEBS

GDP

171874-10

!

171874-002 '

IAPX43203

memory addresses (rather than object structures in
432 system memory). The IP selects a segment by
specifying a 24-bit physical address when it estab­
lishes a: window, and interprets subsequent sub­
range references as 16-bit displacements (there is
no length checking) from the segment's base ad­
dress. This simple base-plus-displacement address­
ing is similar to traditional computer addressing tech­
niques.

Physical reference mode is used most often during
system initialization to load images of objects from a
peripheral subsystem into 432 system memory.
Once the required objects are available, processors
can begin normal logical reference mode opera­
tions. Logical mode cannot be us~ until the object
tables required for logical-to-physical address trans­
lation have been constructed and 'loaded into 432
system memory.

Interconnect Access

In addition to memory, the iAPX 432 architecture de­
fines a second, independent address space called
the processor/memory Interconnect address
apace. The interconnect space allows interconnect
objects containing one or more interconnect regis­
ters to be maintained. Interconnect registers are
double-byte quantities aligned on double-byte
boundaries. With the exception of a few reserved
addresses, thE:! definition and use of interconnect lo­
cations is not predefined for the IP.

The IP (like the GOP) requires two register locations
in the interconnect space to be defined for any sys­
tem: '

• The processor 10 register (interconnect ad­
dress Or

• The interprocessor communication register
(interconnect' address 2)

The remainder of the interconnect address space
may be used to store or acquire other information
such as configuration parameters, error logs, and
other application-specific quantities.

Window 1 is software-switchable between the mem­
ory and the interconnect spaces. In logical reference
mode, the interconnect space is addressed in the
same 6bject-oriented manner as the memory space
with the ,IP. automatically, performing the logical-to-
physical address translation. "

To access the interconnect space,4he I/O controller
must specify an accesS selector for an interconnect
object'that exposes a segment of the interconnect
space to the IP. The normal window addreSSing
scheme is then used to locate individual intercon-

nect registers within an object. Switching window 1
to interconnect access mode gives the IP access to
interconnect objects. Writing or reading window 1
then is equivalent to the MOVE TO INTERCON­
NECT and MOVE FROM INTERCONNECT opera­
tors of the GOP.

In physical reference mode, the interconnect space
is addressed as a linear' array of even-addressed,
double-byte interconnect registers. As with physical
reference mode memory accesses, the switchable
window is established with a 24-bit address. Periph­
eral subsystem references to the corresponding
subrange are likewise interpreted by the IP as 16-bit
displacements from the base address to individual
interconnect registers.

Memory Structure

The architecture of the iAPX 432 defines a two-level
memory space. Software operates in a segmented
environment in which a logical address specifies the
location of an object (data structure), and the proc­
essor automatically translates this logical address
into a physical address. A physical address is'24 bits
long, allowing a maximum physical memory 6f 1 ~
Megabytes. When requesting access to either read
or Write memorY, a 432 processor transmits the be­
ginning byte of the memory byte to be referenced
along with the length of the access. An Interface
Processor can request to read or write up to eight
byt~s in a single memory access . .

, The multiprocessor architecture of the iAPX 432
places requirements on the ,memory system to en­
sure·the integrity of data. If several processor were
permitted to read and modify the same data struc­
ture without coordination, the data could become in­
consistent or erroneous. Therefore, indivisible read­
modify-write operations are necessary to manip41ate
syStem objects.

When an RMW-read is' processed for a location in
memory, any other RMW-reads to that location must

/ be delayed to that location until a RMW-write to that
location has been received (or until an RMW timeout
has occurred). While the meniory system is awaiting, '
the RMW-write, however, other types of reads and
writes are permitted.

Even so, if an operand is a double-byte or longer,
the memory system must,still ensure that the entire
operand has been read or written before once again
allowing access to the same location. For example,
if two simultaneous writes to the same location 0c­
cur, the memory system 'mus,\ guarantee that the set
of locations used tel store 1he operand does not get
changed to some interleaved combination of the two
written values.

5-69 \

.I
1718740002

inter IAPX43203

Designing Fault-Tolerant Systems

When used together, the five' components in the
iAPX 432 family provide all the logic necessary to
build a system that will tolerate the failure of any
single component or bus, yet continue to execute
programs without error and without interruption. No
software intervention is required: fault detection, iso­
lation, and reconfiguration of the system is per­
formed entirely by the hardware.

Each Interface Processor is able to detect hardware
errOrs automatically because of a capability known
as Functional Redundancy Checking (FRC), so
called because a second or redundant IP checks the
operations of the first or master IP. Functional Re­
dundancy Checking provides the lOW-level hardware
support upon which hardware fault-tolerant modules
are constructed.

During initialization, each IP is assigned to operate
as either a master or a checker (see Figure 10).
While a master operates in a conventional manner, a
checker places all output pins that are being
checked into a high-impedance state. Those pins
which are to be checked on a master and checker
'are parallel-connected, pin for pin, such that the
checker is able to compare its master's o!Jtput pin
values with its own. If on any cycle, the values differ,
the checker asserts HERR and the faulty compo­
nents can be immediately disabled. Thus, any hard­
ware errors can be detected as they occur and be­
fore they have had the opportunity to corrupt the
operation of other components in the system.

MASTER

-r--" INPUTS OUTPUTS r--:--

,

...... CHECKED
I-INPUTS OUTPUTS -HERR

CHECKER

171874-11

Figure 10. Function redundancy checking
detects hardware errors automatically

, ,

While FRC can be used alone to provide automatic
error detection, a completely fault-tolerant system
must also be able to reconfigure itself, n'!placing the
set of failed components witl;i another pair that is still
working. In order to do so, the 432's architecture
enables two pairs of master I checker components to
be combined to form primary and shadow proces-

sors in a configuration known as Quad Modular Re-
dundancy (QMR). See Figure 11. . •

Every module in a QMR system is paired with anoth­
er self-checking module of the' same type. The pair
of self-checking modules operates in lock step and
provides a complete and current backup for all state
information in the module. The mechanism is known
as module shadowing because a shadow is ready to
fill in if the primary fails (or vice versa). Fault detec­
tion a~d recovery occurs transparently to both appli­
cation and system software. When a fault is detect­
ed, the faulty pair is automatically disabled, and the
remaining pair takes over. Only then is system soft­
ware notified that a failure has occurred.

A more complete discussion of the fault-tolerant ca­
pabilities of the iAPX 432 can be found in the IAPX
43204-IAPX 43205 Fault Tolerant Bus Interface
and Memory Control Units data sheet (Order Num­
ber 210963).

Processor Packet Bus Definition

Processors sharing the same memory must contend
for access to that memory over one or more system
buses. Therefore, efficient bus utilization is essential
in a multiprocessing system. A simple and efficient
approach to building a 432 interconnect system is to
use the iAPX 43204 Bus Interface Unit; the VLSI
component provides the necessary Circuitry to inter­
connect 432 processors with from one to eight
memory buses. Some system deSigners, however,
may Plefer to take other approaches to the intercon­
nect design to optimize the cost/performance ratio
of the hardware for their specific application. With
that requirement in mind, Ihtel formulated an iAPX
432 packet bus protocol which supports a wide
range of system bus architectures.

To reduce bus occupancy and increase the perform­
ance range of 432 systems, the packet bus protocol
separates processor requests and replies into sepa­
rate packets. A processor can issue a request pack­
et and leave the system bus free until the reply pack­
et is returned from memory.

As a second method of maximizing the efficiency of
bus utilization, the packet bus protocol allows vari­
able length packets of data. If a processor wishes to
read a 64-bit operand, it can be done with a single
request and reply packet. Thus, fewer individual
storage requests are required to process long oper­
ands. This aspect of the protocol enabtes proces­
sors to interface easily to 16-bit, 32-bit, or even 64-
bit system buses.

5-70 171874-002

inter
r-----------------~

I
I
I
I
I
I
I
I
I
I
I
I
I

MEMORY BUS I ________________ J

i------- j
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

I MEMORY BUS I l _______ J

r--------

MEMORY BUS

IAPX43203

QMR
PROCESSOR

MODULE

FRC
PROCESSOR

MODULE

BASIC
PROCESSOR

MODULE

HARDWARE
RECOVERY

HARDWARE
SELF·CHECKING

SOFTWARE·PROGRAMMABLE
RECONFIGURATION

171874-12

Figure 11. Fault·Tolerant Alternatives

This section describes the 19 Signal lines that com­
pose the Processor Packet bus and their timing'rela­
tionships. While this section defines all valid bus ac­
tivities, the processors do not necessarily perform all
allowed activities; nevertheless, slaves to the Proc­
es~r Packet bus must support all state transitions
to ensure compatibility.

The Processor Packet bus consists of three control
lines:

• PRO (Processor Packet bus request)

• BOUT (Enable Buffers for Output)

• ICS (Interconnect Status)

5-71

PRQ has two functions whose use depends upon
the application; for example, PRO either indicates
the first cycle of a transaction on the bus or the can­
cellation of a transaction initiated during the previous
cycle. Of the three control lines, BOUT has the sim­
plest function, serving as a 'direction control for buff­
ers in larger systems which require more electrical
drive than ~he processor components can provide.
The ICS signal has three different interpretations de­
pending on the state of the Processor Packet bus
transaction. It may indicate whether or not:

• An interprocessor communication (IPC) is
waiting,

• A slave requires more time to service the
processor's request, or

• A bus error has occurred.

171874·002

iAPX43203

The bus also includes 16 three-state Address/Con­
trol/Data lines (ACD15':'ACDo). These lines emit in­
formation to specify the type of cycle being initiated;
transmit addresses, data to be written, and control
information; and during a read operation, receive
data returned to the processor. Details of the ACD
operation are summarized in Figure 12.

Address/Control/Data Lines

In the first cycle (T1 or Tvo) of a Processor Packet
bus transaction (indicated by the rising edge of
PRO), the eight high-order ACD bits (ACD15-ACDa)
specify the type of the current transaction. In this

Initial State Next State . Trigger
Ti T1 Bus cycle desired

Ti No bus cycle desired
T1 T2 Unconditional
T2 T3 ICShigh

Tw ICSlow

. first cycle, the low-order ACD bits (ACD7-ACDo)
contain the least significant eight bits of the 24-bit
address.

During the next cycle (T2), the remainder of the ad­
dress is presented on the ACD pins, aligned so that
the most significant byte of the address is on
ACD15-ACDa while the mid-significant byte is on
ACD7-ACDo. If PRO is asserted during T2, the ac­
cess is cancelled and the ACD lines are not defined.

During the third bus cycle (T3 or Tw) of a Processor
Packet bus transaction, the processor presents a
high impedance to the ACD lines for read transac­
tions and asserts data for write transactions.

171874-13

T1 Cancelled, Access Pending (Not generated by IP)
n Cancelled, No Access Pending

T3 T3 Additonal transfer required, ICS high
Tw Additional transfer required, ICS low
Tv All transfers completed. no overlapped access
Tvo Current write with overlapped access

Tv Ti No access pending
T1 Access pending

Tvo T2 Unconditional
TW . Tw. ICSlow

T3 ICShigh

Figure 12. Processor Packet Bus State Diagram

5-72 171874-002

IAPX4320S

Once the bus has entered T3 or T¥, the sequence of
state transactions depends on the type of cycle re­
quested during the preceding T1 or Tvo. Accesses
ranging in length from 1 to'32 bytes may be request­
ed, although the IP will request no more than 8 bytes
in a single access (see Table 2). If a transfer of more
than one double byte has been requested, ;f3 must
be· entered for every double byte that is transferred.
ICS dictates whether the processor simply enters T3
or first enters Tw to wait.

After all data is transferred, the processor enters ei­
ther Tv or Tvo. Tvo can be entered only when the
processor is prepared to accomplish an immediate
write transfer (overlapped access). During Tvo, the
ACD lines contain address and specification infor­
mation aligned in the same fashion as T1. If the
processor does not require an overlapped access,
the bus state move to Tv (the ACD lines will be high
impedance). After Tv, a new bus cycle can be initiat­
ed with T1, or the processor may enter the idle state
(Ti).

Interconnect Status (ICS)

As discussed earlier, ICS has three possible, inter­
pretations depending on the current state of the bus
transaction (see Table 3). Even so, under most con­
ditions ICS indicates whether or not an IPC is pend­
ing; a valid low during any of these cycles with IPC

significance signals the processor that an IPC has
been received. While an iAPX 432 processor is only
required to record and service one IPC or reconfigu­
ration request at a time, logic in tt)e interconnect
system must record and sequence multiple (and
possibly simuJtaneous) IPC occurrences and recon­
figuration requests. Thus, the logic that implements
ICS, must accommodate global and locaIlPC arrivals
and requests for reconfiguration as individual
events:

1. Assert IPC significance on ICS for the arrival of an
IPC or reconfiguration request.

2. When the iAPX 432 processor reads interconnect
address register 2, it will respond to one of the
status bits for the IPC or reconfiguration request sig­
nalled on ICS in the following order:

BIT 2 (1 = reconfigure, 0 = do not reconfigure)
BIT 1 (1 =globallPC pending, O=no globallPC)
BIT 0 (1 = local IPC pending, 0 = no local 1pC)

3. The logic in, the inte{COnnect system must clear
the highest order status bit that was serviced by th8
iAPX 432 processor, and if an additionallPC mes­
sage has arrived, ttle interconnect logic must signal
an additional IPC to the processor by setting ICS
high for at least one cycle and then setting ICS low
for at least one cycle, while ICS has IPC signifi­
cance.

Table 2. ACD SpecIfIcatIon Encoding

ACD' ACD ACD ACD ACD ACD' ACD ACD
15 14 13 12 11 10 • 8

Acceaa Op RIIW Length lIocIfIenI
0- 0- 0- 000-1 Byte ACD15 - 0:
Memory Read Nonnal 001·2 Bytes OO-lnstSag

010-4 Bytes Access
011-8 Bytes 01-Stack Sag
100-8 Bytes Access

1- 1- 1- 101·10 Bytes· 10-Context CU i Interconnect Space Write RMW 110-16 Bytes. SegAccess
111-32 Bytes· 11-Other

ACD15 = 1: ,
• Not implemented OO-Reserved

01-Reserved
10-R8eerved
11-lnterconn

Register

Table 3. ICS InterpretaUon

State Slgnlllcance Level

High Low.
TI, T1, T2 IPC NolPC IPC

writing writing

T3,Tw Stretch
Don't·

Stretch Stretch

TV,Tvo Err Bus Error No Error

5-73 171874-002

inter IAPX4320S

Processor Packet Bus Request (PRQ)

PRO is normally low and goes high only during T1,
T2, and Tvo. High levels during Tvo and T1 indicate
the. first cycle of an access. A high level during T2
indicates that the current cycle is to be cancelled.
See Table 4.

Table 4. PRQ Interpretation
State PRQ Condition

n 0 Always
n 1 Initiate access
T2 0 Continue access

1 Cancel access
T3 0 Always
Tw 0 Always
Tv 0 Always
Tvo 1 Initiate overlapped access

Enable Buffers for Output (BOUT)

BOUT is provided to control external buffers when
they are present. Table 5 and Figures 13 through 18
show its state under various conditions.

Table 5. BOUT Interpretation
Low·to-Hlllh High-to-Low Hlllh·to-Low
Transition Traneltlon Transition

BoU1 AIwe,aHlgh orL_ or Low or High
Write n, T2, T3, Tw, Tvo Ti None ' Tv
Read T1,T2 n,Tv T3,Tw None

Processor Paeket Bus Timing

Eabh timing diagram shown on the following pages
illustrates the timing relationships on the Processor
Packet bus during various types of transactions. This
approach to transfer timing allows maximum time for
the transfer to occur and yet guarantees hold tim.e.

Any agent connected to the Processor Packet bus is
recognized as either a processor (a GOP or IP) or a
slave (e.g., the memory subsystem). '

In all transfers between a processor and a slave, the
data to be driven is clocked for three·quarters of a
cycle before it is sampled. This allows adequate time
for the transfer and ensures sufficient hold time after
sampling. The BOUT timing is unique because
BOUT functions as a direction control for external
buffers.

Detailed set·up and hold times can be found in the
AC Charcteristics section.

NOMINAL WAITE CYCLE

5 CLKA CYCLES

T, Tv T,

CLKA

AeD15··
ACDo ,_uuuuu{ ADDA/SPEC >{ ADDA >.{ WRITE DATA }_u'-_uuuu_u _____ { ADDRISPEC >{ ADDA }-

PRQ I

ICS IPC X IPC

BOUT ---'

ACD15 ACD. ACDrACDo
Hi-Z Hi-Z
Spec Lo-ad,
Hi·ad, Mid-ad,
Hi-data 1· Lo-data1
Hi-Z Hi-Z
Hi-Z Hi-Z
Spec Lo-adr
Hi-ad, Mid-ad,

• Undefined ~ slngl!J byte write

\

X IPC Y STRETCH '< ERR X IPC

\ I
State

Ti
T1
T2
T3
Tv
Ti
T1
T2

, Figure 13. Nominal Write Cycle Timing

5-74

l \

X IPC X IPC x:
171874-14

171874-002

ACD1SACD. ACD,ACDo StIlle
Hi-Z Hi-Z Tv··
Spec Lo-adr T1
Hl-adr Mid-adr T2
HI·data1' Lo-data1 T3
Spac Lo-adr Tvo
HI-adr MId·adr T2
Hi-data1 Lo-data1 T3
'Undefined if single byte write

"(Preceded by read cycle)

CLKA

ACD" .•• ACDO -----------

PRQ

lea IPC

BOUTJ

HI-Z
Spec
Hi-adr
Hi-data1
Hi-data2
Hklata2
Hi-Z
Hi-Z

HI-Z
Lo-adr
Mid-adr
Lo-data1
Lo-data2
Lo-data2
HI-Z
Hi-Z

Ti
T1
T2
T3
Tw
T3
Tv
Ti

Figure 14. Minimum Write Cycle Timing

Figure 15. Stretched Write Cycle Timing
, -', ~, "

5-75

171874-16

171874-002

IAPX43203

MINIMUM READ CYCLE

"I 5 ClKA CYCLES I·
T, T. T, Tv , T, I T,

ClKA

ACD ACDo _________ _

'----- ____ " ----------------{ ADDR/SPEC >C

PRO ----
ICS IPC

BOUT ---'

AC01SACDa A~ACDo

Hi-Z Hi-Z
Spec Lo-adr
Hi-adr Mid-adr
Hi-data" Lo-datal
HI-Z Hi-Z
Hi-Z Hi-Z
Spec Lo-adr

"Undefined if SIngle byte read

I·

ClKA

\\....---_...1/
171874-17

State

Ti
Tl
T2
T3
Tv
Ti
Tl

Figure 16. Minimum Read Cycle Timing

MINIMUM READ CVClE (8UFFERED SVSTEM)

"I 6 ClKA CVClES

ACDIS ... ACDoo ___________ { "DDR/SPEC X "DDR }-------------,--{ RE"DDAT" }----------------{ "DDR

PRO /

ICSX IPC X

80UT--1

ACD15ACDa A~ACDo

Hi-Z' Hi':'Z
Spec Lo-adr
Hi-adr Mld-adr
Hi-Z Hi-Z
Hi-datal" Lo-datal
HI-Z HI-Z
Hi-Z Hi-Z

'Undefined if SIngle byte read

.\
IPC X IPC ~ STRETCH / STRETCH ~

\

State

Ti
Tl
T2
Tw
T3
Tv
Ti

Figure 17. Stretched Read Cycle nmlng

5-76

" ERR X .PC x::::
/

171874-18

17187.4-002

inter IAPX43203

I- 2 CLKA CYCLES ·1
T, 1 T, T, 1 T, T, T, Tv T,

CLKA

AC0 15 ..
ACD. _____ _

•
PRO--i \~--CANCEL

IPC

ACD15 ACDa ACIl?ACDo State

Hi-Z Hi-Z To
Spec La-adr T1
Undefined Undefined T2u

Spec Lo-adr Tt
Hi-adr Mid-adr T2
Hi-data' Lo-data T3
Hi-Z Hi-Z Tv
Hi-Z Hi-Z Ti

'Undefined if single byte writa
"Access Cancelled

NO
SIGNIFICANCE

IGNORE
COMPLETE~Y

tNew Access Started (Slave must support this subsequent
access even though all processors may not implement it.)

IPC

Figure 18. Minimum Faulted Access Cycle

ELECTRICAL CHARACTERISTICS

171874-19

Tables 6 through 8 and Figure 19 through 24 provide electrical specifications and include 1/0 timing, readl
write timing, and the maximum ratings for the IP.

T bl 6 a e 43~03 Ab so ute M ax mum R I atngs
AbllOlute Maximum Ratln".

Ambient Temperature Under Bias O"Cto 70"C
Storage Temperature -55'Cto +15O"C
Voltage on Any Pin with Respect to GND -1Vto +7V
Power Dissipation 2.5 Watts

Table 7 IAPX 43203 DC Characteristics
Vee = 5V ± 10% T. = O"C to 70'C

Spec De8Crlptton Min Max Unlta

VILe Clock Input Low Voltage -0.3 +0.5 V

VIHC" Clock Input High Voltage 3.5 Vcc+ O.5 V
VIL Input Low Voltage -0.3 0.8 V
VIH Input High Voltage 2 VCC+ 0.5 V
VOL Output Low Voltage - 0.45 V
VOH Output High Voltage 2.4 Vcc V
Icc Power Supply Current - 450 mA
IlL Input Leakage Current - ±10 vA
10 Outut Leakage Current - ±10 vA
IOL @O.45Vol

HERR - 8 mA
FATA[- 4 mA
AD15" . ADo - 4 mA
OTHER - 2 mA

10H @2.4VQH - -0.1 mA

'For operation at 5 MHz or slower, the 43203 may be. operated with a VIHC minimum of 2.7 volts.

5-77 171874-002

IAPX43203

Table 8. IAPX 43203 AC Characteristics

Vee = 5 ± 10%
T A = O"C to 70"C

Loading: AD15 ... ADo 20 to 100 pF
Other 20 to 70 pF

Symbol Description 8 MHz 7 MHz 5 MHz Unit Min Max Min Max Min Max
Global Timing Requirements ,

lov Clock Cycle Time 125 5QO 143 500 200 500 ns
tr, t1 Clock Rise and Fall Time - 10 - 10 - 10 ns
T1, T2 ,
T3,T4 Clock Pulse Widths 26 ,250 • 30 250 45 250 ns
tiS INIT to Si9!!!! Hold Time 15 - 20 - 20 - ns
tSI ~al to INIT- Setup Time 10 - 10 - 10 - ns
tiE INIT Enable Time 8 - 8 - 8 - lov
System Side Timing Requirements

toe Signal to Clock Setup Time , 5 - 5 - 5 - ns
te~ Clock to Signal Delay Time - 55 - 85 - 85 ns
tOH Clock to Signal Hold Time 25 - 35 - 35 - ns
toH Clock to Signal Output Hold Time 15 - 15 - 20 - ns
tEN Clock to Signal Output Enable Time 15 - 20 - 20 - ns
tOF Clock to Signal Data Float Time - 55 - 75 - 75 ,ns

Peripheral Subsystem Side Timing Requirements

tAS AD15 ... ADo, CS, WR, BHEN
Setup Time to ALE Low 0 - 0 - 0 - , ns

teH AD15 ... ADo, CS, WR, BHEN
Hold Time to ALE Low 32 - 35 - 35 - ns

tss SYNC High Setup Time to
CLKAHigh 50 - 60 - 60 - ns

tSH SYNC Low Hold Time to
CLKAHigh 30 - 40 - 40 - ns

tsw SYNC High Pulse Width 50 tsS+ 80 tSS+ 60 tSS+
1.5 lov 1.5 lov 1.5 tev ns

tos Write Data Setup to
Sampling CLKA High 10 - 20 - 20 - ns

tox Write Data Hold to Sam~
CLKA Low (Advanced XACK) 10 - 20 - 20 - ns

tOHX Write Data Hold to XACK 5 - 5 - 5 - ns
tASV AD15 ... ADo, CS, WR, BHEN

Setup to SYNC 120 - 160 - 160 - ns

5-78 171874·002

inter IAPX43203

Table 8. IAPX 43203 AC Characteristics (Continued)

Symbol Description 8 MHz 7 MHz 5MHz
Unit Min Max Min Max Min Max

Peripheral Subsystem Timing RespOnses

tsDH CLKA High to HLD, INT, PSR - 75 - 90 - 90 ns
tAIH Valid AD15 ... ADo, CS

to ChiPgWH1 Valid Delay - 80 - 85 - 85 ns
tEDE DE to D N Delay - 65 - 70 - 70 ns
tEND DE to Enable AD15 ... ADo

Buffers Delay (Read Cycle) - 70 - 75 - 75 ns
tDAD DE to Disable AD15 ... ADo

Buffers Delay (Read Cycle) - 52 - 52 - 52 ns
teED CLKA High to Enable

AD15 ... ADo Buffers Delay - 70 - 75 - 75 ns
teVD CLKA High to Valid

Read Data D~ . - 80 - 90 - 90 ns
tax DE Inactive to A K

Inactive Delay ~ ·80 - 90 - 90 ns
tDDs AD15 ... ADO Disable

Setup to DE~ High 0 - 0 - 0 - ns
tXDE XACK Low to EN High

(Write Cycle) - 35 - 40 - 40 ns
teDE CLKA High to DEN Low - 70 - 75 - 75 ns

XACK Timing Characteristics

Buffered Accesses with XD = 0
tAX ALE High to XACK Valid 0 65 0 70 0 70 ns
tDSX AD15'" ADo Read Data Valid

Setup to XACK Valid
(When internal state does not
allow XACK before SYNg) 20 - 20 - 20 - ns

tADX Valid AD15.' . ADo to XA K
Valid (When Internal State
allows XACK before SYNC) - 120 - 140 - 140 ns

Buffered Accesses (with XD = 1 or
XD = 2) or Random Accesses

tDSX AD15·· . ADS Read Data Valid
SetuptoXA K 20 - 20 - 20 - ns

Faulted Accesses
tSDl CLKA Low to NAK - 75 - - 90 ns
tSNX Setup of NAK"to XACK 50· - 50 - 50 - ns

NOTES:

1. All timing parameters are measured at the 1.5V level except for ClKA and ClKs which are measured at the 1.8V level.

2. 5 MHz components are marked CR43203-5; 7 MHz components are marked CR43203-7, and 8 MHz components
CR43203-8.

3. Write data is sampled for only one clock cycle. The PS must meet tOHx speCification. thereby guaranteeing tox.

5-79 171874-002

IAPX43203 '",.'

CLKA

CLK_

CLKA

ACD1S",ACDO'
iREADDATA

TIMINGI
INVALID

loe

INValiD INVALID

IDC tDN

171874-20 171874-22

figure 18: 43203 Clock Input SpecItIcetIon

CLKA

ALL OUTPUT
PINS

EXCEPT lOUT
ION _SIDE) --+---I-'I'--If---I-~-

80UT

171874-21

figure 20. 43203 Output nmlng SpecIfication

'5-80

Figure 21. 43203 Input 1:1mlng SpecIfIcation

CLKA

- ... IDC

lSI

MASTER/CHECKER

171874-23

Figure 22. 43203 Inltbllizatlon nmlng

171874-002

·il 10
o·

'" Icc"

iii SYNC

I ~

:; { j om

~
:i i "'41
!I
'. '"
. ".,

NOTES:

IAPX43203

- r-\
VALIDAOU VALID WRITE OA'A

..... WOO ••

~ -d ~~~r--Ft--~ -:-~-=±;~ . ~'w.

-I=.;; ::!j'1 ~ 1--+, ~ ..
liD.' 1I0.'I11I!AD lID.IWIII

I-- '---1 :.:,11= "" 1-""-1

I- --==:1.

~ ~ r>.-·"
VAUDAGOfI .,ALlDWIUTEOA' ..

~ ~

~-t-~., f--IO_0-r-IDOS~

'll'AUDAODR Vall. RlAD OA'A

~"-j r---""-r--
171874-24

Figure 23. Local Processor Bus Timing

~--r-l--~~IL-

I-- f-.... ~ .~ ~
~ ... ~ 1-101 ~

I-~

n
!-'-1

_ 1-"- ~". ~~~.
VAUOAOO_ ..1 VAlIOWRITEOAlA

-"'''-I ~

"" e: I- IEMl IO~~
YAUOAOORESS VALlO.U.ODA'A

-""'-I _.,,,:3=
1---..

171874-25

1. @ and @ could be the same clock edge for a buffered mode read.

2. lID Clock edge ~Id be one or two clocks after clock edge @. depending on the value of the write sample delay.

Figure 24. Multlbusl8l Interface Timing

5-81 171874-002

IAPX43203

'INSTRUCTION SET

Table 9 compare$ the operators available in the IP's
function set to those provided in the GDP's instruc­
tion set. Since windows are unique to Interface Proc­
essors, the ALTER MAP AND SELECT OBJECT
function has no counterpart in the GDP. Conversely,
the IP has no functions for performing arithmetic op- "
erations (except for the atomic function INDIVISI­
BL Y ADD SHORT ORDINAL) or logical operations
on numeric (lr character data types, nor does it have
any operators .to alter the flow of execution (e.g.,
branch or call fU!1ctions).

To the extent that these classes of operators are
needed in a peripheral subsystem interface, they
can be provided by a combination of the AP's in­
struction set and the IP's window faCility. By opening
a window, for example, on a message received from
a GDP process, the I/O controller can use AP in­
structions to test and branch on the value of a mes­
sage filed read through the window.

Through i,ts windows, an IP provides the basic ability
to read and write the contents of the data parts of
objects. Using its function 'request facility, however,
an IP can manipulate Access Descriptors (ADs),
which reference objects. The IP can examine a com-

plex (multi-segment)' obJ~, gaining acCess to its
component. segments. It can also perform amplifica­
tion on both hardware-recognized typed objects and

. software-recognized types. When manipulating ob­
jects of a protected type, an I/O controller is acting
as a type manager, and its objects must be coordi­
nated with the 432 type manager for the qbJect.

The Interface Processor provides the I/O controller
with both process and processor communication fa­
cilities. Interprocess communication is asynchro­
nous and is performed with the aid of ports, system
objects that provide synchronization and message
queues. Any object may be sent as a message from
a process to a port.

Interprocessor communication messages areprede­
fined (see Table 10). The I/O controller can send
one of these messages to an individual processor,
or it can broadcast the message to all processors in
the system.

The IP also provides an optimized data passing facil­
ity by using objects of type IP-Message and the
OPEN MESSAGE and CLOSE MESSAGE opera­
tors.

Table 9. IP/GDP Operator Comparison

Operator Implementation

WINDOW DEFINITION OPERATOR
~Iter Map and Select Object IP

, ACCESS DESCRIPTOR MOVEMENT OPERATORS
Copy Access Descriptor GDP+IP
Null Access Descriptor GDP
Move to Embedded Data Value . Similar

RIGHTS MANIPULATION OPERATORS
Amplify Rights GDP+IP
Restrict Rights GDP

l)'PE PEFINITION MJ\NIPULA TION OPERATORS
. Retrieve Type Definition GDP

REFINEMENT OPERATORS
Create Refinement GDP
Create Typed Refinement

.
GDP

, OBJECT CREATION OPERATORS
Create Object GDP
Create Typed Object GDP

ACCESS INSPECTION OPERATORS
Inspect Access Descriptor GDP+IP
Inspect Object GD,~+lP ,.'
Equal. Access GDP

5-82 171874-002

inter IAPX43203

Table 9. IP/GOP Operator Comparison (Continued)

Operator Implementation

ACCESS INTERLOCK OPERATORS
Lock Object GDP+IP
Unlocked Object , . GDP+IP
Indivisibly Add Short Ordinal GDP+IP
Indivisibly Add Ordinal GOP
Indivisible Insert Short Ordinal Similar
Indivisible Insert Ordinal GOP

CONTEXT OPERATORS
Enter Environment GDP+IP
Enter Global Environment GDP+IP
Set Context Mode GOP
Adjust Stack Pointer GOP
Call GOP
Call through Domain GOP
Return GOP
Return and Fault GOP

PERIPHERAL SUBSYSTEM,MODE OPERATOR
Set Peripheral Subsystem Mode IP

PROCESS COMMUNICATION OPERATORS
Send . GDP+IP
Receive GDP+IP
Conditional Send GDP+IP
Conditional Receive GDP+IP
Surrogate Send GDP+IP
Surrogate Receive GDP+IP
Delay Process GOP
Send Process GOP
Dispatch IP
Set Process Mode GOP
Read Process Clock GOP
Open Message IP
Close Message IP

PROCESSOR COMMUNICATION OPERATORS
Send to Processor GDP+IP
Read Processor Status GDP+IP

INTERCONNECT OPERATORS
Move to Interconnect GOp·
Move from Interconnect GOp·

BLOCK-MOVE--oPERATORS GOP
BRANCH OPERATORS GOP
CHARACTER OPERATORS GOP
SHORT-ORDINAL OPERATORS GOP
SHORT-INTEGER OPERATORS GOP
ORDINAL OPERATORS GOP
INTEGER OPERATORS GOP
SHORT -REAL OPERATORS GOP
REAL OPERATORS GOP
TEMPORARY REAL OPERATORS GOP

Legend:
GDP+IP
IP

IP and GOP implementations are identical.

GOP
similar .

IP implements operator, GOP does not.
GOP implements operator, IP does not.

While conceptually similar, IP implements operator differently than GOP .
Window 1 of IP provides equivalent interconnect access.

5-83

,

.,

171874-002

'IAPX43203

Table 10. IPC Mesaaae Codes

The following list contains the Interprocessor Communication message codes in decimal along with a
short description of the message:

package

o Wakeup'
1 Start
2 Stop
3 Accept Global IPCs
4 Ignore Global IPCs

5 Requalify Object Table Cache
6- Reset Processor
7 Requalify ProceS$Or
8-14 Defined for GOP but ignored by IP

The 43203 is packaged in a 68-pin. leadless JEDEC type A hermetic chip carrier as shown below .

• 050

~ ___ (1~i __ ~IEnaIm~mornI~--------'
1 T---

.800 I (2Q.32)

·03I==R
(0.191 1 F

E-

D .960
(2'.31)

PIN NO. 11 ~:'~FP1NNO" MARK

1-----(24.31) •

.130
(3.30)

171874-26

Additional Information

More information about the iAPX 432 Micromain­
,frame architecture can be found in the following pub­
lications:

• iAPX 432 Interface Processor Architecture,
Reference Manual (Order Number 171863)

• iAPX 432 General Data Processor Architec­
ture Reference Manual (Order Number
171860)

• iAPX 432 Interconnect Architecture Refer­
ence Manual (Order Number 17:2487)

Information on the electrical characteristics of other
432 components can be found in the following publi­
cations:

• iAPX 43201/43202 General Data PrOcessor
Data Sheet (Order Number 590125)

• iAPX 43204143205 FauH Tolerant Bus Inter­
face and Memory ep-ntrol Units (Order Num­

. ber 210963)
• iAPX 43204/43205 BIUlMCU ElectriCal Spec­

ifications (Order Number '172867)

5--84 171874-002

inter
IAPX 43204, iAPX 43205

FAULT TOLERANT
BUS INTERFACE AND MEMORY CONTROL UNITS

• Software Transparent Dete~on And
Recovery From Any Single Point Failure

• S~pports Up To 31 Processors For A
Large Performance Range ,

• Configure From 1 To 8 Buses For High
Bandwidth And Fault Tolerance

• Single, Dual, and Quad Redundant
Configurations Tailor System Designs
to Meet A Spectrum of Fault Tolerance
And Cost Objectives

• VLSI System Simplifies Design With
Low TTL Count

• Dynamic RAM Refresh with Error
Correction and Scrubbing

The 43204 Bus Interface ""nit (BIU) and 43205 Memory Control Unit (MCU) are two VLSI devices that support
the construction of fault tolerant, multiple processor 432 systems. Together they support: multlprocessQr ar­
bitration, dynamic RAM control, and ECC with a minimal amount of TTL. Fault tolerant systems can be built
that,tolerate the failure of any single component or bus. The BIU and MCU detect thEi failure and automatically
switch to a redundant processor, bus, or memory. Hardware failures are completely masked from application
software. , '

r-------l
PROCESSOR I

I
I
I
I

MODULE I

GDP

I r----,
I
I
I
I

GOP

I '---r-~
I

L _______ .J

ACD
BUS

IP

ACD
BUS

r-----'
I MEMORY :
I MODULE I
I I
I I
r I
I I
I I

I
I

MACD
BUS

MACD
BUS

Figure 1. A 2 Bus System with 2 General Data Processors and 11/0 Subsystem.

Intel Corporation Assumes No Responsibility forthe Use of Any Circuitry Other Than Circuitry Embodied in an Intel'Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.
@> INTEL CORPORATION. 1983

5-85
October 1983

ORDER NUMBER: 210983-002

,
., .. ---~~--.-- .

IAPX 43204, 43205

INTRODUCTION

The first phase'of the iAPX 432 program introduced
two processor types: the General Data Processor
(GOP) and the Interface Processor (IP). The GOP
was implemented with twoVLSI components: iAPX
43201 and iAPX 43202. The IP was Implemented as
a single VLSI component: the iAPX 43203. These
three VLSI components Implement the processor
architecture for the,iAPX 432. System builders have
constructed multiple processor systems by sur­
rounding the VLSI processors with discrete logic.
which provided the interface to shared memory and
the interprocessor communication paths. The meth­
od for interconnecting IAPX 432 processors and
memories was unique for each system. since no
standard had been defined.

This data sheet describes ,a pair of VLSI compo­
nents: the iAPX 43204 Bus Interface Unit (BIU) and
the iAPX 43205 Memory Control Unit (MCU) that
form a unifying interconnect architecture for build­
ing iAPX 432 systems. Together. these components
form the basis for constructing multiple-processor
fault-tolerant iAPX 432 systems.

The iAPX 432 together with the BIU/MCU intercon­
nect architecture provide:

• Integrated fault tolerance. The VLSI interconnect
components (BIU/MCU) integrate all the detec­
tion and recovery logic required to build a system
that can tolerate any single component failure.

• Software transparent fault toler(!lnce. Hardware
performs all fault detection and recovery func­
tions transparent to application software. The
machine never stops.

• Configurability. The BIU and MCU support a
range of fault tolerance and performance options
to meet a diverse set of cost. performance. and
reliability needs,

• Standard VLSI solution. Very little external logic is'
required.

• Reliable software. The iAPX 432 system's "need
to know" (capability) addressing confines errors.
prot~ing the system from errant software.

The object-based architecture of the iAPX 432 pro­
vides a robust and flexible environment for cooper­
ating. concurrent software systems. The iAPX 432
processors use a cooperating. self-dispatching
mechanism to automatically share the workload be­
tween the available processors. The number of pro­
cessors available In the system is transparent to
software.

The BIU and the MCU extend the logical flexibility
and robustness of the iAPX 432 processors into the
physical implementation of iAPX 432 systems. The
BIU and MCU allow the iAPX 432 hardware to modu­
larly and transparently extend the processing power
(from 1 to 63 modules of processors or memories).
bus bandwidth (1 to 8 backplane buses). and fault­
tolerant capabilities of the system. Figure 1 shows
an example of a two bus three processor (2 GOPs +
1 IP) system.

As Figure 2 shows. an iAPX 432 system based on
the i~terconnect architecture may be exp~nded
gracefully. A system with one processor and one
memory may be built with a single memory bus.
Transparent multiprocessing may be achieved by
simply adding processor modules. When additional
memory is required. memory modules may be add­
ed onto the single memory bus. When more memory
bandwidth is required. an additional ·memory bus-

, (es) can be added. None of these alternative sys­
tems require any change to application software.

In an iAPX 432 system. each processor is unaware
of the manner in which the memory address space is
actuailY implemented. Hardware located in the BIUs
determines how processor addresses are mapped
to buses and memory systems.

210963-002

" !

inter iAPX 43204, 43205

ONE PROCESSOR MODULE
ONE MEMORY MODULE

EXPANDED NUMBER
OF MODULES

EXPANDED NUMBER
OF BUSES

Figure 2. Modular Expansion

BUS INTERFACE UNIT

The Bus Interface Unit or BIU provides the switching
function of the IAPX 432 interconnect system. That
is, it accepts access requests from an iAPX 432 pro­
cessor and, based on the physical address, it de­
cides which memory bus(es) will be used to perform
the access. The BIU is also responsible for arbitrat­
ing the usage of the memory bus. Finally, the BIU is
responsible for propagating error information
throughout the sytem.

MEMORY CONTROL UNIT

The Memory Control Unit or MCU interfaces mem­
orv storage arrays to the memory bus. The 'storage
arrays will typically be constructed with high-density

5-87

dynamic RAM (DRAM) components. All types of
DRAMs are supported: 16K, 64K, 256K, even par­
tially good components. The ~CU manages. the
stf>rage array as a logical collection of 32 data b~ts, 7
bits of error correcting code (ECC), and an optional
spare bit. The'MCU can automatically refresh the
dynamic storage array. In addition, the MCU can
scrub single-bit errors from the storage array as a
background task. Scrubbing is accomplished ~y pe­
riodically reading the storage array, correcting all
single-bit errors, and detecting and reporting all
double-bit errors. The MCU accepts variable length
data requests from the memory bus and performs
the necessary access sequencing to read or write
the data into the storage array. A modest amount of
external logic is required to interface the MCU to the .
storage array RAMs - for simple configurations, as
few as 12 external TTL packages are required.

210963-002

iAPX 43~,.43205

MEMORY BUS

The memory bus (sometimes referred to as the
MACO bus) provides the principal communication
path, carrying all memory 'access requests and in­
terprocessor cornmunication. The memory bus con­
. nects BIUs to MCUs. Each node in the interconnect
system tracks each operation on the memory bus to
·which it is attached. Thus, unlike most bus proto­
cols, each BI U and MCU keeps track of all outstand­
ing requests on the bus - not just the ones made by
the BIU or MCU itself. Control for the bus is fully
distributed; there is no centralized bus controller.

INTEGRATED FAULT TOLERANCE

BIUs and MCUs ,also form the basis for building
fault-tolerant iAPX 432 systems. Functional Redun-

r---- - - - - - - - - - - - - - --,

I
I
I

REDUNDANT PROCESSOR MODULE

MASTER CHECKER

GDP

I I
I I

L~---------~~-----~

dancy Checking (FRC) provides the low-Ie~el I1ard­
ware support on which hardware fault-tolerant
modules are constructed. In Figure 3, notice that a
redundant processor module is formed by replica­
tion of the VLSI GOP and BIUs. A redundant mem­
ory module is formed by duplicating the VLSI MCU .
The unshaded GOPs, BIUs, and MCUs act as mas­
ters. The shaded oomponents act as checkers,
which observe their master arid report any disagree­
ment they detect in the values the master produced.

When any error occurs, a special error reporting
network notifies all'nodes in the system of the dis­
crepancy. Figure 4 illustrates the flow of error infor­
mation in the interconnect system. In phase 1, an
error is -detected at a node in the interconnect sys­
tem. The example illustrates an error detected at
BIU(2,1); I.e., the BIU on memory bus 2 in processor

,----- -- - --- ------.,
REDUNDANT MEMORY MODULE

L __________ ~ ____ J

~ -CHECKER

Figure 3. . FRCConfiguratlon pairing

5:aB 210963-002

iAPX 43204, 43205

MODULE 0 MODULE 1 . MODULE 0 MODULE 1 MODULE 0 MODULE 1

BUSO -.j....!..--.---+---.-- BUS 0 --1--.,---1---.-- BUSO __ +-__ ~--~--_,---

BUS1 --+--.,--~-_r- BUS 1 ---1--.,---1-----.-- BUS1 __ +-__ ~--~--~--

BUS2 _+-___ ---+---_- BUS2 ---1--,_--1-----.-- BUS2-~--_r--~--~---

BUS3 --+---.--~-_r- BUS3-~-,_-~-_r- BUS3--~--_r--~--~---

PHASE 1 PHASE 2 PHASE 3
ALL NODES 81U (2,1) DETECTS AND

REPORTS AN ERROR
ALL NODES ON BUS 2

KNOW ABOUT THE ERROR KNOW ABOUT THE ERROR

Figure 4. Three Phase Error Reporting Mechanism

module 1. The detecting component reports the er­
ror to all components attached to the same bus (a
bold line indicates a!1 active error reporting path). At
this point, if all error reporting nodes are intact, all
nodes have received the error message. In phase 2,
all components that received the phase 1 error mes­
sage rebroadcast the message along their module
paths. Finally, in phase 3, each component that has
received an error message rebroadcasts the mes­
sage along its bus path. This second rebJoadcast
ensures that all nodes receive the error message
even if a single module or bus error report line has
failed. At the end of phase 3, all interconnect compo­
nents in the system have been informed of the error.
The actual error reporting paths are separate from,
but run parallel to, the MACD and ACD busses so
that error reports may propagate even if a bus is in­
operative. In addition, the reporting paths may be
duplicated to remove any single-point dependency
in delivering an error report.

RECOVERY

The recovery process .begins after an error report
message has been broadcast iiround the system.

5-89

Recovery is a distributed operation -- each node in
the system reads the error report message and de­
cides what recovery actions need to be taken.

For recovery to be successful, there must be redun­
dant resources available in the system. There are
three redundancy mechanisms in the BIU and MCU:
bus retry buffers, ECC, and module shadowing. The '
first two are useful in recovering from transient er­
rors, while module shadowing allows recovery from
permanent errors.

Figure 5 illustrates how every module in the system
may be paired with another seft-checking module of
the same type. This pair of self-checking modules
operates i~ lock step and provides a complete and
current backup for all state information in the mod­
ule. This mechanism is known as module shadow­
ing because a shadow is ready to fill in if the primary
fails, or vice versa. Fault detection and recovery is
performed totally transparent to both application
and system software. When the recovery is com­
plete, system software is notified that a failure oc­
curred. Figure 6 shows sample module failures and
automatic hardware recovery.

. 210963-002

IAPX 43204, '432051

r- - - - - --- -- - --------,
r----------- ----------.., REDUNDANT MEMORY MODULE

I
I

REDUNDANT PROCESSOR MODULE I
I

I
SHADOW :

PRIMARY

GDP

I L ________ _

SHADOW

GDP

PRIMARY

I
I

L ______________ J

I
I
I
I
I ______ J

Figure 5. QMR Configuration Pairing

~ =CHECKER

I
I

I I
I PRIMARY I SHADOW lI=======:::::!I L __ , _______ J == ___ ==

Figure SA. Module Failures Are Detected ,

210963-002

" .. _I" , III-e- IAPX 43204, 43205

Figure 68. Failed Modules Are Disabled

Figure 7. Bus Reconfiguration

A fault-tolerant module is also called a QMR module
(Quad Modular Redundant) because most compo­
nents (except memory) are replicated four times.
There are two self-checking modules and each of
these has a master and a checker.

Each memory bus in the system may be paired with
anothen memory bus. Memory modules are physi-

5-91

cally connected to both buses although logically
they are attached to only one ,bus at a time. During
normal operation the buses run independently. Both
contribute to the total memory bandwidth available
in the system. If a bus fails, the memory modules at­
tached to that bus will automatically switch to the
other bus which is still operating. Figure 7 illustrates
how the BIU and MCU reconfigure the system when
a bus fails.

210963-002

iAPX 43204, 43205 , "",'

CONFIGURABLE FAULT TOLERANCE

Figure 8 illustrates the range of alternatives avail­
able to system designers when they· build iAPX 432
systems. The most fault-tolerant systems are built'
from a OMR configuration of processors that can
tolerate any single component failure without crash­
ing the system. BIUs and MCUs provide full hard­
ware error detection and recovery transparent to
software.

The lowest cost configurations can be built using
basic processor modules without FRC or OMR. This
type of configuration will crash if a component fails,
but can be made "self-healing" by adding intelligent
software to the I/O subsystem. Unlike OMR, self­
healing does not protect against system crashes,
but it does allow the system to recover from a failure
in a short period of time. The "healing" takes place
in 3 steps. First, a watchdog timer in an I/O subsys­
tem alerts I/O subsystem software that the central
system has failed. Second, the I/O subsystem
checks BIUlMCU error logging registers and runs
diagnostics to identify which resource (e.g., proces­
sor, bus or memory) has failed. Third, the I/O sub­
system re~nitializes the system using the
configuration control within the BIU and MCU to
configure out the failed resource. The system is up
and running without human intervention after only a
short period of down ttme.

The basic configuration is the lowest cost alterna­
tive, but for some applications it is desirable to have

5-92

a very high degree of confidence that calculations
are performed correctly. A OMR system will do this
since all components have a checker that alerts the
system whenever a mistake is made. However, a
OMR configuration may be overkill for some appli­
cations that can tolerate an occasional system fail­
ure, as long as the computations are correct when
they do complete. FRC configurations offer an alter­
native in between the basic and OMR approaches.
Adding a second set of checker components to each
module improves the error detection capabilities of
the system providing "high confidence" computing.
No single hardware failure will, go undetected and
corrupt the results of a critical computation. FRC in­
sures that any error is caught before it can propa­
gate to another/module in the system. FRC alone
does not provide automatic hardware recovery like
a OMR system, but it does detect errors as soon as
they occur so that the system does not become cor­
rupted. It is then the responsibility of system soft­
ware to implement a "self-healing" strategy where
the faulty resource is disabled and the system reini­
tialized.

The software configurability of a BIU/MCU system
allows a system to use a combination of the above
strategies. For example, software can configure a
sy,stem as a full OMR system in the morning for criti­
cal applications, and then switch to an FRC only sys­
tem in the afternoon. This doubles the system
throughput (twice as many processors are working
in parallel) without making any hardware changes.

210963-002

- - --, .

MEMORY BUS I L ____________ J

r-------,
I I
I I
I I

I
I
I
I
I
I
I
I
I

I MEMORY BUS I L ______ J

r------..,
I

I
I
I
I
I

MEMORY BUS I L ______ J

iAPX 43204, 43205

QMR
PROCESSOR

MODULE

FRC
PROCESSOR

MODULE

BASIC
PROCESSOR

MODULE

fi
CJ z
t
III
II:
U
III
CI

Figure 8. Fault-Tolerant Alternatives

III
()
Z c
II:
III
oJ

~
!:i
~
CJ
Z

!
II:
U
!

HARDWARE
RECOVERY

HARDWARE
SELF-cHECKING

SOFTWARE-PROGRAMMABLE
RECONFIGURATION

210963-002

iAPX 43204, 43205

FAULT·TOLERANT SYSTEM DESIGN
RESPONSIBILITIES
The interconnect architecture and the VLSI compo­
nents provide a stable base for developing fault­
tolerant iAPX 432 systems. The iAPX 432 intercon­
nect components address the issues concerning
fault tolerance which are encountered when con­
structing the iAPX 432 central system. A number of
system-wide issues remain the responsibility of the
iAPX 432 system designer. These issues include:

• A fault-tolerant I/O system

• Fault-tolerant power supplies and distribution
method

• A fault-tolerant method for clock generation and
distribution '

• The electrical and physical provisions for on-line
repair

5-94

SUMMARY
The iAPX 432 interconnect architecture provides a
standard VLSI method for constructing multiple pro­
cessor VLSI computer systems. The iAPX 432 inter­
connect architecture is implemented by a pair of
VLSI components, the Bus Interface Unit (BIU) and
the Memory Control Unit (MCU). Together with iAPX
432 processors, these components permit the con­
struction of modular, extensible, multiprocessor
computer systems. The components are designed
to support the construction of fully fault-tolerant
iAPX 432 systems. However, there is no penalty in
performance or in cost for those applications that do
not require fault tolerance.

The 432 fault-tolerant mechanisms are designed to
provide a flexible and complete solution to the prob­
lems of fault-tolerant hardware. For basic systems
(those without checkers for error detection or QMR
for recovery), a user may decide to use only a few
detection mechanisms and provide recovery only
for transient errors. This fUnctionality comes at no
additional cost in the VLSI interconnect system. To
reduce maintenance cost and increase system
availability, a system may use all of the detection
mechanisms (Le. may add checker components) but
may not add any extra recovery capability (Le. may
not marry self-checking modules into a fault-tolerant
QMR module). Continuous operation is available to
the user who adds the extra recovery capabilities.

None of the fault-tolerant mechanisms reduce sys­
tem performance. Systems that do not require the
highest level of fault tolerance are not penalized in
any way (cost, size, or performance) for the unused
fault-tolerant capabilities. Increased levels of fault
tolerance are achieved by replicating the iAPX 432
VLSI components. The hardware fault tolerance in
the iAPX 432 is transparent to application software.
The system's fault-tolerant capabilities may be
changed without any changes to the application
software system.

. 210963-002
,

NOTE: N.C. pads must not
be connected.

iAPX 43204, 43205

N.C. .. N.C.
VSS vee

MBOUT ACD15
CTL2 ACD14

CTL1 8 ACD13 CTLO ACD12

MACD15 ,43204 ACD11 MACD14 ACD10
MACD13 ACD9
MACD12 ACDe
MACD11 ACD7
MACD10 ACD8
MACD9 ACD5
MACD9 ACD4
MACD7 ACD3
MACD8 ACD2
MACD5~'~"rlnr'n ACD1

1:I:I:I:I:OOOrl:5:ll!:IIZI<ZJ>, '- PIN NO MARK
l;l;~l;l;Ui ~:l:8i11iUlp§ .1
2fh:'~8"c", ";SO

~

Figure 9. 43204 Pin Configuration

ACD(15 .. 0) - ACD Memory -ffilL- - BUB auB -ICSOUT - Group Group -ICS - -CLRPUOUT - --iAPX43204 -BtU _BCHK

VCC(2 .. 0) - System Memory - gQNT
VSS(2 .. 0) , - Group Bus

_ RQ
CLKA - Arbitration _ROOUT
CLKB - Group ++~ INIT - _ NR

MERL - Module
MiBl..0UT - Group
MMAL ++
MMAH -

Figure 10. iAPX 43204 BtU Logic Symbol

•

210963-002

I

inter iAPX 43204, 43205

Table 1 .. IAPX 43204 BIU Pin Description

Symbol Type Name and Function

Memory Bus Group

MACD15 I/O· These 16 bidirectional signals carry physical memory addresses, control in-
.. MACDO formation (access length and type), and data to and from the memory bus.

CHK1 .. CHKO I/O· These 2 bidirectional signals carry parity bit check information which de- ,
tects errors in transfers on MACD15 .. MACDO and CTL2 .. CTLO. The 2
parity check bits are computed to satisfy the following equations (X = Ex-
clusive OR):

MACD15 X MACD13 X MACD11 X MACD9 X MACD7
X MACD5 X MACD3 X MACD1 X CTL 1 X CHK1 =;' 0

MACD14 X MACD12 X MACD10 X MACDa X MACD6
X MACD4 X MACD2 X MACDO X CTL2 X CTLO X CHKO = 1

The BIU and MCU generate and check even parity (an even number of ones)
across the 10 odd-numbered MACD; CTL, and CHK signals, and odd parity
(an odd number of ones) across the 11 even-numbered MACD, CTL, and
CHK signals.

CTL2 .. CTLO I/O· The 3 MACD bus control signals carry a code that controls the sequencing
of the memory bus.

MBOUT I/O·· MBOUT controls the direction of external buffers for th,e MACD, CHK, and
CTL signals. When MBOUT is asserted, it indicates that the buffers must be
directed to carry information outbound from the component to the memory
bus.

BERLOUT 0 BERLOUT supplies bit-serial bus error messages when the component de-
tects a memory bus error, a storage array error, or a memory module error.

BERL1, I BERL 1 and BERL2 are duplicate paths on which the component receives
BERL2, I bit-ser!al bus error messages from the memory bus. When duplicated paths ,

are not required, these two pins must be supplied with the same bus error
report information.

BCHK I/O· BCHK provides a mechanism which checks that external buffers are operat-
ing. BCHK is toggled once each clock cycle by the component that is driving
it. In an FRC pair, the master component drives BCHK. The checker compo-
nent in the FRC pair receives BCHK. Routing BCHK from the master com-
ponent, through one' buffer in each external buffer package, and to the
checker component, forms a serial network. If the oscillating BCHK signal
fails to traverse the external buffer network, the buffer path is suspect and a
bus error will be signalled. Buffer checking can be disabled by interconnect
register programming.

5-96 210963-002

• _Ie
1 •• 'eI . iAPX 43204, 43205

Table 1. iAPX 43204 BIU Pin Description (Continued)

Symbol Type . Name and Function

Memory Bus Arbitration Group

CONT I The CONT input indicates if the external arbitration network has detected
that.two or more simultaneous requests have been made for the use of the
memory bus. When contention is indicated, all contending components will
perform a binary arbitration sequence (based on each component's unique
6-bit module 10) to decide which component will be granted first use of the
memory bus.
~

RQ I T~ RQ input indicates if any agent is requesting the use of the memory bus.

There are three valid combinations for RQ and CONT:

RQ CONT Interpretation
1 1 No request
0 1 One BIU is making a request
0 0 Two or more BIUs are making a request

The MCU does not generate any memory bus requests. The MCU tracks the
action of RQ and CONT, and the CTL(2 .. 0) signals to determine when it is
allowable to use the memory bus to reply to a request.

RQOUT I/O·· When asserted, ROOUT signals that the component requires the use of the
memory bus. ROOUT is intended to drive an external open-collector invert-
er which is wire-ORed to form a combined RQ line. The ROOUT signal from
all BIUs attached to a memory bus must be logically combined to form a con-
tention signal. (Contention occurs when tWo or more BIUs issue RQOUT si-
multaneously). The logic to detect contention among BIUs must be supplied
by the customer.

NREQOUT I/O· The NREOOUT signal indicates that the component has received a new re-
quest from its associated processor. NREOOUT is intended to 'drive an ex-

- ternal open-collector inverter, which i$ wire-ORed (with the same signal
from other BIUs on the memory bus) to form NREQ.

NREQ I
I

NREQ is ,an input that signals the beginning of a new time-ordered request
cycle in which a request from one or more processors must be managed. -

5-97 21Il963-002

iAPX 43204, 43205

Table 1. iAPX 43204 BIU Pin Description (Continued)

Symbol Type Name and Function

Module Group

MERL I The MERL input accepts bit-serial module error messages. See the
BERLOUT pin description for the format of the serial error messages.

MERLOUT 0 The MER LOUT output broadcasts bit-serial module error messages to all
BIUs contained within the same module (attached to the same processor).

MMAL 1/0+ MMAL operates in the same manner as MMAH except that when MMAL is
asserted it indicates that the lower addressed portion of a multipl~ module
access is in progress on the memory bus.

The two BIUs that are cooperating in a multiple module access observe both
MMAH and MMAL. Both signals are deasserted .after each BIU has com-
pleted its portion of the access on the memory bus to which it is connected.
In read accesses, after both signals are deasserted, the BIU with the lower
addressed portion of the access presents data to the processor first. The
BIU with the higher addressed portion of the access tracks th~ other BIU by
counting the number of bytes returned to the processor (noting ICS, Inter-
connect Status, see below). When the BIU with the lower-addressed portion
of the access completes its transfer, the next BIU begins automatically. Mul-
tiple module read accesses which begin at an odd addressed byte boundary
cause the two cooperating BIUs to simultaneously return data to the pro-
cessor. At the address boundary for which they share access responsibility,
the low BIU returns its last byte on ACD7 .. ACDO, and the high BIU returns
its first byte on ACD15 .. ACD8.

After MMAH and MMAL have been deasserted, one (or both) of the BIUs
may reassert the signals, each to indicate that its portion of the multiple
module access encountered an error. This indication will be returned to the
processor during error significance time for ICS.

MMAH 1/0+ When a~serted, MMAH indicates that one of the BIUs in a module is per-
forming the high order address part of a multiple module access. A multiple
module access occurs when a processor request spans an address range
such that two memory buses, each connected via a different BIU must be
engaged. When it is deasserted, MMAH indicates that the high portion of the
access has been completed on the memory bus.

5-98 210963-002

iAPX 43204, 43205

Table 1. IAPX 43204 BIU Pin Description (Continued)

Symbol Type Name and Function

ACD Bus Group The ACD Bus Group contains the set of signals with which a compatible

ACD15
.. ACDO

PRO

ICSOUT

ICS

ClRPUOUT

System Group

VCC2 .. VCCO

VSS2 .. VSSO

ClKA

ClKS

INIT

Legend: I
o
I/O

±..

iAPX 432 processor connects to the BIU. See the iAPX 43201/43202 Gener-
al Data Processor Data Sheet (Order Number 590125) and the iAPX 43203
Interface Processor Data Sheet (Order Number 590130) for information
about compatible iAPX 432 processors.

I/O These 16 signals form the processor-to-BIU communication path that car-
ries all memory and interconnect accesses.

I PRO indicates the start of a processor request to the BIU.

0 ICSOUT is intended to drive an external open-collector inverter to form ICS.
All BIUs in a processor module contribute to the wired-OR ICS signal.

I ICS supplies interconnect status to both the BIU and its associated iAPX
432 processor. ICS carries information on errors, data synchronization, and
interprocessor communication to the processor. It is also monitored by
each BIU for coordinating multiple module accesses.

0 ClRPUOUT is intended to drive an open collector inverter and form a wired-
OR ClR signal to. the associated iAPX 432 processor. All BIUs in a proces-
sor module contribute to the wired-OR ClR signal. Using ClRPUOUT, a
BIU can synchronize the FRC master and checker processor components.

Three VCC pins supply 5-volt power to the BIU/MCU. All three pins must be
connected. The three VCC pins are not connected together inside the
component.

Three VSS pins provide ground to the BIU/MCU. All three pins must be
connected. The three VSS pins are not connected together inside the
component.

I ClKA is a square-wave clock for the SIU/MCU. CI:.KA must operate
continuously to preserve the operating state of the component.

I ClKBis a square-wave clock for the BIU/MCU. ClKB is the same frequen-
cy as ClKA but lags ClKA by 90 degrees. ClKS must operate continuously
to preserve the operating state of the component.

I INIT is a signal that causes the BIU/MCU to initialize. In addition,lNIT is used
to enable external logic which provides configuration information to the
component. .

Input signal
Output signal
Input/Output signal
FRC errors cause module error
FRC errors cause bus error
External passive pull up required (10K Ohms)
Asserted low

5-99 210963-002

intef·· iAPX:43204, 4320~ -

~~!.G=I!_~i
hoIl II II 111111111111111111111111

~·F ~ &LAD18

~
&LAD17

M80IIT ~ &LAD18
SLAD15 ~F

G
~ &LAD14

crrLO SLAD13
MACD15 ~ ~ SLAD12
MACD14

~ ~
SLADll

MAC013 SLADl0

=~~~ SLAD9
~ ~ SLAD8

MACD10 SLAD7
MACDII ~ ~ SLADII
MACDII =

-§
SLAD5

MACD7 SLAD4
MACD8 ~ SLAD3
MACDS· SLAD2

111111111111. .
~11§~~!~~~;I;i;; PIN NO. 1 MARK

NOTE: N.C. pads must not i .8 ~ ~~.
be connected. B:

I

Figure 11. 43205 PI" Configuration

§!,AD(19 .. 0) - Storage ~
_ MACD(15 •• 0)

RAS - ~ _CHK(1 •• 0)

r - Group Group _CTL(2 •• 0) - ~1i'&T DEIN -REFRESH - - IEBI.1 - BERL2
IAPX43205 _BCHK

MCU _ BCHKIN/M
_BUSSEL

VCC(2 •• 0) -+ Sy8lem Memory . -~ VSS(2 •• 0) - Group Bus - RQ
CLKA - ArbItratIon
!<!.!SB - Group
INIT -

Figure 12. iAPX 43205 MCU logic Symbol

5-100 210963-002

inter iAPX 43204, 43205

Table 2. iAPX 43205 MCU Pin Description

Symbol Type Name and Function

Memory Bus Group

MACD15 I/O· These 16 bidirectional signals carry physical memory addresses, control in-
.. MACDO formation (access length and type), and data to and from the memory bus.

CHK1 .. CHKO I/O· These 2 bidirectional signals carry parity bit check information which de-
tects errors in transfers on MACD15 .. MACDO and CTL2 .. CTLO. The 2
parity check bits are computed to satisfy the following equations (X = Ex-
clusive OR):

MACD15 X MACD13 X MACD11 X MACD9 X MACD7
X MACD5 X MACD3 X MACD1 X CTL 1 X CHK1 = 0

MACD14 X MACD12 X MACD1 0 X MACD8 X MACD6
X MACD4 X MACD2 X MACDO X CTL2 X CTLO X CHKO = 1

The BIU and MCU generate and check even p!irity (an even number of ones)
across the 10 odd-numbered MACD, CTL, and CHK signaTs, and odd parity
(an odd number of ones) across the 11 even-numbered MACD, CTL, and
CHK signals.

CTL2 .. CTLO I/O· The :3 MACD bus control signals carry a code that controls the sequencing
of the memory bus.

MBOUT I/O·· MBOUT controls the direction of external buffers for the MACD, CHK, and
CTL signals. When MBOUT is asserted, it indicates that the buffers must be
directed to carry information outbound from the component to the memory
bus.

BERLOUT 0 BERLOUT supplies bit-serial bus error messages when the component de-
tects a memory bus error, a storage array error, or a memory module error.

BERL1 I BERL 1 and BERL2 are duplicate paths on which the component receives
BERL2 I bit-serial bus error messages from the memory bus. When duplicated paths

are not required, these two pins must be. supplied with the same bus error
report information.

BCHK O· BCHK provides a mechanism which checks that external buffers are operat-
ing. BCHK is toggled once each clock cycle by the component. By routing
BCHK through one buffer in each external buffer package to BCHKIN/M, a I

serial network is formed. If the oscillating BCHK signal fails to traverse the
external buffer network, BCHKIN/M will detect the error and signal a bus er-
ror. The BCHK signal does not toggle when the component is being initia-
lized by either the INIT signal or an, inten~al initialization request. Buffer
checking can be disabled by Ii parameter acquired by the MCU during initial-
ization. T~e MCU will disable buffer checking after it detects a permanent
module error.

BCHKIN/M I BCHKIN/M checks the oscillating BCHK signal after it has been routed
through each of the external buffers for the memory bus. If any errors are
detected, a module error will be signalled. During initialization, the BCHKIN/
M pin accepts the MASTER information. If it is high during initialization, then
the component will become the master of an FRC pair of components;
otherwise it will become a checker:

5-101 210963-002
•

iAPX 43204, 43205

Table 2. iAPX 43205 MCU Pin Description (Continued)

Symbol Type Name and Function

Memory Bus Group

BUSSEL 0 BUSSEL controls which of two memory buses (normal or backup) the MCU
is to use. The middle .bit of an internal3-bit normal bus identifier (ID) is logi-
cally combined with an internal bus state code to produce BUSSEl. The bus
state code records the state and health of both the normal and backup bus-
es. When the cc;>mponent switches to an alternate bus (changes the bus
state code), BUSSEL is changed accordingly.

Memory Bus Arbitration Group

CONT I The CO NT input indicates if the external arbitration network has detected
that two or more simultaneous requests have been made for the use of the
memory bus. When contention is indicated, all contending components will
perform a binary arbitration sequence (based on each component's unique

.. 6-bit module ID) to decide which component will be granted first use of the
memory bus.

RQ I The RQ input indicates if any agent is requesting the use of the memory bus.

There are three valid combinations for RQ and CO NT:

RQ CONT Interpretation
1 1 No request
0 1 One BIU is making a request
0 0 Two or more BIUs are making a request

The MCU does not generate any memory bus requests. The MCU tracks the
action of RQ and CONT, and the CTL(2 .. 0) signals to determine when it is
allowable to use the memory bus to reply to a request.

Storage Array Group

SLAD19 .. I/O· The 20 SLAD signals form the communication path between the MCU and
SLADO its associated storage array. The SLAD bus multiplexes addresses to the

storage array with data (32 bits) and ECC (7 bits) which are to be read from
or written to the array.

RAS O· When RAS is asserted, it ihdicates the start of a storage array cycle. RAS
may combine with external sequencing logic to control the operation of the
storage array.

ABCHK I ABCH.K is an input used to verify the external RAM control logic. WE and
CAS are used to generate the ABCHK signal. In addition, the functionality
of the external buffers associated with the storage array may be validated by
routing the oscillating BCHK signal through each of the buffers in a similar
manner as on the MACD bus side of the MCU. If an error is detected,
ABCHK can be corrupted and in this fashion report the error. An alternate
method of checking the storage array buffers is to use buffer packages with
no more than four buffers per package so that the special ECC protection in
the MCU may detect buffer failures.

WE O· When WE is asserted, the MCU indicates that a write operation is to be per-
formed in the storage array.

5-102 210963-002

iAPX 43204, 43.205

Table 2. IAPX 43205 MCU Pin Description (Continued)

Symbol Type Name and Function

Memory BUB Arbitration Group

DEIN

REFRESH

System Group

VCC2 .. VCCO

VSS2 .. VSSO

ClKA

ClKB

INIT

Legend: I
o
I/O =

O· When DEIN is asserted, the MCU indicates that the SLAD19 .. SlADO sig-
nals are ready to accept information from the storage array into'the MCU.

O· When REFRESH is asserted the MCU indicates that the storage array cycle
is a refresh cycle. In systems with multiple bank dynamic RAM storage ar-
rays, the REFRESH signal may be used to command the storage array
sequencing logic to perform an appropriate cycle (e.g., RAS-only refresh for
all banks). In a storage array with a single bank of dynamic RAMs the
REFRESH signal need not be used.

Three VCC pins supply 5-volt power to the BIU/MCU. All three pins must be
connected. The three VCC pins are not connected together inside the
component.

Three VSS pins provide ground to the BIU/MCU, All three pins must be
connected. The three VSS pins are not connected together inside the
component.

I ClKA is a square-wave clock for the BIU/MCU. ClKA must operate con-
tinuously to preserve the operating state of the component.

I elKB is a square-wave clock for the BIUlMCU. ClKB is the same frequen-
cy as ClKA but lags ClKA by 90 degrees. ClKB must operate continuously
to preserve the oPerating state of the component.

I INIT is a signal tt)at dauses the BIU/MCU to initialize. In addition, INIT is used
to enable external logic which provides configuration information to the
component.

Input signal
Output signal
Input/Output signal
FRC errors cause module error
FRC errors cause bus error
Asserted low

5-103 210963-002

IAPX 43204, 43205

IAPX 43204 FUNCTIONAL DESCRIPTION

This section describes how the iAPX 43204 Bus
Interface Unit operates through a set of functional
diagrams that trace the operation of the pins clock­
by-clock. To understand the notation on the various
waveforms, refer to Figure 13. It illustrates thegen­
eral operation of the BIU as it accepts a memory
read request from a processor, forwards the request
to a Memory Control Unit (MCU), and returns the
reply data to the processor.

The cycle numbers (0, 1,2, ...) at the top of each
diagram enumerate the clock cycles. When a com­
mon group' of signals is plotted, its value is dis­
played inside a data waveform. For example, the
BIU signals MACD15 ... MACDO are all high in
cycles 0 th rough '4. In cycle 5, the MACD bus carries
the value 0300H and in cycle 6 the value OOOOH.

Notice that in Figure 13, the BIU receives a proces­
sor request (PRO) in,cycle 0, The ACD bus carries
the information O,BOOH in cycle 1 (the specification
field on the high-byte and addresses A7 ... AO on
the low-order byte) and OOooH in cycle 2 (the
address bits A23 ... A8) for the access. Reorganiz­
ing the information, it is apparent that the BIU has
been provided a processor request with a specifica­
tion field 6f OBH and a 24-bit physical address of
OOOOOOH. Referring to the GDP or IP data sheets, the •
specification field can be decoded as follows:

000010 11 Binary version of OBH

III, I I ' Unclassified memo.ry access (other)
Length (4 Bytes)
Not a read-modify-write operation
Read operation
Memory access

Once the processor has presented the request to
the BIU, the BIU presents ICS (Interconnect Status)
to the processor indicating that the processor is to
wait for the data to be returned by the BIU and the
memory system. In cycle 4, the BIU .issues the
NREOOUT signal (not shown) and observes NREO
and RO immediately. Though not shown, no con­
tention with any other processor isobser.ved an the
CO NT pin. In cycle 5, the BIU asserts MBOUT to
control its external TTL buffers to drive the memory
bus and presents a two-cycle memory read request
message. The MACD bus carries the memory bus
specification code (high-order byte) and the physi­
cal memory address bits (A7 ... AO) in cycle 5, and
the remaining 16 address bits (A23 ... A8) in cycle
6. Referring to the Memory Bus appendix of the
Interconnect ARM, the memory bus specification
field of 03H is decoded as follows:

0000 0011

L!:::
Binary version of 03H

LLLL code for length of 4 bytes
Memory read operation

In cycles 10 and 11, the MCU that serviced the
request presents the data that it read from thestor­
age array, least significant bytes first. The returned
bytes in the example are: 2AH, 03H, 9AH, 8CH. In
cycles 15 and 16, the BIU presents the same data to
the processor and indicates the availability of each
byte with ICS.

CLKA ili~~~~~~~~
10 11 12 13

~ rw rw r-
ACD 000 Jt OBoo '\

PRQ h V-
IC$ \.J

'---'

~

MBOUT

MACD 0300 032A 8C9A

CTL
1

CHK 2 2

Figure 13. 4-Byte Memory Read

5-104 210963-ClO2

inter IAPX 43204, 43205

14 11 11 17

~ ~ ~ """"\..... -
'-

.

en

CHI(

FlguN 13. 4-Byte Memory Reed (continued)

""""...-
~

PRO

-...
r-- ~

_en.CHK

L.L -- L.L .
--

MEMORY
ARRAY

MCU

_en.

BUFFERS

"""

Figure 15 illustrates the steps that occur when a
processor requests a 4-byte write at physical mem­
ory address O. The hardware system for this exam­
ple includes one processor, one BIU, one memory
bus, one MCU, and one storage array (see Figure
15). In cycle 0, the processor emits the processor
request signal (PRQ=1) along with the specification
field and the low-order address byte on the ACD
signals. The specification field (high-byte ofthe fi rst
double-byte) in this example is 4BH and the low­
order address byte (low-byte of the first double­
byte) is OOH. In cycle 1, the processor emits the
high- and mid-order address bytes on the ACD
signals. In this example, the high- and mid-order
address ;bytes are OOH. The BIU deasserts ICSOUT
(not shown) which, after an external logical inver­
sion, provides the ICS Signal (Interconnect Status)
to the processor. The deasserted ICS is used to
stretch the processor access cycle (generate wait
states). The processor presents the first double­

. 'byte of data to be written,in cycle 4, but because ICS
is deasserted, the processor must stretch the data
into cycle 5 before the BIU will accept it. In cycle 5,

"'-________________ -' '- the processor provides the second double byte of
data to be wirtten (OOOOH). Notice that the BIU
deasserts ICS to hold the processor until the entire
request is actually satisfied by the MCU and
memory array.

FIgUN 14. Herdwere Conftguration for Memory
ReedIWrHe ExMIpIee

5-105

inter iAPX 43204, 43205

In cycle 4, the BIU presents the request to the
memory bus arbitration logic. Since only one pro­
cessor is in the system, the NREQ (output) and RQ
input signals are asserted but no contention (CONT
signal is not shown) is detected. Thus, the write
access proceeds immediately to the memory bus
(MACD,'CTL, and CHK signals). In cycles 5 through
8, MBOUT is asserted by the BIU to direct external
buffers to pass the BIU request to the memory bus.
The first two double-bytes of the request contain a
specification byte and three address bytes. The
information in these two double-bytes is a modified
version of that received from the processor ACD
bus. The high-order byte of the memory address is

0 . 1 2 3 4 5

CLKA ~ h--"'-... "'-... "'-... ~

ACD
_ 4BOO'\.

I AAAA "
PRQ ~ ~

ICS ~ \.. ..r ~
~

'---
MBOUT

MACD 2300

CTL:

CHK 1

contained in the low-order byte of the first double­
byte. The mid- and low-order bytes of the memory
address are contained, respectively, in the high­
order and low-order bytes of the second double
byte. MBOUT remains asserted While the two
double-bytes 01 the write request are provided by ,
the BIU. The MCU performs the access and returns
a write reply (CTL=6) in cycle 10. The BIU asserts
ICS for the processor in cycle 14, allowing the pro­
cessor to escape from the stretched write cycle that
it had entered earlier. In this case, no error occurred
during the access. However, had there been an
error, the level of ICS in cycle 15 would indicate the
error to the processor.

• 7 8 9 10 11 12 13

~ ~ ~ ~ ~ "'-... ~ ~

• AAAA

1 --.!......

~ '--.!......

Figure 15. 4-Byte Memory Write

5-106 210963-002

IAPX 43204, 43205

CLKA -
PRQ

ICS

MIOUT

en.

CHK

,. '1

;"""\.... "-

-.r ~

Figure 15. 4-Byte Memory Write (continued)

MULTIPLE MODULE ACCESS READ-
2-WAY INTr;RLEAVING

The Figures 16 and 17 illustrate the interconnect
system's ability to support interleaving of memory
requests among two memory busses. The hardware
configuration pictured in Figure 16 contains one
processor, two BIUs, two memory busses, two
MCUs, and two storage arrays. The two BIUs are
initialized to perform 2-way interleaving of memory
requests based on bit 6 of the physical address that
the processor provides. Specifically, that portion of
a request with bit 6 of the physical address equal to
zero is serviced by memory bus O. That portion of a
request with bit 6 of the physical address equal to
one is serviced by pus 1.

I n the example that follows, an 8-byte read at physi­
cal memory address 00003DH is requested. As Fig­
ure 16 indicates, the two BIUs each recogn,ize the
,portion of the request that is supported by the bus to
which they are connected. The BIU on bus 0 (BIUO)
services the first 3 bytes of the access (03DH ...
03FH) and the BIU on bus 1 (BIU1) services the
remaining 5 bytes (040H ... 044H). In the interleav­
ing process, the BIUs reorder the physical address
bits, based on the selected interleaving, to present
requests to the MCU in a linear address space. A
BIU transforms its portiQn of the request by replac­
ing address bit 23 of the physical address with

5-107

address bit 6, and shifting original address bits
23 ... 7 to the right by one position. Jhe reordered
result (6,23 ... 7,5 ... 0) is forwarded to the respec­
tive memory bus. The BIU1 translation of physical
address 000040H to memory bus 2 address 8OO000H
illustrates the address interleaving operation.

~

... "l

I-~------~~~--+-------r------'I:

'" .. ,
--------~~~~~-------+------~

Figure 16. Hardware Configuration for MMA Read

210963-002

inter IAPX 43204, 43205 " \'

ReferrinQ to Figure 17 for this operation, notice that
the processor emits its request just as in earlier
examples. However, in this case, two BIUs recog­
nize that they each must participate in the request.
Thus, BIUO asserts MMAL and BIU1 asserts MMAH
indicating that a multiple module accel!S is required
to complete this access. The two BIUsthen present
their requests to their respectiv.e memory busses
after performing the address interleaving as des­
cribed above and each access continues independ-

•
0 1 2 3 4 5

~ ~ ~ ~ '"""'--' '"""'--' - - '\.

....r r-"\.

ICS u

-

ently. Once both accesses have completed, the
BI Us cooperate to return the data to the processor.
BIUO provides the first 3 bytes and BIU1 returns the
final 5 bytes. Notice, in cycle 23, that BIUO provides
the low byte (25H) and BIU1 provides the high-byte
(F5H). Thereafter, BIU1 provides its remaining bytes
with the byte significance that is required by the
processor. By this cooperation, the processor is
unaware that two BIUs were involved in the opera­
tion .

• 7 8 • 10 11 12 13

~ ~ """"'-.. ~ ~ ~ ~ ~

~

1

1

,
2

Figure 17. Multiple Module Access Read-2-Way Interleaving

5-108 210963-002

IAPX 43204, 43205

14 15 11 17 11 1. 20 21 22 zi 14 1& 1&

CUCA h--~ ~ ~ h--h--~ ~ h--~ h--r-'-' t-'--
_1 - ~ ~ -

PRQ

ICS r ;--"'\. V -"'\. ~ '-

MACD.IIUBO

en.BUBO

MACD.BUl1

CTLBUl1

, Figure 17. Multiple Module Access Read-2-Way Interleavln9(cont)

MULTIPLE MODULE ACCESS WRITE-
2-WAY INTERLEAVING
The following multiple module access is also per­
formed on the same hardware configuration shown
in Figure 16 with modified interleaving characteris­
tics. jn this case, the system is initialized with 2-way
interleaving on address'bit 7 (see Figure 19). There­
fore, the 8-byte multiple module access write to
physical address 0OOO7DH is transformed into two
memory bus requests: bytes 000040H ... 000044H
on bus 0 and bytes 80003DH ... 80003FH on bus 1.
Again, the MMAH and MMAL signals coordinate the
multiple module access and each bus' operates
independently (see Figu~e 20).

.. ...

--r-----~~~--~--~---+-----:=

"" ,.,
--------~==~~ ________ 4-_____ ==

~Igure 18. Hardware Configuration for MMA WrIte ,

5-109 210963-002

inter

CLK4

ACD

PRO

ICS

MACD.BUSO

CTL.BUSO

MACD.BUS1

CT\,.BUS1

CLKA

ACD

PRO

ICS

iiiWi

MACD.IUSO

CT\,.BUSO

MACD.IUS1

IAPX 43204, 43205

0 1 2 3 4 5 8 7 8 9 10 11 12 13

"-' ~ ~ ~ ~ ~ ~ '""""\...... "--' ~ ~ "-' ~ r-'---

V-h

~ '-f-' '\

,..-,-

Figure 19. Multiple Module Access Wrlte-2-Way Interleaving

14 15 18 17 18 19 20 21 22 23 24

~ '""""\...... "'""\...:. ~ ~ ~ '""""\...... """"LJ ~ '""""\...... "-'

,-~

'r--
1 8

I-L...

Figure 19. Multiple Module Aceess Wrlte-2-Way Interleaving (Continued)

5-110 210963.002

IAPX 43204, 43205

GLOBALINTERPROCESSOR
COMMUNICATION (IPC) BUS BLURB

Figure 20 illustrates the signaling of a global inter­
processor communication message (IPC). The IPC
is called a bus blurb since it is broadcast to all BIUs
on the memory bus but does not require that any
replies be generated. The delivery of the message is
guaranteed by. a memory-based communication
object; the bus blurb only serves as the low-level
notification. A programmer invokes a globallPC by
the instruction BROADCAST TO PROCESSORS.
The processor performs the instruction by writing a

0 I' 2 3 4 5

CLKA ~ r-u h--~ h--~
ACD 0008 C7

PRO ~ '" ICS ---'

MBOUT

MACD

CTL

CHK

value (OOH) tothe IPC interconnect register (address
02H) in the associated BIU. In cycle 0, the processor
emits a specification field (C7H). In cycles 0 and 1,
the processor provides the interconnect address
(000002H). In cycle 2, the processor provides the
destination processor ID (OOOOH represents all pro­
cessors, the global I D). Notice thatthe BI U stretches
the processor (ICS=O) until the delivery ofthe global
IPC is completed (cycle 10).

8 7 8 9 10 11

~ ~ "\......, ~ "\......, ~

r h-

Ir----.

