

LITERATURE

[n addition to the product line handbooks listed below, the INTEL PRODUCT GUIDE (no charge,
Order No. 210846-003) provides an overview of Intel's complete product lines and customer services.

Consult the INTEL LITERATURE GUIDE (Order No. 210620) for a listing of Intel literature. TO
ORDER literature in the U.S., write or call the INTEL LITERATURE DEPARTMENT, 3065 Bowers
Avenue, Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER
literature from international locations, contact the nearest I ntel sales office or distributor (see listings in
the back of most any Intel literature).

Use the order blank on the facing page or call ourTOLL FREE number listed above to order literature.
Remember to add your local sales tax.

1985 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design
information.

QUALITY/RELIABILITY HANDBOOK (Order No. 210997-001)
Contains technical details of both quality and reliability programs and principles.

CHMOS HANDBOOK (Order No. 290005-001)
Contains data sheets only on all microprocessor, peripheral. microcontroller and
memory CHMOS components.

MEMORY COMPONENTS HANDBOOK (Order No. 210830-004)

TELECOMMUNICATION PRODUCTS HANDBOOK (Order No. 230730-003)

MICRO CONTROLLER HANDBOOK (Order No. 210918-003)

MICROSYSTEM COMPONENTS HANDBOOK (Order No. 230843-002)
Microprocessors and peripherals-2 Volume Set

DEVELOPMENT SYSTEMS HANDBOOK (Order No. 210940-003)

OEM SYSTEMS HANDBOOK (Order No. 210941-003)

SOFTWARE HANDBOOK (Order No. 230786-002)

MILITARY HANDBOOK (Order No. 210461-003)
Not available until June.

COMPLETE SET OF HANDBOOKS (Order No. 231003-002)
Get a 25% discount off the retail price of $160.

"'u.s. Price Only

"'u.S. PRICE
$15.00

$12.00

$18.00

$12.00

$18.00

$25.00

$15.00

$18.00

$12.00

$15.00

$120.00

Q)
c
:.:i
"'C

~
o
Cl
Ol
C
o «
'S
()

inter
u.s. LITERATURE ORDER FORM

NAME: _________________ --:-__ TITLE: _________ _

COMPANY:

ADDRESS: _____________________ ~-----------------------

CITY: ____________________ _ STATE: ____ zip: ___ __

COUNTRY: __ ~

PHONE NO.: (__ -'---____________________ _

ORDER NO.

:=::::::=:::::::::::::::1-1..--1 ---'
~--~--~I-I~--~
~--~--~I-_I&----....

~--~--~I-I----~
'---'-......I....-II...-.I.-....&.-...II-I:=::~
~--~--~I-I~--~
POSTAGE AND HANDLING:
Add appropriate postage
and handling to subtotal
10% U.S.
20% Canada

Allow 4-6 ~eeks for delivery

TITLE QTY. PRICE TOTAL

)(

x =----
)(

x = -----
x =----
x

Subtotal _______ _

Your Local Sales Tax _____ _

Total_..;...-. __ _

Pay by Visa, MasterCard, Check or Money Order, payable to Intel Literature. Purchase Orders
have a $50.00 minimum.

o Visa Account No. ____________________ _ Expiration ____ _
o MasterCard Date

Signature: ___________________________ ---------

Mall To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051.

Customers outside the U.S. and Canad~ should con­
tact the local Intel Sales Office or Distributor listed In
the back of this book.

For information on quantity discounts, call the 800 number below:
TOLL-FREE NUMBER: (800) 548-4725
Prices good until 12/31/85.
Source HB

Mail To: Intel Literature Distribution"
Mail Stop SC6-714 .
3065 Bowers Avenue
Santa Clara, CA 95051.

DEVELOPMENT SYSTEMS
HANDBOOK

JANUARY 1985

About Our Cover:
The design on our front cover is an abstract portrayal of the systems creation or connection
point. From this central sunburst of technology, peripheral design applications and Ethernet

networking cables combine in an orchestrated manner symbolically indicating a development
process that is in tune with the technological explosion. The design engineer can count on

Intel's complete set of integrated tools for every facet of systems development.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the information contained herein. .

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

~he following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, ~), ICE, iCS, iDBp, iDIS, 121CE,
iLBX, im, iMDDX, iMMX, Insite, Intel, intel, inteiBOS; Intelevision, inteligent Identifier,
inteligent Programming, Intellec, Intellink, iOSp, iPDS, iRMX, iSBC, iSBX, iSDM, iSXM,
KEPROM, Library Manager, MCS, Megachassis, MICROMAINFRAME, MULTI BUS,
MULTICHANNEL, MULTI MODULE, OpeNET, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Ripplemode, RMXl80, RUPI, Seamless, SLD, SYSTEM 2000, and UPI,
and the combination of/CE, iCS, iRMX, iSBC, iSBX, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS~ is a registered trademark of Mohawk Data
Sciences Corporation .

• MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

©INTEL CORPORATION 1984

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

Table of Contents

ALPHANUMERIC INDEX ... vi

INTRODUCTION .. viii

CHAPTER 1
Microcomputer Development Systems

Data Sheets
iMDX 430/431/440/441 Intellec® Series IV Microcomputer Development System 1-1
iPDSTM Personal Development System 1-6
iPDSTM-130 Optional Flexible External Disk Drive 1-17
iPDSTM-Proto Kit , '.' 1-21
iMDX 557 iAPX Resident Processor Card Package 1-23
iMDX 511 Enhanced Human Interface 1-26
Model iMDX 750 Intellec® Series II/11"'V Winchester Subsystem 1-28

Application Note
AP-156 Designing Modules for iPDSTM and iUP Systems 1-31

CHAPTER 2
Network Development Systems

Data Sheets
Network Development System II (NOS-II) 2-1
iMDX-580/581 ISIS Cluster Board Packages 2-9
Asynchronous Communication Link 2-13
Mainframe Link for Distributed Development 2-16
iNA 955 iRMXTM NOS-II Link ... 2-19

Article Reprint ,"
AR-204 Smart Link Comes to the Rescue of Software Development Managers 2-23

CHAPTER 3
Microcomputer Software Development Tools

Data Sheets
Program Management Tools ... 3-1
PSCOPE High-Level Program Debugger 3-4
iRMXTM PSCOPE 86 High-Level Program Debugger 3-9
NOS-II Electronic Mail ... 3-20
8086 Software Toolbox ... 3-22
AEDIT Text Editor ... 3-24
ISIS·II Software Toolbox .. 3-26
Insite " 3-28

Application Note .
AP-162 PMT Tutorial ... 3-30

Article Reprints
AR-225 Debugging Catches up with High-Level Programming 3-77
AR-319 Software Development ... 3-83

. AR-352 Integrated Environment Speeds System Development 3-88

CHAPTER 4
Microcomputer Development Languages

Data Sheets
iAPX 286 Software Development Packages 4-1
Pascal 286 Software Package .. , ... 4-6
PLiM 286 Software Package ... 4-9
iAPX 86, 88 Software Development Packages for Series II/PDS 4-13
86/88/186/188 Software Packages .. 4-23

iii

Table' of Contents

Fortran 80.8080/8085 ANS Fortran 77 """""""""""""""'"",,4-39
. Pascal 80 S/W Package , , , , , , " ,4-43

PLiM 80 High Level Programming Language """"""""""""'",.,,4-48
8087 Software Support Package, ,4-51
8087 Support Library" , , , ,', ,', , , , .4-54
80287 Support Library, ,4-58
8089 lOP Software Support Package, ,4-61
8051 Software Ppckages """"""""""""""""""""'"",,4-64
MCS®-48 Diskette-Based Software Support Package """"""""""",,4-73
MCS®-96 Software Development Packages " , , , , , , , , , , , , , , , , , " , , , , , , , , , , ,4-75
VAX * IVMS* Resident iAPX-86/88/186 Software Development Packages "'"",,4-83
VAX * IVMS* Resident Software Development Packages for iAPX 286 , , ~ , , , , , , , , ,4-90
2920 Software Support Package, , , , , , , , , , , , , , , , , , . " , , , , , " , , , , , , , , , , , , ,4-96

Article Reprints .
AR-59 Modular Programming in PLiM ,4-107
AR-136 PLlM-86 Combines Hardware Access with High-Level

Language Features, ,4-114
AR-200 Compiler Optimization Techniques, ,', , , , , , , .4-121
AR-239 PLlM-51: A High-Level Language for the

8051 Microcontroller Family, , , , , , , , , , , , , , , , , , , " ,4-127

CHAPTER 5
In-Circuit Emulators

Data Sheets
EMV-51A 8051 A Emulation Vehicle, '" , , , , , , , , , , , , , , , , , ,5-1
EMV-44 Con 8044 Emulation Vehicle Conversion Package """""""'"",,5-9
EMV-88 iAPX8088 Emulation Vehicle", """"""" '" ,"'" ,.,"""" ,5-17
iSBE-96 Single Board Emulator, . , , , , , , , , , , , , , , , , , , .5-28
121CETM Integrated InstrumentCition and In-Circuit Emulation System, , , . , , , , , , , ,5-35
iLTA Logic Timing Analyzer, , , , , , , , , , , , , , , , ., ,5-52
ICETM-428042 In-Circuit Emulator. , , , , , , , , , , ~ , , , . , , , , , , , , , , , , . , , , , , , , , , , ,5-58
ICETM-44 Module 8044 In-Circuit Emulator """""",.,",., , , , , , . , , , , " , ,5-66
ICETM-49A MCS®-48 In-Circuit Emulator, , . , , , , , , , , , , , , . , , , , , , , , , , , , , , , , , , ,5-74
ICETM-51 8051 In-Circuit Emu'lator , , . , . , , , , , , , , , , ,5-80
ICE-85BTM MCS-85 In-Circuit Emulator with Multi-ICETM . , , , , , , , , , , , . , , , , , , , , ,5-88
ICETM-86A iAPX 86 In-Circuit Emu'lator , , , , , , , , , , , . , , , , , , , . , , , , , , , , , , , . , , , ,5-95
ICETM-88A iAPX 88 In-Circuit Emulator, , , , , , , , , , , , , , , . , , , , , . , , , , , , , , , , , , ,5-103

CHAPTER 6
PROM Programming

Data Sheets
iUP-200AIiUP-201A Universal PROM Programmers, , , , , , , , , , , , , , , , .. , , , , , , , , ,6-1
PROM Programming Personality Modules ".,"", ... ,," , . , , , , , . , , , , , . , , ,6-12

Application Note
AP-179 PROM Programming with the Intel Personal

Development System (iPDSTM) , , , , , , , , , , , , , , . , , , , , . , , , , , , , , , , , , .. , , , , , ,6-22

CHAPTER 7
System Design Kits

SDK-85 MCS-85™ System Design Kit. , , , , , , , , , . , , , , , , , , , , , , . , , ,', , . , .' , , , , , ,7-1
SDK-86 MCS·86™ System De,sign Kit, , , , , , , , , , , , , , ... , , , , . , , , , , , , , , , , , , , . ,7-7
SDK-C86 MCS-86™ System Design Kit Software and Cable Interface, , , , , , , , , , ,7-13
SDK-51 MCS®-51 System Design Kit , , , , . , , , , , , , , : , , , , .. , , , , . , , , , , , , , , , , , .7-15
SDK-2920 2920 System Design Kit, , . , .. , , , , , , . ,7-20

iv

Table of Contents

CHAPTER 8
Third Party Software

Data Sheets
Microsoft· Inc., BASIC-80 Interpreter Software Package 8-1
Microsoft· Inc., BASIC-80 Compiler Software Package 8-4
Digital Research Inc., CP/M· 2.2 Operating System 8-6
Wordstar· Word Processing Software 8-9
Microsoft· Multiplan· Spreadsheet. 8-16

• Please note:
VAX and VMS are trademarks of Digital Equipment Corporation
Microsoft and Multiplan are trademarks of Microsoft Corporation
CP/M is a trademark of Diflital Research Corporation
Wordstar is a trademark of Micropro International

V

ALPHANUMERIC INDEX

2920 Software .. 4·96
8051 Software .. ; ... 4·64
8086 Software Toolbox ... : ".3·22
86/88/186/188 Software .. 4·23
8087 Software Support Library '.' 4·51
8087 Support Library " .. 4·54
8089 lOP Software ... " '.' ... 4·61
80287 Support Library .. : 4·58
AEDIT Text Editor .. 3·24
Asynchronous Communications Link ~ : .. : 2·13
BASIC·80 Compiler .. 8·4
BASIC·80 Interpreter ... 8·1
CP/M 2.2 Operating System ... 8·6
EMV·44 ... ~ ' 5·9
EMV·51A ; ~ 5·1
EMV·88 .. 5·17
FORTRAN 80 .. 4·39
FORTRAN 86/88 4·24
iAPX86,88 Software for Series II/PDS ... 4·13
iAPX 286 Software ... 4·1

:~I~~ ~ .~~~.p.i~~r. ::~~
ICETM·42 .. 5·58
ICETM·44 r • •• 5·66
ICETM·49A ; ; 5·74
ICETM·51 .. 5·80
ICETM·85B ; 5·88
ICETM·86A ... 5·95
ICETM·88A .. ; 5·103
ILTA .. 5·52
iMDX 430/431/440/441 . .. ; 1·1
iMDX 511 .. 1·26
iMDX 557 .. 1·23
iMDX 580/581 ... 2·9
iMDX 750 .. 1·28
iNA 955 ... 2·19
Insite .. 3·28 .
iPDSTM .. 1·6
iPDSTM·Proto .. 1·21
iPDSTM·130 .. : 1·17
iRMXTM PSCOPE 86 ' .. 3·9
iSBE .. 5·28
ISIS·II Software Toolbox' 3·26
iUp·200A/iUp·201A .. 6·1
Mainframe Link .. 2·16
MCS®·48 Diskette·Based Software .. 4·73
MCS®·96 Software .. 4·75
Multiplan Spreadsheet .. .' 8·16
NDS·II ... " 2·1
NDS·II Electronic Mail " ... 3·20
Pascal80 ; , -............................. 4·43

·PascaI86/88 .. , " '" , 4·28
Pascal286 .. ~ ... ' : 4·6
PL/M·80 .. 4·48
PLIM 86/88/186/188 ~ .. 4·31
PL/M 286 ... 4·9
Program Management Tools .. 3·1

, PROM .. 6·12
PSCOPE ... 3·4

vi

ALPHANUMERIC INDEX

SDK·2920 .. . 7·20
SDK·51 ... 7·15
SDK·85 ... ' 7·1
SDK·86 .. 7·7
SDK·C86 7·13
VAX· IVMX· ResidentiAPX 86/88/186 Software 4·83
VAX· IVMX· Resident Software for iAPX 286 4·90
Wordstar .. . 8·9

• Please note:
VAX and VMS are trademarks of Digital Equipment Corporation
Microsoft and Multiplan are trademarks of Microsoft Corporation
CPIM is a trademark of Digital Research Corporation
Wordstar is a trademark of Micropro International

vii

INTEL'S DEVELOPMENT
ENVIRONMENT - THE COMPLETE
SOLUTION

The emergence of high performance, low cost micro­
processors has revolutionized the computer industry
in the past decade. Many of today's advanced "chips"
literally contain the computing power of mainframe
computers that were commonly used just ten short
years ago. The availability of these advanced proces­
sors has spawned many new products and vastly
improved existing ones.

The rapid advances in microprocessor technology
have also revolutionized the microprocessor system
design process. The days of a single engineer develop­
ing all software and hardware for a given system are
over. Most projects today consist of many engineers
working in a team. And most projects are software
intensive: a ratio of five to ten software engineers for
every hardware designer is common.

Developing software intensive systems with large
teams typically creates headaches for team members
and project leaders alike. Large team development
necessitates numerous team meetings, large numbers
of software modules containing many interfaces, sig­
nificant amounts of formal system documentation,
and a long and tedious debug process. In addition,
team members must share all types of project infor­
mation: source code, object code, test suite results,
etc. Project leaders in this environment must contin­
ually strive to meet project deadlines and contain
costs.

Intel offers a complete line of microcomputer devel­
opment tools that help developers maintain tight proj­
ect deadlines and minimize costs. For example, Intel's
advanced software development tools and program­
ming languages can boost an individual programmer's
productivity and also simplify team management. Our
powerful In Circuit Emulators (ICEsTM) minimize the
risks associated with integrating system software with
'target hardware and thus ensure your pr<;>jects are not
delayed during this critical development phase. And
Intel's state-of-the-art dedicated workstations, such
as the Series IV Microcomputer Development System,
are ideal development hosts for providing these
remarkable tools at your fingertips. Moreover, as
your team grows you can link team members together
in a powerful network with NDS-II-the Network
Development System. Because of our special knowl­
edge of the processors we design, you can be assured
that our tools are the most powerful available for the
task at hand.

Software Tools Boost
Programmer Productivity

Intel offers a wide range of software development
tools that boost programmer productivity and mini­
mize the costly administrative overhead that typically
accompanies large software development projects.

PSCOPE Simplifies and Speeds Program
Debugging

PSCOPE is a source-level symbolic debugger
that allows the high-level language program-

This chart illustrates the broad range of tools that simplify the development of products using Intel
microprocessors and microcontrollers.

Tools.Avaiiable

LANGUAGES
• Pascal
• FORTRAN
• PLIM
• C
• MACRO ASSEMBLERS

TOOLS
• PSCOPE
• SVCS; MAKE

INSTRUMENTATION
• IN-CIRCUIT EMULATORS
• 121CE™ SYSTEM

NOTE: AVAILABLE NOW -
AVAILABLE SOON--

8·Bit
J.I. Controller

-

-
-

8051 8085 8096

--- - -
- - -
- - -
- - --

ix

8088 8086 80168 80186 80286

- - -, - -- - - - -- - - - -- - - - --- - - - -
- - - - -- - - - -
- -- - - - -

WITHOUT PSCOPE:

WITH PSCOPE:

PSCOPE is an advanced, high. level language debugger that cuts many time consuming steps out of the
software debugging process. PSCOPE enables users to correct software errors with "patches," eliminat·
ing many unnecessary edits, compiles and links.

mer to completely debug his code at the same
level at which it was written. Breakpointing,
tracing, and patching are all done in a faster
and less error-prone manner than through
obsolete machine-level debuggers. Since soft­
ware testing and maintenance consume a
greater portion of development life-cycle time
and cost, PSCOPE debugging can significant­
ly improve programming efficiency.

• Program Management Tools Save Develop­
ment and Administration Time

Intel Program Management Tools (PMTs)
tighten your control over program changes,
documentation, software maintenance, sys­
tem generation, and program Iibraries­
reducing your administrative workload and
time. Intel PMTs currently consist of two
powerful utilities: the Software Version Con­
trol System (SVCS) and MAKE.

SVCS is a system database manager that sim­
plifies software development and mainte­
nance. You never have to waste time trying to

. manually keep track of software changes.
SVCS tracks each change (including who
made the change, what changed, when, and
why) so that you can always be sure you are
working with the 'current version .of a given

x

module. SVCS enforces individual discipline
to enhance team cooperation and, project
control.

MAKE is an automatic system generation tool
that can save hours and days of software gen­
eration time. It automatically finds the most
recent modules, recompiles only the ones that
need it, and generates a new system. All you
do is create a specification of your system.
MAKE does the rest.

MAKE works with SVCS to maintain the
most current version of software-including
up-to-the-minute source code changes from
project software engineers. So. you never
waste time recompiling outdated modules or
generating entire systems from outdated
modules.

Together, Intel PMTs dramatically boost pro­
ductivity by eliminating Ttoidundant ·steps.
They save weeks-sometimes months-of
software development time for any given
project.

• Software Toolboxes Provide Programmers
With an Arsenal of Productivity Aids .

Intel's software toolboxes are collections of
utilities that perform a variety of productivity-

PROGRAM
TRACKING

PROJECT
CONTROL

MODULE
MANAGEMENT

SYSTEM
ADMINISTRATION

PROGRAM
MANAGEMENT

TOOLS

VARIANT
MAINTENANCE

UPDATE
MANAGEMENT

CHANGE
HISTORY

SYSTEM
GENERATION

Program Management Tools enable you to manage and easily integrate the efforts of many development
team members.

oriented functions. The ISIS-II Software
Toolbox offers conditional submit file control
tools, source management tools, and other
tools that 'operate at the ISIS-II command
level. The 8086 Software Toolbox is a collec­
tion of 16-bit software tools that are valuable
for text formatting and preparation, software
testing and performance analysis, 2861287
software development, and a multitude of
other applications:

• AEOIT Enables Programmers to Easily Enter
Source Code and Text Files

Intel also offers AEOIT, an advanced editor
that significantly improves programm~r pro­
ductivity. AEOIT was designed with the pro­
grammer in mind, and offers full screen edit­
ing, the ability to edit two files at once, fea­
tures for manipulating large blocks of text,
and a powerful macro command facility.

High-Level Languages Improve
Software Quality and
Programming Efficiency

High-level languages make programming easier. And
Intel's efficient high-level language compilers do not
sacrifice code quality for ease of use. Moreover, dif­
ferent languages can be used for the various· modules
which make up a software system. This allows pro­
grammers to choose the optimal language for each
given module, and then link the modules together into
high quality software systems.

xi

Intel provides complete high-level language support
for all8-bit and 16-bit Intel microprocessors. All Intel
languages produce linkable and locatable object
codes. In addition, Intel compilers pass information
to debuggers to optimize the debug cycle. Standard
languages supported include PL/M, Pascal, Fortran,
Basic and C.

In-Circuit Emulators Simplify
System Integration

Intel's In Circuit Emulators (ICEs TM) accelerate sys­
tem integration to the fastest possible speed. By emu­
lating the prototype to check out the hardware design,
each processor specific ICE reduces system integration
and hardware debug times to a minimum.

The premier ICE for all iAPX microprocessors is the
12ICE™ (lrltegrated Instrumentation'and In-Circuit
Emulation) Emulation System.

The I2ICE system isa revolutionary tool which inte­
grates in-circuit emulation, high-level software
debugging and optional logic timing analysis into one
system. With the I2ICE system you shorten debugging
time and obtain easier to understand debug data­
while reducing risks and product development time.

The I2ICE system gives you full speed, real-time sup­
port for all Intel iAPX microprocessors. It also offers
an arsenal of 'break and trace points so that your

. design team can set up complex, multi-nested test
conditions.

The I2ICE system provides a single human interface
across the spectrum of debugging and system integra­
tion tasks. This eliminates the slow-down problems
inherent in multiple interfaces. And there is never the
need to leave the high level language environment
because the I2ICE system incorporates PSCOPE to
ease the transition from software debug to hardware
debug and hardware/software integration.

Powerful Workstations Put
Development Tools Within
Your Reach

Intel workstations, such as the Series IV, are your
gateway to the Intel development methodology. Their
computing power puts Intel development tools liter­
ally at your fingertips. Intel offers a variety of hosts,
such as those mentioned below, that can match the
size, budget, and complexity of your development
projects.

SERIES IV
WORKSTATION

SERIES IV
WORKSTATION

SERIES II
WORKSTATION

NETWORK
RESOURCE
MANAGER

• Series IV Microcomputer Development· Sys­
tem Provides Sophisticated Capabilities Not
Found on Other Development Systems

'Intel's Series IV is a 16-bit workstation offer­
ing many advanced features. Like fore­
ground/background processing that allows
you to do two things at once-"dramatically
increasing your productivity~ A hierarchical
file system that enables your file structure to
be set up according to project requirements.
And a friendly human interface speeds learn':'
ing, eliminates the need to plow through
manuals, and significantly improves ease of
use.

• Personal Development System Enables Low­
Cost Product Development and Support

The Personal Development System (iPDSTM)
is a portable, low-cost system that provides
total development support for smaller 8-bit

SPOOLED
LINE

PRINTER

SERIES IV
WORKSTATION

SERIES III
WORKSTATION

The NDS·II Network Development System is a comprehensive Local Area Network that Increases the
productivity of engineers as well as equipment. Team members can easily share information and
common hardware such as line printers and mass storage.

xii

inter

applications. It also supports the CP/M oper­
ating system, so it can double as a personal
computer for your engineers.

Networking Links Project
Engineers Into A
Powerful Team

Intel's Networked Development System-NDS-I1-is
an Ethernet-based local area network that ties
together Intel's development systems. It can increase
the productivity of engineers as well as equipment.

For example, an engineer can use the Distributed Job
Control service to send time-consuming tasks such as
compiling to the NDS-II Network Resource Manager
(NRM) for reassignment to a workstation that is not
presently in use. The engineer can move on to other
work at his/her terminal while the NRM completes
the previous job.

NDS-II helps you get the most use out of your devel­
opment dollars. Team members can share common
hardware such as line printers and mass storage
devices. In addition, NDS-ll's modular approach pro­
vides a structure for orderly growth. A consistent up­
grade path protects your investment in Intel develop­
ment products.

Intel Offers Complete
Development Support

Intel's support for your development project goes
beyond the superior hardware and software tools de­
scribed in this handbook-we deliver complete devel­
opment solutions.

TRAINING

Intel offers training courses throughout the year at
Intel Training Centers around the world. Courses can
be tailored for either technical or management person­
nel.

xiii

FIELD SUPPORT

A worldwide network of Intel Field Service and Field
Applications Engineers is available to assist you.

FIELD UPDATES

Intel customers are kept up-to-date on development
system changes and enhancements to software via
regular update mailings. "Hot-line" telephone sup­
port is also available.

DOCUMENTATION

Comprehensive product documentation is available­
including manuals, application notes and detailed
data sheets. (A complete literature guide is available
upon request.)

USER'S PROGRAM LIBRARY

Through.INSITE (Intel's Software Index and Tech­
nology Exchange), Intel makes available a broad col­
lection of programs that may substantially cut devel­
opment time for you.

Intel offers complete advanced microsystem solutions.
Solutions in hardware, Solutions in software, Solu­
tions in customer support, Solutions that work
together for you.

Find Out More

Contact the Intel sales or distributor office nearest
you (see the back of this handbook) for more infor­
mation today.

Microcomputer
Development Systems

1

iMDX 430/431/440/441
INTELLEC® SERIES IV

MICROCOMPUTER DEVELOPMENT SYSTEM

• Complete Microcomputer Development
System for the IAPX 86/87/88/186/188/286,
the MCS® -80/85 and the MCS® -48/51/96
family microprocessors

• Advanced, friendly human interface with
menu-driven function keys, HELP, and
syntax builder/checker capabilities for
increased user productivity

• Foreground/Background multiprocessing
for simUltaneous execution of two jobs by
a single user; increasing system
. throughput

• Multi-user capability for simultaneous
operation by two users, significantly
reducing system cost per user

• Hierarchical file system provides file
sharing and protection for large software
projects

• Software compatible with both Series liE
and Series lifE development systems

• Supports PLlM, Pascal, C, and FORTRAN,
and Basic high-level languages as well as
assemblers·

• Provides Program Management Tools
(PMTs), advanced AEDIT text editor and
supports powerful PSCOPE symbolic,
.source le.vel debugger

• Can be fully integrated into the NOS-II
Network Development System

The Intellec® Series IV is a new generation development system specifically designed for supporting the iAPX
family of advanced microprocessors. It al~osupports the MCS-80/85 and the MCS-48/51 families.

'?!fff;i,$;i\¥i1H:i'Pi(.fi j ;;*#*~.iAij;;~}?i4iRJ4~
/' . \

",/

Figure 1. Intellec® Series IV Microcomputer Development System

Intel Corporation Assumes No Responsibilityfor the Use of AnyCircuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications of These Devices from Intel.

MAY 1984
©INTEL CORPORATION. 1983 ORDER NUMBER: 230625-003

1-1

IMDX 430/431/440/441, INTELLEC® SERIES IV

Series IV provides a state-of-the-art, easy-to-use,
high performance host environment for running a
wide variety of hardware and software development
tools. A unique combination of tools provides an
integrated microcomputer system design'that results
in highly improved designer productivity and con­
siderable shortening of time to market. The length
of the compile-link-Ioad-debug-edit cycle is min­
imized by the friendly human interface~ powerful
and easy-to-use editors, a wide selection of language
translators, source level debuggers, program man­
agement tools. The advanced operating system
features a hierarchical file system, foreground/
background multitasking, and mUlti-user capability.
Furthermore, the Series IV can serve as a powerful
workstation on the NOS-II distributed processing
network for. high performance rTlUlti-use(software
development. The networking architecture supports
a distributed co-operative processing environment.
Tasks like compilations can be executed in the
background mode pr'exported to an idle workstation
while the user is in the middle of an interactive edit
session. The key benefit of this approach is a much
higher system throughput and programmer produc­
tivity than, for instance, a system designed for raw­
performance and fast compil~tions onlY,'

The Series IV is offered in four different versions,
providing a range of storage and performance
options so that the user may select the configuration
to suit his/her stand-alone or networking develop­
ment station needs. The four versions are not only
compatible with one another, but are also software
compatible with the current generation enhanced
Series IIElIlIE systems. Existing ISIS-compatible
software can run directly on the Series IV under the
ISIS operation system. Finally, the NOS-II network
provides an ideal means for the various hosts, e.g.,
Series II/III/IV to work with each other, protecting
the user's past, and present, and future investment.

FUNCTIONAL'DESCRIPTION

Systems Components
The Intellec Series IV model 430/431 Microcom­
puter Development System is an easY-lo-use high­
performance system in one package. It includes a
CPU board for each of the iAPX 88 and MCS® 85
processors and 640K bytes of system RAM. The
system has eight function keys included in its
detachable standard ASCII keyboard that also has
cursorc'ontrolsand uppercase/lowercase capability.

1-2

These function keys are menu driven and, with the
use of the syntax builder/checker, greatly reduce
user keystrokes. Peripheral configurations include:
Model iMDX430WD,440WD-twofloppydisks, one
35MB VYinchester; and Model iMDX 431, 441-one
floppy disk, one 10MB Winchester.

The 5.25" drives, a green phosphor screen, and a
detachable keyboard are all integrated into the
system. The main chassis has ten MULTIBUS® slots
(three 12" X 12", seven 6%"X 12") power supplies,
fans and cables.

, Operating System Environments/Features
The Series IV provides both an 8086/8088-based
development environment and an8080/S085 based
development environment. The host execution
mode is the 8086/8088, which runs under the iNDX
operating system. To execute an 8080/8085 program,
the ISIS-IV utility is invoked; entering the 8085
execution mode. AIlISIS..,compatible a-bit software
can thus be run directly on the Series IV, through a
user interface that is compatible with ISIS-based
development systems such as the Series II and the
Series III.

HIERARCHICAL FILE SYSTEM
The iNDX operating system employs a hierarchical
file system, providing file sharing and protection
features. The hierarchical structure allows logical
grouping of data. The structure resembles' an
inverted tree. The root of the system is called the
logical system root. The system root logically
"connects" the volumes within the file system. Each
volume corresponds to a physical mass storage
device. Volumes are further divided into files. Files
can be either directory files or data files, Directory
files contain references to further directory or data
files. Data files contain only data.

It is not necessary to know the physical location of
files to address them. Each file can be addressed by
a path name, which is a character string recognized
by the operating system.

The iNDX file system provides file protection
. features in the form of access rights. The owners of
a file may set their access rights to their own files
and separately set the WORLD's access rights
(everyone else) to their files. File may thus be shared
and also protected from accidental or deliberate
addressing or destruction.

230625

IMDX 430/431/440/441 INTELLEC® SERIES IV

SINGLE-USER FOREGROUND/
BACKGROUND PROCESSING
Foreground/background processing capability
allows the simultaneous execution of two jobs,
resulting in improved system throughput. While a
program is executing in the background, another
program could be run in the foreground. For
example, an interactive editor could be executing in
the foreground while a compilation is taking place in
the background.

A toggle key on the Series IV keyboard can be used
to instantaneously move from one region to the
other, allowing interactive operations in both fore­
ground and background regions. For example,
while a software debug session is taking place in the
foreground, listing files can be displayed from the
background. .

MULTI-USER CAPABILITY
A low cost terminal can be attached to serial port 1.
This terminal operates as an independent system,
accessing one region, while the console and key­
board access the other region. In this mode two
users will be able to perform software development
tasks simultaneously at a significantly reduced cost
per user.

The Human Interface
The Series IV is one of the easiest systems to learn
and to use, as its human interface is designed to be
friendly to both novice and expert users.

It offers eight softkeys that cut the number of
keystrokes required to perform a function. On-line
HELP provides instantaneous access to command
definition. the menu-driven screen interface allows
the user to see where he/she is at and to select the
next operation. In conjunction with the soft function
keys, it allows single key command invocation. The
syntax builder and checker completes commands
and insures proper command syntax before execu­
tion. Features such as type-ahead, auto-repeat
keys, and quick view file facility are some of the
many other human interface factors that improve
programmer productivity.

The AEDIT Text Editor
The AEDIT text editor is one of the most powerful
and easy-to-use editors available. It runs under the
iNDX operating system and offers features such as:

• Display and scroll text on the screen

• Move to any character position in the text file or
to any point on the screen instantly

• Correct typing mistakes as you type

• Rewrite text by typing new characters over old
ones

• Make insertions and deletions easily at any point
in a file

• Find any string of characters and substitute
another string, querying the operator if desi red

• Move or copy sections of text within a file or
to/from another file

• Create macros to execute several commands at
once, thereby simplifying repetitive editing tasks

• Edit two files simultaneously

_. Indent text and delimit long lines automatically

• View lines over 80 characters long

1-3

Languages and Utilities
The Series IV supports popular high-level lang uages
such as PLlM, Pascal, FORTRAN, and C, as well as
powerful "high-'Ievel" macro assemblers such as
ASM86. In addition, iRMX'" utilities such as ICU-86,
PATCH utility, Files Utility, Crash analyzer and SDM
86 System Debug Monitor are supported by the
Series IV.

The high-level language compilers produce code
for the target processors. They also contain run­
time floating-point arithmetic support for the 8087
Numeric Data Processor.

PSCOPE, the High-Level
Language Debugger
The Series IV sLipports the PSCOPE debugger, an
interactive, symbolic debugger for FORTRAN,
Pascal, and PUM programs. Operations are per­
formed on source statements, procedure entry
points, labels, and variables, as opposed to machine
instructions memory addresses. PSCOPE improves
productivity in the debug phase of development and
produces more reliable software. It allows the user
to perform extensive tests and consistency checks
on the programs, and it automates much of the
testing.

In-Circuit Emulators
The Series IV supports a host of ICE modules
including the powerful 121CE™ for iAPX family-

230625

iMDX 430/431/440/441 INTELLEC® SERIES IV

based development. These tools allow the debug­
ging of microcomputer system hardware and soft­
ware concurrently, saving considerable develop­
ment cost and time.

Network Capability
The Series IV may be used as a high-performance
workstation for use on the NDS-II Network Develop­
ment System. It has complete access to all the
network resources and facilities on the NDS-II. A
stand-alone Series IV can be upgraded to an NDS-II
workstation with the addition of an Ethernet* Com­
munication Board Set. The background partition of
the Series IV may be made available as a network
resource.

When configured as an NDS-II workstation, the
Series IV can also serve as a host for up to four
iMDX-580 ISIS cluster boards, providing a 'cost
effective means for supporting incremental 8-bit
software workstations on the network.

System Configurations
Series IV Systems are available in 110v, 60Hz; 220v
and 100v, 50Hz models.

STAND-ALONE

IMDX 430WD Kit
A two floppy stand-alone system including
detachable keyboard and integral green CRT
that comes complete with a 30MB Winchester in
a separate chassis. The CPU's are the 8088 and
the 8085A-2.

iMDX 431
Stand-alone Intellec Development system with
detachable keyboard and integral green CRT.
Included in the main chassis is one 5.25" floppy
and one 5.25" 10MB Winchester drive.

IMDX 440WD Kit
The same configuration as the iMDX 430WD, this
model has an additional higher performance
8086 Cpu.

IMDX 441 Kit
The same configuration as the iMDX 431, this
model has an additional higher pF!rformance
8086 CPU.

NETWORK

iMDX 430WS Kit
A two floppy workstation that includes Ethernet
NDS-II boards for networ~ operation.

'Ethernet is a trademark of Xerox Corp,

1·4

IMDX 440WS Kit
The same configuration as the iMDX 430WS, this
system includes a high-performance option for
resident 8086 execution and faster performance.

iMDX 430 TO 440 UPGRADE

IMDX434
High-performance add-on option. Converts a
model iMDX 430 or iMDX 431 to a model iMDX
440 or iMDX 441.

NETWORK UPGRADE

IMDX456
Communication board set converts any Series
IV stand-alone system to an NDS II workstation.

SECOND-USER TERMINALS
The following terminals have been tested and found
to be interface-compatible with the Series IV CPIO
board and can be,.used as second-user terminals.

LEAR SEIGLER, Model ADM 3A
TELEVIDEO, Model 910+

The following terminals have been successfully
tested for interface-compatibility, however they do
not meet Intel environmental specifications: adverse
electrostatic conditions may produce unpredictable
screen output, requiring terminal or system reset.

Televideo, Model 925, 950
Adds Viewpoint 3A+
Qume 102
Hazeltine 1510

PHYSICAL CHARACTERISTICS

Chassis
Width
Height
Depth
Weight

26.5" (67.3 cm)
16.5" (41.9 cm)
18.5" (47.0 cm)
52 lb. (23.4 kg)

Keyboard
20.0" (50.8 cm)

3.0" (7.6 cm)
8.0" (20.3 cm)

7 lb. (3.1 kg)

ELECTRICAL CHARACTERISTICS

DC Power Supplies

Volts Supplied

+5.1 ± 1%
+12 ± 5%
-12 ± 5%
-10± 5%
+12 ± 5%

Amps Supplied

45.0
'3.0
2.0
0.5
5.0

230625

AC Requirements
110v, 60Hz
220v, 50Hz

IMDX 430/431/440/441 INTELLEC® SERIES IV

Environmental Characteristics
Operating Temperature - 10°C to 35°C (50°F to 95°F)
Humidity - 10% - 95% (non-condensing)

Equipment Supplied
Series IV System

Series II/III to Series IV link software diskettes and cable

Series IV Software

- iNDXOS
-ISIS IVOS
- AEDIT
- Macroassemblers and utilities
- ICE"· software
- Prom Programmer Software
- Debug 88
- Program Management Tools (MAKE, SVCS)
- Diagnostics

Documentation Supplied
• Intellec Series IV Microcomputer Development System Overview, Order Number 121752
• Intellec Series IV Microcomputer Development System Installation and Checkout Manual, Order Number

121757

• Intellec Series IV Operating and Programming Guide, Order Number 121753

• Intellec Series IV Pocket Reference, Order Number 121760
• Intellec Series IVC ISIS-IV User's Guide, Order Number 121880
• Intellec Series IV ISIS-IV Pocket Reference, Order Number 121890
• AEDIT Text Editor User's Guide, Order Number 121756.
• AEDIT Text Editor Pocket Reference, Order Number 121767
• DEBUG-88 User's Guide, Order Number 121758

• iAPX 88 Book, Order Number 210200
• iAPX 86, 88 User's Manual, Order Number 210201
• iAPX 86, 88 Family Utilities User's Guide, Order Number 121616
• MCS-80/85 Family User's Manual, Order Number 121506
• MCS-80/8S Utilities User's Guide for 8080/808S-Based Development Systems, Order Number 121617
• 808018085 Floating-Point Arithmetic Library User's Manual, Order Number 9800452

• An Introduction to ASM86, Order Number 121689
• ASM86 Macro Assembler Operating Instructions for 8086-Based Systems, Order Number 121628

• ASM86 Language Reference Manual, Order Number 121703
• ASM86 Macro Assembler Pocket Reference, Order Number 121674

1-5
230625

iPDS™
PERSONAL DEVELOPMENT SYSTEM

• Completely integrated computer • 640 K byte Integral flexible disk
system packaged in a compact drive; expandable to 1.28 million
rugged enclosure for po~tability bytes

II Comprehensive design tool for 8 bit II PowerfuiISIS-PDS disk operating
Intel microprocessors system with relocating

macro-assembler, and CRT -based
• Microprocessor Emulator (EMV) . editor

functions • Optional high level languages

• Dual processing capability Fortran 80,PL/M 80, PL/M 88/86
and Basic

• Expandable using standard • Software compatible with previouf
M ultimodule™ cards Intellec systems

• Desk top compute~ for CP/M* based • PROM programming functions

applications • Bubble Memory option.

The iPDS Development System is a completely integrated computer system supporting the development
of products incorporating Intel 8 bit microprocessors or microcontrollers. Used with its optional emulation
vehicles (EMVs) and iUP PROM Programming Personality Modules, the iPDS system provides comprehen­
sive support for integrated hardware and software development, product testing during manufacture, and
customer support after the product is in the field. The unit is designed with portability in mind permitting
the iPDS Development System to be conveniently transported around the laboratory and into the field. Ex­
tensivesoftware is available thereby simplifying and speeding up product development. The software is
designed to make the iPDS system easy to use for the novice as well as satisfying the needs of the expe­
rienced user. Used with the optional CP/M operating system, the iPDS system becomes a desk top
computer that can execute CP/M compatible application programs.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products: BXP. CREDIT, i, ICE, ICS .. im, Insite, Intel, INTEL, Intelevision,
Intellec, iPDS, iSBC, iSBX, Library Manager, MCS, MAIN MUL TIMODULE, Megachassis, Microamp, MUL TIBUS, Plug-A-Bubble, PROMPT, Promware, RMX, UPI, ",Scope, System
2000, Micromainframe, and the combination of MCS, ICE, iSBC, iRMX or iCS and a numerical suffix. Intel Corporation Assumes No Responsibility for the use of Any Circuitry
Other Than Circuitry Embodied in an Intel Product. No Other Patent Licenses are Implied. AUGUST 1982
© INTEL CORPORATION, 1983 Order Number: 210390-002

1-6

iPDS™ PERSONAL DEVELOPMENT SYSTEM

FUNCTIONAL DESCRIPTION

Hardware Components

The iPDS case comprises two high impact, shock
resistant, poly-carbonate plastic enclosures, that
when fitted together, provide a compact and fully
enclosed unit. The main enclosure houses a CRT,
flexible disk drive, power supply, and base pro­
cessor printed board assembly. The second
enclosure houses the keyboard. On the right side
of the unit a spring loaded door allows insertion of
an emulator module or an iUP PROM programming
module. On the top, a hinged panel covers the
storage space for cables and plug-in modules.
The carrying handle is attached to the front of the
main enclosure and folds away when the system
is in use. In the closed position, the iPDS system
is 8.15" high, 16" wide, 20" long, and conveniently
fits under an airline seat. The basic unit weighs 27
pounds.

BASE PROCESSOR PRINTED BOARD
ASSEMBLY-BPB

The Base Processor Board (BPB) contains the
powerful 8085A microprocessor, 64K bytes of
RAM, CRT/keyboard controller, floppy disk
controller, serial I/O port, and parallel I/O port..
There are interfaces for connection to the Optional
Processor Board, Multimodule Adaptor Board,
and the EMV/PROM Programming Adaptor Board.

INTEGRAL CRT

The CRT is a 9 inch green phosphor (P42) unit
that displays 24 lines of 80 characters/line with a
nominal 15.6 KHz vertical sweep rate. The CRT
controller, based on an Intel 8085 and 8275 Pro­
grammable Controller Chip is located on the BPB.
A single cable containing the signals, power, and
ground connect it to the CRT. The contrast adjust­
ment is accessible at the rear of the unit. A pull
out bail allows the CRT to be placed in a comforta­
ble operating position of 24 degrees to the
horizontal. The standard ASCII set of 94 printable
characters is displayable, including upper and
lower case alpha characters, and the digits 0
through 9. Another 31 characters for character

1-7

graphics are defined. If the Optional Processor
Board is installed, the second processor shares
the CRT with the base processor. The bottom patt
of the screen is assigned to the processor commu­
nicating with the keyboard. The top part of the
screen displayed in reverse video is assigned to
the other processor. The number of lines appear­
ing on the screen for each processor can be com­
pletely controlled by the user via special function
keys.

KEYBOARD

The keyboard is housed in a separate enclosure
and a flat shielded cable connects it directly to
the keyboard controller on the BPB. This 5" cable
provides the flexibility to place the keyboard in a
comfortable operating position relative to the
main enclosure. A total of 61 Keys include a type­
writer keyset, cursor control keys, and function
keys. Auto repeat is available for all keys and is
implemented by the keyboard controller. If the Op­
tional Processor Board is installed, it shares the
keyboard with the base processor. Initially, the
keyboard is assigned to the base processor. It can
be assigned to the optional processor by pressing
the special function key, FUNC-HOME. Subse­
quent use of the FUNC-HOME key alternates the
keyboard aSSignment between the two
processors.

INTEGRAL FLOPPY DISK DRIVE

The integral floppy disk drive is a 5 1/4", double­
sided, 96 tracks-per-inch drive. Diskettes are writ­
ten double-sided, double density and provide 640
K bytes of formatted storage in the built-in drive.
The floppy disk controller located on the BPB is
based on the INTEL 8272 floppy disk controller
chip, and can control one additional drive. The
ISIS-PDS operating system supports the disk
drives. If the Optional Processor Board is
installed, the integral disk drive is shared by the
two processors or it can be exclusively assigned
to one of the processors. When shared, only one
processor can access a drive at a time. However,
the disk drive sharing is transparent to the user
since the ISIS-PDS operating system controls the
accessing of the drive and automatically resolves
file contention.

iPDS™ PERSONAL DEVELOPMENT SYSTEM

INPUT /OUTPUT

The iPDS Development System contains two I/O
channels located at the rear of the base enclosure
and wired to the I/O ports on the Base Processor
Board. The serial channel is an EIA RS-232-C in­
terface for asynchronous and synchronous data
transfer and is based on the Intel 8251 USART
and 8253 timer. The interface can be software
configured using the SERIAL command. Full
duplex asynchronous operation from 110 to 19.2K
baud is selectable.

The parallel I/O interface is an 8 bit parallel I/O
port supporting a Centronics type printer. The

SERIAL
INTERFACE

RAM
CONTROLLER

BOOTI
DIAGNOSTIC

2K

PROGRAMMABLE
BAUD RATE

GENERATOR

DYNAMIC
RAM
64K

interface is implemented with an Intel 8255 Pro­
grammable Parallel Interface chip. A maximum
transfer rate of 600 cps is supported.

Software Components

ISIS-PDS OPERATING SYSTEM

The ISIS-PDS operating system included with the
basic iPDS system is designed with a major
emphasis on ease of use and simplification -of mi­
crocomputer development. It is based on the
proven ISIS II operating system available on all In­
tellec Microcomputer Development Systems:

EXTERNAL
FLOPPY

CONNECTOR

INTERNAL DRIVE
5114" FLOPPY

640KB

OPTIONAL
PROCESSOR

PORT

EMV/PROM
PROGRAMMER

PORT

MUL TIMODULE
PORT

0950

Figure 1. iPDSTM Block Diagram

1-8

iPDS™ PERSONAL DEVELOPMENT SYSTEM

ISIS-PDS has a comprehensive set of commands
to control system operation. These commands
can be divided into five functional groups.

• System Management Commands
• Device Management Commands
• File Management Commands
• Program Development Commands
• Program Execution Commands

HELP

FUNC-R

FUNC-S

FUNC-T

SYSTEM MANAGEMENT COMMANDS

displays help Information for operating system
commands.

displays the version number of the current
Command Line Interpreter.

software resets the processor to which the keyboard
Is currently assigned.

switches the CRT display speed between a slow and
fast speed.

switches the keyboard between typewriter mode
,and locked upper case mode.

FUNC-HOME switches the current foreground and background
processors.

FUNC-I

FUNC-I

IDISK

increases the display for the foreground processor
by one line and decreases the background
processor display by one line.

decreases the display for the foreground processor
by one line and increases the background processor
display by one line.

DEVICE MANAGEMENT COMMANDS

initially prepares disks and bubble memory for use
with the operating system.

ASSIGN displays or assigns the mapping of physical to
logical devices.

re-assigns the system output to the CRT display
screen.

FUNC < n > changes the system input from the keyboard to the
filenamedJOB<n>.CSOwhere <n> Is a one-digit
number from 0 to 9.

changes the system Input from the keyboard to a file
or device which is specified by the user.

SERIAL initializes the serial 110 port.

ATTACH assigns a row of multimodules to a processor.

OETACH releases a row of mullimodules from a processor.

FILE MANAGEMENT COMMANDS

OIR displays a list of the files stored on a disk or on
bubble memory.

ATTRIS displays and modifies the attributes of a file.

COPY transfers files and appends files.

Table 1 summarizes these commands. The HELP
commands are especially useful, providing the
user with on-line assistance, eliminating frequent
referencing of the manual.

OELETE

RENAME

@

LIB

LINK

LOCATE

HEXOBJ

OBJHEX

OEBUG

removes files from the disk.

changes the filename and/or extf:<nsion of a file.

displays the contents of a file on the screen.

PROGRAM DEVELOPMENT COMMANDS

allows the user to manage a library of MeS_80/85
program modules.

combines a number of object modules into a single
object module in an output liIe.

converts relocatable object programs into absolute
object programs by supplying memory addresses
throughout the program.

converts a program from hexadecimallile format to
absolute object format.

converts a program from absolute object format to
hexadecimal file format.

provides a minimum set of 8080/8085 debugging
commands.

PROGRAM EXECUTION COMMANDS

< filename> loads and executes the object program named
<filename>.

SUBMIT

•

JOB

ENOJOB

ESC

reads an input SUBMIT file, creates a command file
containing ISIS commands, and executes

, commands in sequence from the file created.

is a fast form of the SUBMIT command. One
command line is read from the SUBMIT file,
transformed into an ISIS command in memory, and
executed. No intermediate file is created.

reads ISIS commands from a disk job file and
executes them in sequence. The / command is also
considered a device management command.

stores a sequence of frequently used ISIS
commands in a job file as they are entered from the
keyboard without executing them until the sequence
is completely entered. Two job files. ABOOT.eSO
and BBOOT.eSO, deserve special mention. II either
of these files is present (ABOOT.CSO for Processor
A and BBOOT.CSO for Processor B) when the
system is initialized, commands are automatically
executed from the file. This feature can be used to
configure a system.

stops the automatic execution of commands from a
JOB lile and returns control to the keyboard.

edits the previously entered or the current command
line and allows the new command line to be
executed.

Table 1 .. Functional Summary of ISIS-PDS Commands

1-9

iPDS™ PERSONAL DEVELOPMENT SYSTEM

ISIS-PDS CREDITTM TEXT EDITOR

Included with iPDS is the INTEL CRT-based text
editor, CREDIT. It is usedto create and edit ASCII
text files on the Intel Personal Development
System. Once the text has been edited, it can be
directed to the appropriate language processor
for compilation, assembly, or interpretation.
CREDIT features, shown in Table 2, are easy to
use and simplify the editing and manipulation of
text files.

The two editing modes in CREDIT are screen
'mode and line mode. In screen mode the text
being edited is displayed on the CRT and correct­
ed by either typing the new text or using the single
stroke character control keys. Single character
control keys are used for changing, deleting,
inserting, paging forward, and paging backwards.

In command line mode, high level commands are
used for complex editing. Examples of the func­
tions available in the command line mode are
searching, block moves, copying, macro
definitions, and manipulating external files.

8080/85 MACRO ASSEMBLER

The iPDS also includes the INTEL 8080/85 Macro
Assembler. This macro assembler translates pro­
grams written in 8080/8085 assembly language
to the machine language of the microprocessor. It
also produces debug data. The Debug utility can

be used to troubleshoot the assembler-produced
machine language using features such as soft­
ware breakpoints, single step execution, register
display, disassembly, and I/O port access. This
reduces the time spent troubleshooting the soft­
ware and supports modular program development.

UTILITIES

Utility programs included with iPDS are: DEBUG,
LIBRARY, LINK and LOCATE. These programs aid
in software development and make it possible to
combine programs and prepare them.for execution
from any memory location.

DIAGNOSTICS

The iPDS includes system diagnostic routines
executed during system initialization. These
routines verify the correct operation of the system
and aid the user in fault isolation. Any failures in
the basic system components, base processor,
CRT IKeyboard, optional processor, or the power
supply are indicated by four diagnostic LED in­
dic'ators mou'nted on the base processor boards.
These LED's are viewed through the spring loaded
door on the right side of the unit. When basic
system components are operational, additional
errors are indicated by messages to the CRT dis­
play screen.

CREDITTM Editor features two editing modes: cursor-driven screen editing
and command line context editing

CRT Editing Includes:

• Displays full page of text • Block copy

• Single control key commands for insertion, deletion, • User-defined macros
page forward and backward

• External file handling

• Type-over correction and replacement
• Change CREDIT features with ALTER command

• Immediate feedback of the results of each operation
• Conditional iteration

• The current state of the text is always represented
on the display • User-defined tab settings

• Symbolic tag positions
Command Line Editing Includes:

Automatic disk full warning •
• String search and substitute • Runs under ISIS-II SUBMIT facility

• String delete, change. or insert
bption to exit at any time with original file intact •

• Block move • HELP command

Table 2. Summary of CREDITTM Editor Features

1·10

iPDS™ PERSONAL DEVELOPMENT SYSTEM

After ISIS-PDS is loaded and started, additional
confidence tests are available to verify correct
system operation. These tests included on the
system disk, run as utilities under the operating
system and can be selectively executed to verify
individual functions on the main processor board,
optional processor board, bubble memory Multi­
modules and EMV/PROM Programmer Adaptor.

iPDS™ HARDWARE OPTIONS

Add-On Mass Storage
Mass storage can be increased by adding one ex­
ternal flexible disk drive. This adds 640 K bytes of
formatted mass storage. The maximum disk stor­
age available on iPDS is 1.28 M Bytes. The option­
al/drive is vertically mounted and housed in a plas­
tic enclosure with its own power supply. A 20"
cable connects the optional floppy drive to the ex­
ternal disk drive connector on the rear of the iPDS
system.

The iPDS system also supports Intel's iSBX-251
Bubble Memory Multimodule. A maximum of two
bubble multimodules can be added. Each contain
128 K bytes of non-volatile memory. Bubble
memory Multimodules can only be added to a
system containing the Multimodule Adaptor,
Board. The bubble memory is treated by the ISIS­
PDS and CP/M operating system as an additional
disk drive with the same file structure and direc­
tory structure as a diskette. The bootstrap ROM is
programmed to boot the operating system from
the bubble. The iSBX-251 has no moving parts, '
making it ideal for applications where ruggedness
is an important consideration. The bubble
memory is also recommerided for systems requir­
ing portability, since it is completely enclosed in
the iPDS main unit.

Optional Processor Board

The Optional Processor Board provides dual pro­
ceSSing capabilities and increases the processor
power of the iPDS system. A different program can
be run on each of the processors at the same time,
providing a greater processing throughput. Each
processor operates under ISIS-PDS control. The
Optional Processor Board also provides a conve­
nience feature for accessing directories,file
displays, and HELP without interrupting the main
processor task.

The Optional Processor Board contains functions
identical to the base processor. There is an 8085A
CPU with 64 K bytes of dynamic RAM and an addi-'
tional2 K bytes of bootstrap ROM.

Both processors share the keyboard, the CRT dis­
play unit, the disk drives, and the multimodules.
Serial or parallel I/O ports can be added to the op­
tional processor' through iSBX multimodules.
Each processor runs the ISIS-PDS, operating
system and applications programs in its own 64 K
byte memory space, independent of the other
processor. Special hardware function keys are
provided to facilitate procedures necessary in the
dual processing environment. These procedures
include independent initialization of each
processor, sharing of the CRT display, and assign­
ment of the keyboard. The ISIS-PDS commands
facilitate sharing of disk drives, multimodules,
and files.

Emulation Vehicles (EMVs)

Emulation vehicles (EMVs) for use with the iPDS
Devlopment System, are available for debugging a
variety of Intel microprocessor families. Emulators
consist of hardware and software. The- EMV hard­
ware is inserted into the EMV/iUP Personality
Module port of the iPDS. The optional EMV/Prom
Programming Adaptor Board is required to install
the EMV's. The emulator software runs under the
ISIS-PDS operating system and provides the
user's interface to the emulator.

An EMV contains features used to debug micro­
processor designs quickly and efficiently. It pro­
vides a controlled environment for ~xercising a
user design and monitoring the results. It exactly
duplicates the behavior of a target micro":
processor/microcontroller in the user's prototype
system while providing information to the user to
aid in integrated hardware and software
development. EMV's provide features for real time
full speed emulation as well as single step execu­
tion of a user's design. Breakpoint features allow
the user to specify a portion of the program to exe­
cute and then stop for interrogation. During
execution, the EMV automatically collects execu­
tion history in the trace buffer. Once stopped at
the breakpoint, the emulator acts as a window to
the internal registers and logic signals inaccessi­
ble from the connector pins. This provides for
examination and alteration of the internal state of
the microprocessor.

The emulator accepts symbolic debug data, such
as symbol tables produced by the language
translators. Therefore, when debugging, the
programmer can reference locations in the
program elements with the symbol names used in

1·11

iPDS™ PERSONAL DEVELOPMENT SYSTEM

the source program, rather than absolute memory
addresses.

Another advantage of using an emulator is
functional prototype hardware is not required to
begin software debugging. The emulator
duplicates the behavior of the target
microprocessor and provides. some resources,
such as memory, that can be used until the
hardware prototype is closer to completion.

The software controlling the emulator comprises a
set of commands the user enters to directly
control interactive debugging sessions. The
command families are listed in Table 3. Also,
sequences of emulator commands can be
executed automatically from a file, providing a
basis for manufacturing and field test routines.

Emulation Commands

BR - Display breakpoint menu
BRO, 1, 2,3 - Change/display breakpoint register

for execution address
BRR - Change/display breakpoint register for

execution range
BRB - Change/display break on branch
BV - Change/display break on value
BC - Clear all breaks
TBO, 1, 2, 3 - Enable/disable display by bit value
TRO, 1, 2,3 - Enable/disable display by execution

address
_ TV - Enable/disable display by register value
TR - Enable/disable display of registers
TS - Enable/disable display of PSW
TD - Enable/disable display of code disassembly
STEP - Enter slow down emulation mode
GO - Enter real-time emulation mode

Advanced Commands.

MACRO - define, and display macro

IFTHEN I . ,
COUNT .'
REPEAT CONTROL CONSTRUCTS
WHILE .
UNTIL
FUNCTION KEY - invoke macro assigned to

function key

iUP Personality Modules

The iPDS accepts most Intel PROM Programming
Personality Modules from our new iUP-200/201
product line. These modules provide all. the
hardware and firmware needed for programming
entire families of Intel EPROMS, E2PROMS, and
micro controllers containing on-chip EPROM. The
optional EMV/PROM Programming Adaptor Board
is required to use the iUP Personality Modules.
Intel Prom Program'!ling Software (lPPS) runs
under the ISIS-PDS operating system and is
included. with the EMV/PROM Programming
Adaptor Module. This software provides a set of
commands to control the programming and
verification of the devices.

Utility Commands

HELP - Displays command syntax
LOAD - Loads object file in mapped memory
LIST - Generates copy of emulation work session
DEFINE - Defines symbol or macro
SYMBOL - Displays symbols
REMOVE - Deletes symbol or macro
ENABLE/DISABLE - Control for expanded display
EVALUATE - Evaluate any expression
SUFFIX/BASE - Sets input and display numeric

base
SAVE - Save code memory to file
RESET - Resets emulation processor
EXIT - Terminate emulation session

Display/Modify Commands

REGISTER - Menu for change/display registers
MEMORY - Menu for change/display memory
DUMP - Display memory as ASCII and Hexadecimal
ASM/DASM - change/display code memory as

assembly language mnemonics

Table 3. Summary of Typical Emulator Commands

1-12

IPDS™ PERSONAL DEVELOPMENT SYSTEM

Figure 2. iPDSTM With Optional Modules Installed

EMV /PROM Programming Adaptor Board

The EMV/PROM Programming Adaptor Board
provides an interface between the Base
Processor Board and EMV or PROM programming
modules. This option is required before either of
these modules can be operated with the iPDS.

Multimodules

The iPDS is expanded by utilizing a variety of Intel
iSBX multimodule boards. The Multimodule Adap­
tor Board allows a maximum of four multimodule
boards to be. added. Multimodule boards are
small, special function boards using the iSBX bus
to interface to the CPU. The available iSBX
multimodule boards include:

• iSBX 251 Bubble Memory Multimodule Board
• iSBX 350 Parallel Port Multimodule Board
• iSBX 351 Serial Port Multimodule Board
• iSBX 488 IEEE-488 Interface Multimodule

Board

1·13

The INSITE Software Library contains many soft­
ware routines for these multimodules. The iPDS
user manual contains technical information for
writing custom I/O driver routines.

Multimodule Adapter Board

The Multimodule Adapter Board provides an inter­
face between the Base Processor Board and the
Multimodule options. It is required before any Mul­
timodule options can operate with the iPDS
system.

iPDS™ SOFTWARE OPTIONS

High Level Languages

High level languages help reduce system design

iPDS™ PERSONAL DEVELOPMENT SYSTEM

effort and maintenance cost by allowing the pro­
grammer to design software at a more abstract
level. A block structured language, PUM 80, is
available for the 8085, along with Fortran 80,
Pascal 80 and Basic 80.

Software Support for Additional
Microprocessors

Assemblers and high level languages for different
target microprocessors are available to aid the
software development effort. These include
ASM-51, PL/M 88/86, ASM 88/86. and ASM
8048/49 ..

General Purpose Computing Software

The iPDS can also be used as a general purpose
desk top computer. The widely used CP/M micro­
computer operating system is available for the

COMMAND

iPDS from Intel. It supports iPDS systems with
single or multiple disk drives, and iPDS systems
using bubble memory for mass storage. CP/M
compatible software wi" come from three
sources; vendors of CP/M based software
programs, independent software makers, and
Intel. The software programs available from Intel
include high level languages, wordprocessing
software and an electronic spreadsheet. New ap­
plications packages are also planned.

File Transfer Package

Transferring files between the iPDS system and any
of Intel'S InteJlec Development Systems is accom­
plished using the iPDS-FTRANS option. This product
uploads/downloads files via the RS232C serial link
and under control of software running on both the
iPDS and the InteJlec system. Data transmission is
monitored and any errors are displayed. Transfer
rates up to 19.bk Baud can be selected. FTRANS can
also be used to transfer files between remote systems
using telephone modems.

L:NE
INTERPRETER

HIGH
LEVEL
LANGUAGES

DEBUG
MONITOR
COMMANDS

PROM
PROGRAMMING
COMMANDS

0148

Figure 3. Overview of iPDSTM Software Environment

1-14

)

int:er3l iPDS™ PERSONAL DEVELOPMENT SYSTEM

SPECIFICATIONS Integral Flexible Disk Drive

Host Processor

8085A-2 based, operating at 5.0 MHz

Memory

RAM - 64K of User Memory on BPB
ROM - 2K bytes (Boot/diagnostic)

I/O Interfaces

110 Serial Channel; RS-232 at 11 0-19.2K baud
(asynchronous) or 150-56K baud
(synchronous). Baud rate and serial
format software controllable.

I/O Parallel Channel; 8 bit parallel supporting
Centronics type printer. Transfer rate
up to 600 characters per second.

Memory Access Time

RAM -450 ns.

Option Electrical Requirements

System Storage Capacity
DS/DD - 640K bytes (formatted)

Data Transfer Rate
250K bits/sec.

System Access Time

Media

Track to Track: 6 msec.
Rotational Speed: 300 rpm
Motor Start Time: 0.4 sec. max.

51/4" disk with 1 index hole

Physical Characteristics

Closed Unit (without options)
Height 8.15 in
Width 16 in ..
Depth 20 in.
Weight 27 Ibs.

Power Requirement

Input Voltage:
115/220 VAC Selectable Single Phase
115VAC (90 VAC-132 VAC) 47-63Hz, 1 amp
220 VAC(180 VAC-264 VAC) 47-63Hz, 0.5 amp

Option Electrical Requirements (Max. in Amperes)

Power Supply Optional EMV/PROM Multlmodule

Voltage Processor Adaptor Adaptor iSBX350 ISBX 351 ISBX 251 ISBX488 EMVs IUP

+5 volts 1.0 0.3 0.6 0.62 0.53 0.37 0.6 2.5 0.7

+12volts - 0.18 - - 0.03 0.4 - - 0.85

-12 volts - 0.05 - - 0.03 - - - 0.4

Maximum option power requirements must not exceed 33.6 watts for any configuration.

ENVIRONMENTAL CHARACTERISTICS

Operating

Temperature 10° C to 30° C
Relative Hu.midity 20% to 80%
Maximum wet bulb - 25.6° C

Non-Operating

Temperature -40° C to 62° C
Relative Humidity 5% to 95%
(non-condensing) ,

1-15

Operating Vibration

o to 0.004 inches peak to peak excursion from
10 to 55 Hz.

Non-Operating Shock

15 G with shock wave of 20 ms duration, 1/2
sine wave.

iPDS™ PERSONAL DEVELOPMENT SYSTEM

Equipment Supplied

iPDS Enclosure including:

• Base Processor Board (BPB)

• CRT/Keyboard

• Integral Floppy Disk Drive

.System Diskette with ISIS-PDS
operating system

• MCS-80/MCS-85 Macro Assembler

• Debug-85, Link, Locate and Library
Utilities

• CREDIT CRT-based text editor

• System confidence tests.

iPDS Literature Kit including:

• Intel Personal Development System
User's Guide 162606

Ordering Information

Part Number

iPDS-100
iPDS-110
iPDS-120
iPDS-130
iPDS-140

iPDS-FTRANS

Description

iPDS System
Optional Processor Board
Multimodule Adapter Board
Add-On Disk Drive
EMV/PROM Programming
Adaptor Board
iPDS/iMDX File Transfer
Package

• Registered Trademark of Digital Research Inc.

1-16

• Intel Personal Development System
Pocket Reference 162607

.8080/8085 Assembly Language
Programming Manual 9800301

.8080/8085 Assembly Language
Reference Card 9800438

• MCS-8085 Utilities User's Guide for
8080/8085 Based Development
System 121671

• ISIS II 8080/8085 Macro Assembly
Operating Manual 9800292

Reference Manuals

• A Guide to INTELLEC Microcomputer
Development System 9800558

• ISIS-II System User's Guide 9800306

•

•

•

THE iPDS™·130 OPTIONAL FLEXIBLE
EXTERNAL DISK DRIVE FOR THE iPDS™

PERSONAL DEVELOPMENT SYSTEM

Each disk drive provides 640K bytes • Disk drives use industry-standard
of formatted mass storage. 5-% inch flexible diskettes as the

storage medium.

Daisy-chaining up to 3 disk drives • Disk drive has transfer rate of 4
provides a total of 2.S6M bytes micro sec/bit, a recording density of
storage capacity. 5922 bpi, and dual heads.

• Use of external disk drive eliminates
Each disk drive has its own power disk swapping when making duplicate
supply. disks.

When using the iPDSTM personal development system, applications may be developed that require
more storage capacity than is provided by the integral disk drive of the system. The iPDS-130 optional
external flexible disk drive provides the needed additional mass storage. Up to three disk drives may
be added to the iPDS system, with each additional disk. drive providing 640K bytes of (formatted)
capacity. This means that a maximum disk storage of 2.56M bytes is available. The photograph below
shows the iPDS-130 external disk drive with the iPDS system. Figure'1 shows some features of the
iPDS-130 disk drive.

The following are trademarks of Intel Corporation and may be used only to describe Intel products: CREDIT, Index, Intel, Insite, Intellec,
Library Manager, Megachassis, Micromap, MUL TIBUS, PROMPT, UPI,p.Scope, Promware, MCS, ICE, iRMX,lSBC, iSBX, MUL TIMODULE
and ICS. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are Implied.
C INTEL CORPORATION, 1984 February 1984

Order Number: 231020-001

1-17

inter IP[)S™130

Figure 1. iPDSTM.130 Flexible Disk Drive

Creating back-up diskettes is good programming
practice and the IPDS-130 disk drive provides
the means to create these back-ups. It shortens
the time required and lessens the trouble asso­
ciated with this task by eliminating the need to
swap disks during the duplication process. The
master diskette can be Inserted in the iPDS sys­
tem's Integral disk drive and the duplicate dis­
kette In the external disk drive.

The first external disk drive attaches to the rear
of the main enclosure, and the other two external

drives are connected to the rear of the previous
external drive. Each additional drive has Its own
power supply and Is mounted In its own housing.
Figure 2 shows the iPDS unit with all three exter­
nal drives.

HARDWARE

Each drive is 7.3 In. high and weighs approxi­
mately 11 Ibs. The front of each disk drive con­
tains a door, a door release mechanism, and a
drive Indicator that is lit during disk I/O
operations. The drive is mounted in the vertical
position. Different ae voltage ranges may be
selected. The rear panel of the drive contains ~
the ac power connector, the p'ower ON/OFF
switch, a fuse holder, a voltage selector card,
and two 110 cable connectors. Figure 3 shows
the disk drive's rear panel.

1/0 Cable

The 110 cable Is used to Interconnect the iPo'S
system and the external disk drives. The exter­
nal portion of the input cable is 30 in. long and
connects to the flexible disk connector on the
rear of either the iPDS unit or the previous op­
tional disk drive. The output connector of the
daisy-chain mounts on the rear panel of the disk
drive and provides the connector to the next
disk drive.

Figure 2.IPDSTMSystem with External Flexible Disk Drives

1·18 Order Number: 231020-001

I
®

®
Jl~

ii
Ii
~

®
Ef)

® ::8
MAIN

POWER

~
<±) FOR CONTINUED

p~~~~~J~~~t~~~1~T @ J2

WITH SPECIFIED TYPE ~
AND RATING OF FUSE 01 °1

ACPOWER
NEXT

VAC Hz F~~E DRIVE I I

100 60 1A
120 60 1A
220 50 .5A
240 50 .5A

]1
~ @

Figure 3. iPDSTM.130 Optional Flexible External
Disk Drive Rear Panel

Power Supply

The flexible disk drive unit contains a linear
power supply with a maximum power input of 40
watts. The output consists of two regulated dc
voltages (5vand 12v).

I/O SPECIFICATIONS

Floppy Disk Interface

The floppy disk interface controls up to four 5-114
in. double-sided 96 tpi floppy disk drives.

The floppy disk is a 5-114 in., 96 tpi, dual-headed
unit. With a total of 80 tracks of sixteen 256-byte
sectors per side, the formatted capacity of the
unit is 640K bytes. The interface is the industry
standard for 5-114 in. drives.

OPTIONAL FLEXIBLE EXTERNAL DISK
DRIVE SPECIFICATIONS

The specifications for the optional flexible exter­
nal disk drive are given in Tables 1 through 4.

1-19

Table 1. Environmental Characteristics

Temperature
Operating
Non-operating

Humidity
Operating

Non-operating

Cooling

10°C to 35°C
- 40°C to 62°C

20% to 80%
non-condensing
5% to 95%
non-condensing
Up to 60 watts are dis­
sipated by. fan cooling

Table 2. Physical Characteristics

Width
Height
Depth
Weight

6.1 in (155.4mm)
7.3 in (174.2mm)
13.8 in (350.6mm)
11.0 Ibs. (5.0kg)

Table 3. Electrical Characteristics

Input power 90 VAC to 132 VAC,
47 Hz to 63 Hz; or
198 VAC to 264 VAC,
47Hz to 63Hz

Drive power
Logic power
Adjustable range
Power dissipation

12VDC ± 1%
5VDC ± 1%
± 5%, drive and logic
25 watts average, 34
watts maximum

Table 4. Functional Specifications

Transfer rate
Rotational speed
Track density
Number of cylinders
Number of sides
Recording density
Encoding method
Unformatted capacity
Formatted capacity
Motor start time
Track-to-track step rate
Side-to-side delay time
Head loading time
Head setting time
Medium

4 JLsec/bit
300 rpm ± 1.5%
96tpi
80
2
5922 bpi
MFM
6.25K bytes/track
640K bytes
0.4 sec maximum
6 msec maximum
0.2 msec maximum
35 msec maximum
15 msec maximum
Industry standard 5-114
in. with single hole

Order Number: 231020·001

ORDERING INFORMATION

Description Part Number
iPDS-130 Optional external flexible disk drive

1-20

iPDS™·PROTO KIT

• Design aid for developing your own
specialized plug-in modules for the
iPDSTM development system and for
the iUP-200/201 system, such as:
- Emulation vehicle (EM V) modules
- PROM or Programmed Logic Array

(PLA) programming modules
- Instrumentation modules (logic or

signature analyzers)

- Specialized communications modules
- Analog interface modules
- Program storage modules

• iPDX bus interface

• Easy-to-follow assembly instructions

The iPDSTM_PROTO Kit is a complete kit for engineers who want to enhance the iPDS development
system and the iUP-200/201 Universal Programmer system by developing their own specialized plug­
in modules such as those noted above. The module case and PROTO board are specifically designed
to plug into both the iPDS system and the iUP-200/201 system.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied. Information contained herein supercedes previously published specifications on these devices from Intel.

'" INTEL CORPORATION, 1984

1-21

AUGUST 1984
ORDER NUMBER: 280046-001

iPDSTM PROTO KIT

KIT COMPONENTS

The iPDS-PROTO Kit comprises the module
case, the PROTO board, and a hardware kit. The
hardware kit includes one iPDS bus connector,
five isolation capacitors, wire-:wrap pins,
screws, washers, and lock nuts. Also included
are the iPDSTM-PROTO Kit Assembly Manual
and the application note, Designing Modules for
the iPDSTM and ;UP Systems (order number
230682).

The PROTO board can accept up to 30 integrat­
ed circuits and associated discrete components.

ORDERING INFORMATION

Part Number

iPDS-PROTO Kit

Description

iPDS-PROTO board,
module cover, hardware kit,
and assembly manual.

iPDX BUS INTERFACE

The iPDX bus is a byte-wide, parallel interface
between the plug-in module and the iPDS devel­
opment system or the iUP-200/201 system. For
further information on the iPDX bus, refer to the
Designing Modules for the iPDSTM and ;UP
Systems.

1·22

iMDX 557
iAPX Resident Processor Card Package

• High·Performance 8086·Based CPU
Board for Increased Intellec®

. Development System Performance and
Improved iAPX 86/88 Development
Environment

• Upgrades Intellec® Series II and
Model 800 Microcomputer Develop·
ment Systems to the Functionality of
Series III Systems

II 224K Bytes of User Program RAM
Memory Available for iAPX 86/88 User
Programs

• Software Applications Debugger for
iAPX 86/88 User Programs

• Supports Full Range of iAPX
86/88·Resident, High·Level Languages:
PUM·86/88, PASCAL·86/88, and
FORTRAN·86/88

• Includes iAPX 86/88·Resident
Relocating Macro Assembler, Linker,
Locator, and Librarian

• Dual Processor Disk Operating System
Software with 16-bit AEDIT Editor

• Supports PSCOPETM Advanc~d 86/88
Software Debugger

The iMOX 557 is a performance enhancement package for Intellec® Series II and Model 800 Oevelopment
Systems, specifically designed for iAPX 86/88 microprocessor development. The iMDX 557 includes an
iAPX-based CPU board with 256K RAM memory, CRT-based menu-driven editor, iAPX 86/88-Resident
Relocating Macro Assembler, Linker, Locator and Librarian, software applications debugger for iAPX
86/88 user programs, and complete user documentation. The OX-5571 kit includes an iMOX 557 plus an
IPC·85. .

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products: BXP, CREDIT, i, iCE, iCS, im, Insite, Intel, INTEL,
In televIsion, Intel ink, Intellec, iMMX, iOSP, iPDS, iRMX, iSBC, iSBX, Library Manager, MCS, MUL TIMODULE, Megachassis. Micromainframe, MULTIBUS, Multichannel, Plug­
A·Bubble, PROMPT, Promware, RUPI, RMX/80, System 2000, UPI, and the combination iCS, iRMX, iS8C, iSBX, ICE, 121CE, MCS, or UPI and numerical suffix. Intel
Corporation Assumes No Responsibility for the use of Any Circuitry Other Than Circuitry Embodied in an Intel product. No Other Patent Licenses are implied.
©INTEL CORPORATtON, 1983 MAY 1983

ORDER NUMBER: 210534·001

1-23

iMDX 557

FUNCTIONAL DESCRIPTION
Hardware Components
Resident Processor Card RPC-86 - The heart of
the RPC-86 is an Intel 8086-2 16-bit HMOS
microprocessor, running at 8.0 MHz. There are
128K bytes of RAM memory provided on the
board, with transparent refresh from the Intel 8203
dynamic RAM controller. There are 16K bytes of
ROM on the board, preprogrammed with an iAPX
86/88 applications debugger. The debugger pro­
vides features necessary to debug and control ex­
ecution of applications software for the iAPX
86/88 microprocessors. The 8086 and the host pro-

. cessor use interrupts for interprocessor
communications.

RAM Multi-Module - The module contains an ad­
ditional 128K bytes of readlwrite RAM memory.
Refresh hardware is provided on-board for all the
dynamic memory elements. Data buffering occurs
for all data written to or read from the memory ar­
ray. The RPC-86 board with the RAM multi-module
occupies two slots in the Intellec cardcage.

SYSTEM FEATURES
The iMDX 557 offers many key advantages for
iAPX86/88 applications and Intellec Development
Systerr.s: enhanced system performance through
a dual-host CPU environment, a full spectrum of
iAPX 86/88-resident high-level languages, ex­
panded user program space for iAPX 86/88 pro­
grams, and a powerful high-level software
applications debugger for iAPX 86/88 micro­
processor software.

Dual-Host CPU
The addition of a 16-bit 8086 to the existing 8-bit
host CPU increases iAPX 86/88 compilation
speeds and provides for iAPX 86/88 code execu­
tion. When the 8086 is executing a program, the
8-bit CPU off-loads all 1/0 activity and operates as
an intelligent 1/0 controller to double buffer data
to and from the 8086. The 8086 also provides an
execution vehicle for 8086 and 8088 object code.
An added benefit of two-host microprocessors is
that 8-bit translations and applications are
available in the same system. This feature pro­
vides complete compatibility for current systems
and means that software running on current In-

tellec Development Systems will run on the new
system.

High-Level Languages for iAPX 86/88
The iMDX 557 allows the current Intellec system
user to take advantage of a breadth of new resi­
dent iAPX 86/88 high-level languages: PLIM 86/88,
PASCAL 86/88, and FORTRAN 86/88. The iAPX

'86/88 resident Macro assembler and these high­
level language compilers execute on the host.
CPU, thereby i~creasing system performance.

Extended Program Memory
By adding an iMDX 557 to an existing Intellec
Development System, 224K bytes of user program
RAM memory are made available for iAPX 86/88
programs. System memory can be expanded by
adding RAM memory boards. This, combined with
the dual-host CPU system architecture,
dramatically increases the processing power of
the system.

. Software Applications Debugger

1-24

The RPC-86 contains the applications debugger
which allows iAPX 86/88 programs to be
developed, tested, and debugged within the In­
tellec system. The debugger provides a subset of
in-circuit emulator commands such as symbolic
debugging, control structures and compound
commands specifically oriented toward software
debugging needs.

AL TERTM Editor
This 16-bit based, menu-driven, full-screen editor
is included with the iMDX 557. Designed for
the programmer, it has features that allow easy
code generation and fast, convenient program
alteration. .

SPECI FICATIONS
Resident Processor Card (RPC-86):
8086-based, operating at 8.0 MHz with 128K RAM

memory module
RAM - 256K bytes on the CPU board including the

128K RAM multi-module '
ROM - 16K bytes (applications debugger)
Bus - MULTIBUS architecture; 8.0 MHz maximum

transfer rate

IMDX 557

Electrical Characteristics
DC Power Supply

Voltage Requirements Current Requirements
(Amperes Max.)

+5±5% Volts 5.6 A
+ 12 ± 5% Volts 25 mA
-12±5% Volts 23 mA

Environmental Characteristics (con­
strained by Series II mainframe)
Operating Temperature: 10 0 to 35 0 C (50 0 to 95 0 F)
Relative Humidity: To 20% to 80% (non·
condensing)

Equipment Supplied
iAPX 86 Resident Processor Card (RPC·86) with

128K Byte RAM Multi·module
Self-test Diagnostics

iAPX 86/88 Applications Debugger
iAPX 86/88 Resident Macro Assembler and

Utilities
AEDIT Text Editor

DOCUMENTS SUPPLIED
A Guide to Intel/ec Series 1/1 Microcomputer
Development Systems, 121632

Intel/ec Series /1/ Microcomputer Developmen'
System Product Overview, 121575

Intel/ec Series /1/ Microcomputer Development
System Console Operating Instructions, 121609

Intel/ec Series /1/ Microcomputer Development
System Pocket Reference, 121610

Intel/ec Series /1/ Microcomputer Development
System Programmers Reference, 121618

iAPX 86,88 Family Utilities User's Guide for
8086-Based Development Systems, 121616

An Introduction to ASM86, 121689

ASM86 Reference Manual for 8086-Based
Development Systems, 121703

8086/8087/8088/80186 Macro Assembler Language
Pocket Reference, 121674

80861808718088180186 Macro Assembler Operating

1-25

Instructions for 8086-Based Development Systems,
121628

MCS-86 Assembly Language Converter Operator
Instructions, 9800642

Model 557 Instal/ation Manual, 122015

MCS-80/85 Utilities User's Guide, 121617

iAPX 86,88 Family Utilities Pocket Reference,
121669

iAPX 86,88 User's Manual, 210201

iAPX 88 Book, 210200

AEDIT (CRT-Based Text Editor) User's Guide

AEDIT (CRT-Based Text Editor) Pocket Reference

. Additional manuals may be ordered from any Intel
sales representative or distributor office, or from
Intel Literature Department, 3056 Bowers Avenue,
Santa Clara, California 95051.

ORDERING INFORMATION
Part Number Description

iMDX 557 Performance upgrade package for
Intellec Series 11185 and Model 800
Microcomputer Development
Systems (110V/60 Hz or
220V/50Hz). Specifically designed
for iAPX 86/88 microprocessor
development. Upgrades Intellec
Series II models to Intellec Series
III Development Systems.

DX-5571 Kit Performance upgrade package for
Intellec Series 11/80 Microcomputer
Development Systems. Specifical­
ly designed for iAPX 86/88
microprocessor development. The
5571 package consists of the iMDX
557 software and hardware perfor­
mance package and the integrated
8085 processor board (IPC-85). This
upgrade package is only for In­
tellec Series 11180 Development
Systems (110V/60 Hz or 220V/50
Hz) and upgrades these models to
the full performance and func­
tionality of an Intellec Series III
Development System.

AFN-00646B

intJ
iMDX·511

ENHANCED HUMAN INTERFACE

• Command Line Recall/Command Line
Edit permits rapid entry oi repetitive
command sequences and aids in the
correction of errors. '

• Auto Repeat Function provides single
key character repeat.

• Scrolling and Paging improve file
viewing, making information easy to
find.

• Batch Job Capabilities allow more
efficient system utilization. '

• Soft Keys for frequently used ISIS
commands reduce keystrokes and
increase productivity.

• Customizable soft keys invoke user­
programmed command sequences.

• Keyboard Help reminds the user of
commands and the associated soft
keys.

• EnhancedCRT Interface provides
direct cursor addressing and block write
to the screen.

User productivity is a major element in the development of microprocessor designs. These enhancements provide a
more useable system requiring fewer keystrokes to complete the usual development sequence. The system guides the
user to the correct command, helps minimize the typing and allows for easy correction/changes to repetitive com·
mand sequences.

KEYBOARD FEATURES
The keyboard interface has been improved to allow fewer keystrokes and easier key manipulation. The basic function
of the repeat key (RPn has been changed. A given character will continually repeat one half second after its key is
depressed and held. The new "RPT" key (FUNC) allows automatic command printing in "soft·key fashion." For
example, the Intel ISIS operating system requires reference to a physical device (:Fn:). The "FUNC" key plus a given
number key will produce ":Fn:"; where n is the numl;ler depressed. Common commands such as DIR, COPY, and
command syntax elements, such as space TO space, can be selected by pressing the "FUNC" key and a specified
character. Ten customizable keys invoke user-programmed JOB files, allowing single keystroke access to complex
command sequences.

Intel Corporation Assumes No Responsibility for the Use ,of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.

© INTEL CORPORATION, 1983 MARCH 1984
ORDER NUMBER: 210504-002

1-26

infel~ IMDX·511

KEYS DEPRESSED

FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +
FUNC +.
FUNC +
FUNC +
FUNC +
FUNC + SHIFT +

KEYBOARD HELP

"1"
"A"
"C"
"0"
lie"
uH"
"I"
uJu
uK"
"Lit
"M"
"N"
"0"
uP"
"Atf
"S"
"T"
"U"
"X"
"1"

RESULT

:F1:
AEDIT
COpy
DIR
CREDIT
HELP MENU
ATTRIB
JOB
DELETE
:LP:
LOGON
~SSIGN
LOGOFF
:SP:
RUN
SUBMIT·
TO
ACCESS
EXPORT
/JOB1 "CR"

A HELP facility is available that indicates the appropriate
soft key to get a particular command element.

COMMAND LINE INTERPRETER (CLI)

The CLI has been enhanced to provide edit capability.
Typed command strings do not have to be cancelled
and/or retyped. Depressing" ESC" and repositioning the
cursor allows user to add or delete command line charac­
ters as necessary. Command line recall (depressing

SPECIFICATIONS
Hardware Provided

4 ea. 2716
1 ea. 8741A
1 ea. Single Density Diskette
1 ea. Double Density Diskette
1 Key Cap

Hardware Required
InteUec Series 11/80 or Series 11/85 Development System
(Model 220, 225, 230, 235, or 286)

ORDERING INFORMATION \

"ESC") allows the user to redisplay the last entered com­
mand, for correction or update. This eliminates the need to
reenter commands with similar content.

Viewing the contents of files is more flexible. Entire
screens of text will be displayed for the user to review. A
keystroke will cause the next complete page of text to
be printed on the screen. File contents can be scrolled
on the screen as well. The scrolling speed can be
selected, fast, slow, or line by line, by a keystroke.

Several commands can be staged and executed In
"BATCH" fashion. That Is, all the commands can be
entered before any is executed.

Frequently used Single line command strings can be
stored and passed a parameter for execution.

Example:
.L MYJOB

Executes the pseudo SUBMIT file L.CSD which
contains:

RUN LlNK86 %O.PAS,CEL.LlB,P86RNO.LlB etc.

o.utput from program execution can be directed to a file
for future reference.

VIDEO DISPLAY

The new CRT screen handler which provides direct cursor
addressing makes available many graphic capabilities of
the 8275. User-written procedures allow the use of reverse
video, blinking and underscore of characters on the
screen.

Software Provided
ISIS-II

Software Supported
ISIS-II (W)
ISIS-III (N)

IMDX 511 Series II Human Interface Enhancement package. This package contains 4 EPROMs, 1 microcontrollei', and
software to provide the InteUec Development System with soft keys, command line edit/recall, enhanc'ed text
viewing and other Improved human interface features. (Shipping weight 3 Ibs.)

AFN-Q1262C

1-27

Model iMDX-7S0
Intellec®Series II/III/IV Winc~ester Subsystem

• 22 Mbyte formatted capacity

• High performance speeds program
development

• Reliable 8-inch Winchester technology
increases disk integrity

• Upgrades Series II, Series III, and
Series IV development systems

• Freestanding chassis with power
supply and cables

• Provides intelligent" archival utility

• Upgradable to the NOS-II, distributed
multi-user network

Intel's Model 750 Winchester Disk subsystem provides on-line, high-capacity storage to improve system
throughpuland reduce development time.

Both disk access speed and data transfer rate of the iMDX-750 are faster than Intel's Model 740 cartridge disk
system, enabling the disk to provide 10-50% better system throughput for various development functions .. The
750 can be integrated into the NOS-II, providing easy upgrade from stand-alone to mUlti-user envi~onment, while
protecting the user's investment in the 750.

ORDER NUMBER:210351-OO3

1-28

inter Model iMDX-7S0

FUNCTIONAL DESCRIPTION

Hardware Components

Intel's Winchester disk subsystem consists of a disk
drive and power supply enclosed in a freestanding
peripheral chassis, plus an intelligent disk controller,
interconnecting cables and documentation.

The Winchester disk provides 22 Mbytes of format­
ted storage at data transfer rate of 6.4 Mbits/second.

The disk controller provides the interface to Intel's
system bus. This single-board controller resides in
one slot of an Intellec® system card cage.

1-29

Associated Software-Intel Systems
Implementation Supervisor (ISIS-I~)

The Winchester subsystem is to be used in conjunc­
tion with the ISIS-II (W) Operating System. ISIS-II (W)
provides total file management capabilities, file edit­
ing, library management, run-time support, and
utility management.

Equipment Supplied

-Peripheral chassis with Winchester drive and
power supply

-Interconnecting cables
-Winchester disk controller (1 board)
-ISIS-II (W) System Diskette
-ISIS-II (W) System User's Guide
-Modified backpanel for Intellec System

AFN-02168C

inter ModeIIMDX-7S0

SPECIFICATIONS

Hardware

Disk Drive

Type-Winchester sealed disk
Tracks per Inch-:-480
Mechanical Sectors per Track-70
Recording Technique-70 MFM
Tracks per Surface-525
Density":"'6;670 bitslinch
Bytes per Track-13,440
Recording Surfaces-5

Disk System Capacity

Disk Transfer Rate-6.4 Mbits/sec
Disk System Access Time­

Track to Track: 10 ms max.
Full Stroke: 90 ms
Rotation,al Speed: 3,600 rpm

Physical Characteristics

Disk Drive in Peripheral Chassis
Width-16.9 in. (42.9 cm)
Height-11.3 in. (28.7 cm)
Depth-24.3 in. (61.7 cm)
Weight-55 lb. '(25 kg)

ORDERING INFORMATION

Part Number Description

Series 111111 Winchester subsystem.

Electrical Characteristics

Chassis
DC Power Supplies-Internal to Cabinet
AC Power Requirements

110 VAC: 60 Hz; 5A (max)
220 VAC: 50 Hz; 3A (max)

Controller Boards
5V @ 2.5A (typ), 3.25 (max)

Environmental Characteristics

Media, Drive and Chassis
Temperature:
- Operating: 15°C to 35°C

Non-operating: -9°C to 60°C
Humidity:

10% to 90% non-condensing
Controller Boards

Temperature:
Operating: O°C to 55°C
Non-operating: -55°C to 85°C

Humidity:
Up to 90% non-condensing

iMDX 750A
110V, 60 Hz

iMDX 750B
~20V, 50 Hz

Provides Winchester disk, chassis, power supply, cables, disk controller, software and documen­
tation for Series 11/85 and Series IIllntel\ec® systems.

iMDX 750lA
110V, 60 Hz

iMDX 750lB
220V, 50 Hz

Series 11/80 Winchester subsystem with IPC-85 computer board.
Provides Winchester disk, chassis, power supply, cables, disk controller, IPC-85
computer board, software and documentation for Series 11/80 Intellec® systems.

1-30 AFN-02168C

APPLICATION
NOTE

AP-156

July, 1984

Designing Modules
for iPDS™and i-UP Systems

DALE OLLILA
OSHO TECHNICAL PUBLICATIONS

© INTEL CO~PORATION, 1984 Order Number 230682-001

1-31

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, 121CE, ICS, iDBP, iDIS, iLBX, im, iMMX,
Insite, INTEL, intel, Intelevision, Intellec, inteligent Identifier™,
intellBOS, inteligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name'or tr~demark. MDS@ is a registered
trademark of Mohawk Data Sciences Corporation. .

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other lritelliterature may be obtained from:

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

1-32

230682-001

DESIGNING
MODULES
FOR iPDS™ AND
iUPSYSTEMS

1-33

CONTENTS

INTRODUCTION

The IPDX BUS
iPDX Bus Features
Advantages and Limitations of .

iPDX Bus Implementaton
iPDX Bus Functional Description .. .

4

4
4

4
5

IPDX BUS SPECIFICATIONS 8

iPDX Bus Signal Descriptions 8
Power Specifications 10
Electrical (DC) Specifications 11
Timing (AC) Specifications 11
Mechanical Specifications ;....... 13

HARDWARE DESIGN
CONSiDERATIONS................ 13

Mechanical Considerations 14
Power Considerations 14

PROGRAMMING
CONSiDERATIONS................ 14

iPPS Software Protocol 14
Switched Voltage Programming 22
User-Written iPDX

Bus Drivers 23

230682-001

AP-156

INTRODUCTION

The Intel Personal Development System (iPDSTM)
is a new development tool concept. It provides a
subset of the capability of an Intellec ® Series IIIIII
development system, in a portable, and less expen­
sive package. One of the features offered by. the
iPDS system is the expansion capability designed
into the product. The basic iPDSsystem can be ex­
panded to include a parallel processor, a wide range
of serial (RS232C interface) and parallel (Centronics
interface) devices, numerous MULTIMODULE™
(iSBX™ interface) devices, additional flexible disk
drives, and a growing line of plug-in emulator and
PROM programming modules.

The plug-in modules for the iPDS system communi­
cate over an interface referred to as the Intel Person­
al Development Expansion bus (iPDX bus). The
iPDX bus is also used in another Intel product, the
iUP-200/201 Universal Programmer (iUP). There
are some differences in iPDX bus implementation
between the iUP and iPDS systems, but the basic in­
terface is the same. Intel PROM programming
modules can. be used in either system.

THEiPDX BUS

The iPDX bus is a byte-wide, parallel interface be­
tween a plug-in module and the iPDS or the iUP
system. The iPDX bus allows a variety of plug-in
modules to be added to the iPDS system. (The iUP
system normally is used with PROM programming
modules.) Some of the possible types of plug-in
modules are:

• PROM programming modules

• Emulator (EMV) modules for various micro­
processor or microcontroller families

• Test instrumentation modules. (e.g., logic or
signature analyzers)

• Analog interface modules (e.g., analogI
digital or digital/analog converters)

• Serial communication modules (e.g., modem
or cassette controller modules)

• Parallel communication modules (e.g., direct
interface to other CPU buses)

• Program storage modules (e.g., modules stor­
ing alternate operating systems, diagnostic
programs, or games)

Intel Corporation produces plug-in modules that
allow PROM programming and emulation for a
variety of Intel chips. The special needs of individual
users may not be satisfied by the plug-in modules
that are available. This application note presents the
specifications and design criteria for user-designed
plug-in mod~.tles using the ·iPDX bus. User-designed

plug-in modules can expand the usefulness of the
iPDS system in the design lab, on the production
floor, and in field applications.

iPDX Bus Features

. The iPDX bus's capabilities are nearly equal to the
capabilities of the iSBX™ bus. In some respects the
iPDX bus is more powerful than the iSBX bus, due
to the variable and switched supply voltages included
on the bus. The features of the iPDX bus are:

• The controlling (iPDS or iUP) system supplies
+ 5VDC and ground to the iPDX bus.

• The controlling (iPDS or iUP) system supplies
switched voltages of + 5.7VDC, -12VDC,
and + 8VDC to + 27VDC to the plug-in
modules. In addition, the iUP system controls
a variable switched voltage (+ 8 to + 15
VDC) and the iPDS system controls a + 12
VDC switched voltage to the plug-in
modules. The switched voltages are turned
on and off under program control.

• A number of options are available for con­
trolling iPDX bus transactions. These options
include:

I)Using iPPS software to supervise the up­
loading and execution of firmware from the
plug-in module.
2)Using a user-written driver program to su­
pervise the uploading and execution of firm­
ware from the plug-in module.
3)Using a user-written driver program to
control all iPDX bus activity.
4)Using a user-written monitor program to
allow control of iPDX bus activity from the
system console. .

• The plug-in modules that interface with the
iPDX bus enable easy and fast changes of
entire 110 subsystems.

• A proto typing tool (product code iPDS­
PROTO) allows users to quickly design and
build custom plug-in modules.

• The resources of a powerful, general-purpose
development system (the iPDS system) are
available to plug-in modules that use the
iPDX bus.

Advantages And Limitations of iPDX Bus
Implementation

The system (iup or iPDS) that -the iPDX bus is im­
plemented on offers advantages for and imposes
limitations on plug-in module use. The user's design
requirements may dictate that the plug-in module be
used with only one of the available systems. Plug-in
modules that are universal must be· designed to
avoid the limitations of both systems.

1-34 230682-001

AP-156

IUP/iPDX BUS ADVANTAGES AND
LIMITATIONS

Plug-in modules used with the'iUP system are nor­
mally restricted to PROM-type programming ,
functions. Table 1 lists the advantages and limita­
tions of the iUP/iPDX Bus.

iPDS™liPDX BUS ADVANTAGES AND
L-IMITATIONS

Plug-in modules used with the iPDS system can
make u!?e of all the features listed in the iPDX Bus
Features section on page 4. The limitations for an
iPDS/iPDX bus plug-in module are in the amount of
power available from some of the voltage supply
lines. Table 2 lists the advantages and limitations of
the iPDS/iPDX Bus. .

iPDX Bus Functional Description

The iPDX bus is an extension to the CPU bus of the
iUP or iPDS system. The iPDX bus is active in the
110 address range 10H - IFH of the controlling
CPU. Figure 1 is a functional block diagram of the
iPDX bus as implemented on the iUP system.
Figure 2 is a functional block diagram of the iPDX
bus as implemented on the iPDS system.

iUP/iPDX BUS IMPLEMENTATION

The iPDX bus is the only 110 interface for the
iUP-200/201 Universal Programmer, other than the
serial interface of the iUP system. The iUP system
normally performs one function, the programming
of PROM-type devices. Intel PROM-type devices in­
clude EPROMs, E2PROMs, and the EPROM portion

Table 1. IUP/IPDX Bus Implementations

Advantages Limitations

The iUP system provides ample power for Direct control of CPU operation is only possible
programming any type of PROM device. using uploaded plug-in module firmware.

Two variable supply voltages are available for The Vee line supplies a maximum of 1.0 A to the
plug-in module use. plug-in module.

The I/O space of the iUP system is mostly
unused, so operation in unused I/O space is
possible.

Table 2. iPDS™/iPDX Bus Implementations

Advantages Limitations

The resources of the iPDS system (RAM, Only one of the variable supply voltages
console, mass storage, etc.) are available to (+ VHSW) is available on the iPDS bus. The
the plug-in. other variable line (+ VLSW) has a fixed output

of+12VDC.
The user has the' option of using iPPS software
or user-written programs to control the plug-in Power supplied to the iPDX bus is not adequate
module. for gang programming modules.

Any PROM programming module that works with
the iPDS system and iPPS software also works with
the iUP system. The Vee supply line can handle up
to a 2.5 A draw. This draw is adequate for most user
applications.

1·35 230682-001

AP-156

r-------------------------~---------------------------------------1

8085
CPU

I---<.----d RST IN
ROY

·+28V

+19V
+8V - +13V
VARIABLE
SUPPLY
VOLTAGE

REF

BUFFER

+8V - +26V
VARIABLE
SUPPLY
VOLTAGE

REF

ADO-AD7

+5.7VSWEN
-12 VSWEN

+VHEN
+VLEN

+5V

I - AIORDI - AIOWRTI

AAO-
AA7

)- ADO-
AD7

- ARDY - ARSTI

- +5.7VSW

- -VLOW iPDX
BUS

- +VHIGH

- +VHSEL

- AGND

+VLOW

- +VLSEL

- +5V - GND

~ ____________ !!J.P_~t!!I~~ _____ ' __________________________________ J
1393

Figure 1. iUP/iPDX Bus, Functional Block Diagram

of various microcontrollers. The iUP system can pro­
gram non-Intel PROM-type devices, but in most
cases a personality plug-in module for the non-Intel
device must be designed by the user. Note,
however,that the Intel iUP-Fast 27/K PROM pro­
gramming module (with firmware change) can pro­
gram any 28-pin JEDEC device.

The iPDX bus implementation on the iUP system is
optimized for maximum programming power
capabilities. Each of the switched voltage supply
lines from the iUP system provides at least twice the
power of the corresponding line from an iPDS
system. Refer to the Power Specifications (page 10)
section for specific power capabilities.

1-36

The switched voltage lines are turned on and off
under program control by the controlling CPU. The
switched voltages are:

• +5.7VSW
• +VHIGH
• +VLOW
• -VLOW

Two of the switched voltages (+ VHIGH and
+ VLOW) are variable. The + VLOW line provides
+ 8V to + 15V at 700 rna as determined by a preci­
sion resistance on the + VLSEl line. The + VHIGH
line provides + 8V to + 27V at 300 rna as determined
by a precision resistance on the + VHSEL line.

230682-001

AP-156

r---~~~~;'

10ROI

IPOX
BUS

ROY

101M
WRI
RO/p---.....

8085
CPU

t---t_--irN
ESET

-12V

PSW3

t12V

PSW2

PSW4

.--------i - VHSEL
+5V

I-------------f - Vee

r-----I - POSI

.-----4 - AGNO

Base Procesaor Board • - - _____ - __ - ________________ • _______________ - --------------- • .1

IPOSSYSTEM

1958

Figure 2. iPDS™/iPDX Bus, Functional Block Diagram

Refer to the Power Considerations (page 14) section
for details on the control of the variable supply
voltages.

The iUP/iPDX bus implementation provides not
only program control of the switched voltage lines. It
also allows monitoring of the on/off condition of
these lines. The I/O ports used to control and moni­
tor the switched voltages are discussed in the
Switched Voltage Programming section (page 22).

Buffered data (ADO - AD7) is placed on the iPDX
bus each time address line 4 (A4) is 'I' during I/O
accesses by the controlling CPU. This ensures that
the data lines will be active for 110 addresses of IOH
to IFH. It also places data on the bus for addresses
of 3XH, 5XH, 7XH, 9XH, BXH, DXH, and FXH.
The iPPS software only uses 110 addresses of IXH
when initially contacting the plug-in module, so
there is no problem with this I/O addressing.

1-37

The address, read, write, reset, and ready lines feed
directly from the iUP system to the plug-in module
on the iPDX bus. Figure 1 is a functional block dia­
gram of the iUP system that shows the iPDX signals,
their direction of flow, and the controlling circuitry
in the iUP system. Refer to other sections of this ap­
plication note for specific details on iUP/iPDX bus
implementation.

iPDSTM/iPDX BUS IMPLEMENTATION

The iPDS system implementation of the iPDX bus is
a powerful, general-purpose interface to plug-in
modules. The iPDS interface has less power handling
capabilities than the iUP interface, but it has addi­
tional system resources.

The iPDS/iPDX bus interface uses a separate board
in the iPDS system. The iPDS-140 option for the
iPDS system is an interface between the iPDX bus

230682-001

AP-156

and the base processor board of the iPDS system.
The iPDS-140 option buffers all address, data, and
control signals that go to the iPDX bus. The top ad­
dress nibble is decoded on the iPDS-140 option to
enable data transfers during reads or writes to I/O
addresses lOH to 1FH.

The switched voltages for the iPDX bus are devel­
oped on the iPDS-140 option. The iPDS-140 option
uses + 12VDC and -12VDC from the iPDS system
to generate the switched voltages. Refer to the

. Power Specifications and Power Considerations sec­
tions (pages 10 and 14) for details on the power

. available for the iPDX bus.

The switched voltages are under program control of
the CPU in the iPDS system. These control signals
are sent through an 8255 PPI chip to the iPDS-140
option. Refer to the Programming Switched Voltages
section (page 22) for details on switched voltage
control.

The Vee (+ 5VDC) and ground lines from the base
processor board are fed directly to the iPDX bus.
The PDSI and AGND lines ofthe iPDX bus are con­
nected to the ground line within the iPDS-140
option. The PDSI line is used by PROM program­
ming plug-in modules to 'indicate the controlling
system to iPPS software: All PROM programming
p1ug-in modules feed the PDSI line (J1-20) back so
iPPS software can read its '1' or '0' status. Refer to
the iPPS Software Protocol section (page 14) for
details on the module status byte.

The address, read, write, reset, clock, and ready
lines are buffered on the .iPDS-140 option, but they
are not modified by the iPDS system. Figure 2 is a
functional block diagram of the iPDS system that
shows the iPDX signals, their direction of flow, .and
the controlling circuitry in the iPDS system. Refer to
other sections of this application note for specific
details on iPDS/iPDX bus implementation.

iPDX BUS SPECIFICATIONS

The specifications for the iPDX bus are divided into
four catagories:

• Signal listings and descriptions.

• Detailed power (DC) specifications.

• Detailed timing (AC) specifications.

• Outline drawings and detailed mechanical
specifications.

iPDX Bus Signal Descriptions

Table 3 presents the pinout of the iPDX bus and
gives the associated signal names for both the iPDS
and iUP systems.

Table 4 lists the signal -names (iPDS and iUP
systems) of the iPDX bus and gives a short descrip­
tion of each group of signals.

Table 3. iPDX Bus Pinout

Pin
iPDS™ iUP Input/

Pin
iPDS™ iUP Input

Mnemonic Mnemonic Output Mnemonic Mnemonic Output

1 GND GND 0 22 GND GND 0
2 GND GND 0 23 Reserved Reserved N/A
3 BAO AAO 0 24 BOO ADO I/O
4 BAt AA1 0 25 BOt AD1 110
5 BA2 AA2 0 26 BD2 AD2 I/O
6 BA3 AA3 0 27 BD3 AD3 I/O
7 BA4 AA4 0 28 BD4 AD4 I/O
8 BA5 AA5 0 29 BD5 AD5 I/O
9 BA6 AA6 0 30 BD6 AD6 I/O

10 BA7 AA7 0 31 BD7 AD7 I/O
11 Vee +5V 0 32 Reserved Reserved N/A
12 Vee +5V 0 33 +VHSW +VHIGH O'
13 +VSW +5.7VSW 0 34 +VLSW +VLOW 0
14 +VSW +5.7VSW 0 35 Reserved Reserved N/A
15 CLK Not Used 0 36 -VLSW -VLOW 0
16 10WR-AI ,AIOWRTI 0 37 AGND AGND 0
17 lORD-AI AIORDI 0, 38 +VHSEL +VHSEL I
18 RESETI ARSTI 0 39 Not Used +VLSEL I
19 XRDY ARDY I 40 GND GND 0
20 PDSI POSt o (iPDS) 41 GND GND 0
21 GND GND 0

1·38 230682-001

inter AP-156

Table 4. iPDX Bus Signal Descriptions

Signal Name(s)
Description

iPDS™ iUP

GND GND Reference potential for all signals and supply voltages.

AGND AGND Analog ground. Reference potential for the programmable high voltage signal
(+VHSWor +VHIGH).

BAO-BA7 AAO-AA7 Address lines from the iPDS system or the iUP system that define the I/O
register to be accessed.

BDO-BD7 ADO-AD.? Bi-directional, parallel data lines between the plug-in module, and the iPDS or
the iUP system.

Vee +5V Supply voltage for plug-in module circuitry.

CLK Not Used Clock signal (20 MHz) from the iPDS system. '

10WR-AI AIOWRTI 110 write signal from the iPDS or the iUP system. An active low indicates that
output data from the iPDS or the iUP system is on the data lines. Data is
sampled on the trailing edge of this signal.

lORD-AI AIORDI 110 read signal from the iPDS or the iUP system. An active low indicates that
input data from the plug-in module should be placed on the data lines. Data is
sampled on the trailing edge of this signal.

RESETI ARSTI Reset signal from the iPDS or the iUP system.

"XRDY ARDY Asynchronous ready signal from the'plug-in module. An active high indicates
that the plug-in module has accepted write data from, or presented valid read
data to, the iPDS or the iUP system. A low level causes the iPDS or the iUP
system to enter a wait state after either the lORD-AI (AIORD/) or 10WR-AI
(AIOWRT/) line is activated.

PDSI Not A ground from the iPDS system. This signal is sampled by iPPS software and
connected indicates that a PROM programming module is installed in an iPDS system.

+VSW +5.7VSW Switched + 5.7VDC that can be turned on or offby the iPDS or the iUP system
under program control.

+VHSW +VHIGH Switched +8VDC to + 26VDC that can be turned on or offby the iPDS or the
iUP system under program control. The actual, voltage is determined by the
+ VHSEL signal from the plug-in module.

+VLSW +VLOW Switched +8VDC to + 13VDC that can be turned on or offby the"iPDS or the
iUP system under program control. For the iUP system the actual voltage is
determined by the + VLSEL signal from the plug-in module. The iPDS system
outputs only a fixed voltage of + 12VDC on the + VLSW line.

-VLSW -VLOW Switched -12VDC that can be turned on or off by the iPDS or the iUP system
under program control.

+VHSEL +VHSEL High plus programming voltage select (iPDS and iUP systems). A precision
resistance in the plug-in module determines the voltage on the + VHSW
(+ VHIG H) line.

Not Used +VLSEL Low plus programming voltage select (iUP system only). A precision resistance
in the plug-in module determines the voltage on the + VLOW line.

230682-001

AP-156

Power Specifications

The + SVDC line is alw~ys active on the iPDX bus.
This line normally powers plug-in module circuitry.
Switched voltages are also available to power plug-in
module circuitry. The user must first set up appropri-

Table S lists the supply signals available at the iPDX
bus and the specifications for each signal.

. ate driver routines and programming voltages
before the switched voltage lines become active.

Figure 3 shows the power available on the iPDS
+ VHSW signal line for the programmable voltages.
The other power supply signals give rated power
over their full range.

135ma

130ma

120ma

110ma

VOUT~

IMAX=71 +3.63 (V OUT)
IMAxlnma

V OUT In Yolts

Figure 3. Power Available (iPOSTM +VHSW Signal)

Table 5. iPOX Bus Power Specifications

1955

Signal Name Supply Voltage and Tolerance Maximum Current

iPDS™ iUP iPDS™ iUP iPDS™ iUP

Vee +SV +5VDC ±2.5% 2.5 amps 1.0 amp

+VSW +S.7VSW +S.7VDC ±50mv 250 rna 1.5 amps

+VHSW +VHIGH + 8VDC to + 27VDC ± 2% 135 rna 300 rna

+VLSW +VLOW + 12VDC ±1.0v +8VDC to 200 rna 700 rna
+15VDC ±2%

-VLSW -VLOW -12VDC ±0.5v 50ma 100 rna

NOTES: 1. This voltage is switched and is under program control of the iPDS or the iUP system.

Notes

.' 1

1,2

1,3

1

2. The voltage is controlled by the + VHSEL signal. Figure 3 shows the derating required for each selected voltage
of+VHSW.

3. The voltage is controlled by the + VLSEL signal (iUP system only).

1·40 230682·001

AP-156

Electrical (DC) Specifications

The signal names for the iPDX bus indicate whether
or not the signals are active high or active low. If the
name ends with a slash (I), the signal is active low. If
the name has no slash following it, the signal is
active high. Table 6 shows the electrical specifications
for the iPDX bus:

The electrical characteristics for the iPDX bus signals
are shown in Table 7. The voltage and current spe­
cifications refer to the TTL high or TTL low state of
the iPDX bus signal. The signal type (input or
output) is the signal direction when viewed from the
iPDS or the iUP system side of the iPDX bus. Posi­
tive currents are defined as currents entering the
interface.

Timing (AC) Specifications

Figure 4 shows the timing specifications for the
iPDX bus. Table 8 lists definitions of the timing
parameters used for the iPDX bus. Refer to the
MCS@-80185 Family User's Manual or the 8085A-2
data sheet for specific details on the timing specifica­
tions for the iPDX bus.

The + VHSEL/ + VLSEL signals, the data bus
signals, and the ready (XRDY or ARDY) signal
originate in the plug-in module. The voltage select
and data bus signals h'ave staightforward timing
requirements, but the timing requirements for the
ready signal need explanation.

Whenever the ready signal (XRDY or
ARDY) goes low, the CPU generates
wait-states until the ready signal returns
high. The ready signal should not be
driven low for more than a few bus cycles
unless complete suspension of all CPU
bus activity is allowable in the user's
application.

The ready signal is normally high for all read/write
transfers over the iPDX bus. The ready signal can be
driven low to insert one or more wait-states in the
CPU bus cycle, in cases where the plug-in module
uses slQw memory devices or slow peripheral
devices.

Table 6. iPDX Bus Electrical Specifications

Active· Logical Electrical
At Receiver At Driver

State State Signal Level

0 H=TTL High State S.2SV ~ H ~ 2.0V S.2SV ~ H ~ 2.4V
LOW

1 L=TTL Low State O.SV ~ L ~ -O.SV O.5V ~ L ~ O.OV

0 L=TTL Low State O.SV ~ L ~ -O.SV O.SV ~ L ~ O.OV
HIGH

1 H=TTL High State S.2SV ~ H ~ 2.0V S.2SV ~ H ~ 2.4V

Table 7. Electrical Characteristics of iPDX Bus Signals

Signal Type 101. IlL IOH IIH YOL Y IL YOH Y IH
Max Max Max Max Max Max Min Min

All Outputs 24 rna -S rna O.SV 2.4V

Inputs (except -12.8 rna SO /La 0.8V 2.0V
RDY signal)

ARDY (input) -4 rna SO J-ta 0.8V 2.0V

1·41 230682·001

Symbol

tAC
tARy
tCA
tcc
tDw

tRD

tRDH

tRYH
tWD

Valid
Address

*TWAIT

AP-156

ADDRESS

tCA = 125 ns
tcc = 370 ns M�n.-----~.I Min.

I ~---4I~I------------------------------~ltW.O=115ns
1 ~--_tow=350nsMln.-----~ •. Min. r-

rf~~~-)--~------------~I~~ ______________ D_A_T_A_O_U_T ______________ J»___

lORD-AI
(AIORD/)

IAC= 240 •• MI •. -4\ Icc = 370 •• MI.. '},..-__ __

I tRO - '-- -'11_ tRON ':' 0 ns
~ 255 ns Max.I"""=:_--------------------~"""" r- Mm.

rf~O~~)--~------------~,I~----~« DATA IN »~------

·XRDY
(ARDY)

RESETI
ARSTI

TRYN = 0 ns Min.

C1 0 m~::=J
• One or more wait states (TWA IT) are inserted in

the CPU bus cycle after the ready signal (XRDY or
ARDY) goes low.

Figure 4_ iPDX Bus Read/Write Timing

Table 8_ iPDX AC Timing Definitions

Description

The time between valid address (AO - A 7) and the.leading edge of the control signal.
The time between valid address (AO - A 7) and the trailing edge of the ready signal.
The time between the trailing edge of the control signal and the end of valid address.
The width of the control signal.

1399

The time between the start of valid data (DO - D7) and the trailing edge of the write control
signal.
The time between the leading edge of the read control signal and the start of valid data
(DO - D7).
The time between the trailing edge of the read control signal and the end of valid data
(DO- D7).
The time between the end ofT WAIT and the leading edge of the ready signal.
The time between the trailing edge of the write control signal and the end of valid data
(DO - D7).

1-42 230682-001

inter AP-156

Mechanical Specifications

The mechanical specifications define the connector
requirements and the outline and mounting dimen­
sions for plug-in modules using the iPDX bus.
Figure 5 is an outline drawing of a plug-in module
for the iPDX bus. All plug-in modules for the iPDX
bus must comply with the dimensions specified in
Figure 5.

.;.&.

J.
-

..
5 . 50

5.070 ..
~

l'r L
.215 ~
t

HARDWARE DESIGN CONSIDERATIONS

Plug-in modules designed around the iPDX bus
must follow certain design rules. These design rules
are:

• The first four inches (measured from the connec­
tor end) of the plug-in module must meet the
mechanical and outline specifications shown in
Figure 5 .

.1

r~~ .. >- \---r
t DDDDDODDDDDOOO)=iT+

~-A---------------------------C-O-N-N-E-C-TO-R----------J

I~ Ii

~

C/l

I I / ,
~c ooooo~(ooooo 00000 ooooor OOOOO~OOOOO~ 8~31 00000 00000 1 2

I I
\
-1.20

2.75
1.35

1.40 VIEWA·A

-- HYPERTRONICS
A41/127/BPMCT
R EQUIVALENT

K
0

n

J
SECTIONB·B

Figure 5. Plug-In Module Mechanical Specifications

1·43

1402

230682-001

AP-156

• The maximum Vee (+ 5VDC) current available is
2.5 amps for iPDS plug-in modules or 1.0 amps .
for iUP plug-in modules.

• . Switched voltages of +5.7VDC, +8VDC to
+27VDC, + 12VDC, and -12VDC are available
to circuitry on a plug-in module under program
control. Table 5 lists power specifications for the
iPDX bus.

• If a programmed voltage (positive only) is re­
quired by the plug-in module, an appropriate pre­
cision resistor must be installed in the plug-in
module. '

• All signals (except + VHSEL and + VLSEL) re­
turned by the plug-in module must be TTL
levels.

• Provisions must be made to sample the PDS!
signal on PROM programming plug-in modules
that use iPPS software while connected to an
iPDS system. (The PDS! signal is low when the
module is connected to the iPDS system and
floating when connected to the iUP system. Firm­
ware can use the signal 1) to specify whether a
power supply status port is available, 2) to specify
whether E3H (iPDS) or 03H (iUP) is the correct
port for turning on power supplies, and 3) to
compensate for differences in timing between
the two systems.)

• Direct memory access (DMA) transactions are
not supported on the iPDX bus.

Mechanical Considerations

Plug-in modules for the iPDX bus must have an
enclosure that meets the mechanical specifications
shown in Figure 5 for the first four inches
(measured from the connector end) of the module.
Intel has developed a prototyping kit (product code
iPDS-PROTO) to simplify the mechariical and hard­
ware portions of the design. This prototyping kit con­
sists of the plug-in module enclosure, a proto typing
board, iPDX bus connector, a hardware kit, isolation
capacitors, and wire-wrap pins. The iPDS-PROTO
kit can accept up to 30 ICsand associated di~crete
components in the available board space. If a plug-in
module designed around the iPDX bus goes to a pro­
duction phase, use of the module tooling can be
licensed through Intel.

Power Considerations

. The maximum power dissipation for an iPDS plug-in
module is 20.5 watts with a maximum draw of 12.5
watts from the Vee line. The maximum power dissipa­
tion for an iUP plug-in module is 32.5 watts with a
maximum draw of 5.13 watts from the Vee line and
8.625 watts from the + 5.7VSW line. A maximum of
7.5 watts can be dissipated within a plastic plugin
module (more power can be dissipated at the PROM
socket).

1-44

Vee (+ 5VDC) is the only voltage present at all times
on the iPDX bus. If the plug-in module circuitry re­
quires other voltage levels for operation, the
switched voltages must be turned on first by
software. The Programming Considerations section
shows the iPDX bus set-up requirements for turning
on! off each of the switched voltage signals.

The variable switched voltages (+ VHSW on an
iPDS plug-in module, and + VHIGH and + VLOW
on an iUP plug-in module) use one or more preci­
sion resistors on the plug-in module to determine
their line voltage. The precision resistor on the plug­
in module must be connected between the AGND
line and the + VHSEL line of the iPDX bus. Plug-in
modules for an iUP system can also program the
+ VLOW line by connecting a precision resistor be­
tween the AGND line and the + VLSEL line of the
iPDX bus. Figure 6 shows a chart and two equations
that indicate the precision resistor values corre­

. sponding to programmable voltages. Figure 7 shows
three kinds of circuits that allow the plug-in module
to select more than one programming voltage level.

PROGRAMMING CONSIDERATIONS

PROM programming modules are normally con­
trolled by iPPS software residing in either the iPDS
or the iUP system. User-des'igned plug-in modules
(other than programming plug-in modules) are con­
trolled by user-supplied driver programs. The iPPS
Software Protocol section explains the iPPS - iPDX
bus interface. The Switched Voltage Programming
section gives programming requirements for access­
ing switched voltages in the iPDS/iPDX bus
interface. The User-Written iPDX Bus Drivers sec­
tion presents the programming requirements for
user-supplied driver programs.

iPPS Software Protocol

PROM programming plug-in modules that run
under control of iPPS software must contain
firmware. The firmware in the PROM programming
module is a program that has routines for program­
ming the device(s) that the plug-in module is de­
signed to program. This firmware is uploaded into
RAM in the controlling (iPDS or iUP) system the
first time the TYPE command in the iPPS command
language is executed. After the module firmware is
uploaded, the iPDS or the iUP system controls the
programming operation. The iPPS software commu­
nicates with the plug-in module over 7 of the 16 110
ports allocated for iPDX bus communication. Table
9 lists the 110 port assignments recognized by iPPS
software.

230682-001

AP-156

100.01rrneITTIlllmmmmmllllOOllllmm 80.0-
Ii

I! 1. i!~ ii

T. ri- .+-

~p rt ;[i
~

.:::

R(Kn) 39.90
VOUT -7.995

VOUT= JfK~?) +7.995

WHERE R (KH) IS THE PRECISION
RESISTANCE IN KILO OHMS,
AND VOUT IS THE DESIRED
VOLTAGE OUTPUT.

R (K n) = _.....;3::.,:9:..:.;.9::.,:0:--_
(20) -7.995

t 4.oj~~I~I~II~II~I~1 RESISTANCE d= 1-
(Kn) -=~.f~

. i! -
:j= :,--;=:Ti r

2.0

=3.32 KH

10 -VOLTAGE OUT
(VOUT)

15 20 25

1396

Figure 6. Programmable Voltage Resistor Values

The control words, corresponding to an I/O write to
port addresses lOH, llH, and 12H, control various
functions on the plug-in module. These functions
may include voltage select and routing for the target
PROM socket, the programming pulse, or chip
selects, and set/clear the upload flag. The bit defini­
tions for the control words are shown in Figure 8.

The status word, corresponding to an I/O read' of
port address 10H, contains information about the
current state of monitored functions on the plug-in
module. The bit definitions for the status word are
shown in Figure 9.

The plug-in module firmware is read when the iPPS'
TYPE command is first executed. The iPPS software
uploads plug-in module firmware by writing the plug­
in module PROM location to I/O ports 13H
(AO-A7) and 14H (A8-AI5), respectively, and then
reading the data at I/O port llH. The plug-in
module firmware uploads to absolute address 7020H
in the iPDS 'or iUP system. After the plug-in module
firmware is uploaded to the iPDS or the iUP system,
the upload flag (bit 1 of control word 0) is set by the

controlling system. Setting the upload flag causes bit
1 of the status word to indicate that additional firm­
ware uploads are not required.

PLUG-IN MODULE FIRMWARE

The firmware (for plug-in modules running under
control of iPPS software) controls all plug-in module
operations, except the firmware upload operation
itself. This firmware must be written in 8085 code
and formatted as shown in Table 10.

The first two bytes of plug-in module firmware must
contain the total number of bytes to be uploaded
(including the two length bytes and the two check­
sum bytes). The third, byte must contain the number
of different devices the plug-in module can read or
program.

The plug-in module firmware is divided into seg­
ments and a segment is required for each PROM
type that the module can program. Each segment
contains a descriptor (first 14 bytes) and a code
section.

1-45
230682-001

AP-156

Descriptor Section

The first two descriptor bytes contain the address of
the next segment of firmware. The last segment of

the firmware must contain the address of the first
segment. If there is only one segment, the segment
must reference itself.

FROM
LATCHED
DATA
BUS
STATUS
INFO

FROM
LATCHED
DATA
BUS
STATUS
INFO

FROM
LATCHED
DATA
BUS
STATUS
INFO

+VHSEL or +VLSEL

+5V

+VHSELor+VLSEL

+VHSEL or +VLSEL

PRECISION
RESISTOR
±1%

D
SILICONIX
VN10KM
rd =3H

S 5

AGND

+5V

PRECISION
RESISTOR
±1%

AGND

-12V

Figure 7. Three Precision Resistor Switching Circuits

Table 9. I/O Port Assignments Used by iPPS Software

I/O Port I/O Write Active I/O Read Active
Address

IOH Write control word 0 Read module status

llH Write control word I Read personality PROM data

I2H Write control word 2 Available

13H Write address (AO-A 7) Available

I4H Write address (A8-AI5) Available

I5H Write address (A16-A19) Available

16H Write data (DO-D7) Read device data

1-46

PRECISION
RESISTOR
±1%

1954

230682-001

PORT
ADDRESS
10H

PORT
ADDRESS
11 H

PORT

AP-156

CONTROL WORD 0

7

AVAILABLE FOR ANY
CONTROL AND
PROGRAMMING FUNCTIONS

CONTROL WORD 1

7

AVAILABLE FOR ANY CONTROL
AND PROGRAMMING FUNCTIONS

ADDRESS 7
12H

AVAILABLE (BUT
DEVICE TYPE INTEGRITY
MUST BE MAINTAINED)

2

AVAILABLE

UPLOAD FLAG

"''''" = DEVICE TYPE 1

. .
1111 = DEVICE TYPE 16

1397

Fjgure 8. iPPS Control Word Bit Definitions

RT I ~RESS
PO
AD
10

AVo ~ILABLE

7 6

SOCKET PROM DEVICE MASTER
O=INSTAL
l=NOTIN

LED PROPERLY
STALLED OR

INSTAL LED IMPROPERLY

AVAILABLE

STATUS WORD

5 I 4 3

-

2 1 ~ I
MODULE
0= INSTALLED
1 = NOT INSTA LLED

CODE
ADED

PERSONALITY
0= NOT UPLO
1 = UPLOADED

PROM DEVICE
0= INSTALLED PROPERLY

LLED 1 = NOTINSTA
OR INSTAL LED
INCORREC TLY

0= MODULEIN STALLED
STEM
STALLED
EM

IN iPDS·SY
1 =MODULE IN

IN iUPSYST

1400

Figure 9. iPPS Status Word Bit Definitions

1·47 230682·001

S

E

G

M

E

N

T

Personality
Prom Address

0
1
2
3

D .4
E 5
S 6
C 7

R 8
I 9
P 10
T 11
0 12
R 13

14
15
16

17
18
19
20
21
22
23
24

C 25
26

0 27
28

D 29
30

E 31
V.

V+N
W

W+N
X

X+N
Y

Y+N
Z

AP-156

Table 10. Plug-In Module Firmware Format

Contents

8 LSBS of the length of the personality PROM.
8 MSBS of the length of the personality PROM.
Number of types the module can program.
8 LSBS of the address of the next segment in the table (U).
8 MSBS of the address of the next segment in the table (U) .
1st ASCII character of PROM type.
2nd ASCII character of PROM type.
3rd ASCII character of PROM type.
4th ASCII character of PROM type.
5th ASCII character of PROM type.
6th ASCII character of PROM type.
7th ASCII character of PROM type.
8th ASCII character of PROM type.
8 LSBS of PROM address range.
8 MOBS of PROM address range.
8 MSBS of PROM address range.
Bits 0-5 indicate PROM word length. Bit 6 indicates the blank state of the PROM.

'Bit 7 is not used.
Jump to blankcheck routine (V).
8 LSB of address ofblankcheck routine.
8 MSB of address of blank check routine.
Jump to program routine (W).
8 LSB of address of program routine.
8 MSB of address of program routine.
Jump to overlay check routine (X).
8 LSB of address of overlay check routine.
8 MSB of address of overlay check routine.
Jump to reverse socket routine (y).
8 LSB of address of reverse socket routine.
8 MSB of address of reverse socket routine.
Jump to read routine (Z).
8 LSB of address of read routine.
8 MSB of address of read routine.
Start blankcheck code.
"RETURN"
Start code for program routine.
"RETURN"
Start code for overlay check.
"RETURN"
Start code for reverse socket routine.
'~RETURN"

Start code for read routine.
Z+ N "RETURN"

------- ~-------"-------- ---

:~~~l;~~~~~~~~~:~;W~:~~:~~-~0~~---
230682-001

1-48

AP-156

The next eight descriptor bytes contain the ASCII
code for the device being programmed. Spaces
(ASCII code 20H) must be used to fill any unused
bytes of this ASCII code.

The remaining four descriptor bytes contain specific
PROM device information, with the first three bytes
holding the available PROM address range and the
final byte holding PROM data information. Bits 0-5
of the PROM data information byte contain the
word length (binary equivalent in bits) of the select­
ed PROM. Bit 6 of the PROM data information byte
indicates the unprogrammed state of each PROM bit
(j.e., a 0 in the bit 6 location means a device bit is un­
programmed in the high state and programmed in
the low state). Bit 7 of the PROM data information
byte is not used.

Code and Checksum Sections

The code section is subdivided into a jump op code
section followed by blankcheck, program, overlay
check, reverse socket detect, and read routines.

The jump op code section contains the jump op
codes and addresses of each programming routine
for the device covered in this segment. The program­
ming routines referenced in this section include
read, blankcheck, program, overlay check, reverse
socket detect, and read. The referenced routines
may actually reside in other segments. .

The blankcheck, program, overlay check, reverse
socket detect, and read programming routines must
be in 8085 code. These routines are hardware specific
instructions for checkipg and programming the
device. The following subsections describe relevant
details of these routines and provide other informa­
tion needed to develop module firmware.

The final two bytes of firmware following the last
segment contain the checksum for the plug-in
module firmware chip. The checksum is the 2's
complement of the sum of the previous bytes in the
plug-in module firmware chip.

Memory Variable and Stack Locations - Memory
locations 6000H to 60FFH are reserved for variables
and stack. Please note that this leaves space for a
very small stack. The following is a list of variables
that the user needs to know to interface to iPPS
software.

6000H

6050H

Lowest address for 80 bytes of input
buffer.

Lowest address for 80 bytes of output
buffer; space is also used for variables
when PROMs greater than 32K bytes
are edited.

1-49

60lAH

60A2H

60B4H-
60B5H

60B6H

60B7H

60B8H

60B9H

60BAH

60BBH

60CCH

60CFH

60DOH

Used to indicate on-line (OOH) or off­
line (OIH) operation.

Used to pass the current status of the
iUP programmer to the iPPS software.

Both 60B4H and 60B5H are general
purpose locations for passing infor­
mation. See information in this section
on creating firmware for displaying
messages on the host.

Used to indicate when powering down
has finished, i.e., when an operation
has been completed. The module firm­
ware should set this location to OIH
when power is turned on. This location
is reset to OOH when the power is shut
off. This information is needed by the
iPDS system, since the iPDS system
does not have a status port (such as
02H in the iUP programmer) to indi­
cate whether power is on or off.
For passing an address between
module and iPPS software: contains
LSB of address.

For passing an address between
module and iPPS software: contains
MOB of address.

For passing an address between
module and iPPS software: contains
HOB of address.

Contains data to be programmed from
the iUP programmer to PROM.
Contains data read from PROM to iUP
programmer.

Indicates operation in process. Used in
off-line keyboard interrupts. See key­
board interrupt routine belqw.

U sed for the lock function. The iPPS
software sets this location to OOH
before calling the reverse socket
check. The module firmware sets this
location to FFH if a lock function is
available or leaves it at OOH to indicate
that no function is available. (This en­
sures backwards compatibility with
older modules.) The iPPS software
then sets this location to 01 before call­
ing the programming routine. This
value indicates to the module that lock
(rather than programming) is requested.
(If programming is requested, the value
is OOH.)

Used in the lock function. The module
firmware uses this location to indicate
which parameter is being passed. On
modules that just lock (like 875IAH),
the lock sequence will never go above I.

230682-001

AP-156

60D2H

60D3H

60FFH

On authenticated PROMs, the sequence
numbers may be greater than 1. This
allows the module, iPPS software, or
user to edit the parameters. The parame­
ters should be stored in a buffer and this
location is used to index the buffer. If
the user responds NO to the EXECUTE
query, module firmware should reset
this location to the beginning (0). The
buffer values (instead of the PROM's
actual values) are then sent back. These

-locations are programmed only when
the user responds YES to the EXE­
CUTE query. Module firmware should
be set to 0 when finished.

Indicates a PROM that is greater than
32K bytes has been edited. (OOH =
NO; OIH = YES).

Indicates whether the module should
be using the programming socket.
There is a bug in the initialization of
this flag, so until iPPS-PDS software
and the iUP programmer firmware are
upgraded, the module firmware needs
to set this location as follows:

(1) For PROMs less than 32K bytes,
set to 00.

(2) For all devices when on-line, set
to 00.

This covers the two conditions in
which the master socket will never be
accessed.
Top of the stack.

Parameters for Major Subroutines - Unless other­
wise noted, the module returns results using the fol­
lowing codes:

OOH means "pass."
12H means "power supply failure."
07H means "abort."

Information on Code Section Routines - The fol­
lowing paragraphs provide information on routines
included in the code section of the PROM program­
ming firmware. Note that the meaning of "iUP pro­
grammer" in these paragraphs depends on the"
system being considered. "iUP programmer" can
mean either iUP-200A1201 A firmware or iPPS-PDS
software.

Blank Check Routine - The iUP programmer passes
no parameters to the module. The module firmware
checks the entire PROM and passes back results in
the B register. (Fail = OSH.) If the PROM fails the
blank check test, the actual value of the PROM is
passed back in 60BBH and the location in 60B7H,
60B8H, and 60B9H. In the off-line mode, any unde­
fined value in B defaults to abort.

Program Routine - The iUP programmer sends the
location to be programmed in 60B7H, "60B8H, and
60B9H, and sends the data to be programmed in

, SOBAH. It also resets 60CFH to OOH. The module re­
turns results in the A register. (Fail = 01.) In the off­
line mode, any undefined results default to abort. If
the programming failed, the actual value of the
PROM is passed back in 60BBH and the location in
60B7H, 60B8H, and 60B9H. The off-line error
message will show the address of the failure and user
data XOR PROM data. In the on-line mode, the
host console will the show failure address, user data,
and PROM data.

Overlay Check Rou'tine - The iUP programmer
passes no parameters. The iPPS software does not
use the overlay check routine; it does its own overlay
check on the portion of PROM to be programmed.

In the off-line mode, data the user wants to program
is in memory starting at 8000H, and the entire
PROM is checked with results sent back in the B
register. (Fail = 01.) The module firmware may also
send back 03H in the B register to indicate that the
iUP programmer should perform the overlay check
(on edited PROMs greater than 32K, the iUP pro­
grammer automatically performs the - overlay
check). Any undefined result defaults to abort.

The iUP programmer uses the following algorithms
to determine whether the new user data can be pro­
grammed over a nonblank PROM location:

I. For PROMs with FFH as a blank state:

IF [(user data AND PROM data) XOR
user data = 0] THEN overlay is possible

2. For PROMs with OOH as a blank state:

IF [(user data XOR PROM data) AND
PROM data = 0] THEN overlay is possi­
ble

Rewrse Socket Check Routine - The iUP program­
mer indicates in 60D3H which socket to check and
initializes 60CFH to OOH. The module sends back re­
sults in the A register. (Fail = 04H.) In the off-line
mode, the iUP programmer only recognizes pass,
abort, and will default to fail for any other unrecog­
nized result. On chips which support the lock
function, 60CFH is set to FFH; on old modules or
for chips that do not support the lock function,
60CFH is left at OOH. Addition of other initialization
tests can be accomplished by adding these tests to
the module reverse socket code. Then, if an error
occurs, the module can send a specific error message
and abort.

Read Routine - The iUP programmer passes the lo­
cation to be read in 69B7H, 60B8H, and 60B9H; a
code for the (master or program) socket that is to be
read from is passed in SKTFLG. The module passes

230682-001

1-50

AP-156

the data read in 60BBH and the result in the A
register. NOTE: There is no failed status, only pass,
abort, or power supply failure. In the off-line mode,
any undefined result defaults to power supply failure.

Lock Routine - The iUP programmer checks
module installation, sets location 60CFH to OOH,
and performs the reverse socket test. If 60CFH still
equals OOH after the reverse socket check, then the
lock function is not available for that module and/or
chip. If, however, 60CFH equals 01H after a reverse
socket check, then the lock function is available;
60CFH will remain at 01H until the command is
finished.

Next (with 60CFH = 01 and60DOH = OOH), the
iUP programmer calls the program subroutine. The
module firmware can then communicate. with the
user by returning (in the A register) one of the
values shown in Table 11. When needed, the HL
register pair points to the text to be displayed (where
the first byte of the message is the length of the
message). Handshaking will continue until the result
returned is OOH or one of the aborts occurs. (During
this process, data sent by the user is contained in lo­
cation 60BAH and data from the PROM or buffer is
contained in 60BBH.) If data values are required,
the module stores these values in a buffer (in the
module firmware) using 60DOH as an index. No pro­
gramming or locking is performed until the user has
answered YES to the EXECUTE query. At this
point, interrupts are disallowed.

Table 11. A-Register Results

Value Meaning

OOH Pass/done and 60DOH = OOH
02H Continue and send message pointed to

by HL registers
04H Send execute query to user
07H Abort (with message)
09H Lock not available/illegal operation
OAH Failed; send "PROM BLANK"

message
OBH Failed; send "LOCK FAILED"

message
OCH Failed, send "LOCK FAILED AT"

message
ODH Illegal parameter value
12H Power supply failure
17H Abort (without abort message)

Verify - On-line verification is performed by iPPS
software using reads. Upon failure, the addresses,
user data, and PROM data are displayed. Off-line

1-51

verification is done by the iUP programmer
firmware. Upon failure, the address and user data or
PROM data are displayed. The user then has the
option of pressing the VERIFY key again to continue
verification or pressing the CLEAR key to abort.

Editing PROMS Larger than 32K Bytes - In the
off-line mode, editing of PROMs greater than 32K
requires a master socket and some special
considerations. The iUP programmer has only 32K
of image RAM; so, on PROMs greater than 32K,
the iUP programmer expects a master PROM in the
master socket. The iUP programmer uses this
master PROM as the source for programming and
overlay checks. (Note that for PROMs larger than
32K bytes, pressing the ROM-to-RAM key does not
load data into the URAM. Thus, in using this
method of expanding the editing features of the iUP
programmer, it is no longer possible to load a 27512
into URAM and then copy URAM to a 27256.)

When the user wishes to edit (off-line) a PROM
greater than 32K, data to be edited is copied in 1 K
blocks to the URAM. (Each lK block copied always
starts on a 1 K boundary.) Up to thirty-one 1 K
blocks can be copied and edited; the last 1 K of
URAM is not available because this space is needed
to manage the editing.

Power-Down Sequence - For current modules,
there is an assumption that the module does not
need to know when the iPPS software is going to
shut off the power supplies; so, the module firmware
cannot find this out. For modules that require a cer­
tain power-down sequence, there are two
possibilities.

• Plan the module to correspond to the iPPS soft-
ware power-down sequence:

1. Port 11 H is set to O.

2. 60B6H is set to O.

3. All bits in port 10H are set to 0 except bit
1 (the upload flag), which is not modified.

4. All power supplies are shut off.

• Module firmware shuts off selected controls in
the appropriate order until there is no danger
when the iPPS software decides to shut off power
supplies. The one check that may be needed is an
off-line check. When off-line, the module always
checks, reads, or programs the entire PROM -
so that if the module is off-line and at the last
address, then the iUP programmer will be power­
ing down.

Creating Firmware for Displaying Messages on
the Host - To send messages to be displayed by the
host, use the following algorithm.

230682-001

AP-156

Check location 60A 1 H to determine whether the
host is the iUP programmer or'iPDS system.

Ifhost is the iUP programmer
Call 7006H to blank the display
Set HL to 6050H (output buffer)
Insert a carriage return as the first character
Fill in the message in the output buffer
Increase the byte count of the message by 1
(for the carriage return) and place the count
in the B register
SetHL = 0
Call 7003

If the host is on-line (i.e., if the host is the iPDS
system)

Set 60B4H = 21 H to indicate message to
iPPS software

-Fill in the message starting at 6054H (output
buffer plus 3)
Insert a carriage return and Iinefeed at the
end of message
Set B register = message length plus 6
Call7000H

(7000H and 7003H are actually jump tables to the
real address. The jump tables are generated by iPPS
software so that updates to iPPS software will be
backwards compatible.)

Power Supply Status - There is no status register
(02H) to read to teIl whether the power supplies
have been turned on in the iPDS. Thus, module
firmware must monitor 60B6H, if the host is an
iPDS. 60B6H is set to 0 upon initialization and when
power supplies are turned off. The module firmware
must set it to 1 when the power supplies are turned
on and set it to 0 when the power supplies are turned
off.

WAIT Routine Difference - The 250 microsecond
WAIT routines in the iUP programmer and iPDS
firmware are inaccurate for short periods of time
and do not match each other exactly. (These rou­
tines were not revised to ensure backwards
compatibility.) For precise timing, the user should
write a loop taking into account the differences be­
tween the iUP programmer and iPDS clocks.

Use of the E Register - The E register is reserved
for use in keyboard interrupts. The module may use
the E register if interrupts are first disabled and a
known value is restored before re-enabling
interrupts. This use of the E register will cause no
key presses to be serviced. It is much safer to leave
the E register alone.

1-52

Keyboard Interrupt Logic - The keyboard interrupt
logic is as follows.

Save PSW and HL .
Save the character read in 60C 1 H
If the iUP progr' mmer is on-line

then if key pressed is the on-line key
then E register = 81 H
else ignore key pressed

else if key pressed is clear display
then E register = 88H

if60CCH < > 0 /*ifoperation is process */
E register = 80H /* value key press*/

Restore PSW and HL
Return

Switched Voltage Programming

There are four switched voltages on the iPDX bus
that are turned on or off under program control. The
iPDS and iUP systems use different I/O addresses
for programming the switched voltages. Under iPPS
software, the plug-in module firmware controls the
switched voltages. Under user-prepared driver
software, separate commands must be included to
turn on or off the required switched voltages.

iUP SWITCHED VOLTAGE PROGRAMMING

The iUP system switches the +5.7VSW, +VLOW,
+VHIGH, and -12VSW supply lines on and off
under program control. The controlling program
must write twice to I/O port 03H to set/clear and
then clock (high to low transition) the switched vol­
tage flip-flops. The first write to I/O port 03H must
have bit 0 (clock) high and bits 1 through 4 set for
the desired program voltages. The second· write to
I/O port 03H keeps bits 1 through 4 at the desired
program voltage level while bit 0 goes low. The
on/off status of each switched voltage line can be
checked by reading I/O port 02H. TheiUP system
turns off a switched voltage supply line whenever an
overcurrent condition is sensed on that line. Figure
10 contains switched voltage control and status bit
definitions for the iUP system.

iPDS™SWITCHED VOLTAGE
PROGRAMMING

The iPDS system switches the + 5.7VSW, + VLOW,
+VHIGH, and -12VSW supply lines on and off
under program control. The controlling program
(either iPPS software or a user-written driver

230682-001

AP-156

program) must write to 110 port E3H in order to
turn onloff the required switched voltages. Figurt;
11 shows the bit definitions for programming the
iPDS switched voltage lines.

User-Written iPDX Bus Drivers

User-written iPDX bus driver programs normally
access plug-in modules designed for use with the
iPDS system. A user-designed iPDX bus plug-in
module can address a wide range of applications.
The iPDX bus driver program for a user-designed
plug-in module can range from simple (e.g., using a
single 110 port to upload PROM data to the iPDS
system), to complex (e.g., using nearly all the 110
ports to control a high-level instrumentation
function).

The 110 ports available to the iPDX bus occupy ad­
dresses 10H through 1 FH in the iPDS 110 space.
Since both an 110 read and an 110 write are associat­
ed with each 110 address, the user has 32 110· ports
available for each driver program. Figure 12 is a
blank chart that can be used to assign 110 addresses
for a specific user driver program. Keep this chart
for reference while writing the driver program.

The driver program must be written in 8085 code.
Use no more than byte-wide transfers of address,
data, and control information. The plug-in module
can operate on information of virtually any bit
length. The 8-bit width of the iPDX data bus imposes
a byte-wide only requirement on all information
transfers over the iPDX bus.

IUP MODULE CONTROL BITS

PORT
ADDRESS
P3H 7 I 6

NOT USED

DACCLOCK

5 4 3 2

IUP MODULE SUPPLY STATUS BITS

PORT
ADDRESS
02H 7 I 6 I 5 I 4 3 2

-
NOT USED

1 ~

'--

CLOCK

-12VSW

+5.7VSW

+VLOW

+VHIGH

1 ~

'-

-12 VSW

+5.75 VSW

+VLOW

+VHIGH

1398

Figure 10. iUP Switched Voltage Control and Status Bit Definitions

1-53

230682-001

PORT
ADDRESS
E3H r '7 I 6 I 5

AP-1.56

4 3 2 1 ~ I
~

c LOCK

-
-VLSW

+ VSW

+ VLSW

+ VHSW

1401

Figure 11. iPDS ™ Switched Voltage Control Bit Definitions

1·54

230682-001

AP-156

1/0 Port 1/0 Write 1/0 Read
Address Active Active

10H

11 H

12H

13H

14H

15H

16H

17H

18H

19H

1AH

1BH

1CH

1DH

1EH

1FH

Figure 1 2. Chart of iPDX Bus 1/0 Address Assignments

230682-001

1-55

Ne~d2
Development Systems

i~~TWORK DEVELOPMENT SYSTEM II (NOS-II)
iMDX-450

NOS-II is a local area network (LAN) of development
systems which share resources coordinated by the
Network Resource Manager (NRM). The NRM and
workstations are interconnected using the 10 mega­
bit/second Ethernet technology. All existing Intel de­
velopment systems can be upgraded to become
NOS-II workstations. In addition, low-cost software
workstations are available.

This distributed processing LAN provides:

• Central, Shared Mass Storage Using
New or Existing Winchester and Hard
Disk Subsystems

• Efficient, Intelligent Archival Facilities
on Convenient Cartridge Tape Media.

• A Spooled Line Printer Shared Among
All Workstations .

• Support for All EXisting Intellec®
Development Systems as Network
Workstations

• Support for Low Cost ISIS Cluster
Software Workstations

• A Protected Hierarchical File System

• Job Queues that Allow Users to Export
Jobs to Other Available Network
Workstations

NOS-II provides the ideal environment for microcom­
puter development. Software and hardware engi­
neering tools are used most effectively in conjunc­
tion with the project management aids provided in
this networked host environment. Development
equipment cost and product development time are
reduced.

NOS-II hosted tools are optimized for the following
tasks:

• Project Organization

• Software Version Control

• Automated Software System
Generation

• Electronic Mail Communication

• Source Code Creation and Compilation

• High-Level Language Debugging

• Hardware/Software Integration

• In-Target Software Debugging

The entire spectrum of Intel microcomputer architec­
tures is supported by complete sets of tools: pro­
gramming languages, software debuggers, In-circuit
emulators, PROM programmers, and system tools.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. August 1984
®Intel Corporation, 1984. Order Number: 210937-004

2-1

NOS-II

OVERVIEW

NOS-II is a distributed processing LAN optimized for
development of microcomputer-based products. It
addresses the needs· of software engineers, hard­
ware engineers, and engineering management. by
providing the base environment for development
tools and management aids. NOS-II has the capacity
to expand to create a network tailored to the needs
of any project team.

FUNCTIONAL DESCRIPTION

The Network Resource Manager (NRM) manages all
workstation requests for network resources. NRM
tasks include the servicing of workstation file r.e­
quests from the central hierarchical file system,
spooling and printing of workstation print requests,
routing of electronic mail messages, and queuing
and assignment of remote job execution requests.
The NRM is also used to perform network mainte­
nance functions such as user name creation, config­
uration selection, back-up of the central file system,
and file system maintenance.

The NRM and workstations communicate via iNA
(Intel Network Architecture), which is based on Eth­
ernet communications protocol. The physical Ether­
net connections can be made through a low-cost
IntellinkTM module, through transceivers and Ether­
net coaxial cable, or through some combination of
these options.

All existing Intellec® Oevelopment Systems, Series
II, III, IV or Model 800, can be used as NOS-II work­
stations. The workstations retain all of their stand­
alone fUnctions and, in addition, can access all of
the NOS-II shared resources and network services.

File System

The NRM maintains a hierarchical file system, allow­
ing a logical and systematic organization of files.
This file system is shared by all network users, and
the access to an individual file or directory is con­
trolled by its creator and the Superuser (system ad­
ministrator.) A centralized archival facility is avail­
able, allowing convenient backup of files stored on
the shared disks.

Intelligent Archival

The NOS-II ARCHIVE program provides selective ar­
chival of files in the shared hierarchical file system. It
can incrementally create backup copies of any se­
lected group of files, based on owner or pathname
information and/or the last time files were accessed
or modified. Regular use of the· ARCHIVE program

2-2

to store files onto tape cartridges or other secondary
storage devices ensures security of critical project
files.

Distributed Job Control

NOS-II offers distributed processing with local work­
station resources and remote network resources.
Queues are created at the NRM, where batch jobs
are "exported" from some workstations, and "im­
ported" by others for execution. This allows other­
wise idle workstations to be utilized, and gives 8-bit
workstation users access to 16~bit capabilities. In
addition, the Series IV, with its multitasking capability
can "import" jobs in one partition while continuing
interactive user operations in the other.

Print Spooling

A user-supplied line printer may be attached to the
NRM. This allows the line printer to be used as a
shared network resource, freeing up workstation
processor time and eliminating the need to supply
one printer per workstation. Any network user can
send print jobs to· the spooler queue at the NRM,
where they are printed on a FIFO basis.

Tools

All current Intel development tools such as assem­
blers, high-level language compilers, linkers/loca­
tors, software debuggers, and in-circuit emulators
can be used on NOS-II workstations. In addition,
there are two new tools designed specifically to suit
the needs of multi-engineer projects utilizing the
NOS-II development environment.

PROGRAM MANAGEMENT TOOLS

Intel's Program Management Tools (PMTs) provide
the essential services to efficiently manage large
software-intensive development projects. PMTs de­
crease the amount of time spent on tracking pro­
gram changes and manually generating software
systems, thereby giving engineers more time for
software design, development, and testing.

The PMTs consist of "Software Version Control Sys­
tem" (SVCS) and an automated software generation
facility (MAKE).

SVCS controls and documents software changes for
all file types. SVCS handles storage and retrieval of
different versions of a given module, controls update
privileges, prevents different users from making
changes independently, and requires all changes to
be thoroughly documented by recording who made
what change, when, and why.

inter NOS-II

MAKE produces the specification of a "minimum
work" job required to generate a new system. This
job (i.e. a SUBMIT file) typically includes compiles
and links of the latest versions of specified source
and object modules. If a newer source module exists
for any specified object module, MAKE will specify a
compile of this module, replacing the older module
in the completed program. Unnecessary links and
compiles are eliminated. MAKE does the minimum
work required to ensure consistent, up-to-date soft­
ware thus saving many hours of compiles and links.

The close relationship between SVCS and MAKE
helps simplify the overall job of software control. For
example, the very latest version of a source module
may not be stable enough to be included in a soft­
ware generation. A less functional, but more reliable
version may exist. Since SVCS keeps unique ver­
sions distinct, an SVCS module containing the more
stable version may be specified for use by MAKE.

ELECTRONIC MAIL

Electronic Mail enables users to send and receive
messages and files between any nodes on the NOS­
II. Mail maintains a directory called the "post office"
which contains user mailboxes (accessible to only a
single user), group mailboxes (aCCessible by a se­
lected group of users), and bulletin board mailboxes
(accessible by any user). Users can send interactive­
ly created messages, or text or object files, to any
mailbox type.

Users can interactively read their mail, save mes­
sages in a file, forward messages to other users, and
reply to message senders. Or, if they prefer, users
may request a simple mailbox summary which in­
cludes, for each message, the sender's name, date
sent, urgency, and message type (text or object).

NOS-II PMTs and Mail execute on all existing NOS-II
workstations, including Series II, Series III, Series IV,
Model 800, and ISIS Cluster.

HARDWARE COMPONENTS

Network Resource Manager

The NRM is a free standing unit containing thirteen
MULTIBUS@ card slots, an integrated 5-%" flexible
disk drive, and an optional cartridge tape subsystem.
Processors, memory, and the Ethernet Controller
(iSBC-550) occupy six of the card slots. Some of the
remaining card slots are used for. the various mass
storage device controllers.

The NRM is delivered with a console terminal, lntel­
link module, 50 foot transceiver cable, 10 foot

2-3

shielded printer cable (with Centronics parallel inter­
face), and 35Mb peripheral-box support accesso­
ries. The iNOX Operating System, Program Manage­
ment Tools, and Electrical Mail software and docu­
mentation are also provided.

IntelUnkTM Module

The lntellink module is a communication device
used to connect all NOS-IJ components (the NRM
and workstations) within a local proximity. It serves
as a Ethernet local station concentration· and pro­
vide.s full Ethernet functionality.

Each lntellink module has nine transceiver ports for
connecting workstations and the NRM (via trans­
~eiver cables only), plus one Ethernet port for con­
necting to Ethernet cable (via transceiver and trans­
ceiver cable) or to a second lntellink (via the adapter
included and a transceiver cable.)

Upgrades

Creating a network in your development environ­
ment is accomplished by inserting communication
board upgrades in your existing development sys­
tems, and by adding a Network Resource Manager.
The resources of the network can be incrementally
expanded as your development needs increase.
Workstations can be added, mass storage in­
creased, and new software tools integrated.

SYSTEM CAPACITY

NOS-II has been designed to efficiently handle the
needs for mass storage expansion, increase in the
number of users, and expansion of the development
laboratory physical size. These needs are met in the
following ways:

Storage

NOS-II users may add winchester disk storage ca- .
pacity to the NRM using peripheral attachments.
Each peripheral- attachment can contain two 84
megabyte 8" winchester drives. The NRM can sup­
port up to two peripheral attachments.

In addition, up to two existing Model 740 Hard Disk
Subsystems can be connected to the NRM for use
as shared network storage devices. One Model 750
35Mb Winchester Drive Subsystem can be attached
to the NRM (if no 35 megabyte peripherals· are at­
tached.)

An optional Cartridge Tape Subsystem can be in­
stalled in the NRM chassis to provide convenient
back-up onto standard 12 megabyte tape cartridges.

intJ NOS-II

Users

NOS-II allows multiple users to access the system
via workstations that are attached to NRM via Ether­
net technology. Up to 16 Intellec workstations can
be incorporated into NOS-II. A maximum of 28 active
users can be supported on the network, though the
feasibility of such a configuration varies with network
loading and workstation types.

Geography

NOS-II can be expanded to connect local develop­
ment groups in different locations throughout a
building. Within a 50-meter radius, up to eight Intel­
lec workstations can be attached to the NRM using
a single Intellink module. Within a 75-meter radius, a
total of sixteen Intellsc workstations can be attached
using two Intellink modules. Alternatively, or in con­
junction with one or more Intellink modules, Ethernet
coaxial cable and transceivers can be used to con­
nect any or all of the workstations and the NRM
along a maximum of 1 kilometer of Ethernet coax.

WORKSTATIONS

Intellec® Workstations

All Intellec development systems produced since
1975 can be used as NOS-II workstations. These
include: Model 800, Series II, Series III, and Series
IV.

Oevelopment systems must be upgraded with the
communication boards, cables, and the appropriate
software. See Ordering Information for the product
code of the kit that corresponds to your present In­
tellec System.

Low-Cost Workstations

ISIS Cluster Board Packages provide additional, in­
expensive workstations on NOS-II. Each Cluster
Package includes an 8085 CPU, 4K of ROM (boot­
strap and dianostics), and 64K of RAM. The Cluster
Board must be hosted in an Intellec workstation (Se­
ries II, Series III, Series IV, or Model 800 worksta­
tion) with which it shares the power supply and net­
work communication boards.

When attached to the RS232C port of a user-sup­
plied terminal, an ISIS Cluster workstation will boot
onto the network and provide an ISIS environment
which can run all Intellec-supported 8-bit software
and EXPqRT jobs to other network resources.

2-4

CONNECTION TO OTHER EQUIPMENT

iRMXTM System Interface

iRMX-based microcomputer systems (86/330, 86/
380, 86/310) can be connected directly to NOS-II
using the iNA-955 NOS-Ii/iRMX Link software pack­
age and the iSBC-550 Communication Board Pack­
age. iRMX system developers can use the develop­
ment system environment of NOS-II to develop their
application and then download at Ethernet speed. to
the iRMX target system(s). The iRMX Link also pro­
vides a programatic interface to NOS-II, which al­
lows iRMX OEMs to develop customized network
environments. .

VAX* Interfaces

The iMOX-394 and iMOX-395 Asynchronous Com­
munication Link products can be used to connect
VAX/VMS and VAX/UNIX general computing envi­
ronments to the NOS-II development environment.
The Communication Link operates via a serial con­
nection to any NOS-II workstation and allows files to
be uploaded or downloaded between the VAX and
NRM mass storage devices.

Contact your local Intel Sales Office for information
about the Ethernet-based link for VAX/VMS.

iPDSTM Development System, IBM-PC,
and Other Interfaces

A program available from the INSITE User's Pro­
gram Library can be used to connect the IBM-PC
and the iPOS Oevelopment System to NOS-II. The
interface is composed of an ISIS Cluster board
which is connected via RS232C to the PC or iPOS,
and via Ethernet to the NRM. Source code is provid­
ed, and can be adapted to suit other systems. .

SUPPORT

Site Preparation/Configuration Guide

A site preparation manual, the "NOS-II Configuration
and Ordering Guide" (order # 121969) is available.
The manual assists the future NOS-II owner in both
configuring a network suited to his needs and in pre­
paring the physical area for the new system.

• VAX is a registered trademark of Digital Equipment Corpo­
ration

inter NOS-II

Installation/Warranty

Within Intel service areas, on-site installation is cur­
rently included in the price of the Network Resource
Manager. In addition, 90-day on-site maintenance,
including parts and labor is currently included. Serv­
ice contracts for periods beyond 90 days are cur­
rently available. Installation, warranty, and service
contracts for locations outside normal service areas
are currently available.

The NRM also currently includes 90 days of initial
support, consisting of software updates/releases (if
available), and subscription services (telephone hot­
line support, software performance report service,
and technical reports.) To receive this support, the
customer must mail in the software registration card.
Additional software support beyond 90 days is cur­
rently available.

On-Site Training/Technical Assistance

Intel training courses, Field Application Engineers,
and System Engineers are available to assist the
NOS-II customers in maximizing the benefits of the
system. Contact your local Intel representative re­
garding the services currently available.

SPECIFICATIONS

System Overview

ELECTRICAL CHARACTERISTICS

AC Power Requirement (for NRM with up to 2 pe-
ripheral attachments): .

175V - 260V
50Hz or 60Hz
15A (maximum).

Control Terminal is available for:
11 0/120V, 50/60Hz, 2A (max)
or 220/240V, 50/60Hz, 1A (max)

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature: 5 C-35 C
Humidity: 10%-80% non-condensing
Non-Operating Temperature: -10 C-55 C
Electrostatic Discharge (ESD) Tolerance: 8KV·

• Any peripherals added to the system that do not meet
Intel's ESD specification will void the ESD portion of the
warranty.

Network Resource Manager (NRM)

PHYSICAL CHARACTERISTICS

Width:
~ Height:

16" (40 cm)
32" (80 cm)
31" (78 cm)
110 Ib (50 kg)

2-5

Depth:
Weight:

Flexible Disk Drive (integrated in NRM)

Type: 5-%" mini-floppy
Density:
Capacity:

double sided, double density
656 Kbyte

Cartridge Tape Subsystem (integrated
in NRM)

SPECIFICATION

Type:
Density:

%" tape DC300XL data cartridge
6400 BPI

Capacity: 12 Megabytes
(formatted, using 4K records)

Recording Technique: CGR
Record Size: 1-16 Kbytes

PERFORMANCE

Tape Transfer Rate:
Read/Write Speed:
Fast Tape Motion:
Start/Stop:

24Kb/sec
30"/sec
70"/sec
25 ms @ 30" /sec
75 ms @ 70" /sec

WINCHESTER SUBSYSTEM
("peripheral attachment")

PHYSICAL CHARACTERISTICS

Width: 6" (16 cm)
Height: 32" (80 cm)
Depth: 31" (78 cm)
Weight: 90 Ib (41 kg)

DRIVE SPECIFICATION

Type: Winchester Sealed Disk
Capacity: 84 Megabytes (unformatted)

73.92 Megabytes (formatted)
Density: 9950 bit/inch
Recording Technique:
Bytes/Sector:
Sectors/Track:
Tracks/Surface:
Recording Surfaces:

MFM
512
35
589
7

inter
DRIVE PERFORMANCE

Disk Transfer Rate: 5 Mbits/sec
Disk Access Time:

Average 20 ms
Full Stroke

Rotational Speed:
40 ms
3600 rpm

Control Terminal

PHYSICAL CHARACTERISTICS

Logic Box: 19" W x .14" D x 3" H
(48 cm x 36 cm x 7 cm)

Video Module: 13" W x 14" D x 10" H
(33 em x 35 cm x 25 cm)

Keyboard: 19" W x 8" D x 3" H
(48 cm x 20 em x 7 cm)

Total Weight: 32 Ibs. (15 kg)

HOST INTERFACE

Type:
Speed:

CRT

Screen:
Display:

Format:

Cursor:
Characters:

RS232C
11 0-19.2K baud

12" diagonal tilt & swivel
phosphor, P31, green
non-glare faceplate
2 pages (3840 bytes)
24 lines/page
80 characterslline
blinking underscore

7 x 9 matrix
ASCII character set

KEYBOARD (DETACHABLE)

Keys:
Types:

103
alpha-numeric typewriter block
numeric keypad
cursor control & editing block
16 function keys

IntellinkTM Module

PHYSICAL CHARACTERISTICS

Width:
Height:
Depth:
Weight:

14" (36 cm)
7.5" (19 cm)
5.5" (14 cm)
Sib (2.3 kg)

NOS-II

2-6

INTERFACES

Transceiver Cable Ports: 9
Ethernet Ports: 1
Adapter: for Ethernet port (to connect

to transceiver port on second
Intellink module)

SOFTWARE

iNDX Operating System (including support for Series
IV workstations)

ISIS III (N)/III (C) Operating System (for Series II,
Series III, Model 800, and ISIS Cluster workstations)

Program Management Tools (8-bit & 16-bit versions)

Electronic Mail (8-bit & 16-bit versions)

NRM Diagnostics

DOCUMENTATION

(Installation and Checkout Manuals are also provid­
ed.)

NRM:

NDS-II Network Development System Overview
(#121761)

NDS-II Network Resource Manager User's
Guide (# 134300)

Series II, III, Model 800 Workstations:

NDS-II ISIS-III (N) User's Guide (# 121765)

Series IV Workstations:

Intellec® Series IV Operating and Programming
Guide (# 121753)

ISIS Cluster Workstations:

NDS-II ISIS-III (C) User's Guide Supplement
(#122098)

Software:

NDS-II Electronic Mail User's Guide
(# 122146-001)

A User's Guide to Program Management Tools
(#121958)

intJ NOS-II

ORDERING INFORMATION:

Network Resource Managers (see
Table 1)

IMDX-450-AOOO NOS-II NETWORK RESOURCE
MANAGER

Includes 220V NRM Processor Chassis, 110V
System Console Terminal, Intellink, 50-meter
transceiver Cable, 10-foot Printer Cable, Ca­
bling for One Model 740 Hard Disk and/or one
iMDX-7S0 3SMb Winchester Disk, System Soft­
ware and Documentation, Program Manage­
ment Tools, and Electronic Mail.

IMDX-450-BOOO NOS-II NETWORK RESOURCE
MANAGER

Includes 220V NRM Processor Chassis, 220V
System Console Terminal, Intellink, SO-meter

transceiver Cable, 10-foot Printer Cable, Ca­
bling for One Model 740 Hard Disk and/or one
iMDX-7S0 3SMb Winchester Disk, System Soft­
ware and Documentation, Program Manage­
ment Tools, and Electronic Mail.

IMDX-450-AT84 84Mb NOS-II NETWORK
RESOURCE MANAGER

Includes iMDX-4S0-AOOO Network Resource
Manager plus 84Mb Winchester Subsystem
and 12Mb Cartridge Tape Subsystem.

IMDX-4.50-BT84 84Mb NOS-II NETWORK
RESOURCE MANAGER

Includes iMDX-4S0-8000 Network Resource
Manager plus 84Mb Winchester Subsystem
and 12Mb Cartridge Tape Subsystem.

Table 1. Network Resources Managers

Order Code
NRM .Termlnal

Voltage

iMDX-450-AOOO 220V

iM DX-450-BOOO 220V
iMDX-450-AT84 220V
iMDX-450-BT84 220V

NRM Peripheral Upgrades (see Table
2)

IMDX-771-B3 1ST 84Mb PERIPHERAL
ATIACHMENT FOR NRM.

Voltage

nov
22,OV
nov
220V

Includes one 84Mb Winchester Disk Drive con­
figured as drive 0, cabling to support drive 1,
plus the 84Mb Winchester Controller.

IMDX-771-B2 2ND 84Mb PERIPHERAL
ATIACHMENT FOR NRM.

Includes one 84Mb Winchester Disk Drive con­
figured as drive 2, and cabling to support drive
3.

Winchester Tape
Subsystem Subsystem

not included not included
not included not included
84 megabytes . 12 megabytes
84 megabytes 12 megabytes

IMDX-772 ADD-IN 84Mb DRIVE FOR NRM.

Includes one 84Mb Winchester Disk Drive, to
be used as drive 1 or 3 in an iMDX-771 Periph­
eral Attachment.

iMDX-452 CARTRIDGE TAPE SUBSYSTEM
FOR NRM.

Includes Cartridge Tape Drive, Controller, one
standard tape cartridge, and accessory kit. Re­
quires iMDX-3008 900 Watt Power Supply for
NRMs with serial numbers below 740.

Table 2. NRM Peripheral Upgrades

Order Code Voltage Drive Type

iMDX-771-B3 220V 84Mb Winchester
iMDX-771-B2 220V 84Mb Winchester
iMDX-772 .. 84Mb Winchester
iMDX-452 .. Cartridge Tape

• controlled by existing 84Mb controller in NRM
•• operates in 110V or 220V systems
... second drive in -771-B3/-B2 (or -A1/-B1) chassis
.... fits into NRM chassis

2-7

Drive # Controller Chassis

0 included included

3 . included

2or4
n/a included

inter NOS-II

Software Workstations Cables & Accessories

IMDX-580 ISIS CLUSTER BOARD PACKAGE IMDX-457 10 METER TRANSCEIVER CABLE •.
FOR SERIES II, SERIES III, OR MODEL 800.

Includes processor board, cables, and docu­
mentation. Must be installed on NOS-II in a
Model 800, Series II, or Series III workstation
and attached to a user-supplied terminal. ,

IMDX-581KIT ISIS CLUSTER BOARD PACKAGE °
FOR SERIES IV.

Includes iMOX-580 and iMOX-582. Must be in­
stalled on NOS-II in a Series IV (or Model 800,
Series II, or Series III) workstation and attached
to a·user-supplied terminal.

IMDX-582 ISIS CLUSTER UPGRADE KIT FOR
SERIES IV.

Includes internal' cable, mounting hardware,
and documentation required to install an exist­
ing iMOX-580 ISIS Cluster Board ina Series IV
host.

Workstation Kits

IMDX-455 NDS-II WORKSTATION UPGRADE
KIT FOR SERIES 11/85, SERIES III, AND MODEL
800.

Includes network communication board set,
software, and documentation. Transceiver ca­
bles must be ordered separately.

iMDX-4551 NDS-II WORKSTATION UPGRADE
KIT FOR SERIES 11/80.

Includes iMOX-455 plus 8085-based CPU
board. Transceiver cables must be ordered
separately.

IMDX-456 NDS-II WORKSTATION UPGRADE
KIT FOR SERIES IV.

Includes network communication board set and
documentation. Transceiver cables must be or-
dered separately. °

2-8

IMDX-458 50 METER TRANSCEIVER CABLE.

iMDX-3016F-1 25 METER ETHERNET COAX
ASSEMBLY.

Includes 25 meter (76.8 feet) teflon coaxial ca­
ble segment, terminators, and coupler for join­

, ing additional coax segments.

iMDX-3016F-2 100 METER ETHERNET COAX
ASSEMBLY.

Includes 100 meter (383.9 feet) teflon coaxial
cable segment, terminators, and coupler for
joining additional coax segments.

IMDX-3015F ETHERNET TRANSCEIVER KIT
FOR TEFLON COAX.

IDCM-911;1 INTELLINK MODULE.

Contains 9 transceiver cable ports, plus Ether­
net port for optional connection to transceiver
or second Intellink (adapter included.)

MDS·-506 HARD DISK CABLE KIT FOR
SECOND MODEL 740 ON°NRM.

Connects second Model? 40 Hard Disk Subsys­
tem to first Model 740, to allow shared NOS-II
usage of these mass storage devices. Includes
internal cable and I/O cable. (Converts MOS-
740 into MOS-743.)

IMDX-450-U 11 110V TO 220V UPGRADE KIT
FOR NRM AND ONE PERIPHERAL
ATTACHMENT.

• MDS is an ordering code and is not used as a product
name or trademark. MDS is a registered trademar~ of Mo­
hawk Data Sciences Corporation.

iMDX-580/581
ISIS CLUSTER BOARD PACKAGES

• Converts Spare Slots in Series II, III, IV, or
Model 800 Workstations into Additional
Workstations.

• Up to Seven Additional NOS-II
Workstations May Reside in One
Development System Host

• Utilizes the Powerful ISIS-III(C)
Operating System.

• Supports all 8-Bit ISIS-Based Software
Development Tools including the
AEDIT-80, Text Editor, Program
Management Tools, and NOS-II
Electronic Mail. '

• Support~ 8-Bit Macroassemblers and
High-Level Languages.

• Supports 16-Bit Development with local
ASM-86 and PLlM-86, and via NOS-II
Distributed Job Control.

• Provides Execution Environment for
808S-Based Application Programs.

• Compatible with a Variety of 9.6K or 19.2K
Baud Terminals.

The ISIS Cluster Board Package is an NOS-II upgrade that cost effectively supports incremental software
workstations on the network, Each Cluster board provides an 8085 CPU, 4K of ROM and 64K of RAM, and
must reside in a Series II, Series III, Series IV, or Model 800 development system host. When attached to a
user-supplied terminal, an ISIS Cluster workstation will boot onto the NOS-II and provide an ISIS
environment which allows users to log on to the network and run Intellec®-supported 8-bit software, as well
as "export" jobs to other network resources,

Figure 1. Example of an NOS-II Configuration

SHARED MASS
STORAGE

Intel Corporation Assumes No Responsibility forthe Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other
Circuit Patent Licenses are Implied, Information Contained Herein Supercedes Previously Published Specifications of These Devices
from Intel. MAY 1984
© INTEL CORPORATION, 1983 ORDER NUMBER: 210938-003

2-9

iMDX-580/581
ISIS Cluster Board Packages

FUNCTIONAL DESCRIPTION

Summary: The ISIS Cluster board is a single­
board computer centered around an 8085AH-2
CPU running at 4.0 MHz. 64K bytes of dual-ported
RAM are provided on-board, along with 4K of ROM
preprogrammed with a bootstrap program and
self-test diagnostics.

The ISIS Cluster MULTIBUS® interface provides
data and address interface latches. The serial 1/0
interface provides a full dup!ex RS232C serial data
communications channel that can be programmed
to handle serial data transmission at 19.2K or 9.6K
baud. Software reset may be accomplished using
the BREAK key on the terminal.

A block diagram of the ISIS Cluster board is shown
in Figure 2.

Central Processing Unit

Intel's powerful 8-bit 8085AH-2 CPU running at
4.0 MHz is the central processbr for the Cluster
board. It is fully software compatible with all 8-bit
ISIS-based languages and utilities which run on
the Intellec® Model 800, Series 11/80, Series 11/85, or
Series liE.

System ROM
4K bytes of non-volatile read only memory are in­
cluded on the Cluster board using Intel's 2732A
EPROM. Preprogrammed with the ISIS Cluster
Boot program, the system ROM provides boot-up
and diagnostic capabilities, and a generalized 1/0
system.

The Boot program communicates with the oper­
ator via an interactive console. Upon reset of the
Cluster system, execution is handled by the boot­
strap PROMs which overlay 4K bytes of system
RAM, initialize Cluster board devices, run self-test
diagnostic, and perform a communication hand­
shake before prompting the user.

RAM
The Cluster board uses eight 2164 RAMs and a
dual port RAM controller to provide 64K of dual­
ported dynamic readlwrite memory. Slave RAM
gecode logic allows extended MULTI BUS address­
ing with a 1 Megabyte address space, so that RAM
accesses may occur from either the Cluster board
or from the network communication boards inter­
acting via the MULTI BUS interface. Since on-board

. RAM accesses do not require MULTI BUS ac­
cesses, the bus is available for other concurrent
operations. Dynamic RAM refresh is accom­
plished automatically 'by the Cluster board.·

DATA/ADDRESS/CONTROL BUS

MULTIBUS®

Figure 2. Block Diagram of the ISIS Cluster Board

AFN-210938C

inter iMDX-580/581
ISIS Cluster Board Packages

Serial 1/0
A programmable communications interface using
the Intel 8251A USART (Universal Synchron·
ous/Asynchronous Receiver/Transmitter) is on the
Cluster board, and provides a full duplex RS232C
serial communications channel. The transmit and
receive lines are link exchangeable to enable a
data set or data terminal to be used with the
Cluster board. The board is pre·set for 96()() baud,
but may be jumpered for 19.2K baud.

Programmable Timers
The interval timer capability is implemented with
an Intel 8254 Programmable Interval Timer .. The
8254 includes three 16·bit BCD or binary counters.
The first two counters are not used. The output
from the third counter is applied to the serial I/O in·

, terface and provides the baud rate frequency for
serial communications.

Interrupt Controller
The Cluster board also includes an Intel 8295A
Interrupt Controller. It is pre·configured with Inter·
rupt 1 triggered by the BREAK key on the user·sup·
plied terminal.

MULTIBUS® Interface
The Cluster board is a complete computer on a
single board, capable of supporting a variety of
8·bit development tools. For applications requir·
ing additional processing capacity, the Cluster
board provides full MULTIBUS arbitration control
logic. The bus arbitration logic operates synchron·
ously with a MULTIBUS clock. All memory refer·
ences made by the CPU refer to the on-board RAM.
The Cluster board cannot access devices local to
the host development system, but all of the shared
network resources are accessible.

SPECIFICATIONS

CPU: 4.0 MHz 8085AH·2
MEMORY:

On-board RAM, 641< bytes, dual·ported
On·board ROM, 4K bytes preprogrammed with
the ISIS Cluster Bootstrap Program

Interfaces

SERIAL I/O:

BUS:

TIMER:

RS232C compatible, program·
mabie interface
MULTI BUS compatible, TTL
level
3 programmable 16·bit BCD or
binary counters, 1 used as baud
rate timer

2·11

The Cluster board communicates with the Net­
work Resource Manager via the MULTIBUS inter­
face and the network communication board set in
the host development system.

System Configuration
Each ISIS Cluster board requires one master slot in
an Intellec cardcage. The host development system
may be a Model 800, Series IV, Series II or liE, or
Series III or IIIE with an optional expansion chassis.
A Series II or liE with an expansion chassis will
support a maximum of seven ISIS Cluster work­
stations, since the Integrated Processor Card and
Network Communication boards occupy three of
the ten cardcage slots. A Model 800 will support a
maximum of 21SIS Cluster workstations, and Series
IV workstation will support a maximum of 4 ISIS
Cluster workstations. Each ISIS Cluster workstation
counts as one additional network wor'kstation, so
the maximum number of Cluster workstations on a
network is constrained only by the total number of
users supported by the NOS-II Network'Resource
Manager. NOS-II iNOX Release 2.8 or later will
support ISIS Cluster workstations in any Intellec
development system host, including the Series IV.

Programming Capability
The Cluster workstation's ISIS environment sup­
ports all 8-bit Intellec-supported ISIS-based soft­
ware, including the programmer-oriented AEDIT-80
text editor, PMT-80 Program Management Tools,
NOS-II Electronic Mail, 8-bit macroassemblers, and
PUM, FORTRAN, PASCAL, and BASIC high-level
8-bit languages. 16-bit development is supported by
the ASM86 cross assembler and the PL/M-86 cross
compiler, or by "exporting" any 16-bit job to a 16-bit
workstation for execution.

INTERRUPTS: 1 interrupt level available to user
via the BREAK key on the
terminal

Physical Characteristics

Two-sided printed circuit board fits into Intellec
cardcage:
Length: 12 inches
Width: 6.75 inches
Depth: 0.062 inches
Internal flat ribbon cable connects ISIS Cluster
board edge connector to the development system
rear panel.
External 10·foot RS232C compatible cable con·
nects the development system rear panel to a
user-supplied terminal.

AFN-210938C

in1er iMDX-S80/S81
ISIS Cluster Board Packages

Electrical Characteristics

DC Power Requirements (from Mainframe)

Vcc = +5V, 4.5 Amps
VDD = +12V, 25 mA
VAA = -12V, 23 mA

Environmental Specifications
Operating Temperature: O°C to 55°C
Humidity: up to 90%, without condensation

Documentation
ISIS Cluster Installation, Operation, and Service
Manual (#122100)

Series IV iMOX-580 and iMOX-582 ISIS Cluster
Board Package Installation, Operation, and Service
Manual (#134650)

NOS-IIISIS-III(C) User's Guide Supplement
(#122098)

Equipment Required
Recommended Terminals· (one per ISIS Cluster
Board)

The following terminals meet Intel environmental
specifications and are recommended for use with
the ISIS Cluster Board Package:

ZENTEC, MODEL ZMS-35, COBRA

The following terminals have been tested and found
to be interface compatible with the ISIS Cluster
board; configuration· files are provided for these
terminals. However, they do not meet Intel environ­
mental specifications: adverse electrostatic condi­
tions may produce unpredictable screen output,
requiring terminal reset.

Hazeltine, Model 1510
Televideo, Model 910+, 925, 950
Lear Seigler, Model ADM 3A
Adds Viewpoint, Model 3A+
Qume, Model 102

* All of the recommended terminals run at 9.6K or
19.2K baud.

CAUTION: Other RS232C-compatible devices may
not meet Intel environmental specifications, and
could degrade overall system performance:

Host Development System (requires one open 6.75
x 12 in. master slot in system cardcage per ISIS
Cluster board):

Series 11/85 or Series II E*
Series III or Series IIiE'
ModeI800**
Series IV

*with optional Expansion Chassis
*'supports maximum of 2 ISIS Cluster Boards

Workstation Upgrade Kit (one per host system):
iMOX-455 for Series II, III, or Model 800
iMOX-456 for Series IV

NOS-II Network Resource Managerwith Winchester
or Hard Disk Mass Storage

Software Required
For Series II, III, or Model 800 Host:

NOS-II iNOX Operating System, Release 2.0 or
later
ISIS-III(N)/lil(C) Operating System, Version 2.0
or later*

For All Development System Hosts,
Including Series IV:

NOS-II iNOX Operating System, Release 2.8 or
later
Series IV iNOX Workstation Operating System,
Release 2.8 or later**
ISIS-III(N), version 2.2 or later*'
ISIS-III(C), version 2.2 or later**
*included with NOS-II Release 2.0
**included with NOS-II Release 2.8"

QRDERING INFORMATION

Part Number Description
iMDX-580 ISIS Cluster Board Package for

Series II, Series III, or Model 800
-includes processor board, cables,
and documentation. Must be in­
stalled on NOS-II in a Model 800,
Series II or Series III workstation
and connected toa user-supplied
terminal.

iMDX-581 KIT

iMDX-582

2·12

ISIS Cluster Board Package for
Series IV - Includes iMOX-580
and iMOX-582. Must be installed
on NDS~II in a Series IV (or Series
II, III, or Model 800) workstation
and attached to a user-supplied
terminal.

ISIS Cluster Upgrade Kit for
Series Iv -Includes internal cable,
mounting hardware, and docu­
mentation required for installing
an existing iMOX-580 ISIS Cluster
Board in a Series IV host.

AFN-210938C

infel'
INTEL ASYNCHRONOUS COMMUNICATIONS LINK

• Communications software for VAX·
host computer and Intel
microcomputer development systems

• Compatible with VAX/VMS· and UNIXt
operating systems

• Supports Intel's Model 800, Intellec®
Series II, Series III, Series IV and
iPOSTM microcomputer development
systems

• Supports NOS-II workstations

• Allows development system console
to function as a host terminal

• Operates through direct cable
connection or over telephone lines

• Software selectable transmission rate
from 300 to 9600 baud

Intel's Asynchronous Communications Link (ACL) enables one or more Intel microcomputer development
systems to communicate with a Digital Equipment Corporation VAX family computer. The link supports Intel
Model 800, Intellec Series II, Series III, Series IV or iPDSTM development systems and NOS-II workstations.
Programmers can use the editing and file management tools of the host computer and then download to
the Intel microcomputer development system for debugging and execution. Programmers can use their
microcomputer development system as a host terminal and control the host directly without changing terminals.

WORK

STATION

INTELLECiil I SERIES·1II8S

ETHERNET·'

WORK

STATION

INTELLECiil SERIES IV

VAX
ASYNCHRONOUS

CIRCUIT

WORK

STATION

INTELLECiil I SERIES·III

WORK

STATION

MODEL 800

NRM

NOS-II Example

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.
'VAX and VAXNMS are trademarks of Digital Equipment Corporation.
tUNIX is a trademark of Bell Laboratories.
"Ethernet is a trademark of Xerox Corp.

©INTEL CORPORATION. 1983
2·13

January, 1984
ORDER NUMBER: 210903·002

inter INTEL ASYNCHRONOUS COMMUNICATIONS LINK

FUNCTIONAL DESCRIPTION
The Asynchronous Communications Link (ACL) con­
sists of cooperating programs: one that runs on the
host computer, and others that run on eac~ microcom­
puter development system. The development system
programs execute under the ISIS-II or ISIS-III(N), ISIS­
IV, ISIS-II(W) or ISIS-POS operating system. They in­
voke the companion program on the VAX-11I7XX,
which runs under either the VAXNMS or UNIX
operating system.

The link provides three modes of communication: on­
line transmission, single-line transmission, and file
transfer. In on-line mode, the development system
functions as a host terminal, enabling the program­
mer to develop programs using the host computer's
editing, compilation, and file-management tools direct­
ly from the. development system's console. Later,
switching to file transfer mode, text files and object
code can be downloaded from the host to the develop­
ment system for debugging and execution. Alternative­
ly, files can be sent back to the host for editing or
storage. In single line mode, the programmer can send
single-line commands to the host computer while re­
maining in the ISIS environment.

The user can select transmission rates over the link
, from 300 to 9600 baud. The link transmits in encap­
sulated blocks. The receiver program validates the
transmission by checking record-number and
checksum information in each block's header. In the
event of a transmission error, the receiving program
recognizes a bad block and requests the sender to
retransmit the correct block. The result is highly
reliable data communications.

SOFTWARE PACKAGE
The Asynchronous Communications Link Package
contains either a VAXNMS or UNIX compatible
magnetic tape, a single 8", double 8", Series-IV 5%",
and POS 5%" diskette compatible with the Intellec
development system, and the Asynchronous Com­
munications Link User's Guide containing installation,
configuration, and operation information.

HARDWARE CONNECTION
The Link sends data over an RS232C cable. The com­
munication line from the host computer connects
directly to a development system port.

TELECOMMUNICATIONS
USING THE LINK
The ACL is ideal for cross-host program development
using a commercial timesharing service. This con-'
figuration requires RS232C compatible modems and
a telecommunications line. Depending on the an­
ticipated level of usage, wide-area telephone service
(WATS), a leased line, or a data communications net­
work may be chosen to keep operating overhead low.

NOS-II ACCESS USING THE LINK
- The ACL is ideal for interconnecting vAX host com­

puters with NOS-II. This configuration requires that
an NOS-II workstation be connected to the VAX host
computer using the RS232C interface and to NOS-II
using the Ethernet interface.

All three modes of communication operate identical­
lyon NOS-II. In the on-line mode, the development
workstation operates as a host terminal, and concur­
rently, as an NOS-II workstation. It is an easy transi­
tion between the VAX and ISIS operating system en­
vironments as LOGON/LOGOFF sequences are not
required to re-enter environments.

In file transfer mode, text and object files can be
transferred from the VAX directly to the Winchester
Disk at the NRM without first copying the files to the
workstation local floppy disk. Similarly, files residing
on the NOS-II Network File System (the Winchester -
Disk at the NRM) can be transferred directly to the
VAX without using local workstation storage.

Using the EXPORTIIMPORT mechanisms of NOS-II,
a network workstation which is not directly connected
to the VAX can cause files to be transferred between
the VAX and NRM. For example, any NOS-II worksta­
tion can "EXPORT" ACL commands to another "IM-

210903-002
2-14

inter INTEL ASYNCHRONOUS COMMUNICATIONS LINK

PORT"ing NDS-II workstation which is physicaliy con­
nected to a VAX. The "IMPORT"ing workstation
executes the ACL command file causing the desired
action to occur.

VAX ACCESS USING THE LINK
Users who want multiple workstations concurrently

SPECIFICATIONS

Software
Asynchronous Communications Link development
system programs

VAXIVMS or UNIX companion program

Media
Single- or double-density ISIS 8" and Series-IV, PDS
5114" compatible diskette

600-ft. 1600 bpi magnetic tape, VAXlVMS or UNIX
compatible .

Data Transfer Speeds
All systems up to 9600 bps

Online Terminal Mode Speeds
Series II, Series III, Series IV - 2400 bps max
PDS - 9600 bps max
Model 800 - equal to or less than the Terminal speed

Manual
Asynchronous Communications Link User's Guide,
Order No. 172174-001

Required Host Configuration
VAX-11I7XX running VAXIVMS (Version 3.2) or fourth
Berkeley distribution of UNIX 4.1

ORDERING INFORMATION

Product Name '
Asynchronous Communications Link

*Bell is a trademark of American Telephone and Telegraph .
. tVADIC is a trademark of Racal-Vadic Inc.
:t:See price book for proper suffixes for options and media selection.

operating as VAX terminals (ONLINE mode) must
physically connect each workstation to the VAX.
However, users who want multiple workstations to be
able to upload/download files, for example, must only
physically connect one workstation to the VAX. By us­
ing the EXPORTIIMPORT mechanism of NDS-II as
described above, the user can have multiple worksta­
tions accessing the VAX using only one connection.

Required Intel Development System
Configuration
Model 800, Series II, Series III, Series IV, or iPDS
under ISIS

Required Connection
RS232C compatible - cable 3M-3349/25 or
equivalent; 25-pin connector 3M-3482-1000 or
equivalent

Recommended Modems for
Telecommunications
300 baud - Bell· 103 modem; VADICt 3455 modem
or equivalent

1200 baud - Bell 202 modem; VADIC 3451 modem
or equivalent

9600 baud - Bell 209A (full duplex, leased line) or
equivalent

Note: Since one of the two Model BOO ports uses a cur­
rent loop interface, Model 800 users need a ter­
minal or modem that is current loop compatible,
or a current 100p/RS232C converter.
The Model 800 might require modification by a
qualified hardware technician. Intel does not repair
or maintain boards with these changes.

Ordering Code:l:
iMDX 394 for VAXIVMS systems
iMDX 395 for UNIX systems

2-15
210903-002

inter
MAINFRAME LINK FOR

DISTRIBUTED DEVELOPMENT

• Integrates user mainframe resources
with Intellec~ Development Systems.

• Uses IBM 2780/3780 standard BISYNC
protocol supported by a majority of
mainframes and minicomputers.

• Protocol supports full error detection
with automatic retry.

• Software runs under ISIS-II on any
Intellec~ Development System.

• Communicates with remote systems on
dedicated or switched (dial-up)
telephone lines.

• Package also includes tests and a
connector for loop-back self-test
capability.

The Mainframe Link consists of software. modem cable to connect the development system to the modem and
a loopback connector for diagnostic testing. The software runs under ISIS-II on Intellec Development Sys­
tems.lt emulates the operation of an IBM 2780 or 3780 Remote Job Entry (RJE) terminal to (1) transmit ISIS-II
files to a remote system or (2) receive files from a remote system using standard BISYNC 2780/3780 protocol.
The remote system can be any mainframe or minicomputer which supports the IBM 2780 or 3780 communica­
tions interface standard. Files may contain ASCII or binary data so that either program source files (ASCII) or
program object files (binary) may be transmitted. .

The Mainframe Link allows the user to integrate in-house mainframe resources with Intellec Microcomputer
Development resources. The mainframe can be used for storage. maintenance and management of program
source and object files. The program source can be downloaded to a development system for compilation.
assembly, linkage, and/or location. The linked modules can be transmitted and saved on the mainframe to b'e
shared by all programmers. The linked program can then be downloaded to a development system for
debugging using ICE emulation. .

USE MAINFRAME TO:

• CREATE SOURCE PROG. USING MULTIPLE CRT's
• STORE BACKUP & MAINTAIN LARGE DISK FILES
• LIST PROGRAMS USING FAST PRINTERS
• TRACK UPDATES & VERSION CONTROL
• PROTECT ACCESS TO SOURCE/OBJECT fiLES
• SHARE COMMON LIBRARIES & MASTER PROGRAMS
• ORGANIZE. CONTROL. MANAGE LARGE PROJECTS

USE MDS TO:

• COMPILE
• LINK/LOCATE
• ASSEMBLE

CRT

USE MDS FOR:

• SYMBOLIC DEBUGGING
USING ICE

6~~~~~~~~~:~::r~~~:~~~~~~~o~~~~~a~e~t:~~:'~~~~ ~~b~-:;~~~~:~r.=~~Ui.~~'aIOI~E~: !~~~~;'~~iil:,; ~~'~~ICU:'~:~~R~~~; :~~~:~~';'~:i
suffix; e.g., iSBC-80.

©INTEL CORPORATION. 1983

2·16

MAY 1983

AFN-01549C

MAINFRAME LINK

FEATURES

• Runs under ISIS-II on any Intellec~ Microcom­
puter Development System.

, • Communicates with a remote system using IBM
2780/3780 standard BISYNC protocol, which is
supported by a majority of minicomputers and
mainframes, on dedicated or switched (dial-up)
telephone lines.

• The modem cable supplied with the package can
be used to connect the Intellec~ Development
System to the modem (or modem eliminator)
using the standard RS232C port.

• Supports user selectable data transmission rates
of up to 9600 baud.

• Package includes diagnostic tests used to verify
the operation of the Intellec~ Development Sys­
tem using the loop-back connector supplied and
data transmission up to the modem using the
analog loop-back feature.

• System can be configured to match the require­
ments of the installation, i.e., using modem
eliminators for connections up to fifty (50) feet, or
by using modems and telephone lines.

• Software can be configured from Several config-
uration options such as:

2780, 3780 or Intel Mode

Transparent mode for binary data

Non-transparent mode for ASCII data

BENEFITS

• ,Allows the customer to use ,an in-house main­
frame or minicomputer for program source­
preparation, editing, back-up and maintenance
using inexpensive CRT's and multi-terminal ac­
cess. The common files may be shared and others
protected.

• Many programmers can use and share the high­
performance devices normally available on large
computer systems, e.g., fast printers to reduce
listing time, the large capacity disks with their fast
access time to store large program files.

• The source files can be downloaded using the
Mainframe Link to an Intellec Development Sys­
tem (e.g., Model 240 or 245) for compilation, link­
ing and locating.

2-17

Automatic translation from ASCII to EBCDIC
and vice versa

Receive chaining for receiving multiple files

• Intel mode is used mainly for file transfers be­
tween two Intellec~ Development Systems. The
files are duplicated exactly.

• Console commands support all standard features
including:

SEND data in Transparent or Non-transparent
mode, with or without translation to EBCDIC

RECEIVE in Transparent or Non-transparent
mode, with or without translation to EB.cDIC.

Support for an IBM RJE consoJe (such as HASP)

• Special utility programs are provided. STRZ strips
extra binary zero's from the end of object files.
CONSOL assigns system console input to an ISIS­
II disk file.

• Can process commands interactively from the
console or sequentially from an ISIS-II file under
the SUBMIT facility for semi-automatic batch
operation.

• Error detection in line transmission and error re­
covery by automatic retransmission.

• A special command such as DIAGNOSE, allows
logging of all data activity on the line, during
transmission and reception.

• When not used for communicating with the main­
frame, the Intellec~ Development System is avail­
able as a complete, stand-alone system.

• The compiled and/or linked object files may be
transmitted back to the remote for storage. Up­
dates and version numbers and dates can" be
tracked to ensure that the latest version is always
used and back-up files are available. Binary object
files can be later downloaded to an Intellec Devel­
opment System for debugging using' an ICE
emulator.

• In short, provides a powerful and flexible tool
combining the best of both micro and mainframe
worlds, i.e., powerful CPU with large disk ca­
pacity, file sharing, multi-terminal access, etc.,
from a "mainframe or minicomputer with Intel's
versatile and compatible software support sys­
tems (including PLlM, PASCAL, FORTRAN, As­
sembler, R & L) and sophisticated debugging
tools such as ICE emulators.

AFN-01S49C

intel' MAINFRAME LINK

SPECIFICATIONS

Operating Environment

Required Hardware:

Intellecs Microcomputer Development System
Model 800 ..
Models 220, 225, 230, 235, 240 or 245

64KB of Memory

, One Diskette Drive
Single or Double Density

System Console
Intel CRT or non-Intel CRT

Recommended Hardware for Compilation:

Hard Disk (Models 240,245, or Model 740 Upgrade)

Additional Hardware Required for Model 800
iSBC-955T11

, iSBC-534T11

Required Software:

ISIS·II Diskette Operating System
Single or Double Density

Documentation Package
Mainframe Link User's Guide (121565-001)

Shipping Media
, Flexible Diskettes

Single and Double Density

ORDERING INFORMATION

Part Number

*MDS-384 Kit

De8crlptlon

Mainframe Link for
Distributed Development

Remote System Requirements

• IBM 2780/3780 BISYNC protocol as supported by
a majority of mainframes and minicomputers in­
cluding: all IBM-360/370Systems, PDP-11/70,
VAX-11/780, Data General ECLIPSE.

• Users should purchase this standard software
package from the re,mote system vendor and any
additional required hardware such as a synchro­
nous communications interface.

• The operating system at the remote must be con­
figured (SYSGEN'ed) with correct options such as
line address, 2780 or 3780, ...

Communication Equipment Requirements
The Intellec Development System may be connected
to the remote system using anyone of the following
methods:

• Fdr short distances (up to 50 f~et), use a syn­
chronous modem eliminator (e.g., SPECTRON
ME-81 FS-2).

• For distances up to four miles, use short haul
synchronous modems and telephone lines.

• For distances greater than four miles, use sy~­
chronous modems and telephone lines. The fol­
lowing BELL modems or their equivalents are
recommended:

BELL 201C 2400 bits/second
(half duplex, switched line)

BELL 208A 4800 bits/second
(full duplex, leased line)

BELL 208B 4800 bits/second
(half duplex, switched line)

BELL 209A 9600 bits/second
(full duplex, leased line)

• Modems at either end must be compatible.

*MDS is an ordering code only and is not used as a product name or trademark.
MOSS is a registered trademark of Mohawk Data Sciences Corporation.

2·1'8 AFN-01S49C

iNA955
iRMX™ NOS-II LINK

• Transfers files between iRMX™86-based
systems and the NDS-II NRM

• Supports fast and reliable download into
iRMX™86 target system

• Supports Intel's 86/310, 86/330A, 86/380
systems

• Configurable at nucleus level with
iRMX™86 operating system

• Operates through Ethernet communica­
tions controller and cable connected to
NDS-II

• Utilizes Ethernet technology with data
transmission speeds at 10M bits per
second .

The iNA955liRMX™ NOS-II LINK is a software package that allows an iRMX based system 86/310, 86/330A,
or 86/380 system 'to be connected to an Intel Network Development System (NOS-II) network via an Ethernet
coaxial cable or Intellink™ module.

iRMX system developers can use the Series II, III, IV and Model 800 for editing, compilation and debugging
to develop, store, and manage software programs at the Network Resource manager. Using iNA955 these
developers can download programs at Ethernet speeds from the Network Resource Manager into their target
iRMX hosts for execution and system integration.

System developers can also use the iNA955 programmatic interface to develop their own application programs
which run in the iRMX environment andJnterface with the NRM. This is a way for OEM developers to customize
the operating environment to suit their own application.

ETHERNET

Figure 1. Example of NOS-II Configuration using the iRMXTM NOS-II LINK

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.

©Intel Corporati·on, 1984

2-19

MARCH 1984

Order Number 231034·001

iNA955

NOS-II OVERVIEW

The NDS-II is a distributed processing local area net~
work optimized for development of microcomputer­
based products. It addresses the needs of both soft­
ware and hardware engineers by providing the base
environment for shared development tools plus the
capacity for expansion.

An NDS-II network consists of an NRM which serves
as the file server for a variety of Intel's development
systems. These development systems include
Series II, Series III, Series IV, and Model 800. By
configuring iNA955 into an iRMX 86 system, an iRMX
system can also be served by the NRM.

NDS-ll's Network Resource Manager (NRM) manages
all workstation requests for network resources. NRM
tasks include service of workstation file requests,
printer spooling, management of the distributed
Hierarchical File System, the Distributed Job Control
System and network maintenance functions such as
user-name creation, file archival and system
generation.

iNA955
cuSP

I

iRMX'·
HUMAN INTERFACE

A APPLICATION LOADER

EIOS

BIOS

iRMX'·

iNA955 provides a basic upload/download file transfer
capability between an iRMX 86 system and the NRM.
When used with an iSBC® 550 Ethernet controller,
iNA955 allows users at iRMX 86 systems to move files
between iRMX systems and the NRM, list directories
at the NRM, delete or rename files at the NRM and
copy files between two directories on the same NRM.

Access to files is accomplished using two interfaces:

A A CUSP interface which operates on the network
file system in a manner similar to iRMX CUSPS
which operate on local iRMX files under a full
iRMX operating system.

B A programmatic interface which allows user pro­
grams running with a iRMX nucleus to access files
at the NRM. These interfaces are similar to those
present in UDI and EIOS.

OPTIONAL USER
DEVELOPED APPLICATION

SOFTWARE THRU B
PROGRAMMATIC INTERFACE

"

iNA955
NUCLEUS EXTENSIONS

I

iSBC" iSBC''' 550
86/XXX PROCESSOR ETHERNET

CONTROLLER

I

Figure 2. iNA955 Functional Diagram

231034-001

2-20

iNA955

FUNCTIONAL DESCRIPTION

iNA955liRMX NOS-II LINK consists of a program
which runs on the system 86/3XX family of host
computers. iNA955 executes under the iRMX 86
operating system and uses the local iRMX file system.

is based upon Ethernet communication protocols.
These protocols are supplied by the iSBC550 board
set which must be included in the iRMX host system
since iNA955 uses the iSBC550 to communicate over
Ethernet.

The iRMX-based host computers communicate with
the NRM via iNA (Intel Network Architecture) which The following tables summarize the user commands

and programmatic calls with their descriptions.

User Interface Function
Commands

NACCESS examines/changes NRM file access rights
NCREATE creates NRM directory
NOELETE deletes NRM file
NOIR examines NRM directory
NLOGOFF logs off from NRM
NLOGON logs on to NRM
NRCOPY copies file from NRM to iRMX station
NNCOPY , copies NRM file to NRM file on' the same NRM
RNCOPY , ,copies files from iRMX station to NRM
NRENAME renames NRM file or directory

Programmatic
Function Calls

NQ$CHANGE$ACCESS change access of file on the NRM
NQ$CREATE$OIR create directory on the NRM
NQ$OELETE delete file on the NRM
NQ$FILE$INFO get information of file on the NRM
NQGETVIRTUAL$ROOT get names of volumes at NRM accessible to user
NQ$LOGOFF logoff user from the NRM
NQ$LOGON logon user to the NRM
NQ$OPEN open file at the NRM,
NQ$REAO read contents of file at the NRM
NQ$REAO$OIR$ENTRY$EXP read expanded directory entry at the NRM
NQ$RENAME rename file at the NRM
NQ$WRITE write file to the NRM

Configuring iNA955 Physical Connections

Like other iRMX systems iNA955 must be configured
according to the system environment. To assist you
in configuring your system, iNA955 comes with a con­
figuration template. The file containing this template
is contained on the release diskette. This template
is designed to be self-explanatory.

The physical Ethernet connections can be made
either through an "lntellink"TM module or through
transceivers and the Ethernet cable. The Intellink
module serves as an Ethernet local station concen­
trator. It allows workstations to be located up to 50
meters from the Intellink module and has 9 ports for
connecting the NRMand workstations, and one port
for connecting an Ethernet cable or other Intellink The user has the option of integrating into his applica­

tions the iNA955 CUSPS. iNA955 CUSPS require the
iRMX Human Interface to execute.

2-21

modules. '

231034·001

iNA955

SPECIFICATIONS

Operating Environment

HARDWARE SUPPORTED

- System 86/310
- System 86/330A
- System 86/380

HARDWARE REQUIRED

- iSBC® 550 Ethernet Communication Controller
Set

SOFTWARE REQUIRED

- iRMX™86 Operating System version 5.0
- NDS-II System software Release 2.5 or greater

Software Supplied

MEDIA

One 8 inch, single sided, double density IRMX™86
format diskette
One 5% inch, single sided, double density
iRMX™86 format diskette

PROGRAMS

- iRMX/NDS-1i LINK software linked into iRMX
system library
Examples of iRMX Integration Configuration
utilities

- iSBC550 Diagnostics

DOCUMENTATION

- iNA955/iRMX NDS-II LINK Installation and
User's Guide, Order Number .12256-001

- Complete NRM and Network operating manuals
are included with the NDS-II systems

- iSBC550 Ethernet communications controller
Hardware Reference Manual 121746.

2·22

ORDERING INFORMATION

Part Number Description

iNA 955 iRMXlNDS-1i Link

iSBC 550 Ethernet Communi-
cation Controller Set

iMDX 457 10 meter
transceiver cable

iMDX 458 50 meter
transceiver cable

iDCM 911-1 Intellink Module

iMDX 3015 Ethernet
transceiver kit

iDMX 3016-1 25 meter Ethernet
coaxial assembly

iMDX 3016-2 100 meter Ethernet
coaxial assembly

Installation
On-site installation is included with the NDS-II
Network Resource Manager. iNA955 is customer
installable.

231034-001

ARTICLE
REPRINT

AR-204

Technical arlicles __________ _

Smart link comes 10 the rescue
of software-development managers

Resource-management hardware and software join existing development syster:ns
into an Ethernet-based network that eases software creation and control

by James P. Schwabe, InfeICorp .• Santa Clara. Calif.

o A strong lifeline in a sea
of complexity, the new NOS
II network development sys­
tem wi1l help manage the
writing of complex software
for tomorrow's powerful mi­
crosystems. It builds on
existing Intellec develop­
ment systems and the speci­
fications of the Ethernet
protocol to create a local
network for distributed soft­
ware development.

Considerable intelligence
is contained within the NOS
II system, linking program­
mers' work stations and
managing the interactive
flow of software develop­
ment that results. Commu­
nications control, via
Ethernet or an even simpler
alternative, is split between
the central manager and the
work stations.

At the heart of the system
is the network resource
manager,which both con­
trols the net of work stations
and lets the user configure it
to suit the development task
under way. The NRM will
also manage a powerful sys­
tem memory of Winchester­
technology disk drives.

The manager itself is an
example of the boons of
well-thought-out and com­
plex software, for it contains
powerful system tools.
Among these features are a
hierarchical file structure that is also distributed and a
file-protection setup that offers the maximum flexibility
in access to files while guaranteeing their integrity.

Important program-man­
agement tools include a rou­
tine that oversees the rewrit- .
ing of software during de­
velopment and another that
automates the generation of
a complete program from
the most current modules.

The NOS· II is the second
step in the evolution of
Intel's network; architecture,
iLNA [Electronics, Aug. 25,
1981, p.120]. It· connects
Intellec development sys­
tems together so they can
share large-capacity Win­
chester disk drives and a
line printer located at the
NRM. It will also serve as
the basis for a whole new
line of modular development
system tools such as remote
emulators, logic analyzers,
and more.

Both the NRM and each
work station can be connect­
ed directly to the Ethernet
coaxial cable by a transceiv­
er or by the Intellink com­
munications module (Fig.
1). By itself, the Intellink
module provides nine ports
for interconnection, creating
a local network of nine sys­
tems (eight work stations
and one NRM). To another
controller, the Intellink rep­
resents a segment of
Ethernet cable that has nine
transceivers already in place
and working.

For networks with a radius of 50 meters or less,
Intellink is a simple, low-cost alternative to installing
Ethernet cabling and transceivers. Any work station can

2-23

ETHERNET CABLE SEGMENT (500 METERS)

NOS-II
FUTURE
WORK

STATIONS

10- OR 50-METER
CABLES

NOS-II
OR OTHER

WORK
STATIONS

1. Developing net. The NOS II brings existing Intel development systems. or work stations. into an Ethernet. A new network resource manager

and the Intellink communications manager make management of distributed software development possible_

be installed by simply plugging a 50-m transceiver cable
directly into the Intellink-a 5-second operation.

For expansion beyond nine systems or to a distance
greater than a 50-m radius, the Intellink provides a
built-in port for connecting the local cluster to Ethernet
cable by means of a transceiver. Connection to the
Ethernet allows, communication with other work sta­
tions, NOS II networks, or other Ethernet-compatible
devices that use the iLNA network architecture.

No matter which physical setup is chosen, each work
station has independent access to, and can be directly
accessed from, the Ethernet and the NOS II network.
Each has a unique work-station identifier, distinguishing
it from every other terminal in the world and ensuring
correct communication between stations on the various
local networks.

For multiple-net environments, each network can have
a_ unique network identifier to allow their coexistence on
one Ethernet. In a single net, the network identifier is
not used, but its assignment en~ures an orderly pro­
gression to a multi-net environment. '

All current Intellec development systems can be
upgraded to NOS II work stations. An upgrade consists
of a communication-controller board set, software, and
either 10- or 50-m cables.

The communication controller, a two-board set that
plugs into any Intel Multibus chassis, provides many of
the data- and physical-link functions of the six-layer
standard reference model for open-systems interconnec­
tion (Fig. 2). The data-link functions performed are
framing, link management, and error detection. Physi­
cal-link functions include preamble generation and
decoding and bit encoding and decoding.

One board contains a 5-megahertz 8086 microproces­
sor with local random-access and read-only memory and
interval timers, as well as direct-memory-access channels
for sending and receiving data at 10 megabits per
second. The second board contains bit-serial send-and­
receive logic, packet address-recognition logic, and

error-detection logic. The boards ensure that bad packets
resulting from a collision are ignored.

The NRM coordinates all the work stations' activities
and manages file access to the shared disks. Initially, it
will support one 8-inch 35-megabyte Winchester disk
subsystem, as well as Intel cartridge-module disks. Mul­
tiple-disk support is in the wings, -along with a larger
84-megabyte disk. It will be possible to attach six disks
to one NRM, providing more than enough on-line shared
storage for large program development and archiving. In
addition, each work station can contain 2.5 megabytes of
floppy-disk storage as a local resource.

Control contingent

The NRM (Fig. 3) comprises 13 Multibus slots, power
supply, 8086-based system-processor board, input/out­
put board based on the 8088 and 8089, 512-K-byte
memory board with error checking and correction, two
communication boards, and one 51/4-in~ floppy-disk drive.
The cabinet also has space for a cartridge-tape unit,
expected to be delivered in mid-1982, which will give full
intelligent archival backup for the Winchester disks
housed in the attached cabinet.

To protect the integrity of the network, access to the
NRM is restricted: a special supervisory terminal con­
nected to the unit's serial port provides an interface with
its commands and utilities. These facilities include sys­
tem generation, intelligent archiving, and normal net­
work maintenance such as the creation of any necessary
user identifications.

The most. important utility for system configuration is
called, Sysgen, an interactive routine designed to assist
the supervisor, or project manager, in creating the NRM
operating system. Sy~gen makes it possible to create,
modify, or delete system parameters, peripheral-devices
configuration; and network configuration. It allows the
project manager to tailor the network configuration on
the fly in order to fit the changing needs of microproces­
sor development projects.

2-24

USER INTERFACE

t NDS II
DEFINED

I ETHERNET
t DEFINED

2. New layers. To the hardware layers of Ethernet. NOS II adds
software layers that permit up to eight users to work together. The

network layer need not be present if NOS II is not linked to the
Ethernet. simplifying the operating system.

From the work-station perspective, the NRM is a
remote file system. Each station functions as a stand­
alone development system for all tasks not requiring
NRM resources. 'When access to these resources is
required, the user simply logs onto the network. The
work station's resident operating system formats the
appropriate file request, which the NRM processes inter­
activefy with other stations' demands.

The NRM operating system is multitasking, allowing a
work station to access a file on the shared disk while
other stations concurrently access other disk files. The
interleaving of disk accesses, as well as the high-speed
packet transmissions on the Ethernet, enables each work
station to share equally the large file store-its being
accessed by one user does not prevent other work stations
from gaining access. .

In an eight-station environment, the performance deg­
radation due to network contention and the NRM ope rat- ,
ing system will be no more than 10%. This performance
is one of the major reasons why distributed development
systems provide a more cost-effective method for micro­
processor development than time-shared systems; the
former are much less susceptible to saturation under
concurrent loading than are the latter.

Managing the work

To ensure efficient software development, high per­
formance must be combined with tools to manage soft­
ware complexity. For example, large software projects
are often broken down into small tasks, and effi,cient file
sharing becomes essential to project coordination. The
shared-file system on NOS II is built on the RMX-86
volume-based hierarchy in which each user directory
represents a node on a hierarchy of directories, common­
ly referred to as a hierarchial file system (Fig. 4).

Hierarchical file systems can contain a multitude of
directories and data files. At the apex is the root volume,
a conceptual fil~ from which all directories emanate. The
root volume contains all the volumes of the directories.

Each volume can contain as many directories or files as
available disk space will allow, and any directory may
contain other directory files or 'data files. Each file
(directory or data) can be traced through the hierarchy
by its own path name. The NOS II hierarchical file
system goes one step further by extending from the NRM
to include the directories at the user's work station.
When the user logs ofT the network, the only directories
available are those on the work-station disks. When the
user logs on, he or she gains access to the NRM system
directories.

Thus each programmer has access to a common data
base without the confusion of sifting through one mas­
sive directory. What's more, the structure keeps other
users' files out of the way. In addition, it permits logical­
ly separate types of software within a user's directory. A
programmer can create subdirectories to separate source
files from object files, from backup files, and so on.

As a project's size increases, the number of directories
and the complexity of path names in the system also
increases. To simplify the task of accessing any particu­
lar directory, the user can assign a less cumbersome
name-what amounts to a macroinstruction. Then, the
user simply types in this macroname. Maximum flexibil­
ity is maintained, as each programmer can assign
macronames to any directory.

An added benefit from macroname assignment is
device transparency: the user concerns himself only with
directories, irrespective of physical location. Physical
devices are fixed in size and location, as opposed to
directories, which can be adjusted to organize the con­
tents in an optimal fashion.

File protection

Before accessing the network, each user must be iden­
tified to the NRM through a log-on procedure. This setup
establishes a unique user identification that is subse­
quently used to control access to files and directories in
the hierarchical file system. Each directory and data file
has specific "owner" and "world" access rights, which
protect against accidental modification or deletion.

A file has three possible access rights for both the
owner and the world: read, write, and delete. A directory
also has three similar access rights for both the owner
and the world: list a directory, add a directory entry, and
delete a directory entry.

The access rights in file systems improve coordination
during software development by allowing complete mod­
ules that have been tested arid debugged in a user's work
space to be converted into read status for the world.
Then these modules can be integrated and tested with
other independently developed software modules. Thus
modules declared as read-only are guaranteed to be the
most current debugged versions, and a common data
base of completed modules is ensured.

Extended to multiple-project environments, the file
system can provide logically separate work spaces for
each project group. Specific directories can be set aside
for complete modules for various projects. Each user can
develop portions of the program in a private work space
with guaranteed file protection and can use the public
files (or directories) for integration and testing of the

2-25

3. Manager. The network resource manager (NRM) in the cabinet's

left side governs access to the 35-megabyte Winchester drive on the
right. Access to network-managing software is gained only through a
supervisory terminal attached directly to the NRM.

module under development. Commo~ly. used utilities and
compilers can be accessible in a specific directory as
public files (read-only for world access) to eliminate the
necessity of redundant files at each work station. As a
result, all programmers can proceed without fear of
inadvertent modification of private files either by others
or by themselves.

As well as managing communications between shared
disks and work stations, the NRM maximizes the use of
all network resources with distributed job control. OJC
allows the user of any work station to export a batch job
to the NRM for remote execution.

To accomplish this, the NRM classifies each work
station into one of two groups-private and public. It
keeps track of the public work stations and uses them to
execute the queue of batch-type jobs. A user can declare
any work station as public: available for use by the NRM

for remote execution. Also, a programmer can send a job
to a specific queue at the NRM by using the export
commano. The NRM executes the job on a public work
station and return the results to the user directory.

With OJC, the resources of the entire network can be
shared to maximum advantage.' A typical project
involves program-module editing and debugging at Intel­
Icc series II or model 800 work stations, while a 8086-
based Intellec series III unit can provide a host execution
environment to compile completed modules quickly. OJC
allows the user to export the compilation process to the
high-performance series III work station, then return
immediately to other tasks while the NRM oversees the
compilation. At any time, the users can check on job
status or queue status by typing a command from their
work stations.

New.work stations

Currently, Intellec development systems provide a sin­
gle-task environment and therefore can be declared pub­
lic to the NRM as users finish on-line work. Later this
year, Intel will introduce high-performance work. sta­
tions with foreground-background capability to allow a
user to run a job in the foreground while making the
background public so that jobs exported by other pro­
grammers can be executed through OJC. Foreground­
background capability with OJC will effectively double
the usefulness of the work station and substantially cut
the cost of development time.

In-house benchmark tests indicate that the perform­
ance of each work station connected to the NRM is much
improved. For example, a compilation executed with all
file requests from the NRM hard disk is twice as fast as
requesting files from the work station's floppy disk. Each
station enjoys hard-disk performance during compila­
tion, assembly, and any file manipulation-at a fraction
of the cost of a dedicated disk system.

User's tools also speed program development, as well
as make management easier. The most important pro­
grammer tools on NOS II are svcs (software-version
control system) and MAKE, an automatic software­
generation tool. They provide a superset of the functions

offered by the svcs and
MAKE found in the Unix
programmers workbench.

svcs controls and docu­
ments changes to, software
products, handling both
source and object files. It
contains facilities for storing
and retrieving different ver­
sions of a given program
module, for controlling up­
date privileges, and for re­
cording who made what
changes, when, and why.

4. Climbing an inverted tree. To find a file in the NDS II, the user first goes to the root volume of this

Documentation of module
status and of the levels, or
versions, involved is the key
factor determining the suc­
cess of program develop-hierarchical file structure. From that volume, he or she can go to the project volume assigned by the

project manager and access other directories or files that have been declared accessible. . ment by group effort. Valu-

2-26

MAKElng ... It easy to revise programs

NOS-U's MAKE facility is a development tool for both
generation and documentation of a software system. Sup­
pose, for example, a software system called PGM.86
consists of three separate programs linked together, and,
for simplicity, that each program consists of only one
complied source file, rather than a subsystem of multiple
files. This relationship forms a dependency that would be
graphed by the user as in the figure below.

With the MAKE facility, a user can create an automated­
generation procedure for the system PGM.86 that checks
the currency of each subprogram. A MAKE command file
that does so Is Illustrated in the accompanying table.

When the command file is Invoked, the commands it
contains are executed in top-down fashion. In step 1 of
the table, the facility first checks if the PGM.86 is older
(represented by the greater-than sign) than any of its.
dependent object-code modules. The facility checks and
compares the date and time stamp of each module with
that of PGM.86. Date and time stamps are updated auto­
matically whenever a file is modified.

able development time can be lost trying to work some­
one else's modified modules if documentation specifying
what, where, when, and why changes were made is not
available. In fact, as programs become more complicat­
ed, even the module writer may not exactly remember
the history of the module.

Automatic documentation

svcs provides a tool for automatic documentation of
these facts. When a new module is created, it is set to
level 1. All subsequent versions of the module are main­
tained with in a single file. Changes to the module are
stored as "deltas" to the original. svcs automatically
records what changes were made and when they were
made, and it requires the modifier to specify a reason for
the change. The project manager may create a software
checkpoint at any time by declaring the module as the
next release level; subsequent deltas will then be applied
to only this new release level.

Other capabilities in svcs also increase project con­
trol. Restrictions may be placed on who is allowed to

If any of the object modules are newer versions, then
MAKE Is instructed to link together the latest versions of
the object modules to form the latest version of the
software system. Before executing the link routine, the
MAKE facility must first check to see if. any of the object
files are older than the ,related source files given In the
dependency graph, as shown in steps 2, 3, and 4.

The MAKE facility goes through each step and executes
the specified task only if the specified condition is true.
Once the dependency graph is created, the MAKE facility
can quickly and automatically generate the latest version
of a software system under development even when
source files change frequently.

The MAKE facility removes much of the guesswork
surrounding software-system generation by ensuring the
latest versions of source code is incorporated into the final
software system. The dependency graph in its current
form can also be printed by NOS U to document the
software-system construction without having to keep an
out-of-date sketch taped to the laboratory wall.

~~"''''',",'1''"'~''' "MAKE r,ROGRAM FOR PGM.86 •.• ". '00, ,

Steps Statements

IF PGM.86 > A.OBJ, B.OBJ. C.OBJ THEN
RUN LlNK86 A.OBJ. B.OBJ. C.OBJ TO PGM.86
END

IF A.OBJ > A.SRC THEN
RUN PLM86 A.SRC
END

IF B.OBJ > B.SRC THEN
RUN PLM86 B.SRC
END

IF C.OBJ > C.SRC THEN
RUN ASM86 C.SRC
END

make changes to which modules and at which levels. An
identification facility is also included, allowing the sys­
tem to stamp modules containing object code with ver:­
sion information. From this information alone, a user
can determine the level of source code used to generate
the object module and thereby determine exactly which
level of software is current and which level is being
executed. To aid support groups in future maintenance
of the program, any level of a software system can be
regenerated from the original modules.

The second important program management tool on
NOS-II is called MAKE, (see "MAKEing it easy to revise
programs," above). When MAKE is invoked, a software
system is automatically generated from the most current
version of specific modules delineated by a dependency
graph. MAKE ensures that the software generation is
current and correct, while recompiling only program
modules that need to be updated. To coincide with the
concept of modular program development, any compo­
nent of a MAKE could invoke another MAKE to generate
a lower-level component such as a library. 0

Reprinted from ELECTRONICS. March 10, 1982, copyright 1982 by McGraw·Hill, Inc., with all rights reserved.

2-27

Microcomputer Software 3
Development Tools

PROGRAM MANAGEMENT TOOLS

• Increase Software Engineering
Productivity

• Decrease Software Administration
Overhead

• Allow Users to Control, Automate and
Examine the E:volution of a Software Project

• Enhance the Capability of Networked
(NOS-II) and Standalone Development
Systems

• SVCS Simplifies Administration. of
Software Modules and Systems

• MAKE Automatically Generates New
Releases of Software Systems

• Both Tools Easily Incorporated Into
Existing Software Development
Methodologies

Intel's Program Management Tools (PMTs) provide the essential ingredients to manage large software devel­
opment projects. PMTs decrease the time spent on tracking program changes and manually generating new
systems, thereby giving engineers more time for software design, development, and testing.

PMTs consist of a "Software Version Control System" (SVCS), and an automated software generation facility
(MAKE). Together these tools control, examine, and automate the management of a software system that may
contain many versions consisting of numerous modules.

SVCS controls and documents software changes for all file types. SVCS handles storage and retrieval of
different versions of a given module, controls update privileges, prevents different users from making changes
independently, and requires all changes be thoroughly documented by recording who made what changes,
when and why.

MAKE produces the specification of a "minimum-work" job required to generate a new system. This job (Le.
submit file) typically includes compiles and links of the latest versions of specified source and object modules. If
a newer source module exists for any specified object module, MAKE will specify a compile of this module,
replacing the older module in the completed program. Unnecessary links and compiles, however, are
eliminated. MAKE does the minimum work required to ensure consistent, up-to-date software, thus saving many
hours of compiles and links.

Incorporating PMTs into an existing project is easy. PMTs work with existing operating systems and software
tools (editors, compilers, utilities) and require very little relearning. New users can quickly gain expertise in using
PMTs by working through the examples contained in the PMT Tutorial Manual and Diskette, which are included
with every PMT software package. Program Management Tools are ideal in a networked (NOS-II) environment,
where multi-version software control is critical. PMTs are also extremely valuable on standalone systems (with
Winchester disk) as well. .

·1 SVCS

II AEDIT

t[svcs

~I MAKE· I

Get the source module out of database.·

Make code changes using editor.

Put mocule back into database.

Automatically generate new version of system.

OPTIMAL CONTROL OF A SOFTWARE PROJECT.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.

© INTEL CORPORATION, 1983 3-1 MARCH 1984
ORDER NUMBER: 210567-003

PROGRAM MANAGEMENT TOOLS

SOFTWARE V,ERSION CONTROL SYSTEM (SVCS)

• Simplifies Administration of Software
Modules and Systems

• Maintains Change History Information
on Every Module

• Prevents Users From Accidently
Deleting System Software or Making
Simultaneous Module Changes

• Offers an Effective Software Version­
Generation and Control Mechanism

Intel's Software Version Control System (SVCS) is a utility that greatly simplifies software system housekeep­
ing. SVCS automatically controls and documents software modules in a large project, eliminating costly manual
administration by a project leader or librarian.

SVCS maintains a system database of software modules called units. Each unit is divided into four classes:
Source, which contains the unit's source code; Object, which contains the unit's object code; History, which
contains the unit's history file; and Composition, which can be arbitrarily used by the user.

Users interact with the database by using SVCS administrative and access commands. Project managers use
administrative commands to create new system" databases, add and delete database units, set unit access
rights, and create and name new system variants. Programmers use SVCS access commands to check out and
return database m'odules when making system changes. For every change made, -SVCS records what
changed, who changed it, when it was changed, and ,why. -

SVCS variant generation and control1enable project administrators to effectively create and identify new ver­
sions of software systems. Stable versions may be write protected and placed in the public domain, working
versions may be identified and accessible only to programming personnel, and special versions may be created
for customized releases. In addition, version control can minimize software archival, maintenance, and support
administrative overhead.

AUTOMATED SOFTWARE GENERATION (MAKE)-

• Automatically Creates New Software
Systems, Using the Latest Versions of
Source Modules

• Automatically Determines Which Source •
Modules Need Recompiling

• Eliminates Unnecessary Compiles and
Links

• Works Closely with SVCS for Generating
Complete, Up-To-Date Systems

• Easily Adopted into Existing
Development Methodologies

• Offers Many Powerful Macro Constructs

MAKE is a utility that greatly simplifies the generation of software systems. MAKE produces a "minimum-work"
submit file that can generate a complete, up-to-date system without any unnecessary compiles and links. MAKE
can reduce system generation times from hours to minutes while concurrently minimizing administrative
overhead.

210567·003

3·2

PROGRAM MANAGEMENT TOOLS

MAKE accepts a text input file that instructs it how to generate a new software system. The input file specifies all
modules required to generate the new system and incl,udes a description of system dependencies. It also
specifies specific system operations, such as compiles, links, SVCS operations, line-printer spoolings, and other
system commands. MAKE uses this input file in conjunction with the time and date stamps on each module to
determine the optimum system generation procedure that eliminates all unnecessary compiles and links.

Typically a MAKE input file is created once at the start of a project. Very occasionally during the life of the project
it may need modification. A powerful set of macros makes the creation and subsequent modification of a
generation procedure an easy task. Overall, the management of the MAKE input file is negligible compared to
maintaining numerous submit files for system generations.

The close relationship between SVCS and MAKE help simplify the overall job of software control at all levels.
For example, the very latest version of a source module may not be stable enough to be included in a
generation. A less functional, but more reliable version may exist. Since SVCS keeps unique versions distinct,
an SVCS-module containing the more reliable version may be specified in the MAKE input file.

BENEFITS: SVCS AND MAKE

Intel's Program Management Tools eliminate com­
mon problems such as:

"We've modified module FOO, which has introduced a
new set of problems. Now we can't restore it back to
the earlier version."

"Module F002 has been modified; no one seems to
know who changed it, or why." .

"We often have several programmers making
changes to the same modules. Trying to avoid simul­
taneous changes is a lot of effort, and we waste time
synthesizing two sets of changes into one module."

"To ensure that we release up-to-date, correct soft­
ware, we periodically go into "release mode" for a
few days. Everyone stops work completely while we
find the latest versions, and then start the generation
from the ground up. It literally takes days, when we
could be making productive changes."

SVCS and MAKE together provide a service that fits
easily into your existing design methodology, and
solves administrative problems such as those
described above.

3-3

SPECIFICATIONS

Networked, Multi-User Software Control
NOS-II with at least one Intellee Microcomputer
Development System
iNDX, ISIS-III(N) System Software

Standalone Use
Intellec Series III with Model 750 Winchester Disk or
Intellec Series IV
SVCS and MAKE will not operate on ISIS-II local
floppies or Model 740 Hard Disks.
SVCS and MAKE may be exported from any
workstation in an NOS-II configuration.

Documentation
"A User's Guide to Program Management Tools"
(121958)

SOFTWARE SUPPORT
This product includes a 90-day initial support consist­
ing of new software releases, updates, subscription
services (software performance reports and technical
reports), and telephone hotline support. Additional
software support services are avaiiable separately.

ORDERING INFORMATION

Part Number

iMDX-332

Description

Intel, Program
Management Tools

210567-003

PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

• Source-Level Debugging for High
Productivity

• Breakpoint, Single-Step and Execution
Trace by Statement Numbers,
Procedure Names and Labels

• High-Level Code Patching

• Compatible·.with Intel's 121CETM
Integrated Instrumentation and In­
Circuit Emulation System for Target
System Debuggin.g

•. Native CPU Execution for iAPX 88 and
86 Architectures

• Supports PL/M, Pascal, and FORTRAN
Program Debugging

PSCOPE is an interactive, symbolic debugger for high-level language programs. It allows users to scrutinize
program execution at the source level, using high-level statement numbers, procedure and variable names and
labels. This is typically a more productive way of debugging high-level language (HLL) programs than at the
machine level. '

Source-level debugging means that traditional functions, such as setting breakpoints or tracing execution flow,
are more powerful in PSCOPE. For example, tracing procedure entry (or exit) points conveys much more
information than tracing machine instructions. Single-step execution is more powerful, using statements and
procedures, as well.

The productivity improvement from debugging in a high-level language is analogous to programming in a
high-level language, when compared to assembly-level programming and debugging. .

PSCOPE users may define high-level code patches, which are "compiled" and patched into the user's program.
Code patches may be stored on disk, so they may be later incorporated into the program source file.

PSCOPE is an integral part of the advanced 12 1CE Integrated Instrumentation and In-Circuit Emulation System.
This allows a smooth migration from program debugging to target system debugging.

PSCqPE's symbol capacity is virtually unlimited. Symbols are paged to disk when necessary.

PROGRAM
DEVELOPMENT

ASSEMBLY
LANGUAGE
MODULES

HIGH·LEVEL
MODULES:

PL/M·86

PASCAL·86

FORTRAN·86

~
V

~

SOURCE·LEVEL
DEBUGGING

PSCOPE:
CPU·LEVEL DEBUGGING

REGISTERS

PSCOPE:
HIGH·LEVEL DEBUGGING

BREAKPOINTS
TRACE POINTS
SINGLE STEP

EXAMINE/MODIFY
CODE PATCHING

TARGET SYSTEM
INTEGRATION

f---
PSCOPE AND INSTRUMENTATION:

.~ REAL·TIME EMULATION
HIGH·LEVEL DEBUGGING

~ CPU·LEVEL DEBUGGING

f---

Figure 1. Debugging Methodology with PSCOPE

3-4

MAY 1983
ORDER NUMBER:2103so-OO3

inter PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

SAMPLE DEBUGGER SESSION

SERIES-III Pascal-06, Vl.l

Sourc~ tile: :F2:MAXMIN.PAS
Object File: :F2:MAXMIN.OBJ
Controls Specified: OEBUG.

STMT LINE NESTING

1 1 0 "
2 20"

3
4
5
5
G
7

II
9

H)
10
11
12

13
14
14

16

10
2U

21
21
21
22

23
24
25
26
27

11
12
13
14
15
16

18
19
2U

22
23

25 "
26 "
27 "
20 "

U

" o
1
1
1

o
U

" 1
I
1

30 2
31 2
32 2
33 2
34 2

SOURCE TEXT: :F2:MAXMIN.PAS
proyram calc(input,output);
var a,b: integer;

procedure sum(x,y:integer);
var z:integer;
begin

z:=x*y;
writeln('The sum is ',z);

end;

procedure difference(x,y:integer);
var z: integer;
begin
z:"aos(x-y);
writeln('The .difference is ',z);

end;

procedure maxmin(x,y:integer);
beg in
if x<y then writeln('The maximum is ',y,

The minimum is ',x);
if y<x then writeln('The maximum is ',x,

, The minimum is ,y);
if x=y then ~riteln ('The two inputs are equivalent 'I;

end;

beg in
repeat (*forever*)
write('Input two integers 'I;
readln(a,b);

sum(a,b);
differ~nce(a,b);

maxmin(a,b);
until 1<0

end.

The program listing for the sample PSCOPE session
illustrates the high-level nature of PSCOPE debug­
ging. The program consists of the module CALC, the
procedures SUM, DIFFERENCE, and MAXMIN, plus
global and local variables. Users exercise and ma­
nipulate the program using these symbols. Code

patches, stepping, tracing, etc. are all done on line
numbers, procedures, labels, and symbolic names.
To debug a program, just PSCOPE and a listing are
required-no linkage maps, core dumps, locate
maps, etc. are necessary. This is how high-level
debugging relates to high-level programming.

3·5

PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

BENEFITS

Shortened Development Cycle

The ability to define debugger procedures and make
code patches is very useful. It actually allows users to

. extend the capability of the program under debug.
After debug sessions, ·users typically make program
changes or enhancements. This involves the use of
an editor, compiler and linkage tools that create a
"new" load module for debugging. Since PSCOPE
allows these changes and enhancements to be made
in the debugger, the number of Edit/Compile/Link
iterations is lowered. More confidence can be placed
on a program during debugging, because its capa-

. bilities have been more fully exercised.

Improved Debugging Productivity

PSCOPE provides users with the same conceptual'
interface to program debugging that was used in
program design. This includes the high-level lan­
guage constructs such as statements, procedures,
labels and symbolic variables and data structures.
Functions such as. program trace and single-step
execution are more meaningful with statements and
procedures than machine instructions; therefore the
improvement in debugging productivity is analo­
gous to the programming productivity using high-
level languages. .

SPECIFICATIONS

Supports Intel's standard 86/88 languages:

-PUM 86/88
-Pascal 86J88
-FORTRAN 86/88

ORDERING INFORMATION

Description

More Reliable Software

Debugger procedures may be used to automate the
software testing process. The procedure may
repeatedly generate test values, execute the pro­
gram with the input values, and record the results.
Running more comprehensive tests, plus being able
to "batch" the tests; yields more reliable software.

Easy to Learn and Use

An extensive command language, which is similar to
block-structured languages such as PUM and Pas­
cal, is 'very easy to use in an interactive debug ses-
sion.' The HELP facility makes learning to use
PSCOPE 'extremely fast as well. The "Literally"
facility and debugger procedures also allow users to
extend and tailor the command language to suit indi­
vidual needs.

,Improved Software Management

The use of debugger procedures allows parts of a
software system to be debugged independently. Pro­
cedures can be substituted for program stubs, allow­
ing programmers to debug different pieces of the
system separately. This ,results in improved project
'management. .

PSCOPE runs on an Intellec® Series III or Series IV
Microcomputer Development System, either ~tand~
alone or in an NDS-II network configuration. A 512K
application memory space is recommended for most
applications.

Order Code
iMDX-333 PSCOPE Program Debugger (for Series III and Series IV)

111-951 A

111-951 B

111-951 C

PSCOPE Program Debugger and 12 1CE Base Software for Series III with 8" single density
disk drive '

PSCOPE Program Debugger and 12 1CE Base Software for Series III with 8" double density
disk drive

PSCOPE Program Debugger and flCE Base Software for Series IV with 5%" double density
disk drive

3·6

PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

FEATURES

Unlimited Breakpoints

Breakpoints may be set on statement numbers, pro­
cedure names, or program labels. Any number of
breakpoint registers may be defined.

High-Level Trace Points

Execution trace pOints are defined the same way as
program breaks. Any number of trace points may be
defined. A trace message is displayed when execu­
tion reaches a trace point.

Conditional Break and Trace

Any break or trace point may be defined to automati­
cally call a debugger procedure, which will execute
PSCOPE commands and/or evaluate predefined
conditions. The operations will be performed, and
the condition will deterr:nine if the break or trace will
be done.

GO

The GO command initiates program execution from
any starting point. A set of stopping points may be
specified ("GO TIL"), and break/trace registers may
be used ("GO USING").' .

Source-Level Stepping

A program may be executed, one high-level state­
ment at a time, using the LSTEP command. Also,
entire procedures may be treated as single state­
ments during stepping (PSTEP); the procedures will
be executed, but not stepped through.

Examine/Modify Data

PSCOPE allows users to symbolically examine (and
change the value of) program variables and data
structures. All PUM and Pascal types are supported,
including numerics, dynamic and stack variables,
arrays, and fields within structures.

Virtual Symbol Table

All user-program symbols are stored in a virtual sym­
bol table. This means symbols will be paged to disk, if
necessary.

Help File

Many PSCOPE commands, facilities, and error mes­
sages have help information describing their use.
The' HELP command is used for learning the

3-7

PSCOPE command language, for quick reference of
command syntax, and for learning the cause of com­
mand errors.

Debugger Procedures

PSCOPE has the facility for defining procedures in
its command language. This block-structured com­
mand language allows users to extend the capability
of the program under debug. Like macros with
parameters, these procedures may also be used 'for
generating compound and conditional debugger
commands.

Code Patching

Program patches may be written in the debugger
command language to augment or replace current
program 'statements. These high-level code patches
are much closer to actual program changes than
machine-level patches, and are easy to use.

Built-in Editor

A menu-driven, CRT-oriented editor is built into
PSCOPE. This is used for creating and editing pro­
gram patches, debugger procedures, and command
lines. One key is used to invoke the editor to alter the
last command entered, or any debugger definition
(literally, trace register, patch, etc.) may be edited
selectively.

Debugger Command Language

GO/LSTEP/PSTEP-,-For controlling program
execution.

DEFINE/DISPLAY/MODIFY/REMOVE-For manipu­
lating debugger objects (such as break registers,
-patches, and procedures), or program objects
(variables and data structures).

CALL/RETURN-For executing debugger
procedu'res.

WRITE/CI-For console input and output.

qO/END-For defining command blocks.

REPEAT/COUNT-For repetition of commands' or
blocks.

IF/THEN/ELSE-For conditional execution of com­
mands or blocks.

INCLUDE/PUT/ APPEND-For saving/restoring
commands and definitions to and from disk.

inter PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

-run :tl:pscope
S~KI~S-III PSCOP~-86, Vl.~ .
·a~tlne lit~~ally d = 'o~fin~'
-d lit~rally 1 = 'literally'
-0 1 or 'orkr~~'
*0 1 tr = 'trcrey'

}-
*
*loao :tl:maxlllin.8G
*ai r
OIR of :CALC
Pi.! OUTPUT
Pi.!-INPUT
l:l -

A
SUi'! ' ••

X
'I.
Z

DIt'~'E:Rt::NCt::
X • :'
'I.

I'IAXI"IIN •
X
'I.

*pstep
(St~p at
-psteiJ

:CALC'21)

TEXT (file)
• Tt::XT (file)

integer
• integer

procedure
• integer
• int~ger
• integer
procedure
• integer
• inteqer
• inteqer
procedure

integer
• integer

II'lPUT TWO INTEGERS:
(St~p at :CALCi22)
*iJst~l'

(input) 19
(St~p at :CALCI23)
*ps tep

THE SUM IS
(Step at :CALCi24)
*psteiJ

TH!:: DIFFERENCE IS
(Stel-' at :CALCi25)
*pst~p

THE MAXIMUM IS
THE MINIMUM IS

(Step at :CALClt21)
*

:defin~ patch 15 til '6 =

*yo til 121
INPUT TWO INTEGERS:

(input) 19 4
THE SUM IS 23

THE DIPF~RENCE IS 15
,THE MAXIMUM IS
THE MINIMUM IS

(Ilreak at i21)

19
4

*
*aefine proc PRI = ao
.*write 'tne numOerS ana product are: ',a,o,a*b
.*write using ('Il,)') 'break? '
.*if CI == 'y' then return true

* else return false endif
.*end

*a br 113 = 121 call PRI
*go USing b3

INPJT TWO INTEGERS:
(input) 23 24
THE SUi"t IS 47

THE DIFFERENCE IS 1
THE MAXIMUM IS 24
TH~ MINIi"tUM IS 24

the numbers and the product are: +23 +24 +552
oreak ? y
(t:lreak at 121)
*

*exit
pscoPt:: tern~natea

3·8

The Literally facility allows users to abbreviate,
redefine and extend the command language to suit
individual needs.

Any PL/M-86, Pascal-8S or FORTRAN-86 program
may be loaded. All symbolic names may be dis­
played, in total or by type. Symbols defined at debug
time may be displayed as well. All program types are
supported, including numerics, user-defined types,
and records. The symbols' types are displayed by the
DlR command as well.

Several flavors of stepping are offered. This example
illustrates PSTEp, a line-by-line step where pro­
cedures are executed as a single step. This program
contains five steps in the main body, with three being
procedure calls.

There appears to be a bug in the program, as the sum
is displayed incorrectly. Looking at the program, we
notice that X and Y were multiplied instead of added,
at line #5. A code patch is defined, and the program
executes correctly.

This illustrates the facility where a debug procedure
(PR1) is called when reaching a breakpoint at line
#21. Here, some values are displayed, and a condi­
tion is evaluated (in this case, a query to the user).
Had the condition been false, program execution
would continue with no break. The high-level con­
structs in the command language make this a very
powerful facility.

iRMX™ PSCOPE 86
HIGH-LEVEL PROGRAM DEBUGG.ER

• Debugs PL/M-86, Pascal-86,
FORTRAN-86, and ASM86 programs

• Runs under theiRMX™86 operating
system .

• Sets breakpoints and traces program
execution

• Single-steps through assembly
language instructions,
high-level-language statements, or
procedures

• Permits creation of high-level program
patches using high-level-language
constructs

• Offers symbolic debugging capabilities:
- Maintains type information about

variables
- Supports symbolic access to

dynamic local variables
- Maintains a virtual symbol table for.

program variables
- Allows definition of user-defined

debugging variables and procedures
. - Accesses memory locations and

program variables using
program-defined names

• Disassembles memory and provides a
Single-line assembler

PSCOPE is an interactive, symbolic debugger for high-level-language programs written in PLlM-86,
Pascal-86, and FORTRAN-86 and for assembly language programs written in ASM86.PSCOPE runs
underthe iRMXTM-86 operating system.

With PSCOPE, a user can load an application program, set breakpoints at symbolic or numeric'
addresses, trace program execution, and create patches. Other debugging aids include the ability to
single-step a program through high-level-language statements, assembly language instructions, or
procedures, to display and modify program variables, to inspect files, and to personalize the debugging
environment. .

DEBUGGING
WITHOUT
PSCOPE

DEBUGGING
WITH

PSCOPE

Figure 1 PSCOPE and the Program Development Process
The following are trademarks of Intel Corporation and may be used only to'describe Intel products: AEDIT, CREDIT, Index, Intel. Insite.
Intellec, Library Manager, Megachassis. Micromap, MUL TlSUS, PROMPT, UPI. ILScope. Promware, MCS, ICE, iRMX, ISSC, iSSX, MUL TI­
MODULE and ICS. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are Implied.

~ INTEL CORPORATION, 1984

3-9

APRIL,1984
Order Number: 231058-001

inter IRMX™ PSCOPE 86

PSCOPE OVERVIEW

PSCOPE allows testing and modifying a program
without having to re-edit the source code,
recompile, and relink. For example, users' can
refine algorithms with PSCOPE patches. The
time saved not only decreases frustration of the
development team, but it may also lead to faster
product development.

PSCOPE' can debug programs that employ
system calls. The same microprocessor runs
PSCOPE, an application program, and the
iRMX-86 operating system. This ensures that
the application program can' make system calls
to the iRMX-86 operating system.

MAJOR FEATURES

Symbolic Debugging

With symbolic debugging, a user can examine or
modify a memory location by using its symbolic
reference. A symbolic reference is a procedure
name, variable name, line number, or program
label'that corresponds to a location in the user
program's memory space. For example, to dis­
play the value of the program variable Iinesend,
users need only type that variable's name. (Note
that * is the PSCOPE prompt.)

*Iinesend
50

Notice that PSCOPE returns the variable value
without the user having to indicate the variable's
type. The capability to recognize a variable's
type and scope is a special feature of PSCOPE's
support of symbolics. Few other debuggers offer
this feature. The feature provides three benefits:

• It eliminates the need for fully qualified sym­
bolic references. Users no longer have to
fully qualify the symbolic reference with a
prefix that specifies the pathname to th~
symbol. (The pathname specifies the module
and all procedures that enclose the symbol.)

• By recognizing the scope of a variable, it
makes available information on dynamic
(local) variables.

• It eliminates the need to remember how a
variable was declared in a user's program.
This can be a significant advantage. Consider
an example. Suppose the user's program has
an array of employee records called emprec
that includes salary and other employee
information. USing PLlM, the user might de­
clare it like this:

DECLARE emprec (100) STRUCTURE
(name (20) BYTE,
ss (10) BYTE,
number INTEGER,
salary REAL);

With PSCOPE, to determine the salary of
the nth employee, the user need only type:

emprec[n).salary ,

PSCOPE would then respond:

2.200E + 03

By contrast, other debuggers will not return
the salary, unless the user supplies infor­
mation' on the structure of the array~ For
example, if the array had 36 bytes to, each
record and salaries were stored 32 bytes
into the record, on other debuggers
$omeone's request for the salary of the nth
employee w'6uld have to mention these
facts of array structure and indicate that'
salary information is of type REAL - in

, other words, the requester would have to
type:

REAL emprec[n) + (n*36) + 32

Patch

A PSCOPE patch consists of PSCOPE com­
mands that augment or replace current program
instructions. Patching allows the user to refine a
program's algorithm and test these refinements
without having to edit the source code, re­
compile, and re-Iink.

For example, assume that statements #9
through # 11 of a program set some program
variables equal to some incorrect initial values.
The following patch skips statements #9, #10,
'and # 11. It replaces them with new variable as'"
signment statements. Program execution

3-,10

resumes at statement #,12. A GO command auto­
matically makes use of any existing patches.
(Note in this and other examples that PSCOPE
returns the symbol "." before a prompt to indicate
to the user that an END is needed to complete
the command.)

*DEFINE PATCH :pager#9 TIL :pager#12=DO
.*Ieftmargin= 9
.*Iinesend :::: 45
.*double = true
.*END

*
Order Number: 231058-001

inter iRMXTM PSCOPE 86

A patching command can also insert new
statements. The following command inserts the
statement"i = 0" on the line preceding line 10.

*DEFINE PATCH :pager#10 = i = 0

The Virtual Symbol Table

PSCOPE maintains a virtual symbol table for pro­
gram symbols; that is, the entire symbol table
need not fit into memory at the same time. An
option on the PSCOPE invocation line deter­
mines how much memory is reserved for the
resident portion of the symbol table. The rest of
th~ symbol table exists in a temporary disk file ..

Breakpoints

Breakpoints permit the stopping of a program at
specified locations. The user can then enter
PSCOPE ~ommands and perform such functions
as constructing patches, examining or changing
program variables and registers, and disassem­
bling memory. Execution can then b(3 resumed
from where the program left off or from another
point. .

A breakpoint specification is tlie execution ad­
dress just before which the user wants the pro­
gram to stop. Users can represent execution ad­
dresses as s·ymbolic· addresses, absolute
addresses, segment/offset pairs, or even high­
level-language statement numbers ..

For example, assume that the user has loaded a
program with a module called pager. The follow­
ing GO command sets a breakpoint just before
statement #41.

*GO TIL :pager#41

If statement #41 begins at segment/offset
1 BB7H:0302H, equivalent GO commands are

. *GO TIL 1 BB7H:0302H
*GO TIL 1 BE72H

(The segment/offset 1 BB7H:0302/"i is equivalent
to the absolute address 1 BE72H; to obtain an
absolute address from a segment/offset pair,
shift the left member of the pair by one place so
that it becomes 1 BB70H, and to it add the right
member of the pair, the offset.)

Debugging Proce~ures

Debugging procedures are groups 0.1 PSCOPE
commands that have been labelled. They can be

stored on disk and recalled in later debugging
sessions.

For example, here is the definition of a debugging
procedure called fix/number. This debugging
procedure sets the program variable Iinenumber
to 50 if the variable is greater than 50 and incre­
ments linen umber by 1" if the variable is less than
or equal to 50. To execute the debugging
procedure, just type its name.·

*DEFINE PROC fixlnumber = DO
.*IF linenumber > 50 THEN·

... *Iinenumber = 50
.. *ELSE
.. *Iinenumber = linen umber + 1
..*ENDIF
.*END
*fixlnumber I*Executing the debugging*1
* I*procedure • *1

One advantage of debugging procedures is the
ability to execute often-used groups of PSCOPE
commands without re-typing the commands.
Another advantage is the ability to automate the
software testing process. The procedure may
repeatedly generate test values, execute the
user program with new input values, and record
the results. Debugging procedures aid the devel­
opment of comprehensive "batched" tests.

Yet another advantage of debugging procedures
is the ability to stub procedures in the user pro­
gram (e.g., to construct dummy procedures).
This ability improves software project manage­
ment by allowing programmers to debug different
pieces of the system separately.

Debugging Regi~ters

Debugging registers are user~created, named
software constructs that hold breakpoint and
trace specifications. The two types of debugging
registers are break, registers and trace
registers. A user can execute a program and
specify one or more debugging registers. For
example, here is the definition of a break register
called brk41 that specifies a breakpoint at state­
ment #41 in the user program called pager.

*DEFINE BRKREG brk41 = :pager#41

To execute the user program and break just
before statement #41, specify the break register
btk41 as part of the GO command:

*GO USING brk41

An advantage· of using a debugging register is
that the user doesn't have to reenter the debug­
ging specification for another program

Order Number: 231058-001

3-11 .

inter iRMX™ PSCOPE 86

execution. He or she can store specifications in
a debugging' register, give them mnemonic
names, write them to a disk file, and recall them
in future debugging sessions,.

Another advantage of using a debugging register
is that it enables users to call a previously­
defined debugging procedure when a specifica­
tion in that register is met. For example, assume
a user wants to break at two statements: state­
ment #41 and statement #43, but the user only
wants to break at statement #41 if the program
variable linenumber is 50. First, the user defines
a debugging procedure called check_lnumber
that returns the value TRUE if linen umber is 50
and the value FALSE if linenumber is not 50.
(Note that the symbol "= =" indicates equival­
ence while "=" is the assignment symbol.)

*DEFINE PROC check_lnumber = do
.*IF linenumber = = 50T THEN
.. *RETURN TRUE I*Break execution*!
.. *ELSE·
.. *WRITE linen umber
.. *RETURN FALSE I*Continue execution*!
.. *ENDIF
. *END.

Second, ,the user defines a break register that
specifies two breakpoints but qualifies the first
with a call to the debugging procedure.

, .
*DEFINE BRKREG brk4L43 = #41 CALL

check_,lnumbar, #43 '

This definition directs PSCOPE to break at state­
ment #41 if the procedure returns TRUE; if it re­
turns FALSE, PSCOPE does not break at state­
ment #41 but goes on to break at statement #43.

To run the program uSing this break register, the
user specifies the GO command.

*GO USING brk4L43

Tracing

The PSCOPE trace feature displays a trace
message on the host development system's
console when the user program reaches a speci­
fied execution address. The trace message
identifies the current execution point; no break
occurs.

For example, assume again that the user has
loaded the program called pager and defined a

trace register that displays a trace message just
before the user program executes statement
#41. .

*DEFINE TRCREG trc41 =:pager#41
*GO USING trc41
[At :pager#41]
[At :pager#41]
[At :pager#41]
[At :pager#41]

The previous example assumes that statement
#41 is a statement that exists within a loop and
hence is repeatedly executed.

The PSCOPE Command Language'

The'syntax of PSCOPE commands resembles
that of a high-level language. The PSCOPE com­
mand language is versatile and powerful while
remaining easy to learn and use .

PSCOPE commands are often self-explanatory.
For example, block-stru~tured .commands in­
clude DO-END, REPEAT-END, COUNT-END,
and IF-THEN..;ELSE. The command that begins
the execution of the user program is GO. .

The PSCOPE com mend language contains a
number of functional categories.

• Emulation commands. These commands in­
struct PSCOPE to execute the user program.
They consist of GO 'and the three stepping
commands, ISTEP, LSTEP, and PSTEP.

• Debugging environment commands. These
commands define patches, debugging
procedUres, debugging variables,
LITER ALL Ys, break registers, and' trace
registers (the DEFINE command). A user can
also delete these definitions (the R'EMOVE
command).

• Block commands. These consist of DO-END,
COUNT-END, REPEAT-END, and IF­
THEN-E'LSE constructs. They can be used
alone or within debugging procedures and

'patches.

• String functions. These functions concate-'
nate strings (the CONCAT function), return
the string length (the STRLEN function),
return a substring (the SUBSTR function),
and accept consol,e input (the CI function).

Order Number: 231058-001

iRMXTM PSCOPE 86

• Utility commands. These are general-purpose
commands for use in a debugging
environment. They consist of the following:

$

ACTIVE

ASM

BASE

CALLSTACK

DIR

EDIT

EVAL

EXIT

HELP

This pseudo-variable repre­
sents the current execution
point.

This function determines
whether a specified dynam­
ic variable is currently
defined on the stack or not.

This command assembles
or disassembles memory.

Sets or displays the current
radix.

Displays the dynamic ca"­
ing sequence stored on the
stack.

Displays a" objects of a
specified type, such as
debugging variables, pro­
gram variables, line num­
bers, etc.

Invokes the internal, menu­
driven, text editor.

Returns the symbolic name
for memory locations. Also
displays the result of an ex':'
pression in binary, decimal,
hexadecimal, and ASC".

Returns control to the host
operating system.

Provides on-line help for
selected topiCS and select­
ed error messages.

INPUTMODE Determines how a program
handles input from the
console.

NAMESCOPE This pseudo-variable repre­
sents the current scope of a
variable. Gives access to
variables without need to
use the fully qualified sym­
bolic reference.

OFFSET$OF This function returns the
offset of a specified address
(virtual or symbolic).

3-13

SELECTOR$OF This function returns the
selector of a specified ad­
dress (virtual or symbolic).

WRITE Writes variables and strings
to the console's screen.

• File handling commands. These commands
access disk files. The user can load program
files to be debugged (the LOAD command),
save patches, debugging procedures, debug­
ging variables, L1TERALL Ys, and debugging
registers in a disk file (the PUT and APPEND
commands), read.-in these definitions during
later debugging sessions (the INCLUDE
command), inspect a file during a debugging
session (the VIEW command), and record a
debugging session in a disk file for later anal­
ysis (the LIST and NOLIST commands).

• Register access commands. These com­
mands provide access to the 8086/8088 and
8087 registers and flags.

The REGS command displays the 8086/8088
registers and flags. Users can also inspect or
change an individual register by specifying
its men monic. For example, CS represents
the code segment register.

The FLAG pseudo-variable represents the
8086/8088 flag word. The user can also in­
spect or change each flag separately as a
Boolean variable. (For example, TFL repre­
sents the trap flag.)

With the iSBC@ 337 MULTIMODULETM in
place, users can inspect or change an 8087
(or 80287) register by specifying its
mnemonic. For example, STO through ST7
represent the stack registers.

Debugging Variables

Debugging variables are user-created, named
variables used with PSCOPE commands. They
are distin,ct from program variables. For
example, here is the definition of a debugging
variable called begin. Its type is POINTER.

*DEFINE POINTER begin = $

$ is a PSCOPE pseudo-variable that represents
the current execution point. Immediately after
loading a program, $ contains the starting execu­
tion address. This is an address worth saving if
users want to re-execute the program.

Order Number: 231058-001

iRMXTM PSCOPE 86

Literally Definitions

LITERALLY definitions are shorthand names for
previously defined character strings. L1TERA!-­
L Y definitions save keystrokes or improve
clarity. For example, here is the definition of a
LITERALLY that saves keystrokes. This L1T­
ERALL Y allows users to type DEF for DEFINE.

*DEFINE L1TERALL Ydef = 'DEFINE'

LITERALLY definitions c'an also provide short­
hand names for a group of statements. The fol­
lowing example shows a LITERALLY definition­
that allows substitution of "gs" for the two state­
ments "$=begin" and "GO".

*DEFINE LITERALLY gs = '$=begin; GO'

Coprocessor Support

PSCOPE provides debugging support for pro­
grams that perform real arithmetic. A program
-performing real arithmetic under PSCOPE re-
quires that theiRMX-86 microcomputer system
contain the iSBC 337 MULTIMODULE board .
. (80286 users will need an 80287 numeric pro­
cessor chip instead of the 8087 chip.)

The 8087 debugging support consists of the abil­
ity to assemble and disassemble 8087
instructions, to single step through 8087
instructions, and to recognize real data types
(REAL, LONG REAL, and TEMPREAL) as well as
the extended integer data type (EXTINT). With
the iSBC 337 MUL TIMODULE board present,
.users can also access 8087 registers and flags.

The Disassembler and Single-line
Assembler

With the disassembler, memory can be displayed
\ as 8086/8087 mnemonics. Users can also load

memory with 8086/8087 instructions and specify
those instructions in their mnemonic form. The
next example showshow the ASM command dis-.
plays the first assembly language instruction
that makes up the high-Ievel-languagestatement
#41.

*"ASM #41
1 BB7:0368 A 1 2COO MOV AX,L1NESEND

To expand .this example, suppose that the user
finds a bug: the instruction should have set the
program variable Iinesend to the value in the AX
register rather than loading AX with the value of
Iinesend. That Is, the instruction should have
specified a move from accumulator to memory

3·14

rather than from memory to accumulator. The
user can· use the single-line assembler to
change the instruction.

*ASM 1BB7H:0368H='MOV :PAGER.
L1NESEND,AX'

1 BB7:0368 A32COO

The Editor and the View Command

PSCOPE contains an internal, menu-driven
editor similar to Intel's AEDITTM text editor. With
this editor, users can create and modify
patches, debugging procedures, and LITERALLY
definitions.

An additional feature is the VIEW command; it
permits examination of disk files without exiting
PSCOPE. For example, while in a debugging
session, a user can use the VIEW command to
inspect the program's list file and ensure that
the statement number for a breakpOint specifica­
tion is correct.

On-line Help

PSCOPE provides an on-line help facility. In ad­
dition to obtaining help on topics from a help list,
extended versions of PSCOPE error messages
can be displayed. The extended error messages
are marked with an .asterisk enclosed in
brackets: [*].

Stepping

PSCOPE commands allow users to single-step
through assembly language instructions (the
ISTEP command), high-level-language state­
ments (the LSTEP command), and procedures
(the PSTEP command). The ISTEP command dis­
plays the next instruction in disassembled form.
The LSTEP and PSTEP commands display the
statement number of the next high­
level-language statement. For example, here is
an LSTEP command and its result:

*LSTEP
[Step at :PAGER#42]

EXAMPLE OF A DEBUGGING
SESSION

The example shown in Figures 2 and 3 illustrates
some of the key capabilities of PSCOPE. The
example program is written in Pascal-86. It was
compiled and linked (with the BIND option). The
resulting file consists of load-time-Iocatable
code and is called pager.8B.

Order Number: 231058-001

inter iRMX™ PSCOPE 86

The program reads an input file called TXTIN
that is assumed to be in the default directory, for­
mats the text, and writes it to a file called
TXTOUT also in the default directory. The pro­
gram inserts ten spaces at the beginning of each
line, thus creating a left margin, inserts page
breaks, writes a heading for each page, and
numbers the pages. The program may also

double-space lines. Note that line 41 in the
example contains an error: "=Iinesend" should
be "> =Iinesend".

iRMX 86 Pascal-86, V3.0

Source File: PAGER.SRC
Object File: PAGER.OBJ

This example is not intended to be a working
program. Its purpose is to illustrate the use of
some PSCOPE commands.

Controls Specified: XREF, CODE, DEBUG, OPTIMIZE, TYPE.

STMT LINE NESTING SOURCE TEXT: PAGER.SRC
1 0 0 PROGRAM pager(INPUT,OUTPUT);
2 2 0 0 CONST blank=' '.
3 3 0 0 VAR textin,textout :TEXT;
4 4 0 0 ch :CHAR;
5 5 0 0 leftmargin,i,linenumber :INTEGER;
6 6 0 0 linesend,pagenumber :INTEGER;
7 7 0 0 double :BOOLEAN;
8 8 0 0 PROCEDURE init(VAR reftmargin,linesend:INTEGER;
8 9 0 VAR double:BOOLEAN;

VAR textin:TEXT);

9 12 0 BEG IN (*init*)
9 13 1. leftmargin: = 1 0;
10 14 linesend:=50;
11 15 double: =TRUE;
12 16 WRITELN('leftmargin = ',Ieftmargin :2);
13 17 WRITELN('lines/page = ',linesend:2);
14 18 WRITELN('double = ',double);
15 19 WRITELN

END (*inih);

BEGIN (*main*)
16 24 0 RESET(textin,'txtin');
17 25 0 REWRITE(textout,'txtout');
18 26 0 pagenumber: = 1;
19 27 0 linenumber: = 1 ;
20 29· 0 init(le(tmargin,linesend,double,textin);
21 31 0 WHILE EOF(textin)=FALSE DO
22 32 0 BEGIN
22 33 0 2 WR ITELN (textout);
23 34 0 2 WRITELN(textout);
24 35 0 2 WR ITELN (textout,' ,

Intel Corporation ',pagenumber:4);
25 37 0 2 WRITELN (textout);

Figure 2 Listing Of the Program Used in the Debugging Session

Order Number: 231058-001

3-15

inter iRMX™ PSCOPE 86

26 39 0 2 REPEAT
26 40 0 3 FOR i:=leftmargin DOWNTO 1 DO
27 41 0 3 WRITE (textout,blan k);
28 42 0 3 WHILE EOLN(textin)=FALSE DO
29 43 0 3 BEGIN
29 44 0 4 READ(textin,ch);
30 45 0 4 WR ITE (textout,ch)

END;
32 47 ·0 3 IF double = TRUE THEN
33 48 0 3 BEGIN
33 49 0 4 WRITELN (textout);
34 50 0 4 WRITELN (textout);
35 51 0 4 linen umber: = linenumber+ 2

END
36 53 0 3 ELSE
37 54 0 3 BEGIN
37 55 0 4 WR ITELN (textout);
38 56 0 4 linenumber: = linenumber+ 1

END;
40 58 0 3 READLN(textin)
41 59 0 2 UNTIL (Jinenumber=linesend) OR (EOF(textin)=TRUE);
42 61 0 2 PAG E (textout);
43 62 0 2 WRITELN('page = ',pagenumber:4);
44 63 0 2 pagenumber:=pagenumber+ 1;
45 64 0 2 linen umber: = 1

END;

47 66 0 WRITELN;
48 67 0 WRITELN('end of file on textin encountered')

END. (*main*)

Figure 2 Listing of the Program Used in the Debugging Session (continued)

(1) *BASE
DECIMAL

(2) *LOAD pager.86

(3) *DEFINE POINTER begin = $
*DEFINE PROC again = DO
.*$=begin
.*NAMESCOPE=$
.*END

(4) *DIR DEBUG
BEGIN .. pointer
AGAIN .. proc
*PUT pager.MAC DEBUG

Figure 3 Sample Debugging Session

3-16

Order Number: 231058-001

(5) *DEFINE PROC fixlnumber = DO
.*IF linenumber > 50 THEN

iRMX™ PSCOPE 86

.. *WRITE 'old linenumber= ',linenumber

.. *Iinenumber = 50

.. *WRITE 'new linenumber= ·,Iinenumber.

.. *RETURN TRUE

.. *ELSE RETURN FALSE

.. *ENDIF

.*END
*DEFINE BRKREG stat41 = #41 CALL fixlnumber

(6) *GO USING stat41
leftmargin = 10
lines/page = 50
double = T
old linenumber= 51
new linenumber= 50
[Break at #41]

(7) *GO
page = 1
old linenumber= 51
new linenumber= 50
[Break at #41]
*GO
page = 2
old linenumber= 51
new linenumber= 50
[Break at #41]
*GO
page = 3

end of file on textin encountered

EXCEPTION: Program call to DQ$Exit
[Stop at location 2178H :0030H]
*EXIT
PSCOPE terminated
COMMENTARY

(1) Checks to see that the default radix is decimal.

(2) Loads the user program.

/*Break execution*/
/*Continue */

(3) Defines a debugging variable called begin and a debugging procedure called again.

The debugging variable begin is of type POINTER and is set to tne current ex~cution point. At
this point in the debugging session, $ is the beginning address of the user program.

The debugging procedure again sets $ and NAMESCOPE to begin, the initial values. If, after ex­
ecuting a program, a user executes this procedure, the user is ready to execute the program
again.

Note that a LITERALLY definition could have been used here. For example, the following defini­
tion would allow the programmer to substitute "setup" for "$=begin" and "NAMESCOPE=$":

DEFINE LITERALLY setup = '$=begin; NAMESCOPE=$'

Figure 3 Sample Debugging Session (continued)

Order Number: 231058-001

3·17

iRMX™ PSCOPE S6

(4) Lists the currently defined debugging variables; then, saves them in a file called pager.mac on
the current default directory.

(5) Defines a debugging procedure called fixlnumberanda break register called stat41.

The debugging procedure fixlnumber tests the program variable Iinenumber for a value greater
than 50. If it is greater, the procedure sets Iinenumber to 50 and returns the'value TRUE.
Otherwise, the procedure returns the value FALSE.

The debugging register stat41 defines a breakpoint just before statement #41. Wheri the user
program reaches this location, PSCOPE executes the debugging procedure fixlnumber. If the re­
turned value is TRUE, the break occurs.

(6) Executes the user program with the break register stat41. The program ,writes ieftmargin,
line/page, and double to the screen. The debugging procedure writes old and new linen umber to
the screen. The break occurs.

(7) Resumes execution of the user program. The program writes out the program variable page to
the screen. The debugging procedure writes old and new Iinenumber to the screen. The break
occurs.

Again resumes execution until the program encounters an end-of-file on TXTIN.

PSCOPE always traps a call to DQ$EXIT and stops program execution. This allows the user to
continue debugging. Executing the procedure again at this time prepares PSCOPE to execute
the program once more.

Figure 3 Sample Debugging Session

BENEFITS

As an interactive, symbolic, high-level language
debugger, PSCOPE brings to debugging the
same type of productivity enhancements that
high-level-languages bring to writing software.
PSCOPE's benefits are listed below:

• A shortened development cycle. Break­
points, tracing, and patching decrease the
number of edit/compile/link iterations.

• A standard command language. The PSCOPE
com,mand language is similar to that of Intel's
in-circuit emulators.

• Increased software reliability. Debugging
procedures can automate the software test-
ing process. . .

• Improved project management. Software
engineers can debug modules separately.

• A personalized debugging environment. The;
user can set up patches, LlTERALL Ys,·
debugging procedures, debugging registers,
and debugging variables.

3·18

SPECIFICATIONS

SOS6/S0SSLanguages Supported

PLlM-86
FORTRAN-86

Documentation

Pascal-86
ASM86

PSCOPE-86 High-Leve/Program Debugger
User's Guide, Order Number: 121790 '

Host System Requirements

An Intel System host microcomputer. The host
system must haye at least 11 OK bytes of applica­
tion program memory .. available for iRMX
PSCOPE 86. Additional memory may be required
for the program being debugged.

• Intel System 86 microcomputer systems
must run release 5 or later of the iRMX-86'

·operating system: ..

System 86/310 System 86/380
System 86/330A

Order Number: 231058-001

inter iRMX™ PSCOPE 86

• Intel System 286 microcomputer systems
must run release 6 or later of the iRMX-86
operating system. (Only release 6 or later of
iRMX 86 supports an 8086 environment on
80286 microprocessor systems running in
compatibility mode.)

User-Defined System Requirements

An 8086 or 80286-based user-configured
iRMX-86 system that includes the following
iRMX-86 subsystems:

Nucleus
Basic I/O system
Extended I/O system
Human Interface
UDI

ORDERING INFORMATION

Order Code Description

,ipse 86 RMX PSeOPE Program Debugger
(to run under the iRMX-86
operating system, release 5
or greater)

3-19

Order Number: 231058-001

NOS-II ELECTRONIC MAIL

• Improves Project Coordination and • MAIL Operates Either Interactively or in
Communication Command-Tail Format

• Minimizes "Phone Tag" and Excess • User, Group, and "Bulletin Board"
Paperwork Mailboxes Can Be Created

• Users Can Send and Receive Text or • Operates on any· Workstation in the
Object Files NOS~II Oevelopme.nt Environment

Electronic Mail enables users to send and receive messages and files between any nodes on the NOS-II net­
work. In doing so, Electronic Mail improves the communication and coordination between members, reduces
"phone tag" and paper generation, aids project configuration management by enabling simplified file transfers,
and increases flexibility in workstation location.

The Mail system is governed by an Electronic Mail directory which contains user, group, and bulletin board
mailboxes. Each NOS-II user has a mailbox which is only accessible to that user. Group mailboxes are acessi­
ble by a defined group of users, and bulletin board mailboxes are accessible by all users. Both group and bulletin
board mailboxes can be easily created by any system users.

Users can send a message to any of the mailbox types listed above. Messages can consist of text generated
when Mail is invoked, or a text or object file. Options available when sending mail include using a subject string
to categorize a message, specifying a message expiration date and time, delaying message delivery until a
specific date and time, marking the message URGENT, and maintaining a log of all messages sent.

Users can interactively read their mail and perform the following operations: print messages on their worksta­
tion console, delete messages from a mailbox, save messages in a file, forward messages to other users, and
reply to message senders. In addition, users can request a mailbox summary which includes, for each message,
the sender's name, date sent, subject, urgency, code type (text or object), and message number.

NOS-II Electronic Mail executes on all existing NOS-II workstations using either the iNOX or ISIS-III(N)/ISIS­
III(C) operating systems.

TYPICAL MAIL USAGE

• DISTRIBUTE SUPER USER MESSAGES

~ CREATE AND SEND INTERNAL MEMOS

• COLLECT PROJECT MILESTONE DATA

• REPORT PROGRAM BUGS AND RECOMMEND
SYSTEM CHANGES

• SEND SOURCE AND OBJECT FILES

• USE AS TELEPHONE MESSAGE CENTER

TYPICAL MAIL BENEFITS

• IMPROVE TEAM COMMUNICATION AND
COORDINATION

• REDUCE PHONE TAG

• MINIMIZE PAPER GENERATION

• AID PROJECT CONFIGURATION MANAGEMENT

• INCREASE WORKSTATION LOCATION FLEXIBILITY

• OVERALL, BOOST DEVELOPMENT TEAM
PRODUCTIVITY

NOS-II ELECTRONIC MAIL

Intel Corporation Assumes No Responsiblity for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent
Licenses are Implied. Information Contained. Herein Supercedes Previously Published SpeCifications On These Devices From Intel.

©INTEL CORPORATION, 1983 ORDER NUMBER: 230916-002

3-20

NOS-II ELECTRONIC MAIL

OPERATING ENVIRONMENT

Required Hardware
NOS-II Environment with any 8- or 16-bit Microcom­
puter Development System Workstation

Required Software
iNOX or ISIS-III(N)ISIS-III(C) System Software

DOCUMENTATION
"NOS-II Electronic Mail User's Guide"
(122146)

3·21

SOFTWARE SUPPORT
This product includes a gO-day initial support con­
sisting of new software releases, updates, subscrip­
tion services (software performance reports and
technical reports), and telephone hotline support.
Additional software support services are available
separately.

ORDERING INFORMATION

Product Code

iMOX-337

Description

NOS-II Electronic Mail

8086 SOFTWARE TOOLBOX

• Collection of Tools That Speed • OMC286 and E80287 Aid 80286 and
Software Development 80287 Software Development

• MPL, a Standalone Macro Processor, is • Many OtherValua,ble 16-Bit Software
Ideal for Debugging Macros Tools Are Included

• PSCAN reduces time spent doing • Runs on Series III and Series IV
software entry and editing Microcomputer Development Systems

• SCRIPT and SPELL Assist Text • Runs under iRMXTM Operating System
Preparation

The 8086 Software Toolbox is a collection of 16-bit software tools that can significantly improve programmer
productivity. These tools are valuable for text formatting, editing, and preparation, software testing and perform­
ance analysis, 286/287 software development, and a multitude of other applications.

Text processing tools ease document formatting and preparation. PSCAN is a syntax-scanning editor for the
PUM language. It catches syntax errors in the editing stage and provides automatic formatting of PUM code and
more. SCRIPT is a text formatting program that uses commands embedded in text to do paging, centering, left
and right margins, subscripts, etc. SPELL finds misspelled words in a text file and comes with a user expandable
dictionary. COMP prepares two text or source files and displays their differences.

Test and performance analysis tools aid software testing and performance evaluation. PERF, a performance
analysis tool for 8086 software, is ideal for isolating code "hot spots." PASSIF is a general-purpose assertion
checking and reporting tool perfect for running test suites.

Software developmentfor 286/287 components is assisted by two software tools: OMC286, an 8086 to 802(36
object module convertor, and E80287, an 80287 emulator that runs on the 80286.

Additional tools are included that aid 16-bit software development efforts. All tools run on Series III and Series
IV Microcomputer Dev~lopment Systems.

TEXT EDITING AND PROCESSING

PSCAN
SCRIPT
MPL
SPELL
WSORT

286/287 DEVELOPMENT

OMC286

E80287

PERFORMANCE
MEASUREMENT & TESTING

PERF

GRAFIT

PASSIF

COMP
FUNC
XREF
DC

MISCELLANEOUS TOOLS

HSORT
ESORT

8086 SOFTWARE TOOLBOX TOOLS

Intel Corporation Assumes No Responsiblity for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent
Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.

©INTEL CORPORATION, 1983 ORDER NUMBER: 230915-003

3·22

inter 8086 SOFTWARE TOOLBOX

FUNCTIONAL DESCRIPTION E80287-an 80287 emulator that runs on the 80286.

Text Editing and Processing
PSCAN-syntax scanning editor that supports all the
functions of AEDIT-86 Release 1.0. Plus specialized
functions for entering and editing PUM source pro­
grams. PSCAN verifies correct code entry as you
type, suppressing time consuming recompilations. In
addition, PSCAN provides facilities to automatically
format PUM code, and can perform editor functions
on statements, blocks or procedures.

SCRIPT-text formatting program that does paging,
centering, left and right margins, justification, page
headers and footers, underlines, boldface type,
subscripts and superscripts, upper and lower case,
and much more. Formatting commands are embed­
ded in text.

MPL-standalone macro processor that processes
the macro language used in 8086, 80286, 8089, and
8051 assemblers. Can be used interactively which
makes it ideal for debugging macros. MPL can be
used to preprocess any text file.

SPELL-finds misspelled words in a text file. Dic­
tionary of correctly spelled words is user expandable.

WSORT -utility for creating the SPELL dictionary.

COMP-performs line-oriented text file comparison
(shows source changes). Also understands 8086 ob­
ject module formats for comparing 8086 object files.

Performance Measurement and Testing
PASSIF-general-purpose assertion checking,
testing, and reporting tool. Helps automate the soft­
ware testing process.

PERF-performance analysis tool for 8086 software.
Monitors references in the code segment; segment
monitored is user defined. Works with small or com­
pact bound loadable modules. Ideal for isolating code
"hot spots." Will only run on the Series III.

GRAFIT -graphing utility for use with PERF.

Miscellaneous Tools
OMC286-object module convetor that converts 8086
object modules into 80286 object modules.

FUNC-allows user to redefine the keys on a Series
III keyboard and define function keys. Requires the
iMDX 511 firmware. '

XREF-produces cross-reference tables from
translator list files. Cross-references all symbols­
variables, labels,literallys, and quoted strings.

DC-floating point desk calculator program; allows
variable definitions.

HSORT -in memory heap sort utility.

. ESORT -very flexible sort program.

SPECIFICATIONS

Operating Environment
ISIS Operating System with RUN or INDX Operat­
ing System executing on Series III or Series IV
Microcomputer Development Systems.

iRMX™86 Operating System executing in SYS
X86/3XX environment.

Required Hardware
Series III or Series IV Microcomputer Development
System

Required System Software
ISIS Operating System with RUN or iNDX Operating
System

Documentation
"8086 Software Toolbox"
(122203)

Software Support
This product includes a 90-day initial support consis­
ting of new software releases, updates, subscription
services (software performance reports and technical'
reports), and telephone hotline support. Additional
software support services are available separately.

ORDERING INFORMATION

3·23

Product Code

iMDX-364

Description

8086 Software Toolbox

AEDIT TEXT EDITOR

II AEDIT·80 operates on any • AEDIT·86 Operates on any
Intellec® Series II, Model 800 Intellec® Series III, Series IV,
or iPDS™ Development System or iRMXTM system.

• Full Screen Editing • Powerful Macro Facility

• Menu· Driven, Easy to Use • Split·Screen Windowing

• Easy Handling of Large Blocks • Designed for the Programmer
of Text and Technical Writer .. Dual File Editing

AEDIT is a full screen editor for use on any Intellec® Development or iRMXTM system. It is designed to be
easy to learn and easy to use. At all times the user is guided by a menu which is used not only to select
commands, but also to select options to commands. There is no need to constantly refer to.or memorize
detailed manuals. .

AEDIT provides full screen editing capabilities and offers features to easily handle (move, copy, delete) large
blocks of text. In addition to the basic editing abilities, AEDITsupports tagging positions in the text, string
search and replace commands, and the option of automatic text indentation, spilling, and formatting. AEDIT
is able to edit files of any length and optionally creates back-up copies of the file being edited.

With AEDIT, two files can be edited during one session. The user can easily switch between the files for quick
reference, editing, or to transfer text from one file to the other. Using the windowing capabilities available
with AEDIT-86, both of these files may be displayed simultaneously in a split-screen format.

AEDIT supports a powerful macro facility. AEDIT can create macros by simply keeping track of what a user is
executing, "learning" the function the macro is to perform. The editor remembers the user's actions for later
execution, and can store them in a file if requested. Alternatively, a user may enter a macro using AEDIT's
macro language, or modify any existing macro interactively.

These and many other features combine to make AEDIT the editor of choice.

The f9110wing are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products: BXP, CREDIT, i, ICE,
iCS, Itn, Insite, Intel INTEL, Intelevision, Intellec, iMMX, iOSP, iPDS, iRMX, iSBC, iSBX, Library manager, MCS, MULTIMODULE,
Megachassis, Micromainframe, Micromap, MULTIBUS, Multichannel, Plug-A-Bubble, PROMPT, Promware, RMX/80, System 2000, UPI,
and the combination of iCS, iRMX, iSBC, iSBX, ICE, MCS, or UPI and a numerical suffix. Intel Corporation Assumes No Responsibility for
the use of Any Circuitry Other Than Circuitry Emt>odied in an Intel Product. No Other Patent Licenses are implied.
© INTEL CORPORATION, 1983 SEPTEMBER 1984

3-24
ORDER NUMBER:210996-003

AEDIT TEXT EDITOR

MANUALS
AEDIT is supplied with a user manual documen­
ting all the aspects of the editor, and a pocket
reference card. The manual includes an in­
troductory tutorial.

HOST SYSTEM
AEDIT-SO is an S080/808S-based utility and can be
run on any Intellee Development System, Series liE,
Series II, Model 800, or iPDS, as well as on ISIS
Cluster workstations.

The higher-performance AEDIT-S6 is an 8086-
based utility that can be run on any Intellee Se­
ries IIIE, Series III, or Series IV Development sys­
tem. Any Series II E, Series II or Model 800 sys­
tem can be upgraded to Series III functionality.
AEDIT-86 is also available for the iRMXTM Oper­
ating Systems.

AEDIT can be configured to run with non~lntel
terminals. Tested configurations are available
for the following popular terminals:

ADDS Regent 200, Viewpoint 3A +
Beehive Mini~Bee
DEC VT52, VT100
Hazeltine 1510
Lear-Seigler ADM-3A
Zentec ZMS-35

Regent 200 is a trademark of ADDS
Mini-Bee is a trademark of Beehive
DEC designated Digital Equipment Corporation
ADM-3A is a trademark of Lear-Siegler

ORDERING INFORMATION
iMDX-335 AEDIT-80 Text Editor.

iMDX-334

3-2S

Includes t3" single and double den­
sity diskettes for Series liE, Series
II, or Model 800, and a 5 % "
diskette for iPDS.

AEDIT-86 Text Editor
Includes 8" single and double density
diskettes for Series III.

ISIS-II SOFTWARE TOOLBOX

• Significantly Improves Programmer
Productivity ,

• Collection of Utilities that Speed Up
Software Design

• Enhances Capabilities of ISIS-II
Operating System

• Most Utilities will Operate on NOS-I
Workstations, and Remot.e Hard Disks

• Provides Source File Management,
Showing Source Changes, and
Performing Vprsion Control

• Provides Conditional Control and
"Structured Programming" to Submit
Files

• Runs on Model 800; Series II, and
Series IIllntellec® Development
Systems

The ISIS-II Software Toolbox is a collection of system utilities that perform a variety of "productivity­
oriented" functions. There are two major subsets of Toolbox tools, in addition to numerous ad hoc
utilities. These subsets provide Conditional Submit File Control and Source File Ma~agement.

The Conditional Submit File Control tools provide "structured programming" at the ISIS-II command leve\.
Jumps, Calls, Returns, etc. are supported, as well as conditional command execution, based on asser­
tions such as file existence, program errors, file matching, and string matching.

The Source Management Tools support version number tracking, and allow users to identify which ver­
sions of each source module were used to create a load module. There is also a tool which compares
source files and reports all differences.

The tools outside of the two major subsets assist the prog rammer in some very specific development and
debugging tasks. One tool manages all PUBLIC/EXTERNAL declarations in a system: Another merges the
locate maps into a program listing, giving absolute symbolic debugging information. There's a directory
sorter, a file compactor, and a tool. to display just the last block of a file.

3·26

intJ ISIS-II SOFTWARE TOOLBOX

FUNCTIONAL DESCRIPTION

Submit File Execution Control

IF/ELSE/ENDIF-conditional submit file execu­
tion based on file existence, program errors,
pattern matching, plus several other conditions

GOlO-causes submit execution to resume at a
specified label

RETURN-causes execution to return to the "sub­
mitter" (calling file)

EXIT-halts submit file execution
LOOP-forces execution to resume at the begin­

ning of the submit file
RESCAN-allows submit execution to begin

anywhere in file
NOTE-allows "progress report" notes to be

placed in submit files
WAIT-displays a message, and waits for user

input to continue or abort
STOPIF-halts submit file execution if specified

listing contains errors

Source Management

XLATE2-submit-like tool with intelligent
parameter substitution (for version control)

MRKOBJ-"marks" object modules with source
version information

CHKLOD-lists source version data put in load
modules by MRKOBJ '

CLEAN-deletes all old versions off a specified
disk

LATEST-displays latest version numbers of
specified files

Operating System Functions

CONSOL-reassigns console input and console
output as directed

DSORT*-alphabetically sorts floppy disk and
hard disk directories

RELAB*-changes disk name to any other
specified name

Program Development and Debugging

ERRS-fast display of program errors in PLI M 80,
PLI M 86, and ASM 86 listings

MERG80"':"merges debug data from locate maps
into PLIM 80 listings

3·27

MERG8S-merges debug data from symbol JTlaps
into PLIM 86 and Pascal 86 listings

GENPEX-produces include file for PLIM external
declarations (source level)

PASSIF-general purpose assertion checking,
testing, and reporting tool

Text Processing

COMPAR-performs line-oriented text file com­
parison (shows source changes)

UPPER-changes all letters in an ASCII text file to
uppercase

LOWER-changes all letters in an ASC,l1 text file to
lowercase

LAST-displays the last 512 bytes of a file
SORT-sophisticated line-oriented text file sort­

ing tool

Disk Backup and File Processing

DCOPY-fast track-by-track diskette copying
HDBACK*-sophisticated hard disk to floppy disk

backup program
PACK-compacts text files by removing strings of

blanks
UNPACK-reconstitutes "packed" files

Disk Recovery

GANEF*-interactively reads and writes floppy or
hard disk data blocks

Program Identification

WHICH-displays version number of Software
Toolbox Programs

*These programs will not operate on the NOS-I
remote hard disks.

ORDERING INFORMATION

Product Code
MDS-363t

Description
ISIS-II SOFTWARE TOOLBOX

Requires software license.

SUPPORT CATEGORY: Level C

tMDS is an ordering code only and is not used as a pro­
duct name or trademark. MDS is a registered
trademark of Mohawk Data Science.

INSITE™

USER'S PROGRAM LIBRARY

• Programs for Intel Microprocesso.rs

• Accepted Program Submittals Entitle
You to a Free Membership or Free
Program Package

• Worldwide Offices to Serve You

"

• Diskettes and Listings Available
for Library Programs

• Program Library Catalog Offering
Hundreds of Programs

• Updates of New Programs Sent During
Subscription Period

Insite, Intel's Software Index and Technology Exchange Library, is a varied collection of programs and
routines that have been written by users of Intel microcomputers, single-board computers, and develop­
ment systems. This expanding library of programs covers a broad range of software tools that includes
monitors, conversion routines, peripheral drivers, translators, math packages, and even games. As a
library member, you can acquire a copy of any program within the library on any of its available types of
media. By taking advantage of the availability of existing library programs, numerous hours of coding and
debugging time can be saved and routine or redundant programming operations can be eliminated .. The
Insite Program Library also serves as a learning tool for individuals unfamiliar with assembly or high-level

_ languages associated with Intel's family of microcomputers.

Membership. Membership in Insite is available on an annual basis. Intel customers may become
members through an accepted program contribution or paid membership fee.

Program Submittals. The Insite Library is built on program submittals contributed by users. Customers
are encouraged to submit their programs. For.each accepted program, submittors will receive a choice of
three free programs, or free membership with Insite for one year. (Forms and submittal requirements are
attached.)

Program Library Service. DISKETIES OR SOURCE LISTINGS are available for every program in Insite.
Diskettes are available on single or double density 8" or iPDS 5114" _ Membership is required to purchase
programs.

Insite™ Program Library Catalog. Each member will be sent the Program Library Catalog conSisting
of an abstract for each program indicating the function of the routine, required hardware and software,
and memory requirements.

Insite members will be updated with abstracts of new programs submitted to the Library during the sub­
scription period. For catalog and yearly sUDscription fee please refer to the Intel OEM Price List or contact
the nearest Insite or Intel Sales Office.

The following are.trademarks of Intet Corporation and its affiliates and may be used only to identify Intel products: BXp, CREDIT. i, ICE, iCS, im. tnsite, Intel, INTEL, Intelevision.lntellec,
iMMX, iOSp, iPDS, iRMX. iSBC, iSBX, Library Manager, MCS, MULTIMODULE, Megachassis, Micromainframe, Micromap. MULTIBUS, Multichannel, Plug-A-Bubble. PROMPT.
Promware, RMXlSO, System 2000, UPI, and the combination of iCS, iRMX, iSBC, iSBX. ICE. MCS, or UPI and a numerical suffix. Intel Corporation Assumes No Responsibility for the use
of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Patent Licenses are implied. ©INTEL CORPORATION, 1982. ORDER NUMBER: 121707·003

3-28

inter INSITE™ USER'S PROGRAM LIBRARY

SUBMITTAL REQUIREMENTS

Programs submitted for Insite review must follow the guidelines listed below:

Programs must be written in a language capable of compilation and assembly by the currently·supported
version of an Intel standard compiler/assembler.

A well-documented source code furnished on an ISIS, INDEX and CP/M*-formatted 8" diskette, or PDS 5%"
diskette.

A source listing of the program must be included. This must be the output listing of a compilation or an
assembly. No consideration will be given to incomplete programs or duplications of programs already in
the Library.

A link -and locate listing.

A demonstration program which assures the validity of the contributed program must be included. This
must show the accurate operation of the program.

A complete submittal form.

Licensed software or copyrighted material must be accompanied by a written release from the appro·.
priate, authorized person.

'CP/M is a registered trademark of Digital Research, Inc.

AFN-02045C

3·29

APPLICATION
NOTE

PMT Tutorial

BRIAN VALENTINE/JOHN JARVE
DSSO APPLICATIONS ENGINEERING

@INTELCORPORATION, 1983

3-30

AP-162

,

December 1983

Order Number: 230879-001

AP-162

INTRODUCTION

Intel's Program Management Tools (PMT's) provide
the essential ingredients for managing software devel­
opment projects. Currently two productivity tools com­
prise the PMT's: SVCS, a Software Version Control
System and MAKE, an automated software generation
tool. Together they control, examine, and automate the
management of a software development project, greatly
decreasing the time spent on tracking program changes
and the generation of new systems.

Intel's Software Version Control System controls and
documents software changes for both source and object
files. SVCS handles storage and retrieval of different
versions of a given module, controls update privileges,
prevents different users from making changes indepen­
dently, and requires all changes be throughly docu­
mented by recording who made what changes, when
and why. .

MAKE produces the specification of a 'minimum­
work' job required to generate a new system. This job
(i.e. submit file) typically includes compiles and links of
the latest versions of specified source and object mod­
ules. If a newer source module exists for any specified
object module, MAKE will specify a compile of this
module, replacing the older module in the completed
program. Unnecessary links and compiles, however, are
eliminated. MAKE does the minimum work required
to ensure consistent, up-to-date software, thus saving
many hours of compiles and links.

This tutorial covers the operation and features of Intel's
Program Management Tools. By carefully working
step-by-step through the examples contained herein,
the user should develop the requisite skills to fully ex­
ploit the many advantages PMT's provide. We strongly
suggest the user work through all examples. Each ex­
ample is carefully constructed to expose the new user to
a wide variety of program features and use ~ethodolo­
gies. A tutorial diskette, which 'is included in the PMT
Software package, supplements this manual and greatly
facilitates the learning process.

The user should completely read the User's Guide to
Program Management Tools before using this tutorial,
and be familiar programming in the ISIS environment.
In addition, he or she should be using a Series III work­
station operating under the ISIS-III operating system.
Series II and IV users would need to adapt the com­
mand syntax in this tutorial for correct operation.

3-31

EXAMPLE OVERVIEW

This tutorial describes the design of a software system
using the unique features of Intel's Program Manage­
ment Tools. The example system, REMOTE, enables
an iPDSTM development workstation to communicate
with an NDS-II via an ISIS Cluster board. In this con­
figuration the iPDS essentially functions as a dumb ter­
minal. Two special commands, SEND and RECV,
transfer files between the iPDS local storage and the
NDS-II remote file system. A full discussion of RE­
MOTE, including program listings, is covered in Ap­
pendix A.

The REMOTE program consists of five separate mod­
ules whose relationship is shown in Figure l. The pro­
gram is generated using the SUBMIT file in Figure 2.
This tutorial shows how to design an SVCS database
for REMOTE, and gradually alter the submit file into a
MAKE file. In addition, variants of REMOTE are cre­
ated to enable program execution on a Series II and
also run under the CP 1M operating system.