~ .
I-i--
~

Figure 20. Global Interprocessor Communication (IPC) Bus Blurb

5-111 210963-002

inter. . IAPX 43204, 43205

MACD CORRUPTION AND PARITY ERROR
Figure 22 illustrates the process of detecting and
reporting- a memory bus parity error to the serial
error reporting network. This reporting method is

common to' all errors that are detected by the inter­
connect system. The error reporting paths for this
example are illustrated in Figure 21.

iiEiii.MTH1

--~----+----4~~------+---~~---+~--------~~------_r+----BERL.MT~
-----4----_r----+----------+----4-----~--------~----------~-BU"

-------------4 -------------------+~------------------_r---- iEiii..MTH1
----------------~--------------------~------------------~~B~1

Figure 21. Hardware Configuration for Error RepOrting

5-112 210963-{)02
J

IAPX 43204, 43205

PHASE 1-DETECTING AND REPORTING
THE PARITY ERROR ON BERL

In cycle 3, bit 1 ofthe memory bus (MACD signals) is
corrupted with a zero causing the MACD data to
change from FFFFH to FFFDH. This causes a parity
error on the memory bus that must be reported to
the interconnect system. The reporting process
begins in cycles 5 and 6 when the BERL 1 signal

7
2
1

010000000000101

s eeee bbb mmmmmm p
3210 210 543210

o 1000 000 000010

11,---1 I_L
The error report codes are described in the iAPX 432
Interconnect Architecture Reference Manual, order

PHASE 2-BROADCASTING THE ERROR
ONMERL

Once the fuJI serial message has-propagated along
the memory bus, each BIU that received it repeats.

2 3
5 9

110000000000100

s eeee bbb mmmmmm p
3210 210 543210

0 1000 000 000010 o

I 1
I L

(driven by BERLOUT) carries the start code of the
serial error report. In cycles 7 through 21, ¢Ie mes­
sage is propagated along the bus error report pa~h
associated with bus O. The message sent is (com­
plement of the levels on the BERL 1 signals):

Cycle numbers

Binary serial error message on BERL tPATHO

Reformatted serial error report message

Parity bit
Module number
Bus number
Error code
Sequence

no. 172487 (see BIU Register OO-Error Report
Log).

the message along the module error report line path
(MERL 1 and MERL2). This time, the error report
message is:

Cycl~ numbers

Reformatted serial error report message

Reformatted serial error report message

Parity bit
Module humber
Bus number
Error code
Sequence

5-113 210963-002

..

IAPX 43204, 43205

PHASE 3-REBROADCASTING THE ERROR
ON ALL BERL PATHS

In cycle 42, the message is again rebroadcast, this
time along all the bus error report line paths. The
message sent is:

4
4

5
8

110000000000100

s eeee bbb mmmmmm p
3210 210 543210

1000 000 000010 o

II L----_L

Once this three-step reporting process is com­
pleted, all modules have been informed of the error.

ClKA

ACD

MACD
~

CTl

CHK

MERL.MODULE1

MERL.MODULE2

BERL1.BUSO

iffiii:1.BUS1

Cycle numbers

Binary serial error message on BERL 1. PATH 0

Reformatted sedal error report message

Parity bit
Module number
Bus number
Error code
Sequence

~ i-I

\

\- !---J

F.igure 22. MACD Corruption Causing Parity Error·

5-114 210963-002

inter IAPX 43204, 43205

CLKA

ACD 0008

MACD

CTL

CHK

iiEiii:..MODULE1
'-- V h.

iiEiiL.MODULE2
'-- f.....r h

BeRL1.BUSO
'--~ I\-f-J

BERLt.BUSt

Figure 22. MACD Corruption Causing Parity Error (continued)

CLKA

ACD

MACD

CTL

CHK

iiE'ALMODULE1
'-- --J

iiE'ALMODULE2
'--f-1

iiERU.BUSO

iiERU.BUS1

Figure 22. MACD Corruption Causing Parity Error (continued)

5-115 210963·002

inter

CUCA

ACD

en.

CHK

.-RLMOOULE1

iiiiLi.BUS1 ,

en.

CHK

MERLMOOULE1

iiEAL.MODULE2

iiEiiUBUSO

iiiiit1.BUS1

IAPX 43204, 43205

IL V "'-

I'--Lr"'-

Figure 22. MACD Conuptlon Causing Parity Error (continued)

0008

""""'---'

""""'- --'

Figure 22. MACD Conuption Causing Parity Error (continued)

5-116 210963-002

inter iAPX 43204, 43205

TEST DETECTION COMMAND

The Test Detection command is a special command
that requests a BIU to test the detection hardware
contained inside the component. It checks all the
FRC circuitry, memory bus parity generator/check­
ers, and buffer checking logic. The hardware con­
figuration for this example is the same as that for the
pr!9vi9uS example (see Figure 21). When the com­
mand has been performed an error report message

CLKA ~
ACD

MACD

CTL

CHK

MERL,MODULE1

MEiiL.MODULE2

BERL1.BUSO

BeiiL1.BUS1

41 0

is generated, just as in the previous example. When
the test is successful, the message indicates "no
error." When any ofthe detection circuitry has failed,
the message indicates "module error." In this exam­
ple, the detection circuitry is operating properly and
phase 1 of the serial error reporting sequence con­
tains the "no error" ,message starting in cycle 5 (see
Figure 23).

&CO2 C69

1 2

2 r--L-

Figure 23. Test Detection Command

5-117 ;110963-002

iAPX43204, 43205

CLKA

ACD 06C •
MACD

CTL

CHK

iERi.MODULE1

MERL.MOOULE2

BERL1.BUSD I'-~ '-- --.r t"L --f
Ei'ERiJ.BUSl

Figure 23. Test Detection Command (continued)

CLKA

ACD

MACD

cn

CHK

MERl.MODULE1
'-- -F" h r-'-f-I

MERL.MODULE2
'-- -F" k r- """'"'\...-1-1

BERL1.BUSO
'--f-I

BERTI.BUS1

Figure 23. Test Detection Command (continued)

5-118 210963-002

inter IAPX 43204, 43205

eLKA

ACD

MACD •
eTL

eHK

MERL.MODULE1

MEALMODULE2

BERL1.8USO
~ ~ ~

iiEFiU,BUS1 ~L.r"~

Agure 23. Test Detection ~ommand (continued)

eLKA

ACD

MACD

eTL

eHK

MERLMODULE1

MERl.MOOULE2

BERL1.BUSO

BERL1.BUS1

Agure 23. Test Detection Command (continued)

5-119 210963-002

1APX 43204, '43205

MACD BUS ARBITRATION
Figure 24 illustrates two processors as they simul­
taneously issue memory requests. Since the ra­
'quests are both'serviced by the same memory bus
and MCU, arbitration is performed to select the first
request that should be presented. The hardware
configuration consists of two processors (proces­
sormodules 2 and 6), two BIUs, one mein9rY bus,
one MCU, and one storage array (see Figure 25).

'In cycle 0, both processors issue a request indicateEi
by the respective process9r request signals,
PRQ.PROC2 and PRQ.PROC6. In cycle 4, the asso ..
ciated BIUs present their requests to the memory
bus (NREQ=O, RQ=O) and each notes that another
BIU is also contending (CONT=O) for the use of the

PROC

PROCESSOR
MODULE 2

BIU

1

PROC

PROCESSOR
MODULES

memory bus. The BIUs resolve the contention by
examining the individual bits of their respective log­
icallDs, beginning with the most significant bit. Iri
this case, the default logical 10 is a bit-reversed
version of the module 10. In ,cycle 4, each BIU notes
contention. In cycle 5, each BIU still notes conten­
tion. In cycle 6, the BIU serving module 2 wins the
arbitration and issues its request to the memory bus.
Overlapped with the first request, the BIU in module
6 reissues its request for the memory bus (RQ=O in
cycle 9) and detects no contention. However, each
BIU monitors the memory bus and the BIU in

. module 6 waits for the current bus activity to com­
plete before its request can be placed on the bus.

BIY

1
i

STORAGE
ARRAY.

MCU

MEMORY
BUS

Figure 25. Hardware Configuration for Memory Bus Arbitration

5-120 210963-002

inter

en

CHI(

PRO.PR0C2

PAO.PR0C8

ICS.PAOC2

IC5.PROCI

MBOUT

lAO

CLKA

MACD

en

CHK

PRQ,PROC2

PRO.PROC6

ICS.PAOC2

ICS.PROC6

MBOUT

IAPX 43204, 43205

0 1 2 3 4 5 6 7 .. 9 10 11 12 13

r\.... r\.... ~ ~ r-~ ~ r-h-r-~ f\--. r-I'-
t-&ir f-I!2tIi-

r--r- 1
~

r-r- r--
f.-r h ~

V-h

I-' '-,

"---
Jr----, __ Jr----, ____

Figure 24. MACD Bus Arbitration

I. 15 16 17 18 19 20 2t 22 2' 24

I'-I'-~ ~ ~ n..... ~ ~ ~ I'-I'-
~

~ •

J ~ ~
'-

Figure 24. MAcD Bus Arbitration (continued)

5-121 210963-{102

IAPX 43204,43205

Table 3. IAPX 43204 Clock Edge Table

Input Sample Output Drive

Signal
,

Pln(s) Clock Edge Clock Edge

Inputs
MERL 44 CLKA Rising nfl!
BERL1 38 CLKA Rising nfa
BERL2 39 CLKA Rising nfa
ICS 48 CLKA Rising nfa
INIT 37 CLKA Rising nfa
RO 9 CLKA Falling nfa
CONT 10 CLKA Falling nfa
NREO 5 CLKA Falling nfa I

PRO 49 CLKS Rising nfa

Outputs "

MERLOUT 46 nfa CLKA Rising
SERLOUT 40 nfa CLKA Rising
ICSOUT 47 nfa CLKS Rising
CLRPUOUT 45 nfa CLKS Rising

. InputfOutput
MMAH 50 CLKA Rising CLKA Rising
MMAL 51 CLKA Rising CLKA Rising
ACD15 ... 0 1,54-68 CLKS Rising CLKS Falling
MACD15 ... 0 13-28 CLKA Rising CLKS Rising
CTL2 ... 0 29-31 CLKA Rising CLKB Rising
CHK1 ... 0 11, 12 CLKA Rising CLKS Rising
MSOUT 32 CLKA Rising CLKA Rising
NREOOUT 4 CLKA Falling CLKA Falling
ROOUT 6 CLKA Falling CLKA Falling
BCHK 7 CLKA Rising CLKS Rising

5-122 210963-002

IAPX 43204, 43205

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Range O°C to 70°C
Storage Temperature •....... -65°Cto +150°C
Voltage on Any Pin with

Respect to Ground -1.0V to + 7V
Power Dissipation 2.2Watt

iAPX 43204 DC Characteristics

Symbol Description

Vilc Clock input low voltage

Vihc Clock input high voltage

Vii Input low voltage

: Vih Input high voltage

Vol Output lOw voltage

Voh Output high voltage

"NOTICE: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam~
age to the. device. This is a s.tress rating only and
functional operation of the device at these or any
other conditions above those indicated in the oper­
ational sections of this specification /s not Implied.
Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.

Min . Max Units

-0.5 +0.8 V.

3.2 Vcc+0.5 V.

-0.5 +0.8 V.

2.0 VCC+0.5 V.

-I 0.45 V.

2.4 VCC V.

iii Input leakage current (measured at Vin=VCC) - ±10 /LA.

110 Output leakage current (measured at 0.45 V. =:; Vout - ±10 /LA.
=:; VCC)

loh Output high current (measured at 2.6 V.) -2 - rnA.

101 Output low current (measured at 0.45 V.) 4 - mAo

Icc Power supply current (sum of VCCO. VCC1. VCC2) - 400 mAo

All DC parameters are guaranteed over the following conditions:

VSS2 .. VSSO = 0 Volts
VCC2 .. VCCO = 5.0 Volts ± 5%
The absolute value of the differential DC voltage between any of the vec pins (VCC2 .. VCCO) must be less than 0.1
Volts. This is normally guaranteed by connecting the three VCC pins to the same printed circuit power trace .

•

5-123 210963-002

inter . iAPX 43204. 43205

iAPX.43204 AC Characteristics
AmbienUemperatrue range of O~C to 70°C

Symbol. Description

tr·tf Clock rise and fall times

t1.t2' t3' t4 Clock pul~e width

tcy Clock cycle time

ted Clock to signal delay time

tdh . Clock to signal hold time

ten Clock to signal output enable time
.,

. tdf Clock to signal data float time

tdc Signal to cl,ock setup time

tie Initialization period

5 MHz

Min Max

- 13

37 250

200 1000

- 70,

20 -
20 -
- 50

30 -
20 100

~II AC parameters are guaranteed over the following conditions;

7 MHz

Min Max

- 11

25 250

143 1000

- 60

17 -
17 -
- 44

26 -
20 100

Ambient temperature range of 0 degrees Centigrade to 70 degrees Centigrade

VSS2 ... VSSO '" 0 Volts
VCC2 ... VCCO = 5.0 Volts ± 10%

100 picofarad external load capacitor on all output pins

iAPX 43204 Capacitance Data

Conditions: Ta = 25°C
VCC = 5.0 Volts. GND = 0.0 Volts
f(test) ~ ,1.0 MHz
Inputs held at 0.0 Volts
All outputs in high Impedance state
All input/output pins are classifieda~ outputs

Symbol Description

Cin Input Capacitance

Cout Output Capacitance ..

5-124

8 MHz
Unit

Min Max

0 10 nSec

24 250 nsec

125 1000 • nsec

- 55 nsec

15 - nsec

15 - nsec

- 40 . nsec

24 - nsec

20 100 tcy~

Max Units

6 pF

12 pF

210963-002

iAPX 43204, 43205

WAVEFORMS

iAPX 43204 Clock Input Specification

~-----~ ------~

ClKA

ClKB

iAPX 43204 Initialization Timing

ClKA I
~'

5-125 210963-002

iAPX, 43204, 43205

WAVEFORMS (Continued)

,
iAPX 43204 Input Timing Specification

CLKA

R 2,
D(15-0)

MERL, aERL 1, iiEiiil
iiiiE, MMAH, MAC

CTL(2-0), CHK(l
MBOUT,BCH

-10)
K'

ICS

, RQ, CQNf, NREQ
NREOOUT, RQOUT

CLKB

PRQ
ACD(lS-G)

.
INVALID

INVALID

J

DATA

Ide Idh

INVALID
J

Ide

/
r

J

\I
DATA

J

lcie Idh

5-126

\

1\

INVALID

DATA INVAUD

Idh

I
INVAUD

210963-002

iAPX 43204, 43205

WAVEFORNIS (Continued)

iAPX 43204 Output Timing Specification

ClKA \-
~

NREOOUT. 3-STATE OR PREVIOUS \
RQOUT

'MERlOUT
BERlOUT

MMAH
MMAl
MBOUT

CLKB

ACD(15-0)

CHK(1-0). CTl(2-0).
MACD(15-0). BCHK

ICSOUT, ClRPUOUT

DATA I
I---

led

3-STATEOR
PREVIOUS DATA

DATA'

\
11\

f--;-
cd

I

I

--led

3-STATEOR
PREVIOUS DATA

1\

--Idf

DATA

ACD
DATA --Idf

/

f-t-cd

5-127

I
~

I

!+--+
I df

I

MACD I
DATA 1\

1----0-
t df

210963-002

inter (iAPX 43204, 43205

IAPX 43205 FUNCTIONAL DESCRIPTION

This section describes how the iAPX 43205 Memory
Control Unit (MCU) operates. It contains a set of
diagrams that present the clock-by-clock activity of
'the pins on an MCU component. To understand the
notation on the waveforms, refer to Figure 26. It
illustrates a 32-bit memory read operation of physi­
cal memory array address OOOOOH.

The cycle numbers (0,1,2, ...) at the top of each
waveform enumerate the clock cycles. When a
common group of Signals is plotted, its value is
displayed inside a data waveform. For example, the
MACD signals (MACD15 ... MACDO) are all high in
cycle 0, carry the hexadecimal value 0300H in cycle
1, and are all low in cycle 3. The MACD signals
(MACD15 ... MAC DO) carry the values 0300H in
cycle 1 and OOOOH in cycle 2. The first double byte of
the access contains the specification field (03H­
the high byte of the first double byte) and the low­
order address byte (OOH-the low byte of the first
double byte) of the memory address. The second
double byte of the access contains the high- (OOH)
and mid-order (OOH) address bytes. This example
illustrates a double byte read performed at physical
memory address OOOOOH. Also, notice that the
SLAD pins (SLAD19 ... SLADO) are represented
with a 5-digit hexadecimal value.

Consider the SLAD group in the examRle. In the last
half of cycle 3 and during cycle 4, the SLAD group
carries the value OOOOOH, the storage array address
for the access. In cycle 5 the array returns read data
of 42200H, and in cycle 6 the array responds with
DC664H. In this example, the storage array is phYSi­
cally 20-bits wide, and the least significant physical
bit is a spare bit. Thus, to interpret the actual data
present on the SLAD wires, a logical shift is neces­
sary to align the data as it will be presented on the
MACD Signals.

Original SLAD Information
Cycle 5 4 2 2 0 0

0100 0010 0010 0000 0000 ,
Hexadecimal
Binary
Spare Bit

Cycle 6 D C 6 6 4 HexadeCimal
1101 1100 0110 0110 0100 Binary

Cycle 5 contains the least significant information,
and cycle 6 contains the most signifiqmt informa­
tion. The least significant bit of cycle 5, the spare bit,
is not used in this case. Thus, the actual data and
ECC information transferred on the SLAD Signals is
formed by concatenating the low- and high-order
SLAD data groups and deleting the low-order spare
bit. The 7 ECC bits occupy the high-order 7 bits of
the result, and the 32 data bits occupy the low-order
portion.

Onglnal SLAD Information
DC66442200

1101 1100 0110 0110 0100 0100 0010 0010 0000 0000
I

o 31
ECC

Spare 8'lt Removed

o Spare bIt
Data

6,E 3 3 221100
110 1110 0011 0011 0010 001(1 0001 0001 0000 0000

o 31
ECC Data

The 32-bit value 33221100H is returned to the MACD
bus with the low-order 16 bits in cycle 7 and the
high-order 16 bits in cycle 8. The 7-bit ECC value is
checked by the MCU and is not transferred to the
MACD signals.

These waveforms are accurate cycle-to-cycle repre­
sentations of MCU function. They are.not meant to
serve as diagrams of exact component timing. For
example, the diagrams depict MACD data being
issued from the MCU at the functional clock boun­
daries for the rising edge of CLKA. The MCU actu­
ally sources MACD information on the rising edge
of CLKB. Always refer to the precise electrical spec­
ifications, AC specifications, and timing diagrams
when detailed timing information is required. The
funcfional diagrams are intended to succinctly sum­
marize the functions of the MCU.

5-128 210963-002

inter IAPX 43204, 43205

, ,D~ICRAM
SlOIIAGE ARRAY 112

Figure 27. MCU and External Hardware Configuration

. HARDWARE CONFIGURATION FOR
MEMORY READ AND WRITE OPERATIONS

Figure 27 is the basis for demonstrating MCU
memory read and write operations. In each memory
read and memory write example, the appropriate
command is presented to the MCU from the MACO
(memory) bus and the MCU performs the operation
to completion. Each memory operation as;sumes
,the following hardware configuration for the logic
. external to the MCU. Notice. that external logic
accepts the RAS, WE, and OEIN signals and produ­
ces the precise timing signals which are required by
. the associated dynamic RAM storage array. In the
diagrams which follow, only signals which are pres­
ent on the MCU Signal pins are displayed.

MEMORY READ OPERATIONS

Figure 26 (Normal Aligned Read) illustrates a mem­
pry read operation that returns two double bytes (4
bytes) from the memory subsystem, typical for iAPX
~2 GOP instru~tion fetch cycles.

Figure 28 (Normal 2-byte Read) illustrates a mem­
ory read operation that returns a single double byte
operand.

Figure 29 (Normal Nonaligned Read) illustrates a
4-byte memory read operation that is not aligned to
a 4-byte boundary, the natural boundary for instruc­
tion fetches and 32-bit operands. In this case, the
MCU must perform two/separate storage array
accesses to acquire the 4 bytes.

Figure 30 (4-byte Read with Extended Access) illus­
trates a programmable option on the MCU that
accommodates storage arrays that require longer
memory access cycles. With the extended access
option, the MCUextends RAS one cycle and delays
OEIN one cycle to allow the external array sequenc­
ing logic to extend the storage array cycle .

Figure 31 '(Staged Read with Correctable Error)
demonstrates how an MCU can stage (hold) mem­
ory data until all ECC detection and correction is
performed. Without selecting the staging option, a
MCU would normally present the memory data it
acquired to the MACO bus as in other memory read
cycles. However, should an error be detected, the
MCU would signal (BERLOUT) to inform a BIU that
data it had been given was invalid, and the BIU
would retry the access.

210963-002

Cuu.

MACO

CHK

-

CLKA

\otACD

CTL

CHK

SLAD

AllCHK

IAPX 43204, 43205 1." ,

0 1 2 3 4 5 8 7 8 9

~ ~ ~ f\..-. n-~ n-n-~ ~
,............

r---,

r----- -.!.-

~ -J

Figure 28. Normal. 2-byte Read

0 1 2 3 '. 5 8 7 • 9

h- f\..-. n-n-n-~ t"""--~ ~ ~
1

r---,
1

-.!.-

'\.--J ,

Figure 26. Normal Aligned . Read

210963-002

inter

CUCA

MACD

CHK

AllCHK

CLKA

MACD

CTL

CHK

SLAD

ABCHK

IAPX 43204, 43205

0 1 2 3 4 5 • 7 • 9 10 11 12 13

~ ~ ~ ~ ~ ~ h.-h.- I'\....... r-L. I'\....... ~ ~ r"'-

~

I--'-

~

'-~ '-~

Figure 29. Normal Nonaligned Read

0 1 2 3 4 5 • 7 • 9 10

~ h-h.-~ ~ t-""-- h.-~ ~ t-""--t-""--

~ 1

2 1 I--l--
0000I ME C

'--J

Figure 30. 4-8yte Read with Extended Access

5-131 210963-002

IAPX 43204, 43205

CL~

MACD

en

CHK

suo

ABCHK

,

0 1

~ ~

'"""'"

2 3 4 5

~ V V --r-

1

to--

8 7 8 • 10 11 ,12 13

V V V Vr-~ V W-

~ ~

Figure 31. Staged Read with Correctable Error

MEMORY WRITE OPERATIONS

Figure 32 (Normal 2-byte Write) illustrates a mem­
ory write operation that stores a single double byte
operand.

Figure 33 (Normal Aligned Write) illustrates a mem­
ory write operation that stores a 4-bYte operand
aligned to a 4-byte boundary.

Figure 34 (Normal Nonaligned Write) illustrates a
4-byte memory write operation that is not aligned to

a 4-byte boundary. In this case, the MCU must per­
form two separate storage array accesses to store
the 4 bytes.

Figure 35 (4-byte Write with Extended Access) illus­
trates a programmable option on the MCU that
accommodates storage arrays which require longer
memory access cycles. With the extended access
option, the MCU extends RAS one clock cycle and
delays DEIN one clOck cycle to allow the external
array sequencing logic ,to extend the storage array
cycle.

5-132 210963-002

inter

CLIIA

IUCD

CT\.

CHK

SLAD

ABCHK

CLIIA

M~D

CT\.

CHK

SLAD

ABCHK

• 1

V V

• 1

V V-

IAPX 43204, 43205

2 3 • 5 8 7 8 • I' 11 12 13

~ ~ ~ f.....r" Vr-~ V"'r-' V ~ V-
I

'--' f-'
'-' f--'

~E

-
~

'---

Figure 32. Normal 2-byte Write

2 3 4 5 • 7 • • I' 11 12 13

~ f-..I' V"' ~ Vr-r-' ~r-'r-r-' V
.

'- '-J

'\..... I.....J

~

r-
'--

Figure 33. Normal Aligned Write. .

5-133 210963-002

CLKA

MACD

CTL

CHK

SLAD

ABCHK .

CLKA

MACD

CTL

CHK

SLAD

ABCH~

i

IAPX 43204,'43205

0 1 2 3 • 5 6 7 8 8 10 11 12 13

h-h--h- ""'"\.....J h-~ ~ h-h-r""\..... h-r""\..... h-~

1

'-~
'--F

'--Lr-

Figure 34. Normal Nonaligned Write

,. 15 16 17 18 ,. 20 21 22 23 24

h..... ""'"\.....J """"\....... ""'"\.....J """"\....... r""\..... ""'"\.....J h-r""\..... ""'"\.....J r""\.....

.....J......

....:.J....,;,;

00001 E C E

'--J

\:.- i--J '
'--LJ

Figure 34. Normal Nonaligned Write (continued)

5-134 210963'()02

inter

en

CHI!

&LAD

CLKA

MACD

en

CHI(

SLAD

-

0

~

M

~

IAPX 43204, 43205

1 2 3 • 5 • 7 • • 10 11 ,12 13

'""'"\.... ~ ~ ~ """'\...... ~ ~ r-\.... """'\...... ~ '""'"\.... """'\...... ~

1

I

~J

~. '- r-'
'--F"

Figure 35. 4-byte WrIte wHh Extended Access

15 18

'""'"\.... ~

--L....

~

Figure 35. 4-b,.. WrIte with Extended Access (continued)

5-135 210963-002

inter "IAPX 43204, 43205

, .
MEMORY REFRESHING OPERATIONS
Figures 36 and 37 illustrate an MCU performing,two
types of storage array refreshing operations, The
MCU performs a Normal Refresh Cycle to satisfy
standard, dYl'larnic RAM refresh requirements.
External logic must use the REFRESH Signal, to
generate the appropriate storage control signals
(e,g., RAS-only refresh). The MCU performs· a
Scrub Refresh Cycle to cleanse the memory array of
latent,ECC errors by periodically reading the stor­
age array and writing back a corrected version of
data for any correctable errors it detects. Each of
these diagrams utilize the same hardware configu­
ration as the memory read and write operations

• 1 2 3 •
......r- Vr-~r-

CHI(- '" -
-

ABCHK

REFRESH
""--

5

described earlier. However, the MCU performs the
refreshing operations independently of any com­
mands from the MACD bus~

INTERCONNECT REGISTER OPERATIONS
Figures 38 and 39 illustrate the' reading and writing
of interconnect registers that are located on the
MCU. Refer to the iAPX 432 Interconnect Architec­
ture Reference Manual for a detailed description of
specific interconnect registers, These diagrams
illustrate general interconnect register operations.
Later, specific commands are demonstrated that are
invoked by interconnect register operations.

8 7 • •
......r- Vr-r-r-

.....

....

Figure 38. Norm.I RefreSh Cyete

5-136 210963;002

inter

CLIIA

IUCD

CTL

CHIC

-
REFRESH

CTL

CHK

II.AD

-

0 1

.....j"! ~

-
r---.

'---

0 1

."'""'-.. h-
.,ED

~

............
"--

IAPX 43204, 43205

Z 3 • I • 7 • • 10 11

~ V V ~ V W-~ ~ ~ ~

"--

l--
~ -

FIgure 37. Scrub R h Cycle

2 3 • 5 • 7 • • 10

h--~ ~ ~ h.... ~ ~ ~ h--

• 3

•
,

FIgure 38. Interconnect Regls~r Read

5-137 210963-002

. I~PX 43~04; 43205

CLKA

MACO
C-l~-~~~~~~~~C-

11

~

I.

~
0 1 0

CTL
1 '-p-

CHK • -,-~
SLAO

,

ABCHK

REFRESH

Figure 39. Interconnect Register Write

TEST DETECTION COMMAND

The Test Detection command is used to check that
the detection circuits in the MCU are operating cor­
rectly. The command is invoked by an interconnect
register write to the Test Detection register address
(see the iAPX 432 Interconnect Architecture Refer­
ence Manual). The iAPX 432 instruction MOVE TO
INTERCONNECT, executed on a GDP, causes the
interconnect write cycle. The MCU reports the sta­
tus of the test via the three-phase error report
method described earlier. (See BERLOUT pin des­
cription.) If the test found no errors, the "no error"
message is sent. If the test encountered an error, the

. "module error" message is sent.

1
Two Test Detection executions are shown in Figures
40 and 41, one each for the master and checker
components in a FRC pair. Each of the. diagrams
consist of five parts. The two components operate
identically except for the manner in which they
check the BUSSEL signal (see cycles 10 and 11).
The master operates the memory bus detection cir~
cuits with BUSSEL=O. The checker issues the com­
plement, BUSSEL=1. External logic checks the two
BUSSEL signals and reports the disagreement on
the BCHKIN/M input.

5~138 210963-{)02

inter

CLICA

MACD

CTI.

CHK

8LAD

ABCHK

BU88EL

BCHK

BCHKIN/M

CLICA

MACD

cn

CHK

8LAD

ABCHK

BUS8EL

,BCHK

BCHKIN/M

IAPX 43204, 43205

0 1 2 3 4 5 • 7 8 9 10 11 12 13

~ ~ ~ t"":'-~ h-h-i'--' h-h-h-h-h-h-
•

1

-

'-- ...J

,.......... ,.......... Ir-----o--
~

Ir-- Ir-- Ir--- I'---' ---.. I'----' I'----' ~
r---.-- r---.--. Ir--- I'---' ~ I'----' ~

. Figure 40. Test Detectlon...,.Master

1. 15 18 17 18 18 20 21 22 23 l!4 25 28 27

h-. '"""\...J h- '"""\...J """"\....J ~ """"\....J r-w """'"\..... """'"\..... ~ '"""\...J h--"\..-

......a.....
DCIIH

"

roo-- It-----
I'--

Ir--
~

,.........., ,.......... ~
~ ~ I'---' ~ I'---<

I-- Ir-----o r-- r-- Ir-- Ir-- ~
~ ~ I'----' I'---- ~ I'----

, .

''---
____ Ir--,--

Figure 40. rest Detection-Master (con~lnued)

5-139 210963-002

CUCA

MACD

en

CHK

AIICHK

BUSSEL

BCHK

BCHklNIM

CLKA

MACD

en

CHK

-
BU8BEL

BCHK

BCHICINIM '

IAPX 43204, 43205

a a 30 31 32 :13 34 3S 31 37 31

'"""\..." ~ ~ ~ "'""'\..... ~ '"""\..." ~ ~ f\-. I"-'

~
r-- r--

I'---'
r-- I'----'r--~ r--I'--~

~ ~
~
~

I'-----"
r--
~
~

I'--I'----' ~

~

figure 40.,.. Detection-Master (continued) ,

0 I 2 3 4 5 8 7 • • 10

~ h-~ t-"--h-~ h-h-h-~ h-
41EO

I

1

,---
~

....--.
~

,.-- ,---
~
~

Io.-...j ~
,--- ~ ,.-- ,--- r---:-

~ I'----' ~ ~
"

Figure 41. ,.. DeiectIon-Checker

5-140

" '.

11 12 13

h-h-t"""'-

'-I--'

"""-
...--

f'-----I -

210963.Q02

inter

CLKA

MAC\)

CTL

CHK

.LAD

ABCHK

BUa.L

BCHK

8CHKINIM

CLKA

MACD

ClL

CHK

SLAD

ABCHK

BUSSI!L

BCHK

BCHKINIM

IAPX 43204, 43205

14 15 1. 17 18 19 20 21 22 23 24 25 II 27

f'--f'-.. ~ f'-.. f'--r'--' ~ h--~ f'-- "--' ~ f'-.. t""'-

t---L-
".....

,

---.... ~ '---" ~ I""-"'-r-- '--
~

'----'
~

'----' ~ ~ r-
r- r--- r----'" r---- r---- it--

'---"
r--- -- ~ '-- '---' '---'

\

'----' '----'
..-----

Figure 41. Teat Detection-Checker (continued)

II 29 30 31 32 33 34 35 36 ·37 38

~ I"""-~ r'-r'- h...... ~ t""'- t""'- f'--~

~
r---

1\---1 r-- ..---r-----~ I\---'
,.....--

~ '--

r- r- ..---
I\----'

..---
I\----'
~

'---" 1'----1 --.... '--

-- ,.....--

Figure 41. Teat Detectlon..!.Checker (continued)

5-141 210963-002

. iAPX 43204, 43205

CLEAR MEMORY COMMAND
The Clear Memory command is invoked by an inter­
connect register write to the Clear Memory register.
The MCU performs the command by writing zero
data and appropriate ECC information to all storage
array locations. The same hardware configuration
that was used for memory read and write cycles is
assumed. The MCU returns a reply to the requester
as soon as it accepts the command but will not
perform any further requests until it has cleared the
memory. As seen in Figure 42, the MCU issues

0 1 2 3 4 5

storage array write cycles beginning at the highest
storage array address (in this case, 03FFFH) and
decrements through remaining addresses (03FFEH,
03FFDH, ...). Notice that the ECC and zero data
information changes for each successive cycle
(BOOOOOOOOOH, D200000000H, A600000000H, etc.).
This occurs because ECC is computed across data
and address information. This process continues
until all storage locations have been cleared. Only
the first few cycles of the p,rocess are demonstrated.

6 7 • 9 10 11 12 13

CLKA

MACD
"--' ~ ~ "--' rG ~ "--' """""\..:.., ~ "-.,.... ~ ~ ~ '""""'-

'IIEO 600E .
cn

1 1i...

"---!.-
CHK

SLAD

ABCHK

Figure 42. Clear Memory Command

5·142 210963-002

inter

I

CLKA

MACD

CTL

CHK

-

CLKA

IIACD

CTL

CHK

SLAD

iiiS

DEIN

WE

ASCHK

IAPX 43204, 43205

14 15 18 17 18 19 20 21 22 23 24 as 28 ~'

~ ~ ~ ~ ~ ~ f""""\..-. "-" r-'-~ ~ ~ ~ ~

03FFf 8l1000 03FFE " D2000 03F1'D

'-J '--~
'-L-.I '--L-.I

FIgure 42. Clear Memory Command (continued)

28 21 30

h-~ h-

oM'\.

h-~
\.....Lr ,

figure 42. Clear Memory Command (continued)

5-143

JAPX 43204, 43205

Table 4. IAPX 43205 Clock Edge Table

Input Sample Output Drive

Signal Pln(s) Clock Edge Clock Edge

Inputs
INIT 37 ' ClKA Rising n/a
BERl1 38 ClKA Rising n/a
BERl2 39 ClKA Rising n/a
RQ 9· ClKA Falling n/a

.CONT 10 Cl-KA Falling n/a
BCHKIN/M 4 ClKA Rising n/a
ABCHK 45 ClKA Rising n/a

Outputs
RAS 48 n/a ClKA Falling
DEIN 47 n/a ClKA Falling
WE 46 n/a ClKA Falling
REFRESH 44 n/a ClKA Falling
BERlOUT 40 n/a ClKA Rising
BCHK 6 n/a ClKB Rising
BUSSEl 5 n/a ClKA Rising

Input/Output
MACD15 ... 0 13-28 ClKA Rising ClKB Rising
CTl2 ... 0 29-31 .ClKA Rising ClKB Rising
CHK1 ... 0

,
11-12 ClKA Rising ClKB Rising

MBOUT 32 ClKA Rising ClKA Rising
SlAD19 ... 0 1-2,51-68 ClKA . Rising ClKA Falling

5-144 210963-002

IAPX 43204, 43205

ABSOLUTE MAXIMUM RATINGS· "NOTICE: Stresses abOve those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those Indicated in the oper­
ational sections of this specification is not Implied.
Exposure to absolute maximum rating conditions
for extended periods l1Jay affect device reliability.

Ambient Temperature Range •...... OOC to 70°C
Storage Temperature -65°Cto +150°C
Voltage on Any Pin with

Respect to Ground .••........ -1.0V to + 7V
Power Dissipation•.............. 2.5 Watt

IAPX 43205 DC Characteristics

Symbol Description

Vile Clock input low voltage

Vihc Clock input high voltage

Vii Input low voltage

Vlh Input high voltage .,

Vol Output low voltage

Voh Output high voltage
SLAD19 .. 0
Other outputs

iii Input leakage current (measured at Vln=VCC Volts)

110 Output leakage current (measured at 0.45 Volts S Vout
S VCCVo!ts)

loh Output high current (measured at Vout=2.6 V.)

101 Output low current (measured at Vout=0.45 V.)

Icc Power supply current (sum "Of VCCO. VCC1. VCC2)

All DC parameters are guaranteed over the following conditions:

VSS2 .. VSSO - o Volts
VCC2 .. VCCO ~ 5.0VoHs ±10%

Min Max Units

-0.5 +0.8 V.

3.2 Vcc+0.5 V.

-0.5 +0.8 . V.

2.0 VCC+0.5 V.

- 0.45 V.

2.6 VCC V.
2.4 VCC V.

- ±10 JAA,.

- ±10 JAA,.

-2 - mAo

4 - mAo

- 450 mAo ..

"
The absolute value of the differential DC voltage between any of the vee pins (VCC2 .. VeeO) must be less than 0.1
VoHs. This is normally guaranteed by connecting the three VCC pins to the same printed circuit power trace.

5-145 210963-002

"rd_l®
111'eI iAPX43204, 4'3205

iAPX 43205 AC Characteristics
Ambient temperature range of O°C to 70°C

5 MHz

Symbol Description Min Max

tr• tf Ciock rise and fall times - 13

t1' t2• t3' t4 Clock pulse width 37 250

tcy Clock cycle tim~ 200 1000

tcd Clock to signal delay time - 70

tdh Clock to signal hold time 20 -

ten Clock to signal output enable time 20 -
, tdf Clock ,to signal data float time - 50

tdc Signal to clock setup time 30 -
tmc MACD input setup time 30 -

tie Initialization period 40 100

All AC parameters are guaranteed over the following conditions:

7 MHz

Min Max

- 11

25 250

143- 1000

- 60

17 -
17 -
- 44

26 -
26 -
40 100

Ambient temperature range of 0 degrees Centigrade to 70 degrees Centigrade

VSS2 , , , VSSO = 0 Volts
VCC2 , , ,VCCO = 5,0 Volts ± 10%

100 picoFarad external load capacitor on all output pins

iAPX 43205 Capacitance Data

Conditions: Ta = 25°C

Symbol

Cin

Cout

VCC = 5,0 Volis. GND = 0.0 Volts
f(test) = 1.0 MHz
Inputs held at 0.0 Volts
All outputs in high impedance state
All input/output pins are classified as outputs

Description

Input Capacitance

Output Capacitance

• 5-146

:SMHz
Unit

Min Max

- 10 nsec

24 250 nsec

125 1000 nsec

- 55 nsec

15 - nsec

15 - nsec

- 40 nsec

24 - nsec

24 - nsec

40 100 tcy

Max Units

6 pF

12 pF

210963-002

· iAPX 43204, 43205

WAVEFORMS

Clock Input Timing Specification

~y ------------~

I,

CLKA

CLKS

1,

Initialization Timing Specification

CLKA

~------------ I~ ------------~

5-147 210963-002

IAPX ~204. 43205

WAVEFORMS (Continued)

IAPX 43205 Input nmlng Speclftcatlon

BERL 1,8ERL2,
BCHKINIM,ABCHK,

MBOUT

RQ,CONT,

MACD(1~),
CTL(2-0)
CHK(1-G)

INVALID

INVALID

, INVALID

INVAUD

INVALID

5-148 210963-002

inter iAPX 43204, 43205

WAVEFORMS (Continued)

IAPX 43205 Output Timing Specification

CLKA

CLKB

MACD(1S·0)
CTL(2·0)

CHK(1-CI)

BCHK

BERLOUT,
MBOUT,
BUSSEL

DATA DATA

DATA DATA

DATA

5-149 ~10963-o02

iAPX 43204, 43205

WAVEFORM,S (Continued)

S~orage Array Bus Output Timing Specification

CLKA

SLAD(19-0) DATA DATA DATA ---

1.,

RAS, WE,
DEIN, DATA DATA DATA

REFRESH

Storage Array Bus Input Timing Specification

CLKA

SLAD(19-0)

5-150 210963-002

inter iAPX 43204, 43205

HARDWARE INTERFACING

This section presents examples of hardware that
interfaces iApX 432 processors (the iAPX 43201/
43202 General Data Processor (GOP) and the iAPX
43203 I Merface Processor (IP), the iAPX 43204 Bus
Interface Unit (BIU), and the iAPX 43205 Memory
Control Unit (MCU) to one another (see Figure 44).
These examples present some alternatives for build­
ing iAPX 432 systems using the interconnect com­
ponents. A wide variety of systems may be built with
the interconnect components and this list of exam­
ples explores only a few dimensions of the design
space.

•
•

Figure 44. Interfacing IAPX 432 Processors to
the BIU

5-151

Figure 45 illustrates the connection of a BIU to the
serial error reporting networks. Here, the BIU con­
nects to the module error report line (MERL) and
has a duplicated bus error report line (BERL 1 and
BERL2). Each error report line is driven by open
collector inverters so that the BIUs along either the
module or bus axes may contribute error messages
in wired-OR fashion. Two inverters are required to
drive each error report line, one is a standard
inverter and the other is an open collector version.
The example shown also duplicates the bus error
report lines so that bus error messages may be
delivered even if one of the inverter paths fails.
Should duplicated bus error report lines not be
required, one of the two inverter groups could be
deleted and the BERL 1 and BERL2 signals con­
nected together.

MEAl

.,U

...... A_
MERLOUT

"" "" DC STD
BEJit:6Ur iERU iiE'iii:2

1
I
~7 s:ro ~7

T ~7 DC ,\7

• ERL1 . ERl2

Figure 45. Interfacing a BIU to Error Reporting
Network

210963-002

inter IAPX 432.04,43205

The 432 hardware system designer must provide an
external arbitration network which examines the
BIU's arbitration signals, along with other BIUs in
the system, to determine when it is permissible to
use the memory bus. Two 'alternatives for this
function are presented in Figures 46 and 47. The first
method requires the fewest backplane signal lines
since it utilizes multilevel analog Signalling to arbi­
trate forthe bus. The second method requires more
backplane signals and unique wiring for each arbi­
trating unit but is fully digital.

RQ BIU

CONT
MASTER

['7

I NREQOUT

RQOUT

T. ft u ¢
1 ~

T

With either method, each BIU produces two output
signals, RQOUT and NREQOUT, which are activated
to indicate that the BIU requires the use of the
memory bus. Each BIU requires that an external
logic network examine all the NREQOLlTs and
RQOUTs to identify when a request is being made
by one or more Bills." Three inputs to the BIU
(NREQ, RQ and CO NT) are generated by the'
external logic. NREQ (New Request) is activated to
signal that a new time-ordering cycle has occurred,
RQ (request) signifies that one or more RQOUTs
are active and CaNT (contention) signifies that
more than one RQOUT is actilie.

BIU
CHECKER

I
¢

~

RQ

CONi'

~ ~NE521 ,
T

NREQM

NREQC

ARBM

ARBC

Figure 46. Interfacing the BIU to the MACD Bus Arbitration Network
(Analog Method)

5-152 210963-002

IAPX 43204, 43205

RQ1

•
•
• PROM

OR
PLA

~----~r-----------+-----~------------------~RQ
~----~t------------+--~~t-----------~-------iCONT

CONTI RQ !
RQOUT

BIU BIU •••

I NREQOUT

Y NAEQ

Figure 47. Interfacing the BIU to the MACD Bus Arbitration Network
(Digital Method)

Figure 48 shows the required bus transceivers
which connect a BIU to a memory bus. In addition,
the drawing suggests how the oscillating BCHK

signal may be used to check that the external
buffers are operating correctly.

BUStO<-<~ MACD(1o-a)

INIT

.,U
MASTER

.. MAC.
3CTL

...!£!!!L
2t BUSUNES

.'U CHECKER

Figure 48. Interfacing the BIU to the MACD BUS

5-153

OCTAL
TRANSCEIVER ""'....,..

219963-002

IAPX 43204~ 43205

Figure 49 illustrates how an MCU. an external RAM
storage array. and external sequencing logic form a
memory subsystem. In this example. economical
dynamic RAM components form the storage arrays
and the array sequencing logic. under control of the

MCU. provides the precise signals required to man­
age the arrays. Figures 50 and 51 detail the array
sequencing logic and the timing of signals which
coordinate the actions of the storage array.

L

~----~~-----------4----~--------~~

~ . S~~E 1-£!~:~2 __ .:../

.... W"'E"'l __ -I SE~g~~gER I-'!W.!:OE2L---I.t

01

MCU

C
H

01

AOR

DYNAMIC RAM
STORAGE ARRAY #2

Figure 49. Interfacing the MCU to the Storage Array

5-154

INIT
DATA

210963-002

inter

-
RAS

-
WE

0 0
L-D 0

0 0

'--- 0 0
_0 ,0
_0 0

I

_0 0 - DO
A

I~

IAPX 43204. 43205

Loa
ClKB

1....- 0 0

-
74S74 -0 0

ClKA

.-0 0

.,

74S374

r--__ 0

ClKA
ClKB

0

-

1
74574

,
CAs1

CAS2

MUX1

MUX2

RAs1
RAS2
WE1
WE2

0E1

DELAYED
0E2

·OPTIONAl DELAY TO
AVOID BUFFER CONTENTION

Figure 50. Sequencing Logic for the Storage Array

5~155 210963-002

IAPX43204; 43205·

CLKA

CLKB

RAS1\ /
RAS2

\ / MUX1, /
MUX2

\ /
CASt

\ /
CAi2

\ /
ADDRESS ROW X COLUMN X TOARAY#1

ADORESS ROW X COLUMN X TO ARRAY #2

0Ei

\ /
0E2 -'"\

/ I \ ~ _J7 DELAYED 0E2

~t9 ••• 0 3---{ X ~
-~

DATA DATA }:j-------------------

Figure 51. Timing Diagram for the Storage Array Interface

5-156 210963-002

inter IAPX 43204, 43205

External hardware must be employed to permit an
MCU to attach to its normal or backup memory bus.
There are several facets to this requirement. Natu­
rally, individual bus transceivers must be used to
allow the MCU, throug!l its BUSSEL (bus select)
output Signal, to choose which memory bus will
carry its address, control, data, and check informa­
tion. In addition, the MCU must access error report
information and arbitration information from the
correot memory b~., These requirements are met
by the I!ort of network illustrated in Figure 52. Notice
that these requirements are unique to the MCU. One
BIU is required for each bus that a processor wishes
to attach to, no such,steering is required for a BIU.
The next example highlights some of the considera­
tions when extending these requirements to fault
tolerant systems.

:::j::=::=::=::=::=::==::=:::=::=::=t :~I~T'ON ERROR

Figure 52. Interfacing the MCU to ~o Memory
8uuea

Fault tolerant MCU configurations require that spe­
cial external logic enable the transceivers which
connect the MCU to"its assigned memory bus. This
may be done with a scheme illustrated in Figure 53.
Two MCUs are employed in a FRC configuration. At
their FRC interface, all the MACD, CTL, CHK signals
as well as the MBOUT direction signal are com­
pared for error. The master and checker MCUs each
develop a version of the BUSSEL signal. Since it is
not possible to FRC the BUSSEL signal and guaran­
tee a correctly operating version, external hardware
must be employed to develop a fault tolerant version
of the bus selection function. The individual BUS­
SELs must be checked by external fault tolerant

.......
TOLEIIANT ...
..... cr
LDOIC

_
Figure 53. Fault lblerant Bus Select Network

logic which enables only one of the two sets of
memory bus transceivers when the BUSSELs are
both active. If there is any discrepancy in the BUS­
SELs, the external logic must disable both of the bus
transceiver sets so that the malfunctioning MCU
cannot corrupt either memory bus.

This same technique must also be applied to other
signals which must be routed to/from the currently
assigned memory bus. The BERLOUT error report
signal must onlegeFJt.uWE~t01the correctly selected
bus. The RO, , L , and 'B'ERD signals
must only be received from the correctly selected
bus.

Special logic is also required to check those Signals
which are not FRCed in a fault tolerant configura­
tion. The BCHK output pins and the BCHKIN/M
input pins of the master and checker MCUs may be
used to detect errors in the external logic. In Figure
54, a PROM is used as the error detector. The inputs
to the PROM may come from a variety of sources,
depending on ·the particular hardware configura­
tion. In this example, the PROM observes two sets of
Signals, one set from the master and another from

5-157 210963.(JO~

IAPX 43284, 43205 , ,\ ,!

BUS
TRANSCEIVERS

Figure 54. DetectIng Erro ... In External MCU logic

.050

the checker. Notice that the oscillating BCHK signal
is routed through the bus transceivers in different
directions depending on the value of the MBOUT
signal. The fault tolerant versions of the BUSSEL
sign'!!.!!lect collection of signals to be checked.
The INIT input to the PROM provides a convenient
way to establish master/checker roles during initial­
ization since BCHKIN/M carries mastership infor­
mation at that time.

PACKAGE

The 43204 and 43205 are packaged in S8-pin. lead­
less JEDEC type A hermetic chip carriers. Figure 55
illustrates the package. and Figures 9 and 11 show
the pinouts.

(2.39)

.088
(1.88)

it:· n
.800 D .980

F·094

(ZO.32) (24.38)

I {:'::)r

L.
~.,,,~ PIN NO. 1 PIN NO. 1 MARK J~

.980
(24.38)

Figure 55. 43204 and 43205 JEDEC Ty~ A Package

. &-158

.130
(3.30)

210963-002

Peripherals

Peripherals
Section

6

".,',", ',i,. : ,i,'"
'.\: ' '-"

"

inter APPLICATION
NOTE·

• I

AP·97A .

April 1982

'---__________ -----1 , '

6-1 OROER NUMBER: 21038Bm1

INTRODUCTION

The designer of a microprocessor-based system has two
basic types of devices available to implement a random
access read/write memory- static or dynamic RAM.
Dynamic RAMs offer many advantages. First, dynamic
RAMs have four times the density (number of bits per
device) of static RAM~, and are packaged in a 16-pin
DIP package, as opposed to the 20-pin or larger DIPs
used by static RAMs; this allows four times as many
bytes of memory to be put on a board, or alterllatively,
a given amount of memory takes much less board space.
Second, the cost per bit of dynamic RAMs is roughly
one-fourth that of statics. Third, static RAMs use about
one-sixth the power of static RAMs, so power supplies
may be smaller and less expensive. These advantages are
summarized in Table I.

On the other hand, dynamic RAMS require 'complex
support functions which static RAMs don't, including

• address multiplexing
• timing of addre,sses and control strobes
• refreshing, to prevent loss of data'
• arbitration, to decide when refresh cycles will be

performed.

LOG21COST)

CONTROLLER

CS LOGIC

4K 8K

Table 1. Comparison of Intel Static and
Dynamic RAMs Introduced during 1981

2164·15 2167·70
(Dynamic) (Static)

Density
(No. of bits) 64K 16K

No. of pins 16 20
Access time (ns) 150 70
Cycle time (ns) 300 70
Active power (rna) 60 125
Standby power (rna) 5 40
Approx. cost per bit 45 250

(millicents/bit)

In addition, dynamic RAMs may not always be able to
transfer data as fast as high-performance
microprocessors require; wait states must be generated
in this case. The circuitry required to perform these
functions takes up board space, costs money, and con­
sumes power, and so detracts from the advantages that
make dynamic RAMs so appealing. Obviously, the
amount of support circuitry should be minimized.

The Intel 8202A and 8203 are LSI dynamic RAM con­
troller components. Either of these 4O-pin devices alone
does all of the support functions required by dynamic
RAMs. This results in a minimum of board space, cost,
and power consumption, allowing maximum advantage
from the use of dynamic RAMs.

16K 32K 64K 128~

LOG21RAM SIZE) (K BYTES)

Figl,lre 1. Implemented Cost of Static vs. Dynami~RAM

6-2 A~N: 02200A

AP·97A

Figure 1 shows the relative cost of static and dynamic
RAM, including support circuitry, as a function of
memory size, using the Intel ~202A or 8203. For any
memory larger than 16KBytes, the dynamic RAM is less
expensive. Since the cost of the dynamic RAM con­
troller is relatively independent of memory size, the cost
advantge for dynamic RAM increases with increasing
memory size.

This Application Note will describe the techniques of in­
terfacing a dynamic RAM memory to an iAPX-86 or
iAPX-88 system using either the 8202A or 8203 dynamic
RAM controller. Various configurations of the 8086
and 8088 microprocessors, and those timings which they
satisfy, are described. The Note concludes with ex­
amples of particular system implement(ltions.

" DYNAMIC RAMS

This section gives a brief introduction to the interfacing
requirements for Dynamic RAMs. Later sections will
describe the operation of the Intel 8202A and 8203
Dynamic RAM Controllers.

Device Description

The pinout of two popular families of dynamic RAMs,
the Intel 2118 and 2164A, are shown in Figure 2. The
2118 is a 16,384 word by I-bit dynamicMOS RAM. The
2164 is a 65,536 word by I-bit dynamic MOS RAM.
Both parts operate from a single + 5v supply with a
± 10070 tolerance, and both use the industry standard
16-lead pinout.

The two parts are pinout-compatible with the exception
of the 2164 having one extra address input (A7, pin 9);
this pin is a no-connect in the 2118. Both parts are also
compatible with the next generation of 256K dynamic
RAMs (262,144 word by I-bit), which will use pin 1
(presently a no-connect on both the 2118 and 2164A) for
the'required one extra address input (J\S>. This makes it
possible to use a single printed circuit board layout with
any of these three types of RAM.

v ••
DIN CAS DIN
WE DOUT WE

RAS At; RAS

Ao A3 Ao

'A2 A4 ,

A1 As A1

Voo Voo
16K 64K

Addressing

Each bit of a dynamic RAM is individually addressable.
Thus, a 2164A, which contains 216 (or 65,536) bits of in­
formation, requires 16-bit addresses; similarly, the
2118, which contains 214 (or 16,384) bits, requires 14-bit
addresses.

In order to reduce the number of address pins required
(and thus reduce device cost), dynamic RAMs time­
multiplex addresses in two halves over the same pins.
Thus a 2164A needs only 8 address pins to receive 16-bit
addresses, and the 2118 needs only 7 for its 14-bit ad­
dresses. The first address is called the row address, and
the second is called the column address. The row -ad­
dress is latched internal to the RAM by the falling edge
of the RAS (Row Address Strobe) control input; the col­
umn address is latched by the falling edge of the CAS
(Column Address Strobe) control input. This operation
is illustrated in Figure 3.

Dynamic RAMS may be visuallized as a two­
dimensional array of single-bit storage cells arranged
across the surface of the RAM's die. In the case of the
2164A, this array would consist of 28 (or 256) rows and
28 (or 256) columns, for a total of 216 (or 65,526) total
bit cells (Figure 4). This is the source of the "row ad­
dress" and "column address" terminology. Bear in
mind that any given RAM may not be physically im­
plemented as described here; for instance, the 2164A ac­
tually contains four arrays, each one 27 rows by 27
columns.

v •• .Aa 1 v ..
CAS DIN CAS

DOUT WE DOUT
Ac ' RAS Aa

A3 Ao A3

A4 A4
As A1 As A7. Voo A7

256K

Figure 2. Dynamic RAM Pinout Compatibility

6-3 AFN.022OOA

AP.97A

ADDR'ESS COLUMN

Figure 3. Dynamic RAM Addressing

COLUMNS

°H °H 1H 2H 3H l ~HI FEH FFH

1H 100H 101H 102H 103H 1~ \1 IFEH IFFH

2H 200H 201H 202H 2031l1t / ,
2FEH 2FFH

3H 300H 301H 302H 303 (\3FEH 3FFH

400H 401H 402H 403~ '\
500H 501H 502H soy BIT CELL ADDRESS

4H

ROWS
5H

11M,

~

~
--=

~H FCFFH

FDooH F H fi FDFEH FDFFH

FEooH FE01 H FE02H' II FEFEH FEFFH

FFooH FF01H FF02H 1\ II FFFEH FFFFH

Figure 4. Bit Cell "Array"

Memory Cycles

In this Application Note, we will discuss three types of
memory cycles - read, write, and RAS-only refresh.
Dymanic RAMs,may perform other types of cycles as
well; these are described in the dynamic RAM's data
sheet.

Whether data is read or Written during a memory cycle
is determined by the RAM's WE control input. Data is
written only when WE is active.

During a read Cycle, the CAS input has a second func­
tion, other than latching the column addr~s. CAS also
enables the RAM data output (pin 14) when active,
assuming RAS is also active. O~erwise, the data output
is 3-stated. This allows multiple dynamic RAMs to have
their data outputs tied in common.

- During write cycles, data on the RAM data input pin is
latched internally to the RAM by'th~d8lling edge of'

6-4

CAS or WE, whichever oCcurs last. If WE goes active
before CAS (the usual case, called an "early write"),
write data is latched by the falling edge of CAS. If WE
goes active after CAS (called a "late write"), data is lat­
ched by the falling edge of WE (see Figure 5).

Late writes are useful in some systems where it is desired
to start the memory cycle as quickly as possible, to max­
imize performance, but the CPU cannot get the write
data to the dynamic RAMs quickly enough to be latched
by CAS. By delaying WE, more time is allowed for
write data to arrive at the dynamic-RAMs.

Note that when "late write" is performed, CAS goes ac­
tive while WE is still inactive; this indicates a read cycle,
so the RAM enables its data output. So, if "late write" ,
cycles are performed by a system, the RAM data inputs
and data outputs must be electically isolated from each
other to prevent contention. If no "late writes" are per­
formed, the RAM data inputs and data outputs may be
tiCjd'together at the RAM to 'reduce the ~umber of board
traces.

AFN:022OOA

Ap·97A

,---

~

~ tOH

DIN ~ VALID ~

DOUT --------------------------~~ _________ IN_D_ET_E_R_M_IN_A_T_E ________ -J:>--------------
B. "LATE WRITE"

\

~ tOH

DIN > VALID K)

DOUT --
A. "EARLY WRITE"

Figure 6. Dynamic .RAM Write Cycles

Access Times

Each dynamic RAM has two different access times
quoted for it -- access time from RAS active (tRAd and
access time from CAS active (tcAd; these are illustrated
in Figure 6. How do you know which to use? This
depends on the timings of your RAM controller. First,
the worst case delay from the memory read command
active to RAS active (tcRl and CAS active (tcd must be
determined. Then the read data access time is the larger
of the tCR(Controller) + tRAdRAM) or tcdController) .
+ tCAdRAM). An alternative way to deter~ine

whether to use tRAC or tCAC is to look at the dynamic
RAM parameter for RAS active to CAS active delay,
tRCD. tRcf)I1lax is a calculated value, and is shown on
dynamic RAM data sheets as a reference point only. If
the delay from RAS to CAS is less than or equal to
tRcDIlIax, then tRAC is the limiting access time para­
meter; if, on the other hand, the delay from RAS to
CAS is greater than t RcDIlIax, then tCAC is the limiting
parameter. tRcDIlIax is not an operating limit, and this
spec may be exceeded without affecting operation of the
RAM. tRcf)I1lin, on the other hand, is an operating
limit, and the RAM will not operate properly if this spec

. is viglated.

6-5 AFN: 02200A

AP·97A

\

DOUT

Figure 6. Dynamic RAM Access Times

Refresh

One unique requirement of dynamic RAMs is that they
be refreshed in order to retain data. To see why this is
so, we must look briefly at how a dynamic RAM is
implemented.

Dynamic RAMs achieve their high density and low cost
mostly because of the very simple bit-storage cell they
use, which consists only of one transistor and a
capacitor. The capacitor stores one bit as the presence
(or absence) of charge. This capacitor is selectively ac­
cessed for reading and writing by enabling its associated
tra:nsistor (see Figure 7).

Unfortunately, if left for very long, the charge will leak
out of the capacitor, and the data will be lost. To pre­
vent this, each bit-cell must be periodically read, the
charge on the capacitor amplified, and the capacitor
recharged to its initial state. The circuitry which does
this amplification of charge is called a "sense amp".
This must be done for every bit-cell every 2 ms or less to
prevent loss of data.

Each column in a dynamic RAM has its own sense amp,
so refresh can be performed on an entire row at a time.
Thus, for the 2118, it is only necessary to refresh each of
its 128 rows every 2 ms. Each row must be addressed via
the RAM's address inputs to be refreshed. To simplify

ONE COLUMN

BIT SELECT
LINES
(FROM ROW
ADDRESS
DECODER)

~

T
v+

~
BIT SENSE LINES
(TO SENSE AMPS)

T
v+

Figure 7. Dynamic RAM Cell

6-6

}
ONE
ROW

AFN: 02200A

AP·97A

ADDRESS X ROW X
RAS \ /
CAS

DON'T CARE

DOUT

Figure 8. RAS·only Refresh

refresh, the 2164A is implemented in such a way that its
refresh requirements are identical to the 2118; 128 rows
every 2 ms. Some other 64K RAMs require 256 row
refresh every 4 ms.

Refresh can be performed by a special cycle called a
RAS-only refresh, shown in Figure 8. Only a row ad­
dress is sent; that row is refreshed. No column address is
sent, and no data is read or written during this cycle. In­
tel dynamic RAM controllers use this technique.

Any read, write, or read-modify-write cycle also
refreshes the row addressed. This fact may be used to
refresh the dynamic RAM without doing any special
refresh cycles. Unfortunately, in general you cannot be
sure that every row of every dynamic RAM in a system
will be read from or written to every 2 ms, so refresh
cannot be guaranteed by this method alone, except in
special applications.

A third technique for refresh is called hidden refresh.
·This method is not popular in microprocessor systems,
so it is not described here, but more information is
available in the dynamic RAM's data sheet.

Three techniques for timing when refresh cycles are per­
formed are in common use: burst refresh, distributed
refresh, and transparent refresh.

Burst refresh means waiting almost 2 ms from the last
time refresh was performed, then refreshing the entire
memory with a "burst" of 128 refresh cycles. This
method has the inherent disadvantage that during the
time refresh . is being performed (more than 40

6-7

microseconds for 128 rows) no read or write cycles can
be performed. This severely limits the worst case
response time to interrupts and makes this approach un­
suitable for many systems.

As long as every row of the RAM is refreshed every 2
ms, the distribution of individual refresh cycles is unim­
portant. Distributed refresh takes advantage of this fact
by performing a single refresh cycle every 2 ms/128, or
about every 15 microseconds. In this way, the refresh re­
quirements of the RAM are satisfied, but the longest
time that read and write cycles are delayed because of
refresh is minimized. Those few dynamic RAMs which
use 256 row refresh allow 4 ms for the refresh to be com­
pleted, so the distributed refresh period is still 15
microsecon~s.

The third technique is called transparent (or "hidden"
or "syncronous") refresh. This takes advantage of the
fact that many microprocessors wait a fixed length of
time after fetching the first opcode of an instruction to
decode it. This time is necessary to determine what to do
next (i.e. fetch more opcode bytes, fetch operands,
operate on intern!!l registers, etc.); this time may be
longer than the time required for a RAM refresh cycle.
If the status outputs of the CPU· can be examined to
determine which memorY cycles are opcode fetches, a
refresh cycle may be performed immediately afterward
(Figure 9). In this way, refresh cycles will never interfere
with read or write cycles, and so .appear "transparent"
to the microprocessor.

Transparent refresh has the disadvantage that if the
microprocessor ever stops fetching opcodes for very

AFN 0220QA

AP·97A

I
FETCH

OPCODE

INSTRUCTION
DECODE TIME

~

FETCH
OPERAND

B. REFRESH INTERFERES WITH OPERAND FETCH

r----------,
I REFRESH I I CYCLE I
L __________ .J

C. TRANSPARENT REFRESH

FETCH
OPERAND

FETCH
OPERAND

I
•

TIME

•
TIME

• TIME

Figure 9. Transparent Refresh

long, due to a HOLD, extended DMA transfers, or
when under hardware emulation, no refresh cycles will
occur and RAM data will be lost. This pu~s restrictions
on the system design. Also, high speed microprocessors
do not allow sufficient time between opcode fetches and
susequent bus cycles for a complete RAM refresh cycle
to be performed, so they must wait for the refresh cycle
to complete before they can do a subsequent bus cycle.
These microprocessors cannot use transparent refresh to
any advantage. Transparent refresh is useful for
microprocessors like the Intel 8085 operating at low
clock frequencies.

The 8086 and 8088, 'however, prefetch opcodes into a
queue which is several bytes long. This prefetching is in­
dependent of the actual decoding and execution of the
opcodes, and there is no time at which it can be
guaranteed that the 8086 or 8088 will not request a
memory cycle. So transparent refresh is not applicable
to these microprocessors.

The 8202A and 8203 perform distributed and/or
transparent refresh. Each device has an internal timer
which automatically generates a distributed refresh cy-,
cle every 15.6 microseconds or less. In addition, an ex-

6-8

ternal refresh request input (REFRQ) allows the
microprocessor's status to be decoded to generate a
refresh-cycle for transparent refresh. If, for whatever
reason, no external REFRQ is generated for 15
microseconds, the internally generated refresh will take
over, so memory integrity will be guaranteed.

Arbitration

Because RAMs cannot do a read or write cycle and a
refresh cycle at the same time, some form of arbitration
must be provided to determine when refresh cycles will
be performed.

Arbitration may be done by the microprocessor or by
the dynamic R~ controller. Microprocessor arbitra­
tion may be implemented as follows:

A counter, 'running from the microprocessor's clock, is
used to time the period between refresh cycles. At ter­
minal count, the arbitration logic asserts the bus. request
signal to prevent the microprocessor from performing
any more memory cycles. When the microprocessor
responds with a bus grant, the arbitration logic
generates a refresh cycle (or' cycles, if·burst refresh is

~FN' 02200A

AP·97A

used). After refresh is complete, the arbitration logic
releases the bus. This method has several disadvantages:
First, time is wasted in exchanging bus control, which
would not be required if the RAM controller did ar­
bitration. Second, while refresh is being performed, al/
bus activity is stopped; for instance, even if the
microprocessor is executing out of ROM at the time, it
must stop until refr~sh is over. Third,. bursts of DMA
transfers must be kept very short, as refresh cannot be
performed while DMA is in progress.

Some microprocessors, such as the Zilog Z-80, generate
refresh cycles themselves after instruction fetches. This
removes the need for external arbitration logic, but still
has several disadvantages: First, DMA bursts still must
be kept short to allow the CPU to do refresh. Second,
this method adds to the complexity of the micropro­
cessor, without removing the need for the RAM con­
troller which is still required to do address multiplexing
and RAS, CAS and WE timing. Microprocessor refresh
can cause problems of RAM compatibility; for instance,
the Z-80 only outputs a 7-bit refresh address, which
means some 64K RAMs which use 256 row refresh can­
not be used with the Z-80. Also, since the Z-80 refresh
cycle is Ii fixed length (no wait states), faster speed selec­
tions of the Z-80 are not compatible with slower
dynamic RAMs. Third, systems employing multi­
processing or DMA are harder to implement, .because of
the difficulty in insuring the microprocessor will be able
to perform refresh.

It is preferable to have arbitration performed by the
dynamic RAM controller itself. This method avoids all
the problems described above, but introduces a com­
plication. If the microprocessor issues a read or write
command while the dynamic RAM is in the middle of a
refresh cycle, the RAM controller must make the
microprocessor wait until it is done with the refresh

INTEL DYNAMIC RAM CONTROLLERS

The Intel 8202A and 8203 Dynamic RAM Controllers
each provide all the interface logic needed to use
dynamic RAMs in microprocessor systems, in a single
chip. Either the 8202A or 8203 allow a dynamic RAM
memory to be implemented using a minium of com­
ponents, board space, and power, and in less design
time than -any other approach.

The following sections will describe each of these con­
trollers in detail.

8202A

FUNCTIONAL DESCRIPTION

The 8202A provides total dynamic RAM control for 4K

6-9

before it can complete the read or write cycle. This
means that from when the microprocessor activates the
read or write signal, the time until the cycle can be com­
pleted can vary over a range of roughly 200 to 700 ns.
Because of this, an acknowledge signal from the
dynamic RAM controller is required to tell the
microprocessor the memory cycle it requested is com­
plete. This signal goes to the microprocessor's READY
logic.

Memory Organization

As each dynamic RAM operates on only one bit at a
time, multiple RAMs must be operated in parallel to
operate on a word at a time. RAMs operated in this way
are called a bank of RAM. A bank consists of as many
RAMs as there are bits in the memory word. When used
in this way, all address and control lines are tied to all
RAMs in the bank.

A single bank of -RAM will provide 64K words of
memory in the case of the 2164A, or 16K words in the
case of the 2118. To provide more memory words,
multiple banks of RAM are used. In this case, all ad­
dress, CAS, and WE lines are tied to all RAMs, but each
bank of RAM has its own RAS. Each bank knows
whether it is being addressed during a read or write
operation by whether or not its RAS input was activated
- if not, then all other inputs are ignored during that
cycle.

Data outputs for RAMs in corresponding bit positions
in each of the banks may be tied in common, since they
are 3-state outputs; even though 00 is connected to all
banks of RAM, only that bank whose RAS is active will
enable its data outputs in response to CAS going active.
Data inputs for RAMs in corresponding bit positions in
each of the banks are also tied in common.

and 16K dynamic RAMs, including the Intel 2104A,
2117, and 2118. Tl1e pinout and simplified logic
diagram of the 8202A are shown in Figures 10 and 11.

The 8202A is always in one of the following states:

a) IDLE
b) TEST cycle
c) REFRESH cycle
d) READ cycle
e) WRITE cycle

The 8202A is normally in the idle state. Whenever a cy­
cle is requested, the 8202A will leave the idle state to
perform the desired cycle; if no cycle requests are pen­
ding, the 8202A will return to the idle state. A refresh
cycle request· may originate internally or externally to

AFN: 02200A

Ap·97A

AH. Vee
, AHS AHs

AH2 AHa

'AH1 X11CLK

AHo XdOP2

ALo N.C.
'OUTo REFRQ ALE

AL1 ~
OUT1 liIlS1

AL2 WR

OUT2 SACK
ALs XACK

OUTs WE

AL. CAS
OUT. RASs

ALs B1IO,P1
OUTs Bo

ALslOPs RAS2
OUTe RAS1
GND 'RASo

Figure 10. 8202A Pinout

the 8202A; all other requests come only from outside
the 8202A.

A test cycle is requested by activating the RD and Wi
inputs simultaneously, independent of PCS (Protected
Chip Select). The test cycle will reset the refresh address
counter to zero and perform a write cycle. A test cycle
should not be allowed to occur in normal system opera­
tion, as it interferes with normal RAM refresh.

A refresh cycle performs a RAS-only refresh cycle of the
next lower consecutive row address after the one
previously refresh~d. A refrllSh cycle may be requested

I

by activating the REFRQ input to the 8202A; this input
is latched on the next 8202A clock. If no refresh cycles
are requested for a period of about 13 microseconds, the
8202A will generate one internally. By refreshing one
rowevery 15.6 microseconds or sooner, all 128 rows will
be refreshed every 2 ms. Because refresh requests are
generated',by the'8202A itself, memory integrity is in­
sured, even if the rest of the system should halt opera­
tion for an extended period of time.

The arbiter logic Will allow the refresh cycle to take
place only if there is not another cycle:in progress at the
time.

A read cycle may be requested by activating the RD in­
put, with PCS (protected Chip Select) active. In the Ad­
vanced Read mode, a read cycle is requested if the
microprocessor's SI status line is high at the 'falling edge
of ALE (Address Latch Enable) and PCS is active. If a
dynamic RAM cycle is terminated prematurely, data
loss may result. The 8202A chip select is "protected" in
that once a memory cyCle is started, 'it will go to comple­
tion, even if'the 8202A becomes de-selected.

A write cycle may be requested by activating the WR in­
put, with PCS active; this is the same for the normal and
Advanced Read modes.

BLOCK DIAGRAM

Let's look at the detailed block diagram in Figure 12 to
see how the 8202A satisfies the interface requirements
of the dynamic RAM.

Address Multiplexing

Address multiplexing is achieved by a 3-to-l multiplexer

AHo·s ---------./1

/

REFRQIALE
RDIS1

WR
PCS

B,10P1
Bo

ADDRESS
MUX

RASo
RAS1
RAS2
RAS3
CAS
WE
SACK
XACK

Figure 11. 8202A Slm'pllfied Block Diagram

6-10
J

AFN,1l2200A

Ap·97A

AHo-e

ALo.e OUTQ.6

Bo

Bl

XoIOP2
OSCillATOR RASo

XllClK
RASl

RAS2

REFRQ RAS3

RAS
RIC

~~~~ CAs CAS 
GEN'R WE 
I\'HIFT WE EG.& 

ALE START lOGIC) 

RDISI SACK 
EOC SACK 

XACK 
OPl XACK 

Figure 12. 8202A Detailed Block Diagram 

internal to the ,8202A; the three inputs are the row ad­
dress (ALo.@, column address (AHa-c;), and refresh row 
address (generated internally). When the 8202A is in the 
Idle state, the multiplexer selects the row address, so it is 
prepared to start a memory cycle. If a refresh cycle is re­
quested either internally or externally l the address 
multiplexer will select the refresh row address long 
enough before RAS goes active to satisfy the RAM's 
tASR parameter. 

To minimize propagation delays, the 8202A address 
outputs (OUTa-~ are inverted from. the address.inputs. 

This has no effect on RAM operation; inverters are not 
needed on the address outputs. 

Doing this multiplexing internally mlrumlzes timing 
skews between the address, RAS, and CAS, and allows 
higher performance than would otherwise be possible. 

Refresh Counter 

The next row to be refreshed is determined by the. 
refresh counter, which is implemented as a 7-bit ripple­
carry counter. During each refresh cycle, the counter is 

r---FROM MICROPROCESSOR ADDRESS BUS 

Alo·& REF. AD DR. REF. ADDR.·' Alo·6 

l_'RAH __ I 
( 

Figure 13. Detailed 8202A Refresh Cycle 

6-11 AFN: 02200A 



AP·97A 

incremented by one in preparation for the next refresh 
cycle (a refresh cycle is shown in detail in Figure 13). 

When the 8202A enters TEST mode, the refresh counter 
is cleared. This feature is useful for automatic testing of 
the refresh counter function. Because the address out­
puts are inverted, the first refresh address after clearing 
the counter in test mode is 7FH, and the addresses 
decrease for subsequent refresh cycles. 

RAS Decoding 

Which bank of RAM is selected for a memory cycle is 
determined by the RAS decoder from the BO.I inputs, 
which normally come from the microprocessor address 
bus. The 8202A Timing Generator produces an internal 
RAS pulse which strobes the RAS decoder, generating 
the appropriate external RAS pulse. The Bo.! inputs are 
not latched, so they must be held valid for the length of 
the memory cycle. During a refresh cycle, all the RAS 
outputs are activated, refreshing all banks at once. 

Oscillator . 

The 8202A operates from a single reference clock with a. 
frequency between 18.432 MHz and 25 MHz; this clock 
is used by the synchronization, arbitration, and timing 
generation logic. This clock may be generated by an on­
board crystal oscillator, or by an external TTL­
compatible clock source. When using the internal 
oscillator (available only on part number D8202A-l or 

Xo 36 

X, 37 

8202A 

•. CRYSTAL MODE 

12 v 
±10% 

1 K.n. 
±s% 8202A 

~ 
ClK 37 

b. EXTERNAL CLOCK MODE I 
7-----~--------------~--~ 

Figure 14. 8202A Clock Options 

D8202A-3), a fundamental-mode crystal is attached to 
pins.36 and 37 (Xo and XI), as shown in Figure 14. The 
external TTL clock option is selected by pulling pin 36 
(OP:z) to + 12v through lK ohm resistor, and attaching 
the clock input to pin 37 (eLK). 

Command Decoder 
• 

The command decoder takes the commands from the 
bus and generates internal memory request (MEMR), 
and TEST signals. 

The 8202A has two bus interface modes: the "normal" 
mode, and the "Advanced Read" mode. In the normal 
mode, the 8202A interfaces to the usual bus RD and 

. WR signals. 

In the Advanced Read mode, the 8202A interfaces to 
the Intel microprocessor bus signals ALE, SI, and WR. 
SI must be high on the falling edge of ALE for read 
cycles, and WR must be low for write cycles (write 
cycles are the same as for normal read mode). The 
8085A SI may be used directly by the 8202A; the 8086 
and 8088 SI must be inverted. ALE and WR'must be 
qualified by pes. 

The Advanced Read mode is useful for reducing read 
data access time, and thus wait states. This mode is used 
mainly with 8085A systems. 

If both RD and WR are active at once (regardless of the 
state of peS), the internal TEST signal is generated and 
the 8202A performs a test cycle as described above. One 
or both of RD and WR should have pull-up resistors to 
prevent the 8202A from inadvertantly being put into test 
mode, as the RD and WR signals are 3-stated by the 
microprocessor when RESET or HOLD are active. 
Since the test mode resets the refresh address counter, 
the refresh sequence will be interrupted; and data loss 
may result. 

Refresh Timer and REFRQ 

The 8202A contains a counter, operated from the inter­
nal clock to time the period from the last refresh cycle. 
When the counter times out, an internal refresh request 
is generated. This refresh period is proportional to the 
8202A's clock period, and varies from 10.56 to 15.625 
microseconds. Even at the lowest refresh rate, all the 
rows of the dynamic RAM will be refreshed every 2 ms. 

The 8202A has an option of reducing the refresh rate by 
a factor of two, for use with 4K RAMS. These RAMs 
have only 64 rows to refresh every 2 ms, so need refresh 
cycles only half as often. This option is selected by puIl-

AFN: 02200A 



Ap·97A 

ing pin 18 (AL6"OP3) to + 12v through a S.IK ohm 
resistor. This pin normally serves as the high-order row 
address input for the address multiplexer, but it is no 
longer needed for this function, as 4K RAMs have one 
less address input. 

A refresh cycle may also be requested externally by ac­
tivating the REFRQ input. This input is latched, so it 
only needs to be held active a maximum of 20 ns. If the 
8202A is currently executing a memory cycle, it will 
complete that cycle, and then perform the refresh cycle. 
The internal and external refresh requests are ORed 
together before going to the arbiter. 

The REFRQ input cannot be used in the Advanced 
Read mode, as the REFRQ pin is used for ALE in this 
mode. 

REFRQ is most often used to implement transparent 
refresh, as explained in the section Dynamic 
RAMS - Refresh. This technique is not useful in iAPX 
86 and iAPX 88 systems, so REFRQ is normally tied to 
ground. 

The refresh timer is reset as soon as a refresh cycle is 
started (whether it was requested internally or external­
ly). The time between refresh cycle (tREF) is measured 
from when the first cycle is started, not when it was re­
quested, which occurs sometime earlier. Of course, 
tREfiIrln does not apply if REFRQ is used - you may 
externally request refresh cycles as often as you wish. 

Arbiter 

This is the hardest section of a dynamic RAM controller 
to implement. If a read or write arrives at the same time 
as a refresh request, the arbiter must decide which one 
to service first. Also, if a read, write, or refresh request 
arrives when another cycle is'already in progress, the ar­
biter must delay starting the new cycle, until ,the current 
cycle is complete. 

Both of the internal signals REFR (refresh request) and 
MEMR (memory cycle request) are synchronized by 
D-type master-slave lip-flops before reaching the ar­
biter. these circuits have been optimized to resolve a 
valid logic state in as short a time as possible. Of course, 
with any synchronizer, there is a probability that it will 
fail - not be able to settle in one logic state or the other 
in the allowed amount of time, resulting in a memory 
failure - but the 8202A has been designed to have less 
than one system memory failure every three years, 
based on operation in the worst case system timing 
environments. ' 

Both synchronizers and the arbiter are operated from 

the 8202A's internal clock. Assuming the 8202A is in­
itially in an idle state, one full clock period after the syn­
chronizers sample the state of the MEMREQ and 
REFREQ signals, the arbiter examines the REFR and 
MEMR outputs of the synchronizers. If MEMR is ac­
tive, the arbiter will activate START to begin the 
memory cycle (either read or write) on that clock. If 
REFR is active (regardless of the state of MEMR), the 
arbiter will activate START and REF to begin a refresh 
cycle on that clock. Once the cycle is complete, the Cy­
cle Timing Generator will generate an end-of-cycle 
(EOC) signal to clear the arbiter and allow it to respond 
to any new or pending requests on the next clock. 

Once a memory cycle is started, it cannot be stopped, 
regardless ofthe state of the RD/SI, WR, ALE, or pes 
inputs. This is necessary, as ending a dynamic RAM 
cycle prematurely may cause loss of data. Note, 
however, that the RAM WE output is directly gated by 
the WR input, so if WR is removed prematurely, the 
RAM WE pulse-width spec (twp) maY be violated, caus­
'ing a memory failure. 

What happens if a memory request and refresh request 
occur simultaneously? 

If the 8202A is in. the idle state, the memoT;Y request 
will be honored first. ' 

If the 8202A is not in the idle state (a memory or 
refresh cycle is in progress) then the memory cycle 
will lose priority and the refresh cycle will be honored 
first. 

Remember, if the 8202A is performing a cycle, the ar­
biter doesn't arbitrate again until the end of that cycle. 
So the memory and refresh cycles are "simultaneous" if 
they both happen early enough to reach the arbiter 
before it finishes the current cycle. This arbitration ar­
rangement gives memory cycles priority over refresh 
cycles, but insures that a refresh cycle W1~1 be delayed at 
most one RAM cycle. 

Refresh Lock-Out 

As a result of the 8202A operation, transparent refresh 
circuits iike the one shown in Figure IS should not be 
used. This circuit uses the RD input, with some qualify­
ing logic, to activate REFRQ whenever the micropro­
cessor does an opcode fetch. This circuit will work fine, 
as long as the 8202A never has to generate an internal 
refresh request, which is' unlikely (if nothirtg else, the 
system RESET, pulse is probably long enough that the 
8202A will throw in' a couple of refreshes while the 
microprocessor is reset). If the S202A ever does generate 
its own refresh, there' is a ptobability that the 
microprocessor will try to fetch an opcode while the 

AFN: 02200A 



Ap·97A 

refresh is still in progress. If that happens, the 8202A 
will finish the refresh, see both the RD andREFRQ in­
puts active, honor the REFRQ first, and start a second 
refresh. In the meantime, the microprocessor is sitting 
in wait states, waiting for the 8202A to complete the op­
code fetch. When the 8202A finishes the second refresh, 
it will see both RD and REFRQ active again, and will 
start a third refresh, etc. The system "locks up" with 
the microprocessor sitting in wait states ad infinitum, 
and the 8202A doing one refresh cycle after another. 

Figure 15. Improper Transparent 
Refresh Generation 

To prevent this from happening, the transparent refresh 
circuit should be modified as shown in Figure 16. In this 
circuit, REFRQ cannot be activated until the opcode 
fetch is already in progress, as indicated by SACK being 
active (remember, SACK is never active during a 
refresh), If the microprocessor tries to do an opcode 
fetch while the 8202A is doing a refresh, REFRQ will 
not be active; the 8202A will finish the refresh and see 
only RD active, and will start the opcode fetch; only 
then will REFRQ be activated. 

8202A 
5, 
So REFRQ 

8085A 
SACK 

AD RD 

Figure 16. Generating Transparent 
Refresh For SOS5A Systems 

Cycle Timing Generator 

The Cycle Timing Generator consists of a travelling­
ones shift register and combinational logic required to 
generate all the RAM control signals and SACK and 
XACK.All timings are generated from the 8202A's in­
ternal clock; no external delay lines are ever needed. The 
timing of these. signals relative to CLK is illustrated in 
Figure 17. 

6-14 

When the cycle is complete, the Cycle Timing Generator 
sends anend-of-cycle (EOC) pulse to the arbiter to 
enable it to respond to new or pending cycle requests. 

Minimum and maximum values for the 8202A 
parameters tCR (Command to RAS active delay) and tcc 
(Command to CAS active delay) differ by one 8202A 
clock period. This is because the commands (RD, WR, 
ALE) must be synchronized to the 8202A's clock; this 
introduces a ± one clock period (tp) uncertainty due to 
the fact that the command mayor may not be sampled 
on the first clock after it goes active, depending on the 
set-up time. If RD or ALE and WR are synchronous to 
the 8202A's clock, and the set-up time (tsd is met, the 
smaller number of clock periods will apply. 

All 8202A output timings are specified for the 
capacitive loading in the data sheet. Typical output 
characteristics are shown in the data sheet for capacitive 
loads ranging from 0 to 660 pF, these can be used to 
calculate the effect of different loads than those 
specified in the data sheet on output timings. All ad­
dress, RAS, CAS, and WE drivers are identical, so these 
characteristic curves apply to all outputs. 

SACK AND XACK 

Because refresh cycles are performed asynchronously to 
the microprocessor's operation (except during 
transparent refresh), the microprocessor cannot know 
when it activates RD or WR if a refresh cycle is in pro­
gress, and therefore, it can't know how long it will take 
to complete the memory cycle. 

This added consideration requires an acknowledge or 
"handshake" signal from the 8202A to tell the 
microprocessor when it may complete the memory 
cycle. This acknowledge would be used to generate the 
microprocessor's READY input - the microprocessor 
will sit in wait states until the 8202A acknowledges the 
memory cycle. Two signals are generated for this pur­
pose by the 8202A; they are called system acknowledge 
(SACK) and transfer acknowledge (XACK). They serve 
the same purpose but differ in timing. 

XACK is a Multibus-compatible signal, and is not ac­
tivated. until the rea,d or write cycle has been completed 
by the RAMs. In a microprocessor system, however, 
there is. a considerable delay from when the 8202A 
acknowledges the memory cycle until the micro­
processor actually terminates the cycle. This delay is due 
to the time required to combine this acknowledge with 
other sources of READY in the system, synchronize 
READY to the microprocessor's clock, sample the state 
of READY, and respond to an active READY signal. 
As a result, more wait states than necessary may actual-

AFN· 02200A 



ClK 

RD 
WR 

ALE 

PCS 

ADDRESS 

RAS 

en 
.!.. 
01 

CAS 

WE 

SACK 

XACK 

(EOC) 

~ ,. 
~ 
g 
8 
~ 

·1 0 2 4 6 

r-\ Ir-\ I. 

... 
ROW COLUMN 

READ CYCLE 

WRITE CYCLE 

---------..,1",- ----------~~~~~~.£~-----------------
NORMAL SACK 

Figure 17. 8202A Timing Relative To elK 

7 

ROW 

9 

J> 
'U 

~ 



Ap·97A 

ly be generated by using XACK. SACK is activated 
earlier in the cycle to improve performance of 
microprocessors by compensating for the delays in the 
microprocessor responding to XACK, and thus 
eliminating unneeded wait states which might be 
generated as a result of XACK timing. The system 
designer may use one or the other acknowledge signal, 
or use both in different parts of the system, at his 
option. 

SACK and XACK are activated by the Cycle Timing 
Generator, but they can be de-activated only by the 
microprocessor removing its RD or WR request, or by 
activating ALE when in the advanced read mode. As the 
SACK and XACK signals are used to generate READY 
for the microprocessor, this is necessary to give the 
microprocessor as much time as it needs to respond to 
its READY input. 

Delayed SACK Mode 

SACK may be activated at one of two different times in 
the memory cycle; the earlier case is called "normal 
SACK" and the later is called "delayed SACK" (Figure 
18). Delayed SACK occurs if the memory request was 
received by the 8202A while it was doing a refresh cycle. 
In this case, the memory cycle will be delayed some 
length of time while the refresh cycle completes; SACK 
is delayed to ensure the microprocessor will generate 
enough wait states. This is a concern mostly for read 
cycles. 

Because of the way the delayed SACK mode is im­
plemented in the 8202A, if the RD or WR input is. ac­
tivated while a refresh cycle is in progress, regardless of 
whether or not the 8202A is chip-selected, the internal 
delayed SACK mode flip-flop will beset. The next 

8202A memory cycle will have SACK delayed, even if 
that cycle was not actually delayed due to a refresh cycle 
in progress, The delayed SACK flip-flop will be reset at 
the end of that cycle, and the 8202A will return to nor­
mal SACK operation. The same thing happens in Ad­
vanced Read mode if S 1 is high at the falling edge of 
ALE during a refresh cycle, once again regardless of the 
state of PCS. 

8203 

The 8203 is an extension of the 8202A architecture 
which allows the use of 64K dynamic RAMs. It is pinout 
compatible with the 8202A and shares identical A.C. 
and D.C. parameters with that part. The description of 
the 8202A applies to this part also, with the modifica­
tions below. 

ENHANCEMENTS 

1. Supports 16K or 64K dynamic RAMs. 4K RAM 
mode, selected by pulling AL6"OP3 (pin 18) to 
+ 12v, is not supported. 

2. Allows a single board design to use either 16K 
or 64K RAMs, without changing the controller, 
and only making between two and four jumper 
changes to reconfigure the board. 

3. May operate from external TTL clock without 
the + 12v pull-up which the 8202A requires (a 
+ 5v or + 12v pull-up may be used). 

The pinout of the 8203 is shown in Figure 19. This 
pinout is identical to the 8202A, with the exception of 
the five highlighted pins. The function of these is 
described below. The simplified block diagram is similar 
to the 8202A's, in Figure 1 i. 

RAS \~ __ ----J/ 

Figure 18. Delayed SACK Mode 

6-16 AFN" 02200A 



AP·97A 

AH. 
AHa 
AH2 
AH, 
AHo 
ALo 

!roTo 
AL, 

OUT, 
AL2 

!roT2 
~3 
OUTa 

AL. 
OUT. 

AL5 
!roT5 

ALe 
OUT. 

v .. 

. Fig. 19 8203 Pinout 

16K Mode and 64K Mode 

The goal of the 8203 is to provide a pin- and timing­
compatible upgrade of the 8202A for use With 64K 
RAMs. The difficulty in dOing this is that 64K RAMs re­
quire an additional address input compared to 16K 
RAMs, and thus the 8203 needs three more pins (one 
more RAM address output, and two more inputs to its ' 
internal address multiplexer). Since all but one of the 

8202A's pins are already used, this is clearly a challenge 
- some functionality must be sacrificed to gain 64K 
RAM support. The 8203 reduces the maximum number 
of banks supported from four to two for 64K RAMs. 

Pin 35 (16K164K) is used to tell the 8203 whether it is be­
ing used to .control 16K RAMs or 64K RAMs. When 
tied to V cc or left unconnected, the 8203 operates in the 
16K RAM mode; in this mode all the remaining pins 
function identically to the 8202A. When tied to ground, 
it operates in the 64K RAM mode, and pins 23 through 
26 change function to enable the 8203 to support 64K 
RAMs. Pin 35 (16K/64K) cpntains an internal pull-up 
-when unconnected, this input is high, and the 8203 
operates identically to the 8202A. This maintains pinout 
compatibility with the 8202A, in which pin 35 is a no­
connect, so the 8203 may be used in 8202A sockets with 
no board modifications. 

. . . 
When the 8203 is in the 64K RAM mode, four pins 
change function, as shown in Table 2. The pins change 
function in this particular way to allow laying out a 
board to use either 16K or 64K RAMs with a.minimum 
of jumpers, as shown in Figure 20. This figure shows the 
8203 with two banks of RAM. Banks 0 and 1 may be 
either 16K RAMs or 64K RAMs; banks 2 and 3 mayon­
ly be 16K RAMs, as the 8203 supports two banks of 64K 
RAM. For clarity, only those connections which are im-. 
portant in illustrating. the 8203 jumper options. are 
shown. 

Au-A,3 ALo·. RASo 2, 4 RAS 
ALo-e 

A,. 24 Bo(AL7) RAS, 22 2118 BANK 0 (2164) 

A'5 25 B, (AH7) RAS2 23 9 N.C. (A7) 
J1 

(OUT7) 

CS (32K WORDS) ~ J4 33 RASa(Bo) ~ 
~ (64K WORDS) -0 ~ PCS 
~ (128K WORDS)·---.:8 ' 

8203 
J5 ~ 

16K164K 
~ RAS , 

.1 2118 BANK 1 
-=- (2164) 

A, • ..:g J8 ~ N.C. (A7) 

16K f,~~ t~:i~~~~tJ;ION L. TO RAS OF BANK 2 
J1·J2 (64K WORDS) (2118 ONLy) 

~ TO RAS OF BANK 3 • " 
(2118 ONLY) 

64K RAM JUMPER OPTION 
J2·J4 (64K WORDS) 

J3·J4 (128K WORDS) 
J5.J6 ; 
J7·J8 -

, 

Figure 20.18203 Jumper Options 

6-17 AFN 02200A 



AP·97A 

Table 2. 16K164K Mode Selection 

Pin # 16K Function 64K Function 

23 RAS2 Address Output (OUT7) 
24 Bank Select (BO) Address Input (AL7) 
25 Bank Select (B 1) Address Input (AH7) 
26 RAS3 Bank Select (BO) 

Jumpers JI-J4 may be used to chip select the 8203 over 
various address ranges. For example, if two banks of 
16K RAMs are replaced with two banks of 64K RAMs, 
the address space controlled by the 8203 increases from 
32K words to 128K words. If four banks of 16K RAMs 
are replaced with one bank of 64K RAMs, no chip select 
jumpers are needed. 

In the 64K RAM mode, pins 24 and 25 (Bo(AL7) and 
Bl(AH7» change function from bank select inputs to 
address inputs for the 64K RAM. Since the bank select 
inputs normally come from the address bus anyway, no 
jumper changes are required here. The bank select func­
tion moves to pin 26 (RAS3(BQ»; since only two bank of 
64K RAM is supported, only one bank select input is 
needed in this mode, not two. Jumpers J6 and J7 are 
shorted in the 64K RAM mode to connect pin 26 (Bo) to 
the address bus. In the 16K RAM mode, these jumpers 
must be disconnected, as pin 26 junctions as the RAS3 
output; in the 64K RAM mode, this bank is not popu­
lated, so RAS3 is not needed. 

Pin 23 serves two functions: in the 16K RAM mode it is 
the RAS output for bank 2 (RAS~, in the 64K RAM 
mode is the high order RAM address output (OUT7), 

which goes to pin 9 of the 64K RAMs. This requires no 
jumpers as when using 16K RAMs, pin 9 is a no­
connect, and when using 64K RAMs, bank 2 is 
depopulated, so RAS2 is not used. 

This arrangement allows converting a board from 16K 
RAMs to 64K RAMs with no change to the controller 
and changing a maximum of three jumpers. 

+ 5v External Clock Option 

Just as with the 8202A, the user has the option of an ex­
ternal TTL clock instead of the internal crystal 
oscillator as the timing reference for the 8203; unlike the 
8202A, he does not need to tie pin 36 (XolOP~ to + 12v 
to select this option-this pin may be tied to either + 5v 
or + 12v. If pin 36 is tied to + 12v, a lK ohm (± 5Ofo) 
series resistor must be used, just as for the 8202A. If pin 
36 is tied to + 5v, it must be tied directly to pin 40 (V cJ 
with no series resistor. This is because pin 36 must be 
within one Schottky diode voltage drop (roughly 0.5v) 
of pin 40 to select the external TTL clock option; a 
series resistor may cause too great a voltage drop for the 
external clock option to be selected. For the same 
reason, the trace from pin 36 to 40 should be kept as 
short as practical. 

Test Cycle 

An 8203 test cycle is requested by activl\ting the RD. 
WR, and PCS inputs simultaneously. By comparison, 
an 8202A test cycle requires activating only the RD and 
WR inputs simultaneously, independent of PCS. Like 
the 8202A, and 8203 test cycle resets the address counter 
to zero and performs a write cycle. 

AHQ .• ________ --./ 

REFRQIALE 
RDIS1 

ADDRESS 
MUX 

TIMING. 
B"OP,_ ...... ______ --IGENERATOR 

Bo---------~ 

16KI64R:-----'" 

RASa 
RAS, 
RAS2 
RAS3 
CAS 
WE 
SACK 
XACK 

Figure 21.8203 Simplified Block Diagram 

AFN.02200A 



Ap·97A 

BLOCK DIAGRAM 

A simplified block diagram of the 8203 is shown in 
Figure 21. It is identical to the 8202A except for the 
following differences: 

1. The 3:1 address multiplexer is 8 bits wide, instead 
of 7 bits wide, to support the addressing 
requirements of the 64K RAM. 

2. The refresh address counter is 8 bits. This allows 

INTEL iAPX·86 AND iAPX·88 

Device Descriptions 

The iAPX-86 and iAPX-88 are advanced 16-bit 
microprocessor families, based on the 8086 and 8088 
microprocessors, respectively. While both have a similar 
architecture and are software compatible, the 8086 
transfers data over a 16-bit bus, while the 8088 uses an 
8-bit data bus (but has a 16-bit internal bus). 

Min and Max Modes 

In order to support the widest possible range of applica­
tions, the 8086 and 8088 can operate in one of two 
modes, called minimum and maximum modes. This 
allows the user to define certain processor pins to 
"tailor" the 8086 or 8088 to the intended system. These 
modes are selected by strapping the MN/MX 
(minimum/maximum) input pin to Vee or ground. 

READY 

8284A 
ClK 

GEN'R ClK 

TO 
TOCPU 
READY 
lOGIC 

8086 
CPU 

MilO 
ALE 

A16·191 /L-----'" 
ADD15 

SHE 

8282 
lATCH 

it to support RAMs which use either the 128-row 
or 256-row refresh schemes. Regardless of which' 
type of RAM is used, the refresh counter cycles 
through 256 rows every 4 ms. RAMs which use 
128-row re-fresh treat the eighth address bit as a 
"don't care" during refresh, so they see the 
equivalent of 128-row refresh every 2 ms. In 
either case the rate of internally-generated 
refresh cycles is the same-at least one every 
15.6 microseconds. 

In the minimum mode, the microprocessor supports 
small, single-processor systems using a minimum of 
components. In this mode, the 8086 or 8088 itself 
generates all the required bus control signals (Figure 
22). 

In the maximum mode, the microprocessor supports 
larger, higher performance, or multiprocessing systems. 
In this mode, the 8086 or 8088 generl;ltes status outputs 
which are decoded by the Intel 8288 Bus Controller to 
provide an extensive set of bus control signals, and 
Multibus compatibility (Figure 23). This allows higher 
performance RAM operation because the memory read 
and write commands are generated more quickly than is 
possible in the minimum mode. The maximum mode is 
the one most often used in iAPX-86 and iAPX-88 
systems. 

. Figure 22. 8086 Minimu.m Mode 

6-19 AFN: 02200A 



AP·97A 

. READY 

8284A 
CLK 

GEN'R CLK 

TO CPU 
READY 
LOGIC 

Figure 23. 8086 Maximum Mode 

Alternate Configurati(m 

The Alternate Configuration is not an operating mode 
of the 8086 or 8088 per se, but uses TTL logic along with 
the status outputs of the microprocesor to generate the 
RAM read and/or write control signals (Figure 24). The 
alternate configuration may be used with the 
microprocessor in either minimum or maximum mode. 
This configuration is advantageous because it activates 
the memory read and write signals even earlier than the 
maximum mode, leading to higher performance. It is 
possible to generate either the RAM read or write signal 
using this configuration, and generate the other RAM 

control signal using the min or max mode in the normal 
configuration. 

Each of the three system configurations may be used 
with buffers on the address, data, or control bus for in­
creased electrical drive capability. 

Performance VS. Wait States 

Before starting a discussion of timing analyses, it's 
worthwhile to look at the effect of wait states on the 
iAPX-86 and iAPX-88. 

Vee 

8284A { CLK ------------, 
CLOCKED AMWC 

8086 {STATUS 
8088 . (S0.2) --,..-------.1'1 

8288 I ALE 

~~~~ 

Figure 24. Alternate Configuration Logic

6-20

TO
8202AI
8203

AFN:02200A

Ap·97A

'For most microprocessors, the effect of, say, one wait
state on execution times is straightforward. If a bus
cycle normally is three clocks long, adding a wait state
to every bus cycle will make all bus cycles four clocks,
decreasing performance by 331170. This is multiplied by
the percentage of time that the microprocesor is doing
bus cycles (some instructions take a long time to exe­
cute, so the microprocessor skips a few bus cycles).

The effect of wait states on the iAPX-86 and iAPX-88 is
not so straightforward, however.

The 8086 and 8088 microprocessors consist of two pro­
cessing units: the execution unit (EU) executes instruc­
tions, and the bus interface unit (BIU) fetches instruc­
tions, reads operands, and writes results. During
periods when the EU is busy executing instructions, the
BIU "looks ahead" and fetches more instructions from
the next consecutive addresses in memory; these are
stored in an internal queue. This queue is four bytes
long for the 8088 and six bytes long for the 8086; under
most conditions, the BIU can supply the next instruc­
tions without having to perform a memory cycle. Only
when the program doesn't proceed serially (e. g. a Jump
or Call instruction) does the EU have to wait for the
next instruction to be fetched from memory. Otherwise,
the instruction fetch time "disappears" as it is pro­
ceeding in parallel with execution of previously fetched
instructions. The EU then has to wait for the BIU only
when it needs to read operands from memory or write
results to memory. As a result, the 8086 and 8088 are
'less sensitive to wait states than other microprocessors

which don't use an instruction queue. The effect of wait
states on 8086 execution time compared to the Motorola
68000 and Zilog Z8000 for a typical mix of software is
summarized in Table 3.[11

Table 3. Effects of Walt States on Execution Time

Execution Time Increase
Over 0 Wait State
Execution Time

i

Processor 1 Walt 2 Wait 3 Walt
State States States

iAPX 86/10 (measured) 8.3"70 16.3"70 26.3"70
Z8000 (computed) 19.1"70 38.2"70 57.3"70
68000 (computed) 15.9"70 31.9"70 47.8"70

The BIU can fetch Instructions faster than the EU can
execute them, so wait' states only affect performance to
the extent that they make the EU wait for the transfer of
operands and results. How much this affects program
execution time is a function of the software; programs
that contain many complex instructions like multiplies
and divides and register operations are slowed down less
than programs that contain primarily simple instruc­
tions. The effect of wait states on the 8086 and 8088 is
always less than on other microprocessors which don't \
use an instruction queue.

[I] From 16-Bit Microprocessor Benchmark Report:
iAPX-~6, Z8OOO, and 68000, pub!. by Intel Corp.
1980

Figure 25. 8086 Max Mode System

6~21 AFN 02200A

AP·97A

AL:~~~;r ,t
AHO-AH6 --/ 12==--------------------' ~-----------

~~- ~~~-

\

lASH 'I
i---IAC I

ICAS

1\ V
-IASA_ I-IAAH- ' i:'--IASC- !--ICA __

;. ROW ,~ COLUMN ~
Figure 26. Memory Compatibility Timing

Timing Analysis

This section will look at two specific system configura­
tions to show how the 8203 timing requirements are
satisfied by the 8086. Methods of determining the worst
case number of wait states for the various configura­
tions are also given.

The timings of the 8202A and 8203 are identical; only
the 8203 is referred to for the remainder of this note, but
all comments apply equally to the 8202A. All timings
are worst case over the range of T A = 0 - 70·C and
V cc = + 5v ± 10070 for the test conditions given in the
devices' data sheets. I

Example 1. 8086 Max
Mode System (5 MHz)

This example (Figure 25) is representative of a typical
medium-size microprocesor system. Example I requires
one wait state (worst case) for memory cycles: Example
2 also uses an 8086 in Max'mode at 5 MHz, but uses ex­
ternallogic to reduce the number of wait states to zero
for both read and ,write cycles.

DYNAMIC RAM INTERFACE

First, look at the timing requirements of the aynamic
RAM to ensure they are satisfied by the 8203. Memory
compatibility timings are shown in the 8203 data sheet
(Figure 26). Seven 8203 timings are given, not counting
tAD, which will be discussed in the next section. Tliese
timings are summarized in Table 4.

Table 4. Memory Compatibility Timings
(all parameters are minimums)

Symbol Parameter Value

tASC Column Address Set-Up Time tp-30
tASR Row Address Set-Up Time !p-30
teAH Column Address Hold Time S!p-30
teAS CAS Pulse Width S!p-IO
tRAH Row Address Hold Time !p-IO
tRCDU) RAS to CAS Delay Time

CAS
2!p-40

tRSH RAS Hold Time from Stj,-30

(l]tRcomin = tRAHmin + tASCmin = 2p - 40 .
This parameter is the minimum RAS active to CAS
active delay.

These timings are all a function of the 8203's clock
period (tp); they may be adjusted to be compatible with
'slower dynamic RAMs by slowing the 8203's clock (in­
creasing tp). The frequqncy of the 8203's clock may be
varied from 18.432 MHz to 25 MHz; for best perfor­
mance, the 8203 should be operated at the highest possi­
ble frequency compatible with the chosen dynamic
RAM. In most cases, 1RAH or teAS will be the frequency
limiting parameter, but the 8203 can operate at its max­
imum frequency with most dynamic RAMs available.

tASR applies only to refresh cycles. When the 8203 is in
the ItHe state (not performing any memory or refresh
cycles) the address multiplexer allows the AL0-7 inputs

.(the RAM row address) to propagate through to the
8203 OUT0-7 pins, which are connected to the RAM ad­
dress pins. So in read or write cycles, the row address
will 'propagate direcfly from the address bus t6 the

AFN' 02200A

Ap·97A

RAM; the row address set·up time in this case is deter­
mined by the microprocessor's timing (see the next sec­
tion). At the beginning of a refresh cycle, the 8203 has
to switch its internal multiplexer to direct the refresh
row, address to the RAMs before activating RAS; the
tASR parameter in Table 4 refers to this case only.

Assume the Intel 2164A-20 RAM (200 ns access time) is
used. Equations l(a)-(h) show that this RAM is com­
patible at the 8203's maximum operating frequency of
25 MHz (tp = 1/(25 MHz) = 40 ns). This frequency
will be used for now; once the rest of the system timings
are calculated, the minimum 8203 frequency which will
provide the same system performance can also be deter­
mined.

(a) tASC = tp - 30
(b) tASR = tp - 30
(c) tCAH = 5tp - 30
(d) tCAS = 5tp - 10
(e) tRAH = tp - 10
(f) tRCD[I] = 2tp - 40
(g) tRP = 4tp - 30
(h) tRSH = 5tp - 30

[IJ May be calculated as

= 10 (Equation 1.)
= 10
::, 170'

190
30
40

130
= 170

tRcomin = tRAHmin + tASCmin = 2tp - 40

ADDRESS SET·UP AND HOLD TIME MARGINS

The microprocessor must put the memory address on
the address bus early enough in the memory cycle for it
to pass through the 8203 and meet the row address set­
up tirhe to RAS (tASR> requirement of the dynamic
RAM (Figure 27). Since the address propagates directly
through the 8203, this set-up time is a function of how
long the microprocessor holds the address on the bus
before activating the RD or WR command, the address
delay through the 8203 (tAomax), and how long the
8203 waits before activating RAS (tcRmin). This is
shown in Figure 28, and calculated in Equation 2. This
and all follo~ equations show timing margins; a
positive result mdicates extra margin, a zero result says
the parameter is just met, and a negative result indicates
it is not met for worst-case conditions.

Row Address Set-Up Time Margin . (Equation 2.)

CPU Address to RD Delay+ RAS
Activ,e Delay, - Addrc;ss Delays
TCLCL(5MHz) + TCLML min (8288) +
tCRmin(8203) - [Greater of
TCLA Vmax(8086) + TIVOVmax (8282) or
TCLLHmax(8288) + TSHOVmax(8282)] -
tAomax(8203) - tASR(2164A-2O)
200 + 10 + [40 + 30] ~

[Greater of (110 + 30) or (15 + 45)] - 40 - 0

100

Figure 27. Address Set·Up and Hold Time-Margins

6-23 AFN 02200A

0>

N
.j>.

,. ...
;;:

~

CLK(8284A)

BHEI(8086)
AO-19

ALE(8288)

ADDRESS BUS

OUT 0.7(8203)
== Ao·7(2164·20)

MRDC 1(8288)
AMWC

RAS(8203)

~
1\
!---TCLAV-

\V
/1\

!-+-TCLLH-

V
/

T1

\
!\

BHE. Ao ,.VA·LlD

TIVOV
TSHOV

\V
/I\'

I--tAO--

)

\
1\

i-TCLML

Figure 28. Address Set· up Time Margin

T2

.

VALID

!--tASR-

1\
tCR-

\

VALID

1"'--

:J>
'V
cD
~

;

CJ)
I

I\)
U1

~

I

-<.

T2

CLIq8284A)

ALE(8288)

ADDRESS BUS

:=1(-

/as(8203)

CAS(8203) i

T3 TW T4 T1

•
~

tRSI!

/

--_ ... _------ ---

Figure 29. Address Hold Time Margin

AP·97A

Similarly,' the microprocessor must maintain the
memory address long enough to satisfy the column ad­
dress hold time (teAH> of the RAM; the 8203 TAJ)Il1in
parameter should be used for this calculation.

More importantly, the 8203 bank select (80-1) inputs are
also not latched; these are used directly to decode which
RAS output is activated during read or write cycles, so
these inputs must be held valid until RAS goes inactive.
Since BO-I are usually taken directly from the address
bus, this determines the address hold time required of
the system (Figure 29). These are easily satisfied by the
8086 as shown by Equation 3. N represents the number
of wait states. This equation can be tried with various
values for N (starting with 0 and increasing) until the
equation is satisfied, or it can be set equal to zero
(meaning no excess margin remru.ns) and solved for N
directly; the fractional value for N that results must be
rounded up to get the worst-case number of wait states
to satisfy this particular parameter. No wait states are
required to meet address hold times.

Address Hold Time Margin (N = 0) (Equation 3.)
CPU Address Hold Time, from
RD Active - RAS Inactive Delays
(3 + N)TCLCL(SMHz) +
TCLLHmin(8288)[I) + TSHOVmin(8282)­
TCLMLmax(8288) - tccmas(8203) -
tRSHmax(8203) [2)

3(200) + 2 + 10 - 3S - [4(40) + 8S] -
[5(40) + 30]
102

8086 8282

, 0 8284

~ Si. 51. Sot--tllII-"V' J

elK

OE
8286 T

READ DATA ACCESS TIME MARGIN

Read data access times determine how many wait states
are required for read cycles. Remember that dynamic
RAMs have two access time parameters, RAS access
time (!RAd and 00 access time (leAd. Either on~ may
be the limiting factor in det(lrmining RAM access time,
as explained in the section Dynamic RAM - Acce.s:s
Times, above. Here teAC is the limiting factor, as

tecmax + teACmax ~ teRmax + tRACmax.

This timing is shown in Figures 30 and 31, and is
calculated in Equation 4. In this system, one wait state is
required to satisfy the read data access time re­
quirements of the system; the margin is -50 ns, which is
too large a difference to be made up by using a faster
RAM.

[I) Not specified - use 2 ns

[2) Not specified in 8203 data sheet;
tRsHmax(8203) = Stp + 30

A

RAM

01100

, Figure 30. Read Data Acce~s Time Margin
I

'6-26 AFN: O22OOA

0>

N
-..t

>
."
?!'

i

CLK(8284A)

MRDC(8288)

CAS(8203)

. Doun2184·20)

DATA BUS

ADO·1s(8086)

T2

1-1.----- .

T3

-I ICC

Figure 31. Read Data Access Time Margin

TW

VALID

VALID

T4

~
"V
cD
~

AP·97A

Read Data Access (Equation 4.)
Time Margin (N = 0)

CPU lID Active to Data Valid Delay -
CAS Active Delay - Data Delays
(2 + N)TCLCL(SMHz) - TCLMLmax(8288)
tccmax(8203) - tCAcmax(2164A-20) - ,
tpmax(74S373)[I) - TIVOVmax(8286) -
TDVCLmin(8086)
2(200) - 3S - (4(40) + 8S] - 110-
30(1) - 30 - 30

- 80=>1 wait state needed (N = 1)

WRITE DATA SET·UP AND HOLD TIME MARGINS

In write cycles, the write data must '

1. reach the dynamic RAMs long enough before
CAS to meet the RAM's data set-up time ,
parameter" tos (Figures 32 and 33), and

2. ,be held long enou8h after CAS to meet the
RAM's data hold time' parameter (tow (Figures
32 and 34.)

Data set-up time margin is calculated in Equation S, and
data hold time margin is given in Equation 6. Again,
these are margins, so a positive number indicates that
system timing requirements are met for worst-case tim­
ings. Data hold time is a function of the number of 8086
wait states, represented as N, as is the read data access
time margin. No wait states are required to meet this
parameter.

'Write Data Set-Up Time Margin ,(Equation S.)
CPU WR Active to Data Valid Delay +
CAS Delay - Data Delay
TCLMLmin(8288) + tccmin(8203) -
TCLDVmax(8086) - TIVOVmax(8286) -
tosmin(2164A-20)

- 10 + (3(40) + 2S]-110 - 30 - 0
,IS '

Write Data Hold Time (Equation 6.)
Margin (N = 0)

CPU Data Hold Time, from AMWC
Active + Data Delays - CAS Active Delay
(2 + N)TCLCL(SMHz) + TCLCHmin(8284A)
+ TCHDXmin(8086) + TIVOVmin(8286)
- TCLMLmax(8288) - tccm8x(8203) -
tDHmin(2164A-20)
2(200) + (~(200) - IS] + 10
+ S - 3S - (4(40) + 8S] - 4S
308

(I) tp(74S373) is the greater of tpHL (from data) or
tpLH (from data) and is compensated for Vee and

, temperature variations, and is derated for a
300pF load (T.I. spec is at ISpF).
tP(74S373) = 13n8 + O.OSns/pF(300 - IS)pF
+ 2.7Sns = 3Ons.

Where 13ns is T.I. spec value
O.OSns/pF is deratingiactor
for excess capacitive load
(300 - 1 S) is excess capacitive
load 2.7S is compensation for
T A and Vee variation

Figure 32. Write Data Set·Up and Hold Time Margins

6-28 . AFN:022OOA

AP·97A

11 T2

CLK(8284A)
\ \

r\. 1\
TCLML

AMWC(8288) \
1\

ICC

CAS(8203) \
!--TCLDV-

ADO·le(8088) ADDRESS
\If

DATA
J\

-TIVOV los_

g~;:l~:'~)I------------------~ _____ *,--_V_A_L_ID __ _

Figure 33. Write Data Set·Up Time Margin

SACK SET·UP TIME MARGIN

As explained earlier, SACK (and XACK) are "hand­
shaking" signals used to tell the microprocessor when it
may terminate the bus cycle in progress. Thus, SACK
timing determines how many wait states will be
generated, as opposed to how many wait states are ac­
tually required for proper operation, which is determin­
ed by the read data access ·time for read cycles and by
the write data hold time for write cycles. If SACK
causes more wait states than are required, there is a per·
formance penalty, but the system operates; if too few
wait states are generated, the system will not function.

SACK and XACK serve the same function; they differ
only in timing. XACK is Multibus compatible, and is
activated only when the read data is actually on the bus
(in a read cycle) or when the write data .has been latched
into I the RAM (in a write cycle). SACK is activated
earlier in the memory cycle than XACK to compensate
for delays in the microprocessor responding to this
signal to terminate the cycle. Use of SACK is normally
preferable, as it results in the fewest possible wait states
being generated. But in some systems, SACK will not
generate a sufflCient number of wait states, so XACK or
a delayed form of SACK must be used. Note that the
number of wait states generated by SACK and XACK
will vary, depending on whether a refresh cycle is in pro·
gress when the memory cycle was requested, and if

refresh cycle is in progress, how near it is to completion.
SACK is sampled by the 8284A Clock Generator Chip's
RDYI or RDY2 input. The 8284A can be program­
med to treat these inputs as either synchronous or asyn­
chronous inputs by tying its ASYNC input (pin 15)
either high or low, respectively. SACt must be treated
as asynchronous unless it has been synchronized to the
microprocessor's clock with an external flip-flop.

SACK set·up time is shown in Figures 35 ~nd 36, and is
calculated in Equation 7. This equation indicates that,
at worst case, one wait state will be generated (n = 1).
This satisfies ·the requirements of the systeln, namely
one wait state for reads and zero (or more) wait states
for writes. '

SACK Set-Up Time Margin (N = 0) (Equation 7.)
RD or WR Active to SACK Active Delay
(N)TCLCL(5MHz) + tpLHmin(7404)[11 -
TCLMLmax(8288) - tCAmax(8203)
- tsumin(74S74)
o + 1 - 35 - [2(40) + 471 - 3
-164 => 1 wait state wil be generated (N = 1)

We have only looked at '/worst case" SACK set-up time
so far, to determine the maximum number of wait states
that will be generated (assuming no delays due to a
refresh cycle in progress). We should look at "best

[II Not specified - use 1 ns.

6-29 AFN 02200A

1:»
I

IN
o

>
;l!

,I

CLK(8284A)

AMWC(8288)

CAS(8203)

ADo-1s(8086)

DEN(8288)

DATA BUS

12

~'

1\

~
\

1\

~ ,

, "

,~

T3

\ \
1\ \

,

tcc

\

DATA VALID

I

VALID

tDH

Figl,lf8 34. Write Data Hold Time Margin

T4

V
I

TCHDX

\
I

+-TCVNlI

\
1\

-
\
"------
,",,::TELOZ-

:-:--TlVOV-

)--

~l>

'1J
cD
):

intJ

~ ClK

ClK(8284A)

MRDC)(8288)
AMWC .

8ACK(8203)

ClK(74S74)

Q(74874)=
RDY1(8284A) ,

READY(8284A, 8086)

AP·97A

Figure 35. SACK Set·Up Time Margin

T2 T3 TW

Figure 36. SACK Set·Up Time Margin

6-31 AFN: O22OOA

Ap·97A

case" SACK timing also, to make sure enough wait
states are always generated. Note that in Figure 35,
SACK goes through an external 74S74 flip-flop; this
samples SACK on-half. clock cycle earlier than th\l
8284A does (on the same clock edge that activates
MRDC or AMWC), effectively reducing SACK set-up
time by one-half clock period. This guarantees the pro­
per number of wait state will be generated for "best
case" SACK timing. Adding this flip-flop does not in­
crease the worst case number of wait states generated by
SACK.

In the case where a memory cycle is requested while a
refresh cycle is in progress, the memory cycle will be
delayed by a variable amount of time, depending Q11

how near the refresh cycle is to completion. This delay
may be as long as one full memory cycle if the refresh
was just starting; this time is about 650 ns, depending on
the 8203's clock frequency. SACK set-up, read data set­
up, and write data hold times to the microprocessor's
clock are not the same as in the usual case where there is
no refresh interference. In this case, SACK is delayed
until the read or write cycle has been completed by the
RAM, so that there is no possibility of terminating the
cytie too soon.

PCS SET·UP TIME MARGIN

The 8203:s RD, WR. and ALE inputs must be qualified
by PCS in order to perform a memory cycle. If the PCS
active set-up time parameter (tpcS> is violated, the
memory cycle will be delayed. In this case all maximum
delays normally measured from command (teR, tec,
tcA> will be measured instead from PCS active and will
be increased by tpcs (20 ns). Minimum teR, tec, teA
delays remain the same, but are measured from com­
mand or PCS whichever goes active later. If tpcs is
violated, care must be taken that PCS does not glitch
low while RD. WR, or ALE is active, erroneously trig­
gering a memory cycle. tpcs is not violated in this
system. however (Equation 8).

PCS Set-Up Time Margin (Equation 8.)
CPU Address Valid to Command Active
Delay - PCS Decode Time
TCLCL(5MHz) + TCLMLmin(8288)­
[Greater of TCLA Vmax(8086) +
TIVOVmax(8282) or TCLLHmax(8288) +
TSHOVmax(8282)]
- tplllax(8205) -tpcsmin(8203)
200 + 10 - [Greater of (110 + 30) or
(15 + 45») - 18 - 20
32

RAM DATA OUT HOLD TIME MARGIN

The 8203 CAS output is only held valid for a fIXed
length of time during a read cycle, after that the RAM
data outputs are,3-stated. This time is not long enough
to allow the 8086 to read the data from the bus. so the
data must be latched externally. This latch should be a
transparent type and should be strobed by XACK from

, the 8203. Because the minimum time from XACK active
to CAS inactive is only 10 ns, a latch with a data hold
time requirement of 10 ns or less (such as a 74S373)
should be used (see Equation 9).

RAM Data Out Hold Time Margin, (Equation 9.)
from XACK Active

tAcKmin(8203) + tOFFfIIln(2164A - 20)
- tHffiin(74S373)[1)

10 + 0 - 10
o

OTHER CALCULATIONS

Equations 3, 4, 6 and 7, may be solved directly for N,
where N is the number of wait states, to find how many .
wait states are required at a given frequency. Alter­
natively, a number may be substituted for N and these
equations solved for the 8086's clock period, TCLCL,
to find the maximum microprocessor frequency possible
with N wait states. Note that the clock high and low
times (TCHCL and TCLCH) are also a function of
TCLCL. Be sure to use the proper speed selection of the
8086 in this calculation, as various A.C. parameters are
different and the result may, be different for different
speed selections of the 8086, even at the same frequency.
Be sure to check the other equations at this frequency to
make sure they are OK, too.

Finally. for given values of TCLCL and N, Equations 3,
4. 6, and 7 may be checked to find the lowest 8203 clock
frequency which will aliow the same system per­
formance, if it is desired to operate at some frequency
other than the 25 MHz we assumed.

CONCLUSION

This design will operate with, at worst case, one wait
state (except for refresh) at microprocessor frequencies
up to 6 MHz, using slow (200 ns access time) dynamic
RAMs. At 6 MHz, it is limited by a lack of SACK set-up

6-32

[1) A 74S373 must be used to meet this timing re­
quirement. Even though worst case margin is 0 ns,
this is not a critical timing; as valid data will hold
on the latch inputs for a considerable time after
the RAM outputs 3-state.

AFN:022OOA

AP·97A

time. At 5 MHz, the 8203 can be operated at any clock
frequency from 18.432 MHz to 25 MHz, still with only
one wait state.

Example 2. 8086 Alternate
Configuration System (5 MHz)

Figure 37 shows another 8086 Max mode system at 5
MHz, but this time using the Alternate Configuration,
which allows it to operate with no wait states (except for
refresh).

The system if) the previous example was limited by
SACK set-up time. SACK set-up time can be improved
by sampling SACK later; this has been done by changing
the clock edge used to sample SACK, allowing roughly
213 clock period longer. SACK set-up time (and read data
access time and write data hold time) margin can also be
improved by activating the RD or WR inputs of the 8203
earlier in the 8086's bus cycle; this is the purpose of the
extra logic in Figure 37 (I.C.s A8 - All). These generate
advanced RD and WR signals timed from the falling
edge of ALE, which occurs roughly 'h clock period
sooner than the MRDC and AMWC are generated by the
8288 BlJs Controller. Altogether, ,these changes allow
about one 8086 clock period more set-up time for SACK.

Let's look at this logic in more detail. An Intel 8205
(AS) is used to decode the 8086's status outputs S0-2' An
opcode fetch, memory read, or memory write decode to
8205 outputs 4,5, and 6, respectively. These outputs go
to the D inputs of two 74S74 flip-flops. The Q output of
flip-flop AIO.2 is'an advanced memory read signal and
the Q output of Al1.2 is an advanced memory write
signal. As shown in Figure 37, the 8203 is not activated
for opcode fetches, but it can be if 8205 outputs 4 and 5
are ORed with the unused 74SOO gate (A9.4) and the Q
output of AIO.2 used instead of Q. Both flip-flops are
clocked by the falling edge of ALE to generate the ad­
vanced commands. Flip-flop AIO.I is clocked by the
trailing edge of either AMWC (Advanced Memory
Write Command) or MRDC (Memory Read Command)
from the 8288 bus controller (A6), indicating that the
8086 has completed the memory cycle. AIO.I, in turn,
presets both the AIO.2 and All.2 flip-flops to terminate·
the advanced memory read and write signals to the
8202A. AIO.I is then preset to its initial state by ALE
going active at the start of the next bus cycle.

Because RAM write cycles are started very early in the
8086's bus cycle using this logic, the 8203 will activate
CAS to the RAMs (latching write data) before the data
is valid from the 8086. This requires delaying WE to the
RAMs and performing a "late write" (explained earlier
under Dynamic RAMs) in ()rder to allow more time for
the write data to arrive. But the WE signal must not be

6-33

delayed so long that there is no longer enough data hold
time, measured from when WE goes active; or that the
WE active to CAS inactive delay spec or the RAM
(tRWL> is violated. None of the control signals from the
8086 or 8288 bus controller satisfy both of these timing
constraints, so such a signal is generated by flip-flop
Al1.1, which serves to delay AMWC from the bus con­
troller by an amount of time equal to TCLCH (the low
time of the 8086's clock). AIl.l is also preset by AIO.I
at the end of the memory cycle. The Q output of AII.I
is ANDed with WE from the 8203 by A14.1 to form a
delayed RAM WE. As in the previous example, this
signal is then ANDed. with BHE and AO to form the
WE for the high and low bytes of RAM, respectively.

A total of four packages (three 14-pin and one 16-pin)
of TTL logic are required.

The dynamic RAM interface timings are identical to the
last example (Equations I (a)-(h»; 2164A-20 RAMs will
be used again.

ADDRESS SET·UP AND HOLD TIME MARGINS

Address set-up and hold time margins. are given in
Equations 10 and 11, respectively. An 8086-2
microprocessor has been used instead of the standard
8086, as this speed-selected part gives better address set­
up to RD or WR times, which this design needs since it
uSeS advanced RD and WR commands.

Row Address Set-Up Time Margin[l) (Equation 10.)
CPU Address to Adv. RD Delay
+ RAS Delay - Address Delays
TCLCHmin(8284A) + TCHLLmin(8288)[21
+ tpLHmin(74S00)[31 + tpHLmin(74S74)[21

+ tCRmin(8203) - [Greater of
TCLAVmax(8086 - 2) + TIVOVmax(8282)
or TCLLHmax(8288) + TSHOVmax(8282»)

- tAomax(8203) - tAsRmin(2164A-20)
[¥3(200) - 15) + 2 + 1 + 2 + [(40) + 30)
- [Greater of (60 + 30) or (IS + 45») - 40 - 0
63

[I) Read or write cycles only. Eq. Ib gives this timing
for refresh cycles.

[2) Not specified - use 2 ns.
[31 Not specified - use I ,ns.

AFN: O22OOA

Ap·97A

Address Hold Time Margin (N = 0) (Equation 11.)
CPU Address Hold Time from Adv. RD
Active· RAS Inactive Delays
(3 + N)TCLCL(5MHz) + TCHCLmin(8284A)
+ TCLLHmhi (8288)
+ TSHOVmin(8282) • TCLMLmax(8288)
- tccmax(8203) - tRsHmax(8203)
(3)200 + [Y3(200) + 2] + 2 + 5 - 35

, - [4(40) + 85] - [5(40) + 20J
...., 175

READ DATA ACCESS TIME MARGIN

R,ead data access time margin is shown in Equation 12;
no wait states are required for read cycles, even with 200
ns access time RAMs.

Read Data Access Time (Equation 12.)
Margin (N = 0)

Adv. RD to Data Valid Delay - CAS Delay
- Read Data Delays

(2 + N)TCLCL(5MHz) + TCHCLmin(8284A)
- TCHLLmax(8288) - tpLHmax(74S00)
- tpHLmax(74S74) - tccmax(8203)
- tCAcmax(2164A-20) - tpl1lax(74S373)
- TIVOVmax(8286) - TDVCLmin(8086-2)

(2)200 + [Y3(200) + 2] -' 15 - 5 - 10
- [4(40) + 85] - 110 - 30 - 30 ~ 20

3

WRITE DATA SET·UP AND HOLD TIME MARGINS

Write data set-up and hold times are shown in Equa­
tions 13 and 14, 'respectively. No wait states are required
during write cycles. Note that write data set-up has been
guaranteed by delaying WE from the 8203 with clocked
AMWC from the bus controller and performing "late
write" cycles; write data set-up time would not be
satisfied otherwise. Equation 15 verifies that WE has
not been delayed too long to meet the RAM's WE active
to RAS inactive set-up time (tRWU' The RAM's WE ac­
tive to CAS inactive set-up time (tcwu is also satisfied,
since CAS does not go inactive until at least 20 ns after
RAS.

Write Data Set-Up Time Margin (Equation 13.)
CPU Data to Clocked AMWC Set-Up
+ WE Delays - Data Delays
TCLCHmin(8284A) + tpHLmin(74S74)[IJ
+ (2)tpHLmin(74S32)[IJ ~
- TCLDVmax(8086-2) - TIVOVmax(8286)
" tDsmin(2164A-20)
[¥3(200) - 15] + 2 + (2)2 - 60 - 30,-0
34

Write Data Hold Time (Equation 14.)
Margin (N = 0)

CPU Data Hold Time from Clocked AMWC
+ Data Delays - WE Delays
(2 + N)TCLCL(5MHz)

TCHDXmin(8086-2) + TIVOVmin(8286)­
- tpHLmax(74S74) - (2)tpHLmax(74S32)
- tOHmin(2164A-20)
(2)200 + 10 + 5 - 10 - (2)7 - 45
346

WE Active Set-Up Time Margin (Equation 15.)
to RAS Inactive

TCHLLmin(8284A)[IJ + tpLHmin(74S00)[2J
+ tccmin(8203) + tRsHmin(8203)
- tSKEw(74S74)[3J -(2)tpHLmax(74S32)
- tRwLmin(2164A-20) - TCLCL(5MHz)
2 + 1 + [3(40) + 25] + [5(40) - 30]
- 2 - (2)7 - 50 - 200

52

SACK SET·UP TIME MARGIN

Equation 16 shows that SACK set-up time is satisfied;
no wait states will be generated for read or write cycles
(except for refresh).

SACK Set-Up Time Margin (N = 0) (Equation 16.)
(1 + N)TCLCL(5MHz) - TCHLLmax(8288)
" tpLl.jmax(74S00) - tpHLmax(74S74)
- tCAmax(8203) - tsumin(74S74)
200 - 35- 5 - 10 [2(40) + 47] - 3
20

PJ Not specified - use 2 ns.
[2J Not specified - use 1 ns.
[3J tSKEw(74S74) is max. skew between

tpHL(Q output, from CLK) of two Q outputs in
same package - use = 2 ns. '

AFN 02200~

CJ)
I

Ul
(]I

,.
~

~

Al
8284A

ASYNC

>z "'I'" Ow 0:..:

>
~I
w'
0:1

~I

A'6·'9
ADo·, 5

A2
8086·2

READY

50.2
CLK

ALE AMWC

8286

Notes Symbol 'to Indicates connection to Vee through 1K.I\-pull·up
---indicates additional Circuitry 10 zero walt states

ADDRESS BUS

0619
8205 0510

04

74S00

L_ , , , L _______ _

DATA BUS

A1819
A12 00'15

Figure 37. 8086 Alternate Configuration System

WE

8203
A13

OUT WE
RAM

RASI,< ~
!-----.... -t!c'AS 2~:A

I
DOUT D'N

x x

DOUT

DIN

J>
'U

~
J>

AP·97A

pes Set-Up TIme Margin (Equation 17.)
= CPU Address Varid to Adv. iID or Adv.

Wi Delay - Pes Decode Time
TCLCHmin(8284A) + TCHLLmin(8288)[11
+ tpLHmin(74S00) + tpmmin(74S74)[11
- TCLA Vmax(8086-2) - TIVOVmax(8282)
- tpmax(74S138[31 - tpcsmin(8203)
(%(200) - 1 S] + 2 + 1 + 2 - 60 - 30 - 12 - 20
1

PCS SET·UP TIME MARGIN

PCS set-up time for the 8203 (tpcS> is satisfied. but not
with as much margin in the last example (Figure 17).

[II Not specified - use 2 ns.
(2) Not specified - use 1 ns.
(3) Must use 74S138 to maintain PCS Set-Up

Time Margin.

This is because the RD and WR commands are activa~
earlier in the microprocessor's bus cycle. leaving less
time to decode PCS from the address bus.

CONCLUSION

This design will operate with a guaranteed zero wait
states up to S MHz using slow (200 ns access time)
RAMs. At this frequency. it is limited by both read and
write data set-up times. and to a lesser extent, by SACK
set-up time. Using faster RAMs will not raise the max­
imum frequency, as write data and SACK set-up times
are not affected by the RAM speed. The 8203 operating
frequency must be 25 MHz.

This design can be used (with some modifications) to
allow one wait state performance up to 8086 clock fre­
quency of 8 MHz.

6-36 AFN:022OOA

inter APPLICATION
NOTE

Ap·141

, October 1981

6-37 ' order number:2111316.001

8203/8206/2164A
Memory Design

6-38

Contents

ABSTRACT 1

DESiGN 1

CONCLUSION .. 4

AFN02114A

Ap·141

ABSTRACT

This Application Note shows an error corrected
dynamic RAM memory design using the 8203 64K
Dynamic RAM Controller, 8206 Error Detection and
Correction Unit and 150 ns 64K Dynamic RAMs with a
minimum of additional logic.

The goals of this design are to:

1. Control 128K words x 16 bits ·(256 KB) of 64K
dyna~c RAM.

2. Support 150 ns dynamic RAMs.
3. Write corrected data back into dynamic RAM when

errors are detected during read operations.
4. To use a minimum of additional logic.

It is not the goal of this design to:

1. Provide the maximum possible performance.
2. Provide features like error logging, automatic error

scrubbing and dynamic RAM initialization on
power-up, or diagnostics, although these features
can be added.

iffi
WR
Cs

~ ~
Bo AH AL OUT r-----' A7'Ao

• • ~GH

r RD RASO r RAS BYTE
WR 8203 RASl RAS RAM

DESIGN

Figure 1 shows a memory design using the 8206 with
Intel's 8203 64K Dynamic RAM Controller and 150 ns
64K Dynamic RAMs: As few as three additional ICs
complete the memory control function (Figure 2).

For simplicity, all memory cycles are implemented as
single-cycle read-modify-writes, shown in Figllre 3. This
cycle differs from a normal read or write primarily when
the dynamic RAM write enable (WE) is activated. In a
normal write cycle, WE is activated early in the cycle; in
a read cycle, WE is inactive. A read-modify-write cycle.
consists of two phases. In the first phase, WE is inac­
tive, and data is read from the dynamic RAM; for the
second phase, WE is activated and the (modified) data is
written into the same word in the dynamic RAM.
Dynamic RAMs have separate data input and output
pins so that modified data may be written, even as the
original data is being read. Therefore data may be read
and written in only one memory cycle.

--" MAo f----l\ A7.Ao --y LOW :--II CHECK
-< RAS BYTE -< RAS BIT
-c RAM -< RAM

RAS (16) RAS (12)
CS CAS CAS i~~A -c CAS 2184A -< CAS 2164A

XACK r-c ~~ DO -c ~~ DO -c W~CDL

r ."'" ::,.

I~
...:: >

L~l_ -<..1. "< J ;:.- "< ;:.-
01 CBI CBO

- ~
STB MIS
RIW 8206

WZ
L-.c RO BMo

~ BMo

~"'9 _WR BM1 BM1 CRCT .
CS T @ DOIWOI
Ao OEBO i, ;:... -= BHE OEBl p-

INTERFACE

.~~
LOGIC

~
I OE T A 10ET AI

8~86 8286
B .

I

\ 'SYSTEM DATA BUS

Figure 1.' 820318206 Memory System

6-39 AFN02114A

inter AP·141

In order to do read-modify-writes in one cycle, the
dynamic RAM's CAS strobe must be active long enough
for the 8206 to access data from the dynamic RAM, cor­
.rect it, and write the corrected data back into the
dynamic RAM. CAS active time is an 8203 spec (tCAS),
and is dependent on the 8203's clock frequency. The ./
clock frequency and dynamic RAM must be chosen to
satisfy Equation 1.

(Eq. 1)
Dynamic Dynamic Dynamic

8203 RAM 8206' 8206 RAM RAM

tcAsmin 2< tCAe +TDVQV+ TQVQV +tos+ tcwL

5(54)-10 2< 85 + 67 + 59 + 0 + 40

260 2< 251

The 8203 itself performs normal reads and writes. In
order to perform read-modify-writes, all that is needed
is to change the timing of the WE signal. In this design,
WE is generated by the interface logic in Figure 2-the
8203 WE output is not used. All other dynamic RAM
control signals come from the 8203. A 20-ohm damping
resistor is used to reduce ringing of the WE signal. These
resistors are included on-chip for all 8203 outputs.

The interface logic generates the R/W input to the 8206.
This signal is high for read cycles and low for write
cycles. During a read-modify-write cycle, R/W is first
high, then low. The falling edge of R/W tells the 8206 to
latch its syndrome bits internally and generate corrected
check bits to be written to dynamic RAM. Corrected
data is already available from the DO pins. No control
signals at all are required to generate corrected data.

R/W is generated by delaying CAS from the 8203 with a
TTL-buffered delay line. This allows the 8206 sufficient
time to generate the syndrome; this delay, tDELAY I,

must satisfy Equation 2. . ,

(Eq.2)
Dynamic

RAM 8206

tDELAY I 2: tCAC + TDVRL

150 2< 8S + 34

150 2< 119 ""
The 8206 uses multiplexed pins t~ output first the syn­
drome word and then check bits. This same R/W signal
may be used to latch the syndrome word externally for
error logging. The 8206 also supplies two useful error
signals. ERROR signals the presence of an error in the
data or check bits. CE tells if the error is correctable
(single bit in error) or uncorrectable (multiple bits in
error). '

In the event that an uncorrectable error is detected, the
8206 will force the Correctable Error (CE) flag low; this
may be used as an interrupt to the CPU to halt execu­
tion and/or perform an error service routine. In this
case the 8206 outputs data and check bits just as they
were read, so that the data in the dynamic RAM is left
unaltered, and may be inspected later.

After R/W goes low, sufficient time is allowed for the
8206 to generate corrected check bits, then the interface
logic activl/-tes WE to write both corrected data and
check bits into dynamic RAM. WE is generated by
delaying CAS from the 8203 with the same delay line

8203 CAS
TTL

DELAY LINE

'-____ 2"'0"'0_ WE RAM

BMo ~~~TROL
BUS

SYSTEM { Ao
ADDRESS

BHE-+------------~_r--~-'

R/W] ARRAY

BM,

DEL~~~ cs---,---...... ..-, -]

cgYSTET { Rii '-------------------:T::: ~~~TROL NT:~S WR -;-_-q,_

Figure 2. Interface Logic

.6-40 AFN02114A

intJ Ap·141

A~~~ ROW :><:~ ___ C_O_LU_M_N __ -J:><:~ ________________________________ __

\~ _____ ----II

\'---___ ----'1

\'-----11
00- - - - - - - - < VALID)-

01 X VALID
x __

Frgure 3. Single·Cycle Read·Modlfy·Wrlte

used to generate RlW. This delay, tOELAY 2, must be
long enough to allow the 8206 to generate valid check
bits, but not so long that the tcwL spec of the RAM is
violated. This is expressed by Equation 3.

8206 1IlO3

(Eq.3)

Dynamic
RAM

tDELAY I + TRVSV" tDELAY 2 " tCASmin - tcwL

150 + 42 " 200 ~ 260 - 40

192 ~ 200 ~ 220 "

Unlike other EDC chips, errors in both data and check
bits are automatically corrected, without programming
the chip to a special mode.

~ince the' 8203 terminates CAS to the dynamic RAMs a
fixed length of time after the start of a memory cycle, a
latch is usually needed to maintain data on th~ bus until
the 8086 completes the read cycle. This is conveniently
done by connecting XACK from the 8203 to the STB in­
put of the 8206. This latches the read data and check
bits using the 8206's internal1atches.

The 8086, like all 16-bit microprocessors, is capable of
reading and writing single byte data to memory. Since
the Hamming code works only on entire words, if you
want to write one byte of the word, you have to read the
entire word to be modified, do error correction on it,
merge the new byte into the old word inside the 8206,
generate check bits for the new word, and write the

6-41

whole word plus check bits into dynamic RAM. A byte
write is implemented as a Read-Modify-Write.

Why bother with error correction on the old word? Sup­
pose a bit error had occurred in the half of the old word
not to be changed. This old byte would be combined
with the new byte, and new check bits would be gener­
ated for the whole word, including the bit in error. So
the,bit error now becomes "legitimate"; no error will be
detected when this word is read, and the system will
crash. You can see why it is important to eliminate this
bit error before new check bits are generated. Byte
writes are difficult with most EDC chips, but easy with
the 8206.

Referring again to Figure 2, the 8206 byte mark inputs
(BMo, BMI), are generated from AO and BHE, respec­
tively, of the 8086's address bus, to tell the 8206 which
byte is being written. The 8206 performs error correc­
tion on the entire word to be modified, but tri-states its
DO/WDI pins for the byte to be written; this byte is
provided from the data bus by enabling the correspon­
ding 8286 transceiver. The 8206 then generates check
bits for the new word.

During a read cycle, BMo and BMI are forced inactive,
i.e., the 8206 outputs both bytes even if 8086 is only
reading one. This is done since all cycles are imple­
mented as read-modify-writes, so both bytes sf data
(plus check bits) must be present at the dynamic RAM
data input pins to be rewritten during the second phase
of the read-modify-write. Only those bytes actually be-

AFN02114A

Ap·141

ing read by the 8086 are dtiven on the data bus by enabl­
ing the corresponding 8286 transceiver.

The output enables of the 8286 transceivers (OEBO,
OEBl) are qualified by the 8086 RD, WR commands
and the 8203 CS. This serves two purposes:

1. It prevents data bus contention during read cycles.
2. It prevents contention between the transceivers and

the 8206 DO pins at the beginning of a write cycle.

CONCLUSION
Thanks to the use of a 68-pin package, the 8206 Error
Detection and Correction Unit is. able to implement an
architecture with separate 16 pin input and output
busses. The resulting simplification of control require­
ments allows etror correction to be easily added to an
8203 memory subsystem with a minimal amount of
interface logic.

6-42 AFN02114A

inter

©Intel Corporation, 1983. '

APPLICATION
NOTE .

6-43

AP-167

August 1983

ORDER NUMBER: 230809-001
NOVEMBER 1983

AP-167

INTRODUCTION

Most microprocessor based workstation designs to­
day' use large amounts of DRAM for program storage.
A drawback to DRAMs is the many critical timings
that must be met. This control function could easily
equal the area of the DRAM array if implemented with
discrete logic.

The VLSI 8207 Advanced Dynamic RAM Controller
(ADRC) performs complete DRAM timing and con­
trol. This includes the normal RAM 8 warm-up cycles,
various refresh cycles and frequencies, address
mUltiplexing, and address strobe timings. The 8207's
system interface and RAM timing and control are pro­
grammable to permit it to be used in most
applications.

Integrating all of the above functions (plus a dual port
and error correcting interfaces) allows the user to
realize significant cost savings over discrete logic. For
example, comparing the 8207 to the iSBCO 12B 512K
byte RAM board (where the DRAM control is done
entirely with TTL), an 8207 design saved board space
(3 in2 vs 10 in2); required less power (420 rna vs
1220 rna); and generated less heat. Moreover, design
time was reduced, and increased margins were a­
chieved due to less skewing of critical timings. This
comparison is based on a single port design and did
not include the 8207's RAM warm-up, dual-port and
error correcting features. If these features were fulJy
implemented, there would be no change to the 8207
figures, listed above, while the TTL figures would easi­
ly double.

This Application Note will illustrate an iAPX design
with the 8207 controlling the dynamic RAM array. The
reader should be familiar with the 8207 data sheet, the
80186 data sheet, and a RAM data sheet·.

DESIGN GOALS

The main objective of this design is for the 80186 to
run with no wait states with a Dynamic RAM array.
The design uses one port of the 8207. The dual port
and error correcting interfaces of the 8207 are covered
in separate Application Notes.

The size of the RAM array is 4 banks of 64k RAMs
or 5 12k bytes. The memory is to be interfaced locally
to the 80186.

USING THE 8207

The three areas to be considered when designing in
the 8207 are:

• 8207 programming logic
• Microprocessor interface
• RAM array

8207 Programming
The 8207 requires up to two 74LS165 shift registers
for programming. This design needs one 8 bit shift
register, as shown in Figure I. The 16 bits in the Pro­
gram Data Word are set as shown in Figure 2. Refresh
is done internally, so the REFRQ input must be tied
high. The memory commands are iAPX 86 status, so

,---------- -,
SYSTEM \. I r------i-,--------,

RESET
RESET/i· ~ I

I Y :
I I
I I lOAD ClK I l PUSO SHIFT REG QH ~ SERIAL PUSO SHIFT REG. QH - PO I

I I L..J--t--r.TA IN G H i..L A B DATA IN G H

~ ... t t t rv t t t .. ~ t t t .
I !! -=~"""·~~l-"'" -+!--"1:----.1-: -1;-..... _·-_ I! JUMPER OPTIONS * : POlS PD8 : Po7·PD~

PClKlMUX

lOAD ClK
8207

I I
L __ ~T~~ ____ J

Figure 1. 8207 programming shift registers

-All R'AM references in this Application Note are based on Intel's 2164A 64k Dynamic RAM.

6-44 230809-{J01

inter AP-167

+5

74830

SRDyCLK
il---~I-'---+--t

80186 S°t-"""",,;::::;~~:::;--T--1
ALE

ADDRESS DATA
BUS BUS

NOTE: THE 8207 REQUIRES SERIES RESISTORS ON ALL 'OUTPUTS TO RAM.

Figure 3. 80186 to 8207, non-ECC, synchronous system single port.

the timing of EAACK will always guarantee 2 clocks
of address hold time from RAS.

Acknowledge Setup Time
The margin between the 8207 issuing BAACK and the
80186 ready input for no wait states minus delays from
clock edges, logic delays, and setup time is calculated
as follows.

1 clock - 8207 TCLAKL max -74S30 tPLH @
15 pf - 80186 TSRYCL ~ 0

125 ns - 35 - 22 - 35 = 33 ns

Read' Access Margin
The 8207 start~ a 'memory cycle on the f;Uling clock
edge between the 80186's Tl and T2. Data must be
valid within 2 clocks. Valid data from the RAMs is

6-45

based upon the' CAS access period minus buffer,
clock, setup requirements. ..

2 TCLCL - 8207 TCLCSL @ 150 pf (t34) -
DRAM tCAC - 74S24O propagation delay @
50 pf - additional bus loading delay
(250 pf)(l) - 74S24O delay @ 50 pf :.. 801~6
TDVCL ~ 0 .

250 ns - 122 - 85 - 7 - 7 - 7 - 20 = 2 ns

Write Data Setup and Hold Margin

Data from the processor must be valid when WE
is issued by the 8207 to meet the RAM specifica­
tion tDS (2164A = 0 ns), and then held for a
minimum of 30 ns ..
(1) 74STTL logic derated by .05 ns/pf. 74STTL
buffers (240, 37) derated by .025 ns/pf.

230809-001

inter AP-167

o I 0 0 00000000 000

, ~1~5 ____________________ 8~1 ~17 _____________________ 0~1

Figure 2. Program data word

the PCTLA input must be high when RESET goes
inactive.

The differential reset circuit shown in the Data Sheet
is necessary only to ensure that memory commands
are not received by the 8267 when Port A is changed
from synchronous to asynchronous (vice versa for
Port B). This design keeps Port A synchronous so no
differential reset circuit is needed.

Microprocessor Interface

To achieve no wait states, the 8207 must connect
directly to the microprocessor's CLKOUT and status
lines. The 8207 Acknowledge (BAACK) must connect
to the SRDY input ohhe 80186.

When the 80186 is reset, it tristates the status lines.
The 8207 PCTLA input requires a high to decode the
proper memory commands. This is !lccomplished by
using a pull-up resistor or some component that
incorporates a pull-up on S2.

,
. The 8207 address inputs are connected directly to the
latched! demultiplexed address bus.

RAM Array

The 8207 provides complete control of all RAM tim­
ings, warm up cycles, and refresh cycles. All write
cycles are "late writes." During write cycles, the data
out lines go active. This requires separate data in!out
lines in the RAM array. '

To ,operate the 80186 with no wait states, it is necessary
to chose sufficiently fast DRAMs. The 150 ns version
of the 2164A allows operating the 80186 at 8 MHz,
and the 200 ns version up to 7 MHz.

HARDWARE DESIGN

Figure 3 shows a block diagram of the design, and
Figure 4 is a timing diagram showing the relationship
between the 8207 and the 80186.

8207 Command Setup
Two events'must occur for a command to be recog­
nized by the 8207. The 80186 status outputs are sam­
pled by a rising clock edge and Port Enable (PE) is
sampled by the next falling clock edge (refer to the
Data Sheet wave forms).

The command timing is determined by the period'be­
tween the status being issued and the first rising clock
edge of the 8207, minus setup and delays.

80 186 status valid to 8207 rising clock :- status from
clock delay - 8207 'setup to clock ;;. 0

1 TCLCL - 80186 TCHSV max - 8207 TKVCH
min;;' 0

125 ns - 55 - 20 '" 50 ns

PE is a chip select for a valid address range. It can
,be generated from the address bus or from the 80186's
programmable memory selects. This design uses an
inverted A19. The timing is determined by the inter­
val between the address becoming valid and the fall­
ing clock edge, minus setup and delays.

80186 address valid to 8207 falling clock ed!e
- 80186 address from clock delay - 8283 latch
delays - 8207 PE setup ;;. 0

1 TCLCL - 80186 TCLAV max - 8283 IVOV @
300 pf - 8207 TPEVCL ;;. 0

125 ns - 44 - 22 - 30 '" 29 ns
The hold times are 0 ns and are met.

Address Setup
For an 80186 design, the 8207 requires the address to
be stable before RAS goes active, and to remain stable
for 2 clocks. Unused 8207 address inputs should be
tied to Vcc.

tASR is a RAM specification. If it is greater than zero,
this must be added to the address setup time of the
8207. Address setup is the interval between addresses
being issued and, RAS going active, minus appropriate
delays.

80186 address valid to 8207 RAS active .:
80186 address from clock delay - bus delays -
(8207 setup + RAM t ASR) ;;. 0

TCLCL + 8207 TCLRSL min @ 150 pr(1) -
80186 TCLAV max - 8283 IVOV max @ 300 pf
-(8207 TAVCL min + DRAM tASR);;' 0

125 ns + 0 - 44 - 22 - (35 + 0) '" 24 ns

, The address hold time of 2 clocks + 0 ns is always'
met, since the addresses are latched by the 828213.
Even when the processor is in w.iit states (for refresh),

(1) Not specified-use 0 ns. '

6-46 230809-001

AP-167

TCLCL + TCLCH + 8207 TCLW min(l) +
74S'37'delay tPHL min @ 50 pf + additional
loading (142 pf) - 80186 TCVCTV -
74S24OtPZL - bus delays (250 pf) - 74S240 .
delay - 2164A tDS ~ 0

125 + 62.5 + 0 + 6.5 + 3.5 - 70 - 15 - 7 - 7 -
o = 98.5 ns

The hold time,tDH, is from WE going low to the
80186 DEN going high plus buffer delays minus
WE from clock delays.

TCLCL - 80186 TCVCTX min + 74S32
tPD(2) min + 74S24O tPHZ (min)(2) + 250 pf
bus delays + 74S240 propagation delay min -
8207 TCLW max - 74S37 tPHL @ 50 pf -
142 pf loading delays - DRAM tDH ~ 0

8 MHz

ALE

SO-S2

8207 RASO

8207 AAs1

8207"CASO

8207 CAS1

8207 WE ___ +_

8207 EAACK __ ...J

80186 (SRDY)

NOTES:

WRITE
CYCLE

1. COMMAND SETUP MARGIN
2. PE SETUP MARGIN
3. EAACK SETUP MARGIN
4. DATA SETUP MARGIN
5. READ ACCESS MARGIN

READ
CYCLE

62.5 ns + 10 + 2 + 3 + 7 + 3.5 - 35 -
3.5 - 30 = 19.5 ns

All margins are actually better by about 10-20 ns. No
improvement in timing was allowed for lower
capacitive loads when additional buffers are used (i.e.
the 80186 address out delay is at 200 pf, but the 8283
latch only loads these lines with about 20 pf).

SUMMARY
The 8707 supports the 80186 microprocessor run­
ning with no wait states. The 8207 interfaces easi­
ly between the microprocessor and dynamic RAM.
There are no difficult timings to be resolved by
the designer using external logic.

REFRESH
CYCLE

READ CYCLE

Figure 4. 8207/80186 timing relationship

(1) Not specified, use 0 ns.
(2) Not specified, use one half of typical value.

6-47 230809-001

intJ

©Intel Corporation, 1983.

APPLICA liON
NOTE'"

6-48

AP~1,68

August 1983

ORDER NUMBER: 230862-001
NOVEMBER 1983

inter AP·l68

INTRODUCTION
The 80286 high speed microprocessor pushes
microprocessor based systems to new performance
levels. However, its high speed bus requires special
design considerations to utilize that performance. In­
terfacing the 80286 to a dynamic RAM array require
many timings to be analyzed, refresh cycle effects on
bus timing examined, minimum and maximum signal
widths noted, and the list continues. .

The 8207 Advanced Dynamic RAM Controller was
specifically designed to solve all interfacing issues for
the 80286, provide complete control and timing for
the DRAM array, plus achieve optimum system per­
formance. This includes the normal RAM 8 warm­
up cycles, various refresh cycles and frequencies, ad­
dress multiplexing, and address strobe timings. The
8207 Dynamic RAM Controllj:r's system interface and
RAM timing and control are programmable to per­
mit it to be used in most applications.

Integrating these functions (plus dual port and error
correcting interfaces) allows the user to realize signifi­
cant savings in both engineering design time, PC board
space and product cost. For example, in comparipg
the 8207 to the ISBCOl2B 512k byte RAM board
(where the DRAM timing and control is done entire­
ly with TTL), the 8207 design saved board space (3 in2
vs 10 in2); used less power (420 ma vs 1220 ma);
reduced the design time; and increased margins due
to less skewing of timings. The comparison is based
upon a single port 8207 design and does not include
its RAM warm-up, dual port, error correcting, and
error scrubbing or RAM interleaving features.

This Application Note will detail an 80286 and 8207
dl=Sign. The 'reader should have read the 8207 and the
80286 data sheets, a DRAM data sheet·, and have them
available for reference.

DESIGN GOALS
The main objective of this design is to run the RAM
array without wait states, to maximize the 80286's per­
formance, and to use as little board space as possi­
ble. The 80286 will interface synchronously to Port
A of the 8207 and the 8207 will control 512k bytes
of RAM (4 baJlks using 64k DRAMs). The dual port
and error correcting features of the 8207 are covered
in separate Application Notes.

8207 INT~RFACE
The 8207 ~emory design can be subdivided into three
sections:

• Programming the 8207.
• The 80286/8207 interface.
• The Dynamic RAM array.

Programming the 8207
The RAM timing is configured via the 16 bit program
word that the 8207 shifts-in when reset. This can re­
quire two 74LS165 shift registers to provide complete
DRAM configurability. The 8207 defaults to the con­
figuration shown in Table 1 when POI is connected
to ground. This design does not need the flexibility
the shift registers would allow since standard
8207/80286 clock frequencies, DRAM speeds and
refresh rates are used. Table 1 details the 8207/80286
configuration and Table 10 in the Data Sheet iden­
tifies "CO" as the configuration of the 8207 all tim­
ings will be referenced to (80286 mode at 16 MHz us­
ing fast RAMs = CO).

Table 1. Default Non·ECC programming, POl
pin (57) tied to ground.

Port A is Synchronous (EAACKA and XACKA)

Port B is Asynchronous (LAACKB and XACKB)

Fast-cycle Processor Interface (10 or 16 MHz)

Fast RAM 100/120 ns RAM

Refresh Interval uses 236 clocks

128 Row refresh in 2 ms; 256 Row refresh in
4 ms

Fast Processor Clock Frequency (16 MHz)

"Most Recently Used" Priority Scheme

4 RAM banks occupied

The 8207 will accept 80286 status inputs when the
PCTLA pin is sampled low at reset. This pin is not
necessary for an 80286 design (besides programming)
and is tied to ground.

Refresh is the final option to be programmed. If the
Refresh pin is sampled high at reset, an internal timer

"All RAM references In Ihis Application Note are based upon Inlel"s CMOS 51C64-12 64k Dynamic RAM. Any DRAM wilh simHar lim­
ings will function. Reier Ie section 4.4.

6-49 230662-001
\

intJ AP·168

is enabled, and if low at reset, this timer is disabled.
The first method is the easiest to implement, so the
RFRQ pin is tied to Vcc.

The differential reset circuit shown in the Data Sheet
is necessary only to ensure that memory commands
are not received by the 8207 when Port A is changed
from synchronous to asynchronous (vice versa for
Port B). This design keeps Port A synchronous so no
differential reset circuit is needed.

RAM Array

The 8207 completely controls all RAM timings, warm­
up cycles, and refresh cycles. To determine if a par-,
ticular RAM will work with the 8207, calculate the
margins provided by the 8207 (Table 15, 16-8207
Data Sheet) and ensure they are greater than the RAM
requirement. An additional consideration is the ac­
cess times of the RAMs. The access time of the system
is dependent upon the number of data buffers between
the 80286 and the DRAMs. To operate the 80286 at
zero wait states requires access times of 100-120 ns.
Slower RAMs can be used (150 ns) by either adding
a wait state (programming the 8207 for "Cl ") or
reducing the clock frequency (to 14.9 MHz approx­
imatelyand maintaining the CO configuration.)

All write cycles are "late writes" and the data out lines
of the RAM will go active. This will require separate
data in and out lines in the RAM array. Another con­
sideration for the RAM array is the proper layout of
the RAM, and impedance matching resistors on the
8207 outputs. Proper layout is covered in Intel's RAM
Data Sheets and Application Notes.

Microprocessor Array

To achieve no wait state operation, the 8207's clock
input must be connected to the 80286' s clock input.
The EAACK (early acknowledge) output of the 8207
must connect to the SRDY input of the 82284. The
8207' s address inputs connect directly to the 80286
address outputs and the addresses are latched inter­
nally. This latch is strobed by an ,internal signal with
the same timing as LEN (which is for dual port 80286
designs). Figure 2 shows the timing relationship bet­
ween LEN and the 80286.

LEN will fall from high to low, which latches the bus
address internitlly; when a valid command is receiv­
ed. LEN can go high in two clock cycles if the RAM
cycle started (RAS going low) at the same time LEN
went low. If the 8207 is doing a refresh cycle, the 80286
will be put into wait states until the memo'ry cycle can

start. LEN will then go high two clocks after RAS
starts, since addresses are no longer needed for the
current RAM cycle. Thus the low period of LEN could
be much longer than listed in the Data Sheet.

DESIGNING THE H,ARDWARE

Figure 1 shows a detailed block diagram of the design
and Figure 2 shows the timing relationship between
the 8207 and the 80286.

The following analysis of six parameters will confirm
that the design will work. These six system parameters
are generally considered the most important in any
microprocessor-Dynamic RAM design.

8207 Command Setup Margin

Two events must occur for the 8207 to start a memory
cycle. Either RD orWR active (low) andPE must be
low when the 8207 samples these pins on a falling clock
edge. If PE is not valid at the same clock edge that
samples RD or WR active, the memory cycle will be
aborted and no acknowledge will be issed.

The command setup time is based upon the status be­
ing valid at the first falling clock edge.

80286 status valid to 8207 falhng ,clock -
80286 status from clock delay - 8207
command setup to ciock ,.; 0
TCLCL - 80286 t12 (max) - 8207 TKVCL
(min) ,.; 0

62.5 - 40ns - 20ns = 2.5ns

PE is decoded from the address bus and must be set
up to the same falling clock edge that recognizes the
RD, WR inputs. This margin is determined from the
clock edge that issues the address and the clock edge
that will recognize RD or WR, minu,s decoding logic
delays.

6-50

There are 2 clocks between addresses being iss]led by
the 80286 and PE being sampled by the 8207. Then
the 80286 address delay from the clock edge' and
decoding logic delays are subtracted from this inter­
val. This margin must be greater than O.

2TCLCL - 80286 t13 (max) - 8207 TPEVCL
(min) ,.; 0
125 - 60 - 30 = 35ns

The address decode logic must use no more than 35 ns
(and less is better). Figure 3 shows an easy implemen­
tation which uses a maximum of 12 ns.

The 8207 requires a zero ns hold tim!! and is always
met.

230862-001

inter AP-168

82284 \

r--------;~ SR5Vt--------------,
CLK

• CLK
ALE +-----.., +5

82288 OM t--:-l~~~ DE,-,!_ c
DT/R LK AACK

MilO S1' SO ADD"'R.J:==::::~
FiEADv CL~ Y I !AFRQ STROBE': ..

MilO --l .,z:;- PCTL. PDI ~
S1 V - RD 8207 WE r- V
SO WR PSEN

80286 ADDR IN LEN

MEMORY
(UPPER)

WE 01 DO

MEMORY
(LOWER)

WE DI DO

DA~:DRt=====;-;::::~~;::!::====::Jr" ~ ~_~==~!~if~
L..-..;;.;"..;...,..-_ ___ ---i J r--~=tJ ~o

...----1 - AO ST8 BO
-AACK '+---40 Q

- 7474 k r-_':.~+--'B;;.;.H-E_~D Q ~ ~
y OE

I
74S240

1

T OE STB
L-r""l>- ACCK

I '--"- DBM
OE

~ ... 8287 8283
OE

{t {} 74S240

DATA ADDR

NOTE: THE 8207 REQUIRES SERIES RESISTORS'ON ALL OUTPUTS.

Figure 1. 80286 to 8207, non-ECC, Synchronous System Single Port ,

6-51 230862-001

intJ

Ts

I
16 MHz
CLOCK

SO-S1

60286
ADDR.

LEN

RASa

RAS1

CAsO

CAs1

DRAM WE

EAACK

A23

A22

A21

A20

A19

Te­

I

AP-168

Te
I

T1

I

J

Ts
I

Figure 2. 80286/8207 Timing-utO".

+5

74S04

Figure 3. Address Decode Logic

6-52

Te

I

74830

Te Te

I

8207
PE

230862-001

inter

Address Setup Margin
The 8207 must have stable addresses up to two clocks
after RAS goes active. This is of no concern to the
user, since LEN latches the address internally and will
not admit a new address until two clocks after RAS
goes active.

Addresses must be stable at least 35 ns (tAVCL) before
RAS goes active to allow for propagation delays
through the 8207, if a RAM cycle is not delayed by
the 8207.

tASR is a RAM specification. If it is greater than zero,
tASR must be added to the address setup time of the
8207. Address setup is the interval between addresses
being issued, by the 80286, and RAS going active,
minus appropriate delays.

The margin is determined from the number of clocks
between addresses being issued from the 80286 to RAS
going active. Exactly when RAS goes active is unim­
portant, since here we are interested only in the clock
edge.

2TCLCL - 80286 tl3 (max) - 8207 TAVCL
(min) ~ 0
125 - 60ns - 35ns = 35ns

AP-168

Acknowledge Setup Margin

The 8207 acknowledge (EAACK) can be issued at any
point in the 80286 bus cycle (end of ,1 or ,2 of Ts
or Tc). If EAACK is issued at the end of ,2 (Ts or
Tc), the 80286 will complete the current bus cycle. If
EAACK is issued at the end of'l of Tc, the 82284
will not generate READY to the 80286 in time to end
the current bus cycle. A' new Tc would then be
generated and EAACK would now be sampled in time
to terminate the bus cycle. EAACK is 3 clocks long
in order to meet setup and hold times for either
condition.

We need the margin between the 8207 issuing EAACK
and the 82284 needing it. Figure 4, shows a worst case
example.

TCLCL - 8207 TCLAKL max - 82284 tIl ~ 0
62.5 - 35 -' 15 = 12.5ns

Read Access Margin
The 8207 will typiCally start a memory cycle (Le. RAS
goes low) at the end of ,1 of Ts. But if the start of
a memory cycle is delayed (by a refresh cycle for in­
stance), then RAS will be delayed. In the first case,

Figure 4. Acknowledge to the 82284

6-53 230862-001

inter

this represents 3 clocks and the second case could re­
quire 4 clocks to meet th~ data setup requirements of
the 80286. In either case, data must be valid at the
end of Tc. The 820.7 holds CAS active long enough
to ensure valid data is received by the 80286 in eith~r
case.

DRAMs specify two access times, RAS access (tRAC)
and CAS access (tCAC) Both access periods must be
calculated and the one with the least margin used. Also
the number of data buffers should be kept to a
minimum. Too many buffers would require either
faster (more expensive) DRAMs, or a reduction in the
performance of the CPU (by adding wait states).

RAS Access Margin

3TCLCL - 8207 TCLRSL max @ 150 pf -
DRAM tRAC - 74S240 propagation delay max
@ 50 pf - 80286 t8 ~ 0

187.5 - 35 - 120 - 7 - 10 = 15.5ns

CAS Access Margin

2TCLCL - 8207 TCLCSL max @ 150 pf - DRAM .
tCAA (or tCAC - 74S240 tplh max @ 50 pf -
80286 t8 ~ 0

125 - 35 - 60 - 7 - 10 = 13ns

By solving each equation for tRAC and tCAC, the
speed requirement of the RAM can be determined.

DRAM tRAC = 3,TCLCL - 8207 TCLRSL -
74S240 tplh - 80286 t8 = 135.5ns

DRAM tCAC = 2 TCLCL - 8207 TCLCSL -
74S240 tplh - 80286 t8 = 73ns

1. Not specified. Assume no delay for worst case analysis.
2. STIL derated by .05ns/pf.

AP-168

So any DRAM that has a RAS access period less than
135 ns, a CAS access period less than 73 ns, and meets
all requirements in the DRAM InterfaCe Timing (Table
15, 16-8207 Data Sheet), 'YiJI work ..

Write Data Setup and Hold Margin

Write data from the processor must be valid when the
8207 issues WE to meet the DRAM specification tDS
and then held to meet the tDH requirement. Some
write cycles will be byte writes and the information

I to determine which byte is decoded from AO and
BHE/. Since the 80286' s address bus is pipelined, these
two signals can change before the RAM cycle starts,
hence they must be latched by LEN. PSEN is used
in the WE term to shorten the WE pulse. Its use is
not essential. . \

Data must be set up to the falling edge of WE, since
WE occurs after CAS. The 2 clocks between valid
write data and WE going active (at the RAM's) minus
propagation delays determines the margin.

2 TCLCL - 80286 t14 (max) @ 100 pf .;..
74S24O tplh + 8207 TCLW (min)l + 74S10 tphl @
192 pf2 - DRAM tDS = 0

125 - 50 - 7 + 0 + 14 - 0 = 82ns

The timing of the 8207's acknowledge is such that data
. will be kept valid by the 80286, for more than two

clocks after WE goes active. This easily meets all RAM
tDH specifications.