The tutorial diskette contains the many files described
within this manual and simplifies the execution of some
examples. Before using the diskette, the user's system
must by configured with the following assignments:

:FO: Directory containing ISIS
system files.

:Fl: Directory containing
tutorial source, object, executable
and CSD files. (All files supplied on
tutorial disk.)

:F2; Direct'ory containing 8 bit
compilers, linker, locater, MAKE and
SVCS.

:F3: Directory containing 8 bit
library files, such as PLM80.LIB and
SYSTEM.LIB.

:F4: Directory containing SVCS
database files created during
tutorial.

:F5: Directory containing 16 bit
software, such as 16 bit SVCS and
MAKE.

In addition, the tutorial disk files COMMON. LIT and
ISIS. EXT must be copied to the 8 bit system library
directory (:F3:). After the above changes have been
made, the tutorial files can be utilized without further
modification.

230879·001

PMT TUTORIAL CONTENTS
INTRODUCTION

PAGE

EXAMPLE OVERVIEW

DATABASE IMPLEMENTATION
USING SVCS ~ 2

A. Database Design '. 2

B. Database Generation 3

USING MAKE........................ 3

A. Generating the MAKE File 3

B. Adding SVCS to the MAKE File 4

CREATING VARIANTS USING SVCS .. 4

DATABASE OVERHEADS 7

A. Initial Set-Up '.' 7

B. Adding Variants 7

C. Total Overhead 7

USING DEFAULTS TO
SiMPLIFY OPERATIONS

OPERATION ON A
STANDALONE SYSTEM

7

8
A. System Differences 8

B. MAKE File Changes ~ 8

FIGURES 9

APPENDIX A A-1

230879-001
3-32

AP-162

USING SVCS

Database Design

SVCS manipulates UNITS which can have up to four
parts or CLASSES. The allowable CLASS categories
are:

• SOURCE, which contains the UNIT's source code;

• OBJECT, which contains the UNIT's object code;

• HISTORY, which contains the UNIT's history file;

• COMPOSITION, which can be used arbitrarily by
the user.

Each UNIT is given a unique name and may utilize any
or all of the above CLASSES.

Referring to Figure 1, the five main modules of our
example program are REMOTE, RMSEND,
RMRECV, FILEIO, and SERIAL. For each of these
modules we will define an SVCS UNIT having the
same name. In addition, for each UNIT we will create a
SOURCE CLASS, which will contain the UNIT's
PLM source code, a HISTORY CLASS, which will
document changes to the source code, and an OBJECT
CLASS, which will contain the UNIT's compiled
source. The database is depicted in Table 1.

Table 1. Preliminary Database

UNIT NAME SOURCE HISTORY OBJECT COMPOSITION

REMOTE REMOTE.PLM As requested REMOTE.OBJ ?
RMSEND RMSEND.PLM As requested RMSEND.OBJ ?
RMRECV RMRECV.PLM As requested RMRECV.OBJ ?
FILEIO FILEIO.PLM As requested FILEIO.OBJ ?
SERIAL SERIAL.PLM As requested SERIAL.ODJ ?

This simple database, however, does not contain all the
subsystems required to generate the executable object
code REMOTE. INCLUDE files, for example, are not
included. Figure 3 shows all of the modules required to
generate REMOTE. Additional units must be defined
for the executable object code and all include files.

Include files are added to our database as new units and
also as composition classes. The include files COM­
MON.LIT and ISIS. EXT, used by nearly all source
files, are stored in two new units: COMMON and ISIS.
FILEIO.EXT and SERIAL. EXT, however, are added
to the database via the composition class of the units
they're most closely associated with: FILEIO and
SERIAL. The executable code, REMOTE, is placed in new unit

called EXEC. REMOTE will reside in EXEC's OB­
JECT class. In the SOURCE class we'll place RE­
MOTE.MKE - the MAKE file (which we will create
soon) that generates REMOTE. Finally, in the COM­
POSITION class we will place· the user's manual
USER. MAN.

Two ISIS programs, SEND and RECV, are required
for complete operation of the REMOTE program.
These programs are added to the database as two new
units called SEND and RECV. These units will store
the source, object, and executable files for the two pro­
grams.

The database is now complete and shown in Table 2.

Table 2. Complete Database

UNIT NAME SOURCE HISTORY OBJECT COMPOSITION

REMOTE REMOTE.PLM As requested REMOTE.OBJ Not used
RMSEND RMSEND.PLM As requested RMSEND.OBJ Not used
RMRECV· RMRECV.PLM As requested RMRECV.OBJ Not used
FILEIO FILEIO.PLM As requested FILEIO.ODJ FILEIO.EXT
SERIAL SERIAL.PLM As requested SERIAL.ODJ SERIAL.EXT
EXEC REMOTE.MKE As requested REMOTE USER. MAN
SEND SEND.PLM As requested SEND.OBJ SEND
RECV RECV.PLM As requested RECV.OBJ RECV
COMMON COMMON. LIT As requested Not Used Not Used
ISIS ISIS.EXT As requested Not Used Not Used

Every element in the database represents one portion of the REMOTE system diagram shown in Figure 3.

230879-001

3-33

inter Ap·162

Database Generation

Having designed the database it is a mechanical process
to generate and initialize it. The steps required to do so
are shown in Figure 4. .

Referring to Figure 4, the first SVCS command:!::

RUN :F5:SVCS.
ADMIN :F4:REMOTE.DB CREATE

creates the database master file. This file contains all
the information relating to variants, unit names, default
accesses and file protection. The name
"REMOTE. DB" is the name of the database and will
be used in all SVCS command references to the data­
base.

The second command:

ACCESS :F4:REMOTE.DB WRl WWl

sets the access rights for the database. This must be
done if mUltiple users access the database. SVCS propa­
gates these ~ccess rights to all of its database files.

The next 28 commands create and fill the database
units. Note how the SOURCE class of a unit may be
filled when created by including the FROM option:j::

RUN :F5:SVCS. ADMIN :F4:REMOTE.DBADD
(UNIT = REMOTE FROM & :Fl:REMOTE.PLM)

Also note how you must GET a COMPOSITION
class, with write option, before you can PUT to it.

You may either submit MAKEDB.CSD (which is on
the tutorial disk) or enter the commands one-by-one to
generate this database. We suggest you enter the first
few commands to become familiar with the SVCS com­
mand formats. Once comfortable with the commands,
you can submit MAKEDB.CSD to finish the database
construction. The completed database .can be viewed in
a structured printout generated by the following com­
mand:!::

RUN :F5:SVCS.
ADMIN :F4:REMOTE.DB PRINT

USING MAKE

Generating the MAKE File

The submit file REMOTE.CSD, shown in Figure 2,
will be used as the basis for generating the MAKE file.
Ensure you understand the operation of
REMOTE.CSD before continuing.

:j:Command should be typed on one line.

3-34

Not shown in the submit file are source file dependen­
cies on include files. These dependencies are hidden
within the source files, and are displayed in Figure 3.
Changing an include file is equivalent to changing a
source file. For example, a change to COMMON. LIT
modifies nearly all the source modules. MAKE and
SVCS will be used to monitor and control include files
too.

The files fall logically into three groups of executable
files:

REMOTE - an executable file that runs on the re­

SEND

RECV

mote system;
- an executable file that runs on the ISIS­

Cluster board to SEND a file to the
Network file system;

- an executable file that runs on the ISIS­
Cluster board to RECEIVE a file from
Network file system.

These groupings will be used within the MAKE file.

Figure 5 shows the first pass at creating a MAKE file.
(Also refer to tutorial disk file REMMKE.EXM.) This
MAKE file contains the least complicated MAKE con­
structs to keep the REMOTE project up to date.

Referring to Figure 5, the first MAKE command:

$IF ALL> :fl:remote, send, recv THEN
$END

is a trick used to fool MAKE into generating a depen­
dency tree for three standalone or separate executable
files. The next five commands test the time/date stamp­
ing of the five object files as compared to the source and
associated include files. If the object file is older than
the source or include files, then the source must be
recompiled.

The last three MAKE commands test the age of the
executable files REMOTE, SEND and RECV against
the object modules that are linked to form these files. If
any of the executable files are out of date, MAKE will
add the appropriate task lines to the generated submit
file to make them current.

Figure 6 shows the second pass in creating a MAKE
file. (Also refer to tutorial disk file RMMKE1.EXM.)
Note the macro definition:

$SET work_device to ':Fl:'

This definition substitutes the text ":FI:" for % work_
device in all MAKE file commands. Macros enable the
user to easily update MAKE files with future' file
changes.

230879·001

AP-162

The SET macro command may also' specify a list of
items which are' used in a similar fashion with an itera­
tion command: For example, the MAKE iteration com-
mand: ' ,

$FOR i IN %remote_files

will execute the FOR loop for each item defined in the
SET macro of remote_files. The above iteration com­
mand converts the five MAKE commands in Figure 5
to one command in Figure 6.

Adding SVCS Constructs
To The MAKE File

Figure 7 shows the final version' of the MAKE file.
(Also refer to tutorial disk file REMOTE.MKE.) SVCS
has now been incorporated into this version, as well as
the special macros %ALL, %TARGET, ,and %DE­
PEND. All code files (source and object) now refer to
units within the REMOTE.DB SVCS database. For ex­
ample, the following command retrieves the file
:Fl:SERIAL.EXT from the database:

%get (serial"cp) to
%nwork_devicenserial.ext

In addition, the special macros %ALL, %TARGET,
and %DEPEND are used to simplify MAKE file cod­
ing.

We now add the final version MAKE file to the data­
base with the command:

RUN :F5:SVCS. GET :F4:REMOTE.DB (EXEC)&
TO :BB: WRITE

RUN :F5 :SVCS.' PUT:F4 :REMQTE.DB (EXEC) &'
FROM :Fl: REMOTE.MKE

After creating REMOTE.MKE, we run MAKE with
the GENALL option to create a SUBMIT file that gen­
erates everything:

RUN :F5:MAKE. :Fl:REMOTE.MKE TARGET&
(ALL) GENALL PRINT

The TARGET option ALL forces MAKE to produce a
submit file that includes all task lines required to gener­
ate ALL (in this case REMOTE, SEND, and RECV).
The default option is the first dependency node's target.
The TARGET option overrides this default.

Finally, we can submit the MAKE file:

SUBMIT :Fl:REMOTE

and generate the system.

CREATING VARIANTS
USINGSVCS

Before creating variants, let's review what we've done
so far. In Section III we designed a SVCS database to
store and control all program modules that comprise
the software system REMOTE. We then constructed
the database using the SVCS commands listed in Figure
4 which reside on the tutorial disk in the file
MAKEDB.CSD. A MAKE file was then created in
Section IV to automate system generation. Starting
with the SUBMIT file in Figure 2, we created several
versions of a MAKE file, each increasing in complexi­
ty. The final version contained substitution macros,
enumeration macros, parameter macros, special macros
such as %ALL, iteration commands, header and trailer
commands, and SVCS constructs. The final MAKE file
version is stored on the tutorial disk as
REMOTE.MKE.

At this point the most challenging work has been com­
pleted. This section will cover variant creation and da­
tabase management.

Let's save the WORK variant of the database to a
saved variant, which we'll call ISISPDS.

We create this variant by issuing the command:

RUN :F5:SVCS. ADMIN :F4:REMOTE.DB ADD&
(VARIANT = ISISPDS FROM WORK)

This command DOES NOT DOUBLE the size of the
database! Many auxiliary files are generated, but they
only contain pointers back into the original files.

We protect the variant ISISPDS by the command:

RUN :F5:SVCS. ADMIN :F4:REMOTE.DB&
WRITEACCESS (ISISPDS = FALSE)&
DEFAULTACESS (ISISPDS = ALL)&
DEFAULTACCESS (WORK = BRIAN)

This command:

1. Sets the ISISPDS variant to read only.

2. Gives all users who access the database the known
working ISISPDS variant. '

3. Gives BRIAN, a system programmer, access to the
, WORK variant.

BRIAN is now the only person who can write to the
database. In addition, when BRIAN checks out data­
base files, he will get WORK variant files.

230879·001

3·35

AP-162

We will now modify files within our SVCS database
and possibly the MAKE file to generate new versions of
REMOTE that execute under ISIS Series II, CPMPDS,
and CPM Series II.

We must incorporate the following changes:

• To change from ISISPDS to ISIS Series II execution
(creating the variant ISISS2):

Change the SERIAL.PLM file (Refer to tutorial
disk file SERIAL.S2).

• To change from ISIS Series II to CPM Series II
execution (creating the variant CPMS2):

Change the REMOTE.MKE file (Refer to tutorial
disk file REMMKE.CPM);

Change the FILEIO.PLM file (Refer to disk file
FILEIO.CPM).

• To change from CPM Series II to CPM PDS execu­
tion (creating the variant CPMPDS):

Change the SERIAL.PLM file (Refer to disk file
SERIAL.PDS)

Note: All changes are made to the WORK variant.
Then MAKE (using REMOTE.MKE) is run
on WORK. After the WORK variant is up­
dated for the new REMOTE program,
WORK is moved to a new variant in the data­
base. Upon completion of the following steps,
five variants will be in the database: ISISPDS,
ISISS2, CPMS2, CPMPDS and WORK. All
variants will contain appropriate files includ­
ing the executable REMOTE file. Remember,
when a new variant is created by WORK,
only modified files are added to the database.
Unchanged files are not duplicated; instead
pointers are set to the original files. (Section
VI discusses database overhead.)

The following commands create the three new variants
ISISS2, CPMS2 and CPMPDS.

1. Follow these steps to change and save a new variant
called ISISS2 for ,holding tpe ISIS Series II version:

a. First, give "ALL" access to the work variant, then
get SERIAL.PLM out of the WORK. variant and
place it in the file SERIAL.PLM:

RUN :F5:SVCS.ADMIN :F4:REMOTE.DB&
DEFAULTACESS (WORK = ALL)

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(SERIAL) TO : Fl : SERIAL. PLM WRI TE

3-36

b. Make the necessary changes to the source code
(see Appendix A for the changes) with the editor
and then put the file back into the database: (Note:
For the purpose of this tutorial, you can ignore the
changes and just put the file back into the data­
base.)

RUN :F5:SVCS.PUT :F4:REMOTE.DB&
(SERIAL) from :Fl:SERIAL.PLM

c. Run MAKE to examine all files that must be re­
compiled, relinked and relocated. Since the module
dependencies have not changed, we can use the
same MAKE file. Run MAKE by entering the
commands.

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(EXEC) to :Fl :REMOTE.MKE

RUN :F5: MAKE~ :Fl :REMOTE.MKE TARGET&
(ALL) PRINT

Note that the write option was not added in the
first command. We do this because we don't want
to change the file, just get it out of the database. If
we now tried to PUT the file back into the data­
base, SVCS would tell us the file was not checked
out for writing and cannot be PUT back.

d. Now submit the file REMOTE.CSD that MAKE
built:

SUBMIT :Fl:REMOTE

e. The database WORK variant now contains the
ISIS Series II version of REMOTE. We save the
WORK variant under another name by entering:

RUN :F5:SVCS. ADMIN :F4:REMOTE.DB&
ADD (VARIANT = ISISS2 FROM WORK)

Again, the database IS NOT COPIED, only head­
er records and changed files are added. By creating
this variant, we added a new version of
SERIAL.PLM to the database. By now you should
realize the efficiencies PMT's provide in managing
a large software project.

f. Now write protect the ISIS Series II version of RE­
MOTE:

RUN :F5 :SVCS. ADMIN :F4 :REMOTE.DB&
WRITEACCESS(ISISS2=FALSE)&
DEFAULTACCESS (ISISS2=BILL,FRANK)

230879-001

AP-162

If Bill or Frank now access the database (under
default conditions) they will get the variant ISISS2.
They may also specify a variant and get it. For
example, if Bill wanted a copy of the unit
(FILEIO) source from ISISPDS variant, he could
issue the following command:

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(FILEIO,WORK,SO) TO :Fl:FILEIO.PLM

PMT's allow the database administrator to assign
default variants to the appropriate people. This is
extremely useful in complex multifunctional proj­
ects such as REMOTE.

2. The work variant contains the ISISS2 version of RE­
MOTE. We can change and save a new variant called
CPMS2 to hold the CPM Series II version by follow­
ing these steps:

a. First, get REMOTE.MKE and FILEIO:PLM
(which must be changed) out of the WORK vari­
ant:

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(FILEIO) TO :Fl :FILEIO. PLM WRITE

RUN :F5: SVCS. GET :F4 :REMOTE. DB&
(EXEC) TO :Fl :REMOTE.MKE WRITE

b. Now make the necessary changes to
:Fl:REMOTE.MKE and :Fl:FILEIO.PLM (See
Appendix A for the changes.) using an editor and
then put them back in the database:

RUN :F5:SVCS.PUT :F4:REMOTE.DB&
(FILEIO) FROM:Fl:FILEIO.PLM

RUN :F5:SVCS. PUT :F4:REMOTE.DB&
(REMOTE) FROM :Fl :REMOTE.MKE

c. Next, get and run the MAKE file:

RUN :F5 :SVCS. GET :F4 :REMOTE.DB&
(EXEC) TO :Fl :REMOTE.MKE

RUN :F5:MAKE. :Fl:REMOTE.MKETARGET&
(ALL) PRINT

d. And submit the submit file REMOTE.CSD:

SUBMIT :Fl:REMOTE

e. The database WORK variant now contains the
CPM Series II version of REMOTE. We save the
WORK variant under the name CPMS2:

RUN :F5 :SVCS. ADMIN :F4 :REMOTE.DB ADD&
(VARIANT=CPMS2 FROM WORK)

Here again, the database IS NOT COPIED, only
header records and changed files are added. In
creating this variant, we only added new copies of
FILEIO.PLM and REMOTE.MKE to the data­
base.

f. Finally write protect CPMS2:

RUN':F5:SVCS. ADMIN :F4:REMOTE.DB&
WRITEACCESS (CPMS2 =FALSE) 8:
DEFAULTACCESS (CPMS2 = NONE)

NONE used as defaultaccess allows no one default
access to the CPMS2 variant.

3. The WORK variant now contains the version that
runs on the SERIES II under CPM. We change the
WORK variant to the PDS CPM version by follow-
ing these steps: .

a. Get SERIAL.PLM out of the WORK variant:

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(SERIAL) TO :Fl:SERIAL.PLM WRITE

b. Make the necessary changes with the editor and
then PUT the file back into the database:

RUN :F5:SVCS. PUT :F4:REMOTE.DB&
(SERIAL) FROM :Fl :SERIAL. PLM

c. Run MAKE.

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(EXEC) TO :Fl :REMOTE.MKE

RUN :F5 :MAKE. :Fl :REMOTE.MKE TARGET&
(ALL) PRINT

d. And Submit:

SUBMIT :Fl:REMOTE

e. The database WORK variant now contains the
version of REMOTE that runs on the PDS under
CPM. We save this version under another name:

RUN :F5:SVCS.ADMIN :F4:REMOTE.DB&
ADD (VARIANT =CPMPDS FROM WORK)

f. Finally write protect CPMPDS by entering:

RUN :F5:SVCS.ADMIN :F4:REMOTE.DB&
WRITEACCESS (CPMPDS = FALSE) &
DEFAULTACCESS (CPMPDS = NONE)

The database now has five variants: WORK, ISISPDS,
ISISS2, CPMS2, and CPMPDS.

230879-001

3-37

AP-162

DATABASE OVERHEAD

We will now examine the overhead SVCS added to the
database.

Initial Set-Up

We put 23 different files into the database when it was
originally set-up. (See Figure 4 for the CSD file used for
set-up.) These files totaled 49,689 bytes. Aft~r they
were put into the database, the database expanded to
51,204 bytes. 1,515 bytes were added to the files. This
represents a 3% overhead putting the files into the
SVCS database. Figure 8 shows a breakdown of this
overhead.

Adding Variants

By adding a variant to the database without changing
any files an overhead of 10 + (length of variant name)
bytes is incurred. In this scenario, the database is not
copied. Only pointers are added.

If you first change a file (or files) in an old variant and
then copy the unit to the new variant, the overhead
incurred is 10 + (length of variant name) bytes for
each unchanged class plus 54 bytes for each changed
file.

Note: The changed file is also added to the database, so
the database grows by (file length) + 54 for each
class change. However, the actual overhead in­
curred is only 54 bytes. The file changes would
have to be stored on the disk even if we weren't
using SVCS. Put another way, only files that are
modified in a new version are copied. These files
expand the database by 54 + (file length) bytes
and expand the disk spaced used by the same
amount. Without SVCS the additional disk space
consumed would be (file length) bytes. The SVCS
overhead is the difference between these two
amounts, or 54 bytes.

Total Overhead

By adding the four variants to the database we added
691 bytes of overhead. Our overhead now totals: 2,206
bytes. The total size of the database (with all four exec­
utable files, sources, objects, etc.) is 88,025 bytes.
Therefore, the overhead is only 2.5% of the database - a
small price to pay considering all the features included
with PMT's.

USING DEFAULTS TO SIMPLIFY
OPERATION

While progressing through the tutorial, we have used
the DEFAULTACCESS administration command sev­
eral times. We will now discuss how the DEFAULT­
ACCESS command can simplify the database adminis­
trator's job. First using the REMOTE example, let us
set-up a hypothetical work environment.

Programmer Variant working with
Brian WORK
Bill, Frank ISISPDS
John, Chris ISISS2
Tim, Howard, Mary CPMS2
Susan, Gordon CPMPDS

Now, the command:

RUN :F5:SVCS. ADMIN :F4:REMOTE.DB&
DEFAULTACCESS (CPMS2 = Tim. Howard.&
Mary)

will set Tim's, Mary's and Howard'sdefaultaccess to
CPMS2. (The names used are the NDS-II logon ID's,
which SVCS uses to identify users.) If Tim entered the
command:

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(FILEIO) TO :Fl:FILEIO.PLM

SVCS would get Tim's ID name from the system and
use Tim's default variant, which is CPMS2. Tim would
now have the CPMS2 version of FILEIO.PLM in his
directory.

What if Tim wanted the FILEIO.PLM file in the
ISISPDS variant? He would issue the following com­
mand and get it:

RUN :F5:SVCS. GET :F4:REMOTE.DB&
(FILEIO.ISISPDS) TO :Fl:FILEIO.PLM

Note when the variant is specified; the default isn't
checked.

The DEFAULTACCESS command aids the database
administrator and system users by. minimizing typing
and by organizing which variants programmers are us­
ing.

Note: NONE and ALL may be used to set variants to
the NONE or ALL default. However, if a user's
default is changed, it is deleted from the previous
list. Thus, if you set 15 people to 8 different vari­
ants and then set one variant to ALL, you will
relinquish the old defaults and set everyone to the
new one.

230879-001

3-38

AP-162

STANDALONE OPERATION

This section covers the use of PMT's on a Series III
standalone system running ISIS II (W).

System Differences

Two major differences exist between standalone sys­
tems and networks: standalone systems do not have
user ID's nor do they have date/time stamping.

SVCS must know which user is accessing the database
in order to accurately check units and default accesses.
Because standalone systems do not support user ID's,
the user must add the string:

ID (user name)

to all commands.

MAKE uses the 'D' attribute on standalone systems to
check file modification times. The 'D' attribute on ISIS
II (W) marks when a file has been modified. When you
edit a file called FILEl.PLM and save the changes, the
file's 'D' attribute bit is set. This bit can only be reset
with the following command:

ATTRIB. FILEl.PLM DO

MAKE uses the 'D' attribute on standalone systems to
tell if a file has been modified.

The next section lists the necessary MAKE file changes
that must be made for MAKE operation on standalone
systems.

MAKE File Changes

The command:

$IF FILEl.OBJ > FILEl.PLM, ISIS.EXT,
$COMMON.LIT THEN

PLM80 FILEl.PLM
$END

is a typical MAKE construct for a MAKE file on a
Network. On a standalone system, MAKE tests the file
modification times (in the IF-THEN statement above)
by testing if the 'D' attribute bit is set in any of the
dependency files. If the bit is set, it assumes the files
have been modified. .

To use MAKE on a standalone' system, we must add a
command to the MAKE construct that resets the 'D'
bit:

$IF FILEl.OBJ > FILEl.PLM, ISIS.EXT,
$COMMON.LIT TflEN

PLM80 FILEl.PLM
ATTRIB %DEPEND DO

$END

.. The additional line in the above MAKE; file resets the
'D' attribute of the dependant files when the generated
SUBMIT file is run. These task lines will not be includ­
ed in the SUBMIT file when MAKE is run again unless
one of the dependency files is modified and its 'D' attri­
bute is reset.

230679-001

3-39

inter AP-162

FIGURES

1. Remote Source Modules

2. SUBMIT File REMCSD.EXM

3. Remote System Diagram

4. SUBMIT File MAKEDB.CSD

5. MAKE File REMMKE.EXM

6. MAKE File RMMKEl.EXM

7. MAKE File REMOTE.MKE

8. Database Overhead

RE'MOTE.PLM

FILEIO.PLM SERIAL.PLM

SYSTEM
INDEPENDENT

SYSTEM
DEPENDENT

230879-1

Figure 1. Shows the source modules used to create REMOTE.

REMOTE.PLM is the main module
RMSEND.PLM is a sub module used by REMOTKPLM
RMRECV.PLM is a sub module used by REMOTE.PLM
FILEIO.PLM defines the operating system interfaces
FILEIO.EXT contains the external declarations of FILEIO.PLM
SERIAL.PLM defines the hardware interfaces of the SERIALline­
SERIAL.EXT con:tains the external declarations of SERIAL.PLM

It is expected that SERIAL.PLM and FILEIO.PLM will change for each system that REMOTE is configured for.
The remaining modules are not expected to change.

230879-001

3·40

AP-162

Figure 2. Submit file uaed to generate REMOTE, RECV and SEND without ualng PMTa.

Page 1 :Fl:REMCSD.EXM

Submit file to generate the remote exeoutable file that runs on the
iPDS system under ISIS.
Author :B. Valentine DSSO Applications Engineering 6/23/B3

Generate REMOTE file to run on the iPDS system

First of all, compile all the source code.
:f2:plmBO :fl:remote.plm
:f2:plmBO :fl:rmsend.plm
:f2:plmBO :fl:rmrecv.plm
:f2:plm80 :fl:fileio.plm
:f2:plm80 :fl:serial.plm

; Now link them together
:f2:l1nk :fl:remote.obj, :fl:rms~nd.obj, :fl:rmrecv'.obj, :fl:tileio.obj, a:
:fl:serial.obj.:f3:plmBO.lib,:f3:system.lib to :fl:remote.lnk

; Now locate the link file
:f2:1ocate :fl:remote.lnk symbols lines map print (:fl:remote.map)

; Move the file to the system directory
copy :fl:remote to remote b

; Generate SEND that runs on the network

:f2:plm80 :fl:send.plm
:f2:1ink :fl:send.obj.:f3:system.lib.:f3:plmBO.lib to :fl:send.lnk
:f2:locate :fl:send.lnk
copy :fl:send to send b

; Generate RECV that runs on the network

:f2:plmBO :fl:recv.plm
:f2:1ink :fl:recv.obj, :f3:system.lib,:f3:plmBO.lib to :fl:recv.lnk
:f2:1ocate :fl:recv.lnk
copy :fl:recv to recv b

3-41

230879-001

inter AP-162

REMOTE.PLM REMOTE.OBJ

.j

RMRECV.PLM RMRECV.OBJ

RMSEND.PLM RMSEND.OBJ REMOTE

FILEIO.PLM FILEIO.OBJ

SERIAL.PLM SERIAL.OBJ

~ SEND,PLM I ·1 SEND.OBJ ·1 SEND

~ RECV.PLM H RECV.OBJ ·1 RECV

Generated With:

USER.MAN REMOTE.MKE

KEY:

= FILE

INCLUDE FILES:

0= COMMON.L1T

@= SERIAL.EXT

@= FILEIO.EXT

@= ISIS. EXT
230879-2

Figure 3. Remote System Diagram

230679-001

3-42

Page 2

AP-162

Figure 4. Submit file used to create and fill database. (Co~tinued)

:FI:MAKEDB.CSD

:f5:svcs. .. get :f4:remote.~b(fileio~,cp) to :bb: write
:f5 :svcs.' put :f4:remote.db(fileio"cp) from :fl:f'1leio,ext
:f5:svcs. admin :f4:remote.db add(~nit = send from :fl:send.plm)
:f5:svcs. put :f4:remote.db(send"oj) from :fl:send.obj
:f5:svcs. get :f4:remote.db(send"cp) to :bb: write
:f5:svcs. put :f4:remote.db(send"cp) from :fl :s'end
:f5:svcs. admin :f4':remote.db add (unit = recv from :fl:recv.plm)
:f5:svcs. put :f4:remote.db(recv"oj) from :fl:recv.obj
:f5:svcs. get :f4:remote.db(recv"cp) to :bb: write
:f5 :svcs'. put :f4:remote.db(recv"cp) from :fl:recv
:f5:svcs. admin :f4:remote.db add (unit = common from :f3:common.lit)
:f5:svcs. admin :f4:remote.db add (unit = isis from :f3:isis.ext) ,
:f5:svcs. admin :f4:remote.db add(unit = exec from :fl:remote.mke)
:f5:svcs. put :f4:remote.db(exec,',oj) from :fl:remote
:f5:svcs. get :f4:remote.db(exec"cp) to :b,b: write
:f5:svcs. put :f4;remote.db(exec"cp) from :fl:user.man

Now the'database is built, filled and saved in :f4:

The following command creates a new variant called ISISPDS, by 'copying'
the WORK variant. In reality, no' files are copied but pointers are set up
pointing to the files for the ISISPDS variant; thus, disk space is 'conserved
by using SVCS.

:f5:svcs. admin ;f4:remote.db add (variant = isispds' from work)

Finally, the following command protects the database. Only BRIAN is given
access to'theWORKvariant, everyone else is given'accessto database files
in the ISISPDS variant. This SVCS feature permits the database administrator
to assign variants to only those people needing the paticular versions.
In addition~ the writeaccess option sets the ISISPDS variant to read cinly;~
thus, no one can checkout the ISISPDS variant with~rite access.'

:f5:svcs. admin ;f4:remote.db writeaccess (isispds = false) &
defaultaccess (isispds = all) defaultaccess (work = brian)

;
exit

3-43

230879-001

Ap·162

Page 1

Figure 4. Submit file used to create and fill database. .

:Fl:MAKEDB.CSD

Submit file to create and fill the remote database from initial sources.
It is submitted one time only. Once the database is created and filled,
future changes are, made using the SVCS ADD,. PUT and GET commands.
Device assignments. are as follows:

:fO: - Directory containing ISIS system.files
:fl: - Directory ccmtaining files. supplied on tutorial disk,
:f2: - Directory containing 8 bit system software files. Such.

as PL/M-80, (8 bit) SVCS and MAKE compiler.
:f3: - Directory containing 8 bit libraries. Such as system~lib.

common.lit and isis.ext, supplied on the tutorial disk,
must be moved to this directory.

:f4:·-'Directorywhere all the. database files will, be created.
:f5: - Directory containing the l6.bit,system software. Such as

PL/M-86, (16 bit) SVCS and MAKE. '
Author: B. Valentine - DSSO Applications .Engineering.6/22/83

Create. the database'
run :f5:svcs. admin :f4:remote.db create

; Since more than one person will access the database. - make it'shareable
; SVCS will propagate these access rights across all database files.
access :f4:remote.db wrl wwl,

Now that the database is created, fill it with the files supplied on the
tutorial disk. The\VORK variant will then contain the version,. of REMOTE
for the iPDS running under ISIS ••

ADD may be, used to initialize SOURCE files, but
PUT must be used to initialize OBJECT,HISTORY or COMPOSITION tiles.

run"

; Create a unit called remote and fill itwith'the source file remote.plm,
:f5:svcs. admin :f4:remote.db,add(unit =.remote ~rom :fl:remote.plm)

; Now fill the object class of the· remote unit
:f5:Svcs. put :f4:remote.db(remote"oj) from :fl:remote.obj

Note that if the variant name is not specified (remote"oj), WORK is the
default.

; Continue creating units and filling them with the files.
:f5:svcs. admin :f4:remote.db add (unit = rmsend from :fl:rmsend.plm)
:f5:svcs. put :f4:remote.db(rmsend"oj) from :fl:rmsend.obj
:f5:svcs. admin :f4:remote.db add (unit = rmrecv from :fl:rmrecv.plm)
:f5:svcs. put :f4:remote.db(rmrecv, ,oj) from :fl:rmrecy.obj
:f5:svcs. admin :f4:remote.db add (unit = serial from :fl:serial.plm)
:f5:svcs. put :f4:remote.dbCserial"oj) from :fl :serial. obj

Note in the next command how you must GET (write permission) a composition
unit before you can PUT to it. Since it has nothing in it yet, GET it to
the byte bucket.

:f5:svcs. get :f4:remote.db(serial"cp) to :bb: write
:f5:svcs. put :f4:remote.db(serial"cp) from :fl:serial.ext

; Create and fill the remaining units of the database
:f5:svcs. admin :f4:remote.db add(unit = fileio from :fl:fileio.plm)
:f5:svcs. put :f4:remote.db(fileio"oj) from :fl:fileio.obj

230879-001

3-44

inter

Page 1

AP-162

Figure 5. First pass at building MAKE file. (See Figure 2 for submit file.)

:Fl:REMMKE.EXM

Make file for the isis remote program
This make program uses the least complicated make constructs to test
the dependencies.
Author : B. Valentine DSSO Applications Engineering 6/25/83

Set the dependency tree for three separate executable files.
Fool the MAKE utility into building the dependency tree for three
unrelated (executable) programs by using ALL.

$IF all> :fI:remote. send. recv THEN
$END

Note how in the next construct the source code include files are added.
Also note how some of the files have the same right hand size dependencies
accept for the changing of the file name. Pass 2 of the make file will

; show how these can be combined into an .iteration loop.
$IF :fl:serial.obj > :fl:serial.plm THEN

:f2:plm80 :fl:serial.plm
$END

$IF ;fl :f11eio. obj > :fl :fileio .plm. :f3 :isis. ext. :f3 :common.l1 t THEN
:f2:plm80 :fl:fileio.plm

$END

$IF :fl :remote. obj >. :fl :remote .plm. :f3 :common.lit. :fl :serial. ext.
$:fl:fileio.ext THEN

:f2:plm80 :fl:remote.plm
$END

$IF :fl:rmsend.obj > :fl:rmsend.plm. :f3:common.lit. :fl:flleio.ext
$:fl:serial.ext THEN

:f2:plm80 :fl:rmsend.plm
$END

$IF :fl:rmrecv.obj > :fl:rmrecv.plm. :f3:common.l1t. :fl:fileio.ext.
$:fl:serial. ext THEN

:f2:plm80 :fl:rmrecv.plm
$END

; Check the status of the remote executable file.
$IF :fl:remote > :fl:remote.obj. :fl:rmsend.obj. :fl:rmrecv.obj.
$:fl:fileio.obj. :fl:serial.obj THEN

:f2:link :fl:remote.obj. :fl:rmsend.obj. :fl:rmrecv.obj. &
:fl:fileio.obj, :fl:seriaLobj. :f3:plm80.lib. :f3:system.lib to &
:fl:remote.lnk
:f2:locate :fl:remote.lnk symbols lines map print (:fl:remote.map)

$END

Now that the remote program has been checked. check the two programs
that run on the network.
Check the NDS-II files RECV and SEND. !

Check SEND
Since there is only one module to the send program. we can test the
executable file against the sou~ce code.

3·45

230879·001

Ap·162

Figure 5. First pass at building MAKE file. (See Figure 2 for submit file.) (Continued)

Page 2 :Fl:REMMKE.EXM

$IF send > :fl :send.plm, :f3 :common.li t, :f3 :isis .ext THEN
:f2:plmSO :fl:send.plm
:f2:link :fl:send.obj,:f3:system.lib,:f3:plmSO.lib to :fl:send.lnk
:f2:locate :fl:send.lnk
copy :fl:send to send b

$END

; Check RECV
$IF recv > :fl :recv.plm, :f3 :common.li t, :f3 :isis .ext THEN

:f2:plmSO :fl:recv.plm
:f2:link :fl:recv.obj,:f3:system.lib, :f3:plmSO.lib to :fl:recv.lnk
:f2:locate :fl:recv.lnk
copy :fl:recv to recv b

$END

Figure 6. Second pass of MAKE file. Note how macros and iteration are added.

Page 1 :Fl:RMMKEl.EXM

$
$
$
;
$
$
$
$
$
$
$
,
$
$

Second pass of the MAKE file for the REMOTE program.
This pass has added the MAKE constructs of macros and iteration to
pass one of the MAKE file.
Author : B. Valentine DSSO Applications Engineering 6/25/S3

First of all define the macros for the MAKE file.
Define the substitution macros

Substitution macros are used as constant defines. This way, if
a major change is made, such as the source code device changes
from :fl: to :f2:, the only update to the MAKE files is to change
the macro definition

SET work_device to ' :fl:'
SET S_bit_exe to ' :f2:'
SET S_bit_lib to ' :f3:'

Note how macros may be nested and the macro is used with 'the %" <name>".
SET plm to '%"S_bit_exe"plmSO'
SET locate to '%"S_bit_exe" locate'
SET link to '%"S_bit_exe"link'
SET syslib to '%"S_bit_Iib"system.lib'
SET plmlib to '%"S_bit_Iib"plmSO.lib'
SET comlit to '%"S_bit_Iib"common.lit'
SET isis to '%"S_bit_Iib"isis.ext'

Now define the enumeration macros :
SET nds2;.files to (recv,send)
SET remote_files to (rmrecv,rmsend)

Now start the dependecies

3·46

230879·001

AP-162

Figure 6. Second pass of MAKE file. Note how macros and iteration are added. (Continued)

Set the dependency tree for three separate executable files.
$IF all> %nwork_devicenremote, send, recv THEN
$END

$IF %nwork_devicenserial.obJ > %nwork_devicenserial.plm THEN
%plm %nwork_devicenserial.plm

$END

$IF %nwork_devicenfileio.obj > %nwork_devicenfileio.plm, %comlit, %isis THEN
%plm %nwork_device"fileio.plm

$END

$IF %nwork_devicenremote.obj > %nwork_device"remote.plm,
$%comlit, %nwork_devicenserial.ext, %work_devicenfileio.ext THEN

%plm %nwork_devicenremote.plm
$END

$FOR i IN %remote_files
, Build the send and receive modules for the remote system.
$ IF %work_device%Din.obj > %work_device%"in.plm, %comlit,
$ %nwork_devicenfileio.ext, %nwork_device"serial.ext THEN

%plm %work_device%nin.plm
$ END
$END

; Check the remote executable file
$IF %nwork_devicenremote > %nwork_device"remote.obj,
$%nwork_devicenrmsend.obj, %nwork_devicenrmrecv.obj,
$%nwork_devicenfileio.obj, %nwork_deviceDserial.obj,
$%plmlib, %syslib THEN

$END

%link %nwork_devicenremote.obj, &
%nwork_devicenrmsend.obj, %nwork_devicenrmrecv.obj, &
%nwork_devicenfileio.obj, %nwork_devicenserial.obj, &
%plmlib, %syslib to %nwork_devicenremote.lnk

%locate %nwork_devicenremote.lnk symbols lines &
map print (%nwork_devicenremote.map)

; Now that .the remote program has been checked, check the two programs
; that run on the network.
$FOR i IN %nds2_files
, Check the NDS_II files RECV and SEND.
$ IF %i > %work _device%nin.plm, %comlit, %1sis THEN

%plm %work_device%nin.plm
%link %work_device%nin.obj,%syslib, %plm11b to %work_dev1ce%nin.lnk
%locate %work_device%n1n.lnk

$ END
$END

copy %work_dev1ce%n1n to %1 b

230879-001

3-47

AP-162

Figure 7. Final pass of MAKE file

Page 1 :Fl:REMOTE.MKE

MAKE file for the isis REMOTE program that runs on the iPDS system.
Author : B. Valentine DSSO Applications Engineering 6/25/S3

First of all define the macros for the MAKE file.
Define the substitution macros:

Substitution macros are used as constant defines. This way, if
a major change is made, such as the source code device changes
from :fl: to :f2:, the only update to the MAKE file is to change
the macro define.

$
$
$
$,
$

SET work_device
SET S_bit_exe
SET S_bit.;.l1b
SET database
SET svcs_drive

$ SET plm

to ':fl:'
to ':f2:'
to ':f3:'
to ':f4:remote.db'
to 'run :f5:'

to '%nS_bit_exenplmSO'
, Note how macros may be
$ SET locate

nested and the macro is used with the %n<name>.
to '%nS_bit_exenlocate'

$ SET link
$ SET syslib
$ SET plml1b
$ SET coml1t
$ SET get
$ SET put

to '%nS_bit_exenlink'
to '%"S_bit_libnsystem.lib'
to '%nS_bit_libnplmSO.lib'
to '%nS_bit_libncommon.lit'
to '%nsvcs_drivensvcs_get %database'
to '%nsvcs_drivensvcs_put %database'

; Now define the enumeration macros:
$ SET nds2_files to (recv,send)
$ SET remote_files to (remote,fileio,serial,rmrecv,rmsend)
$ SET files to (%all(%nds2_files),%all(%remote_files))

; Tell make that we are going to be looking at the files in the database.
$ FOR i in %files
$ svcs %work_device%"i".plm =%database (%i)
$ svcs %work_device%ni".obj =%database (%i, ,oj)
$END
$ svcs %"work_device"serial.ext =%database (serial, ,cp)
$ svcs %nwork_device"fileio.ext =%database (flleio"cp)
$ svcs %nwork_devicenremote , =%database (exec"oj)
$ svcs %nwork_device"send =%database (send"cp)
$ svcs %"work_device"recv =%database (recv"cp)

, The include files are always required, so get them with the header.
$ HEADER

Get all the externals and incl~de files from the database
%get (serial"cp) to %"work_device"serial.ext
%get (fileio"cp) to %"work_devicenfileio.ext

$END

; Now start the dependecies

;Set the dependency tr~e for three separate executable files.
;IF all> %nwork_device"remote, %all(%work_device%nds2_files) THEN
$END'

3-48

230879-001

inter

Page 2

AP-162

Figure 7. Final pass of MAKE file (Continued)

:Fl:REMOTE.MKE

$FOR i IN %remote_files
, Build all the object files ~n the remote program.
$ IF %work_device%"i".obj > %work_device%"i".plm, %comlit,
$ %nwork_device"fileio.ext, %"work~device"serial.ext THEN

$ END
$END

%get (%i) to %work_device%"i".plm
%plm'%work_device%"i".plm
%put (%i"oj) from %target

, Check the remote executable file that runs on the iPDS system.
$ IF %"work_device"remote > %all(%work_device%"remote_filesn.obj),
$ %plmlib, %syslib THEN
$ FOR i in %remote_files,

%get (%i"oj) to %work_device%"i".obj
$ END

, %link %depend to %"work_devicenremote.lnk
%locate %nwork_devicenremote~lnk symbols lines &:

map print(%"work_devicenremote.map)
%put (exec"oj) from %target

$ END

Now that the remote program has been checked', check the two programs
th~t run on the network.

$FOR i IN %nds2_files.
, Check the NDS_II files RECV and SEND.
$ IF %work_device%i > %work_device%"i".plm THEN

%get. (%i) to %depend
%plm %depend
%put (%i"oj) from %work_device%nin.obj
%link %work_device%"in.obj, %syslib, %plmlib to %work_device%'i".lnk
%locate %work_device%nin.ink
%get (%i"cp) to :bb:write
%put (%i"cp) from %target

$ END
$END

Figure 8 Breakdown of initial overhead of database.

Note: All numbers are in bytes
Byte Length

266
62
95

Database header file
Creating a unit in the database
Filling classes of a unit

First Class
Second Class
Third Class
Fourth Class

TOTAL

(Maximum)
41
18 '
18
18
95

Note: Class overhead is calculated for only the classes
filled. Example, If a unit has only two classes
filled, the overhead is 41 + 18 = 59.'

In REMOTE, there are 10 units.
The overhead breaks down as follows:
Byte Length

266 Database header file
620 Unit header files 10 units X 62
629 Unit Classes

2 units with I class filled 2 X 41 = 82
3 units with 2 classes filled 3 X (41 + 18) = 162
5 units with 3 classes filled 5 X (41 + 18 + 18) = 385

TOTAL 629
1,515 GRAND TOTAL

230879·001

3·49

AP-162

APPENDIX A CONTENTS PAGE

USERS,MANUAL ,.... A-2

.USER. MAN " A-2

INCLUDE FILES. A-3

FILE,IO.EXT : A-3

COMMON.LIT ... :. A-4

SERIAL.EXT ;. A-4

ISIS.EXT A-5

~EMOTE SO'URCEF.OR· !SIS,iPDS ... 'A-7

REMOTE.PLM:. : ' A-7

RMRECV.PLM : : A-10

RMSEND.PLM ' .. A-13

FILEIO.PLM' ; .. ; A-15

. SERIAL.PLM.' ... -.... : A-1"7
'I • . .•

SOURCE CODE FOR RECV AND SEND
NETWORK FILES A-17

RECV.PLM ~- ... A~17
SEND.PLM .' ' -A-19

CHANGES TO SERIAL.PLM TO. RUN ON A
, SERIES III .. -....................... A-21

SERIAL.S2 ; : A-21

CHANGES TO FILEIO.PLM
. AND REMOTE.MKE TO RUN
UNDER CPM ' : ; A-22

'FILEIO.CPM A-22

REMOTE.CPM A-26

230879-001

3·50

AP-162

USERS MANUAL
:Fl:USER.MAN

This is the users manual for the PMT tutorial Remote program.

REMOTE is a program that runs on a remote computer connected to an NDS-II ~ia an ISIS cluster board. The
connection is an RS232 line and may include modems as shown below.

ISIS OR CPM80

REMOTE
COMPUTER

REMOTE, for the most part, turns the remote comput­
er into a dumb terminal. ie. Characters entered on the
remote computer keyboard are sent down the serial line
and characters received up are echoed to the remote
computers screen.

REMOTE internally collects the characters typed by
the remote computer user and saves them in a buffer.
When a <CR> is entered, REMOTE scans the buffer
looking for three special commands - SEND, RECV
and LOCAL. If these commands are not found - opera­
tion as a dumb terminal continues.

If one of these special commands are intercepted, RE­
MOTE flIps into file transfer mode (SEND or RECV
commands) or back to' standalone operation. Also,"
SEND or RECV cause a program to be activated on

3·51

MODEM
(OPTIONAL)

SERIES II OR III

CLUSTER BOARD

SERIAL ----I'
LINE

230879-3

the cluster board to effect the . file transfer. A simple
protocol is used (STX, 128 data bytes, CHECKSUM,
ETX) so sonie error checking 'is done. '

REMOTE is written to be configurable. The, I/O sys­
tem is defined in FILEIO.PLM and the serial line con­
figuration is SERIAL.PLM. All of the software is writ­
ten in PLM. The systems currently supported are:

FlLEIO.PLM, - ISIS and CPM80

SERIAL.PLM - Series~II and iPDS

Thus four variants are currently available.

Note: Device 0 on tIle network must contaiIlthe SEND
and RECV executable files: . .

230879·001

INCLUDE FILES
:Fl:FILEIO.EXT

/* In case of fatal errors */
Exit: Procedure external;
end Exit;

AP-162

/* Operating system dependant Console Routines */
ConsoleSInput: Procedure byte external;
end ConsoleSInput;

ConsoleSOutput: Procedure (char) external;
Declare char byte;

end ConsoleSOutput;

Consol'e'SStatus: Procedure byte external;
end Console$Status;

Print$String: Procedure (string$ptr) external;
Declare string$ptr pointer;

end Print$String;

/* Operating system dependant file routines */
Open$file: Procedure (fileSptr,mode) byte external;

Declare fileSptr pointer,
mode byte;

end Open$File;

CreateSfile: Procedure (fileSpt~) byte external;
Declare file$ptr pointer;

. end Create$File;

Read$sec'tor: Procedure (tileSid,buffer$ptr) byte external;
Declare fileSid byte,

buffer$ptr pointer;
end Read$seotor;

WriteSseotor: Procedure (fl1e$id, buffer$ptr) byte external;
Declare fileSld byte,

, bufferSptr pointer;
end Write$sector;

Close$file: Procedure (fl1e$id) byte external;
Declare flle$ldbyte;

end Close$File;

$list

3·52

230879"()01

AP-162

:Fl:COMMON.LIT

/* Some useful defines for the remote program */

declare lit l~terally 'literally' ;
declare word lit 'address' ;
declare pointer lit 'address' ;
declare connection lit 'address' ;

declare cr lit 'Odh' •
If lit 'Oah' •
TAB lit '09h' •
SOH lit 'Olh' •
STX lit '02h' •
ETX lit '03h' •
EOT lit '04h' •
ACK lit '06h' •
NAK lit '15h' •
XON lit 'llh' •
XOF lit '13h' •
CAN lit 'lSh' •
SUB lit 'lah' •

RUBOUT lit '7fh' ;

declare forever lit 'while l' • .
declare false lit '0' •

true lit 'not false' ;

declare read$only lit '1' •
write$only lit '2' •
read$write lit '3' ;

$list

:Fl:SERIAL.EXT

/* Front end externals for the serial.plm link to the remote logon */
Serial$Status: Procedure byte external;
end Serial$Status;

Serial$Input: Procedure byte external;
end Serial$Input;

Serial$Output: Procedure (char) external;
Declare char byte;

end Serial$Output;

Serial$Control: Procedure (value) external;
Declare value byte;

end Serial$Control;

$list

3·53

230879·001

inter AP-162

:Fl:ISIS.EXT

isis: procedure (type, parameter$ptr) external;
declare type byte,

parameter$ptr address;
end isis;

open: procedure (conn$p, path$p, access, echo, status$p) external;
declare (conn$p, path$p, access, echo, status$p) address;

end open:

close: procedure (conn, status$p) external;
declare (conn, status$p) address;

end close;

read: procedure (conn, buff$p, count, actual$p, status$p) external;
declare (conn, buff$p, count, actual$p, status$p) address;

end read;

write: procedure (conn, buff$p, count, status$p) external;
declare (conn, buff$p, count, status$p) address;

end write;

seek: procedure (conn, mode, block$p, byte$p, status$p) external;
declare (conn, mode, block$p, byte$p, status$p) address;

end seek;

rescan: procedure (con, status$p) external;
declare (conn, status$p) address;

end rescan;

spath: procedure (path$p, info$p, status$p) external;
declare (path$p, info$p, status$p) address;

end spath;

delete: procedure (path$p, status$p) external;
declare (path$p, status$p) address;

end delete;

rename: procedure (oldp, newp, status$p) external;
declare (oldp, newp, status$p) address; -

end rename;

attrib: procedure (path$p, attrib, on$off, status$p) external;
declare (path$p, attrib, on$off, status$p) address;

end attrib;

consol: procedure (cip, cop, status$p) external;
declare (cip, cop, status$p) address;

end consol;

load: procedure (path$p, load$offset, switch, entry$p, status$p) external;
declare (path$p, load$offset, switch, entry$p, status$p) address;

end load;

whocon: procedure (conn, buff$p) external;
declare (conn, buff$p) address;

3-54

230879-001

AP-162

:Fl:ISIS.EXT

end whocon;

error: procedure (error$num) external;
declare (error$num) address;

end error;

de$time: procedure (dt$p, status$p) exterrial;
declare (dt$p, status$p) address;

end de$time;

filinf: procedure (file$table$p, mode, file$info$p, status$p) external;
declare (file$table$p, file$info$p; status$p) address,

mode byte;
end filinf;

getd: procedure (did, conn$p, count, actual$p, table$~, status$p) external;
declare (did, conn$p, count, actual$p, table$p, status$p) address;

end getd;

exit: procedure external;
end exit;

ci: procedure byte external;
end ci;

co: procedure (char) external;
declare (char) byte;

end co;

ri: procedure byte external;
end ri;

po: procedure (char) external;
declare (char) byte;

.end po;

10: procedure (char) external;
declare (char) byte;

end 10;

csts: procedure byte external;
end csts;

iodef: procedure (type, entry) external;
declare type byte,

entry address;
end iodef;

iochk: procedure byte external;
end iochk;

ioset: procedure (value) external;
declare value byte;

end ioset;

memck: procedure address external;
end memck;

$list

3-55

230879-001

REMOTE SOURCE FOR ISIS, iPDS
:Fl:REMOTE.PLM

$DEBUG
Remote$Logan: do;

1*

AP-162

This program runs on a remote computer connected via a serial line to
an ISIS Cluster board on an NDS-II system.
The remote computer may be connected to the ISIS cluster board via a modem.
It enables the remote computer to use all of the facilities of the NDS-II.
For the most part the remote computer behaves as a dumb terminal; two
commands (SEND and RECV) are intercepted to enable file tranfer
between the remote computers file system and the NDS-II file system.
Most remote computers will not be able to keep up with a high speed serial
line so a XON/XOF protocol is used to slow the serial line down if required.
Author: B. Valentine 6/22/83 - DSSO Applications Engineering

*1

$nolist include (:f3:common.lit)
$include(:fl:serial.ext)
$nolist include(:fl:fileio.ext)

Declare buffer$ptr
Declare buffer(128)
Declare save$buffer(128)
Declare save$buffer$ptr
Declare character
Declare time$out
Declare saved

byte public;
byte public;
byte;

Declare i

Send: Procedure external;
end Send;

Receive: Procedure external;
end Receive;

byte;
byte;
byte;
byte;
byte;

Uppercase: Procedure (char) byte;
I*If the character passed in is lowercase then convert it to uppercase.
*1
Declare char byte;

if ((char>= 'a') AND (char <= 'z'» the return (char - 20h);
return char;

end Uppercase;

Putiribuffer: Procedure (character):
1* Put the character passed in into the input buffer, checking for EOLN

and rubout.
*1
Declare character byte;

character = uppercase (character);
if character = RUBOUT then do;

if buffer$ptr < > 0 then buffer$ptr = buffer$ptr - l;
return;

3-56

230879-001

AP-162

:Fl:REMOTE.PLM

end;
if character = cr then buffer$ptr = 0;
else if character = If then do;

end;

/* Mark end of the buffer */
buffer (buffer$ptr) = ' ';
buffer$ptr = buffer$ptr + 1;
buffer(buffer$ptr) = If;
return;

else if character >= ' , then do;
buffer(buffer$ptr) = character;
buffer$ptr = buffer$ptr + 1;

end;
end Putinbuffer;

Match$Keyword: Procedure byte;
/* Check command to see if it's one to process or just send down to the

Network.
*/
Declare Keywords (4) structure (text(7) byte) data

('SEND
'RECV
'LOGOFF '.
'LOCAL ');

Declare (index.match.i) byte;
do index = 0 to 3;

match = true;
do i = 0 to 6;

if (Keywords(index).text (i) = ' ') and (match) then return index;
if buffer(i) <> Keywords(index).text(i), then match = false;

end;
end;

return 4; /* No match */
end Match$Keyboard;

/************************** Program starts here **************************/
buffer$ptr = 0;
do i = 0 to 127;

buffer(i) = ' ';
end;

/* Say Hello to the user */
call Print$String(.(cr.lf.
'REMOTE LOGON TO NDS 2. Xl.S'.cr.lf.
,-------------------, .cr.lf.lf.
'Trying to establish connection •••••• '.cr.lf,'$'));

/* Kick start the serial line */
/* Send a BREAK */
call Serial$Control(OOllllllb);
call time (200) ;
call Serial$Control (OOllOlllb) ;

call Serial$Output(cr) ;

3-57

230879-001

· inter - AP-162

:Fl:REMOTE.PLM

call Serial$Output(cr) ; .

/* Set up as a transparent terminal */
do forever;

if Console$Status then do;
character = Console$Input and 7FH;

/* Need to scan for SEND and RECV commands */
if character = cr then do;

call putinbuffer(lf); /* Mark end of buffer */
do case match$keyword;

call send;
call receive;
do; /* User typed Logoff, so do it */

do;

call Serial$Output(cr) ;
call Exit;
end;

call Serial$Output(CAN) ;
call Exit;
end;

; /* Do nothing */
end;

do i = 0 to 127; /* Clear buffer after comparison */
buffer(i) = ' ';
end;

end;
call putinbuffer(character) ;
call Serial$Output(character) ;
end;

if Serial$Status then do;
character = Serial$Input and 7FH;·

/* We need time to deal with a LF */
if character = If then do;

call Serial$Output(XOF) ;
call Serlal$Output(XOF) ;

/* Stop characters being sent to me, note that a few will be on the way •••
Collect them... .
*/

save$buffer(O) ~ If;
save$buffer$ptr = 1;
do time$out = 0 to 100;

call time(2) ; /* 100 microseconds */
if Serial$Status then do;

save$buffer(save$buffer$ptr) = Seral$Input;
save$buffer$ptr = save$buffer$ptr + 1;
time$out = 0; /* Reset the timeout */
end;

end;
/* Get here once no characters are waiting. Send saved characters to screen */

do saved = 0 to save$buffer$ptr - 1;
call Console$Output(save$buffer(saved»;
end;

/* We have now caught up so •••• */
call Serial$Output(XON) ;

end;
ELSE call console$output(character) ;
end;

end; /* Do forever */
end Remote$Logon;

3-58

230879-001

:Fl:RMRECV.PLM

$DEBUG
Receive: do;

/* This is part of the REMOTE_LOGON program. This module is called if the
remote computer is to receive a file from the Network.

*/

/* Declare the variables used from Remote$Logon */
Declare buffer$ptr byte external;
Declare buffer(128) byte external;
Declare file$id byte external;

$nolist include(:f3:common.lit)
$nolist include(:fl:fileio.ext)
$nolist include(:fl:serial.ext)

Declare delimit(4) byte data ('FROM');

Declare (character, i, j, match, status) byte;
Declare (count, checksum, received$checksum, loop$count, end$buffer) byte;

Waitforserial$input: Procedure (no$time$limit) byte;
Declare (no$time$limit, character, time$out) byte;

do time$out = 0 to 100;
/* Has the user aborted the command? */

if Console$Status then do;
character = Console$Input and 7FH;
if character = CAN then call Exit;

end;
if Serial$Status then return Serial$Input;
call time(2) ; /* 100 microseconds */
if no$time$limit then timeout = 0;

end;
call Print$String(.(cr,lf,lf,'Serial line lost, Program aborted',

cr,lf,'$'»;
call Exit;

end Waitforserial$input;

bufallblanks: Procedure (Buf$ptr) byte;
/* Check to see if the remainder of the buffer is blanks. */
Declare buf$ptr address,

(buf based buf$ptr) (1) byte,
i byte; .

i = 0;
do while (buf(i) <> If) and (buf(i) = ' ');

i = i + 1;
end;
if buf(i) = If then return true;
return false;

end bufallblanks;

Receive: Procedure public;
/* Copy a file from the NDS-II to the Remote Computer */

3·59

230679·001

AP-162

:Fl:RMRECV.PLM

/* Say HELLO */
call Print$String(.(cr,lf,'Receive V2.3',cr,lf,'$'));

/* Skip through· the command line looking for Remote Computer filename */
loop$count = 0;
end$buffer = 0;
/* Find the end of good characters in the buffer */
do while buffer(end$buffer) <> If;

end$buffer = end$buffer + 1;
end;
if end$buffer < 14 then do;

/* Not enough characters in buffer to even get started. Must have
at least "RECV A FROM B<lf>", which is 14 characters.

*/
call Print$String{.{'Command syntax error. Correct format is :',cr,lf,

'RECV <remote_file> FROM <NDS_II_file>',cr,lf,'$'));
call Serial$Output{CAN) ;
return;

end;
i = 5; /* Skip over the recv command word */
if bufallblanks{.buffer(i)) then do;

/* Buffer passed the length requirement but is all blanks after
the RECV command word.

*/
call print$String{.('Command syntax error. Correct syntax is:',cr,lf,

'RECV <remote_file> FROM <NDS_II_file>' ,cr,lf, '$')) ;
call Serial$Output{CAN) ;
return;

end;

do while buffer(i) = ' ';
i = i +1;

/* Skip blanks befo're local file name * /

end;

/* We have found the filename */
/* Check if it exists */

file$id = Create$File{.buffer(i));
if file$id = Offh then do;

call Print$String{.('Local File already exists',cr,lf,'$'));
call Serial$Output(CAN) ; /* Abort ISIS command */
return;

end;

/* Now that the file is good - see if FROM is in the command string */

do while buffer(i) <> ' '; /* Skip the local file name */
, i = i + 1;

end;

end;

do while buffer(i) = ' '; /* Skip blanks before <FROM> */
i = i + 1;

match = true;
do j = 0 to 3; /* Check for <FROM> in command string */

if buffer (i+j) <> delimit(j) then match = false;

3-60

230879-001

AP-162

:Fl:RMRECV.PLM

end;
if match then do;

/* File OK. activate the ISIS RECV command */
call Serial$Output(cr) ;

/* Skip passed CR.LF sent from ISIS. If no problems at ISIS end of the link
then we will be sent a STX.

*/
character = WaitforserialSinput(true) ; /* CR */
character = Wait$forSserial$input(true) ; /* LF */
do forever;

Try$Again: character = Wait$for$serial$input(true) ; /* STX? */
if character = ETX then do;

end;

status = Close$File(file$id) ;
if status = Offh then call Print$String(.(

'Local disk write-protected'. cr .If. '$')) ;
else·call Print$String(.(

cr.lf.'File transfer complete'.cr.lf.'S'»;
return;

if. character < > STX then do;
return;

end;

/* ISIS is about to send us a buffer */
checksum = 0;
do i = 0 to 127;'

character = Waitforserial$input(false) ;
buffer(i) = ~haracter;
checksum = checksum + character;

end;
received$checksum = Wait$for$serial$input(false) ;
character = Waitforserial$input(false) ; /* ETX */
if checksum < > received$checksum then do;

end;

/* Checksum error - request retransmission */
call Console$Output("') ;
call Serial$Output (NAK);
goto TrySAgain;

/* Buffer received OK */
/* Write to disk */

call ConsoleSOutput(loop$count + '0') ;
loop$count = (loop$count + 1) MOD 10;
status = Write$Sector(file$id •• buffer);
if status < > 0 then do;

end;

status = Close$File(file$id) ;
call Print$String(.('Local disk full'.cr.'S'»;
return;

/* Buffer written to disk. Look for some more ••••• */
call Seral$Output(ACK) ;

end; /* Do forever */

/* String did not match. keep looking */

3-61

230879-001

AP-162

:Fl:RMRECV.PLM

end;

/* Have now scanned the complete command line *1 .
call Print$String(. ('Missing· <FROM>. Correct syntax is:", cr,lf ,If,

'RECV <LOCAL_FILENAME> FROM <Nbs_II_FILENAME>', cr, If ,
/*

end

Abort ISIS command too */
call Serial$Output(CAN) ;
end Receive;
Receive;

Page 1 :Fl:RJ4SEND.PLM

SDEBUG
Send: do;

/* This is part of the REMOTE-LOGON program. This module called if
user is going to send a file from the remote computer to the
NDS-II.

*/

/* Declare the variables used from Remote$Logon */
Declare bUffer$ptr byte extern~l;
Declare buffer(128) byte external;
Declare file$id byte public;

Snolist include(:f3:common.lit)
$nolist include(=fl:fileio.ext)
$nolist include(:fl:serial.exi)

Declare delimit(4) byte data (' TO ');

Declare (character, i, match, Status, count) byte;
Declare (checksum, received$checksum, loop$count) byte;

Send: Procedure pubiiC;
/* Copy a file from the Remote Computer to the NDS 2 */

/* Say HELLO '*1 \
call Print$String(. (cr,lf f 'Send V2.l' ,cr,lf, '$')) ;

'$')) ;

/*. Skip through the command line looking for Remote Computer filename */
loop$count = 0;
do i = 0 to buffer$ptr;

if bUffer(i) = ' , then do;
do while buffer(i) = ' ';

i = i + 1;
end;

file$id ~ Open$Fil~(.bUffer(i),read$only);
if file$id = Offh then do;

call Print$String(.('Local file does not exist',br,lf,'$'));
call Serial$Output(CAN) : /* Abort ISIS command */
return;
end;

/* File OK, activate the ISIS SEND command */
call Serial$Output (cr);

230879-001

3-62

AP-162

:Fl:RMSEND.PLM

/* Skip passed CR.LF sent from ISIS. If no problems at ISIS end of the link
then we will be sent a ACK.

*/
character = Serial$Input; /* CR */
character = Serial$Input; /* LF */
character = Serial$Input; /* ACK? */
if character < > ACK then do;

en4 ;

call, console$output (char,acter) ;
return;

/* Get a buffer ready to send */
status = Read$sector(flle$id •• puffer);
do while status = 0;

~all Serial$Output(STX) ;
checksum = 0; ,
do i = 0 to 127;

character = butfer(i) ;
checksum = checksum + character;
call Serlal$OutPut(character) ;
end·

callSe;ial$Output(CheckSum.) ;
call Serial$Output(ETX) ;

/* Buffer sent OK. Was it received OK */
character = Serial$Input;
if character = ACK then do;'

call console$output (loop$coullt + '0') ;
loop$count = (loop$count+ 1) MOD 10;
status = ReadSsectpr(file$id •• buffer);
end;

else do;
call Cons~le$Output('?') ;
status = 0; /* Retransmit */
end;

end;
/* File sent */

status = Close$file(file$id) ;
if status <> 0 then call Print$String(.(cr.lf.

'Could not close Local file', Cf,lf, '$'));
cal Serial$Output(ETX) ;
,return;
end;

end;
end Send;

end Send;

3-63

230879-001

:Fl:FILEIO.PLM

$debug
Flle$io: do;

AP-162

/* This version contains all of the tileio definitions for ISIS */

$nolist include (:f3:common.lit)
$nolist include (:f3:isis.ext)
declare file$id byte external;

/* Operating system dependant Console Routine~ */
Console$Input: Procedure byte public;

return cit
end Console$Input;

Console$Output: Procedure (char) public;
Declare char byte;
call co (char) ;

end Console$Output;

Console$Status: Procedure byte public;
return csts;

end Console$Status;

Print$String: Procedure (string$ptr) public;
. Declare string$ptr pointer, "

text based string$ptr byte;
do while text < > ' $' ;

call co (text); .
string$ptr = string$ptr + 1;

end; ,
end Print$String;

/* Operating system dependant file routines */
Open$file: Procedure (file$ptr,mode) byte public;
/* Return OFFH if file "does not exist, otherwise return file ID */

Declare file$ptr pointer,
mode byte, .
(aftn, status) word;

call rename (file$ptr ~ file$ptr, • status) ;
if status = 13 then return OFFH; /* File does not exist. */
call open(.aftn, file$ptr, mode, 0, .status);
if status = 12 then return file$id; /* 12 returned if file already open

want it open, so it's ok.

if status < > 0 then return OFFH;
return low(aftn) ;

end Open$File; .

*/

Create$file: Procedure (file$ptr) byte public;
1* "Return OFFH if tile already exists, otherwise return file ID * /

Declare file$ptr pointer,
(aftn, status) word;

call rename (file$ptr, file$ptr, • status) ;
if status < > 13 then return OFFH; /* File already exists * /

3-64

230879-001

AP-162

:Fl:FILEIO.PLM

call open(.aftn, file$ptr, read$write, 0, .status);
if status < > 0 then return OFFH;
return low(aftn) ;
end Create$Flle;

Read$sector: Procedure (file$id, buffer$ptr) byte public;
Declare file$id byte,

buffer$ptr pointer,
(buffer based buffer$ptr) (1) byte,
(actual, status, i) word;

call read(double(file$id), buffer$ptr, 128, .actual, .status);
if status < > 0 then return OFFH;
if actual = 0 then return OFFH;
if actual < > 128 then do i = ·actual to 128;

buffer(i-l) = ' '; .
end;
return 0; ,

end Read$sector;

Write$sector: Procedure (file$id, buffer$ptr) byte public;
Declare file$id byte,

buffer$ptr pointer,
status word;

call write(double(file$id), buffer$ptr, 128, .status);
return not (status = 0) ;

end Write$sector;

Close$file: Procedure (file$id) byte public;
Declare file$id byte,

status word;
call close (double (flle$id), • status) ;
return not (status = 0) ;

end Close$Flle;

end fileio;

3-65

230879-001

AP-162

:Fl:SERIAL.PLM

$DEBUG
SerialIOfor$iPDS: do;

/* This module contains all of the iPDS specific serial 10 routines */ .

Serial$Status: Procedure byte public;
return ((input(09lH) and 2) = 2);

end Serial$Status;

Serial$Input: Procedure byte public;
do while not Serial$status;

/* Wait */
end;
return (input(090H»;

end Serial$Input;

Serial$Output: Procedure (char) public;
Declare char byte;
do while ((input(09lH) and 1) = 0);

/* Wait */
end;
output (090H) = char;

end Serial$Output;

Serial$Control: Procedure (value) public;
Declare value byte;
output (09lH) = value;

end Serial$Control;

end SerialIOfor$iPDS;

SOURCE CODE FOR RECV AND SEND NETWORK FILES
:Fl :RECV • PLM

recv: do;

/* This is an ISIS utility ptogram for use with a Remote Computer. */

/* This utility will run on an ISIS cluster board which is connected
to a remote computer rather than a dumb terminal.

*/

$nolist include(:f3:common.lit)
$nolist include(:f3:isis.ext)

Declare buffer(l28) byte;
Declare (actual, status, aftn) word;
Declare (i, j, checksum, character) byte;

/* Read the remainder of the command line */
call read(l, .buffer, 128, .actual, .status);

3-66

230879-001

AP-162

:Fl:RECV.PLM

/* Is the requested ISIS tile available */
j = 0;
do i = 0 to 2;

I

/* Skip "RECV <FILENAME> FROM" in the command word.

*/

Need to get the tile on the NDS-II system.
Don't need to check tor syntax - it is already done
by the program on the remote computer.

do while butter (j) < >, ';
j = j + 1;

end;
do while butter(j) = ' ';

j = j + 1;
end;

end;
call open(.attn, .butter(j), 1, 0, .status);
it status < > 0 then do;

call write(O,.(cr,lt,' NDS-II tile does not eXist'.cr.lt). 32, .status);
call exit;

end;

/* File is OK */
/* Get the tirst butter ot intormation */
call read(attn •• butter, 128 •• actual, .status);

do while actual < > 0;
/* and send it */

it actual < > 128 then do i = actual to 128;
butter(i-l) = ' ';

end;
call co (STX) ;
checksum = 0;
do i = 0 to 127;

call co(butter(i» ;
checksum = checksum + butter(i) ;

end;
call co (checksum) ;
call co (ETX) ;

/* Did the Remote Computer receive this OK */
character = ci and 7FH;

it character = EOT then'call exit; /* Remote error */
it character = ACK then call read(attn •• butter. 128 •• ac~ual •• status);

/* otherwise assume a transmission error and resend */
end;

/* Arrive here when the complete tile has been sent */
call close(attn •• status);
call co (ETX) ; .
call exit;

end recv;

230879-001

3-67

AP-162

:Fl:SEND.PLM

send: do;

/* This is an ISIS utility ptogram for use with a Remote Computer. */

This utility will run on an ISIS cluster board which is connected
to a remote computer rather than a dumb terminal.

*/

$nolist include(:f3:common.lit)
$nolist include(:f3:isis.ext)

Declare buffer(128) byte;
Declare (actual, status, aftn) word;
Declare (i, j, match, count, checksum, received$checksum, character) byte;
Declare- delimit (4) byte data (I TO I);

Uppercase: Procedure (char) byte;
Declare char byte;

if «char >= la') AND (char <= IZl» then return (char - 20h);
return char;

end uppercase,

/* Read the remainder of the command line */
call read (1, .buffer, 128, .actual, .status);

do i = 0 to actual-l;
if buffer(i) = I I then do;

. match = true;
do j = 0 to 3;

if uppercase(buffer(i+j» <> delimit(j) then match
end;

false;

if match then do;

We have found the filename */
i = i + 3;
do while buffer(i) = I I;

i=i+l;
end;
call open(.aftn, .buffer(i) , 3, 0, .status)

/* Did the file already exist? */
call read(aftn, .buffer, 1, .actual, .status);
if actual = 1 then do;

',' .

call write(O.,(cr,lf,:'NDS-II file already exists',cr,lf),
30, .status);
call' exit;

end;

/* File is OK, tell Remote Computer to proceed */
call co (ACK) ;

1* Receive the first buffer of information */
do forever;

character = ci; /* STX or ETX */

230879·001

3·68

:Fl:SEND.PLM

AP-162

if character = ETX then do;
call close (aftn, • status) ;

end;

call write (O,.(cr,lf,'File transfer complete'.cr,lf). 26,
.status) ;
call exit;

che cksum = 0;
do i = 0 to 127;

buffer(i) = ci;
checksum = checksum + buffer(~) ;

end;
received$checksum = ci;
character = ci; /* ETX */
if received$checksum < > checksum then call co (NAK) ;
else do;

end;
end;

call write(aftn, .buffer, 128 •• status);
call co (ACK) ;

end; /* No match. keep looking */

/* End of line */
end;

end;
call write(O •• (cr. If.CR.LF. 'Missing <TO>. Correct syntax is:'.cr,lf,

'SEND <local_filename> TO <NDS-II_filename> , .cr,lf), 84, .status);
call exit;

end send;

230879-001

3-69

Ap·162

CHANGES TO SERIAL.PLM TO RUN ON A SERIES III
:Fl:SERIAL.S2

$DEBUG
Seri~lIOfor$SII: do;

/* This module contains all of the SII specific serial 10 routine~ */

Serial$Status: Procedure byte public;
return ((input(OF7H) and 2) = 2);

end Serial$Status;

Serial$Input: Procedure byte public;
do while not Serial$status;

/* Wait. */
end; '.
return (input(OF6H»;

end Serial$Input;

Serial$Output: Procedure (char) public;
Declare char byte;
do while ((input(OF7H) and 1) = 0);

/* Wait */
end;
output (OF6H)= char;

end Ser'ial$Output; .

Serial$Control: Procedure (value) public;
Declare value byte;
output (OF7H) = value;

end Serial$Control;

end SerialIOfor$SII;

3-70

230879-001

AP-162

CHANGES TO FILEIO.PLM AND REMOTE.MKE TO RUN UNDER CPM
:Fl:FILEIO.CPM

$DEBUG
CPM$Interface$Library: do;

/* This module contains all of the definitions for FILEIO.EXT for CPM80 */

$nolist include(:f3:common.lit)
$l1st

Declare bdos$jump address data (5) ; /* Set up the address of where to
go in memory to get to the CPM BDOS,routines. This is done
by using a call by address with parameters of which bdos routine
and parameters to the routine. This ·is a clumsy way to do it because
there is no way to read the return value of the routine. So
as you will see in the procedure bdos. how the compiler is fooled into
generating the asm code for a return value.

*/

/* PLM80 Declarations for CPM80 functions */
BDOS: Procedure (type. parameter) byte;

Declare type byte.
parameter word;

if 1 = 2 then return 1; /* Let pass 2 of the compiler ~ee a return for the
typed procedure. Then pass 3 will see 1 is
never = 2. so it will throw out the statement.
Now bdos has put the return value in the Acc ••
and th~ calling procedure that called this
'procedure will get it out of the Ace.
Real clumsy but works.

*/
call bdos$jump (type.parameter);

end BDOS;

/* Some BDOS calls return a word; to conform to good PLM syntax we use: •••• */
BDOSW:Procedure (type. parameter) word;

Declare type byte.
parameter word;

if 1 = 2 then return 1;
call bdos$jump (type.parameter);

end BDOSW;

/* Some BDOS calls return nothing; to conform'to good PLM. syntax we use: •••• */
BDOSN:Procedure (type. parameter) ;

Declare type byte.,
parameter word;

call bdos$jump (type.parameter);
end BDOSN,; .

/* In case of fatal errors */
Exit: Procedure public;

call BDOSN(O.O) ;
end Exit;

230879-001

3-71

AP-162 .

:F1:FILEIO.CPM

/* Operating system dependant Console Routines */

Declare waiting$char byte; /* This is the buffer for the CO,CI and
CSTS BDOS routines */

Console$Status: Procedure byte public;
waiting$char = BDOS'(6,OFFH) ;
IF waiting$char = ° THEN return false;
return true;

end Console$Status;

Console$Input: Procedure byte public;
/* One problem with the ISIS to CPM BDOS conversion is in the console

inputs, ISIS doesn't echo and CPM does. So, using the CPM
BDOS direct console I/O to get around the echo problem.

*/
Declare dummy byte;

do for$ever;
IF wai ting$char < > ° THEN return wai ting$char;
dummy = console$status;

end;
end Console$Input;

Console$Output: Procedure (char) public;
Declare char byte;
call BDOSN(6,double(char»';

end Console$Output;

Print$String: Procedure (string$ptr) public;
Declare string$ptr pointer;
call BDOSN(9,string$ptr) ;

end Print$String;

/* Operating system dependant file routines */
Declare FCB$free(6) byte initial (1,1,1,1,1,1);
Declare FCB(6) structure (item(36) byt.);·
Declare Blank$FCB(36 byte data (1,' ',0,0,0,0,

Get$FCB: Procedure byte;
Declare i byte;
do i = ° to 5;

if FCB$free(i) then do;
FCB$free(i) = false;
return i;

end;
end;

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0) ;

call Print$String(. (cr,lf,'Too may files open, Program aborted',cr.lf.'$'»;
call exit;

end Get$FCB;

Format$FCB: Procedure(index, file$ptr);
Declare (index, 1) byte.

file$ptr pointer;
Declare (text based file$ptr) (1) byte;

3-72

230879-001

inter AP-162

:Fl:FILEIO.CPM

/*Clear all the required fields */
call move(36,.blank$FCB,.FCB(index));

/* Skip over any leading spaces */
do while text(O) = ' ';

file$ptr = file$ptr + 1;
end;

/* Has a drive been specified? */
if text(l) = ':' then do;

end;

FCB(index).item(O) = text (0) - 'A' + 1;
file$ptr = file$ptr + 2;

file$ptr = file$ptr - 1;
do i = 1 to 11;

if text(i) = ' , then return;
if text(i) = cr then return;
if ~ext(i) = '.' then do;

end;

file$ptr = file$ptr + i - 8;
i = 8;

else FCB(index) .item(i) = text (i) ;
end;

end Format$FCB;

SetDMAAddress: Procedure (value);
Declare value word;
call BDOSN(26, value) ;

end SetDMAAddress;

Select$disk: Procedure (disk);
Declare disk byte;
call BDOSN(14,double(disk));

end Select$disk;

Open$file: Procedure (file$ptr,mode) byte public;
Declare mode byte,

(fileptr, FCBptr) pointer,
(index, status) byte;

index = get$FCB
call format$FCB(index, file$ptr);
call Select$disk(FCB(index) .item(O)-l);
FCB(lndex).ltem(O) = 0;
status = BDOS(15,.FCB(index));·
if status = OFFH then return OFFH;
return index;

end Open$File;·

Create$file: Procedure (file$ptr) byte public;
Declare (fl1eptr, FCSptr) pointer,

(index, status) byte;
index = get$FCB;
call format$FCB(index, file$ptr) ;
call Select$disk(FCB(index).item(O)-l);
FCB(index).item(O) = 0;
status = BDOS(22,.FCB(index));

3-73

230879-001

AP-162

:Fl:FILEIO.CPM

if status = OFFH then return OFFH;
return index;

end Create$File;

Read$sector: Procedure (file$id, buffer$ptr) byte public;
Declare file$id byte,

buffer$ptr pointer;
call SetDMAAddress(buffer$ptr) ;
return BDOS(20,.FCB(file$id));

end Read$sector;

Write$sector: Procedure (file$id, buffer$ptr) byte public;
Declare file$id byte, -

buffer$ptr pointer;
call SetDMAAddress(buffer$ptr) ;
return BDOS(21,.FCB(file$id));

end Write$sector;

Close$file: Procedure (file$id) byte public;
Declare file$id byte;
FCB$free(file$id) = true;
return BDOS(l6, .FCB(file$id)) ;

end Close$File;

end CPM$Interface$library;

3-74

230879-001

Ap·162

:Fl:REMOTE.CPM

$
$
$
$
$

$
,
$
$
$
$
$
$
$

Make file for the ISIS REMOTE program that runs on the iPDS system.
Author : B. Valentine DSSO Applications Engineering 6/25/S3

First of all define the macros for the MAKE file.
Define the subsitution macros: ,
Subsitution macros are used as constant defines. This way, if

a major change is made, such as the source code device changes
from :fl: to :f2:, the only update to the make file is to change
the macro define.

SET work_device to ' :fl:'
SET S_bit_exe to ' :f2:'
SET S_bit_lib to ' :f3:'
SET database to ' :f4:remote.db'
SET svcs_drive to "run :f5: ~

SET plm to '%"S_bit_exe"plmSO'
Note how macros may be nested and the macro is used with the %' <name>".

SET locate to '%"S_bit~exe"Locate'
SET link to '%"S_bit_exe"link'
SET syslib to '%"S_bit_lib"system.lib'
SET plmlib to '%"S_bit_lib"plmSO.lib'
SET comlit to '%"S_bit_lib"common.lit'
SET get to '%"svcs_drive"svcs get %database'
SET put to '%"svcs_drive"svcs put %database'

, Now define the enumeration macros:
$ SET nds2_files to (recv,send)
$ SET remote_files to (remote,fileio,serial,rmrecv,rmsend)
$ SET files to (%ail(%nds2_files) ,%all(%remote_fiels))

, Tell make that we are going to be looking at the files in the database.
$ FOR i in %files
$ svcs %work_device%"i".plm = %database (%i)
$ svcs %work_device%"i".obj = %database (%i, ,oj)
$END
$ svcs %"work_device"serial.ext = %database (serial"cp)
$ svcs %"work_device"fileio.ext = %database (fileio, ,cp)
$ svcs %"work_device"remote = %database (exec"oj)
$ svcs %"work_device"send = %database (send, ,cp)
$ svcs %"work_device"recv = %database (recv, ,cp)

; The include files are always required, so get them with the header.
$ HEADER

Get all the externals and include files from the database
%get (serial"cp) to %"work_device"serial.ext
%get (fileio;,cp) to %"work_device"fileio.ext

$ END

Now start the dependecies

Set the dependency tree for three separate executable files.
$ IF all >"work_device" remote, %all(%work_device%nds2_files) THEN
$END

3-75

230879-001

AP-162

:Fl:REMOTE.CPM

$FOR i IN %remote_files
; Build all the object files in the remote program.
$ IF %work_device%nin.obj > %work_device%nin.plm, %comlit,
$ %nwork_devicenfileio.ext, %nwork_devicenserial.ext THEN

%get (%i) to %work_device%nin.plm
%plm %work_device%nin.plm
%put (%i"oj) from %target

$ END
$END

, Check the remote executable file that runs on the iPDS system.
$ IF %nwork_devicenremote > %all(%work_device%nremote_filesn.obj),
$ %plmlib, %syslib THEN
$ F9R i in %remote_files

%get (%i"oj) to %work_device%nin.obj
$ END

%link %depend to %nwork_devicenremote.lnk
%locate %nwork_devicenremote.lnk code(103H) symbols lines &

map print (%work_devicenremote.map)
%put .(exec"oj) from %target

$ END

Now that the remote program has been checked, check,the two programs
that run on the network.

$FOR i IN %nds2_files
• Check the NDS_II files RECV and SEND.
$ IF %work_device%i > %work_device%nin~plm THEN

%get (%i) to %depend
%plm %depend
%put (%i"oj) from %work_device%nin.obj
%link %work_device%nin.obj, %syslib. %plmlib to %work_device%nin.lnk
%locate %work_device%n P·.lnk
%get (%i"cp) to :bb: write
%put (%i"cp) from %target

$ END .
$END

230879·001

3·76

inter

Reprinted with permission from Electronic Design Volume 30,
No. 13, copyright Hayden Publishing Co. Inc., 1982.

ARTICLE
REPRINT

3-n

AR-225

August 1982

Order Number: 210671-001

Software debugging at the statement and procedure level gives
a high-level view of programs from creation to implementation.

Debugging catches up
with high-level programming

, Although high-level languages for microcomputers
have made software design a state-of-the-art proce­
dure, debugging technology has lagged behind. A high­
level program debugger brings that technology up to
date. By allowing users to monitor and scrutinize PLIM-
86, Pascal-B6, and Fortran-B6 programs at the source
level, it addresses some of the key problems faced by
high-level language programmers.

The debugger, called Pscope, offers three major
improvements over conventional tools:

-High-level debugging 'at the source statement and
procedure level, in addition to the machine level.

-A powerful, reliable code-patching facility, which
reduces editing-compiling-linking' cycles. '

-Symbolic access to all aspects of a user's program,
including complex data structures, user-defined data
types, dynamic variables, and numerics.

In the past, when microprocessor designs were pri­
marily replacements of simple configurations that used
logic gates, the software 'part of an application was
usually written in assembly language. It made perfect '
sense to debug the application at the machine level,
using in-circuit emulators, simulators, logic analyz­
ers, and other discrete tools that worked at the CPU
level. However, the increasing size and complexity of
microprocessor software has generated a new set of
requirements for program debugging.

Although most microprocessor applications today
are programmed in high-level language, they employ
the debugging tools used for assembly-level programs.
In fact, most debuggers reduce high-level language
programs to assembly-language equivalents, making
debugging more difficult than programming.

An BOB6-based software program, Pscope runs on
a Series III microcomputer development system, along
with the user's program being debugged. (It will be

Stuart Yannerson, Software Product Manager
Intel Corp.
3065 Bowers Ave., Santa Clara, Calif. 95051

used as the software executive for future in-circuit
emulators, to combine the benefits of high-level de­
bugging with real time emulation.) Pscope's main ad­
vantage is that the user's view of the program during
debugging is the same as during its implementation.
Stepping, break-pointing, and tracing execution flow
are performed on high-level constructs such as state-
ments, procedures, and labels. .

Tracking down bugs

The first thing a designer does once a program has
been created, compiled, and linked for execution is to
run it. What usually happens is that, due to some
logic error, a program takes an incorrect branch and
winds up executing in a place it is not supposed to.
The designer's first inclination is to find out where
that occurred and why.

This is where it is helpful to have some form of trace
command. An emulator lets the designer examine the
contents of a trace buffer, which gives the past 100 or

, so CPU instructions executed, plus other information .
. It even allows disassembly of the contents of the trace
buffer. However, if the program went off into some
infinite loop, the trace buffer will be filled with just
those isolated addresses, and the place where the in­
correct branch occurred will have been lost.

The trace facility within Pscope allows setting of
trace points at high-level source statements, proce­
dures, and labels. By putting a trace point on each
procedure call, for example (as opposed to each CPU
instruction), a programmer can look at the trace con­
tents and see exactly the sequence of calls that led to
the incorrect branch;

As an example ofPscope's trace capability, consider
a program that takes'a numeric expression, parses it
into tokens, and evaluates it (Fig. I). By selecting dif- ,
ferent combinations of its 11 procedure calls to trace,
the programmer can change the "granularity" of trace
information. While parsing the numeric expression
23 + (19-5*3), and tracing 3, then 7, then all 11 pro-

AFN~2228A

3-78

High-level software debugging

cedures, Pscope generates first 12, then 23, then 74
trace, messages, respectively. Tracing CPU instruc­
tions, although providing finer granularity, would be
much less meaningful in this case.

A programmer debugging at the machine level might
try single-stepping to find an incorrect branch. How­
ever, just like execution tracing, single stepping is
done at the machine level. Working at this level is
acceptable when the location of the bug has been de­
termined, but offers little help in finding it. It would
take several thousand steps to go through the parsing
program in the previous example.

With Pscope, single stepping (like tracing) is done
at the source level, using high-level statements and
proced~res. The LSTEP command executes a program

SERIES-III Pascal-.86, V2.9

one high-level statement at a time. The PSTEP com­
mand does the same, only it treats procedure calls as
if the whole procedure were a single statement. In the
example (Fig. 2), it takes five PSTEPs to step through
the program. In this case, the procedures Sum, Dif­
ference, and Maxim were each executed with one
PSTEP. If LSTEP were used, the procedures them­
selves would have been stepped through, and it would
have taken 19 LSTEPs. A CPU-level debugger, how­
ever, . would have stepped through each of the pro­
gram's 177 machine instructions. It also would have
stepped through the run-time routines that were linked
in with the program and with the operating system,
too. Pscope, in contrast, can differentiate between the
user's program module and the run-time routines,

" " program dc (input, output) ;

procedure error(e : error_class) ; (* print error , restart *)
40 63 end (* error *);

procedure get line; (* inp.ut line' set c to 1st char of Une *)
60 85 end (* get_line *);

procedure get_token; (* scan 1 ine , set t to its value *)

62 9" " function digit(c: char): boolean; (* true if c is a digit *)
end;

64 95 3 function upper_ case(c: char) : boolean; (* true Hc is upper case
end;

66 100 0 function lower_case(c: char): boolean; (* true if c is lower case
end;.

procedure get_char; (* set c to next char in line *)
79 119 end (* get_char *) ;

begin (* get_token: scan Une , set t to its value *)
135 179 end (* get_token *);

procedure factor(var factor_value integer); .
139 177 1 begin (* factor *)
168 292 1 end (* factor *);

procedure term(var term_value integer) ;
173 210 begin (* term *)
188 223 end (* term *);

proceoure expression (var expression value integer);
193 231 A begin (* expression *)
221 254 1 end (* expression *);

procedure statement;
224 2GU 1 . " begin (* statel'lent *)
228 254 1 1 end (* statement *);

(8)

229 2'i7 0 begin (* main proqraln *)
repea t (* forever *)

232 278 " get_ line;
233 279 " 2 qet_token
234 28" " :1 statement
'235 291 ~ 2 unti 1 false
238 237 1 end.

*)

*)

AFN-{)2228A

3-79

inter
High-level software debugging

eliminating a lot of tedious or wasted effort.
All' of Pscope's commands allow users to examine

and manipulate a program (both code and data) using
the same symbolic constructs in which the program
was developed. Breakpoints, like trace points, may be
placed at procedure calls, procedure returns, state­
ments, arid labels, Thus,. to debug a program with
Pscope, all a programmer needs is a listing. Linkage
maps, memory dumps, locate maps,and the like are
unnecessary. In addition, the. number 'of high-level
breakpoints (and trace points) is unlimited with Pscope.
{)n the other hand, since emulators use hardware
breakpoints, they are limited to just a few.

Now suppose that the programmer has determined
the specific procedure where the program took an

incorrect branch. The next job is to find out why.
Jumps and calls are usually'based on the outcome of
a particular condition.:.-.ifthe condition evaluates true,
the program goes one way; if false, another. The con~
ditions are often complex, however; they may involve
several Boolean expressions arid elements of some ob­
scure data structures.

To .track down the cause of the bug, a programmer
begins examining the contents of these data elements,
compares them with what he or she expected them to '
be, and moves a step further.· This procedure usually
involves stepping a statement at a time and looking at
data values.

Unfortunately, the traditional low-level debuggers
provide only symbolic access to variables of some basic ~

*lc.act :fl:dc"i.136
*

*define trcreg tl ~ errc.r,get line,get ~c.Ken
*define trcreg t2 = factc.r,term,expressic.n,statel'lent (c)

*dir prc.cecture
OI K of : OC
EIHWR
GET LINE
GF:T-TOKEN'
GF:T-TOKt::N.OIGIT
GET-TOKgN.UPPER CASE
GF:T-TOKEN.LOWER-CASE
~F:T-TOKEN.GET CHAR
FACTOR -
TERM
F:XPRESSION
;TATEMENT (b)

1. Pscope, a high-level program,
allows different levels of "granularity"
In high-level debugging. The program
(a) contains 11 procedures, displayed
(b) In their nested form with the DIR
command. Three trace registers with
different trace points In them have
been defined (c). Executing the
program with the trace points of t2
prints out 12 trace messages (d).
Ti'aclng more of the procedures during
execution displays more trace
messages-23 and 71 (e and f). A low-
level debugger would have traced
thousands of CPU Instructions,
providing a lot of unnecessary data
and probably overflowing the capacity
of the trace buffer.

*namescc.pe = get token '
:define trcreg t3 = digit,upper_cas~,lc.wer_case,get_char

*gc. using tl til get_ line . *gc. using tl,t2 til g~t_ lin~
[At get tc.ken] [At get tc.ken]
[At get:tc.ken] [At statement] [At factc.r]
[At get tc.ken1 [At expres'sic.n] [At get_tc.kenJ
[At get:tc.ken1 [At term] [At get toKen]
[At get tc.ken] [At factc.r] [At term]
[At get tc.ken] [At get_tc.ken] [At factc.r]
[At get-tc.ken] [At get tc.ken1 [At get_ tc.ken1
[At get_tc.ken] (At get tc.Ken] (At qet_tc.Ken]
[At <jet token] (At term] (At factor1
[At get tc.ken] (At factc.r] (At <jet_tc.Ken]
[BreaK at get_line] [At get tc.ken] (At get_tc.ken]

(At express i c.n] [Break at get_line]

(d) [At term]

,(e)
*
*go using tl,t2,t3 til get_line
(At get token]
(At lower case] (At upper case] (At upper_case]
(At upper-case] (At digi tT (At diq i t]
[At digitT [At dig i t) [At get_char]
[At digit] [At get char] [.I,\t get_tc.Ken] ,
[At get char] [At digit) (At lower_case]
[At digit] [At get char] [At upper case]
[At get char] [At digTt) [At digitT
[At digit] [At expression) [At dig i t]
[At statement] [At term] (At get_char1
(At expression] [At factor1 (At dig i t]
[At term] [At get tOktm] (At factc.r]
[At factor] (At lower_case] [At get_tc.KenJ
[At get_token) [At upper case] (At lc.wer casel
[At lower_case] [At dig i tT (At upper::case]
[At upper case] [At get char] [At dig i t]
[At digi tT [At get:token] (At get_char]
[At get char] [At l.c.we,_case] (At <Jet_toKen]
[At 'get:token] [At upper_case] [At lc.wer_case]
[At ~c.wer;...case] (At digit] [At upper case]
(At upper_case] [At nigit1 [At digitT
(At dig i t] (At get charj [BreaK at get_linel
(At get char] (At digTt] *
(At term] (At term]
[At factor] [At factor]
(At get token] (At <jet_tc.ken]

(f) (At lower_case] (At lc.wer_case]

AFN-Q22!8A

3-80

High-level software debugging

program types. Complex structures, user-defined data
types, stack-based dynamic variables, and numerics
all are examples of data that requires more complex
handling. For example, to access a field within a record
using the ICE-86A emulator, users must give the byte
offset from the beginning of the record (e.g.,
useLree + 14). On the other hand, Pscope allows the
designer to access fields by name, for example, user_
ree. age. Representation of floating-point numbers re­
quires binary-to-decimal conversion, a luxury many
debuggers leave off. Pscope lets a designer examine
and modify real numbers at three precision levels,
providing. conversion from binary into decimal back
into binary. Examination and modification of all data
is done symbolically in Pscope.

The advantage of all this is that data references are
easier, and fewer mistakes are made (the designer
does not have to calculate offsets). Thus the process
of stepping, looking at data, evaluating expressions,
and continuing are speeded up. In other words, bugs
are tracked down faster.

Fixing bugs

Tracking down the location of bugs quickly is only
half the battle. Correcting the problem is the other,
time-consuming half.

For large applications the program-change cycle can
be lengthy. Program changes are made with an editor;
then the source is recompiled and the module linked
with the run-time routines and other modules. Since
programs can initially contain a lot of bugs, going
through an editing-compiling-linking cycle for each
bug can become extremely wearing after a while.

*pstep
[Step at :EXAMP'21]
*pstep

INPUT TWO INTEGF.RS:
[Step at :EXAMP'22]
*pstep

(input) 319 46
[Step at :EXAMP'23]
*pstep

THE SUM IS 365
[Step at :EXAMP'24]
*pstep

THE DIFFERENCE IS 273
[Step at :EXAMP'25]
*pstep

THE MAXIMUN IS 319
THE MINIMUM IS 46

[Step at :EXAMP'21]
*

2. This program Illustrating the stepping features of
Pscope, contains five statements In the main body, three of
which are procedure calls. Five procedure steps are required
to go through the program. It would have taken 19
statement-level steps, as each procedure would have been
stepped though. In contrast, a CPU-level debugger would
have stepped through all1n Instructions, as well as through
the run-time system.

Programmers typically go to great measures to avoid
such a necessity. Instead, they often try to patch the
object module, in order to continue debugging.

Patching object code, however, may be difficult for
a variety of reasons. First of all, the desired patch
must be written in hex code or assembler mnemonics.
Those debuggers that disassemble object code usually
offer a line-by-line assembler as well. Patching a high­
level program at the machine level can be a horrendous
mess, though. The high-level language compiler may
have adopted certain stack conventions, code optimi­
zations, and register usage that make it difficult to
understand what to patch, let alone how to patch it.

The patch is frequently a different size than the
code to be patched, and that introduces more compli­
cations. An unfortunately common solution is to jump
to an unused location, perform the patch, and jump
back to the return address.· Another problem is that
even though the machine-level patch may work, incor­
porating the change into the source file later may
generate entirely different code from that of the patch.
Because of all these complications, patches are used
only in simple cases, where programmers can easily
determine the results. It is unfortunate, too, because
a good patching mechanism could eliminate a lot of
programmers' headaches.·

In lieu of machine-level patching, the common meth­
odology is to set a breakpoint at the location of the
bug" and correct the problem by hand. Correcting the
problem usually means reassigning variables or re­
versing the outcome of some IF ... THEN conditions.
These methods are simpler than pat~hing but intro­
duce problems oftheir own: If the bug is located inside
a loop, the "breakpoint and change by hand" approach
must be done too frequently. Also, if the manual changes
are more than a few assignments, the process becomes
tedious. Lastly, only a few bugs can be changed in
this fashion before it becomes difficult to keep track
ofthem. As a result, programmers quickly resort back
to extensive editing-compiling-linking cycles.

Pscope's approach to the problem is to provide an
automated way of writing and managing high-level
code patches. Rather than define changes to the pro­
gram at the machine level, users may define code
patches at statement numbers. With Pscope, the ac­
tual contents of the patch may be complex as well-
DO ... END blocks, IF ... THEN ... ELSE conditions, and
REPEAT ... WHILE ... UNTIL loops make the command
language as powerful as Pascal or PLiM.

Using high-level code patches is simple (Fig.3). After
determining the location and cause of a particular bug,
the programmer defines a patch. In this example, a
mUltiplication took place at line. 5, rather than an
addition. The command define pateh #5 til #6 = Z = x + y
causes the contents of the patch to be executed in
place of the statement at line 5. The designer can

AFN-02228A

3-81

High-level software debugging

specify any starting point and any point to continue
execution. Furthennore, patches are executed in all
GO, LSTEP, and PSTEP commands without having to
specify them. Perhaps the biggest help in managing
patches is that it is easy to see where they are (DIR
PATCH); in addition, they may be written out to disk
(PUT filename PATCH). Thus, it becomes very easy to
incorporate them into the source file later. Because
the patch language is so similar to the source lan­
guage, a patch that worked in Pscope is most likely
to work in the modified program as well.

Many utility commands will be part of most simple
debugging sessions. Pscope's "literally" feature allows
users to abbreviate, redefine, and tailor the command
language to suit their needs. For example, define lit­
erally d = 'define' lets the programmer use d for the
define command. The HELP command displays (on the
console) the usage and syntax of most commands and
facilities in Pscope. The PUT and INCLUDE commands
let users write and retrieve commands (usually defi­
nitions of break and trace registers, program patches,
and "literally's") on disk, to use in later Pscope de-
bugging sessions. ,

Pscope's command language is a powerful progam­
ming language that is used for generating new com­
mands (debugging procedures), the same way high­
level code patches are defined. Debugging procedures
allow you to define compound and conditional com-

*load :f1:maxmin.86
*
* *go til 121
[Break at :EXA"'PI21]
*go

INPUT TWO INTEGERS: 19 4
THE SUM IS 76

THE DIFFERENCE IS 15
THE MAXIMUN IS 19'
THE MINIMUM IS 4

[Break at :EXAMPI21]
*
* /*
**
**
*
*

looking at statement IS in
the program, notice we multiplied
instead of added. Let's patch it

*define patch IS til '6 a zux+y
*
*go

INPUT TWO INTEGERS: 19 4
THE SUM IS 23

THE DIFFERENCE IS 15
, THE'MAXIMUN IS 19

THE ~INIMUM IS 4
[Break at :EXAMP,21]
*

*/

3. High-level code patching can fix the bug In statement 5,
which calls for multiplying, Instead of adding, two Integers.
A patch Is defined to replace this statement, and the
program now executes correctly. Patches remain active
during all LSTEP, and PSTEP, and GO commands until the
patch Is removed.

mands. Like procedures in high-level language, these
procedures may have parameters, may supply return
values, and may have their own local variables. Thus
Pscope is in fact a programming language in its own
right. '

Debugging procedures may be called automatically
upon reaching a breakpoint or a trace point. When a
breakpoint is reached, Pscope can call ap:r:ocedure
that contains any sequence ofPscope commands. Con­
ditional break and trace points may be set up this way.
By evaluation on condition in the procedure, a return
value of ''true'' or ''false'' detennines whether the break
(or trace message) should take place or not.

Debugging procedures (and code patches) are,cre­
ated with Pscope's built-in editor and may be stored
on disk. !J'he editor is a menu-driven, CRT-oriented
program that is used to edit not only debugging pro­
cedures, but command lines as well. For example,
when a syntax error occurs on a long command line,
the user just hits < esc > on the keyboard and the
editor comes up. The command will then be reexe­
cuted when it is corrected.

, The command language has conditional constructs
(IF ... THEN .. '. ELSE), looping' control (REPEAT ...
WHILE ... UNTIL ... COUNT), calls and re­
turns for procedure nesting, and a full set of program
data types. The data types correspond to the recog­
nized types of the user's program (PLIM and Pascal).
Debugging procedures can also access user-program
variables (for example, debug_variable =proQ­
count +t).

These procedures also allow, program stubs to be
expanded. Rather than resolve external program ref­
erences with fully coded modules, subsystems can use
empty stubs for resolving externals. During debug­
ging, then, a procedure can be used to supply input
values, take outputs and process them, supply return
values and conditions, and so, on. In essence, proce­
dures can be set up so that ail or part of' a software
system is modeled. Such flexibilty affords much greater •
independence in software iinplementation, as separate
software modules can be developed and then debugged
independently.

Lastly, debugging procedures can be used to auto­
mate the software testing process. Complete (or in­
complete) systems may be executed over and over
again, each time with new parameters and each time
recording the results. The parameters can be selected
by the designer or derived algorithmically using de­
bugging procedures.o "

AFN-Q2228A

3-82

AR-319
TECHNOLOGY

Integrated software·develop·
ment Instrumentation can
significantly reduce the de·
velopment costs involved in
bringing a product to market.
The Intel PICE system com·
prises an in·circuit emulator
for 16·bit microprocessors, a
logic·timing and state ana·
Iyzer and a high·level langu·
age debugger connected to a
host development computer.

Software development
PAUL MARITZ, Intel Corp.

New tools and approaches are boosting
software-development productivity

The past year has seen a transformation in software
development fOl' microprocessor systems, involving
more sophisticated processors, increased software
content in the end product and a growing shortage of
software talent. The integration of common human
interfaces across heterogeneous systems, coupled with
a tremendous focus on' "friendly" and "productivity­
based" features and the incorporation of classic hard­
ware tools, such as in-circuit emulators, into the
software-development environment have changed the
very structure of the software lab. While in 1982 the
concept of an' i~tegrated workstation combined an
emulator with a logic analyzer, in 1984 an integrated
workstation will combine software tools with hardware
assistance to boost software productivity.

The cost to a company of a malfunctioning or poorly
designed product can prove far more expensive than
doubling its R&D expenditures or absorbing a signifi­
cant increase in the product's cost. This is equally true
for the software-development process. "Time to market
is everything," and this consideration will become
significantly more important over the next few years.

IncreaSing software productivity

During 1984, changes in computer systems will
continue the evolution outlined above. Software tools
will become available to guide the documentation and

building of software systems, hardware will help
software engineers evaluate software "completeness,"
and performance analysis and high-quality local-area
networks (LANS) will be pervasive in every medium and
large software environment. Just as logic analyzers,
oscilloscopes and emulators have assisted hardware
engineers, documentation aid~, very high-performance
distributed processing and the adaptation of emulators
to software-intensive environments will lead the way to
a greater measure of software productIVity in the
mid-1980s.

The key to software productivity lies in minimizing­
or eliminating-a focus on learning to use the tools and
maximizing the development and convenience of com­
mon human interfaces, high-level software tools and
automated documentation and software-version con­
trol. No matter how well each individual tool works in
and' of itself, the effectiveness of the design aids
available to the software engineer depends more on the
interaction and interdependence of each tool than on
anyone tool's features.

The single most time-consuming task in the software­
development cycle (Fig. 1) is verifying that the
software works-that is, detecting and correcting
bugs. One reason this process is so inefficient is that
debugging is done at a low level. Most programs today
are written in a high-level language. A software

3·83 ORDER NUMBER: 230978

TECHNOLOGY

DEFINE
SOFTWARE
FUNCTIONS.

INTEGRATE
HARDWARE
SOFTWARE

D
MAINTENANCE

Fig. 1. In a typical software-development cycle, problems in
compiling the code, verifying it with a debugger and integrating
hardware with software send a project back to the editing stage.
Problems become more difficult to correct as development proceeds
and particularly difficult to rectify after hardware is involved. A project
that fails to use the appropriate tools throughout its life cycle risks
slipping all the way back to the definition and design/writing phase.

engineer uses a language translator that translates
high-le\"el terms and constructs that are closer to an
application into low-le\"el or processor-specific terms.
For example, a programmer might write his program
in . Pascal, considering such entities as procedures,
records and expressions. However, when he detects a
bug in his program, he is forced by the available tools to
operate at the processor level and to deal with such
entities as hex numbers, registers and flags. Because
the programmer has to translate manually back from a
low le\"el to a high level, productivity is lost.

Implementing high-level debugging

Why not, instead, have the debugging tool do a
reverse translation? After all, the programmer submit­
ted the. high-level description (source code) of his
JlI'ogram to a translator (compiler) to have it converted

3-84

into low-level, processor-specific (object) code. The
compiler could pass information about the program to
the debugger, so that it could present the software
engineer with information about the program in
high-level terms (Fig. 2). This is an example of a human
interface that is efficient, not just friendly.

The cost to a company of a
malfunctioning or poorly designed
product can prove far more expensive
than doubling its R&D expenditures or
absorbing a significant increase in the
product's cost.

In microprocessor development, it is often necessary
to complete the verification of the software by running
the program in the target environment-the real-world
environment of the application to be controlled. This is

COMPILERS

DEBUGGING
INFORMATION -- ---- -.-

LOW·LEVEL
PROCESSOR·SPECIFIC

OBJECT CODE

INFORMATION
STANDARDS

DEBUGGING
TOOLS

Fig. 2. Using a high-level debugger, such as Intel Corp.·s PSCOPE,
in the software-development process allows a developer to correct
problems with code in a high-level language instead of in low-level,
processor-specific terms. Such tools can greatly increase the
efficiency of the debugging process.

usually a necessary step, because the interaction of the
microprocessor and its external environment might be
very complex and exceedingly difficult to simulate. For
example, consider a microprocessor controlling a robot
arm. The microprocessor must receive instructions on
where to move the arm and, at the same time, monitor
sensors reporting the state of the ,motors driving the
arm. These inputs arrive in an unpredictable sequence
and must be s~rviced within certain time limits if the
robot arm is to perform as expected.

Simulating such an environment would be as much
trouble as writing the target program .. The . ideal
approach therefore involves simulating only those
program modules that have a well-defined and simple
input and output sequence and hence can be debugged

,easily in a simulated environment. The. complete
program, with its complex, time-dependent inter-

inter
module relationships, can then be debugged in the
actual target environment.

This two-stage approach requires two types of
related debuggel's: a software debugger that allows the
softwal'e deycloper to simulate modules on his worksta­
tion and an in-circuit emulator that allows him to debug
the software running in the target environment. To be
most effectiYe, these two types of debuggers should
share the same human interface (Fig. 3), permitting an
engineer to mO\'e easily from module-level simulation to
in-target debugging without mentally shifting gears.

COMPILERS

DEBUGGING
INFORMATION

INFORMATION
STANDARDS

I
I
I

DEVELOPER
USES SOFTWARE

DEBUGGER TO
CHECK OUT MODULES

I SHARE sAME
I HUMAN INTERFACE

I
DEVELOPER

USES ICE
TO CHECK OUT

FINAL PROGRAM
RUNNING IN

TARGET ENVIRONMENT
DEBUGGING

TOOLS

Fig. 3. High-level software and hardware debuggers (yellow)
sharing the same human interface speed software development. A
developer can use a high-level debugger to exercise a software
module on a workstation before all the modules of a program are
available or before a prototype target system is constructed. When all
modules and the prototype are ready, an in-circuit emulator, such as
Intel's 121CE, can be employed to debug the code rUQning in real time .
in its real-word environment. Using a variety of compilers allows the
developer to choose the optimum language for each sUb-task and, in
many cases, to use off-the-shelf software components written in a
standard language.

Managing software development

Typically. programmers generate at least three
classes of information: documentation, source and
object (processor-specific) code. More than one individ­
ual usually generates the information produced by a
development project. In addition, the information
usually undergoes changes over time, resulting in
seyeral different versions of. the software. Further­
more, a typical project involves many variants of the
information produced, such as one for floppy disks or
one for 'Winchester disks.

.On a mUltiengineer software-development project,
the management of these different levels of information
can become problematic. And, although the cause of the
pl:oblems is usually simple, their effect is very costly.
An engineer migh~ waste days building a test system

EXISTING INTEL
DEVELOPMENT SYSTEMS

COMMUNICATIONS PROTOCOLS
USED BY NOS II

Layer in
ISO model

upper level
protocols

transport
protocol

physical and
data link protocol

Protocol used
today

Intel network
architecture

Intel network
architecture

Ethernet

Future
evolution

public standard

ISO standard

EthernelllEE-602

Fig. 4. An LAN can integrate shared and dedicated software­
development resources. A shared, central database allows the
storage and management of project information. Dedicated, single­
user workstations proVide team members with processing power,
large memory space and quick response. An LAN linking individual
workstations furnishes communications between software develop­
ers and common access to database information through a network
resource manager. An efficient LAN, such as Intel's NOS-II, will
eventually be able to connect workstations from different manufactur-

. ers to serve ,- changing software-development needs. This goal,
however, requires further standardization of communications proto­
cols, the aim of the International Standards Organization (ISO) and
other groups.

with an out-of-date document. Another problem that
frequently arises is that of ~ "mysterious" change-an
engineer changes a module and then fails' to notify
others of the modification.

Although these are simple management problems, a
week lost on a to-man engineering project because of
an incorrect source file can mean $20,000 to $30,000 in
direct staff costs and a serious slip in the product-
development schedule. '

Solving development problems

Automating software-management procedures can
solve these types of problems by providing project
members with a database in which to hold and control
project information. It can also furnish the software­
generation tools needed to build the correct software

3-85

, TECHNOLOGY

systems from information held in the database (see
"Automating software management," below).

A project database should be able to provide:
• automatic separation of information according to

type, version and variant. For example, a user must be
able to extract from the database "the,source associated
with module x, version 2-the floppy disk variant" or
"the test data for module Y,version 3."

• control of access to information. A software.
developer must be able to lock, or "freeze," certain
versions to prevent problems arising from mysterious
changes to the base information.

• a guaranteed audit trail for all information-what
changes were made, by whom, why and when-making
it easier to track the changes made in going from
"version 2.0 to version 3.0."

, A software engineer should also be able to specify the
desired software mix for the end product: the modules
to be compiled and linked, the versions .and variants to
be used and the modules that rely on each other. From
this description, a utility can extract the correct
information modules out of the database and compile,
assemble and link the source and object files to create
up-to-date, consistent software. Ideally, the utility
should be able to avoid redundant steps if the required
information already exists. For example, there should
be no need to recompile the source of module x as long
as a good copy of the object for module x exists in the
database. A single change in one module should not
require the recompilation or" all 60 tnodules 'in a project.

Shared resources + dedicated resources

In today's software-development environment, two
conflicting requirements are placed on host systems.
First, software developers must be able to communi­
cate and share resources. Information-management
tools typically require that members of a project share
a central database in which project information is
stored and managed. Software engineers must be able
to communicate information, performing such functions

AUTOMATING SOFTWARE MANAGEMENT

Creating a new software product is
a complex. multistage process usually
involving many software­
development team members. three
kinds of information' and code
(documentation. source and object
code) and' several versions and
variants of a package. For example.
developing an Intel Corp. compiler for
the 8086 microprocessor involved 175
modules totaling 200K bytes of code.
four engineers, and 10 hours of
program-generation time. Correctly
managing such a project and avoiding
costly mistakes increasingly requires
automated project-management tools
(A). such as Intel's Software Version
Control System (sves) and MAKE. The
sves system furnishes a database
that permits project members to track
and control' versions and variants of
the software. Database information
can be protected against accidental or
simultaneous changes by two or more
developers. ,The system can also
record when a change in a software
module was made and the reason for
and initiator of the change. The MAKE

facility can determine what compiles.
assembles and links must be per­
formed on various modules to
construct' a software product from its
constituents. The utility uses module­
dependency information (what mod­
ules affect certain other modules) to' '

(B) B CHECK SOURCE MODULE OUT
svcs OF DATABASE (FURTHER CHANGES

~
CANNOT BE M, ADE UNTIL MOD,ULE IS
CHECKED BACK) ,

r::l MAKE THE CODE CHANGES
~ USING EDITOR

(7 "
~ PUTTHE MODULE BACK I svcs I (SYSTEM RECORDS CH, ANGES:

WHO MADE THEM, WHEN, WHY)

~ 8 GENERATE NEW VERSION OF SYSTEM
. MAKE (GUARANTEEING CONSISTENT,

, Up·TO·DATE VERSION, AVOIDING
REDUNDANT STEPS, SAVING TIME)

ensure consistent. updated software '
and eliminate redundant steps. A
programmer, for example. can use
these project-management tools to'

alter a program module. put the
module back in the system and

. generate anew. consistent version of
the system (8).

3-86

TECHNOLOGY

as sending and receiving electronic mail. This trend
favors the use of minicomputers that let users share a
database, communicate and cooperate.

Second, software developers' tools are becoming
increasingly sophisticated. The price of this sophistica­
tion, however, is more powerful computing resources.
These tools require dedicated processing power, large
memory space and quick response to perform efficient­
ly. This means newer tools will have to be hosted
single-user workstations, in which software developers
can be guaranteed a certain level of computing
resources.

Single-user workstations connected to a· local-area
network (LAN) can resolve these conflicting trends (Fig.
4). Such a distributed-processing approach offers the
best of both worlds. Each user has a dedicated set of
computing resources in his workstation, uses a central,
shared database located at the file server and can easily
communicate with other users.

If the LAN architecture is correctly designed, distrib­
uted processing can offer other benefits as well.
Different types of workstations can be attached to the
network, according to user needs. Thus, in a software­
engineering environment, most of the workstations
could be optimized for software developers, with only a
few reserved for hardware debugging. To meet these
needs, the LAN should become the standard information
bus of the software-development team.

The distributed processing afforded by an LAN will
also provide a measure of protection against obsoles­
cence. Newer s'tations can be added to replace older
ones, as required. Now, the unit of growth for
software-development systems is the workstation, not
the mainframe.

The trend toward workstations connected by an LAN

weighs heavily against the cost advantage of timeshar­
ing over distributed processing. The push for software
productivity will therefore be the most pressing reason
for the adoption of distributed processing in modern
software-deve~opment environments. 0

Paul Maritz is software tools planning chairman at Intel
Corp.'s Development Systems Operations, Santa Clara, Calif.

Reprinted from MINI-MICRO SYSTEMS December 1983
©1983 CAHNERS PUBLISHING COMPANY

3-87

ARTICLE
REPRINT

Reprinted from Computer Design, November 1984

3-88

AR·352

ORDER NUMBER:231257-001

AR·352

INTEGRATED ENVIRONMENT
SPEEDS SYSTEM
DEVELOPMENT
By integrating source and version control, electronic
mail, standard interfaces for programming languages,
and common interfaces to operating systems, a total
development environment can accelerate the software
task faster than adding staff.
by Kenneth Pomper and Dennis Carter

If a project is running behind schedule, adding staff
members is not always the best tactic for getting it
back on schedule: as the saying goes, adding man-

. power to a late software project makes it later. Often
the best solution is to coordinate programming efforts
and project management through an integrated devel­
opment environment. This type of system stimulates
greater efficiency by combining management, pro-

DEVELOPMENT
TOOLS

gramming, and debugging tools in one environment.
Productivity increases especially with microprocessor
systems with separate target and host development
systems. As a result, industries can meet critical deliv­
ery schedules without needing additional program­
mers.

System development is a complex process involving
several different stages that continually pass informa­
tion between each other. The development environ­
ment should be more than a collection of assorted
tools that are poorly linked. It must efficiently coordi­
nate the diverse stages of development in a single
coherent environment, allowing information to flow
easily between different tiers of the project (Fig 1).

An efficient development cycle has two parts. Manag­
ers must have a clear view of the project from incep­
tion through test and implementation. Thus, planning

DESIGN

LOGICAL
DESIGN

AND
DOCUMENTATION

MANAGEMENT
AND CONTROL

~
CODING

AND
TRANSLATION

I
HOST

ENVIRONMENT

f

LOGICAL
IN·TARGET SOFTWARE - DEBUG DEBUG

Fig 1. An integrated development environment must do more than act as a library for development
tools. It must ensure that information flows smoothly between components. As organizations
shift to new development policies and expand development hardware, the system must be able
to migrate smoothly to the new host environment.

3·89 231257-001

inter AR·352

work schedules and anticipating design bottlenecks is
easier. Software engineers must share their ideas,
designs, and programs, passing information through­
out the different'development stages.

Yet, in developing products for other target machines,
an integrated environment for the host development
system alone is not enough. Uriless a smooth transi­
tion to the final target environment is provided, the'
project will- bog down during the critical target system
integration and test. The transition from host to target
development environments is one of the two major 0

factors affecting the project cost. According to R. W.
Jensen, changing environments can increase costs as
much as 122 percent.

Not only must engineers deal with different target
hardware in different projects, but also they must
work on a shifting host hardware base as companies
expand their development resources. Rather than los­
ing previous investments in tools or training, the com-

o pany must be able to shift the entire environment
smoothly as the company shifts to different develop­
ment strategies. For example, engineers using Intel's
Intellec® Series IV workstation maintain the same
fundamental development environment when they
move to the NDS-II distributed development environ­
ment.

With its multiple stages, development can turn into a
logistical headache for managers and engineers alike.
Managers supervising several programming teams,
each developing different versions of programs,· can
easily lose the thread of revisions to source code. Simi­
larly, programmers can find themselves working at
cross-purposes in their attempts to generate and test
the most recent versions of code, rather than a hybrid
of current and obsolete code versions.

An integrated system can help prevent these problems
by combining different tools and making them work
well together. For example Intel's configuration man­
agement tools, Source Version Control System
(SVCS) and MAKE, manage multiple versions of a
program. The tools can automatically combine the
most current versions of several modules in larger pro­
grams. Similarly, Intel's debugging aids, PSCOPE
and Inte~rated Instrumentation and In-Circuit Emu­
lation (I ICETM) package, !lse information implanted
by compilers to permit programmers to debug during
the integration process at the source-level. Such an
integrated environment increases efficiency through
good allocation of available resources. .

MANAGEMENT AND CONTROL

Modular design helps software engineers break a large
complex problem into a set of small simple programs.
Unfortunately, a modular design system requires
more overhead for managing a large number of

modules and different versions of the same module. If
the logistics become too troublesome, programmers
might even collapse several modules into a single file
to save themselves the trouble of manipulating the
separate modules. Project management tools can free
engineers from the housekeeping chores associated
with program development (Fig 2).

PROJECT
MANAGEMENT

TOOLS

TARGET
-SYSTEM

Fig 2. Besides controlling changes to the source
files in its data base, SVCS helps
managers audit source updates. Auto­
matically generating the software for the
target system, MAKE reduces generation
time by about 50 percent, leaving engin­
eers more time to' concentrate on devel­
opment.

Programmers keep track of major changes in their
programs by either creating copies of the new version
or changing an older version. The result is a series of
similar programs that lack proper documentation to
indicate the change and reason for the change. SVCS
provides an automated approach to this record keep­
ing. It tracks changes to the baseline version of a pro­
gram, and demands that programmers record their
reasons.

When software engineers need a particular version of
a file, whether the current or some older copy, SVCS
automatically retrieves the correct version from its
data base of updates and baseline versions. Similarly,
after the programmers have added changes, SVCS
records the updates and the reasons for the changes,
adding as little as a 3 percent overhead. In addition,
SVCS helps project managers exercise precise control
in large team projects by preventing certain engineers
from making changes independently .

3-90 231257-001

AR·352

While programmers work directly with sves to man­
age different versions of programs, MAKE works
closely with sves facilities to generate current ver­
sions of systems. While generating large systems from
several different modules, programmers often find
that one or two modules have been updated since the
last compilation. This problem is compounded .when
modules depend on a series of other submodules.
MAKE automates the manual procedures often
resorted to by software engineers to track current
object modules.

Using templates that detail the modules' interdepen­
dence, MAKE ensures that only current versions of
modules are included in the system generation. If it
finds that a required object module is obsolete,
MAKE automatically compiles the appropriate source
module to produce the current version of the object
module. Furthermore, if source modules depend on
submodules, MAKE continues searching through its
templates to ensure it recompiles modules using the
current submodules for these source modules.

MAKE selectively compiles the needed modules. Only
if a module or one of its submodules is obsolete does
MAKE execute a recompilation. This cuts the ineffi­
cient massive compilation procedures commonly used
to ensure that object modules are current.

In addition to the project management tools handling
version control and system generation, a complete
integrated development environment should also facil­
itate communication among users. Acting as an elec­
tronic central distribution center, the NOS-II electron­
ic mail facility maintains mailboxes for individual
users and groups of users on the network, and an elec­
tronic bulletin board for all users. In addition to sup­
porting document distribution, electronic mail man­
ages a file transfer facility. Team members can trans­
mit both source and object modules to any other user
on the network.

Another feature, NOS-II's network reso'urces man­
ager (NRM), provides extensive support for file man­
agement and resource sharing. The NRM manages
files with a hierarchical structure that arranges files
into volumes and multiple subdirectories. The NRM
also improves allocation of resources through its dis­
tributed job control (OlC) facility. Ole permits users
on private workstations to export a batch job to the
NRM for remote execution. The NRM then moves the
job to a free workstation for execution, returning the
completed job status to the user's directory.

LOGICAL DESIGN

An integral part of the software development environ­
ment and its primary interface with the user is the text
editor. Because software engineers typically spend 40-
50 percent of their time using a system editor, it is a

3-91

critical element in software development and can
greatly enhance productivity if used well. For exam­
ple, programmers often need to work simultaneously
on two separate files, such as two different source pro­
grams or a program and a specification document.
Editors such as Intel's AEOIT permit them to edit two
files of any size simultaneously and transfer text
between them.

AEDIT's ability to store a sequence of edit commands
also simplifies the use of edit macros. With AEDIT,
programmers build macros simply by typing in their
commands. They can re-execute the command series
and even save it on disk for later use. AEOIT also
helps software engineers with structured programming
techniques through its automatic text indentation.
Furthermore, AEOIT protects programmers' efforts
by optionally creating back-up copies of files being
edited.

Although a text editor serves as the primary interface,
between the development system and programmer,
programming languages serve as the principal inter­
face between design concepts and the target hardware.
With the right set of programming languages and sup­
port tools, software professionals can develop the
optimal solution for a particular situation, without the
design bias often seen when designers plan projects
with an eye on their eventual implementation.

For example, different programming languages like
assembler, PL/M, e, Pascal, and Fortran enjoy cer­
tain advantages over each other. Software developers
should be able to draw on the most appropriate lan­
guage to implement the different facets of a design. In
order to support this kind of free choice, however, the
development environment must be able to coordinate
the use of a mix of programming languages, so that
programmers can use different languages without con­
cern about how the different modules will eventually
be combined.

Like natural languages, the virtue of programming
languages lies in their ability to represent abstract ,
ideas in concrete terms. lust as it may be easier to
express a certain .idea with a particular natural lan­
guage than another, programming languages vary in
their ability to represent certain design concepts. For
example, software engineers find that Pascal repre­
sents structured designs more faithfully than a lan­
guage like Fortran. Also, languages like PL/M or e,
which closely reflect the hardware base of a design', or
assembly language, which provides the ultimate visi­
bility into the hardware, are powerful tools for devel-.
oping real-time embedded systems.

Still, programming languages share another feature
with natural languages-varying degrees of popular':
ity. For example, Fortran remains one of the most
popular programming languages. Its continued strong
moment!lm translates into a large installed base of

231257-001

AR·352

software. For managers, this large installed base pro­
vides a ready source of existing code. On the other
hand, managers must remain ready to incorporate
newer languages like ADA into designs without start­
ing from scratch.

In many software development projects, managers
often look for a way to juggle several programming
languages simultaneously .. Software engineers qm
usually adapt quickly to new programming languages
-particularly ,when they are supported by project
management tools. On the other hand, the develop­
ment environment often acts as a bottleneck in mixing
several different languages in the same target system
because of its inability to match the varying' program
and system interfaces of different languages.

The Intel development environment integrates differ­
ent languages through a common object module for­
mat (OMF). A standard OMF works at several levels.
During link time, OMF presents a standard method
for indicating data type information, which the linker
uses to build its memory allocation tables. Further­
more, debuggers exploit OMF's standard arrangement
of symbolic information for handling symbolic debug­
ging~

Two other aspects of the standard development envi­
ronment include the definition of standard conven­
tions for passing parameters between different pro­
grams-regardless of their implementation language
-and standard interfaces to the operating environ­
,ment. Besides accounting for critical implementation
details another key measure of the effectiveness of a
development environment is its support of application
level stand~rds like IEEE 754 for floating point opera-
tions or IEEE 802 for Ethernet. '

For those areas currently without standards, the devel­
opment environment takes the initiative with a base­
line for the operating environment. Here, Intel's uni­
versal development interface (UDI) defines a system­
independent interface between application programs
and the operating environment. Rather than write
their programs with system-dependent calls to operat­
ing 'system utilities, software developers use the same
UDI call to allocate memory, for example, regardless
of the target operating system. During link-time, the
linker uses this UOI call to link in the appropriate sys­
tem utility in iRMXTM, for example (Fig 3). Conse­
quently, programs that use the UDI can be ported
between ISIS, iRMX, and Microsoft's Xenix simply
by loading the modules into the new environment.
Thus, if the design calls for a realtime operating envi­
ronment like iRMX, engineers can develop the appli­
cation under ISIS without fear that their work will be
lost when the system is transported to the iRMX envi­
ronment.

For the manager trying to improve productivity" no
faster method exists than simply porting existing code
to a new environment. Besides IEEE standards, which

APPLICATION
PROGRAM

CALL D Q$ALLOCATE

,

UNIVERSAL
DEVELOPMENT
ENVIRONMENT

"ALLOCA TE MEMORY"

TARGET
OPERATING

ENVIRONMENT
(iRMXTM, Xenix, Isis)

Fig 3. Where applications standards do not
already exist, a development system
should follow some baseline. The univer·
sal development interface (UDI) sets a
baseline for interactions between appli·
cation programs and operating software.
For example, an application that requires

, memory uses a UDI call (DQ$ ALLOCATE)
which is later translated into the appro·
priate call for target operating environ·
ment.

provide a common application environment, the use
of a common object format and universal develop­
ment interface provide a clear migration path between
operating environments.

SAME INTERFACE

In the kind of cross-development environments com­
monly used for creating microprocessor-based prod­
ucts, engineers work most effectively if they are able
to split debugging into two phases. In the first phase,
debugging occurs in parallel for the target hardware
system and for the software. Here, engineers use the
host environment to debug the basic logic of the soft­
ware system. Once they are satisfied both· with the
logic of the software and with the operation of the
hardware, the engineers then load the software into

3-92 231257-001

AR·352

the target system for the second phase-integration
and test.

This in-target phase is the critical step where hardware
and software are finally integrated as a total system.
As noted earlier, differences between the host and tar­
get environments can more than double costs. Conse­
quently, a key feature of an integrated environment is
a common debug interface between host and target.

Intel's PSCOPE debugger permits programmers to
check out programs at the source-level both during
logic debug and during in-target test. Because
PSCOPE shows up again as one of the three major
components of the 121CE system, software engineers
are assured of a smooth transition between host and
target. Along with PSCOPE, 121CE's in-circuit emu­
lation and logic timing analyzer (LTA) give developers
a full view simultaneously into the hardware and soft­
ware components of their systems. Without this kind
of coordinated approach to system integration and
test, developers can never deal with the hardware and

a)

b)

l
EDIT.

EDIT

• I
J
I

I-- COMPILE ~

t-- COMPILE r--

software as an integrated system, but are forced to
switch continually between hardware testing and soft­

. ware debugging.

Supporting system integration at the most fund amen­
tal level, in-circuit emulation provides a transparent,
full speed emulation of the iAPX 86 and iAPX 286
families of processors. Besides handling multiple level
breakpoints and traces in single microprocessors,
121CE extends its support to multiprocessor environ­
ments. Developers can emulate a system of up to four
microprocessors and examine complex processor in­
teractions like synchronization. For example, 121CE
lets engineers define events like breaks and traces con­
ditionally, so that a microprocessor will break when
another defined event occurs in a different micro­
procesor.

While 121CE and PSCOPE provide the fundamental
support fora system's underlying hardware and soft­
ware, the LTA also serves as a key element of the sys­
tem's integrated package. Displaying 16 channels of

LINK ~

LINK I--

TEST

~
TEST

I
I
t

I
r-- DEBUG

I
~ DEBUG

1 ______________________ _ SAVE
SOURCE· LEVEL

PATCHES

Fig 4 alb. In the past, engineers have needed to iterate through a lengthy development cycle in order to
debug source code in the target system (a). On the other hand, PSCOPE lets engineers use
source level code to debug and patch target systems and continue debugging, then finally,
after many bugs are found, save the source· level patches on disk for later addition to the
original source files (b). .

3-93 231257-001

AR·352

logic and timing information, the LTA helps isolate
critical state and timing problems. In order to speed
the analysis process, this menu-oriented system also
permits engineers to save debugging setups and wave­
forms on disk.

A key advantage of an integrated environment is its
ability to present information, through a consistent
command language, ina familiar form. With 121CE,
this feature extends to logic and timing analysis ..
Rather than present a morass of digits; the LTA dis­
plays most information in easy to understand wave­
form diagrams.

just as the LTA has moved system integration and test
above the bit level, PSCOPE shortens software debug­
ging by permitting engineers to test programs using
their own symbols, rather than machine code. With
the traditional machine code debugger, if they wanted
to . patch a section of machine code, programmers
would spend hours converting machine code between
different formats, like binary and hex, and calculating
the machine code equivalents of assembler instruc­
tions. Even somewhat more sophisticated debuggers
that disassemble machine code are little help in retain­
ing the sense of a progratn as expressed through its use
of symbols.

Instead, even though it helps software engineers deal
with machine code when necessary, PSCOPE c;an han­
dle debugging at the level of the original source code.
Consequently, programmers can set an ·unlimited
number of breakpoints by statement number, step
through a single source statement at a time, and trace
execution by statement number, procedure name, or
label (regardless of whether they are working with the
host or target system).

From the user's point of view, the utility of PSCOPE
lies in its built-in, CRT-oriented editor and in its
command languge that resembles a high level struc­
tured programming language (see the Table). Using
PSCOPE's editor, engineers write extensive proce­
dures in the command language for testing code and
even patch existing code with new or revised source
statements.

PSCOPE's ability to handle source-level patches
avoids the conventional development scenario where
software developers go through a continual cycle of
edit-compile-iink-test-debug [Fig 4(a)]. Source-level
patching short-circuits. this loop; programmers can
remain in the debug phase-patching at the source-

. level and even saving the source-level patch on disk
for later incorporation into the original source-code
files maintained under SVCS [Fig 4(b)].

The advantages of an integrated environment show up
here very dramatically. During compilation, the com­
piler places symbolic information associated with a
program into the object modules it generates. In turn,
the linker carries this information along into the run
time image. Both PSCOPE and 121CE draw on this·
symbolic information for their source-level debug­
ging; Consequently, during system debugging, devel­
opers see familiar procedure and data names, rather
than a confusing series of machine codes or disassem­
bled mnemonics. Furthermore, because it maintains
this symbolic information in a virtual table, PSCOPE
is able to handle arbitrarily long symbol tables-it just
brings a new page of symbols from disk, if necessary.

As a result of its ability to coordinate its tools for the
various stages of development, the Intel development
environment lets system engineers concentrate on

. product development, rather than administrative
chores. For the development manager, this translates
into on-time product delivery, without the costs of
additional resources.

3·94 2J 1257-001

~icroconuputer . ~
Developnuent Languages

intel'
iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

• Complete System Development
Capability for High-Performance
iAPX 286 Applications.

• Allows creation of Multi-User, Virtual
Memory, and Memory-Protected Systems.

• Macro Assembler for Machine-Level
Programming.

• System Utilities for Program Linkage
and System Building.

• Software Simulator for Execution and
Symbolic Debugging on Intel Devel­
opment System.

• Package Supports Program Develop­
ment with PLlM-286, Pascal-286, and
FORTRAN 286.

• Extends Existing Intellec® Develop­
ment Systems to Provide Broad
Support for the iAPX 286 Micro­
processor.

The iAPX 286 is a 16-bit microprocessor system with 32-bit virtual addressing, integrated memory protection,
and instruction pipelining for high performance. The iAPX 286 Software Development Package is a cohesive
set of software design aids for programming the iAPX 286 microprocessor system. The package enables
system programmers to design protected, mUlti-user and multi-tasking operating system software, and
enables application programmers to develop tasks to run on a protected operating system.

The iAPX 286 Software Development package contains a macro assembler, a program binder (for linking
separately compiled modules together), a system builder (for configuring protected multiple-task systems),
and a software simulator (for execution and symbolic debugging).

The memory protection features of the iAPX 286 architecture are invisible to application programmers, who use language
translators and the program binder. System programmers :nay use special memory protection features in ASM-286 or PUM 286,
and use the system builder for initializing and managing protection features. The Simulator duplicates the operation of the 80286
CPU, as well as the floating point operations of the 80287.

All the utilities in the Software Development Package run on the Intel Microcomputer Development Systems (Series III/Series IV).

f)
APPLICATION

SOFTWARE

DEBUGGER
ICE, MONITOR, etc.

The iAPX 286 Software Development Package keeps the protection mechanism invisible to the application
programmer, yet easy to configure for the system programmer.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications of These Devices
from Intel. . JUNE 1984
©INTEL CORPORATION, 1983 4-1 ORDER NUMBER: 210565·001

iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

iAPX 286 MACRO ASSEMBLER
• Instruction Set and Assembler

Mnemonics Are Upward Compatible
with ASM-86/88.

• Powerful and Flexible Text Macro
Facility.

• Type-Checking at Assembly Time Helps
Reduce Errors at Run -Time.

• Structures and RECORDS Provide
Powerful Data Representation.

• "High-Level" Assembler Mnemonics
Simplify the Language. .

• Supports Full Instruction Set of the
iAPX 286/20, Including Memory
Protection and Numerics.

ASM-286 is the "high-Ievel'.' macro assembler for the iAPX 286 assembly language. ASM-286 translates
symbolic assembly language mnemonics into relocatable object code. The assembler mnemonics are a
superset of ASM-86/88 mnemonics; new ones have also been added to support the new iAPX 286 instructions.
The segmentation directives have been greatly simplified.

The iAPX 286 assembly language includes approximately 150 instruction mnemonics. From these few
mnemonics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software
development task is simplified, as the programmer need know only 150 mnemonics to generate all possible
machine instructions. ASM-286 will generate the shortest machine instruction possible (given explicit
information as to the characteristics of any forward referenced symbols).

The powerful macro facility in ASM-286 saves development and maintenance time by coding common
program sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM-286 offers many features normally found only in high-level languages. The assembly language is
strongly typed, which means it performs extensive checks on the usage of variables and labels. This means
that many programming errors will be detected when the program is assembled, long before it is being
debugged.

ASM-286 object modules conform to a thorough, well-defined format used by all 286 high-level languages and
utilities. This makes it easy to call (and be called from) HLL object modules.

Key Benefit:
I

For programmers who wish to use assembly language, ASM-286 provides many powerful "high-level"
capabilities that simplify program development and maintenance.

4·2
AFN·OO37Be

iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

IAPX 286 BINDER

• Links Separately Compiled Program
Modules Into an Executable Task.

• Makes the iAPX 286 Protection
Mechanism Invisible to Application
Programmers.

• Works with PL/M-286, Pascal-286,
FORTRAN-~86 and ASM-286 Object
Modules.

• Performs Incremental Linking with
Output of Binder and Builder.

• Resolves PUBLIC/EXTERNAL Code and
Data References, and Performs
Intermodule Type-Checking.

• Provides Print File Showing Segment
Map, Errors and Warnings.

• Assigns Virtual Addresses to Tasks in the
232 Address Space.

• Generates Linkable or Loadable Module
for Debugging.

BND-286 is a utility that combines iAPX 286 object modules in'to executable tasks. In creating a task, the
Binder resolves Public and External symbol references, combines segments, and performs address fix-ups on
symbolic code and data.

The Binder takes object modules written in ASM-286, PLlM-286, Pascal-286 or FORTRAN-286, and generates
a loadable module (for execution or debugging). or a linkable module (to be re-input to the Binder later; this is
called incremental binding). The binder accepts library modules as well, linking only those modules required
to resolve external references. BND-286 generates ~ print file displaying a segment map, and error messages.

The Binder will be used by system programmers and application programmers. Since application
programmers need to develop software independent of any system architecture, the 286 memory protection
mechanism is "hidden" from users of the Binder. This allows application tasks to be fully debugged before
becoming part of a protected system. (A protected system may be debugged, as well.) System protection
features are specified later in the development cycle, using the 286 System Builder. It is possible to link
operating system services required ,by a task using either the Binder or the Builder. This flexibility adds to the
ease of use of the 286 utilities.

Key Benefit:
The Binder is the only utility an application programmer needs to develop and debug an individual task. Users
of the Binder need not be concerned with the architecture of the target machine, making application program
development for the 286 very simple.

iAPX 286 MAPPER

• Flexible Utility to Display Object File
Information.

• Mapper Allows Users to Display:

• MAP-286 Selectively Purges Symbols
from a Load Module.

• Provides Inter-Module Cross-Referencing
for Modules Written in All Languages.

Key Benefit:

Protection
Information:

SEGMENT TABLES
GATE TABLES
PUBLIC ADDRESSES

Debug
Information:

MODULE NAMES
PROGRAM SYMBOLS
LINE NUMBERS

A cross-reference map showing references between modules simplifies debugging; the map also lists and
controls all symbolic information in one easy-to-read place.

AFN-00378B

4-3

i~PX 286 SOFTWARE DEVELOPMENT PACKAGE

iAPX 286 LIBRARIAN

• Fast, Easy Management of iAPX 286
Object Module Libraries.,

• Only Required Modules Are Linked,
When Using the Binder or Builder.

Key Benefit:

• Librarian Allows Users to:

Create Libraries
Add Modules
Replace Modules
Delete Modules
Copy Modules from Another Library
Save Library Module to Object File
Create Backup
Display Module Information

(creation date, publics, segments)

Program libraries improve management of program modules, and reduce software administrative overhead.

iAPX 286 SYSTEM BUILDER

• Supports Complete Creation of
Protected, MUlti-task Systems.

• Creates a Memory Image of a 286 System
for Cold-start Execution.

• Resolves PUBLIC/EXTERNAL Definitions
(between protection levels).

• Target System may be Boot-Ioadable,
Programmed into ROM, or Loaded From
Mass-store. .

• Supports Memory Protection by Building
System Tables, Initializing Tasks, and .

• Generates Print .File with Command
Listing and System Map.

Assigning Protection Rights to Segments.

BLO-286 is the utility that lets system programmers configure multi-tasking, protected systems from an
operating system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM­
based or disk-based systems.

The Builder accepts input modules from iAPX 286 translators or the iAPX 286 Binder. It also accepts a "Build File" containing
definitions and initial values for the 286 protection mechanism-descriptor tables, gates, segments, and tasks. BLD-286 gener­
ates a Loadable or bootloadable output module, as well as a print file with a detailed map of the memory-protected system.

Using the Builder command Language, system programmers may perform the following functions:

- Assign physical addresses to segments; also set segment access rights and limits.
- Create Call, Trap, and Interrupt "Gates" (entry-points) for inter-level program transfers.
- Make gates available to tasks; this is an easier way to define program interfaces than using interface

libraries.
- Create Global (GOT), Interrupt (lOT), and any Local (LOT) Descriptor Tables.
- Create Task State Segments and Task Gates for multi-task applications.
- Resolve inter-module and inter-level references, and perform type-checking.
- Automatically select required modules from libraries.
- Configure the memory image into partitions in the address space.
- Selectively generate an object file and various sections of the print file.

Key Benefit:
Allows a system programmer to define the configuration of a protected system in one place, with one easy-to­
use Utility. This specification may then be adopted by all project members, using either the Builder or just the
Binder. The flexibility simplifies program development for all users.'

AFN·OO378B
4-4

iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

iAPX 286 SIMULATOR

• Supports Symbolic D~bugglng of
Complete, Protected 286 Systems.

• Allows 286 Program Execution and
Debugging in Absence of iAPX 286
Hardware Execution Vehicle.

• Functionally Duplicates the Operation
of the IAPX 286 Microprocessor,
Including Memory Protection.

• Executes Full Instruction Set, Including
80287 Numerics.

• Symbolic Access to Program Variables as
well as Descriptor Tables.

• Two Execution Timers for Program
Benchmarking and Interrupt Simulation.

• UDI File System Support f~r User
Program.

SIM-286 is an 8086-resident program designed to support development of iAPX 286 O.S. kernels, systems, and
applications. A" of these may be developed and debugged without the use of a 286 hardware execution
vehicle.

The Simulator consists of a human interface layer, and software executors for the 80286 CPU and 80287
Numeric Data Processor. The human interface receives commands with symbolic names, and passes control
to the executor as though it were a 286-resident monitor.

SIM-286 lets designers manipulate a 286 program using the symbolic names given for code and data. It also
lets users symbolically examine and modify the protection features (such as system tables, access rights, etc.),
if it is desired.

SIM-286 contains two instruction timers. One may be set and incremented during execution; this allows
program sequences to be benchmarked in clock cycles and microseconds. The second, an interval timer, may
be set to generate interrupts every 1] clock cycles, to simulate event-driven processing. These timers are
extremely useful for developing system kernels.

For programs that make operating system calls for file 1/0, SIM-286 provides access to these services through
the Universal, Development Interface.

Key Benefit:
Symbolic system debugging (for protected 286 software) may be performed in the absence of a 286-based
target.

SPECIFICATIONS

OPERATING ENVIRONMENT

Intel Microcomputer Development Systems
(Series III/Series IV)

DOCUMENTATION

ASM 286 Language Reference Manual
ASM 286 Macro Assembler Operating
Instructions
iAPX 286 Utilities User's Guide

ORDERING INFORMATION

Product Code Description

iAPX 286 System Builder User's Guide
iAPX 286 Simulator User's Guide
Pocket Reference for a" the above:

ASM 286
Utilities
SIM 286

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Reports,
and Monthly Technical Newsletters are available.

iMDX-321 iAPX 286 Software Development Package

AFN·0037BB

4·5

PASCAL-286 SOFTWARE PACKAGE

• High-level programming language for
the protected. virtual mode iAPX 286

• Implements ISO standard Pascal. Many
useful extensions may be enabled via
a compiler switch

• Upward compatible with Pascal-86 for
software' portability

• Produces relocatable object code .
which is linkable to object modules
generated by other iAPX 286 .
translators .

• Supports full symbolic debugging with
iAPX 286 s()ftware and ICETM debuggers

• Fully supports the 80287 numeric proc­
essor using the IEEE floating point
standard

Pascal':286 is a powerful, structured, applications programming language for the protected virtual address mode
of the iAPX 286. Pascal-286 is upward compatible with Pascal-86 so that 8086 Pascal source code can be
ported to the iAPX 286 in protected mode. . . .

Pascal-286 implements strict ISO standard Pascal, but with many useful extensions. These include separate
compilation of modules, interrupt handling, port I/O, and 80287 numerics support. A control is provided in the
compiler to flag all non-ISO features used.

Pascal-286 produces relocatable object code which can be linked with object code produced by other iAPX
286 translators such as ASM-286 and PUM-286. Thus, a combination of translators can be used to provide
great programming flexibility.

Type and symbol information needed by software and in-circuit debuggers is added to the object code by the
Pascal-286 compiler. This information can be stripped off by the compiler or linker for the final production version.

/

Intel Corporation Assumes No Responsibility for the use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Patent Licenses
are implied. ©INTEL CORPORATION, 1982. Note: The development system pictured here is not included in the Pascal-286 software package,
but merely depicts the .language in its operating environment.

©Intel Corporation, 1983

4-6

NOVEMBER 1983
ORDER NUMBER: 230863-001

PASCAL·286 SOFTWARE PACKAGE

FEATURES

Conforms to ISO Standard Pascal

Pascal has gained wide acceptance as a portable
language for microcomputer applications. However,
portability can result only if standards are adhered to.
Pascal-286 is a strict implementation of ISO standard
Pascal. Extensions are provided to make the language
more powerful for microprocessor applications. All ex­
tensions are clearly highlighted in the documentation.
In addition, the compiler provides a control to flag any
non ISO feature used. Pascal-286 will evolve to track
future enhancements to standard Pascal.

Upward Compatible with Pascal-86

The Pascal-286 compiler produces object code for the
protected virtual address mode of the iAPX 286
language. However, no 286 architecture specific
features have been added to the Pascal-286 language.
This makes Pascal-286 source code upward compat­
ible with Pascal-86, which allows for porting of 8086
software to the protected 286 with relative ease.

Compatible With Other iAPX 286
Translators

All Intel iAPX 286 translators output object code in a
standardized format. This allows 286 programs to be
written in a mixture of languages. Systems routines
which need access to architectural features can be
coded in PLlM-286 or ASM-286. Pascal-286 may be
better suited for the applications routines. The systems
and application routines can then be combined using
the 286 linker (BIND-286).

Standardized Run Time Support

Programs compiled with Pascal-286 can be moved
from the development host environment to the target
environment with ease. This is the result of standard­
izing. run-time operating system interfaces required by
the compiled program into a well defined and well
documented set of routines. After programs are
developed on a development host, they can then be
executed in the target using the same set of system
interfaces.

4-7

Extensions for Microprocessor
Programming

Pascal-286 provides extensions that make it power­
ful for microprocessor applications. Built-in procedures
allow I/O directly from the ports of the iAPX 286. This
speeds up I/O as it is done by direct communication
with the microprocessor. Interrupt processing is also
supported by built in procedures. Examples are:
ENABLEINTERRUPTS, DISABLEINTERRUPTS,
CAUSEINTERRUPT. Many built in procedures and
variables are provided for communicating with the
80287 for numeric computations.

Compiler Controls

The Pascal-286 compiler provides many controls
which can be used at invocation time to enhance pro­
gramming flexibility. Examples are: CODE/NOCODE,
DEBUG/NODEBUG, INCLUDE (file), LlST/NOLlST,
OPTIMIZE (n), EXTENSIONS/NOEXTENSIONS. All
controls have default values that are active unless the
opposite is specified during invocation. Thus, for most
compiles, no controls need be specified.

Support for IEEE Standard Numerics

Pascal-286 provides full support for the 80287
numerics co-processor. All floating point operations
are done according to the IEEE floating pOint stand­
ard. The benefits are predictable, accurate and con­
sistent results. Built-in procedures to support the
80287 include GET8087ERRORS and MASK
8087ERRORS. A full set of 80287 library routines are
supplied with the compiler.

Optimizations

The Pascal-286 compiler produces highly optimized
code, both in size and execution time. This is achieved
by:
-Use of powerful iAPX 286 instructions, in particular,

for string handling, 80287 numerics and subroutine
linkage

-Short circuit evaluation of boolean expressions, con­
stant folding and strength reduction of multiplica­
tions and additions

-Elimination of superfluous branches, optimization
of span dependent jumps

AFN-230863

PASCAL-286 SOFTWARE PACKAGE

SPECIFICATIONS

Operating Environment

Intel 8086 based microcomputer
Development systems (Series III, Series IV)

ORDERING INFPRMATION

Part Number Description

iMDX-324 Pascal-286 Software Package

Requires Software License

Support

Hotline service, SPR (Software Performance Reports),
Updates and technical newsletters are available.

4-8

Documentation Package

Pascal-286 User's Guide
Pascal-286 Pocket Reference

AFN·230863

inter
PL/M 286 SOFTWARE PACKAGE

• Systems programming language for
the protected virtual address mode
iAPX 286

• Upward compatible with PL/M 86 and
PL/M 80 assuring software portability

• Enhanced to support design of
protected, multi-user, multi-tasking,
virtual memory operating system
software

• Advanced, structured system
implementation language for algorithm
development

• Produces relocatable object code
which is linkable to object modules
generated by all other iAPX 286
language translators

• Multiple levels of optimization

• Resident on Intel microcomputer devel­
opment systems (Series III, IV)

PL/M 286 is a powerful, structured, high-level system implementation language for the development of system
software for the protected virtual address mode iAPX 286. PLIM 286 has been enhanced to utilize iAPX 286
features-memory management and protection-for the implementation of multi-user, multi-tasking virtual
memory operating systems.

PL/M 286 is upward compatible with PLIM 86 and PL/M 80. Existing systems software can be re-compiled with
PL/M 286 to execute in protected virtual address mode on the iAPX 286.

PL/M 286 is the high-level alternative to assembly language programming on the iAPX 286. For the majority of
iAPX 286 system programs, PLIM 286 provides the features needed to access and to control efficiently the un­
derlying iAPX 286 hardware and consequently it is the cost-effective approach to develop reliable, maintain­
able system software.

The PLIM 286 compiler has been designed to efficiently support all phases of software development. Features
such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of pro­
gram size and memory usage for efficient code generation provide the total program development support
needed.

4-9

MAY 1983

ORDER NUMBER:210536-002

PL/M 286 SOFTWARE PACKAGE

FEATURES

Major features of the Intel PL/M 286 compiler and
programming language include:

Structured Programming

PL/M source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce­
dure, for example);

The use of modules and procedures to break down a
large problem leads to productive software develop­
ment. The PL/M 286 implementation of block struc­
ture allows t~e use of REENTRANT procedures,
which are especially useful in system design. '

Language Compatibility

PL/M 286 object modules are compatible with object
modules generated by all other 286 translators. This
means that PL/M programs may be linked to pro­
grams written in any other 286 language.

Object modules are compatible with In-Circuit
Emulators; DEBUG compiler control provides the In­
Circuit Emulators with full symbolic debugging
capabi I ities.

PL/M 286 language is upward compatible with PLtM
86 and PL/M 80 so that application programs may be
easily ported to run on the protected mode iAPX 286.

Supports Seven Data Types

PL/M makes use of seven data. types for various
applications. These data types range from one to
four bytes and facilitate various arithmetic, logic,
and addressing functions:

-Byte: 8-bit unsigned number
-Word: 16-bit unsigned number
-Dword: 32-bit unsigned number
-Integer: 16-bit signed number
-Real: 32-bit floating-point number
-Pointer: 16-bit or 32-bit memory address

indicator
-Selector: 16-bit pointer base. '

Another powerful facility allows the use of BASED
variables which permit run-time mapping of var-

iables to memory locations. This is especially useful
for passing parameters, relative and absolute
addressing, and dynamic memory allocation.

Two Data Structuring Facilities

In addition to the seven data types and based
variables, PL/M supports two powerful data structur­
ing facilities. These help the user to organize data
into logical groups~

-Array: Indexed list of same type data elements
-Structure: Named collection of same or different

type data elements
-Combinations of both: Arrays of structures or

structures of arrays.

Numerics Support

PL/M programs that use 32~bit REAL data are ex­
ecuted using the 80287 Numeric Data Processor for
high performance. All floating-point operations sup­
ported by PL/M are executed on the 80287 according.
to the IEEE floating-point standard. PL/M 286 pro­
,grams can use built-in functions and, predefined
pro c e d u res -I NIT $ REA L $ M AT H $ U NIT,
SET$REAL$MODE, GET$REAL$ERROR,
SAVE$REAL$STATUS, RESTORE$REAL$STATUS
-to control the operation of the 80287 within the
scope of the language.

4·10

Built-In String Handling Facilities

The PL/M 286 language contains built-in functions
for string manipulation. These byte and word func­
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIp, and SET.

Built-In Port I/O

PL/M 286 directly supports input and output from the
iAPX 286 ports for single BYTE and WORD transfers.
For BLOCK transfers, PL/M 286 programs can make
calls to predefined procedures.

Interrupt Handling

PL/M 286 has the facility for generating and handling
interrupts on ·the iAPX 286. A procedure may be
defined as an interrupt handler through use of
the INTERRUPT attribute. The compiler will
then generate code to save and restqre the proces­
sor status on each execution of the user-defined

AFN·00643B

PL/M 286 SOFTWARE PACKAGE

interrupt handler routine. The PL/M statement
CAUSE$INTERRUPT allows the user to trigger a soft­
ware interrupt from within the program.

Protection Model

PLIM 286 supports the implementation of protected
operating system software by providing built-in pro­
cedures and variables to access the protection
mechanism of the iAPX 286. Predefined variables­
TASK$REGISTER, LOCAL$TABLE, MACHINE$
STATUS, etc.-alloW direct access and modification
of the protection system. Untyped procedures and
functions:..-SAVE$GLOBAL$TABLE, RESTORE$
GLOBAL$TABLE, SAVE$INTERRUPT$TABLE,
RESTORE$INTERRUPT$TABLE, .CLEAR$TASK$
SWITCHED$FLAG, GET$ACCESS$RIGHTS, GET
$ S E G MEN T$ LI MIT, S E G MEN T $ REA DAB L E,
SEGMENT$WRITABLE, ADJUST$RPL-provide all
the facilities needed to implement efficient operating
system software.

Co~piler Controls

The PLIM 286 compiler offers controls that facilitate
such features as:

-Optimization
-Conditional compilation
-The inclusion of additional PLIM source files

from disk
-Cross-reference of symbols
-Optional assembly language code in the

listing file
-The setting of overflow conditions for run-time

handling.

Addressing Control

The PLIM 286 compiler uses the SMALL, COMPACT,
MEDIUM, and LARGE controls to generate optimum
addressing instructions for programs. Programs
of any size can be easily modularized into
"subsystems" to exploit the most efficient memory
addressing schemes. This lowers total memory re­
quirements and improves run-time execution of
programs.

Code Optimization

The PL/M 286 compiler offers four levels of optimiza­
tion for significantly reducing overall program size.

-Combination or "folding" of constant
expressions; and short-circuit evaluation of
Boolean expressions

4-11

-"Strength reductions": a shift left rather than
multiply by 2; and elimination of common sub­
expressions within the same block

-Machine code optimizations; elimination of
superfluous branches; reuse of duplicate code;
removal of unreachable code

-Optimization of based-variable operations and
cross-statement load/store.

Error Checking

The PL/M 286 compiler has a very powerful feature
to speed up compilations. If a syntax o"r program
error is detected, the compiler will skip the code
generation and optimization passes. This usually
yields a 2X performance increase for compilation of
programs with errors.

A fully detailed and helpful set of programming and
compilation error messages is provided by the com­
piler and user's guide.

BENEFITS

PL/M 286 is designed to be an efficient, cost­
effective solution to the special requirements of
protected mode iAPX 286 Microsystem Software De­
velopment, as illustrated by the following benefits of
PLIM use:

Low Learning Effort

PL/M 286 is easy to learn and use, even for the novice
programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherwise possible because PLlM286, a structured
high-level language, increases programmer
productivity.

Lower Development Cost

Increases in programmer productivity translate im­
mediately into lower software development costs be­
cause less programming resources are required for a
given programmed function.

Increased Reliability

PLIM 286 is designed to aid in the development of
reliable software (PLIM 286 programs are simple
statements of the program algorithm). This substan­
tially reduces the risk of costly correction of errors in

AFN-006436

PL/M 286 SOFTWARE PACKAGE

systems that have already reached fuJI production
status, as the more simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and Maintenance

Programs written in PL/M tend to be self­
documenting, thus easier to read and. understand.
This means it is easier to enhance and maintain

. PL/M programs as the system capabilities expand
and future products are developed.

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development System (Series
III/Series IV)

ORDERING INFORMATION

Part Number Description

iMDX 323 PLIM 286 Software Package

Requires Software License

.Cost~Effective Alternative to
Assembly Language

4-12

PLIM 286 programs are code efficient. PL/M 286
combines all of the benefits of a high-level language
(ease of use, high productivity) with the ability to
access the iAPX 286 architecture. This includes lan­
guage features for control of the iAPX 286 protection
mechanism. Consequently, for the development of
systems software, PLIM 286 is the cost-effective al­
ternative to assembly language programming.

Documentation Package

PL/M 286 User's Guide

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Reports,
and Monthly Technical Newsletters are available.

AFN-006438

iAPX 86,88
SOFTWARE DEVELOPMENT PACKAGES

FOR SERIES II/PDS

• PUM 86/88 High Level Programming
Language

• ASM 86/88 Macro Assembler for .
iAPX 86,88 Assembly Language
Programming

• LINK 86/88 and LOC 86/88 Linkage and
Relocation Utilities

• CONY 86/88 Converter for Conversion
of 8080/8085 Assembly Langoage
Source Code to iAPX 86, 88 Assembly
Language Source Code

• OH 86/88 Object-to-Hexadecimal
Converter

• LIB 86/88 Library Manager

The iAPX 86,88 Software Development Packages for Series II provide a set of software development tools for
the iAPX 86/88 CPUs and the iSBC 86/12A single board computer. The packages operate under the ISIS-II
operating system on Intel Microcomputer Development Systems-Model 800, Series II or the Personal Devel­
opment System (PDS)-thus minimizing requirements for additional hardware or training for Intel Microcom­
puter Development System users.

These packages permit 8080/8085 users to efficiently upgrade existing programs into iAPX 86/88 code from
either 8080/8085 assembly language source code or PL/M 80 source code. ,

For the new Intel Microcomputer Development System user, the packages operating on a PDS or an Intellec
Series II, such as a Model 235, provide total iAPX 86,88 software development capability.

©INTEL CORPORATION. 1963. MAY 1963

AFN-01239E
4-13

il1tel~ iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

PL/M 86/88 COMPILER
FOR SERIES II/PDS

• Language is Upward Compatible from
PL/M 80, Assuring MCS-80/85™ Design
Portability

• Supports 16-bit Signed Integer and
32-bit Floating Point Ar,ithmetic in
Accordance with IEEE Proposed
Standard

• Easy-to-Learn, Block-Structured
Language Encourages Program
Modularity

• Produces Relocatable Object Code
Which is Linkable to All Other 8086
Object Modules

• Supports Full Extended Addressing
Features of the iAPX 86/10 and 88/10
Microprocessors (Up to 1 Mbyte)

• Code Optimization Assures Efficient
Code Generation and Minimum
Application Memory Utilization

Like its counterpart for MCS-80/85 program development, PUM 86/88 is an advanced, structured high-level
programming language. The PUM 86/88 compiler was created specifically for performing software develop­
ment for the Intel iAPX 86,88 Microprocessors.

PUM 86/88 has significant new capabilities over PUM 80 that take advantage of the new facilities provided by
the iAPX 86,88 microsystem, yet thePUM 86/88 language remains compatible with PUM 80.

With the exception of hardware-dependent modules, such as interrupt handlers, PUM 80 applications may be
recompiled with PUM 86/88 with little need for modification. PUM 86/88, like PUM 80, is easy to learn,
facilitates rapid program development, and reduces program maintenance costs.

PL/M is a powerful, structured, high-level system implementation language in which program statements can
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the
program without concern for burdensome details of machine or assembly language programming (such as
register allocation, meanings of assembler mnemonics, etc.).

The PUM 86/88 compiler efficiently converts free-form PUM language statements into equivalent 86/88
machine instructions. Substantially fewer PUM statements are necessary for a given application than if it were
programmed at the assembly language or machine code level.

The use of PUM high-level language for system programming, instead of assembly language, results in a high
degree of engineering productivity during project development. This translates into Significant reductions in
initial software development and follow-on maintenance costs for the user.

FEATURES

Major features of the Intel PUM 86/88 compiler and
programming language include:

Block Structure

PUM source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce­
dure, global to a public module, for example).

The use of procedures to break down a large prob­
lem is paramount to productive software develop­
ment. The PUM 86/88 implementation of a block

structure allows the use of REENTRANT which is
especially useful in system design.

Language Compatibility

PL/M 86/88 object modules are compatible with ob­
ject modules generated by all other 86/88 translators.
This means that PL/M programs may be linked to
programs written in any other 86/88 language.

Object modules are compatible with ICE-88 and
ICE-86 units; DEBUG compiler control provides the
In-Circuit Emulators with symbolic debugging
capabilities.

PUM 86/88 Language is upward-compatible with
PUM 80, so that application programs may be easily
ported to run on the iAPX 86 or 88.

AFN-01239E
4-14

intel' iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

Supports Five Data Types.

PUM makes use of five data types for various appli­
cations. These data types range from one to four
bytes, and facilitate various arithmetic, logic, and
addressing functions:

-Byte: 8-bit unsigned number
-Word: 16-bit unsigned number
-Integer: 16-bit signed number
-Real: 32-bit floating point number
-Pointer: 16-bit or 32-bit memory address

indicator

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This is especially useful for
passing parameters, relative and absolute address­
ing, and memory allocation.

Two Data Structuring Facilities

In addition to the five data types and based variables,
PLIM supports two data structuring facilities. These
add flexibility to the referencing of data stored in
large groups.

-Array:

-Structure:

-Combinations
of Each:

Indexed list of same type data
elements
Named collection of same or dif­
ferent type data elements

Arrays of structures or
structures of arrays

8087 Numerics Support

PL/M programs that use 32-bit REAL data may be
executed using the Numeric Data Processor for im­
proved performance. All floating-point operations
supported by PL/M may be executed on the 8087
NDP, or the 8087 Emulator (a software module)
provided with the package. Determination of use of
the chip or emulator takes place at link-time, allow­
ing compilations to be run-time independent.

Built-In String Handling Facilities

The PL/M 86/88 language contains built-in functions
for string manipulaiton. These byte and word func­
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIP, and SET.

4-15

Interrupt Handling

PL/M has the facility for generating interrupts to
the iAPX 86 or 88 via software. A proet3dure may be
defined with the INTERRUPT attribute, and the
compiler will automatically initialize an interrupt
vector at the appropriate memory location. The
compiler will also generate code to same and re­
store the processor status, for execution of the
user-defined interrupt handler routine. The proce­
dure SET$INTERRUPT, the function retuning
an INTERRUPT$PTR, and the PLIM statement
CAUSE$INTERRUPT all add flexibility to user pro­
grams involving interrupt handling.

Segmentation Control

The PL/M 86/88 compiler takes full advantage of
program addressing with the SMALL, COMPACT,
MEDIUM, and LARGE segmentation controls. Pro­
grams with less than 64KB total code space can
exploit the most efficient memory addressing
schemes, which lowers total memory requirements.
Larger programs can exploit the flexibility of ex­
tended one-megabyte addressing.

Code Optimization

The PL/M 86/88 compiler offers four levels of optimi­
zation for significantly reducing overall program
size.

-Combination or "folding" of constant ex­
pressions; and short-circuit evaluation of Boo­
lean expressions.

-"Strength reductions" (such as a shift left rather
than multiply by 2); and elimination of common
sub-expressions within the same block.

-Machine code optimizations; elimination of
superfluous branches; re-use of duplicate code;
removal of unreadable code.

-Byte comparisons (rather than 20-bit address cal­
culations) for pointer variables; optimiz~tion of
based-variable operations.

Compiler Controls

The PLIM 86/88 compiler offers more than 25 con­
trols that facilitate such features as:

-Conditional compilation
-Intra- and Inter-module cross reference
-Corresponding assembly language code in the

listing file
-Setting overflow conditions for run-time handling

AFN·01239E

intel~ iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

BENEFITS

· PLIM 86/88 is designed to be an efficient, cost­
effective solution to the special requirements of
iAPX 86 or 88 Microsystem Software Development,
as illustrated by the following benefits of PUM use:

Low Learning Effort

PUM 86/88 is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherwise possible because PL/M" 86/88, a
structured high-level language; increases pro­
grammer productivity.

Lower Development Cost

Increases in programmer productivity translate im­
mediately into lower software development costs

because less programming resources are required
for a given programmed function.

Increased Reliability

PUM 86/88 is designed"to aid in the development of
reliable software (PUM 86/88 programs are simple
statements of the program algorithm). This substan­
tially reduces the risk of costly correction of errors in
systems that have a.lready reached full production
status, as the more simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and Maintenance

Programs written in PLIM tend to be self­
documenting, thus easier to read and understand.
This means it is easier to enhance and maintain
PLIM programs as the system capabilities expand
and future products are developed.

iAPX 86,88 MAC'RO ASSEMBLER
FOR SERIES II/PDS

• Powerful and Flexible Text Macro
Facility with Three Macro Listing
Options to Aid Debugging

• Highly Mnemonic and Compact
Language, Most Mnemonics Represent
Several Distinct Machine Instructions

• "Strongly Typed" Assembler Helps
Detect Errors at Assembly Time

• High-Level Data Structuring Facilities
Such as "STRUCTUREs" and
"RECORDs"

• Over 120 Detailed and Fully Docu­
mented Error Messages

• Produces Relocatable and Linkable
Object Code.

ASM 86/88 is the "high-level" macro assembler for the iAPX 86,88 assembly language. ASM 86/88 translates
symbolic 86/10, 88/10 assembly language mnemonics into 86/10,88/10 relocatable object code.

ASM 86/88 should be used where maximum code efficiency and hardware control is needed. The iAPX 86,88
assembly language includes approximately 100 instruction mnemonics. From these few mnemonics the
assembler can generate over 3,800 distinct machine instructions. Therefore, the software development task is
simplified, as the programmer need know only 100 mnemonics to generate all possible 86/10, 88/10 machine ""
instructions. ASM 86/88 will generate the shortest machine instruction possible given no forward referencing
or given explicit information as to the characteristics of forward referenced symbols.

ASM 86/88 offers many features normally found only in high-level languages. The iAPX 86,88 assembly
language is strongly typed. The asse'mbler performs extensive checks on the usage of variables and labels.
The assembler uses the attributes which are derived explicitly when a variable or label is first defined, then
makes sure that each use of the symbol in later instructions conforms to the usage defined for that symbol.
This means that many programming errors will be detected when the program is assembled, long before it is
being debugged on hardware.

AFN-01239E

4-16

inter IAPX 86,88 SOFTWAR~ DEVELOPMENT PACKAGES FOR SERIES II/PDS

FEATURES

Major features of the Intel iAPX 86,88 assembler and
assembly language include:

Powerful and Flexible Text Macro Facility

- Macro calls may appear anywhere
- Allows user to define the syntax of each macro
- Built-in functions'

conditional assembly (IF-THEN-ELSE, WHILE)
repetition (REPEAT)
string processing functions (MATCH)
support of assembly time I/O to console (IN, OUT)

- Three Macro Listing Options include a GEN
mode which provides a complete trace of all
macro calls and expansions

High-L.evel Data Structuring Capability

- STRUCTURES: Defined to be a template and
then used to allocate storage. The familiar dot
notation may be used to form instruction
addresses with structure fields.

- ARRAYS: Indexed list of same type data ele­
ments.
RECORDS: Allows bit-templates to be defined
and used as instruction operands and/or to allo­
cate storage.

Fully Supports iAPX 86,88
Addressing Modes

Provides for complex address expressions in­
volving base and indexing registers and
(structure) field offsets.

- Powerful EQU facility allows complicated ex­
pressions to be named and the name can be used
as a synonym for the expression throughout the
module.

Powerful STRING MANIPULATION
INSTRUCTIONS

- Permit direct transfers to or from memory or the
accumulator ..

- Can be prefixed with a repeat operator for repe­
titive execution with a count-down and a condi­
tion test.

Over 120 Detailed Error Messages

- Appear both in regular list file and error print file.
User documentation fully explains the occur­
rence of ~ach error and suggests a method to
correct it.

Support for ICE-86™ Emulation and
Symbolic Debugging

Debug options for inclusion of symbol table in
object modules for In-Circuit Emulation with
symbolic debugging. '

Generates Relocatable and Linkable
Object Code-Fully Compatible with
LINK 86/88, LOC 86/88 and LIB 86/88

Permits ASM 86/88 programs to be developed
and debugged in small modules. These modules
can be easily linked with other ASM 86/88 or
PL/M 86/88 object modules and/or library
routines to form a complete application system.

BENEFITS

The iAPX 86,88 macro assembler allows the exten­
sive capabilities of the 86/88 CPU's to be fully ex­
ploited. In any application, time and space critical
routines can be effectively written in ASM 86/88. The
86,88 assembler outputs relocatable and linkable ob­
ject modules. These object modules may be easily
combined with object modules written in PL/M
86/88-lntel's structured, high-level programming
language. ASM 86/88 compliments PL/M 86/88 as the
programmer may choose to write each module in the
language most appropriate to the task and then com­
bine the modules into the complete applications pro­
gram using the iAPX 86,88 relocation and linkage
utilities.

AFN-01239E
4-17

inter iAPX 86,88 SOFTWARE DEVELOPME~T PACKAGES FOR SERIES II/PDS

. CONV 86/88
MCS@ .. 80/85 to iAPX 86,88 ASSEMBLY LANGUAGE

CONVERTER UTILITY PROGRAM

I

• Translates 8080/8085 Assembly
Language Source Code to iAPX 86,88
Assembly Language Source Code

• Provides a Fast and Accurate Means to
Convert 8080/8085 Programs to the
iAPX 86/88 Facilitating Program
Portability

• Automatically Generates Proper ASM
86/88 Directives to Set Up a "Virtual
8080" Environment that is Compatible
with PL/M 86/88

In support of Intel's commitment to software portability, CONY 86/88 is offered as a tool to move 8080/8085 .
programs to the iAPX 86/88. A comprehensive manual, "MCS-86 Assembly Language Converter Operating
Instructions for ISIS-II Users," covers the entire conversion process. Detailed methodology of the conversion
process is fully described therein.

- CO~V 86/88 will accept.as input an error-free
8080/8085 assembly-language source file and
optional controls, and produce as output, op­
tional PRINT and OUTPUT files.

- The PRINT file is a formatted copy of the
8080/8085 source and the 86/88 source file with
embedded caution messages.

- The OUTPUT file is an 86/88 source file.

- CONY 86/88 issues a caution message when it
detects a potential problem in the converted
86/88 code.

- A transliteration of the 8080/8085 programs oc­
curs, with each 8080/8085 construct mapped to its
exact 86/88 counterpart:

Registers
Condition flags
Instruction
Operands
Assembler directives
Assembler control lines
Macros

Because CON V 86/88 is a transliteration process,
there is the possibility of as much as a 15%-20%
code expansion over the 8080/8085 code. For com­
pactness and efficiency it is recommended that crit­
ical portions of programs be re-coded in iAPX 86,88
assembly language.

Also, as a consequence of the transliteration, some
manual editing may be required for converting in­
struction sequences dependent on:

-instruction length, timing, or encoding
-interrupt processing*
-PUM parameter passing conventions"

*Mechanical editing procedures for these are sug­
,gested in the converter manual.

The accompanying figure illustrates the flow of the
conversion process. Initially, the abstract program
may be represented in 8080/8085 or iAPX 86,88 as­
sembly language to execute on that respective target
machine. The conversion process is porting a source
destined for the 8080/8085 to the 86/88 via CONY
86/88.

AFN-01239E

intel' iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

SOURCE CODE
ABSTRACT PROGRAM SOURCE CODE

IN 8080/8085 IN 86/10, 88/10
ASSEMBLY LANG, ALGORITHM

ASSEMBLY LANG

.. ,,~ 1
ASSEMBLE

FOR CONV 86/88 FOR
8080/8085 86110,88/10

I
EXECUTE ------------ EQUIVALENT ------------ EXECUTE

ON ON
8080/8085 ------------ FUNCTION ------------- 86/10, 88/10

Figure 1, Porting BOBO/BOB5 Source Code to the iAPX B6/10 and BB/10

LINK 86/88

• Automatic Combination of Separately
Compiled or Assembled iAPX 86, 88
Programs Into a Relocatable Module

• Automatic Selection of Required
Modules from Specified Libraries to
Satisfy Symbolic References

• Extensive Debug Symbol
Manipulation, Allowing Line Numbers,
Local Symbols, and Public Symbols to
be Purged and Listed Selectively

• Automatic Generation of a Summary
Map Giving Results of the LINK 86/88
Process

• Abbreviated Control Syntax

• Relocatable Modules may be Merged
into a Single Module Suitable for
Inclusion in a Library

• Supports "Incremental" Linking

• Supports Type Checking of Public and
External Symbols

LINK 86/88 combines object modules specified in the LINK 86/88 input list into a single output module. LINK
86/88 combines segments from the input modules according to the order in which the modules are listed.

LINK 86/88 will accept libraries and object modules built from PLIM 86/88, ASM 86/88, or any other translator
generating Intel's iAPX 86/88 Relocatable Object Modules.

Support for incremental linking is provided since an output module produced by LINK 86/88 can be an input to
another link. At each stage in the incremental linking process, unneeded public symbols may be purged.

LINK 86/88 supports type checking of PUBLIC and EXTERNAL symbols reporting an error if their types are not
consistent.

LINK 86/88 will link any valid set of input modules without any controls. However, controls are available to con­
trol the output of diagnostic information in the LINK 86/88 process and to control the content of the output
module.

LINK 86/88 allows the user to create a large program as the combination of several smaller, separately com­
piled modules. After development and debugging of these component modules the user can link them
together, locate them using LOC 86/88 and enter final testing with much of the work accomplished.

4-19
AFN-01239E

intel' iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES F~R SERIES II/PDS

LIB 86/88

• LIB 86/88 is a Library Manager
Program which Allows You to:

Create Specially Formatted Files to
Contain Libraries of Object Modules

Maintain These Libraries by Adding or
Deleting Modules
Print a Listing of the Modules and
Public Symbols in a Library File

• Libraries Can be Used as Input to
LINK 86/88 Which Will Automatically
Link Modules from the Library that
Satisfy External References in the
Modules Being Linked

• Abbreviated Control Syntax

Libraries aid in the job of building programs. The library manager program LIB 86/88 creates and maintains
files containing object modules. The operation of LIB 86/88 is controlled by commands to indicate which op-
eration LIB 86/88 is to perform. The commands are: '

CREATE: creates an empty library file
ADD: adds object modules to a library file
DELETE: deletes modules from a library file
LIST: lists the module directory of library files
EXIT: terminates the LIB 86 program and returns .control to ISIS-II

When using object libraries, the linker will call only those object modules that are required to satisfy external
references, thus saving memory space.

Loe 86/88

• Automatic Generation of a Summary
Map Giving Starting Address, Segment
Addresses and Lengths, and Debug
Symbols and their Addresses

• Extensive Capability to Manipulate the
Order and Placement of Segments in
iAPX 86/88 Memory

• Abbreviated Control Syntax

• Automatic and Independent
Relocation of Segments. Segments
May Be Relocated to Best Match
Users Memory Configuration

• Extensive Debug Symbol
Manipulation, Allowing Line Numbers,
Local Symbols, and Public Symbols to
be Purged and Listed Selectively

Relocatability allows the programmer to code programs or sections of programs without having to know the
final arrangement of the object code in memory.

LOC 86/88 'converts relative addresses in an input module to absolute addresses. LOC 86/88 orders the seg­
ments in the input module and assigns absolute addresses to the segments. The sequence in which the seg­
ments in the input module are aSSigned absolute addresses is determined by their order in the input module
and the controls supplied with the command~

LOC 86/88 will relocate any valid input module without any controls. However, controls are available to control
the output of diagnostic information in the LOC 86/88 process, to control the content of the output module, or
both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read­
only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location of your pro­
gram affects both cost and performance in your application. The relocation feature allows you to develop your
program on the Intellec development system and then simply relocate the object code to suit your application.

AFN-01239E

4-20

inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

OH 86/88

• Converts an iAPX 86/88 Absolute
Object Module to Symbolic
Hexadecimal Format

• Facilitates Preparing a File for Later
Loading by a Symbolic Hexadecimal
Loader, such as the iSBC™ Monitor
SDK-86 Loader, or Universal PROM
Mapper >

• Converts an Absolute Module to a
More Readable Format that can be
Displayed on a CRT or Printed for
Debugging

The OH 86/88 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion may
be necessary to format a module for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or
Universal PROM Mapper. The conversion may also be made to put the module in a more readable format than
can be displayed or printed.

The module to be converted must be in absolute format; the output from LaC 86/88 is in absolute format.

Figure 2. IAPX 86,88 So_ftware Development Cycle

AFN-01239E

4-21

intel~ iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

SPECIFICATIONS

Operating Environment
Intel Microcomputer Development Systems
Intel Personal Development System

Docu mentation

PL/M-86 Programming Manual

ISIS-/I PL(M-86 Compiler Operator's Manual

MCS-86 User's Manual

MCS-86 Software Development Utilities Operating
Instructions for ISIS-/I Users

MCS-86 Macro Assembly Language Reference
Manual

MCS-86 Macro Assembler Operating Instructions
for IS/S-/I Users

MCS-.86Assembly Language Converter Operating
Instructions for IS/S-/I Users

Universal PROM Programmer User's Manual

SUPPORT:

ORDERING INFORMATION

iAPX 86,88 Software Development
Packages for Series II:

Part No.

MDS-308*

MDS-309*

MDS-311*

Description

Assembler and Utilities
Package

PLIM compiler and Utilities
Package

PLIM compiler, Assembler,
and Utilities Package

All Packages Require Software Licenses

Hotline Telephone Support, Software Performance Reports (SPR), Software Updates, Technical Reports,
Monthly Newsletters are available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trade­
mark of Mohawk Data Sciences Corporation.

AFN-01239E

4-22

intel'
86/88/186/188 SOFTWARE PACKAGES

FORTRAN 86188 Software Package

• Features High·Level Language
Support for Floating·Point
Calculation, Transcendentals,
Interrupt Procedures, and run·time
exception handling

• Meets ANS FORTRAN 77 Subset
Language Specifications

• Supports Complex Data Types

PASCAL 86/88 Software Package

• Resident on iAPX 86 Based Intel
Microcomputer Development Systems

• Object Compatible and Linkable with
PLIM 86/88, ASM 86/88 and FORTRAN
86/88

• Supports Large Array Operation

ASM PROGRAMS

PUM PROGRAMS

C PROGRAMS

FORTRAN
PROGRAMS

PASCAL PROGRAMS

PLIM 86/88/186/188 Software Package

• Advanced Structured System Imple·
mentation Language for Algorithm
Development

• Supports 16·bit Signed Integer and
32·bit Floating Point Arithmetic in
Accordance with IEEE Proposed
Standard

• Easy·to·Learn Block·Structured
Language Encourages Program
Modularity

iC·86 C Compiler for the 8086

• Implements Full C Language

• Produces High Density Code
Rivaling Assembler

• Supports Intel Object Module
Format (OMF)

TARGET
SYSTEM

COMPATIBLE
DEBUGGERS
e.g. PSCOPE,

ICETM DEBUGGER

Figure 1. Program modules compiled with any of the iAPX 86 languages may be linked together.
Each language is compatible with Intel's debug tools.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.

:{'j INTEL CORPORATION, 1983

4-23

SEPTEMBER 1984
ORDER NUMBER: 210689·003

FORTRAN 86/88
SOFTWARE PACKAGE

• Features high-level language support
for floating-point calculations,
transcendentals, interrupt procedures,
and run-time exception handling

• Meets ANS FORTRAN 77 Subset
Language Specifications

• Supports iAPX 86/20, 88/20 Numeric
Data Processor for fast and efficient
execution of numeric instructions

• Uses REALMATH Floating-Point
Standard for consistent and reliable
results

• Supports Arrays Larger Than 64K

• U~limited User Program Symbols

• Offers powerful extensions tailored to
microprocessor applications

• Offers upward compatibility with
FORTRAN 80

• Provides FORTRAN run-time support
for iAPX 86,88,186,188-based·design·

• Provides users ability to do form~tted
and unformatted I/O with sequential or
direct access methods

• ICE™ Symbolic Debugging Fully
Supported

• PSCOPE Source Level Debugging Fully
Supported

• Supports complex data types

FORTRAN 86/88 meets the ANS FORTRAN 77 Language Subset Specification and includes many features of
the full standard. Therefore, the user is assured of portability of most existing ANS FORTRAN programs and of
full portability from other computer systems with an ANS FORTRAN 77 Compiler.

FORTRAN 86/88 programs developed and debugged on the Intel Microcomputer Development Systems may be
tested with the prototype using ICE symbolic debugging, and executed on an RMX-86 operating system, or on a
user's iAPX 86,88,186,188-based operating system. .

FORTRAN 86/88 is one of a complete family of compatible programming languages for iAPX -86,88,186,188
development: PUM, Pascal, FORTRAN, and Assembler. Therefore, users may choose the language best suited
for a specific problem solution.

©INTEL CORPORATION. 1983. MAY 1983

4-24

FORTRAN 86/88 SOFTWARE PACKAGE

FEATURES

Extensive High-Level Language
Numeric Processing Support

Intel® Microprocessor Support

FORTRAN 86/88 language features support of iAPX
86/20, 88/20 Numeric Data Processor

Single (32-bit), double (64-bit), and double extended
precisibn (80-bit) floating-point data types

Compiler generates in-line iAPX 86/20, 88/20 Nu­
. meric D,ata Processor object code for floating-point
arithmetic (See Figure 1)

REALMATH Proposed IEEE Floating-Point Stan­
dard) for consistent and reliable results

Full support for all other data types: integer, logical,
character

Ability to use hardware (iAPX 86/20, 88/20 Numeric
Data Processor) or software (simulator) floating­
point support chosen at link time

Intrinsics allow user to control iAPX 86/20, 88/20
Numeric Data Processor

iA~X 86,88,186,188 architectural advantages used
for indexing and character-string handling

Symbolic debugging of application using ICE
emulators

ANS FORTRAN 77 Standard Source level debugging using PSCOPE.

FLOATING·POINT-STATMENT

TEMPER = (PRESS - VOlUM I ~UEK) - 3.45 I (PRESS - VOlUM I QUEK)
& - (PRESS - VOlUM I QUEK) * (PRESS - VOlUM I QUEK)

OBJECT CODE GENERATED

Intel FORTRAN-86 Compiler

IAPX 86/20, 88/2C1 ASSEMBLER MNEMONICS I. MACHINE CODE , STAT2MENT /I 2
0013 9609060COO Fl;) VOlUM
0018 9B08360000 FOIV ~UEK
0010 98082E0800 FSU5~ PRESS
0022 960001 FST T~S+1H

0025 982E083EOOOO FOIV~ CS:@CONST
0026 9B09C9 FXCrlG TOS+1H
002E 980002 F·S T ToS+2H
0031 9BoEE9 FSUBRP
0034 9809Cl FLO T:JS+1H
0037 9B08C8 FMUl ToS
003A 98ooC2 FFREE TOS+2H
0030 980EEl FSUSP
0040 98091E0400 FSTP TEMPER
0045 98 WAIT

Figure 2. Object Code Generated by FORTRAN 86188 for a Floating·Point Calculation Using iAPX 86120,
88120 Numeric Processor.

4-25
AFN·016538

intel' FORTRAN 86/88 SOFTWARE PACKAGE

Microprocessor Application Support

-Direct byte- or word-oriented port I/O

-Reentrant procedures

-Interrupt procedures

Flexible Run-Time Support

Application object code may be executed in iAPX 86,
88,186,188-based environment of user's choice:

-a Series III or Series IV Intellec Development System

-an iAPX 86,88,186,188-based system with iRMX-86
Operating System .

-an iAPX 86,88,186,188-basedsystem with user­
designed Operating System

Run-time exception handling for fixed-point nu­
merics, floating-point numerics, and I/O errors

Relocatable object libraries for complete run-time
support of I/O and arithmetic functions. In-line code
execution is generated for iAPX 86/20, 88/20 Nu­
meric Data Processor

BENEFITS

FORTRAN 86/88 provides a means of developing ap­
plication software for the Intel iAPX 86,88,186,188
products lines in a familiar, widely accepted, and
industry-standard programming language. FOR­
TRAN 86,88 will greatly enhance the user's ability to
provide cost-effective software development for
Intel microprocessors as illustrated by the following:

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development Systems (Series
III(Series IV) ,

4·26

Early Project Completion

FORTRAN is an industry-standard, high-level
numerics processing language. FORTRAN pro­
grammers can use FORTRAN 86/88 on micropro­
cessor projects with little retraining. Existing FOR­
TRAN software can be compiled with FORTRAN
86/88 and programs developed in FORTRAN 86/88
can run on other computers with ANS FORTRAN 77
with little or no change. Libraries of mathematical
programs using ANS 77 standards may be compiled
with FORTRAN 86/88.

Application Object Code
Portability for a Processor Family

FORTRAN 86/88 modules "talk" to the resident Intel­
lec development operating system using Intel's stan­
dard interface for all development-system software.
This allows an application developed under the ISIS­
" operating system to execute on iRMX/86, or a user­
supplied operating system by linking in the iRMX/86
or other appropriate interface library. A standard
logical-record interface enables communication
with non-standard I/O devices.

Comprehensive, Reliable
and Efficient Numeric Processing

The unique combination of FORTRAN 86/88, iAPX
86/20, 88/20 Numeric Data Processor, and
REALMATH (Proposed IEEE Floating-Point Stan­
dard) provide univer:sal consistency in results of
numeric computations and efficient object code
generation.

Documentation Package

FORTRAN 86/88 User's Guide

AFN-016538

FORTRAN 86/88 SOFTWARE PACKAGE

ORDERING INFORMATION

Part Number Description

MDS*-315 FORTRAN 86/88 Software Package

Requires Software License

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

AFN-01653B

4·27

inter
PASCAL 86/88

SOFTWARE PACKAGE

• Resident on iAPX 86 Based Intel
Microcomputer Development Systems

• Object Compatible and Linkable with
PL/M 86/88, ASM 86/88 and FORTRAN·
86/88

• ICE™ Symbolic Debugging Fully
Supported

• PSCOPE Source Level Debugging Fully
Supported

• Implements REALMATH for C~>nsistent
and Reliable Results

• Supports large array operation

• Unlimited User Program Symbols

• Supports iAPX86/20, 88/20 Numeric
Data Processors

• Strict Implementation of ISO Standard
Pascal

• Useful Extensions Essential for
Microcomputer Applications

• Separate Compilation with Type­
Checking Enforced Between Pascal
Modules

• Compiler Option to Support Full Run­
Time Range-Checking

PASCAL 86/88 conforms to and implements the ISO Draft Proposed Pascal standard. The language is
enhanced to support microcomputer applications with special features, such as separate compilation, inter­
rupt handling and direct port I/O. To assist the development of portable software, the compiler can be directed
to flag all non-standard features.

The PASCAL 86/88 compiler runs on Series III and Series IV Microcomputer'Development Systems. Awell~defined I/O interface is
provided for run-time support. This allows a user-written operating system to support application programs as an alternate to the
development system environment. Program modules compiled under PASCAL 86/88 are compatible and linkable with modules
written in PUM 86/88, ASM 86/88 or FORTRAN 86/88. With a complete family of compatible programming languages for the iAPX
86,88, 186, 188 one can implement each module in the language most appropriate to the task at hand.

PASCAL 86/88 object modules contain symbol and type information for program debugging using ICFM

emulators and PSCOPE source language debugger. For final production version, the compiler can remove this
extra information and code.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications of These Devices
from Intel. JUNE 1984
©INTEL CORPORATION, 1983

4-28

PASCAL 86/88

FEATURES

Includes all the language features of Jen'sen & Wirth
Pascal as defined in the ISO Draft Proposed Pascal
Standard.

Supports required extensions for microcomputer
applications.

-Interrupt handling
-Direct port 1/0

Separate' compilation extensions allow:

-Modular decomposition of large programs

-Linkage with other Pascal modules as well as PUM
86/88/186/188, ASM 86/88/186/188 and FORTRAN
86/88.

-Enforcement of type-checking at LINK-time

BENEFITS

Provides a standard Pascal for iAPX 86, 88, 186, 188
based applications.

-Pascal has gained wide acceptance as the port­
able application language for microcomputer
applications

-It is being taught in many colleges and universities
around the world

-It is easy to learn, originally intended as a vehicle
for teaching computer programming

-Improves maintainability: Type mechanism is
both strictly enforced and user extendable

-Few machine specific language constructs

Strict implementation of the proposed ISO standard
for Pascal aids portability of application programs. A
compile time option checks conformance to the
standard making it easy to write conforming
programs.

PASCAL 86/88 extensions via predefined proce­
dures for interrupt handling and direct port I/O make
it possible to code an entire application in Pascal
without compromising portability.

Standard Intel REALMATH is easy to use and pro­
vides reliable results, consistent with other Intel
languages and other implementations of the IEEE
proposed Floating-Point standard.

Supports numerous compiler options to control the
compilation process, to INCLUDE files, flag non­
standard Pascal statements and others to control
program listings and object modules.

Utilizes the IEE~ standard for Floating-Point Arith­
metic (the Intel REALMATH standard) for arithmetic
operations.

Well-defined and documented run-time operating
system interfaces allow the user to execute the ap­
plications under user-designed operating systems.

Predefined type extensions allow:

-Create precision in read, integer, and unsigned
calculations.

-Means to check 8087 errors

-Circumvention of rigid type checking on calls to
non-Pascal routines

Provides run-time support for co-processors. All
real-type arithmetic is performed on the 86/20 nu­
meric data processor unit or software emulator.
Run-time library routines, common between Pascal
and other Intel languages (such as FORTRAN), per­
mit effic!ent and consistently accurate results.

Extended relocation and linkage support allows the user to
link Pascal program modules with routines written in other
languages for certain parts of the program. For example, real­
time or hardware dependent routines written in ASM
86/88/186/188 or PUM 86/88/186/188 can be linked to Pascal
routines, further extending the user's ability to write structured
and modular programs.

PASCAL 86/88 programs "talk" to the resident
operating system using Intel's standard interface for
translated programs. This allows users to replace
the development operating system by their own
operating systems in the final application.

PASCAL 86/88 takes full advantage of iAPX 86, 88,186,188
high level language architecture to generate efficient machine.
code.

Compiler options can be used to control the program
listings and object modules. While debugging, the
user may generate add itional information such as the
symbol record information required and useful for
debugging using PSCOPE or ICE emulation. After
debugging, the production version may be stream­
lined by removing this additional information.

AFN'()16528

4·29

PASCAL 86/88

SPECIFICATIONS

Operating Environment

REQUIRED HARDWARE
Intel Microcomput~r Development Systems (Series III, Series
IV)

ORDERING INFORMATION

Part Number Description

MDS*-314 PASCAL 86/88 Software Package

Requires software license .

Documentation Package

PASCAL 86 User's Guide

• MD~ is an ordering code only and is not used as a product name or trademark. MDS~ is a registered trademarkof Mohawk Data Science.

SUPPORT:

Hotline Telephone Support, Software Performance Report (SPR), Software Updates, Technical Reports, and
Monthly Technical Newsletters are available ..

AFN-01652B

4-30

PL/M 86/88/186/188 Software Package

• Systems Programming Language for
the iAPX 86/88/186/188 Processors

• Language Is Upward Compatible from
PUM 80, Assuring MCS®·80/85 Design
Portability

• Advanced Structured System Imple·
mentation Language for Algorithm
Development

• Supports 16·Bit Signed Integer and
32·Bit Floating Point Arithmetic in
Accordance with IEEE Proposed
Standard

• Easy·to·Learn Block·Structured
Language Encourages Program
Modularity

• Improved Compiler Performance Now
Supports More User Symbols and
Faster Compilation Speeds

• Produces Relocatable Object Code
Which Is Linkable to All Other 8086
Object Modules

• Code Optimization Assures Efficient
Code Generation and Minimum
Application Memory Utilization

• Built·ln Syntax Checker Doubles Per·
formance for Compiling Programs
Containing Errors

• Resident on iAPX 86 Intel Micro­
computer Development Systems

PUM 86 is an advanced, structured, high-level systems programming language. The PUM 86 compiler was
created specifically for performing software development for the Intel 8086, 8088, 80186 and 80188 Microproces­
sors. PUM was designed so that program statements naturally express the program algorithm. This frees the
programmer to concentrate on the logic of the program without concern for burdensome details of machine or
assembly language programming (such as register allocation, meanings of assembler mnemonics, etc.).

The PUM 86 compiler effiCiently converts free-form PUM language statements into machine instructions. Sub­
stantially fewer PUM statements -are necessary for a given application than if it were programmed at the assembly
language or machine code level.

The use of PUM high-level language for system programming, Instead of assembly language, results in a
high degree of engineering productivity during project development. This translates into significant reduc­
tions in initial software development and follow-up maintenance costs for the user.

NOTE: The Intellec~ Development System pictured here is not included with the PLiM 86/88 Software package but merely depicts a language In its operating environment.
The following are trademarks of Intel Corporation and Its affiliates and may be used only to identify Intel products: BXP. CREDIT, i, iCE, iCS, 1m, Inslte,lntel,lNTEL, Intelevision,
Intelink, Intellec, iMMX, iOSP, iPDS, IRMX, iSBC, iSBX, Library Manager, MCS, MULTIMODULE, Megachassis. Micromainframe, MULTIBUS, Multichannel, Plug·A·Bubble,
PROMPT, Promware, RUPI, RMX/80, System 2000, UPI, and the combination ICS, iRMX, iSBC, ISBX, ICE, 121CE, MCS, or UPI and numerical suffix. Intel Corporation Assumes No
Responsibility for the use of Any Circuitry Other Than Circuitry Embodied in an Intel product. No Other Patent Licenses are implied. ©INTEL CORPORATION. 1983.

MAY 1983

4-31

PL/M 86/88/186 SOFTWARE PACKAGE

FEATURES
Major features of the Intel PLIM 86 compiler and
programming language include:

Block Structure
PLIM source code is developed in a series of
modules, procedures, and blocks. Encouraging
program modularity in this manner makes pro­
grams more readable, and easier to maintain and
debug. The language becomes more flexible, by
clearly defining the scope of user variables (local
to a private procedure).

The use of procedures to break down a large
problem is· paramount to productive software
development. The PLIM 86 implementation of a
block structure allows the use of REENTRANT
(recursive) procedures, which are especially use­
ful in system design.

Language Compatibility
PLIM 86 object modules are compatible with ob­
ject modules generated by all other iAPX 86
translators. This means that PLIM programs· may
be linked to programs written in any other iAPX 86
language.

Object modules are compatible with In-Circuit
Emulators; DEBUG compiler control provides the
In-Circuit Emulators with symbolic debugging
capabilities.

PLIM 86 Language is upward compatible with
PLIM 80, so that application programs may be
easily ported to run on the iAPX 86.

Supports Seven Data Types
PLIM makes use of seven data types for various
applications. These data types range from one to
four bytes, and facilitate various arithmetic, logic,
and addressing functions:

-Byte: 8-bit unsigned number
-Word: 16-bit unsigned number
-DWORD: 32-bit unsigned number
-Integer: 16-bit signed number
-Read: 32-bit floating point number
-Pointer: 16-bit or 32-bit memory address

indicator
-Selector: 16-bit base portion of a pointer

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This is especially useful
for passing parameters, relative and absolute ad­
dressing, and memory allocation.

Two Data Structuring Facilities
In addition to the five data types and based
variables, PLIM supports two· data structuring
facilities. These help the user to organize data in­
to logical groups.

- Array: Indexed list of same type data elements
- Structure: Named collection of same or dif-

ferent type data elements ' .
- Combinations of Each: Arrays of structures or

structures of arrays

8087 Numerics Support
PLIM programs that use 32-bit REAL data may be
executed using the Numeric Data Processor for
improved performance. All floating-point opera­
tions supported by PLIM may be executed on the
iAPX 86/20 or 88/20 NDP, or the 8087 Emulator (a
software module) provided with the package.
Determination of use of the chip or Emulator
takes place at linktime, allowing compilations·to
be run-time independent. . .

Built·ln String Handling Facilities
The PLIM 86 language contains built-in functions
for string manipulation. These byte and word
functions perform the following operations on
character strings: MOVE, COMPARE,
TRANSLATE, SEARCH, SKIP, and SET.

Interrupt Handling
PLIM has the facility for handling interrupts. A
procedure may be defined with the INTERRUPT
attribute, and the compiler will automatically in­
itialize an interrupt vector at the appropriate
memory location. The compiler will also generate
code to save and restore the processor status, for
execution of the user-defined interrupt handler
routine. The procedure SET$INTERRUPT, the
function retuning an INTERRUPT$PTR, and the
PLIM statement CAUSE$INTERRUPT all add flex­
ibility to user programs involving interrupt and
handling.

AFN-01661C

PL/M 86/88/186 SOFTWARE PACKAGE

Compiler Controls
Including several that have been mentioned, the
PLIM 86 compiler offers more than 25 controls
that facilitate such features as:

- Conditional compilation
- Including additional PLIM source files from

disk
- Corresponding assembly language code in the

listing file
- Setting overflow conditions for run-time

handling

Segmentation Control
The PLIM 86 compiler takes full advantage of pro­
gram addressing with the SMALL, COMPACT,
MEDIUM, and LARGE segmentation controls. Pro­
grams with less than 64KB total code space can
exploit the most efficient memory addressing
schemes, which lowers total memory require­
ments. Larger programs can exploit the flexibility
of extended one-megabyte addressing.

Code Optimization
The PLIM 86 compiler offers four levels of op­
timization for significantly reducing overall pro­
gram size.

- Combination or "folding" of constant expres­
sions; and short-circuit evaluation 'of Boolean
expressions

- "Strength reductions" (such as a shift left
rather than multiply by 2); and elimination of
common sub-expressions within the same
block

- Machine code optimizations; elimination of
superfluous branches; re-use of· duplicate
code; removal of unreachable code

- Byte comparisons (rather than 20-bit address
calculations) for pointer variables; optimization
of based-variable operations

Error Checking
The PLIM 86 compiler has a very powerful feature
to speed up compilations. If a syntax or program
error is detected, the compiler will skip the code
generation and optimization passes. This usually
yields a 2X performance increase for compilation
of programs with errors.

A fully detailed set of programming and compila­
tion errors is provided by the compiler.

M:DO; " Beginning of module"

SORTPROC: PROCEDURE (PTR. COUNT, RECSIZE, KEYINDEX) ~I PUBLIC and EXTERNAL attributes promote
DECLARE PTR POINTER, (COUNT, RECSIZE, KEYI~~GER, 1 program modularity.

/" Parameters:
PTR is pointer to first record.
COUNT is number of records to be sorted.
RECSIZE is number of bytes in each record-max is 128.
KEYINDEX is byte position within each record of a BYTE scalar

to be used as sort key .• ,

DECLARE RECORD BASED PTR (1) BYTE,
CURRENT (128) BYTE,
(I. J) INTEGER;

"Based" Variables allow manipulation of external data by
passing the base of the data structure (a pointer). This
minimizes the STACK space used for parameter passing, and
the execution time to perform many STACK operations.

SORT: DO J~ 1 TO COUNT-I;

FIND:

END M;

CALL MOVB(@RECORD(J·RECSIZE). ________ '-..

I~J;

DO WHILE I ·0
AND RECORD((I- I)"RECSIZE - KEYINDEX)
·CURRENT(KEYINDEX);

CALL MOVB(@RECORD((I· 1)·RECSIZE).
@RECORD(I'RECSIZE),
RECSIZE);

END ~INID;"
CALLCM~B~CURRENT, @RECORD(I'RECSIZE), RECSIZE);

END SORT;

END SORTPROC;

I"End of module"

The "AT" operator returns the address of a
variable, instead of its contents. This is very useful
in passing pointers for based variables.

One of several PL/M built·in procedures for string
manipulation.

Figure 3_ Sample PUM 86 Program_

4-33
AFN-OI661C

PL/M 86/88/186 SOFTWARE PACKAGE

BENEFITS
PLIM 86 is designed to be an efficient, cost-effec­
tive solution to the special requirements of iAPX
86 Microsystem Software Developme'nt, as illus­
trated by the following benefits of PLlMuse:

Cost· Effective Alternative to
Assembly Language
PLIM 86 programs are code efficient. PLIM 86
,combines all of the benefits of' a high-level
language (ease of use, high productivity) with the
ability to access the iA'PX 86 architecture. Conse­
quently, for the development of systems software,
PLIM 86 is the cost-effective alternative to
assembly language programming.

Low Learning Effort
PLIM is easy to learn and to use, even for the
novice programmer. '

Earlier Project Completion
Critical projects are completed much earlier th-an
otherwise possible because PLIM 86, a structured
high-level language, increases programmer pro­
ductivity.

SPECIFICATIONS

Operating Environment

REQUIRED HARDWARE:

Intel Microcomputer Development Systems (Series
III/Series IV)

ORDERING INFORMATION

Part Number Description
MDS·313* PLIM 86 Software Package

. Lower Development Cost

4-34

Increases in programmer productivity translate
immediately into lower software development
costs because fewer programming resources are
required for a given programmed function.

Increased Reliability
PLIM 86 is designed to aid in the development of
reliable software (PLIM 86 programs are simple
statements of the program' algorithm). This
substantially reduces the risk of costly correction
of errors in systems that have already reached full
production status, as the more simply stated the
program is, the more likely it is to perform its in­
tended function.

Easier Enhancements
and Maintenance
Programs written in PLIM tend to be self­
documenting, thus easier to read and understand.
This means it is easier to enhance and maintain
PLIM programs as the system capabilities expand
and future products are developed.

Documentation Package
PLlM-86 User's Guide for 8086·based Develop­
ment Systems (121636)

SUPPORT:

Hotline Telephone' Support, Software Performance
Reporting (SPR), Software Updates, Technical
Reports, Monthly Newsletter available.

Requires Software License

*MDS is an ordering code only and is not used as a product
name or trademark. MDS@ is a registered trademark of
Mohawk Data Sciences Corporation.

AFN-01661C

iC-86
C COMPILER FOR THE 8086

• Implements full C Language
• Produces high density code rivaling

assembler
• Supports Intel Object Module Format

(OMF)

• Runs under the Intel UDI on
Intel Development Systems and
iRMXTM 86

• Available for the VAX/VMS· Operating
System

• Supports both small and large models of
computation

• Supports PSCOPE-86 and 121CETM
• Supports IEEE Floating Point Math with

8087 coprocessor

• Supports Bit Fields
• Supports full standard 110 Library (STOIO)

• Written in C

The C Programming Language was originally designed in 1972 and has become increasingly popular as a
systems development language. C is not a "very high level" language and is not tied to any specific application
area. Although it is used for writing operating systems, it has been used equally well to write numerical, text·
processing and data base programs. C combines the flexibility and programming speed of a higher level
language with the efficiency and control of assembly language.

Intel iC-86 brings the full power of the C programming language to 8086 and 8088 based microprocessor
systems.

Intel iC-86 supports the full C language as described in the Kernighan and Ritchie book, "The C Programming
Lanugage," (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure
assignments, functions taking structure arguments and returning structures, and the "void" and "enum" data
types.

C is rapidly becoming the standard microprocessor system implementation language because it provides: .

1. the ability to manipulate the fundamental objects of the machine (including machine addresses) as easily
as assembly language.

2. the power and speed of a structured language supporting a large number of data types, storage classes, ex·
pressions and statements,

3. processor independence (most programs developed for other processors can be easily transported to the
8086), and

4. code that rivals assembly language in efficiency

INTEL iC-86 COMPILER DESCRIPTION
TheiC-86 compiler operates in four phases: pre­
processor, parser, code generator, and optimizer. The
preprocessor phase interprets directives in C source
code, including conditional compilations (# define).
The parser phase converts the C program into an
intermediate free form and does all syntactic and

semantic error checking. The code generator phase
converts the parser's output into an efficient inter­
mediate binary code, performs constant folding, and
features an extremely efficient register allocator,
ensuring high quality code. The. optimizer phase
converts the output of the code generator into

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other
Circuit Patent Licenses are Implied Information Contained Herein Supercedes Previously Published Specifications of These Devices
from Intel. ·VAX is a trademark of Digital Equipment Corporation. JUNE 1984
©INTEL CORPORATION, 1983

4·35

iC-86
C COMPILER FOR THE 8086

relocatable Intel Object Module Format (OMF) code,
without creating an intermediate assembly file: Op­
tionally, the iC-86 compiler can produce a symbolic
assembly like file. The iC-86 optimizer eliminates
common code, eliminates redundant loads and
stores, and resolves span dependencies (shortens
branches) within a program.

The iC-86 runtime library consists ofa number of
functions whish the C programmer can call. The run­
time system includes· the standard· I/O library

FEATURES

Support for Small and Large Models

Intel iC-86 supports both the SMALL and LARGE
modes of segmentation. A SMALL model progtam
can have up to 64K bytes of code and 64K bytes of
data, with all pointers occupying two bytes. Because
two byte pointers permit the generation of highly
compact and efficient code, this model is recom­
mended for programs that can meet the size restric­
tions. The LARGE segmentation model is used by
programs that require access to the full addressing
space of the 8086/8088 processors. In this model,
each source file generates a distinct pair of code and
data segments of up to 64K bytes in length. All pointers
are four bytes long.

Preprocessor Directives

#define-defines a macro

#include- includes code outside of the program
source file

#if-conditionally includes or excludes code

Other preprocessor directives include #undef, #ifdef,
#ifndef, #else, #endif, and #Iine.

Statements

The C language supports a variety of statements:

Conditionals: IF, IF-ELSE

Loops: WHILE, DO-WHILE, FOR

Selection of cases: SWITCH, CASE, DEFAULT

Exit from a function: RETURN

Loop control: CONTINUE, BREAK

Branching: GOTO

Expressions and Operators

The C language includes a rich set of expressions
and operators.

Primary expression: invoke functions, select ele-

(STDIO), conversion routines, routines for manipu­
lating strings, special routines to perform functions
not available on the 8086 (32-bit arithmetic and
emulated floating point), and (where appropriate)
routines for interfacing with the operating system.

iC-86 uses Intel's linker and locator and generates
debug records for symbols and lines on request,
permitting access to Intel's PSCOPE AND 121CETM to
aid in program testing.

ments from arrays, and extract fields from structures
or unions

Arithmetic operators: add, subtract, multiply, divide,
modulus

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal

Unary operators: indirect through a pOinter, compute
an address, logical negation, ones complement, pro­
vide the size in bytes of an operand.

Logical operators: AND, OR

Bitwise operators: AND, exclusive OR, Inclusive OR,
bitwise complement

Data Types and Storage Classes

Data in C is described by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by iC-86.

4-36

char
an 8 bit signed integer

int
a 16 bit signed integer

short
same as int (on the 8086)

long
a 32 bit signed integer

unsigned
a modifier for integer data types (char, int,
short, and long) which doubles the positive
range of values

float
a 32 bit floating point number which utilizes the
8087 or a soft,ware floating point library

double
a 64 bit floating point number

AFN-00144C

iC-86
C .COMPILER FOR THE 8086

void
a special type that cannot be used as an
operand in expressions; normally used for
functions called only for effect (to prevent their
use in contexts where a value is required).

enum
an enumerated data type

These fundamental data types may be used to
create other data types including: arrays, func­
tions, structures, pointers, and unions.

The storage classes avaHabe in iC-86 include:

register
suggests that a variable be kept in a machine
register, often enhancing code density and
speed

BENEFITS

Faster Compilation

Intel iC-86 compiles C programs substantially faster
than standard C compilers because it produces Intel
OMF code directly, eliminating .the traditional inter­
mediate process of generating an assembly file.

extern
a variable defined outside of the function where
it is declared; retaining its value throughout the
entire program and accessible to other
modules

auto
a local variable, created when a block of code is
entered and discarded when the block is
existed

static
a local variable that, retains its value until the
termination of the entire program

typedef
defines a new data type name from existing
data types

Rapid Program Development

Intel iC-86 provides the programmer with detailed
error messages and access to PSCOPE-86 and
121CETM to speed program development.

Portability of Code . Full Manipulation of the 8086

Because Intel iC-86 supports the STDIO and pro­
duces Intel OMF code, programs developed on a
variety of machines can easily be transported to the
8086.

SPECIFICATIONS

Operating Environment

The iC-86 compiler runs host resident on both the
Intel Series III Microcomputer Development System
under ISIS-II and on the System 86/330 under the
iRMXTM 86 operating system. iC-86 can also run as a
cross compliler on a VAX 11/780 computer under the
VMS operating system 128 KBytes of User Memory is
required on all versions. Specify desired version
when ordering.

Required Hardware

Dev~lopment System Version

-Intellec® Microcomputer Development System;
Series III or Series IV

4-37

Intel iC-86 enables the programmer to utilize features
of the C language to control 'bit fields, pointers, ad­
dresses and register allocation, taking full advantage
of the fundamental concepts' of the 8086.

-Dual Diskette Drives, Single or Double Density

-System Console; CRT or Hardcopy Interactive
Device

iRMX 86 version:

-Any iAPX 86/88, iSBC(o) 86/88, iTPS 86/ XXX, or
SYS 86/3XX based system capable of running the
iRMX 86 Operating System

VAX version:

-Digital Equipment Corporation VAX 11/780 or
compatible computer

AFN·OOl44C

iC-86
C COMPILER FOR THE 8086

Optional Hardware

ISIS· II version:

-ICE-86, 121CE·86

iRMX 86 version:

- Numeric Data Processors for support of the
REALMATH standard

VAX version:

-None

Required Software

ISIS· II version:

-ISIS·II Diskette Operating System

-Series III or Series IV Operating System

iRMX 86 version:

-iRMX 86 Realtime Multiprogramming Operating
System

-iRMX 860 Utilities Package

VAX version:

-VMS Operating System

Optional Software

Development System Version:

-None

ORDERING INFORMATION

Order Code

iMDX·317
iRMX-866

iMDX-347

_ Description

iC-86 Compiler for ISIS-II
iC·86 Compiler for iRMX 86

iC·86 Cross Compiler for
VAXNMS

Intel Software License required.

iRMX 86 version:

-None

VAX version:

-MDS*·384 Kit·Mainframe Link for distributed development. or
iMDX-394 Asynchronous Communications Link.

-VAX iAPX 86/88/186 MACRO Assembler and
utilities package (iMDX-341 VX)

Documentation Package

The C Programming Language by Kernighan and
Ritchie (1978 Prentice-Hall)

iC·86 User Manual

Shipping Media

Developmen! System Version:

-Two single and one double density ISIS-II format
8" diskettes, one 5 1/4" Series IV Format

iRMX 86 version:

-Double Density iRMX 86 format 8" diskette

-Double Density iRMX 86 format 5%" diskette

VAX version:

-1600 bpi, 9 track Magnetic tape

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

AFN-OOl44C
4·38

in1er
FORTRAN 80

8080/8085 ANS' FORTRAN 77
INTELLEC® RESID,ENT COMPILER

• Meets ANS FORTRAN 77
Subset Language Specification plus
adds Intel' microprocessor'extensions

• Supports Intel Floating Point
Standard with the FORTRAN 80 soft,;,
ware routines,' the iSBC-31 0 ™ High
Speed Mathematics Board, or the
iSBC-332TM math multimodule

• Executes on Intellec Microcomputer
Development System, Intellec Series
II Microcomputer Development System,
and Personal Development System

• Supports full symbolic debugging with
ICE-80™ and ICE-85™

• Produces relocatable and linkable
object code compatible with resident
PLIM 80 and 8080/8085 Macro
Assembler

• Provides optional run-time library to
execute in RMX-80™ environment

• Has well defined I/O interface for
configuration with user-supplied
drivers

FORTRAN 80 i's a computer industry-standard, high-level programming language and compiler that translates FORTRAN
statements into relocatable object modules. When the object modules are linked together and located into absolute
program modules, they are suitable for execution on Intel 8080/8085 Microprocessors, iSBC-80 OEM Computer Systems,
Intellec Microcomputer Development Systems and Personal Development Systems. FORTRAN 80 meets the ANS
FORTRAN 77 Language Subset Specification1

. In addition, extensions designed specifically for microprocessor applica­
tions are included. The compiler operates on the IntelJec Microcomputer Developnient System and Personal Development
System under the ISIS-II Disk Operating Systems and produces efficient relocatable object modules that are compatible
for linkage with PL/M 80 and 8080/8085 Macro Assembler modules.

The ANS FORTRAN 77 language specification offers many powerful extensions to the FORTRAN language that are
especially well suited to Intel 8080/8085 Microprocessor software development. Because FORTRAN 80 conforms to
the ANS FORTRAN 77 standard, the user is assured of compatibility with existing FORTRAN software that meets the
standard as well as a guarantee of upward compatibility to other computer systems supporting an ANS FORTRAN 77
Compiler. '

1 ANSI X3J3/90

© INTEL CORPORATION, 1983

. 4·39

MAY 1983

ORDER NUMBER:400610-001

FORTRAN 80

FORTRAN 80 LANGUAGE FEATURES

MajorANS FORTRAN 77 features supported by the Intel
FORTRAN 80 Programming Language include:

• Structured Programming is supported with the IF ...
THEN ... ELSE IF ... ELSE ... END IF constructs.

• CHARACTER data type permits alphanumeric data
to be handled as strings rather than characters
stored in array elements.

• Full 110 capabilities include:
Sequential and Direct Access files
Error handling facilities
Formatted, Free·formatted,· and Unformatted
data representation
Internal (in·memory) file units provide capa·
bility to format and reformat data in internal
memory buffers
List Directed Formatting

• Supports.arrays of up to seven dimensions.

• Supports logical operators
.EQV. - Logical equivalence
.NEQV. - Logical nonequivalence

Major extensions to FORTRAN 77 in Intel FORTRAN-80
include:

• Direct 8080/8085 port 110 supported by intrinsic
subroutines.

• Binary and Hexadecimal integer .constants.

.• Well defined interface to FORTRAN·80 I/O state·
ments (READ, OPEN, etc.), allowing easy use of

. user·supplied I/O drivers.

• User-defined INTEGER storage lengths of 1,2 or 4
bytes.

• User-defined LOGICAL storage lengths of 1, 2 or 4
bytes.

• REAL STORAGE lengths of 4 bytes.

• Bitwise Boolean operations using logical operators
on integer values.

• Hollerith data constants.

• Implicit extension of the length of an integer or
logical expression to the length of the left-hand
side in an assignment statement.

• A format descriptor to suppress carriage return on
a terminal output device at the end of the record ..

FORTRAN 80 COMPILER FEATURES

• Supports multiple. compilation units in single
source file.

• Optional Assembly Language code listing.

• Comprehensive cross-reference, symbol attribute
and error listing.

• Compiler controls and directives are compatible
with other Intel language translators.

• Optional Reentrancy.

• User-defined default storage lengths.

• Optional FORTRAN 66 Do Loop semantics.

• Source files may be prepared in free format.

• The INCLUDE control permits specified source
files to be combined into a compilation unit at com­
pile time. .

• Transparent interface for software and hardware
floating point support, allowing either to be chosen
at time of linking:

FORTRAN 80 BEN EFITS

FORTRAN 80 provides a means of developing applica­
tion software for Intel MCS-80/85 products in a
familiar, widely accepted, and computer industry­
standardized programming language. FORTRAN 80.will
greatly enhance the user's ability to provide cost­
effective solutions to software development for Intel
microprocessors as illu'strated by the following:

4-40

• Completely Complementary to Existing Intel Soft­
ware Design· Tools - Object modules· are linkable
with new or existing Assembly Language and PUM

, Modules.

• Incremental Runtime Library. Support - Runtime
overhead is limited only to facilities required by the
program.

.• Low Learning Effort - FORTRAN 80, like PUM, is
easy to learn and use. Existing FORTRAN software
can be· ported to FORTRAN 80, and programs
developed in FORTRAN 80 can be run'on any other
computer with ANS FORTRAN 77 ..

• Earlier Project Completion - Critical projects are
completed earlier than otherwise possible because
FORTRAN 80 will substantially increase program­
mer productivity, and is complementary to PUM

. Modules by providing comprehensive arithmetic,
I/O formatting, and. data management support in
the language.

• Lower Development Cost - Increases in program­
mer productivity translates into lower software
development costs because less programming
resources are required for a given function.

• Increased Reliability - The nature of high:level
languages, including FORTAN 80, is that they lend
themselves to'simple statements of the program
algorithm. This substantially reduces the risk of
costly errors in systems that have already reached
production status.

• Easier Enhancements and Maintenance - Like
PUM, program modules written in FORTRAN 80 are
easier to read and understand than assembly
language. This means it is easier to enhance and
maintain FORTRAN 80 programs as system
capabilities expand and future products are
developed.

• Comprehensive, Yet Simple Project Development -
The Intellec Microcomputer Development System
and Personal Development System, with the
8080/8085 Macro Assembler, PL/M 80 and FORTRAN
80 are the most comprehensive software design
facilities available for the Intel MCS-80/85 Micropro­
cessor family. This reduces development time and
cost because expensive (and remote) timesharing or
large computers are not required.

AFN-00241C

FORTRAN 80

SAMPLE FORTRAN·BO SOURCE PROGRAM
LISTING

• •• THIS PROGRAM IS AN EXAMPLE OF ISIS-II FORTRAN-80 THAT
I •• CONVERTS TEMPERATURE BETWEEN CELSIUS AND FARENHEIT

PROGRAM CONVRT

CHARACTER'l CHOICE, SCALE

PRINT 100
• •• ENTER CONVERSION SCALE (C OR F)
10 PRINT 200

READ (5,300) SCALE

IF (SCALE .EQ. ·C·)
+ THEN

PRINT 400
• ., ENTER THE NUMBER OF DEGREES FARENHEIT

READ (5,') DEGF
DEGC = 5./9.'(DEGF-32)

• ., PRINT THE ANSWER
WRITE (6,500) DEGF,DEGC

, 'I RUN AGAIN~
20 PRINT 600

READ (5,300) CHOICE
IF (CHOICE .EQ. 'Y')

+ THEN
GOTO 10

ELSE IF (CHOICE .EQ. 'N')
+ THEN

CALL EXIT
ELSE

GOTO 20
END IF

ELSE IF (SCALE .EQ. 'F')
+ THEN

, " CONVERT FROM FARENHEIT TO CELSIUS
PRINT 100
READ (5,') DEGC
DEGF = 9./5. I DEGC+32.

• ,. PRINT THE ANSWER
WRITE (6,800) DEGC,DEGF
GOTO 20

ELSE
• ,. NOT A VALID ENTRY FOR THE SCALE

WRITE (6,900) SCALE
GOTO 10

END IF
100 FORMAT(' TEMPERATURE,CONVERSION PROGRAM',II,

+' TYPE C FOR FARENHEIT TO CELSIUS OR' ,I,
+' TYPE F FOR CELSIUS TO FARENHEIT',II)

200 FORMAT(/,' CONVERSION? ',$)
300 FORMAT(Al)
400 FORMAT(/,'ENTER DEGREES FARENHEIT: ',$)
500 FORMAT(/,F1.2,' DEGREES FARENHEIT ~ ',F1.2,' DEGREES CELSIUS')
600 FORMAT(/,' AGAIN (Y OR N)? ',$)
100 FORMAT(/,' ENTER DEGREES CELSIUS: ',$)
800 FORMAT(/,F1.2,' DEGREES CELSIUS = ·,F1.2,' DEGREES FARENHEIT' ,I)
900 FORMAT(/,lH ,Al,' NOT A VALID CHOICE - TRY AGAINI',/)

END

4-41
AFN-00241C

FORTRAN 80

The FORTRAN 80 Compiler is an efficient, multi phase compiler that accepts source programs, translates them into
relocatable object code, and produces requested listings. After compilation, the object program may be linked toother
modules, located to a specific area of memory, then executed. The diagram shown below illustrates a program devel·
opment cycle where the program consists of modules created by FORTRAN 80, PUM 80 and the 8080/8085 Macro
Assembler.

1515·11
TEXT

EDITOR

1515·11
TEXT

EDITOR

FORTRAN 80
SOURCE

PUM80
SOURCE

1515·11 ASSEMBLY
TEXT LANGUAGE

EDITOR SOURCE

SPECIFICATIONS

OPERATING ENVIRONMENT

Required Hardware:

1. Intel Microcomputer Development Systems
-MDS-800 and Series II

or

2. Personal Development System

ORDERING INFORMATION

PART NO.

Model MDS-301

DESCRIPTION

FORTRAN 80 Compiler for
Intellec Microcomputer Develop­
ment Systems

Requires Software License.

,-- 1515·11
LOADER

DEBUG
,-- VIA

MONITOR

OPTIONAL
ICE·80lM

I-- ICE·85lM

IN·CIRCUIT
EMULATOR

'-- PROM
PROGRAMMER

DOCUMENTATION PACKAGE

FORTRAN-80 Programming Manual

ISIS-II FORTRAN-80 Compiler Operator's Manual

FORTRAN-80 Programming Reference Card

SUPPORT

I rite I offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

"MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

AFN-00241C

4·42

PASCAL 80
SOFTWARE PACKAGE

• Offers a Superset of Standard Pascal

• Provides Highly Structured Language
with Powerful Data Type Definitions to
Suit Applications

• Compiles Pascal Source Code into
Intermediate Code to Optimize
Execution Speed and Storage

• Executes Compiler and Interprets the
Intermediate Code on Intellec®
Microcomp'uter Development Systems

• Provides a Utility to Produce
Relocatable Object Modules
Compatible with Other Intel®
Languages

• Can Call Routines Written in PUM 80,
FORTRAN 80, or 8080/8085 Macro
Assembler

• Allows Modular Breakdown of Large'
Programs and Separate Compilation of
Individual Modules

• Gives Application Control Over
Run-Time Errors by Providing
User-Declared Error Procedures

PASCAL 80 Software Package consists of a compiler and an interactive Run-Time System designed to provide
the Pascal programming language as a software development tool for Intellec Development System Users.

Pascal is a highly-structured, block-oriented programming language that is now gaining wide acceptance as a
powerful software development tool. Its rigid structure encourages and enforces good programming tech­
niques, which, combined with a high level of readability, helps produce more reliable software.

Standard Intel development tools, such as CREDIT editor can be used to create and modify Pascal source
programs. The compiler compiles this source and creates a P-Code file. The Run-Time System executes this
P-Code in an interpretive manner under ISIS-II.

·Pascallanguage as defined in PASCAL User Manual and Report. Second Edition. Kathleen Jenson and Niklaus Wirth.

4-43

PASCAL 80

LANGUAGE FEATURES

Data Structures

Pascal allows the user to define labels, constants,
data types, variables, procedures, and functions.

Variable Types

Variables can be defined according to the following
system-defined data types: boolean, integer, real,
character, array, record, string, set, file, and pointer.

User-Defined Types

New types can be defined by the user for added
flexibility.

File Handling Procedures

Pascal provides procedures to allow a user's pro­
gram to interface with the ISIS-II file manager.
Routines provided are: RESET, REWRITE, CLOSE,'
PUT, GET; SEEK, and PAGE. .

Input/Output Procedures

Routines are provided to interact with the console or
an ISIS file. These procedures are: READ, WRITE,
READLN, WRITELN, plus BUFFER and BLOCK Read
and Write.

Dynamic Memory Allocation

The procedures NEW, MARK, and RELEASE allow
the user to obtain and release memory space at run­
time for dynamically allocating variable storage.

String Handling

Pascal provides powerful tools fO'r defining and
manipulating strings and character arrays. These
facilities enable concatenation of strings, character
and pattern scans, insertion, deletion, and pointer
manipulation.

Recursion

Pascal allows a PROCEDURE definition to include a
call to itself, a powerful construct in many mathe­
matical algorithms.

4-44

PROGRAM TRACING FACILITY

The PASCAL 80 System incorporates a program
tracing facility which allows for selectively monitor­
ing the execution of a Pascal program. When the
TRACE flag /s set, the line number of each program
statement being executed is output to the console.

The TRACE flag may be manipulated in two ways:

-The TRACEON command (of the Run-Time Sys­
tem) will set the flag, and the TRACEOFF com­
mand will reset the flag.

-Pressing the Interrupt 4 switch on the Intellec Sys­
tem front panel will toggle the TRACE flag; i.e., the
flag will be set if it was reset, and vice-versa.

COMPILER DIRECTIVES (PARTIAL' LIST)

Compiler Command Line Directives

NOLIST
No list file is produced; used for fast compilation of
"clean" programs.

NOCODE
No code file is produced; used for syntax error
checking.

ERRLlST
List file is limited to only those Pascal lines that
contain errors, along with the error messages
produced.

LIST (file-name)
Specifies the name of the list file.

CODE (file-name)
Specifies the name of the code file.

NOECHO
Error lines are echoed on the console unless this di­
rective is specified.

Embedded Compiler Directives

$C text
Causes text to appear in code file (allows for com':
ments, copyrights, etc.).

$1+
Causes checking for I/O .completion after each I/O
transfer. Failure results in a run-time error. ($1-
causes no checking, and no errors on I/O failure.)

AFN.o1233B

PASCAL 80

$R+
Causes Range Checking to occur, so that an out-of­
range value causes a Run-Time error. ($R~ sup­
presses generation of code for Range Checking.)

$0+
Causes the compiler to operate in overlay mode.
Overlays allow less source code to reside in mem­
ory. ($0- causes no overlays, which decreases
compile time, since there are fewer disk accesses.)

$T+
Causes the compiler to generate tracing in­
structions to be used by the TRACE facility. ($T­
suppresses tracing i'nstructions.)

BENEFITS

Brings Pascal to Intellec Microcomputer Develop­
ment Systems:

-Pascal is a block-structured; highly-readable pro­
gramming language, suitable for a wide-range of
applications.

The source program is
created on diskette with
the ISIS-II text editor.

-PASCAL

... Loads the Run-Time System
which executes compiled PASCAL
programs.

COMP PROG ...

. i.Loads the compiler to convert
the source program into an
interpreted object form known
as inte,'mediate code, or P-code.

'PROG ...

... Loads the Run-Time System
which executea complied Pascal
programs.

-Pascal is being acclaimed as the programming
language of the future; it is being taught in many
colleges and universities a~ound the country.

-PASCAL 80 Run-Time System provides great ease
in programming formatted I/O operations.

PASCAL 80 provides a portable language for appli­
cation programs running under ISIS-II.

PASCAL 80 can be used to evaluate complicated
algorithms using a natural language.

PASCAL 80 compiler generates intermediate
Pseudo-code.

-P-code is optimized for speed and storage space.

-P-code is approximately 50% to 70% smaller than
corresponding machine code.

-P-code is machine independent, providing code
portability to any CPU.

Makes the Intellec Development System a more val­
uable tool. Extension of software support to include
Pascal makes software development and resource
management more flexible.

Figure 1. Program Development Cycle

AFN-Cl233B

4-45

intJ PASCAL 80

Table 1. Sample Program LIsting Showing Nesting Levels

Line Seg Proc Lev Disp

1
2

4
5

1
7 1
8 1
9,

10 1
11
12
13
14 1
15
16
17
18
19
20
21
22
23
24 4
25
26 4
27 4
28
29
30

SPECIFICATIONS

,Operating EnvirQnment

REQUIRED HARDWARE

1
3

3
3

44
64
65
67

108
'0

0
27
68
87

109
109
116
132
179
197
208
208
226
262
292
331
378
378
388

BUFFER.PAS Program Listing

program example;

I Example using bufferread and bufferwrite with break characters I

var buffer: string;
disk_storage: file;
break: char;
new_len, len: integer;
buff_array: packed arraY[0 .. 80] of char;

begin
rewrite (disk_storage, 'data');
writeln('lnput a line of text: ');
readln (buffer);
len := bufferwrite(disk_storage, buffer[1], length(buffer»;
repeat

reset(disk_ storage);
writeln; writeln;
wrlte('lnput break char [cntrl Z to stop]: ');
readln(break);
if not eof(input) then

begin
new_len := bufferread(disk_storage, buff_array, len, ord(break»;
writeln('The buffer read: 'I;
writeln(copy(buffer,1, abs(new_len»);
writeln('Length:', abs(new_len):O);
if new_len < 0 then writeln('(Break char not found)');

end;
until eof(input);

end.

OPTIONAL SOFTWARE
ISIS-II CREDlpM (CRT-Based Text Editor)

Intellecl!'J Microcomputer Development System
-Model BOO

Documentation Package

PASCAL 80 User's Guide (9B01015-01)

:-Series II Model 220, Model 230, Model 240
64KB of Memory
Dual-Diskette Drives

PASCAL User Manual and Report, Second Edition,
Kathleen Jensen and Niklaus Wirth

-Single- or Double-Density·
System Console
-lntell!'J CRT or non-lntell!'J CRT

"Recommend_ed.

REQUIRED SOFTWARE
ISIS-II Diskette Operating System
-Single- or Double-Density

Shipping Media

Flexible Diskettes
-Single- and Double-Density

AFN-Ol233B

4-46

intel" PASCAL 80

ORDERING INFORMATION

Description Part Number

MDS-381* PASCAL 80 Software Package

Requires Software License

*MDS is an ordering code only and is not used as a product name or trademark. MDS~ is a registered trademark of Mohawk Data Sciences
Corporation.

SUPPORT CATEGORY: Level 0

AFN-01233B

4-47

inter.
PL/M 80

HIGH LEVEL PROGRAMMING LANGUAGE

• Provides Resident Operation on
Intellec® Microcomputer Development
System and Intellec® Series II '
Microcomputer Development Systems

• Produces Relocatable and Linkable
Object Code

• Sophisticated Code Optimization
Reduces Application Memory
Requirements

• Speeds Project Completion with
Increased Programmer Produc~ivity

• Cuts Software Development and
Maintenance Costs

• Improves Product Reliability with
Simplified Language and Consequent
Error Reduction

• Eases Enhancement as System
Capabilities Expand

The PUM 80 High Level Programming Language Intellec Resident Compiler is an advanced, high level pro­
gramming language for Intel 8080 and 8085 microprocessors, iSBC-80 OEM computer systems, and Intellec
microcomputer development systems. PUM nas been substantially enhanced since its introduction in 1973
and has become one of the most effective and powerful microprocessor systems implementation tools avail­
able. It is easy to learn, facilitates rapid program development and debugging, and significantly reduces main­
tenance costs. PUM is an algorithmic language in which program statements naturally express the algorithm
to be programmed, thus freeing programmers to concentrate on system development rather than assembly
language details (such as register allocation, meanings of assembler mnemonics, etc.). The PUM compiler ef­
ficiently converts free-form PUM programs into equivalent 8080/8085 instructions. Substantially fewer PUM
statements are necessary for a given application than would be using assembly language or machine code.
Since PUM programs are problem oriented and thus more compact, programming in PUM results in a high
degree of productivity during development efforts, resulting in significant cost reduction in software devel­
.opment and maintenance for the user.

© INTEL CORPORATION, 1983

4-48

MAY 1983

ORDER NUMBER:210327-002

PUM 80

FUNCTIONAL DESCRIPTION

The PUM compiler is an efficient multiphase compiler
that accepts source programs, translates them into
object code, and produces requested listings. After
compilation, the object program may be first linked to
other modules, then located to a specific area of mem­
ory, and finally executed. The diagram shown in Figure 1
illustrates a program development cycle where the pro­
gram consists of three modules: PUM, FORTRAN, and
assembly language. A typical PUM compiler procedure
is shown in Table 1.

Features
Major features of the Intel PUM 80 compiler and pro­
gramming language include:

Resident Operation - on Intellec microcomputer devel­
opment systems eliminates the need for a large in­
house computer or costly timesharing system.

Object Code Generation - of relocatable and linkable
object codes permits PUM program development and
debugging in small modules, which may be easily linked
with other modules and/or library routines to form a
complete application.

Extensive Code Optimization - including compile time
arithmetic, constant subscript resolution, and common
subexpression elimination, results in generation of
short, efficient CPU instruction sequences.

Symbolic Debugging - fully supported in the PUM
compiler and ICE-85 in-circuit emulators.

Compile Time Options - includes general listing for­
mat commands, symbol table listing, cross reference
listing, and "innerlist" of generated assembly language
instructions;

Block Structure - aids in utilization of structured pro­
gramming techniques.

Access - provided by high level PUM statements to
hardware resources (interrupt systems, absolute
addresses, CPU input/output ports).

Data Definition - enables complex data structures to
be defined at a high level.

Re·entrant Procedures - may be specified as a user
option.

Benefits
PUM is designed to be an efficient, cost-effective solu­
tion to the special requirements of microcomputer soft­
ware development as illustrated by the following bene­
fits of PUM use:

Low Learning Effort - even for the novice programmer,
because PUM is easy to learn.

Earlier Project Completion - on critical projects,
because PUM substantially increases programmmer
productivity while reducing program development time.

Lower Development Cost - because increased pro­
grammer productivity requiring less programming
resources for a given function translates into lower soft­
ware development costs.

Increased Reliability - because of PUM's use of simple
statements in the program algorithm, which are easier
to correct and thus substantially reduce the risk of
costly errors in systems that have already reached full
production status.

Easier Enhancement and Maintenance - because pro­
grams written in PUM are easier to read and easier to
understand than assembly language, and thus are eas­
ier to enhance and maintain as system capabilities
expand and future products are developed.

,

-G-B-

Figure 1. Program Development Cycle Block Diagram

AFN-00818B

4-49

PL/M 80

Simpler Project Development - because the Intellec
microcomputer development system with resident
PUM 80 is all that is needed for developing and debug-

ging software for 8080 and 8085 microcomputers, and
the use of expensive (and remote) timesharing or large
computers is consequently not required.

Table 1. PUM·80 Compiler Sample Factorial Generator Procedure

2

3 1
4 2
5 2
6 2

7, 2
9 2

10 3
11 3
12 4
13 4
14 4
15 4

16 3
17 3
18 4
20 4
21 4
22 4

24 2

25

SPECIFICATIONS

OPERATING ENVIRONMENT

Intel Microcomputer Development Systems
(Series II, Series III, Series IV)
Intel Personal Development System

ORDERING INFORMATION

Product Code Description

MDS *-PLM PLIM 80 High Level Language
Compiler. Needs Software License.

$OBJ ECT(:F1 :FACT.OB2)
$DEBUG
$XREF
$TITLE('FACTORIAL GENERATOR - PROCEDURE')
$PAGEWIDTH(80)

FACT:
DO;

DECLARE NUMCH BYTE PUBLIC;

FACTORIAL: PROCEDURE (NUM,PTR) PUBLIC;
DECLARE NUM BYTE, PTR ADDRESS;
DECLARE DIGITS BASED PTR (161) BYTE;
DECLARE (I,C,M) BYTE;

NUMCH = 1; DIGITS(1)= 1;
DO M = 1 TO NUM;

C=O;
DO 1= 1 TO NUMCH;

DIG ITS(I) = DIG ITS(I) * M + C;
C= DIGITS(I)/10;
DIGITS(I)= DIGITS(I) - 10*C;

END;

IF C<>O THEN
DO;

NUMCH = NUMCH + 1; DIGITS(NUMCH)= C;
C= DIGITS(NUMCH)/10;
DIGITS(NUMCH)= DIGITS(NUMCH) - 10*C;

END
END;

END FACTORIAL;

END;

DOCUMENTATION

PLIM 86 Programming Manual
ISIS-II PLIM 80 Compiler Operator's Manual

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Reports, and
Monthly Technical Newsletters are available.

'MDS is an ordering code only and is not used as a product or trademark: MDS'"' is a registered trademark of Mohawk Data Sciences
Corporation.

AFN·008188

4-50

inter
8087

SOFTWARE SUPPORT PACKAGE

• Program Generation for the SOS7
Numeric Data Processor on SOSO/SOS5
Based Intel Microcomputer
Development Systems

• Consists of: SOS6/S0S7/S0SS Macro
Assembler, SOS7 Software Emulator

• Macro Assembler Generates Code for
SOS7 Processor or Emulator, While
Also Supporting the SOS6/S0SS
Instruction Set

• SOS7 Emulator Duplicates Each SOS7
Floati'ng-Point Instruction in Software,
for Evaluation of Prototyping, or for
Use in an End Product

• Macro Assembler and SOS7 Emulator
are Fully Compatible with Other
SOS6/S0SS Development Software

• Implementation of the IEEE Proposed
Floating-Point Standard (the Intel®
Realmath Standard)

The 8087 Software Support Package is an optional extention of Intel's 8086/8088 Software Development
Package.

The 8087 Software Support Package consists of the 8086/8087/8088 Macro Assembler, and the Full 8087
Emulator. The assembler is a functional superset of the 8086/8088 Macro Assembler, and includes instruc­
tions for over sixty new floating-point operations, plus new data types supported by the 8087.

The 8087 Emulator is an 8086/8088 object module that simulates the environment of the 8087, and executes
each floating-point operation using software algorithms. This emulator functionally duplicates the operation
of the 8087 Numeric Data Processor.

Also included in this package are interface libraries to link with 8086/8087/8088 object modules, which are
used for specifying whether the 8087 Processor or the 8087 Emulator is to be used. This enables the run-time
environment to be invisible to the programmer at assembly time.

\
,\ .

II

The following are trademarks of Intel Corporation and may be used only to identify Intel products: BXP, CREDIT, Intellec, Multibus, i. iSBC, Multimodule, ICE, iSBX, PROMPT, iRMX,
iCS, Library Manager, Promware, Insite, MCS, RMX, Intel, Megachassis, UPI, Intelevision, Micromap, !,Scope and the combination of iCE, iCS, iSBC, iSBX, MCS, or RMX and a
numerical suffix.
©INTEL CORPORATION, 1983, SEPTEMBER 1984

ORDER NUMBER:40215Q·Q02

4-51

intJ 8087 SOFTWARE SUPPORT PACKAGE

FUNCTIONAL DESCRIPTION

8086/8087/8088 Macro Assembler

The 8086/8087/8088 Macro Assembler translates
symbolic macro assembly language instructions
into appropriate machine instructions. It is an ex­
tended version of the 8086/8088 Macro Assembler,
and therefore supports all of the same features and
functions, such as limited type checking, condi­
tional assembly, data structures, macros, etc. The
extensions are the new instructions and data types
to support floating-point operations. Realmath
floating-point instructions (see Table 1) generate
code capable of being converted to either 8087 in­
structions or interrupts for the 8087 Emulator. The
Processor/Emulator s'election is made via interface
libraries at LINK-time. In addition to the new

floating-point instructions, the macro assembler
also introduces two new 8087 data types: aWORD
(8 bytes) and TBYTE (ten bytes). These support the
highest precision of data processed by the 8087.

Full 8087'Emulator

The Full 8087 Emulator is a 16-kilobyte object mod­
ule that is linked to the application program for
floating-point operations. Its functionality is identi­
cal to the 8087 chip, and is ideal for prototyping and
debugging floating-point applications. The
Emulator is an alternative to the use of the 8087 chip,
although the latter executes floating-point applica­
tions up to 100 times faster than an 8086 with the
8087 Emulator. Furthermore, since the 8087 is a
"co-processor," use of the chip will allow many op~
erations to be performed in parallel with the 8086.

Table 1. 8087 Instructions

Arithmetic Instructions Processor Control Instructions

Addition FINIT/FNINIT Initialize processor

FADD Add real FDISI/FNDISI Disable interrupts
FADDP Add real and pop
FIADD Integer add

Subtraction

FENI/FNENI Enable interrupts

FLDCW Load control word

FSUB Subtract real
FSTCW/FNSTCW Store control word

FSUBP Subtract real and pop FSTSW/FNSTSW Store status word
FISUB Integer subtract
FSUBR Subtract rea,1 reversed
FSUBRP Subtract real reversed and

FCLEX/FNCLEX Clear exceptions

FSTENV/FNSTENV Store environment

pop FLDENV Load environment
FISUBR Integer subtract reversed FSAVE/FNSAVE Save state

Multiplication FRSTOR Restore state
FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply

FINCSTP Increment stack pointer

FDECSTP Decrement stack pointer

Division FFREE Free register

t-DIV Divide real FNOP No operation
FDIVP Divide real and pop FWAIT CPU wait
FIDIV Integer divide
FDIVR Divide real reversed
FDIVRP Divide real reversed and Comparison Instructions

pop
FIDIVR Integer divide reversed FCOM Compare real

Other Operations FCOMP Compare real and pop
FSQRT Square root
FSCALE Scale
FPREM Partial remainder

FCOMPP Compare real and pop
twice

FRNDINT Round to integer FICOM Integer compare
FXTRACT Extract exponent and

significand
FABS Absolute value

FICOMP Integer compare and pop

FTST Test

FCHS Change sign FXAM Examine

4-52
AFN·01574C

8087 SOFTWARE SUPPORT PACKAGE

Table 1. 8087 Instructions (cont'd)

Transcendental Instructions

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2"-1

FYL2X y. log2X

FYL2XP1 y. IOg2(X+1)

Constant Instruct.ions

FLDZ Load +0.0

FLD1 Load +1.0

FLDPI Load rr

FLDL2T Load log21O

FLDL2E Load log2e

FLDLG2 Load log 102

FLDLN2 Load 109.2

SPECIFICATIONS

Operating Environment'

REQUIRED HARDWARE
Intel Microcomputer Development Systems
-Series II
-Personal Development System
-Series IV

REQUIRED SOFTWARE
8086/8088 Software Development Package

ORDERING INFORMATION

Part Number Description

MDS*-387 8087 Software Support Package

Requires Software License

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available. '

Data Transfer Instructions

Real Transfers

FLD Load real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

Integer Transfers

FILD Integer load
FIST Integer store
FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD)
load

FBSTP Packed decimal (BCD)
store and pop

Documentation Package

8086/8087/8088 Macro Assembly Language Refer­
ence Manual for 8080/8085-8ased Development
Systems

8086/8087/8088 Macro Assembler Operating In­
structions for 8080/8085-8ased Development Sys­
tems

The 8086 Family Users Manual Supplement for the
8087 Numeric Data Processor

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

4-53 AFN·01574C

inter
8087 SUPPORT LIBRARY

• Library to support floating point
arithmetic in PUM-86 and ASM-86

• Common elementary function library
provides trigonometric, logarithmic
and other useful functions

• Decimal conversion module supports
binary-decimal conversions

• Error-handler module simplifies
floating point error recovery

'. Full 8087 Software Emulator for soft­
ware debugging without the 8087
component '

• Accurate, verified and efficient imple­
mentation of algorithms for functions

• Supports proposed IEEE Floating
Point Standard for high accuracy and
soft~are portability

The 8087 Support Library provides PUM·86 and ASM·86 users with the equivalent numeric data processing capability
of Fortriln·86. With the Library, it is easy for PUM·86 and ASM·86 programs to do floating point arithmetic. Programs
can link in modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed accurate,
reliable results for all appropriate inputs. The 8087 Support Library implements Intel's REALMATH standard and also
supports the proposed IEEE Floating Point Standard. Consequently, by using this Library, the PUM·86 user not only
saves software development time, but is guaranteed ·that the numeric software meets industry standards and is
portable-his software investment is maintained.

The 8087 Support Library consists of the common elementary function library, the decimal conversion module, the
error handler module, the full 8087 Software emUlator and Interface libraries to the 8087 and to the 8087 emulator.

B.PLM

A.PLM

IDq,rTNN. rRQCEDUAE (THETA) REAL UTtRNAL:
DECLARE THETA REAL;

[NO mqllrTNN,

DECLARE (INPUT VAWE, OUTPUT_ VALUE) ilEAL;

INPUT __ VALUE-062; " T,.luII·'

OUTPUT _ VALUE. mqerTNN(INPUr _ VALUE),

D.ASM

C.ASM
; ThIS [XTRM mUll app.ar oUl~ld. 01.11 SEGMENT· ENDS

INPUT VALUE DO 4062 . mlll.hullon , •• ' •• 1
valull

,Tbe lot!ow'Q", cod,duphut,.th •• bov, PLIN

: ::rl,~~::nl 1llIlemen!. ucept wllh LONG REAL

;:T~L ;u~~~H VAWE : :7!;.t~:. h::::::I:~:n::;\h'
,B087.,.ck

• W,th th. , .. t Input, OUTPUT VALUE II now .boul
,055112803

©INTEL CORPORATION, 1983.

8081 SUPPORT
LIBRARY

4·54

LINKED USER
OBJECT MODULE

MAY 1983

ORDER NUMBER:121653-001

8087 SUPPORT LIBRARY

CEL87.LIB
THE COMMON ELEMENTARY FUNCTION LIBRARY

CElB7.LlB contains commonly used floating point functions. It is used along with the BOB7 numeric coprocessor or
the 8087 emulator and it provides a complete package of elementary functions, giving valid results for all appropriate
inputs. This library provides PUM-B6 and ASM-86 users all the math functions supported intrinsically by the
Fortran-86. Following is a summary of CEl87 functions, grouped by functionality.

Rounding and Truncation Functions:

mqerlEX, mqerlE2, and mqerlE4 round a real number to the nearest integer; to the even integer if there is a tie. The
answer returned is real, a 16-bit integer or a 32-bit integer respectively.

mqerlAX, mqerlA2, mqerlA4 round a real number to the nearest integer, to the integer away from zero if there is a tie;
the answer returned is real, a 16-bit integer or a 32-bit integer, respectively.

mqerlCX, mqerlC2, mqerlC4 truncate the fractional part of a real input; the answer is real, a 16-bit integer or a 32-bit in-
teger, respectively.

Logarithmic and Exponential Functions:

mqerlGD computes decimal (base 10) logarithms.
mqerlGE computes natural (base e) logarithms.
mqerEXP computes exponentials to the base e.
mqerY2X computes exponentials to any base.
mqerYI2 raises an input real to a 16-bit integer power.
mqerYI4 is as mqerYl2, except to a 32-bit integer power.
mqerYIS is as mqerYl2, but it accommodates PUM-B6 users.

Trigonometric and Hyperbolic Functions:

mqerSIN, mqerCOS, mqerTAN compute sine, cosine, and tangent.
mqerASN, mqerACS, mqerATN compute the corresponding inverse functions.
mqerSNH, mqerCSH, mqerTNH compute the corresponding hyperbolic functions.
mqerAT2 is a special version of the arc tangent function that accepts rectangular coordinate inputs.

Other Functions:

mqerDIM is FORTRAN's positive difference function.
mqerMAX returns the maximum of two real inputs.
mqerMIN returns the minimum of two real inputs.
mqerSGH combines the sign of one input with the magnitude of the other input.
mqerMOD computes a modulus, retaining the sign of the dividend.
mqerRMD computes a modulus, giving the value closest to zero.

DCON87.LIB
THE DECIMAL CONVERSION LIBRARY

DCON87.LlB is a libra~ of procedures which convert binary representations of floating point numbers and ASCII­
encoded string of digits.

The binary-to-decimal procedure mqcBIN DEClOW accepts a binary number in any of the formats used for the
representation of floating point numbers in the 8087. Because there are so many output formats for floating point
numbers, mqcBIN_DEClOW does not attempt to' provide a finished, formatted text string. Instead, it provides the
"building blocks" for you to use to construct the output string which meets your exact format specification.

AFN-02063B

4·55

8087 SUPPORT LIBRARY

The decimal-to-binary procedure mqcDEC_BIN accepts a text string which consists of a decimal number with
optional sign, decimal point, and/or power-of-ten exponent. It translates the string into the caller's choice of binary
formats.

Decimal-to-binary procedure mqcDECLOW_BIN is provided for callers who have already broken the decimal number
into its constituent parts.

The procedures mqcLONG_TEMP, mqcSHORT_TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT convert floating
point numbers between the longest binary format, TEMP_REAL, and the shorter formats.

EHS7.LIB
THE ERROR HANDLER MODULE

EH87.LlB is a library of five utility procedures which a user can utilize for writing trap handlers. Trap handlers are
called when an unmasked 8087 error occurs.

The 8087 error reporting mechanism can be used not only to report error conditions, but also to let software implement
IEEE standard options not directly supported by the chip. The three such extensions to the 8087 are: normalizing
mode, non-trapping not-a-number (NaN), and non-ordered comparison. The utility procedures support these extra
features.

DECODE Is called near the beginning of the trap handler. It preserves the complete state of the 8087, and also iden­
tifies what function called the trap handler, and returns available arguments and/or results. DECODE eliminates much
of the effort needed to determine what error caused the trap handler to be called.

NORMAL provides the "normalizing mode" capability for handling the "0" exception. By calling NORMAL in your trap
handler, you eliminate the need to write code in your application program which tests for non-normal inputs.

SIEVE provides two capabilities for handling the "I" exception. It Implements non-trapping NaN's and non-ordered
comparisons. These two IEEE standard features are useful for diagnostic work.

ENCODE is called near the end of the trap handler. It restores the state of the 8087 saved by DECODE, and performs a
choice of concluding actions, by either retrying the offending function or returning a specified ,result.

FILTER calls each of the above four procedures. If your error handler does nothing more than detect fatal errors and
implement the features supported by SIEVE and NORMAL, then your interface to EH87.LlB can be accomplished with
a single call to FILTER.

ESOS7
THE FULL SOS7 EMULATOR

E8087 is an object module that functionally emulates the 8087 coprocessor chip. It is ideal for use during prototyping
and debugging floating point programs. However, the target system should use the 8087 component because it exe­
cutes 1000 times faster and uses significantly less memory.

AFN-02063B

4-56

8087 SUPPORT LIBRARY

E8087.LIB, 8087.LIB, 87NULL.LIB
INTERFACE LIBRARIES

E8087. LIB, 8087.LlB and 87NULL. LIB libraries configure a user's application program for his run·time environment:
running with the emulator, with the 8087 component or without floating point arithmetic, respectively.

SPECIFICATIONS

TARGET ENVIRONMENT

808618088 Based Microcomputer System

DEVELOPMENTEN~RONMENT

Required Hardware

All Intel Microcomputer Development Systems (Series II,
Series III/Series IV)

• Recommended

ORDERING INFORMATION

Part Number

MDS*-319

Description

8087 Support Library

Requires Software License

SUPPORT

Intel offers 'several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

Required Software

For Series II:

808618088 Software Development Package

Documentation Package

Numeric Support Library Manual

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

AFN·02063B

4·57

inter
80287 SUPPORT LIBRARY

• Library to support floating
point arithmetic in Pascal-286,
PL/M-286 and ASM-286

• Decimal conversion module
supports bi,nary-decimal
conversions

• Supports proposed IEEE Floating
Point Standard for high accuracy
and software portability

• Common elementary function library
provides trigonometric, logarithmic
and other useful functions

• Error-handler module simplifies
floating point error recovery

The 80287 Support Library provides Pascal-286, PUM-286 and ASM-286 users with numeric dat~ processing
capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can bind in library
modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed accurate,
reliable results for all appropriate inputs. Figure 1 below illustrates how the 80287 Support Library can be
bound with PUM-286 and ASM-286 user code to do this. The 80287 Support Library supports the proposed
IEEE Floating Point Standard. Consequently, by using this Library, the user ,not only saves software develop­
ment time, but is guaranteed that the numeric software meets industry standards and is portable--the
software investment is maintained.

The 80287 Support Library consists of the common elementary function library (CEL287.L1B), the decimal
conversion library (DC287.L1B), the error handler module (EH287.L1B) and interface libraries (80287.L1B,
NUL287.L1B).

B,PLM

A,PLM

mQ~r:~t~::~~:fAU~~lr~ET"') REAL eXTERNAL
ENDmqerTNH

DECL,t.REIINPUTVALUE,OUTPUTVAlUE)REAL:

INPUT VALUe.062,I"Test valueo,

OUTPUTVALUE.mqerTNH(INPUT VALUE)

~~~~~!~ laslmput. OUTPUT VALUE'5 about 

'O,ASM 

C,ASM 

.~~;~s EXTRN must appea' outSIde of all SEGMENT·ENDS 

EXTRN mQerTNH' FAR 

INPUT VAlUe DOI'()62) :1/~I~~alllalion IS a lest 

Thefollowll'lgcocieduphcaleslheabovePln.A 
'=::'I'~~~:nl Italemanl, Blcept Wllh LONG FIE,\\. 

FLO INPUT VALUE :~:::~ tile paramenia. '1'110 the 80287 

CAllmqerTNH laI<ethehyerbohc tangent 
FSTP OUTPUT VALUE .:~g;:;~~~s_ and pop the 

80287 SUPPORT 
LIBRARY 

Figure 1. Use of 80287 Support Library with PLlM-286 and ASM-286. 

Intel Corporation Assumes No Responsibilit~ for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel, Product. No Other Circuit Patent Licenses are implied, 
~Wrf~~i~o~~3~~~JiJ.r~i~8~upercedes reviously Published Specifications of These Oevices from Intel. MARCH 1984 

ORDER NUMBER: 231041·001 

4-58 



8027 SUPPORT LIBRARY 

CEL287.LIB 
THE COMMON ELEMENTARY FUNCTION LIBRARY 

FUNCTIONS 

CEL287.LlB contains commonly used floating point 
functions. It is used along with the 80287 numeric 
coprocessor. It provides a complete package of 
elementary functions, giving valid results for all 
appropriate inputs. Following is a summary of CEL287 
functions, grouped by functionality. 

Rounding and Truncation Functions: 

mqerlEX, mqerlE2, and mqerlE4. Round a real 
number to the nearest integer; to the 
even integer if there is a tie. The answer 
returned is real, a 16-bit integer or a 32-bit 
integer respectively. 

mqerlAX, mqerlA2, mqerlA4. Round a real number 
to the nearest integer, to the integer away 
from zero if there is a tie; the answer 
returned is real, a 16-bit integer or a 32-bit 
integer, respectively. 

mqerlCX, mqerlC2, mqerlC4; Truncate the frac­
tional part of a real input; the answer is 
real, a 16-bit integer or 32-bit integer, 
respectively. 

Logarithmic and Exponential Functions: 

mqerLGD computes decimal (base 10) logarithms. 
mqerLGE computes natural (base e) logarithms~ 
mqerEXP computes exponentials to the base e. 

mqerY2X 
mqerY12 

mqerY14 

mqerYIS 

computes exponentials to any base. 
raises an input real to a 16-bit integer 
power. 
is as mqerY12, except to a 32-bit integer 
power. 
is as mqerY12, but it accommodates 
PUM-286 users. 

Trigonometric and Hyperbolic Functions: 

mqerSIN, mqerCOS, mqerTAN compute sine, 
cosine, and tangent. 

mqerASN, mqerACS, mqerATN compute the cor­
responding inverse functions. 

mqerSNH, mqerCSH, mqerTNH compute the cor­
responding hyperbolic functions. 

mqerAT2 is a special version of the arc tangent 
function that accepts rectangular coor­
dinate inputs. 

Other Functions: 

mqerDIM is FORTRAN's positive difference 
function. 

mqerMAX returns the maximum of two real inputs. 
mqerMIN returns the minimum of two real inputs. 
mqerSGH combines the sign of one input with the 

magnitude of the other input. 
mqerMOD computes a modulus, retaining the sign 

of the dividend. 
mqerRMD computes a modulus, giving the value 

closest to zero. 

DC287.LIB 
THE DECIMAL CONVERSION LIBRARY 

DC287.LlB is a library of procedures which convert 
binary representations of floating point numbers and 
ASCII-encoded string of digits. . 

The binary-to-decimal procedure mqcBIN_DECLOW 
accepts a binary number in any of the formats used 
for the representation of floating point numbers in the 
80287. Because there are so many output formats 
for floating point numbers, mqcBIN_DECLOW does 
not attempt to provide a finished, formatted text string. 
Instead, it provides the "building blocks" for you to 
use to construct the output string which meets your 
exact format specification. 

4·59 

The decimal-to-binary procedure mqcDEC_BIN 
accepts a text string which consists of a decimal 
number with optional sign, decimal point, and/or 
power-of-ten exponent. It translates the string into the 
caller's choice of binary formats. 

Decimal-to-binary procedure mqcDECLOW _BIN is 
provided for ca'Uers who have already broken the 
decimal number into its constituent parts. 

The procedures mqcLONG_ TEMP, mqcSHORT_ 
TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT 
convert floating point numbers between the longest 
binary format, TEMP_REAL, and the shorter formats. 

231041·001 



80287 SUPPORT LIBRARY 

EH287.LIB 
THE ERROR HANDLER MODULE 

EH287.LlB is a library of five utility procedures for 
writing trap handlers. Trap handlers are called when 
an unmasked 80287 error occurs. 

The 80287 error reporting mechanism can be used 
not only to report error conditions, but also to let spft­
ware implement IEEE standard options not directly 
supported by the chip. The three such extensions to 
the 80287 are: normalizing mode, non-trapping not­
a-number (NaN), and non-ordered comparison. The 
utility procedures support these extra features. 

DECODE is called near the beginning of the trap 
handler. It preserves the complete state of the 80287, 
and also identifies what function called the trap 
handler, and returns available arguments and/or 
results. DECODE eliminates much of the effort 
needed to determine what error caused the trap 
handler to be called. 

NORMAL provides the "normalizing mode" capability 
for handling the "0" exception. By calling NORMAL 

in your trap handler you eliminate the need to write 
code in your applicauon program which tests for non­
normal inputs. 

SIEVE provides two capabilities for handling the "I" 
exception. It implements non-trapping NaN's and non­
ordered comparisons. These two IEEE standard 
features are useful for diagnostic work. , 

ENCODE is called near the end of the trap handler. 
It restores the state of the 80287 saved by DECODE, 
and performs a choice of concluding actions, by either 
retrying the offending function or returning a specified 
result. 

FILTER calls each of the above four procedures. If 
your error handler does nothing more than detect fatal 
errors and implement the features supported by 
SIEVE and NORMAL, then your interface to 
EH287.lIB can be accomplished with a single call to 
FILTER. ' 

80287.LIB, NUL287.LIB 
INTERFACE LIBRARIES 

80287.LlB and NUL287.lIB libraries configure a 
user's application program for his run-time environ-

SPECIFICATIONS 

Operating' Environment 

Intel Microcomputer Developmerlt Systems (Series 
III, Series IV) 

Documentation Package 

80287 Support Library Reference Manual 

ORDERING INFORMATION 

Part Number 

iMDX329 ' 

Requires Software License 

SUPPORT 

Description 

80287 Support Library 

Intel offers several levels of support for this product 
which are explained in detail in the price list. Please 

4·60 

ment; running with the 80287 component or without 
floating point arithmetic, respectively. 

Related Software 

A 80287 software emulator is available as part of the 
8086 software toolbox (iMDX364) 

consult the price list for a description of the support 
options available. 

231041-001 



intJ 
8089 lOP 

SOFTWARE SUPPORT PACKAGE 
#407200 

• Program Generation for the 8089 I/O 
Processor on the Intellec® 
Microcomputer Development System 

• Contains 8089 Macro Assembler, plus 
Relocation and Linkage Utilities 

• Relocatable Object Module 
Compatible with All iAPX 86 and iAPX 
88 Object Modules 

• Fully Supports Symbolic Debugging 
with the RBF-89 Software Debugger 

• Supports 8089-Based Addressing 
Modes with a Structure Facility that 
Enables Easy Access to Based Data 

• Powerful Macro Capabilities 

• Provides Timing Information in 
Assembly Listing 

• Fully Detailed Set of Error Messages 

The lOP Software Support Package extends Intellec Microcomputer Development System support to the 8089 
liD Processor. The macro assembler translates symbolic 8089 macro assembly language instructions into 
relocatable machine code. The relocation and linkage utilities provide compatibility with iAPX 86, iAPX 88, and 
8089 modules, and make structured, modular programming easier. 

The macro assembler also provides symbolic debugging capability when used with the RBF-89 software 
debugger. 8089 program modularity is supported with inter-segment jumps and calls. The macro assembler 
also provides instruction cycle counts in the listing file, for giving the programmer execution timing informa­
tion. The programs in the 8089 Software Support Package run on any Intellec Series II or Model 800 with 64K 
bytes of memory. 

• 

The lollowing are trademarks 01 Intel Cor;loration and may be used only to identify Intel products: BXP. CREDIT. Intellee. Multibus. i. iSBC. Multimodule. ICE. iSBX. PROMPT. iCS. 
iRMX, library Manager, Promware,lnsite, MCS, RMX, Intel, Megachassis, UPl,lntelevision, Micromap, jLScope and the combination 01 iCE, iSBC, iSBX, MeS, or RMX and a numerical 
suffix. MAY 1983 
© INTEL CORPORATION 1983 ORDER NUMBER:210853-002 

4-61 



intJ 8089 lOP SOFTWARE SUPPORT PACKAGE 

Table 1. Sample Program Listing 

~9.;9 "ACRO ASSn'LlR 

li)lli-ll ~iUj ''''CAG .tS:·Ii"iL[~ Xl0~ M:)~E"BL.f OF "ODULE T~SI( 
DB lEer ~tJDULE PLACE~ ! ... 'r1· TMSt: OBJ 
A'J)E~a!..ER IHVOKEtt 8"': .:IIs·"lct ;(1 :tosk 099 9'" • .aero d.bu9 P09.,,;dth(lJ2) print( :rlltD.kx 1.t) 

LO·; 

8811 

':1 .. 
~ .. , 
U .. 

.... 
I .. ' .... .... 

'1112 
11\' 

.111 

lilA 

IIIC 

"IF 

OilJECT eOH 

1111 ........ 
JIl • ... 2 
5111 ........ 
6112 .. ,. .. to 
.. It 

2138 

413t 

484. FJ 

Ill. "CI 

-~.~~~--
"27 113' lin 
8121 '118 ...... II 
1111 6182 

IIll "" FD 
8116 '''1 .Itt 

BIN 2in 

allt 411t 

BIlE 48.' F2 

eaH 114' 
aOB 

Hi ;E .. BL It (O"PLEfE; NO 

T I~ I ~G 

3a 4. 

47 71 
77 117 
'2 ,n 

124 185 
\34 282 

144 2" 

15. 2U 

173 2~' 

1 i 1- 2H 
21~ ]19 

227 1]4 
20 lea 
291 482 

31,. 434 
J3~ 488 

348 4ct7 

359 'I' 
377 '3i' 

3'1 '62 

ER~ORS FI.'U!H· 

I"e .Mt LIME SOURCE 

*\ 
*\ 
*1 

*' 
*l 
*1 
*2 
'1 
'l 
*2 
*1 

-, 
+\ 

'2 
.\ 

'2 

'l 
-2 

1 .................................................... . 
2 • 
3 aaa' TAS~ PROCRA" .. 
5 ••••••••••••••••••••••••••••••••••••••••••••••••••• 

• 
j' nrr.",. TASK 
9 TitS": J.q .. _nt , 

fa In tn. (.,-,t port or thiS s ... pt. prog,.." dato. is "oved rrOft 
II ; 818' s~st.'" RAM to .. 1 .. 0,,'-1 local to the .1., lOP In Ut. lecond 
12 ; port. the dote il f'IIovld rrOft ttl. locol " ... or .. to • dot. port 
13 ; otso in th. 888' I/O spoc. 
I. 
t 5 dQ\Qlport.8251 .qu 
I' co.uu,nd'portt8251 .qu 
17 bufru'I8181) .qu 
18 

ae8Uh 
aeau h 
a2B8h 

;a251 OP on 8181) 10cll bu. 
; 82'1 ep on .1., local btll 
;RA" ,buff'.,.. i.n .I.a, 1/0 .pae. 

II) •• t,.n but r.,.@lBla, 
211 • "t,..n w 

; RA" burr.,. in .1.' S~lt ... "."0"\1 
; 1 ocot I on of' th. buf".,. count 

21 
22 ;;.d.f' i ne (l"IQ,cro. I) 
2J \ 9b. buf' r.,..8IBI) 
24 t pd, 9C.~-
25 fIIovb bc, [9C) 
26 , 
27 %,-def'1 n. (.ucro.2( PQ';I". t, po,.. .. ,.2» 
28 ( inc '=p.,.I11".1 ' 
2, d.e ~pi."1 "_2 
JI jnz >';por: .. ~ ... 2,>';'oop 
31 , 
32 ONE, 
Jl 
3 4 '~ .. Q C,. ° 1 
35 
H 
J7 
38 

Ipd. 

gb, b ... rt.r.8181) 
9(' V 
be. [ge I 

n '.opll: •• vb [9bl.J901 
41 inc IJO 
41 >';I\.e,.o.2( 9b; gc) 
42 >.PARAO_' 

= Ko"'. ~urr.,. a.dd,. •• s into CI 
, load pOint.,. to count Into ce 
; Mov. b\1te count into Ie 

lac. \ loop 
; Jnc,...".nt pOinte,.. Into ,au"c. 
J D.c,.. .... nt byte count 

Loop blck i' byte count ) • 

J load ,...,I,te,.. tA "Ith odd,..,. 
1 Dr al.' burr.,.. 

Move burrer odd,..,. into CI 
Load po inte,.. to caynt into tC 
Mo •• byte count into Ie 

J Mov. byte ''''0'' .1.' to '1" burr.,.. 
J Jnc,..".nt pOinter Into .1.' bu'''." 

"3 9b ; Jne,. .... nt palnt.,. into ,ou,.ee 
44 d.c ~PAAA" 2 
45 gc ; ·Oee,...".nt b\1te count 
'" J nz %Pj:tP.A"_2 
47 gc .%LOOP 
'9 LOOPU ; loop bock It byte count) • ., 
5a rwo, g •• d.t.lp .. U9251 

'5t "Ovi CJ_o---.:~~~"!_~_,!,~~~~~~, 
load Cit! With add,.. ••• 0' .251 OP 
\ood CC .. ith add,. •• , ot 82'. CP 

5-2' %lIIocro ,- -----
~3 - gb. bur '."'e8a, 
,. I pd. ge. ~ 
55 ftovb be. (gc) 
56 

Rov. burt.,. odd,..,. into CI 
load pOinter to count into Cc 
Rove byte count into Bt 

'7 lo<)pBl: jnbt (gcLI.toopI1 
~8 ftovb (90 ), [gb 1 

toop untl \ 12'. t,.ln ... it ..... dy 
fila'll ...... 19. into butr.,. 

" :·.'H,cr'o_2( 9b IJc) 
68 ',PARA , 
'1 gb Inc,.",,,.nt pOint.,. into ,ou"'e. 
62 d.e :,PIoIRI4 2 
'1 9' [I.cr".unt b':tt. count 
'4 J n:z \PARA 2 
.5 9c· %lOJP 
" LOOF 91 . ~ 
t9 
';'3 rASt.: 
~B E NO 

4·62 

: Loop back if' byte count > • 

AFN-008408C 



8089 lOP SOFTWARE SUPPORT PACKAGE 

FUNCTIONAL DESCRIPTION 

The lOP Software Support Package contains: 

ASM89 -The 8089 Macro Assembier. 

L1NK86 - Resolves control transfer references be­
tween 8089 object modules, and data ref­
erences in 8086, 8088, and 8089 
modules. 

LOC86 -Assigns absolute memory addresses to 
8089 object modules. 

OH86 -Converts absolute object modules to 
hexadecimal format. 

UPM -The Universal PROM Mapper, which sup-
ports PROM programming in all iAPX 
86/11 and iAPX 88/11 applications.· 

ASM89 translates symbolic 8089 macro assembly 
language instructions into the appropriate machine 
codes. The ability to refer to both program and data 
addresses with symbolic names makes it easier to 
develop and modify programs, and avoids the errors 
of hand translation. 

The powerful macro facility allows frequently used 
code sequences to be referred to by a single name, 

SPECIFICATIONS 

Operating Environment 
Intel Microcomputer Development Systems (Model 
800, Series II, Series III, Series IV) 

. Support 
Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Reports, 
and Monthly Technical Newsletters are available. 

Documentation Packa~e 

8089 Macro Assembler User's Guide (9800938) 

8089 Macro Assembler Pocket Reference (9800936) 

MCS-86 Software Development Utilities Operating 
Instructions for IS/S-1/ Users (9800639) 

Universal PROM Programmer User's Manual 
(9800819) 

4·63 

so that any changes to that sequence need to be 
made in only one place in the program. Common 
code sequences that differ only slightly can also be 
referred to with a macro call, and the differences can 
be substituted with macro parameters." 

ASM89 provides symbolic debugging information in 
the object file. The RBF-89 debugger makes use of 
this information, so the programmer can symboli­
cally debJ,Jg 8089 programs. ASM89 also provides 
cycle counts for each instruction in the assembly 
listing file (see Table 1). These cycle counts help th'e 
programmer determine how long a particular 
routi neor code sequence will take to execute on the 
8089. 

ASM89 provides relocatable object module com­
patibility with the 8086 and 8088 microprocessors. 
This object module compatibility, along with the 
8086/8088 relocation and linkage utilities, facilitates 
the designing of iAPX 86/11 and iAPX 88/11 systems. 

ASM89 fully supports the based addressing modes 
of the 8089. A structure facility allows the user to 
define a template that enables accessing of based 
data symbolically. 

Shipping Media 

-Single and Double Density Diskettes 

ORDERING INFORMATION 

Part Number Description 

MDS*-312 8089 lOP Software Support Package 

Requires Software License 

*MDS is an ordering code only and is not used as a product name 
or trademark. MDS~ is a registered trademark of Mohawk Data 
Sciences Corporation. 



8051 
SOFTWARE PACKAGES 

PLlM51 Software Package Contains the 
following: 

• PLlM51 Complier which is designed to 
support all phases of software 
implementation 

• RL51 Linker and Relocator which 
enables programmers to develop 
software in a modular fashion 

• LlB51 Librarian which lets 
programmers create and maintain 
libraries of software object modules 

LEGEND 

D ~""T~~:::~O~~~~DOLS 

IDI MCS-51 
SOFTWARE TOOLS 

O USER-CODED 
SOFTWARE 

8051 Software Development Package 
Contains the following: 

• 8051 Macro Assembler which gives 
symbolic access to 8051 hardware 
features 

• RL51 Linker and
o 

Relocator program 
which links modules generated by 
the assembler 

• CONV51 which enables software 
written for the MCS® -48 family to be 
up graded to run on the 8051 

• LlB51 Librarian which lets 
programmers create and maintain 
libraries of software object modules 

Figure 1. MCS®-S1 Program Development Process 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit 
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel. 

© INTEL CORPORATION, 1983 MARCH 1984 
ORDER NUMBER: 162771-002 

4-64 



8051 SOFTWARE PACKAGES 

PL/M 51 SOFTWARE PACKAGE 
• High-level programming language for 

the Intel MCS®-51 single-chip 
microcomputer family 

• Compatible with PL/M 80 assuring 
MCS®-80/85 design portability 

• Enhanced to support boolean 
processing 

• Tailored to provide an optimum balance 
among on-chip RAM usage, code size 
and code execution time 

• Allows programmer to have complete 
control of microcomputer resources 

• Produces relocatable object code 
which is linkable to- object modules 
generated by all other 8051 translators 

• Extends high-level language 
programming advantages to 
microcontroller software development 

• Improved reliability, lower maintenance 
costs, increased programmer 
productivity and software portability 

• Includes the linking and relocating 
utility and the library manager 

• Supports all members of the Intel 
MCS®-51 architecture 

PL/M 51 is a structured, high-level programming language for the Intel MCS-51 family of microcomputers. The 
PL/M 51 language and compiler have been designed to support the unique software development require­
ments of the single-chip microcomputer environment. The PLIM language has been enhanced to support 
Boolean processing and efficient access to ,the microcomputer functions. New compiler controls allow the 
programmer complete control over what microcomputer resources are used by PLIM programs. 

PL/M 51 is largely compatible with PL/M 80 and PLIM 86. A significant proportion of existing PLIM software can 
be ported to the MCS-51 with modifications to support the MCS-51 architecture. Existing PLIM programmers 
can start programming for the MCS-51 with a small relearning effort. 

PL/M 51 is the high-level alternative to assembly language programming for the MCS-51. When code size and 
code execution speed are not critical factors, PL/M 51 is the. cost-effective approach to developing reliable, 
maintainable software. 
The PL/M 51 compiler has been designed to support efficiently all phases of software implementation with 
features like a syntax checker, multiple levels of optimization, cross-reference generation and debug record 
generation. 

LEGEND 

D ~~T~~~~~~~:o"6~~~;OOLS 

IDIMCS-51 
SOFTWARE TOOLS 

O USER-CODED 
SOFTWARE 

Figure 2. PLlM51 Software Package 

4·65 AFN·00047C 



inter 8051 SOFTWARE PACKAGES 

PL/M 51 Compiler 
FEATURES 

Major features of the Intel PL/M 51 compiler and 
programming language include: 

Structured Programming 

PL/M source code is developed in a series of mod­
ules, procedures, and blocks. Encouraging program 
modularity in this manner makes programs more 
readable, and easier to maintain and debug. The 
language becomes more flexible, by clearly defining 
the scope of user variables (local to a private proce­
dure, for example). 

Languag~ Compatiblity 

PL/M 51 object modules are compatible with object 
modules generated by all other MCS-51 translators. 
This means that PLIM programs may be linked to 
programs written in any other MCS-51 language. 

Object modules are compatible with In-Circuit 
Emulators and Emulation Vehicles for MCS-51 pro­
cessors; the DEBUG compiler control provides these 

,tools with symbolic debugging capabilities. 

Supports Three Data Types 

PL/M makes use of three data types for various ap­
plications. These data types range from one to six-' 
teen bits and facilitate various arithmetic, logic, and 
address functions: 

-Bit: a binary digit 
-Byte: 8-bit unsigned number or, 
-Word: 16-bit unsigned number. 

Another powerful facility allows the use of BASED 
variables that map more than one variable to the 
same memory location. This is especially useful for 
passing parameters, relative and absolute address­
ing, and memory allocation. 

Two Data Structuring Facilities 

PL/M 51 supports two data structuring facilities. 
These add flexibility to the referencing of data stored 
in large groups. 

-Array: Indexed list of same type data elements 
-Structure: Named collection of same or different 

type data elements 
-Combinations of Both: Arrays of structures or 

structures of arrays. 

Interrupt Handling 

A procedure may be defined with the INTERRUPT 
attribute. The compiler will generate code to save 
and restore the processor status, for execution of the 
user-defined interrupt handler routines. 

Compiler Controls 

The PLIM 51 compiler offers controls that facilitate 
such features as: 

-Including additional PLIM 51 source files from 
'disk 

-Cross-reference 
-Corresponding assembly language code in the 

listing file 

Program Addressing Control 

The PL/M 51 compiler takes full advantage of 
program addressing with, the ROM (SMALL/ 
MEDIUM/LARGE) control. Programs with less t.han 2 
KB code space can use the SMALL or MEDIUM op­
tion to generate optimum addressing instructions. 
Larger programs can address over the full 64 KB 
range. 

Code Optimization 

The PL/M 51 compiler offers four levels of optimiza­
tion for Significantly reducing overall program size. 

-Combination or "folding" of constant expressions; 
"Strength reductions" (a shift left rather than mUl­
tiply by 2) 

-Machine code optimizations; elimination of super­
fluous branches 

-Automatic overlaying of on-chip RAM variables 
-Register history: an off-chip variable will not be. 

reloaded if its value is available in a register. 

'Error Checking 

The PL/M 51 compiler has a very powerful feature to 
speed up compilations. If a syntax or program error is 
detected, the compiler will skip the code generation 
and optimization passes. This usually yields a 2X 
performance increase for compilation of programs 
with errors. 

A fully detailed set of programming and compilation 
error messages is provided by the compiler and 
user's guide. 

4·66 
AFN·00047C 



8051 SOFTWARE PACKAGES 

BENEFITS 

PL/M 51 is designed to be an efficient, cost-effective 
solution to the special requirements of MCS-51 Mi­
crosystem Software Development, as illustrated by 
the following benefits..of PL/M use: 

Low Learning Effort 

PL/M 51 is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M 51, a structured 
high-level language, increases programmer 
productivity. 

Lower Development Cost 

Increases in programmer productivity translate im­
mediately into lower software development costs be­
cause less programming resources are required for a 
given programmed function. 

Increased Reliabilty 

PL/M 51 is designed to aid in the development of 
reliable software (PL/M programs are simple 
statements of the program algorithm). This substan­
tia"y reduces the risk of costly correction of errors in 
systems that have already reached full production 
status, as the more simply stated the program is, the 
more likely it is to perform its intended function. 

Easier Enhancements and Maintenance 

Programs written in PLIM tend to be self­
documenting, thus easier to read and understand. 
This means it is easier to enhance and maintain 
PLIM programs as the system capabilities expand 
and future products are developed. 

RL51 Linker and Relocator 

• Links modules generated by the 
assembler and the PL/M compiler 

• Locates the linked object to absolute 
memory locations 

• Enables modular programming of 
software-efficient program 
development 

• Modular programs are easy to 
understand, maintainable and reliable 

The MCS-51 linker and relocator (RL51) is a utility which enables MCS-51 programmers to develop software in a 
modular fashion. The utility resolves a" references between modules and assigns absolute memory locations to 
a" the relocatable segments, combining relocatable partial segments with the same name. 

With this utility, software can be developed more quickly because sma" functional modules are easier to 
understand, design and test than large programs. 

The total (lumber of allowed symbols.in user-developed software is very large because the assembler number of 
symbols' limit applies only per module, not to the entire program. Therefore programs can be more readable 
and better documented. 

Modules can be saved and used on different programs. Therefore the software investment of the customer is 
maintained. 

RL51 produces two files. The absolute object module file can be directly executed by the MCS-51 family. The 
listing file shows the results of the link/locate process. 

4-67 AFN-00047C 



8051 SOFTWARE PACKAGES 

LIB51 Librarian 
The LlB51 utility enables MCS-51 programmers to 
create and maintain libraries of software object mod­
ules. With this utility, the customer can develop stan­
dard software modules and place them in libraries, 
which programs can access through a ,standard in­
terface. When using object libraries, the linker will 

SPECIFICATIONS 

Operating Environment 

All Intel Microcomputer Development Systems or 
Intel Personal Development Systems 

ORDERING INFORMATION 

Part Number 

iMDX 352 
Requires Software License 

Description 

PL/M 51 Software 
Package 

call only object modules that are required to satisfy 
external references. . 

Consequently, the librarian enables the customer 
to port and reuse software on different projects 
-thereby maintaining the customer's ~oftware 
investment. 

Documentation Package 

PL/M 51 User's Guide 
, MCS-51 Utilities User's Guide 

SUPPORT: 

Hotline Telephone Support. Software Performance Re­
port (SPR). Software Updates. Technical Reports. and 
monthly Technical Newsletters are available. 

4-68 
AFN-00047C 



8051 SOFTWARE PACKAGES 

8051 SOFTWARE DEVELOPMENT PACKAGE 

• Symbolic. relocatable assembly 
language programming for 8051 
microcontrollers 

• Extends IntelleC® Microcomputer 
Development System to support 8051 
program development 

• Produces Relocatable Qbject Code 
which is linkable to other 8051 Object 
Modules 

• Encourage modular program design 
for maintainability and reliability 

• Macro Assembler features conditional 
assembly and macro capabilities 

• CONV51 Converter for translation of 
8048 assembly language source code 
to 8051 assembly language source 
code 

• Provides upward compatibility from 
the MCS-48™ family of single-chip 
microcontrollers 

The 8051 software development package provides development system support for the powerful 8051 family of single 
chip microcomputers. The package contains a symbolic macro assembler and MCS-48 source code converter. 

The assembler produces relocatable object modules from 8051 macro assembly language instructions. The object 
code modules can be linked and located to absolute memory locations. This absolute object code may be used to pro­
gram the 8751 EPROM version of the chip. The assembler output may also be debugged using the ICE-51™ in-circuit 
emulator. 

The converter translates 8048 assembly language instructions into 8051 source instructions to provide software com­
patibility between the two families of microcontrollers. 

MCS,~1"SO'" to SO~1 
... sSt: .... UyljU"OVAQI!l 

CONVI:HHAOPf" ... Tt"'O 
IN$.tRUCJtON$ '-OR liilS-1l USU,S 1 \ 

4-69 

H 
II 
il 
il 
II 
iI 
I' 

" Ii 
II 
1·1 
II 

n U • 
. ""umft~~ 

AFN-00047C 



8051 SOFTWARE PACKAGES 

8051 MACRO'ASSEMBLER 

• Supports 8051 family program develop- • Object files are' linkable and locatable 
men!. on Intellec® Microcomputer 
Development Systems • Provides software support for many 

addressing and data allocation 
• Gives symbolic access to powerful capabilities 

8051 hardware features 
• Symbolic Assembler supports symbol 

• Produces object file, listing file and table, cross-reference, macro 
error diagnostics capabilities, and conditional assembly 

The 8051 Macro Assembler (ASM51) translates symbolic 8051 macro assembly language modules into linkable and 
locatable object code modules. Assembly language mnemonics are easier to program and are more readable than 
binary or hexadecimal machine instructions. By allowing the programmer to give symbolic names to memory'locations 
rather than absolute addresses, software design and debug are performed more quickly and reliably. Furthermore, 
since modules are linkable and relocatable, the programmer can do his software in modular fashion. This makes pro­
grams easy to understand, maintainable and reliable. 

The assembler supports macro definitions and calls. This is a convenient way to program a frequently used code 
sequence only once. The assembler also provides conditional assembly capabilities. 

Cross referencing is provided in the symbol table listing, showing the user the lines in which each symbol was defined 
and referenced. 

ASM51 provides symbolic access to the many useful addressing features of the 8051 architecture. These features include 
referencing for bit and byte locations, and for providing 4-bit operations for BCD arithmetic. The assembler also provides symbolic 
access to hardware registers, liD ports, control bits, and RAM addresses. ASM51 can support all members of the 8051 family. 

Math routines are enhanced by the MUltiply and DIVide instructions. 

If an 8051 program contains errors, the assembler provides a comprehensive set of error diagnostics, which are included in the 
assembly listing or on another file. Program testing may be performed by using the iUP Universal Programmer and iUP F87/51 
personality module to program the 8751 EPROM version of the chip, 

ICE51 and EMV51 are available for program debugging. 

RL51 LINKER AND RELOCATOR PROGRAM 
• Links modules generated by the 

assembler 

• Locates the linked object to absolute 
memory locations 

• Enables modular programming of soft­
ware for efficient program deveropment 

• Modular programs are easy to 
understand, maintainable and reliable 

The 8051 linker and relocator (RL51) is a utility which enables 8051 programmers to develop software in a modular 
fashion. The linker resolves all references between modules and the relocator assigns absolute memory locations to 
all the relocatable segments, combining relocatable partial segments with the same name. 

With this utility, software can be developed more quickly because small functional modules are easier to understand, 
design and test than large programs. 

The number of symbols in the software is very large because the assembler symbol limit applies only per module not 
the entire program. Therefore programs can be more readable and better documented. 

Modules can be saved and used on different programs. Therefore the software investment of the customer is maintained. 

RL51 produces two files. The absolute object module file can be directly executed by the 8051 family. The listing file 
shows the results of the link/locate process. 

4·70 
AFN·00047C 



8051 SOFTWARE PACKAGES 

CONV51 
8048 TO 8051 ASSEMBLY LANGUAGE 
/ CONVERTER UTILITY PROGRAM 

• Enables software written for the 
MCS·48™ family to be upgraded to run 
on the 8051 

• Maps each 8048 instruction to a corre­
sponding 8051 instruction 

• Preserves comments; translates 8048 
macro definitions and calls 

• Provides diagnostic information and 
warning messages embedded in the 
output listing 

The 8048 to 8051 Assembly Language Converter is a utility to help users of the MCS-48 family of microcomputers 
upgrade their deisgns with the high performance 8051 architecture. By converting 8048 source code to 8051 source 
code, the software investment developed for the 8048 is maintained when the system is upgraded. 

The goal of the converter (CONV51) is to attain functional equivalence with the 8048 code by mapping each 8048 
instruction to a corresponding 8051 instruction. In some cases a different instruction is produced because of the 
enhanced instruction set (e.g., bit CLR instead of ANL). 

Although CONV51 tries to attain functional equivalence with each instruction, certain 8048 code sequences cannot be 
automatically converted. For example, a delay routine which depends on 8048 execution speed would require manual 
adjustment. A few instructions, in fact, have no 8051 equivalent (such as those involving P4-P7). Finally, there are a 
few areas of possible intervention such as PSW manipulation and interrupt processing, which at least require the user 
to confirm proper translation. The converter always warns the user when it cannot guarantee complete conversion. 

CONV51 produces two files. The output file contains the ASM51 source program produced from the 8048 instructions. 
The listing file produces correlated listings of the input and output files, with warning messages in the output file to 
point out areas that may require users' intervention in the conversion. 

LIB51 LIBRARIAN 
The LlB51 utility enables MCS-51 programmers to create and maintain libraries of software object modules. With 
this utility, the customer can develop standard software modules and place them in libraries, which programs can 
access through a standard interface. When using object libraries, the linker will call only object modules that are 
required to satisfy external references. 

Consequently, the librarian enables the customer to port and reuse software on different projects-thereby main­
taining the customer's software investment. 

AFN-00047C 

4-71 



8051 SOFTWARE PACKAGES 

SPECIFICATIONS 

OPERATING ENVIRONMENT 

All Intel Microcomputer Development Systems or Intel 
Personal Development System 

ORDERING INFORMATION 

Part Number 

MCI-51-ASM 

Description 

8051 Software Development 
Package 

*Requires Software License 

4-72 

Documentation Package: 

MCS-51 Macro Assembler User's Guide 
MCS-51 Utilities User's Guide for 8080/8085 Based De­

velopment System 
MCS-51 8048-to-8051 Assembly Language Converter 

Operating Instructions for ISIS-II Users 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Reporting (SPR), Software Updates, Technical Reports, 
Monthly Newsletter available. 

AFN-00047C 



intJ 
MCS®-48 

DISKETTE·BASED SOFTWARE 
SUPPORT PACKAGE 

• Extends Intellec microcomputer 
development system to support MC5-48 
development 

• MC5-48 assembler provides conditional 
assembly and macro capability 

• Takes advantage of powerfullSI5-11 file 
handling and storage capabilities 

• Provides assembler output in standard 
Intel hex format 

The MCS-48 assembler translates symbolic 8048 assembly language instructions into the appropriate machine 
operation codes, and provides both conditional and macroassembler programming. Output may be loaded 
either to an ICE-49 module for debugging or into the iUP Universal PROM Programmer for 8748 PROM 
programming. The MCS-48 assembler operates under the ISIS-II operating system on Intel Development 
systems. . 

©INTEL CORPORATION, 1983. MAY 1983 

4-73 AFN-006190 



MCS·48 

FUNCTIONAL DESCRIPTION 

The MCS·48 assembler translates symbolic 8048 
assembly language instructions into the appropriate 
machine operation codes. The ability to refer to program 
addresses with symbolic names eliminates the errors of 
hand translation and makes it easier to modify programs 
when adding or deleting instructions. Conditional 
assembly permits the programmer to specify which por· 
tions of the master source document should be includ· 
ed or deleted in variations on a basic system design, 
such as the code required to handle optional external 
devices. Macro capability allows the programmer use of 
a single label to define a routine. The MCS·48 assembler 
will assemble the code required by the reserved routine 
whenever the macro label is inserted in the text. Output 
from the assembler is in standard Intel hex format. It 
may be either loaded directly to an in·circuit emulator 
(ICE·49) module for integrated hardware/software 
debugging, or loaded into the iUP Universal PROM 
Programmer for 8748 PROM programming. A 
sample assembly listing is shown in Table 1. 

The MCS 48 assembler supports the 8048, 8049, 8050, 8020, 
8021, 8022, 8041 and 8042. The MCS 48 assembler can also 
support CMOS versions of the 8048 family. 

SPECIFICATIONS 

Operating Environment 
(All) Intel Microcomputer Development Systems 

(Series II, Series III/Series IV) 
Intel Personal Development System 

Ordering Information 

Part Number 

MDS-D48" . 

Description 

MCS-48 Disk Based Assembler 
Requires Software License 

Table 1. Sample MCS·48 Dlskette·Based 

1515-118048 MACROASSEMBLEA, Vl.0 

0001E 
002. 
0032 
0100 

0100 BalE 
0102 B928 
0104 BA32 
0106 97 
0101 FO 
0108 11 
010g 57 
010A Al 
010B 18 
010e 19 
0100 EA07 

USER SYMBOLS 
ALPHA DOOlE 
Ll 0102 

SOURCE STATEMENT 

,DECIMAL ADDITION ROUTINE. ADD BCD NUMBER 
;"1 LOCATION 'SETA' TO BCD NUMBER AT ·ALPH ... · WITH 
,AESUL T IN • ... LPHA." LENGTH OF NUMBER IS 'COUNT' DIGIT 

.. ,PAIRS. IASSUME BOTH BETA AND ALPHA ARE SAME LENGTH 
5 ,AND HAVE EVEN NUMBER OF DIGITS OR MSD IS 0 IF 

~ i~~D) MACAO AUGND,ADOND,CNT 

8 MOV AO, '''-UGND 
9 11 MOV AI, 'ADONO 

10 MOV A2. ,eNT 

" 12 
13 ALPHA 
14 BETA 
15 COUNT 

" 17 , .. 
19+L1 
20+" 
21 
22 LP 
23 
2' 
25 2. 
21 2. 

ENOM 

EOU 
EOU 
EOU 
ORG 
INIT 
MOV 
MOV 
MOV 
ClR 
MOV 
AODG 
OA 
MOV 
INC 
INC 
OJNZ 
END 

30 
40 
5 
l00H 
ALPHA. BETA, COUNT 
RO, IAlPHA 
Al.'BETA 
A2 .• COUNT 
C 
A.I1IRO 
A, tttRl 
A 

~oRO,A 

R' 
A2. LP 

ASSEMBLY COMPLETE. NO ERRORS 

ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE. Vt 0 

ALPHA 13. 17 
BETA ,... 17 

cour'.:T 1~ 17 
INIT 1. 11 
11 191 
LP 22. 28 

Documentation Package 
Titles of: User Guides 

Operating Instructions 
Reference Manuals 

SUPPORT: 
Hotline Telephone Support, Software Performance 
Reports (SPR), Software Updates, Technical 
Reports, Monthly Newsletters are available. 

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of 
Mohawk Data Sciences Corporation. 

, -AFN-00619D 

4·74 



MCS®·96 SOFTWARE DEVELOPMENT PACKAGES 

• MCSe·96 Software Support Package • PL/M·96 Software Package 

MCS@·96 SOFTWARE SUPPORT PACKAGE 

• Symbolic relocatable auembly 
language programming for the 8096 
mlcrocontroller family , 

• System Utilities for Program Linking 
and Relocation 

• Extend. Intellece Microcomputer 
Development System to support MCS-
98 program development 

• Encourages modular program design 
for maintainability and reliability 

The MCSIPi-96 Software Support Package provides development system support for the MCS-96 family of 16-
bit single chip microcomputers. The support package includes a macro assembler and system utilities. 

The assembler produces relocatable object modules from MCS-96 macro assembly language instructions. 
The object modules then are linked and located to absolute memory locations. 

The assembler and utilities run on the Intellec lPi Series III or equivalent Microcomputer Development System. 

LEGEND 

O 
INTEL DEVELOPMENT 
TOOL AND OTHER 
PRODUCTS 

r­
I 
I 
I 
I 
I 
I L ___________ , 

L _______ ., 

tJ MCS·:te I 
~_ J SOFTWARE SUPPORT PACKAGE I 

I 

O USER·CODED II 
SOFTWARE 

I I L _____________ ..I 

Figure 1. MCSIPi·96 Software Development Process 

230613-1 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifICations on these devices from Intel. January 1984 
@Intel Corporation, 1984. Order Number: 230613-003 

4·75 



inter MCS@-96 SOFTWARE DEVELOPMENT PACKAGES 

8096 MACRO ASSEMBLER 

• Supports 8096 family program 
development on Intellec@ 
Microcomputer Development System 

• Gives symbolic access to powerful 
8096 hardware features 

• Object files are linkable and locatable 
• Symbolic Assembler supports macro 

capabilities, cross reference, symbol 
table and conditional assembly 

ASM-96 is the macro assembler for the MCS family of microcontrollers. ASM-96 translates symbolic assembly 
language mnemonics into relocatable object code. Since the object modules are linkable and locatable, ASM-
96 encourages modular programming practices. . 

The macro facility in ASM-96 allows programmers to save development and maintenance time since common 
code sequences only have to be done once. The assembler also provides conditional assembly capabilities. 

ASM-96 supports symbolic access to the many features of the 8096 architecture. An "include" file is provided 
with all of the 8096 hardware registers defined. Alternatively, the user can define any subset of the 8096 
hardware register set. 

Math routines are supported with mnemonics for 16 x 16-bit multiply or 32/16-bit divide instructions. 

The assembler runs on a Series III/Series IV Intellec Development Systems for high performance. 

RL96 LINKER AND RELOCATOR PROGRAM 

• Links modules generated by 
ASM-96 and PL/M-96 

• Locates the linked obJect module to 
absolute memory locations 

• Encourages modular programming for 
faster program development 

• Automated selection of required 
modules from Libraries to satisfy 
symbolic ref~rences 

RL96 is a utility that performs two functions useful in MCS-96 software development: 

- The link function which combines a number of MCS-96 object modules into a single program. 

- The locate functions which assigns an absolute address to all relocatable addresses in the MCS-96 object 
module. 

RL96 resolves all external symbol references between modules and will select object modules from library 
files if necessary. . 

RL96 creates two files: 

- The program or absolute object module file that can be executed by the targeted member of the MCS-96 
family. 

- The listing file that shows the results of link/locate, including a memory map symbol table and an optional 
cross reference listing. 

The relocator allows programmers to concentrate on software functionally and not worry about the absolute 
addresses of the object code. RL96 promotes modular programming. The application can be broken down into 
separate modules that are easier to deSign, test and maintain. Standard modules can be developed and used 
in different applications thus saving software development time. 

4·76 
230613-003 



inter MCS@·96 SOFTWARE DEVELOPMENT PACKAGES 

FPAL96 FLOATING POINT ARITHMETIC LIBRARY 

• Implements IEEE Floating Point 
Arithmetic 

• Basic Arithmetic Operations 
+, -, x, I, Mod Plus Square Root 

• Supports Single Precision 32 Bit 
Floating Point Variables 

• Includes an Error Handler Library 

FPAL96 is a library of single precision 32-bit floating point arithmetic functions. All math adheres to the 
proposed IEEE floating point standard for accuracy and reliability. An error handler to handle exceptions (for 
example, divide by zero) is included. 

The following functions are included: 

ADD NEGATE 
SUBTRACT ABSOLUTE 
MULTIPLY SQUARE ROOT 
DIVIDE INTEGER 
COMPARE REM~NDER 

LIB 96 
The LIB 96 utility creates and maintains libraries of software object modules. The customer can develop 
standard modules and place them in libraries. Application programs can then call these modules using prede-
fined interfaces. ----: 

LIB 96 uses the following set of commands: 

-CREATE: Creates an empty library file. 
-ADD: Adds object modules to a library file. 
-DELETE: Deletes object modules from a library file. 
-LIST: Lists the modules in the library file. 
-EXIT: Terminates LIB 96 

When using object libraries, RL96 will include only those object modules that are required to satisfy external 
references, thus saving memory space. ' 

SPECIFICATIONS 

Operating Environment 

Required Hardware: 
Intellec Microcomputer Development System 
- Series ""Series IV 

Documentation Package: 

MCS-96 Macro Assembler User's Guide 
MCS-96 Utilities User's Guide 
MCS-96 Assembler and Utilities Pocket 
Reference Card 
8096 Floating Point Arithmetic Library 

4-77 

ORDERING INFORMATION 

Part Number 

iMDX-355 
Req~ires Software License 

Description 

MCS-96 Software Support Package 

SUPPORT: 

Hotline Telephone Support, Software Performance 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able. 

230613-003 



intJ MCS~-96 SOFTWARE DEVELOPMENT PACKAGES 

PL/M-96 SOFTWARE PACKAGE 

• High level programming language for • Resident on IAPX-86 Intel 
the Intel MCS~-96 mlcrocontroller microcomputer development systems 
family for higher performance 

• Block structured language design • Includes a linking and relocating utility 
encourages module programming and the library manager 

• Provides access to MCS@-96 on chip • IEEE Floating Polot Library Included for 
resources numeric support 

• Produces relocatable object code • Compatible with PL/M-86 assuring 
which Is linkable to object modules design portability 
generated by other MCS@-96 
translators 

PLlM-96 is a structured, high-level programming language useful for developing software for the Intel MCS-96 
family of microcontrollers. PLlM-96 was designed to support the software requirements of advanced 16 bit 
microcontrollers. Access to the on chip resources of the MCS-96 has been provided in PLlM-96. 

PLlM-96 is compatible with PLlM-86. Programmers familiar with PLIM will find they can program in PLlM-96 
with little relearning effort. 

The PLlM-96 compiler translates PL/M-96 high level language statements into MCS-96 machine instructions. 
By programming in PLIM an engineer can be more productive in the initial software development cycle of the 
project. PL/M can also reduce future maintenance and support cost because PL/M programs are easier to 
understand. PLlM-96 was designed to complement Intel's ASM-96. 

LEGEND 

O 
INTEL DEVELOPMENT 
TOOL AND OTHER 
PRODUCTS 

"0-" PUM·96 ~_JSDFTWARE PACKAGE 

O USER·CODED 
SOFTWARE 

1-_____ , 

I 
I 
I 
I 
I 
I 

----------..., 
I 
I 
I 

I I 
I I L. _____________ -' 

Figure 2. MCS~-96 Software Development Process 

4-78 

23OIJ13-2 

230613-003 



inter MCS@·96 SOFTWARE DEVELOPMENT PACKAGES 

PL/M-96 COMPILER 

FEATURES 

Major features of the PLlM-96 compiler and pro­
gramming language include: 

Structured Programming 

Programs written in PLlM-96 are developed as a 
collection of procedures, modules and blocks. Struc­
tured programs are easier'to understand, maintain 
and debug. PLlM-96 programs can be made more 
reliable by clearly defining the scope of user vari­
ables (for example, local variables in a procedure). 
REENTRANT procedures are also supported by 
PLlM-96. 

Language Compatibility 

PLlM-96 object modules are compatible with all oth­
er object modules generated by Intel MCS-96 trans­
lators. Programmers may choose to link ASM-96 
and PLlM-96 object modules together .. 

PLlM-96 object modules were designed to work 
with other Intel support tools for the MCS-96. The 
DEBUG compiler control provides these tools with 
symbolic information. 

Data Types Supported 

PLlM-96 supports seven data types for programmer 
flexibility in various logical, arithmetic and address­
ing functions. The seven data types include: 

-BYTE: 

-WORD: 

-DWORD: 

-SHORTINT: 

-INTEGER: 

-LONGINT: 

-REAL: 

a-bit unsigned number 

16-bit unsigned number 

32-bit unsigned number 

a-bit signed number 

16-bit signed number 

32-bit signed number 

32-bit floating point number 

Another powerful feature are BASED variables. 
BASED variables allow the user to map more than 
one variable to the same memory location. This is 
especially useful for passing parameters, relative 
and absolute addressing, and memory allocation. 

Data Structures Supported 

Two data structuring facilities are supported by 
PLlM-96. The user can organize data into logical 
groups. This adds flexibility in referencing data. 

- Array: Indexed list of same type data elements 

- Structure: Named collection of same or different 
type data elements 

- Combinations of Both: Arrays of structures or 
structures of arrays 

Interrupt Handling 

Interrupts are supported in PLlM-96 by defining a 
procedure with the INTERRUPT attribute. The com­
piler will generate code to save and restore the pro­
gram status word when handling hardware interrupts 
of the MCS-96. 

Compiler Controls 

Compile time options increase the flexibility of the 
PL/M-96 compiler. These controls include: ' 

- Optimization 

- Conditional compilation 

- The inclusion of common PLlM-96 source files 
from disk 

- Cross reference of symbols 

- Optional assembly language code in the listing 
file 

4·79 
230613·003 



infef MCS@·96 SOFTWARE DEVELOPMENT PACKAGES 

Code Optimizations 

The PLlM-96 compilers has four levels of optimiza­
tion for reducing program size. 

~ Combination of constant expressions; "Strength 
reductions" (e.g.: a shift left rather than multiply 
by two) 

- Machine code optimizations; elimination of super­
fluous branches; reuse of duplicate code, remov­
al of unreachable code 

- Overlaying of on chip RAM variables 

- Optimization of based variable operations 

- Use of short jumps where possible 

Built In Functions 

An extensive list of built in functions has been sup­
plied as part of the PL/M-96 language. Besides 
TYPE CONVERSION functions, there are built in 
functions for STRING manipulations. Functions are 
provided for interrogating the MCS-96 hardware 

. flags such as CARRY and OVERFLOW. 

Error Checking 

If the PLlM-96 compiler detects a programming or 
compilation error, a fully detailed error message is 
provided by the compiler. If a syntax or program er­
ror is detected, the compiler will skip the code gen­
eration and optimization passes. This powerful 
pLlM-96 feature can yield a two times increase in 
throughput when a user is in the initial program de­
velopment cycle. 

BENEFITS 

PLM-96 is designed to be an efficient, cost-effective 
solution to the special requirements of MCS-96 Mi­
crocontroller Software Development, as illustrated 
by the following benefits of PL/M use: 

Low Learning Effort 

PLlM-96 is easy to learn and to use, even for the 
novice programmer. 

Earlier Project Completion 

Critical projects are completed much earlier than 
otherwise possible because PL/M-96, a structured 
high-level language, increases programmer produc­
tivity. 

Lower Development Cost 

Increases in programmer productivity translate im­
mediately into lower software development costs 
because less programming resources are required 
for a given programmed function . 

Increased Reliability 

PL/M-96 is designed to aid in the development of 
reliable software (PLIM programs are simple state­
ments of the program algorithm). This substantially 
reduces the risk of costly correction of errors in sys­
tems that have already reached· full production 
status. The more simply the program is stated, the 
more likely it is to perform its intended function. 

4-80 

Easier Enhancements 
and Maintenance 

Programs written in PLIM tend to be self-document­
ing. thus easier to read and understand. This means 
it is easier to enhance and maintain PLIM programs 
as the system capabilities expand and future prod­
ucts are developed. 

230613-003 



inter MCS@-96 SOFTWARE DEVELOPMENT PACKAGES 

RL96 LINKER AND RELOCATOR PROGRAM 

• Links modules' generated by ASM-96 
and PL/M-96 

• Locates the linked object module to 
absolute memory locations 

• Encourages modular programming for 
faster program development 

• Automated selection of required 
modules from Libraries to satisfy 
symbolic references 

RL96 is a utility that performs two functions useful in MCS software development:' 

- The link function which combines a number of MCS object modules into a single program. 

- The locate function which assigns an obsolute address to all relocatable addresses in the MCS-96 object 
module. 

RL96 resolves all external symbol references between modules and will select object modules from library 
files if necessary. 

RL96 creates two files: 

- The program or absolute object module file that can be executed by the targeted member of the MCS 
family. ' 

- The listing file that shows the results of link/locate, including a memory map symbol table and an optional 
cross reference listing. 

The relocator allows programmers to concentrate on software functionality and not worry about the absolute 
addresses of the object code. RL96 promotes modular programming. The application can be broken down into 
separate modules that are easier to deSign, test and maintain. Standard modules can be developed and used 
in different applications thus saving software development time. 

FPAL96 FLOATING POINT ARITHMETIC LIBRARY 

• Implements IEEE Floating Point 
Arithmetic 

• Basic Arithmetic Operations 
+, -, x, I, Mod Plus Square Root 

• Supports Single Precision 32 Bit 
Floating Point Variables 

II Includes an Error Handler Library 

FPAL96 is a library of single precision 32-bit floating point arithmetic functions. All math adheres to the 
proposed IEEE floating point standard for accuracy and reliability. An error handler to handle exceptions (for 
example, divide by zero) is included. 

The following functions are included: 

ADD NEGATE 
SUBTRACT ABSOLUTE 
MULTIPLY SQUARE ROOT 
DIVIDE INTEGER 
COMPARE REMAINDER 

4·81 
230613·003 



intJ MCS@·96 SOFTWARE DEVELOPMENT PACKAGES 

LIB 96 

The LIB 96 utility creates and maintains libraries of software object modules. The customer can develop 
standard modules and place them in libraries. Application programs can then call these modules using prede-
fined interfaces. . 

LIB 96 uses the following set of commands: 

-CREATE: Creates an empty library file 

-ADD: 

-DELETE: 

-LIST: 

-EXIT: 

Adds object modules toa library file 

Deletes object modules from a library file 

Lists the modules in the library file 

Terminates LIB 96 

When using object libraries, RL96 will include only those object modules that are required to satisfy external 
references, thus saving memory space. 

SPECIFICATIONS 

Operating Environment 

Required Hardware: 
Intellec Microcomputer Development System 
- Series IIIISeries IV . 

Documentation Package: 

PLlM-96 User's Guide 
MCS-96 Utilities User's Guide 
MCS-96 Assembler and Utilities Pocket 
Reference Card 
8096 Floating Point Arithmetic Library 

ORDERING INFORMATION 

Part Number 

iMDX-356 
Requires Software License 

Description 

PLlM-96 Software Package 

SUPPORT: 

Hotline Telephone Support, Software Performance. 
Report (SPR), Software Updates, Technical Re­
ports, and Monthly Technical Newsletters are avail­
able. 

4·82 



VAX*/VMS* RESIDENT 
iAPX-86/88/186 

SOFTWARE DEVELOPMENT PACKAGES 

• Executes on DEC VAX· Minicomputer 
under VMS· Operating System to 
translate PUM-86, Pascal-86 and 
ASM-86 Programs for iAPX-86, 88 
and 186 Microprocessors. 

• Packages include Pascal-86; PL/M-86; 
ASM-86; Link and Relocation Utilities; 
OH-86 Absolute Object Module to 
Hexadecimal Format Converter; and 
Library Manager Program.. . 

• Output linkable with Code Generated 
on Intellec® Development Systems. 

The VAXIVMS Resident Software Development Packages contain software development tools for the iAPX-86, 
88, and 186 microprocessors. The package lets the user develop, compile, maintain libraries, and link and 
locate programs on a VAX running the VMS operating system. The translator output is object module compati­
ble with programs translated by the corresponding version of the translator on an Intellec Development System. 

Three packages are available: 

1. An ASM-86 Assembler Package which includes the Assembler, the Link Utility, the Locate Utility, 
the absolute object to hexadecimal format conversion utility and the Library Manager Program. 

2. A PLlM-86 Compiler Package which contains the PLlM-86 Compiler and Runtime Support Libraries. 

3. A Pascal-86 Compiler Package which contains the Pascal-86 Compilerand Runtime Support Libraries. 

The VAXIVMS resident development packages and the Intellec Development System development packages 
are built from the same technology base. Therefore, the VAXIVMS resident development packages and the 
Intellec Development System development packages are very similar. 

Version numbers can be used to identify features correspondence. The VAXIVMS resident development 
packages will have the same features as the Intellec Development System product with the same version 
number. 

Support for the iAPX-186 processor will be provided as an update to the iAPX-86, 88 software. 

The object modules produced by the translators contain symbol and type information for programming 
debugging using ICEn. translators and/or the PSCOPE debugger. For final production version, the compiler 
can remove this extra information and code. 

·VAX. DEC. and VMS are trademarks of Digital Equipment Corporation 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other 
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications of These Devices 
from Intel. JUNE 1984 
©INTEL CORPORATION, 1983 ORDER NUMBER: 210843·002 

4·83 



VAX* /VMS* RESIDENT 

VAX*-PL/M-86/88/186 SOFTWARE PACKAGE 

• Executes on VAX* Minicomputer Under 
the VMS· Operating System 

• Supports 16-Bit Signed Integer and 
32-Bit Floating Point Arithmetic in 
Accordance with IEEE Proposed 
Standard 

• Easy-To-Learn Block-Structured 
Language Encourages Program' 
Modularity 

• Produces Relocatable Object Code 
Which is Linkable to All Other Intel 8086 
Object Modules, Generated on Either a 
VAX· or Intellec® Development Systems 

• Code Optimization Assures Efficient 
Code Generation and Minimum 
Application Memory Utilization 

• Built-In Syntax Checker Doubles 
Performance for Compiling Programs 
Containing Errors 

• Source Input/Object Output Compatible 
with PL/M-86 Hosted on an lotellec® 
Development System 

• ICE™, PSCOPE Symbolic Debugging 
Fully Supported 

Like its counterpart for MCS®-80/85 program development, and Intellec® hosted iAPX-86 program develop­
ment, VAX-PL/M-86 is an advanced, structured high-level programming language. The VAX-PUM-86 
compiler was created specifically for performing software development for the Intel iAPX-86, 88, and 186 
Microprocessors. 

PL/M is a powerful, structured, high-level system implementation language in which program statements can 
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the 
program without concern for burdensome details of machine or assembly language programming (such as 
register allocation, meanings of assembler mnemonics, etc.). 

The VAX-PUM-86 compiler efficiently converts free-form PUM language statements into equivalent 
iAPX-86/88/186 mach·ine instructions. Substantially fewer PUM statements are necessary for a given appli­
cation than if it were programmed at the assembly language or machine code level. 

The use of PL/M high-level language for system programming, instead of ass€mbly language, results in a high 
degree of engineering productivity during project development. This translates into significant reductions in 
initial software development and follow-on maintenance costs for the user. 

·VAX. DEC. and VMS are trademarks of Digital Equipment Corporation. 

4-84 AFN-006BOC 



VAX· /VMS· RESIDENT 

VAX*-PASCAL-86/88 SOFTWARE PACKAGE 

• Executes on VAX· Minicomputer Under 
the VMS*: Operating System 

• Produces Relocatable Object Code 
Which Is Linkable to All Other Intel 8086 
Object Modules, Generated on Either a 
VAX· or Intellec® Development Systems 

• ICE™, PSCOPE Symbolic Debugging 
Fully Supported 

• Implements REALMATH for Consistent 
and Reliable Results 

• Supports iAPX-86/20, 88/20 Numeric 
Data Processors 

• Strict Implementation of ISO Standard 
Pascal 

• Useful Extensions Essential for Micro­
computer Applications 

• Separate Compilation with Type­
Checking Enforced Between Pascal 
Modules 

• Compiler Option to Support Full Run­
Time Range-Checking 

• 'Source Input/Object Output 
Compatible with Pascal-8S Hosted on a 
Intellec Development System 

VAX-PASCAL-86 conforms to and implements the ISO Pascal standard. The language is enhanced to 
support microcomputer applications with special features, such as separate compilation, interrupt 
handling and direct port 110. Other extensions include additional data types not required by the standard 
and miscellaneous enhancements such as an allowed underscore in names, an OTHERWISE clause in 
CASE construction and so forth. To assist the development of portable software, the compiler can be 
directed to flag all non-standard features. 

The VAX-PASCAL-86 compiler runs on the Digital Equipment Corporation VAX under the VMS 
Operating System. A well-defined 1/0 interface is provided for run-time support. This allows a user­
written operating system to support application programs on the target system as an alternate to the 
development system environment. Program modules compiled under PASCAL-86 are' compatilble and 
linkable with modules written in PLlM-86, and ASM-86. With a complete family of compatible program­
ming languages for the iAPX-86, 88, and 186 one can implement each module in the language most 
appropriate to the task at hand. 

'VAX, DEC, and VMS are trademarks of Digital Equipment Corporation 

4·85 AFN·OO68OC 



VAX· /VMS· RESIDENT 

VAX*-iAPX-86/88/186 MACRO ASSEMBLER 

• Executes on VAX· Minic~mputer Under 
The VMS· Operating System 

• Produces Relocatable Object Code· 
Which Is Linkable to All Other Intel 
iAPX-86/88/186 Object Modules, 
Generated on Either a VAX· or Intellec® 
Development Systems . 

• Powerful and Flexible Text Macro Facility 
with Three Macro Listing Options to Aid 
Debugging 

• Highly Mnemonic and Compact 
Language, Most Mnemonics Represent 
Several Distinct Machine Instructions 

• "Strongly Typed" Assembler Helps 
Detect Errors at Assembly Time 

• High-Level Data Structuring Facilities 
Such as "STRUCTURES" and 
"RECORDS" 

• Over 120 Detailed and Fully Documented 
Error Messages 

• Produces Relocatable and Linkable 
Object Code 

• Source Input/Object Output Compatible 
with ASM-86 hosted on an Intellec 
Development System 

VAX-ASM-86 is the "high-level" macro assembler for the iAPX-86/88/186 assembly language. VAX-ASM-86 
translates symbolic iAPX-86/88/186 assembly language mnemonics into iAPX-86/88/186 relocatable 
object code. 

VAX-ASM-86 should be used where maximum code efficiency and hardware control is needed. The 
iAPX-86/88/186 assembly language includes approximately 100 instruction mnemonics. From these few 
mnemonics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software 
development task is simplified, as the programmer need know only 100 mnemonics to generate all 
possible iAPX-86/88/186 machine instructions. VAX-ASM-86 will generate the shortest machine instruction 
possible given no forward referencing or given explicit information as to the characteristics of forward 
referenced symbols. 

VAX-ASM-86 offers many features normally found only in high-level languages. The iAPX-86/88/186 
assembly language is strongly typed. The assembler performs extensive checks on the usage of variable 
and labels. The assembler uses the attributes which are derived explicity when a variable or label is first 
defined, then makes sure that each use of the symbol in later instructions conforms to the usage defined for 
that symbol. This means that many programming errors will be detected when the program is assembled, 
long before it is being debugged on hardware. 

·VAX. DEC. and VMS are trademarks of Digital EquipmentC~rporation 

4-86 AFN-00680C 



VAX*/VMS*RESIDENT 

VAX*-LIB-86 

• Executes on VAX*. Minicomputer Under 
the VMS* Operating System. 

• VAX*-I..IB-86 is a Library Manager 
Program which Allows You to: 
Create Specifically Formatted Files to 
Contain Libraries of Object Modules 
Maintain These Libraries by Adding or 
Deleting. Modules 
Print a Listing of the Modules and 
Public Symbols in a Library File 

• Libraries Can be Used as Input to 
VAX*-LlNK-86 Which Will Automatically 
Link Modules from the Library that 
Satisfy External References in the 
Modules Being Linked 

• Abbreviated Control Syntax 

Libraries aid in the job of building programs. The library manager program VAX-UB-86 creates and' 
maintains files containing object modules. The operation of VAX-UB-86 is controlled by commands to 
indicate which operation VAX-UB-86 is to perform. The commands are: 

CREATE: 
ADD: 

creates an empty library file 
adds object modules to a library file 
deletes modules from a library file DELETE:. 

LIST: lists the module directory of library files 
EXIT: terminates the UB-86 program and returns control to VMS 

When using object libraries, the linker will call only those object modules that are required to satisfy external 
references, thus saving memory space. 

VAX-OH-86. 

• Executes or:- VAX* Minicomputer Under 
the VMS* Operating System 

• Converts an iAPX 86/88/186 Absolute 
Object Module to Symbolic 
Hexadecimal Format 

. • Fa~ilitates Preparing a file for Loading 
by Symbolic Hexadecimal Loader (e.g. 
iSSC™ Monitor S~K·86 Loader), or 
Universal PROM Mapper 

• Converts an Absolute Module to a More 
Readable Format that citn be Displayed 
on a CRT or Printed for Debugging 

The VAX-OH-86 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion 
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal 
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be 
displayed or printed. 

The module to be converted must be in absolute form; the output from VAX-LOC-86 is in absolute format. 

·VAX, VMS are trademarks of Digital Equipment Corporation. 

4-87 AFN..()()68()C 



intel' VAX* IVMS*RESIDENT 

VAX*-LINK-86 

• Executes on VAX· Minicomputer Under 
th.e VMS· Operating System 

• Automatic Combination of Separately 
Compiled or Assembled 86/88/186 
Programs Into a Relocatable Module, 
Generated on Either a VAX or an Intellec® 
Development System 

• Automatic Selection of Required 
Modules from Specified Libraries to 
Satisfy Symbolic References 

• Extensive Debug Symbol Manipulation, 
allowing Line Numbers, Local Symbols, 

. and Public Symbols to be Purged and 
Listed Selectively 

• Automatic Generation ola Summary 
Map Giving Results of the L1NK-86 
Process' 

• Abbreviated Control Syntax 

• Relocatablemodules may be Merged into 
a Single Module Suitable for Inclusion in 
a Library 

• Supports "Incremental" Linking 

• Supports Type Checking of Public and 
External Symbols ' 

VAX-LlNK-86 combines object modules specified in the VAX-LlNK-86 input li.st into a single output module. 
VAX-LlNK-86 combines segments from the input modules according to the order in which the modules are 
listed. ' , 

VAX-LlNK-86 will accept libraries and object modules built from VAX-PLlM-86, VAX-PASCAL-86, VAX-ASM-
86, or any other Intel translator generating 8086 Relocatable Object Modules, such as the Series III resident 
translators. . 

Support for incremental linking is provided since an output module produced by VAX-LlNK-86 can be an 
input to another link. At each stage in the incremental linking process, unneeded public symbols may be 
purged. 

VAX-LlNK-86 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their 
types are not consistent. 

VAX-LlNK-86 will link any valid set of input modules without any controls. However, controls are available 
to control the output,ofdiagnostic information in the VAX-LlNK-86 process and to control the content of 
the output module. . 

VAX-LlNK-86 allows the user to create a large program as the combination of several smaller, separately 
compiled modules. After development and debugging of these component modules the user can link them 
together, locate them using VAX-LOC-86 and enter final testing with much of the work accomplished. 

·VAX. DEC. and VMS are trademarks of Digital Equipment Corporation. 

4-88 AFN.()()68OC 



VAX* IVMS*RESIDENT 

VAX*-LOC-86 

• Executes on the VAX· Minicomputer 
Under the VMS· Operating System 

• Automatic Generation of a Summary 
Map Giving Starting Address, Segment 
Addresses and Length, and Debug 
Symbols and their Addresses 

• Extensive Capability to Manipulate the 
Order and Placement of Segments' in 
8086/8088 Memory 

• Abbreviated Control Syntax 

• Automatic and Independent Relocation 
of Independent Relocation of Segments. 
Segments May be Relocated to Best 
Match Users Memory Configuration 

• Extensive Debug Symbol Manipulation, 
Allowing Line Numbers, Local Symbols, 
and Public Symbols to be Purged and 
Listed Selectively 

Relocatability allows the programmer to code programs or sections of programs without having to know the 
final arrangement of the object code in memory. ' 

VAX-LOC-86 converts relative addresses in an input module in iAPX-86/88/186 object module format to 
absolute addresses. VAX-LOC-86 orders the segments in the input module and assigns absolute addresses 
to the segments. The sequence in which the segments in the input module are assigned absolute 
addresses is determined by their order in the input module and the controls supplied with the command. 

VAX-LOC-86 will relocate any valid input module without any controls. However, controls are available to 
control the output of diagnostic information in the VAX-LOC-86 process, to control the content of the 
output module, or both. 

The program you are developing will almost certainly use some mix of random access memory (RAM), 
read-only memory (ROM); and/or programmable read-only memory (PROM). Therefore, the location 
of your program affects both cost and performance in your application. The relocation feature allows you to 
develop your program and then simply relocate the object code to suit your application. 

SPECIFICATIONS 

Operating Environment 

Required Hardware 

VAX· 11/780,11/782,1,1/750, or 11/730 
9 Track Magnetic Tape Drive, 1600 BPI 

Required Software 

VMS Operating System V3.0 or Later. All of the devel­
opment packages are delivered as unlinked VAX ob- " 
ject code which can be linked to VMS as designed for 
the system where the development package is to be 
used. VMS command files to perform the link are 
provided. 

'VAX, DEC, and VMS are trademarks of Digital Equipment Corporation 

4-89 

Documentation Package 

iAPX-86, 88 Development Software Installation 
Manual and User's Guide for VAXIVMS, Order 
number 121950-001 

Shipping Media 

9 Track Magnetic Tape 1600 bpi 

ORDERING INFORMATION 

Part Number Description 
iMDX-341VX VAX-ASM-86, VAX-LlNK-86, VAX­

LOC-86, VAX-LlB-86, VAX-OH-86, 
Package 

iMDX-343VX VAX-PLM-86 Package 
IMDX-344VX VAX-PASCAL-86 Package 

REQUIRES SOFTWARE LICENSE 

AFN-00680C 



VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT 
PACKAGES FOR iAPX 286 

• Hosted on DEC VAX * Minicomputer 
Under the VMS* Operating System' 

'. Allows Development, of System and' Ap­
plication Software for the Protected Vir­
tual, Address Mode of the iAPX-286 

• Packages include PL/M-286, BUILD-286, 
BIND-286, LlB-286 and MAP-286 

• Compatible, with Corresponding Int~1 
Development System Resident Products 

These packages provide the capability of developing software on a VAX*IVMS* host for the iAPX-286 in pro­
tected virtual address mode. With these packages a user can assemble and compile 286 programs, configure 
system and application software and create and manage 286 object libraries. Figure 1 illustrates the process 
of 286 software development on VAX*IVMS* hosts. " 

Two packages are available: 

1. A PLlM-286 package which contains the PLlM-286 compiler and run time support librari,es. 

2. An ASM-286 package which contains the iAPX-286 Assembler (ASM-286) and programming utilities. 
These utilities include the iAPX-286 System Builder (BLD-286), the System Binder (BND-286), a Library 
Utility (UB-286) and an Object Map Utility (MAP-286). 

These packages are compatible with corresponding products which are hosted on Intel development systems. 
Correspondence can be established via version numbers. For example, BND-286 V2.0 offers the same set 
of features on VAXIVMS and Intel dev~lopment systems. 

Owing to this compatibility, iAPX-286 software developed on VAXIVMS can be linked to iAPX-286 software 
from development systems. Moreover, iAPX-286 programs developed ,on the VAX can,then be downloaded 
to development systems and debugged using 286 debuggers like the 121CE™_286 system . 

ASM-286 
PROGRAMS 

PUM·286 
PROGRAMS 

PASCAL·286 
PROGRAMS t 

FORTRAN·286 
PROGRAMSt 

OPERATING SYSTEM 

SOFlWARE 

APPLICATION SOFlWARE 

. ((q©~~ DOWNLOAD :-V'" TO 
DEVELOPMENT 

, SYSTEM OR 
, TARGET SYSTEM 

/ FOR EXECUTION 
OR DEBUGGING 

, Figure 1: 286 Software Development on VAX*/VMS· 

·VAX. VMS are trademarks of Digital Equipment Corporation tCurrenlly Available on Intel Development System~ Only 

Intel Corporation Assumes No Responsibility for the Use 01 Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are implied: 
Information Contained Herein Supercedes Previously Published Specifications of These Devices from Intel. 
©INTEL CORPORATION. 1984 MARCH 1984 

ORDER NUMBER: 231038·001 

4·90 



intJ VAX*NMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX*/VMS* RESIDENT PL/M-286, 

• Systems Programming Language for • Produces relocatable object code 
the protected virtual address mode linkable to object modules generated 
iAPX-286 by other Intel 286 language translators 

• Enhanced to support design of • Upward compatible with PL/M-86 and 
protected, multi-user, multi-tasking, PLlM-80 to allow software portability 
virtual memory operating system 
software 

• Provides multiple levels of optimization • Compatible with development system 
to produce efficient code resident PLlM-286 

PUM-286 is a powerful, structured, high-level system implementation language for the development of system 
software for the protected virtual address mode iAPX-286. PUM-286 has been enchanced to utilize iAPX-286 
features-memory management and protection-for the implementation of multi-user, multi-tasking virtual memory 
operating systems. 

PUM-286 is upward compatible with PUM-86 and PUM-80. Existing systems software can be re-compiled 
with PUM-286 to execute in protected virtual 'address mode on the iAPX-286. 

PUM-286 is therf1igh-level alternative to assembly language programming on the iAPX-286~ For the majority 
of iAPX-2,86 system programs, PUM-286 provides the features needed to access and to control efficiently 
the underlying iAPX-286 hardware, and consequently it is the cost-effective approach to develop reliable, main­
tainable system software. ' 

The PUM-286 compiler has been designed to efficiently support all phases of software development. Features 
such as built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of pro­
gram size and memory usage for efficient code generation provide the total program development support 
needed. The compiler also provides complete symbolic debug capability to the various 286 debuggers and 
emulators. 

VAXNMS resident PUM-286 is completely feature compatible with development system resident PUM-286 
with th~ same version number. 

231038·001 

4-91 



VAX· NMS· RESIDENT SOFTWARE· DEVELOPMENT PACKAGES 

VAX*/VMS* RESIDENT iAPX-286 MACRO ASSEMBLER 

• Supports full Instruction Set of the • Powerful and flexible Text Macro ' 
iAPX-286 including memory protection facility 
and numerics (with 80287) 

• Structures and RECORDS provide .. Upward compatible with 
powerful data representation ASM-86/88/186 

• Type checking at assembly time .. Compatible with development 
helps reduce errors at run-time system resident iAPX-286 Macro 

Assembler 

ASM-286 is the "high-level" macro assembler for the iAPX-286 assembly language. ASM-286 translates 
symbolic assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset 
of ASM-86/88 mnemonics; new ones have also been added to support the new iAPX-286 instructions. The 
segmentation directives have been greatly simplified. 

. " , -

The iAPX-286 assembly language includes approximately 150 instruction mnemonics. From these few 
mnemonics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software 
development task is simplified, as the programmer need know only 150 mnemonics to generate all possible 
machine instructions. ASM-286 generates the shortest machine instruction possible (given explicit informa­
tion as to the characteristics of any forward referenced symbols). 

The powerful macro facility in ASM-286 saves development and maintenance time by coding common pro­
gram sequences onlY,once. A macro substitution is made each time the sequence is to be used. This facility 
also allows for conditional assembly of certain program sequences. 

ASM-286 offers many features normally found only in high-level languages. The assembly language is strong­
ly typed, which means it performs extensive checks on the usage of variables and labels. This means that 
many programming errors will be detected when the program is assembled, long before it is being debugged. 

ASM-286 object modules conform to a thorough, well-defined format used by 286 high-level languages and 
utilities. This makes it easy to call (and be called from) HLL object modules. 

ASM-286 also provides support for the 80287 numerics co-processor. The complete instruction set of the 80287 
is available through high-level mnemonics. . . 

VAXNMS resident ASM-286 is completely feature compatible with development system resident ASM-286 
with the same version number. 

231038·001 

4-92 



VAX*NMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX*/VMS* RESIDENT iAPX-286 SYSTEM BUILDER 

• A tool for configuring multi-tasking • Target system may be bootloadable, 
protected, virtual memory systems programmed into ROM or loaded from 
software for the iAPX-286., mass storage 

• Links separately compiled modules. • Generates print file with command 
Resolves EXTERNAL/PUBLIC listing and system map 
definitions 

• Creates a memory image of a 286 • Compatible with development 
system for cold start execution system resident iAPX-286 System 

Builder 

BLD-286 is the iAPX-286 System Builder. It allows systems programmers to configure multi-tasking and memory 
protected iAPX-286 software. The configuration is specified by the user in a "Build file" using a symbolic 
meta-language. BLD-286 thus provides the programmer a high-level symbolic interface .to the multi-tasking 
and memory protection features of the iAPX-286 architecture. 

BLD-286 accepts as inputs object modules from theiAPX-286 translators, the iAPX-286 Binder and itself (for 
incremental building). Using the programmer's specifications in the Build File, it produces a bootloadable or 
loadable module as well as a print file with a map of the configured module. 

Using the builders command language, system programmers may perform the following functions: 

- Assign physical addresses'to segments; also set segment access rights and limits. 
- Create Call, Trap, and Interrupt "Gates" (entry-points) for inter-level program transfers. 
- Make gates available to tasks; this is an easier way to define program interfaces than using interface libraries. 
- Create Global (GOT), Interrupt (lOT), and any Local (LOT) Descriptor Tables. 
- Create Task State Segments and Task Gates for multi-tasking applications. ' 
- Resolve inter-module and inter-level referencesi and perform type-checking. 
- Automatically select required modules from libraries. . 
- Configure the memory image into partitions in the address space. 
- Selectively generate an object file and various sections of the print file. 

VAXNMS BLD-286 is completely feature compatible with development system resident BLD-286 with the same 
version number. 

231038·001 

4·93 



intJ VAX*NMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX*/VMS* RESIDENT iAPX-286 BINDER 

• Links separately compiled program 
modules into an executable task 

• Makes the iAPX-286 protection 
mechanism invisible to application 
programmers 

• Assigns virtual addresses to tasks 

• Performs incremental linking with 
output of Binder and Builder 

• Resolves PUPLlC/EXTERNAL code 
and data references, and performs 
intermodule type-checking 

• Provides print file showing 
segment map, errors and warnings 

• Generates linkable or loadable 
module for debugging 

• Compatible with development 
system resident iAPX-286 Binder 

BND-286 is a utility that combines iAPX-286 object modules into executable tasks. In creating a task, the Binder 
resolves Public and External symbol references, combines segments, and performs address fix-ups on sym­
bolic code and data. 

The Binder takes object modules, produced by the 286 translators, and generates a load able module (for ex­
ecution or debugging), or a linkable module (to be re-input to the Binder later; this is called incremental bind­
ing). The binder accepts library modules as well, linking only those modules required to resolve external 
references. BND-286 generates a print file displaying a segment map, and error messages. 

The Binder is useful for system as well as application programmers. Since application programmers need 
to develop software independent of any system architecture, the 286 memory protection mechanism is 
"hidden" from users of the Binder. This allows application tasks to be fully debugged before becoming part 
of a protected system. (A protected system may be debugged, as well.) System protection features are specified 
later in the development cycle, using the 286 SysteniBuilder. It is possible to link operating system services 
required by a task using either the Binder or the Builder. This flexibility adds to the ease of use of the 286 utilities. 

VAX/VMS resident BND-286 is completely feature compatible with development system resident BND-286 
with the same version number. 

VAX * /VMS * RESIDENT iAPX-286 LIBRARIAN 

• Allows creation and management of 
iAPX-286 object libraries 

• Library functions include Create, Delete, 
Add, Replace, Copy, Save~ Backup 
and Display 

• Only required modules linked in when 
using Binder or Builder 

• Compatible with development system 
resident iAPX-286 Librarian 

LlB-286 is the iAPX-286 Librarian. It can be used to create and manage iAPX-286 Object Libraries. By placing 
often used object modules into libraries, the administrative overhead of managing software modules can be 
reduced. 

VAXNMS based LlB-286 is completely feature compatible with development system resident LlB-286 with 
the same version number. 

231038-001 

4-94 



VAX·NMS· RESIDENT SOFTWARE DEVELOPMENT PACKAGES 

VAX*/VMS* RESIDENT iAPX-286 MAPPER 

• Flexible Utility to display object file 
information in symbolic form 

• Compatible with development system 
resident iAPX·286 Mapper 

MAP-286 is a cross reference utility for iAPX-286 object modules. It provides a symbolic listing of the 
EXTERNAL and PUBLIC symbols in the specified object modules. 

VAXNMS resident MAP-286 is completely feature compatible with development system resident MAP-286 
with the same version number. 

SPECIFICATIONS 

Operating Environment 

DEC VAX* 11/780 or compatible model running 
VMS* operating system V3.4 (or upward com­
patible versions) 

Documentation 

Installation guide and user's manuals for the soft­
ware are supplied with the products. 

SUPPORT 
Hotline Telephone Support, Software, Per­
formance Report (SPR) Software Updates, 
Technical Reports and Monthly Newsletters 
are available. 

ORDERING INFORMATION 

Product Code Description 

iMDX-371 VX ASM-286, BLD-286, 
BND-286, LlB-286, MAP-286 

iMDX-373VX PUM-286 

*VAX,/VMS are trademarks of Digital Equipment Corporation 

231038·001 

4-95 



2920 SOFTWARE SUPPORT PACKAGE 

• Complete software design and 
development support for the 2920 

• Extends Intellec® Microcomputer 
Development System to support 2920 
software development 

The 2920 Software Support Package furnishes a 2920 Signal Processing Applications Software/Compiler, 2920 
Assembler, and 2920 Software Simulator. These three software design and development tools run on the Intellec@ 
Microcomputer Development System. 

The 2920 Signal Processing Appiication Software/Compiler is an interactive tool for designing software to be 
executed on the 2920 Signal Processor. The compiler accepts English-like statements from the user and generates 
2920 assembly language code. 

The assembler tra"slates symbolic 2920 assembly language programs into the machine operation code. The user can 
load the code into the simulator for 2920 simulation or to the Universal PROM Programmer for 2920 EPROM 
programming. 

The simulator, operating entirely in software, allows the user to test and symbolically debug 2920 programs. The user 
can specify input signals, simulate program execution, set up breakpoints, display input and output, and display and 
alter the contents of the 2920 registers and memory locations. The simulator can also stop or trace the program and 
constructively give the user access to the key elements inside a 2920 for analyzing his program. 

The compiler, assembler, and simulator enable the designer to develop and test an entire program without a 
complete prototype design. The 2920 designer works on the Intellec@ Microcomputer Development System rather 
than on a breadboard. The development system can program, store and recall programs or routines and aid in 2920 
program design. 

• 

2920 Software Support Package 

The fOllowing are trademarks of Intel Corproation and may be used only to identify Intel products: BXP.lnleliec. MulllbuS. i. iSBC. Multlmodule. ICE.ISBX. PROMPT.ICS. Library 
Manager. Promware. Insite. MCS. RMX. Intel. Megachassis, UPI. Intelevision. Microamp. ~Scope and the combination 01 ICE. ICS. iSBC. ISBX. MCS. or RMX and a numerical 
SUffIX, Sepl t980 

Inlel Corporalion t980 1662208 

4·96 



2920 SOFTWARE SUPPORT PACKAGE 

2920 SIGNAL PROCESSING APPLICATIONS 
SOFTWARE/COMPILER 

• Compiler generates 2920 Assembly 
Language Code 

• Extensive command set for designing 
electrical filters 

• Graphics capability enhances analysis 
of filter response or piecewise linear 

. function approximations 

• Powerful MACRO capability for 
executing frequently used routines 

• Interactive software support tool for 
2920 Signal Processor 

• Extends Intellec® Microcomputer 
Development System support of the 
2920 

• Contains MACRO library for several 
standard filters and signal processing 
functions 

The 2920 Signal Processing Applications Software/Compiler (SPAS20) is an interactive tool for designing 
software to execute on the 2920 Signal Processor. 

The SPAS20 package can be visualized as being comprised of four inter-related sections: A compiler section, 
a filter design section, a curve fitting section, and a MACRO section. 

Among the abilities of SPAS20 are: ability to generate 2920 assembly language code directly from 
specifications of signal processing building blocks such as filters and waveform generators; ability to 
generate 2920 assembly language code for several classes of algebraic equations such as Y = C· X, Y = C· Y, 
and Y = C· X + Y where X, Yare variables and C is a constant; ability to generate 2920 assembly language 
code for one variable function Y(X) = F(X); ability to examine time and frequency responses of filter sections 
specified by continuousor sampled poles and zeroes; ability to examine piecewise linear approximation of 
specific function; ability for users to implement more complex commands by grouping sets of commonly 
used commands into a MACRO. 

The SPAS20 package runs under ISIS-II on any Intellec@ Microcomputer Development System with 64K 
RAM. The output of SPAS20 can be assembled with the 2920 assembler, tested with the 2920 Simulator, and 
programmed into the 2920 chip with the Universal PROM Programmer for prototyping. 

4·97 AFN·01386A 



2920 SOFTWARE SUPPORT PACKAGE 

FUNCTIONAL DESCRIPTION 

The 2920 Signal Processing Applications Softwarel 
Compiler gives the analog designer a "high level 
language" for his 2920 applications-it decreases 
the need to code 2920 assembly language. Further­
more, the compiler is interactive. This feature 
enables the designer to define a filter, or transfer 
function, graph their response, and change their 
parameters many times, without having to program 
and test in an actual 2920 implementation. 

Once a filter is realized by moving poles and zeros 
in the continuous .and sampled planes, the filter 
may be coded and written onto an ISIS file. Simi­
larly, after a function Y = F(X) has been defined, the 
code for a piecewise linear approximation can be 
stored onto an ISIS file. Several other file' com­
mands are available to store and retrieve command 
sequences for SPAS20 sessions. 

SPAS20 Command Language 

DEFINE 

GRAPHI 
OGRAPH 

MOVE 

REMOVE 

HELP 

FIT 

This command defines a pole or 
zero by associating it with a 
number (Le., POLE 3), and with real 
and imaginary coordinates in the 
continuous or sampled plane. 

This command also defines a sym­
bol by associating a name with a 
numeric value, or a MACRO by pro­
viding a pointer to a specified com­
mand sequence. 

This command graphically displays 
the values of object(s) specified. 
·For example, GRAPH GAIN and 
GRAPH PHASE are used to display 
filter response. The OGRAPH com­
mand will "overgraph" the new 
response over the old response, 
after any changes have been 
made. (You may also graph Group 
Delay, Step, and Impulse.) 

Allows the definition of a pole or 
zero tei be changed-its coor­
dinates, its plane, or both. 

Deletes the definition of a pole, 
zero, symbol, or macro. 

Types an explanatory message on 
the console, pertaining to a com­
mand or its attributes. 

This command performs curve fit­
ting, Le. it approximates an arbitrary 
user supplied function with a piece­
wise linear function. 

4-98 

DATA 

HOLD 

This command allows for specifica­
tion of a set of vertices (Le. X - Y 
coordinate pairs) which determine a 
piecewise linear approximation of 
some defined function, filter 
response characteristics, etc. 

Command to correct attenuation 
due to sample-and-hold distortion: 
if ON, it corrects absolute gain by 
sin(x)/x and phase by adding x, 
where x=TS*FREQ*n. It corrects 
group delay by subtracting n*TS. 

EVALUATE Gives the decimal numeric value of 

CODE 

any expression. 

Creates 2920 assembly language 
code for given poles, and zeros, 
equations, and user defined. func­
tions. 

The SPAS20 compiler also recognizes the follow­
in~ commands for file handling: 

PUTI 
APPEND 

DISPLAY 

INCLUDE 

LIST 

Writes out objects (commands) to 
a specified file, either creating a 
new one or appending an existing 
one. This enables the user to 
store all or part of a SPAS20 ses­
sion on a diskette to be brought 
back later with the INCLUDE 
command. 

Copies the contents of a file to the 
console. 

Executes a sequence of 
instructions from a diskette file as 
if they were typed in from the con-
sole. . 

Creates ,a file containing all 
console interactions. 

In addition to naming macros for specific com­
mand sequences, compound and conditional 
commands may be formed using all of the above 
statements. These compound commands are: 

IF 

REPEAT 

COUNT 

Establishes conditional flow of 
control within a block of 
commands. 

Used for repetition of a block of 
commands; executes indefinitely 
or until a condition is met (using 
WHILE, UNTIL, and END 
statements). 

Establishes the number of times ~ 
command sequence is to be 
executed, in a looping fashion. 



2920 SOFTWARE SUPPORT PACKAGE 

SPAS20 MACRO Facility Intel also supplies several MACRO library files con· 
taining the following commonly needed MACROs: 

Filter design MACROS, 
- Butterworth filter 
- Chebyshev filter 
- Bilinear transform 

A macro i.s a sequence of commands that is stored 
on a temporary diskette file. The command 
sequence is executed when the macro name is 
entered as a command. This saves repetitive entry 
of the sequence, and permits alogorithms to be' 
saved on diskette for future use. This SPAS20 
facility allows you to do the following: 

- Evaluate gain or phase of digital filter 
in parallel form 

• Display the text of any macro. 

- Time response simulation 
Function design MACROs 

- Code and error optimization 
• Define a macro, specifying its name and any 

parameters that are to be used by the block. 
This definition is. followed by the contents of 
the macro (commands) and the EM statement 
to end its definition. 

- Calculate instertitial error 
MACROs for generation of 2920 code 

- Code for all·POLE filter 
- Input and AID conversion 

• Invoke a macro by entering its name and 
appropriate values for any parameters. 

• List the names of all defined macros. 

Remove any or all macros. 

SAMPLE SPAS20 FILTER DESIGN SESSION 
-: FI : SPAS20 • SFr 

ISIS-II 2920 SIGNAL PROCESSING APPLICATIONS COMPILER. V2.0 

- Multiplication 
- Division 
- Logarithm functions 
- Square·root functions 
- Sinewave oscillator 

.~EFIHE POLE 1 & -707.707 ; CREATE A POLE IH COHTIHUOUS S-PLAHE . 
• 1": . LI ST ALL POLES AHI> ZEROS 
PO~E 1 • -707.00000.707.00000,COHTIHUOUS 

.rSCALE • 100.10000 ; ESTABLISHES FREQUEHC'; IH,HGE or INTEREST 

.'('CALE & -45.1 ESTABLISHES IIAGHITUDE RESPOHC;;E RHHGE or IHTEREST 

.GR~PH CAIN PLOT IIAGHITUDE RESPOHSE OF POLE PAIR 

,- " .... .A ..... '" .... "' ........ , ............................ 
1.0 --------------------------

- 5. " 
-"' .. ,~ 

-!.) •• ~ 

-1 Z. ! 
-! L, 
- 1·;.5 
-13. -
-2(). ~ 

-23, : 
-2'5.:: 
- 2? '; 
-~~. -
- 3 1. ~ 
-3L ,) 
-3->.':: 
- J)." 
- 41j. I;. 
-4!. ~ 
-4 '5, .) 

CIS I HZ : •.••. A ••• " ••••• A ••• A ••• A •••• A •••• A ••• .. .... II ... ...... '" ....... • A ............. 1 
100 150 200 300 400 500 700 1000 1400 2000 3000 5000 

.; THE UHITS USED IH GRAPHING CAIN ARE SHOWH IH THE LOWE~ LEFT CORHER . 
• , GHIH IH DECIBELS IS GRAPNED YERSES FREQUEHCY lH HERTZ 

.; PREPARE TO IIOYE TO THE DIGITAL DOIIAIH . 
• ; SAIIPLERATE "UST BE SPECIFIED . . 
• T5 • 1/13020 RATE FOR 1'2 IHSTRUCTIOH PROGPAII AHD 10"HZ CLOCK 
TS • 7.'805004/10 •• 5 

.4·99 

10000 

AFN·01366A 



inter 2920 SOFTWARE SUPPORT PACKAGE 

SAMPLE SPAS20 FILTER DESIGN SESSION (Cont'd.) 

."OVE POLE TO Z ; CONYERT FILTER TO DIGITAL VIA "ATCHED-Z TRA~SFOR"ATION 
I POLES/ZE~OES "DYED · .P LIST TRANSFOR"ED POLE 
POLE 1 a 0 71092836.0.34118369.Z · .; to"PARE RESPOHSES OF THE ANALOG AND DIGITAL FILTERS 8Y GRAPHING THE 
.: HEW RESPONSE OYER THE OLD · .(1t;~.I~PH CAl H 

, •••• _ A ••• " •• , : ............. "' •••• A •••• '" •••• "' •••• '_0 ..... fA •• : ................ ! 

- 'L ~ 
-5 ... 

-! I). Q 
-1 .l:. I +' • -: ~ . :: + •• 
-! .,;. ~ + '-
-! L- +' -. 
- ZO). ~ + -. 

+ + '_- •• 
-2'). :: ++ 

++ 
-2~.'" 
- J ~ •. ~ .++ 
- 3 J. ,) 
-l·;. l 
-H.4 
-4,). " 
- 4.? 3 
-4')') 

C'B I HZ . ... 1'\ A... A A 1'. ,., A A A I 

tOO' i 5 ° . 2 00" • 300 • 4 00' 500' . 700 . i 00 0 . i 400 . 2000' . jooo .... 5000 ..... i 00 00 

.; PLUS SIGHS INDICATE OLD CURVE 

., HOTE THAT THE DIGITAL FILTER RESPOHSE BEGIHS TO INCREASE AGAIH 

., liT HALF THE SAftPLE RATE ( 6510HZ ) . 

• ; THE PHASE CHARACTERISTICS OF THIS fILTER CAH BE EXAftIHED · .YSC~LE • -PI.PI ; ESTA8LISHES RAHGE OF IHTEREST 

PH~SE 
3. : ~ 
2.034 
2.')4 
2.24 

I." 
1. b~ 
1.35 
1.0'5 
0.75 
0.45 
0.15 

-0.15 
-0.4'5 
-0.~5 
-1.0') 
-1.35 
- 1 • b5 

-I.'" 
-2.24 
-2.54 
-2.84 
-3,14 

RADIHZ 

· 

' ••••• " .... " ••••• #4. ••• "' ........ " •• ". ........... 14. •••• "' ............................. ! 

i '" '" A A A "",. A .... '" .... ... , 

i 00 . i 50' 2 00 ... joo . 400 • 500" 700' i 000 . i 400 . 2000' • 3000 .... 5000 ..... i 00 00 

.PUT :FI:POLE PZ ; SAVE THE POLE LOCATION IN A DISK FILE. BACKUP · t(,)i;£ peLE I IMSTul ; (;t.NU:Ail; <:'1~U A~;,I::"i:L'1 '.ODE FUR rHIS~llIH 
B~=I 33'B,Q,0 B2=-0.50541914 

4-100 
AFN-01386A 



2920 SOFTWARE SUPPORT PACKAGE 

SAMPLE SPAS20 FILTER DESIGN SESSION (Cont'd.) 

O,TI"IZ£D 2'20 COD£ IS NOW GENERATED TO SAYE SPACE. SOHE 
QF THE SCREEN OUTPUT MAS BEEN DELETED HOR"ALLY ALL ATTE"PTS 
BY TNE CO"PILER TO CENERATE CODE ARE ECHOED OH THE SCREEH 

IHST-IO 
PQLE I • O.710B'4~B.0.J411677'.Z 

BEST: PERROR - 3.37'~B74/10 •• ~.1 .5B846567/10 •• 5 

; NOTE: "AkE SURE SIGNAL IS (0 74635571 
LO~ ?UT2_PI.OUT1_Pl.100 

; OUT2_PI-l.00000000-0UT1_PI 
LO~ OUTI_PI.OUTO_PI.IOO 

: OYT1_Pl-I.00000000·OUTO_PI 
sua OUTO_PI.OUTI_PI.I05 

; OUTO_PI-l 00000000-OUTO_Pl-0.031250000*OUTI_Pl 
ADO OUTO_Pl,OUTO_PI.103 

: OUTO_PI-I.12500000.0UTO_PI-0.0l~1562~0.OUTI_PI 
ADO OUTO_Pl.0UTI_PI.102 

; OUTO_Pl-I.12500000·0UTO_'1+0.21484375.0UT1_PI 
SUB OUTO_PI,OUT2_PI.IOI 

; OUTO_Pl-l. 12500000.0UTO_Pl+0.2148437~.OUT1_PI-0.50000000.0UT2_'1 
SUB OUTO_PI,OUT2_PI.I08 

: OUTO_PI-I.12500000.0UTO_PI+0.21484375.0UTI_PI-0.503'0625*OUT2_PI 
ADD OUTO_PI.OUT2_PI,RI1 

: OUTO_Pl-1.12500000-0UTO_PI+0.21484375.0UT1_Pl-0 503417"*OUT2_Pl 
SUB OUTO_Pl.0UT2_PI.10' 

: OUTO_PI-I.12500000-0UTO_PI+0.2148437~*OUT1_PI-0.5053710'.OUT2_Pl 
ADO OUTO_Pl.INO_Pl.ROO 

; OUTO_PI-l. 12500000.0UTO_'1+0.2148437~.OUTI_PI-0.5053710'*OUT2_PI-I .OOOOOOOO.INO_PI 

.; THE CODE COM"AHD SPECIFIED THAT THE POLE PAIR BE COOED IN LESS THAH II 

.; IHSTRUCTIONS, SO 10 INSTRUCTIONS IIERE CENERATEO. IIITH CO"HHT5 . 
• ; THE FINAL ERROR 1M RADIUS AHD ANGLE FOR THE POLE PAIR liAS OF THE 
.; ORDEI OF 1/10 •• ' AS INDICATED ABOYE IN PE~ROR . 
• ; THIS OPTIMIZED 2'20 ASSEMBLY CODE CAN HOII BE APPENDED TO A FILE 
.; WHICN MAY CONTAI" OTHER COOED FUHCTIOHAL BLOCkS OF A 2'20 PROGRAN 

SAMPLE SPAS20 CURVE FITTING SESSION 
Of.!\ON~TRATION OF THE ~PA~20 CU,RVE-FITTING PACKAGI: 

ISIS-II 2920 SIGNAL PROCESSING APPLICATIONS SOFTWARE/COHPILER, V2.0 
*LIST XC"~F.O,R29 

*. TifF. CIIRVF. F'[TTI'If. C:O!f'fAfIOS I'! SPAS?n 1!ll.I. f.F.NE~A1'<: ~920 COOF. TO C>\LC:IJL,\T~: 

* . 
* . 
* . 
* . 

~O"F. Fl'NCTIIHI ~UC" AS :<**1, "**1 C:OUl.O RF: r.O'IPIITF:1l 0': TIIF. 7.'1211 CIlIP 
'HT'I TIm '1I1l.T1P1.IF.S l1S1'lf. AROl1T 111 I~S1'R'IC:1'lOIIS A!11l 7'1r. IlA'l, IIO'I!:VEI( IT 
pnl'L!1 TIl'. liP T'IF. 'lAP. TOO 1.0'1r., T'IF. COOE f.F.NF:RAT<:n ~y Tllr. ClIl!lJr: F'lTTP:f. 
r.n'l·fA!-lIl<; Ilors "lIlT liSE PIF. n~~, 

.conr. ; :!r.~r IS Til': r.OIlr: ra:NEuATf:Il. 
LilA T~"IP,X,I!On 

; TF.lfP-I.ononnnnn*x 
1.0A ':CIIIIF.Il, ':, '{n I' 

; Y.cu~r.1l-0,~l)nnnnno*x 

Aon Xr.IIIII:'l,'<,,{nn 
; x C II II r: 11- () • ~ 1 " h 2 ~ rlfl * x 

AIlO Tr.~fr.X,ll.nl 

; TF.'IP-O, snnnnono*x+1 ,nnnnnnon*TE'IP 
An') :-:CIJ II r.1l , TF.'IP, r.OS . 

;F.P.o,OR r.OWIIl 01' .n~ 

; xr.lIlIr.Il-1 .onnononO*,{CIIRrl1+n,0112~l)nnn*T':·II~ 
SIIII XCIIIIF.Il,TI-:'IP,Kn2 

; XCIf1lf:I)-1 ,lInnonnno *XC IIII C 11-0. ~ I ~ 7 'iOllfl*TI-: 11' 
AOIl ;F.'I",X,~Oo 

; TE~fP.1 ,nnOOnO(Hl*:-:+l,nnonnonn*TF.'11' 
~Illl XC:IIIIEIl, TF:'II', ROil 

; xr:II~F.Il·I,nnnnonnll*:-:Cl1ll1~Il+I),nn·lq()n25rJ(I*Tl:'11' 

C;1I11 XCII'lEIl,TF.I1P,Rn4 
; XC:" 1\ F.1l - I • 11 0 non n n n * x CliP. I': 1) - (1 • n S R S <J 1 7 ~ (1 * T F " P 

1.IlA XC"'lf:Il,~{CII!\r.Il,1.02 
; XCIlIlr.n.l, .l)oooonO*:-:C(1.\rll-n. ~ 1417 ~nO*TF."P 

*I':ST ; T'II: rll'Ir.TII)'! 'lAS CO'lf:n l~l 1"11<; 't.\''': 
l::o,T ~ In.nnnnnon 

4·101 

3 

AFN·01386A 



2920 SOFTWARE SUPPORT PACKAGE 

*F:~~np. ; Tllf" r.nll~ AI'p:!n"I:I,\T'~" ~**l 'ITT'II': 7tH" r'!~n~; 

~RRnc • n.n4bA7snnn 

.~I\T\ () "r"P!' 1 ;r·.::\:q~~J.: 'r't!!~ PI"'~r.r:uT"I~ f.T·!I:.,\I.~ rl'"·"~T,tn·J:". VEI!1Tr.!:~ •. 

flAT\ n.nnnnnnnn TlliW I.nnnnnnnn s n.nnnnnnon AT n.II')nnnnnll .... 
lI.nfi~~1~nI2 AT n.40nn nonn., 
1I.2~S~2Slln AT 1I.~66~hhh'l.& 
n.'1Sl12Slln AT I.nnnonnno 

;TIIF: J)AT~ ,\In·:,\V APPHIl,I'IATF:S T'IF. l'IltlCTlns At:!! CA'" III: r.I\I\PIIF.Il. 

r II ~:r.T 1 'It! ! ••• ' • ............................................................................ ! 
n.'),; 
n.,)1 
o • ~\(, 
n. H? 
0.77 
n.71 
I).I.A 
n.I,4 
n. S,) 
n.C)/. 
n.c;n 
O. I. '; 
Il./.I 
n.H 
n.17 
n. ~ 7 
n.n 
n. I q 
n. 14 
I).n') 
n.n) 
n.nn •••• ------

! ................................................................................ ! 
n.no 0.1. 0.2 0.1 n.4 n. S n.b n.7 11.11 0.') I.nn 

*Or.RAPII X'*3 ; TilF. Illf'Ff.RANCF. RF.Tl1EF.N Tllf. COllF.1l Mill T'IF. ACTUAl. APPF.ARS AS "+". 

fUtlCTlml 
I. nn 
0.'15 
n.qn 
n' flit 
11. R I 
.n.7ft 
n.7 I 
n.;'7 
n.I.2 
n.S7 
n. S2 
n.4R 
n.4l 
I).lfl 
n.l1 
n.2'l 
n" ~/. 
n. 1 9 
0.14 
0.1 '1 
n.ns 
n.no 

! .............................................................................. ~! 

+.-+ 
++.-~ 

++,--' 
+ ,',--' 

+++++++ ••• --' , 

+' 
+ ' 

:t. 
++-

+ -
+. ' 

++. 
+ -

++. ' 
+.-

++-
+. ' 

+. ' 

! ............... - ..................................... ............................. ! 
o .1l0 O. I 

.r.nA (X'*1)-DATA(X) 
0.7 O.R 0.9 1.00 

FlJ~ICTION ! ••••• , •• , ••• , ••••••••••••••••••••••••••••••• , •••••••••••••••••• , ••• ! 
n.n47 
n.(4) 
o .n19 
n. rnl, 
Il. (112 
0.n2R 
0.025 
Il .n21 
0.11 I 7 
0.1l14 
O.nlll 
O,IlOF. 
n.nnl 

-n.oOI 
-o.nns 
-O,OIlf\ 
-0. n 12 

'-0 ,n I" 
-n.n20 
-o.nn 
-0.027 
-n,oJI 

·F.XIT 

! ............................................................................ ! 
n.nn n.1 0.2 0.1 0.4 0.5 I).r. 0.7 O.R 0,9 1.00 
TnAT's AI. I. FOI.KS 

4·102' 



2920 SOFTWARE SUPPORT PACKAGE 

2920 ASSEMBLER 

2920 program development on Intellec® 
Microcomputer Development Systems 

Translates symbolic assembly language 
instructions into 2920 machine code 

Produces Assembly Listing, Object Code 
File, and Error Diagnostics 

Output used for 2920 programming with 
the Intellec PROM Programmer or the 
2920 SirTlUlator for program debug 

The 2920 Assembler translates symbolic 2920 Assembly Language instrLlctions into the appropriate machine 
operation codes. Through this facility, the programmer is able to symbolically program 2920 hardware operations. 
Compared to machine code, these symbolic references provide faster programming, easier debugging, and greater 
reliability. 

The Assembler produces an object code file (executable machine code), a complete assembly listing, and error 
diagnostics. The object code output from the Assembler may be loaded directly into the Intel Universal PROM 
Programmer for programming the 2920 EPROM. The object code may also be loaded to the 2920 Simulator for 2920 
system design and debug. 

The 2920 Assembler runs under the ISIS·II Operating System on the Intellec Microcomputer Development Systems. 

Sample ~920 Assembly Listing 
ISIS-II 2'20 ASSEftBLER X102 PAGE 

AS~EI'IBLER INVOKED BYI A52'20 SAW AS" DEBUG 

SAWTOOTH WAVE GENERATOR 

LIHE LOC OBJECT -SOURCE STATEI'IENT 

, I n I TLE(' SAWTOOTH WAVE GENERATOR') 
2 
:3 

OOOOH 
OOOOEr 
OOOOH 
OOBAEB 

a OOBAOA 
') :5 OOHH 

:0 7ABAED 
:1 'OOOH 
: 2 8 7082E,F 
: 3 ') 40HEF 
:4 10 4000H 
:5 II 4000H 

l' 12 4000H 
: 7 13 SOOOH 
: S 14 SOOOH 
: ~ 15 BOOOH 
10 " 5000EF 
II 17 SOOOH .... 18 SOOOH 
23 " SOOOEF 
24 
15 

SVI'IBOL: 

AS~E"BLV COI'IPLETE 
EUOPS 0 
IIA~NINGS 0 
RA"S!ZE I 
RO"S!ZE 20 

I NO 
IHO 
IHO 
SUB V,"PI,IHO 
SUB V,KPLRl.IHO 
LOA DAR.V.lHO 
ADD V.KP7,CHDS 
CVTS 
LOA V,KPO.CHDS 
LOA DAR.V 
HOP 
HOP 
HOP 
OUTO 
OUTO 
OUTO 
EOP 
OUTO 
aUTO 
aUTO 

EHD 

YALUE: 

SA"PLE INPUT CHANNEL 0 

SI"ULTAHEOUSLV CALCULATE SAWTOOT~ 
BV SUBTRAC~INC 3/1' FRON Y 
ALSO CHECK SIGH ~IT Of Y 
IF Y HrGATIYE START HEXT TOOTH 
COHYERT SAftPLED IHPUT TO DIGITAL <SIGH BIT) 
SUPPRESS SAWTOOTH IF IHPUT WAS < 0 
PREPARE TO OUTPUT SAWTOOTH 
AHALOG LEVEL "UST SETTLE 

OUTPUT SAWTOOTH 

PROGRAI'I WILL END IN THREE "DRE IHSTRUCTIOHS 

4·103 
AFN-01386A 



infef 2920 SOFTWARE SUPPORT PACKAGE 

2920 SIMULATOR 

Speeds test and debug of 2920 programs 

Simulates 2920 internal operation 

Operates on Intellec® Microcomputer 
Development Systems 

Allows users to specify 2920 input 
signals, and display or alter ROM, RAM, 
and system variables 

Output and internal data can be saved 
on disk for further analysis. 

Provides ability to set breakpoints and to 
collect trace information 

Easy·to·learn commands 

The 2920 Simulator is a software facility that provides testing and symbolic debugging of,2920 programs in an Intellec 
Microcomputer Development Systems environment. The 2920 designers have the capability to specify the 2920 input 
signals, to set breakpoints, to collect and display 2920 input, output, system variables, and ROM and RAM data values 
during simulation. The 2920 Simulator accepts the hex format object files produced by the 2920 assembler. Output 
values and internal trace data may be saved on ISIS-II disk files for further analysis. 

Functional Description 
2920 Input Signal SpeCification 

The four analog signal inputs to the 2920 processor can 
be specified as algebraic combinations of basic 
functions of time. The basic functions are SIN, COS, 
EXP, LOG, SOR, SAW, SOW, ABS. 

2920 Simulation 

The simulation of 2920 machine instructions is per­
formed in software. All 2920 internal registers, memory, 
input values, output values, and other sys~em variables 
can be examined and modified. The internal processing 
of the 2920 is simulated. Time constants for the sample 
and hold capacftators are assumed to be zero. Calcula­
tion of input signals is performed in single precision 
floating point. The speed of simulation varies with the 
complexity of the input signal, breakpoint setting, and 
trace condition. Exclusive of 1/0 time requirements, 
2920 instructions will be simulated at a rate of approxi­
mately several hundred instructions per second. 

Breakpoint Capabilities 

After each instruction is simulated, the breakpoint is 
evaluated to determine whether to stop or continue 
simulation. Conditional breakpoints are also provided 
for debugging purposes. Simulation can be manually 
stopped at any time by pressing the ESC key on the 
Intellec console. 

Trace Capabilities 

Based on the qualifier's condition, trace data records 
can be collected during simulation. The trace data 

records are stored in Intellec resident memory and are 
op'tionally written to the console for display or to a disk 
file for record. 

Symbolic Debugging Capabilities 

The 2920 Simulator allows the user to refer to program 
addresses symbolically. The user can load or save the 
symbols generated from the hex format object files or 
created during the debugging session. 2920 program 
memory in ROM can be disassembled, or filled with 
assembled instructions. 

The 2920 Simulator is designed to provide users with 
powerful, easy-to·use commands. The user interfaces to 
the Simulator by entering commands to the Intellec 
console. The commands consist of one command line, 
terminated by one of the two line terminators - carriage 
return or line feed. 

The 2920 Simulator offers two types of commands: 

4·104 

Simulation and Control Commands 

Command 

Simulate 

Trace 

Ouat"ifier 

Breakpoint 

Operation 

Starts simulation of the input Signals 
and the 2920 program in simulated 
ROM memory. Initial setting is 
"FOREVER." 

Controls the trace selection. Initial 
setting is "TIME." 

Sets qualifier condition during trace. 
Initial setting is "ALWAYS." 

Sets breakpoint condition during simu· 
lation. Initial setting is "NEVER." 

AFN·Q1386A 



2920 SOFTWARE SUPPORT PACKAGE 

Interrogation and Utility Commands 

Command 

Display 

Change 

Base 

Suffix 

Load 

Save 

Define 

Console 

List 

Exit 

Evaluate 

Remove 

Help 

Graphics 
On/Off 

X Size 

Operation 

Displays the values of symbols, RAM, 
ROM, input, output, registers and 
system variables. 

Alters the values of symbols, RAM, 
ROM, input, register and system 
variables. 

Establishes the mode of display for 
output data. 

Establishes the mode of display for 
input data. 

Fetches user symbol table and object 
code from input device .. 

Sends user symbol table and object 
code to output device. 

Enters symbol name and value to user 
symbol table. 

Controls the console on/off display. 

Defines list. device. 

Returns program control to 1515·11. 

Converts expression to equivalent 
values in binary, decimal, and hex. 

Deletes symbols from symbol table. 

, Provides a brief summary of the syntax 
for the command languages. 

Switches output mode between list and 
graphics. 

Enters horizontal display size. 

Keyword References 

The 2920 Simulator provides users with keyword refer­
ences to gain access to all of the numeric valued 
system variables including simulated 2920's memory, 
register, status flags and input/output. These keyword 
references can function as the evaluation command, 
display command, and change command. 

• 2920 Processor Keyword References 

INO Analog input 0 in volts 
IN1 Analog input 1 in volts 
IN2 Analog input 2 in volts 
IN3 Analog input 3 in volts 
OUTO Analog output 0 in volts (read only) 
oun Analog output 1 in volts (read only) 
OUT2 Analog output 2 in volts (read only) 
OUT3 Analog output 3 in volts (read only) 
OUT4 Analog output 4 in volts (read only) 
OUT5 Analog output 5 in volts (read only) 
OUT6 Analog output 6 in volts (read only) 
OUT? Analog output 7 in volts (read only) 
IN Sampled and held analog input signal in volts 
DAR Digital to analog register (RAM location 40) 
PC Program counter (integer 1 to 192) 
CY Carry (integer 0 or 1) 
OVF Overflow (integer 0 or 1, read only) 
OVE Overflow enable (integer 0 or 1) 

• 'Software Simulator Keyword References 

TIME Elapsed simulated time in seconds 
(read only) 

TaUAL Time when the qualifier last matched in 
seconds (read only) 

COUNT Number of instructions simulated since 
last SIMULATE command (integer, read 
only) 

BUFFERSIZE Number of trace data records (integer, 
read only) 

TlNST Time between successive instructions 
in seconds (read only) 

SIZE Number of instructions in program dis­
regarding actual EOP placement 

TPROG Time between successive program 
passes in seconds 

VREF Reference analog level voltage in volts 

The above keyword references are designed to aid 2920 
program debugging. 

ISIS Compatibilities 

The 2920 software simulator runs under the ISIS 
"submit" facility. The 2920 software simulator uses the 
ISIS-II line editing capabilities to correct errors in an 
input line on the Intellec console. 

Sample 2920 Simulation Session 

ISIS-II 2920 SIMULATOR, V1.1 

" 
*. THIS IS THE SIMULATION OF THE 'SAIoITOOTIi GF.NERATOR· 

"LIST SRG.LOG ; LISTS THE SIMULATION SESSION TO AN ISIS FILF 
*1.0AD SRG.HEX ; LOAD THE OIlJECT COOF. INTO TIff. ]Q20 SI>fUAt.TOF 
*RO~I 0 TO 5 ; OISPLAY SRr. PROGRAN 

ROM 000 - LOA .K,KPS,ROO,NOP 
RO~I 001 - ADD .Y.,KPI,ROS,NOP 

ROil 002 - LDA .K,.K,R02,NOP 
ROM 001 - SUR .OSC,.K,ROO,NOP 
ROM 004 - LOA DAR,.OSC,ROO,NOP 
ROil 005 - ADD .ose ,KP4, LO I, CNDS 
"TPROG-I/lOOOO ; SF.T THE SAIIPLF. RATE 

"TRA-PC ,RAII.K ; SET THE ITEIIS TO RE TRACED 
*RASE-R ; DISPLAY THE RESULTS IN BINARY 
"SIMULATE FROM 0 TILL COUNT-3 ; SIMULATE THREE INSTRUCTIONS 

TO VERIFY CONSTANT 

PC RAil 0 
SIMULATION BEGU~ 

1.000000000000000000000000 
2.0000000E+0 
3.0000000E+0 

0.101000000000000000000000 
0.1'0 I 000010000000000000000 
0.001010000100000000000000 

SIMULATION TERHINATF.D 
"QUAI.1F"IER-PC-O ; TRACf. EVERY PROGRAl1 PASS 
"TRACE-T,DAR,RAM .OSC ; ~F.T THE ITF.MS TO RE TRACED 
"RAil .ose-om: ; INITIAI.IZF. TilE RA'I LOCATION 
"RREAY.POINT-T).00132; SIIIUt.ATE FOR TIIO CYCLES 
"RASF.=D ; SET THE RASE TO nECl'lAL 
"SlilULATF. FRntl 0 ; l\EGIN SItfllLATION 

T OAR RA:I I 

4-105 AFN·01386A 



inter 2920 SOFTWARE SUPPORT PACKAGE 

C;PtUI.ATION lIF.r.lIN 
0.00010000 0.R1QR4175 
0.00020000 0.~R359175 

0.00030000 0.52734375 
0.00040000 0.1~7IR750 

0.00050000 0.21093750 
0.00060000 0.0546R750 
0.00070000 -0.10156250 
O.OOOROOOO . 0.73828125 
0.00090000 0.58203125 
0.001 0 0000 0.42578125 
0.00110000 0.26953125 
0.00120000 0.10937500 
0.00130000 ~0.046R7500 

SIMULATION TERMINATED 

0.84277334 
0.~R5546113 

o. 52R3202~ 
0.17109370 
0;21386714 
0.0566405" 
0.89941396 
0.74218745 
0.58496089 
0.'.277 37. 3 3 
0.27050776 
0.11328119 
0.95605459 

*r.RAPH ON ; SWITCHES THE DISPLAY ~ODE TO GRAPHICS 
*TRACE-T,O,DAR,RA:I.OSC,-I,-I,I,1 ; 5ETS ITF.MS TO BE TRACED 
*nM1 .OSC-ONE ; INITIALIZE THE RAIl LOCATION 
*SIMULATf. FROIl 0 

T DA~ RAN 1 
-1 

SHtULATION llf.r.UN 
->* 
o * 

o * 
o * 
o * 
1 * 
o * 
o * 
o * 
o * 

SIMULATION TF.RMINATED 
*EXIT 

I 
1 
I 
1 
1 
1 * 
1 
1 
1 
1 
1 
1 

2 I 

Optional Software 

-1 

SPECIFICATIONS 

Operating Equipment 
Required Hardware 

FORTRAN-80 (Product Code MDS-301) 

Intellec® Microcomputer Development System 
RUNNING ISIS 

Documentation Package 
2920 Assembly User's Guide (9800987) 
2920 Simulator User's Guide (9800988) 

3 * 

Required Software 

ISIS-II Diskette Operating System 

2920 Signal Processing Application Compiler 
User's Guide (121529) 

Optional Hardware 

Line Printer 
Universal PROM Programmer 

ORDERING INFORMATION 
Product Code Description 

MCI-20-SPS 2920 Software Support Package 
Includes 2920 Signal Processing 
Application Software/Complier and 2920 
Assembler/Si m i lator Software 

Shipping Media 
Flexible Diskettes 

4-106 
AFN-01386A 



inter ARTICLE 
REPRINT 

4·107 

AR-59 

June, 1978 



Modular Programming 
in pLlM* 
William Brown 
Intel Corporation 

Various methodologies have been used to control 
the high-and rising-cost of developing software 
products. Among these, one technique that has proved 
effective entails constructing programs from small, 
well-defined modules. This technique, called modular 
programming, can be used in any programming lan­
guage; however, without language support to enforce 
module boundaries, errors of ten 'occur. 

The PLIM language and compiler are designed to 
bring the advantages of modular programming to 
microprocessor software systems. Since the funda­
mental PLIM language facility for organizing a pro­
gram is the module, software systems can be parti­
tioned into manageable units. The PLIM module can 
hold data and procedures and, if properly used, pro­
vide encapsulation of programming abstractions. In 
this way it is related to several other language 
mechanisms that provide for grouping operations 
logically related to a single data structure-for exam· 
pIe, the Simula class,! the Alphard form,2 the CLU 
cluster,3 and the Mesa module.' 

,Modularity 

The basic motivation for modularizing a soft~are 
system is to divide the system into partitions 
understandable to the implementer. There are many 
techniques for designing a partitioning. The oldest 
one applies a functional decomposition of the 
system into subroutines or procedures. However, 
in truly large systems. such decomposition usually 
results in a large number of procedures which, 
though easily understood, have complex inter­
dependencies. 

Encapsulation. Another technique, suggested by 
Parnas,5 is based on encapsulation of information. 
A software system is partitioned in terms of the 

• Adapted from a paper presented at COMPSAC 77. Chicago. 

abstractions which make it most understandable. 
Thus, a text editor might be expressed as manipula· 
tions of strings or a logic simulation as a structure 
of logic cells. By encapsulating, or hiding. the 
implementation details of the abstraction, interde­
pendencies are limited to the properties of the 
abstraction (for example, concatenate, find, etc., 
for strings, or inputs and outputs for logic cells). 
Thus, the system is more understandable. 

Hiding information also enhances the long-term 
utility of the system by making programs easier 
to maintain and modify. First, the source text 
is encapsulated so that any program changes are 
localized. Second, if the engineering requirements 
of the system change, the implementation of the 
abstraction can be replaced without affecting any 
other part of the system. For example, the 
implementation of logic cells might initially be 
optimized for minimum memory-space requirements. 
Later, if speed becomes important, the imple­
mentation can be replaced by one optimized 
for speed. 

PLIM modules share two aspects of encapsulation 
with the facilities of Alphard, CLU, and Mesa. 
First, the module localizes the source text which 
implements the abstraction. Second, the module 
hides implementation details. I t thereby provides a 
certain amount of protection. 

The PLIM system 

This description of the PLIM language and the 
software development environment concentrates on 
those features important to modular programming. 
It is intended to provide enough background so that 
someone familiar with similar languages and sys­
tems can understand the examples. For further 
information. Intel's PUM-80 Programming Manual6 

provides a complete description of the language, 
and McCracken' provides a tutorial introduction to 

0018·9162178/0300·0040$00.75 ~ 1978 IEEE COMPUTER 

Reprinted with permission from COMPUTER MAGAZINE. Copyright by the IEEE Computer Society 

4·108 



PLIM and the ISIS-II diskette operating system. 
Intel's ISIS-II System User's Guide" describes the 
file management services and general facilities of 
this operating system. 

PLIM is a block-structured procedural language. 
It is intended as a system implementation language 
for the Intel 8080 microprocessor. Syntactically, it 
closely resembles XPU or PLlI.'O However, the 
statement structure should be understandable to 
anyone familiar with a block-structured language. 

The data types which PLIM manipulates are pro­
bably not familiar to some readers. PL/M has only 
two basic data types: BYTE and ADDRESS. A BYTE 

is an 8-bit unsigned value. An ADDRESS is a I6-bit 
unsigned value. In addition to these data types, 
PLIM allows singly dimensioned arrays and single­
level data structures. 

An example declaration for a BYTE variable 
(CH) and two ADDRESS variables (BI and B2) is 
given below: 

DECLARE CII BYTE. 
(13). B2) ADDRESS; 

PLIM takes a primitive approach to the problems 
presented by references to objects. A reference to 
an object is simply the memory address of the ob­
ject. PLIM uses a dot to denote the operation "ad­
dress of." Thus, ... CH" yields the address of "CB." 

PLIM also allows for accessing variables by their 
references. This is provided by the BASED notation 
in declarations. For example, with the declaration 

DECLARE B ADDRESS. 

and the assignments 

the value of N is 5. 

CB BASED B BYTE. 
N BYTE; 

B = .N; 

CII = 5; 

The BASED variable concept is important to the 
procedure mechanism. Only objects of type BYTE 

or ADDRESS may be passed to a' procedure and all 
parameters are passed by value. Therefore, to pass 
a large object like an array or to implement a return 
parameter requires a BASED declaration. In this 
fashion, PLIM implements call by reference. 

The last facility to be discussed is the LITERALLY 

declaration. A LITERALLY defines a parameterless 
macro or string substitution in the source text. 
Thus, with the declaration 

DECLARE ZERO LITERALLY '0'; 

the appearance of the identifier ZERO is equivalent 
to writing the constant O. 

and procedures can be declared in the module, and 
in one distinguished module (the main program mod­
ule) an executable statement sequence may appear. 
Since a module is a block, names declared in it are 
normally limited to the extent of the block. Thus, 
all objects are a priori hidden inside the module. 
However, PLlM's PUBLIC and EXTEHNAL attributes 
provide mechanisms to make names in one module 
explicitly visible in another. (This formulation paral­
lels the Mesa facilities.) 
. A procedure or data object in a module may be 
given the PUBLIC attribute. This makes the name of 
the object visible outside the module. Only objects 
declared at the first nesting level may be declared 
PUBLIC. This restriction, and the fact that modules 
are statically allocated, assures that PUBLIC proce­
dures have a consistent environment for efficient 
execution. 

A module may access PUBLIC information in 
another module by including a matching EXTERNAL 

declaration. For a procedure, the EXTEHNAL decla­
ration appears as a procedure with only parameter 
declarations in the body. The attribute EXTERNAL 

appears as the last item in the procedure head. For 
data, PUBLIC or EXTERNAL appears as an attribute 
in the declarations. For example, the declaration 

DECLARE NAMEREC STRUCTUHE( 

LAST 

FIHST 

MI 

(25) BYTE. 

(25) BYTE. 

BYTE) PUBLIC; 

declares a structure variable, NAMEREC, which has 
three fields. The fields LAST and FIHST are arrays 
of 25 BYTES. The field MI is a single BYTE. The 
matching EXTERNAL declaration is 

DECLARE NAMEREC STRUCTUHE( 

LAST 

FIHST 

MI 

(25) BYTE, 

(25) BYTE. 
BYTE) EXTERNAL; 

The names of structure fields and procedure pa­
rameters in EXTERNAL declarations need not match 
those in the PUBLIC declaration. Only the types and 
order must match. 

The compiler and linkage system. The current 
PLIM compiler has two features which are impor­
tant to implementing modular abstractions. First, 
the module is the natural unit of compilation. Thus, 
an implementation of an abstraction can be compiled 
once and then used for many applications. Second, 
the compiler supports a' textual inclusion facility. 
This facility is provided by a compiler control having 
the following general form 

$INCLUDE (filename) 

The compiler will read the file given by the file­
PLIM modules. A module is a labeled block which - name. The text read will be inserted into the source 

is not enclosed in any other block. Data objects . program, replacing the INCLUDE control. The 

March 1978 

4·109 



EXTERNAL and LITERALLY declarations for a module 
may be included this way. Thus, an abstraction 
may be referenced by a single name. Textual inclu­
sion is the mechanism used' by Mesa for static 
binding of implementations of an abstraction to 
users of the abstraction. 

The linkage system is responsible for binding 
. modules together. It matches all EXTERNAL declara­

tions to the appropriate PURLIC declarations. Un­
fortunately, this matching is done by name only. 
No type checking is performed. 

Example abstraction-strings. T.he abstraction 
to be implemented is that of variable-length charac­
ter strings. The abstraction has the following opera­
tions: LENGTH, COPY, CONCAT, FHONT, REST, FIND, 

BLANKS, PUT, and GET. It is possible to define each 
of these operations in precise mathematical terms. 
However, for the purpose of this example, only 
informal descriptions with a minimum of formal 
notation are given. Where a functional notation is 
necessary, S will represent a string and N will 
represent a non-negative integer. 

LENGTH returns the number of characters in the 
argument string. The empty string has a length of 
zero. 

COpy returns a duplicate of the argument string. 
CONCAT returns a string which is a concatenation 

of its arguments. The order of concatenation is the 
first argument string followed by the second. The 
two argument strings are not affected. 

FRONT returns a string which is a copy of the first 
N characters of the argument string. The value of N 
must be in the inclusive range from 0 to the length 
of the string. If N is zero an empty string is returned. 

REST returns a string such that CONCAT IFHONTIS.NI. 

RESTIS.N)) is a copy of the string S. 
FI NO locates a character in the argument. string 

and returns the length of the substring ended by 
that character. If the character is not in the string, 
zero is returned. 

BLANKS returns a string of blanks of a specified 
length. RLANKS (0) retUlns an empty string. 

PUT outputs a string as a line on a specified file. 
GET inputs a line from a specified file and converts 

it to a string. 

The implementation 

Before implementing the string abstraction, con­
crete PLIM interfaces for the abstract operations 
must be specified. Figure 1 contains the EXTEHNAL 

and LITERALLY declarations which define strings 
to the user. These declarations correspond to a de­
finition module in Mesa or the specification part of 
an Alphard form. To produce these declarations two 
implementation details had to be fixed. 

First, since PLIM allows only scalar parameters, 
the concept of "references to a string" has been ,in­
troduced. The LITERALLY declaration defines 
REF$STRING as ADDRESS. This does not imply, 

Declare Ref$String Literally' Address' 
Character Literally' Byte': 

Length: 
-Procedure (Ref) Address External: 

Declare Ref Ref$String: 
End Length: 

Blanks: 
Procedure (N) Ref$String External: 

Declare N Address: 
End Blanks: 

Copy: 
Procedure (Ref) Ref$String External: 

Declare Ref Ref$String: 
End Copy: 

Concat: 
Procedure (Ref1. Ref2) Ref$String External: 

Declare (Ref1, Ref2) Ref$String: 
End Conca!: 

FrOnt: 
Procedure (Ref. Ind) Ref$String External: 

Declare Ref Ref$String, 
Ind Address: 

End Front: 

Rest: 
Procedure (Ref. Ind) R~f$String External: 

Declare Ref Ref$String. 
Ind Address: 

End Rest: 

Find-
Procedure (Ref. Ch) Address External: 

Declare Ref Ref$StrinG, 
Ch Character: 

End Find: 

Put: 
Procedure (Ref, FI) External: 

Declare Ref Ref$String, 
FI Address: 

End Put: 

Gel 
Procedure (FI) Ref$String External: 

Declare FI Address: 
End Get: 

Delete: 
Procedure (Ref) External: 

Declare Ref Ref$String: 
Enrl DelRte: 

Figure 1. The user's view of strings defined by external 
declarations. 

however, that a reference to a string is necessarily 
the memory address of the representation. The ac­
tual representation of the object is hidden by the 
module structure. This I.ITEHALLY provides for 
visually distinguishing declarations of string ref­
erences from other variables of type ADDRESS. 

However, the language does not enforce any dis· 
tinction. 

Second, an additional operation, DELETE, has been 
specified. The abstraction was not concerned with 
the problem of dynamic storage management. It 
is possible to implement strings ~ith implicit 

COMPUTER 

4-110 



stora~e management. However, that would compli­
cate the representation. Therefore, the user is re­
sponsible for deletin~ unused strings. 

Representation. The user's view of strings is de­
fined by the declarations in Figure 1. These declara­
tions do not imply anything about the represeenta­
tions of strings or string references: the module 
structure is used to hide these details. Several alter­
natives are possible. A string might be represented 
as a linked list of characters or as a dynamically 
allocated BYTE array_ String references might be the 
address of the string representation or an index into 
a hidden array maintained by the module. 

The representation chosen implements a string 
reference as the address of a dynamically allocated 
BYTE array. However, to illustrate encapsulation 
and the effect of engineering decisions on an imple· 
mentation, two forms of this representation are sup­
ported. For strings of less than 255 characters, the 
first entry in the dynamic array is the length of the 
string. Thus, short strings are handled efficiently in 
minimum space. For strings of 255 or more charac· 
ters, the first entry in the dynamic array is 255 and 
the end of the string is indicated by another 255. 
Thus, long strings pay a slight penalty in both 
space and time. If a more efficient representation 
for long strings is required, the representations can 
be changed without impacting the user of the ab­
straction. 

Completed module. The source text for the com­
pleted module to implement strings is in the appen­
dix. This module corresponds to a program module 
in Mesa or the representation and implementation 
parts of an Alphard form. The implementation is not 
completely representative of good software develop­
ment in that the source text is not adequately 
documented and it has been validated only to the 
extent necessary to run the example. 

Notice that the STRINGS module accesses two 
other abstractions by INCLUDE. The first of these 
provides EXTERNAL declarations for the ISIS-II in­
put/output facilities, described in the user's guide." 
The second abstraction, referenced by the file name 
MEMMAN.DEF, provides for dynamic storage manage­
ment. This module contains two operations, ALLOC 

and DEALLOC, which allocate and deallocate contigu­
ous blocks of memory. 

The module contains several useful LITERALLY 

declarations. In addition to REF$STRING and 
CHARACTER declarations, the type STRING is declared 
literally. Since this type is always applied to BASED 

items, the array length specifier of 1 is only a 
formality. 

The procedure NEW is hidden inside the STRINGS 

module. It takes as a parameter the length of a 
string to be created and allocates space for the ap­
propriate representation type. It also initializes the 
length or boundary markers. 

The PUBLIC procedure LENGTH defines the length 
operation. It is typical of the procedures imple­
menting the operations. The first line names the 

March 1978 

procedure and formal parameter. and the word 
AIlIlHESS indicates this is a function returning an 
AIlIlHESS value. The word I'IIllLlC indicates the pro· 
cedure is to be accessible outside the module. Next 
comes the declaration of the parameter and two 
local variables. The first is a STHI:--;(; based on the 
reference parameter. The second is a counter for a 
loop. The body of the I.E~.;c;TII procedure follow~. 

The remaining procedures follow the same pattern. 
However, two points should be mentioned. First, 
several procedures call :,\!OVE, a built-in PL/M pro­
cedure for moving bytes from one memorv area to 
another. Second, the IlEI.ETE procedure 'does not 
free all the storage for unused strings. The length 
of the string is set to zero and the remaining storage 
is freed. This action helps avoid problems arising 
from inadvertently referencing a deleted string. It 
is. of course. hidden from the user of the abstraction. 

Example program. Figure 2 shows' a prob'1'am 
using the string abstraction. The input to this pro­
gram isa text file, TEST.SHC. containing tab charac· 
ters. Tabs are represented in the text by the char· 
acter 'I'. The program processes the file and outputs 
the text file TEST.OUT. The output has the tab char· 
acters replaced by enough blanks to implement tab 
stops at columns 8. 16.24.32. etc. 

The INCLUDES of the files IO.DEF and STRIN(;.DEF 

at the beginning of the program supply the EX­
TEHNAL declarations for the abstractions. The text 
of STHING.DEF is exactly that given in Figure 1. The 
text of IO.DEF is described in the discussion of the 
module STHINGS. 

Next is the procedure declaration for CONCATD. 

This declaration provides a local extension to the 
string abstraction. It implements a concatenation 
operation which deletes the argument strings. Note 
that this extension is defined in terms of the opera­
tions of the string abstraction. and not in terms of 
the actual representation. Thus. the encapsulation 
of the implementation is preserved. 

Following the procedure declaration are the de­
clarations for the variables used by the program. 
The variables LINE and OUTLINE are references to 
the input string and output string. respectively. The 
rest of the variables are various temporaries and 
counters. 

The body of the algorithm is an iteration which 
terminates when a null string is encountered. Each 
LINE is processed in turn until all tabs have been 
found. When a tab is found (by FIND). all the char­
acters in the line in front of the tab are concatenated 
to the output string (referenced by OUTLINE). 

Next, the length of this new string is determined 
and the proper number of blanks to be inserted is 
calculated (as LA). This number of blanks is conca­
tenated to the output string. Finally, the original 
string LINE is replaced by the REST of the string and 
a new tab is located. 

When no more tabs are found, the remaining 
part of the input string is concatenated to the out­
put string. This string is output. A new LINE is in­
put and the outer iteration is repeated. 

4-111 



Tabs:Do; 

$Include (Slring.Del) 
$Include (lo.Def) 

Concald: 
Procedure (Refl,Ref2) Ref$Slring; 

Declare (Refl, Ref2, Relrel) Ref$Slring; 
Relref = Concal (Refl,Ref2); 
Call Delele (Rel1); 
Call Delete (Ref2); 
Relurn Relrel; 

End Concald; 

Declare (Line,Oulline,Tmp) Ref$Slring, 
(I,L,Lb) Address, 
(Infile,Oulfile,Slalus) Address; 

Declare Tab Lilerally , , , I' , '; 

Call Open 
(.Infile, .('TEST.SRC '),l,256,.Slalus): 

Call Open 
(.Oulfile,.('TEST.OUT ').2,0,.Slalus); 

Line = Get(lnfile); 
Do While Lenglh(Line) <> 0; 

Outline = Blanks(0); 
I = Find(Line,Tab); 
Do While I <> 0; 

Outline = 
Concald(Oulline,Front(Line,l-l )); 

L = Lenglh(Oulline); 
Lb = (((LIS) + 1 )*S)-(L + 1): 
Oulline = 

Concald(Oulline, Blanks(Lb)): 
Tmp = Line; 
Line = Rest(Line;I); 
Call Delele(Tmp); 
I = Find(Line.Tab); 

End; 
OUlline = COncald(Oulline,Line): 
Call Put(Oulline,Oulfile); 
Call Delete(Oulline); 
Line = Get(lnfile): 

End; 

Call Exil: 
End Tabs; 

Figure 2. Example program using the string 
abstraction. 

Figure 3 shows an input file and the corresponding 
output file. The output was obtained by supplying 
a reasonable implementation of the memory manage­
ment module and executing the TABS program. 

count/amount/lolal 
25/$.25/$6.25 
51$.421$2.10 
71$3.20/$22.40 

counl 
25 
5 
7 

amounl 
$.25 
$.42 
$3.20 

lolal 
$6.25 
$2.10 
$22.40 

Figure 3_ Input file with the corresponding output file. 

Conclusion 

As the example program shows. the PLIM module 
is a simple. efficient encapsulation mechanism that 
can emulate many of the abstraction facilities of 
Alphard. Mesa. and CLU. Thus. a number of benefits 
inherent in such languages. including better readi· 
bility and maintamability. are available to the PLIM 
programmer. Discipline is required. however. since 
existing implementations of PLIM-unlike those of 
the. other languages-do not check for consistent 
use of abstractions. 

The language facilities and methodology exem­
plified by the STRINGS module can be successfully 
applied to real software products. They have been 
used. for example. in constructing the foundation 
of Intel's RMX-80 real·time operating system 
which coordinates programs performing real-time 
control functions. II • 

Acknowledgments 

I wish to thank Kevin ·Kahn and John Doerr for 
their many comments' and suggestions during the 
writing of this article. 

Appendix. Source text for the completed 
module which implements the strings 
example. 

Strings:Do; 

$Include (lo.Del) 
$Include (MemmanDef) 

Declare Rel$String Lilerally 'Address'. 
Lilerally '( 1) Byle'. 
Literally 'Byle', 
Lilerally '13', 
Literally'10'; 

New: ' 

String 
Characler 
Cr 
If 

Procedure (Ln) Rel$Slring; 
Declare Ln Address, 

Retrel Rel$Slring, 
Sir Based Relrel Siring: 

II Ln > = 255 Then Do: 
Relrel = Alloc(Ln + 2); 
Sir (0).Slr(Ln + 1) = 255: 

End; Else Do; 
Relrel = Alloc( Ln + 1 ); 
Sir (0) = Ln: 

End; 
Return Relrel: 

End New; 

Lenglh' 
Procedure (Ref) Address Public: 

Declare Rei Rel$Slring, 
Str Based Rei Siring, 
I Address; 

If Sir (0) < 255 Then Relurn Sir (0): 
1=1: 
Do While Sir (I) <> 255: 

1=1+1: 

End' 
Ret~rn (1'1); 

End Length; 

COMPUTER 

4-112 



Blanks' 
Procedure (N) Rel$String Public; 

Declare (N,I) Address, 
Retrel Rel$String, 
Str Based Retrel String; 

Retrel = New(N); 
II N <> 0 Then 

Do I - 1 To N; 
Str(l) = "; 

End; 
Return Retrel: 

End Blanks; 

Copy: 
Procedure (ReI) RelSString Public; 

Declare (Rel,Relrel) Rel$Slring, 
In Address; 

In - length(Rel); 
Retrel - New(ln); 
IllN <> 0 Then 

Call Move(ln,Rel+ 1 ,Relrel+ 1); 
Relurn Retrel; 

End Copy; 

Concal: . 
Procedure (Rell ,ReI2) Rel$Slring Public; 

Declare (Rell ,ReI2,Retrel) Rel$String, 
(lnl,ln2) Address; 

lnl = length(Rel1); 
ln2 = length(ReI2); 
Retrel - New(lnl + ln2); 
IIlnl <> 0 Then 

Call Move(lnl ,Rell + 1 ,Relrel + 1); 
II ln2 <> 0 Then 

Call Mo've(ln2,ReI2 + 1 ,Relrel + lnl + 1); 
Return Relrel; 

End Concat; 

Front: 
Procedure (Rel,lnd) RelSString Public; 

Declare (Rel,Retrel) RelSString, 
Ind Address; 

Relrel = New(lnd); 
IIlnd <> 0 Then 

Call Move(lnd,Rel+ 1 ,Retrel+ 1); 
Return Retrel; 

End Front; 

Rest: 
Procedure (Rel,lnd) RelSString Public; 

Declare (Rel,Retrel) Rel$String, 
(In,Restln,lnd) Address; 

In = Lenglh(Rel): 
Restln = Ln·lnd; 
Retrel = New(Restln); 
II Restln <> 0 Then 

Call Move(Restln,Rel + Ind + I,Retrel + 1): 
Return Relrel: 

End Rest; 

Find' 
Procedure (ReI.Ch) Address Public; 

Declare Rei RelSSlring, 
Str Based Rei String, 
Ch Character, 
(In,l) Address; 

In = length(Ref); 
IIln = 0 Then Return 0; 
I = I; 
Do While I < = Ln and Str (I) <> Ch: 

1=1+1: 
End: 
II Str (I) = Ch Then Relurn I: 
Return 0: 

End Find; 

PUI: 
Procedure (Rel.FI) Public: 

Declare Rei RelSSlring, 
(FI.Ln,Status) Address 

In = Lenglh(Rel); 
IIln <> 0 Then 

Call Write(FI,Rel + l.ln.Slalus): 
Call Wrile(FI.{Cr.Lf).2,.Slalus): 

End Pul: 

March 1978 

4-113 

Get 
Procedure (FI) RelSSlring Public: 

Declare Relrel RefSSlring. 
(FI,Aclual.SlaluS) Address. 
Buffer(128) Byle: 

Call Read 
(FI, Buffer, 128, .Aclual, .Slalus). 

II Aclual = 0 Ihen Relurn New(0): 
Relref = New(Actual·2); 
Call Move(Aclual·2, .Buffer .Relref + I): 
Relurn Relref: 

End Get: 

Delele: 
Procedure (ReI) Public: 

Declare Ref RefSSlring 
Sir Based RefSSlri ng: 

Call Dealloc(Rel + l,lenglh(Rel)): 
Sir (0) = 0: 

End Delele: 

End Strings: 

References 

1. O. J. Dahl, 8. Myhrhaug, and K. Nygaard. The 
SIMVLA 67 Common Base Language. Publication 
S·22. Norwegian Computing Center. Oslo. 1970, 

2. A. Wulf. "ALPHARD: Toward a Language to Sup· 
port Structured Programming." Carnegie· Mellon 
University Tech Report AD-785417. April 1974. 

3. 8. Liskov and S. Zines. "Programming with Abstract 
Data Types." SIGPLAN Notices. Vol. 9. No.4. 
April 1974. pp. 50-59. 

4. C. M. Geschke. J. H. Morris. Jr .. and E. H. Satterth· 
waite. "Early Experience with Mesa." CACM. Vol. 
20. No.8. August 1977. pp. 540-552. 

5. D. Pamas. "A Technique for Software Module Speci· 
fication." CACM. Vol. 15. No.5. May 1972. pp. 330-
336. 

6. Intel Corp .. PUM-80 Programming Manual. Document 
No. 98-2688. 1977. 

7. D. D. Mc('",cken. A Guide to PUM Programming 
{or Microcomputer Applications. Addison·Wesley 
Publishing Co .. Reading. Mass .. 1978. 

8. Intel Corporation. ISIS· II System Vser's Guide. 
Document No. 98-306A. 1976. 

9, W. M. McKeeman. J. J, Horning. and D. 8. 
Wortmann. A Compiler Generator. Prentice· Hall. 
Englewood Cliffs. New Jersey. 1970. 

10. ANS Committee X3. Draft Proposed Standard Pro· 
gramming Language PLII. February 1975. 

II. Kevin Kahn. "A Small·Scale Operating System 
Foundation for Microprocessor Applications." Proc. 
IEEE. Vol. 66. No.2. February 1978. pp. 75-89. 

V 
William L, Brown is a senior software 

. engineer in Intel's Microcomputer 
'. Systems Division in Aloha. Oregon. 

His past work includes the revision 
and enhancement of the PL/M Ian· 

,,,:.' guage and the development support 
software. for Intel's bit slice proces· 

", - .,,', sor. He received his MEE from Rice . r.r. { University in 1974. He is currently 
.. an active member of the ACM 

and the IEEE Computer Society. 



ARTICLE 
REPRINT 

Reprinted with permission from ElectrOnic Design, Vol. 28, NO.9; cOPYright Hayden Publishing Co., Inc. 1980 

4·114 

AR-136 

June 1980 

ORDER NUIIBER:451145-001 



AR-136 

PL/M-86 combines hardware access 
with high-level language features 

P L/M-86, a systems-implementation language, is 
the first high-level language (HLL) designed spe­

cifically for the special requirements of micro­
computers. The user gets not only high-level access 
to the ~P.hardware, and thus control over the proces­
sor and its peripheral components, but also such HLL 
advantages as the ability to write code in English-like 
statements, more efficient software design and easier 
debugging and maintenance. Major features include: 

• High-level constructs for machine control, espe­
cially interrupt handling, direct-port I/O and access 
to absolute memory locations 

• Pointers and based variables 
• String manipulation 
• LOCKSET, a procedure for multiprocessing en­

vironments. 
Designed to be executed by Intel's 16-bit 8086 

(ELECTRONIC DESIGN. March 1, 1980, p.97), PL/M-86 
is upward-compatible with PL/M-80. Except for inter­
rupts, hardware flags and time-critical code se­
quences, PL/M-80 programs may be recompiled under 
PL/M-86 with little or no conversion. 

Block-structured language 

Both versions are block-structured, encouraging a 
structured approach to programing with well-struc­
tured branching and control statements. They provide 
a DO-END construct for simple block structures, as well 
as DO WHILE. DO CASE. an iterative DO, binary decision 
mechanisms IF-THEN-ELSE and nested IF-THEN-ELSE. 

PL/M-86 procedures isolate well-defined tasks 
where local variables, valid only within their pro­
cedure, can be used to avoid unwanted interactions 
between procedures (Fig. 1). By making it easy to 
divide the programming tasks into subtasks, PL/M-86 
encourages top-down design and permits several soft­
ware designers to work in parallel. Since programs 
under development tend to keep changing, modularity 
also simplifies program maintenance. With PL/M-86, 
programs can be designed in such a way that one 
program function can be modified without unexpected 
repercussions elsewhere in the program. 

4-115 

In addition, as an SIL, PL/M-86 includes special 
features for writing systems software: 110 handlers, 
device drivers, system monitors-in short, any ex­
ecutive program that directly contrQls hardware, even 
if imbedded in application software (for instance, in 
machine or instrument control). 

An SIL like PL/M-86 allows the system designer 
to control hardware with HLL constructs rather than 
error-prone assembly language. Specifically, the sys­
tem designer can write interrupt-handling routines 
and routines to input or output data directly to CPU 
ports. PL/M-86 also allows the programmer to access 
memory locations directly and provides a flexible 
means of manipulating data and procedure pointers. 
Built-in procedures give access to the hardware stack 
pointer and CPU flags. 

Unlike application-oriented languages, PL/M-86 

1. Three nested blocks illustrate block hierarchy: Block' 
M includes the whole screened area; block Sort 
includes all the code with medium and light screen; 
block Find is outlined by the white area only. 

AFN-01509A 



inter AR-136 

lets the programmer interface directly with the sys­
tem hardware, without having to bring additional 
modules in at execution time to interface with the 

HITEMP:.i>l=Iocawi=it: lNi'fffiRUl"T(Sii 

END HITEMP 

DECLARE INTERRUPTSID BYTE. 
INDEX.OUTDEX· BYTE. 
CURRENTSSTATUS WORD; 

INTERRUPT$ID = INPUT(lNDEX); 

IF INTERRUPTSID = 000000016 THEN 
DO; . . ." 

OUTPUT(OUTDEX) = 110000006 !'ALARM AND SHUTDOWN'! 
OUTDEX = OUTDEX + 1 . 
GO$FLAG + FALSE 

END; . 
IF INTERRUPTSID + 00001000B THEN 
DO; 

. OUTPUT(OUTDEX) = 100000006 !'WARNING LIGHT'! 
OUTDEX = OUTDEX + 1 

END: 
ELSE DO: 

END: 

2, Although a high·levellanguage, PL/M.86 provides 
direct access to hardware, In this example, a peripheral 
signals INTERRUPT(5) whenever a certain temperature 
exceeds its limit, The shown interrupt procedure activates 
warning signals and stops the process, 

SORT: DO J = 1 TO COUNT·1; 

PA(L~(iV~j~~~(:tii'ipmRecsi~Ef@¢\:iR1'iENi';l'I¢¢$il~l: 
I=J. 

FIND: DO WHILE 1 
AND RECORD (1·1)'RECSIZE + KEY 

CURRENT(KEY); 
CALLMOV6(@RECORD(1.1)'RECSIZE). 

@RECORD(1'RECSIZE). 

1=1·1; 
END FIND; 

RECSIZE; 

CALL MOVB(@CURRENT.@RECORD(1'RECSIZE).RECSIZE); 
END SORT; 

3, In this fragment from a SORTroutine, the predefined 
procedure Move is called several times, Being a built·in 
procedure, it does not have to be declared, In the first 
call (highlighted), the parameter Ciz'RECORD(J*RECSIZE) 
specifies the starting address of the byte sequence to be 
copied; (n CURRENT is the location to which the first byte 
will be copied; RECSIZE is the number of bytes in the stream 
of data to be transferred, 

4·116 

hardware. While Pascal or Fortran requires an operat­
ing system or run-time support to perform system­
level functions, PL/M-86's "bare-machine" program­
ming saves memory, as the code overhead for an 
operating or run-time system is eliminated. This SIL 
thus offers the best of two worlds-the memory 
efficiency·of system-level cooe and the programming 
efficiencr of an HLL. 

Interrupts make it possible to break into the execu­
tion sequence of a funning program to carry out other 
tasks and then resume execution of the interrupted 
program. Sometimes, the external event is repetitive 
-for instance, a clock pulse that only needs to be 
counted before other processing resumes. At other 
times, the external event can be a signal indicating 
that data are ready to be input or that some process 
has exceeded allowable limits. 

Since IlC applications involve processing of inter­
rupts to some degree, an SIL must include provisions 
for interrupt-handling routines. In an 8086-based 
system, an interrupt may be generated by some 
peripheral device that sends an interrupt signal and 
number to the 8086 CPU (Fig., 2). 

The CPU processes an interrupt by: 
• Completing the machine instruction currently 

under execution 
• Disabling the interrupt mechanism. 
• Activating an interrupt procedure corresponding 

to the number sent by the peripheral device. 
After executing a RETURN or END statement, the 

interrupt procedure automaticall~"reenables the inter­
rupt mechanism and returns control to the point 
where the interrupt occurred. 

For I/O operations, PL/M-86 provides built-in pro­
cedures that let the programmer access the CPU's 110 
ports directly, This includes support for byte or word 
1/0 and constant or variable port numbers. To input 
a byte from an 8086 I/O port, use 

INPUT (expression) 
The value of "expression" specifies one of the input 
ports of the 8086 CPU. The value returned by INPUT 
is the byte value found·in the specified input port (see 
Fig. 2). 

To access specific memory locations, PL/M-86 pro­
vides the AT attribute: 

AT (location) 
where "location" may be either a whole-number con­
stant in the range of 0 through 1,048,575 or a location 
reference. The latter uses the "@ operator" to indicate 
where a specific variable will reside at execution time. 
For example, (U)RESULT represents the run-time loca­
tion of the variable RESULT. The statement 

DECLARE (CHAR$A, CHAR$B) BYTE AT (4096): 
causes the BYTE variable CHAR$A to be stored at 
location 4096. The variable CHAR$B follows in the next 
two bytes. 

On the other hand,. the construct 

AFN-01509A 



AR-136 

DECLARE DATUM WORD 
DECLARE ITEM BYTE AT «(Q'DATUM) 

causes ITEM to be declared a BYTE variable, located at 
the location of DATUM. PL/M-86's ability to access 
absolute memory locations is especially important for 
memory-mapped I/O or other hard-wired memory 
locations. 

What are based variables? 

Sometimes a direct reference to a variable is either 
impossible or inconvenient-for example, when the 
location of a data element remains unknown until it 
is computed at run time. It may then be necessary 
to manipulate the locations of data elements rather 

than the data elements themselves. PL/M-86 provides 
this indirect form of reference with "based variables." 
The base of a based variable is another variable 
pointing to the based variable. Both must be declared 
separately, with the base coming first. For instance, 
in ' 

DECLARE ITEM$PTR POINTER; 
DECLARE ITEM BASED, ITEM$PTR BYTE; 

ITEM$PTR is base and ITEM is the based variable. The 
construct 

ITEM$PTR=34AH; 
ITEM 77H; 

loads the value 77 (hex) into the memory location 34A 
(hex). 

One variabI"e name can refer to many different data 

DECLARE B BYTE, C CBYTE, 
TEST BYTE, 
AWORD; 

IF TEST THEN 
DO' 

OUTWARD (OF6H)-OFFFFH; 
A=B 

1. 
2. 
3. 
4. 

5. 
6. 

7. 
8. 
9. 

10. 

11. 
12. 
13. 

14. 

1. 
2. 
3. 
4. 

5. 
5. 
7. 
8. 

9. 
10. 
11. 

12. 

@1: 

@2: 

@3: 

@1: 

@2: 
@4: 

@3: 

END; 
ELSEA=C 

MOV AL,TEST. 
RCR AL,1 
JB @1 

JMP @2 

MOV AX,OFFFFH 
OUTW OF6H 

MOV AL,B 
MOV>.···:Ali,OH 
MOV> "'A;AX\ 
JMP @3 

MOV AL,C 
MOV2.::·:::::::::::·:·AH··OH 
MQV:>?A •• ~~?· •. 

(a) 

MOV AL,TEST 
RCR AL,1 

j.J.~. P.·: .••. : •...••. :.:?::':..::: .::::::.j@1 .. : 
X~l 

MOV AX,OFFFFH 
OUTW OF5H 
MOV AL,B 
JMP @4 

MOV AL,C 
MOV AH,OH 
MOV A,AX 

(c) 

4. An ASM86 program-before optimization (a), after 
cross-jumping (b), after elimination of unreachable code 
(c) and after reversing a branch condition (d). 

4-117 

1. 
2. 
3. 
4. 

5. 
6. 
7 
8. 
9. 

10. 
11. 

12. 
13. 
14. 

15. 

1. 
2. 
3. 

4. 
5. 
6 
7. 

8. 
9. 

10. 

11. 

@1: 

@2: 
@4: 

@3: 

@2: 
@4: 

@3: 

MOV 
RCR 
JB 

JMP 

AL,TEST 
AL,1 
@1 
@2 

MOV AX,OFFFFH 
OUTW OF6H 
MOV AL,B 
JMP @4 

i~'~i :li!i~~~~1 
MOV 
MOV 
MOV 

(b) 

MOV 
RCR 
JNB 

MOV 
OUTW 
MOV 
JMP 

MOV 
MOV 
MOV 

(d) 

AL,C 
AH,OH 
A,AX 

AL,TEST 
AL,1 
@2 

AX,OFFFFH 
OF5H 
AL,B 
@4 

AL,C 
AH,OH 
A,AX 

AFN-01509A 



AR-136 

items depending on the value of the base. For instance, 
the loop . 

TOTAL = 0; 
DO ITEM$PTR = 2100H to 2199H; 
TOTAL TOTAL + ITEM 
END; 

places in TOTAL the sum of the 256 bytes found in 
memory locations 2100H through 2199H. 

Based variables are even more powerful when the 
,"@ operator" is used to supply values for bases. For 
example, suppose there are three different real vari­
ables, A$ERROR, B$ERROR, and C$ERROR, which should 
be accessible at different times via the single identifier 
ERROR. This can be done as follows: . 

DECLARE (A$ERROR, 8$ERROR, C$ERROR) REAL; 
DECLARE ERROR$PTR POINTER; 
DECLARE ERROR BASED ERROR$PTR REAL; 
ERROR$PTR = @A$ERROR; 

At this point, the value ofERROR$PTR is the location 
of address A$ERROR. A reference to ERROR is, in effect, 
a reference to A$ERROR. Later in the program, the 
statement ERROR$PTR = rr:C$ERROR; turns a reference 
to ERROR into a reference to C$ERROR. This technique 
is useful not only for manipulating complicated data 
structures but also for passing locations to procedures 
as parameters. 

With strings attached 

One of the key features built into the 8086 is the 
ability to handle large-scale string-manipulation as­
signments far more easily than the 8080 and the 8085. 
PLlM-86 exploits this feature, with very powerful 
string-handling procedures to scan, translate or move 
blocks of bytes or words in ascending or descending 
order. The system designer thus has access ,to the 
8086's string capabilities without having to worry 
about absolute memory locations and register con­
tents, as an assembly-language programmer would 
(Fig. 3). 

Another feature designed into the 8086 architecture 
is multiprocessing capability, accessible via the 
LOCKSET procedure. Through it, the system designer 
gains control over shared resources by locking other 
processors out while, for instance, a memory block 
is being updated. In a system where an 8086 processor 
offloads its I/O control tasks to an 8089 I/O processor, 
some memory locations may be used by both proces­
sors. 

4·118 

While the 8086 is accessing and updating that 
memory location, the 8086 should not be outputting 
data from that location or writing new data into that 
location. So a flag is set or reset depending on whether 
or not the processor seeking access to the critical 
resource can obtain that access. 

An optimizer saves memory 
Memory may be cheap, but in a large production run 

every byte still counts. So"an optimizing compiler will 
soon pay for itself. PL/M-86 uses a number of op­
timization techniques: 

Folding of constant expressions 
Calculating the value of constants in exp~essions at 

compile time rather than generating code to calculate 
it at run time saves both time and memory. In the 
expression 

A=6+3+A' 
the compiler will add 6 and 3 first ~nd produce code to 
add 9 to A. 

Strength reduction 
This term applies to the replacement of certain 

instructions with faster, shorter ones. For example, 
performing a left-shift of one bit replaces a multi­
plication by two; n left-shifts correspond to a multi­
plication with 2n. 

Elimination of common expressions 
If an expression appears more than once in the same 

block, its value is saved rather than recomputed each 
time. For example, in 

A = B + C*D/3 
C = E + C*D/3 

the value of C*D/3 need not be computed a second 
. time. 

Short-jump optimization 
When there's a choice of different jump-instruction 

types, the compiler selects the smallest one possible. 

Branch optimization 
Branch chaining reduces a branch to another branch 

to a single branch instruction: 

BEFORE 
JMP LAB1 

LAB1: JMP LAB2 
LAB2: 

AFTER 
JMP LAB2 

LAB1: JMP LAB2 
.LAB2: 

AFN-01509A 



intJ AR-136 

Having defined a BYTE. variable (called LOCK, for 
example), the LoCKSET instruction sets that·variable 
to a value that denies memory' access. 

If LOCK=l means "aCcess not available" and LOCK =0 
means "access allowed," and if all processors in the 
system have been programmed to. recognize that 
convention, the following code segment gives access 
to a critical memory location while preventing other 
processors from. doing so until the operation is fin-
ished: . . 

/*BEGIN CRITICAL REGION*/ 
DO WHILE LOCKSET (@LOCK, 1): 
END; 

LOCK=O: 
/*ENDCRITICAL REGION*/ 

. In this segment, the processor loops until memory 
location LOCK is reset by another processor-i.e., 
LOCKSET returns ZERO until that processor sets LOCK 
to prevent other processors from accessing the memo­
ry area. The processor carries out its program, then 
unlocks the memory area (LOCK=O). The first ex­
ecutable line of the program segment (DO WHILE ... ) 

8080/8085 
A~D, 

8086 
ASSEMBLY [.:: ::::\ ASSEMBLY 
LANGUAGE LANGUAGE ""1 SOURCE CODE SOURCE CODE 

::/ I 

'" I 0 I 
I 

r------------------------------J 

/.: (! .. ::?-.\. 
8086 

ASSEMBLY :' :":l RELOCATABLE 
LANGUAGE f: d 

OBJECT MODULE 
SOURCE CODE 

:J;.'.: :.0' 
r 

8086 L :\\- o~~~~~':}tgb~E f-'PL/M 
SOURCE CODE 

\; / 
:.;;;. 

LIBRARY U:\\\\~ 

5. The PL/M·86 package (screen) contains, in addition 
to the compiler, an 8086 assembler and many important 

references the variable LOCK and assigns the value 1 
to that location. 

If the v~lue returned is 0, LOCK had not already been 
set and the current processor has now set it. But if 
the value. returned is 1, the LOCK had already been 
set and the processor must wait until the busy 
processor releases the memory lock. Since the locking 
mechanism uses a ~imple BYTE variable, there is no 
practical limit to t.he number of locks available. 

A language isn't enough 

PL/M-86 is implemented asa compiler, not as an 
interpreter, because in the normal J.lC design process 
a debugged program is loaded. into PROMs for the 
prototype system. A compiler produces object modules 
in a form that can be directly executed by the CPp. 

The PL/M-86 compiler boasts many compile-time 
options to help. with coding and debugging. Most 
important is conditional compilation, which permits 
the compiler to skip over selected portions of the 
source code if certain conditions are met. This feature 
enables the designer to produce different object mod­
ules for different applications of the· program. An 
INCLUDE command, on the other hand, allows the user 

4-119 

USER 
SYSTEM 

SDK-86 
SYSTEM 

DESIGN KIT 

1)% f6:f 
iSBC 86/12 

~-•. SINGLE-BOARD 
IN COMPUTER 

\:\\\\·\\\'\\'.2 
1<": 

UPP/UPM 
UNIVERSAL PROM 

PROGRAMMER 
ICE-86 

IN-CIRCUIT 
EMULATOR 

utilities. The final machine code can be loaded into a 
number of optional hardware items. 

AFN-01509A 



intJ AR-136 

to include routines from a different source file as well. 
Another compiler option, CODEINOCODE, provides 

listings of the generated object code in assembly­
language format, interleaved with the PL/M 
statements for easier debugging. The PL/M-S6 com­
piler also provides a flexible cross-reference of pro-
gram symbols between PL/M-S6 modules. ' 

The PL/M-S6 compiler also includes sophisticated 
code-optimization techniques to produce efficient ob­
ject modules. A compile-time OPTIMIZE control pro­
vides three levels of optimization: Level 0 skips op­
timization for a quick compilation. Level-1 optimiza­
tion is the PL/M-S6 default and provides constant­
folding, strength reduction and elimination of com­
mon expressions. Level 2 adds jump optimization, 
branch chaining, cross-jumping and deletion of un­
reachable code (see "An Optimizer Saves Memory"). 

An example incorporating several optimization 
techniques is shown in Fig. 4. The program determines 
whether the byte variable TEST is true (Le., the least 
significant bit is 1). If it is, the hex value OFFFF will 
be output to port OF6H and the value of the BYTE 
variable B will be assigned to the WORD variable A. 
If the variable TEST is not true, variable A will be 
assigned the value C. 

The assembly code produced by the short PL/M-S6 
module contains 57 bytes (Fig; 4a). Cross-jumping 

inserts a JUMP (line S, Fig. 4b) to combine the identical 
code at the end of two converging paths (lines Sand 
9 and 12 and 13 in Fig. 4a) and diverts the program 
flow to the second occurrence of the two lines. The 
first occurrence is now unreachable and can be deleted 
(Fig. 4c). Another line of code is saved by reversing 
a branch condition, which produces line 3 of Fig. 4d~ 

The PL/M-S6 compiler, which runs on Intel's In­
tellec J,LC-development system, is not a "stand-alone" 
design tool but part of an integrated set of design­
aid tools for the SOS6 or S088. These tools include an 
assembler' for ASMS6, a high-level assembly language 
that produces object modules compatible with those 
from PL/M-86 (both can be combined using the 
8086/S088 relocation and linkage tools). 

ASM86 complements PL/M-86 since it lets the 
programmer choose the language most appropriate for 
a task and then combine the modules. Commonly used 
PL/M-86 and ASM86 object modules can be stored and 
managed using LIB86, the 8086 object-module librar­
ian. PL/M-86 or ASM86 object modules may be loaded 
by the ICE-86 in-circuit emulator, and the software 
may then be debugged and integrated with the hard­
ware. After hex conversion, Intellec's PROM program­
mer allows the debugged object modules to be stored 
in EPROMs (Fig. 5) .•• 



inter AR-200 

COMPILER· OPTIMIZATION 
TECHNIOUES 
Techniques used within the PL/M-86 compiler make the 
programmer's job easier while supplying highly efficient code 

by Armond Insolborg and 
Stan Mazor 

I
ncreasing demands for software development have 

" combined with continuing shortages of programming 
personnel to create a crisis situation. Shortages of 

skilled programmers can be partially relieved by careful 
choice among available programming languages and 
their compilers. High level languages can make pro­
gramming easier. Compilers can reduce time spent 
coding and make up for a shortage of experience by pro­
viding the techniques needed to optimize both size and 
execution speed of machine level code. 

What is a compiler? 
Software implementation environments can be divided 
into two levels, as shown in Fig I: the program machine 
level and the hardware machine level. Although actual 
code execution takes place at the hardware machine 
level, a softw'are engineer cannot efficiently com­
municate directly with this level. Illstead, a program­
ming language,' such as PLlM·86, is used as the com­
munication link with the programming machine. The 
compiler is responsible for translating language input to 
the programming machine into the language of the 
hardware machine. In this regard, the maturity of the 
PL/M-86 compiler as a powerful tool for 8086 software 
development is revealed. 

The compilation process 
During the compilation process, the compiler closely 
binds the input program, determines its syntactic, 

Stanley Mazor is with Intel Corp. 1350 Bordeaux Dr. 
Sunnyvale. CA 94086. where he has participated in 
the designs of the MCS-4. MCS-8. 8080. and several other 
microcomputers. Prior to joining Intel in 1969. he was 
assistant manager of the computer center at San 
Francisco State College and a principal designer of the 
Symbol computer at Fairchild. Mr Mazor has 
published over 30 articles and papers on 
microcomputers and shares patents on the 8080 and 
MCS-4. He is a senior member of the IEEE. 

©INTELCORPORATION,l982. 
Reprinted with permission from Computer Design, November 1981 Issue. 
Copyright 1981 by Computer Design Publishing Company. 

correctness, and gen­
erates efficient hardware 
machine code. Closely 
binding a program 
means to fix the types of 
variables, the forms of ~"""'_1II.t 
the expressions, and the 
program's structure., To 
generate efficient hard­
ware machine code, 
various optimization techniques are us~d. 

The two major steps of the compilation process are 
the parsing of the input source program and the genera­
tion 'of the output object code. (See Fig 2.) Parsing is 
achieved bya lexical and syntactic analysis. Lexical 
analysis separates individual components or tokens 
making up the program's symbols. These symbols in­
clude variable names, key words, and operators. Syn­
tactic analysis checks the program for any syntax ~rrors 
by determining the structure of the source program in 
terms of its blocks, statements, and expressions. Results 
of the parsing are an intermediate text string and a dic­
tionary of variables used in the program. 

Generation of the dictionary, or symbol table, is cen­
tral to the compilation process as it provides a reference 
for the variable names and their properties. Built during 
examination of the data declarations, the symbol table 
is continually referenced during the remainder of the 
compilation. 
. The second step of the compilation first performs 
optimization over the intermediate text, independent of 
the target hardware. Final object code is then generated, 
with consideration for hardware machine dependent op­
timization. 

Armond Inselberg is a senior consultant at the 
Institute for Software Engineering. Suite 200. 535 
Middlefield Rd. Menlo Park, CA 94025. He is 
involved in data processing capacity management for 
workload analysis and forecasting. Previously. he 
worked at Intel. Stanford University, and IBM. He has 
a PhD in computer science from Washington 
University and an MBA/rom the University of Santa 
Clara. 

MARCH 1982 
ORDER NUMBER: 210397-001 

4·121 



AR-200 

Ilg 1 Software 
implementation ennronment. 
Prognmmer communicates 
witb program macbine level, 
wbUe actual code execution 
occun at bardware macbine 
level. CompUer senes as 
interface between two ,evels 

Optimization philosophy 

Fig 1 CompUation process. Paning of source program 
produces symbol table and intermediate text string. Text 
string Is tben optimized, resulting in generation of object 
code 

the execution time. Hardware machine independent and 
machine dependent optimization techniques make up a 
secondary classification of the techniques. Machine 
independent techniques optimize object code, indepen­
dent of the target processor. Machine dependent op­
timization takes advantage of the architecture of the 
target processor. A third classification is based on 
whether the techniques optimize over a single program 
statement or over a range of statements. Table 1 sum­
marizes PLlM-86 optimization techniques for these three 
classifications. 

Amount of code generated 
When only a limited amount of memory is available to 
hold the program, optimizing the amount of code is par­
ticularly relevant. Three techniques within the compiler 
work to reduce the amount of generated code. 

Branching to duplicate code-Removing code which 
occurs more than once, this technique can be used when 
the paths through duplicate copies of code have the 

COMPILES TO 

(a) (b) 

Ilg 3 Brancbing to dupUcate code optimization. Both 
copies of code have same termination point (a)i during 
compUation, second copy of code is replaced by jump to 
fint copy (b) 

same termination point in the program. In this case, as 
shown in Fig 3, the second copy of code is replaced with 
a jump to the original copy. 

An example of two program paths that have portions 
of identical code and terminate at the same point can be 
found in an If-THEN-ELSE statement. 
If X> Y 

THEN DO; 
X=Y; 
X=X+l; 
END; 

ELSE X=X+l; 

compiles to 

ill: 

MOV 
CMP 
J8E 
MOV 
INC 

In the example, the common program statement 
X = X + 1; is compiled to INC X and is used by both paths 
through the compiled If statement. If X is less than or 
equal to Y, the J8E (jump below or equal) instruction is 
executed, causing a jump to the INC instruction. If X is 
greater than Y, INC is reached even though the J8E is 
not executed. 

Removal of unreachable code-This technique causes 
the compiler to skip those parts of the program that will 
never be executed. For example, unlabeled program 
statements that follow a GOTO statement cannot be 
reached, and therefore will never be executed. Thus, 

not 
compiled 

4·122 

GOTO LABELZ; 
If X > Y compiles to 

THEN X=X+]'; 
LABELZ: Y=Y+],; 

JMP LABELZ 
LABELZ: INC Y 

AFN·02199A 



AR-200 

TABLE 1 

PUM-86 Optimization Technique. 

Both Amount of Code 
Amount of Code Execution Soeed and Execution Speed 

Hardware Hardware -Hardware Hardware Hardware Hardware 
Independent Dependent Independent Dependent Independent Dependent 

Single Instruction Strength 
statement size reduction 

Range of Branching 
statements to duplicate 

code 

Removal of 
unreachable 
code 

Although this optimization technique reduces the 
amount of code generated, it is needed only when the 
programmer is careless. 

Instruction size-The compiler in this case selects the 
shortest encoding of the instruction. Instructions in­
volving a hardware register can be shortened by one 
byte if the register is the accumulator. In addition, 
jumps to locations within 127 bytes require shorter in­
structions because the increment rather than the target 
address is specified. For example, if a JA conditional 
jump instruction jumps to a label il2 that is 14 bytes 
away, the distance of 14 bytes is stored in the instruc­
tion. Thus, the instruction uses one byte to specify an 
offset rather than four bytes to indicate the target ad­
dressof i'l2. 
JA il2 

POINTER 
VARIABLE 

POINTER 
VARIABLE 

encoded as 

7~ 
opcode offset 

: T --v--ln .,.", . ~I-=== __ ~ ADDRESS 

'-1--- . slPACE 

f- 2 BYTES -l : 

1---"""------1 : T 
1 ~ l§lg_ _1M-BYTE . ~=== ADDRESS 

1----1 T 
Fig 4 Instruction size optimization. If address space is 
restricted to 64k (top), compiler allocates 2 bytes for type 
pointer variable; otherwise, variables require 4 bytes 
(bottom) 

Folding of 
constants 

Expression 
arrangement 

Short circuit 
of Boolean 
expressions 

Function 
evaluation 

Address Elimination Peephole 
pointer of common 
comparison subexpressions 

Elimination of Indeterminant 
superfluous storage 
branches operations 

Another aspect of this optimization technique is that 
the compiler will allocate two bytes to variables declared 
to be of type pointer, if the address spaces for code and 
data are restricted to 64k bytes each. Otherwise, as 
shown in Fig 4, variables of type pointer require four 
bytes. The programmer indicates the size of the address 
space to the compiler through a compiler control switch. 

Execution speed 
Optimizing the execution speed can be critical for time­
dependent processing. Two optimization techniques 
available for improving execution speed are strength 
reduction and address pointer comparison. 

Strength reduction-Execution is optimized by 
replacing certain operations with faster executing opera­
tions. For example, the compiler replaces "multiply a 
variable Y by two" with a shift left operation. The result 
is the same, but a shift left executes faster than a mul­
tiply. 

compiles to MOV AL,Y 
SHL AL,1 
MOV X,AL 

Address pointer comparison-This optimization 
technique generates code to compare two 32-bit pointer 
variables. Physical addresses are actually 20 bits, but are 
stored as a 16-bit base and a 16-bit offset field. When 
the base is shifted left by 4 bits and added to the offset, 
it yields a 20-bit address (Fig 5). Execution speed is im­
proved because, instead of calculating the 20-bit address 
to compare pointers, code is generated to first compare 
the base parts. Only if the base parts are equal is it 
necessary to compare the offset parts. 

4·123 AFN·02199A 



AR-200 

r~:":"::":::.!.::....~1-..22~!"-~.J ill~ENT} 
.--__ -..1..--,.--, 0 ~~~~t~ 
,!:------r--I.~ Z 2 OFFSET 

o 
+ 

Fig 5 Address pointer comparison. 32-bit pointer variables 
are stored as 16-blt base and 16-blt offset. Shifting base left 
4 bits and adding It to offset results in 20-blt address 

For example, two variables, PTRl and PTR2, are 
declared to be of type pointer. If PTRl is greater than 
PTR2, then X is set equal ~o O. 
DECLARE (PTR1,PTR2) POINTER; 
IF PTRl > PTR2 

THEN X=O; compiles to 

Gil: 

LES 
PUSH 
LES 
MOV 
POP 
CMP 
JNE 
CMP 
JBE 
MOV 

AX,PTRl 
ES 
DX,PTR2 
DI,ES 
SI 
SI,DI 
.+4H 
AX,DX 
Gil 
X,OH • 

In this example, the LES instruction loads the AX 
register with the offset of PTR1. The base is loaded into 
the ES register, then moved to the SI register by means 
of the stack. The offset of PTR2 is loaded into the DX 
register and the base is moved to the D I register. The 
two base values in the SI and D1 registers are compared 
by the CMP instruction. If the results are not equal, the 
JNE instruction Gump not equal) ·is executed, skipping 
the code used to compare the offsets, and jumping to 
the instruction that sets X to O. 

When only a limited amount of 
memory is available to hold the 
program, optimizing the amount of 
code is particularly relevant. 

Optimizing both amount of code 
and execution speed 
Most optimization techniques reduce the amount of 
generated code and improve execution speed.' Eight 
techniques accomplish this within the PLlM-86 compiler. 

Folding of constants-This technique causes the com­
piler to perform arithmetic operations at compile time 
rather than at execution time. For example, a statement 
with the expression b + 3 + W would be coded as 9 + W. 
Thus, 
v = b+3+W; compiles to MOV AL,W 

ADD AL,9H 
MOV V,AL 

Expression arrangement-Code for expression 
evaluation is generated such that the operations are per­
formed in that order which produces the most efficient 
code. If expressions I times J and Ii: times L are to be 
calculated, and their results subtracted, then 
Z = (I*J) - (UU; compiles to MOV AL,J' 

MUL I 
PUSH AX 
MOV AL,L 
MUL K 
POP CX 
SUB CX,AX 
MOV Z,CL 

In this example, the result of I * J is pushed onto the 
stack, freeing the accumulator for a seCond multiply. 
After Ii: * L is evaluated, the result of I * J is popped 
into the CX register. The registers are then subtracted. 
This process is much more' efficient than having the 
compiler first save the two multiplication results in tem­
porary variables, then move these results to registers, 
and finally subtract the registers .. 

Short circuit of Boolean expressions-Generated 
code terminates the evaluation of a Boolean expression 
as soon as its outcome is established. For exainple, con­
sider the expression (V> X AND I> J). If V is nQt greater 
than X, the expression will be false, regardless of the 
results of the rest of the expression; therefore, the re­
mainder of the expression need not be evaluated. Thus, 

IF (V > X AND I > J) compiles to MOV AL,V 
THEN B=l; CMP AL,X 

JBE Gil . 
MOV AL,I 
CMP AL,J 
JBE ill 
MOV B,lH 

ill: 

In this example, the generated code tests V for greater 
than X. If this comparison is false, the JBE Gump on 
below or equal) to label ill is executed. This label is 
generated by the compiler to go around the I F state­
ment without executing the remaining code of the 
Boolean expression. This technique not only saves exe­
cution time but reduces the number of generated in­
structions rf;:quired to evaluate the expressiori. 

Function evaluation-The compiler evaluates several 
specific functions as they are encountered in the source 
program at compile time. For example, for a lO-element 
array named hi, the LAST function obtains the value 9, 
the last subscript of the array. Arrays are indexed 
starting with O. 
DECLARE W(10) BYTE; 
I = LAST (W); compiles to MOV I,9H 

By evaluating such functions, the compiler saves execu­
tion time and storage space, and makes the program­
mer's job easier by permitting the functions to be 
referenced. 

4-124 AFN-02199A 



AR-200 

Elimination of common subexpressions-The com­
piler recognizes multiple occurrences of an expression 
and saves the value of the expression in a register or 
stack so that it need not be recalculated. For example, 
the expression J + I or I + J may occur several times but 
will be evaluated only once. 

X J + I; compiles to 
Y = I + J; 

MOV 
ADD 
MOV 
MOV 

AL,J 
AL,I 
X,AL 
Y,AL 

By saving the result of J + I in the AL register, rather 
than recalculating each time it is encountered, generated 
object code and execution time are greatly reduced. 

Optimizing the execution speed can be 
critical for time-dependent processing. 

Elimination of superfluous branches-Optimization 
using this technique reduces the number of jumps that 
must be executed. In the first example, jumping to a 
LABELX that contains a jump to LABELZ transforms the 
first jump into a branch directly to LABELZ. 

If X > Y 
THEN GOTO LABELX; 

compiles to nov AL, X 
CMP AL,Y 
JA LABELZ 

Peephole-This optimization attempts to discard 
redundant instructions. One such action might be 
loading a register with a value that it contains already. 
For example, if Y is set equal to X + 1, the value of Y is 
currently in the accumulators since it was last used to 
calculate X + 1. If Y is again used in the next statement, 
there is no need to fetch the value of Y. Thus, 
Y=X+l; compiles to MOV 
Z=W+Y; INC 

MOV 
ADD 
MOV 

AL,X 
AL 
Y,AL 
AL,W 
Z,AL 

Since the value of Y is currently in the accumulator as a 
result of the calculation of X + 1, it need not be reloaded 
into the accumulator for the calculation of W + Y. 

Indeterminant storage operation-The compiler does 
n'ot reload the starting point of a based data structure 
each time that it is referenced. For example, consider 
PART to be an array of structure elements based by the 
pointer variable PARTPTR. 

DECLARE PART BASED PARTPTR no) 
STRUCTURE (PARTNO WORD, 

AMT BYTE, 
COST WORD); 

PARTei!) .PARTNO=bC4H; compiles to MOV 8X,PARTPTR 
PART (b) • AMT=7'1H; MOV PART£BX, OAH1, bC4H 

MOV [BX+i!OH1, 7'1H 

The first reference to the array structure places the base 
of the array, contained in PARTPTR, in the BX register. 

LABEL X : GOTO LABELZ; LABELX: JMP LABELZ Further references to the array structure do not require 

LABELZ : LABELZ: 

Another example is the selection of a single condi­
tional jump instruction based on the result of a com­
parison. This optimization can occur frequently, 
eliminating an unconditional JMP instruction each time 
through the selection of the appropriate conditional 
jump. Consider the IF statement that executes some 
code only if X> Y. 

IF X > Y 
THEN DO; 

Z=R; 
R=R+l; 

END; 

compiles to 

compiles to 
without use of 
optimization 
technique 

GIL 

GIL: 

MOV 
CMP 
JBE 
MOV 
MOV 
INC 

MOV 
CMP 
JA 
JMP 
MOV 
MOV 
INC 

AL,X 
AL,Y 
GIL ] 

AL,X 
AL,Y .+SH] 
GIL 
AL,R 
Z,AL 
R 

In this example, the J A (jump above) and J MP (uncondi­
tional jump) instructions are replaced by a single JBE 
(jump below or equal) instruction. 

that the BX register be reloaded. 

Evaluation examples 
PLlM-86 offers four levels of optimization. Optimization 
techniques provided at each of these levels are classified 
in Table 2. To indicate how much storage is actually 

TABLE 2 

Optimization Techniques Provided 
In Each Compiler Level 

Optimization Technique Optimization Level 
0 1 2 3 

Folding of constants X X X X 
Expression arrangement X X X X 
Short circuit of Boolean expression X X X X 
Function evaluation X X X X 
Strength reduction X X X 
Elimination of common subexpressions X X X 
Elimination of superfluous branches X X 
Removal of unreachable code X X 
Branching to duplicate code X X 
Instruction size X X 
Peephole X X 
Indeterminant storage operations X 
Address pointer comparisons X 

4·125 AFN-02199A 



AR·200 

TABLE 3 

Object Code (bytes) Generated 
For Each Optimization Level 

Program A: Maste'rmind 

Level 0 Level 1 

1688 1559 
Program B: General sort 1953 1789 
Program C: Frequency count 849 765 
Program 0: Process simulation 7955 7951 
Program E: Service queue 289 250 
Average % size reduction 

Level 2 Level 3 

1450 1450 
1503 1503 
694 694 

7083 7083 
212 185 

from previous level 7.9% 12.28% 2.55% 

saved by these techniques, five sample programs were 
compiled at each level using version 2.1 of the compiler; 
Table 3 provides the size in bytes of resulting compila­
tions. The reduction in size obtained in going from one 
level to the next higher level is due to the additional 
optimization techniques used at the higher level. 

Programs used in this study demonstrate the com­
piler's ability to optimize various types of instructions. 
Program A plays the game of mastermind with the 
operator performing a large amount of input/output 
with the cathode ray tube. Program B performs a sort 
on an array of 1000 records, making extensive use of 
structures and pointers. Performing a frequency word 
count on an arbitrary text file, Program C uses string 

4·126 

move instructions and pointers. Program D uses simple 
coding with no structures or pointer addressing to per­
form a process simulation. Service queue simulation us­
ing linked data structures is done in Program E. 

For each successive level of optimization, the in­
dividual percentages in size reduction of the programs 
were averaged. Fror Table 3, it becomes apparent that 
Level 3 optimization provides nearly a 25 % reduction in 
storage requirements. 

Conclusion 
As the demand for microprocessor software increases, 
the selection of the implementation language will 'receive 
more attention. In choosing a language, users must con­
sider not only high level constructs of the language 
itself, but also the capabilities of available compilers to 
translate the resulting programs. 



Originally prepared for and presented at Wescon/82 
© INTEL CORPORATION, 1983. 

ARTICLE 
REPRINT 

4-127 

AR-239 

November 1983 

ORDER NUMBER:21080S-001 



AR-239 

PUM-51: A HIGH-LEVEL LANGUAGE FOR THE 8051 MICROCONTROLLER FAMILY 

High-level language advantages are fairly well recognized now. Developing software for embedded microcontrollers 
using assembly language is labor intensive and therefore an expensive task. It is not easy to come up with a sequence of 
well-defined stages to go from the system design stage to the system implementation software. The transformation of an 
algorithm flowchart to the actual assembly-language code requires considerable intuitive guesses and inventiveness on the 
part of the programmer. Also, assembly language is difficult to read and inspect. Because assembly language projects are 
difficult to manage, there has been a widespread movement towards using high-level languages. High-level languages 
provide, in general, improved programmer productivity, and reliable, maintainable, portable software. 

In the microcontroller environment, the major considerations for a high-level language are efficient code, close control 
over hardware resources and optimum use of scarce on-chip data memory (RAM is very expensive in terms of silicon real 
estate). Intel developed PLlM-51 for the 8051 single-chip microcontrollers with the specific goal of trying to meet these 
criteria with minimal impact on the traditional high-level language benefits of reliability and maintainability. 

OVERVIEW OF THE 8051 ARCHITECTURE 

The 8051 is a stand-alone high-performance single-chip computer intended for use in sophisticated real-time applications 
such as instrumentation, industrial control and intelligent computer peripherals. It provides the hardware features, 
architectural enhancements and new instructions that make it a powerful and cost effective controller for applications 
requiring up to 64K-bytes of program memory and/or up to 64K-bytes of data storage. Figure 1 shows the 8051 Functional 
Block Diagram. 

The 8051 microcomputer integrates on a single chip the CPU, 4K x 8 read-only program memory, 128 x 8 read/write data 
memory, 32 liD lines, two 16-bit timer/event counters, a five-source, two-priority level, nested interrupt structure, serial 
liD port for either mUlti-processor communications, liD expansion, or full duplex UART, and on-chip oscillator and clock 
circuits. 

The 8051 has four address spaces tailored to support a wide range of control applications efficfently-program memory, 
on-chip and external data memory, and the. bit memory space. This complex (but sophisticated) memory architecture is 
supported by a rich (but unorthogonal) set of addressing modes for efficient memory access-register addressing, direct, 
indirect, immediate and base-register plus index-register indirect addressing. To support this complex memory architec­
ture, a high-level language's syntax must mirror the underlying microcontroller architecture. The challenge is to imple~ 
ment this without compromising the language's readability and maintainability. 

The popular 8051 architecture forms the core of the MCS-51 ™ microcontroller family. The need to base processors on a 
popular, industry-standard architecture is dictated by the cost of developing processor support hardware and software 
tools, as well as a desire to maintain the customer's investment in engineering resources and capital equipment. The 
upgrade ability requirement has to be traded off against providing optimum functionality in the processor for the target 
market segment. Consequently, the 8051 family consists of straight-line enhancements-RAM, ROM memories and 
clock rates-as well as microcontrollers like the 8044 remote universal peripheral interface processor (RUPI), which has 
the 8051 core architecture but supports an interrupt structure and liD functions tailored to the distributed processing 
environment. The cost of developing a new support environment for processors targeted to specific (and small) market 
niches would make the processor an unviable product. Consequently, software tools for proliferation processors should be 
configurable from the core processor support products. 

4-128 AFN-0014SA 



AR-239 

11< 
.--

I ~ u l( 

~ 1 ~ PAR'TY ~ 
~ "I"I"I'''I"'~''I ~ 
§ ACC 

0 8 ROTATE CONTROL~ .. .. 
,PC a: INT[RAUP 

0 
CONTROL f4-

~ IEC 

~ 
a: 

Slur .. SERIAL I-
~ SeON 

PORT 

z T." 

° 
~ Tl' 

THO 

e~~~~~l ~ ~ TlO (j 

~ TMOD 

TeON 

DPH I'\.. 

~~ DPl V 
SP 

'<; ';. 

a: PROGRAM CONTROL. 
~ 

0 128)[8 

8 RAM PC .. 

~ 
C f------------- PCL 

~ REGISTER BANK 3 
~ ~-----------
o REGISTER BANK 2 

~ '--'----------

~ 
CONTROL 2 REGISTER BANK 1 

cf------------ PLA 
a:: REGISTER BANK 0 

CONTROL 
DRIYEAS ENGINE 

k= INSTRUCTION 
DECOOER 

<"r "- ;. ::1 
L 

:Jf lose I M & , .7 '<; 

TINING 

I I I I I I CIRCUITR~ P, PJ P2 

! ! D D D E A P 
T T A L S 

PORT' PORT 3 PORT 2 

Figure 1. 8051 Functional Block Diagram 
Copyright INTEL CORPORATION, 1981 

4-129 

4IK x 8 
NONE 1103'1 
ROM 1I05'V 

EPROM lIn') 

~ 
rV 

ORIV[RS 

J 
1 

~t M I 1 PO 

D R V v 
S C S 

PORT 0 T C S 

, AFN-00145A 



AR-239 

PUM-S1 

PUM-51 was developed to facilitate the design of reliable, maintainable microcontroller systems. This goal translates into 
a programming language which encourages and enforces good software engineering practices such as structured program­
ming, top-down design and implementation, step-wise refinement and software walk-throughs. However, this goal has to 
be traded off against the exigencies of the microcontroller environment-high performance requirements, scarce memory 
resources and control over the hardware facilities. PUM-51 tries to satisfy these conflicting requirements by enforcing 
block structured software design, providing control-flow statements for structures programming (if-then-else, do case, do 
while, ... ) as well as by supporting 8051 architecture specific attributes at the language level, for example-the 
REGISTER and AUXILIARY variable attributes, and the specifics of interrupt handling. 

SOFTWARE ORGANIZATION WITH PUM-S1 

Most applications are decomposed into logically related functions which can be programmed more or less independently 
of other functions. Interactions between functions are via a few well-defined data parameters and system level status 
blocks which are globally accessible to all functions at all times. PUM-51 program structure maps very well into this 
structured software organization. PUM-51 programs consist of one "main" module and several functional modules which 
are independe.ntly compilable units and consequently can be independently developed and debugged. Each module 
consists of one or more procedures. A procedure contains variable declarations and a sequence of executable statements. 
Variables have restricted scope to the block they are defined in, unless the scope has been extended by the 
PUBLIC/EXTERNAL attribute. The advantage of block scoping of variables is that programming errors of duplicate 
variable use are quickly identified. Figures 2 and 3 show the organization of PUM-51 programs for heirarchical tree­
structured real-time software systems. PUM-51 does not enforce a tree-structured organization, but it provides a modular 
organization facility for implementing it. 

Level 1 

Level 2 

SYSTEM 
EXECUTIVE 

Figure 2. Hierarchical Real-time Software Systems 

4-130 AFN-0014SA 



MAINSMODULE : no; 
(A system reset starts 
software execution at 

AR-239 

the first executahle statement of this module) 
END MAINSMODULE 

MODULESl : DO; 
PROC$A : PROCEDURE EXTERNAL; •••••.••••.•••.••••...•.•• Externa' procedures to 

MOOULE$l 
END PROC$A; 

DECLARE VARSA BYTE EXTERNAL; ••••.•••••..••••..•••••••• VAR$A is a pub" i c symbo 1 
DECLARE VAR$B ByTE; •.••.•.•••••.•.•.••••.••.•.•••••.• VARSB is known to all 

procedures in MODULESl 
PROCSl : PROCEDURE; ••.•..•..•.•.••.•.•..•..•.•..•.••• P.ROCSl is procedure at 

module level and can be 
accessed from other 
modules 

DECLARE VAR$C ByTE; .•..•..•.•••••••••••.••••.••.. VAR$C is private to 
procedure PROC$l 

VAR$C = VARSB; 
END PROCS1; 
PROCS2 : PROCEDURE; ••.•••••...•......•....••••...•..•. PROC$2 can be accessed 

by other modules 
PROC$2$A: PROCEDURE; •••.••.••.•.••••.•••••...••.•••• PROC$2$A can only he 

accessed within PROCS2 

EN/) PROC$2SN; 
VARSB = 1; 
CALL PROC$l; 

END PROCS2; 
END MODULES1; 

Figure 3. Organization of PLlM-S1· Programs 

4·131 AFN-0014SA 



AR-239 

DATA TYPES 

8051 microcontroller software requires intimate knowledge of the machine representation of data variables because a 
significant amount of processing is done at the bit level. Consequently, the basic types of data in PLlM-51 are BIT, BYTE 
and WORD-as opposed to INTEGER, REAL ... COMPLEX machine-independent data types in other high-level 
languages. With the three basic data types of PLlM-51, the state of each variable is known to the programmer-at the bit 
level. This is important, if PLlM-51 programs are to take advantage of the powerful boolean instructions on the 8051. 

BUILT-IN FUNCTIONS 

The PLlM-51 language has been enhanced with a number of useful standard functions which provide information about 
data representation at run-time to programs, do type conversions and provide machine level functions at a high-level 
language. 

The LENGTH and index of the LAST element in an array and the SIZE of a variable in bytes can be obtained by a 
program at run-time. This facility permits the development of program libraries which can be reused on other projects. 

System programs require the ability to manipulate data at the machine representation level as well as at the logical leveL 
Consequently, PLlM-51 provides type conversions BIT to BYTE to WORD as well as machine level instructions like 
rotate and shift for variable manipulation. 

The 8051 architecture has a powerful instruction repertoire for conditional execution on bit states. PLlM-51 provides a 
TESTCLEAR function to support process synchronization primitives-for example, semaphores require un interruptible 
test-set atomic operations. 

8051 ARCHITECTURE SPECIFIC ATTRIBUTES 

The 8051 architecture is designed to provide optimum performance over a wide range of control applications. Conse~ 
quently, it has a sophisticated (and complex) memory organization, and four register banks in the central processing unit 
(CPU) for rapid task switching during interrupts. PLlM-51 supports programming for this environment by embracing 
architecture specific attributes within the language syntax. 

Memory mapping of variables is done by specifying a suffix attribute during data declaration. The possible attributes are 
CONSTANT, AUXILIARY, REGISTER AT (128-255), MAIN and IDATA. CONSTANT variables reside within the 
code memory, while AUXILIARY variables are assigned to off-chip data memory. The default memory assignment or 
MAIN variables reside within the directly-addressable on-chip data memory. IDATA variables are indirectly-addressable 
over the entire on-chip data memory (0-255). The REGISTER attribute maps the variable to the pre-defined mapped· 
registers, 110 ports and functions on-chip. The compiler generates the appropriate addressing instructions to access these 
variables. The key benefit of letting the compiler generate addresses (mechanically) is that when decisions to move 
variables from one memory space to another are made, only the declaration attribute has to be modified, and the module 
recompiled. The impact of such an action is an assembly language program would require identifying all references to the 
affected variable and changes in its code an error-prone and laborious job. 

Rapid response to events are key to high performance in control applications. The 8051 architecture provides four register 
banks and task-switching requires only the program counter, program status word, A, Band DPTR registers to be saved. 
PLlM-51 allows procedures to be associated with a particular register bank. Only the program counter, not the RO-R7 
register bank, needs to be saved on the stack during a subroutine call, since they use the same register bank. Task 
switching and the associated register bank switching is supported by the interrupt mechanism for external and internal 
events. 

Interrupt service routines are identified by associating the hardware INTERRUPT number attribute to a procedure. The 
register bank too should be identified for the interrupt service routine. To prevent data corruption, interrupt service 
routines should use different register banks than non-interrupt code. Also. low and high priority interrupts should not use 
the same register bank. Since it is iIIegal to can procedures using different register banks, communication of information 
from interrupt events have to be handled via shared global data areas. 

4-132 AFN-0014SA 



AR-239 

A GENERIC COMPILER 

The rapid development of silicon technology allows semiconductor houses to optimize processors to specific market 
segments. For example, the 8044 slave processors provide intelligent peripheral control and are based on the 8051 CPU 
architecture. PUM-51 can be configured to support the 8044 by inputting to the compiler a processor definition file which 
has information about register names and memory mapping of 110 functions and bits. Configurable compilers provide an 
optimum approach to managing the costs of maintaining system software, as well as supporting proliferation processors 
based on successful CPU architectures. 

CONCLUSIONS 

Software development for microcontroller applications can be executed in a planned methodical manner. PUM-51 
provides software engineers with a tool for promoting structured software design for the 8051 microcontroller family. 
PUM-51 provides an environment for controlled system.development. 

4·133 AFN-0014SA 





In.-Circuit Emulators 5 





EMV-51A 
8051 A EMULATION VEHICLE 

II Precise, full-speed, real-time 8051 
emulation . 
-Load, drive, timing characteristics 
-Full-speed program RAM 
-Serial and parallel ports 

• Breakpoints/trace 
-4 execution address breakpoints 
-1 range breakpoint 
-Branch and value breakpoints 

a Full symbolic debugging 

• Software debugging with or without 
user system 

II Advanced, easy-to-use features 
-Programmable function keys 
-Macros 

• Help facility: EMV-51 A 
command reference at console 

• Hosted on Intel's Personal 
Development System 

The EMV-51A system interfaces to any user-designed 8051 or 8052 system and assists In the debug­
gingand development of that system. The EMV-51 A consists of.an emulator plug, serving as the direct 
communication link to the user system, an 80-inch cable, and a module hosted by an Intel Personal De­
velopment System (jPDS™). The electrical and timing characteristics of the user's 8051 are accurately 
emulated when using the EMV-51 A system. A friendly human Interface presents commands in a menu 
display, and organizes commands in an easy-to-Iearn fashion. The EMV-51 A system allows the de­
signer to emulate the system's 8051 in real-time or single-step mode. Breakpoints allow the user to 
stop emulation at user-specified conditions, and trace qualifiers allow for conditional display of trac_e 
information. Program memory can be displayed and altered using ASM51 mnemonics and symbolic 
references. Advanced capabilities allow for programmable keys, macros, and control constructs. The 
EMV-51A system may also be used in the debugging and development of 8052 systems through its 
ability to debug a" of the 8052 features that are shared with the 8051 and the internal 8K ROM space 
provided in the 8052. 

~ ...................... 

""V'."'M"'''.'H'<H'<'' l ,.Ot.:"'f.r"'I~t.H"Hl- • 

• I. '.', ", ,,' ~ \' 

'>;~" , 

• 

infel 

" ,. ,~. " -eo, .,~ • ",. '. 

EMV-S1A EMULATION 
VEHICLE USER'S GUIDE 

I ..... , .,~ ..... II, .......... " 

: ida' 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Cir­
cuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From 
Intel. '. . . 

e INTEL CORPORATION. 1984 
5·1 

MAY 1984 
Order Number: 280017 -001 



EMV-51 A EMULATION VEHICLE 

FUNCTIONAL DESCRIPTION 

EMV-51 A hardware consists of three parts: the 
controller, the emulator module, and the cable 
assembly. The controller contains all the logic to 
support break, trace, emulation, and communi­
cation with the host and the emulator module. 
The emulator module contains the hardware 
used to execute 8051 code and supplies all 
MCS~-51 signals to the user's system. This 
module connects to the controller via a six-foot 
cable, and the controller connects to an iPDS 
host through the EMV /PROM programming 
adapter board. This adapter board is required to 
use the EMV-51 A on the iPDS. 

EMV-51 A software contains all tt;e. control for 
user interaction. The software programs the 
controller, implements all emulator functions, 
and displays information to the user. This soft­
ware is run on the iPDS host, and is packaged 
on a 5-l/4 inch diskette. An additional software di­
agnostic routine, included on the disk, thorough­
ly checks the EMV-51A hardware. 

EMULATOR I MODULE 

16ADDR 

I ~} I 
I 

EMULATOR I 
~ ~ 

R/T 

I PROGRAM 
MEMORY I'-r 

/"~ I 
I 
I 

f I 
I 

8 DATA 

I 
~ I 

I 
I 
I 
I 
I 
I ~7 I ... 

" / 

EMV-51 A software will accept and interpret com­
mands entered by the user. These commands 
will be communicated as a set of micro­
commands via a host interface to the controller. 
Command registers in the controller direct 
micro-operations to various sections of the 
break, map, or trace circuitry. Some commands 
control the emulator board, others determine 
whether the emulator win emulate the user 
system, while others interrogate the user 
system. When appropriate, the controller will 
pass information back to the host where the in­
formation will be processed and displayed to the 

. user. See Figure 1 for a block diagram of the 
EMV-51 A hardware. . 

The EMV-51A package includes the 8051 Macro 
Assembler and the 8051 Linker and Relocater 
(RL51). This assembler provides full macro 
capabilities, supports symbolic development for 
both code development and debugging, and sup­
ports modular code development with relocation 
features. RL51 will relocate, link, and generate 
loadable object files from the relocatable 

TRACE 

~ 
lORD 

LOGIC 
IOWR 

INTERFACE AO·A7 

~ 

00·07 

... 
BREAK V 
LOGIC '-

8ADDR/DATA 

BREAK 

! 
I' CONTROL/SEQUENCE V-LOGIC AND STATUS 

CONTROL .... 
I 

I 0942 

Figure 1. EMV-S1 A Block Dlaqram 

5·2 280017-001 



inter EMV-S1 A EMULATION VEHICLE 

modules produced by the assembler. EMV-51 A 
fully supports all mnemonics, object file formats, 
and symbolic references generated by ASM51 
and RL51. 

EMV-51 A documentation includes a comprehen­
sive user's manual and a command dictionary 
reference guide. 

FEATURE SET 

The EMV-51 A system provides fundamental 
capabilities for debugging an 8051 or an 8052 
microprocessor system. These basic and gener­
al capabilities are described in the following 
sections. 

Real-Time BreakpOints 

The EMV-51 A system allows the user system to 
execute user code at full clock speed, until a 
predefined condition occurs. The breakpoints 
may be a combination of four execution ad­
dresses or a combination of an execution ad­
dress range and a single execution address. 
These break capabilities allow the user to stop 
the user system at various states in the normal 
processing cycle and to interrogate the state of 
the system. 

Real-Time Memory 

The EMV-51 A system supplies 8K of high speed 
RAM memory. The RAM can be used to execute 
the user program and allows easy changes to 
the user code. This memory can be used either 
in place of the user's memory before the memory 
exists in the user system or used in lieu of the 
user's memory to ease the debugging effort. 

Real-Time Trace 

The EMV-51 A system maintains an active real­
time trace buffer that tracks the last two execut­
ed addresses from the user's system. This trace 
is collected in real-time during execution of the 
user system. This information can be used to 
discover where the user's program has been 
before breaking. 

Software Break 

During step mode, the EMV-51 A system itera­
tively single steps, then executes a short soft­
ware interrogation routine. This slow-down 

5-3 

mode of operation continues until a register is 
set to a specific value, or any branch instruction 
occurs, or until a specified number of instruc­
tions have been executed. These additional 
break features provide users added execution 
control and microprocessor state information in 
exchange for real-time emulation. 

Software Trace 

The EMV-51 A system will automatically query 
the 8051 or 8052 processor and optionally dis­
play up to 4 lines of information. This display can 
show execution address, disassembled code, 
current register values, or processor status 
information. 

COMMANDS 

The EMV-51 A system has a friendly and easy­
to-use human interface, and commands that are 
well organized and easy-to-Iearn. Menu displays 
prompt the user and assist in learning the dif­
ferent commands. Sample EMV-S1 A displays 
are shown in Figure 2. Commands fall into four 
categories: utility commands, display/modify 
commands, emulation commands, and advanced 
commands. Once these basic command catego­
ries are understood, locating any command be­
comes simple. Table 1 lists a summary of 
EMV-51 A commands and the command 
categories. 

The EMV-51 A system is a full symbolic 
emulator, and hence all commands and displays 
allow for symbolic entry. Thus the EMV-51 A 
system and users communicate by referring ex­
plicitly to symbols defined in the user's source 
program or symbols defined during the debug­
ging session. 

Utility Commands 

Utility commands perform functions not directly 
related to the task of emulation and debugging. 
These commands access the iPDS resources 
and display information about the emulator. 
Some examples of utility commands are RESET, 
LOAD, HELP, and EVALUATE. 

Display/Modify Commands 

Display/modify commands change or display 
any register, port, or memory addressable by the 
8051 processor chip, plus the internal 8K of 
ROM memory addressable by the 8052. Exam-

280017-001 



inter EMV-51 A EMULATION VEHICLE 

pies of display/modify commands. include 
REGISTER, ASM/OASM, CBYTE, OBYTE, 
RBYTE, and PBYTE. A sample display using the 
REGISTER command is shown in Figure (3a). 

Emulation Commands 

All commands causing execution displays, or exe­
cution initiation, fall into the emulation category. 
Thus, the GO, BREAK, and TRACE commands are 
in this category along with BRO,1 ,2,3, BV, 
TRO,1,2,3, TS, and STEP. 

Advanced Commands 

The advanced commands offer the user an easy 
way to increase the power of the EMV-S1 A and 
thus increase the debugging capability of this 
product. These advanced features allow 
EMV-S1 A command sequences to be combined, 

executed, and stored. Examples of advanced 
commands include MACRO, FUNCTION, and 
control constructs. Figure (3b) shows a display 
with a macro. 

EMULATION MODES 

The EMV-S1 A system combines two approaches 
to emUlation, real-time emulation and software 
emulation. Programs with time-critical sections 
of code or critical interrupt routines can be 
emUlated, traced, and debugged· in real time. 
Real-time emulation supports specific execution 
breakpoints or range breakpoints. The real-time 
trace will display up to two instruction addresses 
last executed. Real-time emulation mode is en­
tered by initiating emulation with the GO 
command. All break and trace commands asso­
ciated with the GO command act in real-time 
emulation mode. 

Table 1. Summary of EMV -51 A Commands and Command Categories 

Emulation Commands 

BREAK - Display breakpoint menu 
BRO, 1, 2, 3 - Breakpoint register for execution 

address 
BRR - Breakpoint register for execution range 
BRB - Break on branch 
BV - Break on value 
BC - Clear all breaks 
DTRACE - Display trace menu 
TBO, 1,2,3 - Enable/disable display by bit value 
TRO, 1, 2, 3 - Enable/disable display by 
, execution address 

TV - Enable/disable display by register value 
TR - Enable/disable display of registers 
TS - Enable/disable display of PSW 
TO - Enable/disable display of code disassembly 
STEP - Enter slow-down emulation mode 
GO - Enter real-time emulation mode 

Advanced Commands 

MACRO - Define, and display macro 