6-54

SUMMARY

The 8207 c0rr4>lements the 80286's performance and
high integration with its own performance, integra­
tion and ease of use. No critical timings or lOgic design
has been left to the designer. The 80286/8207 com­
bination allows users to realize maximum performance
from their simpler design.

230862-001

ARTICLE·
REPRINT

"Reprmted from ELECTRONICS, Sept. 8, 1982 Copynght(c) McGraw-HIli, Inc. 1982 All fights reserved" /

6-55

AR-231

October 1982

OCTOBER 1982
ORDER NUMBER: 210758-001

AR-231

Dynamic-RAM controller
orchestrates memory systems

Up to 88 chips take their cues from an n-channel MOS Ie
that both housekeeps and supports error-corrected dual-port memories

by Jim Nadir and Mel Bazes, Intel Corp, Sants Clara, cant.

o Designing a dynamic-random-access-memory system
means balancing the goals of high performance, reliabili­
ty, and versatility against the often contrary aims of
economy, simplicity, and compactness, In the last five or
so years, the advent of dynamic-RAM controller chips
reiieved designers of some of the onus of tending to the
needs of dynamic chips: standard supportive integrated
circuits brought together the counters, timers, multiplex­
ers, and other elements needed.

But controllers diverged into two types. One bought
the high performance to ride with fast memory systems
at the expense df functionality, while the other took on
more and more functions to 'do 'a complete but slower
job. The 8207-an ~dvanced dynamiC-RAM controller­
blunts the horns of that dilemma and also solves a
variety of less severe design problems.

data is available or no 10\lger needed. But, beyond those
local housekeeping chores, the controller can also go a
long way to solving more global design problems, like
sharing memory between two processors, not to mention
detecting and correcting errors.

To realize this potential for a highly integrated solu­
tion, the 8207 has a dual-port interface and, when used
with the 8206 error-checking and -correction unit,
ensures data integrity in large dynamiC-RAM systems. In
addition to doing the jobs of refreshing, address multi­
plexing, and control timing, the unit supports memory­
bank interleaving for pipelined accesses, overlaying RAM
and read-only-memory locations, and initializing RAM.

The exact implementation of most of these functions is
programmable, letting designers tailor their systems in
detail. Systems containing up to 88 dynamiC-RAM
chips-whether 16-,64-, or 256-K versions-in one, two,

'or four banks need only a single 8207 and no external
buffering. Attesting to the high performance claimed,
the 8207 mates dynamic RAMs having 100-nanosecond
access times to the iAPX-286 processor operating at 8

A dynamic-RAM controller is charged with making Ii
dynamic memory system appear.-'static to the -host pro­
cessor. At a minimum, therefore, the controller takes
over refreshing the memory chips, multiplexing 'the row
and column addresses, generating control signals, timing
the precharge period, and signaling the processor when - megahertz without introducing any wait states.

PROCESSOR

8207
DYNAMIC·

'RAM
CONTROLLER

VIDEO'DISPLAY
CONTROllER II

DYNAMIC
RANDOM'ACCESS

MEMORY

DATA
TABLE

WORKING
REGISTERS

........ DISPLAY

6-56

1. Window on .. mlcl'/l. One ~se for a dual­
port memory shared by Independent proces­
sors is the development system shown. Add­
,ng a video display to the prototype itself
gives a window on the system memory.

AFN-02236A

intJ AR·231

To achieve that speed and include all those functions,
the 8207 'relies on a dense, high-speed n-channel MOS
process (H-MOS II) and requires a chip some 230 by 200
mils in area. To meet the rigors of operation with even
faster processors, novel logic and integrated-circuit
designs are employed. Replacing the two-phase logic
common in n-MOS les, single-phase edge-triggered logic
simplifies logic and circuit design, precludes problems of
clock-pulse overlap, and reduces the sensitivity to clock
high and low times. Voltage-controlled capacitive loads
form the delay elements that time critical output pulses,
such as the address strobes, and compensate the output­
switching delays for variations in power-supply voltage,
temperature, and processing.

A low 20-ns setup time for input signals is achieved by
cutting the RC delay of input-protection devices and
moving the TTL-tO-MOS signal buffering from the input
pads to the pulse generators. A short 35-ns delay from
input to output switching is achieved by triggering the
output generators directly from the external clock, sav­
ing a buffer delay time. With the resulting high-speed
performance and a high level of integration, the 8207
successfully attacks the stringent requirements of today's
memory systems.

One system feature gaining popularity currently is the
use of multiple processors operating on shared data to
obtain higher performances and reliability. For example,
a separate processor dedicated to input/output tasks
frees the main processor for full-time data processing.
Alternatively, multiple main processors can execute dif­
ferent tasks simultaneously. In all such cases, sharing a
common memory space among the cooperating proces­
sors is the key to effective operation.

Unfortunately, when more than one processor accesses
shared memory through a single bus, the limited bus
bandwidth and the time spent in exchanging bus control
slow down, data transfers. Dual-port memory systems
overcome this limitation by giving two processors access

to a common memory through two independent buses.
The 8207 includes a dual-port interface to simplify the
design of shared memory systems.

Two-port memories can be used with multiprocessing
or multitasking architectures. In the former, indepen­
dent processors run independent programs, sharing only
a common memory. Multitasking processors cooperate
on different parts of the same task.
~n example of a multiprocessing architecture is the

dynamic video display (Fig. I) that provides a window
on a processor's memory. Centering the display over a,
data table, for example, immediately reveals how pro­
gram execution affects the data, which aids in debugging
programs. If a microcomputer is implemented with a
dual-port memory-the second port for a dynamic video
display-then the prototype itself cart serve as a develop­
ment and debugging system, reverting to single-port
operation in the final version.

A dual-port architecture in a multitasking environ­
ment, on the other hand, adds a margin of safety to a
shared-resource bus, such as Intel's Multibus. Although
one of the biggest benefits of such a bus is the sharing of
expensive peripherals among several users' programs, an
intimidating problem is that a single program gone hay­
wire can easily cor",pt the entire system. A two-port
memory, properly configured, circumvents this occur­
rence. Because each port has its own address, data, and
control lines, problems on one side are confined by
hardware to that side.

Portoleall
As, a general rule for multitasking architectures, one

port of a two-port memory operates in a local environ­
ment, and the other port runs remotely, off the expanda­
ble shared-resource bus. The local processor is likely to
require a synchronous port to reap the benefit of higher
performance. Remote buses, in contrast, are usually
configured asynchronously. Unless programmed other-

Dynamlc,-RAM controllers get In step
Synchronous and asynchronous signals have' different
requirements for Interfacing with a controller. The terms
synchronous and asynchronous are cpnventionally ap­
plied to dynamic random-access memory depending on
whether it exists in a local or a remote environment,
respectively. However, they more properly characterize
the dynamic-RAM controllers, for the RAMs themselves
need no clocks - the only restrictions as to the start of a
memory access cycle involve ensuring that the refresh and

, precharge requirements are satisfied. ,
Because the controller decides both when to refresh

and whether or not precharge and other timing require­
ments have been met, it does need a clock. Incoming,
commands ,can either always arrive with a, fixed relation­
ship to tHe controller's clock dr, have no particul/ir relation­
ship to it. The former ar,e, of 'course, synchronous opera­
tions, the latter asynchronous.

The major difference between an asynchronous and a
synchronous controller (or port of a controller, in the case
of the dual-port 8207) is that the asynchronous controller
must first synchronize the incoming commands to its own

internal clock. From that point on, the asynchronous con­
troller looks just like a synchronous device.

Whereas variOUS techniques for 'synchronization are
available off chip, on-chip synchronization is restricted to
the res~lution and sampling of states of a flip-flop. The
Incoming command is clocked into a resolving flip-flop.
After a predetermined time, a sampling flip-flop reads the
state of the resolving flip-flop, thereby synchronizing the
command. Assuming that both flip-flops are triggered bn
the sarna edge of the controller'S internal clock, the fastest
that an asynchronous signal can be synchronized is one
clock period. The siowest synchronization takes two clock
periods; on the average, getting the signals in step takes
one and a half clock cycles.

B8cause the processor typically requires four or fewer
clock periods to complete a cycle, adding a cycle and a
half for synChronizing increases the' access time by
approximately 25%. Synchronous controllers are therefore
always preferred when the environment permits them. and
local Bl'!vironrnant!/, such as single-board computers, gen­
erallydoso.

6-57 AfN.02236A

AR-231

wise, the 8207 configures one port synchronously, and
the other asynchronously. For specific applications, both
ports may be programmed as either synchronous or
asynchronous (see "Dynamic-RAM controllers get in
step," p. 129).

Whether the ports are programmed for synchronous
or asynchronous operation, some mechanism must
decide which processor will gain access to memory when
both request it almost simultaneously. That mechanism
consists of arbitration logic that controls access and
always leaves one port selected. When a port is selected,
its associated control and interface signals are passed
directly to the RAM timing logic by the command multi­
plexer (Fig. 2). Both ports' command and control lines,
after being synchronized, go into both the command
multiplexer and the arbitration logic.

However, the arbitration logic enables the command
multiplexer to pass only commands that appear at the
selected port. At the same time as a command appears at
a selected port, arbitration logic initiates the cycle­
control logic that completes the timing of the RAM cycle
that ensues. If a command appears on the unselected
port, it will not get through the multiplexer_ to initiate a
RAM cycle but will instead wait in the status-command
decoder until the current command is completed, at
which time the command mUltiplexer switches to the
unselected port. The arbitration logic will then service
this queued access request by starting a new cycle.

The arbitration logic examines all port requests,
including the internal refresh port. The refresh-request
port is subject to arbitration like the other two ports,
except that it is always assigned a higher priority than an
unselected external access port. Thus, refreshing can be
delayed, at most, one RAM cycle.

While the current RAM cycle is running, the arbiter
determines the next cycle to be initiated. Thus, the
arbitration time of two or more simultaneous port
requests is hidden by the memory cycle tim~_ In other
words, in cases where both a selected and an unselected
port request access simultaneously, the arbitration time
for the unselected port does not extend that port's access
time, which is delayed by one memory cycle anyway.
Only when an unselected port requests a free memory
does the arbitration time slow access, because then the
command must pass through the arbitration logic before
a RAM cycle can be initiated. To minimize such delays in'
most cases, there are two arbitration algorithms to be
selected by the user.

The first algorithm, intended for mUltiprocessing envi­
ronments, automatically returns the arbiter to a desig­
nated preferred port, generally the higher-performance,
synchronous port. Thus any command on the selected
port generally has immediate access, whereas any com­
mand arriving at the unselected port must wait.

The second, or last-accessed-port, algorithm, which is
applicable in multitasking environments, leaves the most
recently accessed port as the selected port. This algo­
rithm optimizes port selection for task passing in a
multitasking environment. In task passing, the host pro­
cessor sends a task to an execution processor; until the
task is received, the execution processor seldom accesses
memory. Conversely, once the task is passed, the host

processor seldom accesses memory until the task is com-
pleted. Thus, the ports are used in spurts. •

Because timely refreshing is needed to preserve
dynamic-RAM data, a refresh request is always serviced
on the next available cycle. The refresh algorithm, how­
ever, may be selected by the user. The options available
are: no refresh, user-generated single refresh, automatic
refresh, or user-generated burst refresh.

No refresh would be selected for applications like
bit-mapped-video displays, where continuous, sequential
access of all RAM locations itself refreshes every cell
periodically. User-generated refresh modes allow the
designer greater control over power, dissipation, for
example, in large memory systems. Automatic refresh­
ing, in which the controller itself times the refresh inter­
val and initiates 'the operation, lets the designer ignore
the refres4 requirements entirely. As mentioned, the
refresh req'uests are subject to arbitration just like other
access requests. However, once a burst refresh is select­
ed, it remains active until completed.

Cleaning up errors

Ensuring data integrity is a major concern in large
dynamic-RAM systems, particularly because of their sus­
ceptibility to soft errors caused by alpha-particle radia­
tion. Various parity encoding techniques have been
developed to detect and correct memory-word errors
[Electronics, June 2, 1982, p. 153]. The parity bits, called
check bits when used for correction as well as detection,
are stored in the memory array along with their asso­
ciated data word. When the data is read, the check bits
are. regenerated and compared with the stored check
bits. If an error exists, whether in the retrieved check bits
or in the retrieved data word, the result of the compari­
son-called the syndrome-gives the location in the
group of the bit in error.
Tw~ drawbacks surface in the design 'of any memory

system that is to be protected by error-correction circuit­
ry. First, the memory-word width must be increased to
store the check bits; second, extra time must be allotted
for the error-correction circuitry to generate the check
bits on write cycles, plus more time to regenerate and
cOmpare the check bits on read cycles. The 8207 pro­
vides several ways to minimize both-problems.

Error-correction schemes require a smaller proportion
of check bits to protect wider memory words. For exam­
ple, an 8-bit word needs 5 check bits, for a 63% increase
in memory. Put the other' way around, 38% of the
available memory would be dedicated to the chec,k bits.
Six check bits are required to protect a 16-bit data
word-only a 27% overhead. Clearly, the wider the
memory array, the more economical the error correction.

The 38% overhead necessary to protect such 8-bit-bus
machines as the 8088 or 8085 makes error correction an
unattractive proposition. However, if the memory width
could be doubled, with the 8088 accessing only half a
word at a time, the overhead would drop to 27%.

Reading a douQle-width word, checking for soft errors,
and then sending the desired portion of the word to the
JXocessor presents no major problems, unlike writing to
such an array. The check bits cannot be calculated from
only a portion of the word-they must be calculated for

6-58 AFN-02236A

AR·231

PORTA SYNCHRO·
COMMANDS NIZER

PORT B SYNCHRO'
COMMANDS NIZER

PROGRAM· SERIAL·
MING OATA PROGRAM
INPUT COLLECTOR

CONTROL PORT
OUTPUT CONTROL

ROW/
COLUMN

MULTI·
PLEXER

ADDRESS OUTPUTS

ROW·ADDRESS
STROBE 0
COLUMN'ADDRESS
STROBE 0

RAS1/CASt

RAS2/CAS2

RAS3/CAS3

CONTROL AND
TIMING STROBES

ERROR'CORRECTION'
CONTROL INPUTS

2. Arbiter's labor. Two external ports plus the internal 'refresh port can request access to the memory system at. once Arbitration logic
decides which to service, based on programmable algorithms. High-speed logic design cuts the delay from input to owtput switching to 55 ns

the entire word at once. Whenever the proces~or writes a
partial word to memory, it must first read' the entire
word, check it, substitute for that portion of the word to
be rewritten, and recalculate the check bits. Only then
can the entire word be written to memory. The 8207,
working in conjunction with the 8206 error-checking and
-correction unit, contains mechanisms to expedite this
potentially arduous process.

Whenever the 8207 performs a partial-write cycle, it
initiates a read-modify-write cycle wherein the entire
memory word is first read and latched into the 8206
(Fig. 3). After the retrieved data has been verified as
correct, new data is supplied to the RAM, half from the
processor and half from the 8206, which also generates
the check bits for the entire new word.

Control'signals-called byte marks-specify which
portion of the new data word is coming from the proces­
sor and which from the 8206. The byte marks determine
whether the processor or the 8206 drives the RAM data
bus-for example, if the 8206 is driving one portion of
the data bus, the processor is prevented from driving the
same portion. The byte-mark signals simply disable the
appropriate transceivers. If, on the other hand, the pro­
cessor is driving a portion of the RAM data bus, the byte
marks change the 8206 data outputs to inputs, allowing

the 8206 to read the data from the processor and calcu­
late new check bits.

The ability of the 8207 to handle memories organized
as one, two, or four banks allows tradeoff's between the
cost and performance of an 'error-correction system. For
maximum performance, memory would be organized in
four banks, each 16 bits wide. In applications requiring
error correction, but where maximum performance is not
critical, concatenation of RAM banks into two banks of
32-bit words, or even one bank of 64-bit words, can make
error correction very ecoriomical.

Holding to high performance

Even though the cost of error correction has thus been
reduced to where it becomes an attractive solution, the
problem remains of minimizing performance degrada­
tion. Tackling that challenge depends or the particulars
of the configuration, such as whether the memory is to
be used with a high-performance local processor, as
system memory on a shared-resource bus, or is to be
shared between a local high-performance processor and
a shared-resource bus.

The method chosen to handle errors depends on the
type of bus, Intel's Multibus is the kind that requires
data to be valid prior to the issuance of a transfer-

6-59 AFN.Q2236A

intJ AR-231

LOWER
MEMORY

UPPER
MEMORY

3. Teemwork. The 8206 error-correction
chip joins forces with the random-access­

,rnernory controller so that an 8-bn-bus pro­
cessor rnay utilize the 18-bn-wida rnernory
that Is rnore aconornical tor error-correction
schernes, Byte rnarks conbgure the data
buses for partial-word transfers,

BYTE­
MARK
INPUT

, 8206
ERROR-DETECTION

AND -CORRECTION UNIT

acknowledge signal, in contrast to the local buses of the
iAPX-86, -186, and -286 processors. A local bus will
,usually be synchronous, with a single processor or copro­
cessor group attached to it; the processor characteristics
are known, as is the processor's response to a transfer­
acknowledge signal.

With Multibus and other shared-resource buses, the
processor types that will eventually be connected are not
known in advance, and the buses themselves are general­
ly asynchronous. Hence the time between the transfer­
acknowledge signal and data becoming valid is not
known. 'Therefore, the rule with such buses is to
acknowledge a transfer only when data is valid. (On
some asynchronous buses, the acknowledgment is issued
earlier to' compensate for synchronization delay at the
receiving processor.)

Two basic configurations for checking and correcting
errors derive from these system considerations and the
fact that it takes longer to correct data than to detCCl an
error. One is for buses that connect to processors and
coprocessors receiving a transfer acknowledge prior to
data becoming valid, and the other for buses that con­
nect to processors receiving a transfer acknowledge after
data is valid. Both configurations are supported by the
8206-8207 team.

Buses among the former type of processors always get
corrected data from the 8206, whether an error exists or
not, and will carry a transfer acknowledge from the 8207
before data becomes valid on the bus. Though this means
data is delayed for error correction on every transaction,
the extra delay is immaterial, since it is hidden behind
the processor's response time' ,to the transfer-acknowl­
edge ,signal. By the time the processor requires data, it is

already corrected and on the bus. As a result, system'
performance is not degraded at all because of single-bit
errors.

For buses among processors that receive the transfer
acknowledge after the data is valid, the 8206 always
checks for errors but does not routinely correct data. In
this mode, RAM data passes through faster, because the
8207 will issue an acknowledgment sooner. If, however,
an error is found, the 8207 will lengthen the cycle,
command the 8206 to correct the data, and delay the
transfer-acknowledge signal until the corrected data can
be placed on the bus. For those buses with an acknowl­
edge-synchronization delay, the 8207 can be pro­
grammed to issue the acknowledgment earlier to com­
pensate for the delay.

Power-up problem.

Another problem with memories protected by ECC
circuits crops up when the (lOwer is turned on. At
power-up, the data stored in memory is completely ran­
dom; any attempt to read or perform a partial write will
be aborted because the check bits will indicate multiple,
and therefore uncorrectable, errors. For processors
whose word width is the same as that of the'memory
array, the processor could simply initialize t'he entire
memory array, taking some additional time and soft­
ware. For memories whose word width is greater than
that of, the processor, however, initiali~tion of the mem­
ory is not possible unless the error-checking or -correc­
tion circuitry is disabled by hardware, for example, by
gating off the error flags.

The 8207 is equipped to ,deal with the initialization
problem by itself. At system reset; the 8207 performs

6-60 AFN-02238A

AR-231

4. Interle.vlng. Overlapping accesses 10 dlf­
ferenl banks increases memory Ihroughput.
Once the column-address hold lime is satis­

fied, the 8207 slarts a second cycle, pulling
Ihe second row-address strobe low. ROW·ADDRESS

STROBE t

COLUMN'ADDRESS

FIRST ~I
,- RANDOM'ACCESS'MEMORY CYCLE

SECOND
RAM CYCLE

PRECHARGE
STROBE 1 --If---""\

RAS2

CAS2 --+---+-----+---1-"'\

8207
ADDRESS
OUTPUTS

MEMORY
DATA
OUTPUTS

eight cycles on all bann at once to warm up the dynamic
RAMs, a typical RAM requirement for stable operation.
The chip then individually initializes all memory loca­
tions to 0, adding the proper check bits. Though all
memory banks could be initialized in parallel, that would
require more power than any other memory operation,
calling for a heftier and more expensive power supply
needed only at system reset.

One final problem associated with memories protected
by error-correction circuitry stems from the fact that
only data that is accessed by the processor is corrected.
If the processor continually accesses one particular seg­
ment.of memory, the rest of the ar~ay may be accumu­
lating soft errors. The possibility of two soft errors
accumulating in a word of seldom accessed memory now
becomes significant-and not all double-bit errors are
correctable in simple ECC schemes. The 8207 scrubs
memories to clean up this problem. During each refresh
cycle, one word of memory is read, checked for errors,
and if necessary, corrected befote data is written back to
memory. Because scrubbing occurs during refresh cycles
with a read cycle replacing a row-address-strobe-only
refresh cycle, no performance penalty is incurred. Scrub­
bing rids the entire memory of errors at least once every
16 seconds, reducing the probability of two soft errors
accumulating in the same word almost to nil.

Bells and whistles

All dynamic RAMS require a recovery period for pre- .
charging internal lines after each access. If the processor
were immediately to reaccess the RAM,. the controller
would have to delay it until the precharge time was over.
By automatically organizing memory into banks so that
sequential addresses are in different banks, the 8207 is
usually able to hide the prech~rge time of one bank
behind the access time of another. That organization
follows· from using the 2 least significant bits of the
address to select the bank. Of course, a break in the
program flow, such as would be caused by a jump or call

instruction, raises the probability that the same bank
may be immediately re-accessed. This probability is less
in four-bank memories than in two-bank configurations.

Further performance advantages are gleaned by
organizing memory into multiple banks. For example,
the 8207 can speed throughput by pipelining cycles.
Once the row and column addresses to one bank have
been latched, the controller sends the row address for the
next cycle to the next bank (Fig. 4).

The 8207's manifold features can be tailored to a
given system with the use of a serial programming pin.
This pin can either be strapped high or low to select one
of two default modes or be programmed by means of a
shift register. The external register is completely con­
trolled by the 8207, eliminating any local processor
support. Sixteen bits are shifted into the 8207 to configu­
re up to nine different features. The bits are arranged in
order of increasing importance; using a shift register
with less than 16 bits permits just those features needed
to be programmed.

Programmable features of the processor interface
include the choice of arbitration algorithm, clock com­
pensation, and preferred port. At the RAM interface, the
user can specify fast or slow memory chips, indicate
bank configuration, and select the optimal refreshing
scheme. In anticipation of the next generation of 2S6-K
dynamic RAMs, the 8207 can support a 2S6-row-l­
millisecond refresh convention, in addition to the 128-
row-2-ms one for current 16- and 64-K parts.

Helping facilitate system design is a self-programming
processor interface. By decoding the command input
pins at power-up, the 8207 automatically determines
whether it is connected to the status lines of an 8086,
iAPX-286 or to the command lines of the Multibus.
Because the 8207 can directly decode the status lines of .
Intel microprocessors, it can anticipate the next memory
cycle and start a new cycle before actually receiving a
command. This extra' pipe lining enables the designer to
specify slower RAMS then would otherwise be required. 0

6-61 AFN·02236A

A SYSTEM-ORIENTED RAM CO~TROLLER

Mel Bazes
James Nadi,r

. Bradley A. May
INTEL Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

INTRODUCTION

Microprocessor-based systems are
making increasing use of dynamic RAM
over static RAM, as this is the most
cost-effective device for implementing
a large random access read/write memo-'
ry. Dynamic RAM requires complex con­
trol circuitry which static RAMs ~o
not, bu't the cost of this control cir-,
cuitry is outweighed for memory of
more than 16K bytes by the lower cost
per bit and hi gher dens ity of dynami c
RAM.

However, successive generations
of ml croprocessors are demandi ng
higher performance of dynamic RAMs, as
shown in Table 1 for se./eral families
of Intel microprocessors:

Some previously available contro­
llers have provided. all the required
dynamic RAM support functions on a
single chip, but have not been fast
enough to provide no wait state per­
formance wi th today I s faster mi cropro­
cessors. Other recent 1 y introduced
dynamic RAM controllers have offered
higher performance, but required seve­
ral additional shipe to complete the
control function. ,The 8207 is the

first dynam)c RAM controller to integ'
rate all RAM control functions ane
also provide no wait state performance
with all Intel microprocessors, inclu·
ding the iAPX-286 (80286 CPU).

Another factor of concern to c
memory system designer is soft errors.
Soft errors are random, nonpermanent
errors, usually of a single bit. The
primary mechanism of these errors in
dynamic RAMs was discovered in 1978 to
be loss of stored charge in the dyna­
mic RAM cells caused by alpha parti­
cles. l These result chiefly from
the radioactive decay of trace uranium
and thorium in the packaging material.
The rate of these errors increased as
shrinking geometries made storage
cells more susceptible to the effects
of alpha particles. These ,soft errors
have been reduced by packaging innova­
tions, but residual errors remain 2 ,
and so are still a concern. Since the
error rate of a memory system is the
sum of the error rates of all the me­
mory components. the trend to 1 arger
RAM capacities in microprocessor sys­
tems will result in a higher system
error rate even if RAM soft error
rates remain constant.

Tabl e 1.' Required Memory Performance

34/2

Year
Introduced

1976 '
1978
1979
1982

Notes:

Part
Number

8085
8086
8086-2
80286

for No Wait State Operation

Clock Access Time Access Time
Freq. from Address from Command

------------ ------------
3 MHz 545 ns 330 ns
5 430 335
8 265 195
8 117 a 90

Bus Cycle
Time

960 ns
800
500
250 b

[a]

[b]

The 80286 uses pipelined addresses. Access time fro~-
address is 222 ns for interleaved ~emories.
The 80286 bus cycle has three clock states, but the first

,state is overlapped, with the third state of the last
cycle~ for an effective bus cycle of two clocks, or 250 os.

(,

Coupled to these facts are the
ncreas i ng rel i ab 1 il ity requ irements
,f many microprocessor applications.
, single soft error in an automatic
,ank teller machine, for example, can
:ause an account balance error resul­
;ing in many dollar's worth of
;lerical work finding and correcting
:he error, as well as possible down
;ime for the teller machine and
Frustration for the customer.

Error checking and correction, or
:CC, as implemented by modified Ham­
Tl1ng codes uses redundant memory bits
to encode the data. This code allows
detection and correction of all single
Jit errors in any memory word, and de­
tection (but not correction) of all
double bit and some higher-number-of­
bit errors.

The effect of ECC of !"emory sys­
tem reliability is shown ln Table 2.
These figures are based on the analy­
sis of all types of errors (hard and
soft) as measured for the Intel 2117
dynamic RAM, and shows an improvement
in reliability as measured by the mean
time between failures (MTBF) of be­
tween 24 and 301 times for the memory
configurations shown. 3 ,4

Clearly, for the assumed error
rates, soft errors become unnaccepta­
b1e for large RAMs, and ECC is desira­
ble. The 8207 facilitates the addi­
tion of ECC by directly controlling
the companion 8206 Error Detection and
Correction Unit, and adjusting memory
cycle timings as required for ECC
operation automatically.

Lastly, architectural factors are
important to des i gners of memory sys­
tems. Hi gher performance mi croproces­
sor' systems can be obtained by the use
of multiple processors operating on
shared data. Common examples in

microprocessor-based systems are:

1. A separate microprocessor may be
used to control all I/O activi­
ties, leaving the main micropro­
cessor free to do data processing
tasks full time. If the program
being executed by the main proce­
ssor generates any I/O requests,'
these requests (read a disk file,
send a file to a line printer,
etc.) are formatted as a message
to the I/O processor, containing
the desired activity and where
the input or output file is loca­
ted is shared memory, and the me­
ssage is placed in a reserved
area of shared memory, to be read
and executed by the I/O process­
sor. All the mechanical activi­
ties of I/O (polling disk status,
spooling print files, etc.) are
handled by the I/O processor,
while the main processor executes
the main program. The I/O
processor may be on the same
board or another board connected
by a global bus, such as the
Intel Multibus.™

2. Separate processors may execute
different real-time tasks simul­
taneously, as in a process con­
trol application. Various pro­
cess parameters will be stored in
sh ared memory, where it may be.
sampled and/or updated as neces­
sary by each of the processors to
control the process in real time.
Again these processors may be on
the same or different boards.

In thes~ and other appl ications,
this multiprocessing is facilitated by
dual-port memory. A dual-port memory
is one in which two processors, each
on its own separate bus have indepen­
dent access to the same physical mem-

Tabl e 2. Improvement in Memory
Reliability with ECC

Memory Size an d MTBF MTBF Improvement
Organization (no ECC) (with ECC) Ratio

------------------------- --------- ---------- -----------
32 Kbyte (16K x 16 bits) 5.6 yrs 133.6 yrs 24
64 Kbyte (16K x 32 b its ~ 2.7 II 75. 1 II 28

128 Kby'te (16K x 64 bits 1.4 40.5 29
4 Mbyte (2M x 16 bits) 16.3 days 10.8 II 246
8 Mbyte (2M x 32 bits) 8.1 II 6.1 " 278

16 Mbyte (2M x 64 bits) 4. 1 3.3 " 301

6-63 34/2

ory. Since the processors are inde­
penden-t, the dual p,ort memory itself
must resolve the conflict that arises
if each processor tries to access the
memory simultaneously.

If multiple processors are used
on a single bus,. performance will be
limited by the bandwidth of the bus,
and the time spent exchanging bus con­
trol. A dual-port RAM allows each
processor full use of its own bus. . To
prevent the bandwidth of the dual-port
RAM from limiting system performance,
at least one processor should have its
own (single-port) RAM, and only those
memory segments shared between proces­
sors should be placed in dual-port RAM.

Also, some method (called a
"semaphore") must be provided to con­
trol access to the memory so' that one
processor can modify sections of data
without the other processor being able
to see that section while it is being
modified. As an example, if a shared
memory contained a 1 ist of passengers
on an, airline flight, an error would
result if two processors'at almost the
same time found an empty spac'e on the
passenger 1 ist, and each wrote a new
passenger's name into that same space.
One processor must prevent the other
from accessing the passenger 1 ist
before it 'can look to see if there are
empty places.

The 8207 has a dual port memor
interface. Port arbitration is don
on-ch i p. Semaphores are supported i
hardware by a LOCK input which may b
activated by one port to prevent memo
ry accesses by the other port.

, DEVICE DESCRIPTION

The 8207 Advanced Dynamk RAI
Controller (described by Figure 1
provides all required dynamic RAM can·
trol functions in a single chip,
including:

1.

2.

3.

Address multiplexing
generates the row

The 820;
and col umr

addresses used by the dynamic
RAMs.

Refresh The 8207 internally
generates refresh cycles when
necessary; an external input
allows the user's system to gene­
rate refresh cycles when desired.
An 8-bit counter determines the
row to be refreshed.

Arbitration Since read, write,
and refresh cycles cannot be done
simultaneously, the 8207 deter­
mines which will be performed,
and when. The 8207 arbitrates
between memory requests from each
of the two ports, and the refresh
logic. Because a requested mem

CLOCK SOURCE

34/2

CPU ADDRESS {
BUS

(MULTIPLEXED
BETWEEN PORTS)