~~~~~ ! 
REPEAT - Control constructs
WHILE
UNTIL
FUNCTION - Invoke macro assigned to

function key

5·4

Utility Commands

HELP - Display command syntax
LOAD - Load object file in mapped memory
LIST - Generate copy of emulation work session
DEFINE - Define symbol or macro
SYMBOL - Display symbols
REMOVE - Delete symbol or macro
ENABLE/DISABLE - Control for expanded display
EVALUATE - Evaluate any expression
SUFFIX/BASE - Set input and display numeric

base
SAVE - Save code memory to file
RESET - Reset emulation processor
EXIT - Terminate EMV-51 A session

Display· / Modify Commands

REGISTER - Change/display 8051 registers
INTERRUPT - Change/display interrupt status
MEMORY - Display menu

DBYTE _ Change/display memory
CBYTE .}

PBYTE
RBYTE
RBIT - Change/display bit memory
CDUMP t -Display memory as ASCII and
DDUMP ~ hexadecimal
ASM/DASM - Change/display code memory as

assembly language mnemonics

280017-001

EMV -51 A EMULATION VEHICLE

-SR ---1-------------
BREAKPOINT SETTINGS 1 TYPE

---- - ----- - - - --- -- -- -- - - ---- - - ----- - - - - ------ - -----1----- - -- -----
: BRO· Off BR~- Off BR2- Off BR3- Off 1 Location
1 BRR= Off 1 rang"
1 BRB- Off (go .. ode only) Be disables all 1 branch
1 BII- Off (step lIIod" only) breakpoints. 1 value
-- -- -- ---- ------ -- --------- ------ ------------------1------- ------

a) Menu Display For Accessing Memory

_M

1---
1 MEMORY COMMANPS
I-----------------~---
1 CBYTE (code memory) liTO Location I· value
1 PBYT[(data memory) 1 1 1
1 RBYTE (r.,gisters) 1 Location 1 LENGTH n
1 RBIT (bit flags) 1 1
1 PBYTE (ext. dat~) 1 1
1---
1 CPUMP (code dump) 1 Location TO Location
) »PUMP (datadump) 1
I---,-~--

b) Menu Display For Accessing Memory

-OTR
1---
1 TRACE DISPLAY CONTROLS (»TRACE)
1---
1 TP - ON instruction display. enter ON or Off
1 TR - OfF r"gister display. enter ON or OFf
1 TBO - OfF TB~- Off TB2= Off TB3= Off
1 TS • Off status display. enter ON or Off

1---
1 PISPLAY START/STOP CONTROLS

1---
1 TRO· Off TR~- Off TR2- Off TR3· Off
1 Til· Off <TV-n va 1 ue swi tch) (TRx-addr"ss sw)

1---

c) Menu Display For Setting Trace

Figure 2. Typical EMV-51 A Menu Displays

5·5

1909

280017-001

EMV-51 A EMULATION VEHICLE

When full-speed emulation is not' critical to the
debuggging effort, the EMV-51 A system will
. emulate one instruction, check for a variety of
breakpoint and trace point conditions, display
trace information, and continue with another
instruction. This slow-down mode of operation
provides enhanced break and trace facilities at
the expense of non-real-time execution. Slow.:.

down-mode emulation is entered by initiating
emulation with the STEP command. Figure (3a)
shows a display for the single-stepping mode .

INTENDED USE

The EMV-51 A system is particularly well suited
to assist in debugging small- to medium-sized

.REGS
1------ - ----- ---------- - ------ -- - -------- -- ---- - --- - - -- ---- --- --- +
1 PC = OOOOH TMO= OOOOH RBS =0 RO= ffH R~= DOH 1

1 SP = 07H TM1= OOOOH BASE =H R1= DOH R5= DOH 1

1 DPTR = OOOOH SUfFIX =H R2= DOH Rb= DOH 1

1 ACC = DOH PSW= DOOOODODY R3= DOH R7= ffH 1

1--+

'STEP FROM 100 COUNT=4
101DDH=MOV RD,#.COUNT STEP

ACC=ODH PSW=DOH RO=O~H R1=DOH R2=00H R3=00H R4=ODH R5=DOH Rb=OOH R7=fFH ,
CARR Y =0 AUX =0 flAG=O RBS=OO OVERflOW=O UTL=D PAR=D

101D2H=MOV R1, #. STARLADDR STEP
ACC=DDH PSW=ODH RD=D4H R1=39H R2=DDH R3=00H R4=00H R5=DDH Rb=OOH R7=ffH '

CARRY=D AUX=D FLAG=D RBS=OO OVERFlOW=O UTl=D PAR=O

10104H=SETB .0 STEP
ACC=DOH PSW=~OH RD=04H R1=3'lH R2=DDH R3=DDH R4=ODH R5=DDH Rb=OOH R,7=FFH

CARRY=1 AUX=D FlAG=O RBS=OO OVERflOW=O UTl=D PAR=O

I 010bH=ACAll .ILROUTINE STEP
ACC=DOH PSW=~DH RO=04H R1=39H R2=ODH R3=DOH R~=DOH R5=DDH Rb=OOH R7=FFH

CARRY=1 AUX=D FLAG=O RBS=OO OVERFlOW=O UTL=O PAR=D

a) Display of (1) Registers and (2) Single Stepping through a
Portion of a User's Program (Using Symbolics with Selec­
tive Trace of Processor and Register Status Information)

DEfINE: ILTEST

G fROM 100

IF RBYlE • ACC <> 13 AND RBYTE • P1 <> 15 THEN
WRITE' 10 TEST FAILED'
ELSE
WRITE' 10 TEST PASSED'
END If
EM

':ILTEST

10 TEST PASSED
IDJ.5DH=RET GO-BRE AK

b) Display Showing Macro Capability for Debugging System
Hardware and Software

Figure 3. Sample Emulation Displays

5·6

1929

280017-001

EMV-51 A EMULATION VEHICLE

Figure 4. EMV-51A in iPDS™ DebUgging EnvirolJment

programs whose program complexity is low to
moderate in terms of interrupts, program
nesting, and execution flow.

8051 and 8052 Debugging

The EMV-51 A system can debug both the inter­
nal 8K of ROM space provided by the 8052 and
the space provided by the features that the 8052
shares with the 8051. (The extra timer and extra
data RAM of the 8052 are not emulated by the
EMV-51 A system.)

SPECIFICATIONS

EMV-51 A System Operating
Requirements

The EMV-51 A system operates with an iPDS
system. The iPDS system must be configured
with the EMV/iUP adapter option, iPDS-140.

Equipment Supplied

• EMV-51 A emulator
• User's manuai

5-7

• Pocket reference
o EfYlV-51 A sof,tware and diagnostic

diskette
o 8051 software development package

Emulation Clock Rate

User's system: 1.2 to 12 MHz
EMVrsupplied crystal: 12 MHz

Environmental Characteristics

Operating temperature: 0-40° C
Operating humidity: 50-90% RH,
non-condensing

Physical Characteristics

Controller: 7.8 in. x 1.5 in. x 5.8 in. (19.8 cm. x
3.8 cm. x 14.7 cm.)

Emulator: 3.3 in. x 3.3 in. x 1.5 in. (8.4 cm. x 8.4
cm. x 3.8cm.)

Total Weight: 1 lb. 7 oz. (0.65 kg.)

280017-001

Electrical Characteristics

Power requirements from iPDS: +5V ± 5%
@ 1.9A

-Power requirements from user system: + 5V
± 5% @ 200ma MAX

Characteristics of user socket: Same as 8031,
8051,8052,or8751

-The emulator can be strapped to draw its power
from either the iPDS unit or the user system.

Ordering Information
Part Number Description

iPDS-EMV-51A Emulation vehicle for 8051
microcontroller with diskette
and documentation

5-8

EMV-44 CON
8044 EMULATION VEHICLE

CONVERSION PACKAGE
• All materials needed to add 8044

support to an EMV-51 /51 A system

• Full-speed, real-time 8044 emulation
- Load, drive, timing characteristics
- Full-speed program RAM
- Serial and parallel ports
- SOLe communications port

• Breakpoints/trace
- Four execution address breakpoints
- Range, branch, and value breakpoints

• Full symbolic debugging, including
support for 8044 expanded symbols

• Software debugging with or without
user system

• Advanced ease-of-use features
- Programmable function keys
- Macros

• Help facility tailored for 8044 emulation

• Hosted on the Intel Personal
Development System (iPDSTM)

• Use to troubleshoot Individual
8044-based designs and complete
BITBUSTM system

The EMV-44 conversion package converts ail EMV-51 or EMV-51 A emulation vehicle to an EMV-44
emulation vehicle. The resulting EMV-44 system interfaces to any user-designed 8044 system and as­
sists in the debugging and development of the system. (The EMV-44 system cannot be purchased as a
separate item; to obtain an EMV-44 system, this EMV-44 conversion package must be used to convert
either an EMV-51 or EMV-51 A system.) The EMV-44 conversion package consists of a special 8044
component, new development software, and new documentation. To create an EMV-44 system, one
needs only replace the special 8051 component in the EMV-51 or EMV-51A system with the new 8044
component, and then install the new software. The EMV-44 accurately emulates the electrical and
timing characteristics of the user's 8044. A friendly human interface presents commands in a menu
display and organizes commands in an easy-to-Iearn fashion. The EMV-44 system allows the designer
to emulate the specified system's 8044 in real-time or single-step mode. Breakpoints allow the user to
stop emulation at user-specified conditions, and trace Qualifiers allow for conditional display of trace
information. Program memory can be displayed and altered using ASM51 mnemonics and symbolic
references. Advanced capabilities allow for programmable keys;macros, and control constructs.

-
EMV _44 CON GE

CONVERSION PACKA

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied In an Intel product. No other cIrcuit
patent licenses are Implied. Information contained herein supercedes previously published specifications on these devices from Intel.

C INTEL CORPORATION, 1984 JUNE 1984.
Order Number:280035·001

5·9

inter EMV-44 EMULATION VEHICLE

FUNCTIONAL DESCRIPTION

The EMV-44 system provides fundamental capa­
bilities for debugging an 8044. These capabilities
are described in the following sections.

Real-Time Breakpoint

The EMV-44 system allows the user system to
execute user code at full clock speed, until a
predefined condition occurs. The breakpoints
may be a combination of four execution ad­
dresses or a combination of an execution ad­
dress range and a single execution address.
These break capabilities allow the user to stop
the user system at various states in the normal
processing cycle and to interrogate the state of
the system.

Reed-Time Memory

The EMV-44 system uses either the EMV-51
system's 4K or the EMV-51 A system's 8K of
high speed RAM memory~The RAM can be used
to execute the user program and allows easy
changes tothe user code. The RAM memory can
be used either in place of the user's memory
before the memory exists in the user system or
used in lieu of the user's memory to ease the
debugging effort. '.

Real-Time Trace

The EMV-44 system maintains an active real­
time trace buffer that tracks the last two execut­
ed addresses in the user's system. The trace is
collected in real-time during execution of the
user system. This information can be used to
discover where the user's program was before it'
broke.

Software Break

During step mode, the EMV-44 system iteratively
single steps; then executes a short software in­
terrogation routine. This slow-down mode of op­
eration continues until a register is set to a
specific value, or any branch instruction occurs,
or until a specified number of instructions have
been executed. These additional break features
provide users with added execution control and
microprocessor state information in exchange
for real-time emulation.

Software Trace

The EMV-44 system will, during interrogation,
automatically query the 8044 processor and op­
tionally display up to 4 lines of information. This
display can show the execution address, dis­
assembled code, current register values, or pro­
cessor status information.

COMMANDS

The EMV-44 system has a friendly and easy­
to-use human interface, and commands that are
well organized and easy-to-Iearn. Menu displays
prompt the user and assist in learning the dif­
ferent commands. Sample EMV.;44 displays are
shown in Figure 1. Commands fall into four
categories: utility commands, display/modify
commands, emulation commands, and advanced
commands. Once these basic command cate-'
gories are understood, locating any command
becomes simple. Table 1 gives a summary of
EMV-44 commands and command categories.

The EMV-44 system is a full symbolic emulator,
and hence all commands and displays allow for
symbolic entry. Thus the EMV-44 system and
users communicate by referring explicitly to
symbols defined in the user's source program or

. symbols defined during the debugging session.

Utility Commands

Utility commands perform functions not directly
related to the task of emulation and debugging.
These commands access the iPDS resources
and display information about the emulator.
Some examples of utility commands are RESET,
LOAD, HELP, and EVALUATE.

Display IModify Commands

Display/modify commands change or display
any register, port, or memory addressable by the
8044 processor chip. Examples of display/­
modify commands include REGISTER,
ASM/DASM, CBYTE, DBYTE, RBYTE, and
PBYTE. A sample of a display resulting from the
use of the REGISTER command is shown in
Figure 2(a).

Emulation Commands

All commands causing execution displays, or ex­
eC.ution initiation, fall into the emulation

5-10 280035-001

inter EMV-44 EMULATION VEHICLE

.OR
- - - - - - - - - - - - - - - -- --- - - - - 1- - - - - - - - - - - --

BREAKPOINT SETTINGS 1 TYPE
- 1- - - - - - - - - - - --

: BRO= Off BR1" Off BR2= Off BR3= OFf 1 Location
1 BRR= OFf 1 range
1 BRB= OfF (go mode only) BC disables all 1 branch
1 BV" OFF (step mode only) breakpoints. 1 value
- --- - -- - -- - - - -- --- ---- - - -- - - - 1- - --- - - - - - - --

a) Menu Display for Setting Breakpoint

aM

1---
1 MEMORY COMMANDS

1---
1 CBYTE (code memory) liTO Location I" value
1 DBYTe: (data memory) 1 1 I
1 RBYTE (registers) I Location 1 LENGTH n
1 RBIT (bit flags) 1 1
1 PBYTE (ext. data) 1 1

1---
1 CDUMP (code dump) I Location TO Location
I DDUMP (datadump) I
I---~-~-------------

b) Menu Display For Accessing Memory

aOTR
I---~---------------
1 ,TRACE DISPLAY CONTROLS (DTRACEl

1---
1 TD .. ON instruction display, enter ON or OFf
1 TR "Off register display, enter ON or OfF
1 TBO'" OFF TB1= OFf TB2= Off TB3= Off
1 TS = Off status display, enter ON or Off

1---
1 DISPLAY START/STOP CONTROLS

1---
1 TRO" Off TR1= OFF TR2= OFF TR3= Off
1 TV= OfF (TV=n value switch) (TRx"'address sw)

1---~-

c) Menu Display For Setting Trace

Figure 1. Typical EMV-44 Menu Displays

5-11

0344

0330

0346

280035-001

intef EMV-44 EMULATION VEHICLE

category. Thus, the GO, BREAK, and TRACE
commands are in this category along with
BRO,1 ,2,3, BV, TRO,1 ,2,3, TS, and STEP.

Advanced Commands

The advanced commands offer the user an easy
way to increase the power of the EMV-44 and
thus increase the debugging capability of this
product. These advanced features allow
EMV-44 command sequences to be combined,
executed, and stored. Examples of advanced

-commands include MACRO, FUNCTION, and
control constructs. Figure 2(b) shows a display
ofa macro.

EMULATION MODES

The EMV-44 system combines two approaches
to emulation, real-time emulation and software
'emulation. Programs with time-critical sections
of code or critical interrupt routines can be
emulated, traced, and debugged in real time.

Real-time emulation supports specific execution
breakpoints or range breakpoints. The real-time
trace will display up to two instruction addresses
last executed. Real-time emulation mode is en­
tered by initiating emulation with the GO
command. All break and trace commands asso­
ciated with the GO command act in real-time
emulation mode.

When full-speed emulation is not critical to the
debugging effort, the EMV-44 system will emu­
late one instruction, check for a variety of break­
pOint and trace point conditions, display trace
information, and continue with another
instruction. This slow-down mode of operation
provides enhanced break and trace facilities at
the expense of non-real-time execution. Slow­
down-mode emulation is entered by initiating
emulation with the STEP command. Figure 2(a)
shows a display for the single-stepping mode.

Table 1. Summary of EMV -44 Commands and Command Categories

EmulatIon Commands

BREAK - Display breakpoint menu
BRO, 1, 2, 3 - Breakpoint register for execution

address
BRR - Breakpoint register for execution range
BRB - Break on branch
BV - Break on value
BC - Clear all breaks
DTRACE - Display trace menu
TBO, 1, 2, 3 - Enable/disable display by bit value
TRO, 1, 2, 3 - Enable/disable display by

execution address
TV - Enable/disable display by register value
TR - Enable/disable display of registers
TS - Enable/disable display of PSW
TO - Enable/disable display of code disassembly
STEP - Enter slow-down emulation mode
GO - Enter real-time emulation mode

A"vanced Commands

~~~~~ -lDenne, and display macro 

COUNT 
REPEAT Control constructs 
WHILE 
UNTIL 
FUNCTION - Invoke macro assigned to 

function key 

5·12 

Utility Commands 

HELP - Display command syntax 
LOAD - Load object file in mapped memory 
LIST - Generate copy of emulation work 

session 
DEFINE - Define symbol or macro 
SYMBOL - Display symbols 
ENABLE/DISABLE - Control for expanded 

display 
EVALUATE - Evaluate any expression 
SUFFIX/BASE - Set input and display numeric 

base 
SAVE - Save code memory to file 
RESET - Reset emulation processor 
EXIT - Terminate EMV-44 session 

Display/Modify Commands 

REGISTER - Change/display 8044 registers 
INTERRUPT - Change/display interrupt status 
MEMORY - Display menu 

CBYTE} 
DBYTE 
PBYTE Change/display memory 

RBYTE 
RBIT - Change/display bit memory 
CDUMP } Display memory as ASCII and 
DDUMP hexadecimal 
ASM/DASM - Change/display code memory as 

assembly language mnemonics 

280035-001 



inter EMV-44 EMULATION VEHICLE 

.REGS 

1----------------------------------------------------------------+ 
1 PC = OOOOH TMO= OOOOH RBS =0 RO= ffH R4= ~OH I 
1 SP ~ 07H TM1= OOOOH BASE =H RJ.=. OOH R5= OOH I 

1 DPTR = OOOOH SUffIX"H R2= OOH Rb= OOH I 
1 ACC = OOH PSW= OOOOOOOOY R3= ~OH R7= ffH I 

1---------------------- ----------- ----- -- ------- --- ---------- ----+ 

-STEP FROM 100 COUNT=4 
10lOOH=MOV RO,II.COUNT STEP 

ACC=OOH PSIII=OOH RO=04H Rl=OOH R2=OOH R3 z 00H R4=00H R5=00H Rb=OOH R7-ffH 
CARRY=O AUX=O . FlAG=O RBS=OO OVERFlOIII=O UTL=O PH-O 

fOl02H=MOV Rld'.STARLADDR STEP 

ACC'OOH PSI&I=OOH RO=04H Rl=3'1H R2=00H R3=OOH R4=00H RS=OOH Rb='OOH R7=ffH 

CARRY=O AUX-O FlAG-O RBS=OO OVERFlOW=O UTL-O PH=O 

IOl04H=SETB • CY STEP 

ACC-OOH PSId=IIOH RO=04H Rl'3'1H R2=00H R3=00H R4=00H RS=OOH Rb=OOH R7:ffH 
CARRY:]. AUX=O flAG-O RBS-OO OVERFlOW-O UTL-O PAR=O 

10]'ObH=ACAll .IO-ROUTINE STEP 

ACC=OOH PSW=IIOH RO=04H Rl=3'1H R2=00H R3=00H R4=00H RS=OOH Rb=OOH R7=ffH 
CARRY-]. AUX=O flAG-O RBS=OO OVERFlOW'O UTL=O PH=O 

a) Display of (1) Registers and (2) Single Stepping through a Portion of a User's 
Program (Using Symbolics with Selective Trace of Processor and Register 
Status Information) 

DEFINE: IO_TEST 
BRO=lSOH 

G fROM lOO 

IF RBYTE • ACC <> 1.3 AND RBYTE • Pl <> lS THEN 

WRITE' 10 TEST fAILED' 
ELSE 

WRITE' 10 TEST PASSED' 
ENDIF 
EM 

-:IO_TEST 

10 TEST PASSED 
10lSOH=RET GO-BREAK 

b) Display Showing Macro Capability for Debugging System Hardware and Software 

1949 

Figure 2. Sample Emulation Displays 

INTENDED USE FUNCTIONAL DESCRIPTION 

The EMV-44 system is particularly well suited 
for debugging 8044 designs that include small­
to medium-size programs with program com­
plexity that is low to moderate in terms of 
interrupts, program nesting, and execution flow. 
In addition to product development, the EMV-44 
system is well suited to product testing and 
servicing. Designs using the BITBUS can be 
debugged; tested, and serviced while connected 
to the BITBUS. 

The EMV-44 conversion package consists of a 
special 8044 component, new development 
software, and new documentation. To create an 
EMV-44 system, one needs only replace the spe­
cial 8051 component in the EMV-51 or EMV-51A 

. system with the new 8044 component, and then 

5-13 

install the new software. The resulting EMV-44 
system has three parts: the controller, the 
emulator module, and the cable assembly. The 
controller contains all the logic to support break, 

280035-001 



EMV -44 EMULATION VEHICLE 

trace, emulation, and communication with the 
host and the emulator module. The emulator 
module contains the hardware used to execute 
8044 code and supplies all MCS~-44 signals to 
the user's system. This module connects to the 
controller via a six foot cable, and the controller 
connects to an iPDS host through the 
EMV/PROM programming adapter board. This 
iPDS board is required to use the EMV-44 with 
the iPDS system. 

EMV-44 software contains all the control for 
user interaction. The software programs the 
controller, implements all emulator functions, 
and displays information to the user. This soft­
ware is run on the iPDS host, and is packaged on 
a 5-1J4 inch diskette. An additional software diag­
nostic routine, included on the disk, thoroughly 
checks the EMV-44 hardware. 

EMV-44 software will accept and interpret cOm­
mands entered by the user. These 'commands 
will be communicated as a set of micro­
commands via a host interface to the controller. 
Command registers in the controller direct 
micro-operations to various sections of the 
break, map, or trace circuitry. Some commands 
control the emulator board, others determine 

EMULATOR I MODULE 

j 16ADOR 

I ~} I 
I 

EMULATOR I 
~ I 

R/T 
PROGRAM 
MEMORY 'v-I /} I 

I 

, '1' I 
I 

6DATA 

I 
I 
I 
I 
I 
I 
I 

~ 

~ 

I U I 
" 

whether the emulator will emulate the user 
system, while others interrogate the user 
systetn. When appropriate, the controller will 
pass information back to the host where the in­
formation wilt be processed and displayed to the 
user. See Fig. 3 for a block diagram of the 
EMV-44 hardware. 

The original EMV-51 or EMV-~1A system in­
cludes the 8051 Relocating Macro Assembler 
(ASM51) and the 8051 Linker and Relocater 
(RL51). The assembler provides full mac,ro 
capabilities, supports symbolic deveiopment for. 
both code development and debugging, and sup­
ports modular code development with relocation 
features. The RL51 utility will relocate, link, and 
generate loadable object files from the relocata­
ble modules produced by the assembler. 
EMV-44 fully supports all mnemonics, object file 
formats, and symbolic references generated by 
the ASM51 and RL51 programs. 

EMV-44 documentation includes a comprehen­
sive user's manual and a command dictionary 
reference guide. 

TRACE 

S 
lORD 

LOGIC 
10WR 

A. 
INTERFACE AO-A7 

v 

A -" 
00-07 ) 

'4' ""V 

A 
BREAK 
LOGIC 

V 

" 

6 AODR/DATA 

BREAK 

. ! 
... CONTROL/SEQUENCE W 

LOGIC AND STATUS "'", CONTROL . 
I ", 

0942 

Figure 3." EMV -44 Block Diagram 

280035-001 

5-14 



inter EMV-44 EMULATION VEHICLE 

SPECIFICATIONS 

EMV -44 Operating Requirements 

The EMV-44 system operates with an iPDS 
system (see Figure 4). The iPDS system must be 
configured with the EMV/iUP adapter option, 
iPDS-140. 

Equipment Supplied 

• 8044 "bondout" microcontroller 
• EMV-44lconversion package manual 
• EMV-44 software. and diagnostic diskette 
• EMV-44 label 

EMV-44 Emulation Clock Rate 

User's system: 1.2 to 12 MHz· 
EMV-supplied crystal: 12 MHz 

·Note that the bondout 8044 microcontroller sup­
plied with the EMV-44 conversion package has a 
limitation when serial clock mode 0 is used: the 
external SCLK sign.f\-I must be synchronized with 
the XTAL clock. A simple two flip-flop external 
circuit can be constructed to provide this 
synchronization. 

EMV -44 Environmental 
Characteristics 

Operating temperature: 0-400 C 
Operating humidity: 50-90% RH, 
non-condensing 

EMV -44 Physical Characteristics 

Controller: 7.8in. x 1.5 in. x 5.8 in. (19.8 cm. x 3.8 
cm. x 14.7 cm,) 

Emulator: 3.3 in. x 3.3 in. x 1.5 in. (18.4 cm. x 
18.4 cm. x 3.8 cm,) 

Total Weight: 1 lb. 7 oz. (0.65 kg,) 

EMV -44 Electrical Characteristics 

Power requirements from iPDS: +5 V ± 5% 
@ 1.9A 

*Power requirements from user system: +5 V 
± 5% @ 200ma MAX 

Characteristics of user socket: Same as 8044, 
8344, or 8744 

*The emulator can be strapped to draw its power 
from either the iPDS or the user system. 

Figure 4. EMV-,44 in iPDSTM Debugging Environment 

5-15 280035-001, 



EMV -44 CONVERSION PACKAGE 
ORDERING INFORMATION 

Part Number Description 
iPDS-EMV-44 CON EMV-44 conversion 

package with 8044 
"bondout" micro­
controller, diskette, 
and documentation 

5·16 \ 



EMV-88 
iAPX 8088 EMULATION VEHICLE 

• 8 MHz in-circuit emulation 
• Hosted on Intel's Personal 

Development System (iPDSTM) 

• Advanced easy-to-use features 
-Programmable function keys 
-Macros 
-Loop-control constructs 
-Instruction disassembly 

iii Help facility: EMV-88 command syntax 
reference at console 

D Breakpoints 
-Three modes: execution, data access, 
or I/O access 

-One range breakpoint 
-Externally controlled breakpoints 
-Break-on-branch capability 

EI Full symbolic debugging 

EI 1 K byte real-time execution trace 

• 4K bytes of on-board zero-wait-state 
mapped memory 

II Software debugging with or without 
user system 

CII Includes Macro Assembler ASM 86/88, 
8080/8085 to 8086/8088 assembly 
language source code conversion, LINK 
86/88, and EMV -88 control software 
packages 

• Fully supports 8088 RQ),OT, NMI, and 
Min and Max modes 

a Supports PL/M 86/88 

The EMV-88 system contains all the hardware, software, and documentation needed to interface to a 
user-designed iAPX-88 system and assists in the debugging and development of that system; in 
addition, the system can be used for testing in a manufacturing and/or service environment. The 
EMV-88 system consists of a buffer box and a controller that is hosted by an Intel Personal Develop­
ment System (iPDS). The electrical and timing characteristics of the user's 8088 are emulated by the 
EMV-88 (see page 10 for timing comparisons). Software for the EMV-88 system allows the designer to 
emulate the user system's 8088 in real-tilne or single-step mode. Execution breakpoints stop emula­
tion at user-specified conditions, and trac~ qualifiers control display of trace information. Program 
memory can be displayed and altered using ASM 86/87/88 mnemonics and symbolic references. Ad­
vanced emulator capabilities allow for programmable keys, command macros, and control constructs. 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Clr­
f~~tatent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From 

o INTEL CORPORATION, 1984 JUNE 1984 
ORDER NUMBER:280021-001 

5-17 



inter EMV-88 

FUNCTIONAL DESCRIPTION 

The EMV-88 system provides fundamental capa­
bilities for debugging an iAPX-88-based 
microsystem. These basic capabilities are de­
scribed in the following sections. 

Real-Time Breakpoint 

The EMV-88 system allow4 a user system to ex­
ecute user code at full clock speed (2 to 8 MHz) 
until a predefined breakpoint condition occurs. 
Breakpoints may be specified as a combination 
of four addresses or a combination of an address 
range and a Single address. Breaks occur on ex­
ecution addresses, read or write data 
addresses, read or write I/O port addresses, or 
on branch. Additionally, an externally supplied 
signal can cause a break. These break capabili­
ties allow the user to stop the target system 
during the normal processing cycle and interro­
gate the state of the target system. 

Real-Time Memory 

The EMV-88 system supplies 4 Kbytes of high­
speed RAM memory mappable on any even 4K­
boundary within the 1 megabyte address space 
of the iAPX-88 microsystem. The RAM can be 
used to store the user program and.make possi­
ble changes to user code. The memory can also 
be used as the user's memory before it exists in 
the target system, or in place of the user's 
memory to ease the debugging effort. 

Real-Time Trace 

The EMV-88 system maintains an active real­
time trace buffer that tracks the last 1 K byte of 
instruction addresses executed by the target 
system. This information can be used to discover 
where the user's program was before it broke 
emulation. 

Software Break-

During single-step execution, the EMV-88 
system steps through an instruction and then ex­
ecutes a short software Interrogation routine; at 
the end of the routine, the emulator stops or ad­
vances to the next single-step and Interrogation 
cycle. This slow-down mode of emUlation con­
tinues for a single instruction until a break condi­
tion is reached or a specified number of instruc-

tions has been executed. This type of emulation 
provides added execution control and micropro­
cessor state information in exchange for real­
time emUlation. 

Software Trace 

Between single steps or after a real-time 
breakpoint, the EMV-88 system can automatical­
ly query the 8088 processor and optionally dis­
play up to four lines of information. This display 
can show execution address, disassembled 

, code, current register values, or processor 
status information. Users can direct their display 
screens to present only desired information. 

5·18 

COMMANDS 

The EMV-88 system has a friendly, easy-to-use 
human interface and commands that are well 
organized and easy-to-Iearn. Menu displays 
prompt and assist the user in learning the dif­
ferent commands. Figure 1 shows sample menu 
displays. 

EMV-88 commands fall Into four categories: utili­
ty commands, display/modify commands, emula­
tion commands, and advanced commands. Once 
users understand the basic command 
categories, locating any command becomes 
simple. These categories, and many of the 
specific commands, are similar for the different 
emulation vehicles, and thus the learning time 
required to operate other emulation vehicles is 
reduced. The HELP command displays all the 
EMV-88 commands; if users want Information on 
a particular command, they only need to type 
HELP followed by the name of the command. 

Table 1 provides a summary of the EMV-88 
system commands arranged according to com­
mand categories. -

The EMV-88 system is a full symbolic emulator: 
all commands and displays can be entered 
symbolically. Thus the EMV-88 system and the 
user can communicate by referring to symbols 
defined in the user's source program or symbols 
defined during the debugging session. 

Utility Commands 

Utility commands perform functions not directly 
related to the task of emulation and debugging. 
These commands gain access to the IPDS 
system resources and display information about 
the emulator. 

280021-001 



inter EMV-88 

Display/Modify Commands 

Display/modify commands change or display 
any register, port, or memory location addressa­
ble by the IAPX-88 target system. These com­
.mands provide access to specific areas of the 
processor or target system and thus minimize 
extraneous display information. 

Emulation Commands 

Commands that control program execution or 
Initiate emulation fall into this category; for 
"example, GO-;BREAK, and DETRACE. 

Advanced Commands 

The advanced commands offer an easy way to 
Increase debugging capability, and create au­
tomated test sequences using the EMV-88. The 
advanced commands permit commands to be 
combined and saved as test routines. Tests can 

HELP 

be developed (with their own messages) that 
guide the user through a series of diagnostic 
and troubleshooting paths, making possible 
easy-to-use fault location down to the system or 
component level. 

EMULATION MODES 

The EMV-88 system offers three approaches to 
emulation: real-time emulation, single-step, 
emulation, and branch-break emulation. 

Programs with time-critical sections of code or 
critical interrupt routines can be emulated, 
traced, and debugged in real time. Real-time 
emulation supports specific execution break­
points or range breakpoints. The real-time trace 
displays up to 1 K byte of the most recently ex­
ecuted instruction addresses. The real-time 
emulation mode is entered by initiating emulation 
with the GO command. All break and trace com­
mands that are associated with the GO com­
mand act in the EMV-88's real-time emulation 
mode. 

HELP - Help is available for the following commands and definitions. 
Type "HELP <NAME>" where <name> is one of the following: 

=:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

UTILITY -

: BASE 
: DEFINE 
: DISABLE 
: ENABLE 

EVALUATE 
EXIT 
HELP 

LIST 

LOAD 
REMOVE 
RESET 
SAVE 

SUFFIX 
SYMBOLS 
TYPE 
WORKFILE 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

DISPLAY -

: ASM 
: BYTE 
: DASM 

DREAL 
DUMP 
MEMORY 

POINTER 
PORT 
REAL 

REGISTER 
TREAL 
WORD 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
EMULATION - : BREAK GO PREVIOUS 

: DTRACE MODE STEP 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ADVANCED -

: COUNT 
: DIR 
: FUNCTION 

IF MAP WRITE 
INCLUDE PUT 
MACRO REPEAT 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
:Aeoe7 DEMO ENTERING STRINGS 

MISCELLANEOUS :AeOee DISPLAY EXPRESSIONS 
: CONTINUATION EDITING NOTATION 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

a) HELP Menu Display 

Figure 1. Typical EMU-88 Menu Displays 

5-19 

280021-001 



inter 

*REG 

RAX-DD31H 
RBX=DDDDH 
RCX-123IfH 
RDX=DDDDH 

SP=DfffH 
CS=ffffH 

IP"DDDDH 

Rf=fDD2H 

b) REGISTER Display 

*DTR 

TD: Off 
TR= Off 
TS= ON 

TRD"DDD3IfH ON 

TV= Off 

c) Menu Display for Setting Trace 

EMV-88 

*REGISTER DISPLAY* 

RAH-DDH RAL=31H 
RBH=DDH RBL"DDH 
RCH-12H RCL=3IfH 

' RDH=DDH RDL-DDH 

DP=lDDDH SI=DDDDH DI=DDDDH 
DS"DDDDH SS=DDDDH ES=DDDDH 

Of=D Df=D Iff=D Tf=D 
Sf=D Zf"D Af=D Pf=D Cf=D 

*TRACE DISPLAY CONTROLS* 

(instruction display, ON/OfF) 
(register display, ON/Off) 
(status display, ON/Off) 

*DISPLAY START /STOP CONTROL* 

TR1=DDIf'lDH Off TR2" Off TR3=2DD3SH ON 
{ enter both location and ON/Off switch 

( enter REGISTER VALUE Sill ) 

Figure 1. Typical EMU-88 Menu Displays (continued) 

5-20 

280021~001 



EMV-88 

Table 1. Summary of EMV-88 Commands and Command Categories 

Commands Description 

Utility Commands 
DEFINE Defines symbol or macro. 
DOMAIN Establishes default module. 
ENABLE/DISABLE Control for expanded display. 
EVALUATE Evaluates any expression (numerical or logical). 
EXIT Terminates EMV-88 session. 
HELP Displays command syntax. 
INCLUDE Loads a macro definition or a command file. 
LINE Displays statement numbers and associated absolute addresses. 
LIST Generates copy of emulation work session. 
LOAD Loads object file in mapped memory. 
MODULE Displays module names in EMV-88 module table. 
REMOVE Deletes symbol or macro. 
RESET Resets emulation processor. 
SAVE Saves memory to file. 
SYMBOLS Displays symbols. 
SUFFIX/BASE Sets input and displays numeric base. 
TYPE Sets/displays data type to symbol name. 

Emulation Commands 
BR Displays breakpoint menu. 
BRO, 1,2,3 Breakpoint register for execution address. 
BRB Breaks on branch. 
BRR Breakpoint register for execution range. 
BV Breaks on value. 
BC Clears all breaks. 
DTRACE Displays trace menu. 
GO Enters real-time emulation mode. 
MO Break qualifier. 
PREVIOUS Displays execution trace. 
STEP Enters slow-down emulation mode. 
TO Enables/disables display of code disassembly. 
TR Enables/disables display of registers. 
TRO, 1,2,3 Enables/disables display by execution address. 
TS Enables/disables display of PSW. 
TV Enables/disables display by register value. 

Display/Modify Commands 
ASM/DASM Changes/displays code memory in assembly language mnemonics. 
DUMP Displays memory as ASCII and hexadecimal. 
MEMORY Displays menu for memory access. 
PORT Changes/displays ports. 
REGISTER Displays 8088 registers menu. 
BYTE 

) WORD 
POINTER Change/display memory. 
SINTEGER 
INTEGER 
REAL } TREAL 8087 commands. 
DREA 

280021-001 

5-21 



EMV-88 

Table 1. Summary of EMV -88 Commands and Command Categories (continued) 

Commands Description 

Advanced Commands 
DIR Displays names of all available macros. 
FUNCTION Invokes macro assigned to function key. 
MACRO Displays macro text. 
MAP Sets/displays memory map. 
PUT. Stores macro definitions. 
WRITE Evaluates and displays expressions and strings. 
IFTHEN 
COUNT 
REPEAT } Loop control constructs. 
WHILE 
UNTIL 

When full-speed emulation is not critical to the 
debugging effort, the EMV-88 system emUlates 
one instruction, checks for a variety of break­
pOint and trace-point conditions, displays trace 
information, and continues with another 
instruction. This slow-down mode of operation 
permits an enhanced non-real-time execution 
break and trace facility. The STEP command is 
used to enter the slow-down emulation mode. 

A third mode, branch break, bridges the gap be­
tween real-time emulation and Single-step 
emulation. During branch break, the EMV-88 
system emUlates in either real-time mode or 
single-step mode until any branch instruction is 
executed. After the branch has executed, the 
emulator breaks emulation. Thus this mode 
makes possible a fast and convenient mecha­
nism for observing program flow. 

INTENDED USE 

The EMV-88 system is designed for debugging 
certain kinds of programs: it is particularly well 
suited to assist in debugging small- to medium­
sized programs whose complexity is low to 
moderate in terms of interrupts, program 
nesting, and random execution flow. It is also de­
signed for testing and troubleshooting in manu­
facturing and service environments. 

Figure 2 shows the EMV-88 system and the 
IPDS in a debugging environment. 

PHYSICAL DESCRIPTION 

Hardware Components 

The EMV-88 hardware consists of two parts: the 
controller and the buffer box. The controller con­
tains all the logic to support mapped memory, 
break, trace, emulation, and communication with 
the host. The controller module is inserted in the 
side panel of the iPDS host development system 
and connects to the EMV/PROM programming 
adapter board, an option that must be present 
for EMV use. A five-foot cable connects the con­
troller module to the buffer box. The buffer box 
buffers all iAPX-88 signals and contains the 
emulating 8088-2 processor and all logic to sup­
port both Min and Max modes of operation. The 
buffer box plugs into the user's 8088 socket by 
means of a short cable and supplies all 
iAPX-8088 signals to the target system. 

Software Components 

The EMV-88 software offers extensive emulation 
control of the target CPU. The software programs _ 
the controller, implements' all emulator 
functions, displays information, and offers ad­
vanced features to further support debugging 
activities. Software is run on the iPDS host, and 
is packaged on a 5-1/4 inch diskette. An additional 
software diagnostic routine, included on the 
disk, thoroughly exercises the EMV-88 
hardware. 

280021-001 

5-22 



EMV-88 

. ---~ .. -----.... 

Figure 2. The EMV -88 System and the iPDSTM System in a Debugging Environment 

The EMV-88 also includes the 8086/8088 Macro 
Assembler (ASM 86/88) and a software utility 
package. The macro assembler provides full 
macro capabilities, supports symbolic reference 
during code development and debugging, and 
supports modular code development and reloca­
tion features. The utility package includes the 
following software: 

o CONV 86/88 to convert ASM 80/85 programs 
to ASM 86/88 programs 

o LINK 86/88 to combine several ASM 86/88 
object modules into a single object module 

• LIB 86/88 to manage libraries of 8086/8088 
object modules 

• LaC 86/88 to locate relocatable modules to 
absolute executable addresses 

• OH 86/88 to convert executable modules 
from object module format to hexadecimal 
format 

Documentation 

The EMV-88 system includes a documentation 
kit containing a comprehensive EMV-88 Emula­
tion Vehicle User's Guide and an EMV-88 Emula­
tion Vehicle Pocket Reference. In addition, ex­
tensive documentation is included for the Macro 
Assembler and the utilities software. 

5·23 

System Operation 

A multitude of hardware and software interac­
tions allow the EMV-88 to provide break, trace, 
map, and interrogation features. The iPDS host 
maintains symbol tables (from information 
passed to it from Intel language translators) and 
user symbols (defined during the debugging 
session). The symbol tables allow the EMV-88 to 
provide full symbolic debugging capabilities. 

For the command monitor, the EMV-88 system 
requires 1 K byte of user processor address 
space and six bytes of the user stack. The 
EMV-88 system supplies this 1 K byte of memory 
and the necessary logic to map this memory any­
where in the user's decoded memory space on 
any 1 K-byte boundary. During initialization, the 
EMV-88 system loads the command memory 
with the monitor software. This monitor routine 
has responsibility for interrogating the 8088 
processor, changing any register or memory as­
sociated with the target system, and executing 
user code. 

For example, during a memory display operation, 
the EMV-88 monitor causes the desired data in 
the memory to be passed to the iPDS host. The 
iPDS host takes the data, formats the data, as­
sociates symbolic information with the data, and 
displays the information for the user. 

280021·001 



EMV-88 

The address of the first byte of every executed 
target system instruction is stored in a 1 K-byte 
circular trace buffer. During interrogation, this 
buffer can be read and displayed by the user. 
Trace information is passed back to the host 
where it is symbolically expanded, disassem­
bled, and displ~yed. 

Breakpoints are implemented by setting bits 
(associated with addresses) in a breakpoint 
RAM. Emulation begins by directing the emula­
tion processor to execute user code rather than 
command-monitor code. Execution addresses 
are tracked through a queu~ emulator and, when 
a match between an execution address and a 
set ,bit in the breakpoint RAM is found, the 
EMV-88 system asserts the NMl.line (after the 
execution of the instruction) to cause a break. 
Control is then passed to the software command 
monitor, which notifies the iPDS host of the 
break event. See Figure 3 for a block diagram of 
the EMV-88 hardware. 

SPECIFICATIONS 

EMV -88 Operating Requirements 

The EMV-88 system operates with an IPDS 
system. The iPDS system must be equipped with 
the EMV/iUP adapter option (the iPDS-140). 

EMV -88 System Specifications 

Total access to 1 M byte of iAPX-88 address 
space (except for 1 Kbyte of EMV command 
memory) 

Compatible with all Intel Series-II-based iAPX 
software 

Can load a 4K-byte object file with symbols in 
less than one minute 

Step mode operates at 5000:1 speed slow-down 

Equipment Supplied 

EMV-88 emulator 

EMV-88 software and diagnostic diskette 

8086/8088 Macro Assembler and utility package 

5-24 

Documentation Supplied 

EMV-88 Emulation Vehicle User's Guide 

EMV-88 Emulation Vehicle Pocket Reference 

Documentation for the 8086/8088 Macro Assem­
bler and utilities software 

Emulation Clock Rate 

EMV-88-resident clock: 5 MHz 
User-supplied clock: 2 to 8 MHz 

DC Characteristics 

1. Output low Voltage [VOL (Max) = 0.5 V] 

ADO-AD7, A8-15 

A 16/S3-A 1 0/S6, RD, lOCK, OSO, 
OS1, SO, S1, S2, WR, !O/M, 
DT/R,DEN, ALE, INTA 

HLDA, 'ROI'GT 

IOl (Min) 

24mA 

24mA 

0.5mA 

2. Output High Voltage [VOH (Min) = 2.0 V] 

IOH (Min) 

ADO-AD7, A8-15 -15mA 

A 16/S3-A 19/56, SSO, RD, -15 rnA 
LOCK, OSO, OS1, SO, S1, S2, WR, 
10/M, DT/R, DEN, ALE, INTA, 
HLDA 

RO/GT 1.03mA 

3. Input low Voltage [Vll(Max) = 0.8 V] 

ADO-AD7 

NMI,CLK 

READY 

INTR, HOLD, TEST, RESET 

MN/ MX (0.1 JLf to GND) 

III (Max) 

-0.1 rnA 

-0.1 rnA 

-0.4mA 

__ 2.0 rnA 

-0.1 rnA 

280021-001 



inter EMV-88 

~---------------------------------l 

I IIOR 0--' 

I 
I 

I/OW R-----... 
HOST 
1/0 

AO·A 

: ~D7 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

7===:: ADDRE~~ DECODE 

I2O.BIT 

~IDDR~~ EGIST 

ADDR 

~ 
DATA 
LATCH 

STATUS 
REGISTEF 

II 

tu 
r. 

CONTROl 
REGISTEF 

I 
I I II 

COMAND EMV BREAK BREAK QUEUE TRACE 
MEMORY MEMORY MAP 

~ 
LOGIC j..I TRACK· BUFFER 

1Kx8 4Kx8 ING 1Kx20 
LOGIC 

t t ~ ~ 

MEMORY 
MAP 
SELECT 

LfL 

CONTROLLER L __ _ - -- -------------------------------

CABLE ( 

r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

---
-- ~ 

- - ~ADDR7DATA - - - - - - - BUFFER BOXl 

J I I 
USER I 

A " 8088·2 K iAPX·88 SIGNALS 
BUFFERS I 

'" ~ I 
...I I 
0 I a: ...I MINIMAX ~ 0 JUMPER I z 
0 a: 

SELECT ~ I (,) z 
> 0 1 0 (,) 
a: 0 USER ~ ...I I (,) :z: CLOCK 

9 a USER 

I w SIGNAL RDY 
(,) a: EMULA~ 
~ TION 

RQ/GT.HLD/HLDA I 
I I L _____________ .J 

/, 
" i \iAPX.88 SIGNA!& 

~ 

\. J 

'C/ 
CABLE 

Figure 3. EMV-88 Block Diagram 

5·25 

II 
USER II 
PLUG II 

II 
~ 
II 
~ 
II 
II 

1936 

280021·001 



inter EMV-88 

4. Input High Voltage [VIH(Mln) = 2.0 V] 

ADO-AD7 

NMI,CLK 

READY 

INTR, HOLD, TEST, RESET 

MNIMX 

Output Drive Capacity 

IIH (Max) 

.02mA 

.02 rnA 

.02 rnA 

0.4 rnA 

.02mA 

The EMV-88 module has a greater output drive 
capacity than the 8088 chip, except for the 
RQ/GT output when GT is active. 

EMV-88 User Cable 

Capacitance: 22 pflft 

Impedance: 1050hms 

Capacitive Loading 

The EMV-88 module presents the user system 
with a maximum load of 34 pf and 0.8 rnA.' 

All EMV-88 outputs are capable of driving a mini­
mum of 15 pf and 20 rnA while meeting all the 
probe's timing·· specifications. The EMV-88 
module will drive larger capacitive loads but with 
possible performance degradation. 

5-26 

Timing Differences Between the 
8088-2 Microprocessor and 
EMV -88 Emulation 

MIN Mode . 

Symbol Parameter 8088-2 EMY-88 

Min Max Min Max 
ns ns ns ns 

TDVCL Data In setup time 20 30 
TRYHCH Ready setup time 68 86 

into 8088 
THVCH HOLD setup time 20 7.5 
TINVCH Setup time for 

recognition 
INTR 15 19 
NMI 15 78 
TEST. 15 77 

TCLAV Address valid delay 10 60 24 74 
TCHLAV HLDA valid delay 10 100 18 118 
TCHCTV Control active delay 10 60 29 85 
TCVCTV Control active delay 1 10 70 22 80 

MAX Mode 

Symbol Parameter 8088-2 EMY-88 

Min Max Min Max 
ns ns ns ns 

TDVCL Data in setup time 20 30 
TRYHCH Ready setup time 68 86 

Into 8088 
TINVCH Setup time for 

recognition 
INTR 15 19 
NMI 15 78 
TEST· 15 77 

TCLAV Address valid delay 10 60 24 74 
TCLDV Data valid delay 10 60 24 74 
TCLRL RD active delay 10 100 24 116 
TGVCH RQ/GT setup time 15 25 
TCHSV Status active delay 10 60 24 70 

280021-001 



inter EMV-88 

Environmental Characteristics 

Operating temperature: 50°-95° F (10°-35° C) 

Operating humidity: 0-90% relative humidity, 
non-condensing 

Physical Characteristics 

Controller: 7.75 in. x 1.5 in. x 5.75 in. (19.7 
cm. x 3.8 cm. x 14.6 cm.) 

ORDERING INFORMAflON 

Part Number Description 

iPDS-EMV-88 Emulation vehicle for the 
iAPX-88 microsystem 
(includes diskette and 
documentation) 

Buffer box: 7.25 In. x 1.5In. x 5.75In. (18.4 
cm. x 3.8 cm. x 14.7 cm.) 

Total weight: 21b. 6 oz. (1018 grams) 

Electrical Characteristics 

Power required from the iPDS system: +5 V 
± 2.5% @ 2.5A (includes emulator requirements) 

280021-001 

5-27 . 



inter 
iSBE-9,6 

SINGLE BOARD EMULATOR FOR THE MCS®-96 
FAMILY OF MICROCONTROLLERS 

• Eight software execution breakpoints 
that can selectively be turned on and 
off 

• 12-MHz emulation speed 

• Configurable serial 1/0 

II 17.7SK of on-board user memory 

iii Optionally expandable to 64K of 
on-board user memory 

The iSBE-96 emulator supports the execution and debugging of programs for the MCS@-96 family of 
microcontrollers at speeds up to 12 MHz. The MCS-96 family configurations are shown in Table 1. The 
iSBE-96 emulator consists of an 8097 microcontroller, a'serial port and cable, and an EPROM-based 
monitor that controls emulator operation and the user interface. 

The iSBE-96 emulator is a combination of hardware and software that permits programs written for the 
MCS-96 family of microcontrollers to be run and debugged in the emulator's artificial environment or in 
the user's prototype system. As a result, development time can be reduced by the early integration ot 
hardware and software. 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit 
patent licenses are Implied, Information contained herein supercedes previously published specifications on these devices from Intel. 

ill INTEL CORPORATION, 1984 

5·28 

SEPTEMBER 1984 
ORDER NUMBER: 231015·002 



iSBE-96 EMULATOR 

FUNCTIONAL DESCRIPTION 

Integrated Hardware and 
Software Development 

The iSBE-96 emulator allows hardware and soft­
ware development to proceed simultaneously. 
This approach is more time- and cost-effective 
than the alternate method: independent hard­
ware and software development followed by 
system Integration. With the iSBE-96 emulator, 
prototype hardware can be added to the system 
as it is designed; software and hardware integra­
tion occurs while the product Is being 
developed. The emulator aidS In the recognition 
of hardware and software problems. 

Emulation is the controlled execution of the pro­
totype software in the prototype hardware or in 
an artificial hardware environment that dupli­
cates the microcontroller of the prototype 
system. The iSBE-96 emulator permits reading 
and writing of system memory, and control of 
program execution. The emulator also allows in­
teractive debugging of the prototype software 
and can externally control program execution 
while operating in the prototype system. When 
the prototype system memory is not yet 
available, the iSBE-96 emulator's on-board 
memory permits software debugging. 

Table 1. Configurations of the MCS@-96 
Family of Microcontrollers 

68 Pin 48 Pin 

Digital 110 
ROM LESS 8096 8094 

ROM 8396 8394 

Analog and ROM LESS 8097 8095 
Digital 110 ROM 8397 8395 

iSBE-96 Software 

The ISBE-96 emulator is shipped with three soft­
ware disks: an 8 in. double-density and an 8 in. 
single-density disk for use with an Intellec@ 
Series 11/111, and a 5-1/4 in. disk for use with the 
Series IV development system. 

The iSBE-96 emulator is supplied with an ISIS 
driver routine that communicates with the moni­
tor software on the iSBE-96 emulator board. The 
driver interrupts the 8097 using the non­
maskable interrupt (NMI) line for incoming key-

5-29 

board Input.'The commands associated with the 
driver and the monitor are described in the fol­
lowing sections. 

ISIS DRIVER 

The iSBE-96 emulator is shipped with the ISIS 
driver software for use on the Series II, III, or IV 
development systems. The driver software pro­
vides a few easy-to-use commands. These com­
mands are described in Table 2. 

Table 2. ISIS Driver Commands 

Driver Command Function 

EXIT Exits the ISIS driver and 
returns to the ISIS 
operating system. 

<CONTROL> C Same as for the EXIT 
command. 

HELP Displays the syntax of 
all commands. 

INCLUDE Specifies a command 
file. 

<CONTROL> I Turns the command file 
on and off. 

<TAB> Same as <CONTROL> 
I (turns the command file 
on and off). 

LIST Specifies a list file. 
<CONTROL> L Turns list file on and off. 
<CONTROL> S Stops scrolling of the 

screen display. 
<CONTROL> a Resumes scrolling of the 

screen display. 
<CONTROL> X eletes the line being 

entered. 
<ESCAPE> Aborts the command 

executing. 

ISBE-96 MONITOR 

The iSBE-96 monitor performs the following 
functions: 

• Loads and saves user programs. 

• Independently emUlates user programs. 
o Examines and changes memory contents. 

• Examines registers. 
• Maps the file capabilities of the serial ports 

(OS/OT). 

• Maps different memory configurations. 

The monitor commands are described in Table 3. 

231015-002 



, inter iSBE-96 EMULATOR 

Table 3. iSBE·96 Monitor Commands 

Monitor Command Function 

BAUD Sets up the baud rate. 
BR Permits display and setting of up to eight software breakpoints. 
BYTE Permits display' and changing of a single byte or range of bytes of memory or 

a single byte of the S097 internal registers. 
CHANGE Permits display and changing of a series of memory words or bytes. 
<CONTROL> S Stops scrolling pf the screen display. 
<CONTROL> Q Resumes scrolling of the screen display. 
<CONTROL> X Deletes the line being entered. 
<ESCAPE> Aborts the command executing. 
GO Begins emulation and continues until an enabled breakpoint is reached or 

the escape key is pressed. 
LOAD Loads programs and data from disks. 
MAP Permits mapping of several prepro-

grammed memory maps; also permits configurable serial I/O and selective 
servicing of the watchdog timer. 

PC Displays and changes the program counter. 
PSW Displays and changes the program status word. 
RESET CHIP Resets the 8096 to power-up conditions. 
SAVE Saves programs and data to disks. 
SP Displays and changes the stack pointer. 
STEP Provides single-step emulation with selective display formats. 
VERSION Displays the monitor ver,sion number. 
WORD Permits display and changing of a single word or range of words of memory 

or a single word of the 8097 internal registers. 

Integrating Hardware 
and Software 

When debugging a 68-pin package, the two 
50-pin ribbon cables are available to plug direct­
ly into 50-pin connectors on the user's prototype 
system. When the prototype system hardware is 

developed, the iSBE-96 emulator interfaces to 
the prototype through two 50-pin ribbon cables. 
The emulator can then execute code from the 
iSBE-96 on-board RAM (or from user-provided 
memory) and exercise the prototype system 
hardware. 

BLOCK DIAGRAM 

Figure 1 is a block diagram showing the iSBE-96 
emulator. The following sections describe. each 
block. . 

Th~Processor 

The 6S-pin processor of the iSBE-96 emulator is 
used only in the 8097 external-a'ccess mode. 

No adapter board is provided for the 68-pin ver­
sions of the S096 and 8097 microcontrollers. 

5-30 

When debugging a 4S-pin package, the two 
50-pin cables plug into the 4S-pin adapter 
board, which is then plugged into a 4S-pin 
socket in the prototype system. 

iSBE-96 Emulator 1/0 

The iSBE-96 emulator's memory-mapped I/O 
devices are used to manage the system. These 
I/O devices are mapped into memory between lo­
cations 01 FOOH and 01 FFFH. 

Included as part of the I/O are two serial ports. 
One is configured as data set (OS) and the other 
as data terminal (On. When operating with an In­
tellec development system, the data set port is 
used as the system console and the link for ex­
changing files. 

231015-002 



inter iSBE-96 EMULATOR 

t------I~ J3 

8097 

12 MHZ 

J4 

J6 

J7 

Figure 1. Block Diagram for the ISBE-96 Single Board Emulator 

The serial ports are serviced under control of 
the NMI Interrupt. The NMI interrupt has highest 
priority on the microcontroller and interrupts the 
user program when characters are entered from 
the keyboard. When In emulation, the monitor 
will still service inputs from the keyboard and ex­
ecute certain monitor commands. Monitor activi­
ty is not totally transparent to the user. 

Simulated ROM (ROMSIM) 

There are eight 28-pin JEDEC byte-wide sockets 
with 2K-by-8 static RAMS present on the board. 
The partition on the user's prototype system that 
will be ROM is simulated by RAM on the ISBE-96 
emulator board. This RAM facilit~tes easy pro­
gram development, allowing users to corr~ct and 
test problems In their programs. 

ROMSIM can be expanded by replacing the 
iSBE-96 RAMs with 8K-by-8 static RA~s. 

Port 3-4 Logic 

The port 3-4 logic has two functions: to provide 
bus expansion and to provide I/O ports. The port 

5-31 

3-4 logic is controlled by a software switch 
available with the MAP command. 

The iSBE-96 emulator reconstructs ports 3 and 
4 of the 8394, 8395, 8396, and 8397 microcon­
trollers when the logic is defined by the MAP 
command as port 3-4. This port function should 
be selected when one of these four microcontrol­
lers is intended as the target microcontroller. 

When the BUS switch of the MAP command is 
specified, the iSBE-96 address/data expansion 
bus is available to the prototype system. 

THE iSBE-96 EMULATOR 
MEMORY MAP 

The target system should be designed with a 
memory map that is compatible with one of the 
iSBE-96 memory maps. Figure 2 shows the 
default address mapping. The following sections 
describe the areas of memory. 

231015-002 



inter iSBE-96 EMULATOR 

FFFFH 

USER 

6000H 

ROMSIM 

2012H 
TRAP VECTOR -

RESERVED FOR MONITOR 
2010H 

ROMSIM 
2000H 

RESERVED 
1 FOOH 

USER 

OBOOH 

ATARAM 
OR 

OPEN 
0100H 

INTERNAL REGISTERS/ 
MONITOR ROUTINES 

OOOOH 

Figure 2. ISBE·96 Emulator Default Mapping 

Internal Registers/Monitor Routines 

Normally locations OOOH through OFFH contain 
the internal register space of the 8097. However, 
instruction fetches from these locations access 
external memory. This memory space contains 
the monitor's non:"'maskable interrupt service 
routine and utility routines. 

For the monitor to access the user memory, the 
address and data is passed· to the interrupt or 
utility routines. The routines then modify the 
mode register to enable user memory, disable all 

5-32 

of the monitor's memory (except page zero), and 
perform the appropriate operation. After an oper­
ation is complete, the service and utility routines 
restore the mode register to its previous state 
and return to the main monitor code. The NMI 
service routine is used to handle the keyboard 
input on the serial port. 

DATARAM 

Locations 100H to 7FFH are mapped as the 
DATARAM space. This RAM is for general pur­
pose use and is optionally enabled by using the 
MAP command. When the DATARAM buffer is 
not enabled, any access to this partition results 
in an access to user prototype system memory. 

User Area 

Locations 800H to 1 EFFH are a user area. If an 
access is made to this partition, it is directed to 
the user's prototype system. Any memory 
mapped as I/O in the user system should be 
placed in this partition. With 8K-by-8 static 
RAMs, this area is located and available on the 
iSBE-96 board. 

Reserved Area 

Locations 1 FOOH to 1 FFFH are reserved by the 
monitor for on-board I/O devices. 

ROMSIM 

Because some of the MCS-96 family of micro­
controllers are ROM less parts, a user program 
can be loaded for execution into the on-board 
RAMs of the iSBE-96 emulator. Locations 2000H 
to 5FFFH are mapped to this RAM space; the 
space is called ROMSIM. 

Trap Vector 

Locations 2000H to 2010H are the interrupt 
vector locations. Vector address location 2010H 
is used by the iSBE-96 monitor for NMI. 

User Area 

The partition 6000H to OFFFFH is mapped to the 
user proptotype area. During emulation any 
access to this partition is directed to the user's 
prototype system. 

231015-002 



inter iSBE-96 EMULATOR 

EXPANDING ON-BOARD MEMORY 

On-board memory can be expanded to a full 64K 
bytes by replacing the supplied 2K-by-8 static 
RAMs with 8K-by-8 static RAMs or PROMs. The 
user may also replace on-board ROMSIM 
memory with 2K-by-8 PROMs or even locate all 
64K bytes of memory on the prototype system. 

DESIGN CONSIDERATIONS 

Designers should note the following considera­
tions for designing with the iSBE-96 emulator: 

• The iSBE-96 software uses 6 bytes of user 
stack space. 

• Analog signal accuracy is impaired when 
driven over the emulator cable (up to ±50 mv 
loss of AID conversion accuracy). 

o The iSBE-96 emulator has some acldc 
parametric differences from the 8097 chip. 

• The NMI vector is used for console service 
(Intel reserved interrupt). 

SPECIFICATIONS 

Equipment Supplied 

Standard MULTIBUS@-size board assembly 

EPROM-based monitor 

Auxiliary power cable 

RS-232 serial cable 

Two standard, 18 in., 50-pin ribbon cables for 
connection to the user's prototype system 

An adapter board for the 48-pin version of the 
MCS-96 microcontroller 

One 8 in. single-density software disk for the 
Series II and III 

One 8 in. double-density software disk for the 
Series II and III 

One 5-1/4 in. software disk for the Series IV 

Documentation 

iSBE-96 User's Guide (Order number 164116) 
iSBE-96 Pocket Reference (Order number 

164157) 

5-33 

• Keyboard activity during emulation affects 
real-time emulation because a 50 to 100 mi­
crosecond interrupt service routine is execut­
ed for every keystroke. 

• The only hardware reset available for the 
iSBE-96 emulator is the system reset momen­
tary switch (switch 1 on the emulator board). 

• The prototype system interface cable is de­
Signed to support only the 48-pin package 
directly. Support for the 68-pin package is ac­
complished through the two 50-pin ribbon 
cables provided. 

• User system memory should be configured to 
the iSBE-96 memory map (see Figure 2). 

• The iSBE-96 emulator will not operate from a 
user system crystal. 

• The iSBE-96 driver software is not compatible 
with the Intellec Model 800 development 
system. 

Emulation Clock 

12 MHz supplied crystal 

Physical Characteristics 

Width: 6.75in.(17.15cm) 
Length: 12 in. (30.48 cm) 
Height: 0.75 in. (1.91 cm) 

DC Electrical Requirements 

Voltage Current 

+5v±5% 3.5a max 
+12v±5% 0.06a max 
-12v±5% 0.05a max 

Environmental Characteristics 

Operating Temperature: 10° to 40° C 

Operating Humidity: 10% to 85% relative 
humidity, without condensation 

231015-002 



ISBE-96 EMULATOR 

ORDERING I~FORMATION 

Part Number Description 

ISBE-96 Single board emulator for the 
MCS@-96 family of micro­
controllers; with disks and 
documentation. 

5-34 

231015-002 



• 

• 

• 

• 

• 

121 C ETM lP~~[bO~~OlM'%~W 

INTEGRATED INSTRUMENTATION AND 
IN-CIRCUIT EMULATION SYSTEM 

Provides real-time In-circuit emulation • • Simultaneously controls up to four 

- Full speed, real-time emulation for IAPX microprocessors for debugging 

IntellAPX microprocessors. multiprocessor systems. 

• Provides an Integrated 16-channel 
Offers symbolic debugging 100 MHz logic timing analyzer. 
capabilities. 

Accesses memory locations and • Maps user program memory Into 
program variables (including zero-walt-state RAM. 
dynamic variables and high-level - Walt-states are programmable from 
language data structures) using zero to 15 machine cycles. 
program-defined names. - Memory is expandable from 32K 
Maintains a virtual symbol table for bytes to 288K bytes. 
program variables. - 121CE software does not intrude into 

Breaks emu,latlon when a specified 
~serspace. 

event or combination of events occurs. • Provides disassembly and single-line 
assembler to help with on-line code 

Maintains a 1 023-frame trace buffer. 
- Collects trace data In real-time. 

patching. 

Provides low cost conversions among 
IAPX 86, IAPX 88, IAPX 186, IAPX 
188, and IAPX 286 microprocessors. 

The Intel Integrated Instrumentation and In-Circuit Emulation (J2ICETM) system aids the design of sys­
tems that use the iAPX 86, iAPX 88, iAPX 186, iAPX 188, and iAPX 286 microprocessors. The 121CE 
system combines symbolic software debugging, in-circuit emulation, and the optional Intel Logic 
Timing Analyzer (iL T A). The 121CE system supports programs written in PLlM-86, FORTRAN-86, 
Pascal-86, and assembly language. 

One of Intel's IntelleclBl microcomputer development systems (for example, the Series IV Development 
System) hosts the 121GE system. 

Intel Corporallon Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other 
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Speclflcallons On These Devices 
From Intel. The following are trademarks of Intel Corf,oratlon and Its affiliates and may be used only to Identify Intel products: BITBUS, 
COMMputer, CREDIT, Data Pipeline, GENIUS, j' ,I, I ICE, ICE, ICS, IDBP, lOIS, ILBX, 1§8 IMMX, Inslte, Intffi' Intel, IntelBOS, Intelevlslon, 

~~~~gcehn~s~~:~~~~~ci~ill~;WA~g~~\T~I~guJ~~~t~lbn~~~~~~,OJ~L ~ra~b~L~~plug'~~~~~~I'e~~~~'MP~,~r;~~a;?'e,~as~~~~u~~~: 
Rlpplemode, RMX/80, RUPI, Seamless, SOLO, SYSTEM 2000, UPI, and the combination of MCS, ICE,ISBC,ISBX,ISXM,IRMX or ICS and
a numerical suffix. Intel Corporallon Assumes No Responsibility for the use of Any Circuitry Other Than Circuitry Embodied In an Intel
Product. No Other Patent Licenses are Implied. . OCTOBER, 1983
C INTEL CORPORATION, 1983 5.35 ORDER NUM.BER: 210469-004

PHYSICAL DESCRIPTION

121CE hardware consists of the host interface
board, the 121CE instrumentation chassis, the
emulation base module, the emulation personali­
ty module, a host/chassis cable, inter-chassis
cables (for multiple chassis systems), a user
cable, optional high-speed memory, and an op-'
tional logic timing analyzer. 121CE software con­
sists of 121CE host software, 121CE probe
software, confidence tests, PSCOPE-86, and op­
tional iL T A software (see Table 1).

The host interface board resides in the host de­
velopment system. A cable connects the host in­
terface board to the 121CE instrumentation
chassis. Another cable connects the 121CE
instrumentation chassis to the buffer box.

The instrumentation chassis contains high­
speed zero-wait-state emulation memory, break­
and-trace logic, memory and I/O maps, and the
emulation clips assembly.

The chassis may also contain the optional logic
timing analyzer and optional high-speed
memory. High-speed memory is expandable
from 32K bytes to 160K bytes.

The buffer box contains the emulation personali­
ty module. This module configures the 121CE
system for a particular iAPX microprocessor.
The user cable connects the buffer box to user
prototype hardware.

The host development system may host up to
four 121CE instrumentation chassis. Each chassis
may have its own buffer box, user cable, emula­
tion clips, and logic timing analyzer.

FUNCTIONAL DESCRIPTION

The 121CETM Memory Map

The 121CE system can direct (map) an emulated
microprocessor's memory space (the user pro­
gram memory) to any combination of the
following:

• High-speed 121CE memory. This consists of
32K bytes of programmable wait-state
memory (programmable from 0 to 15). Thi,s
memory resides in the 121CE chassis on the
map-I/O board.

• Optional high-speed 121CE memory. This
consists of 128K bytes of programmable
wait-state memory. This memory resides in
the 121CE chassis on an optional high-speed
memory board.

5-36

• MULTIBUS«> memory (host system
memory). This resides in the host develop­
ment system itself.

• User memory. This resides in the user pro­
totype hardware.

When a user program runs in 121CE memory or
user memory, the 121CE system emulates in real
time. A memory access to MULTIBUS memory,
however, inserts approximately 25 wait-states
into the memory cycle.

Resource Borrowing

The 121CE memory map allows the prototype
system to borrow memory resources from the
121CE system.

If prototype memory is not yet available, the user
program may reside in 121CE memory. Because
this memory is RAM, you can make changes
quickly and easily. Forexample, if your prototype
contains EPROM, you need not erase and re­
program that EPROM during development.

Later, as prototype memory becomes available,
you can reassign the verified user program,
memory block by memory block, to prototype
memory.

Access Restrictions

In addition to directing memory accesses, you
can specify the following access restrictions.

• Read-only. The 121CE system displays an
error message if a user program attempts to
write to an area of memory designated as
read-only. You, can, however, write to a
read-only area with 121CE commands.

• Readlwrite, no verify. Normally, the 121CE
system performs a read-after-write verifica­
tion after program loads and after writing to
memory with an 121CE command. The 121CE
system can suppress this verification. For
example, if a prototype has memory­
mapped 1/0, you do not want a verifying
read that may change the state of the 1/0
device .

• Guarded. Initially, the 121CE system puts all
memory in a guarded state. Neither the user
program nor the 12 iCE user can access
guarded memory.

210469

Series III or Series IV

To Development

System 0 0 The host Interface board occupies a slot In the host
development system.

Chassis 0

A 100r 42 It. host/chaul. cable connects the host
Interface board to the I'ICE In.trumentatlon chas.I •.

The breakltrace board and the map-I/O
board (from the emulation base module)
reside In two .Iot •.

The other two slots provide for
an optional high-speed memory
board and the optionallLTA
board.

I'ICE Instrumentation chassis are linked by 2 or 10 It.
Inler-chas.l. cable .ets

To ChaSSISQ The emulallon base module consl.,. olthe breakltrace

~
board, the map-I/O board,the emulation clip. pod, the
buffer box base, and cable •.

~ ",\
,,-~' ~, ,)

- ----------
To prototype
hardware... ~

~
~ The emulation personality module personalizes the FleE instrumentation

chassis for a specific probe. It consists of a personality board, a buffer box
cover, a user cable. and 12JCE software.

TOChaSSiOS "-

Thel'ICE'" high speed memory module .upplies 128K bytes 01 programmable
I wait-state (zero to 15) memory. It resides in the instrumentation chassis.

NAME

Host development
system

Ho.t Interface
board and I'ICE
software
(includes
PSCOPE)

Ho.t/cha.sl.
cable

Instrumentation
chassis

Inter-chassis
cable sets

Emulation base
module

Emulation
personality
modules

Intel logic
timing analyzer
(lLTA)

Optional
High Speed
memory module

REQUIRED FOR

All applications

Communication between the
ho.t and thel'ICE sy.tem

Real-time multiprocessor
emulation

Breaking and tracing

Memory and 110 mapping

Real·time microprocessor
emulation

Breaking and tracing

Memory and 1/0 mapping

Specific proce •• or.mulatlon

Test/measurement

Memory expansion

The 121CETM I/O Map Simulating I/O with the Host
Development Console

The 121CE system can direct (map) an emulated
microprocessor's 1/0 space to the host develop­
ment system's console, to the prototype system,
to debugging procedures, or to a combination of
these.

Suppose a user program requires input from an
1/0 device that is not yet a part of the prototype.
Map the input port range assigned to that device
to the host development system's console.

5-37 210469

inter
Then, when the user program requires input, it
halts and the 121CE system console displays a
message requesting the data. When you enter
the required data at the keyboard, the user pro­
gram continues.

Simulating 1/0 with 121CETM
Debugging Procedures

You could also write a procedure in the 121CE
command language that supplies the needed
input data. When you set up the I/O map, specify
that this I/O procedure is invoked when certain
I/O ports are accessed.

I/O ports are mapped in blocks of 64 byte-wide
ports or 32 word-wide ports. You can map a total
of 64K byte-wide ports or 32K word-wide ports.

SymbOlic Debugging

With symbolic debugging, you can reference a
memory location by specifying its symbolic
reference. A symbolic reference is a procedure
name, line number, or label in the user program
that corresponds to a location in the user pro­
gram's memory space.

Typical Symbolic Functions

SymbOlic functions include the following:

• Changing or inspecting the value and type
of a program variable by using its program­
defined name, rather than the address of
the memory location where the variable and
a hexadecimal value for the data are stored.

• Defining break and trace events using
, source-code symbols.

With symbolic debugging, you can reference
static variables, dynamic (stack-resident)
variables, based variables, and record struc­
tures combining primitive data types. The primi­
tive data types are ADDRESS, BOOLEAN, BYTE,
BCD, CHAR, WORD, DWORD, SELECTOR,
POINTER, three INTEGER types, and four REAL
types.

The Virtual Symbol Table

The 121CE system maintains a virtual symbol
table for program symbols; that is, the entire
symbol table need not fit into memory at the
same time.

The 121CE system divides the symbol table into
pages. If a program's symbol table is large, the
121CE system reads only some of the symbol
table pages into memory. When you reference a
variable whose symbol is not currently defined
in memory, the 121CE system reads the needed
symbol table page from disk into memory.

5·38

Breakpoint, Trace, and Arm Specifications

With 121CE commands, you can define
breakpoint, trace, and arm specifications.

Breakpoints allow you to halt a user program
and examine the effect of the program's execu­
tion on the prototype. With the 121CE system, you
can set a breakpoint at a particular memory loca­
tion or at a particular statement in a user pro­
gram (including high-level language programs).
You can also have a break occur when the user
program enters or accesses a specified memory
partition or reads or writes a user program
variable. When you command the user program
to resume execution, it picks up from where it
left off.

Normally, the 121CE system traces while the user
program' executes. With a trace specification,
however, you can choose to have tracing occur
only when specific conditions are met.

An arm specification describes an event or com­
bination of events that must occur before the
121CE system can recognize certain breakpoint
and trace specifications. Typical events are the
execution of an instruction or the modification of
a data value.

The 121CE command language allows you to
specify complex, multilevel events. For example,
you can specify that a break occurs when a
variable is written, but only if that write occurs
within a certain procedure. The execution of the
procedure is the arm condition; the variable
modification is the break condition.

Coprocessor Support

The 86/88 emulation personality module pro­
vides transparent,RQ/GT and MIN/MAX pin
emulation to support real-time prototype sys­
tems that use the 8087 or 8089 as
coprocessors. The 86/88 emulation personality
module also provides debugging features specif­
ic to the 8087. 121CE commands provide access
to the 8087's stack, status registers, and flags.
The 121CE system's disassembly and trace fea­
tures extend to 8087 instructions and data types.

The 186 and 286 emulation personality modules
also allow the prototype hardware to contain
coprocessors. The 186 probe can qualify break
points and collect trace information when the co-,
processor drives the status lines (SO-S2J in the
prescribed manner. The 286 personality module
allows the hardware to contain the 80287 pro­
cessor extension and provides special debug­
ging features - you can enable and disable the
80287 and change and,examine its registers.

210469

inter
DEBUGGING WITH THE 121CETM SYSTEM

The 121CE system allows both hardware and soft­
ware debugging (see Figure 1).

• Software debugging. 121CE commands
permit symbolic debugging of user pro­
grams written in high-level languages as
well as assembly language. By looping the
user cable back into the buffer box, you can
debug a user program even if no prototype
hardware is present.

• Hardware debugging. The 121CE system is a
real-time, in-circuit emulator. Trace data
are collected in real-time, and 121CE soft­
ware does not intrude into user program
space. The optional iLTA adds the high­
speed timing and data acquisition of a logic
timing analyzer.

The usefulness of an 121CE system extends·
throughout the development cycle, beginning

with the symbolic debugging of prototype soft­
ware and ending with the final integration of
debugged software and prototype hardware.

PSCOPE-86

PSCOPE-86 is a high-level language, symbolic
debugger designed for use with Pascal-86,
PLlM-86, and FORTRAN-86. It is a separate
product included with the 121CE system; it runs
in the host development system. PSCOPE-86 is
field-proven, familiar to Intel customers, and
suited for the debugging of applications
software when the hardware capabilities of the
121CE system are not needed. The PSCOPE-86
and 121CE command languages are similar.

Designing a product that contains a micro­
computer requires close coordination of hard­
ware and software development. A typical
design process takes advantage of both the
121CE system and PSCOPE-86. Use the 121CE

COMMON "sr INTERFACE

HARDWARE
DEBUGGING

I
I'ICE'· SYSTEM

1a086i808aEMuLAnoN'- - - -- -- - - - -- -,
180186/80188 EMULATION
180286 EMULATION
liLTA

I
I
I
I
I
I
I
I

EMULATION CLIPS

iLTA PROBE

L _____________________ _
1200

Figure 1 121CETM Debugging Capabilities

5-39 210469

121CETM SYSTEM

system for real-time debugging and emulation,
and throughout the design process, use
PSCOPE-86 for the debugging of applications
software.

THE 121CETM COMMAND LANGUAGE

The syntax of 121CE commands resembles that
of a high-level language. The 121CE command
language is versatile and powerful while remain­
ing easy to learn and use. On-line help is availa­
ble with the HELP command.

The 121CE command language deals with
user-created debugging objects. By
manipulating debugging objects, you can
streamline complex debugging sessions.

The 121CE command language deals with user­
created debugging objects. By manipulating
debugging objects,You can streamline complex
debugging sessions.

Debugging objects are uniquely named, user­
created, software constructs that the 121CE
system uses to manage the debugging­
environment. The four types of debugging ob­
jects are debugging procedures, LITERALLY
definitions, debugging registers, and debugging
variables. In the following examples, 121CE key­
words are shown in all caps.

• Debugging procedures (named groups of
121CE commands) can simulate missing
software or hardware, collect debugging
information, and make troubleshooting
decisions. For example, here is the
definition of a debugging procedure called
init that simulates input from I/O ports 2
and 4.

*DEFINE PROCEDURE In it = DO
• *IF %0==2 THEN
• • *PORTDAT A=1 OOT
· • *ELSE IF %0==4 THEN
· •• *PORTDATA=65T
•• ·*END
• ·*END
.*END

• LITERALLY definitions are shorthand
names for previously defined character
strings. LITERALLY definitions save key­
strokes or improve clarity. For example,
here is the definition of a LITERALLY that
saves keystrokes. This LITERALLY allows
you to type DEF for DEFINE.

*DEFINE LITERALLY DEF = 'DEFINE'

Note that these definitions may be saved to
a disk and auto-reloaded.

5-40

• Debugging registers are user-created soft­
ware registers that hold arm, breakpoint,
and trace specifications. You can order the
121CE system to emulate the user program
and specify one or more debugging
registers. There is no need to reenter the
specification for each emulation. For
example, here is the definition of a debug­
ging register called pay that contains a
trace specification. This example takes ad­
vantage of the previous LITERALLY
definition.

*DEF TRCREG pay=:cmaker.payment

To emUlate a user program and trace only
during the procedure payment, specify the
debugging register pay as part of the GO
command.

*GO USING pay

• Debugging variables are user-created varia­
bles used with 121CE commands. For
example, here is the definition of a debug­
ging variable called begin. Its type is
POINTER.

*DEFINE POINTER begln=0020H:0006H

During a debugging session, you could set
the execution point to this pointer value by
typing the following:

*$=begin

The 121CE pseudo-variable $ represents the
current execution point.

Example of a Debugging Session

Figures 2, 3, and 4 illustrate some of the key
capabilities of the 121CE system. The user pro­
gram is written in Pascal-86. It was compiled,
linked, and located on an Intellec Series III De­
velopment System. The resulting file consists of
absolute code and is called CMAKER.86.

This program controls an automatic
changemaker. The program reads the amount
tendered (the variable paid) and the amount of
the purchase (the variable purchase). It calcu­
lates the coins needed for change and asserts
control signals to a change release mechanism
by writing an output port. Each of the lower four
bits of the output port controls the release of a
different coin denomination.

3 0 Q = quarters
D = dimes
N = nickels
P = pennies

210469

inter

SERIES-III Pascal-86, V2.0
Source File: CMAKER.SRC
Object File: CMAKER.OBJ
Controls Specified: XREF, DEBUG, TYPE

STMT LINE NESTING SOURCE TEXT: MAKER.SRC
1 , 1 0 0 PROGRAM cmaker;
2 2 0 0 VAR change,coins :integer;
3 3 0 0 quarters,nickles,dimes,pennies ' :integer;
4 4 0 0 paid,purchase :word;

5 6 0 0 PROCEDURE payment;
6 7 1 0 VAR numberofcoins :integer;
7 8 1 0 release :word;
8 9 1 0 BEGIN (*payment*)
8 10 1 1 numberofcoins:=quarters+dimes+nickles+pennies;
9 11 1 1 while numberofcoins< >Odo

10 12 1 1 BEGIN
10 13 1 2 release: = 0;
11 14 1 2 if quarters< >Othen
12 15 1 2 BEGIN
12 16 1 3 release: = release + 8;
13 17 1 3 quarters: = quarters - 1

END;
15 19 2 if dimes< >0 then
16 20 2 BEGIN
16 21 3 release: = release + 4;
17 22 3 dimes:=dimes-1

END;
19 24 2 if nickles < > 0 then
20 25 2 BEGIN
20 26 3 release: = releas'e + 2;
21 27 3 nickles:=nickles-1

END;
23 29 2 if pennies< >Othen
24 30 2 BEGIN
24 31 3 release: = release + 1 ;
25 32 3 pennies:=pennies-1

END;
27 34 2 numberofcoins: =quarters +dimes +nickles + pennies;
28 35 2 OUTWRD(130,release);
29 36 2 END;
31 37 1 END; (*paymenh)

32 39 0 0 BEGIN (*main*)
32 40 0 1 INWRD(2,paid);
33 41 0 ~ INWRD(70,purchase);
34 42 0 1 change : = paid-purchase;
35 43 0 1 coins :=change mod 100;
36 44 0 1 quarters : = coins div 25;
37 45 0 1 coins :=coins mod 25;
38 46 0 1 dimes :=coins div 10;
39 47 0 1 coins : =;,coins mod 10;
40 48 0 1 nickles :=coins div 5;
41 49 0 1 pennies :=coins mod 5;
42 50 0 1 payment;
43 51 0 1 END. (*main*)

Figure 2 Listing of the Program Used in the Debugging Session

5-41 210469

121CETM SYSTEM

(1) *BASE
DECIMAL

(2) *MAPOKLENGTH32KHS
*MAPIO OT LENGTH 192T ICE
*MAP
MAP OK LENGTH 32K HS
MAP 32K LENGTH 992K GUARDED
*MAPIO
MAPIO OOOOOH LENGTH OOOCOH ICE
MAPIO OOOCOH LENGTH OFF40H USER

(3) *LOAD :F1 :CMAKER.86

(4) *DEFINE POINTER begin = $
*DEFINE BRKREG pay = :cmaker#9
*DEFINE PROC display = DO
• *WRITE USING ("'quarters=",T,O,>')quarters
• *WRITE USING ("'dlmes =",T,O')dlmes
• *WRITE USING ('" nlckles =",T,O,>')nlckles
• *WRITE USING ("'pennles =",T,O')pennles
• *RETURN TRUE
.*END

(5) *GO USING pay
?UNIT 0 PORT 2H REQUESTS WORD INPUT (ENTER VALUE)*1 00
?UNIT 0 PORT 46H REQUESTS WORD INPUT (ENTER VALUE)*65
*Probe 0 stopped at :CMAKER #9 + 4 because of execute break
Break register is PAY Trace Buffer Overflow

(6) *quarters;dimes;numberofcolns
+1
+1
+2

(7) *DEFINE SYSREG wr_number = WRITE AT .:cmaker.payment.numberofcolns &
**CALL display
*GO USING wr number
*quarters = +1- dimes = +1
nlckles = +0 pennies = +0

Probe 0 stopped at :CMAKER#28 + 3 because of bus break
Break register is WR_NUMBER

(8) *numberofcolns
+0
*EVAL release
1100Y 12T CH ' . .'

(9) *CLIPSOUT = 11 Y

(10) *GO FOREVER
?UNIT 0 PORT 82H OUTPUT VYORDOC
?Probe 0 stopped at location 0033:00AEH because of bus not active
Bus address = 0203DE

*$=begln

*

Figure 3 Sample Debuggln~ Session

5-42 21046Q

121CETM SYSTEM

(1) Checking to see that the default radix Is decimal.

(2) Mapping user program memory to 121CE high-speed memory and user I/O ports to the'
121CE system console.

(3) Loading the user program.

(4) Defining debugging objects.

The debugging variable begin is set to $, an 121CE pseudo-variable representing the cur­
rent execution point. At this point In the debugging session, $ Is the beginning of the
user program.

The break register pay specifies a breakpoint at statement 9 in the user program.

The debugging procedure display displays the value of some user program variables on
the console.

(5) Beginning emulation with the debugging register pay. The console requests the two
input values, paid and purchase. Then, the break occurs.

(6) Displaying three user program variables.

(7) Defining another debugging register. The specified event Is the writing of the user pro­
gram variable numberofcoins. When that event occurs, the 121CE system calls the debug­
ging procedure display. In addition to displaying some user program variables, this
debugging procedure returns a Boolean value. Because this value is TRUE, the break
occurs; if the value were FALSE, emulation would continue.

(8) Displaying the two user program variables, numberofcoins and release. The EVAL com­
mand displays release in binary, decimal, hexadecimal, and ASCII. Unprintable ASCII
characters appear as periods (.).

(9) Asserting both output lines on the emulation clips. These lines are input to the prototype
hardware and control a change release mechanism.

(10) Resuming emulation. The console displays the write of release to the output port. The
user program finishes executing, and the probe stops emulating because of bus.
inactivity. $ is set back to the beginning of the user program in preparation for another
emulation.

Figure 3 Explanation of Sample Debugging Session

121CETM Command Functions

The 121CE command language contains the fol­
lowing functional categories.

• Emulation commands. The GO command in­
structs the 121CE system to begin emulation.
You can also specify that the 121CE system
break or trace under certain specified
conditions.

• Utility commands. These are general pur­
pose commands for use in a debugging
environment. For example, one use of the
EVAL command is to calculate the nearest

source-code line number that corresponds
to the address of an assembly language
instruction. The HELP command provides
on-line assistance. The EDIT command in­
vokes a menu-driven text editor, allowing
you to update debugging object definitions.
A command line editor is also provided.

• Environment commands. These are com­
mands that set up the debugging
environment. For example, the MAP com­
mand sets up the memory map. Another en­
vironment command (WAITSTATE) inserts
wait-states into memory accesses, allowing
the simulation of slow memories.

5-43 210469

121CETM SYSTEM

• File handling commands. These are com­
mands that access disk files. You can save
debugging object definitions in a disk file
and load them in later debugging sessions.
You can also record your debugging ses­
sion in a disk file for later analysis.

• Probe-specific commands. These are com­
mands whose effects are different for dif­
ferent probes. For example, the PINS com­
mand displays the state of selected signal
lines on the current probe.

• Option-specific commands. These are com­
mands that control an optional
test/measurement device, such as the logic
timing analyzer.

121CETM INSTRUMENTATION SUPPORT

121CETM Emulation Clips

Eight external input lines are sampled in real­
time at each processor bus cycle. The 121CE
system records the values of these lines in its
trace buffer. The 121CE system can use these
values when defi,ning events.

Four additional output lines synchronize 121CE
events with external hardware. Two lines are
active and programmable with 121CE commands.
Two others allow the 121CE chassis to be linked
with previously released Intel emulators or with
other external test hardware.

Intel Logic Timing Analyzer

The logic timing analyzer is the first in a series of
chassis-resident, test/measurement modules
designed to extend the capability of the 121CE
system to recognize events and collect data.
The iLTA and the 121CE emulator work together.
They can trigger and/or arm/disarm each other.
In addition, waveforms acquired by the iLTA can
be time-aligned with 121CE traces.

The iL T A brings the flexibility of a logic ,timing
analyzer's high-speed triggering and glitch de­
tection to the 121CE system. The iLTA is a general

5·44

purpose logic timing analyzer, supplemented
with special features for microsystem debugging
and 121CE integration. Following are some of
iL T As features.

• 16 channel, 100 MHz asynchronous
operation.

• 16 channel, 50 MHz synchronous operation.

• Single- or double-height timing waveforms
presented with data scrolling,
magnification, and delta-time read-out
features. .

• Minimum 3 nanosecond glitch detection (3
ns + 1 ns/volt for signal swings greater
than 3 volts).

• A dual-threshold acquisition mode, with pro­
grammable logic level thresholds.

• A burst acquisition mode with window boun­
dary indicators.

• User-defined channel labels and state dis­
play radixes.

• Disk storage for preservation and restora­
tion of analyzer setups and acquired
waveforms.

• Logic waveform comparison features
(compares current acquisitions with previ­
ous traces stored in auxiliary memory or on
disk).

• Menu-driven operation and user-friendly
display. The display takes advantage of
screen highlighting, blinking characters,
and reverse video.

• Powerful post-processing data analysis
commands that are part of the 121CE com­
mand language.

• Multiple emulator break/trace and iLTA
trigger/trace conditions may be shared with
as many as four emulators and four iLTAs.

210469

121CETM SYSTEM

SPECIFICATIONS

Host Requirements

512K bytes In the memory space of the host
processor.
Two double-density diskette drives.
System console. '

For the .iL TA to run on a Series III Development
System, the 111-820 board must be installed. The
iLTA option also requires additional memory.

121CETM Software

121CE host software
121CE probe software
121CE confidence tests
PSCOPE-86
Optional iL TA software and iL TA confidence
tests

System Performance

Mappable zero
wait-state memory Minimum 32K bytes

Maximum 160K bytes
Trace buffer 1023 X 48 bits
Virtual symbol table The number of user program

symbols is limited only by
available disk space.

Physical Characteristics

:Instrumentation chassis
width 17.0 in.
height 8.25 in.
depth 24.13 in.
weight 481bs.

(43.2 cm.)
(21.0cm.)
(61.3cm.)
(21.9 kg.)

121CETM Emulation Clips - DC Characteristics

Host/chassis cable
10ft. (3.0 m) and 42 ft. (12.8 m) options

Inter-chassis cable set
2 ft. (61 cm) and 10ft. (3.0 m) options

Buffer box
width
height
depth
weight

8.5 in.
3.0in.

10.0in.
8lbs.

(21.6 cm.)
(7.6cm.)
(25.4 cm.)
(3.7kg.)

Electrical Characteristics

90-132 V or 180-264 V (selectable)
47-63 Hz
12 amps (AC)

Environmental Requirements

Operating temperature 0° to 40°C (32° to 104°F)
Operating humidity Maximum of 85%

relative humidity,
non-condensing

Emulation Clips

Emulation clipsin lines are sampled once every
bus cycle when the address bits become valid
on the address bus. During emulation, the 121CE
system records the value of the clipsins lines in
the trace buffer once every execution ?ycle.

Input Voltage Input Current Output Current

Signal Low High Low High Low High
VIL VIH IlL IIH 10L IOH
V V JLA JLA mA mA

clipsout lines 33 at 0.7 V 4.8at 2.0V

SYSBREAK 38at 0.7 V 1.0 at 2.0V
SYSTRACE

clipsin lines 1.05 2.5 50 50

5-45 210469

121CETM 86/88 User Interface - DC Characteristics

Input Voltage Output'loltage Inplat Current Output Current

Pin Name Low High Low High Low High Low High
VIL VIH VOL VOH IlL Iltt IOL IOH
V V V V mA mA mA mA

ADD-AD15 0.8 2.0 0.5 2.0 0.2 0.02 24 12

A16-A19 0.8 2.0 0.55 2.0 0.4 0.05 64 15
BHElS7

RD 0.55 2.0 64 15
-

0Efr(SOJ 0.5 2.4 20 6.5
DT/R""(S1J
M/TO"<S2T
WF1([O'CK}
rnT'A(OS1)
ALE (OSO)

NMI 0.8 2.0 0.4 0.05

READY 0.8 2.0 0.4 0.04

INTR 0.8 2.0 2.0 0.05

TEST 0.8 2.0 0.6 0.04

RESET 0.8 2.0 2.2 0.07

HOLD (R"O"/GTO} 0.8 2.0 0.45 2.4 1.0 0.02 23 2.5
HOLDA (RG"/GT1}

The 86/88 probe has a greater output drive capacity than the 8086 or 8088 chip.

121CE 86/88 User Cable -Capacitance 21 pflft.
-Impedance 95 ohms

5-46 210469

inter i2ICETM SYSTEM

Capacitive Loading - 86/88 Probe

The 86/88 probe presents the user system with
a maximum load of 34 pf and 0.8 rnA.

All 86/88 probe outputs are capable of driving a
minimum of 20 rnA and 15 pf while meeting all
the probe's timing specifications. The 86/88
probe will drive larger capacitive loads, but with
possible performance degradation.

Coprocessor Operation - 86/88 Probe

During emulation with external coprocessors, a
two-clock delay precedes each RO, GT, and

Timing Differences between 121CETM 8086
Emulation and the 8086-1 Microprocessor
(10 MHz clock)

MAX Mode
Symbol

Parameter

TCHSV Status Active Delay
TCLAV Address Valid Delay

MIN Mode Parameter
Symbol

TCVCTV Control Active Delay 1
TCVCTX Control Inactive Delay
TCHCTV Control Active Delay 2

5-47

RLS pulse in MAX mode and each HOLD and
HOLDA assertion in MIN mode ..

The user can choose to have the coprocessor
run only during emulation or all the time. If the
coprocessor runs all the time, then during inter­
regation mode the coprocessor may have as
much as a one microsecond delay in addition to
the two-clock delay mentioned previously.

The 121CE system ignores a coprocessor when
the probe is in the reset state. If a coprocessor
asserts RO during this time, the RO/GT se­
quence may get out of synchronization. The
probe is reset when the 121CE host software
loads 121CE probe software.

8086-1 121CETM
Min Max Min Max

ns ns

10 45 20 50
10 50 20 60

8086-1 121CETM
Min Max Min Max

ns ns

10 50 25 59
10 50 25 59
10 45 21 54

210469

121CETM 186/188 User Interface - DC Characteristics

Pin Name

ADO-AD15

A16-A19

BRE"'"
so:s2

mel<
RESET
CLKOUT
TMROUTO TMROUT1
TmAOTmAT"
HLDA
ALE
RD,WR""
(chip selects)
DTR
'D"E1'r

X1,X2
REs-

TEST"
TMRINO, TMRIN1
DROO, DR01, NMI
INTO-INT3
HOLD

ARDY
SRDY

110L = 18 mA
210H = 3mA

Input Voltage Output Voltage

Low High Low High
VIL VIH VOL VOH
V V V V

0.8 2.0 0.451 2.42

0.451 2.42

0.451 2.42

0.451 2.42

0.8 3.8

0.8 2.0

0.8 2.0

Input Current

Low High
IlL IIH
inA mA

0.4 0.1

0.1 0.1

0.4 0.1

2.0 0.1

The 186/188 probe has a greater output drive capacity than the 80186 or 80188 chip.

Output Current

Low High
IOL IOH
mA mA

60 max . 10max

60 max 10max

60 max 10max

60 max 10max

186/188 probe outputs are capable of driving a minimum of 20 mA and 150 pf while meeting the probes
timing specifications. The 186/188 probe will drive larger capacitive loads but with possible perfor­
mance degradation.

5·48 210469

inter

121CETM 286 HIGHLIGHTS

• Supports 'real and protected mode
(software).

• Includes an object code loader for both 86
and 286 object files.

• Supports multiprocessing (with coproces­
sors and with the 80287 processor
extension).

121CETM 286 User Interface - OC Characteristics

• Supports local descriptor tables (LOTs).

• Provides full 24-bit address mapping (with
optional 16K granularity).

• Provides the capability to read/write nor­
mally invisible portions of segment and
table registers.

• Supports multitasking.

• Ooes not slip on breakpoints.

Input Voltage Output Voltage Input Current Output Current

Pin Name Low High Low High Low High Low High
VIL VIH VOL VOH IlL IIH IOL IOH
V V V V mA mA mA mA

AO-A23 0.4 2 24 2.6

00-015 0.8 2.0 0.4 2 0.1 0.02 24 2.6

"SQ,"ST 0.55 3.4 64 15
M/RY 0.55 3.4 64 15
rocK 0.55 3.4 64 15
COO/rnTA 0.55 3.4 64 15
lffiE""" 0.55 3.4 64 15
ER"R"OR" 0.8 2.0 0.8 0.1
mrnv 0.8 2.0 0.4 0.05
J5EACT{' 0.55 3.4 64 15

HLOA 0.5 3.4 20 1.0

HOLO 0.8 2.0 0.4 0.05
PEREQ 0.8 2.0 0.4 0.05
INTR 0.8 2.0 0.4 0.0f;
NMI 0.8 2.0 0.4 0.05

err 0.8 2.0 0.8 0.1
READY' 0.8 2.0 3.0 0.09

The 286 probe has a greater output drive capacity than the 80286 chip.

All 286 probe outputs are capable of driving a minimum of 20 mA and 15 pf while meeting all the
probe's timing specifications. The 286 probe will drive larger capacitive loads but with possible perfor­
mance degradation.

5·49 210469

Documentation

121790 PSCOPE-86 High-Level Program
Debugger User's Guide

163250 121CETM System Overview and
Installation

163251 Guide to Using the 121CETM System
163252 121CETM Reference Manual

ORDERING INFORMATION

System hardware may be ordered as basic
stand-alone items or as a hardware kit. All
software must be ordered individually.

Order Code Description: Basic System Items

111-5148 121CE instrumentation chassis

111-520 121CE host interface board

111-530 121CE host/chassis cable - 10ft.
(3.0m)

111-531 121CE host/chassis cable - 42 ft.
(12.8m)

111-532 121CE inter-chassis cable set - 2
ft. (0.6 m)

111-533 121CE inter-chassis cable set -
10ft. (3.0 m)

111-620 121CE emulation base module

111-086A 121CE 86/88 emulation personality
module

S8C333 iS8C 337 MULTIMODULETM
numeric data processor (needed
for use with the 8086/8088
personality module when there
will be an internal 8087
co-processor)

111-186A 121CE 186/188 emulation
personality module

111-286A 121CE 286 emulation personality
module

111-810 121CE logic timing analyzer (iLTA)

111-820 Series IIIIOC board (must be
used with iLTA)

111-813 iL TA terminator set, 16 channel
(supplements iLTA-supplied set)

111-814 iL TA terminator set, 8 channel
(supplements iLTA-supplied set)

111-815 Microhook set (40
microhooks-supplements
iL TA-supplied microhooks)

5·50

163253 121CETM Command Dictionary
163256 iLTA User's Guide
163257 iL TA Reference Manual
163258 iL T A Learner's Guide
163259 Guide to Using the 121CETM Probes
210350 PSCOPE-86 Data Sheet
230839 iLTA Data Sheet

111-816 Logic probe pod, channels 0-7
(supplements iL T A-supplied pod)

111-817 Logic probe pod, channels 8-F
(supplements IL T A-supplied pod)

111-707 Optional high-speed memory
board (128K)

Order Code Description: System Hardware
Kits·

111-010 121CE 86/88 hardware support kit
(includes 111-5148, 11-520, 111-530,
111-620,1I1-086A)

111-110 121CE 186/188 hardware support
kit (includes 111-5148, 11-520,
111-530, 111-620, 111-186A)

111-210 121CE 286 hardware support kit
(includes 111-5148, 11-520, 111-530,
111-620, 11I-286A)

111-811 iLTA Series III hardware kit
(includes 111-810 and 111-820)

Order Code Description: System Software

11I-901A 121CE 86/88 emulation software -
8 in. single density

111-9018 121CE 86/88 emulation software -
8 in. double density

111-901C 121CE 86/88 emUlation software -
5114 in. double density

111-911A 121CE 186/188 emulation software
- 8 in. single density

111-9118 121CE 186/188 emulation software
- 8 in. double density

111-911C 121CE 186/188 emulation software
- 5114 in. double density

111-921A 121CE 286 emulation software - 8
in. single density

111-9218 121CE 286 emulation software - 8
in. double density

111-921C 121CE 286 emulation software-
5114 in. double density

210469

111-951 A

111-951B

111-951C

i2ICETM SYSTEM

121CE base software - 8 in. single
density
121CE base software - 8 in.
double density
121CE base software - 51/4 in.
double density

5-51

111-981A

111-981B

111-981C

iLTA software - 8 in. single
density
ILTA software - 8 In. double
density
iLTA software - 51/4 in. double
density

iLTA
Logic Timing Analyzer

• Integrates the features of a • Ensures versatile triggering with four
stand-alone logic analyzer with the word recognizers, nine triggering
features of a powerful in-circuit modes, stop and start data
emulation system. ~ualification, trigger qualifiers, and

• Provides trigger, arm, disarm, and I ICE™interaction.

trace of a state and timing logic
• Offers 3-ns glitch detection. analyzer from an in-circuit emulator.

• Provides full state and timing • Features flexible data analysis
acquisition performance: software: delta time readout,

- Up to 1 OO-MHz asynchronous search word, and auxiliary memory

acquisition. for data comparison applications.

- Up to 50-MHz synchronous
acquisition. a Allows user-definable mnemonics and

• Features five data acquisition modes: labeling.
Standard, ICE Sync, Burst, Dual
Threshold, and Glitch. • Operates from menus or 121CE™

• Provides 1 6 data acquisition channels. command language.

• Displays data either in logic state • Stores and recalls acquired data for
form or as timing diagrams. post-processing or setup information.

The Intel Logic Timing Analyzer (iL TA) is a general purpose logic analyzer, enhanced with special fea­
tures for microsystem debugging and user-system integration. The iL TA brings the flexibility of a logic
timing analyzer's high-speed triggering and glitch detection coupled with a state analyzer's selective
acquisition of system data to the 121CETM system.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Qther Than Circuitry Embodied in an Intel Product. No Other
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices
From Intel. The following are trademarks of Intel Corporation and Its affiliates and may be used only to Identify Intel products: AEDIT.
CREDIT. 121CE. ICE, IMMX, Inslte. Intel, Intellec, Intellink. iPDS, iRMX, iSBC. ISBX, iSDM, ISXM. MCS, MUL TIBUS. MUL TIMODULE, and
the combination of MCS. ICE. ISBC, ISBX. iSXM. iRMX or iCS and a numerical suffix. Intel Corporation Assumes No Responsibility for the
use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Patent Licenses are Implied. SEPTEMBER. 1983
© INTEL CORPORATION. 1983 ORDER NUMI3E~=--230~~02

5·52

iLTA LOGIC TIMING ANALYZER

PHYSICAL DESCRIPTION

The il TA hardware consists of the Il TA circuit
board, two probe pods, four probe terminators,
and a set of grabbers. Also included is the Confi.,.:
dence Test/Demo Board, which is used for run­
ning the confidence tests and for learning to use
the ilTA

Two probe pods connect the il TA to the target
system using one of two sets of probe
terminators. The standard probe terminator set
has 16 data acquisition channels. The dual
threshold probe terminator set provides eight­
channel analysis for dual threshold or glitch

, acquisition.

The il TA circuit board resides in the top slot of
the 121CE instrumentation chassis; an 121CE
probe can be installed in the same chassis. The
user can control four il TAs (one per chassis)
from one host.

FUNCTIONAL DESCRIPTION

The user easily controls the il T A'S four basic
functions: recognizing and qualifying events, ac­
quiring and storing data, displaying collected
data, and analyzing collected data.

OR
LATCH

COLLECTION
MODE

Event Recognition And Qualification

The il TA has four programmable word recogni­
zers which can be programmed symbolically
using mnemonics from the il TA's user-definable
decode table or programmed in binary, octal, or
hexadecimal. Two word recognizers include a
digital filter to further qualify data, A clock quali­
fier defines additional conditions when data can
be sampled. Two trigger qualifiers can be used
to recognize and/or trigger on data edges.

The trigger modes define how events recognized
by the word recognizers affect il TA data
collection. The nine ilTA trigger modes offer dif­
ferent event specifications leading up to trigger­
ing and tracing data, allowing the user to choose
the mode that collects the most useful data for a
specific application. The triggering modes set
arm, disarm, trace, and trigger conditions by
using the occurrence or non-occurrence of
events that match specified word recognizer
patterns. The triggering modes also let the user
set a delay counter in certain situations and
send arm, disarm, break, and trace ,signals to the
121CE system. Figure 1 shows the ilTA trigger
setup menu.

PERCENTAGE OF MAIN MEMORY
RESERVED FOR PRE· TRIGGER DATA

(» AND «) FILTERS

TEM INPUT SIGNALS: ARM BREAK,
TRACE

TRIGGER QUALIFIER SIGNALS
• FROM PROBES

PROGRAMMABLE THRESHOLD
LEVELS FOR VARl AND VAR2

1619

Figure 1. The ilTA Trigger Setup Menu

5·53

iLTA LOGIC TIMING ANALYZER

Data Acquisition And Storage

The user-specified trace qualifications deter­
mine the data that the iL TA collects. The user
can specify word recognizer events, data ac­
quisition modes, voltage thresholds, and sam­
pling modes.

The iLTA has five data acquisition modes:

• 16-channel Standard Mode has all 16 chan­
nels available for data collection.

• 15-channel ICE Sync Mode collects data on
15 channels and uses the 16th channel to
receive timing information from the 121CE
system.

• 15-channel Burst Mode collects discrete
bursts of data on 15 channels and uses the
16th channel to mark the time
discontinuities.

• a-channel Dual Threshold Mode collects
and displays three-state logiC signals and
can be used for rise time analysis or any
other situation where two thresholds are
useful.

SEARCH
PARAMETERS

CHANNEL
GROUPS-~~:rrr.

COLLECTION
MEMORY

LOCATION
FIELD

SYMBOLIC

SOFTKEY
MENU

• a-channel Glitch Mode detects and displays
glitches as short as three nanoseconds.

The user can choose either asynchronous sam­
pling using the internal clock at speeds to 100
MHz or synchronous sampling using an external
clock at system speeds to 50 MHz.

The iLTA has two 512-word memory areas, main
memory and auxiliary memory. Data is collected
into iL TA main memory. The user can examine
main memory contents immediately after collec­
tion or store the contents of main memory either
in iL TA auxiliary memory or in a file in the devel­
opment system disk for later processing or
comparison.

Data Display

The iL TA offers both state and timing displays of
data acquisitions. The state display presents
data in logic state form, in the user's choice of
channel groupings and of number bases (binary,
octal, hexadecimal, ASCII characters, or user­
deUned mnemonics). Figure 2 shows the state
display menu.

iLTA
STATUS

SAMPLE
DIFFERENCES
FIELD

Figure 2. The State Display Menu

5·54

infel iLTA LOGIC TIMING ANALYZER

Timing diagrams let the user examine the timing
relationship between signals. The memory gra­
ticule and the first and last memory locations
displayed let the user relate the memory loca­
tions of the displayed data to the data in
memory. The display magnification feature
allows examination of detailed timing
information. Figure 3 shows timing diagrams.

Analysis

The iL TA allows comparison of the data collec­
tion in main memory to the data collection in
auxiliary memory and lets you find either the dif­
ferences or the similarities. The data skew be­
tween collections can be masked out. The data
in auxiliary memory can be from a previous iLTA
data collection or can be modified by direct user
input.

Once data is collected, the iLTA search function
helps the user find a particular data event in dis­
played memory quickly and easily. The user can

CURSOR MOVEMENT
TO FIXED OR

MOVABLE

COLLECTION MEMORY MOVE OR INDICATE
LOCATION OF EVENT (C) CURSOR

define one data event or multiple data events
(which are logically ANDed together).

The three marking cursors help pinpoint events
or measure the distance between data events in
both time and memory locations.

Because the iL TA commands are a subset of the
121CE commands, the user can include iL TA com­
mands in 121CE debug procedures and so post­
process collected iL TA data.

Easy To Use

The iL TA is an easy-to-use enhancement to the
Intellec@ Development System.

The iL TA operates in either menu-driven mode
or command mode. Because screen menus indi­
cate the setup and display the choices available,
the user need not learn the command syntax and

MOVE OR INDICATE
COLLECTION

EVENT LEVEL
FIELDS (COLUMN)

MEMORY LOCATION OF REFERENCE (R) CURSOR

1618

Figure 3. Timing Diagrams

5-55

intel iLTA LOGIC TIMING ANALYZER

the legal command values before using the iL TA.
The iL TA has four main menus:

• The Trigger Setup menu defines the condi­
tions under which the system will store data.

• The Group Setup menu sets up display and
compare conditions and user symbols.

• The Timing Display menu displays the data
collected as timing diagrams.

• The State Display menu displays the data col­
lected in logic state form.

Sometimes commands are more convenient to
use than menus. The iL TA commands are an ex­
tension of the 121CE commands, so the user can
include iL TA commands in 121CE procedures and
thus control iL TA operation from the 121CE
system.

After a session, the user can save the contents
of main memory, auxiliary memory, and all menu
setups in a system file for recall in later
sessions. Libraries of test procedures can be
created to simplify debug procedures or be
passed to other users.

COMBINING LOGIC ANALYSIS AND
IN-CIRCUIT EMULATION

The iL TA integrates the features of a stand-alone
logic analyzer with the event machines of the
121CE system. The iL TA can interact with the·
121CE system in two ways: an 121CE signal can
cause an iL TA action or an iL TA action can
enable a system signal that can cause an action
in the 121CE instruments. The iL TA adds two
unique functions when used with the 121CE
emulator:

II The iL TA can send control Signals to the
121CE system that the user can program to

SPECIFICATIONS

Host Requirements

The iL TA runs in the top slot (of four) of an 121CE
instrumentation chassis connected to an
Ihtellec Series III or Series IV Development
System. A Series III or IIIE must have two

cause the 121CE system to arm, disarm,
break, or trace.

• The iL TA can recognize 121CE system signals
that can be used to cause the iL TA to arm,
disarm, restart, qualify trace activity, or
trigger.

ENHANCED DEBUGGING WITH THE iLTA

The 121CE and the iL TA work together to offer
enhanced debugging capabilities.

• Hardware debugging

- Verify control line timing relationships.

- Isolate glitches and trace conditions.

- Examine hardware operation.

- Verify expected hardware performance.

• Software/hardware interaction

- Troubleshoot interaction between
software instructions and hardware
operations.

- Help determine whether bugs are caused
by hardware or software.

- Verify expected hardware/software
interaction by combining the 121CE
system with the iLTA.

• Software debugging

- Examine software 110 drivers and
interaction with the mainline program
under the 121CE control.

double-density flexible disk subsystems, an
additional SBC-012B, and an 111-820 lac
upgrade. For a Series IV, an SBC-0128 and at
least 2 Mbytes of mass storage are required.
The iL T A does not run on the Intellec Model 800.

iLTA Software

iL TA/1 2ICE host software
iL TA Confidence Test

5-56

intel iLTA LOGIC TIMING ANALYZER

Physical Characteristics

All power and cooling functions are provided by
the 121CE instrumentation chassis.

Maximum Power Requirements
+ 5.0 VDC at 2.0 A
-5.2 VDC at 15.5 A
+ 15 VDC at 0.4 A
-1 5 VDC at 0.4 A

Threshold Voltages
-6.40 VDC to +6.35 VDC in 50 mV steps,
with an accuracy of 67 mV + 2% of VTH

Maximum Input Voltage
± 50 volts continuous.

Input Impedance
RIN = (V1N * 2 Mohm)/(V1N + VTH + 6)
AC - Maximum of 1 OpF in parallel with
the above DC impedance between any
probe input and ground. Typically 5pF.

Maximum capacitance of probe plus
terminator is ~ 20pF per channel.
Typically 15pF.

Clock Rates
Internal 10 ns to 50 ms

(100 MHz to 20 Hz)
External DC to 50 MHz

Setup time - 5 ns; min typically 0 ns
Hold time - 5 ns; min typically 3.0 ns

Duration:
minimum active pulse width - 7 ns +

1 ns/V for signal swings greater than 3 V.
minimum pulse period - 20 ns

ORDERING INFORMATION

Order Code Description

111-810 121CE logic timing analyzer
for Series IV

111-811 121CE logic timing analyzer for
Series III and Series IIIE
(includes 111-820)

111-820 IOC upgrade (for Series III and
Series IIIE only)

111-981 A 8-inch SD iL TA software
111-981 B 8-inch DD iL TA software
111-981 C 51/4-inch iL TA software

111-813 iLTA terminator set, 16 channel
(supplements iL TA-supplied set)

Minimum Glitch Capture

3 ns (+ 1 ns/V for signal swings
greater than 3 V) at threshold and
25% of total voltage swing over
(or below) the threshold or 250 mV
overdrive, whichever is greater.

Memory Range 512 words

Filter Ranges 1 or 2 to 255

Channel-to-channel skew 3 ns (maximum)

Operating Temperatures

0° C to 40°C
(Non-operating temperatures -40° C to
+75° C)
Probe pods 0° C to 45° C

Operating Humidity

5·57

o to 95% (non-condensing)

Documentation

iLTA User's Guide, order number 163256
iL TA's Reference Manual, order number 164257
iLTA Learner's Guide, order number 163258
121CE™ System Overview and Installation, order

number 163250
Guide to Using the 121CE™ System, order

number 163251
12'CE™ Reference Manual, order number

163252
121CE™ Command Dictionary, order number

163253
Guide to Using the 121CE™ Probes, order

number 163259

111-814 iL T A terminator set, 8 channel
(supplements iL TA-supplied set)

111-815 Microhook set (40
microhooks - supplements
iL T A-supplied microhooks)

111-816 Logic probe pod, channels 0-7
(supplements iL TA-supplied
pod)

111-817 Logic probe pod, channels 8-F
(supplements iL T A-supplied
pod)

ICE™ -42
8042 IN-CIRCUIT EMULATOR

• Precise, full-speed, real-time emulation
Load, drive, timing characteristics
Full-speed program RAM
Parallel ports
Data Bus

• User-specified breakpoints

• Execution trace
User-specified qualifier registers
Conditional trigger
Symbolic groupings and display
Instruction and frame modes

• Emulation timer

• Full symbolic debugging

• Single-line assembly and disassembly
for program instruction changes

• Macro commands and conditional
block constructs for automated
debugging sessions

• HELP facility: ICETM-42 command
syntax reference at the console

• User confidence test of ICETM-42
hardware

The ICETM_42 module resides in the Intellec Microcomputer Development System and interfaces to
any user-designed 8042 or 8041 A system through a cable terminating in an 8042 emulator micropro­
cessor and a pin-compatible plug. The emulator processor, together with 2K bytes of user program
RAM located in the ICE-42 buffer box, replaces the 8042 device- in the user system while maintaining
the 8042 electrical and timing characteristics. Powerfullntellec debugging functions are thus extended
into the user system. Using the ICE-42 module, the designer can emulate the system's 8042 chip in
real-time or single-step mode. Breakpoints allow the user to stop emulation on user-specified
conditions, and a trace qualifier feature allows the conditional collection of 1000 frames of trace data.
Using the single-line 8042 assembler the user may alter program memory using the 8042 assembler
mnemonics and symbolic references, without leaving the emulator environment. Frequently used com-·
mand sequences can be combined into compound commands and identified as macros with user­
defined names.

© INTEL CORPORATION, 1983 5·58
MAY 1983

ORDER NUMBER:210818·002

ICETM_42 IN-CIRCUIT EMULATOR

FUNCTIONAL DESCRIPTION

Integrated Hardware and Software
Development

The ICE-42 emulator allows hardware and soft­
ware development to proceed interactively. This
approach is more effective than the traditional
method of independent hardware and software
development followed by system integration.
With the ICE-42 module, prototype hardware
can be added to the system as it is designed.
Software and hardware integration occurs while
the product is being developed. Figure 1 shows
the ICE-42 emulator connected to a user
prototype.

The ICE-42 emulator assists four stages of
development:

SOFTWARE DEBUGGING

This emulator, operates without being connected
to the user's system before any of the user's
hardware is available. In this stage ICE-42 de­
bugging capabilities can be used in conjunction
with the Intellec text editor and 8042 macro­
assembler to facilitate program development.

HARDWARE DEVELOPMENT

The ICE-42 module's precise emulation charac­
teristics and full-speed program RAM make it a
valuable tool for debugging hardware.

SYSTEM INTEGRATION

I ntegration of software and hardware begins
when any functional element of the user system
hardware is connected to the 8042 socket. As
each section of the user's hardware is
completed, it is added to the prototype. Thus,
each section of the hardware and software is
"system" tested in real-time operation as it be­
comes available.

SYSTEM TEST

When the user's prototype is complete, it is
tested with the final version of the user system
software. The ICE-42 module is then used for
real-time emulation of the 8042 chip to debug
the system as a complete~ unit.

The final product verification test may be per­
formed using the 8742 EPROM., version of the

8042 microcomputer. Thus, the ICE-42 module
provides the ability to debug a prototype or pro­
duction system at any stage in its development
without introducing extraneous hardware or soft­
ware test tools.

Symbolic Debugging

The ICE-42 emulator permits the user to define
and to use symbolic, rather than absolute, refer­
ences to program and data memory addresses.
Thus, there is no need to recall or look up the ad­
dresses of key locations in the program, or to
become involved with machine code.

When a symbol is used for memory reference in
an ICE-42 emUlator command, the emulator sup­
plies the corresponding location as stored in the
ICE-42 emulator symbol table. This table can be
loaded with the symbol table produced by the as­
sembler during application program assembly.
The user obtains the symbol table during soft­
ware preparation simply by using the "DEBUG"
switch in the 8042 macroassembler. Further­
more, the user interactively modifies the emula­
tor symbol table by adding new symbols. or
changing or deleting old ones. This feature pro­
vides great flexibility in debugging and minimizes
the need to work with hexadecimal values.

Through symbolic references in combination
with other features of the emulator, the user can
easily:

o Interpret the results of emulation activity col­
lected during trace.

o Disassemble program memory to

5-59

mnemonics, or assemble mnemonic instruc­
tions to executable code.

• Reference labels or addresses defined in a
user program.