MJ'J-~f~~ (

oo:\'I.l,:~ {

oo=~~{
~~~~S~L g:i~ { 

8207 { 
PROGRAMMING 

INFORMATION 

,.-:-, 

CLK 

AOo-8 

iW 

8207 CAS 

ADVANCED WE DYNAMIC 
RAM 

CONTROLLER DBM 
wz 

R/W 
!1UimI 

CE 

ESTB 
REFRQ 

PSEL 
PDI Plmi 
PCKL 

Figure 1. 8207 Logic Symbol 

6-64 

DYNAMIC 
RAM 
CONTROL 

J ~O:OR DETECTION 
AND CORRECTION 
UNIT CONTROL 

} ~:g:ELOGGING 

} 
DATABUS 
CONTROL 
(PORT SELECT) 



ory cycle may be delayed by a 
cycle in progress. the 8207 pro­
vides separate acknowledge sig­
nals to each port to indicate 
when the requested cycle has been 
completed. 

L Cycle timing Timing of the RAM 
addresses and control strobes. 
ECC and error strobes. port 
multiplexing signals. and memory 
cycle acknowledge signals are all 
generated internally by the 8207. 
Refresh timing. arbitration. and 
cycle timing are all done from a 
single clock input. Timing 
changes may be made by 
programmi ng opt ions on the 8207. 
or by adjusting the clock 
frequency. 

The 8207 directly addresses and 
drives up to 88 RAMs (16K. 64K. or 
256K). with no external drivers. The 
8207 Advanced Dynamic RAM Controller. 
like its companion, the 8206 Error 
Detection and Correction Unit. is 
implemented in HMOS II. a production 
proven NMOS process. and is packaged 
in a 68-pin JEOEC Type A chip carrier. 

Programming 

In order to optimize its perfor­
mance in as many system environments 
as possible. the 8207 programs itself 
at system reset with information about 
the application system; what type of 
microprocessor it is interfaced to. 
whether ECC is used or not, how port 

access priority should be resolved, 
etc. The 8207 uses one pin (POI) 
forprogramming, through which 
programmi ng data is seri all y shifted, 
with another pin (PCLK) used as a 
shift clock. as shown in Figure 2. 

Tyi ng POI to ground programs the 
8207 to operate in non-.error-cor­
recting mode; tying POI high puts the 
8207 in error-correcting mode. All 
other programming options default to 
values optimized for those configura­
tions. If it desired to change any op­
tions from their default val~es. a 
parallel-in-serial-out (PISO) shift 
register, such as the 74LS165. may be 
at t a c he d tot h e pro g r a mm i n g pin. The 
system reset input loads this shift 
register with the jumper-selected pro-
gramming options. which are then 
clocked into the 8207. One or two 
shift registers may be used to provide 
up to 16 bits of programmabi 1 ity'. 

Microprocessor Interface 

The 8207 can operate in single­
ported or dual-ported memory configu­
rations. Each port is individually 
programmable to operate in a variety 
of system configurations. 

Each port may respond to standard 
demultiplexed read and write command~ 
as shown in Figure 3b. The IfD and WI{ 
inputs are internally qualified by a 
port enable (Pf) signal. which is nor­
mally decoded from the address _bus. 
No memory cycle can start unless PE is 

s~:rr-----"--------~RESET 

r-----~PCLK 8207 

PISO SHIFT REG . '::'J-f t--.... PDI 

.---_-+--+ __ ~--+-_+l_J-UMPER OPTIONS 

10 
Figure 2. Programming Interface 

6-65 34/2 



active. A port control (peTL) signal 
is provided, which qualifies the start 
of a memory cycle, anq can also inhib­
it a memory cycle that has already 
been started. If peTL is deactiv.ated 
before the memory cycle starts, no cy­
cle will be performed. If it is deac­
tivated after the RAM cycle starts, 
the memory cycle will complete, but 
the RAM write enable, memory cycle 
acknowledge, and error logging strobes 
will be disabled; no data will be wri­
·tten to memory. The user must use 
peTL to disable data transceivers to 
prevent data from being read. 

peTL is useful if RAM and ROM are 
overlaid in the same address space, 
and it is desired to de-select the RAM 
in those addresses where ROM is 
present. Th i sis often the case at 
system reset, where a "boot-strap" ROM 
is selected in part qf the RAM address 
space to start the system. RAM is 
select~d in this same address space 

l CLOCK .1 

I 
t 

ClK 
~ 
S1 

8088 
S2 

ADDRI '" ADDRESS 
DATA DECODE 

" 

once the system is up and ru-nn ing. 
PCTL may also be used for those micro­
processors which have a separate mem­
ory management unit which generates an 
inhibit signal if a program attempts 
to access protected memo;y. 

Each port may also be programmed 
to directly decode the status outputs 
of Intel's iAPX-86, 88, 186, and 286 
families of microprocessors, as shown 
i n Fig u r e 3 b • I nth i s mo de, the RD. 
WR, PE, and pen inputs are redefined 
to be the apporpriate status inputs. 
When used in this way. the 8207 is 
normally operated synchronously to the 
microprocessor, from the same clock 
generator, as shown in Figure 3a. 
Because the 8207 must be able to oper­
ate syncronously with several differ­
ent microprocessors with clock rates 
from 5 MHz to 16 MHz and with differ­
ent bus cycle timings, the 8207 varies 
memory cycle timings so as to be com­
patible with the microprocessor it is 
interfaced to. 

~ 
ClK 

WR 
iii) 

PCTl 
8207 

L PE 
I 

A. SYNCHRONOUS 

8086 8207 

B. ASYNCHRONOUS 

Figure 3. 8086 Interface 

34/2 6-66 



When used asynchronously to the 
nicroprocessor, all inputs are inter­
la11y synchronized by the 8207. When 
Jsed synchronously, these synchroniz­
ars are bypassed, eliminating 
synchronization delays. 

II.rbitration 

Each port has physically separate 
RD, WR. PE, and PCTL inputs. as shown 
in Figure 4. In this application. the 
8207 interfaces synchronously to Port 
A (8086) and asynchronously to Port B 
(Mul tibus); all Port B inputs are syn­
chronized. but synchronizers are 
bypassed on Port A. 

The abitration logic arbitrates 
between three ports; Port A. Port B. 
and Port C (the refresh port). Any 
port may request memory at any time. 

Once Port A or B is selected. it 
ha's immediate access to the cycle 
timing generators and the arbitration 
logic is bypassed for subsequent memo­
ry cycles. The arbitration delay in 
this case is zero. If the unselected 
port requests a memory cycle, the ar­
biter must first select it. Arbitra­
tion for the next memory cycle is done 
in parallel with a memory cycle in 
p.rogress, so usually this arbitration 
time is hidden. and the new cycle 
starts as soon as the cycle in prog­
ress to the previously selected port 
is complete. 

One of two arbitration algorithms 
may be selected to "tailor" the 8207 
to the application. In one method. 
Port A is the preferred port. so when­
ever the 8207 is idle. Port A is 
selected. minimizing access time for 
that port. In the other method. the 
most recently used port is selected.' 

As an exampl e. if Port A was 
attached to a high-speed microproces­
sor used in for data processing. and 
Port B was attached to an I/O process­
or. it would probably be better to 
make Port A the preferred port. to 
minimize its average access time and 
maXlmlze processing throughput. espe­
cially since the I/O processor on Port 
B is 1 imit,ed by the slow speed of the 
mechanical peripherals to which it is 
attached, not memory access time. 

A LOCK input is provided which 
allows either port to lock out the 
other and gain sole access to the 
memory. This, is useful for testing 
and setting semaphores in shared memo­
ry segments. It may also be used to 
allow one port to transfer bursts of 
data to or from memory at maximum 
bandwidth. without the other port 
stealing any memory cycles. 

Due to pin limitations. the 
address. RAM bank select. and LOCK 
inputs are multiplexed between Ports A 
and B. The arbiter generates a MUX 
output which is used for this purpo!je, 
as shown in Figure 4. This figure 

8086 

SOt-----I-.tWRA CLK WRB .... -----WR 

Sf RDA 8207 Jmi im 
.... -----INH 

ADDR 

Figure 4. 80861Multlbus Dual-Port Interface 

6-67 

FROM 
MULTIBUS 

34/2 



shows multiplexing being done by 
alternately enabling 3-state latches; 
cross-coupled NAND gates are used to, 
create non-overlapping enable signals. 

RAM Interface 

Nine RAM address outputs !Jlll four 
pairs of Row Address StroJ2.g,. (RAS) and 
Column Address Strobe (CAS) signals 
allow the 8207 to interface to four 
banks of either 16K, 64K, o~ 256K RAMs. 

Output drivers with high capaci­
tive drive capability allow the 8207 
to. drive up to 88 dynamic RAMs, arran­
ged as four banks of 22 RAMs ea<;.h (16 
data bits plus 6 ECC check bits) with­
out external drivers. A.C. timings 
are specified at a load of 55Q...RF on 
Address olftputs and 250 pF on RAS and 
m outputs. With this large a load, 
the transient currents are in the 
ampere range; because of this, the 
output drivers are isolated from the! 
rest of the circuitry with separate 
Icc and ground pins for each. The 
driver circuitry was also designed to 
prevent any "boot-strapping" effect 
and to limit volt~ge overshoot. 

Novel circuit design techniques 
were used to allow R·AM outputs to be 
generated with less than 35 ns propa­
gation delay from the 8207 clock in­
put, while requlrlng input set-up 
times of only 20 ns 5 

If only one or two banks of RAM 
are occupied, the rn/m output dri­
vers re-a1locate themselves to 
increase drive capacity. If only two 
banks here are occupied, ~ 0 and 
m 1 work in. tandem to drive Bank 0, 
and m 0 and rn 1 do s imil arly; 
rn 2 and m 3; and m 2 and m 3 
work in tandem to drive Bank 1. In 

this way, the two banks may conS'i,st of 
up to 44 RAMs (twice as many as 
before) without ,increasing the loading 
on the ~ and m drivers. Since the 
total nu·mber of RAMs remains the same, 
the loading on the Address outputs, 
which go to all RAMs also remains the 
same. If lliY one bank is occupied, 
all four rn and m driver ,work 
together to allow. driving a single 
bank of 88 RAMs. 

Separate rn and rnoutputs also 
allow the 8207 to interleave memory 
cycles to alternate banks of RAM,. as 
shown in Figure 5. In this way, the 
RAM's precharge time (tRP)' which is 
normally part of the RAM cycle time, 
may be hidden in the following memory 
cycle. If consecutive cycles are to 
the same bank, the second cycle must 
be delayed,. as shown by the dotted 
line in Figure 5. 

Refresh 

The 8207 supports both the 128 
row/2 ms or the 25q row/4 ms refresh 
conventions. A 256 row/2 ms option 
may also be programmed for possible 
use with 256K RAMs. 

The 8207 generates. one refresh 
cycle approximately every 15 )Js, thus 
executing 128 refresh cycles in 2 ms, 
or 256 cycles in 4 ms. If the 256 
row/2 ms option 'is used, one refresh 
cycle is generated approximately every 
7.5 us. An 8-bit counter keeps track 
of the row to be refreshed; this 
address is prov i ded to the RAM by the 
8207 address outputs. 

An external refresh request input 
(REFRQ) is provided so the system may 
cause refreshes to be perfomed when-
ever desired. If no refreshes are 

i-+---NORMAL CYCLE TIME---+-\ 

34/2 

RASO 

INTERLEAVED 
CYCLE TIME 

________ J 

RAS1--------..... ,\.. _____ ....J/ 

Figure S. 8207 Bar:'k Interleaving 

6-68 



equested in 15 ps, the 8207 may 
enerate an internal "failsafe" 
efresh. The internal re'fresh may be 
urned off entirely, so that the only 
efresh cycles are those externally 
enerated. In this case, bursts of 128 
'efresh cycles (internally counted) 
'ill also be performed by activating 
;he REFRQ for a slightly longer period 
)f time. 

Since the refresh cycles are 
timed from the 8207 clock input, the 
1umber of clocks between refresh cy­
:les may be programmed, to allow for 
~ifferences in clock frequencies 
between 3.5 MHz and 16 MHz. 

ECC Interface 

The 8207 may also be programmed 
to support error checking and correc­
tion (ECC). When in this mode, cycle 
timings are adjusted and several pins 
change function to support the compa­
nion 8206 Error Detection and Correc­
tion Unit, as shown in Figure 6. 

ADDR 9 

!Wi 4 

8207 CAS 4 

WE 

TO 
BYTE 
LOGIC 

The 8206 (described in Figure 7) 
can correct single bit errors ·in any 
memory word, and detect (but not .cor­
rect) all double bit errors, and some 
errors of more than two bits. Each 
8206 does error correction on a 16-bit 
sl ice of the memory word, and up to 
five 8206s may be cascaded for 80-bit 
data words. 

The 8206 generates modified Ham­
ming code check bits on write cycles, 
checks for and corrects errors on read 
cycles, and generates an error flag, a 
correctable/uncorrectable error flag, 
and syndrome outputs which may be used 
to pinpoint the bit in error for error 
loggil)g. Both data and check bit er­
rors are corrected automatically, 
without changing ttle mode of the 8206. 
Control inputs are provided for byte 
writes.. A data/check bit input 1 atch 
is provided. Unique separate 
data/check bit input and data/ check 
bit output busses reduce the amount of 
control required to implement an ECC 
memory system. 

DATA 
RAM 

CHECK-
BIT 

RAM 

FROM 
BYTE 
LOGIC 

Figure 8. ECC Interface 

6-69 34/2 



RAM DATA INPUT CHECK BIT I/O 

~~ 

Dtl~HHi¥~o~~ ( 

WRITE ZERO 
(FORCES DATA ( 

OUT "'0) 
READIWI'ii'i'E ( 

ERROR! { 
CORRECTABLE 
ERROR FLAGS 

PARTIAL PARITY OUT { 

MAJ~~=~ 8 
FROM SLAVES 
IN MULTI·8208 

SYSTEMS) 

ERROR 

CE 

PPO 
(SLAVE 
ONLy) 

8208 
ERROR 

DETECTION 
AND 

CORRECTION 
UNIT 

SYO } 
SYNDROME 
OUTPUT 

8 (FOR ERROR 
LOGGING) 

J PROGRAMMING 
INFORMATION 

} 
PARTIAL PARITY IN 
(USED BY MASTER 
TO GENERATE 
CHECK BITS! 
SYNDROMES 
IN MULTI·8206 
SYSTEMS 

'---....,---.J '---....--J 
'Wsi ~g=~~'ES DATA INPUT (WRITE CYCLES) 
WRITE CYCLES) DATA OUTPUT (READ CYCLES) 

Figure 7. 8206 logic Symbol 

All correctabl e errors di csovered 
during read cycles are immediately 
corrected in RAM. The 8207 monitors 
the 8206 rrnnm flag during read cy­
cles. If it is active, the read cycle 
is lenghtened to become a read-modify­
write cycle; the 8207 also activates 
an Error Strobe which can be used to 
latch the 8206 error flags and 
syndrome outputs for error loggging, 
or to interrupt the microprocessor. 
During byte write cycles, error 
correction is automatically done on 
the byte(s) of the word not being 
ch an ged . 

To further .i ncrease memory rel i­
ab i 1 i ty, the 8207 does memory scrub­
bing during RAM refresh, as shown in 
Figure 8. During a refresh cycle, the 
8207 refreshes one row in all banks. 
It also outputs a col umn address and 
activates one of the four ~ outputs, 
to read one word of memory. That word 
is checked for errors by the 8206; if 
any are found, the corrected data is 

14/2 6-70 

written back into RAM. By this pro­
cess, the entire memory is scrubbed of 
errors every 30 seconds or 1 ess, 
making the possibility of two soft 
errors accumulating in the same word 
(an uncorrectable error) virtually nil. 

RAM Initialization 

Upon system reset, the 8207 re­
sets its refresh counter and performs 
eight cycles to all four banks at once 
to "warm up" the dynamic RAMs (many 
dynamic RAMs require this warm up 
period after power up for stable 
operation). 

I nEe C mo de, the 8207 a 1 so i n i -
tializes all of memory to zero data 
and the corresponding check bits. It 
does th i s by act i vati ng the 8206 Wri te 
Zero input and performing consecutive 
write cycles to each memory location. 
This is done because on power up the 
contents of the RAM are undefined, and 
subsequent byte writes may cause false 
"errot's" due to the undefined data in 
memory. Because the time to do this 



ADDRES!I TO,!E SCRUBBED 

ADDR -:::y. REFR ROW X COLUMN X\.. ______ _ 

m(ALLFOURI~ F--------r--
( I 

!:AS (ONE ONLY) \ ,r-------, 
RAM DATA OUT 
(GOES TO 8208) 

ERROR 

CORRECTED DATA 
(GOES TO RAM DATA INI 

RAM WE 

NOTE: DOT~ED LINES SHOW CASE WHERE NO 
ERROR IS DETECTED. 

( VALID )- --)--

\ -----~ 

VALID 

_-..JX :>=---------r 
,-------( 

FIGURE 8. SCRUB CYCLE (ERROR DISCOVERED 
AND CORRECTED IN RAM) 

is fairly long, about 1 second, the 
8207 may be programmed to skip initia­
lization on reset. 

Any memory requests during the 
warm up/initialization sequence will 
be latched internally and responded to 
as soon as the sequence is complete. 
By having the 8207 do these "house­
keeping" tasks, they are no longer a 
burden on the system software, and 
they are done faster than would be 
possible by software. 

SUMMARY 

Previous dynamic RAM controllers 
have offered either integrated control 
or high performance. The 8207 is .the 

6-71 

first dynamic· RAM controller to pro­
vi de comp1 ete dynami c RAM control on a 
single chip and no wait state perform­
ance with all Intel microprocessors, 
including the iAPX-286. 

In addition, the 8207 offers 
other advanced features, such as ECC 

·contro1, automatic error scrubbing, 
and a dual-port RAM interface. 

ACKNOWLEDGEMENTS 

The authors wish to thank Moti 
Mebe1, David Perlmutter, Beni Mantel, 
and Omer Zak, for their contributions 
to the design of the 8206 and 8207. 

34/2 



REHRENCES 

[1] "A New Physical Mechanism for Soft Errors in Dynamic Memories" 
Timothy C. May, Murray H. Woods, INTEL Corp. 
IEEE Proceedings of the Int'l Reliability Physics Symposium, April 1978. 

[2] "Alpha-Particle-Induced Soft ErrDr Rate Modeling" 
George A. Sai~Halasz, IBM Research Center 
IEEE Int'l Solid S~ate Circuits Conference, Feb. 1982. 

[3J "Keep Memory Design Simple Vet Cull Single-Bit Errors" 
M. Bazes, L. Farrell, B. May, M. Mebel, INTEL Corp. 
Electronic Design, Sept. 3D, 1981. 

[4J "Memory System'Reliability with ECC"; Intel Ap Note 73 
Dennis Marston, INTEL Corp. 

[5J "An NMOS DRAM Controller" 
M. Bazes, J. Nadir, D. Perlmutter, B. Mantel, O. Zak, INTEL Corp. 
IEEE Int'l Solid State Circuits Conference, Feb. 1982. 

34/2 6-72 



intel" TECH 
PAPER 

((-1 1982 IEEE. Reprinted. with permISSIOn, from 1982 IEEE Internltion-' SOlid-States ClrcUIf$ Conference. Digest of Techntcal Pipers. Feb 
10-12. ,9821Sa" FrancIsco. CA. 

6-73 

August 1982 

AUGUST 1982 

ORDER NUM_": 2'05_' 



TECH PAPER 

SESSION VII: DYNAMIC RAMs 

WPM 7.4: An NMOS DRAM Controller 

M.I SlIr •• , h",.. Nadi" Onid "."""",.'. Sanl' Man,.'. Om", Z. 

Int.'Corp. 

S.ntll ClllfII. CA 

TO DATE. Integrated dynanuc RAM controUero have been eith.r 
optuni .. d for speed or for fe.ture •• with one usually at the ex· 
prn.e of the other. ControUe .. d~.ill""d to give no wait otat •• 
have rtqu".d severll addihonll TTL device. and delay Unes to 
("()mpiete the basic dynamIC RAM control functiono. ·Int.grated 
controlle~ have slowrd today's mocroprott"""" by adding wait 
,tat, •. The chIp to be ducnbed. the ORe (Dynamic RAM Con. 
troU,,). WIth Its h,l!h level of Integration. can support 8MH. 
CPU, with I jOns DRAMs WIthout wait ,tate,. The controller. 
oJ)f'ratm,; In both slh5t:le-port and dual-port confi~rations and in 
~ynchronoWl and asynchronous f'nVl~ronments. supports error 
correction Circuitry. and proYldf"8 all of' the timing and control 
signals necessary ror a mf'mory module. Two mlcroproces.'mr 
bus port1! are mdept:ndently programmable for e'ither synchronous 
or asynchronou.'I o~ration. and tach IS capable of supporting 
srvf'ral pOIt.'ilble bus strucluretll. 

Thr <h,p. shown on Figu .. I ... 233 by 199 mols and is fabri· 
cated ,n 1I~10S 11. a h,gh .• perd NMOS proc .... 

The arch,lectu .. of the ORC ha. been optimized with con· 
!udrration roven both to ptrformantt goals and to t,.chnolog)' 
~mltatlon •. F,gu .. 2 .lIustrat .. a Slmphfird block diagram of the 
ORC. The controller SImultaneously prote.sr. commands from 
thrf't ports, two externals porh which give rtad/wnte commands. 
and an Internal port which JOns rrfrcsh commands. To Intro. 
duct only a minImal drlay In th. ,tart of a RAM cycle. "up 
front" arb,trahon betwr.n the th .. e port. WI! rul.d out. In. 
str.d, thr port commands are dl .... ctlv mulhpl .. rd into the RAM 
timing ~enerato",. With t~ arbitrr !Jelecti~ only ont of tm: 
muillplrxtr channds It any time, tvrn when no cycle 18 in pro. 
gress. When two or more commands arrive simuhantously. the 
command, not srrvie.d orr qutu,d. WhIle the RAM cycle for 
the selected port is In pro.ut"~. the arbiter processes the com· 
mands from th. other ports. Th. arbIter WIll .. Iect the n •• t 
port to b .... rvi«d evrn brfo .. the curr.nt RAM cycle hal 
finished. but only lat. rnouKh In the cycl. so that the cycle is 
not affected. ThtU. as soon as 'the cUl'T'tnt cycle 1$ completed, the 
cycl. for the next port starls WIth lottie or no delay. In g.neral. 
a command froni a ,.Ircted port IS serviced with lottie or no delay. 
whlft a command from an unselfcted port is serviced with a delay 
rqualto th. arbitrahon timt. Two user-selectable arbitratIon 
algorIthms are avallabl. on the ORe. 

The ORC oprrat .. in .. th .. of two modrs. In 8MH. /IIod. for 
optimal performance ~h the pre .. nt day CPUs and an 16MH. 
mod. for optimal prrformance with futUre CPU.-. Th ... Iallv.ly 
hiKh f~qu.ncy of the dock in 16MH. mode. coupl.d with It. 
',,,ab!. doek paramrte", ( 15ns low tIm< .~d 20ns hiRh lime) 
I""cessitated takln~ a novel approach to the ORC logic and circuit 

·INTEL 288 

6-74 

de.ign. Instead of usi", two-ph ... logic, mo.t common in NMOS 
design, the ORC WI. implement.d .... i .... i ... le·phaoe edge 
triqe .. d Oipnopo. Th. use of only on. clock pha .. inherently 
pr.clud •• the probl.m of clock overlap. whIle sequencIng lottic on 
a 8i",le clock edge provid •• seyeral important b",dits. F, .. t. th' 
sensitivity to clock low and hIgh time. is greatly .. duced. Second. 
lottic design is signIficantly simplifi.d. Third. overaU 10lllc 
throughput can be mlde mo .. efficIent thin with two.pha .. 
logoc. Finally.th. straightforward logic drsign .. suits on Slmphfi.d 
cirCUIt drsign. u evidenced by the fact that th. first ,teralion of 
the ORC that wao fabrocaled was functional at tbe full 16MHz 
clock f .. quency. 

The ORC output pulse timings have been selected for optomal 
performance withon atlr .. t the 62.5n8 re.oluhon prOVIded by the 
clock. In the case of the erotical Row Addre .. Select (RAS). 
Column Add",ss Select (CAS), and addre .. outputs. the resolu. 
tlon obtaln~ IS down to only a rew nanost'conds and 1.8 provldr-d 
ontrmally by sprdally d.sognrd delay elements. The .. delay ele· 
ments art Implt'mentrd u voltage controllf'd capacItive loacb 
wh;ch comprnsatethe chip output switchlnR delays agaonst ,uoplj. 
teinperatu ... and process!", variations. 

In asynchronous environmf"nts, access time ill Impro""d bv 
requiring an overhead of only one 62.5ns clock period In synch. 
ronizing up asynchronous inputs. 

An important f.ature of the ORC is Its abillly 10 .. mple a 
singl. input WIth a .etup time of only 20ns and to clock out 
..~.rai different output signals from that ,ingle onput in under 
35ns. Thos low setup lime IS obtaIned by using .. ro·r"i.tan« 
input protrctlon devices to ,.due. RC delay •• and to provldr TTL· 
to·MOS bufferiR$[ dirertly at the Jlent'ntor cirCUits. rather than at 
the input pad.:. The .hort oulput d.lay is obtam.d by tnlllt"i", 
the output •• nrrators di .. ctly off of th. unbuff ... d rxternal 
clock. the .. by saving the buffer drlay tim. prrsent in thr buff .. rd 
clock. Figure 30 Illusthl"s an examplr of a h,gh.spred pulse 
grn.rator CIrCUIt which is triRl!erable off of eoth .. the clock riSIng 
.dge or the clock falling .dge. Th. pul .. gen .. ator tlmong beha· 
vior, is shown in Ftgu1'e' 3b. " 

Th. object ... of cruhng a highly.integrated dynaml. RAM 
controll .. has .... sult.d In a ne.,ble devicr WIth .oph .. ticatrd 
arbItration between ports. optimizrd output pul .. timings. and 
minImal Input setup and output delay time •• and which allows 
designillll higher performance memoti.s using' slow .. speed 
dyna mic RAMs. 

Ac.nolll/~~"'.nu 

Th. au tho .. would Iik. to acknowl.dge the contributions of 
the st.ff atlnltl/lsrael and in partieular 10 the following IndiVl' 
duals for thrir oignificant contnbutions to th. project: Lozette 
Ouzan Ind all the oth.r mask d •• ,gn .... Richard Studnlcki and 
Aurora Fitlovitch - I •• t.r support. and finally to ~ick Hodgrnln 
and Brad May for their system support. 

AFN·OO242A 



TECH PAPER 

FlGURE i-Die photOCJ'lph of the DRAM controller. 

..,., , 
ICMOADDfII} I----___ ~, ~:T"OL . 

ADOAESS 

FlGU)lE 2-Simplified block diacr .... of DRAM controller. 

6-75 AFN-002~2A 



TECH PAPER 

n. _ 'IT''''''.l (lOC_ 
.- .rt .... ~ ClOC_ (Of."'O '1i0ll Cllt! 'fI ... _" .... I~SI 
'Il10 _ fllO 'VlU 
..... 'IU ~ ClOC. '*GG'. rDaII,fAne SIO ..... tl 
0lIl' - OUT'UT ,ro 0IJ'~1 .ut"I". 

eLK 

,,"' 
'NO _.l-..I-____ --.:J 

FIGURE 3: (o)-Above-high .p .. d pulle vneralor 
orwi!, lricgerable off of .ilh .. clock edV; (b)­
below-limine wave formo for Ihe pulse ,enerator 

drwi!. 

6-76 



82Q2A 
DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to Con­
trol 2117, or 2118 Dynamic Memories 

• Directly Addresses and Drives Up to 64K 
Bytes Without External Drivers 

• Provides Address Multiplexing and 
Strobes 

• Provides a Refresh Timer and a Refresh 
Counter 

• Refresh Cycles May be Internally or Exter-. 
nally Requested 

• Provides Transparent Refresh Capability 

• Fully Compatible with Intel® 8080A, 
808SA, iAPX 88, and iAPX 86 Family Micro­
processors 

• Decodes CPU Status for Advanced Read 
Capability with the 8202A-1 or 8202A-3 

• Provides System Acknowledge and Trans­
fer Acknowledge Signals 

• Internal Clock Capability with the 8202A·1 
or 8202A-3 

The Intel® 8202A is a Dynamic Ram System Controller designed to provide all signals necessary to use 2117 or 
2118 Dynamic RAMs in microcomputer systems. The 8202A provides multiplexed addresses and address 
strobes, as well as refresh/access arbitration. The 8202A-1 or 8202A-3 support an internal crystal oscillator. 

AHO-AH6 

ALO-Al6 

REFRESH 
COUNTER 

RO/S1 ~-----t 
"" f-. ------I 
PCS~-----t 

REFRQ/ ALE -----''-----I 

COLUMN 
ADORESS 

ROW 
ADDRESS 

tXt)CLK 

MUX ~===> OOTO-Ms 

BO 

........... 
TIMING 

ARBITER GENERATOR 

Figure 1. 8202A Block Diagram 

6-77 

AH. 

AHa 

AH, 

AH, 

AHO 

ALo 

RASa . Mo 

RAS1 
AL, 

RAS2 
0UT1 

AL, 
RAS3 

00r2 
ALa 

CAS M3 

WE AL4 

0iIT4 

SACK 
ALs 

XACK 
OOTs 

Ale 

0iJf6 

GND, 

Figure 2. Pin Configuration 



Pin 
Symbol No. Type 

ALO 6 I 
ALl 8 I 
AL2 10 I 
AL3 12 I 
AL4 14 I 
AL5 16 I 
AL61 18 I 

AHa 5 I 
AH1' 4 I 
AH2 3 I 
AH3 2 I 
AH4 1 I 
AH5 39 I 
AHa 38 I 

BO 24 I 
Bl /OP l 25 I 

PCS 33 I 

WR 31 I 

RD/Sl 32 I 

REFRQI 34 I 
ALE 

OUTO 7 0 
OiJf l 9 0 
OUT2 11 0 
OUT3 13 0 
0iJf4 15 0 
0iJf5 17 0 
0iJf6 19 0 

WE 28 0' 

CAS 27 0 

8202A 

'Table 1. Pin Descriptions 

Name and Function 

Address Low: CPU address in· 
puts used to generate memory 
row address. 

Address High: CPU address in· 
puts used to generate memory 
column address. 

' , 

Bank Select Inputs: Used to 
gate the appropriate RASO· 
RAS3 output for a, memory cy· 
cle. Bl/OPl option used to se· 
lect the Advsnced Read Mode. 

Protected Chip Select: Used to 
enable the memory read and 
write inputs. Once a cycle is 
started. it will not abort even if 
J5CS goes inactive before cycle 
completion. 

Memory Write Request. 

Memory Read Request: 51 
function used in Advanced Read 
mode selected by OP 1 (pin 25). 

I;xternal Refresh Request: ALE 
function used in Advanced Read 
mode. selected by OP 1 (pin 25). 

Output of the Multiplexer: 
These outputs are designed to 
drive the addresses of the Dynamic 
RAM array, (Note that the OUT 0-6 

pins do not require inverters or 
drivers for proper operation.) 

Write Enable: Drives the Write 
Enable inputs of the Dynamic 
RAM array, 

Column Address Strobe: This 
output is used to latch the Col· 
umn Address into the DynamiC 
RAM array. 

6-78 

Pin 
Symbol No. Type Name and Function 

RASa 21 0 Row Address Strl;)be: Used to 

~~ 22 0 latch the Row Address into the 
23 0 bank of dynamic RAMs. select· 

RAS3 26 0 ed by the 8202A Bank Select 
pins (BO. Bl/OP1). 

XACK 29 0 Transfer Acknowledge: This 
output is a strobe indicating val· 
id data during a read cycle or 
data written during a write cycle. 
XACK can be used to latch valid 
data from the RAM array. 

SACK 30 0 System Acknowledge: This 
output indicates the beginning of 
a memory access cycle.' It can 
be used as an advanced trans· 
fer acknowledge to eliminate 
wait states. (Note: If a memory 
access request is made during a 
refresh cycle. SACK is d~layed 
until. XACK in the memory ac· 
cess cycle). 

(XO) OP2 36 110 OSCillator Inputs: These inputs 
(Xl) CLK 37 110 are designed for a quartz crystal 

to control the frequency of the 

... oscillator. If XO/OP2 is connect· 
ed to a 1 KO resistor pulled to 
+12V then Xl/CLK becomes a 
TTL input ,for an external clock. 

N.C. 35 Reserved for future use. 

VCC 40 Power Supply:+5V. 

GND 20 Ground. 

NOTE: Crystal mode for the 8202A-l or 8202A-3 only. 

i-- Xo WE 

I CAl cs..L. ,.. 
'KO I ±5% IlUo 

I x, 
I 8202A-l lin, 

oeoo or 
":" ± ... 8202A-3 m. 

":" iiAI3 

Cs < 10pF mK 

FUMlAMENTAL XTAL mR 

Figure 3. Crystal Operation for the 8202A-1 
, and the 8202A-3 

AFN 01838A 



8202A 

Functional Description 
The 8202A provides a complete dynamic RAM controller 
for microprocessor systems as wen ss expenaion memory 
boards. All of the necessary control signals are pro­
vided for 2117 and 2118 dynamic RAMs. 

All 8202A timing is generated from a single reference 
clock. This clock is provided via an external oscillator or 
an on chip crystal oscillator. All output signal transitions 
are synchronous with respect to this clock reference, ex­
cept for the CPU handshake signals SACK and XACK 
(trailing edge). 

CPU memory requests normally use the RD and WR in­
puts. The advanced READ mode allows ALE and S1 to be 
used in place of the RD input. 

Failsafe refresh is provided via an internal refresh timer 
which generates internal refrsah requests. Refresh re­
quests can also be generated via the REFRQ input. 

An on-<:hip synchronizer I arbiter prevents memory and re­
fresh requests from affecting a cycle in progress. The 
READ, WRITE: and external REFRE~H requests may be 
asynchronous to the 8202A clock; on-<:hip logiC will syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending completion of a cycle in 
progress. 

Option Selection 
The 8202A has two strapping options. When OP1 is se­
lected (16K mode only), pin 32 changes from a RD input to 
an S 1 input, and pin 34 changes from a REFREO input to 
an ALE input. See "Refresh Cycles" and "Read Cycles" 
for more detail. OPl is selected by tying pin 25 to 
+ 12V through a 5.1 K ohm resistor on the 8202A-1 or 
8202A-3 only. 

When OP2 is selected, by connecting pin 36 to +12V 
through a 1K ohm rI~sistor, pin 37 changes f~om a crystal 
input (X 1) to the CLK input for an external TIL clock. 

Refresh Timer 
TIle refresh timer is used to monitor the time since the last 
refresh cycle occurred. When the appropriate amount of 
time has elapsed, the refresh timer will request a 
refresh cycle. External refresh requests will reset the 
refresh timer.' ' 

Refresh Counter 
The refresh counter is used to sequentially refresh all of 

Description Pin # Normal Function 

Bl/0Pl 25 Bank (RAS) Select 

the memory's rows. The 8-bit counter is incremented after 
every refresh cycle. 

Address Multiplexer 
The address multiplexer takes the address inputs and the 
refresh counter outputs, and getes them onto the address 
outputs at the appropriate time. The add~s outputs, in 
'conjunction with the RAS and Ci£ outputs, determine the 
address used by the dynamic RAMs for read, write, and 
refresh cycles. During the first pert of a read or, write cy­
cle, ALe-Ala are gated to OUTo-OOTa, then AHo-AHa 
are gated to the address outputs. 

During a refresh cycle, the refresh counter is gated onto 
the address outputs. All refresh cycles are RA8-0nly re­
fresh (Ci£ inactive, RAS active). 

To minimize buffer delay, the informetion on the address 
outputs is inverted from thet on the address inputs. 

OUT o-ooT 6 do not need inverters or buffers unless addi­
tional drive is required. 

Synchronizer / Arbiter 
The 8202A has three inputs, REFROI ALE (pin 34), RD 
(pin 32) and WR (pin 31). The RD and WR inputs allow an 
external CPU to request a memory read or write cycle, 
respectively. The REFRQI ALE allows refresh requests to 
be requested external to the 8202A. 

All three of these inputs may be asynchronous with re­
spect to the 8202A's clock. The arbiter will resolve con­
flicts between refresh and 'memory requests, for both 
pending cycles and cycles in progress. Read and write re­
quests will be given priority over refresh requests. 

System Operation 
The 8202A is always in one of the following states: 

a) IDLE 
b) TEST Cycle 
c) REFRESH Cycle 
d) READ Cycle 
e) WRITE Cycle 

The 8202A is normelly in the IDLE state. Whenever one of 
the other cycles is requested, the 8202A will leave the 
IDLE state to perform the desired cycle. " no other cycles 
are pending, the 8202A will return to the IDLE state. ' 

Option Function 

Advanced-Read Mode (see text) 

XO/OP2 36 , Crystal OSCIllator (8202A-l or 8202A-3) External Oscillator 

Figure 4. 8202A Option Selection 

,6-79 AFN01838A 



8202A 

Test Cycle . 
The TEST Cycle is used to check operation of several 
8202A internal functions. TEST cycles are requested 
by'activating the RD and WR inputs, independent of 
PCS. The TEST Cycle will reset the refresh address 
counter. It will perform a WRITE Cycle if PCS is low. 
The TEST Cycle should not be used in normal system 
operation, since it would affect the dynamic RAM 
refresh. 

Refresh Cycles 
The 8202A has two ways of providing dynamic RAM reo 
fresh: 

1) Internal (failsafe) refresh 
2) External (hidden) refresh 

Both types of 8202A refresh cycles activate all of the RAS 
outputs, while CAS, WE, SACK, and XACK remain inac­
tive. 

Internal refresh is generated by the on-Chip refresh timer. 
The timer uses the 8202A clock to ensure that refresh of 
all rows of the dynamic RAM occurs every 2 milliseconds. 
If REFRQ is inactive, the refresh timer will request are· 
fresh cycle every 10-16 microseconds. 

External refresh is requested via the REFRQ input (pin 34). 
External refresh control is not available when the Ad­
vanced-Read mode is selected. External refresh requests 
are latched, then synchronized to the 8202A clock. 

The arbiter will allow the refresh request to start a refresh 
cycle only if the 8202A is not in the middle of a cycle. 

Simultaneous memory request and external refresh re­
quest will result in the memory request being honored first. 
This 8202A characteristic can be used to "hide" refresh 
cycles during system operation. A circuit similar to 
Figure 5 can be used to decode the CPU's instruction 
fetch status to generate an external refresh request. The 
refresh request is latched while the 8202A performs the 
instruction fetch; the refresh cycle will start immediately 
after the memory cycle is completed, even if the RD input 
has not gone inactive. If the CPU's instruction decode time 
is long enough, the 8202A cal'! complete the refresh cycle 
before the next memory request is generated. 

Certain system configurations reqlJire complete external 
refresh requests. If external refresh is requested faster 
than the minimum internal refresh timer (tREF), then, in ef­
fect, all refresh cycles will be caused by the external reo 
fresh request, and the internal refresh timer will never 
generate a refresh request. 

6-80 

---- REFRO SO~ -'. - 8202A 

SACK or 
CAS 

Figure 5. Hidden Refresh 

Read Cycles 
The 8202A can accept two different types of memory 
Read requests: 

1) NormalRead, via the RD input 
2) Advanced Read, using the 81 and ALE inputs 

The user can select the desired Read request configura­
tion via the Bl /OPl hardware strapping option on pin 25. 

, Normal Read Advanced Read 

Pin 25 Bl input +12 Volt Option 

Pin 32 RD input SI input 
Pin 34 REFRQ input ALE input 

# RAM banks 4 (RAS 0.3) 2 (RAS 2.3) 
Ext. Refresh Req. Yes No 

Figure 6. 8202A Read Options 

Normal Reads are requested by activating the RD input, 
and keeping it active until the 8202A responds with an 
XACK pulse. The RD input can go inactive as soon as the 
command hold time (tCHS) is met. 

Advanced Read cycles are requested by pulsing ALE 
while S 1 is active; if S 1 is inactive (low) ALE is ignored. 
Advanced Read timing is similiar to Normal Read timing, 
except the falling edge of ALE is used as the cycle start 
reference. 

If a Read cycle is requested while a refresh cycle is in 
progress, then the 8202A will set the internal delayed­
SACK latch. When the Read cycle is eventually started, 
the 8202A will delay the active SACK transition until XACK 
goes active, as shown in the AC timing diagrams. This de­
lay was designed to compensate for the CPU's READY 
setup and hold times. The delayed-SACK latch is cleared 
after every READ cycle. 

Based o~ syst~m requirements, eith~r SACK or XACK can 
be used to ge1terate the CPU READY signal. XACK will 

AFN Ot838A 



8202A 

normally be used; if the CPU can tolerate an advanced 
READY, then SACK can be used, but only if the CPU can 
tolerate the amount of advance provided by SACK. If 
SACK arrives too early to provide the appropriate number 
of WAIT states, then either XACK or a delayed form of 
SACK should be used. 

Write Cycles 
Write cycles are similiar to Normal Read cycles, except 
for the WE output. WE is held inactive for Read cycles, but 
goes active for Write cycles. All 8202A Write cycles are 
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamic 
RAM output buffers turned off. 

General System Considerations 
All memory requests (Normal Reads, Advanced Reads, 
Writes) are qualified by the PCS input. PCS should be sta­
ble, either active or inactive, prior to the leading edge of 
RD, WR, or ALE. Systems which use battery backup 
should pullup PCS to prevent erroneous memory requests, 
and should also pullup WR to keep the 8202A out of its 
test mode. 

In order to minimize propagation delay, the 8202A uses an 
inverting address multiplexer without latches. The system 
must provide adequate address setup and hold times to 
guarantee RAS and CAS setup and hold times for the 
RAM. The 8202A tAD AC parameter should b~ used for 
this system calculation. 

The BO-B 1 inputs are similiar to the address inputs in that 
they are not latched. BO and B 1 should not be changed 
during a memory cycle, since they directly control which 
RAS output is activated. 

The 8202A uses a two-stage synchronizer for the memory 
request inputs (RD, WR, ALE), and a separate two stage 
synchronizer for the external refresh input (REFRQ). As 
with any synchronizer, there is always a finite probability 
of metastable states inducing system errors. The 8202A 
synchronizer was designed to have a system error rate 
less than 1 memory cycle every three years based on the 
full operating range of the 8202A. 

6-81 

A microprocessor system is concerned with the time data 
is valid after RD goes low. See Figure 7. In order to calcu­
late memory read access times, the dynamic RAM's A.C. 
specifications must be examined, especially the RAS-ac­
cess time (tRAC) and the CAS-access time (tCAc). Most 
configurations will be CAS-access limited; i.e., the data 
from the RAM will be stable tcc,max (8202A) + tCAC 
(RAM) after a memory read cycle is started. Be sure to 
add any delays (due to buffers, data latches, etc.) to cal­
culate the overall read access time. 

Since the 8202A normally performs "early-write" cycles, 
the data must be stable at the RAM data inputs by the time 
CAS goes active, including the RAM's data setup time. If 
the system does not normally guarantee sufficient write 
data setup, you must either delay the WR input signal or 
delay the 8202A WE output. 

Delaying the WR input will delay all 8202A timing, including 
the READY handshake signals, SACK and XACK, which 
may increase the number of WAIT states generated by the 
CPU. 

If the WE output is externally delayed beyond the CAS ac­
tive transition, then the RAM will use the falling edge of WE 
to strobe the write data into the RAM. This WE transition 
should not occur too late during the CAS active transition, 
or else the WE to CAS requirements of the RAM will not be 
met. 

AD ~,---------:-~I 
I I 
1--: .~--tRLDV .: 

DATA------1( B-
I : 
"----tRAC~ 
I I 

RAS ---""""''( i / 
I 

I tCAC I 
'----+t 

-----------. I I r-
CAS'" ! / 

Figure 7. Read Access Time 

AFN 01838A 



inter 8202A 

. , 

AS-1S 

~~ 
ALO_6 QUTO-6 r AO • 
AHa-6 

ALE 8282 80-1 

8088 
8202A 

(16K MODE) WE ~ 
WE 

ADO-7 CAS CAS 

t-p RD/S, RASa I---- MS 
RD DIN DOUT 

WR WR 1 1 
RAS, 

~ ~ -< 
RAS2 AO-6 

SACK RAS3 

XACK 

~ 
WE 
CAS 

f---- RAS 
DIN DOUl 

it 1 
~ AO-. 

f---oWE I---- CAS 
~ f--oRAli 

DIN OOUT 

TT. 
L-,\ 

AO-6 
~ . 

I 
C=::: WE 

CAS 

~S';;- It~-
D'N 

RAS DOUT 
DIN DOUT 

l' T ! 
DATA II DATA BUS LATCH IN 

---

!\ 

J I '----

~. 

- -- --
-

Figure 8. Typical 8088 System 

6-82 

2118 
DYNAMIC RAM ARRAY 

BAL 

I 

+ I--- -

+ 
.13 

,ID'N 
D'N 

DIN Dour 
DOUT 

DOUT 

1 J j 

I I] 

,..--

o,N 

DOUT 

:u 

D'N 
DOUT J ! 

--' -

D'N 
DOUT n: 

D'N 
o,N Dour 

DouT 
oOUT .--

AFN01838A 



8202A 

ABSOLUTE MAXIMUM RATINGS' 

Ambient Temperature Under Bias ............ O°C to 70°C 
Storage Temperature ................ -65°C to +150°C 
Voltage On any Pin' 

With Respect to Ground ................ -0.5V to +7V4 
Power Dissipation . . . . . . . . . . ............ 1.5 Watts 

'NOTE: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent damage to the device. 
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in 
the operational sections of this specification is not implied. 
Exposure to absolute maximum rating conditions for. ex­
tended periods may affect device reliability. 

D.C. CHARACTERISTICS TA = ooe to 70oe; VCC = ·5.0V ± 10%, VCC = 5.0V ± 5% for 8202A-3, GND = OV 

Symbol Parameter Min Max Units Test Conditions 

Vc Input Clamp Voltage -1.0 V IC = -5mA 

ICC Power Supply Current 270 mA 

IF Forward Input Current 
ClK -2.0 mA VF = 0.45V 
All Other Inputs3 -320 /lA VF = 0.45V 

IR Reverse Input Current3 40 /lA VR = Vee (Note 1) 

VOL Output low Voltage 
SACK,XACK 0.45 V 10l = 5 mA 
All Other Outputs 0.45 V 10l = 3 mA 

VOH Output High Voltage Vil = 0.65V • 
SACK,XACK 2.4 V 10H = -1 mA 
All Other Outputs 2.6 V 'IOH = -1 mA 

Vil Input low Voltage 0.8 V VCC = 5.0V (Note 2) 

VIHl Input High Voltage 2.0 V VCC = 5.0V 

VIH2 Option Voltage V (Note 4) 

F = 1 MHz 

CIN Input Capacitance 30 pF VBIAS = 2.5V, VCC = 5V 
TA = 25°C 

NOTES: 
1 IR = 200l'A for Pin 37 (eLK) for exlernal clock mode 

2. For lesl mode RD & WR musl be held al GND. 

3. Excepl for pin :t6. 
4 8202A-l and 8202A-3 supports bolh OP, and OP2. 8202A only supports OP2 

+12 Volt ' K 36 OP2 
±10% 

8202A 

5.1 K 25 OP, 

Resistor Tolerance ±5% 

6-83 AFN 01838A 



·S202A 

A.C. CHARACTERISTICS 
TA = O°C to 70°C, Vee = 5V ± 10%, Vee = 5V ± 5% for 8202A-3 

Measurements made with respect to RASO-RAS3, CAS, WE,OUTO-OUTS are at 2.4V and 0.8V. All 
other pins are measured at 1 5V All times are in nsec ' 

Symbol Parameter Min Max Notes 

tp Clock Period 40 54 

tpH External Clock High Time 20 

tpL External Clock Low Time-above (» 20 mHz 17 

tpL External Clock Low Time-below «) 20 mHz 20 

tRC Memory Cycle Time lotp - 30 12tp 4,5 

IREF Refresh Time (128 cycles-16K mode) 264tp 288tp 

tRP RAS Precharge Time 4tp - 30 

tRSH RAS Hold After CAS 5tp - 30 3 

tASR Address Setup to RAS tp - 30 3 

tRAH Address Hold From RAS tp - 10 3 

tASC Address Setup to CAS tp - 30 3 

ICAH Address Hold from CAS 5tp - 20 3 

tCAS CAS Pulse Width Sip - 10 

twcs WE Setup to CAS tp - 40 

tWCH WE Hold After CAS 5tp - 35 8 

tRS RD, WR, ALE, REFRO delay from RAS Sip 

IMRP RD, WR setup 10 RAS 0 5 

IRMS REFRO selup 10 RD, WR 21p 

tRMP REFRO selup to RAS 21p 5 

tpcs PCS Setup to RD, WR, ALE 20 

tAL S 1 Setup to ALE 15 

tLA S 1 Hold from ALE 30 

tCR RD, WR, ALE to RAS Delay tp + 30 2tp + 70 2 

tcc RD, WR, ALE 10 CAS Delay 3tp + 25 4tp + 85 2 

tsc CMD Setup 10 Clock 15 1 

tMRS RD, WR setup to REFRO 5 

tCA RD, WR, ALE to SACK Delay 2tp + 47 2,9 

tcx CAS to XACK Delay 5tp - 25 5tp + 20 

tcs CAS to SACK Delay 5tp - 25 5tp + 40 2,10 

tACK XACK to CAS Setup 10 

txw XACK Pulse W,idth tp - 25 7 

ICK SACK, XACK turn-off Delay 35 

tKCH CMD Inactive Hold after SACK, XACK 10 

tLL REFRO Pulse Width 20 

tCHS CMD Hold Time 30 11 

tRFR REFRO to RAS Delay 4tp + 100 6 

tww WR tp WE Delay 0 50 8 

tAD CPU Address Delay 0 40 3 

6-84 AFN 01838A 



inter 

WAVEFORMS 
Normal Read or Write Cycle 

Fffi,WR 

Advanced Read Mode 

ALE 

8202A 

tee 
-MAX 

-tCA-

6-85 AFN 0183BA 



WAVEFORMS (cont'd) 
Memory Compatibility Timing 

8202A 

~ ~~ ______________ VA_L_"D_A_DD_~E_S_S __________________ ~~ __ ~ ______________________ __ 

-~?&~ -::'R-

\ 
tRSH 'I 

1 
tCAS 

1\ V 
I--'ASR- -'RAH- I--'ASC-OO _'CAH_ 

~ ROW X COLUMN K 

Write Cycle Timing 

\ / 
\ J 

.1 

-~c~--2I\ MIN 
t. 

...--~c,.~---.. - tww -
\ / J 

--'wcs- tWCH . 
. tec 

MIN ., 
. ·CC 

MAX 

6-86 AFN 0183BA 



inter 8202A 

WAVEFORMS (cont'd) 
Read or Write Followed By External Refresh 

RD, WR \ 
~ 

....-.tMRS~ ~tLL'--" 

REFRQ V \ 
/ ~ 

I-tos-
. IRMP -tRP-

tCR 
---- MAX ------

\ \ . tRe . 
"-

.1 

. tcc ~ MIN 

tee . MAX 

External Refresh Followed By Read or Write 

_tRMS ---1-----

.. REFRQ 

1+------ tRe -----~ 

\---

6-87 AFN 01838A 



... 

intJ 8202A 

WAVEFORMS (cont'd) 
Clock And System Timing 

ClK 

RD, WR,ALE 

Table 2 8202A Output Test 
Loading. 

Test Load 
Pin 

SACK.XACK CL = 30 pF 
OUTO-OUTs CL = ISO pF 
RASo-RAS3 CL = SO pF 
WE CL; = 224 pF 
CAS CL = 320 pF 

NOTES: 
1. tsc is a reference point only. ALE. RD. WR. and REFRQ inputs do 

not have to be externally synchronized to 8202A clock. 
2. If .tRS min and tMRS min are met then. tCA. tCR. and tcc are 

valid. otherwise tcs is valid. 
3. tASR. tRAH. tASC. tCAH. and tRSH depend upon BO-Bl and CPU 

address remaining stable throughout the memory cycle. The ad· 
dress inputs are not latched by the 8202A. 

4. For back·to·back refresh cycles. tRC max = 13tp 
5. tRC max is valid only If tRMP min is met (READ. WRITE followed 

by REFRESH) or tMRP min is met (REFRESH followed by READ. 
WRITE). 

6. tRFR is valid only if tRS min and iRMS min are met 
7. txw min applies when RD. WR has already gone high. Otherwise 

XACK tollows RD. WR. 
8. WE goes high accQrding to tWCH or tWW. whichey-er occurs 

first. 

A.C. TESTING LOAD CIRCU.IT 

DEVICE 
UNDER 'Icc TEST 

CL INCLUDES JIG CAPACITANCE 

9. tCA applies only when in normal SACK mode. 
10. tcs applies only when in delayed SACK mode. 
11. tCHS must be met only to ensure a SACK active pulse when in 

delayed SACK mode. XACK will always be activated for at 
least txw (tp- 25 nS). Violatong tCHS min does not otherwise 
affect device operatIon. 

6-88 AFN 01836A 



inter 8202A 

The typiCliI rising and falling characteristic curves .for the 
OUT, RAS. CAS and WE output buffers can be used to 
determine the .effects of capacitive loading on the A.C. 

Timing Parameters. 4sing this design tool in conjunction 
with the timing, waveforms. the designer can !=letermine 
typical timing shifts based on system capacitive load. 

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS 

ur-----,_-----+------r_----~----,_----_r----_;r_----~--~~=r====:~~ 

u~----~----i------L-----L ____ _L ____ _i ____ ~ ____ ~~ ____ ~--~ 

5_-/ 

Ur-____ -r ______ ~-----r----~ __ ----~----~------T_----_r----~~~M~c~n~~~Nc~E~:~; 

NOTE: MEASUREMENT CONDITION.: 
Use the Test Load as the base capacitance for astlmating timing 
shilts for system critical timing parameters. ' 

TA = 25"C 
Vee": +5V 
tp = 50 ns 

Pin.! not measured are loaded with the 
Test Load capacitance. 

AFN..()1838A 



inter 8202A 

Example: Find the effect on teR and tee using 84 
2118 Dynaml~ RANIs cC?nflgured in 4 banks. 

1. Determine the typical RAS and CAS capacitance: \ 
From the data sheet RAS = 4 pF and CAS = 4 pF. 
:. RAS load = 64 pF + board capacitance. . 

CAS load = 256 pF + board capacitance. 
Assume 2 pF/ln (trace length) for board 
capacitance. : 

2. From the waveform diagrams, we determine that 
the fallin~ edge timing is needed for teR and tee. 
Next find the curve that best approldmates the 
test load; I.e., 68 pF for RAS and 330 pF for CAS. 

3. If we use 72 pF for RAS loading, then the 'teR 
(max.) spec should be increased by about 1 ns. 
Similarly If we use 288 pF for CAS, then tee (min.) 
and (max.) should decrease about 1 ns. 

AFN-ll1838A 

6-90 



8203 
64K DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to 
Control 64K (2164) and 16K (2117,2118) 
Dynamic Memories 

• Directly Addresses and Drives Up to 64 
Devices Without External Drivers 

• Provides Address Multiplexing and 
Strobes 

• Provides a Refresh Timer and a Refresh 
Counter 

• Provides Refresh/Access Arbitration 

• Internal Clock Capability with the 8203-1 
and the 8203-3 

• Fully Compatible with Intel(§) 8080A, 
808SA, iAPX 88, and IAPX 86 Family Micro­
processors 

• Decodes CPU Status for Advanced Read 
capability In 16K mode with the 8203-1 and 
the 8203-3. 

• Provides System Acknowledge and Trans­
fer Acknowledge Signals 

• Refresh Cycles May be Internally or Exter­
nally Requested (For Transpar~nt Refresh) 

• Internal Series Damping Resistors on All 
RAM Outputs 

The Intel® 8203 is a Dynamic Ram System Controller designed to provide all signals necessary to use 2164, 2118 
or 2117 Dynamic RAMs in microcomputer systems. The 8203 provides multiplexed addresses and address 
strobes, refresh logic, refresh/access arqitration. Refresh cycles can be started internally or externally. The 
8203-1 and the 8203-3 support an internal crystal oscillator and Advanced Read Capability. The 8203-3 is a ±5% Vee 
part. ' 

"""' .. c ....... 

ili/S1--___ -I 

':=====1 

&i'fo-&ii'7 

.. 
It/0f'1 

,... ........ "'" 

Figure 1. 8203 Block Diagram 

.... 
AH3 
AM. 
AH, 

- OUT • 

AL, ... , .... OUT, 

.... AL2 

Wf. 

CD ALa 

... M3 

.... .... M4 

""'" 
Me .... 

Figure 2. Pin Configuration 

Intel Corporation Assumes No Responslblhty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product No Other Circuit Patent Licenses are Implied. 
©INTELCORPORATION.1982 JULY 1982 

6-91 ORDER NUMBER: 21044-002 



inter 

Pin 
Symbol No. Type 

ALO 6 I 
ALI 8 I 
AL2 10 ' I 
AL3 12 I 
A,L4 14 I 

" 
AL5 16 I 
AL6 18 I 

AHO 5 I 
AHI 4 I 
AH2 3 I 
AH3 2 I 
AH4 1 I 
AH5 39 I 

~H6 38 I 

Bo/AL7 24 I 
Bl/0P l/ 25 I 
AH7 

PCS 33 I 

WR 31 I 

RD/Sl 32 I 

REFRQ/ 34 I 
ALE 

OUTO 7 0 
OUTI 9 0 
OUT2 11 0 
OUT3 13 0 
OUT4 15 0 
OUT5 17 0 
OUT6 19 0 

WE 28 0 

CAS 
I 

27 0 

8203 

Table 1.'Pin Descriptions 

Name and Function 

Address Low: CPU address in-
puts used to generate memory 
row address. 

Address High: CPU address in-
puts used to generate memory 
column address. 

Bank Select Inputs: Used to 
gate the appropriate RAS output 
for a memory cycle. Bl/0Pl op-
tion used to select the Advanced 
Read Mode. (Not available in 
64K mode.) See Figure 5. 
When in 64K RAM Mode, pins 24 
and 25 operate as the AL 7 and 
AH7 address inputs. 

Protected Chip Select: Used to 
enable the memory read and 
write inputs, Once a cycle is 
started, it will not abort even if 
PCS goes inactive before cycle 
completion. 

Memory Write Request. 

Memory Read Request: S 1 
function used in Advanced Read 
mode selected by OPI (pin 25). 

External Refresh Request: ALE 
function used in Advanced Read 
mode, selected by OPI (pin 25). 

Output of the Multiplexer: 
These outputs are designed to 
drive the addresses of the Dy-
namic RAM array. (Note that the 
OUTO-7 pins do not require in-
,verters or drivers for proper op-
eration.) 

Write Enable: Drivea the Write 
Enable inputs of the Dynamic 
RAM array. 

Column Address Strobe: This 
output is used to latch tha Col-
umn Address into the Dynamic 
RAM array. 

6-92 

Pin 
Symbol No. Type Name and Function 

RASO 21 0 Row Address Strobe: Used to 
RASI 22 0 latch the Row Address into the 
RAS2/ 23 0 bank of dynamic RAMs. select-
OUT7 ed by the 8203 Bank Select pons 
RAS3/BO 26 I/O ' (BO, Bl/0Pl)· In 64K mode, 

only RASO and RASI are avail-
able; pin 23 operates as OUT 7 
and pin 26 operate!! as the BO 
bank select input. 

XACK 29 0 Transfer Acknowledge: This 
output is a strobe indicating val-
id data during a read cycle or 
data written during a write cycle. 
XACK can be used to latch valid 
data from the RAM amw 

SACK 30 0 System Acknowledge: This 
output indicates the beginning of 
a memory 'access cycle, It can 
be used' as an advanced trans-
fer acknowledge to eliminate 
wait states. (Note: If a memory 
access request is made during a 
refresh cycle, SACK is delayed 
until XACK in the memory ac-
cess cycle). 

XO/OP2 36 I/O Oscillator Inputs: These inputs 
Xl/CLK 37 I/O are designed for a quartz crystal 

to control the frequency of the 
oscillator. If XO/OP2 is shorted 
to pin 40 (VCC) or if XO/OP2 is 
connected to + 12V through a 
1 K{l resistor then XI/ CLK be-
comes a TTL input for an exter-
nal clock. (Note: Crystal mode 
for the 8203-1 and the 8203-3 
only). 

16K/64K 35 I Mode Select: This input selects 
16K mode (2117, 2118) or 64K 
mode (2164). Pins 23-26 
change function based on the 
mode of operation. 

VCC 40 Power Supply: +5V. 

GND 20 Ground. 

Functional Description 
The 8203 provides a complete dynamic RAM control­
ler for microprocessor systems as well as expansion 
memory boards. All of the necessary control signals. 
are provided for 2164,2118 and 2117 dynamic RAMs. 

The 8203 has two modes, one for 16K dynamic RAMs 
and one for 64Ks, controlled by pin 35. 

AFN-02144B 



8203 

,-- >Co WE 

I Cili 
cs* C 

1KU I .5% iiiIo 
I X, 
1_- Cs..L. 82OG-' !iii, or 

8801l T 82OG-3 
':" ±5'" I mz ...I 

':" !iii3 

cs < 'OpF 
im( 

FUNDAMENTAL XTAL iAl:K 

Figure 3. Crystal Operation for the 8203-1 and 
8203-3 

All 8203 timing is generated from a single reference clock. 
This clock is provided via an external oscillator or an on­
chip crystal oscillator. All output signal transitions are syn­
chronous with respect to this clock reference, except for 
the trailing edges of the CPU handshake signals SACK and 
XACK. 

CPU memory requests normally use tl1e RD and WR in­
puts. The Advanced-Read mode allows ALE and S 1 to be 
used in place of the RD input. 

Failsafe refresh is provided via an internal timer which gen­
erates refresh requests. Refresh requests can also be 
generated via the REFRQ input. 

An on-chip synchronizer I arbiter prevents memory and re­
fresh requests from affecting a cycle in progress. The 
READ, WRITE, and external REFRESH requests may be 
asynchronous to the 8203 clock; on-chip logic wHI syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending 'completion of a cycle in 
progress. 

16K/64K Option Selection 
Pin 35 is a strap input that controls the two 8203 modes. 
Figure 4 shows the .fdur pins that are multiplexed., In 16K 
mode (pin 35 tied to Vee or left open), .the 8203 has tWo 
Bank Select inputs to select one of four RAS outputs. In 
this mode,_the 8203 is exactly compatible with the Intel 
8202A Dynamic RAM Controller. In 64K mode (pin 35 tied 
to GND), there is only one Bank Select input (pin '26) to 
select the two RAS outputs. More than two banks of 64K 
c;lynamic RAM's can be used with external logic. 

D~scriptlon Pin # Normal Function 

Bl IOPl (16K only)1 AH7 25 Bank (RAS) Select 

Other Option Selections 
The 8203 has three strapping options. When OP1 is sa-. 
Iected (16K mode only), pin 32 changes from a RD input to 
an S1 input, and pin 34 changes from a REFRQ input to an 
ALE input. See "Refresh Cycles· and "Read Cycles· for 
more detail. OP1 Is selected by tying pin 25 to +12V 
through a 5.1 K ohm resistor on the 8203-1 or 8203-3 
only . 

When OP2 is selected, the internal oscillator is disabled 
and pin 37 changes from a: crystal input (X 1) to a ClK 
input for an external TTL clock. OP2 is selected by short­
ing pin 36 (XO/OP2) directly to pin 40 (Vcc). No current 
limiting resistor should be used. OP2 may also be selected 
by tying pin 36 to +12V through a 1Kn resistor. 

Refresh Timer 
The refresh timer is used to monitor the time since the last 
refresh cycle occurred. When the appropriate amount of 
time has eiapsed, the refresh tjmer will request a refr~sh 
cycle. External refresh requests will reset the refresh 
timer. 

Refresh Counter 
The refresh counter is used to sequentially refresh all of 
the memory's rows. The 8-bit co,unter is incremented after 
every refresh cycle. 

Pin tt 16K Function 64K Function 

23 RAS2 Address Output (OUT7) 
24 Bank Select (BO) Address Input (AL7) 
25 Bank Select (B 1) Address Input (AH7) 
26 RAS3 Bank Select (BO) 

Figure 4. 16K/64K Mode Selection 

Inputs Outputs 

B1 BO RA§o m1 m2RA§s 
0 0 0 1 1 1 

16K 0 I' 1 0 1 1 
M,ode 1 0 1 1 0 1 

1 1 1 1 1 0 

64K - 0 0 1 - -
Mode - 1 1 0 - -

Figure 5. Bank Selection 

Option Function 

Advanced-Read Mode (8203-1. -3) 

XO/OP2 36 Crystal Oscillator (8203·1 • and 8203-3) External Oscillator 

Figure 6. 8203 Option Selection 

6-93 AFN·02,44B 



8203 

Address Multiplexer 
The address multiplexer takes the address inputs and·the 
refresh counter outputs, and gates them onto the address 
outputs at the appropriate time. The address outputs, in 
conjunction with the RAS and CAS outputs, determine the 
address used by the dynamic RAMs for read, write, and 
refresh cycles. During the first part of a read or write cy­
cle, ALO-AL7 are gated to OUTO-OUT7, then AHO-AH7 
are gated to the address outputs. 

During' a refre.sh cycle, the refresh counter is gated onto 
the address outputs. All. refresh cycles are RAS-only re­
fresh (CAS inactiv!,!, RAS active). 

To minimiie buffer delay, the information on the address 
outputs is inverted from that on the address inputs. 

OUTO-OUT7 do not need inverters or buffers unless addi, 
tional drive is required. 

Synchronizer / Arbiter 
The 8203 has three inputs, REFRQI ALE (pin 34), RD (pin 
32) and WR (pin 31). The RD and wFi inputs allow an ex­
ternal CPU to request a memory read or write cycle, re­
spectively. The REFRQ I ALE input allows refresh requests 
to be requested external to the 8203. 

All three of these inputs may be asynchronous with re­
spect to the 8203's clock. The arbiter will resolve conflicts 
between refresh and memory requests, for both pending 
cycles,and cycles in progress. Read, and write requests 
will be given priority over refresh requests. 

System Operation 
The 8203 is always in one of the following states: 

a) IDLE 
b) TEST Cycle 
c) REFRESH Cycle 
d) READ Cycle 

. e) WRITE Cycle 

The 8203 is normally in the IDLE state. Whenever one of 
the other cycles is requested, the 8203 will leave the IDLE 
state to perform the desired cycle. If no other cycles are 
pending, the 8~03 will return to the IDLE state. ' 

Test Cycle 
The TEST Cycle is. used to check operation of several 
8203 internal functions. TEST cycies are requested by ac­
tivating the PCS, RD and WR inputs. The TEST Cycle will 
reset the refresh address counter and perform a WRITE 
Cycle. The TEST Cycle should not be used in normal sys­
tem operation, since it would atte'lt the dynamic RAM re­
fresh. 

6-94 

Refresh Cycles 
The 8293 has two ways of providing dynamic RAM 
refresh: . 

, 
1) Internal (failsafe) refresh 
2) External (hidden) refresh 

Both types of 8203 refresh cycles activate all of the RAS 
outputs, while CAS, WE, SACK, and XACK remain 
inactive. 

Internal refresh is generated by the on-chip refresh timer. 
The timer uses the 8203 clock to ensure that refresh of all 
rows of the dynamic RAM occurs every 2, milliseconds 
(128 cycles) or every 4 milliseconds (256 cycles). If 
REFRQ is inactive, the refresh timer will request a refresh 
cycle every 10-16 microseconds: 

External refresh is requested via the REFRQ input (pin 34). 
External refresh control is not available when the Ad­
vanced-Read mode is selected. External refresh requests 
are latched, then synchronized to the 8203 clock. 

The arbiter will allow the refresh request to start a refresh 
cycle only if the 8203 is not in the ~iddle of a cycle .. 

When the 8203 is in the idle state a simultaneous memory 
request and external refresh request will result in the mem­
ory request being honored first. This 8203 characteristic 
can be used to "hide" refresh cycles during system oper­
ation. A circuit similar to Figure 7 can be used to, decode 
tne CPU's instruction fetch status to generate an external 
refresn request. The refresh request is latched while the 
8203 performs the instruction fetch; the refresh cycle will 
start immediately after the memory cycle is completed, 
even if tlie RD input has not gone inactive. If the CPU's 
instruction decode time is lorig enough, the 8203 can com­
plete the refresh cycle before the next memory request is 
generated. 

If the 8203 is not in the idle state then a simultaneous mem­
ory request and an external refresh request may result in 
the refresh request being honored first. ' , 

Figure 7. Hidden Refresh 

AFN-02144B 



inter 8203 

Certain system configurations require complete external 
refresh requests. If external refresh is requested faster 
than the minimum internal refresh timer (tREF), then, in ef­
fect, all refresh cycles will be caused by the external re­
fresh request, and the internal refresh timer will never 
generate a refresh request. 

Read Cycles 
The 8203 can accept two different types of memory Read 
re<juests: 

1) Normal Read, via the RD input 
2) Advanced Read, using the Sl and ALE inputs (16K 

mode only) 

The user can select the desired Read request configura­
tion vi~ the B 1 / OP 1 hardware strapping option on pin 25. 

Normal Read Advanced Read 

Pin 25 Bl input OPI (+12V) 
Pin 32 RD input '81 input 
Pin 34 REFRQ input ALE input 
# RAM banks 4 (RAS 0.3) 2 (RAS 2-3) 
Ext. Refresh Yes No 

F!gure 8. 8203 Read Options 

Normal Reads are requested by activating the RD input, 
and keeping it active until the 8203 responds with an 
XACK pulse. The RD input can go inactive as soon as the 
command hold time (tCHS) is met. 

Advanced Read cycles are requested by pulsing ALE 
while S r is active; if S 1 is inactive (low) ALE is ignored. 
Advanced Read timing is similiar to Normal Read timing, 
except the falling edge of ALE is used as the cycle start 
reference. 

If a Read cycle is requested while a refresh cycle is in 
progress, then the 8203 will set the internal delayed­
SACK latch. When the Read cycle is eventually started, 
the B203 will delay the active SACK transition until XACK 
goes active,. as sl'lown in tbe AC timing diagrams. This de­
lay was designed to compensate for the CPU's READY 
setup and hold times. The delayed-SACK latch is cleared 
after every READ cycle. 

Based on system requirements, either SACK or XACK can 
be used to generate the CPU READY signal. XACK will 
normally be used; if the CPU can tolerate an advanced 
READY, then SACK can be used, but only if the CPU can 
tolerate the amount of advance provided by SACK. If. 
SACK arrives too early to provide the appropriate number 

,; of WAIT states, then either XACK or a delayed form of 
SACK should be used. 

.6-95 

Write Cycles 
Write cycles are similiar to Normal Read cycles, except 
for the WE output. WE is held inactive for Read cycles, but 
goes active for Write cycles. All 8203 Write .cycles are 
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamic 
RAM output buffers turned off. 

General System Considerations 
All memory requests (Normal Reads, Advanced Reads, 
Writes) are qualified by the PCS input. PCS should be sta­
ble, either active or inactive, prior to the leading edge of 
RD, WR, or ALE. Systems which use battery backup 
should pullup PCS to prevent erroneous memory requests. 

In order to minimize propagation delay, the 8203 uses an 
inverting address multiplexer without latches. The system 
must provide adequate address setup and hold times to 
guarantee RAS and CAS setup and hold times for the 
RAM. The tAD AC parameter should be used for this sys­
tem calculation. 

The Bo-B1 inputs are similiar to the address inputs in that 
they are not latched. Bo and B1 should not be changed 
during a memory cycle, since they directly control which 
RA'!:l output is activated. 

The 8203 uses a two-stage synchronizer for the memory 
request inputs (RD, WR, ALE), and a separate two stage 
synchronizer for the external refresh input (REFRQ). As 
with any synchronizer, there is always a finite probability 
of metastable states inducing system errors. The 8203 
synchronizer was designed to have a system error rate 
less than 1 memory cycle every three years based on the 
full operating range of the 8203. 

A microprocessor system is concerned when the data is 
valid after RD goes low. See Figure 9. In order to calculate 
memory read access times, the dynamic RAM's A.C. 
specifications must be examined, especially the RAS-ac­
cess time (tFlAC) and the CAS-access time (tCAC). Most 
configurations will be CAS-access limited; I.e., the data 
from the RAM will be stable tcc,max (8203) + tCAC 
(RAM) after a memory read cycle is started. Be sure to 
add any delays (due to buffers, data latches, etc.) to cal­
culate the overall read access time. 

Since the 8203 normally performs "early-write" cycles, 
the data rnust be stable at the RAM data inputs by the time 
CAS goes active, including the RAM's data setup time. If 
the system does not normally guarantee sufficient write 
data setup, you must either delay the WR input signal or 
delay the 8203 WE output. 

Delaying the WR input will delay all 8203 timing, including 
the READY handshake Signals, SACK and XACK, which 

AFN-02144B 



inter 

RD~~_---,.----,r 
I I 
,",I ._---'tRLDV .1 
I I 

DATA------« S-
I I 
'-tRAC--l 
t I 

'\ i / 
I 

~ 
CAS-------.... \ I / 

Figure 9. Read Access Time 

Aa-15 ALO-6 OUT0-6 

~ 
AHO-6 

ALE 80-1 

8068 
8203 

(16K MODE) WE 
ADO_7 CAS 

RD 

~ 
RD!S1 RASa 

WR WR 

RA$1 

~ -< 
RAS2 

SACK RAS3 
XACK 

'---

~s';- J1 

DATA BUS DATA IN V 
, LATCH, 1\ 

L--- 'l 

8203 

may increase the number of WAIT states generated by the 
CPU. 

If the WE; outPllt is externally delayed beyond the CAS.ac­
tive transition, then the RAM wi!! use the falling edge of WE 
to strobe the write data into the RAM. This WE transition 
should not occur too late during the CAS active transition, 
or else the WE to CAS requirements of the RAM will notbe 
met. 

The RASo-3, CAS, OUTO-7' and WE outputs contain on­
chip series damping resistors (typically 20m to minimize 
overshoot. 

Some dynamic RAMs require more than 2.4V V,H. Noise 
immunity may be improved for these ,RAMs by adding pull­
up resistors to the 8203's outputs. Intel RAMs do not re­
quire pull-up resistors. 

2118 
DYNAMIC RAM ARRAY -
+ 

Ao-. r' 
DIN 

DouT 

~ 
WE 
CAS Ll r- RAS 
DtN DoUT 

1 
w... 

+ 
AO-6 

r' 
DIN 

~ 
WE ~ 
CAS 1 f---o RAS 
DINOOUT 

i t 1 
~ Ao-. 

8AL 

L 
" 

D,N 
DOUT 

~ 
WE 0 CAS -

f---o RAS 
DINOOUT A 
TT. 

8AL 

L...., 
AO-6 --,I 

DIN' 

....=::::: WE }N 
D'N' Dour ~T 

CAS DIN otH DOUT Dour 

RAS ' "'" DOUT 
DOUT 

OOUT 

1 
DIN DouT 

1 1 TT ~ 

, 

, 

Figure 10. Typical 8088 System 

6-96 AFN-02t448 



inter 8203 

MULTIIUS!A 
TYPE 

SYSTEII .... 
8 ... READ IIIIDC ..A. 

WRITE MWTC 

8088 
HIGH 8Y'11! , &HEN WRITE ...... 

'"'1'" IiASx MEMORY 
OTHER 

ADo-AD1S A""F A16-A19 
REAOV IIi£ INPUTS .... 

288K 
8.,D 

6G-I5 
DATA DI ,. 

" 

• 

/ Figure 11. 8086/256K Byte System 

6-97 AFN-021448 



8203 

ABSOLUTE MAXIMUM RATINGS· . 

Ambient Temperature Under Bias ............ O·C to 70·C 
Stc:irage Temperature ................ -65·C to +l50·C 
Voltage On any Pin 

With Respect to Ground ................ -0.5V to + 7V4 
Power Dissipation ............................ 1.6 Watts 

/ 

'NOTE: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent damage to the device. 
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above tllose indicated in 
the operational sections of this specification Is not implied. 
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability. 

D.C. CHARACTERISTICS T A .. O·C to 70·C· VCC - 50V ± 10% (5 OV ± 5% for 8203-3)' GND - OV , , 

Symbol Parameter . Min Max Units T .. tCondlUona 

Vc Input Clamp Voltage -1.0 V Ic=-5mA 

ICC Power Supply Current 290 mA 

IF Forward Input Current 
ClK, 64K/16K Mode select -2.0 mA VF" O.45V 
All Other Inputs3 -320 /'A VF" 0.45V 

IR Reverse Input Current3 40 /JA VR = VCC; Note 1 

VOL Output low Voltage 
~,XACK 0.45 V IOl=5mA 
All Other Outputs 0.45 V 10l" 3mA 

VOH Output High Voltage Vil" 0.65 V 
~,~ 2.4 V .IOH" -1 mA 
All Other Outputs 2.6 V 10H=.-1 mA 

Vil Input low Voltage 0.8 V VCC .. 5.0V (Note 2) 

VIHl Input High Voltage 2.0 VCC V VCC" 5.0V 

VIH2 Option Voltage Vce V (Note 4) 

F=lMHz 

CIN Input Capacitance 30 pF VBIAS = 2.SV, VCC = SV 
TA" 2S·C 

NOTES: 
1. IR .. 200 ,.A lor pin 37 (elK). 
2. For teal mode Ri5 & WR musI be held at GND. 
3. Excepllor pin 38 In XTAl mode. 
4. 82<Xhl and 9203-3 supports bolh OPt and OP2, 9203 only supports OP2. 

+12 Volt 5.1KO 25 
±10% 

op, 

8203 

lK III 
01':1 

AeeIItoI Tolerance: ± 5% 

'6-98 



inter 8203 

A.C. CHARACTERISTICS 
TJ = o·c to 70·C; VCC = 5V ± 10% (5.0V ± 5% for 8203-3); GND '" OV 

Measurements made with respect to FUrno-FUrn3' CA§, WE, 0U'f0-0U'f6 are at 2.4V and 0.8V. All 
other pins are measured at 1.5V. All time!! are in nsec. 

Symbol Parameter Min Max 

tp Clock Period 40 54 

tpH External Clock High Time 20 

tPL External Clock Low Time-above (» 20 mHz 17 

tPL External Clock Low Time-below (:$) 20 mHz 20 

tRC Memory Cycle Time IOtp - 30 12tp 

tREF Refresh Time (128 cycles) 264tp 288tp 

tRP RAS Precharge Time 4tp - 30 

tRSH RAS Hold After CAS 5tp - 30 

tASR Address Setup to RAS tp - 30 

tRAH Address Hold From RAS tp - 10 

tASC Address Setup to CAS tp - 30 

tCAH Address Hold from CAS 5tp - 20 

tCAS CAS Pulse Width 5tp - 10 

t*CS WE Setup to CAS tp - 40 

tWCH WE Hold After CAS 5tp - 35 

tRS RD, WR, ALE, REFRQ delay from RAS 51p 

tMRP RD, WR setup to R7iS 0 

tRMS REFRQ setup to RD, WR 2tp 

tRMP REFRQ setup to RAS 2tp 

tpcs pes Setup to RD, WR, ALE 20 

tAL S 1 Setup to ALE 15 

tLA S 1 Hold from ALE 30 

tCR RD, WR, ALE to RAS Delay tp + 30 2tp + 70 

tcc RD, WR, ALE to CAS Delay 3tp + 25 4tp + 85 

tsc CMD Setup to Clock 15 

tMRS RD, WR setup to REFRQ 5 

tCA RD, WR, ALE to SACK Delay 2tp + 47 

ICX CAS to XACK Delay 5tp - 25 5tp + 20 

ICS CAS to SACK Delay 5tp - 25 5tp + 40 

tACK XACK to CAS Setup 10 

txw XACK Pulse Width tp - 25 

tCK SACK, XACK turn-off Delay 35 

tKCH CMD Inactive Hold after SACK, XACK 10 

tLL REFRQ Pul!!e Width 20 

tCHS CMD Hold Time 30 

tRFR REFRQ to RAS Delay 4tp + 100 

tww WR to WE Delay 0 50 

tAD CPU Address Delay 0 40 

6-99 

Note. 

4, 5 

3 

3 

3 

3 

3 

8 

2,6 

5 

6 

5 

2 

2 

1 

2 

2,9 

2, 10 

7 

11 

6 

8 

3 



inter 8203 

WAVEFORMS 
Normal Read or Write Cycle 

JIII,-

Advanced Read Mode 

6-100 



inter 8203 

WAVEFORMS (cont'd) 
Read or Write Followed By External Refresh 

REFRQ 

~-------------'~-------------I 

I.-------~~--------·~ 

I.-_______ ~~-------+~~---J 

External Refresh Followed By Read or Write 

- - -l::::::-=--=--=--.-MIIP----:-----------------t,-I-------------
REFRQ 

-Ill 

IRS ~I~'o------_ 

6-101 

\-----

AFN.Q21448 



intJ 

WAVEFORMS (cont'd) 
Clock And System Timing 

Table 2. 8203 Output Loading. 
All specifications are 
for the Test Load un­
less otherwise' noted. 

Pin Test Load 
SACK.XACK Cl=30pF 
OUTo-OUT6 Cl = 160 pF 
RASO-RAS3 CL=60pF 
WE CL = 224 pF 
CAS CL = 320 pF 

NOTES: 
1. tsc is a reference point only. ALE. RD. WR. and REFRQ inputs do 

not have to be externally synchronized to 8203 clock, 
2, If IRS min and 'MRS min are mellhen ICA.ICR. and ICC are valid. 

olherwise tcs is valid, 
3, IASR. IRAH. IASC. ICAH. and IRSH depend upon 80-8 1 and CPU 

address remaining slable throughout the memory cycle, The ad· 
dress inputs are not latched by Ihe 8203, 

4, For back·lo·back refresh cycles. tRC max = 131p 
5, IRC max Is valid only if IRMP min is met (READ. WRITE followed 

by REFRESH) or IMRP min is met (REFRESH followed by READ. 
WRITE), 

6, tRFR is valid only if IRS min and tRMS min are met. 
7, txw mm applies when RD. WR has already gone high, Otherwise 

XACK fOllows RD. WA-
8, WE goes high according to tWCH or tWW. whichever occurs 

lirst. 

8203 

6-102 

A.C. TESTING LOAD CIRCUIT 

DeVICE 
UNDER 
TEST 

NOTE: CL Includes Jig capacitance 

9, tCA applies only when in normal SACK mode,de, 
10, tcs applies only when in delayed SACK mode, 
11, tCHS must be be met only to ensure a SACK active pulse 

when in delayed SACK mode, XACK will always be activated 
for at least txw (tp-25 nS), Violating tCHS min does not 
otherwise affect device operation, 

AFN-<l2144B 



8203 

The typical rising and falling characteristic curves for the 
OUT, RAS, CAS and WE output buffers can be used to 
determine the effects of capacitive loading on the A.C. 

Timing Parameters. Using this design tool in conjunction 
with the timing waveforms, the designer can determine 
typical timing shifts based on system capacit,ive load. 

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS 

•. Or-____ -, ______ ;-______ r_----~------~----_,------_r------r_----CA_,M-C~IU-N-C-I·~.~ 

o .• I---+-~~IIjE3illIIiiiIi~~-_+-.;...._+--_4---t__--+_--+_--_I 

O.O~----~------;-------~----~------~-----J-------L------~----_7------~ 

~.n.~ TIME 

•. Or------,------;-------r_----~------~----_,------_r------r_----C-ATAA-C-I~-N-C-E~:Pf 

NOTE: MEASUREMENT CONDITIONS: 
Use the Test Load as the base capacitance for estimating timing 
shifts for system critical timing parameters. 

TA = 25°C 
VCC = +5V 
tp=50ns 

Pins not measured are loaded with 
the Test Load capacitance 

6-103 



/ 

8203 

Example: Find the effect on tCR and tcc using 32 2164 
Dynamic RAMs configured in 2 banks. 

1. Determine the typical RAS and CAS capacitance: 
From the riata sheet RAS = 5 pF and CAS = 5 pF. 

RAS.load = 80 pF + board capacitance. 
CAS Joad = 160 pF + board capacitance. 
Assume 2 pF/in (trace length) for boardcapaci­
tance and for this example 4 inches for RAS and 
8 inches for CAS. 

2. From the waveform diagrams, we determinethet the 
faUing edge timing is needed for tCR and tCC. Next find 
the curve that best approximates the test load; I.e., 
68 pF for RAS and 330 pF for CAS. 

3. If we use 88 pF for RAS loading, then tCR (min.) spec 
should be increased by about 1 ns, and tCR (max.) 
spec should be increased by about 2 ns. Similarly if we 
use 176 pF for CAS, then tcc (min.) should decrease 
by 3 ns and tcc (max.) should decrease by about 7 ns. 

6-104 AFN-021448 



WAVEFORMS (cont'd) 
Memory Compatibility Timing 

ALa-ALe. VAUD ADORESS 

8203 

80_81~ t 
AHo-AIi<; ---------.....,--------- ------.....,-------

-~- :AI:-

1\ 
lASH 

I 
teAS 

~ V 
I--'ASR-- I-.... H-

!-iASC _ _ teAH_ 

~ ROW X COLUMN K 

Write Cycle Timing 

\ I 
~ J 

.1 
~~4 

--~~--... - 'ww -IIAX 

\ I 'ww ---y IIIN 
'j . 

... twcs ....... 'WCH . 
ICC 
MIN 

. tec 
IIAX 

6-105 AFN.02144B 



82C03 
CMOS 64K DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to NMOS 
(2164A) and CMOS Control (51 C64) 64K 
Dynamic Memories 

• Directly Addresses and Drives Up to 64 
Devices Without External Drivers 

• Provides Address Multiplexing and 
Strobes 

• Provides a Refresh Timer and a Refresh 
Counter 

• Provides Refresh/ Access Arbitration 

• Internal Clock Capability 

• Provid~s System Acknowledge and Trans­
fer Acknowledge Signals 

• Refresh Cycles May be Internally or Exter­
nally Requested (For Transparent Refresh) 

• Internal Series Damping Resistors on All 
RAM Outputs 

The Intel® 82C03 is a CMOS Dynamic Ram System Controller designed to provide all signals necessary to use 
51C64 CMOS Dynamic RAMs in microcomputer systems. The 82C03 provides multiplexed addresses and address 
strobes, refresh logic, refresh/access arbitration. Refresh cycles can be started internally or externally. The 82C03 
supports an internal crystal oscillator. 

coo._ ....... 

• ow - ... .. 

Figure 1. 82C03 Block Diagram 

.... 
lID, .... .... 
51 .. 
..... 
..... 

..... 
AH' AH. 
AH, 

.... 
ilU'fo 

AL, 

OOf, 

AL • 

00f. 
AL, 

OOf, 

.... 

!!Of, 
AL, 

!!Of, .... 

Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Circuit Patent Licenses are Implied. 
@INTELCORPORATION. 1982 'OCTOBER 1983 

, 6-106 ORDEA NUMBEA: 21044-G02 



Pin 
Symbol No. Type 

ALa 6 I 
ALI 8 I 
AL2 10 I 
AL3 12 I 
AL4 14 I 
AL5 16 I 
AL6 18 I 

AHa 5 I 
AHI 4 I 
AH2 3 I 
AH3 2 I 
AH4 1 I 
AH5 39 I 
AHa 38 I 

BO/AL7 24 I 
Bl/ 0P 1/ 25 I 
AH7 

PCS 33 I 

WR 31 I 

RD/Sl 32 I 

REFRQ/ 34 I 
ALE 

OUTO 7 0 
OUTI 9 0 
OUT2 11 0 
OUT3 13 0 
OUT4 15 0 
OUT5 17 0 
OUT6 19 0 

WE 28 0 

CAS 27 0 

82C03 

Table 1. Pin Descriptions 

Name and Function 

Address Low: CPU address in· 
puts used to generate memory 
row address. 

Address High: CPU address in· 
puts used to generate memory 
column address. 

Bank Select Inputs: Used to 
gate the appropriate RAS output 
for a memory cycle. Bl /OPI op' 
tion used to select the Advanced 
Read Mode. (Not available in 
64K mode.) See Figure 5. 
When in 64K RAM Mode, pins 24 
and 25 operate as the AL 7 and 
AH7 address inputs. 

Protected Chip Select: Used to 
enable the memory read and 
write inputs'. Once a cycle is 
started, it will not abort even if 
PCS goes inactive before cycle 
completion. 

Memory Write Request. 

Memory Read Request: SI 
function used in Advanced Read 
mode selected by OP 1 (pin 25). 

External Refresh Request: ALE 
function used in Advanced Read 
mode, selected by OPI (pin 25). 

Output of the Multiplexer: 
These outputs are designed to 
drive the addresses of the Dy· 
namic RAM array. (Note that the 
OUTO.7 pins do not require in· 
verters or drivers for proper op· 
eration.) 

Write Enable: Drives the Write 
Enable inputs of the Dynamic 
RAM array. 

Column Address Strobe: This 
output is used to latch the Col· 
umn Address into the Dynamic 
RAM array. 

Pin 
Symbol No. Type Name and Function 

RASa 21 0 Row Address Strobe: Used to 
RASI 22 0 latch the Row Address into the 
RAS2/ 23 0 bank of dynamic RAMs, select· 
OUT7 ed by the 8203 Bank Select pins 
RAS3/BO 26 I/O (BO, Bl /OP1)' In 64K mode, 

only RASa and RAS 1 are avail· 
able; pin 23 operates as OUT7 
and pin 26 operates as the BO 
bank select input. 

XACK 29 0 Transfer Acknowledge: This 
output is a strobe indicating val· 
id data during a read cycle or 
data written during a write cycle. 
XACK can be used to latch valid 
data from the RAM array. 

SACK 30 0 System Acknowledge: This 
output indicates the beginning of 
a memory access cycle. It can 
be used as an 'advanced trans· 
fer acknowledge to eliminate 
wait states. (Note: If a memory 
access request·is made during a 
refresh cycle, SACK is delayed 
until XACK in the memory ac· 
cess cycle). 

XO/OP2 36 I/O Oscillator Inputs: These inputs 

Xl/ ClK 37 I/O are deSigned for a quartz crystal 
to control the frequency of the 
oscillator. If XO/OP2 is left open 
then Xl/CLK becomes a TTL in-
put for an external clock. (Note: 
Crystal mode for the 82C03-1 
only). 

16K/64K 35 I Mode Select: This input selects 
16K mode (2117, 2118) or 64K 
mode (2164). Pins 23-26 
change function based on the 
mode of operation. 

VCC 40 Power Supply: +5V. 

GND 20 Ground. 

Functional Description 
The 82C03 provides a complete dynamic RAM control­
ler for microprocessor systems as well as expansion 
memory boards. All of the necessary control signals 
are provided for 2164A and 51 C64 64K dynamic RAMs. 
As well as 16K dynamic RAMs. 

The 82C03 has two modes, one for 16K dynamic RAMs 
and one for 64Ks, controlled by pin 35. 

6-107 . AFN-02144B 



intel 82C03 

1----,..-; Xo 

Cs "_ 10pF 

FUNDAMENTAL XTAl 

x, 

82C03-' 

--_ .... __ ._._-- '::::======~--~-
Figure 3. Crystal Operation for the 82C03-1 

All 8203 timing is generated from a single reference clock. 
This clock is provided via an external oscillator or an on­
chip crystal oscillator. All output signal transitions are syn­
chronous with respect to this clock reference. except for 
the trailing edges of the CPU handshake signals SACK and 
XACK. 

CPU memory requests normally use the RD and WR in­
puts. The Advanced-Read mode allows ALE and S 1 to be 
used in place of the RD input. 

Failsafe refresh is provided via an internal timer which gen­
erates refresh requests.· Refresh requests can also be 
generated vi$! the REFRQ input. 

An on-chip synchronizer/arbiter prevents memory and 
refresh requests from affecting a cycle in progress. The 
READ, WRITE. and external REFRESH requests may 
be asynchronous to the 82C03 clock; on-Chip logic will 
synchronize the requests. and the arbiter will decide if 
the requests should be delayed. pending completion of 
a cycle in progress. 

16K/ 64K Option Selection 
Plin 35 is a strap input that controls the two 82C03 
modes. Figure 4 shows the four pins that are multi­
plexed. In 16K mode (pin 35 tied to VCC or left open). 
the 82C03 has two Bank Select inputs to select one of 
four RAS outputs. In this mode. the 82C03 is exactly 
compatible with the Intel 8202A Dynamic RAM Con­
troller. In 64K mode (pin 35 tied to GND). there is only 
one Bank Select input (pin 26) to select the two RAS 
outputs. More than two banks of 64K dynamic RAM's 
can be used with external logic. ' 

Other Option Selections 
The 82C03 has three strapping options. When OP1 is 
selected (16K mode only). pin 32 changes from am 
inputto an Sl input, and pin 34 changes from a REFRQ 
input to an ALE input. See "Refresh Cycles" and "Read 
Cycles" for more detail. OP1 is selected by tying pin 25 
to +12V through a 5.1 K ohm resistor. 

When OP2 is selected. the internal oscillator isdisabled 
and pin 37 changes from a crystal input (Xl) to a ClK 
input for an external TTL clock. OP2 is selected' by 
leaving pin 36 (Xo/0P2) open. 

Refresh Timer 
The refr~sh timer is used to monitor the time since the last 
refresh cycle occurred. When the appropriate amount of 
time has elapsed. the refresh timer will request a refresh 
cycle. External refresh requests will reset the refresh 
timer. 

Refresh Counter 
The refresh counter is used to sequentially refresh all of 
the memory's rows. The 8-bit counter is incremented after 
every refresh cycle. 

Pin # 16K Functicm 64K Function 

23 RAS2 Address Output (OUT?) 

24 Bank Select (B6) Address Input (AL 7) 

25 Bank Select (Bl) Address Input (AH7) 
26 RAS3 Bank Select (BO) 

Figure 4. 16K/64K Mode Selection 

Inputs Outputs 

B1 BO RASO RAS1 RAS2 RAS3 

a a a 1 1 1 
16K a 1 1 a 1 1 
Mode 1 a 1 1 a 1 

1 1 1 1 1 a 
64K ~ a a 1 - -
Mode - 1 1 a - -

Figure 5 .. Bank Selection 

[[)escriPtion Pin # TNormal Functio_n ______ ~+-_O-'-P_ti_o_·n __ F_u_n_c_ti_d_n _____ _l 

t--_B __ 1._' O_P_l_('--1_6K_On_ly=--)_I __ A_H7'-t ___ ._-+~B-ank (RAS) Select Advanced-Read Mode 

XOIOP2 Crystal Oscillator Extern-alOsclilator 

Figure 6. 8203 Option Selection 

6-108 AFN-02144B 



82C03 

Address Multiplexer 
The address multiplexer takes the address inputs and the 
~efresh counter outputs, and gates them onto the address 
outputs at the appropriate time. The address outputs, in 
conjunction with the RAS and CAS outputs, determine the 
address used by the dynamic RAMs for read, write, and 
refresh cycles. During the first part of a read or write cy­
cle, ALo-AL7 are gated to OUTO-0iJT7, then AHO-AH7 
are gated to the address outputs. 

During a refresh cycle, the refresh counter is gated onto 
the address outputs. All refresh cycles are RA8-0nly re­
fresh (CAS inactive, RAS active). 

To minimize buffer delay, the information on the address 
outputs is inverted from that on the address inputs. 

OUTO-OUT 7 do not need inverters or buffers unless addi-
tional drive is required. ' 

Synchronizer / Arbiter 
The 82C03 has three inputs, REFRQ/ALE (pin 34), RO 
(pin 32) and WR (pin 31). The RO and WR inputs allow 
an external CPU to request a memory read or write 
cycle, respectively. The REFRQ/ALE input allows 
refresh requests to be requested external to the 82C03. 

All three of these inputs may be asynchronous with 
respect to the 82C03's clock. The arbiter will resolve 
conflicts between refresh and memory requests, for 
both pending cycles and cycles in progress. Read and 
writereqliests will be given priority over refresh 
requests. 

System Opera~ion , 
The 82C03 is always in one of the following states; 

a) IDLE 
b) TEST Cycle 
c) REFRESH Cycle 
d) READ Cycle 
e) WRITE Cycle 

The 82C03 is normally in the I OLE state. Whenever one 
ofthe other cycles is requested, the 82C03 will leave the 

,IDLE state to perform the desired cycle. If no other 
cycles are pending, the 82C03 will return to the IDLE 
state. 

Test Cycle 
The TESJ CyCle is used to check operation of several 
82C03 internal functions. TEST cycles are requested 
by activating the PCS, AD and WR inputs. The TEST 
Cycle will reset the refresh address counter and per­
form a WRITE Cycle. The TEST Cycle should not be 
uSed ih normal systen\ operation, since it would affect 
the dynamic RAM refresh. ' , 

Refresh Cycles 
The 82C03 has two ways of providing dynamic RAM 
refresh: 

1) Internal (failsafe) refresh 
2) External (hidden) refresh 

Both types of 82C03 refresh cycles activate all of the 
RAS ouputs, while CAS, WE, SACK, and XACK remain 
inactive. 

Internal refresh is generated by the on-chip refresh 
timer. The timer uses the 82C03 clock to ensure that 
refresh of all rows of the dynamiC RAM occurs every 2 
milliseconds (128 cycles) or every 4 milliseconds (256 
cycles). If REFRQ is inactive, the refresh timer will 
request a refresh cycle every 10-16 microseconds. 

External refresh is requested via the,REFRQ input (pin 
34). External refresh control is not available when the 
Advanced-Read mode is selected. External refresh 
requests are latched, then synchronized to the 82C03 
clock. 

The arpiter will allow the refresh request to start a 
refresh cycle only if.the 82C03 is not in the middle of a 
cycl~. 

When the 82C03 is in the idle state a simultaneous 
memory request and external refresh request will result 
in the memory request bei ng honored first. This 82C03 
characteristic can be used to "hide" refresh cycles dur­
ing system operation. A circuit similiar to Figure 7 can 
be used to decode the CPU's instruction fetch status to 
generate an external refresh request. The refresh 
request is latched while the 82C03 performs the 
instruction fetch; the refresh cycle will start imme­
diately after the memory cycle is completed, even ifthe 
RO input has not gone inactive. If the CPU's in$truction 
decode time is long enough, the 82C03 can complete 
the refresh cycle before the next memory request is 
generated. 

If the 82C03 is not in the idle state then a simultaneous 
memory request and an external refresh request may 
result in the refresh request being honored first.· 

_:~r---.. -~. 
CiS 

Figure' 7. Hlc:lden Refresh 

6-109 AFfIHI2144B 



82C03 

Certain systf3m configurations require complete' external 
refresh requests. If external refresh is requested faster 
than the minimum internal refresh timer (tREF), then, in ef­
fect, all refresh cycles will be caused by the external re­
fresh request, and the internal refresh timer will never 
generate a refresh request. 

Read Cycles 
The 82C03 can accept two different types of memory 
Read requests: 

1) Normal Read, via the RD input 
2) Advanced Read, using the S1 and ALE inputs (16K 

mode only) 

The user can select the desired Read request configura­
tion via the ~ 11 OP 1 hardware strapping option on pin 25. 

Normal Read Advanced Read' 

lj'in,25 81 Input OPI (+12V) 
Pin 32 RD Input SI Input 
Pin 34 REFRQ input ALE Input 
# RAM banks 4 (RAS 0'3) 2 (RAS 2-3) 
Ext. Refresh Yes No 

Figure 8. 82C03 Read Options 

Normal Reads are requested by activating the RD 
input, and keeping it active until the 82C03 responds 
with an XACK pulse. The RD input can go inactive as 

_soon as the command hold time (tCHS) iS,met. 

Advanced Read cycles are requested by pulsing ALE 
while S1 is active; if S1 is inactive (low) ALE is ignored. 
Advanced Read timing is similiar to Normal Read timing, 
except the falling edge of ALE is used as the cycle start 
reference. 

If a Read cycle is requested while a refresh cycle is in 
progress, then the 82C03 will set the internal delayed­
SACK latch. When the Read cycle is eventuallY started, 
the 82C03 will delay the active SACK transition until 
XACK goes active, as shown in the AC timing diagrams. 
This delay was designed to compensate for the CPU's 
READY setup a,nd hold times. The delayed-SACK latc'h 
'is cleared after every READ cycle. ' 

Based on system requirements, either SACK or XACK can 
be used to generate the CPU READY signal. XACK will 
normally be used; if the CPU can tolerate an advanced 
READY. then SAa< can be used, but only if the CPU can 
tolerate the amount of advance provided by SACK. If 
'SACK arrives too early to provicle the appropriate number 
of WAIT states, """ either XAC;K ora delayed form of 
SAa< should be used. 

Write Cycles 
Write cycles are similiar to Normal Read cycles, except 
for the WE output. WE is held inactive for Read cycles, 
but goes active tor Write cycles. All ~2C03 Write cycles 
are "early-write" cycles; WE goes active before CAS 
goes active by an amount of time'sufficient to keep the 
dynamic RAM output buffers turned off. \ 

General System Considerations 
All memory requests (Normal Reads, Advanced Reads, 
Writes) are qualified by the PeS input. PCS should be sta­
ble, either active or inactive, prior to the leading edge of 
RD, WR, or ALE. Systems which use battery backup 
should pullup PCS to prevent erroneous memory requests. 

In order to minimize propagation delay, the 82C03 uses 
I!-n inverting address multiplexer without latches. The 
system must provide adequate address setup and hold 
times to guarantee RAS and CAS setup and hold times 
for the RAM. The tADACparacmeter should be used for 
this system calculation. . 

The Bo-B 1 inputs are similiar to the address inputs in that 
they are not latched. Be and B 1 should not be changed 
during a memory cycle, since they directly 'control which 
RAS output is activated. 

1he 82C03 uses a two-stage synchronizer for the 
memory request inputs (RD, iNA, ALE), and a separate 
two stage synchronizer for the external refresh input 
(REFRQ). As with any synchronizer, there is always a 
finite probability of metastable states inducing system 
errors. The 82C03 synchronizer was designed to have a 
system error rate less than 1 memory cycle every three 
years based on the full operating range of the 82C03. 

A microprocessor system is concerned when the data 
is valid after RD goes low. See Figure 9. In order to 
calculate memory read access times, the dynamic 
RAM's A.C. specifications must be examined, espe­
cially the RAS-access time (tRAC) and the CAS-access 

• time (tCAC)' Most configurations will be CAS.!.access 
limited; I.e., the data from the RAM will be stable tcc, 
max (82C03) + tcc (RAM) after a memory read cycle is, 
started. Be sure to add any delays (due to buffers, data 
latches, etc.) to calculate the overall read access time. 

Since the 82C03 normally performs "early-write" cycles, 
the data must be stable at RAIYI data inputs by the time 
GAS goes active, including the RAM's"data setup tir:ne. 
If, the system does not normaUy guarantee sufficient 
write data setup" you must either delay the WR input 
signal or delay the 82C03 WE output., ,,' ' 

'," \! I, ' 

Delaying the WRinput will ,delay ail 82Cp3 timi~g, 
including the READY handshake signals~ SACK and 

6-110 AfN.Q2144B 



RD~ I , '-________ :--, ___ ..J 

i-!.o-----tRLDv • : 

DATA-----~( B-
, ' 

8OS8 

*--'tRAC~ , , 

'l 1 / , 
I tCAC I 
'---+1 

'\ i'/ 
Figure 9. Read Access Time 

AS-1S ALO-6 OUTO-6 

~ 
AHO-6 

ALE 80-1 
82C03 

(16K MODE) WE 
ADO-7 CAS 

RD 
~ 

RD/S, RASa 

WR WR 

RAS, g::-
-1 

RAS2 
SACK RAS3 

XACK 

-

~A 
DATA V DATA BUS 
LATCH IN r'\. 

~ 
'---

82C03 

XACK, which may increase the number of WAIT states 
generated by the CPU. 

If the WE output is externally delayed beyond the CAS ac· 
tive transition, then the RAM will use the falling edge of WE 
to strobe the write data into the RAM. This WE transition 
should not occur too late during the CAS active transition, 
or else the WE to CAS requirements of the RAM will not be 
met. 

The RASO-3, CAS, OUTO-7' and WE outputs contain on­
chip series damping resistors ,(typically 20m to minimize 
overshoot. 

Some dynamic RAMs require more than 2.4V VIH' 
Noise immunity may be improved for these RAMs by 
adding pull-up resistors to the 82Q03's output. Intel 
RAMs do not require pull-up resistors. 

16K DYNAMIC RAM ARRAY -----' 

----" 

+ r>" AO-S 

D'N 
DOUT 

~ WE 
CAS Ll f---. RAS 
DIN DOUT 

1 

~ + 
AO-6 

D'N 

~ WE DOUT 

CAS 1 f---. RAS 
DIN DOUT -n ----I: 

+ 
~ AO-6 

D'N 

_WE ~ 
_ CAS 1...1 e---. RAS n 

, BAL ~ AO-6 

DtN 

~ WE D'N 
D'N DoUT ~T 

DtN ,I DoUT 
CAS D'N DIN DOUT Dour 
RAS DOUT 

DT 1 
1 

DIN Dour 

1" "T ! 

\ 

Figure 10. Typical 8088 System 

6-111 AFIIo02144B 



infel" 82C03 

MULTIBUS" 
TYPE 

I. 
SYSTEM 

aus 
82C84A 82ea8 READ 1 MRDe READ 

WRITE MWTC 1 WRITE 
- • CMOS 

~ [-£ :'-
82C86 HIGH BYTE 

BHEN WRITE 
ADRO 

1 "'lRI 
A17-A19 

ADO-AD15 
OTHER A16-A19 I ADRF 
AEADY aHE INPUTS 

1 51eM 

1 "OK 
BYTES 

1 
00-15 I 

DATA DI 

16 

DATA 
00-15 

Figure 11. 80C86/256K Byte System ' 

6-112 AFN.Q2144B 



82C03 

ABSOLUTE MAXIMUM RATINGS' 

Ambient Temperature Under Bias. . . 
Storage Temperature " 
Voltage On any Pm 

With Respect to Ground 
Power Dissipation .. 

.O°C to 70°C 
-65°C to +150°C 

.. -0.5V to + 7V4 
. ... 0.2 watts 

'NOTE: Stresses above those listed under "Absolute MaxI­
mum Ratings" may cause permanent damage to the deVice. 
This is a stress rating only and functional operation of the de­
Vice at these or any other conditions above those mdicated m 
the operational sections of this specification IS not implied. 
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability. 

D.C. CHARACTERISTICS TA = O°C to 70°C' VCC = 50V ± 10%' GND - OV -
Symbol Parameter 

Vc Input Clamp Voltage 

ICC Power Supply Current 

III Input Leakage Current 

VOL Output Low Voltage 
SACK,XACK 
All Other Outputs 

VOH Output High Voltage 
SACK,XACK 

All Other Outputs 

VIL Input Low Voltage 

VIHI Input High Voltage 

VIH2 Option Voltage 

CIN Input Capacitance 

NOTES: 
1. For test mode RD & WR must be held at GND. 
2 Except for pin 36 in XT AL mode. 
3 

+12 Volt 5.1KU 2. 
±10% 

N.C. 
\ 

OPl 

~ 01':1 

Reeiltor Toterance: :!: S% 

82C03 

Min Max Units Test Conditions 

-1.0 V IC = -5 mA 

25 mA 

±10 /lA VSS::5 VIN::5 Vee 

0.45 'V IOL=5mA 
0.45 V 10L = 3 mA 

2.4 Y 10H = -1 mA 
2.6 V IOH=-lmA 

0.8 V 

2.0 VCC V 

VCC V (Note 4) 

F=;IMHz 

30 pF VBIAS = 2.5V, VCC = 5V 
TA - 25°C 

&:113 AFt+«!l44B 



82C03 

A.C. CHARACTERISTICS 
TJ = o·c to 70·C; VCC = 5V ± 10%; GND = OV 

Measurements made with respect to RASO-RAS3, CAS, WE, aUTO-aUTe are at 2.4V and O.BV. All 
other pins are measured at 1.5V. All times are in nsec. 

Symbol Parameter Min Max 

tp Clock Penod 33 54 

tpH External Ctock High Time 15 

tPL External Ctock Low Time-above (» 20 mHz 15 

tRC Memory Cycle Time l1tp - 20 l1tp + 20 

tREF Refresh Time (128 cycles) 273tp 288tp 

tRP RAS Precharge Time 4tp + 3 

tRSH RAS Hold After CAS Stp - 30 

tASR Address Setup to RAS tp - 25 

tRAH Address Hold From RAS tp - 8 

tASC Address Setup 10 CAS tp - 30 

tCAH Address Hold from CAS 5tp - 20 

tCAS CAS Pulse Width Stp - 10 

'WGS WE Setup to CAS tp - 40 

tWCH WE Hold After CAS I Stp - 35 

'RS RD, WR, ALE, REFRO delay from RAS 3tp 

'MRP RD, WR setup to RAS -1tp 

tRMS REFRO setup 10 RD, WR 2tp 

tRMP REFRO setup to RAS 21p 

tpcs PCS Selup 10 RD, WR, ALE 20 

'AL S 1 Setup to ALE 15 

tLA S 1 Hold from ALE 30 

'CR RD, WR, ALE 10 RAS Delay Ip + 30 21p + 70 

tcc RD. WR, ALE 10 CAS Delay 3tp + 25 41p + 80 

tsc CMD Setup to Clock IS 

'MRS RD, WR setup to REFRO 5 

'CA RD, WR, ALE 10 SACK Delay 1tp 21p + 47 

'CX CAS 10 XACK Delay Sip - 25 Sip + 20 

ICS CAS 10 SACK Delay Sip - 25 Sip + 40 

tACK XACK 10 CAS Selup 10 

IXW XACK Pulse W,dlh tp - 25 

ICK SACK, XACK lurn-off Delay 35 

tKCH CMD Inaclive Hold after SACK, XACK 10 

'LL REFRO Pulse W,dlh 20 

'CHS CMD Hold Time 30 

'RFR REFRO to RAS Delay 4tp + 100 

'WW WR to WE Delay 0 50 

tAD CPU Addre,ss Delay 0 35 

tCOF CAS'Turn-Off Delay 70 

tPCH PCS Hold From RD, WR, ALE 30 

tRRH 80, 81 Hold From AAS 0 

tBS BO, Bl Setup to RD. WR, ALE 0 

Notes 

4,5 

3 

3 

3 

3 

3 

8 

2,6 

5 

6 

5 

2 

2 

1 

2 

2,9 

2,10 

7 

11 

6 

8 

3 
-

AF_,44B 



82C03 

WAVEFORMS 
Normal Read or WrIte Cycle 

iii, Wli 

Advanced Read Mode 

S, _____ ~{ tAL -.LAJ-------------
ALE 

6-115 AFN-02144B 



WAVEFORMS (cont'd) 
Memory Compatibility Timing 

110-8, 'V 
1\ 

~~ 
.J~ 

VAUD_ 

-~- ~taRH-

!\ 

~IASR- !-IRAH'" i-!!'8C-

~ ROW ~ 

Write Cycle Timing 

, I 

1\ 

.. I 
1-:liIl~ 

....--2,-..... 

\ 
!-twcs_ 

tcc 
MIN 

~ 

1\ 

,6-116 

~~ 
J~ 

f-::II-

- I 
ICAS 

V 
!-1CAH_ 

COLWN K 

,/ 

~ 

/ - tww -MAX 

/ tww Ci - 'I 

tWCH' 



82C03 

WAVEFORMS (cont'd) 
Read or Write Followed By External Refresh 

REFRQ 

1---------- IIlMP ----------1---

�-------------- ~c------------·I 

I.-------~~--------·~ 

I.--------~~l--------~------J 

External Refresh Followed By Read or Write 

---~---
REFRQ 

\'----

6-117 



82C03 

WAVEFORMS (cont'd) 
Clock And System Timing 

Table 2. 82C03 Ouptut Loading. 
All specifications are for 
the Test Load unless 
otherwise noted. 

Pin Test Load 

SACK,XACK CL=30pF 
QUTo-OUTS CL = lS0 pF 
RASo-RAS3 CL=SOpF 
~ CL = 224 pF 
CAS CL = 320 pF 

NOTES: 
1, tsc is a reference point only, ALE. RD. WR. and REFRQ inputs 

do not have to be externally synchronized to 82C03 clock 
2, If tRS min and tMRS min are met then tCA' tCR' and tcc are 

valid. T CS is valid when delayed SACK is generated, 

3, tASR' tRAH' tASC' tCAH. depend upon CPU address remaining 
stable throughout the memory cycle, The address inputs are not 
latched by the 82C03, 

4, For back-to-back refresh cycles. tRC max = 12tp 
5, \RC max ;. valid only if tRMP min is met (READ. WRITE followed 

by REFRESH) or tMRP min is met (REFRESH followed by READ. 
WR!TE), 

6, tRFR is valid only if tRS min and tRMS min are met. 
7, txw min applies when RD. WR has already gone high, Otherwise 

XACK follows RD. WR, 
8, WE goes high according to tWCH or tWW. whichever occurs 

first. 

A.C. TESTING LOAD CIRCUIT 

6-118 

DEVICE 
UNDER 
TEST 

NOTE: CL includes Jig capacitance 

AFN-021448 



intJ 
8206/8206-2 

ERROR DETECTION AND CORRECTION UNIT 

• Detects and Corrects All Single Bit 
Errors 

• Detects All Double Bit and Most 
Multiple Bit Errors 

• 52 ns Maximum for Detection; 67 ns 
Maximum for Correction (16 Bit 
System) 

• Syndrome Outputs for Error Logging 

• 8206-2 Timing OpUmlzed for 8MHz' IAPX 
186, 188, 86, 88 and 8207-2 Systems 

• Separate Input and Output 
Busses-No Timing Strobes Required 

• Expandable to Handle 80 Bit Memories 

• Supports Reads With and Without 
Correction, Writes, Partial (Byte) 
Writes, and Read-Modlfy-Wrltes 

• HMOS Technology for Low Power 
• 68 Pin Leadless JEDEC Package 
• Single +5V Supply 

The HMOS 8206 Error Detection and Correction Unit is a high-speed device that provides error detection and 
correction for memory systems (static and' dynamic) requiring high reliability and performance. Each 8206 
handles 8 or 16 data bits and up to 8 check bits. 8206's can be cascaded to provide correction and detection for 
up to 80 bits of data. Other 8206 features Include the ability to handle byte writes, memory initialization, and 
error logging. 

,. 
5 

DATAIN U L 
LATCH pos,., READ 

PARTIAL PARITY ERR 

010_1 

5Ta - C;ENERATOR , 

CHECK BIT 

Tit t 
I 

CE 

7 LATCH 

tb -L- t 
---<CR 

CHECKSITI t; 
SYNDROME 

~ • SYNDROMEI :(: 
DECODER DATA 

,. 
SYNDROME AND + ~ PARTIAL PARITV LATCH ERROR CORRECTION 

GENERATOR DETECTION 

CB1/SV10_ 

SYO/CBO/PPOO_7 DOIWDlo.15 

• 
PPllPaS/NSL . --/-

4 

U·' 
I t 'll{ V POSo., 2 N5L"., 

NSLo-, 
, 

I 

WRITE ,. 
PARTIAL PARITY 

GENERATOR 

POSo., ~ 2 

GND 5V 

1 1 I- i 
Vss Vee Wi &M0_1 

, 
Figure 1. 8206 Block'Dlllgram 

tntel Corporation Allum.S No R •• p6'n8Ibllty for the Use of Any Circuitry Other Than Circuitry Embodied an an Intel Product No Other Circuit Patent Llcan., •• ,.Implled 
© INTEL CORPORATION, 1982. MARCH 1982 

6-119 Order Number 205220-004 



i~ 8206/8206-2 

010' ,5 DATAIN W ~ 16 

LATCH • 
READ 

PARnAL PARITY E R 
STS r--+ GENERATOR 

CHECK SIT 

~. f I 
CE 

LATCH 

~ ~ t 
i---<CR 

CHECK.IT! t SYNDRDME 

;¢ • ~ DECDDER 16 SYNDROMEI SYNDROME AND DATA r+- Y-.l PARTIAL PARITY ~ LATCH ERROR CORRECTION 
GENERATOR DETECTION 

DOIWOI(l.15 

fi·l
. 

I t 
+ 

WAITE 16 
PAAnAL PARITV 

GENERATOR 

GND +5V 

1 1 -AIW 'Iss Vee WZ lIMo. 1 

Figure 2. 8206-2 Block Diagram 

'DIble 1. 8206 Pin Description 

Symbol Pin No. Type Name and Function 

010-15 1,68-61, I Data In: These inputs accept a 16 bit data word from RAM for error detection 
59-53 andlor correction. 

CBI/SYIO 5 I Check ~lta In/Syndro,meln: In a single 8206 system, or in the master in a multi-
CBI/SYl1 6 I 8206 system, these Inputs accept the check bits (5 to 8) from the RAM. In a 
CBI/SYI2 7 I , single 820616 bit system, CBI0-5 are used. In slave 8206's these inputs accept 
CBI/SYI3 8 I the syndrome from the master. 
CBI/SYI4 '9 I 
CBI/SYI5 10 I 
CBI/SYI6 11 I 
CBI/SYI7 12 I 

DOIWDIO 51 110 Data Out/Wrlte Data In: In a read cycle, data accePted~0_15 appears at 
DOIW011 50 1/0 these outputs corrected if GRCT is low, or uncorrected if is high. The Bf.ii 
DOIW012 49 I/O inputs- must be high to enable the output buffers during the read cycle. In a 
DOIWDI3 48 1/0 write cycle, datato be written into the RAM is accepted by these inputs for com-
DOIW014 47 1/0 puting the write check bits. In a partial-write cycle, the byte not to be modifi&d 
DOIW015 46 1/0 appears at either 000-7 if BMo is high, or 00S-15 if BM1 is high, for writing to 
DOIW016 45 I/O the RAM. When WZ is active, it causes the 8206 to output all zeros at 000-15, 
DOIW017 44 1/0 with the proper write check bits on CBO. 

. DOIWOls 42 1/0 
DOIWOlg 41 1/0 
DOIW0110 40 1/0 
DOIWOll1 39 1/0 
DOIW0112 38 I/O 
DOIWDI13 37 1/0 
DOM'0114 36 1/0 
DOIW0115 ' 35 1/0 

6-120 AfN.02009B 



8206/8206-2 

, llIble 1. 8206 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

SYO/CBO/PPOo 23 0 Syndrome Out/Check Bits Out/Partial Parity Out: In a single 8206 system, or 
SYO/CBO/PP01 24 0 in the master in a multi-8206 system,' the syndrome appears at these outputs 
SYO/CBO/PP02 25 0 during a read. During a write, the write check bits appear. In slave 8206's the 
SYO/CBO/PP03 27 0 partial parity bits used by the master appe!!: at these outputs. The syndrome is 
SYO/CBO/PP04 28 0 latched (during read·modify-writes) by R/W going low. 
SYO/CBO/PP05 29 0 
SYO/CBO/PP06 30 0 
SYO/CBO/PP07 31 0 ¥ 

PPlolPOSo 13 I Partial Parity In/Position: In the master in a multi-8206 system, these inputs 
PPI1/POS1 14 I accept partial parity bits 0 and 1 from the slaves. In a slave 8206 these inputs in-

form it of its pOSition within the system (1 to 4). Not used in a single 8206 
system. 

PPI2/NSLo 15 I Partial Parity In/Number of Slaves: In the master in a multi-8206 system, these 
PPI3/NSL1 16 I inputs accept partial parity bits 2 and 3 from the slaves. In a multi-8206 system 

these inputs are used in slave number 1 to tell it the total number of slaves in the 
system (1 to 4). Not used in other slaves or in a single 8206 system. 

PPI4/CE 17 I/O Partial Parity In/Correctable Error: In the master in a multi-8206 system this 
pin accepts partial parity bit 4. In slave number 1 only, or in a sin~ 8206 
system, this pin outputs the correctable error flag. CE is latched by R going 
low. Not used in other slaves. 

PPI5 18 I Partial Parity In: In the master in a multi-8206 system these pins accept partial 
PPI6 19 I parity bits 5 to 7. The number of partial parity bits equals the number of check 
PPI7 20 I bits. Not used in single 8206 systems or in slaves, 

ERROR 22 0 Error: This pin outputs the error flag in ~ingle 8206 system or in the master of 
a multi-8206 system. It is latched by R/W going low. Not used in slaves. 

CRCT 52 I Correct: When low this pin causes data correction during a read or read-
modify-write cycle. When high, it causes error correction to be disabled, 
although error checking is still enabled. 

STB 2 I Strobe: STB is an input control used to strobe data at the 01 inputs and check-
bits at the CBI/SYI inputs. The signal is'active high to admit the inputs. The 
Signals are latched by the high-to-Iow transition of STB. 

BMo 33 I Byte Marks: When high, the Data Out pins are enabled for a read cycle. When 
BM1 32 I low, th~ata Out buffers are tristated for a write cycle. BMo controls 000_7, 

while BM1 controls 00e-15' In partial (byte) writes, the byte mark input is low 
for the new byte to be written. 

R/W 21 I Read/Wrlte: When high this pin causes the 8206 to perform detection and 
correction (if CRCT is low). When low, it causes the 8206 to generate check bits. 
On the high-to-Iow transition the syndrome is latched internally for read-
,modify-write cycles. 

WZ 34 I Write Zero: When low this input overrides the BMo-1 and R/W inputs to cause 
the 8206 to output all zeros at 000-15 wi,th the correspollding check bits at 
CBOO_7. Used for memory initialization. 

M/S 4 I Master/Slave: Input tells the 8206 whether it is a master (high) or a slave (lOW). 

SEOCU 3 I Single EDC Unit: Input tells the master whether it is operating as a single 8206 
(low) or as the master in a multi-8206 system (high). Not used in slaves. 

Vee 60 I Power Supply: +5V 

Vss 26 I Logic Ground 

Vss 43 I Output Driver Ground 

6-121 AFN-0200918 



inter 8206/8206-2 

'DIble 2. 8208-2 Pin DescrIption Differences over the 8206. 

Symbol Pin Type Name and Function 

CB10-5 5-10 I Check Blt8ln: In an 82Q(~-2 system, these Inputs accept the check bits (5 
to 6) from the RAM. 

SYO/CBOo 23 ,0 Syndrome·Out/C::heck Blt8 Out: In an 8206-2 system, the syndrome 
SYO/CB01 24 0 appears at these outputs during a read. During a write, the write check 
SYO/CB02 25 0 bits appear. The syndrome Is latched (during read-modify-writes) by R/W 
SYO/CB03 27 0 going low, 
SYO/CB04 28 0 
SYO/CBOs 29 0 

CE 17 0 Correctable Error: In an 8206-2 system, this pin outputs the correctable 
error flag. CE is latched by RIVii going low. 

wz: 34 I Write Zero: When low this input overrides the BMo-l and R/W inputs to 
I cause the 8206-2 to output all zeros at 000-15 with the corresponding check 
. bits at CB0II-?, Used for memory initi,alizatlon. 

Strap High 4 I Must be tied High. 

Strap Low 3 I Must be tied Low. 

N.C. 11-16 I Note: These pins have internal pull·up resistors but if possible should be 
18-20 tied high or low,' 

N.C. 30,31 0 Note: These are no connect pins and should be left open. 

FUNCTIONAL DESCFUPTION 

The 8206 Error Detection and Correction Unit 
provides greater memory system reliability through 
its ability to detect and correct memory errors. It is a 
single chip device that can detect and correct all 
single bit errors and detect all double bit and some 
higher rnultiple bit errors. Some othe~ odd multiple 
bit errors (e.g., 5 bits in error) are interpreted as 
single bit errors, and the CE flag is raised. While 
some even multiple bit errors (e.g., 4 bits in error) are 
interpreted as no error, most are detected as double 
bit errors. This error handling is a function of the 
number of check bits used by the 8206 (see Figure 2) 
and the specific Hamming code used. Errors in 
check bits are not distinguished from errors in a 
word. 

For more information on error correction codes, see 
Intel Application Notes AP-46 and AP-73. 

A single 8206 or 8206-2 handles 8 or 16 bits of data, and 
up to 5 8206's can be cascaded in order to handle data 
paths of 80 bits. For a single 8206 8 bit system, the 
018-15, OOIWOI8-15 and BM1 inputs are grounded. See 
the Multi-Chip systems section for information on 
24-80 bit systems. 

The 8206 has a "flow through" architecture. It sup­
ports two kinds of error correction architecture: 1) 
Flow-through, or correct-always; and 2) Parallel, or 
check-only. There are two separate 16-pi,n busses, 

DATA WORD BITS CHECK BITS 

8 5 

16 6 

24 6 
; 

32 7 

40 7 

48 8 

56 8 

64 8 

72 8 

80 8 

Figure 3. Number of Check Bits Used by 8206 

one to accept, data from the RAM (01) and the other 
to deliver corrected data to ttle system bus (00/ 
WOI). The logic is entirely combinatorial during a 
read cycle. This is in contrast to an architecture with 
only one bus, with bidirectional bus drivers that 
mustfirst read the data and then be turned around to 
output the corrected data. The latter architecture 
typically requires additional hardware (latches 
and/or transceivers) and may be slower in a system, 
due to timing 'skews of control Signals. 

6-122 AFN-020Q9B 



820618206-2 

READ CYCLE 

With the Rm pin high, data is received from the RAM 
outputs into the 01 pins where it is optionally latched 
by the STB signal. Check bits are generated from the 
data bits and compared to the check bits read from 
the RAM into the CBI pins. If an error is detected the 
~ flag is activated and the correctable error 
flag (CE) is used to inform the system whether the 
error was correctable or not. With the BM inputs 
high, the word appears corrected at the DO pins if 
the error was correctable, or unmodified if the error 
was uncorrectable. 

If more than one 8206 is being used, then the check 
bits are read by the master. The slaves generate a 
partial parity output (PPO) and pass it to the master. 
The master 8206 then generates and returns the 
syndrome to the slaves (SYO) for correction of the 
data. 

The 8206 may alternatively be used in a "check­
only;' mode with the ~ pin left high. With the 
correction facility turned off, the propagation delay 
from memory outputs to 8206 outputs is signifi­
cantly shortened. In this mode the 8206 issues an 
ERROR flag to the CPU, which can then perform one 
of several options: lengthen the current cycle for 
correction, restart the instruction, perform a diag­
nostic routine, etc. 

A syndrome word, five to eight bits in length and 
containing all necessary information about the exis­
tence and location of an error, is made available to 
the system at the SYOo-7 pins; Error logging may be 
accomplished by latching the syndrome and the 
memory address of the word in error. 

WRITE CYCLE 

For a full write, in which an entire word is wri,tten to 
memory, the data is written directly to the RAM, 
bypassing the 8206. The same data enters the 8206 
through the WDI pins where check bits are gener­
ated. The Byte Mark inputs must be low to tristate 
the DO drivers. The check bits, 5 to 8 in number, are 
then written to the RAM through the CBO pins for 
storage along with the data word. In a multi-chip 
system, the master writes the check bits using par­
tial parity information from the slaves. 

In a partial write, part of the data word is overwritten, 
and part is retained in memory. This is accomplished 
by performing a read-modify-write cycle. The com­
plete old word is read into the 8206 and corrected, 

with the syndrome Internally 'Iatched by R/W going 
low. Only that part of the word not to be modified is 
output onto the DO pins, as controlled by the Byte 
Mark inputs. That portion of the word to be overwrit­
ten is supplied by the system bus: The 8206 then 
calculates check bits for the new word, using the 
byte from the previous read and the new byte from 
the system bus, and writes them to the memory. 

READ-MODIFY-WRITE CYCLES 

Upon detection of an error the 8206 may be used to 
correct the bit in error in memory. This reduces the 
probability of getting multiple-bit errors in sub­
sequent read cycles. This correction is handled by 
executing read-modify-write CYClfi~S. 

The read-modify-write cycle is controlled by the Rm 
input. After (during) the read cycle, the system 
dynamic RAM controller or CPU examines the 8206 
ERROR and CE outputs to determine if a correctable 
error occurred. If it did, the dynamic RAM controller 
or CPU forces RNi low, telling the 8206 to la~ch the 
generated syndrome and drive the corrected check 
bits onto the CBO outputs. The corrected data is 
available on the DO pins. The DRAM controller then 
writes the corrected data and corresponding check 

6-123 

tiits into memory. L 

The 8206 may be used to perform read-modify­
writes in one or two RAM cycles. If it is done in two 
cycles, the 8206 latches are used to hold the data 
and check bits from the read cycle to be used in the 
following write cycle. The Intel 8207 Advanced 
Dynamic RAM controller allows read-modify-write 
cycles in one memory cycle. See the System 
Environment section. 

INITIALIZATION 
\ 

A memory system operating with ECC requires some 
form of initialization at system power-up in order to 
set valid data and check bit information in memory. 
The 8206 s!Jpports memory initialization by the write 
zero function. By activating the WZ pin, the 8206 will 
write a data pattern of zeros and the associated 
check bits in the current write cycle. By thus writing 
to all memory at power-up, a controller can set 
memory to valid data and check bits. Massive mem­
ory failure, as signified by both data and check bits 
all ones or zeros, will be detected as an uncorrecta­
ble error. 

AFN.02009B 



8206/8206-2 

MULTI-CHIP SYSTEMS 

A single 8206 handles 8 or 16 bits of data and 5 or 6 
check bits, respectively. Up to 5 8206's can be cas­
caded for 80 bit memories with 8 check bits. 

When cascaded, one 8206 operates as a master, and 
all others as slaves. As an example, during a read 
Cycle in a 32 bit system with one master and one 
slave, the slave calculates parity on its portion of the 
word-"partial parity"-and presents it to the mas­
ter through the PPO pins. The master combines the 
partial parity from the slave with the parity it calcu­
lated from its own portion of the word to generate 

3a. 48 BIT SYSTEM 

3b. 64 BIT SYSTEM 

3e. 80 BIT SYSTEM 

the syndrome. The syndrome is then returned by the 
master to the slave for error correction. In systems 
with more than one slave the above description con­
tinues to apply, except that the partial paritY outputs 
of the slaves must be XOR'd externally. Figure 4 
shows the necessary external logic for multi-chip 
systems. Write and read-modify-write cycles are car­
ried out analogously. See the System Operation sec­
tion for mUlti-chip wiring diagrams. 

. There are several pins used to define whether the 
8206 will operate as a master or a slave. Tables 3 and 
4 illustrate how these pins are tied. 

SLAVE 2 

PPO 

SLAVE. 

PPO 

SLAVE. 

PPO 

SLAVE 4 

PPO 

Figure 4. External Logic For Mult~Chip Systems 

6-124 AFN-020098 



inter 8206/8206-2 

'DIble 3. Muter/Slave Pin Assignments 

Pin No. Pin Name Master Slave 1 Slave 2 Slave 3 Slave 4-

4 
3 

13 
14 
15 
16 

~See Table 3. 
NOTE: 

MIS 
SEDCU 
PPloIPOSo 
PP11/POS1 
PPI2/NSLo 
PPI3/NSL1 

+5V 
+5V 
PPI 
PPI 

- PPI 
PPI 

Gnd Gnd Gnd Gnd 
+5V +5V ' +5V +5V 
Gnd 't5V Gnd +5V 
Gnd Gnd +5V +5V . +5V +5V +5V . +5V +5V +5V 

Pins 13, 14, 15, 16 have internal pull-up resistors and may be left as N.C. where specified as connecting to +5V. 

'DIble 4. NSL Pin AssIgnments for Slave 1 

Number of Slaves 
Pin 1 

PPI2/NSLo Gnd 
PPIslNSL1 Gnd 

The timing specifications for multi-chip systems 
must be calculated to take account of the external 
XOR gating in 3, 4, and 5-chip systems. Let tXOR be 
the delay for a single external TIL XOR gate. Then 

, the following equations show how to calculate the 
relevant timing parameters for 2-chip (n=O), 3-chip 
(n=l), 4-chip (n=2), and 5-chip (n=2) systems: 

Data-in to corrected data-out (read cycle) = 
TDVSV + TPVSV + TSVOV + ntXOR 

Data-in to error flag (read cycle) = 
TDVSV + TPVEV + ntXOR 

Data-in to correctable error flag (read cycle) = 
TDVSV + TPVSV + TSVCV + ntXOR 

Write data to check-bits valid (fUll write cycle) = 
TOVOV + TPVSV + ntXOR 

Data-in to check-bits valid (read-mod-write cycle) = 
TDVSV + TPVSV + TSVOV + TOVOV + TPVSV + 

2ntXOR 

Data-in to check-bits valid (non-correcting read­
modify-write cycle) = 

TDVOU + TOVOV + TPVSV + ntXOR 

HAMMING CODE 

The 8206 uses a modified Hamming code which was 
optimized for multi-chip EDCU systems. The code is 
such that partial parity is computed by all 8206's in 

2 
+5V 
Gnd 

3 4 
Gnd . +5V 
+5V +5V 

parallel. No 8206 requires more time for propagation 
through logic levels than.any other one, and hence 
no one device becomes a bottleneck in the parity 
operation. However, one or two levels of external 
TTL XOR gates are required in systems with three to 
five chips. The code appears in Table 5, The check 
bits are derived from the lable by XORinQ. or XNOR­
ing together the bits indicated by 'X's In each fOW 

corresponding to a check bit. For example, check bit 
o in the MASTER for data word 1000110101101011 
will be "0." It should be noted that the 8206 will 
detect the gross-error condition of all lows or all 
highs. 

Error correction is accomplished by identifying the 
bad bit and inverting it. Table 5 can also be used as 
an error syndrome table by replacing the 'X's with 
'l's. Each column then represents a different syn­
drome word, and by locating the column corre­
sponding to a particular syndrome the bit to be cor­
rected may be identified, If the syndrome cannot be 
located then the error cannot be corrected. For 
example, if the syndrome word is 00110111, the bit 
to be corrected is'bit 5 in the slave one data word (bit 
21). 

The syndrome decoding is al§o summarized in Tables 6 
and 7 which can be used for error logging. By finding 
the appropriate syndrome word (starting with bit zero, 
the least significant bit). the result is either: 1) no error; 
2) an identified (correctable) single bit error; 3) a 
double bit error; or 4) a multi-bit uncorrectable error. 

6-125 AFNoQ2OO98 



0) 

.!. 
~ 

i 

. 'DIble 5. Modified Hamming Code Check 81t Generation 

Check bits are generated by XOR'ing (except for the CBO and CB1 data bits, which are XNOR'ed in the Master) the data 
bits in the rows corresponding to the check bits. Note there are 6 check bits,in a 16-bit system, 7 in a 32-bit system, and 
8 in 48-or-more-bit systems. ' 

1 BYTE NUMBER 0 OPERATION 
BIT NUMBER o 1 234 567 01234567 

2 3 OPERATION o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 
eso = xx'-x-xx- x--x-x-- XNOR - x x x - x x - -xx--x-- XOR 
CB1 = x-x-~x-x - x .. x x .. x .. XNOR xxx--x-x xx-----x XOR 

CHECK CB2 = - x x - x - x x --x·x--x XOR 
CB3 = x-x x x x ...... xxx----- XOR 

BITS CB4';' - - - x x x x x -----xxx XOR 

.. x x x .. x x x --xx---- '. XOR 
xx--x-xx x--xx--- XOR 

.xx--xxxx ----x-x- XOR 
CB5 = ----"'--- x x x x X x x x XOR - - - it x X x x -----xxx XOR 
CB6= .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. XOR .. .. .. .. .. .. .. .. x x x x x x x x XOR 
CBi' = .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. XOR .. .. .. .. .. .. .. ... .. .. .. .. .. .. ... .. XOR 

DATA BITS o 0 0 0 0 0 0 0 o 0 1 1 1 1 1 1 
o 1 2 3 4 5 6 7 890.12345 

1 1 1 1 222 2 2 222 2 2 3 3 
67890123 45678901 ---

16 BIT OR MASTER SLAVE #1 

BYTE NUMBER 4 5 6 7 8 9 OPERATION 
BIT NUMBER 01234567 o 1 2 3 4 56 7 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 

CBO = x x .. x .. x x ~ x - - x - x - - x - x - x x - - x - x x - - x - - x.x x - x x - -xx--x- - XOR 
CBl = x - x - - x - x - x - x x - x - - x x - - - x x x x x - - - x - .. x i x .. x x x - - x x - - - - XOR 

'CHECK CB2 = - x x - x - x x --x-x- - x - x x x - x x - - x x - - x - - x - - x - x x - - x x - - x - x XOR 
CB3 = x x x x x - - - x x x - - - - - x - x - - x x - x x - - x x - --xxxx- - x x x - - x - - - XOR 

BITS CB4 = - - .. x x x x x .. - - - .. x x x - - .. x x x x x - - - - - x x x - x x - - - x x x x x - - - x - XOR 
CB5 = x x x x x x x x - - - - - - - - - - - - - - - - x x x x x x x x x - x x x x - x - - - x - - - x XOR 
CB6 = x x x x x x x x - - - - - - - - x x x x x x x x - - - - - - - - x x - - x x x x - - - - x - x - XOR 
CB7= - - - - - - - - x x X,x x x.x.x - - - - - - - -xxxxxxxx- - - - - - - - x x x x x x x x XOR 

DATA BITS 333 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 555 5 6 6 6 6 6 6 6 6 6 6 7 7 777 7 7 7 7 7 
2345678 9 o 1.2 3 4 5 6 7 8 9-0 1 2 3 4 5 67890123 4 5 6 7 8 901 2 3 4 5 6 789 

._------ -

SLAVE #2 I I' SLAVE #3 I I SLAVE #4 

-> 

l 

I 
! 

'@ 
aID 
IiiiiJ 
IF' = 
~ = 
~ 
~ 

~ 



inter 8206/8206-2 

OE 

'DIble 6. 8206 Syndrome Decoding 

0 0 1 0 1 
Syndrome 1 0 0 1 1 

B1t8 2 0 0 0 0 
7 8 5 4 3 0 0 0 0 
0 0 0 0 N CBO CBl 0 

0 0 ,,0 1 CB4 0 

0 0 1 0 CB5 0 

0 0 1 1 0 13 

0 1 o· 0 CB6 0 

0 1 0 1 0 62 

0 1 1 0 0 29 

0 1 1 1 30 0 

1 0 0 0 CB7 0 

1 0 0 1 0 45 

1 0 1 0 0 59 

1 0 1 1 63 0 

1 1 0 0 0 u 
1 1 0 1 78 0 

1 1 1 0 U 0 
1 1 1 l' 0 U 

N = No Error 
CBX = Error in Check Bit X 

X = Error in Data Bit X 
o = Double Bit Error 

0 5 

0 11 

14 0 

0 25 

55 0 

31 0 

0 37 

0 43 

46 0 
" 75 0 

0 62 

u 0 

.0 u 
0 u 
1I '0 

U = Uncorrectable Multi-Bit Error 

DATA MEMORY 
18 BITS 

....L DI DO 

{ 

0 1 
0 0 
1 1 
0 0 

CB2 0 

0 6 

0 19 

15 0 

0 26 
51 0 

64 0 

0 38 

0 77 

47 0 

79 0 

0 U 

u 0 

0 u 
0 u 
U 0 

CHECK BITS 
7 BITS 

DI DO 

0 
1 
1 
0 
0 

7 

12 

0 

49 
0 

0 

39 

44 

0 

0 

U 
0 

u 
u 
0 

1 0 1 0 1 0 1 0 1 
1 0 0 1 1 0 0 1 1 
1 0 0 0 0 1 1 1 1 
0 1 1 1 1 1 1 1 1 
18 CB3 0 0 '0 0 1 2 0 
0 0 3 16 0 4 0 0 17 

0 0 8 9 0 10 0 0 87 

21 20 0 0 86 0 22 23 0 

0 0 49 24 0 27 0 0 50 
70 28 0 0 65 0 53 54 0 

69 68 0 0 32 0 33 34 0 
0 0 35 71 0 36 0 0 U 

0 0 40 41 0 42 0 0 U 

74 72 0 0 u 0 73 U 0 
58 60 0 0 56 0 U 57 0 
0 0 u u 0 61 0 0 U 

U 76 0 0 u 0 u u 0 
0 0 u u 0 u 0 0 U 

0 0 u u 0 u 0 0 U 
u u 0 0 u 0 u u 0 

SYSTEM ENVIRONMENT 

The 8206 interface to a typical 32 bit memory system 
is illustrated in Figure 5. For larger systems. the 
partial parity bits from slaves two to four must be 

DATA MEMORY 
18 BITS 

, 
DI DO 

32Brr 
DATA 
BUS ~ 

x 
C 
V 
R == ~ - I 

T T 

CONTROL { 
UNES 

~l 
ERROR 

SIGNALS 

-
-

, " ~l 
DO/WDI DI SYO/CBO CBI ... SY1o-e 

CIICT 

ft 

STB 

R/W 

liiio 
11M, 

PPl0-8 PPO ... 

PPI, 

~ 
r- CliCf 

CBI, r- wz 
11208 r-MASTER STB 

MIll :JW r- R/W 

Riiiro 

Ir 
no 

mmJI r---+ 11M, 

J 

Figure 5. 32·Blt 8206 System Interface 

6-127 

DO/WDI DI 

PO~ ~f¢ POS, 

NSLo f-
11208 NSL1 f-SLAVE 

MIS ~ 
PPls-7 

8-0 ftIR:U 
SVI7 

+5V' 

CE 

I 

AFN-cJ20088 



I 

820618206-2 

XOR'ed externally, which calls for one level of XOR', 
gating for three 8206's and two lev,els for four or five 
8206's. 

The 8206 is designed for direct connection.to the Intel 
8207 Advanced Dynamic RAM Controller. The' 8207 
has the ability to perform dual port memory control, 
and Figure 6 illustrates a 'highly integrated dual port 

ACKa 
I ACKa 

ADDR f----" AU CMDlPEA r---v CD 

CMDIPEB CMDIPEa 'WE P>-< 
1207 

MUX ADRC 
wz 

ClK>---- ClK PSEN -ADORa 

CE 
ERROR 

DaM 
MUX - --,; ADDR IIIW 

CMDIPEA - ACKA PSEl 

ADORA 

ACKA -

- "-

BVTE 
MARK 

DECODER 

-

WE 
01 

RAM implementation using the 8206 and 8207. The 
8206/8207 combination permits such features as au­
tomatic scrubbing (correcting errors in memory dur­
ing refresh), extending RAS and .CAS timings for 
Read-Modify-Writes in single memory cycles, and 
automatic memory initialization upon reset. To­
gether these two chips provide a complete dual­
port, error-corrected dynamic RAM subsystem. 

DYNAMIC 
RAM 

32 BITS + 
7 CHECK alTS 

cal DOICaO 

th 
I L F 

L) L ERLR SVOIDI/Cal SVI 01 
IIJW caD 

+5Y- STa PPI PPO STB f- +5Y 

~ 
8208 

f 
8206 

CRCT MASTER CRCT SLAYE 

wz W2 
BM DOIWDI BM DOIWDI 

Q J Q 
lit: I-t>o- ~ r-

tl1 
~ -XCVR 

r RD 

PORTA 

STa DEI 
LATCH' , 

PORTa 

Figure 8. Dual Port RAM Subsystem with 820&18207 (32-1)" bus) 

6-128 AFt«lIOO8B 



, 

intJ 8206/8206-2 

'nIbie 7. 8206-2 Syndrome Decoding The' 8206-2 handles 8 or 16 bits of data. For 8 bit 
8206-2 systems, the D1a-15, DOIWDIa-15 and BM1 in­
puts are grounded. 

Syndrome 0 0 1 0 
Bits 1 0 0 1 

5 4 3 2 0 0 0 

0 0 0 N CBO CB1 

0 0 1 CB3 0 

0 1 0 CB4 0 

0 1 1 0 3 

1 0 0 CBS 0 

1 0 1 0 8 

1 1 0 0 13 

1 1 1 0 0 

N = No Error 
CBX = Error in Check Bit X 

X = Error in Oatll Bit X 
0= Double Bit i:rror 

ARDVCLK 

0 

0 

0 

0 

9 

14 

0 

1 0 
1 0 
0 1 

0 CB2 

0 0 

5 0 

0 4 

11 0 

0 10 

0 15 

0 0 

1 0 
0 1 
1 1 

0 0 

1 2 

6 7 

0 0 

0 12 

0 0 

0 0 

0 0 

OTHERW 
INPUTS 

1 
1 
1 

0 

0 

0 

0 

0 

0 

0 

0 

eLK iiCii A00-8 Wo-3 
CASo-3 

The 8206-2 is designed for direct connection to the 
Intel 8207-2 Advanced Dynamic RAM Controller. The 
8207-2 has the ability to perform dual port memory 
control, and Figure 7 illustrates a highly integrated 
iAPX 186 RAM implementation using the 8206-2 and 
8207-2. The 8206-218207-2 combination permits such 
features as automatic scrubbIng (correcting errors in 
memory during refresh), extending RAS and CAS tim­
ings for Read-Modify-Writes in single memory cycles, 
and automatic memory initialization upon reset. 
Together these two chjps provide a complete dual-port, 
error-corrected dynamic RAM subsystems. 

,~------------------~~U !lillmii-------I 
CEi------, 

A/W 

10188 

r-----------------~~ 
w.z 

IIlIii 
iiiii5ili Dlo-15 SYOJ 

CBO~. 
CBlc-1> 

eIiCT 

STB +SV 

figure 7. iAPX 186 RAM Correct Always Subsystem with the 8206-2 and the 8207-2 
, . 

6-129 AFN-Q20091 B 



8206/8206-2 

MEMORY BOARD TESTING 

The 8206 lends itself to straightforward memory 
board testing with a minimum of hardware over­
head. The following is a description of four common 
test modes and their implementation. 

Mode O-Read and write with error correction. 
Implementation: This mode is the normal 
8206 operating mode. 

Mode 1-Read and write data with error correction 
disabled to allow test of data memory. 
Implementation: This mode is performed 
with CRCT deactivated. 

Mode 2-Read and write check bits with error cor­
rection disabled to allow test of check bits 
memory. 
Implementation: Any pattern may be writ­
ten into the check bits memory by judi-

ciously choosing the proper data word to 
generate the desired check bits, through 
the use of the 8206 Hamming code. To 
read out the check bits it is first necessary 
to fill the data memory with all zeros, 
which may be done by activating WZ and 
incrementing memory addresses with WE 
to the check bits memory held inactive, 
and then performing ordinary reads. The 
check bits will then appear directly at the 
SYO outputs, with bits CBO and CB1 
inverted. 

Mode 3-Write data, without altering or writing 
check bits, to allow the storage of bit 
combinations to cause error correction 
and d.etection. 

6-130 

Implementation: This mode is im­
plemented by writing the desired word to 
memory with WE to the check bits array 
held inactive. 

,! 

AFN'()2009B 



820618206-2 

BOTTOM 

f is ~ 

I <I 

TOP i i 
I; 

CIICT WZ 

""[ 
iii6 
iii1 JW

1 

iC8206 
01, 'V03 

Vee lis. 

~[ J SVO, 
SYOo 

HlIl!II 
RlW' 

] PPI1 
DI, PPls 

PIN NO.1 MARK 6E~ i ~ II 18 
EI r: il i 

u .. .. 

BOTTOM 

TOP 

_0 is 6 i " g g • g g 
,; 

CIICT WZ 

""[ 
iii6 
iii1 
N.C. 
N.C. 

TVO
' DI, SV03 

Yee lis. 
iC8206-2 

T 
JSvo, 

SYOo 

HlIl!II 
RIW 

DI, 
IN.C. 

PIN NO.1 MARK '..0 ID C> 1 II 18 
Q t; §~ i i c.! li! u u z 

" 
NOTE: 
The 8206 and 8206-2 is packaged in a 68 pin JEDEC TYPE A hermetic chip carrier 

Figure 8. 8206 and 8206-2 Pinout Diagram 

6-131 AFN-02009B 



8206/8206-2 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ......... O"C to 70"C 
Storage Temperature ............... -65°C to + 15O"C 
Voltage On Any Pin 

With Respect to Ground ............ -0.5V to + 7V 
Power Dissipation .......................... 1.5 Watts 

"NOTE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

Q.C. CHARACTERISTICS (TA = O°C to 70"C, Vee = 5.0V ± 10%, Vss= GND) 

Symbol Parameter Min. Max. Unit Test Cc\ndltlons 

Icc Power Supply Current 
-Single 8206, 8206-2 or 270 rnA 

Slave #1 
-Master in Multi-Chip 230 rnA 

or Slaves #2, 3, 4 

VIL 
1 Input Low Voltage -0.5 0.8 V 

VIH 
1 Input High Voltage 2.0 Vee+ V 

0.5V 

Output Low Voltage 
VOL -DO 0.45 V 10L = 8mA 

-All Others 0.45 V 10L =2.0mA 

Output High Voltage 
VOH -DO,CBO 2.6 V IoH = -2m A 

-All Other Outputs 2.4 V IoH = -0.4mA 

I/O Leakage Current 
ILO -PPI4/CE ± 20 ",A 0.45V .,; VI 10 .,; Vee 

-DO/WDI0_15 ± 10 /LA 

III 
Input Leakage Current ___ 2 

± 20 ",A OV ,,;VIN .,;Vee -PPlo-~, 5-7, CBIS-7' SEDCU 
-All Other Input Only Pins ± 10 ",A 

NOTES: 

1. SEDeU(pin 3) and MIS (pin4) are device strapping options and should be tied to Vee orGND. V1H min = Vee -O.5VandVIL max = 0.5V. 

2. PPIo-7 (pins 13-20) and CBIS_7 (pins 11, 12) have internal pull-up resistors and if left unconnected will be pulled to Vee. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

u=x x== 20 2.0 > TEST POINTS ~ 
0.8 0.8 

0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOA A LOGIC 1 AND 0 45V FOR 
/l LOGIC ~o TlM!NG MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 SV FOR A LOGIC 0 

A.C. TESTING LOAD CIRCUIT 

DEVICE RL 
UNDER 'le, TEST 

CL INCLUDES JIG CAPACITANCE 

6-132 . AFN-02009B 



inter 820618206-2 

WAVEFORMS 

READ, 

~--~vr : 
I I I I 
I I I I 
~ ,I, 

iii ----i-! -¥~: ~'--___ _ 
I I !--TBHQV-I I I 
I I I I I 

om ~ i !~,' ~>-'-: ---
I I I !.--TBLOZ -I I, TRHQV ' , . I . _I I I I II !--'-TOXQX -. I 

i: @&'i'a~ ~ 
1 I, TRVBV 'I I I 

syo--r--; +----i >W#~4 j~, k= 
I" I TOYSV , aI I I 

DO 

I .. I TOVQ" '1 I 

:' I' TRHEV~ I 
EiiiiOii --+1--+--1 >WW$//A VAUO x= 

r I.. I TOVEV ' "I I 
I .. I TDVCV al I 

_~I~I'~~~~TRH~~~~~~a~1 ________ I 
CE_~X7~ VALID x= 

6-133 AFN-02008B 



inter 8206/8206-2 

WAVEFORMS (Continued) 

READ-MASTER/SLAVE 

STB 7r I t'i'------
!--ITSHIV I 

I I I : 
R/W --__ i7If I I I:SLl; II 

i I I nW'ri I :---: 

8M _---I.i--I-J:;t : I ':L _____ It-1 _ 

II ~ I I I 

cg:---<~!, i ~'" I ~ I i 

.:'~= ~A : ~". ~'~~l<:1 
------/'<iLl I I I '1""--

I __ TPVQV:----! I I 

DO(MASTERl_--';"': -, w~~ ~'" »-
I I '-TPVSV-j I I 

SYO(MASTERl_>V/ /7//~/ VALID XI ",-' 
SVI (SLAVEl 4L 4 i 

1 : I I.-TSVQV-i i I 

~: ~$/A VALID ~ 
I r TPVEV.I I I 

eRROR ~~~~~~~~z~~~z~: --~LlD---X~ 
---' l:sVC~, I 

~1'~~~~TR~HC~V~~~~.Ir-____ ~~1 
CE ______ >W ~A VALID X_ 

DO (SLAVEl 

6-134 AFN-02009B 



8206/8206-2 

WAVEFORMS (Continued) 

FULL WRITE 

/--- TRVSY -I 

I \ 

R/W i I I 

I A I 
I I \ TRHSX \ W TRLSX I r---I 

I I I 

~ 
I I I 

i!M I \ \ 
I \ \ 

I TBLaz I \ I 
~ I \ I 

\ I I I 
I I I 1 I 1 

DO/WDI DATA OUT H I I 
WRITE DATA IN 1: I \ 

I 1 
I \ t-! 

I_Tavav -I 
Taxaxi 

I I 
I I I 

SYO/CBO SYN >0//( CB X SYN 

FULL WRITE-;-MASTERISLAVE 

f.---TAVSV ---+-I 
1 

RJW -------..~ : • r1 
I 1 

\ ~LO~ I I : ,YRH", 1 

I 1 I 1 

IM~: : : 
I: I I : 

1 I-(-Tovov-l I 
____ ----1 \ ! \ 1 1 

DO/WDI DATA OUT }---{ ! : WRITE DATA IN ;? I -;------'-\-------- W. 
r I TOXOX\ 

I 1 \ 

PPO(SLAVEI-----t....,1 )05RZzt VALID ;c= 
PPI(MASTERI -----------t-'I I I 

:.-TRLSX -I \. TPVSV _I : 

SyO/CBo __ SyN __ --J~~ CB k= 
6-135 AFN·02009B 



8206/8206-2 

WAVEFORMS (Continued) 

READ MODIFY WRITE 

~ t tl,...1 ----------
TS,IVI4-I' ------TIVSL-""""""'---+l.1 ,_ .. ---TSLlX---!" 
---tr- II I 

I I I 

~W Y! '{ A--i-: -
I I I'------;-I....J 1 I 
14-1' ........ 1 -----'TDVRL---.... ,I_TRVSV---I I I 

! I I 1 I I " 

8M : :1 X-------VAL-t-ID: ------.-: -:~;c 

I I I ~RHSX : ,kBL~i '11 I_TBHQV--I 

I I I I 1 

C~: -i+-: ___ ,...-: _VALID+-: ----+----J1 : I 
I I I I I I :_.---'TRHQV'---+-----o-l"I I -l I I 

,..1 • ..;.-1 ----TDVQV-tl ::;::-:;. .. ~I.+ ___ _+ __ 'T_DX_QX_ t-I 

DOiWDI --L-..: :1------0.2;! ~ 
II II TQXQ~L 
1 It+ .. ---TRVSV---t", M I-TRLSX I 

I I I I 1 

SYO/CBD~: --JXVffL(: SYN~~/0~Z~CB __ PC 
I I I I I 
II-' ----'TDVSV'---! .. I !-TQVQV-! 

6-136 AFN-<l2OO9B 



intJ . 8206/8206-2 

WAVEFORMS (Continued) 

READ MODIFY WRITE-MASTER/SLAVE 

III 

DI 
cal 

PPO(8LAVE) 

PPI (MASTER, 

DOIWDI 
(IIASTEIII 

I I I 
I I I 
I I I I I I I~I~~ ______ ~I __________ ~I I 
I I ~( I VAUD »t 
I I "ILf I 
I I I I I I 
I I--TPYCJv-+I roTPYSV_1 I 

• I I I I I 

8YWC8O(~/Z( BYN X/~ C8 )C 
BY! (8LAYE) 'I I 

I ~TavQy---l 
I I 

DOIWDI 
, ClLAYE) 

I I I ~~~~/j~{~---V-AUD----~)b-

6-137 AfN.02008B 



8206/8206-2 

WAVEFORMS (Continued) 

NON-CORRECTING READ 

cm--------------_~~: -------if 
I 1 
1 1 

8M=?: : .~ 
1 : .TTVOV_I I. TBLOZ _I 

DI 
cal 

1 1~·--TDvou--+l_1 
I 1 1 I_TTVOV .... I 1 , .. TDXOX_ 1 1 

: t~--------:':-----~i------7-i ----) ! I 
I 1 1 1 
1 1 1 1 
!--TBHOV-----I 1 I 1 

1 I .1 I 1 

DD/WDI -------~ UNCDRRECTED {' CDRRECTED } UNCDRRECTED ~ 

WRITE ZERO I· TWLQL -I 
1 

I 1 
wz 

'i 1 If I 
I I 
I 
l_TOVOV --t 
I I 
I I 
1 I 
I 1 
1 1 

1 I 

DD/7///ff////7dW~ : 

I~WHO!I 

I I 

: k7h 
i 

1 I.TRHSX_I 
1 
1,--__ 1 

SYD/CBD~E/0WhX VALID )C 

6-138 AFN-02009B 



8206/8206-2 

A.C. CHARACTERISTICS' (TA = O"C to 70·C, vee = +5V ± 10%, Vss = OV,RL = 220, CL = 5Q pF; 
all tlmjls are in nsec.) 

8206 8206-2 

Symbol Parameter Min. Max. Min. Max. 

TRHEV 'E'Fir«5R Valid from RJWt 25 40 

TRHCV CE Valid from RJWt (Single 8206) 44 49 

TRHQV Corrected Data Valid from R/Wt 54 66 

TRVSV SYO/CBO/PPOValid from R/W 42 46 

TDVEV ERROR Valid from Data/Check Bits In 52 57 

TDVCV CE Valid from Data/Check Bits In 70 76 

TDVQV Corrected Data Valid from Data/Check Bits In 67 74 

TDVSV SYO/PPOValid from Data/Check Bits In 55 65 

TBHQV Corrected Data Access Time 37 37 

TDXQX Hold Time from Data/check Bits In 0 0 

TBLQZ Corrected Data Float Delay 0 28 0 28 

TSHIV STB High to Data/Check Bits In Valid 30 30 

TIVSL Data/Check Bits In to aTB~ Set-up 5 5 

TSLIX Data/Check Bits In from STB~ Hold 25 25 

TPVEV ERROR Valid from Partial Parity In 30 

TPVQV Corrected Data (Master) from Partial Parity In 61 

TPVSV Syndrome/Check Bits Out from Partial Parity In 43 

TSVQV Corrected Data (Slave) Valid from Syndrome 51 

TSVCV CE Valid from Syndrome (Slave number 1) 48 

TQVQV Check Bits/Partial Parity Out from Write Data In 64 69 

TRHSX Check Bits/Partial Parity Out from R/W, WZ Hold O~ 0 

TRLSX 'Syndrome Out from RJW Hold 0 0 

TQXQX Hold Time from Write Data In 0 0 

TSVRL Syndrome OUt to RlWJ Set-up 17 

TDVRL Data/Check Bits In to R/W Set-up 39 41 

TDVQU Uncorrected Data Out from Data In 32 36 

TTVQV Corrected Data Out from CRCTJ 30 33 

TWLQL WU to Zero Out 30 34 

TWHQX Zero Out from WZt Hold 0 0 

NOTES: 
1. A.C. Test Levels for CSO and DO are 2.4Vand C.8V. 

Notes 

1 

1 

1 

1 

2 

3 

1,3 

'1,3 .-
3 

3 

1 

1 

1 

3 
1 

2. TSHIV is required to guarantee output delay timings: T OVEV. T OVCV, TOVQV. T OVSV. TSHIV + TIVSl guarantees a min STS pulse 
width of 35 ns (45 ns for the 8206-8). 

3. Not required for 8116 bit systems 

6-139, 



8206-2 
16 BIT ERROR DETECTION AND CORRECTION UNIT 

• Detects and Corrects All Single Bit 
Errors 

• Detects All Double Bit and Most 
Multiple Bit Errors 

• Timing Optimized for 8 MHz iAPX 186, 
188,86,88 and 8207-2 Systems 

• Syndrome Outputs for Error Logging 

• Separate Input and Output Busses-No 
Timing Strobes Required 

• Supports Reads With and Without 
Correction, Writes, Partial (Byte) 
Writes, and Read-Modify-Writes 

• HMOS Technology for Low Power 
\ 

• 68 Pin Leadless JI;DEC j)ackage 

• Single + 5V Supply 

The HMOS 8206 Error Detection and Correction Unit is a high-speed device that provides error detection and 
correction for memory systems (static and dynamic) requiring high reliability and performance. Each 8206-2 
handles 8 or 16 data bits and up to 6 check bits. Other 8206-2 features include the ability to handle byte writes, 
memory initialization, and error logging. 

D10-15 

STB-~=C~ 
CB1o-s 

WRITE 
PARTIAL PARITY 

GENERATOR 

16 

.-------; I-----.. ERROR 

SYNDROME 
DECODER 

AND 
ERROR 

DETECTION 

,..-----1 f-----CE 

,. 
DATA 

CORRECTION 

1. 

Figure 1. 8206 Block Diagram 

Int~1 Corporation Assumes No ResponSIbility for the Use of Any Circuitry OtherThan Circuitry Embodied In an Intel Product No OtherCircurt Patent Licenses are Implied. Information 
COntained Herein Supercedes Previously Published Specifications On These Oevices From Intel. APRIL 1983 

©INTELCORPORATION.1983 6-140 ORDER NUMBER: 2052»003 



8206-2 

Table 1. Pin Description 

Symbol Pin Type Name and Function 

010-15 1,68-61, I Data In: These Inputs accept a 16 bit data word from RAM for error 
59-53 detection and/or correction. 

CBlo 5 I Check Bltlln: In "an 8206-2 system, these inputs accept the check bits (5 
CBI1 6 I to 6) from the RAM. 
CBI2 7 I 
CBI3 8 I 
CBI4 9 I 
CBI5 10 I 

DOIWDlo 51 I/O Data Out/Wrlte Data In: In a read cycle. data accepted by D~ppears 
DOIWDI1 50 I/O at these outputs corrected if CRCT is low. or uncorrected if R is high. 
DOIWDI2 49 I/O The BM inputs must be high to enable the output buffers during the read 
DOIWDI3 48 I/O ,cycle. In a write cycle. data to be written into the RAM is accepted by 
DO/WDI4 47 I/O these inputs for computing the write check bits. In a part!!!-write cycle. 
DOIWDI5 46 I/O the byte not..!.o be moc;lified appears at either 000-7 if!!Mo is high. or 
DOIWDI6 45 I/O DOe-15, if BM1 is high. for writing to the RAM. When WZ is active. it 
DOIWDI7 44 I/O causes the 8206 to output all zeros at 000-15. with the proper write 
DOIWDle 42 I/O check bits on CBO. 
DOIWDlg 41 I/O 
DOIWDl10 40 I/O 
DO/WDI11 39 I/O 
DOIWDI12 38 I/O 
DOIWDI13 37 I/O 
DOIWDI14 36 I/O 
DOIWDI15 35 I/O 

SYO/CBOo 23 0 Syndrome Out/Check Bltl Out: In an 8206-2 system. the syndrome 
SYO/CB01 24 0 appears at these outputs during a read. During a write, the write check 
SYO/CB02 25 0 bits appear. The syndrome is latched (during read-modify-writes) by RIW 
SYO/CB03 27 0 going low. 
SYO/CB04 28 0 
SYO/CB05 29 0 

CE 17 0 Correctable Error: In an 8206-2 system, this pin outputs the correctable 
error flag. CE is latched by RtW going low. 

ERROR 22 0 Error: This pin outputs the error flag in !In 8206-2 system. It is latched by 
RIW going low. 

CRCT 52 I Correct: When low this pin causes data correction during a read or 
read-modify-write cycle. When high. it causes error correction to be 
disabled, although error checking is still enabled. 

STB 2 I Strobe: STB is an input control usect to strobe data at the 01 inputs and 
check-bits at the CBI/SYI inputs. The signal is active high to admit the 
inputs. The signals are latched by the high-to-Iow transition of STB. 

BMo 33 I Byte Markl: When high. the Data Out pins are enabled for a read c~e. 
BM1 32 I When low. the Data Out buffers are tristated for a :;vrite cycle. 0 

controls 000-7, while BM1 controls DOe-15.ln partial (byte) writes. the 
byte mark input is low for the new byte to be written. 

RIW 21 I Read!Wrlte: When ~9'CfiS pin causes the 8206-2 to perform detection 
and correction (if R is low). When low. it causes the 8206-2 to 
generate check bits. On the high-to-Iow transition the syndrome is 
latched internally for read-modify-write cycles. 

WZ 34 I Write Zero:' When low this input overrides the BM0-1 and' FtIW inputs to 
cause the 8206 to output all zeros at 000-15 with the corresponding 
check 'bits at CB00-5. Used fo~ memory initialization. \ 

Strap High 4 I Must be tied High. 

Strap Low 3 I Must be tied Low. 

AFN.Q2OO9C 



",w_I" I.I-e- 8206-2 

Table 1. Pin Description (Continued) 

Symbol Pin Type Name and Function 

N.C. 11-16 I Note: These pins have internal pull-up resistors but if possible should be 
18-20 tied high or low. 

, 
N.C. 30,31 0 Note: These are no connect pins and should be left open. 

Vee 60 I Power Supply: +5V 

VSS 26 I Logic Ground 

VSS 43 I Output Driver Ground 

FUNCTIONAL DESCRIPTION 

The 8206-2 16 Bit Error Detection and Correction 
Unit provides greater memory system reliability 
through its ability to detect and correct memory er­
rors. It is a single chip device that can detect and 
correct all single bit errors and detect all double bit 
and some higher multiple bit errors. Some other odd 
multiple bit errors (e.g., 5 bits in error) are interpreted 
as single bit errors, and the CE flag is raised. While 
some even multiple bit errors (e.g., 4 bits in error) are 
interpreted as no error, most are detected as double 
bit errors. Errors in check bits are not distinguished 
from errors in a word. 

For more information on er'ror correction codes, see 
Intel Application Notes AP-46 and AP-73. 

The 8206-2 has a "flow through" architecture. It sup­
ports two kinds of error correction architecture: 1) 
Flow-through, or correct-always; and 2) Parallel, or. 
check-only. There are two separate 16-pin busses, 
one to accept data from the RAM (01) and the other to 
deliver corrected data to the system bus (DO/WDI). 
The logic is entirely combinatorial during a read 
cycle. This is in contrast to an architecture with only 
one bus, with bidirectional bus drivers that must first . 
read the data and then be turned around to output 
the corrected data. The latter architectu re typically 
requires additional hardware (latches and/or trans­
ceivers) and may be slower in a system due to timing 
skews of control signals. 

READ CYCLE 

With the R/W pin high, data is received from the RAM 
outputs into the 01 pins where it is optionally latched 
by the STB signal. Check bits are generated from the 
data bits and compared to the check bits read fiOm 
the RAM into the CBI pins. If an error is detected the 
ERROR flag is activated and the correctable error 
flag (CE) is used to inform the system whether the 
er~or was correctable Or not. With the BM inputs 

high, the word appears corrected at the DO pins if the 
error was correctable, or unmodified if the error was 
uncorrectable. 

The 8206-2 may alternatively be used in a "check­
only" mode with the CRCT pin left high. With the 
correction facility turned off, the propagation delay 
from memory outputs to 8206-2 outputs is signifi­
cantly shortened. In this mode the 8206-2 issues an 
ERROR flag to the CPU, which can then perform one 
of several options: lengthen the current cycle for 
correction, restart the instruction, perform a diag­
nostic routine, etc. 

A syndrome word, five to six bits in length and con­
taining all necessary information about the existence 
and location of an error, is made available to the 
system at the SYOO-5 pins. Error logging may be 
accomplished by latching the syndrome and the 
memory address of the word in error. 

WRITE CYCLE 
For a full write, in which an entire word is written to 
memory, the data is written directly to the RAM, 
bypassing the 8206-2. The same data enters the 
8206-2 through the WDI pins where check bits are 
generated. The Byte Mark inputs must be low to 
tristate the DO drivers. The check bits, 5 to 6 in 
number, are then written to the RAM through the 
CBO pins for storage along with the data word. 

In a partial write, part of the data word is overwritten, 
and ;Jart is retained in memory. This is accomplished 
by performing a read-modify-write cycle. The com­
plete old word is read into the 8206-2 and corrected, 
with the syndrome internally latched by RiWgoing 
low. Only that part of the word not to be modified is 
output onto the DO pins, as controlled by the Byte 
Mark inputs. That portion of the word to be overwrit­
ten is supplied by the system bus. The 8206-2 then 
calculates check bits for the new word, using the 

. byte from the previous read and the new byte from 
the~system bus, and writes them to the memory. 

6-142 AFN'()2009C 



intJ 8206-2 

READ-MODIFY-WRITE CYCLES 

Upon detection of an error the 8206-2 may be used to 
correct the bit in error in memory. This reduces the 
probability of getting multiple-bit errors in subse­
quent read cycles. This correction is handled byex­
ecuting read-modify-write cycles. 

The read-modify-write cycle' is controlled by the RiW 
input. After (during) the read cycle, the system 
dynamic RAM controller or CPU examines the 8206-2 
~ and CE outputs to determine if a correctable 
errOr occurred. If it did, the dynamic RAM controller 
or CPU forces RiW low, telling the 8206-2 to latch the 
generated syndrome and drive the corrected check 
bits onto the CBO outputs. The corrected data is 
available on the DO pins. The DRAM controller then 
writes the corrected data and corresponding check 
bits into memory. 

The 8206-2 may be used to perform read-modify­
writes in one or two RAM cycles. If it is done in two 
cycles, the 8206-2 latches are used to hold the data 
and check bits from the read cycle to be used in the 
following write cycle. The Intel 8207-2 Advanced 
Dynamic RAM controller allows read-modify-write 
cycles in one memory cycle. See the System Environ­
ment section. 

INITIALIZATION 

A memory system operating with ECC requires some 
form of initialization at system power-up in order to 
set valid data and check bit information in memory. 
The 8206-2 supports memory initialization by the 
Write Zero function. By activating the WZ pin, the 

8206-2 will write a data pattern of zeros and the 
associated check bits in the current write cycle. By 
thus writing to all memory at power-up, a controller 
can set memory to valid data and check bits. Massive 
memory failure, as signified by both data and check 
bits all ones or zeros, will be detected as an un­
correctable error. 

HAMMING CODE 

The 8206-2 uses a modified Hamming code. The 
code appears in Table 2. The check bits are derived 
from the table by XORing or XNORing together the 
bits indicated by 'X's in each row corresponding to a' 
check bit. For example, check bit 0 for data word 
1000110101101011 will be "0." It should be noted 
that the 8206-2 will detect the gross-error condition 
of all lows or all highs. 

Error correction is accomplished by identifying the 
bad bit and inverting it. Table 2 can also be used as an 
error syndrome table by replacing the 'X's with '1's. 
Each column then represents a different syndrome 
word, and by locating the column corresponding to a 
particular syndrome the bit to be corrected may be 
identified. If the syndrome cannot be located then 
the error cannot be corrected. For example, if the 
syndrome word is 101100 the bit to be corrected is bit 
10 in the slave one data word. 

The syndrome deco!ling is also summarized in Table 
3 which can be used for error logging. By finding the 
appropriate syndrome word (starting with bit zero, 
the least Significant bit), the result is either; 1) no 
error; 2) an identified (correctable) single bit error; or 
3) a double bit error. . 

Table 2. Modified Hamming Code Check Bit Generation 

Check bits are generated by XOR'ing (except for the CBO and CB1 data bits, which are XNOR'edl the data bits in 
the rows corresponding to the check bits. Note there are 5 check bits in an 8-bit system and 6 check bits in a 
1E~,-bit system. 

BYTE NUMBER 0 1 
OPERATION 

BIT NUMBER 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

CBO = x x - x - x x - x - - x - x - - XNOR 
CB1 = x - x - - x - x - x - x x - x - XNOR 

CHECK CB2 = - x x - x - x x - - x - x - - x XOR 
CB3= x x x x x - - - x x x - - . - - XOR 

BITS CB4= - - - x x x x x - - - - - x x x XOR 
CB5= - - - - - - - - x x x x x x x x XOR 

DATA BITS 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 

6-143 AFN-02OO9C' 



Thble I 8206-2 Syndrome Decoding 

Syndrome '0 0 1 0 
Bits 1 0 0 1 

5 4' 3 2 0 0 0 

0 0 0 N CBO CB1 

0 0 1 CB3 0 

0 1 0 CB4 D 

0 1 1 0 3 

1 0 ' 0 CB5 D 

1 0 1 D 8 

1 1 0 D 13 

1 1 1 D D 

N = No Error 
CBX = Error in Check Bit X 

X = Error in Data Bit X 
0= Double Bit Error 

D 

D 

D 

D 

9 

14 

0 

1 0 1 
1 0 0 
0 1 1 

0 CB2 0 

0 D 1 

5 D 6 

D 4 D 

11 D D 

D 10 D 

D 15 D 

D D D 

0 
1 
1 

0 

2 

7 

D 

12 

D 

D 

D 

8206~2 

1 
1 
1 

D 

D 

D 

D 

D 

D 

D 

D 

The 8206-2 handles 8 or 16 bits of data. For 8 bit 
8206-2 systems, the Dls-15, DO/WDls-15 and 8M1 in­
puts are grounded. 

The 8206-2 is designed for direct connection to the 
Intel 8207-2 Advanced Dynamic RAM Controller. The 
8207-2' has the ability to perform dual port memory 
control, and Figure 7 illustrates a highly integrated 
iAPX 186 RAM implementation using the 8206-2 and 
8207-2. The 8206-218207-2 combination Rermits such 
features as automatic scrubbing (correctlhg errors in 
memory during refresh), extending RAS and CAS tim­
ings for Read-Modify-Writes in single memory cyd1es, 
and automatic memory initialization upon reset. 
Together these two chips provide a complete dual-port, 
error-corrected dynamic RAM subsystems. 

eLK AACKA AOo_sRASo_3 

CASO-3 ARDY ClK 

§21-----------+jPCTlA 

~-----------~~ 8201·2 

8018& 

CEt------, 
RIW 
WI 

DiM 
ERROR 010-15 SYOI 

CBO()..s 

82Q6.2 

CB1o_s 

!:Am 

STB HV 

6-144 , AFN-02009C 



inter 8206-2 

MEMORY BOARD TESTING 

The 8206-2 lends itself to straightforward memory 
board testing with a minimum of hardware overhead. 
~he following is a description of four common test 
modes and their implementation. 

Mode O-Read and write with error correction. 
Implementation: This mode is the normal 
8206-2 operating mode. 

Mode 1-Read and write data with error correction 
disabled to allow test of data memory. 
Implementation: This mode is performed 
with CRCT deactivated .. 

Mode 2-Read and write check bits with error cor­
rection disabled to allow test of check bits 
memory. 

TOP 

PIN NO.1 MARK 

NOTE: 

Implementation: Any pattern may be writ­
ten into the check bits memory by judi­
ciously choosing the proper data word to 
generate the desired check bits, through 
the use of the 8206-2 Hamming code. To 
read out the check bits it is first necessary 
to fill the data memory with all zeros, which 
may be done by activating WZ and in­
crementing memory addresses with WE to 
the check bits memory held inactive, and 
then performing ordinary reads. The check 
bits will then appear directry at the SYO 
outputs, with bits CBO and CB1 inverted. 

Mode 3-Write data, without altering or writing 
check bits, to allow the storage of bit com­
binations to cause error correction and 
detection. 

~ 

" ~ 
8 

CIIl!T 

"l 
DI, 

Vee 

"1 
DI, 

./ ~ .. PIN NO.1 
" Iii MARK 

Implementation: This mode is imple­
mented by writing the desired word to 
memory with WE to the check bits array 
held inactive. 

BOTTOM 

;5 6 is 
~ ~ ~ 
C5 8 is 

" " I ,r I I 

wz 
BMii 
BM1 
N,C. 
N.C. 

JYO' 
SVO:) 

Yss JSY02 

SYOo -A/W 

] N.C. 

I ~I IrJ ~ 
+ i OJ c.i 

u u z 

8206-2 is packaged in a 68 pin JEDEC TYPE A hermetic chip carrier. 

Figure 3. 8206 Pinout Diagram 

6-145 AFN-02OO9C 



8206·2 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias' , ....... ' O"C to 70"C 
Storage Temperature .... , ... , ...... -65°C to +150"C 
Voltage On Any Pin 

With Respect to Ground ............. -0.5V to +7V 
Power Dissipation .......................... 2.5 Watts 

'NOTE: Stresses abo!,e those listed under "Absolut~ 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to absolute maxi~ 
mum rating conditions for extended periods may affect 
device reliability. 

D.C. CHARACTERISTICS TA = O°C to 70°C, Vee = 5.0V ± 10%, VSS = GND) 

Symbol Parameter 

lee Power Supply Current 

ViL Input Low Voltage 

V,H Input High Voltage .. 

Output Low Voltage 
VOL -DO 

-All Other Outputs 

Output High Voltage 
VOH -DO, CBO 

-All Other Outputs 

I/O Leakage Current 
ILO -CE 

-DO/WDI O_15 

III Input Leakage Current 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

, .. =X. 20> TEST POINTS < 2o)C 

0.8 08 
045 

A C TESTING INPUTS ARE DRIVEN AT2 4V FOR A LOGIC "1" ANDO 45V FOR 
A LOGIC "0" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC "1" 
AND 0 8V FOR A LOGIC "0" 

Min. 

-0.5 

2.0 

2.6 
2.4 

6-146 

Max. Unit Test Conditions 

270 mA 

O.S V 

Vee+ V 
0.5V . 
0.45 V IOL = SmA 
0.45 V IOL = 2.0mA 

V IOH = -2mA 
V IOH = -O.4mA 

±20 /LA 0.45V"" Vl/o "" Vee 
±10 /LA 

±10 /LA OV"" V,N "" Vee 

A.C. TESTING LOADCI~CUIT 

OEVICE RL 

UNDER 

~CL TEST 

,I 
CL INCLUDES JIG CAPACITANCE 

ilFN,02009C 



8206·2 

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = +5V ± 10%, VSS = OV, RL = 220 CL = 50pF; 
all times are in nsec.) < 

8206-2 

Symbol Parameter Min. Max. Notes 

TRHEV ERROR Valid from R/Wl 40 

TRHCV CE Valid from R/Wl 49 

TRHQV Corrected Data Valid from R/Wl 66 1 

TRVSV SYO/CBO Valid from R/W 46 1 

TDVEV ERROR Valid from Data/Check Bits In 57 

TOVCV CE Valid from Data/Check Bits In 76 

TDVQV Corrected Data Valid from Data/Check Bits In 74 

TDVSV SYO Valid from Data/Check Bits In 65 

TBHQV Corrected Data Access Time 37 

TOXQX Hold Time from Data/Check Bits In 0 1 

TBLQZ Corrected Data Float Delay 0 28 1 

TSHIV STB High to Data/Check Bits In Valid 30 2 

TIVSL Data/Check Bits In to STB! Set-up 5 

TSLIX Data/Check Bits In from STB! Hold 25 

TQVQV Check Bits Out from Write Data In 69 1 

TRHSX Check Bits Out from R/W, WZ Hold 0 1 

TRLSX Syndrome Out from R/W Hold 0 , 
TQXQX Hold Time from Write Data In 0 1 

TDVRL Data/Check Bits In to R/W Set-up 41 1 

TOVQU Uncorrected Data Out from Data In 38 

TTVQV Corrected Data Out from CRCn 33 

TWLQL WZ! to Zero Out 34 

TWHQX Zero Out from WZi Hold 0 

NOTES: 
1. A.e. Test Levels for eeo and DO are 2.4Vand 0.8\1 
2. TSHIV is required to guarantee output delay timings: TOVEV, Tovev. TOVQV. Tovsv. TSHIV + TIVSl guarantees a min STe pulse 

width of 35 ns. 

6-147 AFN·02009C 



WAVEFORMS 

READ 

'STB;;: ! N,......' ~!~ ___ _ 
I:'H'~ 1 • TlVSL • I I :L': 1 

ri __ ~~ : 

1 1 1 1 
1 1 1 1 

1 I 

iii _--+-! -Jll<t. I 11,,-' ----
1 1 (-TBHQV ----I 1 1 
1 1 1 1 1 

C~: ---<~ i ! - ~)-.:..: ----
1 1 1 1 1 L-TBLOZ_ 

• TRHQV .' ---J' 

ii, ~d:-~ 
l I· , . TRVSV • I: I 

Syo-----r"; ~! >0W/#w.4 ! ~ K= 
1-1" +-1 ---TDVSV----!.I 1 1 

DO 

t-I .. +1 - __ --'~DYQ·_. -----t.1 1 

~I! ! ~TRHEV ~~r----_I 
EiiiiOii--+i--+---i ~Z7//Wa VAUD x= 

I. 1 TDYEY .: ' 1 
I .. 1 TDVCV "I 1 

-~I~I~.~~~T~~Y~~rrrr~"~1 _____ I 
CE_---.;)@///7&h///AVAUD x= 

\ 

6'"148 AFN-02OO8C 



8206-2 

WAVEFORMS (Continued) 

READ MODIFY WRITE 

~ t tt,...1 ----------
TSj'vi+I'------T'vsL----.j.1 1_' ---TSLlX---J·1 
-j r- 1 I I 

I I I 

~W =:JIf 'i A: 
I I 1'------;-1 -J I 1 

1+1' ~I ----·TDVRL.---...... I_TRVSV----! 1 1 

i
ll I 1 1 I I 

~ 1:
1 

><--------~LI~D:----~: ~I~~ 
I II T.RHSX 1 I 

1 . - i ,~BL~i '1 I--TBHQV-l 
1 1 I I 

c~: -i+-: ___ --..:_V_"LlD+-: __ +--_--J* : : 
1 I 1 1 I I ... ---TRHQV---+--!"I I -II I 

14-1.-=--1 ----TDVQV-tl ::;:;":1,1 + ___ -+ __ T_DX_QX_ t-I 

- Ii 02;: m 
II II TQXQ~L 
I t-I.---+RVSV----J"I 1-1 I-TRLsx 1 

II I I I I 
SVO/CBO ---1-1 ~>e""'--~r-r-/j-r-r7b""7"'-T7Z~: SVN WZl CB , PC 

I . I I I I 
I' TDVSV "I !----TQVQv-----':"1 

6-149 AFN-02OO9C 



inter 

WAVEFORMS (Continued) 

NON-CORRECTING READ 

CRCT------------~~~: ------1 
, I 
I I 

BMJ: i t= 
I I TTVQV I I" TBLQZ ~ I 

DI 
CBI 

I 14IO--TDYQU--...... 1 ~ 
, I I I ...... TTVQV ..... ' I I" TDXQX~ 1 , 

, }r------:-I -----i-: ------i-:I ---..~ ,i i 
I ~ t I )I 
, I I I I 
I I 1 1 1 
i--TBHQV---+j I I 'I 

I I I I 1 I 

DD/WDI -------WA UNCORRECTED ~ CORRECTED } UNCORRECTED D-

WRITE ZERO I" TWLQL ~I 

I 
, 

wz I 

~ , 
, A ~ ______ ~~ __ --J I 

I 
'_TQVQV-I 

I 
I 
I , 
I 
I 

Do~mff//$M 

I , 
1 , 
I 
I~WHQ! I 
, , 
: k7Zi 
i 

I 
,~ 

I 
I 
I 
I 

SYOICBOW~~----VAL-'D k 

6-150 AFN-02009C 



inter 8206·2 

6-151 AFN·02009C 



8207 
ADVANCED DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to 
Control 16K (2118), 64K (2164A) and 
256K Dynamic RAMs 

• Directly Addresses and Drives up to 2 
Megabytes without External Drivers 

• Supports Single and Dual·Port 
Configurations 

• Automatic RAM Initialization in All 
Modes 

• Four Programmable Refresh Modes 
• Transparent Memory Scrubbing in 

ECC Mode 

• Supports Intel iAPX 86, 88, 186, 188, and 
286 Microprocessors 

• Data Transfer and Advance' Acknowledge 
Signals for Each Port 

• Provides Signals to Directly Control the 
8206 Error Detection and Correction Unit 

• Supports Synchronous or 
Asynchronous Operation on Either Port 

• +5 Volt Only HMOSII Technology for 
High Performance and Low Power 

The Intel 8207 Advanced Dynamic RAM Controller (ADRC) is a high-performance, systems-oriented, Dynamic 
RAM controller that is designed to easily interface 16K, 64K and 256K Dynamic RAMs to Intel and other 
microprocesso~ systems. A dual-port interface allows two different busses to independently access memdry. When 
configured with an 8206 Error Detection and Correction Unit the 8207 supplies the necessary logic for designing 
large error-corrected memory arrays. This combination provides automatic memory initialization and transparent 
memory error scrubbing . 

• So.'C==~ 

Figure 1. 8207 Block Diagram 

Intel Corporation Assumes No Responsibility fllr the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product No Other Circuit 
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published SpecificatIons. On These Devices From Intel. 
@INTELCORPORATION, 1983 

6-152 JULY 1983 

ORDER NUMBER: 210463·003, 



8201 

Table 1, Pin description 

Symbol Pin Type Name and Function 

LEN 1 0 AoPAESS LATCH ENABLE: In two-port configuralions, when Port A is running w~h iAPX 286 Status 
interface mQde, this output replaces the ALI;: signal from tile system bus .controller of port A and 
generates an llddress latch enable signal which provides optimum setup and hold timing for the 8207. 
This signal is used in Fast Cycle operation only. 

XACKAI 2 0 TRANSFER ACKNOWL~DGE ~AlACKNOWLEDGE PORTA: In non-ECC mode, this. pin is 
ACKA XACKA and inideates that data on the bus is valid during a read cycle or that data may be removed 

from the bus during a write cycle for Port A. ~CKA is a MultibulHlOmpatibie signal. In ECC mode, 
this pin Is ~ which can be configured, depending on the programming of th~Ogram bit, 
as an XACK or MCK strobe. The SA programming bit 'determines whether the ,M K will be an 
early EMCKA or a late LAACKA interface signal. 

XACKBI 3 0 TRANSFER ACKNOWLEDGE PORT B/ACKNOWLEDGE PORT B: In non-ECC mQde, this pin 
ACKB is XACKB and indicates \hat data on the·bus is valid during a read cycle or that data may be re-

moved from the bus during a write cycle for Port B. XACKB is a MultibulHlOmpatible signal. In ECC 
mode, thi5BIC~ ACKB which can be c;onfigured, depanding on the programming of ~ram 
bit, as an or MCK strobe. The SB programming bit determines whether the will be 
an early EAACKB, or a late LAACKB interface signal. ' 

"AJi.e'i(}J 4 0 ADVANCED AC\<NOWLEDGE PORT AlWRITE ZERO: In non-ECC mQde, this pin IS AACKA 
Vii. and indicates that the processor may continue processing and that data will be available when re-

quired. This sighal is optimized for the system by programming the SA program bit for synchronous 
or asynchronous oparation. In ECC mQde, ailer a RESET, this signal will cause the 8206 to force 
the data to all zeros and generate the appropriate check bits. 

MCKBI 5 0 ADVANCED ACKNOWLEDGE PORT B/READIWRITE:,ln non-ECC mQde, this pin IS AACKB and 
RiW indicates that the processor'may cOntinue processing and that data Will be available when required. 

This signal is optimized for the syStem by programming the SB program bit fOr synchronous or asyn-
chronous operation. In ECC mClde, this signal causes the 8206 EDCU to latch the syndrome and 
error flags and generate check bits. 

OBM 6 0 DISABLE BYTE MARKS: This is an ECC control output signal indicating that a read or refresh cy' 
cle is occurring. ThiS output forces the byte address decoding logic to enable all 8206 data output 
buffers. In ECC mode, thIS output is also asserted during memory initialization and the 8-cycle dynamic 
RAM wake-up exercise. In non-ECC systems this signalmdicates that either a read, refresh or &cycle 
warm-up is in progress. 

ESTB 7 0 ERROR STROBE: In ECC. mQd~, this strobe is activated when an error is detected and allows a 
negative-edge trigge~.mp-fIoP tp latCI). tl)e status of the 8206 EOCU CE for systems With error 
logging capabililles. wHI not be issued dUring refresh cycles. • 

LOCK 8 I LOCK: This input I~structs t!1e 8207 to lock out the port,not being selVlCed at the time LOCK was 
issued. 

Vee 9 I DRIVER POWER: +5 Volts, Supplies Vee for the output drivers. 
43 LOGIC POWER: +5 Volts. Supplies Vcc for the internal logiC circuits, 

CE 10 I CORRECTABLE ERROR: This is an ECC input from the 8206 EDCU which instructs the 8207 whether 
a detected error is correctable or not. A high input Indicates a correctable error, A low input Inhibits 
the 8207 from activating WE to write the data back into RAM. ThiS !\hould be connected to the CE 
output of the 8206. 

~ 11 I ERROR: This is an ECC II1PuI from the 8206 eocu and instructs the 8207 that an error was detected, 
Thi$ pin should be connected ,to the ERROR output of the 8206. 

MUXI 
\ 

12 0 MULTIPLEXER CONTROL/PROGRAMMING CLOCK: Immediately ailer a RESET this pm IS used 
PCLK to clock serial programming data into the POI pin. In nonnal two-port operation, this pin is used 

to select memory addresses from the appropriate port. When thiS signal is high, port A IS selected 
and when it is low, port B is selected. ThiS Signal may change state before the completion of a RAM 
cycle, but the RAM address hold time is satisfied. 

PSEL 13, 0 PORT SELECT: This signal IS used to select the appropriate port for data transfer. When this signal 
is high port A.is selected and when it is low port B is selected. 

PSEN 14 0 PORT SELECT ENABLE: This Signal used in' conjunction wilh PSEL provides contention-free port 
exchange on the data bus. When 'PSEN is low, port selection is allowed to change state. 

WE 15 0 WRITE ENi\BI.E: This Signal proyidlls the tlynamic RAM I\rray the write enable input for a write 
operation, 

I, 

6-153 210463-003 



8207 

Table 1. Pin Deacrlptlon (Continued) 

Symbol Pin Type. Neme end Function 

FWR 16 I FULL WRITE: This is an ECC Input signal that instructs the 8207, in ·an ECC configura-
tion, whether the present write cycle is normal RAM write (full write) or a RAM partial 
write (read-modify-write) cycle. 

RESET 17 I RESET: This signal causes all Internal counters and state flip-flops to be reset and upon 
'release of RESET, data appearing at the POI pin is clocked in by the PCLK output. The 
states of the POI, PCTLA, PCTLB and RFRQ pins are sampled by RESET going inactive 
and are used to program the 8207. An 8-cycle dynamic RAM warm-up Is performed after 
clOCking POI bits into the 8207. 

CASO 18 0 COLUMN ADDRESS STROBE: These outputs are used by the dynamic RAM array to 
CAS1 19 0 latch the column' address, prese"!t on the AOO-8 pins. These outputs are selected by 
CAS2 20 0 the BSO and BS1 as programmed by program bits RBO and RB1. These outputs drive 
CAS3 21 0 the dynamic RAM array directly and need no external drivers. 

RASO 22 0 ROW ADDRESS STROBE: These outputs are used by the dynamic RAM array to latch 
FiAS1 23 0 the row address, present on the AOO-8 pins. These outputs are selected by the aso 
RAS2 24 0 and BS1 as programmed by program bits RBO and RB1. These outputs drive the 
AAS3 25 0 dynamic RAM array directly and need no external drivers. 

Vss '<.26 I DRIVER GROUND: Provides ,a ground for the output drivers. 
60 I LOGIC GROUND: Provides a ground for the remainder of the device. 

AOO 35 0 ADDRESS OUTPUTS: These outputs are deSigned to provide the row and column 
A01 34 0 addresses of the selected port to the dynamic RAM array, These outputs drive the 
A02 33 0 dynamic RAt-" array directly and need no external drivers. 
A03 32 0 
A04 31 0 
A05 30 0 
A06 29 0 
A07 28 0 
A08 27 0 

BSO 36 BANK SELECT: These inputs are used 'to select one o~ four banks of the dynamic 
BS1 37 RAM array as defined by fhe program bits RBO and RB1. 

ALO 38 ADDRESS LOW: These lower-order address inputs are used to generate the row 
AL1 39 address for the internal address multiplexer. 
AL2 40 
AL3 41 
AL4 42 
AL5 44 
AL6 45 
AL7 46 
ALB 47 

AHO - 48 ADDRESS HIGH: These higher-order address inputs are used to generate the 
AH1 49 column address for the internal address multiplexer. 
At:t2 50 
AH3 51 
AH4 52 
AH5 53 \ 

AH6 54 
AH7 55 
AH8 56 

POI 57 PROGRAM DATA INPOT: This inRut programs the various user-selectable options in the 
8207. The PCLK pin shifts programming data into the POI input from optional external 
shift registers. This pin may be strapped high or lo,w to a default ECC (POI =Logic "I") 
or non-ECC (POI - Logic "0") mode configuration. 

RFRQ 58 I REFRESH REQUEST: This input is sampled on the falling edge of RESET. If it is high 
at RESET, the~ the 8207 is programmed for internal refresh request or external refresh 
request with failsafe protection. If it Is low at RESET, then the 8207 is programmed for 
external refresh without failsafe protection or burst refresh. Once programmed the RFRQ 
pin accepts signals to start an external refresh with failsafe protection or external refresh 
without failsafe protection or a burst refresh. 

6-154 



Symbol Pin Type 

CLK 59 I 

ROB 61 I 

WRB 62 I 

~ 63 I 

PCTLB 64 I 

J!il5A 65 I 

WRA 66 I 

PEA 67 I 

PCTLA 68 I 

GENERAL DESCRIPTION 

8207 

Table 1. Pin Description (Continued) 

Name and Function 

CLOCK: This input provides the' basic timing for sequencing the internal logic. 

READ FOR PORT B: This pin is the read memory request command input for port B. 
This input also directly accepts the 51 status line from Intel processors. 

WRITE FOR PORT B: This pin is the write memory request command input for port B. 
This Input also directly accepts the ml status line from Intel processors. 

PORT ENABLE FOR PORT B: This pin serves to enable a RAM cycle request for port 
B. It is generally decoded from the port address. 

PORT CONTROL FOR PORT B: This pin is sampled on the falling edge of RESET. It 
configures port B to accept command inputs or processor status inputs. If low after 
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or 
Multibus commands. If high after RESET, the 8207 is programmed to accept status 
inputs from iAPX 86 or iAPX 186 processors. The 52 status line should be connected 
to this input if programmed to accept iAPX 86 or iAPX 186 status inputs. When 
programmed to accept commands or iAPX 286 status, it should be tied low or it may 
be used as a Multibus-compatible inhibit signal. 

READ FOR PORT A: This pin is the re~ memory request command input for port A. 
This input also directly accepts the Sl status line from Intel processors. 

WRITE FOR PORT A: This pin is the write memory request command input for port A. 
This input also directly accepts the SO status line from Intel processors. 

PORT ENABLE FOR PORT A: This pin serves to enable a RAM cycle request for port 
A. It is generally decoded from the port address. 

PORT CONTROL FOR PORT A: This pin is sarti pled on the falling edge of RESET. It 
configures port A to accept command inputs or processor status inputs. If low after 
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or 
Multibus commands. If high after RESET, the 8207 is programmed to accept statlls 
inputs from iAPX 86 or iAPX 186 processors. The S2 status line should be connected 
to this input if programmed to accept iAPX 86 or iAPX 186 status inputs. When 
programmed to accept commands or iAPX 286 status, it should be tied low or it may 
be connected to INHIBIT when operating with Mu\tibus. 

FUNCTIONAL DESCRIPTION 

" 
The Intel 8207 Advanced Dynamic RAM Controller 
(ADRC) is a microcomputer peripheral device which 
provides the necessary Signals to address, refresh 
and directly drive 16K, 64K and 256K dynamic RAMs. 
This controller also provides the necessary arbitra­
tion circuitry to support dual-port access of the 
dynamic RAM array. 

Processor Interface 

The 8207 has control circuitry for two, ports each 
capable of supporting one of several possible bus 
structures. The ports are independently configur­
able allowing the dynamic RAM to serve as an inter­
face between two different bus structures. 

The ADRC supports several microprocessor interface 
options including synchronous and asynchronous con­
nection to iAPX 86, iAPX 88, iAPX 186, iAPX 188, iAPX 
286 and Multibus. 

This device may be used with the 8206 Error Detec­
tion and Correction Unit (EDCU). When used with the 
8206, the 8207 is programmed in the Error Checking 
and Correction (ECG) mode. In this mode, the 8207 
provides all the necessary control Signals for the 
8206 to perform memory initialization and transpar­
ent error scrubbing during refresh. 

Each port of the 8207 may be programmed to run 
synchronous or asynchronous to the processor clock. 

• (See Synchronous/Asynchronous Mode) The 8207 
has been optimized to run synchronously with Intel's 
iAPX 86, iAPX 88, iAPX 186, iAPX 188 and iAPX 286. 
When the 8207 is programmed to run in asynchronous 
mode, the 8207 inserts the necessary synchronization 
circuitry for the RD, WR, PE, and PCTl inputs. 

6-155 210463·003 



8207 

The 8207 achieves high performance (Le. no wait 
states) by decoding the status lines directly from the 
iAPX 86, iAPX 88, iAPX 186, iAPX 188 and iAPX 286· 
processors. The 8207 can also be programmed to 
receive read or write Multibus commands or commands 
from a bus controller. (See Status/Command Mode) 

The 8207 may be programmed to accept the clock of 

I-___ ~WRCLK 

I----~Rli 

Slow-Cycle Synchronous-Status Interface 

I 
I 

Slow-Cycle Synchronous-Command Interface 

the iAPX 86,88, 186, 188, or 286. The 8207 adjusts 
its internal timing to allow for the different clock 
frequencies of these microprocessors. (See 
Microprocessor Clock Frequency Option) 

Figure 2 shows the different processor interfaces to 
the 8207 using the synchronous or asynchronous 
mode and status or command interface. 

Slow-Cycle Asynchronous-Status Interface 

Slow-CyclQ Asynchronous-Command Interface 

Figure 2A. Slow-cycle Port Interfaces Supported by the 8207 

6-156 210463-003 



intJ 8207 

NOTE: NOTE: 
ADDRESS LATCH NOT REQUIRED IN SINGLE-PORT MODE. ADDRESS LATCH NOT REQUIRED IN SINGL&PORT MODE. 

Fast-Cycle Synchronous-Status Interface Fast-Cycle Asyi'IC;h'ronous-Status Interface 

SYNCHRONOUS 80286 

Fast-Cycle Synchronous-Command Interface Fast-Cycle Asynchronous-Command Interface 

Figure 2B. Fast-cycle Port Interfaces Supported by the 8207 

Single-Port Operation Dynamic RAM Interface 

The use of an address latch with the iAPX 286 status The 8207 is capable of addressing 16K, 64K and 256K 
interface is not needed since the 8207 can internally dynamic RAMs. Figure 4 shows the connection of the 
latch the addresses with an internal signal similar in processor address bus to the 8207 using the different 
behaviortotheLENoutput.Thisoperationisactiveonly \ RAMs. The 8207 directly supports the 2118 RAM 
in single-port applications when the processor is inter-· family or any RAM with similitr timing requirements 
faced to port A. and responses including the rntel 2164A RAM. 

Dual-Port Operation The 8207 divides memory into as many as four banks, 

The 8207 provides for two-port operation. Two inde­
pendent processors may access memory controlled 
by the 8207. The 8207 arbitrates between each of the 
processor requests and directs data to or from the 
appropriate port. Selection is done on a priority con­
cept that reassigns priorities based upon past his­
tory. Processor requests are internally queued. 

Figure 3 shows a dual-port cOl'Jfiguration with two 
iAPX ~6 systems interfacing to dynamic RAM. One of 
the processor systems is interfaced synchronously 
using the, status interface and the other is interfaced 
asynchrono~sly also ,using the status interface. 

each bank having its own Row (RAS) and Column 
(CAS) Address Strobe pair. This organization permits 
RAM cycle interleaving and permits error scrubbing 
during ECC refresh cycles. RAM cycle interleaving 
overlaps the start of the next RAM cycle with the RAM 
Precharge period of the previous cycle. Hiding the 
precharge period of one RAM cycle behind the data 
a<;eess period of the next RAM cycle optimizes memory 
bandwidth and is effective as long as successive RAM 
cycles occur i'1 altemate banks. 

Successive data access to the same bank will cause 
the 8207 to wait for the precharge time of the previous 
RAM cycle.' 

6-157 21Q483.003 



0> 
.!. 
01 
CXI 

I 

. -' P READY ROY1 ~OTHER~INPUTS 
MEMORY 

ME_ 
ClJ( 

(UPPEIII (LdWER) -* ~ I~-':'-, 
ClJ( WE DI DO WE DI DO 

. ALE t----.- ~II ll~ 8288" Oil:N t- - CLK 

Mill T'-"r----' ~~ ... * 
ClJ( AACKA AGo.. 1IDo-, i2!5 DEN DTtRl--

52 51 SO CASo.3 .-- ~ 
T 1 WE I; ALE 

<IEAIlY CLK-52 AACKII SOS152 

J 
PCTLA, -ClJ( I S1 RDA 8207 PCTLB(4 52 

so WRA ROB 51 

I 

WRBI>-
SO 

~ 
MUX ~~ 8086/ .. lI AHo-aAl.cJ_e PSENPSEI 

~ 80186 

.Y 
- -I 

CLR CLR ..... 
DE S1B 

8283 
A,DDR/OATA k-;> L~ t-

, - '::'iT r./ ADDWDATA 

.. 
.A t-- t-

~ BO S1B 
, BYTE 

MARK 

...=::- LATCH 81 
.... I---

. - , . LATCH I------- '--

S1B .DE . Lr-.., 
DE S1B .... 

~ ~~ 
- ,. .... I---,. LATCH 

'----
S1B OE 

~ .... Ie 
LATCH ,. 

'---

:NOTE: 
*These components are not necessary when using the 80186 components. These functions are provided directly by 
the 80186. 

Figure 3. 8086/80186 Dual Port System 

USING STATUS-

1009; 

IRDNOUS 

( 

I 

"@-­
dg) 
ffi 
~ 
~ = 
~ 
~-
2QJ. 
~' 



8207 

A12-A20 

8207 8207 8207 

A3-A11 

A1,A2 

256K RAM INTERFACE 64K RAM INTERFACE 16K RAM INTERFACE 

NOTES: 
(1) Unassigned address input pins should be strapped high or low. 
(2) AO along with BHE are used to select a byte within a processor word. 
(3) Low order address bits are used as bank select inputs so that consecutive memory access requeSts 

are to alfernatebanks -allowing bank interleaving of memory cycles. 

Figure 4. Processor Address Interface to the 8207 Using 16K, 64K, and 256K RAMS 

If not all RAM banks are occupied, the 8207 reassigns 
the RAS and CAS strobes to allow using wider data 
words without increasing the loading on the RAS and 
CAS drivers. Table 2 shows the bank selection 
decoding and the word expansion, including RAS and 
CAS assignments. For example, if only two RAM banks 
are occupied, then two RAS and two CAS strobes are 
activated per bank. Program bits RB1 and RBO are not 
used to check the bank select inputs BS1 and BSO. The 
system design must protect from accesses to "illegal", 
non-existent banks of memory, by deactivating the 
PEA, PEB inputs when addressing an illegal bank. 

The 8207 can interface to fast (e.g., 2118-10) or slow' 
(e.g., 2118-15) RAMs. The 8207 adjusts and optimizes 
internal timings for either the fast Of slow RAMs as 
programmed~ (See RAM Speed Option). 

Memory Initialization 
After programming, the 8207 performs eight RAM 
"warm-up" cycles to prepare the dynamic RAM for 
proper device operation. During "warm-up" some 
RAM parameters, such as tRAH, tASC, may not be 
met. This causes no harm to the dynamic RAM ar­
ray. If configured for operation with error correction, 
the 8207 and 8206 EDCU will proceed to initialize 
all of memory (memory is written with zeros with 
corresponding check bits). 

6-159 

Program 
Bits 

RB1 RBO 

0 0 

0 0 

0 0 

0 0 

0 1 

b 1 

0 1 

0 1 

1 0 

1 0 

1 0 

1 0 

1 1 

1 1 

1 1 

1 1 

Table 2. 
Bank Selection Decoding and 

Word Expansion 

Bank 
Input 

BS1 BSe RAS/CAS Pair Allocation 

0 0 RASo-3. CASO_3 to Bank 0 

0 1 Illegal 

1 0 Illegal 

1 1 Illegal 

0 0 RASo.1. CASO.1 to Bank 0 

0 1 RAS2.3. CAS2.3 to Bank 1 

1 0 Illegal 

1 1 Illegal /' 

0 0 RASo. CASo to Bank 0 

0 1 RAS1. CAS1 to Bank 1 

1 0 RAS2. CAS2 to Bank 2 

1 1 Illegal 

0 0 RASo. CASo to Bank 0 

0 1 RAS1. CAS1 . to Bank 1 

1 0 RAS2 •. CAS2 to Bank 2 

1 1 RAS3. CAS3 to Bank 3 

210483-003 



8207 

Because the time to initiaiize memory is fairly long, 
the 8207 may be programmed to skip initialization in 
ECC mode. The time required to initialize all of 
memory is dependent on the clock cycle time to the 
8207 and can be calculated by the foflowing 
equation: 

eq.1 TINIT = (~3) TCLCL 

if TCLCL = 125 ns then TINIT = 1 sec. 

8206 ECC Interface 

For operation with Error Checking and Correction 
(ECC), the 8207 adjusts its internal timing and 
changes some pin functions to optimize perfor­
mance and provide a clean dual-port memory inter­
face between the 8206 EDCU and memory. The 8207 
directly supports a master-only (16-bit word plus 6 
check bits) system. Under extended operation and 
reduced clock frequency, the 8207 will support any 
ECC master-slave configuration up to 80 data bits, 
which is the maximum set by the 8206 EDCU. (See 
Extend Option) 

Correctable errors detected during memory read 
cycles are corrected immediately and then written 
back into memory. 

In a synchronous bus environment, ECC system per­
formance has been optimized to enhance processor 
throughput, while in an asynchronous bus environ­
ment (the Multibus), ECC performance has been op­
timized to get valid data onto the bus as quickly as 
possible. Performance optimization, processor 
throughput or quick data access may be selected via 
the Transfer Acknowledge Option. 

The main difference between the two ECC im­
plementations is that, when optimized for processor 
throughput, RAM data is always corrected and an 
advanced transfer acknowledge is issued at a point 
when, by knowing the processor characteristics, 
data is guaranteed to be valid by the time the proces­
sorneeds it. 

When optimized for quick data access, (valid for Mul­
tibus) the 8206 is configured in the uncorrecting 
mode where the delay associated with error correc­
tion circuitry is transparent, and a transfer acknowl­
edge is issued as soon as valid data is known to exist. 
If the E'R'RC5R flag is activated, then the transfer ac­
knowledge is delayed until'after the 8207 has instruc­
ted the 8206 to correct the data and the corrected 
data becomes available on the· bus. Figure 5 iI-' 
lustrates Ii dual-port ECC system. 

Figure 6 illustrates the interface required to drive the 
CRCT pin of the 8206, in the ca~e that one port (PORT 
A) receives an advanced acknowledge (not Multibus­
compatible), while the other port (PORT B) receives 
XACK (which is Multibus-compatible). 

Err~r Scrubbing 

The 8207/8206 performs error correction during 
refresh cycles (error scrubbing). Since the 8207 must 
refresh RAM, performing error scrubbing during 
refresh allows it to be accomplished without addi­
tional performance penalties. 

Upon detection of'a correctable error during refresh, 
the RAM refresh cycle is lengthened slightly to per­
mit the 8206 to correct the error and for the corrected 
word to be rewritten into memory. Uncorrectable er­
rors detected during scrubbing are ignored. 

Refre,sh 

The 8207 provides an internal refresh interval coun­
ter and a refresh address counter to allow the 8207 to 
refresh memory. The 8207 will refresh 128 rows every 
2 milliseconds or 256 rows every 4 milliseconds, 
which allows all RAM refresh options to be sup­
ported. In addition, there exists the ability to refresh 
256 row address locations every 2 milliseconds via 
the Refresh Period programming option. 

The 8207 may be programmed for any of four different 
refresh options: Intemal refresh only, Extemal refresh 
with failsafe protection, External refresh without failsafe 
protection, Burst Refresh mode, or no refresh. (See 
Refresh Options) 

It is possible to decrease the refresh time interval by 
10%,20% or 30%. This option allows the 8207. to 
compensate for reduced clock frequencies. Note 
that an additional 5% interval shortening is built-in in 
all refresh interval options to compensate for clock 
variations,and non-immediate response to the iriter­
nally generated refresh request. (See Refresh Period 
Options) 

External Refresh Requests after RESET 

External refresh requests are not recognized by the 
8207 until after it. is finished programming and pre­
paring memory ,for access. Memory, preparation in­
cludes 8 RAM cycles to prepare and ensure proper 

'6-160 210463-003 



0) 

.!. 
~ 

i 

DTIRB 

DENB 

A"CKI 

CMDIPEB 

ADDRB 

CMliIPEA 

ADDRA 

ACKA 
DI'NA 

DTIRA 

JII-
~ 

-
-

-
-

J:_ ;:1 ~ DYNAMIC 

ADDR 

1WE - ~I I, CMD/PEB WE " V 
DI CBI CBD 

8207 

·K~>-
MUX <r h WZ I-
ClK PSEN 

CE ~ L ERRDR 
ADDR iiiiii l- I 

-r-- rV RIIii I-

V 
ACKA FWR PSEl L ~EI{RD~ SYICB DII 

"- I I -<{J::: RIW CE SYNC DI 
RIW CBI 

v ECC PPI PPO ECC 

7 MASTER ... SlAYE 

~J 
8206 <5 

eRCT- 8206 

~~ \iii WR BM WDliDO WDliDO 

-'- R ~ j 7 
STB 

BYTE' 

~ 
BYTE 

t=: 
I 1 MARK MARK 

DECODER lATCH - - r---
I 7 :::c:>--.-t r-

)P1~ I ~ XCVR 

DTIR -rE PORTB PORTA 

Figure 5. Two-Port ECC Implementation Using the. 8207 and the 8206 

-<~1:IDE 

- ·1 

I 

l 

g 

"@ 

~ 
ffi 
F 

~ 
= 
~ 
.~ 
2!?l 
~ 



inter 

8207 8206 

PSELt--------, 

R/W 

Figure 6. Interface to 8206 CRC'i' Input When Port 
A Receives AACK and Port B Receives 
XACK 

8207 

dynamic RAM operation. and memory initialization if 
error correction is used. Many dynamic RAMs re­
quire this warm-up period for proper operation. The 
time it takes for the 8207 to recognize a request is 
shown below. 

eq.2 Non-ECC Systems: TRESP = TpROG + 
TpREP 

eq. 3 where: T PROG = (66) (T CLCL) which is 
programming time 

eq. 4 T PREP = (8) (32) (T CLCL) which is 
the RAM warm-up time 

if TCLCL = 125 ns then T RESP '" 41 us 

eq.5 ECC Systems: TRESP = TpROG + TpREP + 
TINIT 

if T CLCL = 125 ns then T RESP '" 1 sec 

RESET 

RESET is an asynchronous input. the falling edge of 
which is used by the 8207 to directly sample to logic 
levels of the PCTlA. PCTlB. RFRO. and POI inputs. 
The internally synchronized falling edge of RESET is 
used to begin programming operations (shifting. in the 
contents of the external shift register into the POI input). 

Until programming is complete the 8207 registers 
but does not respond to command or status inputs. A·· 
simple means of preventing commands or status 
from occurring during this period is to differentiate 
the system reset pulse to obtain a smaller reset pulse 
for the 8207. The total time of the reset pulse and the 
8207 programming time must be less than the time 
before the first command in systems that alter the 
default port synchronization programming bits 
(default is Port A synchronous. Port B asynchro­
nous). Differentiated reset is unnecessary when the 

The differentiated reset pulse would be snorter than 
the system reset pulse by at least the programming 
period required by the 8207. The differentiated reset 
pulse first resets the 8207 •. and system· reset would 
reset the rest of the system. While the rest of the 
system is still in reset. the 8207 completes its pro­
gramming. Figure 7 illustrates a circuit to ac­
complish this task. 

Within four clocks after RESET goes active. all the 8207 
outputs will go high. except for PSEN, WE, and AOO-2, 
which will go low. 

OPERATIONAL DESCRIPTION 

Programming the 8207 

The 8207 is programmed after reset. On the falling 
edge of RESET, the logic states of several input pins 
are latched internally. The falling edge of RESET 
actually performs the latching. which means that the 
logic levels on these inputs must be stable prior to 
that time. The inputs whose logic levels are latched at 
the end of reset are the PCTlA. PcrlB. REFRO. and 
POI pins. Figure 8 shows the necessary timing for 
programming the 8207. 

; 

SVST!!!j L-RESET l.-
I' 11 "I 

82llifl RESET I 

t, PROGRAMMING TIME OF 8207 

8207 

SYSTEM ">----I"'> "- 2:rJ- RESET 
RESET V IV ........ 

"¢ J 
DIFFERENTIATED RESET 

NOTES: 
(1)Required only when the port synchroniza-

tion options (SA & SB) are altered from 
their initial default values. 

(2)Vcc must be stable before system reset 
is activated when using this circuit. 

default port synchronization programming is used. Figure 7. 8207 Differentiated Reset Circuit 

6-162 210463·003 



8207 

NOTES: 
TRTVCL - Reset is an asynchronous input, if reset occurs before 1;, then it is 

. guaranteed to be recognized. . 
TPGVCL - Minimum POI valid time prior to reset going low. 
TCLP'C - MUXlPCLK delay. 
TLOAO - Asynchronous load data propagation delay. 

Figure 8. nmlng illustrating External Shift Register Requirements for Programming the 8207 

Status/Command Mode 
The two processor ports of the 8207 are configured 
by the states of the PCTLA and PCTLB pins. Which 
interface is selected depends on the state of the 
individual port's PCTL pin at the end of reset. If PCTL 
is high at the end of the reset, the 8086 Status inte .... 
face is selected; if it is low, then the Command inter­
face is selected. 

The status lines of the 80286 are similar in code and 
timing to the Multibus command lines, while the status 
code and timing of the 8076 and 8088 are identical to 
those of the 80186 and 80188 Ognoring the differences 
in clock duty cycle). Thus there existS two interface con­
figurations, one tor the 80286 status or Multibus 
memory commands, which is called the Command in­
terface, and one for 8086,8088,80186 or 80188 status, 
called the 8086 Status interface. The Command inter­
face can also directly interface to the command lines 
of the bus controllers tor the 8086, 8088, 80186 and 
the 80286. 

The 8086 Status interface allows direct decoding of 
the status of the iAPX 86, iAPX 88, iAPX 186 and the 
iAPX 188. Table 3 shows how the status lines are 
decoded. While in the Command mode the iAPX 286 
status can be directly decoded. Microprocessor 
bus controller read or write. commands or Multibus 
commands can also be directed to the 8207 when in 
Command mode. 

Refresh Options 

Immediately after system reset, the state of the 
REFRQ input pin is examined. If REFRQ is high, the 
8201 provides the user with the choioe between self­
r~fres~ or user-generate~' refresh with failsafe pro­
tection. Failsafe protection guarantees that if the 

6-163 

Table 3A. Status Coding of 8086, 80186 and 80286 

Status Code -Function 

!2 8'i SO _6180186 80286 

0 0 0 INTERRUPT INTERRUPT 

0 0 1 I/O READ I/O READ 

0 1 0 I/O WRITE I/O WRITE 

0 1 1 HALT IDLE 

1 0 0 INSTRUCTION 
FETCH HALT 

1 0 1 MEMORY READ MEMORY READ 

1 1 0 MEMORY WRITE MEMORY WRITE 

1 1 1 IDLE IDLE 

Table 3B. 8207 Response 

8207 
Command Function 

8086/80186 80286/Statuior 
Status Command 

P.CTL RD WR Intarface Interface 

0 0 0 IGNORE IGNORE 

0 0 1 IGNORE READ 

0 1 0 IGNdRE WRITE 

0 1 1 IGNORE IGNORE 

1 0 0 READ IGNORE 

1 0 1 READ INHIBIT 

1, 1 0 WRITE INHIBIT -

1 1 1 IGNORE IGNORE 



inter 8207 

user does n6t come back with another refresh re­
quest 'before the internal refresh interval counter 
times out, Ii refresh request will' be automatically 
generated. If the REFRQ pin is low immediately after' 
a feset, then the user has the choice of a single 
externai refresh cycle without failsafe, burst refresh 
or no refresh. 

Internal Refresh Only 

For the 8207 to'generate internal refresh requests, it 
is necessary only to strap the REFRQ ,input pin high. 

External Refresh with Failsafe 

To allow user-generated refresh .requests with fail­
safe protection, it is necessary fo hold the REFRQ 

. input high until after reset. Thereafter, a low-to-high 
transition on this inp4t causj!s a r,efresh request to be 
generated and the internal refresh interval counter / 
to be reset. A high-to-Iow transition has no effect on 
the 8207. A refresh request is not recognized until a 
previous request has been serviced.' 

External Refresh without Failsafe 

To generate single external refresh requests without 
failsafe protection, it is necessary to hold REFRQ low 
until after reset. Thereafter, bringing REFRQ high for 
one clock period causes a refresh request to be 
generated. A refresh request is not recognized until a 
previous request has been serviced. 

Burst Refresh 

Burst refresh [s implemented tl)rough the same pro­
cedure as a single external refresh without failsafe (i.e., 
REFRQ is kept low until after reset). Thereafter, bring­
ing REFRQ high for at least two clock periods causes 
a burst of up to 128 row address locations to be 
refr.e~hed; , . . 

In E~figured systems, 128 locations are' scrubbed. 
Any refresh request is not recognized until a previous 
request has been serviced (i.e., burst completed). 

No Refresh 
, . 

It is necessary to hold R~FRQ low until after reset. 
This is the same as programming External Refresh 
without Failsafe. No refresh is accomplished by 
. keeping REFRQ low. I ,. 

Option PrOgram Data Word . 

The program data wo[d consist!! of 16 program data 
bits, PO()"-P015. If the first progr!im data bit POO is 
set to 'logic 1, the 8207 is configured to support ECC. 
If it is logic 0, the 8207 is configured to support a non­
ECC system. The remaining bits, P01-P015, may 
then be programmed to optimize a selected·configura­
tion, Figures 9 and 10 show the Program words for non­
ECC and ECC operation. 

Using an External ~hlft Register 

The 8207 may be configured to use an external shift 
regil!ter with asynchronous load capability such as a 
74LS165. The reset pulse serves to parallel load the 

. shift register and the 8207 supplies the clocking sig­
nal to shift the data in. Figure 11 shows a sample 
circuit diagram of an external shift ~egistE!r' circuit. 

Serial data is shifted into the 8207 via the POI pin (57), 
and clock is provided by the·MUXlPCLK pin (12), which 
generates a total of 16 clock pulses. After program­
ming is complete, data appearing at the input of the 
POI pin is ignored. MUXlPCLK is a dual-function pin. 
Ouring programming, it serves to clock the external shift 
register, and after pl'QQramming is completed, it reverts 
to a MUX control pin. As the pin cl)anges state to select 
different port addresses, it continues to clock the shift 
register. This does not presi,nt a problem because data 
at the POI pin is ignored after programming. Figure 8 
illustrates the timing requirements of the shift register 
circuitry. 

ECC Mode (ECC Program Bit) 

The.state of POI (Program Data In) pin at reset deter­
mines whether the system is an fCC or non-ECC 
configuration. It is used internally by the 8207 to 
begin configuring timing circuits, even before pro­
grflmmirig is completely finished. The 8207 then 
begilis programming the rest of the options. 

Defau~iProgrammlng Options 

After reset, the 8207 serially shifts in a program data 
word via the POI pin: This pin may be 'strapped either ~ 
high or low, or connected to an external shift register. 
Strapping POI high .. cau~s the 8207 to defl?ult to a 
partlcl,llar system configuration with error correc­
tion; andlitrapRing it low cau~s the 8?07 to default 
to. Ii p'a~ticular system configuration without 'error 
correction; Table 4 shows th~' defaultconfigurations . 

6-164 



inter 

1 

p 

, 

PD15 POB PD7 PDO 

I 0 I 0 ITM11~lmIEXTIPLSI CIOI ClllA111IRDl m lml SB I nl o I 
PROGRAM , 
DATA BIT NAME POLARITYIFUNCTION 
PDO ECC ECC=O FOR NON-ECC MODE 
POI SA 8-0 PORT A IS SYNCHRONOUS 

=1 PORT A IS ASYNCHRONOUS 
PD2 SI SI-O ~~::: :v~~W'~~ 88=1 
PD3 CFS CFS-O FAST·CYCLE IAPX 288 MODE 

eFS=l SLOW-CYCLE fAPX 86 MODE 
PD4 RFS JU!li=0 FAST RAM 

fiI!i=l SLOW RAM 
PDS = RAM BANK OCCUPANCY 
PDe SEETAlLE2 

PD7 Cll COUNT INTERVAL liT 1; SEE TAlLE 6 
PDe CIO COUNT INTERVAL lIT 0; SEE TABLE 6 

PDB PLS KS=o LONG REFRESH PERIOD 
m=l SHORT REFRESH PERIOD 

POlO EXT EXT-O NOT EXTENDED 
EXT=l EXTENDED 

PD11 FFS FFS=O FAST CPU FREQUENCY 
, FFS=l SLOW CPU FREQUENCY 

PD12 PPR PPR=O MOST RECENTLY USED PORT 

jij5jj=1 
PRIORITY 
PORT A PREFERRED 
PRIORITY 

PD13 TMl TM1=0 TEST MODE 1 OFF 
TM1=1 TEST MODE 1 ENABLED 

P014 0 RESERVED MUST IE ZERO 
POlS 0 RESERVED MUST IE ZERO 

Figure 9. Non-ECC Mode Program Data Word 

POlS PDB PD7 PDO 

1~1~IR~lp~~lml~sl~I~lelnIRFSICFSlgISAI' I 

PROGRAM 
DATA lIT NAME POLARITYIFUNCTION . 
PDO ECC ECC-l ECCMODE 
POl SA SA=O PORT A ASYNCHRONOUS 

SA=l PORT A SYNCHRONOUS 
PD2 SI D-O PORT B SYNCHRONOUS 

SI=l PORT I ASYNCHRONOUS 
PD3 CFS CFS=O SLOW-CYCLE IAPX 86 MODE 

CFS=l FAST-CYCLE IAPX 286-MODE 
PD4 RFS RFS=O sLOW RAM 

RFS=l FAST RAM 
PD5 XA XA=O MULTIBUS-cOMPATIILE 

Xli =1 
ACKA 
ADVANCED ACKA NOT 
MULTIBUS-COMPATllLE 

PD8 XI XI=O ADVANCED ACKI NOT 
MULTIBUS COMPATllLE 

XI=l MUL:r1IUS-COMPATllLE 
ACKI 

P07 Cll COUNT INTERVAL lIT 1; SEE TAILE 8 
PDB Ciii COUNT INTERVAL BIT 0; SEE TAlLE 6 
PDB PLS PLS=O SHORT REFRESH PERIOD 

PLS=l LONG REFRESH PERIOD 
POlO 00 EXT=O MASTER AND'SLAVE EDCU 

EXT=l MASTER EDCU ONLY 
POll FFS FFS=O SLOW CPU FREQUENCY 

FFS=l FAST CPU FREQUENCY 
PD12 PPR PPR-O PORT A PREFERRED - PRIORITY 

PPR=l MOST RECENTLY USED PORT 
PRIORITY , 

PD13 RBO RAM lANK OCCUP4NCY 
PD14 Rll SEE TAlLE 2 
POlS TM2 ~=O TEST MODE 2 ENAILED 

=1 TEST MODE 2 OFF 

Figure 10. ECC Mode Program Data Word 

ti-165 

, 

\ 

21_3 



If further system flexibility is needed, one or two 
external shift register/! can be used to tailor the 8207 

S:J~r >---....... -~----J RESET to i~S operating environment. 

.-------1 PCLK 

8207 

~_.l J,-,-UMPER OPTIONS 

Figure 11. External Shift Register Interface 

Table 4A. 
Default Non-ECC Programming, POI Pin (57) 

Tied to Ground. 

Port A is Synchronous (EAACKA and XACRA) 

Port B is Asynchronous (LAACKB and XACKB) 

Fast-cycle Processor Interface (10 or 16 MHz) 

Fast RAM 

Refresh Interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4 ms 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Sc,heme 

4 RAM banks occupied 

Table 4B. 
Default ECC Programming, POI Pin (57) 

Tied to Vee. 

Port A is Synchronous 

, Port B is Asynchronous 

Fast-cycle Processor Interface (10 or 16 MHz) 

Fast RAM 

, Port A has EAACKA strobe (non-muHibus) 

Port B has XACKB strobe (multi bus) 

Refresh interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4ms 

Master EDCU only (16-bit system) 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

IJ 

Synchronous! Asynchronous Mode 
(SA and SB Program Bits) 

Each port of the 8207 may be independently config­
ured to accept synchronous or asynchronous port 
commands (RD, WR, PCTl) and Port Enable (PE) via 
the program bits SA and S8. The state of the SA and 
S8 programming bits determine whether their asso-: 
ciated ports are synchronous or asynchronous. 

While a port may be configured with either the Status 
or Command interface in the synchronous mode, 
certain restrictions exist in the asynchronous mode. An 
asynchronous Command interface using the control 
lines of the Multibus is supported, and an asynchronous 
8086 interface using the control lines of the 8086 is 
supported, with the use of TIL gates as illustrated in 
Figure 2. Ir;! the 8086 case, the TIL gates are needed 
to guarantee that status does not appear at the 8207's 
inputs too much before address, so that a cycle would 
start before address was valid. 

Microprocessor Clock Frequency Option 
(CFS and FFS Program Bits) 

The 8207 can be programmed to interface with slow­
cycle microprocessors like the 8086, 8088, 80188 and 
80186 or fast-cycle microprocessors like the 80286. The 
CFS bit configures the microprocessor interfa:ce to 
accept slow or fast cycle signals from either micro­
processor group. 

This option is used to select the speed of the micro­
processor clock. Table 5 shows the various 
microprocessor clock frequency options that can be 
programmed. 

Table 5. 
Microprocessor Clock Frequency Options 

Program Bits Processor CI~~k 
CFS FFS Frequency 

0 0 iAPX 86, 5 MHz 
88, 186, 188 

0 1 iAPX86, 8 MHz 
88,186,188 

1 0 iAPX 286 10 MHz 

1 1 iAPX 286 16 MHz 

210463·003 



8207 

The external clock frequency must be programmed 
so that the failsafe refresh repetiti'on circuitry can 
adjust its internal timing accordingly to produce a 
refresh request as programmed. 

RAM Speed Option (RFS PrQgram Bit) 

The RAM Speed programming option determines 
whether RAM timing will be optimized for a fast or 
slow RAM. Whether a RAM is fast or slow is mea­
sured relative to the 2118-10 (Fast) or the 2118-15 
(Slow) RAM specifications. 

Refresh Period Options 
• (CIO, C11, and PLS Program Bits) 

The 8207 refreshes with either 128 rows every 2 mil­
liseconds or 256 rows every 4 milliseconds. This 
translates to one refresh cycle being executed ap­
proximately once every 15.6 microseconds. This rate 
can be changed to 256 rows every 2 milliseconds or a 
refresh approximately once every 7.8 microseconds 
via the Period Long/Short, program bit PLS, pro­
gramming option. The 7.8 microsecond refresh re­
quest rate is intended for those RAMs, 64K and 
above, which may require a fastElr refresh rate. 

In addition to PLS program 'option, two other pro­
gramming bits for refresh exist: Count Interval 0 (CIO) 
,and Count Interval 1 (CI1). These two programming 
bits allow the rate at which refresh requests are 
generated to be increased in 'order to permit refresh 
requests to be generated close to the same 15.6 or 
7.8 microsecond period when the 8207 is operating 

at reduced frequencies. The interval between re­
freshes is decreased by 0%, 10%, 20%, or 30% as a 
function of how the count interval bits are program­
med. A 5% guard band is built-in to allow for any 
clock frequency variations. Table 6 shows the refresh 
period options available. 

The numbers tabulated under Count Interval repre~ent 
the number of clock periods between internal refresh, 
requests. The percentages in parentheses represent 
the decrease inthe interval between refresh requests. 
Note that all intervals have a built-in 5% (approximate­
ly) safety factor to compensate for minor clock frequen­
cy deviations and non-immediate response to internal 
refresh requests, 

Extend Option (EXT Program Bit) 

The Extend option lengthens the memory cycle to 
allow longer access time which may be required by 
the system. Extend alters the RAM timing to compen­
sate for increased loading on the Rowand Column 
Address Strobes, and in the multiplexed Address 
Out lines, 

Port Priority Option and Arbitration 
(PPR Program Bit) 

The 8207 has to internally arbitrate among three 
ports: Port A, Port B and Port C-the refresh port. 
Port C is an internal port dedicated to servicing 
refresh requests, whether they are generated inter­
nally by the refresh inverval counter, or externally by 
the user, Two arbitration approaches are available via 

Table 6 Refresh Count Interval Table 

Count Interval 
C11, CIO 

(8207 Clock Periods) 

Ref. 
Freq. Period 00 01 10 11 
(MHz) (J.LS) CFS PLS FFS (0%) (10%) ~(20%) (30%) 

16 15.6 1 1 1 236 212 188 164 

7.8 1 0 1 118 106 94 82 

10 15.6 1 1 0 148 132 116 100 

,7.8 1 0 0 74 66 58 50 

8 15.6 0 1 1 118 106 94 82 

7.8 0 0 1 59 53 47 41 

5 15.6 0 1 0 74 66 58 50 

7.8 0 0 0 37 33 29 25 

6-167 210483·003 



8207 

the Port Priority programming option, program bit 
PP~. PPR determines whether the most recently 
used port will remain selected (PPR = 1) or whether 
Port A will be favored or preferred over Port B 
(PPR = 0). 

A port is selected if the arbiter has given the selected 
port direct access to the timing generators. The 
front-end logic, which includes the a~biter, is de­
signed to operate in parallel with the selected port. 
Thus a request on the selected port is serviced imme­
diately. In contrast, an unselected port only has ac­
c~ss to the timing generators through the front-end 
logic. Before a RAM cycle can start for an unselected 
port, that port must first become selected (Le., the 
MUX output now gates that port's address into the 
8207 in the case of Port A or B). Also, in order to allow 
its address to stabilize, a newly selected port's first 
RAM cycle is started by the front-end logic. There­
fore, the selected port has direct access to the timing 
generators. What all this means is that a request on a 
selected port is started immediately, while a request 
on an unselected port is started two to three clock 
periods after the request, assuming that the other 

two ports are idle. Under normal operating condi­
tions, this arbitration time is hidden behind the RAM 
cycle of the selected port so that as soon as thf;l 
present cycle is over a new cycle is started. Table 7 
lists the arbitration rules for both options. 

Port LOCK Function 

The LOCK function provides each port with the 
ability to obtain uninterrupted access to a critical 
region of memory and, thereby, to guarantee that the 
opposite port cannot "sneak in" and read from or 
write to the critical region prematurely. 

Only one LOCK pin is' present and is multiplexed 
between the two ports as follows: when MUX is high, 
the 8207 treats the LOCK input as originating at 
PORT A, while when MUX is low, the 8207 treats 
LOCK as originating at PORT B. When the 8207 
recognizes a LOCK, the MUX output will remain 
pointed to the locking port until LOCK is deactivated. 
Refresh is not affected by LOCK and can occur dur­
ing a locked memory cycle. 

Table 7. The Arbitration Rules for the Most Recently Used Port Priority and for 
Port A Priority Options Are As follows: 

1. If only one port requests service, then that port-if not already selected-becomes selected. 

2a. When no service requests are pending, the last selected processor port (Port A or B) will remain selected. 
(Most Recently Used Port Priority Option) 

2b. When no service requests are pending, Port A is selected whether it requests service or not. (Port A Priority 
Option) 

3. During reset i'ni!ialization only Port C, the refresh port, is selected. . 
4. If no processor requests are pending after reset initialization, Port A will be selected. 

5a. If Ports A and B simultaneously'(') request service while Port C is being serviced, then the next port to be 
selected is the one which was not selected prior to servicing Port C. (Most Recently Used Port Priority 
Option) , 

5b. If Ports A and B simultaneously(') request service while Port C is selected, then the next port to be selected 
is Port A. (Port A Priority Option) 

6. If a port simultaneously requests service with the currently selected port, service is granted to the selected 
port. 

7. The MUX output remains in its last state whenever Port C is selected. 

8, If Port C and either Port A or Port B (or both) simultaneously request service, then service is granted to the 
requester whose port is already selected. If the selected port is not requesting service, then service is 
g ranted to Port C. 

9. If during the servicing of one port, the other port requests service before or simultaneously with the refresh 
port, the refresh port is selected. A new port is not selected before the presently selected port is 
deactivated. 

10. Activating LOCK will mask off service requests from Port B if the MUX output is high, or from Port A if the 
MUX output is low. 

, By "simUltaneous" it is meant that two or more requests are valid at the clock edge at which the intElrnal arbiter 
samples them. 

6-168 210463.003 



intJ 8207 

Dual-Port Considerations 

For both ports to be operated synchronously, several 
conditions must be met. The processors must be the 
same type (Fast or Slow Cycle) as defined by Table 8 
and they must have synchronized clocks. Also when 
processor types are mixed, even though the clock~ , 
may be in phase, one frequency may be twice that of 
the other. So to run both ports synchronous using 
the status interface, the processors must have 
related timings (both phase and frequency). If these 
conditions cannot be met, then one port must run 
synchronous and the other asynchronous. 

Figure 3 illustrates an example of dual-port operation 
using the processors in the slow cycle group. Note the 
use of cross-coupled NAND gates at the MUX output 
for minimizing contention between the two latches, and 
the use of flip flops on the status lines of the asyn­
chronous processor for delayi ng the status and thereby 
guaranteeing RAS will not be issued, even in the worst 
case, until address is valid. 

Processor Timing 

In order to run without wait states, AACK must be 
used and connected to the SRDY input of the ap­
propriate bus controller. AACK is issued relative to a 
point within the RAM cycle and has no fixed relation­
ship to the processor's request The timing is such, 
however, that the processor will run without wait states, 
barring refresh cycles, bank precharge, and RAM 
accesses from the other port. In non-ECC fast cycle, 
fast RAM, non-extended configurations (80286), AACK 
is issued on the next falling edge of the clock after the 

edge that issues RAS. In non-ECC, slow cycle, non­
extended, or extended with fast RAM cycle configura­
tions (8086, 80188, 80186), AACK is issued on the 
same clock cycle that issues RAS. Figure 14 illustrates 
the timing relationship between AACK, the RAM cycle, 
and the processor cycle for several different situations. 

Port Enable (PE setup time requirements depend on 
whether the associated port is configured for syn­
chronous or asynchronous fast or slow cycle operation. 
In a synchronous fast cycle configuration, PE is re­
quired to be setup to the same clock edge as the status 
or commands. If PE is true (low), a RAM cycle is started; 
if not, the cycle is aborted. The memory cycle will only 
begin when both valid signals (PE and RD or WR) are 
recognized at a particular clock edge. In aynchronous 
operation, PE is required to be setup to the same clock 
edge as the internally synchronized status or com­
mands. Externally, this allows the internal synchroniza­
tion delay to be added to the status (or command)-to­
PE delay time, thus allowing for more external decode 
time that is available in synchronous operation. 

The minimum synchronization delay is the additional 
amount that PE must be held valid. If PE is not held 
valid for the maximum synchronization delay time, it 
is possible that PE will go invalid prior to the status or 
command being synChronized. In such a case the 8207 
aborts the cycle. If a memory cycle intended for the 
8207 is aborted, then no acknowledge (AACK or XACK) 
is issued and the processor locks up in endless wait 
states. Figure 15 illustrates the status (command) 
timing requirements for synchronous and asyn­
chronous systems. Figures 16 and 17 show a more 
detailed hook-up of the 8207 to the 8086 and the 80286, 
respectively. 

6-169 210463-003 



CLK 

ADDRESS 

LEN 

PSEN 

PSEL 

RAM DATA 

8207 

I I I I I 

~ VALID ~ 
~I : . 

~I 
I 

I 
I 

! 
I 
I 
I 
I 
I • CYCLE DELAYED BY 

ACCESS ON OTHER 

I 
I 
I 
I 
I 
I 
I 
I 

I 
NOTE: r:,oRR~A:~":~~~H'i~1l"i 

I 
I 

VALID ~ 
I 

\ I I 
I 
I 
I 

\ I I 
I 
I 

1. The RAS and CAS shown in figure are different banks being accessed. 

VALID Yllli 
\ r-
\ r-

Figure 14. iAPX 286/8207 Synchronous-Status Timing Programmed in non-ECC Mode, CO 
Configuration (Read Cycle) 

6-170 210463.Q03 



8207 

8207CLK 

(A) liE SET·UP AND HOLD TIME REQUIREMENTS FOR FAST .CYCLE, 
SYNCHRONOUS OPERATION (80288 CMD/STATUS) 

8207CLK 

~/STATUS --------"""' 

~ ---------~~~~ 

(B) PE TIMING REQUIREMENTS FOR FAST OR SLOW CYCLE 
ASYNCHRONOUS OPERATION 

Figure 15. 

Memory Acknowledge 
(AACK, XACK) 

In system configurations without error correction, 
two memory acknowledge signals per port are sup­
plied by the 8207. They are the Advanced Acknowl­
edge strobe (AACK) and the Transfer Acknowledge 
strobe (XAcR). The CFS programming bit deter­
mines for which processor AACKA and AACKB are 
optimized, either 80286 (CFS = 1) or 8086/186 (CFS 
= 0), while the SA and 5B programming bits optimize 
AAcK for synchronous operation ("early" AACK) or 
asynchronous operation ("late" AACK). 

Both the early and late AACK strobes are three 
clocks long for CFS = 1 and two clocks long for CFS 
= O. The XACK strobe is asserted when data is valid 
(for reads) or when data may be removed (for writes) 
and meets the Multibus requirements. XACK is 

6-171 

removed asynchronously by, the command going in­
active. Since in asynchrono~s operation the 8207 
removes read data before late AACK or XACK is 
recognized by the CPU, the user must provide for 
data latching in the system until the CPU reads the 
data. In synchronous operation, data latching is un­
necessary since the 8207 will not remove data until 
the CPU has read it. 

In ECC-based systems there is one memory acknow­
ledge (XACK or AACK) per port and a programming bit 
asspciatedwith each acknowledge. II the X program­
ming bit is high, the strobe is configured as XACK, while 
if the bit is low, the strobe is configured as AACK. As 
in non-ECC, the SA and SB programming bits deter­
mine whether the AACK strobe is early or late (EAACK 
or LAACK). 

Data will always be valid a fixed time after the occur­
rence of the advanced acknowledge. Table 9 sum­
marizes the various transfer ackhowledge options. 

210"*003 



inter ' 8207 

UI4A' i----<'l'; I OTHER _INPUTS ROY 1 
READY 

CUI: 

t -
CLK 

IHI' 
\' 

DIN f--
DrIll I--

CLK IiJCK 

sa S1SOALE 
, .. ~ F> READY CUI: 

1 T 
... 

iI PCTL8207 MEMORY 

~ 1 AOo.a (UPPER) 
Ii RD WE I-
iii WR 

8CIIII \7l AH ... ALo.. PSEN WE DI DO 801. , 
" OE STB 

ADDA/ Lkp--DATA I-- rv 11283 I 

~ 
~ 

I LATCH 

STI 
AG Q ...!!.. 

TV~ l!!!. 8213 

- ~~ 

T OE Y 
~ 

,. / 
8287 / 

,~ 
-T OE 

'-- 11/ 
'---

8287 
, 

NOTE: 
·These components are not necessary when using the 80186. These functions are 
provided directly by the 80186. 

MEMORY 
!LOWER) 

WE DI DO 

-l {r 
I 

, 

Figure 18. 8088/80188, 11207 Single Port Non-ECC Synchronous Systems 

&:-172 21Il463-003 



inter 8207 

82284 

READY SROY ) OTHER lCR INPUTS 

eLK " 

+ 
eLK 

.-
82288 

DEN - eLK AACK 
DTIli 

~ M/Rl S1 so ST::e"s READY eLK 

~I .~ 
PCTL MEMORY MEMORY 

MliO 8207 (UPPER) (LOWER) 

51 RO WE -so WR . 
80286 ADDRIN PSEN WE 01 DO WE DI DO 

't II I 1r U::jp--ADDR 
1-1 1 

DATA 
.'i7 ' ~ I 

STa 
AD Q ~ 

+5V 8283 

T\71 Iii'f -r!!-Q 

T DE 
16 

8287 

.~ g--
T DE 

~ 
16 . 

8287 

Figure 17. 80286 Hook-up to 82~7 Non-ECC Synchronous System-Single Port. 

6-17'3 



8207" 

Table 8. Processor Interface/Acknowledge Summary 

SYNC/ASYNC 
CYCLE PROCESSOR REQUEST TYPE INTERFACE ACKNOWLEDGE TYPE 

80286 STATUS SYNC EAACK 
, 80286 STATUS ASYIiIC LAACK 

FAST 80286 COMMAND SYNC EAACK 
CYCLE 80286 COMMAND ASYNC LAACK 
CFS=1 

8086/80186 STATUS ASYNC LAACK 

8086/80186 COMMAND ASYNC LAACK 

MULTIBIJS COMMAND ASYNC XACK 

8086/80186 STATUS SYNC EAACK 

S1...0W 8086/80186 STATUS ASYNC LAACK 

CyCLE 8086/80186 COMMAND SYNC EAACK 
CFS=O 

LAACK 8086/80186 COMMAND ASYNC 

MULTIBUS COMMAND ASYNC XACK 

Table 9. Memory Acknowledge Option Summary 

Synchronous 

AACK Optimized 
Fast Cycle for Local 80286 

AACK Optimized 
Slow Cycle for Local 8086/186 

Test Modes 
Two special test modes exist in the 8207 to facilitate 
testing. Test Mode 1 (non-EGG mode) splits the 
refresh address counter into two separate counters 
and Test Mode 2 (EGG mode) presets the refresh 
address counter to a value slightly less than rollover. 

Test Mode 1 splits the address counter into two, and 
increments both counters simultaneously with each 
refresh address update. By generatirig external 
refresh requests, the tester is able to check for 
proper operation of both counters. Once proper indi­
vidual counter operation has been established, the 
8207 must be returned to normal mode and a second 
test performed to check that the carry from the first 
counter increments the second counter. The outputs 
ofthe counters are presented-on the address out bus 
with the same timing as the roW and column ad­
dresses of a normal scrubbing operation. During 
Test Mode 1, memory initialization is inhibited', since 
the 8207, by definition, is in non-EGG mode. 

Test Mode 2 sets the internal refresh counter to a 
value slightly less than rollover, During functional 
testing other than that covered in Test Mode 1, the 

Asynchronous XACK 

AACK Optimized for Multibus Compatible 
Remote 80286 

AACK Optimized for Multibus Compatible" 
Remote 8086/186 

8207 will normally be set in Test Mode 2. Test Mode 2 
eliminates memory initialization in EGG mode, This 
allows quick examination of the circuitry which 
brings the 8207 out of memory initialization and into 
normal operation. 

General System Considerations 
The RASo_3, GASO_3, AOO-8, outp!Jt buffers were 
designed to directly drive the heavy capacitive loads 
associated with dynamic RAM arrays. To keep the RAM 
driver outputs from ringing excessively in the system 
environment and causing noise in other output pins it is 
necessary to match the output impedance of the RAM 
output buffers with the RAM array by using series 
resistors and to add series resistors to other control 
outputs for noise reduction if necessary. Each applica" 
tion may have different impedance characteristics and 
may require different series resistance values. The 
series resistance values should be determined for each 
application. In non-EGG systems unused EGG input 
pins shoul~ be tied high or low to improve noise 
immunity, 

The 8207 is packaged in a 68-pin, leadless JEDEG type 
A hermetic chip carrier. 

6-174 210463-003 



intJ 

TOP 

NOTE: , 

8207 

52 AH4 
53 AH5 
54 AH6 
55 AH7 
56 AH8 
57 POI 
56 RFRQ 
59 eLK 
60 Vss 
611mB 
62 WRII 
63PEi1 
54 PCTLB 
65 l'IDA 
66 WIIA 
67 PEA 
66 PCTLA' 

BOTTOM 

8207 is packaged in a 68 pin JEDEC Type A hermetic leadless chip carrier. 

Figure 19. 8207 Pinout Diagram 

, 6-175 

-

210463-003 



"', • .... _Ie 
III-e-

ABSOLUTE MAXIMUM RATINGS 
Ambient Temperature , , 

8207 

Under Bias .............. i • ... -0" C to +70" C 
Storage Temperature ..•....... ' -65°C to +150"C 
Voltage On Any Pin With 

Respect to Ground •..•. , .•...... -.5V to +7V 
Power Dissipation ........ ; ............ 2.5 Watts 

D.C. CHARACTERISTICS 

, 
[P)~~IlJ Ii¥1l ~ [N]~!PrtW 

NOTICE: Stress above those listed under ':Absolute 
Maximum Ratings" may cause permanent damage 
to the device. This is a stress rating only and 
functional operation of the device at these 'or any 
other conditions above those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

(1A = ooe to + 70oe, Vec = .5.0V ± 10% for 8207; ,± 5% for 8207·2 and 8207·5, "ss = GND) 

" 
Symbol Parameter Min. Max. Units Comments 

VIL Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 Vcc+ 0.5 V 

VOL Output Low Voltage 0.45 V Note,1 

VOH Output High Voltage 2.4 V Note 1 

VROl 
RAM Output 

0.45 V Note 1 
Low Voltage 

VROH 
RAM Output 

2.6 V Note 1 
High Voltage 

lee Supply Current .. 400 rnA TA= 25°C 

III Input Leakage Current +10 f.J.A OV:5 VIN :5 Vee 

VCl 
Clock Input 

-0.5 +0.6 - V 
Low Voltage 

VCH 
Clock Input 3.8 Vee + 0.5 V 
HiQ.h Voltage 

CIN Input Capacitance 20 pF fc= 1 MHz 

NOTES: 

IOL = 8 rnA and IOH = -0.2 rnA (Typically IOL = 10 rnA and IOH = -0.88 rnAJ 

A.C. Testing Load Circuli 

L..-____ ~RL 

RRAS = 392 
RCAS = 392 
RAO = 222 
RL = 392 

A.C. Testing Input, Output Waveform 

::. x:": :::x\-__ 
A.C. Testing inputs (except clock) are driven at 
2.4V for a logic "1" and O.45V for a logic "0" 
(Clock': is driven at 4.0V and 0.45V for logic '.'1" 
and "0" respectively). Timing measurements are 
made at 2.0V, 2.4V for logic "1" and 0.8 V for logic 
"0". 

6-179 210463-003 



8207 

A.C. CHARACTERISTICS 
(T A = OOC to 70°C; Vee = +5V ± 10% for 8207; ± 5% for 8207-2, 8207-5; Vss = OV) 

Measurements made with respect ID RASo.a , C~ , AO~ , are at 2.4V and O.SV. All other pins are measured 
at2.0V and 0.8V. All times in nsec unless otherwise indicated. Testing done with specified test load. 

CLOCK AND PROGRAMMING 

8207 a 8207-2 8207-5 

Ref. Symbol Panuneter Min. Mu. Min. Mu. Unite Notes 

- IF Clock Fall Time 10 10 ns 35 

- IR Clock Rise Time 10 10 ns 35 

1 TCLCL Clock P8r1od 8207 62.5 250 ns 1 
8207 125 500 ns 2 
8207·2 125 500 200 500 ns 3 

2 TCL Clock Low Time 82f1T 15 230 ns 1 
8207 TCLCU2·12 ns 2 
8207·2 TCLCU2·12 TCLCU2·12 ns 3 

3 TCH Clock Hgh Time 8207 20 235 ns 1 

8207 TCLCLJ3.3 ns 2 

8207·2 TCLCL13-3 TCLCUa.-3 ns 3 

4 TRlVCL Reset 10 CLf(~ Setup 40 65 ns 4 

5 TRTH Resel Pulse WId1h 4 TCLCL 4 TCLCL ns 

6 TPGVRTL PCTL, POI, RFRO to RESEn Setup 125 200 ns 5 

7 TRTLPGX PCTL,RFRQtoRESET~H~ 10 10 ns 

8 TCLPC PCLf( from CLf(~ Ostay 45 65 ns 

9 TPOVCL POln to CLK~ Setup 60 100 ns 

10 TCLPOX POln 10 CLf(~ Hold 40 65 ns 6 

6-177 210463-003 



A.C. CHARACTERISTICS (Continued) 

RAM WARM-UP AND INITIAUZATION 
I ,64 I TCl\l\(Zl I WZ from 9LK~ Delay 

SYNCHRONOUS 'IAP PORT INTERFACE 
11< TPEVCl PE to CLK~ Setup 

12 TKVCl RD, WR, PE, PCTl to ClK~ Setup 

13 TClKX RDi WR, PE, PCTL to ClK+. Hold 

t4 TKVCH RD, WR,PCTL to ClK1 Setup 

ASYNCHRONOUS lAP PORT INTERFACE 
15 TRWVCl RD, WR to ClK~ Setup 

16 TRWl RD, WR Pulse Width 

17 TRWlPEV PE from RD, WR~ Delay 

t8 TRWlPEX PE to RD, WR~ Hold 

19 TRWLPTV PCTl from RD, WR~ Delay 

20 TRWlPTX PCTl to RD, WR~ Hold 

21 'TRWLPTV PCTl from RD, WR~ Delay 

22 TRWlPTX PqTL to RD, WR~ Hold 

8207 

40 7 

30 50 2 

20 30 ns 1 

0 0 ns 

20 30 ns 2 

30 30 ns 8,9 

2TClCl+30 2TClCl+50 ns 

8207 TClCl·20 ns 1 
8207 TCLCl·30 ns 2 
8207·2 TClCl·30 TCLCl·50 ns 3 

2TClCl+30 2TClCl+50 ns 

TClCl·30 TClCL·50 ns 2 

2TClCl+30 2TClCl+50 ns 2 

2TClCl·20 ns 1 

3TClCl+30 ns 1 

6-178. 



A.C. CHARACTERISTICS (Continued) 
RAM INTERFACE 

, 

Ref. Symbol Parameter 

23 TAVCl Al, AH, BS to ClK~ Setup 

24 TCLAX Al, AH, BS TO ClKI Hold 

25 TCllN LEN from ClK~ Delay 

26 TClRSl RA~ from ClK~ Delay 

28 TClRSH RASt from ClK~ Delay 

27 tRCD RAS to CAS Deley 

29 tRAH Row IC to RAS~ Hold 

30 IASR Row AO to RAS~ Setup 

31 IASC Column AO to CAS~ Setup 

32 tCAH Column AD to CAS Hold 

33 TClCSl CAS~ from ClK~ Delay 

34 TCLCSl CAS~ from CLK~ Delay 

35 TClCSH CASt from ClK. Delay 

36 TClW WE from CLK~ Delay 

37 TCLTKl XACK~ from ClK~ Delay 

38 TRWLTKH XACKf from Rot, WAf Delay 

39 TCLAKl AACK~ from ClK~ Delay 

40 TCLAKH AACKt from CLK~ Delay 

41 TClDl DBM from ClK~ Delay 

ECCINTERFACE 

42 TWRlFV FWR from WR~ Delay 8207 
8207-2 

43 TFVCL FWR to ClK~ Setup 

44 TClFX FWR to ClK~ Hold 

45 TEVCl ERROR to ClK~ Setup 

46 TClEX ERROR to ClK~ Hold 

47 TClRl R/W from ClKI Delay 

46 TClRH RlWf from CLK~ Delay 

49 TCEVCl CE toClK~ Setup 

50 TClCEX CE to ClK~ Hold 

51 TClES ESTB from ClK~ Delay 

8207 

8207 & 8207·2 8207·5 

MIn. Max. MIn. Max. UnIts Notes 

35 + IASR 55 + IASR ns 10 

0 0 ns 

35 55 ns 

35 55 ns 

50 70 ns 

TClCU2-25 ns 11,13,14 
75 60 ns 12,13,14 

TClCl-25 ns 1,13,14 

TClCU4-10 ns 11,13,15 
40 30 ns 12,13,15 

TClCU2-10 ns 1,13,15,16 
90 ns 13,15,17 

10,18 

5 ns 11,13,19,20 
5 5 ns 12,13,19 

TClCLJ2-26 ns 1,13,19 

(See DRAM Interface Tables) 21 

TClClt TClCLJ1.8+53 TClCLI ns 11 
4+30 '4+30 TClCLJ1.6+ 78 ns 12 

35 ns 1 

50 70 . ns 

35 55 ns 

35 55 ns 

50 60 ns 

35 55 ns 

50 70 ns 

35 55 ns 

2TClCl-40 ns 1,22 
TClCl+ TClCl+ ns 2,22 
TCl-40 TCl-65 

40 65 ns 23 

0 0 ns 24 

20 30 ns 25,26 

0 0 ns 

40 55 ns 

50 70 ns 

20 30 ns 25,27 

0 0 ns 

35 55 ns 

,6-179 210463·003 



A.C. CHARACTERISTICS (Continued) 
PORT SWITCHING AND LOCK 

8207 

8207 8. '207-2 

Ref. Symbol Parameter Min. 

52 TClMV MUX from CLK~ Delay 

53 TClPNV PSEN from ClK~ Delay Tel 
TCl 

54 TClPSV PSEl from ClK~ 

55 TlKVGl lOCK to ClK~ Setup 30, 

56 TCllKx LOCK to ClK~ Hold 10 

57 TRWllKV lOCK from RD~, WR~ Delay 

58 ,TRWHLKX lOCK to ROt, WRf Hold 3TClCl+3O 

REFRESH REQUEST 

59 TRFVCl RFRO to CLK~ Setup 20 

60 TCLRFX RFRO to ClK~ Hold 10 

61 TFRFH Failsafe RFRO Pulse Width TCLCl+30 

62 TRFXCl Single RFRO Inactive to ClK~ Setup 20 

63 TBRFH Burst AFRO Pulse Width 2TClCl+3O 

NOTES: 
1 Specification when p-OQrammed in the Fast Cycle processor mode (iAPX 286 mode). 
2 Specification when p-OQrammed tn the Slow Cycle processor mode (IAPX 186 mode). 
3. Must be programmed in SJow Cycle prOCBSsa mode. 

Max. 

45 

60 
TCL+35 

35 

2TCLCl-3O 

8207-5 

Min. Max. 

65 

TCl 60 
TCl TCl+35 

55 

50 

10 

2TClCl-50 

3TClCL+50 

30 

10 

TClCl+50 

30 

2TClCl+50 

4. RESET IS internally synchronized to elK. Hence a set-up time IS required only to guarantee its recognition at a particular cJock edge. 
5 The first programming brt (Poo) is also sampled by RESET going low, 
6 TClPDX IS guaranteed if programming data Is shifted uSing PCLK. 
7 WZ is issued only In ECC mode. 
a. TRWVCL is not required for an asynchronous command except to guarantee Its recognition at a particular clock edge. 
9. Valid when programmed in either Fast or Slow C)Cfe mode. 

10. tASR is a user specified patameter and Its value should be added accordngly to TAVCL. 
11. When programmed in Slow Cycle mode and 125 ns .;;; TCLCL < 200 ns. 
12, When programmed in Slow Cycle mode and 200 ns .. TCLCL, 
13 Specification tor Test Load conditions. 

Units 

ns 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

14. tRCO (actual) = tRCD (specibcatlon) +0,06 (ACRAsl- 0,06 (ACSAfll where AC = C (test load) - C (actual) in pF, (These are first order approxImations,) 
15, tRAH (actual) - tRAtI (specifIcatIon) + 0,06 (ACRAsl- O,0~2IA A~ where AC = C (test load) - C (actual) in pF, (The" are first order approximations,) 
16. When programmed in Fast Cycle mode (8007 only) and 62.5 ns <TCLCl < 200 ns. I 

17 When programmed in Fast Cycle mode (8207 only) and 200 ns .. Ta.CL. 
18, tASR (actual) = tASR (specification) +0 06 (ACAO) - 0,025 (ACRAsl where AC = C (test load) - C (actual) in pF, (These are first ador apprOXImatIons,) 
19, tASC (actual) = IASC (specification) +0,06 (AC",y - 0.025 (ACCAsl where AC = C (test loed) - C (actual) In pF, (These are firllt ordor approxImatIons,) 
20. lASC IS a function of clock frequency and thus vanes with changes in frequency A mimmum value is specified. 
21. See 8207 DRAM Interface Tables 14 - 18, 

-
Notes 

28 
28 

30,31 

30,31 

31,32 

31,32 

33 

34 

33 

22. TWRLFV is defined for both synchronous and asynchronous FWJf.lh systems in which ~ IS decoded directly fran the address inputs to the 8207. TCLFV IS 
automaticaUy guaranteed by TeLAV. 

23. TFVCL is defined for syncl1ronous FWft' 
24. TCLFV IS defined for both synchronou~ and asynchronous FWR 1n systems in which FWRis decoded directly from the address inputs to the 8207. 

TClFV IS automatically guaranteed by TCLAV. 
25 ERROR and CE are set-up to CLK~ in fast cycle mode and ClKt in sJow cycle mode. 
26. EiiiOA is set-up to the same edge as RIW is referenced to. in RMW cycles 
27. CE is set-up to the same edge as WE is referenced to in RMW cycles. 
28. Speclftca$ion when TCL < 25 ns. 
29 Specification when ~CL $I< 25 ns. 
30. Synchronous operation only. Must arrive by the second clock failing edge after the clock edge which ,recognizes the command In order to be effective I 

31. LOCK must be held active for the entire period the opposite port ITlJst be locked out. One c;tock after the release of LOCK the opposite port will be able to obtain 
access to memory. 

32. Asynchronous mode only. In this mode a synchronizer stage IS used internally in the 8207 to synchromze up LOCK. TRWLLKV and TRWHlKX are only 
required for guaranteeing that LOCK will be recognized· for the reCJ.Iesting pqrt. but these parameters are not reql.ired for correct 8207 operation 

33. TFRFH and TBRFH pertain to asynchronous operation only. 
34. SIOgie RFRO cann~ by supplied asynchronously 
35. tR and tF are referenced from the 3.5V and 1.0V levals. 

6-180 210463-003 



I 

8207 

WAVEFORMS 
Clock and Programming Timings 

ClK 

RESET 

PCTl 

REFRQ 

POI POO 

MUXlPClK' =-...; ® 

RAM Warm-up and Memory Initialization Cycles 

mCJ 
WE:J 

WZ:J 

, RfW:J 

fG 

fI 

ff 

sif 

f 

, 

f 

f 

PROGRAMMING 
i RESET i 

NOTES: 

FIRST RAM WARM-UP CYCLE 

® 

f 

® @ 
POl 

\~ _____ &_' ____ Jr--
lAST RAM WARM-UP OR 
INITIALIZATION CYCLE 

1. When in non-ECC mode or in ECC mode with the TM2 programming bit on, there are no initialization cycles, 
when in ECC mode with TM2 off, the dummy cycles are followed by initialization cycles, 

2. The present example assumes a RAS four clocks long, 

6-181 ~10463-003 



WAVEFORMS (Continued) 
Synchronous Port Interface 

COMMAND MODEl 
fASt CYCLE 
lID, ft, lIE" 

COMMAND MODEl ---+--t--"\ 
FAST CYCLE 
PCTL (INHIBIT) 

COMMAND MODEl 
FAST CyCLE 

8207. 

I INTERNAL INHIBIT __ -+ __ +-____ +-_______________ _ 

SLOW CYCLE 
1m,91ft 

SLOW CYCLE 
J5I! 

SLOW CYCLE 
PCTl 

INTERNAL 
CYCLE REQUEST 

.NOTE: 

® 

Refer to Tables 12, 13 when using A.C. timing waveforms 

210463-003 



WAVEFORMS (Continued) 
, Asynchronous Port Interface . 

8207 

CLK~~lJ)LI\J\ 
FAST/SLOW CYCLE ~ 

I-®-
RD,WR 't ...J l-- -

® 

® f-@-FAST/SLOW CYCLE 
PE ~ I t- 1-, ".... . 

® 
-@-

SLOW CYCLE 
PCTL 7r- I~\ 

@ 
® ,I 

FAST CYCLE \ 7~ PCTL (INHIBIT) 

FAST CYCLE r------------------------
INTERNAL INHIBIT 7f-

INTERNAL - If-CYCLE REQUEST 
j 

8-183' 210463-003 



WAVEFORMS (Continued) 
RA~flntel1ace Timing 
ECC and Non-ECC Mode 

8207 

CLOCK 0 

CLK ~~~~ 

COMMAND 

INTERNAL 
CYCLE REQUEST 

ALO - ALa 
AHo· AHa 
SSo - BS1 

LEN 

RAS 

AOo -AOa 

. WE 

XACK 

DBM 

\. 

~®. 
--x: -

Note: 

f-

fo-@J 
..\-

I-@-~ 

.GP: @ 

I---@ 

fo-®j 
.)l. 

~ 
l( 

~ 

~@1 

-@-

It K 
~ ® 

-®-
1-®1 
IT 

I-®j 
\-X-

I 

~~ 

~. 
.¥-

.~. 
.¥-

~ , 
1\ 

~ -@ 

\=' 
, 

~ 
I.$. 

I 

~. . 
.-¥-

Dashed waveform indicates that either clock edge may cause the signal transition e 

, 6-184 210463-003 



WAVEFORMS (Continued) 
Port Switching and Lock Timing 

ClK 

8207 

OOMMAND ____ ~ __ +_--+_------~--_+--_+------~, 
PORTA 

COMMAND 
PORTB 

RAS ------------~ 

PORTB 

PSEN------~....J' 

PSEl _________ ....,.\ 

PORTA 

PORTA 

PORTA 

lOCK-------~~~--------~~~----------~------~· 

FUTCYC~.~ ____ ~r--l~ ___ ~r--lL ______ ~ _______________ __ 
INTERNAL lOCK 
DISABLE NOTE: 

Transients during MUX switching. 

Refresh Request Timing 

ClK---

FAilSAFE REFRE.:;SH:.:.... _____ " 
REQUEST 

SINGLE REFRESH REQUEST ____________ .1 

=~~~S~FRESH _____________ f® @;=t_@_60 ____________ _ 

6-185 210463·003 



WAVEFORMS (Continued) 
ECC Interface TImIng 

8207 

CLOCK 0 

CLK ~~ ~~~~~'-

INTERNAL 
CYCLE REQUEST 

FAST CYCLE 
FWR 

SLOW CYCLE 
!!WIt 

ERROR 

RIW 

XACK 

CE 

ESTS 

WE 

~ 

~I-

~ ~ 
'=1 

){ 

~ ~ 
VALID l{ 

~ 
VALID :x 

r@. 
}[ 

" 

NOTE: '" 

I\--

@- ~ 
VALID :x 

~ - @ 
\.'t. j{ 

~ 
\~2 

~ @-
x: VALID ~ 

@. 
-®- -

\. I. 

~ 
@ -

"K"I 

1. This parameter is set-up to the falling edge of clock, as shown, for fast cycle configurations. It is set-up to the 
rising edge of clock if in slo~ cycle configurations. Table 13A shows which clock and clock edge these 
signals are set-up in the.RIW L' column. 

2. CE is set-up to the same edge as WE is referenced to in RMW cycles. 

'6-186 210483-003 



8207 

CONFIGURATION TIMING CHARTS 
The timing charts that follow are bas~d on 8 basic 
system configurations where the 8207 operates. 

Tables 10 and 11 give a description of non-ECC and 
ECC system configurations based on the 8207's 
PDO, PD3, PD4, PD10 and PD11 programming bits. 

'nIbIe 10. Non-ECC System Configurations 
Non-ECC Mode: PDO=O 

Timing ConI. CFS(PD3) RFS(PD4) EXT(PD10) 

Co iAPX286(0) FASTRAM(O) NOT EXT(O) 

Co iAPX286(0) FASTRAM(O) EXT(1) 

Co iAPX286(0) SLOW RAM(1) NOT EXT(O) 

Co iAPX286(0) SLOWRAM(1) EXT(1) 

Co iAPX286(0) FAST RAM(O) NOT EXT(O) 

C, iAPX286(0) SLOWRAM(1) NOT EXT(O) 

C, iAPX286(0) FASTRAM(O) EXT(1) 

Co iAPX286(0) SLOW RAM(1) EXT(1) 

C3 iAPX186(1) FASTRAM(O) NOT EXT(O) 

C3 iAPX186(1) SLOWRAM(1) NOT EXT(O) 

C3 iAPX186(1) FASTRAM(O) EXT(1) 

C3 iAPX186(1) FAST RAM.(O) NOT EXT(O) 

C3 iAPX186(1) FAST RAM(O) EXT(1) 

Co iAPX186(1) SLOWRAM(1) NOT EXT(O) 

C3 iAPX186(1) SLOWRAM(1) EXT(1) 

C. iAPX186(1) SLOWRAM(1) EXT(1) 

ECC Mode: PDO=1 
Table 11. ECC System Configurations 

Timing ConI. CFS(PD3) RFS(PD4) EXT(PD10) 

Co IAPX286j1) SLOWRAM(O) MIS EDCU(O) 

Co iAPX286(1) SLOW RAM«(}) M EDCU(1) 

Co IAPX286(1) FASTRAM(1) MIS EDCU(O) 

Co iAPX286(1) FASTRAM(1) M EDCU(1) 

Co iAPX286(1) FAST RAM(1) M EDCU(1) 

C, IAPX286(1) SLOWRAM(O) M EDCU(1) 

Co iAPX286(1) FAST RAM(1) MIS EDCU(O) 

Co IAPX2B6(1) SLOWRAM(O) MIS EDCU(O) 

c. IAPX186(O) SLOWRAM(O) MIS EDCU(O) 

c. iAPX186(O) FAST RAM(1) MIS EDCU(O) 

c. iAPX186(O) SLOWRAM(O) M EDCU(1) 

C. iAPX186(O) FASTRAM(1) M EDCU(1) 

Co iAPX186(O) SLOWRAM(O) MIS EDCU(O) 

Co iAPX186(O) FAST RAM(1) MIS EDCU(O) 

Co IAPX186(0) SLOWRAM(O) M EDCU(1) 

Co iAPX186(O) FAST RAM(1) M EDCU(1) 

'6-187 

FFS(PD11) 

10 MHZ(1) 

10 MHZ(1) 

10 MHZ(1) 

10 MHZ(1) 

16 MHZ(O) 

16 MHZ(O) 

16MHZ(0) 

16 MHZ(O) 

8MHZ(0) 

8MHZ(0) 

8 MHZ(O) 

5 MHZ(1) 

5 MHZ(1) 

5 MHZ(1) 

5 MHZ(1) 

8MHZ(O) 

FFS(PD11) 

10MHZ(O) 

10MHZ(O) 

10MHZ(O) 

10MHZ(O) 

16 MHZ(1) 

16MHZ(1) 

16 MHZ(1) 

16 MHZ(1) 

5MHZ(O) 

5MHZ(O) 

8 MHZ(1) , 

8MHZ(1) 

BMHZ(1) 

8 MHZ(1) 

5 MHZ(O) 

5MHZ(O) 

210483-003 



8207. 

Using the Timing Charts 
The notation used to indicate which clock edge 
triggers an output transition is "nl" or "nl", where 
"n" is the number of clock periods that have passed 
since clock 0, the reference clock, and "I" refers to 
rising edge and "I to falling edge. A clock period is 
defined as the interval from a clock falling edge to 
the following falling edge. Clock edges are defined 
as shown below. 

I I i I I ; ... n -I- n+1---1 
I I 

L l I I I 
(n-1 )J nt nJ (n+1 )t (n+1 )J 

The clock edges which trigger transitions on each 
8207 output' are tabulated in Table 12 for non-ECC 
mode, and Table 13 for ECC mode. "H" refers to the 
high-going transition, and "L" to low-going transi­
tion; "V" refers to valid, and "\i" to non-valid. 

Clock {) is defined as the clock in which the 8207 
begins a memory cycle, either as a result of a port 
request which has just arrived, or of a port request 
which was stored previously but could not be 
serviced at the time of its arrival because the 8207 
was performing another memory cycle. Clock 0 may 
be identified externally by the leading edge of RAS. 
which is always triggered on 01. 

Notes for interpreting the timing charts. 

1. PSEL - valid is given as the latest time it can 
occur. It .is entirely possible for PSEL to become 
valid before the time given. In a refresh cycle, 
PSEL can switch as defined in the chart, but it 
has no bearing on the refresh cycle itself, but 
only on a subsequent cycle for one of the 
external ports. 

2. LEN • low is given as the latest time it clin occur. 
LEN is only activated by port A configured in Fast 

Cycle iAPX286 mode, and thus it is not activated 
by a refresh cycle, although it may be activated 
by port A during a refresh cycle. 

3. ADDRESS • COIl is the time column address 
becomes valid. 

4. In non-ECC mode the CAS, EAACK, LAACK and 
XACK outputs are not issued during refresh. 

5. In ECC mode there are really seven types of 
cycles: Read without error, read with error, full 
write, partial write without error, partial write with 
error, refresh without error, and refresh with er­
ror. These cycles may be derived from the timing 

. chart as follows: 

A. Read without error: Use row marked 'RD, RF'. 

B. Read with error: Use row marked 'RMW' 
except for EAACK and LAACK, which should 
be taken from 'RD, RF'. If the error is uncor­
rectable, WE will not be issued. 

C. Full write: Use row marked 'WR'. 

D. Partial write without error: Use row marked 
'RMW', except that DBM and ESTB will not be 
issued. 

E. Partial write with error: Use row marked 
'RMW', except that DBM will not be issued. If 
the error is uncorrectable, WE will not be 
issued. 

F. Refresh without error: Use row marked 'RD, 
RF', except that ESTB, EAACK, LAACK, and 
XACK will not be issued. 

G. Refresh with error: Use row marked 'RMW' 
except' that EAACK, LAACK, ESTB, and 
XACK will not be issued. If the error is 
uncorrectable WE will not be issued. 

6. XACK - high is reset asynchronously by command 
going inactive and not by a clock edge. 

7. MUX· valid is given as the latest time it can occur. 

6-188 210463-003 



8207 

Table 13 A. Timing Chart - ECC. Mode 

PSEN PSEL ·DBM LEN RAS CAS RlW WE 
Cn CYCLE H L V V L H L H L H L H L H H L 

RD, RF o. 5. 01 61 01 61 01 21 01 41 11 61 

Co WR o. 5. 01 61 01 21 01 61 11 61 11 61 31 61 

RMW o. 8. 01 91 01 91 01 21 01 91 11 91 41 91 61 91 

RD, RF o. 5. or 61 0\ 61 01 21 01 41 11 ·61 

C1 WR o. 5. 01 61 01 21 01 61 11 61 11 61 31 61 

RMW o. 8. 01 91 01 91 01 21 01 91 11 91 41 91 61 91 

RD, RF o. 6. 01 71 01 71 01 21 01 51 11 71 

C2 WR o. 6. 01 71 01 21 01 71 1 I 71 11 71 41 71 

RMW 0+ 10. 01 11 I 01 111 01 21 01 11 I 1 I 111 51 111 81 111 

RD, RF 0+ 6+ 01 71 01 71 01 21 01 51 1 I 71 

C3 WR 0+ 6+ 01 71 01 21 01 71 1 I 71 11 71 41 71 

RMW o. 10+ 01 11 I 01 11 I 01 21 01 11 I 1 I 11 I 51 111 81 111 

RD, RF o. 3. 01 41 01 41 01 21 01 31 01 41 

C4. WR o. 4. 01 51 01, 21 01 51 01 51 11 51 31 51 

RMW o. 6. 01 71 01 71 01 21 01 71 01 71 31 71 51 71 

RD, RF o. 3+ 01 41 01 41 01 21 01 31 01 41 , 

C5 WR o. 4t 01 51 01 21 01 51 01 51 11 51 31 51 

RMW o. 6. 01 71 01 71 01 21 01 71 01 71 31 71 51 71 

RD, RF Ot 3. 01 41 01 41 01 21 01 31 01 41 

Cli WA- 0+ at 01 41 01 21 01 41 01 41 11 41 21 41 

RMW O. 4t 01 51 01 51 01 21 01 51 01 .51 21 51 31 51 

6-189 . 210463-003 



8207 

Table 13 B. Timing Chart - ECC M~de 

COLADDR ESTB EAACK LAACK XACK MUX 

Cn CYCLE V V L H L H L H L. H V V 

RD, RF 0+ 2+ 2+ 5+ 3+ 6+ 4+ RD -2+ 2* 
Co WR 0+ 2+ 2+ 5+ 2+ 5+ 4+ WR -2+ 2+ 

RMW 0+ 2+ 6+ 8+ 5+ 8+ 5+ 8+ 7+ WR -2+ 2~ 

RD,RF 0+ 3+ 3+ 6+ 3+ 6+ 4+ RD -2+ 2+ 

C1 WR 0+ 3+ 2+ 5+ 2+ 5+ 4+ WR -2+ 2+ 

RMW 0+ 3+ 6+ 8+ 5+ 8+ 5+ 8+ 7+ WR -2+ 2+ 

RD,RF 0+ 3+ 4+ 7+ 4+ 7+ 5+ RD -2+ 2+ 

C2 WR 0+ 3+ 3t 6+ 3+ 6+ 5+ WR -2+ 2+ 

RMW 0+ 3+ 8t 10+ 7+ 10+ 7+ 10. 9+ WR -2~ 2+ 

RD,RF 0+ 3+ 4+ 7+ 5+ 8. 5+. RD -2+ 2. 

C3 WR 0+ 3+ . 3+ 6+ 3. 6. 5+. WR -2+ 2+ 

RMW 0+ 3+ 8+ 10+ 7+ 10+ 7+ 10+ 9+ WR -2+ 2+ 

RD,RF 0+ 2+ 1+ 3+ 2t 4t 3t RD -1+ 2+ 

C4 WR 0+ 2. , 1+ 3+ 2t 4t 3+ WR '-1+ 2+ 

RMW 0+ 2+ 5t 6t 3+ 5+ 4t 6t 5+ WR -1+ 2+ 

RD,RF 0+ 2+ 2+ 4+ 3t 5t 3t RD -1+ 2+ 

Cs WR 0+ 2+ 1+ 3+ 2t 4t. '3+ WR -H 2+ 

RMW 0+ 2+ 5t 6t 3+ 5+ 4t 6t 5+ WR -1+ 2+ 

RD,RF 0+ 2+ H 3+ 1t 3t 2t RD -1+ 2+ 

Cs WR 0+ 2+ H 3+ 1t ~t 2+ WR -H 2+ 

RMW 0+ 2+ 3t 4t H 3+ 2t 4t 3+ WR -H 2+ 

6-190· 210463-003 



8207 

8207 - DRAM Interface Parameter Equations 
Several DRAM parameters, but not all, are a direct 
function of 8207 timings, and the equations for 
these parameters are given in the following tables. 

WRITE CYCLE 

. The following is a list of those DRAM parameters 
which have NOT been included in the following 
tables, with an explanation for their exclusion. 

READ, WRITE, READ-MODIFY-WRITE & 
REFRESH CYCLES 

tRAC: 
tCAC: 
tREF: 
tCRP: 

response parameter. 
response parameter. 
See "Refresh Period Options" 

tRC: 
tRAS: 
tCAS: 
tWCS: 

tDS: 
tDH: 
tDHR: 

guaranteed by tRWC. 
guaranteed by tRRW. 
guaranteed by tCRW. _ 
WE always activated after CAS is acti­
vated, except in memory initialization, 
hence tWCS is always negative (this is 
important for RMW only) except in mem­
ory initialization; in memory initialization 
tWCS is positive and has several clocks of 
margin. 
system-dependent parameter. 
system-dependent parameter. 
system-dependent parameter. 

tRAH: 
tRCD: 
tASC: 
tASR: 
tOFF: 

must be met only if CAS-only cycles, 
which do not occur with 8207, exist. 
See "A.C. Characteristics" READ-MODIFY-WRITE CYCLE 

See "A.C. Characteristics" 
See "A.C. Characteristics" 
See "A.C. Characteristics" 
response parameter. 

READ & REFRESH CYCLES 

tRWD: don,'t care in 8207 write cycles, but tabu­
lated for 8207 RMW cycles. 

tCWD: don't care in 8207 write cycles, but tabu­
lated for 8207 RMW cycles. 

tRCH: WE always goes active after CAS goes 
active, hence tRCH is guaranteed by 
tCPN. 

Table 14. Non-ECC Mode - RD, RF Cycles 

Fast Cycle Configurations Slow Cycle Configurations 
, 

Parameter Co C, C2 C3 C4 Notes 

tRP 3TCLCL-T26 4TCLCL-T26 4TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tCPN 3TCLCL-T35 3TCL'CL-T35 3TCLCL-T35 2.5TCLCL-T35 2.5TCLCL - T35 1 

tRSH 2TCLCL-T34 3TCLCL-T34 3TCLCL-T34 3TCLCL-T34 4TCLCL-T34 1 

tCSH 4TCLCL-t26 6TCLCL-T26 6TCLCL-T26 3TCLCL-T26 4TCLCL-T26 1 

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tT 3/30 3/30, 3/30 3/30 3/30 2 

tRC 6TCLCL 8TCLCL 8TCLCL 5TCLCL 6TCLCL 1 

tRAS 3TCLCL-T26 4TCLCL-T26 4TCLCL-T26 3TCLCL-T26 4TCLCL-T26 1 

tCAS 3TCLCL-T34 5TCLCL-T34 5TCLCL-T34 3TCLCL-'-T34 4TCLCL-T34 1 

tRCS 2TCLCL-TCL 2TCLCL-TCL 2TCLCL-TCL 1.5TCLCL-TCL 1.5TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF -T36-TBUF -T36-TBUF 

6-191 210463.003 



8207 

Table 12 A. TIming Chart - Non-ECC Mode 

PSEN PSEL DBM LEN RAS CAS WE 

Cn CYCLE H L V V L H L H L H L H H L 
RD,RF c» 3. o. 4. o. 4. Of .2. 0+ 3. H .4. 

Co 
WR o. 4. o. .' 5. o. 2. o. 5. H 5. 2. 5. 

RD,RF o. 5. o. 6. o. 6. o. 2. o. 4. H 6t 
C1 

WR o. 4. o. 5. o. 2. o. 5. H 5. 2. 5. 
RD, RF 0+ 5. 0+ 6+ 0+ 6+ 0+ 2. 0+ 4. H 6. 

C2 
WR o. 4. o. 5. o. 2. 0 •. 5. H 5. 2. 5. 

RD, RF o. 2. o. 3. o. 3. o. 2. o. 3. o. 3. 
C3 

WR I o. 3. o. 4. o. 2. 0+ 4. o. 4. 2t 4. 
RD,RF 0 •. 3. o •. 4. o. 4. 0+ 2. o. 4 •. o. 4. 

C4 WR o. 3. o. 4. o. 2. o. 4+ 0+ 4+ 2t 4. 

Table 12 B. Timing Chart - Non-ECC Mode 

COL ADDR EAACK: LAACK' XACK MUX 
Cn CYCLE V V L H L H L H V V 

. ' Co RD,RF o. 2. H 4. 2. 5. 3. RD -2. 2 • 

WR o. 2. H 4. H 4. 3. WR .-2. 2. 

RD,RF o. 3. 2. 5. 2. 5. 401- RD -2. 2. 
C1 

WR o. 3. H 4. H 4. 3+ WR -2:j, 2. 

RD,RF o. 3. 2. 5. 3. 6. 4+ RD -2. .2. 
C2 WR. o. 3. H 4. H 4. 3. WR -2+ 2. 

RD,'RF o. 2. o. 2. H 3. 2. RD -1+ 2. 
C3 WR o. 2. o. 2. 1t 3t 2. WR -H 2. 

RD,RF o. 2+ 1. 3+ H 3. 3t RD -H 2. 
C4 

WR 0+ 2. o. 2. 1t 3t 2+ WR -H 2. 

6-192 210483-003 



8207 

Table 15. Non-ECC Mode - WR Cycle 

FI.t Cycle Conflgurltlon. Slow Cycle Conflgurltlon. 

Perimeter Co C1 C2 Cs C4 Note. 

tRP 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 2.5TCLCL-T35 2.5TCLCL ~ T35 1 

tRSH 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1 

tCSH 5TCLCL-T26 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1 

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tT 3/30 3/30 3/30 3/30 3/30 2 

tRWC 8TCLCL 8TCLCL 8TCLCL 6TCLCL 6TCLCL 1 

tRRW 5TCLCL-T26 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1 

tCRW 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1 

tWCH 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 1,3 

-T34 -T34 -T34 -T34 -T34 

tINCR 4TCLCL+TCL 4TCLCL+TCL 4TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 1,3 

-T26 -T26 -T26 -T26 -T26 

tWP 2TCLCL+TCL 2TCLCL+TCL 2TCLCL+TCL 2TCLCL-T36 2TCLCL-T36 1 

-T36-TBUF -T36-TBUF -T36-TBUF -TBUF -TBUF 

tRWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-TCL 3TCLCL-TCL 1 

-TBUF -TBUF -TBUF -T36-TBUF -T36-TBUF 

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-TCL 3TCLCL-TCL 1 

-TBUF -TBUF -TBUF -T36-TBUF -T36-TBUF 

6-193 210463-003 , 



Parameter 

tRP 

tCPN 

tRSH 

tCSH 

tCAH 

tAR 

tT 

tAC 

tRAS 

tCAS 

tRCS 

8207, 

Table 16 A. ECC Mode - RD, RF Cycles 

Fast Cycle Mode 

Co C, C2 C3 Note. 

4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1 

3TCLCL-T35 3TCLCL:-T35 3TCLCL-T35 3TCLCL-T35 1 

, 3TCLCL - 1"34 3TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1 

6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1 

TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

3/30 3/30 3/30 3/30 2 

8TCLCL 8TCLCL 9TCLCL 9TCLCL 1 

4TCLCL-T26 4TCLCL-T26 5TCLCL-T26 5TCLCL-T26 1 

5TCLCL~T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1 

TCLCL-T36 TCLCL-T36 TCLCL-T36 TCLCL-T36 '1 

-TBUF -TBUF -TBUF -TBUF 

Table 16 B. ECC Mode - RD, RF Cycles 

Slow Cycle Mode 

Parameter C4 Cs Ce Note. 

tRP 2TCLCL-T26 2TCLCL-T26 

tCPN 1.5TCLCL-T35 1.5TCLCL-T35 

tRSH 3TCLCL-T34 3TCLCL-T34 

tCSH 4TCLCL-T26 4TCLCL-T26 

tCAH 2TCLCL-T34 2TCLCL-T34 

tAR 2TCLCL-T26 2TCLCL-T26 

tT . 3/30 3/30 

tRC 5TCLCL 5TCLCL 

tRAS 3TCLCL-T26 3TCLCL-T26 

tCAS 4TCLCL-T34 4TCLCL-T34 

tRCS 0.5TCLCL - T36 o'.5TCLCL - T36 

-TBUF -TBUF 

6-19~ 

2TCLCL-T26 

1.5TCLCL-T35 

3TCLCL-T34 

4TCLCL-T26 

2TCLCL-T34 

2TCLCL-T26 

3/30 

5TCLCL 

3TCLCL-T26 

4TCLCL-T34 

0.5TCLCL-T36 

-TBUF 

\ 
\ 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

210483-003 



8207 

'nable 17 A. ECC Mode - WR Cycle 

. .. Fu' Cycle Mode 

Parame ..... Co C, Cz C3 No ... 
tRP 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 1 

tRSH 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1 

tCSH 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1 

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1 

tT 3/30 3/30 3/30 3/30 2 

tRWC 9TCLCL 9TCLCL 10TCLCL 10TCLCL 1 

tRRW 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1 

tCRW 5TCLCL-T34 5TCLCL-T34 .6TCLCL-T34 6TCLCL-T34 1 

tWCH 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1,4 

tWCR 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1,4 

tWP 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 _ 

-TBUF -TBUF -TBUF -TBUF 

tRWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1 

-TBUF -TBUF -TBUF -TBUF 

6-195. 21040-003 



"n+_I® 11I"eI .. 

Parame',,, 

tRP 

tCPN 

tRSH 

tCSH 

tCAH 

tAR 

tT 

tRWO 

tRRW 

tCRW 

tWCH 

tWCR 

tWP 

tRWL 

tCWL 

8207.,' 

Table 17 B,. E(:C Mode - WA Cycle 

Slow Cycle Mode 

C4 Ce C, No ... 
2TCLCL-T26 2TCLCL -, T26 2TCLCL-T26 1 

2.5TCLCL - T35 2.5TCLCL -' T35 2.5TCLCL-T35 1 

5TCLCL-T34 5TCLCL-T34 4TCLCL-T34 1 

5TCLCl-T26 5TCLCL-T26 4TCLCL~T26 1 

2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1 

2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

3/30 3/30 3/30 2 

7TCLCL 7TCLCL 6TCLCL 1 

5TCLCL-T26 5TCLCl-T26 ' 4TCLCL-T26 1 

5TCLCL-T34 5TCLCL-T34 4TCLCL-T34 1 

5TCLCL-T34 5TCLCL-T34 4TCLCL-T34 1,4 

5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 1,4 

3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF .-T36-TBUF 

3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

21040-003 



"nt_I@} 
111'e' ' 

Parameters 

tRP 

tCPN 

tRSH 

tCSH ' 

tCAH 

tAR 

tT 

tRWC 

tRRW 

tCRW 

tRCS 

tRWD 

tCWD 

tWP. 

tRWL 

tCWL 

8207 

Table 18 A. ECC Mode - RMW 

FaIt Cycle Mode 

Co , C1 C2 

3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 

4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 

8TCLCL-T34 8TCLCL-T34 10TCLCL - T34 

9TCLCL-T26 9TCLCL-T26 11TCLCL-T26 

TCLCL-T34 2TCLCL-T34 2TCLCL-T34 

2IcLCL-T26 3TCLCL-T26 3TCLCL-T26 

3/30 3/3'0 3/30 

12TCLCL 12TCLCL 14TCLCL 

9TCLCL-T26 9TCLCL-T26 11 TCLCL-T26 

8TCLCL-T34 8TCLCL-T34 10TCLCL-T34 

TCLCL-T36 TCLCL-T36 TCLCL-T36 

-TBUF -TBUF -TBUF 

6TCLCL-T26 6TCLCL-T26 8TCLCL-T26 

5TCLCL"':T34 5TCLCL-T34 . 7TCLCL - T34 

3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 

-TBUF -TBUF , -TBUF 

3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 

-TBUF -TBUF -TBUF 

3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 

-TBUF -TBUF -TBUF 

6-197 

C3 Notel 

3TCLCL-T26 1 

4TCLCL-T35 1 

10TCLCL - T34 1 

11TCLCL-T26 1 

2TCLCL-T34 1 

3TCLCL-T26 1 

3/30 2 

14TCLCL 1 

11TCLCL-T26 1 

10TCLCL - T34 1 

TCLCL-T36 1 

-TBUF 

8TCLCL-T26 1 

7TCLCL-T34 1 

3TCLCL-T36 1 

-TBUF 

3TCLCL-T36 1 

-TeUF 

3TCLCL-T36 1 

-TBUF 

210483-003 



8207 

18ble 18 B. ECC Mode - RMW 

Slow Cycle Mode 

Parameters ·C. Cs Cs Notes 

tAP 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1 

tCPN 2.5TCLCL - T35 2.5TCLCL - T35 2.5TCLCL-T35 1 

tASH 7TCLCL-T34 7TCLCL-T34 5TCLCL-T34 1 

tCSH 7TCLCL-T26 7TCLCL-T~6 5TCLCL-T26 ,1 

tCAH 2TCLCL-T34 2TCt.:CL-T34 2TCLCL-T34 1 

tAA 2TCLCL-T26 2TCLCL-T26 2TCLCL-T2~ 1 

tT 3/30 3/30 3/30 2 

tAWC 9TCLCL 9TCLCL 7TCLCL 1 

tAAW 7TCLCL-T26 7TCLCL-T26 5TCLCL-T26 1 

tCAW 7TCLCL-T34 7TCLCL-T34 5TCLCL-T34 1 

tACS 0.5TCLCL - T36 0.5TCLCL - T36 0.5TCLCL - T36 1 

-TBUF -TBUF -TBUF 

tAWD 4TCLCL+TCL 4TCLCL+TCL 2TCLCL+TCL 
I 
1 

-T26 -T26 -T26 -
tCWD 4TCLCL+TCL 4TCLCL+TCL 2TCLCL+TCL 1 

-T34 -T34 -T34 

tWP 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

tAWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

tCWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1 

-T36-TBUF -T36-TBUF -T36-TBUF 

NOTES: 
1. Minimum 
2. Value on right is maximum; value on left is minimum. 
3. Applies to the eight warm-up cycles during initialization only. 
4. Applies to, the eight warm-up cycles and to the memory initilization 

cycles during initialization only. 
5. TP = TClCl 

. T26 = TClRSl 
T34 = TClCSl 
T35 ,= TClCSH 
T36 = TClW 
TBUF = TTL Buffer delay 

6-198 

, 

210463-003 



8208 
DYNAMIC RAM CONTRO~LER 

• o Wait State, 8 MHz iAPX 186, iAPX • Directly Addresses and Drives up to 
188, IAPX 86 and IAPX 88 Interface 1 Megabyte without External Drivers 

• Provides all Signals necessary to • Microprocessor Data Transfer and 
Control 64K (2164A) and 256K Advance Acknowledge Signals 
Dynamic RAMs 

• Four Programmable Refresh Modes • Supports Synchronous or 
Asynchronous • +5 Volt Only HMOSII Technology for 
Microprocessor Interfaces High Performance and Low Power 

• Automatic RAM Initiallation 

The Intel 8208 Dynamic RAM Controller is a high performance, systems oriented, Dynamic RAM controller 
that is designed to easily interface 64K and 256K Dynamic RAMs to Intel and other microcomputer systems. 
The 8208 is designed to easily interface to the iAPX 186, iAPX 188, iAPX 86, and the iAPX 88 by strapping 
the programming pin to logic O. 

AFRQ 

PDI--+~-I 

"'LOBC==~ 
AHoa '-----v1 

as 

AL4 
AL3 
AL2 
AL1 
ALO 
BS 

AOO 
lin A01 

A02 
m A03 

A04 
Vss 
A05 
A06 
A07 
AOB 
Vss 

Ri\S1 
RASO 
CAS1 
CASO 

Vss. 
RESET 

Vee 

Figure 1. Block Diagram and Pinout Diagram 

Vee 
AL5 
AL6 
AL7 
ALB 
AHO 
AH1 
AH2 
AH3 
AH4 
AH5 
AH6 
Vss 
AH7 
AHB 
POI 
RFRO 
eLK 
RO 
WR 
PE 
PCTL 
AACKlXACK 
WE/PCLK 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel 
; Product. No Other Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published 

Specifications On These Devices From Intel. June, 1983 
©INTEL CORPORATION, 1983. 6-199 ORDER NUMBER 230734-001 



8208 

Table 1. Pin Description 

Symbol Pin Type Name and Function 
ALO 5 I ADDRESS LOW: These lower order address inputs are used to generate the row address 
AL1 4 I for. the internal address multiplexer. ' 
AL2 3 I 
AL3 2 I 
AL4 1 I 
AL5 47 I 
AL6 46 I ., 
AL7 45 I 
AL8 44 I 

BS 6 I BANK SELECT: This input is used to select one of the two banks of the dynamic RAM 
array as defined by the program·bit RB. 

AOO '7 0 ADDRESS OUTPUTS: These outputs are designed to provide the row and column 
AOI 8 O' addresses, of either the CPU or the refresh counter, to the dynamic RAM array. These 
A02 9 0 outputs drive the dynamic RAM array directly and need no external drivers. 
A03 10 0 
A04 11 0 
A05 13 0 
A06 14 0 
A07 15 0 
A08 16 0 

VSS 12 I GROUND 
17 I GROUND 
22 I GROUND 
36 I GROUND 

RASO 19 0 ROW ADDRESS STROBE: These outputs are used by the dynamic RAM array to latch 
RASI 18 0 the row address, present on the AOQ.8 pins. These outputs are selected by the BS pin 

as programmed by program·bit RB. These outputs drive the dynamic RAM array directly 
and need no external drivers. 

CASO 21 0 COLUMN ADDRESS STROBE: These outputs are used by the dynamic RAM array to 
~ 20 0 latch the column address, present on the AOO·8 pins. These outputs are selected by the 

BS pin as programmed by program·bit RB. These outputs drive the dynamic RAM array 
directly and need no external drivers .. 

RESET 23 I RESET: This active, high signal causes aU internal counters to be reset and uROn release 
o! RESET, data appearin~ at the POI pin is clocked·in W, the PCLK output. The states 
o! the POI, PCTL and RF Q pins are.sampled by RES T going inactive and are used 
to program the 8208. An 8 cycle dynamiC RAM warm·up is. performed after clocking POI 
bits into the 8208. 

WEI 25 0 WRITE ENABLE/PROGRAMMING CLOCK: Immediate~ after a RESET this 
PCLK pin becomes PCLK and is used to clock serial programming ata into the POI pin. After 

the 8208 is programmed this active high signal provides the dynamic RAM array the write 
enable input for a write operation. 

VCC 24 I POWER: + 5 Volts. 
'48 I POWER: + 5 Volts. 

AACKI 26 0 ADVANCE ACKNOWLED~NSFER ACKNOWLEDGE: When the X programming bit 
XACK is set to logic 0 this pin is AA K and indicates that the processor may continue process· 

ing and that data will be available, when required. This signal is optimized for the sfstem 
by programming the S program·bit for synchronous or asynchronous operation. he S 
programming bit determines whether this strobe will be early' or late. If another dynamic 
RAM cycle is in pr0!ilress at the time of the new~est, the ~ is delayed. When the 
X programming bit IS set to logic 1 this pin is and indicates that data on the bus 
is vaMing a read c~cle or that data may be removed from the bus during a write cy· 
de. XA K is a MULTI US compatible signal. '. 

PCTL 27 I PORT CONTROL: This pin is sampled on the falling edge of RESET, It configures the 
8208 to accept command inputs or processor status inputs. If PCTLis low after RESET 
the 8208 is programmed to accept bus command inputs. If PCTL is high after RESET 
the 8208 is pr~rammed to accept status inputs from iAPX 86 or iAPX 186 type processors. 
The. 52 status ine shou~ ,be connected to this input 'if programmed to a«;lC8pt iAPX 86 
or iAPX 186 status inputs. When programmed to accept bus commands it should be tied 
low or it may be connected to INHI IT when operating with MUL TIBUS. 

PE 28 I PQRT ENABLJ:: Th~ pin seryes to .enable a RAM cycle request. It is generally df,l!;:oded 
from thf,l address bus. " 

6-200 230734-001 



8208 

Table 1. Pin Deacrlptlon (Continued) 

Symbol Pin Type Name and Function 
WR 29 I WRITE: TIPln Isltle write memory request command Input. This input also directly ac-

cepts the status line from Intel PfOO888Ol'll. 

RD 30 I READ: Th~ln Is the read memory request command input. This input also directly ac· 
cepts the status line from Intel processors. 

eLK 31 I a..OCK: This Input provides the ba$ic timing for sequencing the Internal logic 

RFRQ 32 I IEFRESH REQUEST: This Input Is sampled on the falling edge of RESET. If RFRQ is 
high st RESET ltIen Ihe 8208 is P~rammed for Intemal-refrash request or extemal·refresh 
request with failsafe protection. If FRQ Is low at RESET then the 8208 is programmed 
for external·refresh without failsafe protection or burst·refresh. Once programmed the 
RFRQ pin accepts signals to start an external·refresh with failsafe protection or external· 
refresh without failsafe protection or a burst·refresh. \ 

PDt 33 I PROGRAM DATA INPUT: This input is sam~ed ~ RESET 90ing low. It programs the 
,various user selectable options In the 8208. e P LK pin shifts programming data into 
the PDt input from an external shift r~ister. This pin may be strapped low to a default 
iAPX 186 (PDI=Low) mode configuratIOn. 

AHO 43 I ADDRESS HIGH: These hi~her order address inputs are used to generate ltIe column 
AH1 42 I address for the internal ad ress multiplexer. 
AH2 41 I 
AH3 40 I 
AH4 39 I 
AH5 38 I 
AH6 37 I 
AH7 35 I 
AHa 34 I 

6-201 230734-001 



8208 

GENERAL DESCRIPTION 

The, Intel 8208 Dynamic RAM Controller is a 
microcomputer peripheral device which provides the 
necessary signals to address, refresh and directly 
drive 64K and" 256K dynamic RAMs. 

The 8208 supports several microprocessor interface 
options including synchronous and asynchronous' 
operations for iAPX 86, iAPX, 186, iAPX 188 and 
MUlTIBUS. 

FUNCTIONAL DESCRIPTION 

Procltssor Interface. 

The 8208 has control circuitry capable of supporting, 
one of several possible bus structures. The 8208 may 
be programmed to, run synchronous or asynChronous 
to the processor clock. (See Synchronous/Asyn­
chronous Mode) The 8208 has been optimized to run 
synchronously with Intel's iAPX 86, iAPX 88, iAPX 

Synchronous-Status Interface 

Synchronous.command Interface 

186 and iAPX 188. When the 8208 is programmed 
to rUll'in asynChronous mode, the 8208 inserts.J!!..e 
nece$S8ry synchronization circuitry for the RD, WR, 
PE, and PCTl inputs.', , 

The' 8208 achieves high performance (i.e. no wait 
states) by decoding the status lines directly from the 
iAPX 86, iAPX 88, iAPX 188 and the iAPX 188. The 

, B20s can also be programmed to receive read or write 
MUlTlBUS C9mmands or commands from a bus con-

I troller. ,(See Status/Command Mode) 

The,8208 may be programmed to accept the clock 
of the'iAPX 86, iAPX 88, iAPX 186 or 188. The 8208 
adjusts its intern~1 timing to allow for different clock 
frequencies Qf these microprocessors. (See 
Microprocessor Clock Frequency Option) 

Figure 2 shoWs the different processor interfaces to 
the 8208 using the synchronous or asynchronous 
mode and status or command interface. 

ADDAIDATA 

erAs 
~ BUS 
S2 CONTROLLER: 

ALE 