Automated Debugging and Testing

MACRO COMMAND

A macro is a set of commands given a name. A
group of commands executed frequently can be
defined as a mac'ro. The user executes the
group of commands by typing a colon followed
by the macro name. Up to ten parameters may
be passed to the macro.

Macro commands can be defined at the begin~
ning of a debug session and then used through­
out the whole session. One or more macro defini­
tions can be saved on diskette for later use. The
Intel/ec text editor may be used to edit the macro
file. The macro definitions are easy to include in
any later emulation session.

inter ICETM_42 IN-CIRCUIT EMULATOR

The power of the development system can be
applied to manufacturing testing as well as
development by writing test sequences as
macros. The macros are stored on diskettes for
use during system test.

COMPOUND COMMAND

Compound commands provide conditional exe­
cution of commands (IF command) and execu­
tion of commands repeatedly until certain condi­
tions are met (COUNT, REPEAT commands).

Compound commands may be nested any
number of times, and may be used in macro
commands.

Example:

-DEFINE .1 =0
-COUNT 100H

.*IF .1 AND 1 THEN

. .*CBYTE.I=.I

.. -END

.*.1-.1 + 1

.*END

; Define symbol .1 to 0
; Repeat the following
commands 1 OOH times .

; Check if .I is odd
; Fill the memory at

location .I to value .1

; Increment .1 by 1.
; Command executes
upon carriage-return
after END

(The asterisks are system prompts; the dots
indicate the nesting level of compound
commands.)

Operating Modes

The ICE-42 software is an Intellec RAM-based
program that provides easy-to-use commands
for initiating emulation, defining breakpoints,
controlling trace dat~lIection, and displaying
and controlling system parameters. ICE-42 com­
mands are configured with a broad range of
modifiers that provide maximum flexibility in de­
scribing the operation to be performed.

EMULATION

The ICE-42 module can emulate the operation of
prototype 8042 system, at real-time speed (up to
12MHz) or in single steps. Emulation commands
to the ICE-42 module control the process of set­
ting up, running, and halting an emulation of the
user's 8042-based system. Breakpoints and tra­
cepoints enable the ICE-42 emulator to halt emu­
lation and provide a detailed trace of execution
in any part of the user's program. A summary of
the emulation commands is shown in Table 1.

5·60

Table 1 Major Emulation Commands

Command Description

GO Begins real-time
emulation and optionally
specifies break
conditions.

BRO, BR1, BR Sets or displays either or
both Breakpoint Registers
used for stopping
real-time emulation.

STEP Performs single-step
emulation.

QRO, QR1 Specifies match
conditions for qualified
trace .

TR Specifies or displays
trace-data collection
conditions and optionally
sets Qualifier Register
(QRO, QR1).

Synchronization Sets and displays status
Line Commands of synchronization line

outputs or latched inputs.
Used to allow real-time
emulation or trace to start
and stop synchronously
with external events.

Breakpoints

The ICE-42 hardware includes two breakpoint
registers that allow halting of emulation when
specified conditions are met. The emulator con­
tinuously compares the values stored in the
breakpoint registers with the status of specified
address, opcode, operand, or port values, and
halts emulation when this comparison is
satisfied. When an instruction initiates a break,
that instruction is executed completely before
the break takes place. The ICE-42 emulator then
regains control of the console and enters the in­
terrogation mode. With the breakpoint feature,
the user can request an emulation break when
the program:

• Executes an instruction at a specific address
or within a range of addresses.

ICE™ -42 IN-CIRCUIT EMULATOR

• Executes a particular opcode.

• Receives a specific signal on a port pin.

• Fetches a particular operand from the user
program memory.

• Fetches an operand from a specific address
in program memory.

Trace and Tracepoints

Tracing is used with real-time and single-step
emulation to record diagnostic information in the
trace buffer as a program is executed. The infor­
mation collected includes opcodes executed,
port values, and memory addresses. The ICE-42
emulator collects 1000 frames of trace data.

If desired this information can be displayed as
assembler instruction mnemonics for analysis
during interrogation or Single-step mode. The
trace-collection facility may be set to run condi-

tionally or unconditionally. Two unique trace
qualifier registers, specified in the same way as
breakpoint registers, govern condi.tional trace
activity. The qualifiers can be used to condition
trace data collection to take place as follows:

• Under all conditions (forever).

• Only while the trace qualifier is satisfied.

• For the frames or instructions preceding the
time when a trace qualifier is first satisfied
(pre-trigger trace).

• For the frames or instructions after a trace
qualifier is first satisfied (post-triggered
trace).

Table 2 shows an example of trace display.

INTERROGATION AND UTILITY

Interrogation and utility commands give conve­
nient access to detailed information about the

Table 2 Trace Display (Instruction Mode)

FRAME LOC 08J INSTRUCTION Pl P2 TO T1 D8YIN YOur YSTS TOVF

0000: 100H 2355 MOV A,#55H FFH FFH 0 0 bbH DFH 02H 0
0004: 102H 39 OUTL Pl,A FFH FFH 0 0 bbH DFH 02H 0
0008: 103H 3A OUTL P2,A 55H FFH 0 0 bbH DFH 02H 0
0012: 104H 22 IN A,D88 55H 55H 0 0 bbH 02H 0
0014: 105H 37 CPL A 55H 55H 0 0 DFH 02H 0
001b: 10bH 02 OUT D88,A 55H 55H 0 0 bbH OOH 0
0018: 107H 8A03 MOV R2,#03H 55H 55H 0 0 bbH 99H OOH 0
0022: 109H 8840 MOV RO,#.TA8LEO 55H 55H 0 0 bbH 99H 01H 0
002b: 108H 89bO MOV Rl,#.TA8LE1 55H 55H 0 0 bbH 99H 01H 0
.LOOP
0030: 10DH FO MOV A,@RO 55H 55H 0 0 99H 01H 0
0032: 10EH Al MOV @Rl,A 55H 55H 0 0 bbH 01H 0
0034: 10FH 18 INC RO 55H 55H 0 0 99H 01H 0
003b: 110H 19 INC Rl 55H 55H 0 0 bbH 01H 0
0038: 111H EAOD DJNZ R2,.LOOP 55H 55H 0 0 bbH 99H 01H 0
.LOOP
0042: 10DH FO MOV A,@RO 55H 55H 0 0 99H 01H 0
0044: 10EH Al MOV @Rl,A 55H 55H 0 0 bbH 01H 0
004b: 10FH 18 INC RO 55H 55H 0 0 99H 01H 0
0048: 110H 19 INC Rl 55H 55H 0 0 bbH 01H 0
0050: 111H EAOD DJNZ R2,.LOOP 55H 55H 0 0 bbH 99H 01H 0
.LOOP
0054: 10DH FO MOV A,@RO 55H 55H 0 0 99H 01H 0
0056: 10EH A1 MOV @Rl,A 55H 55H 0 0 bbH 01H 0
0058: 10FH 18 INC RO 55H 55H 0 0 99H 01H 0
OObO: 110H 19 INC Rl 55H 55H 0 0 bbH 01H 0
00b2: lllH EAOD DJNZ R2,.LOOP 55H 55H 0 0 bbH 99H 01H 0
OObb: 113H 00 NOP 55H 55H 0 0 99H 01H 0

5·61

ICETM_42 IN-CIRCUIT EMULATOR

user program and the state of the 8042 that is
useful in debugging hardware and software.
Changes can be made in memory and in the
8042 registers, flags, and port values. Com­
mands are also provided for various utility opera­
tions such as loading and saving program files,
defining symbols, displaying trace data, controll­
ing system synchronization and returning control
to ISIS-II. A summary of the basic interrogation
and utility commands is shown in Table 3. Two
additional time-saving emulator features are dis­
cussed below.

Single-Line Assembler/Disassembler

The single-line assembler/disassembler (ASM
and DASM commands) permits the designer to
examine and alter program memory using as­
sembly language mnemonics, without leaving
the emulator environment or requiring time­
consuming program 'reassembly. When assem­
bling new mnemonic instructions into program
memory, previously defined symbolic references
(from the original program assembly, or subse­
quently defined during the emulation session)

Table 3 Major Interrogation and Utility Commands

Command Description

HELP Displays help messages for ICE-42 emulator command-entry assistance.

LOAD Loads user object program (8042 code) into user-program memory, and
user symbols into ICE-42 emulator symbol table.

SAVE Saves ICE-42 emulator symbol table and/or user object program in ISIS-II
hexadecimal file.

LIST Copies all emulator console input and output to ISIS-II file.

EXIT Terminates ICE-42 emulator operation.

DEFINE Defines ICE-42 emulator symbol or macro.

REMOVE Removes ICE-42 emulator symbol or macro.

ASM Assembles mnemonic instructions into user-program memory.

DASM Disassembles and displays user-program memory contents.

Change/Display Change or display value of symbolic reference in ICE-42 emulator symbol
Commands table, contents of key-word references (including registers, I/O ports, and

status flags), or memory references.

EVALUATE Evaluates expression and displays resulting value.

MACRO Displays ICE-42 macro or macros.

INTERRUPT Displays contents for the Data Bus and timer interrupt registers.

SECONDS Displays contents of emulation timer, in microseconds.

Trace Commands Position trace buffer pointer and select format for trace display.

PRINT Displays trace data pointed to by trace buffer pointer.

MODE Sets or displays the emulation mode, 8041 A or 8042.

5-62

ICETM_42 IN-CIRCUIT EMULATOR

Table 4 HELP Command

*HELP
Help is available for the following items. Type HELP followed by the item name.
The help items cannot be abbreviated. (for more information, type HELP HELP or
HELP INfO.)
Emulation:
GO GR SYO
BR BROBRl
STEP

Change/
<CHANGE>
<DISPLAY>
REGISTER

SECONDS
DEfINE

Macro:
DEfINE
DISABLE
INCLUDE

Trace Collection:
TR QR QRO QRl SYl

Trace Display:
TRACE MOVE PRINT
OLDEST NEWEST

Misc:
BASE
DISABLE
ENABLE
ERROR
EVALUATE
HELP

Display/ Define/ Remove: INfO
REMOVE CBYTE < LIGHTS>
SYMBOL
RESET

WRITE
STACK

DBYTE

Compound
DIR Commands:
ENABLE COUNT
PUT If

DASM
ASM

SY

LIST
LOAD
MODE
SAVE
SUffIX
SYMBOLIC

<MACRO$DISPLAY> REPEAT
< MACRO$INVOCATION >

*
*
*HELP If

< address>
<CPU$keyword>
<expr>
< ICE42 #keyword >
<identifier>
<instruction>
<masked#constant>
<match$cond>
<numeric$constant>
<partition>
<string>

<string$constant>
<symbolic$r;ef>
<mode>
< trace$reference>
< unl imi ted$ma tc h$cond >
< user$symbo Is>

If - The conditional command allows conditional execution of one or more commands
based on the values of boolean conditions.

If <expr> 'THEN <cr> <:true$list>::='<command> <cr> @

<true$list> <false$list>;;='<command> <cr> @

'ORIf <expr> <cr> <command>: :=An ICE-42 command.
<true$list> @

'ELSE <cr>
<false$list>
END

The <expr>s are evaluated in order as 16-bit unsigned integers. If one is
reached whose value has low-order bit 1 (TRUE), all commands in the <true$list>
following that <expr> are then executed and all commands in the other <true$­
list>s and in the <false$list> are skipped. If all <expr>s have value with low­
order bit 0 (fALSE), then all commands in all <true$list>s are skipped and, if
ELSE is present, all commands in the <false$list> are executed.

*
*
*
*
*EXIT

(EX: If. LOOP=5 THEN
STEP
ELSE
GO
END)

5-63

ICETM_42 IN-CIRCUIT EMULATOR

may be used in the instruction operand field.
The emulator supplies the absolute address or
data values as stored in the emulator symbol
table. These features eliminate user time spent
translating to and from machine code and
searching for absolute addresses, with a corre­
sponding reduction in transcription errors.

HELP

The HELP file allows display of ICE-42 command
syntax information at the Intellec console. By
typing "HELP", a listing of all items for which
help messages are available is displayed.
Typing "HELP <Item>" then displays relevant
information about the item requested, including
typical usage examples. Table 4 shows some
sample HELP messages.

EMULATION ACCURACY

The speed and interface demands of a high­
performance single-chip microcomputer require
extremely accurate emulation, including full­
speed, real-time operation with the full function
of the microcomputer. The (CE-42 module
achieves accurate emulation with an 8042
emulator chip, a special configuration of the
8042 microcomputer family, as its emulation
processor.

Each of the 40 pins on the user plug is connected
directly to the corresponding 8042 pin on the
emulator chip. Thus the user system sees the
emulator as an 8042 microcomputer at the 8042
socket. The resulting characteristics provide ex­
tremely accurate emulation of the 8042 including

SPECIFICATIONS

ICETM-42 Operating Requirements

Intellec Model 800, Series II, Series III, or Series
IV Microcomputer Development SYstem (64K
RAM required)

System console (Model 800 only)

Intellec Diskette Operating System: ISIS
(Version 3.4 or later).

Equipment Supplied

• Printed circuit boards (2)

• Emulation buffer box, Intellec interface
cables, and user-interface cable with 8042
emulation processor

speed, timing characteristics, load and drive
values, and crystal operation. However, the
emulator may draw more power from the user
system than a standard 8042 family device.

Additional emulator processor pins provide sig­
nals such as internal address, data, clock, and
control lines to the emulator buffer box. These
signals let static RAM in the buffer box substitute
for on-chip program ROM or EPROM. The emula­
tor chip also gives the ICE module "back-door"
access to internal chip operation, allowing the
emulator to break and trace execution without in­
terfering with the values on the user-system
pins.

Figure 1 A Typical 8042 Development
Configuration. The host system is
an Intellec Series IV. The ICE-42
module is connected to a user pro­
totype system.

• Crystal power accessory

• Operating instructions manuals

• Diskette-based ICE-42 software (single and
double density)

Emulation Clock

User's system clock (up to 12M Hz) or ICE-42
crystal po\a,er accessory (12 MHz)

Environmental Characteristics

Operating Temperature - 0° to 40°C

Operating Humidity - Up to 95% relative humidi­
ty without condensation.

5·64

ICE™·42IN·CIRCUIT EMULATOR

Physical Characteristics

Printed Circuit Boards

Width: 12.00 in. (30.48 cm)
Height: 6.75 in. (17.15 cm)
Depth: 0.50 in. (1.27 cm)

Buffer Box

Width: 8.00 in. (20.32 cm)
Length: 12.00 in. (30.48 cm)
Depth: 1.75 in. (4.44 cm)
Weight: 4.0 lb. (1.81 kg)

ORDERING INFORMATION

Part Number Description

ICE-42 8042 Microcontroller In-Circuit
Emulator, cable assembly and in­
teractive diskette software

5·65

Electrical Characteristics

DC Power Requirements
(trom Intellec® system)

Vee = +5V, ± 5%
Icc = 13.2A max; 11 .OA typical
Voo = +12V, ±5%
100 = 0.1A max; 0.05A typical
Vss = -10V, ±5%
Iss = 0.05A max; 0.01 A typical

User plug characteristics at 8042 socket -
Same as 8042 or 8742 except that the user
system sees an added load of 25 pF capacitance
and 50J1.A leakage from the ICE-42 emulator
user plug at ports 1,2, TO, and n.

ICETM-44 MODULE
8044 IN-CIRCUIT EMULATOR

• Precise, full-speed, real-time
emulation '

• 8K bytes full-speed RAM

• User-specified breakpoints

• Execution trace
-User-specified qualifier registers
-Conditional trigger
-Symbolic groupings and display
-Instruction and frame modes

• Emulation timer

• Full symbolic debugging

• Single-line assembly and disassembly
for program instruction changes

• Macro commands and conditional
block constructs for automated
debugging sessions

The ICETM_44 module resides in the Intellec@ Microcomputer Development System and interfaces to
any user-designed 8044 system through a cable terminating in an 8044 emulator microprocessor and
a pin-compatible plug. The emulator processor, together with 8K bytes of user RAM located in the
ICE-44 buffer box, replaces the 8044 device in the user system while maintaining the 8044 electrical
and timing characteristics. Powerful Intellec debugging functions are thus extended into the user
system. Using the ICE-44 module, the designer can emulate the system's 8044 in real-time or single
-step mode. Breakpoints allow the user to stop emulation on user-specified conditions, and a trace
qualifier feature allows the conditional collection of 1000 frames of trace data. Using the single-line
8044 assembler, the user may alter program memory using 8044 assembler mnemonics and symbolic
references, without leaving the emulator environment. Frequently used command sequences can be
~ombined into compound commands and identified as macros with user-defined names.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied. Information contained herein supercedes previously published specifications on these devices from Intel.

~ INTEL CORPORATION, 1984

5·66

SEPTEMBER, 1984
ORDER NUMBER: 210369·002

l·m_l~ •• ~ ICETM-44 MODULE

FUNCTIONAL DESCRIPTION HARDWARE DEVELOPMENT

The ICE-44 emulator aids the design effort in
several ways: software and hardware in­
tegration and debugging, symbolic debugging,
and automated debugging and testing. The
following sections describe these features.

Integrated Hardware and Software
Development

The ICE-44 emulator allows hardware and soft­
ware development to proceed interactively. This
approach is more effective than the traditional
method of independent hardware and software
development followed by system integration.
With the ICE-44 module, prototype hardware
can be added to the system as it is designed.
Software and hardware integration occurs while
the product is being developed.

The ICE-44 em~lator assists in four stages of
development, as described in the following
sections.

SOFTWARE DEBUGGING

The ICE-44 can be operated without being
connected to the user's system and before any
of the user's hardware is available. In this stage,
ICE-44 debugging capabilities can be used with
the Intellec text editor and the 8044 macro
assembler to facilitate program development.

The ICE-44 module's precise emulation char­
acteristics and full-speed program RAM make it
a valuable tool for debugging hardware,
including the time-critical synchronous data link
control (SOLC) serial port, parallel port, and
timer interfaces.

SYSTEM INTEGRATION

Software and hardware integration can begin
when any functional element of the user system
hardware is connected to the 8044 socket. As
each section of the user's hardware is com­
pleted, it is added to the prototype. Thus, each
section of the hardware and software is system
tested in real-time operation as it becomes
available.

SYSTEM TEST

When the user's prototype is complete, it is
tested with the final version of the user system
software. The ICE-44 module can then be used
for real-time emulation of the 8044 to debug the
system as a completed unit. .

The final product verification test may be per­
formed using the 8744 EPROM version of the
8044 microcomputer. Thus, the ICE-44 module
provides the user with the ability to debug a
prototype or production system at any stage in
its development without introducing extraneous
hardware or software test tools. Figure 1 shows
an 8044 development configuration.

Figure 1. A Typical 8044 Development Configuration. The host system is an Intellec@ Series IV.
The ICETM-44 module is connected to a user prototype system.

5-67 Order Number: 210369-002

inter ICETM-44 MODULE

Symbolic Debugging

The ICE-44 emulator permits the user to define
and use symbolic (rather than absolute)
references to program and data memory ad­
dresses; additional symbols are predefined by
the ICE-44 software for referencing registers,
flags, and input/output ports. Thus, the user
need not recall or look up the addresses of key
locations in a program as they change with each
assembly, or become involved with machine
code.

When a symbol is used for memory reference in
an ICE-44 emulator command, the emulator
supplies the corresponding location as stored in
the ICE-44 emulator symbol table. This table is
loaded with the symbol table produced by the as­
sembler during application program assembly.
The user can obtain the symbol table during
software preparation Simply by using the
DEBUG switch in the ASM44 macro assembler.
Furthermore, the user can interactively modify
the emulator symbol table by adding new
symbols, or changing or deleting old ones. This
feature provides flexibility in debugging and
minimizes the need to work with hexadecimal
values.

Through symbolic references in combination
with other features of the emulator, the user can
easily do the following:

• Interpret the results of emulation activity
collected during trace.

• Disassemble program memory to
mnemonics, or assemble mnemonic
instructions to executable code.

• Examine or modify 8044 internal reg­
isters, data memory, or port contents.

• Reference labels or addresses defined in
a user program.

Automated Debugging and Testing

The following sections describe ways in which
the user can automate some of the emulation
and debug commands.

MACRO COMMANDS

A macro is a set of commands that is given a
name. A group of commands that is executed
frequently can be defined as a macro. The user
can execute the group of commands by typing a
colon followed by the macro name. Up to 10
parameters may be passed to a macro.

Macro commands can be defined at the be­
ginning of a debug session and then used
throughout a session. Macro definitions can be
saved on disk for later use. The Intellec text
editor may be used to edit the macro file.

The power of the development system can be
applied to manufacturing testing as well as
development, by writing test sequences as
macros. The macros are stored on disk for use
Juring system test.

COMPOUND COMMANDS

There are two kinds of compound commands.
The IF command permits conditional execution
of commands, and the COUNT and REPEAT
commands allow repetitious execution of
commands until certain conditions are met.

Compound commands may be nested any
number of times, and they may be used in macro
commands.

Example:

*DEFINE .1 =0
*COUNT 100H

.*IF .1 AND 1 THEN

.. *BYTE .1=.1

.. *END

.*.1=.1+1

.*END

;Define symbol.1 as 0
;Repeat the following
;commands 1 OOH times
:Check if .1 is odd·
;Fill the memory at location .1
;to value.1

;Increment by 1
;Command executes upon
;carriage return after END

(The characters *, .*, and .. * shown in this exam­
ple are system prompts that indicate the nesting
level of compound commandsJ

Operating Commands

The ICE-44 software is an Intellec RAM-based
program that provides the user with easy-to-use
commands ·for initiating emulation, defining
breakpoints, controlling trace data collection,
and displaying and controlling system pa­
rameters. ICE-44 commands are configured with
a broad range of modifiers that provide the user
with maximum flexibility in describing the
operation to be performed.

5-68

EMULATION

The ICE-44 module can emulate the operation of
a prototype 8044 system, at real-time speed (1.2
to 12 MHz) or in single-steps. Emulation

Order Number: 210369-002

ICETM-44 MODULE

commands to the ICE-44 module control the
process of setting up, running, and halting an
emulation of the user's 8044-based system.
Breakpoints and tracepoints enable the ICE-44
emulator to halt emulation and provide a detailed
trace of execution in any part of the user's
program. A summary of the emulation com­
mands is shown in Table 1.

Breakpoints

The ICE-44 hardware includes two breakpoint
registers that allow the user to halt emulation
when specified conditions are met. The emulator

, continuously compares the values stored in the
breakpoint registers with the status of specified
address, opcode, operand, or port values, and
halts emulation when this comparison is
satisfied. When an instruction initiates a break,
that instruction is executed completely before
the break takes place. The ICE-44 emulator then
regains control of the console and enters the
interrogation mode. With the breakpoint feature,
the user can specify an emulation break when
the program:

• Executes an instruction at a specified
address or within a range of addresses.

• Executes a particular opcode.

o Receives a specific signal on a port pin.

o Fetches a particular operand from the
user program memory.

o Fetches an operand from a specific
address in program memory.

Trace and Tracepoints

TraCing is used with both real-time and
single-step emulation to record diagnostic
information in the trace buffer as a program is
executed. The information collected includes
opcodes executed, port values, and memory
addresses. The ICE-44 emulator collects up to
1000 frames of trace data.

The trace data can be displayed as assembler
instruction mnemonics, if desired, for analysis
during interrogation or single-step mode. The
trace-collection facility may be set to run
conditionally or unconditionally. Two unique
trace qualifier registers, specified in the same
way as breakpoint registers, govern conditional
trace activity. The qualifiers can be used to
condition trace data collection to take place as
follows:

• Under all conditions (forever).

• Only while the trace qualifier is satisfied.

• For the frames or instructions preceding
the time when a trace qualifier is first
satisfied (pre-triggered trace).

• For the frames or instructions after a
trace qualifier is first satisfied
(post-triggered trace).

Figure 2 shows an example of a trace display in
instruction mode.

Table 1. Major Emulation Commands

Command Description

GO Begins real-time emulation and optionally specifies break conditions.

BRO, BR1, BR Sets or displays either or both breakpoint registers used for stopping
real-time emulation.

STEP Performs single-step emulation.

QRO, QR1 Specifies match conditions for qualified trace.

TR Specifies or displays trace-data collection conditions and optionally sets the
qualifier register (QRO, QR1).

Synchronization Sets and displays the status of synchronization line output or latched input.
line Commands Used to synchronize the starting and stoping of real-time emulation or trace

to occur with external events.

Order Number: 210369-002

5-69

ICETM-44 MODULE

*p ALL
FRAME LOC OBJ INSTRUCTION Pl P2 PO TOVF
0000 OOOOH FO MOVX @DPTR,A DOH 88H FFH 0
0007: 0001H F8 MOV RO, A DOH 88H FFH 0
0011: 0002H F4 CPL A DOH 88H FFH 0
0015: 0003H 33 RCL A DOH 88H FFH 0
0019: 0004H 759044 MOV . Pl, #44H DOH 88H FFH 0
0027: 0007H C3 CLR C DOH 88H FFH 0
0031: 0008H 98 SUBS A, BO 44H 88H FFH 0
0035: 0009H DODO POP DOH 44H 88H FFH 0
0043: 0008H 753405 MOV 34H, #.FIVE 44H 88H FFH 0
0044: OOOEH 0156 AJMP 0056H 44H 88H FFH 0

Figure 2. Sample Trace Display in Instruction Mode

INTERROGATION AND UTILITY COMMANDS Commands are also provided for various utility
operations such as loading and saving program
files, defining symbols, displaying trace data,
controlling system synchronization, and
returning control to ISIS. A summary of the basic
interrogation and utility commands is shown in
Table 2.

Interrogation and utility commands allow
convenient access to detailed information about
the user program and the state of the 8044 that
is useful in debugging hardware and software.
Changes can be made in memory and in the
8044 registers, flags, and port values.

Table 2. Major Interrogation and Utility Commands

Command Description

HELP Displays help messages for ICE-44 emulator command-entry assistance.
LOAD Loads the user object program (8044 code) into user program memory, and

the user symbols into the ICE-44 emulator symbol table.
SAVE Saves the ICE-44 emulator symbol table and the user object program in an

ISIS hexadecimal file.
LIST Copies all emulator console input and output to an ISIS file.
GO B~gins ICE-44 emulation.
EXIT Terminates ICE-44 emulation operation and returns control to the ISIS

operating system.
DEFINE Defines the ICE-44 emulator symbol or macro.
REMOVE Deletes user-defined symbols, modules, or macro names from the symbol

table or macro table.
ASM Assembles mnemonic instructions into user program memory.
DASM Disassembles and displays user program memory contents.
Change/Display Changes or displays the value of a symbolic reference in the ICE-44
Commands emulator symbol table, the contents of keyword references (including

registers, I/O ports, and status flags), or the memory references.
EVALUATE Evaluates an expression and displays the resulting value.
MACRO Displays an ICE-44 macro or macros.
INTERRUPT Displays serial, external, or timer-interrupt register settings.
SECONDS Displays the contents of the emulation timer in microseconds.
Trace Commands Positions the trace buffer pointer and selects the format for the trace display.
PRINT Displays the trace data pointedto by the trace buffer pOinter.

Order Number: 210369-002

5·70

inter ICETM-44 MODULE

5 ingle-line Assembler/D isassembler

The single-line assembler/disassembler (ASM
and DASM commands) is a time-saving emulator
feature that permits the designer to examine and
alter program memory using assembly language
mnemonics, without leaving the emulator
environment or requiring time-consuming
program reassembly. When assembling new
mnemonic instructions into program memory,
previously defined symbolic references (from
the original program assembly, or subsequently
defined during the emulation session) may be
used in the instruction operand field. The
emulator will supply the absolute address or
data values as stored in the emulator symbol
table. These features eliminate user time spent
translating to and from machine code and
searching for absolute addresses, with a
corresponding reduction in transcription errors.

Help

The HELP file allows the user to display ICE-44
command syntax information at the Intellec
console. Typing HELP displays a listing of all

items for which help messages are available;
typing HELP < item> displays relevant
information about the item requested, including
typical usage examples. See Figures 3 and 4. for
screen displays of a HELP menu and a HELP
<item> menu.

Emulation Accuracy

The speed and interface demands of a
high-performance single-chip microcomputer
require extremely accurate emulation, including.
full-speed, real-time operation with the full
function of the microcomputer. The ICE-44
emulator achieves accurate emulation with an
8044 bond-out chip, a special configuration of
the 8044 microcomputer, as its emulation
processor.

Each of the 40 pins on the user plug is
connected directly to the corresponding 8044
pin on the bond-out chip. Thus, the user system
sees the emulator as an 8044 microcomputer at
the 8044 socket. The resulting characteristics
provide extremely accurate emulation of the

Help is available for the following items. Type HELP followed by the item name.
The help items cannot be abbreviated. (for more information, type HELP HELP or
HELP INFO.)
Emulation:
GO GR SYD
BR BRD BR1
STEP

Trace Collection:
TR QR QRD QR1 SY1

Tr ace Dis p lay:
TRACE MOVE PRINT
OLDEST NEWEST

Change/Display/Define/Remove:
<CHANGE> REMOVE CBYTE RBIT
<DISPLAY> SYMBOL DBYTE DASM
REGISTER RESET PBYTE ASM
SECONDS WRITE RBYTE MAP
DEFINE STACK XBYTE SY

Macro: Compound
DEFINE DIR Commands:
DISABLE
INCLUDE
<MACRO$DISPLAY>
<MACRO$INVOCATION>

ENABLE COUNT
PUT IF

REPEAT

Misc:
BASE

<address>
<CPU$keyword>

DISABLE. <expr>
ENABLE <ICE44$keyword>
ERROR <identifier>
EVALUATE <instruction>
HELP <masked$constant>
INFO <match$cond>
<LIGHTS><numeric$ref>
LIST <partition>
LOAD <string>
SAVE <string$constant>
SUFFIX <symbolic$ref>
SYMBOLIC<system$symbolic>

<trace$reference>
<unlimited$match$cond>
<user$symbols>

Figure 3. Menu Display for HELP

Order Number: 210369-002

5-71

ICETM-44 MODULE

*HELP IF
IF - The conditional command allows conditional execution of one or more
commands based on the values of boolean conditions·

IF <expr> [THEN] <cr> <true$l ist>: : =[<command> <cr>]@
<true$l i st> <f al se$l ist>: : =[<command> <cr>]@

[OR IF <expr> <cr> <command>: :=An I(E-44 command·
<true$list>]@
[ELSE <cr>
<false$list>]
END

The <expr>s are evaluated in order as 16-bit unsigned integers. If one is
reached whose value has low-order bit 1 (TRUE), all commands in the <true$list>
following that <expr> are then executed and all commands in the other
<true$list>s and in the <false$list> are skipped. If all <expr>s have value with
low-order bit 0 (FALSE), then all commands in all <true$list>s are skipped and,
if ELSE is present, all commands in the <false$list> are executed.

(EX: IF .LOOP=5 THEN
STEP
ELSE
GO
END)

Figure 4. Menu Display for HELP IF

8044, including speed, timing characteristics,
load and drive values, and crystal operation. The
emulator may draw more power from the user"
system than a standard 8044 family device (see
Electrical Characteristics).

Additional bond-out pins provide the emulator
box with signals such as internal address, data,
clock, and control lines. These signals let static
RAM in the buffer box substitute for on-chip
program ROM, EPROM, or user supplied
external program memory. The 8K bytes of
full-speed RAM in the buffer box can be mapped
in 4K blocks to anywhere within the 64K
program memory space of the 8044. The
bond-out chip also gives the emulator
"backdoor" access to internal chip operation, so
that the emulator can break and trace execution
without interfering with the values on the
user-system pins.

SPECIFICATIONS

ICETM-44 Operating Requirements

Intellec Model 800, Series "'"1, or Series IV
development system (64K RAM required)

System Console

One disk drive, single-density or double-density

Intellec disk operating system (single or double
density) ISIS v. 3.4 or later

Equipment Supplied

• Printed circuit boards(2)

5-72

• Emulation buffer-box, Intellec interface
cables, and user-interface cable with an
8044 emulation processor

• Dual auxiliary connector kit for the Model
800, Series "'"1, and Series IV
development systems

• Crystal power accessory

8 Literature kit
-ICE-44 operating instructions manual
-ICE-44 command dictionary
-ICE-44 user's guide

• Disk-based ICE-44 software (5 1'4 inch
and 8 inch, single and double density)

Order Number: 210369-002

ICETM-44 MODULE

Emulation Clock

User's system clock (1.2 to 12MHz) or ICE-44
crystal power assembly (12MHz)

Environmental Characteristics

Operating Temperature: 0° to 40° C

Operating Humidity: Up to 95% relative humidity
without condensation

Physical Characteristics

Printed Circuit Boards

Width: 12.00 in. (30.48cm)
Height: 6.75 in. (17.15 cm)
Depth: 0.50 in. (1.27 cm)

Buffer Box

Width: 8.00 in. (20.32 cm)
Length: 12.00 in. (30.48 cm)
Depth: 1.75 in. (4.44cm)
Weight: 4.0 Ib (1.81 kg)

ORDERING INFORMATION

Part Number

ICE-44

Description

8044 microcontroller in­
circuit emulator, cable
assembly, and interactive
disk software

5-73

Interface Cables

Host-emulator interface cable length: 48 in.
(121.92 cm)
Emulator-user-system interface cable length:
12.00 in. (30.48 cm)

Electrical Characteristics

DC Power Requirements (from the Intellec
system):

Vee = +5V, +5%, -2.5%
lee = 13.2A max; 11.0A typical
Voo = +12V, + 5%
100 = 0.1 A max; 0.05A typical
Vss = -10V, + 5%
Iss = 0.05A max; 0.01 A typical

User Plug Characteristics at the 8044 Socket:

Same as an 8044 or 8744, except that the user
system will see an added load of 25 pf
capacitance and 50 uA leakage from the ICE-44
emulator user plug at ports 0, 1, and 2.

ICE™-49A
inter MCS®-48 IN-CIRCUIT EMULATOR

• Extends Intellec® microcomputer • Collects bus, register, and MCS®-48
development system debug power· status information on instructions
to user configured system via emulated
external cable and 40-pin plug,
replacing system MCS®-48 device • Provides capability to examine and

alter MCS®-4·8 registers, memory,
• Emulates user system MCS®-48 and flag values, and to examine pin

device in real-time (up to 11 MHz) and port values

• User confidence test of ICE™-49A • Integrates hardware and software
hardware efforts early to save development

time

The ICE™_49A, MCS®-48 In-Circuit Emulator module is an Intellec system-resident module that
interfaces with any MCS-48 system. The MCS-48 family consists of the 8050, 8049, 8048, 8749, 8748,
8040,8039,8035, and 8021 microcomputers. The ICE-49A module interfaces with an MCS-48 system
through a cable terminating in an MCS-48 pin-compatible plug which replaces the MCS-48 device in
the system. With the ICE-49A plug in place, the designer can operate his system in real-time while
collecting up to 255 instruction cycles of real-time trace data. In addition, he can single step the
system program to monitor more closely the program logic during execution. Static RAM memory is
available through the ICE-49A module to emulate MCS-48 program and data memory. The designer
can display and alter the contents of data and replacement RAM control memory, internal MCS-48
registers and flags and 1/0 ports. Powerful debug capability is extended into the MCS-48 system while
IGE-49A debug hardware and software remain inside the Intellec system. Symbolic reference
capability allows the designer to use meaningful symbols rather than absolute values when examining
and modifying memory, registers, flags, and 1/0 ports in this system.

© INTEL CORPORATION, 1983 5·74
MAY 1983

ORDER NUMBER:162400-003

inter ICE™-49A EMULATOR

FUNCTIONAL DESCRIPTION

Debug Capability Inside User System

The ICE-49A module provides the user with the
ability to debug a full prototype or production
system without introducing extraneous
hardware or software test tools. The module
connects to the user system through the socket
provided for the MCS-48 device in the user
system. Intellec system memory is used for the
execution of the ICE-49A software. The Intellec
host console and file handling capabilities
provide the designer with the ability to
communicate with the ICE-49A module and
display information on the operation of the
prototype system. (The ICE-49A module block
diagram is shown in Figure 1 J

Batch Testing

In conjunction with the ISIS diskette operating
system, the ICE-49A module can run extensive
system diagnostics without operator interven­
tion. The designer or test engineer can define a

complete diagnostic exercise, which is stored in
a file on the diskette. When activated with an
ISIS submit command, this file can instruct the
ICE-49A module to execute the diagnostic
routine and store the results In another file on
the diskette. Results are available to the
designer at his convenience. In this way, routine
diagnostics and long term testing may be done
without tying up valuable manpower.

Integrated Hardware/Software
Development

The user prototype need consist of no more than
an MCS-48 socket and timing logic to being
integration of software and hardware
development efforts. Through the ICE-49A
module mapping capabilities, Intellec system
resources can be accessed to replace prototype
memory. Hardware designs can be tested using
the system software to drive the final product.
Thus, the system integration phase, which can
be costly when attempting to mesh completed
hardware and software products, becomes a
convenient two-way debug tool when begun
early in the design cycle.

EMULATOR BOARD CONTROL PROCESSOR BOARD
USER SOCKET I

I
,- - - - - - - "'I 1- - - - - - - - - - - - I

II
SYNC 0 r-4.."""---,f-l ______ -J

II
CABLE

SYNC 1 BUFFER

,­
I
I
I
I
I
I
I
I
I
I
I
L ____ _

II
II
II
II

Figure 1 ICE™_49A Module Block Diagram

5·75

CONTROL
PROGRAM w

U
if
II:
W
I-

8080
:!:
III

CONTROL ::l
PROCESSOR lD

U
W
-I
-I
W
I-

CONTROL
SCRATCH

:!:
PAD

1254

162400

ICE™-49A EMULATOR

Real-Time Trace

The ICE-49A module captures trace information
while the designer is executing programs in real
time. The instructions executed, program
counter, port values for bus 0, port 1 and port 2,
and the values of selected MCS-48 status lines
are stored for the last 255 instruction cycles
executed. When retrieved for display, code is
disassembled for user convenience. This
provides data for determining how the user
system was reacting prior to emulation ,break,
and is available whether the break was user
initiated or the result of an error condition. For
more detailed information on the actions of
internal registers, flags, or other system
operations, the user may operate in single or
multiple step sequences tailored to system
debug needs.

Memory Mapping

The 8050, 8749, 8049, 8748, and 8048 contain
internal program and data memory. Both
program and data memory can be expanded
using external memory devices.

Internal Memory

When the MCS-48 microcomputer is replaced
by the ICE-49A socket in a system, the ICE-49A
module supplies static RAM memory as a
replacement for the internal microcomputer
memory. The ICE-49A module has enough RAM
memory available to emulate up to the total 4K
control memory capability of the system. The
ICE-49A module also provides for up to 512
bytes of data memory.

External Memory

The ICE-49A module separates replacement
control memory into sixteen 256-byte blocks.
Replacement external data memory consists of
one 256-byte block. Each block of memory can
be defi'ned separately as supplied by the user
system or supplied by the ICE-49A module. The
user may assign ICE-49A equivalent memory to
take the place of external memory not yet
supplied by his system.

Symbolic Debugging

ICE-49A Emulator software provides symbolic
definition of a" MCS-48 registers, flags, and

selected MCS-48 pins. Symbolica"y defined
pseudo registers provide access to the sense of
MCS-48 flip flops which enable time, counter,
interrupt, and flag-O/flag-1 options. In addition,
the user may reference locations in program and
data memory, or their contents, symbolica"y.
The user symbol table generated along with the
object file during a program assembly may be
loaded to Interrec host memory for access
during emulation. The user is encouraged to add
to this symbol table any additional symbolip
values for memory addresses, constants, or
variables he may find useful during system
debugging. Symbols may be substituted for
numeric values in any of the ICE-49A
commands. Symbolic reference is a great
advantage to the system designer. He is no
longer burdened with the need to recall or look
up those addresses of key locations in his
program that can change with each assembly.
Meaningful symbols from his source program
may be used instead. For example, the
command:

GO FROM .START TILL XDATA. RSLT WRITTEN

begins execution of the program at the address
referenced by the label START in the designer's
assembly program. A breakpoint is set to occur
the first time the microprocessor writes to the
external data memory location referenced by
RSLT. The designer does not have to be
concerned with the physical locations of START
and RSLT. The ICE-49A software driver supplies
them automatically from information stored in
the symbol table.

Hardware

The ICE-49A module is a microcomputer system
utilizing Intel's 8050, 8749/8049, or 8748/8048
microcomputer as its nucleus. The 8050 pro­
vides emulation for the 8040/8050; the 8749 pro­
vides emulation for the 8039/8049/8749; the
8748 provides emulation for the 8021/8035/-
8048/8748. The ICE-49A module uses an Intel
8080 to communicate with the Inte"ec host pro­
cessor via a common memory space. The 8080
also controls an internal ICE-49A bus for intra­
module communication. ICE-49A hardware con­
sists of two PC boards, the controller board, and
the emulator board, a" of INhich reside in the In­
te"ec chassis. A cable interfaces the ICE-49A
boards to the MCS-48 system. The cable termi­
nates in a MCS-48 pin compatible plug which re­
places any MCS-48 device in the user system.
Figure 2 shows the ICE-49A module used with
the Series IV development system and connect­
ed to a user prototype board.

162400

5·76

inter ICE™-49A EMULATOR

Real-Time Trace

Trace Buffer

While the ICE-49A module is executing the user
program, it is monitoring port, program counter,
data, and status lines. Values for each
instruction cycle executed are stored in a
255x44 real-time RAM trace buffer. A resettable
timer resident on the controller board' counts
instruction cycles.

Controller Board

The ICE-49A module talks to the Intellec system
as a peripheral device. The controller board
receives commands from the Intellec system
and responds through the parameter block.
Three 15-bit hardware breakpoint registers are
available for loading by the user. While in
emulation mode, a hardware comparator is
constantly monitoring address and status lines
for a match to terminate an emulation. The
breakpoint registers provide a signal when a
match is detected. The user may disable the
emulation break capability and use the signal to
synchronize other debug tools. The controller
board returns real-time trace data, MCS-48
register, flag, and pin values, and ICE-49A
status information, to a control block in the
Intellec system when emulation is terminated.
This information is available to the user through
the ICE-49A interrogation commands. Error
conditions, when present, are automatically
displayed on the Intellec system console. The
controller board also contains static RAM
memory, which can be used to emulate MCS-48
program and data memory in real time. 4K of
memory is available in sixteen 256-byte pages
to emulate MCS-48 PROM or PROM program
memory. A 256-byte page of data memory is
available to access in place of MCS-48 external
data memory. The controller board address map
directs the ICE-49A module to access either
replacement ICE-49A memory or actual user
system external memory in 256-byte segments
based on information provided by the user.

Emulator Board

The emulator board contains the 8749/8049*
and peripheral logic required to emulate the
MCS-48 device in the user system. A software
selectable 11 MHz or 5.5 MHz clock drives the
emulated MCS-48 device. This clock can be
disabled and replaced with a user supplied TTL
clock in the user system.

5-77

Cable Card

The cable card is included for cable driving. It
transmits address and data bus information to
the user system through a 40-pin connector
which plugs into the user system in the socket
designed for the MCS-48 device.

Software

The ICE-49A software driver is a RAM-based
program which provides the user with an easy to
use command language for defining break­
points, initiating real-time emulation or single
step operation, and interrogating and altering
user system status recorded during emulation,
(See Table 1, Table 2, and Table 3). The ICE-49A
command language contains a broad range of
modifiers to provide the user with maximum flexi­
bility in defining the operation to be performed.
The ICE-49A software driver is available on dis­
kette and operates in 64K of Intellec RAM
memory.

Table 1 ICETM·'49A Emulation Commands

Command Operation

Enable Activates breakpoint and
display registers for use with Go
and Step commands.

Go Initiates real-time emulation and
allows user to specify
breakpoints and data retrieval.

Step Initiates emulation in single
instruction increments. Each
step is followed by register
dump. User may optionally tailor
other diagnostic activity to his
needs.

Interrupt Emulates user system interrupt.

• Use 8748/8048 with internal monitor program when
emulating 8748/8048/8035/8021. Use 8050 with
internal monitor program when emulating 8050/8040.

162400

inter ICE™-49A EMULATOR

Table 2 ICETM-49A Interrogation Commands Table 3 ICETM·49A Utility Commands

Command

Display

Change

Map

Base

Suffix

Operation Command Operation

Prints contents of memory, Load Fetches user symbol table and
MCS-48 device registers, 1/0 object code from input device.
ports, flags, pins, real-time trace
data, symbol table, or oth~r Save Sends user symbol table and
diagnostic data on list device. object code to output device.

Alters contents of memory, Define Enters symbol name and value
register output port, or flag. Sets louser symbol table.
or alters breakpoints and
display registers. Move Moves block of memory data to

another area of memory.
Defines memory status.

List Defines list device.
Establishes mode of display for
output data .. Exit Returns program control to ISIS

Establishes mode of display Evaluate Converts. expression to
input data. equivalent values in binary,

octal, decimal, and hex.

Remove Deletes symbols from symbol
table.

Reset Reinitializes ICE-49A hardware.

Figure 2. The ICE-49A module hosted by a Series IV development system
and connected to a user prototype board.

5-78 , 162400

inter ICE™·49A EMULATOR

SPECIFICATIONS

ICE™.49A Operating Environment

Required Hardware

Intellec Model 800 Series II, Series "lor Series
IV microcomputer development system (64KB
RAM required)

System console (Model 800 only)

ICE-49A Module

Required Software

System monitor

iSIS (v 3.4 or later)

ICE-49A diskette based software

Equipment Supplied

Printed circuit boards (control board, emulator
board)

Interface cable and buffer module

Diskette-based ICE-49A software:
-8 inch single and double density
-5% inch double density

8048/8748 with internal monitor program and
8050 with internal monitor program

CON 49A confidence test software, diskette­
based (single and double density)

Diagnostic Loop bulk assembly (for use with
CON 49A)

Emulation Clock

Crystal controlled 11 MHz internal, 5.5 MHz in­
ternal or user supplied TTL external (1.0 MHz to
8.0 MHz): software selectable.

Physical Characteristics

Width - 12.00 in. (30.48 cm)
Height - 6.75 in. (17.15 cm)
Depth - 0.50 in. (1.27 cm)
Weight - 8.00 lb. (3.64 kg)

ORDERING INFORMATION

Part Number
ICE-49A

Description
8050,8049,8048,8039,8749,
8748,8035,8021 CPU in-circuit
emulator. Cable assembly and
interactive diskette software
included.

5·79

Electrical Characteristics

DC Power Requirements

Vcc = +5% -2%
Icc = 10A max; 7.0A typ
Voo = +12V ± 5%
100 = 79 rnA max; 45 rnA typ
Vss = -10V ± 5%
Iss = 20 rnA max

Input Impedance @ ICE-49A user socket pins:

VIL = 0.8V (max), IlL = -1.6 mA,
VIH = 2.0V (min), IIH = 40 fLA

For Bus:
VIL = 0.8V (max), IlL = - 250 fLA
VIH = 2.0V (min), IIH = 20 fLA

Output Impedance @ICE-49A user socket pins:

P1, P2:
VOL = 0.5V (max), 10L = 16 rnA
VOH = Vee (10K pullup)

For Bus:
VOL = 0.5V (max), 10L = 25 rnA
VOH = 2.4V (min), 10H -10 ollA

Others:
VOL = 0.5V (max), 10L = 16 rnA
VOH = 2.4V (min), 10H -400 fLA

Environmental Characteristics

Operating Temperature - 10°C to 40°C (Room
Temperature)

Operating Humidity - 10% to 85% relative
humidity without condensation

Reference Manuals

9800632 - ICETM-49A Operating Instructions
(SUPPLIED)

ICE™-51 MODULE
8051 IN-CIRCUIT EMULATOR

• Precise, full-speed, real-time • Supports 8K bytes ROM
emulation • PL/M-S1 support

• 8K bytes full-speed RAM • Full symbolic debugging
• User-specified breakpoints • Single-line assembly and disassembly

• Execution trace for program instruction changes
-User-specified qualifier registers • Macro commands and conditional
Conditional trigger block constructs for automated

-Symbolic groupings and display debugging sessions

-Instruction and frame modes • Emulation timer

-Trace by symbol or line number • External load option

The ICETM-51 module resides in the Intellec@ Microcomputer Development System and interfaces to
any user-designed 8051 system through a cable terminating in an 8051 emulator microprocessor and
a pin-compatible plug. The emulator processor, together with 8K bytes of user RAM located in the
ICE-51 buffer box, replaces the 8051 device in the user system while maintaining the 8051 electrical
and timing characteristics. Powerful Intellec debugging functions are thus extended into the user
system. Using the ICE-51 module, the designer can emulate the system's 8051 in real-time or
single-step mode. Breakpoints a.llow the user to stop emulation on user-specified conditions, and a
trace qualifier feature allows the conditional collection of 1000 frames of trace data. Using the
single-line 8051 assembler, the user may alter program memory using ASM51 mnemonics and
symbolic references, without leaving the emulator environment. Frequently used command sequences
can be combined into compound commands and identified as macros with user-defined names. The
ICE-51 system may also be used in the debugging and development of 8052 systems through its ability
to debug all the 8052 features that are shared with the 8051 and the internal 8K ROM.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied:lnformation contained herein supercedes previously published specifications on these devices from Intel.

@ INTEL CORPORATION, 1984

5·80

SEPTEMBER, 1984
ORDER NUMBER: 230783·002

-1m _I®
- -'ell ICETM-51 MODULE

FUNCTIONAL DESCRIPTION HARDWARE DEVELOPMENT

The ICE-51 emulator aids the design effort in
several ways: software and hardware inte­
gration and debugging, symbolic debugging,
PLlM-51 support, and automated debugging and
testing. The following sections describe these
features.

Integrated Hardware and Software
Development

The ICE-51 emulator allows hardware and
software development to proceed interactively.
This approach is more effective than the
traditional method of independent hardware and
software development followed by system in­
tegration. With the ICE-51 module, prototype
hardware can be added to the system as it is
designed. Software and hardware integration
occurs while the product is being developed.

The ICE-51 emulator assists in four stages of
development, as described in the following
sections.

SOFTWARE DEBUGGING

The ICE-51 can be operated without being
connected to the user's system and before any
of the user's hardware is available. In this stage,
ICE-51 debugging capabilities can be used with
the Intellec text editor and the 8051 macro
assembler to facilitate program development.

The ICE-51 module's precise emulation char­
acteristics and full-speed program RAM make it
a valuable tool for debugging hardware, in­
cluding the serial and parallel ports, and timer
interfaces.

SYSTEM INTEGRATION

Software and hardware integration can begin
when any functional element of the user system
hardware. is connected to the 8051 socket. As
each section of the user's hardware is
completed, it is added to the prototype. Thus,
each section of the hardware and software is
system tested in real-time operation as it
becomes available.

SYSTEM TEST

When the user's prototype is complete, it is
tested with the final version of the user system
software. The ICE-51 module can then be used
for real-time emulation of the 8051 to debug the
system as a completed unit.

The final product verification test may be
performed using the 8751 EPROM version of the
8051 microcomputer. Thus, the ICE-51 module
provides the user with the ability to debug a
prototype or production system at any stage in
its development without introducing extraneous
hardware or software test tools. Figure 1 shows
an 8051 development configuration.

Figure 1. A Typical 8051 Development Configuration. The host system is an 'ntellec@ Series IV.
. The ICE-51 module is connected to a user prototype system.

5·81 Order Number: 230783·002

ICETM-51 MODULE

Symbolic Debugging

The ICE-51 emulator permits the user to define
and use symbolic (rather than absolute) ref­
erences to program and data memory ad­
dresses; additional symbols are predefined by
the ICE-51 software for referencing registers,
flags, and input/output ports. Thus, the user
need not recall or look up the addresses of key
locations in a program as they change with each
assembly, or become involved with machine
code.

When a symbol is used for memory reference in
an ICE-51 emulator command, the emulator
supplies the corresponding location as stored in
the ICE-51 emulator symbol table. This table is
loaded with the symbol table produced by the as­
sembler during application program assembly.
The user can obtain the symbol table during
software preparation simply by using the
DEBUG switch in the ASM51 macro' assembler.
Furthermore, the user can interactively modify
the emulator symbol table by adding new
symbols, or changing or deleting old ones. This
feature provides flexibility in debugging and
minimizes the need to work with hexadecimal
values.

Through symbolic references' in combination
with other features of the emulator, the user can
easily do the following:

• Interpret ille resuits of emulation activity
collected during trace. .

• Disassemble program memory to
mnemonics, or assemble mnemonic
instructions to executable code.

• Examine or modify 8051 internal reg­
isters, data memory, or port contents.

• Reference labels or addresses defined in
a user program.

PL/M Support \

The ICE-51 is capable of debugging high-level
PLIM programs by module and line numbers. An
external load option allows loading user code
into user-supplied external memory and
selective loading of symbols, lines, or external
code. The select option permits the loading of
symbols or lines for specific modules or ranges
of modules produced by PLIM programs.

Automated Debugging and Testing

The following sections describe ways in which
the user can automate some of the emulation
and debug commands.

5·82

MACRO COMMANDS

A macro is a set of commands that is given a
name. A group of commands that is executed
frequently can be defined as a macro. The user
can execute the group of commands by typing a
colon followed by the macro name. Up to 10
parameters may be passed to a macro.

Macro commands can be defined at the
beginning of a debug session and then used
throughout a session. Macro definitions can be
saved on disk for later use. The Intellec text
editor may be used to edit the macro file.

The power of the development system can be
applied to manufacturing testing as well. as
development, by writing test sequences as
macros. The macros are stored on disk for use
during system test.

COMPOUND COMMANDS

There are two kinds of compound commands.
The IF command permits conditional execution
of commands, and the COUNT and REPEAT
commands allow repetitious execution of
commands until certain conditions are met.

Compound commands may be nested any
number of times, and they may be used in macro
commands.

Example:

*DEFINE .1 =0
*COUNT 100H

.*IF.I AND 1 THEN

.. *BYTE.I =.1

.. *END

.*.1=.1+1

.*END

;Define symbol.1 as 0
;Repeat the following
;commands 1 OOH times
:Check if.1 is odd
; Fill the memory at location .I
;to value.1

;Increment by 1
;Command executes upon
;carriage return after END

(The characters *, .*, and .. * shown in this
example are system prompts that indicate the
nesting level of compound commands.)

Operating Commands

The ICE-51 software is an Intellec RAM-based
program that provides the user with easy-to-use
commands for initiating emulation, defining
breakpoints, controlling trace data collection,
and displaying and controlling system pa­
rameters. ICE-51 commands are configured with
a broad range of modifiers that provide the user
with maximum flexibility in describing the
operation to be performed.

Order Number: 230783-002

ICETM-51 MODULE

EMULATION

The ICE-51 module can emulate the operation of
a prototype 8051 system, at real-time speed (1.2
to 12 MHz) or In single-steps. Emulation
commands to the ICE-51. module control the
process of setting up, running, and halting an
emulation of the user's 8051-based system.
Breakpoints and tracepoints enable the ICE-51
emulator to halt emulation and provide a detailed
trace of execution in any part of the user's
program. In addition, the user can disable the
printing of display headers, and display or set
the contents of one or more two-byte memory
locations. A summary of the emulation
commands is shown in Table 1.

Breakpoints

The ICE-51 hardware includes two breakpoint
registers that allow the user to halt emulation
when specified conditions are met. The emulator
continuously compares the values stored in the
breakpoint registers with the status of specified
address, opcode, operand, or port values, and
halts emulation when this comparison is
satisfied. When an instruction initiates a break,
that instruction is executed completely before
the break takes place. The ICE-51 emulator then
regains control of the console and enters the
interrogation mode. With the breakpoint feature,
the user can specify an emulation break when
the program:

• Executes an instruction at a specified
address or within a range of addresses.

• Executes a particular opcode.

• Receives a specific signal on a port pin.

• Fetches a particular operand from the
user program memory.

• Fetches an operand from a specific
address in program memory.

Trace and Tracepoints

Tracing is used with both real-time and single- .
step emulation to record diagnostic information
in the trace buffer as a program is executed. The
information collected includes opcodes
executed, port values, and memory addresses.
The ICE-51 emulator collects up to 1000 frames
of trace data.

The trace data can be displayed as assembler
instruction mnemonics, if desired, for analysis
during interrogation or single-step mode. The
trace-collection facility may be set to run condi­
tionally or unconditionally. Two unique trace
qualifier registers, specified in the same way as
breakpoint registers, govern conditional trace
activity. The qualifiers can be used to condition
trace data collection to take place as follows:

• Under all conditions (forever).

o Only while the trace qualifier is satisfied.

o For the frames or instructions preceding
the time when a trace qualifier is first
satisfied (pre-triggered trace).

o For the frames or instructions after a
trace qualifier is first satisfied
(post-triggered trace).

Figure 2 shows an example of a trace display in
instruction mode.

Table 1. Major Emulation Commands

Command Description

GO Begins real-time emulation and optionally specifies break conditions.

BRO, BR1, BR Sets or displays either or both breakpoint registers used for stopping
real-time emulation.

STEP Performs single-step emulation.

QRO, QR1 Specifies match conditions for qualified trace.

TR Specifies or displays trace-data collection conditions and optionally sets the
qualifier register (QRO, QR1).

Synchronization Sets and displays the status of synchronization line output or latched input.
Line Comm"ands Used to synchronize the starting and stoping of real-time emulation or trace

to occur with external events.

Order Number: 230783-002

5-83

inter ICETM-51 MODULE

*P ALL
FRAME LOC OBJ INSTRUCTION Pl P2 PO TOVF
DODD DO DOH FO MOVX @DPTR,A DOH 88H FFH 0
0007: 0001H F8 MOV RO, A DOH 88H FFH 0
0011 : 0002H F4 CPL A DOH 88H FFH 0
0015: 0003H 33 RCL A DOH 88H FFH 0
0019: 0004H 759044 MOV .Pl, #44H DOH 88H FFH 0
0027: 0007H C3 CLR C DOH 88H FFH 0
0031: 0008H 98 SUBB A, SO 44H 88H FFH 0
0035: 0009H DODO POP DOH 44H 88H FFH 0
0043: 0008H 753405 MOV 34H, #. FIVE 44H 88H FFH 0
0051: OOOEH 0156 AJMP 0056H 44H 88H FFH 0

Figure 2. Sample Trace Display in Instruction Mode

INTERROGATION AND UTILITY COMMANDS Single-line Assembler/Disassembler

Interrogation and utility commands allow con­
venient access to detailed information about the
user program and the state of the 8051 that is
useful in debugging hardware and' software.
Changes can be made in memory and in the
8051 registers, flags, and port values. Com­
mands are also provided for various utility opera­
tions such as loading and saving program files,
defining symbols, displaying trace data, controll­
ing system synchronization, arid returning con­
trol to ISIS. A summary of the basic interrogation
and utility commands is shown in Table 2.

The single-line assembler/disassembler (ASM
and DASM commands) is a time-saving emulator
feature that permits the designer to examine and
alter program memory using assembly language
mnemonics, without leaving the emulator envi­
ronment or requiring time-consuming program
reassembly. When assembling new mnemonic
instructions into program memory, previously
defined symbolic references (from the original
program assembly, or subsequently defined
du'ring the emulation session) may be used in
the instruction operand field. The em~lator will

Table 2. Major Interrogation and Utility Commands

Command Description

HELP Displays help messages for ICE-51 emulator command-entry assistance.

LOAD Loads the user object program (8051 code) into user program memory, and
the user symbols into the ICE-51 emulator symbol table.

SAVE Saves the ICE-51 emUlator symbol table and the user object program in an
ISIS hexadecimal file.

LIST Copies all emulator console input and output to an ISIS file.

GO Begins ICE-51 emulation.

EXIT Terminates ICE-51 emulation operation and returns control to the ISIS
operating system.

DEFINE Defines the ICE-51 emulator symbol or macro.

REMOVE Deletes user-defined symbols, modules, or macro names from the symbol
table or macro table.

ASM Assembles mnemonic instructions into user program memory.

DASM Disassembles and displays user program memory contents.

Change/Display Changes or displays the value of a symbolic reference in the ICE-51
Commands/ emulator symbol table, the contents of keyword references (including

registers, I/O ports, and status flags), or the memory references.

Order Number: 230783-002

5·84

ICETM-51 MODULE

Table 2. Major Interrogation and Utility Commands Continued

Command Description

EVALUATE Evaluates an expression and displays the resulting value.

MACRO Displays an ICE-51 macro or macros.

INTERRUPT Di~plays serial, external, or timer-interrupt register settings.

SECONDS Displays the contents of the emulation timer in microseconds.

Trace Commands Positions the trace buffer pointer and selects the format for the trace display.

PRINT Displays the trace data pointed to by the trace buffer pointer.

Word Commands Displays or sets the contents of one or more two-byte memory locations.

LINES Displays all'the module names, their associated line numbers, and line
number address.

supply the absolute address or data values as
stored in the emulator symbol table. These fea­
tures eliminate user time spent translating to
and from machine code and searching for abso­
lute addresses, with a corresponding reduction
in transcription errors.

Help

The HELP file allows the user to display ICE-51

command syntax information at the Interrec
console. Typing HELP displays a listing of all
items for which help messages are available;
typing HELP < item> displays relevant inform/a­
tion about the item requested, including typical
usage examples. See Figures 3 and 4 for screen
displays of a HELP menu and a HELP < item>
menu.

Help is available for the following items. Type HELP followed by the item name.
The help items cannot be abbreviated. (for more information, type HELP HELP or
HELP INFO.)
Emulation:
GO GR SYD
BR BRD BRl
STEP

Trace Co 11 ection:
TR QR QRD QRl SYl

TraceDisplay:
TRACE MOVE PRINT
OLDEST NEWEST

Change/Display/Define/Remove:
<CHANGE> REMOVE CBYTE RBIT
<DISPLAY> SYMBOL DBYTE DASM
REGISTER RESET PBYTE ASM
SECONDS WRITE RBYTE MAP
DEFINE STACK XBYTE SY

Macro: Compound
DEFINE DIR Commands:
DISABLE
INCLUDE
<MACRO$DISPLAY>
<MACRO$INVOCATION>

ENABLE COUNT
PUT IF

REPEAT

Misc:
BASE

<address>
<CPU$keyword>

DISABLE <expr>
ENABLE <ICE51$keyword>
ERROR <identifier>
EVALUATE <instruction>
HELP <masked$constant>
INFO <match$cond>
<LIGHTS><numeric$ref>
LIST <partition>
LOAD <string>
SAVE <string$constant>
SUFFIX <symbolic$ref>
SYMBOLIC<system$symbolic>

<trace$reference>
<unlimited$match$cond>
<user$symbols>

Figure 3. Menu Display for HELP

Order Number: 230783-002

5·85

ICETM-51 MODULE

*HELP IF
IF - The conditional command allows conditional execution of one or more
commands based on the values of boolean conditioris.

IF <expr> [THEN] <cr> <true$list>: :=[<command> <cr>]@
<true$list> <false$list>: :=[<command> <cr>]@

[OR IF <expr> <cr> <command>: : =An ICE-51 command.
<true$list>]@
[ELSE <cr>
<false$list>]
END

The <expr>s are evaluated in order as 16-bit unsigned integers. If one is
reached whose value has low-order bit 1 (TRUE), all commands in the <true$list>
following that <expr> are then executed and all commands in the other
<true$list>s and in the <false$list> are skipped. If all <expr>s have value with
low-order bit 0 (FALSE), then all commands in all <true$list>s are skipped and,
if ELSE is present, all commands i~ the <false$list> are executed.

(EX: IF. LOOP=5 THEN
STEP
ELSE
GO
END)

Figure 4. Menu Display for HELP IF

Emulation Accuracy

The speed and interface demands of a high­
performance single-chip microcomputer require
extremely accurate emulation, including full­
speed, real-time operation with the full function
of the microcomputer. The ICE-51 emulator
achieves accurate emulation with an 8051 bond­
out chip, a special configuration of the 8051
microcomputer, as its emulation processor.

Each of the 40 pins on the user plug is connected
directly to the corresponding 8051 pin on the
bond-out chip. Thus, the user system sees the
emulator as an 8051 microcomputer at the 8051
socket. The resulting characteristics provide ex­
tremely accurate emulation of the 8051 , includ­
ing speed, timing characteristics, load and drive
values, and crystal operation. The emulator may
draw more power from the user system than a
standard 8051 family device (see Electrical
Characteristics).

Additional bond-out pins provide the emulator
box with signals such as internal address, data,
clock, and control lines. These signals let static

5·86

RAM in the buffer box substitute for on-chip pro­
gram ROM, EPROM, or user supplied external
program memory. The 8K bytes of full-speed
RAM in the buffer box can be mapped in 4K
blocks to anywhere within the 64K program
memory space of the 8051. The bond-out chip
also gives the emulator "backdoor" access to in­
ternal chip operation, so that the emulator can
break and trace execution without interfering
with the values on the user-system pins.

8051 AND 80C51 DEBUGGING

The minor differences between the NMOS 8051
and the CMOS Version, the 80C51, do not
prohibit the emulation of the 80C51 with the cur­
rent version of the ICE-51. The specifications of
the 8051 and the 80C51 are very similar and can
be found in the 8051 and the 80C51 data sheets.
The guideleines and limitations for emulation of
the 8051 and 80C51 are presented below.

• Maintain Vee at 5V ± 10%. This ensures
that VIL and VIH remain within the 8051
specifications and that the voltage limita­
tions are not violated.

Order Number: 230783-002

ICETM-51 MODULE

• The user's power supply must be able to
supply at least 160 rnA for the ICE-51
emulation processor, which is not CMOS.

• The 80C51 CPU idle mode is not support­
ed by the ICE-51.

• The power-down mechanism of the
80C51 is not supported by the ICE-51
emulation processor. The power-down
bit location has no effect on the chip, and
the power-down voltage (Vop) source is
not supported.

The ICE-51 is able to provide CMOS support
except for the operating limitations outlined
above.

SPECIFICATIONS

ICE™-51 Operating Requirements

Intellec Model 800, Series 11/111, or Series IV de­
velopment system (64K RAM required)

System Console

One disk drive, single-density or double-density

Intellec disk operating system (single or double
1ensity) ISIS v. 3.4 or later

Equipment Supplied

o Printed circuit boards(2)

• Emulation buffer-box, Intellec interface
cables, and user-interface cable with an
8051 emulation processor

• Dual auxiliary connector kit for the Model
800, Series 11/111, and Series IV develop­
ment systems

• Crystal power accessory

• Literature kit
-ICE-51 operating instructions manual
-ICE-51 command dictionary
-ICE-51 user's guide

• Disk-based ICE-51 software (5 1 14 inch
and 8 inch, single and double density)

ORDERING INFORMATION

Part Number

ICE-51

Description

8051 microcontroller
in-circuit emulator, cable
assembly, and interactive
disk software -

5·87

Emulation Clock

User's system clock (1.2 to 12MHz) or ICE~51
crystal power assembly (12M Hz)

Environmental Characteristics

Operating Temperature: 0° to 40° C

Operating Humidity: Up to 95% relative humidity
without condensation

Physical Characteristics

Printed Circuit Boards

Width: 12.00 in. (30.48cm)
Height: 6.75 in. (17.15 cm)
Depth: 0.50 in. (1.27 cm)

Buffer Box

Width: 8.00 in. (20.32 em)
Length: 12.00 in. (30.48 cm)
Depth: 1.75 in. (4.44cm)
Weight: 4.0 Ib (1.81 kg)

Interface Cables

Host-emulator interface cable length: 48 in.
(121.92 cm)
Em ulator-user-system interface cable length:
12.00 in. (30.48 em)

Electrical Characteristics

DC Power Requirements (from the Intellec
system):

Vee = +5V, +5%, -2.5%
lee = 13.2A max; 11.0A typical
Voo = +12V, ± 5%
100 = 0.1 A max; 0.05A typical
Vss = -10V, ± 5%
Iss = 0.05A max; 0.01A typical

User Plug Characteristics at the 8051 Socket:

Same as an 8031, 8051, or 8751, except that the
user system will see an added load of 25 pf
capacitance and 50 uA leakage from the ICE-51
emulator user plug at ports 0, 1, and 2.

ICE-85BTM
MCS-85™ IN-CIRCUIT EMULATOR

WITH MULTI-ICE™ SOFTWARE

• Connects the Intellec® system
resources to the user-configured
system via a 40-pin adaptor plug

• J:xecutes user system software in
real-time (5 MHz clock)

• Allows user-configured system to
share Intellec® memory and I/O
facilities

• Provides 1023 states of 8085 trace data

• Displays trace data from the user's
8085 in assembler mnemonics and
allows personality groupings of data
sampled by the external 18-channel
trace module

• Offers full symbolic debugging
capability for both assembly language
and Intel's high-level compiler
languages PUM-80 and FORTRAN-80

• The Multi-ICETM software lets two ICE-aS
In-Circuit Emulators operate simul­
taneously in a single Intellec
Microcomputer Development System.

• Includes enhanced software features:
symbolic display of addresses, macro
commands, compound commands,
software synchronization of processes,
and INCLUDE file capability.

The ICE-858™ module resides in the Intellec~ Microcomputer Development System and interfaces to the user
system's 8085. It provides the ability to examine and alter MCS-85™ registers, memory, flag values, interrupt
bits and I/O ports. Using the ICE-858 module, the designer can execute prototype software in real-time or
single-step mode and can substitute Intellec® system memory and I/O for user system equivalent. ICE
capability can be extended tothe rest of the user system peripheral circuitry by allowing the user to create and
execute a library of user-defined peripheral chip analyzer routines.

Multi-ICE software allows two ICE-8S In-Circuit Emulators to run simultaneously in a single Intellec Microcomputer
Development System. Multi-ICE software used in lieu of the standard ICE software gives users full control of the
two ICE-8S modules for debugging of multi-processor systems.

~r
p~'t#~~'" /

/ '

/

',,/_--

The following are trademarks of Intel Corporation and may be used only to identify Intel products: i. Intel.INTEL,INTELLEC, MCS, im, iCS, ICE, UPI, exp, iSeC,lNSITE, CREDITRMx/80,
",Scope, Multibus, PROMPT, Promware, Megachassis, Library Manager, MAIN MULTI MODULE, and the combination of MCS, ICE, sec, RMX or iCS and a numerical suffix: e.g.,
iSBC-80. . MAY 1983

©INTELCORPORATION,1983 5-88 AFN-01557C

ICE-8SBTM IN-CIRCUIT EMULATOR

SYMBOLIC DEBUGGING CAPABILITY

ICE-85B allows the user to make symbolic refer­
ences to I/O ports, memory addresses and data in his
program. Symbols and PUM-80 statement number
may be substituted for numeric values in any of the
ICE-85 commands. The user is relieved from looking
up addresses of variables or program subroutines.

The user symbol table generated along with the ob­
ject file during a PUM-80 or FORTRAN-80 compila­
tion or by the ISIS-II 8080/8085 Macro Assembler is
loaded into the Intellec® System memory along with
the user program which is to be emulated. The user
may add to this symbol table any additional symbolic
values for memory addresses, constants, or var­
iables that are found useful during system debug­
ging. By referring to symbolic memory addresses,
the user can examine, change or break at the in­
tended location.

ICE-85B provides symbolic definition of all 8085 reg­
isters, interrupt bits and flags. The following sym­
bolic references are also provided for user con­
venience: TIMER, the low-order 16 bits of a register
containing the number of 2 MHz clock pulses
elapsed during emulation; HTIMER, the high-order
16 bits of the timer counter; PPC, the address of the
last instruction emulated; BUFFERSIZE, the number
of frames of valid trace data (between 0 and 1022).

PERSONALITY GROUPED DISPLAYS

Trace data in the 1023 by 42-channel real-time trace
memory buffer i's displayed in easy to read format.
The user has the option to specify trace data dis­
plays in actual 8085 assembler instruction
mnemonics. The data collected from the External
Trace Module can be grouped and symbolically
named according to user speCifications and dis­
played in the appropriate number base designation.
Simple ICE-85B commands allow the user to select
any portion of the 42-bit trace buffer for immediate
display.

MEMORY AND I/O MAPPING

Memory and I/O for the user system can be resident
in the user system or "borrowed" from the Intellec®
System through ICE-85B's mapping capability.

ICE-85B separates user memory into 32 2K blocks.
Each block of memory can be defined indepen­
dently. The user may assign Intellec® System equiva­
lents to take the place of devices not yet designed
for the user system during prototyping. In addition,
Intellec® System memory or I/O can be accessed in
place of suspect user system devices during pro­
totyping or production checkout.

User ready synchronization-resource borrowing
from the Intellec System is (at user option) indepen­
dent of the user system; the user does not need

5-89

to provide ready acknowledge when accessing
resources mapped to the Intellec.

The user can also designate a block of memory or I/O
as nonexistent. ICE-85B issues error messages
when memory or I/O designated as nonexistent is
accessed by the user program.

INTEGRATED HARDWARE/SOFTWARE
DEVELOPMENT

The user prototype need consist of no more than
an 8085 CPU socket and a user bus to begin
integration of software and hardware develop­
ment efforts. Through ICE-858 mapping
capabilities, Intellec® System equivalents can
be accessed for missing prototype hardware.
Hardware designs can be tested using the
system software which will drive the final
product. Figure 1 shows the1CE-858 system
hosted on a Series IV development system and
connected to a user prototype system.

The system integration phase, which can be so
costly when attempting to mesh completed hard­
ware and software products, becomes a conve­
nient two-way debug tool when begun early in
the design cycle.

INTERROGATION AND
UTILITY COMMANDS

DISPLAY/ Display/Changes the values of symbols
CHANGE and the contents of 8085 registers,

pseudo-registers, status flags, inter­
rupt bits, I/O ports and memory.

EVALUATE Displays the value of an expression in
the binary, octal, decimal or hexadeci-
mal. '

SEARCH Searches user memory between loca­
tions in a user program for specified
contents.

CALL Emulates a procedure starting at a
specified memory address in user
memory.

ICALL Executes a user-supplied procedure
starting at a specified memory address
in the Intellec® System memory.

EXECUTE Saves emulated program registers and,
emulates a user-supplied subroutine to
access peripheral chips in the user's
system.

AFN-01557C

REAL TIME TRACE

ICE-8SB captures valuable trace information from.
the emulating CPU and the External Trace Module
while the user is executing programs in real time.
The 8085 status, the user memory or port addressed,
the data read or written, the serial data lines and data
from 18 external signals, is stored for the last 1023
machine states executed (511 machine cycles). This
provides ample data for determining how the user
system was reacting prior to emulation break. It is
available whether the break was user-initiated or the
result of an error condition.

For detailed information on the actions of CPU reg­
isters, flags, or other system operations, the user
may operate in single or multi-step sequences tai­
lored to system debug needs.

Figure 1. The ICE-8SB system hosted by
a Series IV development system
and connected to a user prototype
system.

EMULATION CONTROLS AND
COMMANDS

GROUP Defines into a symbolically named
group, a channel or combination of
channels from the 8085 Microprocessor
and/or the External Trace Module.

GO Initiates real-time emulation and con­
trols emulation break conditions.

STEP

PRINT

Initiates emulation in single instruction
steps. User may specify the type and
amount of information displayed follow­
ing each step, and define conditions
under which stepping should continue.

Prints the user-specified portion of the
trace memory to the selected list device.

5-90

EXTERNAL TRACE MODULE

TTL level signals from 18 points in the user system
may be synchronously sampled by the External
Trace Module and collected in ICE-8SB's trace buf­
fer. The signals can be collected from a single pe­
ripheral chip via the supplied 40-pin DIP clip or may
be placed by the user on up to 18 separate Signal
nodes using the supplied 18 individual probe clips.
These signals are included in the 42-channel break­
point comparisons and clock qualifiers. Also, data
from these 18 channels may be displayed in mean­
ingful, user-defined groupings.

SYNCHRONOUS OPERATION
WITH OTHER DESIGN AIDS

ICE-8SB can be synchronized with other Intellec®
design aids by means of two external synchroniza­
tion lines. These lines are used to enable and disable
ICE-8SB trace data collection and to cause break
conditions based on an external signal which may
not be included in the ICE-8SB breakpoint registers.
In addition, ICE-8SB can generate signals on these
lines which may be used to control other design
aids.

BREAK REGISTERS!
TRACE MEMORY

ICE-8SB has two breakpoint registers which are
used to break emulation, and two trace qualifier
registers which are used to control the collection of
trace data during emulation. Each register is 42
entries wide, one entry for each channel and each
entry can take anyone of the three values 0, 1 or
"don't care."

The trace buffer, also 42 entries wide, collects data
'sampled from 24 8085 processor channels and 18
external channels sampled by the External Trace
Module. The signals collected from the 8085 include
address lines, data lines, status lines and serial input
and output lines. The 18 channels extending from
the External Trace Module synchronously sample
and collect into the trace buffer any user-specified
TTL compatible signal from the rest of the prototype
system. "Break" and "trace qualification" may
therefore occur as a result of a match of any combi-.

. nation of up to 42 channels of CPU and external
circuitry signals.

MULTI-ICE™ OPERATION

Multi-ICE software is a d~bug tool w~ich allows two
ICE-8S emulators to begin and stop in sequence.
Once started, two ICE emulators emulate simulta­
neously and independently. Thus, Multi-ICE software
permits the debugging of asynchronous or
synchronous multi-processor systems.

AFN-01557C

ICE-85BTM IN-CIRCUIT EMULATOR

A conceptual model for the Multi-ICE software can
be illustrated with the following block diagram.

Block Diagram of Multi-ICETM Operation

There are three processes in the Multi-ICE environ­
ment: the Host process and the two ICE processes to
control the two ICE hardware modules. The pro­
cessor for these three processes is the microcom­
puter in the Intellec Microcomputer Development
System. Only the Host process is active when Multi­
ICE software is invoked. The Parser interfaces with
the console, receives commands from the console
or from a file, translates them into intermediate
code, and loads the code into the Host command
code buffer or ICE command code buffers.

The Host process executes commands from its
command code buffer using the execution software
and hardware of the Host's current environment,
either environment 1 or environment 2 (EN1 or EN2),
as required. EN1 and EN2 are the operating
environments of the two In-Circuit Emulators.

The user can change the execution environment
(from EN1 to EN2 or vice versa) with the SWITCH
command. Once the environment is selected, ICE
operation is the same as with standard ICE software.
In addition, the enhanced software capabilities are
available to the user.

The two ICE processes (PR1 and PR2) execute
commands from their command code buffers in
their own environments (PR1 in EN1 and PR2 in
EN2). The main functions of the two ICE execution
processes are to control the operations of the two
ICE hardware sets. The ACTIVATE command con­
trols the execution of the ICE processes. Commands
are passed on to each ICE unit to initiate the desired
ICE functions.

The two ICE hardware units accept commands from
the Host process or ICE processes. Once emulations
start, the two ICE hardware sets will operate until a
break condition is met or processing is interrupted
by commands from the ICE execution processes.

Symbolic Display of Addresses

The user has the option of displaying a 16-bit
address in the form of a symbol name or line number
plus a hex number offset.

5·91

Macro Command

A macro is a set of commands wh ich is given a name.
Thus, a group of commands which is executed fre­
quently may be defined as a macro. Each time the
user wants to execute that group of commands, he
may just invoke the macro by typing a colon fol­
lowed by the macro name. Up to ten parameters may
be passed to the macro.

Macro commands may be defined at the beginning
of a debug session and then can be used throughout
the whole session. If the user wants to save the
macros for later use, he may use the PUT command
to save the macro on diskette, or the user may edit
the macro file off-line using the Intellec text editor.
Later, the user may use the INCLUDE command to
bring in the macro definition file that he created.

Example:

*DEFINE MACRO
INITMEM

.*SWITCH = EN1

:BYTE 0 TO 100=0
.*LOAD:F1 :DRIVER

.*SWITCH = EN2

.*LOAD:F1 :DR2

.*EM

;This macro clears the
memory and then loads the
programs.
;Select environment 1 (ICE
Module 1)
;Initialize memory to O.
;Load user program into
memory for ICE Module 1.
;Select environment 2 (ICE
Module 2)
;Load user program into
memory for ICE Module 2
;End of Macro
;To execute this Macro, user
types :INITMEM

Compound Command

Compound commands provide conditional execu­
tion of commands (IF Command) and execution of
commands repeatedly until certain conditions are
met (COUNT, REPEAT Commands).

Compound commands and Macro commands may
be nested any number of times.

Example:

*DEFINE .1 = 0
*COUNT 100H

.*IF .1 AND 1 THEN

. .*BYT.I =.1

. .*END
:.1=.1+1
.*END

;Define symbol .1 to 0
;Repeat the following
commands 100H times
;Check if .1 is odd ,
;Fill the memory at location .1
to value.1

;Increment .1 by 1
;Command executes upon
carriage-return after END

·INCLUDE File Capability

The INCLUDE command causes input to be taken
from the file specified until the end of the file is
encountered, at which pOint, input continues to be

AFN-01557C

ICE-8S8™ IN-CIRCUIT EMULATOR

taken from the previous source. Nesting of IN­
CLUDES is permitted. Since the command code file
can be complex, the ability to edit offline becomes
desirable. The INCLUDE command allows the user
to pull in command code files and Macro commands
created offline which can then be used for the par­
ticular debugging session.

Example:

*INClUDE :F1 :PROG1

*MAP 0 lENGTH 64K
=USER

*MAP 10 0 TO FF
=USER
*SWITCH = EN2
*lOAD :F2:lED.HEX
·SWITCH = EN1

;Cause input to be taken
from file PROG1
;Contents of the file
PROG1 are listed on
screen as they are
executed.

;End of the file PROG1
;After the end of file is

-reached, control is
returned to console.

Software Synchronization of Processes

Up to three processes (Host, PR1 and PR2) can be
active simultaneously in the system. An ICE process
can be activated (ACTIVATE), suspended (SUS­
PEND), killed (Kill), or continued (CONTINUE). The
Host process can wait for other processes to be­
come dormant before it becomes active again.
Through these synchronization commands, the user
can create a system test file off-line yet be able to
synchronize the three processes when the actual
system test is executed.

Example:

The capability of the software synchronization
commands is demonstrated by the following ex­
ample. The flowchart shows the synchronization
requirements. The program steps show the actual
implementation.

PROCESSOR 1 PROCESSOR 2

PAOCESSOR1 I
DORMANT I

PROCESSOR I
ACTIVE

I PROCESSORZ

I DO " N1

I PROCESSOR 2 I DORMANT

·ACTIVATE PR1
.·GO FROM 800
.·ENO
PR1 EMULATtON BEGUN
·SWI=EN2
·REPEAT

.·WHILE PC < > .LOOP

.·ACT PR2

.:GO TILL .LOOP OR .ENO

. ·REGISTER

.:END
.·WAIT PR2
:IF PC=.LOOP THEN
.:SUSPEND PR1
.:END
·END

;Activate PR t
;Start tCE Modute t
;End of Activate block

:Switch execution Environment to EN2
;Repeat the following block of
commands while PC is not equal to . Loop

;Activate PR2
;Go till instruction at location .Loop
or at location .END is executed

;Display the registers
;End of Activate block
;Wait until PR2 is dormant

;End of IF block
;End of REPEAT block

Flowchart of the Example for Demonstrating Multi-ICE™ Synchronization Capability

5-92 AFN-01557C

ICE-85BTM IN-CIRCUIT EMULATOR

SPECIFICATIONS Emulation Clock

ICE·85BTM Operating Environment User's system clock or ICE-85B adaptor socket
(10.0 MHz Crystal)

Required Hardware:
Intellec@ Model 800 Series II, Series III, or
Series IV Microcomputer Development System

(64K bytes RAM for Multi-ICE software)
(32K btyes RAM single ICE software)
System Console (Model 800 only)
ICE-8SB Module

Required Software:
System Monitor
ISIS v 3.4 or later
ICE-8SB or Multi-ICE Software

Equipment Supplied

18-Channel External Trace Module
Printed Circuit Boards (2)
Interface Cable and Emulation Buffer Module
Operator's Manuals
ICE-85B Software
Multi-ICE Software

Contains software that supports 85/85
Emulators, 85/49 Emulators and 85/41 A
Emulators

ICE 85 CONTAOl BOARD

f-----
I
r-- --

I TRACE I?~~- -

Physical Characteristics

Printed Circuit Boards:
Width: 12.00 in. (30.48 cm)'
Height: 6.75 in. (1715 cm)
Depth: 0.50 in. (1.27 cm)
Packaged Weight: 6.00 Ib (2.73 kg)

Electrical Characteristics

DC Power:
Vcc = + 5V ± S%
Icc = 12A maximum; 10A typical
V 00 = + 12V ± 5%
100 = 80 rnA maximum; 60 mA typical
V BB = - 10V ± 5%
IBB = 1 rnA maximum; 10 p.A typical

Environmental Characteristics

Operating Temperature: 0° to 40°C
Operating Humidity: Up to 95% relative

humidity without
condensation.

CHI"DATA I J
CONTROL I

ADDRESS I

I

TO USER'S
SOCKET

I 'I L-.. _,,_.-2'~CL,~,~,.
I fORCE TRACE

L _______ --=-~-=-=-_-=- ___ _ ~~~-------~========~-----~SY"C 1 _ ~ L ____________________ ~
ICE 85 TRACE BOARD 8085 CHIP CONTAOLLER -r----------1 18 USER TRACE

--------1 SlGNAl8UFfERS ~PR08ES
L __________ .J

18 EXTERNAL TRACE BUffER

ICE-85BTM BLOCK DIAGRAM

S·93 AFN-01SS7C

ICE-85BTM IN-CIRCUIT EMULATOR

Ordering Information

Part Number

ICE-8SS

Description

8085 CPU In-Circuit Emulator,
18-Channel External Trace
Module and Multi-ICE
'software

5·94 AFN·01557C

ICE™-86A
iAPX 86 IN-CIRCUIT EMULATOR

• Real-time in-circuit emulation of iAPX
86 microsystems

• Emulate both minimum and maximum
modes of the 8086 CPU

• Full symbolic debugging

• Breakpoints to halt emulation on a wide
variety of conditions

• Comprehensive trace of program
execution

• Disassembly of trace or program
memory from object code into
assembler mnemonics

• Software debugging with or without a
user system

• Handles full 1 megabyte of iAPX 86
address space

The Intel ICETM-86A in-circuit emulator provides sophisticated hardware and software debugging
capabilities for iAPX 86 microsystems and iAPX 86 single-board computers. These capabilities include
in-circuit emulation for the 8086 central processing unit plus extensions to debug systems including
the 8087 numeric processor extension. The emulator includes three circuit boards which reside in any
Intellec@ microcomputer development system (see Figure 1). A cable and buffer box connect the Intel­
lec system to the user system by replacing the user's 8086, thus extending powerful Intellec system
debugging functions into the user system (see Figure 2). Using the ICE-86A module, the designer can
execute prototype 8086 software in continuous or single-step modes and can substitute blocks of In­
tellec system memory for user equivalents. Breakpoints allow the user to stop emulation on user­
specified conditions of the iAPX 86 system, and the trace capability gives a detailed history of the pro­
gram execution prior to the break. All user access to the prototype system software may be done sym­
bolically by referring to the source program variables and labels.

-------.. - .. ~

Intel CorporaTiotfassumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent license's are Implied. Information contained herein supercedes previously published specifications on these devices from Intel.

o INTEL CORPORATION, 1984

5-95

JULY, 1984
ORDER NUMBER: 980931-003

ICETM_86A IN-CIRCUIT EMULATOR

INTEGRATED
HARDWARE/SOFTWARE
DEVELOPMENT

The ICE-86A emulator allows hardware and soft­
ware development to proceed interactively. This
is more effective than the traditional method of
independent hardware and software develop­
ment followed by system integration. With the
ICE-86A module, prototype hardware can be
added to the system as it is designed. Software
and hardware testing occurs while the product
is being developed.

The ICE-86A emulator assists during three
stages of development:

1. It can be operated without being connected
to the user's system, so the ICE-86A
module's debugging capabilities can be used
to facilitate program development before any
of the user's hardware is available.

2. Integration of software and hardware can
begin when .any functional element of the
user system hardware is connected to the
8086 socket. Because of the ICE-86A emula;'
tor mapping capabilities, Intellec memory,
ICE module memory, or diskette memory can
be substituted for missing prototype memory.
Time-critical program modules are debugged
before hardware implementation by using the
2K-bytes of high-speed ICE-resident mem­
ory. As each section of the user's hardware is
completed, it is added to the prototype. Thus
each section of the hardware and software is
system tested as it becomes available.

3. When the user's prototype is complete, it is .
tested with the final' version of the user
system software. The ICE-86A module is
then used for real-time emulation of the 8086
to debug the system as a completed unit.

Thus the ICE-86A module provides the user with
the ability to· debug a prototype of production
system at any stage in its development without
introducing extraneous hardware or software
test tools.

SYMBOLIC DEBUGGING

Symbols and high-level language statement
numbers may be substituted for numeric values
in any of the ICE-86A emulator commands. This
allows the user to make symbolic references to
I/O ports, memory addresses, and data in the
user program. Thus, the user need not remember
the addresses of variables of program sub­
routines.

Symbols can be used to reference variables,
procedures, program iabels, and source state­
ments. A variable can be displayed or changed
by referring to it by name rather than by its abso­
lute location in memory. Using symbols for state­
ment labels, program labels, and procedure
names Simplifies both "tracing and breakpoint
setting. Disassembly of a section of code from
either trace or program memory into its assembly
mnemonics is readily accomplished.

Furthermore, each symbol may have associated
with it one of the data types BYTE, WORD,

.INTEGER, SINTEGER (for short, 8-bit integer),

PLUG INTO
USER
8088 SOCKET

.------ -- - ---- ------------------------ --, I ... ____ ., T -CABLE I

I I I I
I I I I I FIRMWARE
I I CONTROLLER TRACE BOARD I

I INTELLECI& I BOARD I
I I HOST I I

I II I AUXILIARY CONNECTOR I
I I
I I I I I L ____ ..oJ I
L ___________________________ ~~~~~~J

1974

Figure 1. ICE-86ATM Emulator Block Diagram

980931-003

5-96

inter ICETM-86A IN-CIRCUIT EMULATOR

\
\

\

Figure 2. A typical iAPX86 development configuration. It is based on an Series IV
development system, which hosts the ICE-86ATM emulator. The ICE-86ATM
module is shown connected to a user prototype system, in this case, an SDK-86.

POINTER, REAL, DREAL,or TREAL. Thus, the
user need not remember the type of a source
program variable when examining or modifying
it. For example, the command U!VAR" displays
the value in memory of variable VAR in a format
appropriate to its type, while the command
"!VAR = !VAR + 1" increments the value of the
variable.

The user symbol table generated along with the
object file during a PUM-86, PASCAL-86 or
FORTRAN-86 compilation or an ASM-86 assem­
bly is loaded into "memory along with the user
program which is to be emulated. The user can
utilize the available symbol table space more ef­
ficiently by using the SELECT option to choose
Which program modules will have symbols
loaded in the symbol table. The user may also
add to this" symbol table any additional symbolic
values for memory addresses, constants, or
variables that are found useful during system
debugging.

The ICE-86A module provides access through
symbolic definition to all of the 8086 registers
and flags. the READY, NMI, TEST, HOLD,
RESET, INTR, MN/MX, and RQ/GT pins of the
8086 can also be read. Symbolic reference to
key ICE-86A emulation information are also
provided.

5-97

MACROS AND COMPOUND
COMMANDS
The ICE-86A module provides a programmable
diagnostic facility which allows the user to tailor
its operation using macro commands and com­
pound commands.

A macro is a set of ICE-86A commands which is
given a single name. Thus, a sequence of com­
mands which is executed frequently may be in­
voked simply by typing in a single command.
Users first define the macro by entering the
entire sequence of commands which they want
to execute. They then name the macro and store
it for future use. They execute the macro by
typing its name and paSSing up to ten parame­
ters to the commands in the macro. Macros may
be saved on a disk file for use in subsequent
debugging sessions.

Compound commands provide conditional exe­
cution of commands (IF), and execution of com­
mands until a condition is met or until they have
been executed a specified number of times
(COUNT, REPEAT).

Compound commands and macros may be
nested up to 8 deep.

980931-003

ICETM·86A IN·CIRCUIT EMULATOR

MEMORY MAPPING

Memory for the user system can be resident in
the user system or "borrowed" from the Inte"ec
System through the ICE-S6A emulator's mapping
capability. The speed of emulation by the
ICE-S6A module depends on which mapping op­
tions are being used.

The ICE-S6A emulator allows the memory which
is addressed by the SOS6 to be mapped in
SK-byte blocks to the following locations:

1. Physical memory in the user's system, which
provides 100 percent real-ffll:!e emulation at
the user-system clock rate (up"to 5 MHz) with
no wait-states.

2. Either of two 1 K-byte blocks of ICE-S6A
module high-speed memory, which allows
nearly full-speed emulation (with'two addi­
tional wait-states per SOS6-controlled bus
cycle).

3. Intellec System memory, which provides
emulation at approximately 0.02 percent of
real-time with a 5 MHz clock.

4. A random-access diskette file, with emulation
speed comparable to Inte"ec System mem­
ory, except the emulation must wait when a
new page is accessed on the diskette.

The user can also designate a block of memory
as non-existent. The ICE-S6A module issues an
error message when any such guarded memory
is addressed by the user program.

As the user prototype progresses to include
memory, emulation becomes real time.

OPERATION MODES

The ICE-S6A software is a RAM-based program
that provides the user with easy-to-use com­
mands for initiating emulation, defining break­
points, controlling trace data collection, and dis­
playing and controlling system parameters.
ICE-S6A commands are configured with a broad
range of modifiers which provide the user with
maximum flexibility in describing the operation
to be performed.

Emulation

Emulation commands to the ICE-S6A emulator
control the process of setting up, running, and
halting an emulation of the user's iAPX S6
system. Breakpoints and tracepoints enable the

ICE-S6A 'module to halt emulation and provide a
detailed trace of execution in any part of the
user's program. A summary of the emulation
commands is shown in Table 1.

Table 1. Summary of ICETM_S6A
Emulation Commands

Command Description

GO Initializes emulation and
allows the user to specifiy the
starting point and breakpoints.
Example:

GO FROM.START TILL.DELAY
EXECUTED

where START and DELAY are
statement lables.

STEP A"ows the user to single-step
through the program

Breakpoints: The ICE-S6A module has two
breakpoint registers that allow the user to halt
emulation when a specified condition is met. The
breakpoint registers may be set up for execution
or non-execution breaking. An execution break­
point consists of a single address which causes
a break whenever the SOS6 executes from its
queue an instruction byte which was obtained
from the address. A non-execution breakpoint
causes an emulation break when a specified
condition other than an instruction execution
occurs. A non-execution breakpoint condition,
using one or both breakpoint registers, may be
specified by anyone of or a combination of:

1. A set of address values - breaking on a set
of address values has three valuable
features:

a. The ability to break on a single address.

b. The ability to set any number of break­
pOints within a limited range (1,024 bytes
maximum) of memory.

c. The ability to break in an unlimited range.
Execution is halted on any memory
access to an address greater than (or less
than) any 20-bit breakpoint address.

2.A particular status of the 8086 bus - one or
more of: memory or I/O read or write, instruc­
tion fetch, halt, or interrupt acknowledge.

3. A set of data values - features comparable
to break on a set of address values, explained
in pOint one.

980931-003

5·98

ICETM-86A IN-CIRCUIT EMULATOR

4. A segment register - break occurs when the
register is used in an effective address
calculation.

An emulation break can.also be set to occur on
an external signal condition. An external break­
point match output and emulation status lines
are provided on the buffer box. These allow syn­
chronization of other test equipment when a
break occurs or when emulation is begun. Exe­
cution breakpoints set to occur on instructions
requiring only 2 or 3 clock cycles to complete
will break after completion of the following
instruction.

Tracepoints: The ICE-86A module has two
tracepoint registers which establish match con­
ditions to conditionally start and stop trace
collection. The trace information is gathered at
least twice per bus cycle, first when the address
signals are valid and second when the data sig­
nals are valid. If the 8086 execution queue is
otherwise active, additional frames of trace are
collected.

Each trace frame contains the 20 address/16
data lines and detailed information on the status
of the 8086. The trace memory can store 1,024
frames, or an average of about 300 bus cycles,
providing ample data for determining how the
8086 was reacting prior to emulation break. The
trace memory contains the last 1,024 frames of
trace data collected, even if this spans several
separate emulations. The user has the option of
displaying each frame of trace data or displaying
by instruction in actual ASM-86 Assembler
mnemonics. Unless the user chooses to disable
trace, the trace information is always available
after an emulation.

Interrogation and Utility

Interrogation and utility commands give the user
convenient access to detailed information about
the user program and the state of the 8086 that
is useful in debugging hardware and software.
Changes can be made in both memory and the
8086 registers, flags, input pins, and I/O ports.
Commands are also provided for various utility
operations such as loading and saving program
files, defining symbols and macros, displaying
trace data, setting up the memory map, and re­
turning control to ISIS-II. A summary of the basic
interrogation and utility commands is shown in
Table 2.

iAPX 86/20 DEBUGGING

The ICE-86A module has the extended capabili­
ties to debug iAPX 86/20 microsystems which

5-99

contain both the 8086 microprocessor and the
8087 Numeric Processor Extension (NPX). An
iAPX 86/20 system is configured in the 8086's
maximum mode and communication between
the processors is accomplished through the
RQ/GT signals. Debugging can be done either
using the 8087 chip itself (in which case the
8086 ESCAPE instruction is interpreted as a
floating point instruction) or using the 8087 soft­
ware emulator E8087 (where the 8086 INTER­
RUPT instruction is interpreted as a floating
point instruction). Three new data types are
defined to use the NPX:

REAL (4 byte short real)
OREAL (8 byte long real)
TREAL (10 byte temporary real)

While the 8087 NPX is not a programmable part,
it does interact closely with the 8086 and can ex­
ecute instructions in parallel with it. The
ICE-86A module provides information about the
relative timing of instruction execution in each
processor so that the complete system can be
debugged. Other debugging capabilities avail­
able through the ICE-86A module are: symboli­
cally disassemble NPX call instructions from
memory or trace history; display or change the
control, status and flag values of the NPX; dis­
play the NPX stack either in hexadecimal or dis­
assembled form; and display the last instruction
address, last operand, and last operand
address. The 8087 can only communicate with
user memory.

Multiprocessor Operation

The ICE-86A emulator-supports 8089 configura­
tions in both local and remote modes. The
ICE-86A emulator may be operating either in
minimum or maximum mode. In maximum mode,
the 8086 RQ/GT lines are employed. This is re­
quired for the 8089 local mode configuration to
provide local bus arbitration between the two
processors.

DESIGN CONSIDERATIONS

• When the ICE-86A system is operating in in­
terrogation mode, responses to HOLD/HOLD
ACKNOWLEDGE can require up to 450
microseconds.

• A HOLD sequence error will occur if an addi­
tional hold pulse is inserted before the
ICE-86A system responds to the previous
hold pulse.

• To enter emulation, user READY must be
high to avoid a READY$TIMEOUT error.

980931-003

ICETM-86A IN-CIRCUIT EMULATOR

• The ICE-86A system generates an extra bus
cycle upon entry into emulation. Users
should ignore the extra bus cycle.

• If a user applies a RESET during generation
of HOLD, a failure message may result.

Table 2. Selected ICETM-88A Module Interrogation and Utility Commands

Memory/Register Commands
Display or change the contents of:

• Memory
• 8088 registers
• 8088 status flags
• 8088 input pins
• 8088 I/O ports
• ICE-86A pseudo-registers (e.g.,

emulation timer)

Memory Mapping Commands
Display,' declare, set or reset the ICE-86A
memory mapping.

Symbol Manipulation Commands
Display any or all symbols, program
modules, and program line numbers and
their associated values (locations in
memory).

Set the domain (choose the particular
program module) for the line numbers.

Define new symbols as they are needed in
debugging.

Remove any or all symbols, modules, and
program statements.

Change the value of any symbol.

Select program modules whose symbols
will be used in debugging.

TYPE
Assign or change the type of any symbol in
the symbol table.

DASM
Disassemble user program memory into
ASM-86 assembler mnemonics.

5-100

RQ/GT
Set or display the status of the
request/grant facility which enables the
ICE-86A module to share the system bus
with coprocessors.

BUS
Display which device in the user's iAPX 86
system is currently master of the system
bus.

CAUSE
Display the cause of the most recent
emulation break.

PRINT
Display the specified portion of the trace
memory.

LOAD
Fetch user symbol table and object code
from the input file.

EVALUATE
Display the value of an expression in
binary, octal, decimal, hexadecimal, and
ASCII.

CLOCK
Select the internal (lCE-86A module
provided, for stand-alone mode only) or an
external (user-provided) system clock.

RWTIMEOUT
Allows the user to time out READ/WRITE
command signals based on the time taken
by the 8086 to access Intellec memory or
diskette memory.

ENABLE/DISABLE ROY
Enable or disable logical AND or ICE-86A
emulator ready with the user ready signal
for accessing Intellec memory, ICE
memory, or diskette memory.

980931-003

ICETM-86A IN-CIRCUIT EMULATOR

DC CHARACTERISTICS OF THE
ICE™-86A MODULE USER CABLE

1. Output low Voltages [VOL (Max)=O.4V]

IOL (Min)

ADO-AD15

A 16/S3-A 19/57, BHE/S7,
RD, LOCK, OSO, OS1, SO,
ST,"S2, WR, MIlO, DT/R,
DEN, ALE, INTA

HLDA

RO/GT

12mA
(24 rnA @ 0.5V)

SmA
(16 rnA @ 0.5V)

7mA

16mA

2. Output High Voltages [V OH (Min)=2.4V]

IOH (Min)

ADO-AD15

A16/S3-A19/S7, BHE/S7,
RD, LOCK, OSO, OS1, SO,
ST,"S2, WR, MIlO, DT/R,
DEN, ALE, INTA, HLDA

RO/GT

-3mA

-2.6mA

250 rnA

3. Input Low Voltages [V I~ (Max)=O.18V]

ADO-AD15
NMI,CLK
READY
INTR, HOLD, TEST, RESET
MN/MX (0.1 JLF to GND)

IlL (Max)

-0.2mA
-0.4 rnA
-O.S rnA
-1.4 rnA
-3.3mA

4. Input High Voltages [VIH (Min»=2.0V]

ADO-AD15
NMI,CLK
READY
INTR, HOLD, TEST, RESET
MN/MX (0.1 JLF to GND)

IIH (Max)

SOJLA
20 JLA
40 JLA

-0.4 rnA
-1.1 rnA

5. No current is taken from the user
circuit at the V cc pin.

SPECIFICATIONS

ICE-86A Operating Environment

REQUIRED HARDWARE

Intellec Model 800, Series II, Series III, or Series
IV microcomputer development system with the
following:

• Three adjacent slots for the ICE-S6A
module.

5-101

• 64K bytes of Intellec memory. If user pro­
totype program memory is desired, addi­
tional memory above the basic 64K. is
required.

System console (Model SOO only)
Disk drive (Model SOO only)
ICE-S6A module

REQUIRED SOFTWARE

System Monitor
ISIS, version 4.3 or subsequent versions

Equipment Supplied

Printed circuit boards (3)
Interface cable and emulation buffer module
Operator's manual
ICE-S6A software, diskette-based
-S inch single and double density
-51/4 inch double density

Emulation Clock

User system clock up to 5 MHz or 2 MHz
ICE-S6A internal clock in stand-alone mode

Physical Characteristics

PRINTED CIRCUIT BOARDS

Width: 12.00 in (30.4S cm)
Height: 6.75 in (17.15 cm)
Depth: 0.50 in (1.27 cm)
Package Weight: 9.00 (4.10 kg)

Electrical Characteristics

DC POWER

Vcc=+5V +5%-1%
Icc= 17A maximum; 11 A typical
Voo= + 12V±5%
100= 120 rnA maximum; SO rnA typical
Vss= -1 OV±5% or -12V ±5% (optional)
Iss=25 rnA maximum; 12 rnA typical

Environmental Characteristics

OPERATING TEMPERATURE

OPERATING HUMIDITY

Up to 95% relative humidity without
condensation.

980931-003

ORDERING INFORMATION

Part Number

ICE-86A

Description

iAPX 86 microsystem in-circuit
emulator, cable assembly, and
interactive software.

5-102

ICE™-88A
iAPX 88 IN-CIRCUIT EMULATOR

• Real-time in-circuit emulation of iAPX
88 microsystems

• Emulate both minimum and maximum
modes of 8088 CPU, including RQ/GT

• Handles full 1 megabyte of iAPX
address space

• Breakpoints to halt emulation on a wide
variety of conditions

• Comprehensive trace of program
execution

• Full symbolic debugging

• Disassembly of trace or program
memory from object code into
assembler mnemonics

• Full 8087 support, including trace
disassembly and 8087 data type entry
and display options

The Intel ICETM-88A in-circuit emulator provides sophisticated hardware and software debugging
capabilities for iAPX 88 microsystems and iAPX 88 single-board computers. These capabilities include
in-circuit emulation for the 8088 central processing unit plus extensions to debug systems including
the 8087 numeric processor extension. The emulator includes three circuit boards which reside in any
Intellec@ microcomputer development system (see Figure 1). A cable and buffer box connect the Intel­
lec system to the user system by replacing the user's 8088, thus extending powerful Intellec system
debugging functions into the user system (see Figure 2). Using the ICE-88A module, the designer can
execute prototype iAPX 88 software in continuous or single-step modes and can substitute blocks of
Intellec system memory for user equivalents. Breakpoints allow the user to stop emulation on user­
specified conditions of the iAPX 88 system, and the trace capability gives a detailed history of the pro­
gram execution prior to the break. All user access to the prototype system software may be done sym­
bolically by referring to t~e source program variables and labels.

::::::::':III\fll

--

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied. Information contained herein supercedes previously published specifications on these devices from Intel.

C> INTEL CORPORATION, 1984

5·103

JULY, 1984
ORDER NUMBER: 210357·002

ICETM-88A IN-CIRCUIT EMULATOR

INTEGRATED HARDWARE/
SOFTWARE DEVELOPMENT

The ICE-88A emulator allows hardware and soft­
ware development to proceed interactively. This
is more effective than the traditional method of
independent hardware and software develop­
ment followed by system integration. With the
ICE-88A module, prototype hardware can be
added to the system as it is designed. Software
and hardware testing occurs while the product
is being developed.

The ICE-88A emulator assists in three stages of
development:

1. It can be operated without being connected
to the user's system, so the ICE-88A
module's debugging capabilities can be used
to facilitate program development before any
of the user's hardware is ~vailable.

2. Integration of software and hardware can
begin when any functional element of the
user system hardware is connected to the
8088 socket. Because of the ICE-88A emula­
tor mapping capabilities, Intellec memory,
ICE module memory, or diskette memory can
be substituted for missing prototype memory.
As each section of the user's hardware is
completed, it is added to the prototype. Thus
each section of the hardware and software is
system tested as it becomes available.

3. When the user's prototype is complete, it is
tested with the final version of the user
system software. The ICE-88A module is
then used for real-time emulation of the 8088
to debug the system as a completed unit.

Thus, the ICE-88A module provides the user
with the ability to debug a prototype or produc­
tion system at any stage in its development with­
out introducing extraneous hardware or software
test tools.

SYMBOLIC DEBUGGING

Symbols and high-level language statement
numbers may be substituted for numeric values
in any of the ICE-88A emulator commands. This
aUows the user to make symbolic references t,o
I/O ports, memory addresses, and data in the
user program. Thus, the user need not remember
the addresses of variables or program sub­
routines.

Symbols can be used to reference variables,
procedures, program labels, and source state­
ments. A variable can be displayed or changed
by referring to it by name rather than by its abso­
lute location in memory. Using symbols for state­
ment labels, program labels, and procedure
names simplifies both tracing and breakpoint
setting. Disassembly of a section of code from
either trace or program memory into its assembly
mnemonics is readily accomplished.

Furthermore, each symbol may have associated
with it one of the data types BYTE, WORD,
INTEGER, SINTEGER (for short, 8-bit integer),
POINTER, REAL, OREAL, or TREAL. Thus, the
user need not remember the type of a source
program variable when examining or modifying
it. For example, the command U!VAR" displays
the value in memory of variable VAR in a format
appropriate to its type, while the command
"!VAR = !VAR + 1" increments the value of the
variable.

PLUG INTO
USER
8088 SOCKET

r------------- ------------------------ --,
I ,... ____ .., T ·CABLE I

I I I I
I I I I

I I TRACE BOARD 88·CONTROLLER I
I I INTELLEC@ I BOARD I
I I HOST I I
I I I AUXILIARY CONNECTOR I
I I I
I I I I
I L - - - - ..J INTELLEC'" SYSTEM I L _________________________________ J

1974

Figure 1. ICETM_88A Emulator Block Diagram

210357·002

5·104

inter ICETM-88A IN-CIRCUIT EMULATOR

The user symbol table generated along with the
object file during a PLlM-86/88, Pascal-86/88,
or FORTRAN-86/88 compilation or an ASM-
86/88 assembly Is loaded into memory along
with the user program which is to be emulated.
The user can utilize the available symbol table
space more efficiently by using the SELECT
option to choose which program modules will
have symbols loaded in the symbol table. The
user may also add to this symbol table any addi­
tional symbolic values for memory addresses,
constants, or variables that are found usefUl
during system debugging.

The ICE-88A module provides access through
symbolic definition to all of the 8088 registers
and flags. The READY, NMI, TEST, HOLD,
RESET, INTR, MN/MX, and RQ/GT pins of the
8088 can also be read. Symbolic references to
key ICE-88A emulation information are also
provided.

MACROS AND COMPOUND
COMMANDS

The ICE-88A module provides a programmable
diagnostic facility which allows the user to tailor
its operation using macro commands and com­
pound commands.

A macro is a set of ICE-88A commands which is
given a single name. Thus, a sequence of com­
mands which is executed frequently may be in­
voked simply by typing in a single command.
Users first define the macro by entering the

entire sequence of commands which they want
to execute. They then name the macro and store
it for future use. They execute the macro by
typing its name and passing up to ten parame­
ters to the commands in the macro. Macros may
be saved on a disk file for use in subsequent
debugging sessions.

Compound commands provide conditional exe­
cution of commands (IF), and execution of com­
mands until a condition is met or until they have
been executed a specified number of times
(COUNT, REPEAT).

Compound commands and macros may be
nested up to eight deep.

MEMORY MAPPING

Memory for the user system can be resident in
the user system or borrowed from the Intellec
system through the ICE-88A emulator's mapping
capability. The speed of emulation by the
ICE-88A module depends on which mapping op­
tions are being used.

The ICE-88A emulator allows the memory which
is addressed by the 8088 to be mapped in
1 K-byte blocks to the following locations:

1. Physical memory in the user's system, which
provides 100 percent real-time emulation at
the user-system clock rate (up to 5 MHz) with
no wait states.

Figure 2. A typical iAPX 88 development configuration. It is based on an Series IV
development system, which hosts the ICE-88ATM emulator. The ICE-88ATM
module is shown connected to a user prototype system.

5·105 210357-002

ICETM-88A IN-CIRCUIT EMULATOR

2. Either of two 1 K-byte blocks of ICE-88A
module high-speed memory, which allows
nearly full-speed emulation (with two addi­
tional wait states per 8088-controlled bus·
cycle).

3. Intellec system memory, which provides emu­
lation at approximately 0.02 percent of real­
time with a 5 MHz clock.

4. A random-access diskette file, with emulation
speed comparable to Intellec system memo­
ry, except the emulation must wait when a
new page is accessed on the diskette.

The user can also designate a block of memory
as non-existent. The ICE;-88A module issues an
error message when any such guarded memory
is addressed by the user program.

As the user, prototype progresses to include
memory, emulation becomes real time.

OPERATION MODES

The ICE-88A software is a RAM-based program
that provides the user with easy-to-use com­
mands for initiating emulation, defining break­
points, controlling trace data collection, and dis­
playing and controlling system parameters.
ICE-88A commands are configured with a broad
range of modifiers which provide the user with
maximum flexibility in describing the operation
to be performed.

Emulation

Emulation commands to the ICE-88A emulator
control the process of setting up, running and
halting an emulation of the user's iAPX 88
system. Breakpoints and tracepoints enable the
ICE-88A module to halt emulation and provide a
detailed trace of execution in any part of the
user's program. A summary of the emulation
commands is shown in Table 1.

Breakpoints: The ICE-88A module has two
breakpoint registers that allow the user to halt
emulation when a specified condition is met. The
breakpoint registers may be set up for execution
or non-execution breaking. An execution break­
point consists of a single address which causes
a break whenever the 8088 executes from its
queue an instruction byte which was obtained
from the address. A non-execution breakpoint
causes an emulation break when a specified
condition other than an instruction execution
occurs. A non-execution breakpoint condition,
using one or both breakpoint registers, may be

5·106

specified by anyone of or a combination of the
following:

1. A set of address values - Break on a set of
address values has three valuable features:

a. The ability to break on a single address.

b. The ability to set any number of break­
points within a limited range (1,024 bytes
maximum) of memory.

c. The ability to break in an unlimited range.
Execution is halted on any memory
access to an address greater than (or less
than) any 20-bit breakpoint address.

2. A particular status of the 8088 bus - one or
more of: memory or 1/0 read or write, instruc­
tion fetch, halt, or interrupt acknowledge.

3. A set of data values - features comparable
to break on a set of address values, explained
in point one.

4. A segment register - break occurs when the
register is used in an effective address
calculation.

Table 1. Summary of ICETM.88A
Emulation Commands

Command Description

GO Initializes emulation and
allows the user to specifiy the
starting point and breakpoints.

Example:

GO FROM .START TILL
.DELAY EXECUTED

where START and DELAY are
statement labels.

STEP Allows the user to single-step
through the program.

Emulation break can also be set to occur on an
external signal condition. An external breakpoint
match output and emulation status lines are
provided on the buffer box. These allow syn­
chronization of other test equipment when a
break occurs or when emulation is begun. Exe­
cution breakpoints set to occur on instructions
requiring only two or three clock cycles to com­
plete will break after completion of the following
instruction.

Tracepolnts: The ICE-88A module has two
tracepoint registers which establish match con­
ditions to conditionally start and stop trace
collection. The trace information is gathered at

210357-002

ICETM-88A IN-CIRCUIT EMULATOR

least twice per bus cycle, first when the address
signals are valid and second when the data sig­
nals are valid. If the 8088 execution queue is
otherwise active, additional frames of trace are
collected.

Each trace frame contains the 20 address/16
data lines' and detailed information on the status
of the 8088. The trace memory can store 1,024
frames, or an average of about 300 bus cycles,
providing ample data for determining how the
8088 was reacting prior to emulation break. The
trace memory contains the last 1,024 frames of
trace data collected, even if this spans several
separate emulations. The user has the option of
displaying each frame of trace data or displaying
by instruction in actual ASM-86 assembler
mnemonics. Unless the user chooses to disable
trace, the trace information is always available
after an emulation.

Interrogation and Utility

Interrogation and utility commands give the user
convenient access to detailed information about
the user program and the state of the 8088 that
is useful in debugging hardware and software.
Changes can be made in both memory and the
8088 registers, flags, input pins, and I/O ports.
Commands are also provided for various utility
operations such as loading and saving program
files, defining symbols and macros, displaying
trace data, setting up the memory map, and re­
turning control to ISIS-II. A summary of the basic
interrogation and utility commands is shown in
Table 2.

iAPX 88/20 DEBUGGING

The ICE-88A module has the extended capabili­
ties to debug iAPX 88/20 microsystems which
contain both the 8088 microprocessor and the
8087 numeric processor extension (NPX). An
iAPX 88/20 system is configured in the 8088's
maximum mode and communication between
the processors is accomplished through the
RO/GT signals. Debugging can be done either
using the 8087 chip itself (in which case the
8088 ESCAPE instruction is interpreted as a
floating-point instruction) or using the 8087 soft­
ware emulator E8087 (where the 8088 INTER­
RUPT instruction is interpreted as a floating­
point instruction). Three new data types are
defined to use the NPX:

REAL (4 byte short rear)
OREAL (8 byte long real)
TREAL (10 byte temporary real)

While the 8087 NPX is not a programmable part,
it does interact closely with the 8088 and can
execute instructions in parallel with it. The
ICE-88A module provides information about the
relative timing of instruction execution in each
processor so that the complete system can be
debugged. Other debugging capabilities availa­
ble through the ICE-88A module are: symbolical­
ly disassemble NPX call instructions from
memory or trace history; display or change the
control, status, and flag values of the NPX; dis­
play the NPX stack either in hexadecimal or dis­
assembled form; and display the last instruction
address, last operand, and last operand
address. The 8087 can only communicate with
user memory.

DESIGN CONSIDERATIONS

o When the ICE-88A system is operating in in­
terrogation mode, responses to HOLD/HOLD
ACKNOWLEDGE can require up to 450
microseconds.

o A HOLD sequence error will occur if an addi­
tional hold pulse is inserted before the
ICE-88A system responds to the previous
hold pulse.

o To enter emulation, user READY must be
high to avoid a READY$TIMEOUT error.

e If a user applies a RESET during generation
of HOLD, a failure message may result.

• The ICE-88A system generates an extra bus
cycle upon entry into emulation. Users
should ignore the extra bus cycle.

o The ICE-88A system also generates extra
bus cycles under another condition: While
normally accessing the user· system (that is,
for download and memory interrogation
commands), in addition to the bus cycles re­
quired for read-after-write, extra bus cycles
are generated during interrogation. Users
should ignore the extra bus cycles.

DC CHARACTERISTICS OF THE
ICE™-88A MODULE USER CABLE

1. Output Low Voltages [VOL (Max)=O.4V]

10L (Min)

5·107

ADO-AD7
A8-A15
A 16/S3-A 1 0/S6, SSO, RD,
LOCK, OSO, OS1, SO, ST,"
S2, WR, 101M, DT IR, DEN,
ALE, INTA

HLDA

RO/GT

12mA
(24 mA @ 0.5V)

8mA
(16mA @ 0.5V)

7mA

16mA

210357-002

ICETM-88A IN-CIRCUIT EMULATOR

Table 2. Selected ICETM-88A Module Interrogation and Utility Commands

Memory/Register Commands
Display or change the contents of:
• Memory
• 8088 registers
• 8088 status flags
• 8088 input pins
• 80881/0 ports
• ICE-88A pseudo-registers (e.g.

emulation timer)

Memory Mapping Commands
Display, declare, set, or reset the ICE-88A
memory mapping.

Symbol Manipulation Commands
Display any or all symbols, program
modules, and program line numbers and
their associated values (locations in
memory).

Set the domain (choose the particular
program module) for the line numbers.

Define new symbols as they are needed in
debugging.

Remove any or all symbols, modules, and
program statements.

Change the value of any symbol.

Select program modules whose symbols
will be used in debugging.

TYPE
Assign or change the type of any symbol in
the symbol table.

DASM
Disassemble user program memory into
ASM-86/88 assembler mnemonics.

2. Output High Voltages [V OH (Min)=2.4V]

10H (Min)

ADO-AD7
A8-A15
A16/S3-A19/S6, SSO, RD,
LOCK, OSO, OS 1, SO, sr:­
S2, WR, 10/M, DT/R, DEN,
ALE, INTA, HLDA
RO/GT

-3mA

-2.6mA

250mA

RO/GT
Set or display the status of the
request/grant facility which enables the
ICE-88A module to share the system bus
with co-processors.

BUS
Display which device in the user's iAPX 88
system is currently master of the system
bus.

CAUSE
Display the cause of the most recent
emulation break. .

PRINT
Display the specified portion of the trace
memory.

LOAD
Fetch user symbol table and object code
from the input file.

EVALUATE
Display the value of an expression in
binary, octal, decimal, hexadecimal, and
ASCII.

CLOCK
Select the internal (lCE-88A module
provided, for stand-alone mode only) or an
external (user-provided) system clock.

RWTIMEOUT
Allows the user to time out READ/WRITE
command signals based on the time taken
by the 8088 to access Intellec memory or
diskette memory.

ENABLE/DISABLE ROY
Enable or disable logical AND or ICE-88A
emulator Ready with the user Ready signal
for accessing Intellec memory, ICE memory
or diskette memory.

3. Input Low Voltages [V IL (Max)=O.8V]

5-108

ADO-AD7
NMI,CLK
READY
INTR, HOLD, TEST, RESET
MN/MX (0.1 p,F to GND)

IlL (Max)
-0.2 mA
-0.4mA
-0.8mA
-1.4mA
-3.3mA

210357-002

ICETM-88A IN-CIRCUIT EMULATOR

4. Input High Voltages [V 1H (Min)=2.0V]

ADO-AD7
NMI,CLK
READY
INTR, HOLD, TEST, RESET
MN/MX (0.1 /-LF to GND)

IIH (Max)

80/-LA
20/-LA
40/-LA

-0.4 mA
-1.1 mA

5. No current is taken from the user
circuit at V cc pin.

SPECIFICATIONS

ICE™-88A Operating Environment

REQUIRED HARDWARE

Intellec Model 800, Series II, Series III, or Series
IV microcomputer development system with the
following features:

• Three adjacent slots for the ICE-88A
module.

• 64K bytes of Intellec memory. If user
prototype program memory is desired,
additional memory above the basic 64K is
required.

System console (Model 800 only)
Disk drive (Model 800 only)
ICE-88A module

REQUIRED SOFTWARE

System monitor
ISIS, version 4.3 or subsequent versions

Equipment Supplied

Printed circuit boards (3)
Interface cable and emulation buffer module

ORDERING INFORMATION

Part Number

ICE-88A

Description

iAPX 88 microsystem in-circuit
emulator, cable assembly, and
interactive software.

Operator's manual
ICE-88A software, diskette-based
-8 inch single and double density
-5lf4 inch double density

Emulation Clock

User system clock up to 5 MHz or 2 MHz
ICE-88A internal clock in stand-alone mode

Physical Characteristics

PRINTED CIRCUIT BOARDS

Width: 12.00in (30.48cm)
Height: 6.75 in (17.15 cm)
Depth: 0.50 in (1.27 cm)
Package Weight: 9.00 (4.10 kg)

Electrical Characteristics

DC POWER

Vcc=+5V ± 5%
Icc=17Amaximum; 11Atypical
Voo=+12V±5%
100=120 mA maximum; 80 mA typical
Vss=-10V±5%or -12V ±5% (optional)
Iss=25 mA maximum; 12 mA typical

Environmental Characteristics

Operating Temperature: 0° to 40°C

Operating Humidity: Up to 95% relative humidity
without condensation.

210357-002

5-109

PROM Programming 6

iUP-200A/iUP-201 A UNIVERSAL
PROM PROGRAMMERS

MAJOR iUP-200A/iUP-201 A FEATURES:

• Support for all Intel PROM families
through multiple-device personality
modules, which may also be used with
the Intel personal development
system (iPDS TM).

• Serial interface to allintellec@
development systems.

• Powerful PROM programming
software (iPPS).

• iUP system self-tests plus device
integrity checks.

II Support for new personality modules
that provide state of the art fast
programming algorithms, the
inteligent Identifier TM, and a security
bit.

ADDITIONAL iUP-201 A FEATURES:

II Off-line editing, device duplication,
and PROM memory locking.

• 32K-byte iUP RA·M.

• 24-character alphanumeric display.

• Full hexadecimal plus 12-function
keypad.

The iUP-200A and iUP-201 A universal programmers program and verify data in all the Intel pro­
grammable ROMs (PROMs). They can also program the PROM memory portions of Intel's single-chip
microcomputer and peripheral devices. When used with any Intellec@ development system, the
iUP-200A and iUP-201A universal programmers provide on-line programming and verification using
the Intel PROM programming software (jPPS). In addition, the iUP-201 A universal programmer sup­
ports off-line, stand-alone program editing, PROM duplication, and PROM memory locking. The
iUP-200A universal programmer is expandable to an iUP-201 A model.

1111111111111111111""

The following are trademarks of Intel Corporation and may be used only to describe Intel products: CREDIT, Index, Intel, Insite, Intellec,
Library Manager, Megachassls, Mlcromap, MUL TIBUS, PROMPT, UPI, /LScope, Promware, MCS, ICE, iRMX, ISSC, ISeX, inteligent
Identifier, MUL TI:v10DULE and ICS. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are Implied.
e INTEL CORPORATION, 1984 6-1 March,1984

Order Number:21 0319·003

iUP 200A/iUP 201 A

FUNCTIONAL DESCRIPTION

The iUP-200A universal programmer operates in
on-line mode. The iUP-201 A universal program­
mer operates in both on-line and off-line mode.

_ On-line System Hardware '

The iUP-200A and iUP-201A universal program­
mers are free-standing units that, when connect­
ed to any Intel development system having at
least 64K bytes of host memory, provide on-line
PROM programming and verification of Intel pro­
grammable devices. In addition, the universal
programmer can read the contents of the ROM
versions of these devices.

The universal programmer communicates with
the host through a standard RS-232C serial data
link. A serial converter is needed when using the
MDS 800 as a host system. (Serial converters
are available from other manufacturers.)

Each universal programmer contains an 8085
CPU, selectable power supply, 4.3K bytes of
static RAM, a programmable timer, an interface
for personality modules, an interface for the host
system, and 12K bytes of programmed EPROM.
The iUP-201A also has a keyboard and display.
The programmed EPROM contains the firmware

needed for all universal programmer editing and
control functions.

A personality module adapts the universal pro­
grammer to a family of PROM devices; it contains
all the hardware and firmware necessary to pro­
gram either a family of Intel PROMs or a single
Intel device. The user inserts the personality
module into the universal programmer front
panel. The personality module comes ready to
use; no additional sockets or adapters are
required.

Figure 1 shows the iUP-200A on-line system
configuration, and Figure 2 shows the on-line
system data flow.

On-line System Software

The Intel PROM programming software (iPPS) is
included with both the iUP-200A and iUP-201 A
models of the universal programmer. Created to
run on any Intellec development system, the
iPPS software provides user control through an
easy-to-use interactive interface. The iPPS soft­
ware performs the following functions to make
PROM programming quick and easy:

• Reads PROMs and ROMs

• Programs PROMs directly or from a file

Figure 1 On-Line System Configuration

Order Number: 210319-003

6-2

iUP 200A/iUP 201 A

HOSTDEVELOPMENTSVSTEM

iPPS
BUFFER

IPPS 1,""'-
SOFTWARE

ISIS
FILE tj

/ ~

''---~-----~~--------~

UNIVERSAL PROGRAMMER
(iUP-200A OR iUP-201 A)

RS-232 INTERFACE

PERSONALlTV
MODULE

/ ~ r------,
k---J UNIVERSAL .. - -J I

PROGRAMMER l' 1 ~:A~Ol A I
PROM I
DEVICE(S)

~ FIRMWARE 1--" I. \... ________ ~ L ______ ...J

0026

Figure 2 On-Line System Data Flow

• Verifies PROM data with buffer data

• Locks EPROM memory from unauthorized
access (on devices which support this
feature)

• Prints PROM contents on the network or de­
velopment system printer

• Performs interactive formatting operations
such as interleaving, nibble swapping, bit
reversal, and block moves

• Programs multiple PROMs from the source
file, prompting the user to insert new PROMs

• Uses a buffer to change PROM contents

All iPPS commands, as well as program address
and data information, are entered through the
development system ASCII keyboard and dis­
played on the system CRT. Table 1 summarizes
the iPPS comman'ds.

The iPPS software lets the user load programs
into a PROM from Intellec system memory or

6-3

directly from a disk file. Access to the disk lets
the user create and manipulate data in a virtual
buffer with an address range up to 16M. This
large block of data can be formatted into dif­
ferent PROM word sizes for program storage
into several different PROM types. In addition, a
program stored in the target PROM, the Intellec
system memory, or a system disk file can be in­
terleaved with a second program and entered
into a specific target PROM or PROMs.

The iPPS software supports data manipulation
in the following Intel formats: 8080 hexadecimal
ASCII, 8080 absolute object, 8086 hexadecimal
ASCII, 8086 absolute object, and 80286 absolute
object. Addresses and data can be displayed in
binary, octal, decimal, or hexadecimal. The user
can easily change default data formats as well
as number bases.

The user iiwokes the iPPS software from the
ISIS operating system (/ntellec 800, Series II,
and Series III, versions V3.4 and later; Series IV,
versions V1.0 and later). The software can be
run under control of ISIS submit files, thereby
freeing the user from repetitious command entry.

Order Number: 210319-003

iUP 200A/iUP 201 A

Table 1 iPPS Command Summary

Command Description

PROGRAM CONTROL GROUP CONTROLS EXECUTION OF THE iPPS SOFTWARE.
EXIT Exits the iPPS software and returns control to the ISIS operating

system.
<ESC> Terminates the current command.
REPEAT Repeats the previous command.
ALTER Edits and re-executes the previous command.

UTILITY GROUP DISPLAYS USER INFORMATION AND STATUS AND SETS
DEFAULT VALUES.

DISPLAY Displays PROM, buffer, or file data on the console.
PRINT Prints PROM, buffer, or file data on the local printer.
QUEUE Prints PROM, buffer, or file data on the network spooled printer.
HELP Displays user assistance information.
MAP Displays buffer structure and status.
BLANKCHECK Checks for unprogrammed PROMs.
OVERLAY Checks whether non-blank PROMs can be programmed.
TYPE Selects the PROM type.
INITIALIZE Initializes the default number base and file type.
WORKFILES Specifies the drive device for temporary work files.

BUFFER GROUP EDITS, MODIFIES, AND VERIFIES DATA IN THE BUFFER.
SUBSTITUTE Examines and modifies buffer data.
LOADDATA Loads a section of the buffer with a constant.
VERIFY Verifies data in the PROM with buffer data.

FORMATTING GROUP REARRANGES DATA FROM THE PROM, BUFFER, OR FILE.
FORMAT Formats and interleaves buffer, PROM, or file data.

COpy GROUP COPIES DATA FROM ONE DEVICE TO ANOTHER.
COpy (file to PROM) Programs the PROM with data in a file on disk.
COpy (PROM to file) Saves PROM data in a file on disk.
COpy (buffer to PROM) Programs the PROM with data from the buffer.
COpy (PROM to buffer) Loads the buffer with data in the PROM.
COPY (buffer to file) Saves the contents of the buffer in a file on disk.
COPY (file to buffer) Loads the buffer from a file on disk.
COpy (file to URAM) Loads file data into the iUP RAM (iUP-201A model only).
COpy (URAM to file) Saves iUP URAM data in a file on disk (iUP-201A model only).
COpy (buffer to URAM) Loads the buffer into the iUP URAM (iUP-201A model only).
COPY (URAM to buffer) Loads iUP URAM data into the buffer (iUP-201 A model only).

SECURITY GROUP LOCKS SELECTED DEVICES TO PREVENT UNAUTHORIZED
ACCESS.

KEYLOCK Locks the PROM from unauthorized access.

Order Number: 210319-003

6-4

iUP 200A/iUP 201 A

System Expansion

The iUP-200A universal programmer can be
easily upgraded (by the user) to an iUP-201 A
universal programmer for off-line operation. The
upgrade kit (jUP-PAK-A) is available from Intel
or your local Intel distributor.

Off-line System

The iUP-201 A universal programmer has all the
on-line features of the iUP-200A universal pro­
grammer plus off-line editing, PROM
duplication, program verification, and locking of
PROM memory independent of the host system.
The iUP-201 A universal programmer also ac­
cepts Intel hexadecimal programs developed on
non-Intel development systems. Just a few key­
strokes download the program into the iUP RAM
for editing and loading into a PROM.

/

~IUP READY·
COMMAND I

'-

/7

Off-line commands are entered using the off-line
command keys summarized in Table 2.

In addition to the hardware components included
as part of the iUP-200A, the iUP-201 A contains
a 24-character alphanumeric display, full hexa­
decimal 12-function keypad, and 32K bytes of
iUP RAM. Figure 3 illustrates the iUP-201 A key­
board and display.

The two logical devices accessible during off­
line operation are the PROM device and the iUP
RAM. A typical operation is copying the data
from a PROM (or ROM) into the iUP RAM, modify­
ing this data in iUP RAM, and programming the
modified data back into a PROM device. The ad­
dress range of the iUP RAM is automatically
determined by the universal programmer when
PROM type selection is made. Figure 4 shows
the off-line system data flow.

"
000000

551 ADDRESS I DATA

./

© POWER

0157

Figure 3 iUP-201 A Keyboard and Display

Order Number: 210319-003

6-5

Key

: DEVICE
: SELECT

B
B
~
~

8
E
N
T
E
R

B: ffi:· : SHIFT : ADDR · . 0
~ ~

S· ffi · .

i SHIFT : DATA · . 1
:............. .i

S· ffi i SHIFT : FILL · . 2
i............. i

S[!] · .

: SHIFT : LOAD · .. 3
i............. ::

: :: LOCK S· ffi l.~.~I~~.. :: ... ~

iUP 200A/iUP 201 A

Table 2 Off-Line Command Keys Summary

Function

Selects either on-line or off-line operation. Wher on-line, all other function keys
are disabled.

Selects the PROM type when using a personality module able to program
multiple PROM devices.

Verifies the contents of the installed PROM device with the contents of the iUP
RAM. The universal programmer display indicates the address and the XOR of
any mismatches.

Performs a device blank check and then programs the target PROM with data
from the iUPRAM. If the blank check fails, pressing PROG again performs an
overlay check to verify that non-blank PROMs can be programmed.

Loads the iUP RAM with the data from the PROM device installed in the
personality module.

Terminates the current off-line function, clears a user entry, or restores the
display after an error.

Transfers information from the universal programmer display (addresses, data,
or baud rate) into the iUP RAM.

Selects an address field for display.

Selects a data field for keypad editing and entry.

Loads a contiguous section of iUP RAM locations with a constant.

Downloads Intel hexadecimal data from any development system which has an
RS-232C port.

Locks a PROM from unauthorized access.

Order Number: 210319-003

6-6

iUP 200A/IUP 201 A

UNIVERSAL PROGRAMMER (lUP-201 A)

PERSONALITY r UNIVERSAL
'\

~ PROGRAMMER r-MODULE
iUP-201A

FIRMWARE URAM
PROM I
DEVICE(S)

~ (MANUAL FRONT ~
" PANEL CONTROL) ./

RS-232 INTERFACE

HOST
SYSTEM
(OPTIONAL)

0027

Figure 4 Off-Line System Data Flow

SYSTEM DIAGNOSTICS

Both the iUP-200A and iUP-201 A universal pro­
grammers include self-contained system diag­
nostics that verify system operation and aid the
user in fault isolation. Diagnostics are performed
on the power supply, CPU internal firmware
ROM, internal RAM, timer, the iUP-201A
keyboard, and the iUP RAM. In addition, tests
are made on any personality module installed in
the programmer the first time the module is
accessed. The personality module tests include
the power select circuitry and up to 4K of
module firmware. Straight-forward messages
are provided on the development system display
in on-line mode and on the iUP-201 A display in
off-line mode.

PERSONALITY MODULES

A personality module is the interface between
the iUP-200A/iUP-201 A universal programmer
(or an iPDS system) and a selected PROM (or
ROM). Personality modules contain all the hard­
ware and firmware for reading and programming
a family of Intel devices. Each personality
module is a single molded unit inserted into the
front panel of the universal programmer. No addi­
tional adapters or sockets are needed. Table 3
lists the available personality modules.

Each personality module connects to the univer­
sal programmer through a 41-pin connector.
Module firmware is uploaded into the iUP RAM
and executed by the internal 808SA processor.

Table 3 iUP Personality Modules

Personality Module PROM Type PROMs and ROMs Supported

iUP-Fast 27/K EPROM 2764,2764A,27128,27256
iUP-F27/128 E2/EPROM 2716,2732,2732A,2764,27128,2815,2816
iUP-F87/51A M icrocontroller 8748, 8748H, 8048, 8749H, 8048H, 8049, 8049H,

8050H,8751,8751H,8051
iUP-F87/44A Peripheral 8741A,8041A,8742,8042,8744H,8044AH,8755A

Order Number: 210319-003

6-7

iUP 200A/iUP 201 A

The personality module firmware contains rou­
tines necessary to read and program a family of
PROMs. In addition, the personality module
sends specific information about the selected
PROM to the universal programmer to help per­
form PROM device integrity checks.

LEOs on each personality module indicate
operational status. On some personality
modules a column of LEOs indicate which PROM
device type the user has selected. On,some per­
sonality modules an LED below the socket indi­
cates which socket is to be used. A red indicator
light tells the user when power is ,ijeing supplied
to the selected device. Figure 5 shows the per­
sonality modules«supported on the universal
programmer. '

In addition to the testing done by the iUP system
self-tests, each personality module contains di­
agnostic firmware that performs selected PROM

tests and indicates status. These tests are per­
formed in both on-line and off-line modes. The
PROM installation lest verifies that the device is
installed in the module correctly and that the ZIF
socket is closed. The PROM. blank check deter­
mines whether a device is blank. The universal
programmer automatically determines whether

. the blank state is all zeros or all ones. The over­
lay check (performed when a PROM is not

,blank) determines which bits are programmed,
compares those bits against the program to be
loaded, and allows programming to continue if
they match. As with the system self-tests',
straight-forward messages are provided. The
user can invoke all of the PROM device integrity
checks' except the installation test (which
occurs automatically any time an operation is
selected).

Figure 6 illustrates a typical testing sequence.

/

//'

Figure 5 Personality Modules

6-8 Order Number: 210319-003

NO

iUP 200A/iUP 201 A

PERFORM
BLANK CHECK

YES

PROGRAM
A

LOCATION

PERFORM
VERIFY

PERFORM
VERIFY OVER

ENTIRE
ADDRESS

RANGE

NO

NO

NO

PERFORM
OVERLAY

CHECK

Figure 6 PROM Testing Sequence

6-9

DISPLAY
MESSAGE

Order Number: 210319-003

IUP 200A/iUP 201 A

iUP-200A/iUP-201 A SPECIFICATIONS

Control Processor
Intel 80'85A microprocessor
6.144 MHz clock rate

Memory
RAM - 4.3 bytes static
ROM - 12K bytes EPROM

Interfaces
Keyboard - 16-character hexadecimal and 12-
function keypad (jUP-201 A model only)
Display 24-character alphanumeric
(iUP-201A model only)

Software
Monitor - system controller in pre-programmed
EPROM
iPPS - Intel PROM programming software on
supplied diskette

Physical Characteristics
Depth - 15 inches (38.1 cm)
Width - 15 inches (38.1 cm)
Height - 6 inches (15.2 cm)
Weight - 15 pounds (6.9 kg)

Electrical Characteristics
Selectable 100, 120, 200, or 240 Vac ± 10%;
50-60 Hz
Maximum power consumption - 80 watts

Environmental Characteristics
Reading temperature - 19°e to 400 e
Programming temperature - 25°e ± '50
Operating humidity - 10% to 85% relative .
humidity

Reference Material
164852 - iUP-200A1201A Universal Program­

mer User's Guide.

ORDERING INFORMATION

Part number

iUP-200A

iUP-201A

Description

Intel on':'line universal
programmer

Intelon-line/off-line
universal programmer

164861 - iPPS PROM Programming Software
User's Guide.

164853 - iPPS PROM Programming Soft­
wareliUP-200A1201A Universal Pro­
grammer Pocket Reference.

PERSONALITY MODULE
SPECIFICA TIONS

Memory
EPROM - up to 4K bytes

Physical Characteristics
Width - 5.5 inches (1.4 cm)
Height - 1.6 inches (4.1 cm)
Depth - 7.0 inches (17.8 cm)
Weight - 1 pou~d (.45 kg)

Electrical Characteristics
Maximum power consumption (module) - 7.5
watts
Maximum power consumption (device) - 2.5
watts
Maximum power consumption (total from iUP) -
10watts

Environmental Characteristics
Reading temperature - 1 ooe to 400 e
Programming temperature - 25°e ± 5°
Operating humidity - 10% to 85% relative
humidity

Reference Material
Appropriate personality module user's guide:

164376 - iUP-Fast 271K Personality Module
User's Guide.

162848 IUP-F271128 Personality Module
User's Guide.

164855 iUP-F87/51A Personality Module
User's Guide.

164853 iUP-F87144A Personality Module
User's Guide. '

iUP-Fast 27/K-

iUP-F27/128

EPROM personality
module

EPROM and E2PROM
personality module

Order Number: 210319-003

6-10

iUP-F87/51 A

iUP-F87/44A

iUP-200/201 U1
Upgrade Kit

iUP-PAK-A Upgrade
Kit

iUP 200A/iUP 201 A

Microcontrol/er
personality module

Peripheral personality
module

Upgrades an
iUP-200/201 universal
programmer to an
iUP-200A/201 A
universal programmer

Upgrades an iUP-200A
universal programmer
to an iUP-201 A
universal programmer

"The iUP-Fast 27/K personality module can be used only with an iUP-200Al201 A universal programmer or an iUP-200
liUP-201 universal programmer upgraded to an A with the iUP-200/201 U1 upgrade kit. If used in an iPDS, this per­
sonality module requires version 1.4 or later of the iPPS-iPDS software. All iPDS-140 units shipped after June 1984
will contain this software.

Order Number: 210319-003

6-11

PROM PROGRAMMING
PERSONALITY MODULES

MAJOR PERSONALITY MODULE
FEATURES:

• Adapts an iUP-200A/iUP-201 A Univer­
sal Programmer or Intel Personal
Development System (iPDSTM) to
a family of PROM devices.

• Comes ready to use.

• Includes the Fast 27/K personality
module that programs Intel's latest
PROM devices in one tenth the time.

• Supports multiple PROM device types.

Personatity modules custom-fit the iUP-200A/iUP-201 A Universal Programmer or the iPDSTM system
to a family of PROM devices. Each personality module comes ready to use-just plug it into a Universal
Programmer or an iPDS system and begin reading or programming parts. The personality modules can
be used off-line or controlled from a host or iPDS system using Intel's powerful PROM programming
software (iPPS). Selected personality modules support the latest PROM programming features such
as the inteligent Programming™ algorithms (reduce programming time up to a factor of 1 0), the inteli­
gent Identifier™ (automatically selects the correct inteligent Programming algorithm), and the security
bit function (protects PROM memory from unauthorized access).

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Cir­
cuit Patent Licenses are Implied. Information Contained Herein Supercedes f5reviously Published Specifications On These Devices From
Intel.

6-12
~ INTEL CORPORATION, 1984 May, 1984

ORDER NUMBER: 280003-001

PROM Programming Personality Modules

PERSONALITY MODULE
DESCRIPTION

The personality module adapts the universal pro­
grammer or the iPOS system to a specific family
of PROM devices; it contains all the hardware
and firmware necessary to read and program a
family of Intel PROMs. The personality module
comes ready to use; the user merely inserts the
personality module into the universal program­
mer front panel or the side door of the iPOS
chassis. No additional sockets or adapters are
required.

As Table 1 shows, each personality module sup­
ports a different family of PROM devices.

Each personality module connects to the univer­
sal programmer/iPOS system through a 41-pin
connector. LEOs on the personality module indi­
cate its operational status. A column of LEOs or
a hexadecimal display indicates which PROM
device type the user has selected. On some per­
sonality modules, an LED below the socket indi­
cates which socket is to be used. A red indicator
light tells the user when power is applied to the
selected device.

After specifying the PROM device type, the user
inserts the PROM to be programmed or read In
the socket on the personality module. The per­
sonality module checks for correct PROM
installation. In addition, each personality module
contains diagnostic firmware that performs the
following selected PROM tests and indicates
status.

• The PROM installation test verifies that the
device is installed in the module correctly
and that the ZIF socket is closed.

• The PROM blank check determines whether
a device is blank. The universal

programmer/iPOS system automatically
determines whether the blank state is all
zeros or all ones.