~~~~~~~~-' ST8 '--_.J-..... LATCH 
,----.........

Asynchronous-Command Interface

Figure 2. Interfaces Supported by the 8208.

6-202 230734-001

8208

Dynamic RAM Interface

The 8208 is capllble of addressing 64K and 256K
~ynamic RAMs. Figure 3 shows the connection of the
processor address bus to the 8208 using the different
RAMs. The 8208 directly supports the 2164A 'RAM
family or any RAM with similar timing requirements
and responses.

A11-A19

A1.

NOTES:

256KRAM
INTERFACE

(NOTE 1

A1.

BS

64K RAM
INTERFACE

1.IUnassigned address input pins should be strapped
high or low.

2.AO along with BHE are used to select a byte within
a processor word.

3. Low order address bit is used as a bank select
input so that consecutive memory access requests
are to alternate banks allowing bank interleaving
of memory cycles.

Figure 3. Processor Address Int.erface. to the
8208 USing 64K, and 256K, RAMS

The 8208 divides memo~o two banks, each bank
having its own Row (RAS) and Column (CAS)
Address Strope pair. This organization permits RAM
cycle interleaving. f\AM cycle interleaving overlaps
the start of the next RAM cycle with the RAM
precharge period of the previous cycle. Hiding the
precharge period of one RAM cycle behind the data
access period of the next RAM cycle optimizes
memory bandwidth and is effective as long as suc­
cessive RAM cycles occur in the alternate banks.

Successive data access to the same bank cause the
8208 to wait for the precharge time of the previous
RAM cycl~. But when the 8208 is programmed in an
iAPX 186 synchronous configuration consecutive read
'cycles to the' same bank does not result in additional
wait states (I.e. 0 wait state reads result).

If not all RAM banks are occupied, the 8208 reassigns
the RAS and CAS strobes to allow using wider data
words without increasing the loading on the RAS and
CAS drivers. Table 2 shows the bank selection
decodin!Ll!!'d the horizontal word expansion, in­
cluding RAg and CAS assignments. For example, if
only one RAM bank is ocqupied, then the two RAS
and CAS strobes are activated with the same timing.

Table 2. Bank Selection Decoding
and Word Expansion

Program Bank,
Bit Input 8208
RB BS RAS/CAS Pair Allocation

0 0 RASo l' eASo '1 to Bank 0

0 1 Illegal

1 0 RASo' CASo to Bank 0

1 1 !:lAS1, CAS1 to Bank 1

Program bit RB is not used to check the bank select
input BS. The system design must protect from
accesses to "illegal", non-existent banks of memory
by deactivating the PE input when ,addressing an
"illegal", non-existent bank of memory.

The 8208 adjusts and optimizes internal timings for
either the. fast or slow RAMs as programmed. (See
RAM Speed Option) .

Memory Initialization I

After programming, the 8208 performs eight RAM
"wake-up" cycles to prepare the dynamic RAM for
proper device operation (dllring "warm-up" some
RAM interface parameters may not be met, this
should cause no harm to the dynamic RAM array).

Refresh

The 8208 provides an internal refresh interval counter
and a refresh address counter to allow the 82011 to
refresh memory. The 8208 will refresh 128 rows every
2 milliseconds or 256 rows every 4 milliseconds,
which allows all RAM refresh options to be supported.
In addition, there exists the.abilityto refresh 256 row
address locations every 2 milliseconds via the Refresh
Period programming option.

The 8208 may be programmed for any of five different
refresh options: Internal refresh only, External refresh
with failsafe protection, External refresh without
failsafe protection, Burst Refresh modes, or no
refresh. (See Refresh Options) .

6-203 230734-001

8208

It Is possible to decrease the refresh time interval by
10% 20% or 300/0. This option allows the 8208 to com­
pensate for reduced clock frequencies. Note that an
aadltlOnal 5% Interval shortening Is bullt·ln in all refresh
Interval options to compensate for clock variations and
non·lmmedlate response to the Internally 9enerated
refresh request. (See Refresh Period Options)

External Refresh Requests after RESET

External refresh requests are not recognized by the
8208 until after it is finished programming and prepar·
ing memory for access. Memory preparation includes
8 RAM cycles to prepare and ensure proper dynamic
RAM operation. The time it takes for the 8208 to
recognize a request is shown below.

eq. 8208 System Response: TRESP = PROG + TPREP
where: TPROG = (40) (TCLCL) which is programming

, time
TPREP = (8) (32) (TCLCL) which is the RAM

warm-up time
if TCLCL = 125 ns then TRESP = 37 us

Reset

RESET is an asynchronous input, the falling edge of
which is used by the 8208 to directly sample the logic
levels of the PCTl, RFRQ, and PDI inputs. The
internally synchronized falling edge of reset is used
to begin programming operations (shifting in the
contents of the external shift register, if needed, into
the PDI input).

Differentiated reset is unnecessary when the default
synchronization programming is used. (S=O)

Until programming is complete the 8208 registers but
does, not respond to command or status inputs. A
Simple means of preventing commands or status from
occurring during this period is to differentiate the
system reset pulse to obtain a smaller reset pulse for
the 8208. The total time of the 8208 reset pulse and
the 8208, programming time must be less than the
time before the first command the CPU issues in
systems that alter the default port synchronization
programming bit (default is synchronous interface).

The differentiated reset pulse would be shorter than
the system reset pulse by at least the programming
period required by the 8208. The differentiated reset
pulse first resets the 8208, and system reset would
resetthe rest of the system. While the rest of the
system is still in reset, the ,8208 completes its
programming. Figure 4 illuStrates a circuit to ac-,
complish thistas~. '

SYSTEM, L-
RESE.!1 ' L-. I _ .~ 82ru-c== -'---, RESIT

t1 PAOGAAMMINQ TIME OF 8208

SYSTEM >-~>-+--AJv-..... ~>>-tL.J
RESET

DIFFERENTIATED RESET

NOTES:

8208
RESET

1. Required only when the port synchronization op­
tion(s) is altered from its initial default value.

2. Vcc must be stable befor.esystem reset is ac­
tivated when using this circuit.

Figure 4. 8208 Differentiated Reset Circuit

Within four clocks after RESET goes active, all the
8208 outputs will go high, except for AOO-2, which
will go low.

OPERA nONAL DESCRIPTION

Programming the 8208,

The 8208 is programmed after reset. On the falling
edge of RESET, the logic states of several input pins
are latched internally. The falling edge of RESET
actually performs the latching, which means that the
logic levels on these inputs must be stable prior to
that time. The inputs whose logic levelS are latched
at the end of reset are the PCTl, REFRQ, and POI
pins.

Status/Command Mode

The processor port of the 8208 is configured by the
states of the PCTl pin. Which interface is selected
depends on the state or the PCTl pin at the end of
reset. If PCTl is high at the end of reset, the 80186
Status interface is selected; if it is low, then the
MUl TIBUS or Command interface is selected.

There exist two interface configurations, one for
MUl TIBUS memory commands, which is called the
Command interface, and one for 8086,8088,80186
or 80188 status, called the 80186 Status interface.
The Command interface also directly interfaces to the
command lines of the bus controllers for the 8086,
8088. ' " .

6:.204 ' 230734-001

inter 8208

The 80186 Status interface allows direct decoding of
the status lines for the iAPX 86, iAPX 88, iAPX 186
and the iAPX 188. Table 3 shQws how the status lines
are decoded., Microprocessor bus controller read or
write commands or MUl TIBUS commands can also
be directeo10 the 8208 when in Command mode.

ITable 3. 8208 Response '

820a·Command Function

8086/80186 Multlbus or
Status Command

PCTL RD WR Interface Interface

0 0 0 IGNORE IGNORE

0 0 1 IGNORE RE!A.O

0 1 0 IGNORE WRITE

0 1 l' IGNORE IGNORE

1 0 0 READ IGNORE

1 0 1 READ INHIBIT

1 1 0 WRITE INHIBIT

1 1 1 ' IGNORE IGNORE

Refresh Options

Immediately after system reset, the state of the
REFRQ input pin is examined. If REFRQ is high, the
8208 provides the user with the choice between self­
refresh and user-generated refresh with failsafe
protection. Failsafe protection guarantees that if the
user does not come back with another refresh request
before the internal refresh interval counter times out,
a refresh request will be automatically generated. If
the REFRQ pin is low immediately after a reset, then
the user has the choice of a singh:! external refresh
cycle witho~t failsafe, burst refresh or no refresh.

Internal Refresh Only

For the 8208 to generate internal refresh requests,
it is necessary only to strap the REFRQ input pin high.

External Refresh with Failsafe

To allow user-generated refresh requests with failsafe
protection, it is necessary to holCl the REFRQ input
high until after reset. Thereafter, a low-ta-high transi­
tion on this input causes Ii refresh request to be
generated and the internal refresh interval counter
to be reset. A high-to~low transition'has no effect on
the 8208. A refresh request is not reCognized until
a ,previous request has been serviced.

External Refresh without Failsafe

To generate single external refresh requests without
failsafe protection, it is necessary to hold REFRQ low
until after reset. Thereafter, bringing REFRQ high for
one clock period will cause a refresh request to be
generated. A refresh request is not recognized until
a previous request has been serviced.

Burst Refresh

Burst refresh is implemented through the same
procedure as a single external refresh without failsafe
(Le., REFRQ is kept low until after reset). Thereafter,
bringing REFRO high for at least two clOCk periods
will cause a burst of up to 128 row address locations
to be refreshed. Any refresh request is not recogniz­
ed until a previous request has been serviced (Le.
burst is completed).

No Refresh

It is necessary to hold REFRQ low until after reset.
This is the same as programming External Refresh
without Failsafe. No refreSh is accomplished by
keeping REFRQ low.

Option Program Data Word

The program data word consists of 9 program data
bits, POO-P08. If the first program data bit, PD~ is
set to logic 0, the 8208 is configured to support iAPX
186, 188, 86, or 88 systems. The remaining bits,
P01-P08, may then be programmed to optimize a
selected system configuration. A default of all zeros
in the remaining program bits optimizes the 8208
timing for 8 MHz Intel CPUs using 150 nS (or faster)
dynamic RAMs with no performance penalty. Figure
5 shows the various options that can be programmed
into the 8208.

Using an Extemal Shift Register

The 8208 may be programmed by using an external
shift register with asynchronous load capability such
as a 74lS165. The reset pulse serves to parallel load
the shift register and the 8208 supplies the clocking
signal (PClK) to shift the data into the ~O~ pr?gram­
ming pin. Figure 6 showl! a sample circuit diagram
of an external shift register Circuit.

Serial data is shifted into the 8208 via the POI pin (33),
and clock is provided by the WE/PClK pin (23), which
generates a total of 9, clock pulses. After program­
ming is complete, data appearing at the input of the
POI pin is ignored. WE/PClK is a dual function pin.

6-205 230734-001

8208

During programming, it serves to clock the external
shift register, and after programming is completed,
it reverts to the write enab,le RAM control output pin.
As the pin changes state to provide the write enable
signal to the dynamic RAM alTay, it continues to clock
the shift register. This does not present a problem
beca,use data at the POI pin is ignored after program· ,
mingo Figure 7 illustrates the timing requirements of
the shift register.

PD8 PD7 PD~

PROGRAM
DATA BIT NAME POI,.ARITY IFUNCTION

PD~ CFS MUST BE ZERO ,
'PD1 S 'S' = 0 SYNCHRONOUS

S = 1 ASYNCHRONOUS

PD2 RFS RFS = 0 FAST RAM
RFS = 1 SLOW RAM

PD3 RB RAM BANK OCCuPANCY
SEE TABLE 2

PD4 CI1 COUNT INTERVAL BIT 1; SEE TABLE 6

PDS CIO COUNT INTERVAL BIT 0; SEE TABLE 6

PD6 PLS PLS = 0 LONG REFRESH PERIOD
PLS = 1 SHORT REFRESH PERIOD

PD7 FFS FFS = 0 FAST CPU FREQUENCY
m = 1 SLOW CPU FREQUENCY

poe x X=OAACK
x,= 1 XAcK

"

Figure 5. Program Data Word

ClK

Default Programming Options

After reset, the 8208 serially shifts in a program data
word via the POI pin. This pin may be strapped low,
or connected to an external shift register. Strapping
POI low causes the 8208 to default to the iAPX 186
system configuration. Table 4 shows the character·
istics of the default configuration. If further system
flexibility is needed, one external shift register, like
a 74LS165, can be used to tailor the 8208 to its
operating environment. Figure 8 illustrates an iAPX
186 and 8208 system.

Table 4. Programming, POI Pin Tied to Ground.

Synchronous 80186 interface

2 RAM banks occupied

Fast processor clock frequency (8 MHz)

Fast RAM (Note 1)

Refresh interval uses 118 clocks

128 row refresh in 2 ms; 256 row refresh
in 4 ms

Advanced ACK strobe

NOTE:
1. For iAPX 186 systems either slow or fast (150 or 100 ns)

RAMS are ok t9 use.

~~~ 
~ ,TLOAD,.: 6 

POI ==::)(~---'='---'--::-:PO:-:'o------"""X P01 , X P02 x:: 
NOTES: 

TRTVCL 
TPGVCL 
TCLPC 
TLOAO 

-' Reset is an asynchronous input, if reset occurs before'TRTVCL, then it is guaranteed to be recognized. 
- Minimum POI '(aJid time prior to reset going low. 
- MUx/PCLK delay.' 
- Asynchronous load data propagation delay. 

« Figure 6. Timing Illustrating External Shift Register Requirements for Programming the 8208. 

6-206 230734.()()1 



intJ 

8208 
RESET 

8208 

+5V 

0---41'~'-o-o-.o , • O~~~ 
I I I I 

8208 

...... -----1 PD. WElPCLK t--~~ 

ClK 

~-------+----------~------------------~RESET 

SRDY ClKOUT 

X, so 

·x 
§1 

. 2 
80186 !i2 

ALE 

Figure 7. External Shift, Register Interface 

8283 
ADDRESS 
lATCHES 

+5V 

REFRQ 
WR 

ClK 

8208 

AACK 
~ 

0, , 
en 

0,1 

401).8 

WE 

Figure 8. 8208 Interface to an 80186 

6-207 

( LOWER) MEMORY 
( UPPER) . ~EMORY 

2164A-15 2164A-15 

WE DilDO WE D'~DO 

230734-001 



inter , 8208 

Synchronous/Asynchronous Mode 
(S program bit) 

, 
The 8208 may be independently configured to ac~t 
syl'lchronoufj or asynchronous commands (RD, WR, 
PCTL) and Port Enable (PE) via the S program bit. 
The state of the S programming bit determines 
whether the interface is synchronous or 
asynchronous. 

While the 8208 may be configured with either the 
80186 Status or Command (MUL TIBUS) interface in 
the Synchronous mode, certain restrictions exist in 
the Asynchronous mode. An Asynchronous-Command 
interface using the, control lines of the MUL TIBUS is 
supported, and an Asynchronous-80186 Status inter­
face using tile status lines of the 80186 is supported, 
with the use of TIL gates as illustrated in Figure 2. ' 
In the 80186 case, the TIL gates are needed to . 
guarantee that status does not appear at the 8208's 
inputs too much before address, so that a cycle would 
start before address was valid. 

Microprocessor Clock Cycle Option 
(CFS and FFS program bits 

The 8208 can be programmed to interface with 
microprocessors with slow cycle microprocessors like 
the 8086, 8088, 80186, and 80188 cycle timing. The 
CFS bit configures the microprocessor interface to 
accept signals from either microprocessof group or 
commands from MUL TIBUS. The CFS programming 
bit must be programmed to logiC O. 

The FFS option is used to select the speed of the 
microprocessor clock. Table 5 shows the various 
microprocessor clock frequency options that can be 
programmed. The external clock frequency must be 

, programmed so that the failsafe refresh repetition 
circuitry can adjust its internal timing accordingly to 
produce a refresh request as programmed. 

Table ,5. Microprocessor Clock' 
Frequency Options. 

Program Bits 
Processor Clock 

CFS FFS Frequency 

0 0 iAPX 86,,88,186 5 MHz 

0 1 iAPX 86,88,186 8 MHz 

RAM S~eed Option (RFS program bit) 

The RAM Speed programming 'option determines 
whether RAM timing will be optimized for a fast or 
slow RAM. Whether a RAM is fast or slOvV is measured 
relative to the 2118-10 (Fast) or the 2118-15 (Slow) 
RAM specifications. 

Refresh Period Options 
(CIO CI1 and PLS program bits) 

The 8208 refreshes with either 128 rows every 2 
milliseconds or the 256 rows every 4 milliseconds. 
This translates to one refresh cycle being executed 
approximately once every 15.6 microseconds. This 
rate can be changed to 256 rows every 2 milliseconds 
or a refresh approximately once every 7.8 micro­
seconds via the Period Long/Short, program bit PLS, 

. programming option. 

The Count Interval 0 (CIO) and Count Interval 1 (CI1) 
programming options allow the rate at which refresh 
requests are generated to be increased in order to 
permit refresh requests to be generated close to the 
15.6 or 7.8 miorosecond period when the 8208 is 
operating at reduced frequencies. The interval bet­
ween refreshes is decreased by 0%,10%,20%, or 
30% as a function of how the count interval bits are 
programmed. A 5% guardband is built-in to allow for 
any clock frequency variations. Table 6 shows the 
refresh period options available. ' 

Table 6. Refresh Count Interval Table 

Count Interval C11, CIO (8208 Clock Periods) 

Ref. 
Freq. Period 00 01 10 11 
(MHz) (~) CFS PLS FFS (0%) (10%) (20%) (30%) 

8 15.6 0 1 1 118 106 94 82 

7.8 0 0 1 59 53 47 41 

5 15.6 0 1 0 74 66 58 50 

7.8 0 0 0 37 33 29 25 

6-208 230734-001 



8208 

The numbers tabulated under Count Interval repre­
sent the number of clock periods between internal 
refresh requests. The percentages in parentheses 
repr~nt the decrease in the interval between refresh 
requests. Note that all intervals have a built-in 5% 
(approximately) safety factor to compensate for minor 
clock frequency deviations and non-immediate 
response to internal refresh requests. 

Processor Timing 

In order to run without wait states, AACK must be 
used and connected to the SRDY input of the 
appropriate bus controller. AACR is issued relative 
to a P9int within the RAM cycle and has no fixed rela­
tionship to the processor's request. The timing is 
such, however, that the processor will run without wait 
states, barring refresh cycles, and bank precharge. 
In slow cycle, fast RAM configurations (8086,80186), 
AAa<is issued on the same same clock cycle that 
issues RAS. 

Port Enable (PE) set-up time requirements depend 
on whether the 8208 is configured for synchronous 
or asynchronous, fast or slow cycle ~ration. In a 
synchronous fast cycle configuration, fiE is required 
to be set-~ to the same 'clock edge as the com­
mands. If PE is true (low), a RAM cycle is started; if 
not, the cycle is aborted. 

In asynchronous operation, PE is required to be set­
up to the same clock edgEl as the internally syn­
chronized status or commands. Externally, this allows 
the internal synchronization delay to be added to the 
status (or command) -to-PE delay time, thus allow­
ing for more external decode time than is available 
in synchronous operation. 

The minimum.§'nchronizalion delay is the additional 
amount that PE must be held valid. If PI: is not held 
valid for the maximum synchronization delay time, it 
is possible that PE will go invalid prior to the status 
or command being synchronized. In such a case the 
8208 aborts the cycle. If a memory cycle intended for 
the 8208 is aborted, then no acknowledge (AACK or 
XACK) is issued and the processor locks up in endless 
wait states. 

Memory Acknowledge (AACK, I XAeR) 

Two type of memory acknowledge signals are sup­
plied by the 8208. They are the Advanced 
Acknowledge strobe (~CR) and the Transfer 
Acknowledge strobe (XA . The S programming bit 
optimizes AACK for synchronous operation ("early" 
AACR) or asynchronous operation ("late" AACK). 
Both the early and late ~ strobes are two clocks 

long. The XACK strobe is asserted when data is valid 
(for reads) or when data may be removed (for writes) 
and meets the MULTIBUS requirements. ~ is 
removed asynchronously by the command going 
inactive. 

Since in a asynchronous operation the 8208 removes 
read data before late AA<m or mR is recognized 
by the CPU, the user must provide for data latching 
in the system until the CPU reads the data. In syn-' 
chronous operation data latching is unnecessary, 
since the 8208 will not remove data until the CPU has 
read it. 

If the X programming bit is high, the strobe is con­
figured as XACK, while if the bit is low, the strobe is 
configured as AACK. 

Data will always be valid a fixed time after the 
occurrence of the advanced acknowledge. Thus, the 
advanced acknowledge may also serve as a RAM 
cycle timing indicator. • 

General System Considerations 

The RASO,1, CASO,1 and AOO-8 output buffers are 
designed to directly drive the heavy capacitive loads 
associated with dynamic RAM arrays. To keep the 
RAM driver outputs from ringing excessively in the 
system environment it is necessary to match the 
output impedance with the RAM array by using series 
resistors. Each application may have different im­
pedance characteristics and may require different 
series resistance values. The series resistance values 
should be determined for each application. 

Using' the Timing Charts 

The notation used to indicate which clock edge 
triggers an output transition is "n t" or "n''', where 
"n" is the number of clock periods that have passed 
since clock 0, the reference clock, and "t" refers to 
rising edge and "r' to falling edge. A clock period 
is defined as the interval from a clock falling edge to 
the follwoing falling edge. Clock edges are defined 
as shown below. 

~n +. n+1-1 

l I I I L 
(n-1)r nt nt (n+1)t (n+1)t 

6-209 230734-001 



8208 

The clock. edges which trigger transitions on each 
8208 output are tabulated in Table 7. "H" refers to 
the high-going transition, and "L" to low-going tran­
sition; "V refers to .valid, and "V" to non valid. 
Clock 0 is defined as the clock in· which the 8208 
begins a memory cycle, either as a result of a port 
request which has just arrived, or of a port request 
which was. stored previously but could not be 
serviced at the time of its arrival because the 8208 
'was performillQ another memory cycle, Clock Ornay 

be identified externally by the leading edge of RAS, _ 
which is always triggered on ot 

NOTES FOR INTERPRETING THE TIMING CHARTS: 
1. COLUMN ADDRESS is the time column address 

becomes valid. 

2. The CAS, EAAOK, LAACK and XACK outputs are not 
issued during refresh. 

3. XACK - high is reset asynchronously by command go­
ing inactive and not be a clock edge. 

Table 7. Timing Chart. 

COLUMN 
RAS ADDRESS CAS 

CYCLE L H V V L H 

RD,RF (}l, 2~ O~ 2~ O~ 3~ 

WR O~ 4~ O~ 3,), H 4+ 

8208-DRAMllnterface Parameter Equations 

Several DRAM parameters, but not all, are a direct 
function of 8208 timings, and the equations for these 
parameters are given in the following tables. The 
following is a list of those DRAM parameters which 
have NOT been included in the following tables,. with 
an explanation for their exclusion. 

READ, WRITE 
REFRESH CYCLES 

tRAC: response parameter. 
tCAC: response parameter. 
tREF: See "Refresh Period Options". 
tCRP: must be met only if CAS-only cycles, 

which do not occur with 8208, exist. 
tRAH: See "AC. Characteristics" 
tRCD: See "AC. Characteristics" 
tASC: See "AC. Characteristics" 
tASR: See "AC. Characteristics" 
tOFF: response parameter. 

WRITE CYCLE 

tOS: system-dependent parameter. 
tOH: system-dependent parameter. 
tOHR: system-dependent parameter. 

NOTES: 
1. 'Minimum. 
2. Value on right is maximum; value on left is minimum. 
3. Applies to the eight warm-up cycles during initialization 

only. 
4. TP'c TCLCL 

T26 = TCLRSL 
T34 = TCLCSL 

'. 
T35 = TCLCSH 
T36 = TCLW 
TaUF = TTL buffer delay 

H 

-
0-1-

.6.-210 

WE EAACK LAACK XACK 

L L H L H L H 

- 0+ 2-1- H 3-1- 2-1- RD 

4f (}l, 2-1- 1t 3f 2,), WR 

Table 8. RD, RF & WR Cycles 

Parameter Rd. RF Cycles Notes 
tRP 2TCLCL-T26 1 

tCPN 2.5TCLCL-T35 1 
tRSH 3TCLCL-T34 1 

tCSH 3TCLCL-T26 1 
. tCAH 2TCLCL-T34 1 

tAR 2TCLCL-T26 1 
tT 3/30 2 

tRC 4TCLCL 1 
tRAS 2TCLCL-T26 1 
tCAS 3TCLCL-T34 1 

tRCS 1.5TCLCL-TCL-T36-TaUF 1 
tRCH 0.5TCLCL-T34 1 

Parameter WR Cycles Notes 
tRP . 2TCLCL-126 1 

tCPN 2.5TCLCL-T35 . 1 

tRSH 3TCLCL-134 1 
tCSH 4TCLCL-126 1 
tCAH 2TCLCL'-134 1 
tAR 3TCLCL-T26 1 
tT 3/30 2 

tRC 6TCLCL 1 
tRAS 4TCLCL-T26 1 
tCAS TCLCL-T~ 1 
tWCH . 3TCLCL-1'34 1, 3 
tWCR 4TCLCL-T26 1,3 
tWP 4tCLCL-T36-TaUF 1 
tRWL 4TCLCL-T36-TaUF 1 

tCWL I 4TCLCL-T36-TaUF 1 
TWCS tCLCL-T36-TaUF 

230734'()()1 



intJ 8208 

ABSOLUTE MAXIMUM RATINGS 
Ambient Temperature 

Under Bias................... O°C to +70·C 
Storage Temperature ........ " -65°C to +150°C 
Voltage On Any Pin With 

Respect to Ground. . . . . . . . . . . . .. - .5V to + 7V 
Power Dissipation ....... '" .. .. .. . . . .. 2 Watts 

NOTICE: Stress above those listed under ''Absolute 
. Maximum Ratings" may cause permanent damage 
to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA:: O°C to +70oC, Vcc = 5.0V ± 5% Vss :: GND) 

Symbol Parameter Min. Max. Units Comments 

V,l Input Low Voltage -0.5 +0.8 .V 

V,H Input High Voltage 2.0 Vee + 0.5 V 

VOL Output Low Voltage 0.45 V Note 1 

VOH Output High Voltage 2.4 V Note 1 

VROl 
RAM Output 

0.45 V Note 1 
Low Voltage 

VROH 
RAM Output 

2.6 V Note 1 
High Voltage 

Icc Supply Current 280 rnA TA = 25°C 

III Input Leakage Current +10 pA OV::; V,N ::; Vee 

VCl 
Clock Input 

-0.5 +0.6 V 
Low Voltage 

VCH 
Clock Input 

3.8 Vcc + 0.5 V 
High Voltage 

C'N Input Capacitance 20 pF Ic = 1 MHz 

NOTES: 
1. 10l = 8 mA and 10H = -0.2 mA (typically 10l = 10 mA and 10H = -0.2SmAl 

8208 

A.C. Testing Load Circuit 

RASo,1 ~----" 
CASo,1 !----.-JV\ " __ ...r> 

AOo.s '---.oJ"" 

Other Outputs Co.s 

::::c. c,-
RRAS = 390 -::- CRAS = 150 pF 
RCAS = 390 CCAS = 150 pF 

RAO = 220 CAO = 200 pF 
RL :: 390 CL :: .150 pF 

A.C. Testing Input, Output Waveform 

::' 24)~ .... 0_2:_: ___ :_::--JX,",, __ 

6-211 

A.C. Testing inputs (except clock) are driven at 
2.4V for a logic ".1" and 0.45V for a logic "0" 
(clock is driven at 4.0V and 0.45V for logic" 1" 
and "0" respectively). Timing measurements are 
made at 2.0V, 2.4V for logic "1" and 0.8 V for logic 
"0", 

230734-001 



, I 

inter " 8208 

• 
A.C. CHARACTISTICS <Ta = 0 to 70 C 'E:c = + 5V ± 5%) 

Measurements made with resPect to RASo. 1 J CAS(k 1, ~ are at 2.4V and O.S V. All other pins are 
measured at 2.0V and O.SV. All times in nsec unless otherwise jndi~ted. AC testing done with specified 

-~,' , 
CLOCK AND PROGRAMMING 

8208 820M 

Ref. Symbol PBIWMla' Min. ..... Min. Max. Units Notes 

- IF Clock Rise Time 10 15 ns 

- tF Clock Fall Time 10 15 ns 

1 TClCl Clock Period 125 500 200 500 ns 

2 TCl Clock Low Time TCLCLf2.12 TClCU2·12 ns 

3 TCH Clock High TIme TClCU3 TClCU3 ns 

4 TRTVCl Reset to ClK~ Set!.p 40 65 ns 1 

5 TRTH Reset Pulse Width 4 TClCL 4 TClCl ns 

6 TPGVRTl PCTl. POI. RFRQ 125 200 ns 2 
to RESEn SetuP 

7 TRTlPGX PCTI. RFRQ 10 10 ns 
tQ RESEn Hold 

8 TClPCl PClK from ClK~ Oelay 45 65 ns 

9 TPOVCl POI to ClK~ Setup 80 100 ns 

10 TClPOX POI to CLK~ Hold 40 65 ns 3 

SYNCHRONOUS~PINTERFACE 

11 TKVCH 'RD. WFf, PCTL 20 30 ns 
TO CLKt SetuP 

12 TClKX Fm. wn. I'E', PCTL 0 0 ns 
to CLK~ Hold 

13 TPEVCl ~ to ClK~ Setup 30 50 ns 

ASYNCHRONOUS~PINrERFACE 

14 TRWVCl 1m, WJ!I to CLK~ Setup 20 30 ns 

15 ' TRWl RO, iJiiI!i Pulse Wid1h 2TClCl+30 2TClCl+50 ns 

16 TRWlPEV JSE from 1m. wrU Delay TClCL-30 TClCl·50 ns 
17 TRWlPEX JSE'to 1m, WFI~ Hold 2TClCL+30 2TClCl+50 ns 
18 TRWlPT PCTl from 1m, iJiiI!i~ Oelay TClCl-30 TCLCl-50 ns 
19 TRWlPTX PCTl to RD, WR~ Hold 2TClCl+30 2TCLCl+50 ns 

RAM INTERFACE 

20 TAVCl Al, AH. as to ClK~ Setup 35+tASR 55 + tASR ns 4 

21 TCLAX Al. AH, BS tOlClK~ Hold , 0 0 ns 

22 TClRSl ~ from CLK~ Delay ~ '55 ns 

23 tRCO ~ to eAS Delay TClCU2-25 ns 5,7.8 
75 80 ns 6,7.8 

24 TClRSH mt from ClK~ Delay 50 70 ns 

25 !ASR Row AO to m~ Setup 4.10 

26 tRAH ROW' AO to Jim Hold TClCU4-10 ns 5.7,9 
,40 30 ns 6,7,9 

27 tASC Column AO to CAm 
Setup 5 5 ns 7.1-'.,12 

28 tCAH Column AO to eAS Hold (See DRAM Interface Tables) 13 

6-212 230734-001 



8208 

A.C. CHARACTERISTICS (Continued) 

RAM Interface (Continued) 
8208 8208-5 

Ref. Symbol Parameter Min. Max. Min. Max. 

29' TCLCSL C2"~ from CLK~ Delay TCLCU2 TCLCU1.8 + 53 TCLCU2 TCLCU1.8+7B 

30 TCLCSH ~t from CLK~ Delay. , 50 70 

31 TCLWH WEt from CLK~ Delay TCLCU2 TCLCU1.8 + 53 TCLCU2 , TCLCU1.8 + 78 

32 TCLWL WE~ from CLK~ Delay 35 
, 

55 

33 TCLTKL ;ti;CR~ from CLK~ D8lay .35 55 

34, TRWLTKH ~t from l'IDt. mit Delay 50 80 

35 TCLAKL ~~ from CLK~ Dalay 35 55 

36 TCLAKH AACKt from CLK~ Dalay 50 70 

REFRESH REQUEST 

37 TRFVCL 

36 TCLRFX 

39 TFRFH 

40 TRFXCL 

41 TBRFH 

RFRO to CLK~ Setl4l 20 30 

RFRO'to CLK~ Hold 10 10 

Failsafe RFRO Pulse Width TCLCL+3O,o TCLCL+50 

Single RFRO inactlw 20 30 
to CLK~ SetuP. 

Burst RFRO Pulse Width 2TCLCL+3O 2TCLCL+50 

NOTES: 
1. RESET is internally synchronized to ClK. Hence a set-up time is 

required only to guarantee its recognition at a particular clock edge. 
2. The first programming bit (POO) is also sampled by RESET going low_ 
3. TClPD~ is guaranteed if programming data is shifted using PClK. 
4. tASR is a user specified parameter and its value should be added 

accordingly to TAVCL. 
5. When programmed in Slow Cycle mode and 125 ns" TClCl < 200 ns. 
6. When programmed in Slow Cycle mode and 200 ns " TClCL. 
7. Specification for Test load Conditions. 
8. tRCD (actual) = tRCD (specificatio,n) + 0.06 (ACRAS) - 0.06 (ACCAS) 

where AC = C (test load) - C (actual) in pF. " , 
9. tRAH (actual) = tRAH (specification) + 0.06 (ACRAS) - 0.022 (ACAO) 

where de = C (test load) - C (actual) in pF. 
10. IASR (actual) = IASR (specificatio!) + 0.06 (ACAO) - 0.025 (ACRAS) 

where AC =.C (test load) :.. C (actual) in'pF. 
11. IASC (actua~ = tASC (specification) + 0.06 (ACAO) - 0.025 (ACCAS) 

where Ae =·C (test load) - G (actual) in pF. 
,~2.,IASC is a function of clock frequency and thus varies with changes 

in frequency. A minimum value is specified. 
13. See 8208 DRAM Interface Tables. 
14. TFRFH and TBRFH pertain to asynchronous operation only. 
15. Single RFRQ cannot be supplied asynchronously. 

(' 6-213 

Units NotH 
ns ' 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 14 

ns 15 

ns 14 



8208 

WAVEFORMS 
, Clock and Programming Timings 

ClK 

RESET--t=~~~~~~~~~-------+------~--~--------____ ~-+ __________ ~ 
PCTl 

® @ REFRQ 

POI POO POl 

WE1PClK ~-----'''''''''f'J--------------~,.®_8 ______ ®--,-J' 

RAM Warm-up Cycles 

'--_____ .-11 
WE-;::7--~~;~~OG--R~AM-M-I~:~~c--------------------------~L~----lA-S-T-R-A-M-W-A-R-~-U-P----~'--­

i RESET i FIRST RAM WARM-UP CYCLE 
:' i 

NOTE: 
The present example assumes a RAS four clocks long. 

Synchronous Port Interface 

ClK 

SLOW CYCLE 
Im.ViR 

~OWCYClE 

SLOW CYCLE 
PeTL 

6-214 230734-001 



WAVEFORMS '(Continued) 

Asynchronous Port Interface 

ClK 

SLOW CYCLE 
rm,wrt 

SLOW CYCLE 
PCTl 

INTERNAL 
CYCLE REQUEST 

Refresh Request TIming 

CLK __ -, 

~~~~~REFESH ______ '"'\ 

SINGLE REFESH
REQUEST

8208

BURST REFRESH 5
REQUEST f® ':}@

-----------' @ ----------

6-215 230734-001

8208

WAVEFORMS (Continued)

RAM Interface Timing

CLOCK 0

CLK ~~~

COMMAND

INTERNAL
CYCLE REQUEST

ALO - ALa
AHO - AHa
BSo - BS1

RAS

AOo -AOa

CAS

WE

XACK

,

--~@
)t -

Note:

~
I,

= @-='

@ @

II!!.; I

t---@
@H @

I--®
1

~.
'\~

I

~~

~.
-¥-

~
.L

~
1\.

fo-@j I--@

~

~
I

I-X.

Dashed waveform indicates that either clock edge may cause the signal transition

6-216 230734-001

8207

8207 User's Manual

AUGUST 1983

6-217
NOVEMBER 1983

ORDER NUMBER: 230822-001

8~07

CHAPTJ;:R 1
INTROOUCTION

This guide is a supplement to the 8207 Data Sheetl and is intended as a design aid and not a stand­
alone description of the 8207. The reader should already have read and have a copy of the 8207 Data
Sheet, 8206 Error Detection and Correction Unit Data Sheet (EDCU), a microprocessor Data Sheet,
or a Multibus bus specification for interfacing to the 8207, and a dynamic RAM Data Sheet2.

The'Intel 8207 Advanced Dynamic RAM Controller is a high performance, highly integrated device,
designed to interface 16k, 64k, and 2S6k dynamic RAMS to Intel microprocessors. The 8207, with
the 8206, provides complete control for memory initialization, error correction, and automatic error
scrUbbing. I,

The 8207 has several speed selected versions. The standard part is specified for clock speeds up to
16 MHz in "fast cycle" configurations, and up to 8 Mhz in "slow cycle" configurations. The -2 part
can only be used in slow cycle configurations up to 8 Mhz. The -5 is limited to slow cycle con­
figurations of 5 MHz or less and, as a result, has some relaxed A.C. timings.

NOTE:
(1) The most current Data Sheet.is dated July, 1983
(2) All RAM cycle timings and references are based on Intel's, 2164A Dynamic RAMs, APR '82

Data Sheet.

6-218 230822-001

inter 8207

CHAPTER 2'
PROGRAMMING THE 8207

The many configurations of bus structures, RAM speeds, and system requirement~ that the 8207
supports require the 8207 to be programmable. The 8207 will modify its outputs to provide the best
performance possible. The 8207 must be told what type of interface the memory commands will
arrive on, what type of RAM (speed, refresh rate) is being used, the clock rate, and others.

The 8207 uses two means to be informed of the user;s requirements. It reads in a 16 bit serial program
word and examines the logic states on several input pins. The pins that are sampled for a logic level
give the user options on the types of refresh and memory command input timing.

Input Pin Options

The three input pins that configure part of the 8207 are: PCTLA, PCTLB, and REFRQ. Let's
examine the options in refresh types the REFRQ pin provides. '

Refresh types:

The 8207 gives the user a choice of the following refresh types.

1) Internal Refresh: All refresh cycles are generated internally - based on an internal
programmable time.

,
2) External Refresh with Failsafe: If the external logic does not generate a refresh cycle within

the programmed period, the 8207 will.

3) External Refresh - No Failsafe or No Refresh; All refresh cycles are generated at times
by the user. This is for systems that cannot tolerate the random delay imposed by refresh
(i.e. graphics memory).

4) Burst Refresh: The 8207 generates UP to 128 consecutive refresh cycles and must be requested
by external logic. Memory requests will be performed when the burst is completed.

The 8207 examines the state of the REFRQ pin when RESET goes inactive. This timing is shown in
the "Clock and Programming Timings" waveforms in the Data Sheet.

If REFRQ is sampled active by the falling edge of RESET, the 8207's internal timer is enabled. The
timer's period.is determined by the CIO, CIl, and PLS bits in the program word. External refresh
cycles are generated by a low'to high transition on the REFRQ input. This transition, besides generating
a refresh cycle, also resets the internal timer to zero. Simply tie REFRQ to Vcc if internal refresh
is required.

If REFRQ is seen low at the falling edge of RESET, the internal timer is deactivated. All refresh cycles
must either be done by external logic or by accessing all RAM (internal) rows within a 2 ms period.

Once the no failsafe option is programmed, the 8207 will generate a burst of up to 128 refresh cycles
when the REFRQ input goes from low to high andsainpled high for two consecutive clock edges.
These cycles are internally counted and the 8207 stops when the refresh address counter reaches the
value XX11111112 (X = don't care; see Refresh Counter section). If prior to the burst request the
counter is at XXllllll02 then only 2 ref~esh cyCles would be generated.

6-219 230822-001

8207

For a single refresh cycle to be generated via external logic, the REFRQ input will have to go from
low to high and then sample high by a falling 8207. clock·edge. Since external refresh requests typically
arrive asynchronously with respect to the 8207's clock,this requires the REFRQ to be synchronized
to the 8207 clock when programmed in the failsafe mode. This is to ensure that the request is seen
for one clock - no more, no less. If no external synchronization is performed, then the 8207 could
do random bur~t cycles.

Processor Interface Options:
! •

The PCTLA, PCTLB input pins will program the 8207 to accept either the standard demultiplexed
RD and WR inputs, or to directly decode the status outputs of Intel's iAPX86, 88 family of
microprocessors. The state definitiolls of the status lines and their timings, relative to the processor
clock, differ for the 8086 family and the. iAPX286 processor. Table 1 illustrates how the 8207
interprets these inputs after the PCTL pins are programmed.

If PCTL is seen high, as RESET goes inactive, and 8086 status interface is enabled. The commands
arriving at the 8207 are sampled by a rising clock edge. When PCTL is low, the 80286 status and
Multibus command interface is selected. These commands are sampled by the 8207 by a falling clock
edge.

More information on interfacing to processors is contained in the Microprocessor Interface section.

Table 1. Status Coding of 8086, 80186 and
80286

Status Code Function

S2 S1 SO 8086/80186 80286

0 0 0 Interrupt Interrupt

0 0 1 110 Read 1/0 Read

0 1 0 1/0 Write 1/0 Write

·0 1 1 Halt Idle

1 0 q Instruction Halt
Fetch

1 0 1 Memory Read Memory Read

1 1 0 Memory Write Memory Write

1 1 1 Idle Idle

Programming Word·

8207 Response

8207 Function
Command

8086 Command
PCTL RD WR Status Interface

Interface

0 0 0 Ignore Ignore

0 0 1 Ignore Read

0 1 0 Ignore Write

0 1 1 Ignore Ignore

1 0 0 Read Ignore

1 0 1 Read Inhibit

1 1 0 Write Inhibit

1 1 1 Ignore Ignore

The 8207 requires more information to operate in a wide variety of systems. The 8207 alters its
timings and pin functions to operate with the 8206ECC chip. The programming options allow the
designer to use asynchronous or synchronous buse~, various clock rates, various speeds and types of
RAM, and others. This is detailed in Table 2.

This data is supplied to the 8201 over the POI input pin. There are two methods of supplying this
data. One is to strap the PDI pin high or low with the subsequent restrictiol:1s on your system. Table

6-220 230822-001

8207

3 shows the required system configuration. Note that your only option when strapping this pin high
or low is error correction or not.

If any other configurations are required, then the programming data will have to be supplied by one
. or two 74LS165 type shift registers. Note that the sense of tjte bits in the program word change
between Eee and non-Bee configurations.

Table 2a.
Non-ECC Mode Program Data Word

PD15 PD8 PD7 PDO

I 0 I SA I 0 I
Program
Data Bit Name Polarity/Function

PDO ECC ECC= 0 For non-ECC mode

PD1 SA SA = 0 Port A is synchronous
SA = 1 Port A is asynchronous

PD2 SB SB = 0 Port B is asynchronous
. SB = 1 . Port B is synchronous

PD3 CFS ~=O Fast-cycle iAPX 286 mode
CFS = 1 Siow-cycle iAPX 86 mode

PD4 RFS 8E.§ = 0 Fast RAM
RFS = 1 Slow RAM

PD5 RBO RAM bank occupancy ,
PD6 RB1 See Table 4

PD7 CI1 Count interval bit 1: see Table 6 in 8207 data sheet
PD8 CIO Count .interval bit 0: see Table 6 in 8207 data sheet

PD9 (5[S PcS=O Long refresh period
Pi:S = 1 Short refresh period

PD10 .EXT EXT = 0 Not extended
EXT = 1 Extended

PD11 FFS FFS = 0 Fast CPU frequency
FFS = 1 Slow CPU frequency

PD12 !SPA I515R = 0 . Most recently used port priority
PPR = 1 Port A preferred priority

PD13 TM1 TM1 = 0 Test mode 1 off
TM1 = 1 Tellt mode 1 enabled

PD14 0 Reserved must be zero

PD15 0 Reserved must be zero

6-221 230822-001

inter 8207

Table 2b
ECC Mode Program Data Word

PD15 PD8 PD7 PD~

IMI RB1 I RBO I PPR I FFS I ~I PLS I CIO I CI1 I XB I XA I RFS I CFS I .sB I SA I 1 I
Program
Data Bit Name Polarity/Function

PD~ ECC ECC = 1 ECC mode

PD1 SA SA= 0 Port A is asynchronous (late MCI<)
SA"= 1 Port It is synchronous (early MCI<)

PD2 SB SB = 0 Port B is synchronous (early MCI<)
SB= 1 Port B is asynchronous (late MCI<)

PD3 CFS CFS = 0 Siow-cycle iAPX 86 mode
CFS = 1 Fast-cycle iAPX 286 mode

PD4 RFS RFS = 0 Slow RAM
RFS = 1 Fast RAM

PD5 XA XA= 0 Multibus-compatible XACKA
XA = 1 MCKA not multiQus-compatible

P06 XB . XB = 0 AACKB not multi bus-compatible
XB= 1 Multibus-compatible XACKB

P07 CI1 Count interval bit 1: see Table 6 in 8207 data sheet
P08 CIO Count interval bit 0: see Table 6 in 8207 data sheet

P09 PLS PLS = 0 Short refresh period
PLS = 1 Long refresh period

P010 EXT EXT = 0 Master and slave EOCU
EXT EXT = 1 Master EOCU only

P011 FFS FFS = 0 Slow CPU frequency
FFS = 1 Fast CPU frequency

P012 PPR PPR = 0 Port A preferred priority
PPR = 1 Most recently used port priority

P013 RBO RAM bank occupancy
P014 RB1 See Table 4

P015 TM2 TM2 = 0 Test mode 2 enabled
TM2= 1 Test mode 2 off

Table 3. 8207 D~fault Programming

~ort A is Synchronous-has early MCK

Port B is Asychronous-has late AACK

Fast RAM

Refresh Interval uses 236 clocks

128 Row refresh in 2 ms; 256 Row refresh in 4 ms,.

Fast Processor Clock Frequency (16 MHz)

"Most Recently Used" Priority Scheme

4 RAM banks occupied

230822-{)01

inter ·8207

\

Reset

If Port A is changed to an asynchronous interface (via the SA bit), then one of two precautions must
be taken. Either a differentiated reset must be provided, or else software must not access the 8207
controller RAM for a short period. The 8207 is either adding o{ deleting internal synchronizing
circuits. If a command is received during this changing, the 8207 may not perform properly. This
is required only if Port A is changed to asynchronous, or if Port B is changed to synchronous.

Several of the bits in the program word determine a particular configuration of the 8207 (reference
Tables }O, 11 and the 8207 Data Sheet). The bits are: CFS, CLOCK fast or slow; RFS, RAM access
time fast or slow (fast refers to 100 ns - slow is everything greater); and EXT, for memory data word
widths greater than 16 (22) bits. Generally speaking, CO is the fastest cQnfiguration at clock
frequencies up to 16 MHz, both in the ECC or non-ECC charts. 'C3' is the fastest for 8 MHz clocks
in non-ECC mode, and 'C4' is the fastest configuration when using ECC.

Take, for example, a 16 MHz 8207 clock with no error correction, a 16 bit word, and 150 ns (slowly)
dynamic RAMs. Table 10, in the 8207 data sheet, is used to· arrive at the configuration "Cl." The
Timing chart Table 12 in the 8207 Data Sheet is then used to determine which clock edge to reference
all timings from. The Waveforms diagrams then are used to d,etermine the delay from the clock edge.

,

230822-001

8207

CHAPTER 3
RAM INTERFACE

The 8207 takes the memory addresses from the microprocessor bus and multiplexes them into row
and column addresses as require4 by dynamic RAMs. The only hardware requirement when inter­
facing the 820Tto dynamic RAM are series resistors on all the RAM outputs of the 8207, and proper
layout of the traces (see Intel's RAM Data Sheets or the Memory Design Handbook). This section
mainly details the effects and requirements of input signals to the 8207 on the RAM array.

The 8207 contains an internal address counter used for refresh and error scrubbing (when using the
8206 EDCU) cycles. The 8207 has 18 address inputs (AILO-AIL8 and AIHO-AIH8) which are multiplexed
to form 9 address outputs (AOO-A08). There are also 2 bank select (BSO, BSl) inputs for up to 4 banks
of RAM. The Bank Selec;t inputs'are decoded internally to generate RASand (;AS outputs.

Refresh Interval

The 8207 supports four different refresh techniques as described in the Refresh Options section. In
addition, the rate at which refresh cycles are performed is programmable. This is necessary because
the refresh period is generated from the CLK input, which may vary over a wide range of frequencies.
Programming the Cycle Fast/Slow (CFS) and Frequency Fast/Slow (FFS) bits automatically reprograms
the refresh timer to generate the correct refresh interval for a clock frequency of 16, 10, 8, or 5 MHz
(CFS, FFS = 11, 10,01, and 00, respectively)., For clock frequencies between those, Count Interval
(CIl, CIO) programming bits allow "fine tuning" of the refresh interval. Refresh will always be done
often enough to satisfy the RAM's requirements without doing refresh more often than needed and
wasting memory bandwidth for all clock frequencies.

Refresh Counter

The internal refresh address counter of the 8207 contains 20 bits as organized in Figure 1.

17 16 15 14 13 12 11 10 9
Col addr

8 7 6 5 4 3 2
Rowaddr

Figure 1. 8207 Refresh Address Counter

o

In non-ECC mode, the refresh address counter does not count beyond bit 8. For standard RAMs,
this will refresh 128 rows every 2 ms or 256 rows every 4 ms.

In ECC mode, the 8207 automatically checks the RAM for errors during refresh. This requires it to
access each of the possible 220 words of memory. The 8207 does not delete any of these bits when
used with 16k and 64k dynamic RAMs. Each column would be scrubbed 4 times with 16k RAMs,
and twice with 64 RAMs. This will have no detrimental effect on reliability. Banks of RAM that are
not occupied, as indicated to the 8207 by the RBO, RBI programming bits, will not be scrubbed.

Bank Selects BSO, BS1; RBO, RB1

The 8207 is designed to drive up to 88 RAMs in various configurations. The 8207 takes 2 inputs, BSO,
BSt, and decodes'them based on 2 programming bits, RBO, RBI, to generate the required RAS/CAS
strobes. Additionally, the 8207 will always recognize (not programmable) whether an access is made
to the same RAM bank or to a different bank. The 8207 will interleave the accesses resulting in
improved performance.

6.,224 230822-001

inter 8207

RAS and CAS Reallocation

The 8207's address lines are designed to drive up to 88 RAMs directly (through impedance matching
resistors). The 4 lAS and CAS outputs drive up to' 22 RAMs per bank (16 data plus 6 check bits
with the 8206). Under these conditions, the 8207' will meet all RAM timing requirements. See
Figure 2 for an example. .

RASii"
~ 8 BITS 8 lilTS

RAS1
8 BITS CAS1 8 BITS

8207
AC»8

RAS2
8 BITS 8 BITS CA§2

BSO
BS1

RAS3
~ 8 BITS 8 BITS

'ECC OPTIONAL

Figure 2. 8207 4 RAM Bank Configuration

The 8207 can accommodate other configurations like a 32 bit error corrected memory system. Each
bank would have 39 RAMs (32 + 7 check bits) with the total number of RAMs equal to 78. This is
within the address drivers capability, but the 39 RAMs per bank exceeds the RAS and CAS drivers
limits. The loading of the RAS/CAS drivers should not exCeed 22 RAMs per bank, otherwise critical
row, column address setup, and hold times would be violated.

In order to prevent these critical timings being violated, the 8207 will re-allocate the RAS and CAS
drivers based on the RBO, RBI programming bits (see Table 4). If the RBO, RBI bits are ptogrammed
for 2 banks, the 8207 will operate RASO and RASI as a pair along with RAS2 and~, CASU and'
CASl, and CAS2 and CASJ. Now the address drivers would be loaded by 78 RAMs and the m/CAS
drivers by 20 RAMs. This relative loading is almost identical to the first,case of four ,banks of
22 RAMs each. Drive reallocation allows a wide range of memory configurations to be used and still
maintain optimal memory timings. Figure 3 shows a 32 bit n~n-error corrected configuration.

These programming bits do not help to qualify RAM cycles. Their purpose is to reallocate RAS/CAS
drivers. FOI; example, if there is one bank of RAM and the bank select inputs (BSO, BSl) select any
other bank and no provision is made 'to deselect the 8207 (via PE), the 8207 will do a RAM cycle
and issue an acknowledge. This happens irregardless of the RBO, RBI programmed value. See the
Optional RAM Bank's section to provide for, this.,

6-225 230822~01

-~ BSO
881

V

8207

Table 4. RAM Bank Selection Decoding
and Word Expansion

Program Bank
m/CA§ Pair Allocation Bits Input

RB1 RBO B1 eo
0 0 0 0 RA%3. c-ASo-3 to Bank 0

9 0 0 1 Illegal Bank Input

0 0 1 0 Illegal Bank Input

0 ·0 1 1 Illegal Bank Input

0 1 0 0 -mo.1. 'm'0.1 to Bank 0

0 1 0 1 RA1;2 3. c-AS2.3 to Bank 1

0 1 1 0 Illegal Bank Input

0 1 1 1 Illegal Bank Input

1 0 0 0 .RASO. CA-SO to Bank 0

1 0 0 1 m1. ~1 to Bank 1

·1 0 1 0 "RAS2. c-AS2 to Bank 2

1 0 1 1 Illegal Bank Input

1 1 0 0 Jf~ "CAS0 to Bank 0

1 1 0 1 "R"AS1. c-AS1 to Bank 1

1 1 1 0 ~2. -CAS2 to Bank 2

1 1 1 1 "RAS3. CAS3 to Bank 3

RA81
CAS1

am f----I 16BIT8 J9
AQOo8

RA82 Ir-;:: 8 elm ---' . ~
1681T8

IQ"fi'
eAS3

8207

Figure 3. 8207 2 RAM Bank Configuration

6-226.

16BIT8 J

16BIT8 I

"

230822-001

8207

Scrubbing

An additional function of the RBO, RBI bits, besides RAS/CAS allocation, is to inform the 8207
of how many banks are physically present. The 8207 will, during the refresh cycle, read data from
a location and check to see that data and check bits are correct. If there is an error, the 8207 lengthens
the refresh cycle'and writes the corrected data back into RAM. Scrubbing the entire memory 'greatly
reduces the chance of an uncorrectable error occurring. See the Refresh section for more detail on
scrubbbing.

Refresh Cycles

The 8207 performs RAS only refre~h cycles in non-ECC systems. It outputs all 8207 control signals
except for CAS and acknowledges. The real delay in a system due to refresh would be a fraction of
that value1. The length of the refresh cycle is always 2tRP + tRAS, and varies based upon the
programmed 82q7 configuration,

In error-corrected systems, the refresh cycle is actually a read cycle. The 8207 outputs a row adqress,
then all RAS outputs go active. Next, a column address is output and then CAS. The CAS output
is based upon the RBO, RBI allocation bits. Figure 4a shows the general timing for a four bank system,
and Figure 4b shows a two bank system.

ROW ROW

~~--------------------- ~~--------------------
CASO \L-___ _ CASO, 1 \'-----
CAS1-3 CAS2.3

4 BANKS 2 BANKS

Figure 4. Refresh Cycles for Error Corrected Systems

(1) Measurements have shown a delay of 2-40/0 on program execution time compared to programs
running without refresh.

6-227 230822-001

J

8207

The 8207 sends the read out word through the 8206 EDCU to check for any errors. If no errors, t.he
refresh cycle ends. If an error is discovered, the 8207 lengthens the cycle. An error is determined if
the ERROR output of the 8206 is seen .active at. the same edge that the 8207 issues the R/W output.
The cycle is then lengthened to a RMW cycle. If the ~rror was correctable, t~e corrected data is writ­
ten back to the location it was. read from. But, if the data is uncorrectable, the cycle is still lengthened
to a RMW, but no write pulse is issued. To aid in stabilizing the RAM ciutput data and the Error
flag, puiIup resistors o(10k ohms on the data out lines are recommended.

Scrubbing removes soft errors that may accumulate until a double-bit error occurs, which would halt
the system. Hard single-bit failures will not stop the system, but could slow it down. This is because
read and refresh cycles lengthen to correct the data.

For large RAM arrays s~me form of error logging or diagnostics should be consider~d.

Interleaving

T~~ term "interleaving" is often used to refer to overlapping the cycle times of multiple banks (or
boards Or systems) of RAMs. This has the advantage of using relatively slow cycle time banks to achieve
a faster perceived cycle time at the processing unit. The drawbacks of interleaving are more logic to
handle the necessary control and, for maximum performance, the program should execute sequen­
tially through the addresses.

Dynamic RAM cycles consist of 2 parts - the RAS active time (tRAS in Dynamic RAM Data Sheets)
and precharge time (tRP). The sum of these two times are roughly equal to the cycle time of the RAM.
The 8207 determines how long these two periods are, based on the configuration the user picked (via
the programming bits). Bank interleaving, as used by the 8207, is slightly different than the previous
definition. The 8207 will overlap the precharge time of one bank with the access time of another bank.
In either case, the advantage is the effective cycle time is reduced without having to use faster RAMs.

For interleaving to take place there must be more than 1 bank of RAM connected to the 8207.
Interleaving is not practical with 3 banks of RAM because 3 is not a power of 2 (the 2 bank inputs
BSO, BS1). So, interleaving works only for 2 or 4 banks of RAM. Note that it is easy enough to use
three banks of RAM where the bank select inputs are connected to the highest-order address line.
For instance, if three banks of 21(i4s are used in an 8086 system, and located at address OH, bank
selects BSO and BS1 would be connected to microprocessor addresses A17 and A18, respectively. Banks
0-2 would be accessed in the address ranges OH - FFFFH, 10000H-1FFFFH, and 20000H - 2FFFFH,
respectively. In this case, consecutive addresses are almost always in the same bank and very little
interleaving can take place. .

Figure 5 shows the effects on the performance of the processor with and without interleaving. In both
examples, consecutive accesses to the same bank will add 1 wait state to the second access, but no
wait states to consecutive accesses to different banks. Irregardless of the 8207 configuration, there
will always be a minimum 1 wait state added without interleaving. Therefore, interleaving is very highly
recommended!

Interleaving is accomplished by connecting the 8207's BSO, BS1 inputs to the microprocessor's low
order word address lines. Each consecutive address is then located in a different bank of RAM. About
90070 of memory accesses are sequential, so interleaving will occur about 90% of the time in a single
port system.

In a dual port system, the advantages of interleaving are a function of the number of banks of memory.
Since the memory accesses of the two ports are presumably independent, and both ports are continuously·
accessing memory, the 8207 arbiter will tend to interleave accesses from each port (Le., Port A, Port

6~228 230822-001

inter

80286

18 MHz CLOCK

6207

RASa

RASI

80188
6 MHz CLOCK

820i

RASO

RASI

0

Tl

0

TS

I 1

\

T2

I 1

\

8207

TC TS

I 2 I 3 I 4 I 5
0 1

l_tRP
, DELAY

\

CONFIGURATION CO-NO ECC (READ)

T3 I T4 I Tl T2 I

I 2 I 3 I 4 1 0 I
" 0 1

FD~~Y==\

\
CONFIGURATION C3-NO ECC (READ)

TC

0 1 I 2
2 3 .. \ ,

I

TW T4
T3 T4 Tl

1 2 3
2 3 4

I

Figure 5. Processor Performance With and Without Interleaving

TC
TS

I 3

r

T1
T2 I ,

I 4

/

B, Port A, PortB, ...). Ifthere are two banks of RAM interleaving, will occur 50OJo of the time 'and,
if there are four banks of RAM, interleaving will take place 75OJo of the timel . To the extent that
a single port generates a majority of memory cycles, interleaving efficiency will approach 9OOJo as
described in the previous paragraph.

(1) Don't get confused here. The paragraph is talking about interleaving memory requests from
both ports, and their probability of accessing one of ,the other banks of RAM where tRP
has been satisfied. The 8207 will leave the RAM precharge time out if consecutive accesses go
to different banks. The 8207 RAM timing logic does not care which port requests a RAM cycle.
requests a RAM cycle. , ' " ,

Optional RAM Banks

Many users allow various RAM array sizes for customer options and future growth. Some care must
be taken during the design to allow for this. Three items should be considered to-permit optional RAM'
banks.

The first item is th..!tiotal RAM size. The 8207 starts a memory cycle based only upon a valid status
or command and PE active. So some logic will be required to deselect the 8207 (via PE) when the,
addressed location does not exist within the current memory size. A 7485 type magnitude comparator
works well.

The second item to consider is the BSO, BSI inputs. With one bank of RAM these inputs are tied
to ground. Four banks of RAM require two address inputs. So, if the design ever needs four banks

6-:229 230822"()01

inter 8207

,'of RAM, iheIi the BOO, BSt inputs must be connected to address lines. Selecting a' non-existant RAM
bank is illqgaI. Figure 6 shows a non-interleaved method.

A19
~>-______ ~ ______________________ ~ ~l

A18 ~>-----1-~----------------------~ ~o

8207

7485

Figure 6. Non-Interleaved 8207 Selection Ci~cuit

With designs using interleaving, the least significant word address lines are connected to the BSO, BSI
inputs. With two banks of RAM, At from the Intel processor is connected to BSO. A2 is connected
to 'BSt, but not allowed to function witil four banks are present. However, A2 must still be used
since addresses increase sequentially. Two possible ways of implementing this are shown in Figure
7 below.

240

, A19' A19

AH7
A18

A2
8207 8207

A2

BSl

Al

~
Al

~--
PE

A18 A

7485 F
Figure 7. Interleaved 8207 Selection Circuits

6 .. 230 230822-{JOl

8207

The final consideration is for the RAS/CAS outputs. Remember that when the RBO, RBI bits are
programmed for two banks, then RASQ, 1 operates in tandem (non-ECC mode/ECC mode - the 00
outputs also work in tandem). Figure 8 shows the proper layout.

RAM BANK

RASO/CASO

RAS2ICAS2 OPTIONAL BANK

8207

2
RASlICAS1 OPTIONAL BANK

RAS3ICAS3
OPTIONAL BANK

Figure 8. RAM Bank Layout

Write Enables - Byte Marks

The write enable supplied by the 8207 cannot drive the RAM array directly. It is intended to be
NAND with the processor supplied byte marks in a non-ECC system. In error-corrected systems, the
write enable output should be inverted before being used by RAMs. Only full word read/writes are
allowed in ECC systems. The changing of byte data occurs in the 8206 EDCU.

For single and dual port systems, the byte mark data (AO, BHE) must be latched. The 8207 can (and
will) change the input addresses midway through a RAM cycle.

Memory Warm-up and Initialization

After programming, the 8207 performs 8 RAM warm-up cycles. The warm-up cycles are to prepare
the RAMs for proper operation. If the 8207 is configured for ECC, it will then prewrite zeros into
the entire array.

All RAS outputs are driven active for these cycles, once every 32 clock periods. The prewrite cycles
are equivalent to write cycles, except all RAS and GAS will go active, data is generated by the 8206,
and the address is generated by the 8207.

RAM Cycles/Timings

Tables 12 and 13 of the 8207 Data Sheet show on what clock edge each of the 8207 outputs are generated.
This, together with the timing waveforms and A.C. parameters, allows the user to calculate the
timings of the 8207 for each of its configurations. To make the job easier, Tables 14-18 of the 8207
Data Sheet precalculate dynamic RAM timings for each 8207 configuration and type of cycle. All
that is required is to plug in numerical values for the 8207 'parameters.

6-231 230822-001

Write Cycles.

The 8207 always issues WE after CAS has gone valid. These types of cycles are known as "late writes."
The 8207 does this primarily to interface to the iAPX286 processor bus timings. Late writes require
separate data in and data out traces to the RAM array, plus the additional drivers.

Data Latches

The 8207 is designed to meet data setup and hold times for the iAPX86 family processors when using
a synchronous status interface (see Microprocessor Interface section). Other types of interfaces will
require external data latches. This is because the CAS pulse is a fixed length - the user has no control
(besides programming options) over lengthening CAS; When CAS goes inactive, data out of the RAMs
will disappear. Asynchronous interfaces should use XACK or LAACK to latch the data.

6-232 230822'{)01

inter 8207

CHAPTER 4
. MICROPROCESSOR INTERFACES

The 8207 is designed to be directly compatible with all Intel iAPX86, 186, 188, and 286 processor",.
For maximum performance, the 8207 will directly decode the status lines and operate off of the pro­
cessor's clock. Additionally, the;. 8207 interfaces easily to other bus types that support demultiplexed
address and data with separate read and write strobes.

Bus interfaces

The 8207 easily supports either an asynchronous or synchronous command timing. The command
timing can also bel adjusted for various processors via the PCTL pin. '.

MEMORY COMMANDS

There are four inputs for each port of the 8207 that initiate a memory cycle. The input pins are W.!,
· RD, PCTL, and PE. Th~ first three inputs connect directly to the iAPX 86. 88, 186, 188 SO-S2
outputs, respectively. For the 80286, the same connections are used except that PCTL is tied to ground.
In all configurations PE is decoded from the address bus. Multibus type commands use the same
input setup as the 80286. . ,

COMMAND/STATUS INTERFACE

· The status interface for the 80186 and the 80286 differ both in timing and meaning. The 8207 can
be optimized for either processor by programming the PCTL input pin at RESET time. S2 in 80186
systems, connects directly to PCTL. When the processor is reset it drives Si high for one clock, then
tristates it. A pullup resistor to +S will program the PCTL input: for the 80186 status interface when
RESET goes inactive. A pullup is required only if no component has this pullup internally.

To optimize the 8207 for the 80286 interface, pcn is tied to ground and not used in 80286 systems.
Multibus commands are similar in meaning to the 80286 status interface, and are programmed the
same way. In Multibus type systems, PCTL can be used as an inhibit to allow shadow memory. PCTL
would be driven high, when required, to prevent the 8207 from performing a memory cycle. It would
be connected to the Multibus INH pin through an inverter. .

SYNCHRONOUS/ASYNCHRONOUS COMMANDS

Each port of the 8207 can be configured to accept either a synchronous or asynchronous (via
programming bits) memory request. Minimum memory request decode time .(and maxjmum per­
formance) is achieved using a synchronous status interface. This type of interface to t\le processor
requires no logic for the user to implement.

· An asynchronous interface is used with Multibus bus interfaces when the setup and hold times of
the memory commands cannot be guaranteed. Synchronizers are added to the inputs and will require
up to two clocks for the 8207 to recognize the command. It should be obvious that better performance
will result if the 8207's clock is run as fast as possible.

Figure 2 of the 8207 Data Sheet shows various combinations of interfaces. The additional logic for
the asynchronous interfaces is used to either lengthen the command width, to meet the minimum 8207
spec, or to make sure the command does not arrive too soon before the address has stabilized.
PORT ENABLE .. i

. The FE inputs serve t2..9.ualify a metnory·request. A RAM cycle, once started, Cannot be stopp~.d.
A RAM cYcle starts if PE is seen active at the proper clock edge and a valid coinmand is recognized.
If FE is activated after a command has gone active and iI).active, no Cycle will start.

·6-233 230822-<Kl1 .

8207

Types of logic that work well are 74118 and 7485. P~ should be valid as much as possible before
the command arrives because, as the address bus switches and settles, gli~ches on PE could either:
disqualify a memory cycle; delay a memory cycle; or start a memory cycle when none should have.
Refer to the Port Interface Waveforms in the Data Sheet. If Port Enable is not seen active by the
next or same clock edge, no memory cycle will occur, unless the command is removed. and brought
active again. /

Back to Back Commands

Holding the E, 'WR: inputs active will not generate continuous memory cycles. Memory commands
. must go inactive for at least one clock period before another memory request at that port will be
considered valid. Holding the inputs active will not keep the other portJrom gaining access to the
RAM. The only signal that can prevent the other port's gaining access to the RAM is LOCK.

Address Inputs (And LOCK)

Two pins control the address inputs on the 8207, MUX and LEN. Neither are us~d.for single port
8086 based systems. MUX is used for dual port configurations, and LEN is u'sed for single and dual
port 80286 based systems. MUX is used to gate the proper ports addresses to the 8207. If the output
is high, Port A is selected. If it is low, Port B is selected.

The cross coupled NAND gates, shown in the 8207 Data Sheet (Figure 3), are used to minimize
contention when switching address buses. Use of a single inverter would have both outputs enabled
simultaneously for a short period. The cross coupled hand gates allow only one output enabled ..

MUX also allows the single LOCK input to be multiplexed between ports. Figure 9 shows how to
multiplex the LOCK input. for dual port systems. See the LOCK section for more information.

TO ADDR LATCH A EN

Lc5CKB

MUX

8207

---l.,..;..

LOCK LOCKA

TO ADDR LATCH B EN

Figure 9. Dual Port LOCK Input Circuit

MUX TIMING

The MUX output is optimized by the Port Arbitration scheme, which is selected in the program word.
Figure 10 shows the effects on memory selected in the program word. Figure 10 shows the effects
on memory bandwidth with the different schemes. Port A Preferred optimizes consecutive cycles, for
POrt A. Consecutive. Port B cycles have at least 1 clock added to their cycle time. There'w0uld be
no MUX delays [or any Port A request. , '

6-234 230822-001

inter 8207

The Most Recently Used scheme allows either port to generate consecutive cycles without any MUX
delays. The first memory cycle for each port would have the 1 clock delay. But all others would not.

With either scheme, if both ports request the memory at their top speed, the 8207 will interleave the
requests; Port A, Port B, Port A, Refresh, Port B.

\

\
\

8 MHz

CMDA

CMDe ---"-\
MUX ---__ j~

MUX

Figure 10. Port Arbitration Effects

LEN

LEN is used to hold the 80286 addresses when the 8207 cannot respond immediately. The 8207 will
require a separate address latch, with the ALE input replaced with LEN. LEN optiniizes the address.
setup and hold times for the 8207.

LEN goes from high to low when a valid 8207 command is recognized, which latches the 80286
address. This transition of LEN is independent of a memory cycle starting. The low to high transition
will occur in the middle of a memory cycle so that the next address will be admitted and subsequently
latched. .

. I If Port B is to interface to an 80286 with the synchronous status interface, then LEN must be created
. using external logic. Figure 11 shows the equivalent 8207 circuit for Port B.

LOCK

. The LOCK input allows each port uninterrupted aCcess to memory. It does this by not permitting
MUX to switch. It is not intended as a means to improve throughput of one of the ports. To do so
is at the designer's riskl. Obviously, LOC~ is only used in dual port systems. The 8207'irtterprets
LOCK as originating from the port that MUX is indicating.

(1) The 8207 will not malfunction if this is done. This is a system level concern. For example,
Ii time dePendent process may fail if the other port holds LOCK active, preventing its access of
memory and relinquishing the bus.

230822~Ol

inter 8207

. RESET

AACK

FROM
80286 CLOCK

Sci g Si"

PE

Figure 11. Port B LEN Circuit

LOCK from the 8086 may be connected directly to the 8207 or to the multiplexing logic. The 8207
requires additional logic when interfaced to an 80286. Figure 12 shows both the synchronous and
asynchronous circuitry.

For 16 MHz operation, the 8207 ignores the LOCK input during the clock period that MUX switched.
During 8 MHz operation, the 8207 will see LOCK as being active during the clock period when MUX
switches.

The LOCK issued in Multibus bus systems may not be compatible with the 8207. The 8207 references
LOCK from the beginning of a cycle, while Multibus teferences LOCK from the end of a cycle. The

82284

RESET
V READY'

ClK

J PR·O V-r-JPRO

ALE i-(~
82288

=[>_K r-K 0- Q

---1>
80286

LOCK

Figure 12a. Synchronous interface

6-236 230822"()01

inter 8207

80288

LOCK ~

rl> 1 1
0

PR
Q 0

PR
Q

82288

ALE cLFi Q rl> CLR Q

L:r 1
82284

RESET
Rm5Y'

Figure 12b. Asynchronous interface

Multibus LOCK can be used if it meets the 8207 requirements. If the LOCK timing cannot be guaranteed,
then additional logic is necessary. The logic would issue LOCK whenever a Multibus command is
recognized. The drawback t6 this is that MUX cannot switch during the RAM cycle. This would delay
the other port's memory access by one or two clocks.

DEADLOCK

The designer should ensure that a deadlock hazard has not been created in the design. The simple
interfaces shown previously will not create a deadlock condition when the 8207 controls all system
memory. If LOCK is issued by both ports, then the above logic would need to be modified t6 remove
LOCK. '

Figure 13 shows an illustration of the problem with a single LOCK input.

lOP

LOCK I-'---f MUX
LOCK

8207

Figure 13. Single LOCK Input Circuit

6-237 230822'()01

8207

Suppose the 8207- starts a locked string transfer for the processor". The Multibus bus port requests
-a memory cycle but must wait for the processor to remove LOCK. But the processor must access
Multibus as part of the locked string transfer. We now have a deadlock. The solution is to force LOCK
inactive whenever an access is made to non-8207 memory by the processor. By doing this we have
now violated the purpose of LOCK, since the Multibus port could change data. Another solution is
to ensure that locked data does not exist in physically separate memory.

8207 Acknowledge's

The 8207 in non-ECC mode has two active acknowle~er port, AACK and XACK. The AACK
output is configured into either an "early" or ")ate" AACK based on the SA, SB bits in the program
data word. In EeC systems there is on~ Acknowledge per port, and it is configured to anyone of
the three (EAACK, LAACK or XACK) by the programming bits.

The AACK pin is optimized for either the 80286 or the 8086, based upon the CFS programming bit
(fast = 80286; slow = 8086). XACK conforms to the Multibus bus specification. XACK requires a

. tri:state buffer and must not drive the bus directly.

In synchronous systems, XACK will not go active if the memory command is removed prior to the
clock period that issues XACK. In asynchronous systems, the AACK pin can also serve as an
advanced RAM cycle timing indicator.

Data out, in synchronous systems, should not have to be latched. The 8207 was designed to meet the
data setup and hold times of Intel processors, the 8086 family, and the 80286. In asynchronous systems,
the 8207 will remove data before the processor recognizes the Acknowledge (LAACK or XACK). In
these systems, the data should be latched with transparent type latches (Intel 8282/8283).

Output Data Control

Non-ECC

In single port systems, Intel processors supply the necessary timing signals"to control the input or
output of data to the RAMs. These control signals are DEN and DT lit Refer to the microprocessor
handbook for their explanation. If these signals are not available, then PSEN and DBMprovide the
same function. They can be used directly to control the 8286/8287 bus drivers of the 8207 ..

Because of the single set of data inlout pins of the RAMs, data must be multiplexed between the
two ports in dual port systems. The 8207 provides two outputs for contention-free switching. PSEL
operates the same as the MUX output, in that a high selects Port A and a low selects Port B. PSEN
acts to enable the selected port. The timing is shown in the 8207 Data Sheet, Port SwitChing Timing
section.

The easiest means' of using PSEL and PSEN is shown in Figure 14. At no time will both ports ,be
enabled simultaneously.

I

PSEL g
I~ I : OE PORTA

PSEN

1
PORTS

1
DOE

Figure 14.PSEL and PSENlnterface Circuit

6-238 230822-001

8207

Data Bus - Single Port.

Recall that the 8207 always perforrr,s a late write cycle and that this· requires separate data in and
out buses. One option for the data bus is shown in Figure 3 of the 8207 Data Sheet. It requires separate
data in and out traces on the processor board.

The second option is to keep the processor's combined data, bus but separate the data at the 8207
RAM. This is shown in Figure 15.

PE

'DBM

Data Bus - Dual Port

Non-ECC

Figure 15. Data Bus Circuit

RAM

ARRAY

TO;tP DATA
BUS

The multiplexed data of the 8207 RAM must be kept.isolated so that an access by one port does not
affect another port. Figure 16 illustrates the control logic.

6-239 230822-001

inter

OBM ~­

PE~"""'_

PORTB

S
Y
S
T
E
M

B
U
S

PSEL D---....... +-t A
PSEN c::----..... -4..,-/

8207

RAM
ARRAY

Figure 16. Dual Port Data Bus Control Circuitry

6-240

PORTA

S
Y
S
T
E
M

B
U
S

\
230822-001

8207

CHAPTER 5
~207 WITH ECC (8206)

This section points out the proper control of the 8206 EDCU by the 8207.

The 8207 performs error correction during read and refresh cycles (scrubbing), and initializes memory
after power up to prevent false errors from causing interrupts to the proceSsor. Since the 8207 must
refresh RAM, performing scrubbing during' refresh allows it to be accomplished without any
additional performance penalty. Upon detection of a correctable error during scrubbing, the RAM
refresh cycle is lengthened slightly to permit the 8206 to correct the error and for the corrected word
to be rewritten into memory. Uncorrectable errors detected durJng scrubbing are ignored, since the
processor may never access that memory location.

Correctable errors detected during a memory read cycle are corrected immediately and written back
into memory.

Synchronous/Asynchronous Buses

The many types of configurations that are supported by the 8207/8206 combination can be broken'
down into two classes: ECC for synchronous or for asynchronous buses.

In synchronous bus systems, performance is optimized for processor throughput. In asynchronous
buses, performance is optimized to get valid data onto the bus as quickly as possible (Multibus). While
possible to optimize the 8207/8206 for processor throughput in Multibus systems, it is not Multibus
compatible. The performance optimization is selected via the XA/XB and SA/SB programming bits.

When optimized for processor throughput, an advanced acknowledge (AACK - early or late) is issued
at some point (based on the type of processor) so that data will be valid when the processor needs it.

When optimized for quick data access, an XACK is issued as soon as valid data is known to exist.
If the data was invalid (based on the ERROR flag), then the XACK is delayed until the 8206 corrects
the data and the data is on the bus.

The first example is known as "correct always" mode. The 8206 CRCT pin is tied to ground and
the 8206 requires time to do the correction. Figure 17 shows this implementation. The quick data
access method is known as "correct on error." The CRCT pin is tied to the RIW output of the 8207.
When CRCT is high, the 8206 does not do correction, but still checks the data. This delay is typic~lly
half of the first. If an error happens, the cycle becomes a RMW and XACK is delayed slightly' so
that data can be corrected. .

The correct on error mode is of no real benefit to non-Multibus users. The earliest acknowlege (BAACK)
is delayed by one clock to allow for the delays thrQ.ugh the 8206. This imposes a 1 wait state delay.

Byte Marks

The only real difference to the 8207 system when adding the 8206 is the treatment of byte writes. Because
the encoded check bits apply only to a whole word (including check bits), .byte writes must not be
permitted at the RAM. Instead, the altering of byte data is done at the 8206. The byte marks
previously sent to RAM are now ,sent to the 8206. These byte marks must also qualify the output
enables of the data drivers.

The DBM output of the 8207 is meant to be nanded with the processors byte,marks. This output is
activated only on reads or refreshes. On write cycles, this output stays high which would force the
8206 byte mark input low. When low, the internal 8206 data out buffers are tristated so that new
data may be gated into the device:

6-241 230822-001

8207

RTs:~ .
RAM

AD DR
WE ARRAY

+5
DI CBI DO

8207 DBM

WZ -,-
ERROR

CE
Rm 16

PSEN FWR

AO

BHE

Figure 17. 8206 Interface to the 8207

Read Modify Writes - ECC

A RMW cycle occurs whenever a processor wants to do byte writes or when the 8207 has detected
an error during read or refresh (scrubbing) cycles. A byte write is detected by the FWR input to the
8207 and is based on the processor supplied byte marks.

At the start of a RMW cycle, DBM stays high, which, when qualified with the byte marks, will enable
the..:!!ata out buffer of the 8206 for the unmodified byte, and tristates the buffer for the new byte;
R/W is high, which tells the 8206 to do error detection and correcting (if CRCT is low). The 8206
can latch data and check bits from the RAM via the STB input, but the 8207 does not use this feature.
Instead,the 8207 keeps CAS active the entire length of the,RMW cycle to hQld data at the 8206. The
new byte data from the processor goes to the 8206 and to the RAM, The 8207 would have corrected
any errors just read, so the old and new bytes of data, plus their check bits, are available at the RAM,
and the 8207 generates a write pulse. The data driver for the unmodified byte must not have been
enabled, otherwise erroneous data would be written to RAM and possibly made valid (if it was stable)
by the 8206. ' ,

Data Buffer Control - ECC

The control of the data buffers i~ essentially the same as in non-ECC systems, with a few exceptions.

230822-001

8207

. ,

The processor's byte marks must now qualify the output enable logic. The reason was described earlier
in the RMW section. This applies to both single and dual Port configurations. A refresh cycle outputs
all the control signals that a read cycle will, except for an.acknowledge. If complete buffer control
is left to the 8207, then it would occasionally (during refreshes) put data on the processor bus. The
DEN and DT iR signals must be qualified by the PE input.PE would have to be latched for the entire
cycle by PSEN. .

Test Modes

Neit~er of the two test mocles of the 8207 are to be ,us~d in a design. Both test modes reset the refresh
address counter to a spc;cific value, which interrupts the refresh sequence and causes loss of data.

In error corrected systems, a reset pulse causes the 8207/8206 to write over the entire RAM array.
Test Mode 2 appears to bypass theprewrite sequence. But, the refresh counter is reset to a value of
IF7 (H). So, besides interrupting the refresh sequepce, the 8207 still prewrites the 8 locations specified
by the counter.

To not overwrite the RAM data, the 8207 RESET will have to be isolated from the system reset logic
in ECC systems.

230822-001

','"

APPENDIX I
8207/8208 Performance , , ,

The following performance charts were based upon Figure 3 in the 8207 Data Sheet, and apply to
the 8208 as well. All RAM access delays are based upon Intel dynamic RAMs. The charts show the
performance of a single cycle with no precharge, refresh, port switching, or arbitration delays.

Th~ read access catculations are: the margin'between'the 8207 'starting a memory cycle to ~ata valid
at the processor - 8207 RAS or CAS from clock delaY--'DRAM RAS or CAS access - 8286 propaga­
tion delay - processor setup.

,Assume the RAS/CAS drivers are loaded with ISO pf, and'the 8286 is driving a 300 pf data bus.

80286 (example)

80186 (example)

,RAS Access: 3TCLCL - 8207 TCLRSL - 2118 tRAC -
8286 TIVOV - 80286 t8
= (3)62.5 - 35 max - 100 max '- 22 - 10
= 20 ns

CAS Access: 2 TCLCL - 8207 TCLCSL - 2164A tCAC -
8286 TIVOV - 80186 TDVCL
= (2)125 - 115 max - 85 max - 22 - 20
= 8 ns

230822-001

inter 8207

,8207 Performance (EDC synchronous status Interface)

Table 5a. Walt States for Different fJP and RAM Combl,natlons

Walt stet .. at full CPU speed RAM speed

CPU Freq 100 ns 120 ns 150 ns 200 ns

1-RD~ WR 1-RD, WR 2-Read
80286 8 MHz 3-Byte WR 3-Byte WR 1-Write

CO (3) CO 3-Byte WR Not (1)
" C2 compatible

80186, 1-RD, WR 1-RD,WR 1-RD,WR with RAM

8086/88-2 8 MHz 3-Byte WR ;3-Byte WR 3-Byte WR parameters

C4 C4, C4

1 1 1 1-RD, WR
8086/88 5 MHz C6 C6 C6 3-Byte WR

C4

8207 Performance (EDC synchronous status Interface)

Table 5b. fJP Clock Frequency for Differenc f.IP and "RAM Combinations

Maximum frequency for
RAM speed one walt-atate (4)

CPU Freq 100 ns I 120 ns 150 ns' 200 ns

80286 8 MHz 7.3 MHz 6 MHz
CO CO

80186, 8 ty1Hz 7 MHz
8086/88-2 FULL SPEED C4

8086/88 5 MHz

6-245 230822-001

8207
I

8207 Performance (Non-EDC synchronous status interfaCe)

Table 6a. Walt States for DI~erent lAP and RAM Combinations

~alt states at full CPU speed RAM speed

CPU Freq 100 ns 120 ns 150ns 200 ns

0 1-Read 1-Read Not(1)
80286 8 MHz CO(3) O-Write O-Write compatible

C1 C1 with

80186, 8 MHz 0 0 0(2) RAM
8086/88-2 C3 C3 C3 parameters

8086/88 5 MHz, 0 0 0 0
C3 C3 C3 C3

Table 6b., lAP CIC)ck Frequency for Different lAP and RAM Combinations

Maximum frequency for
RAM speed no walt-state (4)

CPU Freq 100 ns 120 ns 150 ns 200 ns

80286 8 MHz 7 MHz 6 MHz 5.3 MHz

80186, 8 MHz 7 MHz
8086/88-2

FULL SPEED
8086/88 5 MHz

(1) The 2164A tRAH parameter is not satisfied.
(2) 150 ns 64K DRAMs with tCAC = 100 ns won't run with 0 wait-states, because they have a longer CAS

access time than the 2164A-15 (tCAC = 85 ns).
(3) Numbers in lower right corners are the programmed configurations of the 8207.
(4) To meet read access time.

6-246 230822-001

8207

8207 Performance (multibus interface)

This is an asynchronous, command interface. Worst case data and transfer acknowledge
(XACK#) delays. Including synchronization and data buffer delays, are:

Table 7a. Non·EDC system

, RAM speed

100 ns 120 ns 150 ns 200 ns

Data access time 289ns 299ns 322ns 380ns

XACK# access time 333ns 450ns

Table 7b. EDC system

RAM speed

100 ns 120 ns 150 ns 200 ns

Data access time (read) 359ns 369ns 392ns 450ns
(324 ns)(1] (334 ns) (357 ns) (415 ns)

XACK# access time 400 ns-RD, WR 520 ns-RD, WR
588 nS-Byte Write 806 ns-Byte WR

(1) Numbers in parentheses are for when 8206 is in check-only mode (8206 doesn't do error correction
until after an error is detected.

230822-001