• The overlay check (performed when a PROM
is not blank) determines which' bits are
programmed, compares those bits with the
program to be loaded, and allows program­
ming to continue If they match.

The user can invoke all the PROM device integri­
ty checks except the installation test (which
occurs automatically any time an operation is
selected). .

PROM PROGRAMMERS

The personality modules are used with either
the universal programmer or the iPOS system.
Both the iUP-200A and iUP-201 A models of the
universal programmer program PROM devices
in on-line mode. The iPPS software which con­
trols on-line programming runs on the host
system. The iUP-201 A universal programmer
adds an additional feature: off-line programming
directly from the universal programmer's
keyboard. Figure 1 shows an iUP-201 A universal
programmer with a personality module inserted.

The iPOS system features stand-alone on-line
programming controlled by the iPOS-iPPS soft­
ware which runs on the iPOS system. The iPOS
system operates in on-line mode only. Figure 2
shows an iPOS system with a personality
module inserted.

Table 2 compares the features of the universal
programmer with the features of the iPOS
system.

Table 1. Personality Modules

Person~lIty Module PROM Type PROMs and ROMs Supported

iUP-Fast 27/K EPROM 2764, 2764A, 27128, 27256

iUP-F27/128 E2PROM/EPROM 2716,2732, 2732A, 2764, 27128, 2815, and 2816

i UP-F87 151 A Mlcrocontroller 8748, 8748H, 8048, 8749H, 8048H, 8049,
8Q49H, 8050H,8751, 8751H,8051

iUP-F87/44A Peripheral 8741A, 8041A, 8742, 8042, 8744H, 8044AH,
8755A

280003-001

6·13

PROM Programming Personality Modules

Figure 1. iUP·201 A Universal Programmer

0149

Figure 2. iPDST~ System

280003-001

6-14

PROM Programming Personality Modules

, Table 2. PROM Programmers

Features iUP-200A Universal
Programmer

Function PROM programmer

Operating mode On-line mode

Configuration Requires host system
running iPPS software

Data display On CRT of host
system terminal

Input keyboard From host system
terminal

THE iPPS SOFTWARE

The iPPS software, included with both the
iUP-200A and iUP-201 A models of the universal
programmer and with the iPDS system, brings in­
creased flexibility to PROM programming. The
iPPS software provides user control through an
easy-to-use interactive interface and performs
the following functions to make PROM program­
ming quick and easy:

• Reads PROMs and ROMs.
• Programs PROMs directly or from a file.

• Verifies PROM data with buffer data.

• Locks EPROM memory from unauthorized
access (on devices which support this
feature).

• Prints PROM contents on the network printer
(universal programmer only) or the develop­
ment system printer.

• Performs interactive formatting operations
such as interleaving, nibble swapping, bit
reversal, and block moves.

• Programs multiple PROMs from the source
file, prompting the user to insert new PROMs.

• Uses a buffer to change PROM contents.

With the iPPS software the user can load pro­
grams into a PROM from system memory or
directly from a disk file. Access to the disk lets
the user create and manipulate data in a virtual
buffer. This block of data can be formatted into
different PROM word sizes for program storage
into several different PROM types. In addition, a

IUP-201 A Universal iPDSTM System
Programmer

PROM programmer Development system
and PROM programmer

On-line mode and On-line mode
off-line mode
Requires host system 'Stand-alone plugged
in on-line mode; into iPDS system
stand-alone in off-line
mode
On built-in single-line On iPDS CRT
display in,stand-alone
mode
Built-in keyboard From iPDS Keyboard

6·15

program stored in the target PROM, the system
memory, or a system disk file can be interleaved
with a second program and entered into a specif­
ic target PROM or PROMs.

The iPPS software supports data manipulation
in the following Intel formats: 8080 hexadecimal
ASCII, 8080 absolute object, 8086 hexadecimal
ASCII, 8086 absolute object, and 80286 absolute
object. Addresses and data can be displayed in
binary, octal, decimal, or hexadecimal. The user
can easily change default data formats as well
as number bases.

The user invokes the iPPS software from the
ISIS operating system (lntellec 800, Series II,
and Series III, ISIS versions V3.4 and later;
Series IV, ISIS versions V1.0 and later; iPDS
system, ISIS versions 1.4 and later). The soft­
ware can be run under control of ISIS submit
files, thereby freeing the user from repetitious
command entry.

Note that the universal programmer and the
iPDS system each has its own version of the
iPPS software. To distinguish between them, the
iPPS software for the iPDS system is called
iPPS-iPDS software.

PERSONALITY MODULE FEATURES

The personality modules described in the follow­
ing sections allow a universal programmer/iPDS
system to program a wide range of PROM
devices, each with its unique needs and
requirements: PROMs, EPROMs, E2PROMs,
microcontrollers, and microprocessor peripher­
als.

280003-001

inter PROM Programming Personality Modules

Note that the user needs one of the following
configurations to use the Fast 27/K personality
module or to use the security bit function on the
iUP-F87/51A and iUP-F87/44A personality
modules:

iPDS system

Intel PROM programming software
(jPPS-iPDS), version 1.4 or later

iPDS-140 EMV/PROM adapter option

universal programmer

• on-line Intel PROM programming
software (iPPS), version 1.4
or later

model 200A or 201 A

• off-line model 201 A

MASTER
SOCKET

PIN 1 --1-~---t1er

PROGRAM
SOCKET

The user can easily update an iUP-200/201 uni­
versal programmer to an iUP-200A/201 A univer­
sal programmer with the iUP-200/201 U1 up­
grade kit.

The iUP-Fast 27/K Personality Module

The iUP-Fast 27/K personality module lets the
user program, read, and- verify the contents of
Intel's newest 64K and 256K EPROMs. This per­
sonality module supports the inteligent Program­
ming algorithms and the inteligent Identifier. The
inteligent Identifier lets the personality module
interrogate the PROM device in the
program/master socket. It determines whether
the type selected matches the type of PROM
device installed and then selects the proper in­
teligent Programming algorithm. The inteligent
Programming algorithms reduce programming
time up to a factor of 10.

0·2764
1·27128
2·27256

PROM'
DEVICE
TYPE
HEXADECIMAL
DISPLAY

SOCKET
POWER
INDICATOR

___ --"'-_ ~~~~ING
1930

Figure 3. iUP-Fast 27/K Personality Module

280003-001

6·16

PROM Programming Personality Modules

The iUP-Fast 27K personality module supports
the following PROM devices:

2764 2764A 27128 27256

As shown in Figure 3, the iUP-Fast 27/K person­
ality module contains two 28-pin sockets, a
hexadecimal display (0 through F), and a red
LED that indicates when power is being applied
to a socket. The program socket holds the
device being programmed. The master socket
will be used in future upgrades. The hexadecimal
display shows the PROM device type selected.

The iUP-F27 1128 Personality Module

The iUP-F27/128 personality module lets the
user program, read, and verify the contents of a
wide variety of PROM devices, including some of

I
~ I

Ir l? I I---PIN 1

~ ,)

Intel's most popular PROM devices. This person­
ality module supports the following PROM
devices:

27162732 2732A 2764 27128 2815 2816

As shown in Figure 4, the iUP-F27/128 personal­
ity module contains two sockets: one for 24-pin
PROM devices and the other for 28-pin PROM
devices. The user can use only one socket at a
time. An LED below the socket indicates the cor­
rect socket to use based on the PROM device
type selected, and a row of green LEDs on the
right side of the personality module indicate
which PROM type is selected. The ACTIVE
SOCKET LED indicates when power is being ap­
plied to the PROM device and when the universal
programmer/iPDS system is accessing the
selected socket.

r
1

@2718

I
8 2732 (Vpp 25V)

2732A (Vpp 21V)
«> 2758
(0275.5

82714
27128

02815

fl
02818 , .~) f~

..

PROM
DEVICE
TYPE
INDICATORS

KET soc
SELE
INDIC

CT
ATORS

/ / "'-- SOCKET
\ POWER

INDICATOR

~ "- LOCKING
ARMS

0153

Figure 4. iUP-F27 /128 Personality Module

280003-001

6-17

inter PROM Programming Personality Modules

The IUP-F87/51 A Personality Module

The iUP-F87/51A personality module lets the
user program EPROM microcontrollers and read
the memory contents of ROM microcontJOIfe-rs ..
This personality module supports the security
bit function on the 8751 H microcontroller. The
KEYLOCK command locks the 8751 H EPROM
memory from unauthorized access by setting
the security bit (which cannot be unlocked with­
out erasing the device). As a safety precaution,
the KEYLOCK command requires user verifica­
tionbefore locking the security bit.

I
~ l

I

~
If

@ 6

I
I

The iUP-F87/51 A personality module supports
the following PROM devices:

8748 8748H 8048 8048H 8749H
8049 8050H 8751 8751 H 8051

As shown in Figure 5, the iUP-F87/51A personal­
ity module has two sockets for inserting applica­
ble PROM devices: one for the MCS®-48 family
of devices and the other for the MCS-51 family
of PROM devices. An LED below the socket indi­
cates the correct socket to 'use based on the
PROM device type selected. One of th.e green

r

J l1"'li

@8048 ~
@8048H ~~~
©)8049/H-J
©) 8050H

@8051
@8748 (Vpp 25v)
@ 8748H IVpp 21v)
@8749H

1l
@8751
@8751H

@ ©ACTIVE
SOCKET

1931

Figure 5. iUP-F87/51 A Personality Module

280003-001

6-18

PROM Programming Personality Modules

LEOs on the right side of the personality module
lights to indicate the PROM type selected. The
ACTIVE SOCKET LED lights when power is ap­
plied to the PROM device and when the universal
programmer/iPOS system is accessing the
selected socket.

The iUP-F87/44A Personality Module

The iUP-F87/44A personality module lets the
user program EPROM versions of the 8044
family of microcontrollerlserlal interface units
and read the memory contents of ROM versions.
This personality module supports the security
bit function on the 8744H microcontroller. The
KEYLOCK command locks the 8744H EPROM
memory from 'unauthorized access by setting
the security bit (which cannot be cleared without

I
~ t

erasing the device). As a' safety precaution, the
KEYLOCK command requires user verification
before setting the security bit.

The iUP-F87/44A personality module supports
the following PROM devices:

8741A
8744H

8041A
8044AH

8742 8042
8755A

As shown in Figure 6, the iUP-F87/44A personal­
ity module has two sockets for inserting applica­
ble PROM devices: one for the 8741 A, 8742, and
8755A PROM devices and the other for the
8744H PROM device. An LED below each socket,
indicates the correct socket to use based on the
PROM device type selected. One of the green
LEOs on the right side of the personality module
lights to indicate the PROM type selected. The

J
j

~

0-

I I
0-

I I
@ 8041A~
@ 8042 ~~~~ o 8044AH-.-J
(1) 8741A

<0 8742
(() 8744H
<0 8755A
© SPARE

<0 SPARE
~ 1I (Q) SPARE

(j) 0 (j) 0 © ~g~I~~T

1932

Figure 6. iUP-F87/44A Personality Module

280003-001

6-19

inter PROM Programming Personality Modules

ACTIVE SOCKET LED lights when power. is ap­
plied to the PROM device and when the universal
programmer/iPDS system is accessing the
selected socket.

PROM PROGRAMMING EXAMPLE

The personality module is the interface that lets
the user perform a wide variety of PROM
programming, data display, and data editing
operations. One of the most popular applications
is copying data from a master PROM into a blank
PROM. Table 3 outlines and compares the steps
for both on-line and off-:-line copying. Notice the
easy-to-use, English-language approach of the
iPPS commands, which may be shortened to the
first letter for faster entry.

The on-line example assumes that the universal
programmer/iPDS system has been powered on
and is under control of the ISIS software and
that the iPPS software has been initialized. The
off-line example assumes that the iUP-201 A uni­
versal programmer has been powered on and
initialized.

PERSONALITY MODULE
SPECIFICATIONS

Memory

EPROM - up to 4K bytes

Physical Characteristics

Width - 5.5 inches (1.4 cm)
Height - 1.6 inches (4.1 cm)
Depth - 7.0 inches (17.8 cm)
Weight - 1 pound (.45 kg)

Electrical Characteristics

Maximum power consumption (module) -7.5 watts
Maximum power consumption (device) - 2.5 watts
Maximum power consumption (total from PROM
programmer) - 10 watts

Environmental Characteristics

Reading temperature 10°C to 40°C
Programming temperature 25°C ± 5°

. Operating humidity 10%-85% relative humidity

DOCUMENTATION

Appropriate personality module user's guide:

164376 - iUP-FAST 271K Personality
Module User's Guide

162848 - iUP-F2 71128 Personality Module
User's Guide

164855 - iUP-F87IS1A Personality Module
User's Guide

164854 - iUP-F87144A Personality Module
User's Guide

Table 3. Typical P.ROM Programming Sequence

On-line Off-line
Action . Command Function Key

1. Select PROM type. TYPE DEVICE
SELECT

2. Install the PROM to be copied (the master
PROM) in the personality module.

3. Copy the contents of the master PROM to the COpy PROM ROM TO
buffer. TO BUFFER RAM

4. Verify that the copy was correct. VERIFY VER

5. Remove the master PROM; Install a blank
PROM

6. Copy the buffer to the blank PROM. COpy BUFFER PROG
TO PROM

280003-001

6-20

PROM Programming Personality Modules

ORDERING INFORMATION

Part number Description

iUP-Fast 27/K- EPROM personality module
iUP-F27/128 EPROM and E2PROM

personality module
iUP-F87/51 N Microcontroller personality

module
iUP-F87/44A- Peripheral personality module

-The iUP-Fast 27/K personality module and the
security bit function on the iUP-F87/51A and
iUP-F87/44A personality modules can be used
with an iUP-200Al201 A universal programmer;
or an iUP-200/iUP-201 universal programmer
upgraded to an A with the iUP-200/201 U 1
upgrade kit; or an iPDS system, using version
1.4 or later of the iPPS-iPDS software (jPDS-140
units shipped after June 1984 contain this
software).

6-21

280003-001

inter APPLICATION
NOTE

PROM Programming
With the

Intel Personal Development
System (iPDS TM)

FRED MOSEDALE
OSHO TECHNICAL PUBLICATIONS

May 1984

© INTEL CORPORATION, 1984 6-22 Order Number 280015-001

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, 121CE, ICS, iDBP, iDIS, iLBX, im, iMMX,
Insite, INTEL, intel, Intelevision, Intellec, inteligent Identifier TM,
inte"BOS, inteligent Programming TM, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,

. RMX/SO, RUPI, System 2000, and UPI, and the combination of
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS@ is a registered
trademark of Mohawk Data Sciences Corporation. '

* MULTIBUSis a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

6-23

inter AP-179

INTRODUCTION

Programmable read-only memory (PROM) devices
play a significant role in micro processor-based
products. How can PROM programming devices per­
form to best serve the needs of those who develop
and service such products?

This application note first provides a general answer
to this question; then, it proceeds to describe the fea­
tures and use of PROM programming hardware and
software available for the Intel Personal Develop­
ment System (iPDSTM). The description explains
how the iPDS system provides the wide range of
capabilities needed by those who use PROM pro­
gramming devices. The description also highlights
the iPDS system's ability to program some ofIntel's
newest EPROMs.

PROMS IN THE LIFE CYCLE OF A
PRODUCT

Memory Options: A Review

Before PROM programming needs are discussed, it
is important to briefly review memory options
available to designers.

Microprocessor-based products need memory to
store instructions and data used in controlling their
operations. In order to maximize product operating
speeds, designers must use memory that can be
accessed quickly. Both raridom access memory
(RAM) devices and read-only memory (ROM)
devices offer designers quick access, but RAM
devices are volatile-their contents are erased when
system power is turned off. ROM devices are
nonvolatile; thus, designers use ROMs to store pro­
grams and data that will not change during the
operation of the product.

After a product's program code data has been
debugged, you can transfer the code to program­
mable ROMs (PROMs) or masked ROMs. (The
most flexible PROMs are E2PROMs and EPROMs;
E2PROMs are electrically erasable and EPROMs can
be erased by ultraviolet light.) PROMs are program­
med using a relatively simple procedure; by
contrast, masked ROMs can only be programpled in
a manufacturing environment. Thus, masked ROMs
provide less flexibility but are used because they
may be more cost-effective in large volumes.
However, because the price of PROMs is falling and
because inventories with erasable PROMs can be
reprogrammed when product programs are
changed, erasable PROMs are also attractive for
large volumes.

6-24

Desirable PROM Programming Features

Once your product's software is debugged, you can
load the software into the product's PROMs (so that
it becomes the product's firmware). However,
usually in the development of a product, the initial
programming of PROM devices is not the last
operation involving the PROMs. Even if the
software is debugged, once it is loaded into the
PROMs, you may discover new bugs in the program
that you failed to detect before the program was
committed to PROMs. So, there may soon be a need
to erase the PROMs (if they are EPROMs or
E2PROMs) and reprogram them.

During product development and servicing, you will
also sometimes need to accomplish the following
tasks:

• Check the contents of a PROM.

• Use one PROM to program other PROMs
that will be used in other prototype systems.

• Update earlier firmware versions with later
versions.

Consider in more detail the (P)ROM-related needs
that can arise for you during the product's life cycle,
that is, between the time when the product's
software has been loaded into PROMs and the time
when the product is phased out. There are two basic
sets of needs, those having to do with displaying
(P)ROM contents and those having to do with pro­
gramming PROMS.

DISPLAYING AND PRINTING NEEDS

For a variety of reasons, you may need to examine
what is stored in a (P)ROM. For example, you may
suspect that a (P)ROM's program is in error; or you
may have incomplete documentation on what was
programmed into a (P)ROM. Thus, you will want to
be able to display the contents on a video display
terminal and to have a printer print out the contents.
You will want to be able to choose the display base
(binary, octal, decimal, or hexadecimal) and
whether to display the contents as ASCII characters.

PROGRAMMING NEEDS

When you program PROMs, you need a program­
ming device that can program a variety or PROMS
and one that offers flexibility and ease of program­
ming. The following list describes PROM program­
ming needs.

280015-001

AP-179

• Need for simple operation - You want a
programming device that satisfies all of the
following needs and is simple to operate.
You do not want to have to refer to a
manual every time you wish to program a
PROM.

• Need to program a wide variety of
PROMs -- For greatest flexibility, you
want a programming device that can pro­
gram the various kinds of PROMs that are
available. For example, you will want to be
able to program microcontrollers with
EPROMs, and you will want to be able to
program from the small inexpensive 16K
and 32K PROMS to the latest 256K
PROMS with inteligent Programming™
algorithms to speed programming. You will
also want to be able to program those
PROMs that use the new lower program­
ming voltage 02.5 V).

• Need to be upgradeable - A PROM pro­
gram ming device should be designed so
that it can be upgraded to program PROMs
that will be available in the future. Without
upgradeability, the device will soon be
out-of-date.

• Need to check PROM contents before
programming - If the PROM you will be
programming is blank, it can of course be
programmed. Even if it has some bits set at
the time of programming, if the same bits
must also be set for the program, the
PROM can be used. Thus, ideally, a PROM
programming device will determine
whether the PROM is blank, and if not,
determine whether the bits already set are
compatible with the program to be loaded
into the PROM.

• Need to recognize file formats - When
a PROM is programmed using an object file
generated by a compiler or assembler, the
PROM programming device must be able
to extract the data that is to be loaded into
the PROM from the larger file structure.
For greatest flexibility, you will need a
PROM programming device that recognizes
the file structures generated by compilers
and assemblers that you will use when
developing program code for the PROMs.

• Need to support a variety of source pro­
gram options - There are three sources
you may wish to use for PROM data: an
already-programmed PR0M, a software
development system, or a disk. For greatest
programming flexibility, you will want a

6·25

PROM programming device that makes all
three kinds of sources available.

• Need to support data manipulation and
modification - You may wish to modify a
source file for your PROM program. For
example, you may discover an error in the
source file, or you may realize that for your
new processor system, the PROM data
must first be 2'5 complemented. For a
variety of reasons, your PROM program­
ming will be much more flexible if the
PROM programming device offers a buffer
for temporary storage and PROM program­
ming software that can manipulate the
source program data in a variety of ways.

• Need for variety in loading program
code into PROMs - If your product has a
16-bit microprocessor and you are using
8-bit PROMs to store the firmware, you will
need to interleave the 16-bit code between
two 8-bit PROMs. A PROM programming
device with interleaving capability will
speed such programming. You may want
other kinds of flexibility when program­
ming.

• Need to transfer long programs that will
not fit into one PROM - Long programs
may exceed the storage capacity of the
PROMs chosen for your product. You need
a programming device that can format the
program so that it can be stored in
succ~ssive PROMs.

o Need to verify programming - When
programming is finished, you will want to
check that the PROM is indeed correctly
programmed. A defect in the PROM could
corrupt the intended firmware. Checking
would involve comparing the source with
the programmed PROM.

• Need to compare buffer with PROM
If you are interrupted when programming
PROMs or if you have not labeled PROMs
that you did program, you may forget
whether a particular PROM was program­
med. In such cases, you will want to
compare the particular PROM with the pro­
gram stored in the buffer of the program­
ming device. Comparison will prevent you
from having to reprogram an already-pro­
grammed PROM.

280015·001

inter AP-179

• Need to lock microcontrollers from
unauthorized access - Some advanced
microcontrollers can be locked to prevent
unauthorized access. To take advantage of
this security feature, you need to be able to
control the locking of the microcontrollers.

• Need to automate routine PROM pro­
gramming tasks - To speed program­
ming, you will want a programming device
that can automate routine programming
functions. Automation will not only speed
programming, it will also release personnel
for other work.

DESIRABLE PROM PROGRAMMING
FEATURES: A SUMMARY

In summary, if PROMs (and ROMs) are
incorporated in your product, you will have the
greatest flexibility if your PROM programming
device has the following features. (Of course, for
ROMs only reading tasks are needed.)

• Is easy-to-use.

• Can program a wide variety of PROMs.

• Is upgradeable.

• Can display (P)ROM contents in ASCII
characters and in a variety of bases.

• Can enable a printer to print out (P)ROM
contents in ASCII characters and in a
variety of bases.

• Can check (or blank PROMs.

.• If PROM is not blank, can check PROM
contents for compatibility with program.

• Can recognize file formats of your
development system object files.

• Supports transfers of program code from
development systems, disks, and other
PROMs to the new PROM.

• Provides temporary storage and software
for manipulating Programming data before
loading it into the PROM.

• Supports variety in how data is loaded into
PROMs, e.g.: .

Interleaving 16-bit data into 8-bit
PROMs
Segmenting long programs so that
resulting program segments fit into
successive PROMs

6·26

• Can verify the accuracy of copying.

• Can compare programming buffer with
PROM contents.

• Can lock microcontrollers from unauthor­
ized access.

• Can automate routine PROM programming
tasks.

The Intel Personal Development System (iPDS)
with the PROM programming option meets these
need~. The. following sections describe the iPDS
PROM programming hardware and software and
show how this system can perform all of these tasks
for a variety of PROMs.

THE iPDSTM PROM PROGRAMMING
SYSTEM

The iPDS system supports integrated hardware and
software development; it provides a complete set of
software development tools and in-circuit emulators
for hardware debugging and hardware-software
integration. With its optional PROM programming
hardware and software, the iPDS system also
supports PROM programming.

Three components comprise the iPDS PROM
programming system: the iPDS system (with the
ISIS-PDS operating system and the plug-in module
adapter board), the PROM programming modules,
and the PROM programming software. Each of
these components is described briefly in the
following sections.

iPDSTM System

To perform PROM programming tasks, the iPDS
system must use its ISIS-PDS operating system and
the plug-in module adapter board. The PROM
programming software (iPPS-PDS) runs under the
ISIS-PDS operating system.

The adapter board allows you to use both the PROM
programming personality modules and emulation
modules. It provides the interface between the
modules and the iPDS system ..

Figure 1 sh~ws the iPDS system with a PROM
programming personality module plugged into its
side.

280015-001

AP-179

I, I ,.j .. <~

'"",,1

/'
;'

Figure 1 iPDSTM System with PROM Programming Personality Module

PROM Programming Personality Modules

A personality module is the interface between the
. iPDS system and a selected PROM. Personality

modules contain all the hardware and firmware for

reading and programming a family of Intel devices.
Each personality module, is a single molded unit
inserted into the side panel of the iPDS unit. No
additional adapters or sockets are needed. Table 1
lists the available personality modules, and Figure 2
shows the four modules.

Table 1 PROM Programming Personality Modules

PERSONALITY MODULE
PROM TYPE'

PROMs AND ROMs SUPPORTED
PROGRAMMED

iUP-Fast 27/K EPROM 2764, 2764A, 27128, 27256, and provisions
for future PROMs

iUP-F271128 E2/EPROM 2716, 2732, 2732A, 2764,27128, 2815,and
2816

iUP-F87/51A Microcontroller 8748, 8748H, 8048, 8749H, 8048H, 8049,
8049H, 8050H, 8751, 8751H, 8051

iUP-F87/44A Peripheral 8741A, 8041A, 8742, 8042, 8744H, 8044AH,
8755A

6·27
280015·001

AP-179

Figure 2 PROM Programming Personality Modules

Each personality module connects to the iPDS
system through a 41-pin connector. Module firm­
ware is uploaded into the iPDS system and executed
by the iPDS system. The personality module firm­
ware contains routines needed to read and program
a family of PROMs. In addition, the personality
module sends specific information about the selected
PROM to the iPDS system, such as information
about the PROM size and its blank state.

LEDs on each personality module indicate its opera­
tional status. On some personality modules a
column of LEDs or a hexadecimal display indicates
which PROM device type the user has selected. On
some personality modules with more than one
socket, an· LED below each socket indicates the
socket to be used. In addition, a red indicator light
tells the user when power is being supplied to the
selected device.

The personality module firmware performs selected
PROM tests and indicates status:

6-28

• The PROM installation test verifies that the
device is installed in the module correctly
and that the ZIF socket is closed.

• The PROM blank check determines wheth­
er the device is blank. The iPDS system au­
tomatically determines whether the blank
state for the particular device is defined as
all zeros or all ones.

• The overlay check (performed when a
PROM is not blank) determines which bits
are programmed, compares those bits
against the program to be loaded, and
allows programming to continue if they
match.

Easy-to-read status messages are also provided. The
user can invoke all of the PROM device integrity
checks except the installation test (which occurs au­
tomatically any time an operation is selected). The
following sections describe specific features of the
three personality modules that program the newer
Intel PR I")Ms.

280015-001

inter AP-179

iUP·F87/44A AND IUP·F87151A
PERSONALITY MODULES: SPECIAL FEATURE

Each of these personality modules supports the
security bit function on one member of the micro­
controller family it can program. The iUP-F87/44A
module supports the function on the 8744H
microcontroller, and the iUP-F87/51A supports the
function on the 8751H microcontroller. The KEY­
LOCK command locks the 8744H (or the 8751H)
EPROM memory from unauthorized access by set­
ting the security bit; the microcontroller cannot be
unlocked without erasing the EPROM. As a safety
precaution, the KEYLOCK command requires user
verification before it sets the security bit.

IUP·FAST 27/K PERSONALITY MODULE:
SPECIAL FEATURES

The iUP-Fast 27/K personality module supports the
inteligent Identifier™ and the inteligent Program­
ming algorithms. The inteligent Identifier is used to
check the PROM installed in the personality module
socket to determine whether it matches the type
selected; then the inteligent Identifier is used to
select the proper inteligent Programming algorithm.
The inteligent Programming algorithms reduce
PROM programming time by as much as a factor of
ten. This module has provision for support of future
EPROMS and E2PROMs via simple plug-in updates.

The Inteligent Programming TM Algorithm

Using the capabilities of the iPDS PROM programming equipment and employing a new kind of algo­
rithm that recognizes differences among EPROM cells, you can dramatically reduce programming time
for the newest high-density EPROMs. As a bonus, the technique helps ensure that EPROMs receive ad­
equate programming - in terms of memory-cell charge - to maintain long-term reliability.

Reducing programming time and costs for EPROMs has become increasingly important because the
, chips have become a cost-effective, easy-to-use alternative to masked ROM in high-volume applications

requiring code flexibility or simplified inventory - a major switch from EPROMs' original small-volume
proto typing applications. And, volume usage makes EPROM programming a significant manufacturing
consideration.

The, conventional programming procedure for most EPROMs uses a nominal 50-msec pulse per
EPROM byte, resulting in a total programming time of approximately 1.5 minutes for a 16K-bit chip.
With the introduction of the 2764 (64K bits) and devices with even higher densities, however, program­
ming times have increased. A 256K-bit EPROM, for example, requires 24 minutes for programming
using the conventional programming method,

Most EPROM cells program in less than 45 msec, however. In fact, empirical data shows that very few
cells require longer than 8 msec for programming. Therefore, a procedure that takes into account the
characteristics of individual EPROM cells can significantly reduce a device's programming time.

Arbitrarily reducing programming time is risky, however, because a cell's ability to achieve and maintain
its programmed state is a function of this time. What is needed, therefore, is a way to verify the level to
which individual cells have been programmed. Such a way exists. By determining the charge stored in a
cell compared to the minimum charge needed to program the cell to a detectable level, you can check
for a program margin that ensures reliable EPROM operation.

Margin checking does not occur in conventional EPROM programming, however. Instead, each
EPROM cell receives a 45- to 55-msec write pulse, and manufacturers attempt to ensure program
margin by screening out EPROMs having bytes that do not program within 45 msec. This programming
procedUre is thus an open loop - no actual verification of margin occurs.

, "

By contrast, the inteligent Programming algorithm guarantees reliability through the closed-loop tech­
nique of margin checking. This algorithm uses two different pulse types: initial and over-program. The
algorithm first applies a I-msec initial pu'lse to an EPROM. After the pulse, it checks the EPROM's
output for the desired programmed value. If the output is incorrect, the algorithm repeats the pulse­
and-check operation. When the output is correct, the algorithm supplies an over-program pulse; the
length of this pulse depends on how many initial pulses were used and varies with the EPROM being
programmed. This longer pulse helps ensure that the EPROM cell has an adequate programming margin
for reliable operation.

280015-001

6-29

AP-179

Prom Programming Software (jPPS-PDS)

The iPPS-PDS software provides easy-to-use com;­
mands that allow you to load programs into a target
PROM from another PROM, from iPDS system
memory, or directly from a disk file.

The iPPS-PDS software also supports data manipula­
tion in the following Intel formats: 8080 hexadeCimal
ASCII, 8080 absolute object, 8086 hexadecimal
ASCII, 8086 absolute object, and 286 absolute
object. Addresses and data can be displayed in
binary, octal, decimal, or hexadecimal. You can
easily change default data formats as well as number
bases.

You invoke the iPPS-PDS software from the ISIS
operating system. (The software can be run under
control of ISIS submit files, thereby freeing you
from repetitious command entry,)

<\n explanation of the iPPS-PDS software follows. It
is divided into three main sections: the iPPS-PDS
storage devices, iPPS-PDS commands, and invoking
the iPPS-PDS. Also see the Appendix for iPDS
PROM programming examples.

iPPS·PDS STORAGE DEVICES

The iPPS-PDS software transfers data between any
two of the three storage devices: PROM, buffer, and
file. These devices are defined in the following three
sections.

PROM Device

The PROM device is plugged. into a socket on the
personality module installed in the iPDS system.
The iPPS-PDS software does not recognize the
PROM device until you enter the TYPE command.
The TYPE command automatically sets the appropri­
ate buffer size according to the size of the PROM
device specified.

Buffer Device

The buffer device is a section of development
system memory that the iPPS-PDS software allocates
and uses as a working area for temporary storage
and for rearranging data. Its boundaries can exist
anywhere in a virtual address range from 0 to
16777215 (0 to 224-0.

When the iPPS-PDS software is initialized, the
buffer starting address is set to 0 and the buffer
ending address is set to 8K -1, providing an initial
buffer size of 8K bytes (the default buffer size when
no PROM type is specified). During subsequent
iPPS-PDS operations, the size and boundaries can
vary. Specific iPPS-PDS commands determine these
variations. The most recent command that changed

6-30

the lower boundary of the. buffer determines the
buffer starting address. The TYPE command affects
both the size and location of the buffer. For
example, the TYPE command always resets the
buffer start address to O. The most recent TYPE
command controls the size of the buffer.

The iPDS system needs:! virtual buffer when
PROM size exceeds 8K. If the PROM size exceeds
the 8K memory buffer space available on the devel­
opment system, the iPPS-PDS software creates a
virtual buffer area using temporary file space on
disk.

Two temporary work files are used to create the
virtual buffer. During subsequent virtual. buffer
operations, the iPPS-PDS software automatically
swaps data in and out of development system
memory from and to work files.

File Device

The file device is an ISIS file on a disk. It is specified
within iPPS-PDS commands.

The data stored in the disk file is in one of the follow­
ing Intel absolute formats: 8080 hexadecimal, 8080
object, 8086 hexadecimal, . 8086 object, or 80286
object. The iPPS-PDS software can read any of these
formats as input but writes data to a file in 8080
object, 8086 object, or. 80286 object formats only.
Basically, these files contain representations of
blocks of memory data. Included with the data are
addresses for the locations of the data. The data
blocks are not necessarily in consecutive address
order. The method used to create the file determines
the order of the data.

The iPPS-PDS file device has address boundaries
that exist in the virtual range from 0 to 16777215 (0
to 224-0. These boundaries are determined as
follows:

• The file's lowest .address is the lowest ad­
dress encountered while reading the file.

• The file's highest address is the highest ad­
dress encountered while reading the file.

If the iPPS-PDS software creates the file (that is, if
the file is a destination device in an iPPS-PDS
command), the specific command issued determines
these boundaries.

When you specify a particular address range to be
read from a file, all sections in the address range that
are not present in the file are wfitten in a PROM
destination device as the blank state of the currently
selected PROM type. If the destination device is the
buffer, the nonexistent sections in the file do not
overwrite the corresponding sections in the buffer.

280015-001

AP-179

During the operation of commands that use the file
device as a source, the iPPS-PDS software only
reads the actual data from the file and ignores any
other information in the file. For example, the file
can contain special information used later for
debugging. Since the iPPS-PDS software ignores this
information, it will not appear in any new files
generated. If the data is written back to the original
file, the original file is deleted.

iPPS-PDS COMMANDS
Each iPPS-PDS command consists of a keyword that
identifies the command, followed by other keywords
and associated parameters that are the arguments of
the command. You enter all iPPS-PDS commands,
as well as program address and data information,
through the development system ASCII keyboard;
the commands are displayed on the system CRT.
Table 2 summarizes the iPPS-PDS commands.

Table 2 iPPS-PDS Command Summary

COMMAND DESCRIPTION

PROGRAM CONTROL GROUP CONTROLS EXECUTION OF THE iPPS-PDS SOFTWARE.
EXIT Exits the iPPS software and returns control to the ISIS operating

system.
<ESC> Terminates the current command.
REPEAT Repeats the previous command.
ALTER Edits and re-executes the previous command.

UTILITY GROUP DISPLAYS USER INFORMATION AND STATUS; SETS
DEFAULT VALUES.

DISPLAY Displays PROM, buffer, or file data on the console.
PRINT Prints PROM, buffer, or file data on the local printer.
HELP Displays user assistance information.
MAP Displays buffer structure and status.
BLANKCHECK Checks for unprogrammed PROMs.
OVERLAY Checks whether non-blank PROMs can be programmed.
TYPE Selects the PROM type.
INITIALIZE Initializes default number base and file type.
WORKFILES Specifies the drive device for temporary work files.

BUFFER GROUP EDITS, MODIFIES, AND VERIFIES DATA IN BUFFER.
SUBSTITUTE Examines and modifies buffer data.
LOADDATA Loads a section of buffer with a constant.
VERIFY Verifies data in the PROM with buffer data.

FORMATTING GROUP REARRANGES DATA FROM PROM, BUFFER, OR FILE.
FORMAT Formats and interleaves buffer, PROM, or file data.

COpy GROUP COPIES DATA FROM ONE DEVICE TO ANOTHER.
COpy (file to PROM) Programs PROM with data in a file on disk.
COpy (PROM to file) Saves PROM data in a file on disk.
COpy (buffer to PROM) Programs PROM with data from the buffer.
COpy (PROM to buffer) Loads the buffer with data in the PROM.
COPY (buffer to file) Saves the contents of buffer in a file on disk.
COpy (file to buffer) Loads the buffer from a file on disk.

SECURITY GROUP LOCKS SELECTED DEVICES; PREVENTS
UNAUTHORIZED ACCESS.

KEYLOCK Locks the PROM from unauthorized access.

280015-001

6-31

AP-179

Once entered, a command line is verified for correct
syntax and executed.· If a syntax error is detected,
the following error message is displayed:

- -SYNTAX ERROR- -specific error.

If you omit a required keyword, the iPPS-PDS soft­
ware prompts for the keyword and its associated
parameters. If the keyword is entered but its parame­
ters are omitted, either a default value is assumed or
an error message is displayed if there is no default.
In certain commands, default keywords are also
assumed.

You can enter complete iPPS-PDS keywords or any
unique abbreviation (only the first character is
required). For example, command keywords of C,
CO, COP, and COpy are all interpreted as the
COPY command.

The iPPS-PDS software accepts numeric entries in
anyone of four number bases: binary (Y), octal (0
or Q), decimal (T), or hexadecimal (H). Numbers
can be entered in any of these bases by appending
the appropriate letter identifier to specify the base
(e.g., 11111111 Y, 377Q, 255T, FFH). An explicit
number base identifier overrides the default
number base, which is initially hexadecimal.

INVOKING iPPS

There are two methods of invoking the iPPS-PDS
sofhyare: command lines and submit files.

The command line for invoking the iPPS-PDS soft­
ware (under V1.0 and later versions of the ISIS.PDS
operating system) uses the following syntax:

[:Fn:]lPPS

The symbol ":F n:" Specifies the drive on which the
iPPS-PDS files are located. When you enter the iPPS­
PDS command, the ISIS operating system loads and
executes the iPPS-PDS software.

The iPPS-PDS software can also run under the con­
trol of a submit file. SUBMIT is an ISIS command
that allows you to use a disk text file as input for fur­
ther ISIS commands or as command inputs to utili­
ties running under the ISIS operating system. Thus,
a submit file can contain the ISIS command line to
invoke the iPPS-PDS software and then a sequence
of commands for the iPPS-PDS software itself.

Summary: The iPDSTM System Meets
PROM Programming Needs

Table 3 describes briefly how the iPDS system meets
each of the needs identified earlier in this application
note.

The iPDS system can be a complete intelligent
PROM programmer - and,· because the iPDS
system is also a development system, it can provide
an excellent means to off-load PROM programming
from your current development system (just as the
iPDS system allows you to off-load other 8-bit devel-

. opment tasks). In addition, with its state-of-the-art
PROM programming capability, the iPDS system be­
comes an attractive solution to your complete devel­
opment system needs.

280015-001

6-32

AP-179

Table 3 iPDSTM Features Meet PROM Programming Needs

NEED

Be easy-to-use.

Program a wide variety of
PROMs.

Be upgradeable.

Display (P)ROM contents in
ASCII characters or in a variety
of bases.

Enable a printer to print out
(P)ROM contents in ASCII
characters and in a variety of
bases.

Check for blank PROMs.

If PROM is not blank, check
PROM contents for compatibility
with program.

Recognize file formats of
development system object files.

Support transfers of program
code from development system,
disks, and other PROMs to the
new PROM.

Provide temporary storage and
software for manipulating
programming data before loading
it into the PROM.

Load data into PROMs in a
variety of formats, e.g.:
- interleaving 16-bit data into

two 8-bit PROMs
- segmenting long programs so

that resulting program
segments fit into successive
PROMs

Verify the accuracy of copying.

Compare programming buffer
with PROM contents

Control the security feature of
advanced microcontrollers for
unauthorized access.

Automate routine PROM
programming tasks.

iPDSTI\I FEATURE

iPPS software and the PROM programming personality modules
were designed to provide ease-of-use.

Personality modules each permit the programming ofa family of
PROMs or microcontrollers.

New personality modules will be released as new PROM families
appear.

iPPS DISPLAY command displays (P)ROM (or buffer or file)
contents in ASCII characters and in binary, octal, decimal, or
hexadecimal. '

iPPS PRINT command prints out (P)ROM (or file or buffer)
contents in ASCII characters and in binary, octal, decimal, or
hexadecimal.

iPPS BLANKCHECK command checks for blank PROMS.

iPPS OVERLAY command checks PROM contents for
compatibility with program.

iPPS command file switch allows you to indicate to the iPDS
system which object file format is being used.

iPPS COpy commands allow you to copy in either direction
between the iPDS disk drive(s), PROMs, and the iPDS buffer
storage.

iPDS buffer provides temporary storage and the iPPS
SUBSTITUTE and LOADDATA commands allow you to
manipulate programming data before you load it into a PROM.

iPPS FORMAT command allows you to format data in a variety
of ways so that it can be loaded into PROMs in various
sequences (including interleaving and segmenting).

iPPS software automatically checks the accuracy of copying.

iPPS VERIFY command compares buffer data with PROM data.

iPPS KEYLOCK command locks advanced microcontrollers.

ISIS SUBMIT files permit you to store frequently used
command sequences. The files can then be activated with a
single command.

6·33

280015-001

APPENDIX: PROM PROGRAMMING EXAMPLES

6·34

APPENDIX: PROM PROGRAMMING
EXAMPLES

AP-179

EXAMPLES

Displaying (P) ROM contents and programming
PROMs are easy tasks with the iPDS system. The
following four examples show typical uses of the
iPDS system's PROM programming capabilities:

The examples assume that the iPDS system is under
control of the iPPS-PDS software. The boldface
characters shown on the iPDS screen displays
indicate user entries. The key-in sequence below
each screen display gives the actual entries that you
must key in to obtain the screen display.

• Examining the contents of a masked ROM

• Duplicating a PROM

• Interleaving a file between two PROMs
Examining the Contents of a Masked ROM

• Locking a microcontroller
The DISPLAY command lets you examine the
contents ofa PROM or a masked ROM.

PPS> DISPLAY PROM
000000: C3 400020204420 2D 20 44 4953 4B 00 20 20
000010: 4720 2D 20 47 45 4E 4552 414C 002020 4B 20
000020: 2D 20 4B 45 59 42 4F 415244 2F 43525400 FF
000030: FF FF FF FF FF FF FF FF (3 36 lC FF FF FF FF FF
000040: F3 DB 80 E6 20 CA 03 08 3E 00 D3 Dl DB 80 E6 01
000050: C2 6600 3E 4F D3 DO 3E 58 D3 DO 3E 89 D3 DO 3E
000060: 99 D3 DO C3 7600 3E 4F D3 DO 3E 98 D3 DO 3E 8A
000070: D3 DO 3E 9C D3 DO 21 00 00 110008 AF 47 7B B2
000080: CA 8A 00 78 86 23 lB C3 7D 00 78 FE 55 C2 8D 00·
000090: 3E 34 D3 E3 3E IF D3 EO 3E 00 D3 EO 01 30 00 DB
DOODAD: 80 E6 01 C2 A9 00 01 2C 00 3E 72 D3 E3 79 D3 El
OOOOBO: 78 D3 El 3E B2 D3 E3 3E 00 D3 E2 3E 16 D3 E2 D3
OOOOCO: 10 3E 22 D3 60 D3 50 D8 80 E6 04 CA C7 00 DB 80
OOOODO: E6 04 C2 CE 00 AF D3 FO D3 FO D3 FO D3 F1 3E A1
OOOOEO: D3 F8 3E 23 D3 60 3E C'8 D3 E2 3E 00 D3 E2 D3 50
OOOOFO: 21 EF 00 2B 7C B5 C2 F3 00 DB 80 E6 04 C2 FD 00
000100: 3E 00 D3 E2 3E 16 D3 E2 D3 50 DB 80 E6 04 CA OA
000110: 10 DB 80 E6 04 C2 11 01 3E 22 D3 60 D3 50 DB 80
000120: E6 04 CA lE 01 DB 80 E6 04 C2 25 01 21 00 40 11
ENTER <CR> TO CONTINUE $

ABORTED
PPS>

Key-in Sequence Comments
I

·a·D-DISK.
G - GNENERAL. K
- KEYBOARD/CRT .•
· •••••••• 6 •••.••
....... >
.f.>O •• >X •• > ... >
• ••• v.>O •• > ••• >.
· . > ... / G{.
... x.# •. }.x.U ...
>4 •• > ••• > •••• 0 ••
....... , .>r .. y ••
x ... > ••• > ••• > ••••
.>"., .P .•..•••..
.............. > .
.. >#.,> ... > P
I· . +1· ••••••••.••
> ... > P ••••••
........ >"., .P ••
· •••...... %.'.a.

DISPLAY PROM

~ RETURN~

[3

This example shows the data in the PROM in hexadecimal format, which is
the default base in this example. Press the ESC key at any time to end the
display. The "s" sign is the echo of the ESC key. You can also display the
data in other number bases. Note the ASCII code displayed in the far right
column.

280015-001

6-35

AP-179

Duplicating a PROM
One frequently used application of iPDS PROM
programming is copying data from a PROM into a
buffer or file, then copying it into another PROM.
You can perform this operation using the iPPS-PDS
buffer (or an iPDS file for intermediate storage) and
the iPPS-PDS COpy commands.

PPS> COPY PROM TO BUFFER
CHECK SUM = 4D4A

PPS>

The following example illustrates a direct
PROM-to-buffer-to-PROM duplication. If you wish
to perform these examples, place the PROM in the
PROM socket and reset the iPPS-PDS (using the
TYPE command for your type of PROM). A 2716
EPROM that contains sample code is used in this
example. -

Key-in Sequence Comments

COpy PROM TO BUFFER

~ RETURN~
This command copies every memory location in the PROM to
the buffer beginning at destination address OOH in the buffer.
The checksum is the 2's complement of the 16-bit sum of all
the bytes read.

If you want to check the buffer to be sure the data
now there matches the original data in the PROM,
one command is all that is needed. Enter the

VERIFY command, and if the buffer and PROM
data match, you will be informed VERIFY TEST
PASSED. '

Key-in Sequence

VERIFY ~RETURN~
Comments

The data in the buffer matches the data in the PROM.

6-36

280015-001

AP-179

Now that you have verified that the data in the
buffer matches the data in the PROM, you are ready
to copy the buffer to a blank PROM. Remove the

PPS> COPY BUFFER TO PROM
CHECK SUM = 4D4A

Key-in Sequence Comments

master PROM from the PROM socket and insert the
blank PROM. Then use COPY again to copy the
contents of the iPPS-PDS buffer to the blank PROM.

COPY BUFFER TO PROM

~ RETURN~
The display of the check-sum and the return of the iPPS prompt
indicate that the PROM was successfully programmed.

Note that for copying from the buffer to a PROM,
you do not need to use the VERIFY command. The
iPPS-PDS software automatically verifies the
copying when you copy in this direction.

Interleaving a File Between Two PROMS

It is often desirable to have code or data arranged in
16-bit words and stored on a pair of 8-bit PROMs.
This is the case, for example, when working with an

6·37

8086 microprocessor that reads from and writes to
memory on a 16-bit data bus. The data is interleaved
between two PROMs, the odd (or low) bytes stored
in one PROM and the even (or high) bytes stored in
the other PROM. The FORMAT command handles
this interleaving automatically.

In the following example, a file written in Intel 8086
hexadecimal format is interleaved into two PROM
devices.

280015-001

AP-179

P P S > FORMAT DOUBLE.BYT (O,FFFH)
LOGICAL UNIT (BIT=l, NIBBLE=2, BYTE=3, N-BYTE=4)
LU = 3
INPUT BLOCK SIZE (N BYTES)
N=2
OUTPUT BLOCK SIZE (N BYTES)
N = 1
INPUT BLOCK STRUCTURE:
NUMBER OF INPUT LOGICAL UNITS = 002

LSB

I DO I 01 I

NUMBER OF OUTPUT LOGICAL UNITS = 001
OUTPUT SPECIFICATION «CR> TO EXIT):

*

Key-in Sequence

FOR.MAT DOUBLE.BYT (O,FFFH)

~RETU3'

3 ~RETURN~

2 [RET~3

1 ~RETURNij

Comments

In this example; a file called DOUBLE.BYT is split
into two files, with alternate bytes being loaded into
alternate files. After establishing the FORMAT com~
mand and the file name with the first entry, the iPPS
software prompts .for the size of the logical unit that
is going to be manipulated. Byte is selected as the
logical unit. You are then prompted to set up the
input block size (in this case two bytes) and the
output block size (one byte). A diagram of the input
block is displayed with the logical units labeled. The
least significant bit in the input block is displayed
with the logical units labeled. The least significant bit
in the input block is shown on the left. The number
of logical units in the output block is also displayed.
You are then prompted with an asterisk (*) to enter
the output specification.

280015-001

6-38

Key-in Sequence

o TO LOWER.BYT

~RETURN~
1 TO UPPER.BYT

AP-179

Comments

Once the size of the logical unit, the input block size and the output block
sizes have been established, you are prompted for the output specification
(how you want the data in the file to be manipulated in terms of logical
units). This example specified that the least significant byte in each input
block be stored in a file titled LOWER.BYT in the default drive. The iPPS
software then sorts through the DOUBLE.BYT file. Next it specifies that the
most significant byte be stored in a file titled UPPER.BYT. The iPPS software
then sorts through the DOUBLE.BYT file and copies every odd byte to the
UPPER.BYT file. OUTPUT STORED is displayed after each output specifi­
cation is implemented. You then have the option of entering another output
specification. Pressing RETURN exits the FORMAT command and returns
the iPPS prompt.

You can use the two files created with this
FORMAT operation to program two PROMs, which
you can then install in parallel to provide 16-bit data

words to a 16-bit microprocessor. To copy the files
to the PROMs, use the COPY command as follows.

P P S > COPY LOWER.BYT TO PROM
CHECK SUM = 518

PPS >COPY UPPER.BYTTO PROM

Key-in Sequence

COPY LOWER.BYT TO PROM

rr:ETURN~
COpy UPPER.BYT TO PROM

E;3

Comments

You must install a blank PROM in the personality
module before entering each COpy command.

280015-001

6-39

AP-179

Locking a Microcontroller

After programming a microcontroller, you can pro­
. tect it from unauthorized access by locking it with

the KEYLOCK command (the KEYLOCK com­
mand cannot be used with all EPROMs). The follow­
ing example locks an 8751H microcontroller, which
then cannot be unlocked without erasing it.

Key-in Sequence

KEVLOCK ~RETU3

V ~RETURN~

Comments

Entering Y locks the EPROM. If you enter N, the command terminates and
EPROM remains unlocked.

280015-001

6-40

System Design Kits 7

SDK-85
MeS-85™ SYSTEM DESIGN KIT

• Complete Single Board Microcomputer
System Including CPU, Memory, and I/O

• Easy to Assemble, Low Cost, Kit Form

• Extensive System Monitor Software in
ROM

• Interactive LED Display and Keyboard

• Large Wire-Wrap Area for Custom
Interfaces

• Popular 8080A Instruction Set

• Interfaces Directly with TTY

• High Performance 3 MHz 808SA CPU
(1.3 pS Instruction Cycle)

• Comprehensive Design Library
Included

The SDK·85 MCS·85 System Design Kit is a complete single board microcomputer system in kit form. It contains all
components required to complete construction of the kit, including LED display, keyboard, resistors, caps, crystal,
~!1d miscellaneous hardware. Included is a preprogrammed ROM containing a system monitor for general software
utilities and system diagnostics. The complete kit includes a 6·digit LED display and a 24·key keyboard for a direct in·
sertion, examination, and execution of a user's program. In addition, it can be directly interfaced with a teletype ter·
minal. The SDK·85 is an inexpensive, high performance prototype system that has designed·in flexibility for simple in·
terface to the user's application.

. .. to.····· .. ·· .. ····· .. ·
,

un",,""""""

-,

3 "

© INTEL CORPORATION, 1963 MAY 1963

7-1

SDK·85

FUNCTIONAL DESCRIPTION
The SDK-85 is a complete 8085A microcomputer system
on a single board, in kit form. It contains all necessary
components to build a useful, functional system. Such
items as resistors, capacitors, and sockets are included.
Assembly time varies from three to five hours, depend­
,ng on the skill of the user. The S~K-85 functional block
diagram is shown 'n Figure 1.

808SA Processor
The SDK-85 is designed around Intel's 8085A microproc­
essor. The Intel 8085A is a new generation, complete
8-bit parallel central processing unit (CPU). Its instruc­
tion set is 100% software upward compatible with the
8080A microprocessor, and it is designed to improve the
present 8080A's performance by higher system speed.
Its high level of system integration allows a minimum
system of three IC's: 8085A (CPU), 8156 (RAM), and
8355/8755 (ROM/PROM). A block diagram of the 8085A
microprocessor is shown in Figure 2.

CPU

I
I
I
I
I
I

SERIAL I

ADDRESS
DECODER

I
I

I

I
I

I

ROMIIO 183551
EPROMIIO 187551 RAM/IO/COUNTER

I
I

I

I
I

I

System Integration - The 8085A incorporates all of the
features that the 8224 (clock generator) and 8228 (sys­
tem controller) provided for the 8080A, thereby offering
a high level of system integration.

Addressing - The 8085A uses a multiplexed data bus.
The 16-bit address is split between the 8-bit address bus
and the 8-bit address/data bus. The on·chip address
latches of 8155/8156/8355/8755 memory products allows
a direct interface with the 8085A.

System Monitor
A compact but powerful system monitor is supplied
with the SDK-85 to provide general software utilities and
system diagnostics. It comes in a pre-programmed
ROM.

Communications Interface
The SDK-85 communicates with the outside world
through either the on-board LED display/keyboard com­
bination, or the user's TIV terminal (jumper selectable

KEYBOARD/DISPLAY

ADDRESS
FIELD

1~'"1I'-''-''-' c,. c,.,=,.c,
I

DATA
FIELD

ElEIII
I

SDK 85 KEYBOARD LAYOUT
I I

RESET ~N\C: C 0 E F

I ~ SINGLE 8 9 I
STEP

GO
H L

A B

I V' SUBST EXAM 4 5 6 7 I
MEM REG SPH SPL P~H P~L I

I NEXT EXEC o 1
I

FOR BUS EXPANSION

~ rD~rli I '"'"'' I ,n"" I ' ,
I

~nn I n I~ I

I
I r - - -, I r - -, ~ ,7

8755 8155 I I

~~~~~~ff 
8 DATA 

BUS 

INTERRUPT 
INPUTS 

.:; 

o 
ADD 

AT A/ ~ 
RESS 

BUS 

ADD RiJ~ r 

CONT ~~~ I 

8085 I: 
'- I : I II 

8205 I r 8355 ~ I ~ 8155..11 8279 I • 

;'L >.t. ~I ;> I":;;' <; >.t.;" I >. .:; ',> I L >L > L ',> I 

I I 
I I I 

r----' 
8216 

I L- _____ ~ 

)- I I"; 7 I 7- I ~ )- I, 7 
~ 

I I I 

I I I I 
I 

, 7 I I I I 
1 

I ~ 

r-:1;-'g 
.... - - -. - .J 16 ADDRESS 

BUS 

r----' 
8212 

I I I I I 
I I I I I 

" 71 I ' 7 , 7 " ". I 

~----,.j 

I I I I 
. 

~ - - ~ OPTIONAL A PLACE HAS HII N PROVIDED ON THE PC BOARD FDR THE DEVICE BUT THE 
L __ -' DEVICf IS NOT INCl UO[D 

Figure 1. SDK·aS System Design Kit Functional Block Diagram 

7-2 



-SDK·85 

INSIDE THE 8085: 
AST 55 AST 7.5 

POWER{ ....... +5V 
SUPPLY ....... GND 

• SEVEN 8-BIT REGISTERS_ SIX OF THEM CAN BE LINKED 
IN REGISTER PAIRS FOR CERTAIN OPERATIONS_ 

• 8-BIT ALU_ 

REG 

PROGRAM COUNTER 

INCREMENTER OECREMENTER 
ADDRESS LATCH 

AlsAa 
ADDRESS BUS 

AD 7·ADo 
AODRESS/OAT A BUS 

• 16-BIT STACK POINTER (STACK IS MAINTAINED 
OFFBOARD IN SYSTEM RAM MEMORY)_ 

• 16-BIT PROGRAM COUNTER_ 

Figure 2. SOSSA Microprocessor Block Diagram 

Both memory and I/O can be easily expanded by simply 
soldering in additional devices in locations provided for 
this purpose. A'iarge area of the board (45 sq. in.) is laid 
out as general purpose wire·wrap for the user's custom 
interfaces. 

Assembly 
Only a few simple tools are required for assembly; 
soldering iron, cutters, screwdriver, etc. The SDK·85 
user's manual contains step-by-step instructions for 
easy assembly without mistakes. Once construction is 
complete, the user connects his kit to a power supply 
and the SDK-85 is ready to go. The monitor starts imme­
diately upon power-on or reset. 

Table 1. Keyboard Monitor Commands 

Command Operation 
Reset Starts monitor. 
Go Allows user to execute user pro· 

gram. 
Single step Allows user to execute user pro-

gram one instruction at a time-
useful for debugging. 

Substitute memory Allows user to examine and 
modify memory locations. 

Examine register Allows, user to examine and 
modify 8085A's register con-
tents. 

Vector interrupt Serves as user interrupt button. 

7-3 

Commands - Keyboard monitor commands and teletype 
monitor commands are provided in Table 1 and Table 2 re­
spectively. 

Table 2. Teletype Monitor Commands 

Command Operation 
Display memory Displays multiple memory loca­

tions. 
Substitute memory Allows user to examine and 

modify memory locations one 
at a time. 

Insert instructions Allows user to store multiple 
bytes in memory. 

Move memory Allows user to move blocks of 
data in memory. 

Examine register 

Go 

Documentation 

Allows user to examine and 
modify the 8085A's register 
contents. 
Allows user to execute user 
programs. 

In addition to detailed information on using the 
monitors, the SDK·85 user's manual provides circuit dia­
grams, a monitor listing, and a description of how the 
system works. The complete design library for the 
SDK-85 is shown in Figure 7-11 and listed in the Specifi­
cations section under Reference Manuals. 



SDK·8S 

Figure 3. SDK·aS Design Library 

808SA INSTRUCTION SET 
Table 3 contains a 'summary of processor instructions 
used for the SOSSA microprocessor. 

Table 3. Summary of SOSSA Processor Instructions 

Mnemonic1 I Description 
I Instruction Code

2 
I I Clock3 

07 06 05 04 03 02 0 1 DO Cycles Mnemonic1 \ ' . Description 

MOVE, LOAD, AND STORE LXI SP Load immediale stack 

MOVrlr2 Move register to register 0 1 0 0 0 S S S 4 pOinter 

MOV M.r Move register to memory 0 1 1 t 0 S S S 7 INX SP Increment stack pOinter 

MOV r.M Move memory to register 0 1 0 0 0 1 1 0 7 OCX SP Decrement stack 

MVI r Move immediate register 0 0 0 0 0 1 1 0 7 
pointer, 

MVI M Move immediate memory 0 0 1 1 0 1 1 0 10 JUMP 
LXI B Load immediate register 0 0 0 0 0 O. 0 1 10 JMP Jump unconditional 

Pair B & C 
JC Jump on carry 

LXI 0 Load immediate register 0 0 0 1 0 0 0 1 10 JNC Jump on no carry 
Pair 0 & E 

LXI H Load immediate register 0 0 1 0 0 0 0 1 
JZ Jump on zero 

10 
Pair H & L JNZ Jump on no zero 

STAX B Store A Indirect 0 0 0 0 0 0 1 0 7 JP Jump on positive 

STAX 0 Store A Indirect 0 0 0 1 0 0 1 0 7 JM Jump on minus 

LOAX B Load A indirect 0 0 0 0 1 0 1 0 7 JPE Jump on parity even 

LOAX 0 Load A indirect 0 0 0 1 1 0 1 0 7 JPO Jump on panty odd 

STA Store A direct 0 a 1 1 0 0 1 0 13 PCHL H & L to program 

LOA Load A direct 0 0 1 1 1 a 1 a 13 
counter 

SHLD Store H & L direct a 0 1 0 0 a 1 0 16 CALL 
LHLO Load H & L direct 0 0 1 a 1 0 1 0 16 CALL Call unconditional 
XCHG Exchange 0 & E. H & L 1 1 1 0 1 0 1 1 4 CC "Call on carry 

registers 
CNC Call on n'o carry 

STACK OPS 
CZ Call on zero 

PUSH B Push register pair B & C 1 1 0 0 0 1 0 1 12 
Call on no zero on stack CNZ 

PUSH 0 Push register pair 0 & E 1 1 0 1 0 1 0 1 12 CP Call on positive 
on stack CM Call on minus· 

PUSH H Push register pair H & L 1 1 1 0 0 1 0 1 12 CPE Call on parity even 
on stack 

CPO Call on parity odd 
PUSH PSW Push A and flags on 1 1 1 1 0 1 0 1 12 

stack RETURN 
POP B Pop register pair B & C 1 1 0 0 0 a 0 1 10 RET Return 

011 stack RC Return on carry 
POP 0 Pop register pair 0 & E 1 1 0 1 0 0 0 1 10 RNC Return on no carry 

011 stack 
RZ Ret u rn on zero 

POP H Pop register pair H & L 1 1 1 0 0 0 0 1 10 
RNZ Return' on no zero 

011 stack " 

POP PSW Pop A and flags of! 1 1 1 1 0 0 0 1 10 
RP Return on positIve 

stac. RM Return on minus 

XTHL Excnange top of stack. 1 1 1 0 0 0 1 1 16 
H & L 

SPHL H & L to stack pOinter 1 1 1 1 1 0 0 1 6 

.\ Instruction Code
2 

07 06 05 04 03 02 01 
J Clock

3 

DO Cycles 

0 0 1 1 0 0 0 1 10 

0 0 1 t 0 0 1 t 6 

0 0 1 1 1 0 1 1 6 

1 1 0 0 0 0 1 1 10 

1 1 0 1 1 0 1 0 7110 

1 1 0 1 0 0 1 0 7110 

1 1 0 0 1 0 1 O' 7110 

1 1 0 0 0 0 1 0 7110 

1 1 1 1 0 0 1 0 7110, 

1 1 1 1 1 0 1 0 7110 

1 1 1 0 1 0 1 0 7110 

1 1 1 0 0 0 1 0 7110 

'1 1 1 a 1 0 0 1 6 

1 1 0 a 1 1 a 1 18 

1 1 0 1 1 1 0 0 9118 

1 1, 0 1 0 1 0 0 9118 

1 1 0 0 1 1 0 0 9118 

1 1 0 0 0 1 0 0 9118 

1 1 1 1 0 1 0 0 9118 

1 1 1 1 1 1 0 0 9118 

1 1 1 0 1 1 0 0 9118 

1 1 1 0 0 1 0 0 ,9118 

1 1 0 0 1 0 0 1 10 

1 1 0 1 1 0 0 0 6112 

1 1 '0 1 0 0 0 0 6112 

1 1 0 0 1 0 0 0 6112 

1 1 0 0 0 0 0 0 6112 

1 1 1 1 0 0 0 0 6112 

1 1 1 1 1 0 0 0 6112 

continued 



SDK·85 

Table 3. Summary of SOSSA Processor Instructions (Continued) 

Mnemonlc11 
\ Instruction Code2 \ Clock3 

Mnemonlc
1 I Description I Instrucllon Code2 I Clock3 

Description I 0 7 06 05 0 4 03 02 01 DO I Cycles \07 06 05 04 03 02 01 00 \ Cycles 

RPE Return on parity even t 1 1 0 1 0 0 0 6/12 LOGICAL 

RPO Return on parity odd 1 1 1 0 0 0 0 0 6112 ANA r And register with A 1 0 1 0 0 S S S 4 

RESTART 
XRA r EKclusive Or register 1 0 1 0 1 S S S 4 

with A 
RST Restart 1 1 A A A 1 1 1 12 ORA r Or register with A 1 0 1 1 0 S S S 4 

INCREMENT AND DECREMENT CMPr Compare register with A 1 0 1 1 1 S S S 4 
INR r Increment register 0 0 0 0 0 1 0 0 4 ANA M And memory with A 1 0 1 0 0 1 1 0 7 
OCR r Decrement register 0 0 0 0 0 1 0 1 4 XRA M EKclusive Or memory 1 0 1 0 1 1 1 0 7 
INR M Increment memory 0 0 1 1 0 1 0 0 10 with A 

OCR M Decrement memory 0 0 1 1 0 1 0 1 10 ORA M Or memory with A 1 0 1 1 0 1 1 0 7 
INX B Increment B & C 0 0 0 0 0 0 1 1 6 CMPM Compare memory with A 1 0 1 1 1 1 1 0 7 

registers 
ANI And immediate with A 1 1 1 0 0 1 1 0 7 

INX 0 Increment 0 & E 0 0 0 1 0 0 1 1 6 
registers XRI EKcluslve Or immediate 1 1 1 0 1 1 1 0 7 

with A 
INX H Increment H & L 0 0 1 0 0 0 1 1 6 

registers ORI Or immediate with A 1 1 1 1 0 1 1 0 7 

DCX B Decrement B & C 0 0 0 0 1 0 1 1 6 CPI Compare immediate 1 1 1 1 1 1 1 0 7 

DCX 0 Decrement 0 & E 0 0 0 1 
with A 

1 0 1 1 6 

DCX H Decrement H & L 0 0 1 0 1 0 1 1 6 ROTATE 

ADD 
RLC Rotate A left 0 0 0 0 0 1 1 1 4 

ADD r 
RRC Rotate A right 0 0 0 0 1 1 1 1 4 

Add register to A 1 0 0 0 0 S S S 4 
RAL Rotate A left through 0 0 0 1 0 1 1 1 4 

ADC r Add register to A with 1 0 0 0 1 S S S 4 carry 
carry 

RAR Rotate A right through 0 0 0 1 1 1 1 1 4 
ADD M Add memory to A 1 0 0 0 0 1 1 0 7 carry 
ADC M Add memory to A with 1 0 0 0 1 1 1 0 7 

carry SPECIALS 
ADI Add immediate to A 1 1 0 0 0 1 1 0 7 CMA Complement A 0 o . 1 0 1 1 1 1 4 
ACI Add immediate to A 1 1 0 0 1 1 1 0 

with carry 
7 STC Set carry 0 0 1 l' 0 1 1 1 4 

DAD B Add B & C to H & L 0 0 0 0 1 0 0 1 10 CMC Complement carry 0 0 1 1 1 1 1 1 4 

DAD D Add 0 & E to H & L 0 0 0 1 1 0 0 1 10 DAA Decimal adjust A 0 0 1 0 0 1 1 1 4 

DAD H Add H & L to H & L 0 0 1 0 1 0 0 1 10 

DAD SP Add stack pointer to 0 0 1 1 1 0 0 1 10 
INPUT/OUTPUT 

H&L IN Input 1 1 0 1 1 0 1 1 10 

OUT Output 1 1 0 1 0 0 1 1 10 
SUBTRACT 

SUB r Subtract register from A 1 0 0 1 0 S S S 4 CONTROL 
SBB r Subtract register from A 1 0 0 1 1 S S S 4 EI Enable interrupts 1 1 1 1 1 0 1 1 4 

with borrow 
01 Disable interrupts 1 1 1 1 0 0 1 1 4 

SUB M Subtract memory from A 1 0 0 1 0 1 1 0 7 
NOP No·operation 0 0 0 0 0 0 0 0 4 

SBB M Subtract memory from 1 0 0 1 1 1 1 0 7 
HLT Halt 0 1 1 1 0 1 1 0 5 

A with borrow 

SUI Subtract immediate 1 1 0 1 0 1 1 0 7 
from A NEW 8085 INSTRUCTIONS 

SBI Subtract immediate 1 1 0 1 1 1 1 0 7 RIM Read interrupt mask 0 0 1 0 0 0 0 0 4 

from A with borrow SIM Set interrupt mask 0 0 1 1 o _ 0 0 0 4 

Notes 

1. All mnemonics copyright © Intel Corporation 1977. 

2. DDDorSSS: 8=000, C=001, D=010, E=011, H=100, l=101, Memory= 110, A= 111. 

3. Two possible cycle times. (6112) indicates instruction cycles dependent on condition flags. 

SPECIFICATIONS 

Central Processor 
CPU - S085A 
Instruction Cycle - 1.3 liS 
Tcy - 330 ns 

Memory 
ROM - 2K bytes (expandable to 4K bytes) 8355/8755A 
RAM - 256 bytes (expandable to 512 bytes) 8155 

7-5 

Addressing 

ROM - 0000-07FF (expendable to OFFF with an addi­
tional 8355/8755A) 
RAM - 2000-20FF (2800-28FF available with an addi­
tional8155) 

Note 
The wire·wrap area of the SDK·85 PC board may be used for additional 
custom memory expansion up to the 64K·byte addressing limit of the 
8085 A.. 



SDK·as 

Input/Output 
Parallel - 38 lines (expandable to 76 lines) 
Serial - Through SID/SOD ports of 8085A. Software 
generated baud rate. 
Baud Rate - 110 

Interfaces 
Bus - All signals TIL compatible 
Parallel I/O - All signals TIL compatible 
Serial I/O - 20 mA current loop TIV 
Note 
By populating the buffer area of the board, the user has access to all bus 
signals that enable him to design custom system expansions into the 
kit's wire·wrap area. 

Interrupts 
Three Levels 
(RST 7.5) - Keyboard interrupt 
(RST 6.5) - TIL input 
(INTR) - TIL input 

DMA 
Hold Request - Jumper selectable. TIL compatible 
input. 

Software 
System Monitor - Pre-programmed 8755A or 8355 ROM 
Addresses - 0000-07FF 
Monitor 110 - Keyboard/display or TIV (serial 110) 

ORDERING INFORMATION 

Part Number Description 
SDK·85 MCS-85 system design kit 

7-6 

Physical Characteristics 
Width - 12.0 in. (30.5 cm) 
Height - 10 in. (25.4 cm) 
Depth - 0.50 in. (1.27 cm) 
Weight - approx. 12 oz 

Electrical Characteristics 
DC Power Requirement (power supply not included in 
kit) 

Voltage Current 

Vee 5V :t5% 1.3A 

VTTY - 10V :t 10% 0.3A 

(VTTY required only if teletype 
is connected) 

Environmental Characteristics 
Operating Temperature - 0-55°C 

Reference Manuals' 
9800451 - SDK·85 User's Manual (SUPPLIED) 
9800366 - MCS-85 User's Manual (SUPPLIED) 

9800301 - 8080/8085 Assembly Language Program· 
ming Manual (SUPPLIED) 
8085/8080 Assembly Language Reference Card (SUP· 
PLIED) 

Reference manuals are shipped with each product only 
if designated SUPPLIED (see' above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 Bowers 
Avenue, Santa Clara, California 95051. 



inter 
SDK-86 

MCS-86™ SYSTEM DESIGN KIT 

• Complete Single Board Microcomputer 
System Including CPU, Memory, and I/O 

• Easy to Assemble Kit Form 

• High Performance 8086 16-Bit CPU 

• Interfaces Directly with TTY or CRT 

• Interactive LED Display and Keyboard 

• Wire Wrap Area for Custom Interfaces 

• Extensive System Monitor Software in 
ROM 

a Comprehensive Design Library 
Included 

The SDK-86 MCS-86 System Design Kit is a complete single board 8086 microcomputer system in kit form. It contains 
all necessary components to complete construction of the kit, including LED display, keyboard, resistors, caps, crys­
tal, and miscellaneous hardware. Included are preprogrammed ROMs containing a system monitor for general soft­
ware utilities and system diagnostics. The complete kit includes an 8-digit LED display and a mnemonic 24-key key­
board for direct insertion, examination, and execution of a user's program. In addition, it can be directly interfaced 
with a teletype terminal, CRT terminal, or the serial port of an Intellec system. The SDK-86 is a high performance proto­
type system with designed-in flexibility for simple interface to the user's application. 

© INTEL CORPORATION. 1983 

7-7 

MAY 1983 
Order Number: 2U5945-001 



SDK·S6 

FUNCTIONAL DESCRIPTION 

The SDK-86 is a complete MCS-86 microcomputer sys­
tem on a single board, in kit form. It contains all neces­
sary components to build a useful, functional system. 
Such items as resistors, caps, and sockets are included. 
Assembly time varies from 4 to 10 hours, depending on 
the skill of the user. The SDK-86 functional block dia­
gram is shown in Figure 1. 

8086 Processor 
The SDK-86 is designed around Intel's 8086 microproc­
essor. The Intel 8086 is a new generation, high perform­
ance microprocessor implemented in N·channel, deple­
tion load, silicon gate technology (HMOS), and pack­
aged in a 40-pin CerDIP package. The processor 
features attributes of both 8-bit and 16·bit micro­
processors in that it addresses memory as a sequence 
of 8·bit bytes, but has a 16-bit wide physical path to 
memory for high performance. Additional features of 
the 8086 include the following: 

• Direct addressing capability to one megabyte of 
memory 

• Assembly language compatibility with 8080/8085 
• 14 word x 16-bit register set with symmetrical oper-

ations 

• 24 operand addressing modes 
• Bit, byte, word, and block operations 
• 8 and 16-byte signed and unsigned arithmetic in 

binary or decimal mode, including multiply and divide 
• 4 or 5 or a MHz clock rate 

A block diagram of the 8086 microprocessor Is shown in 
Figure 2. 

System Monitor 
A compact but powerful system monitor is supplied 
with the SDK-a6 to provide general software utilities and 
system diagnostics. It comes in preprogrammed read 
only memories (ROMs). 

Communications Interface 
The SDK-86 communicates with the outside world 
through either the on-board light emitting diode (LED) 
display/keyboard combination or the user's TTY or CRT 
terminal (jumper selectable), or by means of a special 
mode in which an Intellec development system 
transports finished programs to and from the SDK-86. 
Memory may be easily expanded by simply soldering in 
additional devices in locations provided for this pur­
pose. A large area of the board (22 square inches) is laid 
out as general purpose wire-wrap for the user's custom 
interfaces. 

Assembly 
Only a few simple tools are required for assembly: sol­
dering iron, cutters, screwdriver, etc. The SDK-86 
assembly manual contains step·by-step instructions for 
easy assembly with a minimum of mistakes. Once con­
struction is complete, the user connects his kit to a 
power supply and the SDK-86 is ready to go. The monitor 
starts immediately upon power-on or reset. 

Commands - Keyboard mode commands, serial port 
commands, and Intellec slave mode commands are 
summarized in Table 1, Table 2, and Table 3, respec­
tively.The SDK-86 keyboard is shown in Figure 3. 

-----------10 
CONTROL 

LINES 
CONNECTOR 

·--0 
ADDRESS 

BUS EXPANSION 
CONNECTOR 

LEO DISPLAY 

Figure 1. SDK·86 System DeSign Kit Functional Block Diagram 

7-8 



SDK·8S 

Documentation 
In addition to detailed information on using the moni· 
tors, the SDK·86 user's manual provides circuit dia· 
grams, a monitor listing, and a description of how the 
system works. The compiete design library for the 
SDK·86 is shown in Figure 4 and listed in the specifica· 
tions section under Reference Manuals. 

EXECUTION UNIT 

REGISTER FilE 

DATA, 
POINTER, AND 

INDEX REGS 
CI WORDS) 

FLAGS 

8US INTERFACE UNIT 

j R~~Wit:I~~E I 
SEGMENT 

REGISTERS 
AND 

INSTRUCTION 
POINTER 

C5 WORDS) 

r---"w"--~ ___ Bi'tlis, 

A'~St 
A,",S, 

3 DT/R,DEN,ALE 

6·BYTE 
INSTRUCTION 

QUEUE 

TEST-_ .... -----''''-----, 
INT-_ 
NMI--

CONTROL I TIMING 

HOlD-­

HlDA----...-r_-r_-,-_--._-:::-::~ 

ClK RESET READY Vee 
GND 

2 QSo,QS, 

3 s"S;,S;; 

Figure 2. 8086 Microprocessor Block Diagram 

SYSTM INTR C 0 
E F 

RESET liP IFL 

8 9 A B + 
IW/CS ow/os /ISS /ES 

REG 
4 5 6 7 

IB/SP OB/BP MV/SI EWIDI 

0 1 2 3 
EB/AX ER/BX GO/CS ST/OX 

Figure 3. SDK·86 Keyboard 

7-9 

Figure 4. SDK·86 Design Library 

Table 1. Keyboard Mode Commands 

Command 

Reset 

Go 

Single step 

Substitute 
memory 

Examine 
register 

Block move 

Input or output 

Operation. 

Starts monitor. 

Allows user to execute user 
program, and causes it to halt 
at predetermined program 
stop. Useful for debugging. 

Allows user to execute user 
program one instruction at a 
time. Useful for debugging. 

Allows user to examine and 
modify memory locations In 
byte or word mode. 

Allows user to examine and 
modify 8086 register contents. 

Allows user to relocate pro· 
gram and data portions in 
memory. 

Allows direct control of 
SDK·86 I/O facilities in byte or 
mode. 

Table 2. Serial Mode Commands 

Command . Operation 

Dump memory Allows user to print or display 
large blocks of memory infor· 
mation in hex format than 
amount visible on terminal's 
CRT display. 

Start/continue Allows user to display blocks 
display of memory information larger 

than amount visible on ter· 
minai's CRT display. 

Punch/read Allows user to transmit fin· 
paper tape ished programs into and out of 

SDK·86 via TIY paper tape 
punch. 



SDK·86 

8086 INSTRUCTION SET 
Table 4 contains a summary of processor instructions 
'used for the 8086 microprocessor. 

Table 4. 8086 Instruction Set Summary 

Mnemonic and 
Description Instruction Code 

Data Transfer 
IOV - ItVl: 7.541 Z I 0 7.5411 I 0 7.5411 I 0 7.5411 I 0 

Register/memory tollrom regtSler 11 000 1 0 d w I mod reg rim I 
Immediate to reglslerfmemory 11 10001 1 w I moO 000 r'm I I. data It *-1 

~UIN' h.h: 

RegIster/memory 

Register 

Segment register 

PO~ • Pop: 

Register/memory 

Register 

Stgment register 

ICNS-Exchlngo: 

Register/memory with register 

RegIster Wllh accumulator 

I. -Inpul 
Fo:edport 

Variable port 

DUT·Oulpul 
F.ledport 

Vanableporl 

XLAT .. TranslalebyteloAL 

LtA~load EA to register 

UI 2 loadpoIOIertoDS 

lU·loadpotnlertoES 

UMF·load AH with flags 

UMF·StoreAHlnlotlags 

'UIHf·Pushllags 

ro'f·Popliags 

Arithmetic 

ADO - Add: 

1" llllllJmod 110 rim J 
01010 reg 

1000 reg 11 0 

11 000 11 11 I mod 0 0 0 <1m I 
101011 '.g I 
1000regllli 

11000011 w Imod reg "m I 
1

'
00'0 "9 I 

1" 10010 wi pori 

1110 I lOw 

1"100"wl 
port 

1110111 w 

11010111 

10001101 rim I 
11 000101 mod reg "m I 
11 000100 mod reg "m I 
10011111 

10011 11 0 

10011 100 

10011101 

Reg Imemory with register to either 0 0 0 0 0 0 d W I mod reg r 1m I 

data., wI 

addr-l'uOh 

addr·tllgh 

Immediate to reglster/:'nemory 11 000005 W mod 000 rim I data I dala II s w~ol_1 

Immediate to accumulator 10 0 0 0 0 'Ow data I, dala II w· 1 I 

AUC· Add wllh carry: 

Reg Imemory With register to either 10 0 0 I 0 0 d w mod reg r 1m I 
Immedlalelo reglsterlmemory flO 00005 W mod 0 1 0 rIm I dala I data 115 w·Ol I 
Immediate 10 accumulator 10 0 0 1 0 lOw dala I data It w: 1 I 

IIC -Inc"mlftl: 
Register/memory 

Register 

W-ASCII.dluSlfor.dd 

w-Otclmal adlustfor add 

lUI- tIW\rIct: 

1111111 w modO 0 0 "m I 
01000 reg j 

00110111j 

00100111j 

Mnemonic and 
Description Instruction Code 

CM'· c.mpI": 71541t1D 71541t1D 71541110 71141111 

Register/memory and register 

Immediate With register Imemory 

Immediate With accumulator 

UI·ASCII adJusl lor subtract 

D~lrOeCimal adlust lorsubtracl 

MUl.Mulllply (unslgnedl 

IMUl.lnteger multiply (Signed) 

UM.ASCII adJust lor multiply 

DIVoOlvlde(unslgned) 

IDIV ~ Inl ege r d IV Ide (S Ig ned) 

AA 0 ~ A SCII a dJu s 1 tor d IV I de 

CIW-Convert byte to word 

CWO-Convert word to double word 

logic 

001110 d w mod reg rIm 

1 00000 S w I mod 11 1 "m 

10011110. 

1001111111 

001011 11 

1111011 w 

1111011 w 

11 0 1 0 100 

1111011 w 

1111011 w 

11010101 

10011 000 

10011 001 

mod 100 "m 

modl 0 1 "m 

00001010 

mod 110 "m 

00001010 

NOT-Invert 1111011 w modO 1 0 rIm 

SHL/SAL·SI'IIIt loglcallarrlhmellclefl 11.0100 v w mod 100 rim 

SHR,Shllt logical right 

IAR'Shllt arrthmehc fight 

ROl"Rotatelelt 

ROR,Rotatefighl 

RCl,Rotatethrough carry lIag lelt 1 to 1 0 0 v w modO 1 0 rIm 

flC" Rotalethrough carryrlghl 110100 v W modO 1 l' rim 

AND And: 
Reg Imemory and register 10 either 100 1 0 0 0 d w mod reg rim I 
Immediate to register/memory L 1 000000 W mod 1 00 rim 1 
Immediate to accumulator 10010010 W I 

TEST " And luncllon 10 III g., no rOlult,---: -:-:-:-:-_-,-___ , 
Reglsterfmemory and register j 1 0000 lOw I mOd reg rIm I 
Immediate data and register Imemory 11 lIt 0 1 1 IN mod 0 0 0 rim \ 

Immedlatedala andaccumulalor \10 t 0 1 00 w data 

DR, Or: 
Reg Imemory and register to !IIher 10000 1 0 d w I mod reg ~ 
Immediate to reglsler/memory 11000000 IN mOdO 0 1 rIm I 
Immediate to accumulator 000011 0 w data 

lOR·E"lu.l .. or: 

d... I d.la,fs.·Oll 

data It.-, I 

dal. J 
data.fw;1 I 

data 

datallw-l I 

dala 1 

dataltw·l J 

data I' w-' J 

dala.' w,,1 

data.'w,,1 J 

Reg/memory and reg Isler to either 1~0..;0.;.1.;.1;;.0 O;;.;d;.;w~m;;;Od;...;;;:,.g:...;.;";;;.m=+-___ --r--'--'---' 

Immediate 10 register/memory 1 0 0 0 0 0 0 IN mOd 1 1 0 rIm \ data I data It .,,1 I 
Immediate to accumulator i 00 1 1 0 lOw data _ L data II w,,1 J 

String Manipulation 
REP-Repeat 111!OOll 

MOVS = Move byte/word 1 0 1 0 0 lOw 

CMPS = Compare bytelword 1 0 1 0 0 1 1 w 

SCAS = Scan byte/word 1 0 1 0 1 1 1 • 

LODS = Load byl.'wd 10 AUAX 1 0 1 0 1 lOw 

Reg./memory and register to eIther 10 0 1 0 1 0 d w I mod reg rim I STOS = Star bytelwd 'rm AUA 10 I 0 1 0 1 w 

Immediate tram register/memory l' 00 a 0 Os w I mod 1 0 1 rIm I data I data If 5 .",01 I 
Immediate Irom accumulator 10 0 1 0 1 lOw data dala II ",,1 I 

III - lulrlrect.1II1 111m. 
Rtg.lmlmOfY and register 10 eith.r 000 1 1 0 d w mod reg rIm J 
Immtchlte Irom reglst.r/memory 11 00000 s w mod 0 1 1 rIm I data 

Immediate trom accumulator I 0 0 0 1 1 1 (I wJ data II ... -1 

DEC· Dec",,"nt: 
Reglsterfmemory 

Register 

.EI"Change slon 

11111111 w ImodO 0 1 rim 

10'1001 reg I 
\1111011 w ImodO 11 ,'m 

data If Iw=01 Control Transler 
CAll· CIII: 
Drrect With," segmenl 

I Indirect Within segment 

I

I Orrectlntersegment 

Indirect rntersegment 

7-10 

11 1 0 1 000 dlsp·low dlsp·hlgh 

111111111 mod 0 1 0 "m 

10011010 ol1set-Iow oflset-hlgh 

seg-Iow 5eg·l'ligh 

mod 011 "m 

continued 



SDK·86 

Table 4, 8086 Instruct~on Set Summary (Continued) 

Mnemonic and 
Description Instruction Code 

JI' UncDndl1lon.1 Jump: 11$0110 11$0/10 lIH3/1a 

Dlrt" wllhm stomen' 

OlleClwlthmsegmenlsMfl 

Indl'ecl wllhln segmenl 

DHf!C'lnlerSl!gmenl 

1"1010011 (jlsPlowl~ 
111010111 dis I) 

111 111 11 mod I 00 rIm 

111010 101 ollsel·low orlsel hlOh J 
[seglOW ~~ 

Indirect mlrrsegmen' I, , , , , , , , Imod , 0' <1m I 

RET R"ur. lram CALL 
Wlltllnseomenl 11000011 

Inlersegment 
p'~'.;;,o,;,o;"o ;,,0 ;,,;' 0:.t---'=.:-""-_-"-___ ~ 
11001011 

~;~~;~~um:;'O:::lun!;:~oed,ale 10 SP lc:~",;,:~~~~ ~~ o~, o~' ~+~;;;;;,;~+-----"O::;"''-''"''-''Q"'----J 
JlIJ.6E~~ue~~a~n lessfnOI grealer a 1 1 1 I 1 00 

JLE/JlSg~~~~fO~ less Of equal/not 0 I 1 1 1 I 1 0 

JI/JIA(~1~~~iI~n belowlno! above 0 1 1 1 a a T 0 

J'ElJ'A~~~~~oO,,~ below or equal I 0 1 1 1 0 1 1 0 

J'/J'E<Jump on parlly/parlly eyen 0111 10 10 

JO·Jump on overllOw p0",;,'=' =';,,0 O;"O;.;09==~~=l 

.II-Jump on sign p0",;,'=' =' =' 0;,,0;.;09==~~=l 

~:~~~::~1~e~ea~~ ~~: ~e~~~~~~I!:rero FI ~",;:",;:.;,,: ~~ .;,,: ~;":91=~~==i 
J.lE!Jlg~~~~fonnOlleSSOfeQual} ~lo:::,:::,:::,:;:, :;:";::':=;I====; 
JII/J1E o~Ue~ea~n nol below/aDolI! F0"';"';"'';'" ~O ~o ;,,' '+=~~=l 

J"E/J1~~~~I~aOb~~~1 below or IF0",;,'",;,'.;"';,,o,;., ,;.' '+=~~=l 
JlrtJ'O·Jump on not par/par Odd

F 
10",;',,;,',,;,' =';,,0 =' '+=~===l 

.110 Jump on not overllow ',-,-0-.:.' -,-' _, Q:...;o=-:o=-:'JI_--,,~---, 

Notes 

AL ~ S-b,t accumulator 
AX ~ 15-b,t accumulalor 
CX ~ Count reg,ster 
OS ~ Data segment 
ES ~ Extra segment 
Above/below relers to unSigned value 
Greater ~ more pos,',ve. 
Less ~ less pos,tlve (more negat,ve) signed values 
If d = 1 then "to" reg; if d = 0 then "from" reg 
if w ~ lthen word instruct,on. il w 0 then byle ,nstructlon 

,f mod ~ 11 then rim 's treated as a REG t,eld 
if mod ~ 00 then olSP ~ 0'. d,sp-Iow and d,sp-hlgh are absent 
il mod: 01 then olSP ~ disp-Iow sign-extended to 15-b,ts. d'sp-h'gh 's absent 
if mod ~ 10 then olSP ~ disp-hlgh d,sp-Iow 

,f rim: 000 then EA ~ (BX) • (SI) • olSP 
if r 1m ~ 001 then EA ~ (BX) • (01) • olSP 
if r 1m ~ 010 then EA ~ (BP) • (SI) • olSP 
'f rim: 011 then EA ~ (BP) • (01) • olSP 
if r 1m ~ 100 then EA : (SI) , olSP 
" r 1m ~ 101 then EA ~ (01) • olSP 
if rim ~ 110 then EA : (BP) • olSP' 
if rim • 111 then EA: (BX) ·oISP 
olSP follows 2nd byte of instrucllon Ibelore data 'f required) 

'except,f mod ~ 00 and r 1m ~ 110 then EA· ~ dlsp-h'gh d,sp-Iow 

SPECIFICATIONS 

Central Processor 
CPU - 8086 (5 MHz clock rate) 
Note 
May be operated at 2.5 MHz or 5 MHz, jumper selectable, for use with 
8086. 

Memory 

ROM - 8K bytes 2316/2716 

RAM - 2K bytes (expandable to 4K bytes) 2142 

Mnemonic and 
Description Instruction Code 

1 I HIli 0 115431' 0 
.In Jump on nOI 5 11;1 n 

lOO,. loop ex 'Imrs 

[O-'-~-~J 

11100010 (lISP j 
lOO'ZllDO'E loop whtleur01fQuai 11100001 ClISP 
lOO'llILOO'IEloop",hlienot , 11 0 0 0 0 0 I dlSP zero/equal 
Jell Jurnpon ex ztro 1" , 00011 I (lISP 

'NT Intlrrupt 

TvpespeCl11td L' , 00' , 0 , type 

TypeJ L' , 00' , 00 
IUD Inlflluplon overltow [11 0011 , 0 

UIETlnierruptreluln 1"00"" 

Processor Comral 
CLCClearCarty ~",oool 
CMC CompJemenl carry 11110101 

STCSelcarry 11111001 

CLOClearlllltCflon 11111100 

STDSellllreClion 11111101 

CliClearlnlerrupI 

Sf! Set mlerrupt 111,,0'1 

HlTHall 1" 11 0 , 00 I 
1100" 0" I 

ESC Escape!foellernalClevlcel 1'101' II: X II: I mOil x x x rim 

lOCk BuSlockpfetll I' 11 , 0000 I 

,f s w = 01 then 16 b,ts 01 ,mmed,ate dala lorm lhe operand 
,f s w = 11 then an ,mmed,ate data byle 'S s'gn extended 10 

lorm the '6-b,' operand 
II v = 0 then ··count"· = 1. II v = 0 then ··count"· 10 (CL) 

x = don·t care 
II v = 0 then ··count"· = 1. II v = 1 then ··count"· In (CL) reg,ster 
z 's used lor sIrlO9 prlm",ves lor comparison w'th IF FLAG 

SEGMENT OVERRIDE PREFIX 

L:::iii. reg , , a 

REG IS assigned according to the lollowlng table 

I 
) 

~ S-Blllw 0) ~ 
000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 OX 010 oL 10 SS 
011 BX 011 BL 11 OS 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 oH 
111 01 111 BH 

Inslruc1lOns which relerence the flag reg,ster f"e as a 15-b11 oblect use lhe symbol FLAGS 10 
representlheflle 

FLAGS ~ X X.X X (OF) (OF) (IF) ifF) ISF) IlF) X IAF) X iPF) X ICFj 

Mnemonics, Intel. 1978 

Addressing 
ROM - FEOOO-FFFFF 
RAM - 0-7FF (800-FFF available with additional 
2142's) 
Note 
The wire-wrap area of the SDK-86 PC board may be used for additional 
custom memory expansion. 

Input/Output 
Parallel - 48 lines (two 8255A's) 
Serial - RS232 or current loop (8251A) 
Baud Rate - selectable from 110 to 4800 baud 

7-11 



SDK·a6 

Interfaces 
Bus - All signals TIL compatible 
Parallel 110 - All signals TIL compatible 
Serial 110 - 20 mA current loop TIY or RS232 
Note 
The user has access to all bus signals which enable him to design cus­
tom system expansions into the kit's wire-wrap area. 

Interrupts (256 vectored) 
Maskable 
Non-maskable 
TRAP 

DMA 
Hold Request - Jumper select~ble. TTL compatible 
input. 

Software 
System Monitor - Preprogrammed 2716 or 2316 ROMs 

Addresses - FEOOO-FFFFF 
Monitor 110 - Keyboard/display or TTY or CRT (serial 
110) 

Physical Characteristi.cs 
Width - 13.5 in. (34.3 cm) 
Height - 12 in. (30.5 cm) 
Depth - 1.75 in. (4.45 cm) 
Weight - approx. 24 oz. (3.3 kg) 

ORDERING INFORMATION 

Part Number Descripti.on 
SDK-86 MCS·86 system design kit 

Electrical Characteristics 

DC Power Requirement 
(Power supply not included in kit) 

Voltage Current 

VCC5V ±5% 3.5A 

VTTy-12V±10% O.3A 

(Vny required only if teletype is connected) 

Environmental Characteristics 

Operating Temperature - 0-50°C 

Reference Manuals 

9800697A - SDK·86 MCS-86 System DeSign Kit 
Assembly Manual 
9800722 - MCS·86 User's Manual 
9800640A - 8086 Assembly Language Programming 
Manual 
8086 Assembly Language Reference Card 

Reference manuals are shipped with each product only 
if deSignated SUPPL1ED (see above). Manuals may be 
ordered from any Intel sales representative, distributor 
office or from Intel Literature Department, 3065 Bowers 
Avenue, Santa Clara, California 95051. 

7-12 



inter SDK-C86 
MCS-86™ SYSTEM DESIGN KIT 

SOFTWARE AND CABLE INTERFACE TO 
INTELLEC® DEVELOPMENT SYSTEM 

• Provides the Software and Hardware 
Communications Link Between an 
Intellec® Development System and the 
SDK-86 

• Intellec® System Files can be Accessed 
and Down-Loaded to the SDK-86 
Resident Memory 

• Data in SDK-86 Memory can be 
Uploaded and Saved in Intellec® 
System Files 

• Enhances and Extends the Power and 
Usefulness of the SDK-86 

• Allows the SDK-86 to Become an 
Execution Vehicle for ISIS-II Developed 
8086 Object Code Using the Series II . 
8086/8088 Software Development 
Packages 

• All SDK-a6 Serial Port Mode Commands 
Become Available at Console of the 
Intellec® System 

The SDK-CS6 product provides the software and hardware link for using the SDK-S6 monitor in conjunction 
with an Intellec® Development System while adding features of data transfer between SDK-S6 memory and In­
tellec® System files. The user may enter programs and data into the SDK-S6 and then save them on a diskette. 
Also, programs and data may be created on the Intellec® System using the Series II SOS6/S08S Software Devel­
opment Packages, then loaded into the SDK-86 for testing and checkout. This provides a real time execution 
environment of the SDK-86 as a peripheral to the Intellec® System. 

The following are trademarks of Intel Corporation and may be used only to identify Intel products: i, Intel, INTEL. INTELLEC. MCS. 'm, ICS, ICE. UPI. BXP, iSBC. iSBX. iNSITE. iRMX. 
CREDIT, RMX/80. /LScope. Mullibus, PROMPT. Promware, Megachassis. Library Manager. MAIN MULTI MODULE. and the combination of MCS. ICE. SBC, RMX or iCS and a numerical 
suffix; e.g., iSBC-80. 

© INTEL CORPORATION, 1983 MAY 1983 
7-13 



SDK-CB6 

HARDWARE 

There are two serial ports on the Intellec@ System back 
panel, TTY and CRT. Assuming that one of the ports is 
used for the Intellec@ console, the SDK-C86 cable can 
plug into the unused port. The SDK-86 is jumper 
selectable to accept either the CRT (RS232) orTTY (20mA 
current loop) sig nals. 

The edge connector on the SDK-86 has the MUL TIBUS™ 
form factor. No signals are connected to the fingers 
except the power supply traces. Therefore, the SDK-86 
can plug directly into the Intellec@ motherboard to obtain 
power while using the SDK-C86 cable as the communi­
cation link. 

SOFTWARE 

Two programs must be invoked to operate in the SDK-86 
slave mode .. One program runs on the SDK-86, and 
another runs in any ISIS-II environment that includes a 
diskette drive. 

The serial I/O monitor is installed on the SDK-86 and 
operates as though it was talking to a terminal. The 
software in the Intellec® allows the Intellec@, with a 
console device, to behave as if it were a terminal to the 
SDK-86. 

The SDK-C86 software program in the.lntellec reads the 
console input device, then passes the character to the 
SDK-86 through the serial port. It also receives the 
characters from the SDK-86 and displays them at the 
console output device. Besides the basic transfer 
function, this program also recognizes and performs the 
Upload and Download functions. 

COMMAND MODES 

• Transparent: In this mode, the SDK-C86 software 
passes all characters through without any processing. 
All the commands of the SDK-86 monitor (except paper 
tape commands) are available and will function in 
exactly the same manner as if the terminal were 
attached directly to the serial port of the SDK-86. 

• Upload/Download: In this mode the SDK-C86 software, 
in the Intellec@, recognizes the mnemonic for Upload or 
Download from the terminal. It "translates" the 
Download command to an R (Read hexadecimal tape) 
command and the Upload command to a W (Write 
hexadecimal tape). The Rand W commands are then 
passed on to the SDK-86 monitor. Using these paper 
tape commands allows for a checksummed transfer of 
data between the Intellec® and the SDK-86 memory. 

COMMAND SUMMARY 

• Reset - starts the SDK-86 monitor. 

• Execute with BreakpOint (G) - Allows you to exe­
cute a user program and ca Jse it to halt at a predeter­
mined program step - useful for debugging. 

• Single Step (N) - allows you to execute a user program 
one instruction at a time - useful for debugging. 

• Substitute Memory (S, SW) - allows you to examine 
and modify memory locations in byte or word mode. 

• Examine Register (X) - allows you to examine and 
modify the 8086's register contents. 

• Block Move (M) - allows you to relocate program and 
data portions in memory. 

• Input or Output (I, IW, 0, OW) - allows direct control of 
the SDK-86's I/O facilities in byte or word mode. 

• Display Memory (D) - allows you to print or display 
large blocks of memory information in HEX format. 

• Load (L\ - allows you to load hex format object files 
into SDK-86 memory from an Intellec. 

• Transfer (T) - allows you to save contents of SDK-86 
memory in a hex format object file in the Intellec. 

. SERIAL 
PORTS . CABLE . 

~~======::::::======~ SERIAL 

CRTOR TTY 

INTELLEC@ 
DEVELOPMENT 

SYSTEM 

GDISKETTE 
SDK-86I1ntellec@ Slave Mode Configuration 

7-14 

PORT -
SDK-86 



SDK-51 
MCS®-51 SYSTEM DESIGN KIT 

FOR DESIGNS OF 8051/8052 SINGLE-BOARD 
MICROCOMPUTERS 

• Complete single-board microcomputer 
kit: 

-lntel@8031 CPU 
-Intel 8032 CPU 
-ASCII keyboard and 24-character 

alpha-numeric display 
- Wire-wrap area for custom 

circuitry 
- User-configurable RAM 
-Serial and parallel interfaces 

• Extensive system software in ROM: 
-Single-line assembler and 

disassembler 

-System debugging commands 
Go 
Step 
Breakpoints 

• Interface software: 
-Serial port 
-Audio cassette 
-Intellec@ system 

• User's guide, assembly manual, and 
MCS@-51 design manuals 

The SDK-51 MCS@-51 System Design Kit contains all of the components required to assemble a com·· 
plete single-board microcomputer based on either Intel's high-performance 8051 or 8052 single-chip 
microcomputer. SDK-51 uses the external ROM version of the 8051 (8031) and the 8052 (8032). Once 
you have assembled the kit and supplied +5V power, you can enter programs in MCS-51 assembly 
language mnemonics, translate them into MCS-51 object code, and run them under control of the 
system monitor. The kit supports optional memory and interface configurations, including a serial 
terminal link, audio cassette storage, EPROM program memory, and Intellec@ development system 
upload and download capability. 

··'iii' 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit 
patent licenses are implied. information contained herein supercedes previously published specifications on these devices from intel. 

C INTEL CORPORATION, 1984 7-15 SEPTEMBER 1984 
ORDER NUMBER: 162549-002 



SDK-51 System Design Kit 

FUNCTION DESCRIPTION 

The SDK-51 is a kit that includes hardware and 
software components to assemble a complete 
MCS-51 family single-board microcomputer. 
Only common laboratory tools and test equip­
ment are required to assemble the kit. Assembly 
generally requires 5 to 10 hours, depending on 
the experience of the user. See Figure 1 for a 
block diagram of the SDK-51/52 system. 

The MCS®-51 Microcomputer Series 

MCS-51 is a series of high-performance single­
chip microcomputers for use in sophisticated 
real-time applications such as instrumentation, 
industrial control, and intelligent computer 
peripherals. The 8031, 8032, 8051, 8052, and 
8751 microcomputers belong to the 8051 family, 
which is the first family in the MCS-51 'series. 

In addition to their advanced features for control 
applications, MCS-51 family devices have a mi­
croprocessor bus and arithmetic capability such 
as hardware multiply and divide instructions, 
which make the SDK-51 a versatile stand-alone 
microcomputer board. 

8031/8032 
MICROCONTROLLER 

The 8031 , 8032, 8051, 8052, and 
8751 CPUs 

The 8031, 8032, 8051, 8052, and 8751 CPUs 
each combine, on a single chip, a 128 x 8 data 
RAM; 32 input/output lines; two 16-bit timer/e­
vent counters; a five-source, two-level nested in­
terrupt structure; a serial I/O port; and on-chip· 
oscillator and clock circuits. An 8051 block dia­
gram is shown in Figure 2. 

The 8031, the SDK-51 's CPU, is a CPU without 
on-chip program memory. The 8031 can address 
64K bytes of external program memory in addi­
tion to 64K bytes of external data memory. For 
systems requiring extra capability, each 
member of the 8051 family can be expanded 
using standard memories and the byte-oriented 
MCS-80 and MCS-85 peripherals. The 8051 is 
an 8031 with the lower 4K bytes of program 
memory filled with on-chip mask-programmable 
ROM while the 8751 has 4K bytes of ultraviolet 
light-erasable, electrically programmable ROM 
(EPROM). 

The 8031 CPU operates at a 12 MHz clock rate, 
resulting in 4JLs multiply and divide and other in­
structions of 1 JLs and 2JLs. 

USER· 
CONFIGURABLE 

MEMORY 

ADDRESS 
& DATA BUSES 

2085 

Figure 1. Block Diagram of the SDK-51 System Design Kit 

162549-002 

7·16 



SDK-51 System Design Kit 

The 8032 and 8052 CPUs each combine, on a 
single chip, a 256 x 8 data RAM; 32 input/output 
lines; three 16-bit timer/event counters; a five­
source, two-level nested Interrupt structure; a 
serial 110 port; and on-chip oscillator and clock 
circuits. Refer to the shadowed areas in Figure 2. 

For additional information on the 8051 family, 
see the Microcontroller Handbook or the 
MCS@·51 Macroassembler User's Guide. 

System Software 

A compact but powerful system monitor is con­
tained in 8K bytes of pre-programmed ROM. The 
monitor includes system utilities such as com­
mand interpretation, user program debugging, 
and interface controls. Table 1 summarizes the 
SDK-51 monitor commands. 

The ROM devices also include a single-line as­
sembler and disassembler. The assembler lets 
you enter programs in MCS-51 assembly lan­
guage mnemonics directly from the ASCII 
keyboard. The disassembler supports debugging 
by letting you look at MCS-51 instructions in 
mnemonic form during system interrogation. 

REFERENCE 

r­
I 
I 
I 
I 
I 
I OSCILiATOR 

I TIMING 

I 
I 
I 8031 
I cPU 

I 
I 
I 
I 
I 
I 
L 

INTERRUPTS 

4096 BYTES 
PROGRAM 
MEMORY 

(8051 & 8751) 

64K-BYTE BUS 
EXPANSION 
CONTROL 

CONTROL 

·Shadowed areas indicate 8032 features 

Memory 

The two 64K external memory spaces are com­
bined into a single memory space which you can 
configure between program memory and data 
memory. The kit includes 1 K-byte of static RAM. 
The board has space and printed circuitry for an 
additional 15K bytes of RAM and 8K bytes of 
ROM. 

Two sets of ROM devices are included in the kit, 
one for the 8031 mlcrocontroller for 8051 
development, and one for the 8032 microcontrol­
ler for 8052 development. 

User Interface 

The kit includes a typewriter-format, ASCII­
subset keyboard and a 24-character, alpha­
numeric LED display. The standard keyboard 
and display provide full access to all of the 
SDK-51's capabilities. All of the SDK-51 inter­
faces are controlled by a pre-programmed Intel 
8041 Universal Peripheral Interface. 

A 3 x 4 matrix keyboard can be jumpered to port 
1 of the 8031/8032. 

128 BYTES 
DATA MEMORY 

PROGRAMMABLE 
I/O 

COUNTERS --, 

TWO 16-BIT 
TIMER/EVENT 

COUNTERS 

PROGRAMMABLE 
SERIAL PORT 

• FULL DUPLEX 
USART 

• SYNCHRONOUS 
SHIFTER 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-.l 

PARALLEL PORTS SERIAL SERIAL 
OUT ADDRESS/DATA BUS. IN 

& I/O PINS 
2084 

Figure 2. 803118032 Block Diagram 

162549-002 

7-17 



SDK-51 System Design Kit 

Optional Interfaces 

TERMINAL 

An RS-232-compatible CRT or printing terminal 
or a current-loop-interface terminal may be used 
as a listing device by connecting it to the board's 
serial interface connector and supplying + 12 
and -12 volts tothe board. 

AUDIO CASSETTE 

The kit includes hardware, software, and user's 
guide instructions to connect and .operate an 
audio cassette tape recorder for low-cost pro­
gram and data storage. 

Table 1. SDK-51 Commands 

Command Operation. 

Set breakpoint Define addresses for 
breaking execution. 

Display cause Ask the system why 
execution stopped. 

Upload, download Transfer files to and from 
Intellec@ development 
system. 

Save, load Transfer files to and from 
optional cassette 
interface. 

Set top of Define partition between 
program memory program memory and 

data memory. 

Set baud Define baud rate value of 
serial port. 

Display memory Examine and change 
program memory or data 
location. 

Assemble Translate an MCS-51 
assembly mnemonic into 
object code. 

Disassemble Translate program 
memory into MCS-51 
assembly language 
mnemonics. 

Go Start execution between 
a selected pair of 
addresses. 

Step Execute a specified 
number of instructions. 

INTELLEC@ SYSTEM 

An SDK-51 and an Intellec Model 800 or Series 
II development system with ISIS can upload and 
download files through the serial interface with­
out adding any software to the Intellec system. 

Parallel 1/0 
The kit includes an Intel 8155 parallel 1/0 device 
which expands the 8031/8032 i/O capability 
providing 32 dedicated parallel lines. Three 
40-pin headers between the 8031 and 8155 
devices and the wire-wrap area facilitate inter­
connections with the user's custom circuitry. 

Debugging 

Hardware breakpoint logic in the SDK-51 
checks the address of a program or external 
data-memory access against values defined by 
the user and stops execution when it sees a 
"break" condition. After a breakpoint, you can 
examine and modify registers, memory 
locations, and other points in the system. A step 
command lets you execute instructions in a 
single-step mode. 

Assembly and Test 

The SDK-51 assembly manual describes hard­
ware assembly in a step-by-step process that in­
cludes checking each hardware subsystem as it 
is installed. Building the system requires only a 
few common tools and standard laboratory 
instruments. Figure 3 shows an assembled 
SDK-51/52 system. 

7-18 

Figure 3. SDK-51 Assembled with 
Additional RAM and ROM 
Devices Installed 

162549-002 



SDK-51 System Design Kit 

SPECIFICATIONS 

Control Processor 

Intel 8031 and 8032 microcomputers 
12 MHz clock rate 

Memory 

RAM - 1 K-byte static, expandable in 1 K seg­
ments to 16K-byte with 2114 RAM devices; user­
configurable as program or data memory. 

ROM - Printed circuitry for 8K bytes of program 
memory in 4K segments using 2732A EPROM 
devices. 

Interfaces 

Keyboard - 51-key, ASCII subset typewriter 
format, 1 2-key (3 x 4) matrix 

Display - 24-character, alpha-numeric 

Serial - RS-232 with user-selectable baud rate. 
Printed circuitry for 100 baud 20 rnA current 
loop interface. 8031 serial port. 

Parallel - 32lines, TTL compatible 

Small diagonal wire cutters 
Soldering pencil, ~30 watts, 1/16" diameter tip 
Rosin-core, 60-40 solder, 0.05" diameter 
Volt-Ohm-Mil/iammeter, 1 meg-ohm input impe­
dance 
Oscilloscope, 1 volt/division vertical sensitivity, 
200 j.Ls/division sweep rate, single trace, internal 
and external triggering 

Physical Characteristics 

Length - 13.5 in. (34.29 cm) 
Width - 12 in. (30.48 cm) 
Height - 4 in. (10.16 cm) 
Weight - 31b. (1.36 kg) 

Electrical Characteristics 

DC Power Requirement (supplied by user, cable 
included with kit) 

Voltage 
+ 5V ±5% 
+12V±5%* 
-12V±5%* 

Current 
3A 

100mA 
100mA 

*± 12 volts required only for operation with serial interface. 

Environmental Characteristics 

Cassette - Audio cassette tape storage inter- Operating Temperature - 0 to 40°C 
face Relative Humidity - 10% to 90%, non-

Software 

System monitor preprogrammed in on-board 
ROM MCS-51 assembler and disassembler pre­
programmed in on-board ROM. 
Interface control software preprogrammed in 
8041 's on-chip ROM. 

Assembly and Test Equipment 
Required 

Needle-nose pliers 
Small Phillips screwdriver 

ORDERING INFORMATION 

Part Number 
MCI-51-SDK 

Description 
MCS-51 System Design Kit 

. condensing 

7-19 

Reference Manuals 

SDK-51152 MCS@-51 System Design Kit User's 
Guide 
SDK-51152 MCS@-51 System Design Kit Assem­
blyManual 
SDK-51 MCS@-51 System Design Kit Monitor 
Listing Manual 
SDK-52 MCS@-51 System Design Kit Monitor 
Listing Manual 
MCS@-51 Macro Assembler User's Guide 
MCS@-51 Macro Assembly Language Pocket 
Reference 

162549-002 



SDK·2920 
2920 SYSTEM DESIGN KIT 

• Complete 2920 program development: 

- 2920 assembly language keyboard 

- Single·line assembler/disassembler 

- 24·character,. alphanumeric display 
- 2920 memory display and modify 

- List program memory to line printer 
with symbol table 

• Decimal·to·binary conversion program 

• File handling capabilities: 
- Up/down load of object file to 

Intellec or audio cassette 
- Up load source file with symbol 

table to Intellec 
- 2920 EPROM programming 

• Real·time execution of a programmed 
2920 

• Breadboarding area 

The SDK-2920 contains all of the components required to assemble a complete single board microcom· 
puter system for programming and evaluation of the. 2920 Analog Signal Processor. The 8085/8041A 
microcomputer·based program development section allows you to immediately enter programs in 2920 
assembly mnelTlonics, translate them to 2920 object code, and program the on· board 2920 EPROM. The 
kit supports basic filing options such as up/down loading tolfrom an Intellec, audio cassette, and line 
printer. The SDK-2920 also provides the user with a 2920 run mode section allowing real·time execution of 
a programmed 2920. This section comes complete with BNC connectors and Intel's 2912 PCM line filters 
required for one input and one output network. The kit supports optional input and output circuitry on the 
run mode section. 

The following are trademarks of Intel Corporation and may be used only to describe Intel products: Intel;lntellec, MCS and ICE, and the combination of MCS or ICE and a 
numerical suffix. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied In an Intel product. No other circuit patent licenses are 
implied. 

© INTEL CORPORATION, 1983 MAY 1983 

7-20 



SDK·2920 

FUNCTIONAL DESCRIPTION 
The SDK·2920 is a kit which includes all the 
necessary hardware and software components to 
assemble, using common laboratory tools and 
test equipment, a complete single board 2920 pro· 
gramming and evaluation aid. Assembly generally 
requires 4 to 8 hours, depending on the ex· 
perience of the user. 

The 2920 Signal Processor 
The Intel® 2920 Signal Processor is a program· 
mable, single chip analog and digital signal pro· 
cessor specifically designed to replace analog 
subsystems in real·time processing applications. 
Its instruction set plus the high preciSion (25 bits) 
digital arithmetic logic unit provides the capability 
'to implement very complex subsysterris. Typical 
functions performed by the 2920 include: lowpass 
and bandpass filters with up to 20 complex pole 
and/or zero pairs; threshold detectors; limiters; 
rectifiers; up to 25·bit multiplication and division; 
approximations to nonlinear functions such as 
square law and logarithm; logical operations; in· 
put and output multiplexing of signals; logical 
outputs for decision type processing; and analog 
outputs for multifrequency oscillators, waveform 
generators, etc. In addition, several 2920's may be 
cascaded for very complex processing applica· 
tions with no loss in thro~ghput rate. 

VSP_ 

Tables 1 and 2 show the 2920 instruction set and 
op codes. 

Table 1. Shift Op Codes 

Operation Mnemonic 
Op Code Scale 
3 2 1 0 Factor 

Shift Right 13 Bits R13 1 1 0 0 2-13 

Shift Right 12 Bits R12 1 0 1 1 2-12 

. · . · . 
· 

Shift Right 1 Bit R01 0 0 0 0 2-1 

No Shift ROO 1 1 1 1 1 
Shift Left 1 Bit L01 1 1 1 0 2 
Shift Left 2 Bits L02 1 1 0 1 4 

System Software 
A compact but powerful system monitor is con· 
tained in 6K bytes of preprogrammed ROM. The 
monitor includes system utilities such as com· 
mand interpretation, user program debugging, 
and interface controls. 

The monitor ROM devices also include a single· 
line assembler and disassembler. The assembler 
lets you enter programs in 2920 assembly Ian· 
guage mnemonics. The disassembler supports 
debugging by letting you look at or change either 
hexadecimal values or 2920 instructions during 
program interrogation. 

PROGRAM STORAGE 
(EPROM) 

RUN/PROG_ 192 x 24 

~~~--------------~~--------~----~~--~~ 

X2~--""""

=
Xl/ClK

CLOCK lOGIC
&

PROGRAM
COUNTER

"EXTERNAL COMPONENTS

DMUX
&

S&H's

I
VREF M2

Figure 1. 2920 Function Block Diagram (Run Mode)

7·21

SIGOUT(O)

SIGOUT(l)

SIGOUT(2)

SIGOUT(3)

SIGOUT(4)

SIGOUT(5)

SIGOUT(6)

SIGOUT(7)

SDK·2920

Table 2. Instruction Set and Op Codes

Mnemonics Op Codes(1)

Code Condition ALU ADF ADK Operations Notes

Digital Instructions 2,1,0 1,0 2,1,0

ADD 110

1 1

(Ax2N)+8 - 8
SU8 101 8-(Ax2N) - 8
LOA 111 (Ax2N)+0 - 8
XOR 000 (Ax2N)e 8 - 8
AND 001 (Ax2N)o8 - 8
A8S 011 I(Ax 2N)1 - 8
A8A[11] 100 [3] [3] I (A x 2N) I + 8 - 8
LIM 010

I I
Sign(A) - ± F.S. - 8[4]

ADD CND()[2] 110 (Ax 2N)+ 8 - 8]FF DAR(K)= 1
8 - 8 IFF DAR(K) = 0

SU8 CND()[2,8] 101 8- (Ax 2N) - 8 & CY - DAR(K) IFF CYp= 1 [5]
8+(Ax2N) - 8 & CY -.DAR(K) IFF CYp=O

LOA CND()[2] 111 (Ax 2N) - 8 IFF DAR(K)= 1
8 - 8 IFF DAR(K) = 0

A8A[11] CND()[9] 100 (Ax2N)+8- 8
XOR CND()[9] 000 (Ax2N)e 8 - 8

Analog Instructions

IN(K)

I
00 0-3 Signal sample from input channel K

OUT(K) 10 0-7 D/A to output channel K
CVTS 00 6 Determine sign bit
CVT(K)

[7]
01 0-7 Perform AID on bit K

[6] EOP

!
00 5 Program counter to zero

NOP 00 4 No operation
CND(K) 11 0-7 Select bit K for conditional instructions
CNDS 00 7 Select sign bit for conditional instructions

o 1 234 5

I 0 I 1 I 2 1 0 I \ 1 1 A 1 I 811 A21 1 821 A31 831 A41 1 841 A51 85\ AO I 1 80 \ 0 \ 1 \ 2 \ \ 3 1 0 I 1 1 2 I
I..-ADK I..-ADF ... I. MEMORY ADDRESSES .I-+--SHF--....I.-ALU~

Note: The input pins for each nibble bit from left to right are DO, 01, 02, 03.

NOTES:

1. Op codes ALU and ADF are in binary notation, ADK is in decimal notation and represents the value "K" when appropriate.
2. CND() can be either CND(K) or CNDS testing amplitude bits or the sign bit of the DAR respectively.
3. Determined by analog instructions below.
4. B is set to full scale (F.S.) amplitude with the same sign as the "A" port operand.
5. The previous carry bit (CYp) is tested to determine the operation. The present carry bit (CY) is loaded into the Kth bit location of

the DAR. "Present carry (CY) is generated independent of overflow. It will represent the carry (CY) of a calculated 28·bit result."
6. EOP will also enable overflOW correction if it was disabled during a program pass. The EOP must occur in ROM location 188.
7. Determined by digital instructions above.
8. For SUB CNDS Operation CY - DAR(S).
9. Does not affect DAR. In this case, CND Is used with XOR/ABA to enable/disable the ALU overflow saturation algorithm. Use of

either instruction causes the ALU output to roll over rather than go to full scale with sign bit preserved. An EOP instruction will
also enable the ALU overflow saturation algorithm.

10. Clarification of CYOUT sense for certain operations. For LOA, XOR, AND, ABS; CYOUT - O.

Memory
The kit contains 1.25K bytes of RAM for 2920 pro­
gram development. The RAM is used as 2920 pro­
gram memory for up to a 192-instruction 2920 pro­
gram. The RAM space is also used for a symbol
table up to 40 user defined symbols.

7-22

User Interface
The kit includes a function and hex keyboard and
a formatted 24-character, 18-segment display for
easy 2920 code entry. The interactive keyboard
and display enables the system monitor fo step
the user through a command entry sequence with

SDK·2920

the friendliness of a menu·driven operating sys·
tern.

Optional Interfaces
An RS-232 or 20 rnA current loop compatible CRT
or printer may be used as a listing or file storage
device by connecting it to the board's serial inter·
face connector and supplying + 12 and -12 volts
to the board. In addition, the kit provides an audio
cassette· interface, allowing the use of an audio
cassette as a mass storage device.

Debugging
Program development is made easy by use of inter­
active error messages that will inform the user of
illegal entries at the time of program development.
Syntax errors are detected prior to EPROM program­
ming, giving the user the option to continue or abort
the programming.

The run·mode section allows the user to execute a'
programmed 2920 in real time, with his own input
stimulus and output circuit or instrumentation.
The kit is supplied with the 2920 (600 ns instructions)
and a 6.67 M H2 crystal.

CONTROL
SECTION

RESET
LIST

LOAD

HEXIASM EDIT

INSRT Del
NEXT PREY

SHIFT
CONY

CR

Figure 2.

2920 DATA KEYS
KP ADD ABS ABA
KN 0 E

+1- SUB LOA LIM
R 8 9 A

IN OUT CYTS

6

DAR NOP CNDS CND

Keyboard Arrangement

INPUT
ANALOG

OUTPUT
ANALOG

2920 RUN MODE SECTION

AND
F

XOR
B

CYT

EOP

Assembly and Test
The SDK-2920 assembly manual describes assem·
bly In a step·by·step process that includes check·
ing segments of hardware as they are installed.
Building the system requires only a few common
tools and standard instruments.

Figure 3. Assembled SDK-2920

2920 ~
~ SYSTEM DESIGN KIT •• -

Figure 4. Display Layout

SERIALCH CASSETTE

PROGRAM DEVELOPMENT SECTION

Figure 5. SDK·2920 Functional Block Diagram

7-23

SDK·2920

Table 3. SDK·2920 Control Commands

RESET - Sets the monitor to its Initialization program and responds to the selection of one of the four modes.

SHIFT

EDIT

LOAD

LIST

CONV

The display will prompt the user with EDIT? LOAD? LIST? CONV?

Selects the upper case characters or functions.

Selects the edit mode, aliowlng for 2920 program entry and/or modification. The commands available
In the edit mode are shown below In Table 4.

Selects the load mode, providing for up/down loading to/from the RS·232, cassette, or the 20 mA cur­
rent loop Interfaces. It also provides for 2920 EPROM read, program and verify.

Selects the list mode, providing for listing the 2920 program source code, symbol table, and 2920 hex
code to a line printer via the RS-232 interface.

Selects the declmal-to-blnary-to-decimal conversion program.

Cursor Right

Table 4. Edit Mode Commands

The blinking cursor is moved right one position unless at the end of displayed
field.

"-__ 1 Cursor Left Blinking cursor is moved left until the sequence number is encountered, then it
skips to the left edge-of the display.

NEXT Next Instruction The next 2920 instruction Is displayed unless at end of memory.

,--_P_R_E_V---J Previous Instruction The previous 2920 Instruction is displayed unless at beginning of memory.

L--_L_IS_T---J LIst Memory Send disassembled 2920 instructions to serial port.

I HEXIASM 1 Mode Toggle Toggle edit mode between symbolic assembly and hexadecimal.

INSRT Insert Instruction Expand the program In memory by one location and insert a NOP at current
memory display address.

DEL Delete Instruction Contract the program in memory by one location and remove the instruction at
the current memory disp1ay pOSition.

NOTE: WILL BLINK IF NOT
SOCKETED PROPERLY
AFTER (CR)

t

I EDIT LOAD LIST CONV I

t
I 2920= 1 AUX=2CASS=3 I

I VERIFY 2920 SOCKETED(CR) I ITO-SDK: 1 FROM ·SDK =21

NOTE: CAN ENTER SINGLE
CHARACTER

t
I ENTER FILE XX(CR) I

~~==~~+~ ~ +
I READ = 1 PROGIVER .. 2 CMPR .. 3 II START AUX II OBJ = 1 SOURCE = 2 I I TO ·SDK = 1 FROM ·SDK = 2 I

+

~'H 'r" ,100". II I .,," L. THEN ,+ ' , 'TA" iAS' ,,'TA" ! .. , THEN "j"
I 2920 TRANSFER ACTIVE .1 II (DATA DISPLAYED AS TRANSFERRED) I I (DISPLAY BLANK) I

t t t
I CHECKSUM .. xx. (CR) , I l LOAD COMPLETE (CR) I I xx LOADED (CR) I

Figure 6. Load Command and Display Tree

7-24

SDK·2920

SPECIFICATIONS

Control Processor
Intel 8085A microprocessor
6.144 MHz clock rate

Memory
RAM - 1.25K-byte static
ROM - 6K-byte

Interfaces
Keyboard - 28-key with shift, providing 54 func­
tions and characters
Display - 24-character, 18-segment LED
Serial - RS-232 with user-selectable baud rate
and 20 rnA current loop
Cassette - Hardware and software for audio cas­
sette tape storage interace

Software
System monitor preprogrammed in ROM
2920 assembler and disassembler preprogram­
med in ROM
Interface control software preprogrammed in 8041
on-chip ROM

Assembly and Test Equipment Required
• Needle-nose pliers
• Small Phillips screwdriver
• Small flat-blade screwdriver
• Small diagonal wire cutters
• Soldering pencil, < 30 watts, 1/16" diameter tip
• Rosin-core, 60-40 solder, 0.05" diameter
• Volt-ohm-milliameter, 1 meg ohm input imped­

ance

ORDERING INFORMATION

Part Number Description
MCI-20-SDK 2920 System Design Kit

7-25

• Oscilloscope, 1 volt/division vertical sensitivity,
200 Its/division sweep rate, single trace, internal
and external triggering

Physical Characteristics
Length - 16 in. (40.64 cm)
Width - 10 in. (25.40 cm)
Height - 4 in. (10.16 cm)
Weight - 3 Ib (1.36 kg)

Electrical Characteristics
DC Power Requirements (supplied by user, cables
included with the kit)

Program Development Section:
Voltage Current

+5V ±5% 1.0A

+12V±5% 100 rnA

-12V ±5% 100 rnA

Run Mode Section:
Voltage Current

+5V ±5% 300 rnA

200 rnA

-5V ±5% 250 rnA
200 rnA

Comments

Required for program development

Required for 2920 EPROM program­
ming and RS-232 interface

Required for RS·232 interface

Comments
Required for operation as supplied

Required for each additional 29121
74LS324 pair

Required for operation as supplied
Required for each additional 29121
74LS324 pair

Environmental Characteristics
Operating Temperature - 0 to 40 DC
Relative Humidity - 10% to 90% non-condensing

Reference Manuals
SDK-2920 System Design Kit User's Guide
SDK-2920 System Design Kit Assembly Manual
2920 Analog Signal Processor Design Handbook

Third Party Software 8

MICROSOFT*, INC. BASIC-SO INTERPRETER
SOFTWARE PACKAGE

• Compatible with other Microsoft BASIC
compilers and interpreters

III Sophisticated string handling and
structured programming features for
applications development

III Direct transfer of BASIC programs to
the 8085, 8086 and 8088

• Random and sequential file
manipulation where random file record
length is user-definable

a Read or write memory location
capabilities

• Meets the requirements for the ANSI
subset standard for BASIC, and
supports many enhancements

• Extensive text editing features built-in

• Automatic line number generation and
renumbering

• Supports assembly language
subroutine calls

• Trace facilities for easier debugging

BASIC Release 5.0 from Microsoft is an extensive implementation of BASIC. Microsoft BASIC gives users what
they want from a BASIC-ease of use plus the features that are comparable to a minicomputer or large
mainframe.

BASIC-80 meets the requirements for the ANSI subset standard for BASIC, as set forth in document BSRX3.60-
1978. It supports many unique features rarely found in other BASICs.

FEATURES

-Four variable types: Integer (-32768, +32767),
String (up to 255 characters), Single-Precision
Floating Point (7 digits), Double-Precision
Floating Point (16 digits).

-Trace facilities (TRON/TROFF) for easier
debugging.

-Error trapping using the ON ERROR GOTO
statement.

-PEEK and POKE statements to read or write any
memory location.

-Automatic line number generation and
renumbering, including reference line numbers.

-Matrices with up to 255 dimensions.

-Boolean operators OR, AND, NOT, XOR, EQV,
IMP.

© INTEL CORPORATION. 1983.

8-1

-Formatted output using the PRINT USING facility,
including asterisk fill, floating dollar sign,
scientific notation, trailing sign, and comma
insertion.

-Direct access to I/O ports with the INP and OUT
functions.

-Extensive program editing facilities via EDIT
command and EDIT mode subcommands.

-Assembly language subroutine calls (up to 10 per
program) are supported.

-IF/THEN/ELSE and nested IF/THEN/ELSE
constructs.

"':"'Supports variable-length random and sequential
disk files with a complete set of file manipulation
statements: OPEN, CLOSE, GET, PUT, KILL,
NAME, MERGE.

MAY 1983

AFN-02086C

MICROSOFT, INC.
BASIC-SO INTERPRETER

BASIC-SO Commands, Statements,'
Functions

AUTO RENUM
LIST WIDTH
NULL CONT
TROFF MERGE
CLEAR RUN I

LOAD DELETE

Program Statements

CALL
GOSUB
END
GOTO
STOP
WHILE/

WEND
CHAIN
DEF USR
LET
REM

RANDOMIZE
COMMON,
DEF FN
ERROR
POKE
RESUME
SWAP
DEFDBL
DEFSTR
DEFSNG
DEFINT

NAME
SAVE
EDIT
NEW
TRON

RETURN
WAIT
ON GOSUB
DIM
FOR/NEXT/

STEP
IF/THEN/

ELSE
ON ERROR

GOTO
OPTION BASE

Input/Output Statements and Functions

CLOSE
KILL
OUT
RESTORE
READ
TAB
DATA
LINE

INPUT
PRINT
WRITE
LPRINT

GET
POS
FIELD
LSET/RSET
PRINT

USING
LOC
MKI$
MKS$
MKD$
LLiST
LPOS

SPECIFICATIONS

Operating Environment

NAME
PUT
EOF
SPC
INKEY$
INPUT
OPEN
CVD
CVI
CVS

The standard disk version of Microsoft BASIC-80
occupies 24K bytes of memory. Microsoft BASIC-80
Interpreter is compatible with Intel's ISIS operating
system or CP/M* operating system.

Required Hardware

Intellec Microcomputer Development System

-iPDS (Personal Development System)
-minimum of 1 diskette drive

8-2

Arithmetic Functions

ABS
INT
SGN
ATN
EXP

SIN
CDBL
CSNG
CINT
SQR

String Functions

ASC
LEN
STRING$
CHR$
LEFT$

Operators

A
<
>

STR$
HEX$
OCT$
VAL

<=
+
<>
\
>=

Special Functions

ERL ERR
USR FRE

Required Software

LOG
FIX
COS
RND
TAN

INSTR
RIGHT$
MID$
SPACES

XOR
NOT
EQV
MOD
IMP
OR
AND

VARPTR
PEEK

ISIS Operating System or CP/M Operating System.

Documentation Package

One copy of each manual is supplied with the
software package.

Description

BASIC-80 Reference Manual
BASIC Reference Book

AFN-02086C

MICROSOFT, INC.
BASIC-SO INTERPRETER

ORDERING INFORMATION

Description Order Code

SD102CPM80F Microsoft BASIC-80 Interpreter Software Package, CP/M version (Double-Sided,
Double Density 5%" Floppy) iPDS format

SD1021SS80F Microsoft BASIC-80 Interpreter Software Package, ISIS version (Double-Sided,
Double Density 5%" Floppy) iPDS format

SUPPORT

Intel offers several levels of support for this product,
depending on the system configuration in which it is
used. Please consult the price list for a detailed
description of the support options available.

An Intel Software License required.
'Microsoft is a trademark of Microsoft, Inc.
'CP/M is a registered trademark of Digital Research, Inc.
'MP/M-II is a trademark of Digital Research, Inc.

8-3 AFN-02086C

MICROSOFT*, INC. BASIC-SO COMPILER
SOFTWARE PACKAGE

• Produces highly optimized, true
machine code

• Compiled programs are fast and
compact because of extensive
optimizations performed during
compilation

• Supports all the commercial language
features of the Microsoft BASIC
interpreter (except direct mode
commands)

• Supports double-precision
transcendental functions

• Machine code for application programs
may be placed on diskette, ROM, or
other Media

• Provides source program security
because only compiled code need be
distributed to end-users

• Loader format identical to Microsoft's
MACRO-80 assembler, COBOL-80
compiler, and FORTRAN-80 compiler:
Compiled BASIC programs can be
loaded and linked with any of these
languages

Microsoft's BASIC-SO compiler is a powerful tool for programming BASIC applications or microprocessor
system software. The single-pass compiler produces extremely efficient, optimized SOSO machine code that is in
Microsoft-standard, relocatable binary format. Execution speed is typically 3-10 times faster than Microsoft's
BASIC-SO interpreter.

FEATURES

Optimized, Compatible Object Code

The BASIC compiler produces object code that is
highly optimized for speed and spac,e, relocatable,
and compatible with other Microsoft software prod­
ucts. The loader format is identical to that of the
MACRO-SO assembler, COBOL-SO compiler and
FORTRAN-SO compiler, so programs written in any
one of these four languages can be loaded and linked
together. The compiler can also provide a formatted
listing of the machine code that is generated.

Compiled programs are fast and compact due to ex­
tensive optimizations performed during compilation:

-Expressions are reordered to minimize temporary
storage and (wherever possible) to transform
floating point division into multiplication.

-Constant multiplications are distributed to allow
more complete constant folding. '

-Constants are folded wherever possible. The
expression reordering finds "hidden" constant
operations.

-Peephole optimizations are performed, including
strength reduction.

©INTEL CORPORATION, 1983. S-4

-The code generator is template-driven, allowing
optimal sequences to be generated for the most
commonly used operations.

-String operations and garbage collection are
extremely fast.

Compiled BASIC-SO programs are the ideal end prod­
uct for BASIC applications' programmers. The ma­
chine code for any application program may be
placed on a diskette, ROM, or other media. The pro­
gram not only runs faster than with the interpreter,
but the BASIC source program need not be dis­
tributed. Thus the original application program is
protected from unauthorized alteration.

Language Features

The Microsoft BASIC-SO Compiler supports all the
commercial language features of Microsoft BASIC­
SO, except those commands that are not usable in the
compiler environment (Le., direct mode commands
such as LOAD, AUTO, SAVE, EDIT, etc.). That means
you get the BASIC language compatible with other
Microsoft BASIC packages.

MAY 1983

ORDER NUMBER:210247-002

MICROSOFT, INC.
BASIC-SO COMPILER

In addition, the compiler supports double-precision
transcendental functions (SIN, COS, TAN, ATN, LOG,
EXP, SQR), %INCLUDE, CHAIN and COMMON. The
%INCLUDE compiler directive brings another source
file into the compilation without retyping the main
source file.

BRUN Runtime Module

The BRUN runtime module contains the most com­
mon runtime routines needed for most programs.
Using the BRUN module provides faster link loading
of program modules and allows the user to link much

SPECIFICATIONS
Operating Environment

The BASIC Compiler requires a minimum of 34K
bytes of memory (exclusive of the operating system).
Microsoft recommends that 48K bytes be available
for compiling medium to large programs. The com­
pileritself occupies about 28K bytes. At runtime, the
BRUN module occupies approximately 15.5K bytes.
If, as an option, the BRUN module is not used, the
runtime library occupies 8K-18K bytes.

Required Hardware
Intellec Microcomputer Development System
-iPDS (Personal Development System)
-minimum of 1 diskette drive

ORDERING INFORMATION
Order Code

larger programs because the runtime routine library
does not resilje in memory during linking. The ex­
ecutable files saved on disk. are also much smaller
since the BRUN module exists separately.

Utility Software Package

The BASIC-80 package includes the Microsoft Utility
Software Package. The Utility Software Package in­
cludes the MACRO-80 macro assembler, the LlNK-80
linking loader and the CREF-80 Cross-Reference
Facility. Refer to the description of the Microsoft
Utility Software Package for full details.

Required Software
CP/M" Operating System

Documentation Package
One copy of each manual is supplied with the
software package.

Description

BASIC Compiler User's Manual
BASIC-80 Reference Manual
BASIC Reference Book
Microsoft Utility Software Manuai

(Specify by Alpha Character when ordering.)

Description

SD124CPM80F Microsoft BASIC-80 Compiler Software Package, CP/M version (iPDS Format)

SUPPORT:

Intel offers several levels of support for this product, depending on the system configuration in which it is used.
Please consult the price list for a detailed description of the support options available.

An Intel Software License required.
'Microsoft is a trademark of Microsoft, Inc.

'CP/M is a registered trademark of Digital Research, Inc.
'MP/M-II is a trademark of Digital Research, Inc.

8-5

DIGITAL RESEARCH INC.
CP/M* 2.2 OPERATING SYSTEM

• High-p.erformance, single-console
operating system

• Simple, reliable file system matched to
microcomputer resources

• Table-driven architecture allows field
reconfiguration to match a wide variety
of disk capacities and needs

• Extensive documentation covers all
facts of CP/M' applications

• More than 1,000 commercially available
compatible software products

• General-purpose subroutines and
table-driven data-access algorithms
provide a truly universal data
management system

• Upward compatibility from all previous
versions

CPIM 2.2 is a monitor control program for microcomputer system and application'uses on Intel 8080/8085-
based microcomputer.CP/M provides a general environment for program execution, construction, storage,
and editing, along with the program assembly and check-out facilities.

The CP/M monitor provides rapid access to programs through a comprehensive file management package. The
file subsystem supports a named file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this system, a large number of distinct programs can be stored in both source­
and machine-executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler, and debugger subsystems. Nearly all
personal software programs can be bought configured to run under CP/M, several of which are available from
Intel.

FEATURES

CP/M is logically divided into four distinct modules:

BIOS-Basic I/O System

-Provides primitive operations for access to disk
drives and interface to standard peripherals
(teletype, CRT, paper tape reader/punch, bubble
memory, and user-defined peripherals)

-Allows user modification for tailoring to a particu­
lar hardware environment

BOOS-Basic Disk Operating System

-Provides disk management for one to sixteen disk
drives containing independent file directories

-Implements disk allocation strategies for fully
dynamic file construction and minimization of
head movement across the disk

© INTEL CORPORATION, 1983. 8-6

-Uses less than 4K of memory allowing plenty of
memory space for applications programs

-Uses less than 4K of memory.

-Makes programs transportable from system to
system

-Entry points include the following primitive
operations which can be programmatically
accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELECT

Look for a particular disk file by
name

Open a file for further operations

Close a file after processing

Change the name of a particular file

Read a record from a particular file

Write a record to a particular file

Select a particular disk drive for
further operations

SEPTEMBER 1984
ORDER NUMBER:210268·004

DIGITAL RESEARCH, INC.
CP/M 2.2

CCP-Console Command Processor

-Provides primary user interface by reading and
interpreting commands entered through the
console

-Loads and transfers control to transient programs,
such as assemblers, editors, and debuggers

-Processes built-in standard commands including:

ERA Erase specified files

DIR

REN

SAVE

TYPE

List file names in the directory

Rename the specified file

Save memory contents in a file

Display the contents of a file on
the console

TPA-Transient Program Area

-Holds programs which are loaded from the disk
under command of the CCP

-Programs created under CP/M can be checked out
by loading and executing these programs in
the TPA

-User programs, loaded into the TPA, may use the
CCP area for the program's data area

-Transient commands are specified in the same
manner as built-in commands

-Additional commands can be easily defined by the
user

-Defined transient commands include:

PIP Peripheral Interchange Program
-implements the basic media transfer
operations necessary to load, print,
punch, copy, and combine disk files;
PIP also performs various
reformatting and concatenation
functions. Formatting options include
parity-bit removal, case conversion,
Intel hex file validation, subfile
extraction, tab expansion, line number
generation, and pagination

ED Text Editor-allows creation and
modification of ASCII files using
extensive context editing commands:
string substitution, string search,
insert, delete and block move; ED
allows text to be located by context,
line number, or relative position with a
macro command for making extensive
text changes with a single command
line

8-7

ASM Fast 8080 Assembler-uses standard
Intel mnemonics and pseudo,
operations with free-format input, and
conditional assembly features

DDT Dynamic Debugging Tool-contains
an integral assembler/disassembler
module that lets the user patch and
display memory in either assembler
mnemonic or hexadecimal form and
trace program execution with full
register and status display;
instructions can be executed between
breakpoints in real-time, or run fully
monitored, one instruction at a time

SUBMIT Allows a group of CP/M commands to
be batched together and submitted to
the operating system by a single
command

STAT Lists the number of bytes of storage
remaining on the c.urrenUy logged
disks, provides statistical information
about particular files, and displays or
alters device assignments

LOAD Converts Intel hex format to absolute
binary, ready for direct load and
execution in the CP/M environment

SYSGEN Creates new CP/M system disks for
back-up purposes

MOVCPM Provides regeneration of CP/M
systems for various memory
configurations and works in
conjunction with SYSGEN to provide
additional copies of CP/M

BENEFITS

-Easy implementation on any computer configura­
tion which uses an Intel 8080/8085 Central Pro­
cessing Unit (see the CP/M-86 data sheet for CPIM
applications on the iAPX86 CPU)

-iPDS version supports bubble memory option as
an additional diskette drive. Also allows diskette
duplication with a single drive

-Extensive selection of CP/M-compatible programs
allows production and support of a comprehen­
sive software package at low cost

-Field programmability for special-purpose operat­
ing system requirements

-Upward compatibility from previous versions of
CP/M release 1

AFN-02111C

DIGITAL RESEARCH, INC.
CP/M 2.2

-Provides field specification of one to sixteen logi­
cal drives, each containing up to eight megabytes

-Files may contain up to 65,536 records of 128 bytes
each but may not exceed the size of any single disk

-Each disk is designed for 64 distinct files-more
directory entries may be allocated if necessary

SPECIFICATIONS

Hardware Required

-Model 800 with 720 kit

-DS 235 kit or MDS 225 with 720 kit (integral drive
supported except as system boot device)

-iPDS Personal Development System
Optional:

RAM up to 64K

-Additional floppy disk drives

-Single density via 201 controller

-Bubble memory and optional Shugart 460 5%"
disk drive for iPDS

Documentation Package

Title

CP/M 2.2 documentation consisting
of 7 manuals:

An Introduction to CP/M Features
and Facilities

CP/M 2.2 User's Guide
CP/M Assembler (ASM) User's

GiJide
CP/M Dynamic Debugging Tool

(DDT) User's Guide
ED: A Context Editor for the CP/M

Disk System User's Manual
CP/M 2 Interface Guide
CP/M 2 Alteration Guide

SUPPORT:

-Individual users are physically separated by user
numbers, with facilities for file copy operations
from one user area to another

-Relative-record random-access functions provide
direct access to any of the 65,536 records of an
eight-megabyte file

Shipping Media

(Specify by Alpha Character when ordering.)

A-single density (IBM 3740/1 compatible)

B-double density

F-double-sided, double density 5%" floppy (iPDS
format)

Order Code Product Description

See Price List CP/M (Control Program for
Microcomputers) is a disk-baseq
operating system for the Intel
BOBO/BOB5-based systems. CP/M
provides a general environment for
program development, test, execution
and storage. CP/M storage is available
via a comprehensive, named-file
structure supporting both sequential
and random access. CP/M support
tools include a Text Editor, a
debugger, and an B080/8085
assembler.

Intel offers several levels of support for this product, depending on the system configuration in which it is used.
Please consult the price list for a detailed description of the support options available.

An Intel Software License required.
·CP/M is a registered trademark of Digital Research, Inc.
·CP/M-86, MP/M, CP/NETand MP/NETare trademarks of Digital Research, Inc.

AFN·02111C

8-8

WordStar* WORD PROCESSING SOFTWARE

• Powerful, reliable, and user-friendly
word processing software package

.. Six on-screen menus and ten Help
menus provide quick command
reference

a Printout enhancements provide
numerous combined print functions

.. Simple formatting commands including
Hyphen-Help

.. Streamlines text entry

a Horizontal scrolling for wide pages

• Wordwrap removes need to worry
about right margin

a On-screen formatting displays text
exactly as it will be printed

a A" functions easily controlled despite
differences in printers and consoles

WordStar, a popular word processing program written for use under the CP/Mt operating system, gives screen
editing capabilities in an easy to learn and use format. The program is in use by programmers, and engineers
for documentation and program entry, as well as managers and secretaries.

With WordStar, the user can easily make insertions and deletions, move or copy blocks of text, and search for
and replace a string of text. WordStar will automatically reformat text upon command as these editing functions
are performed.

Documents produced by WordStar can include any combination desired of pagination (page numbers), right
and left justification, subscripts, superscripts, underlining, boldface type, overstrikes, crossouts, and even
accents for use in foreign languages. Commands for all of these are entered with simple control-character
keystrokes which are well documented in the program's six help menus. -

All WordStar commands are easily executed using the CTRL key and the standard typewriter keys. Using the
CTRL key, the function of standard keys can be changed to perform useful editing commands. The cursor­
movement diamond (a group of standard keys on the keyboard) allows fast access to any area of text.

-, .---- .----- . .----
\ -

Q W E Rt T Y U I a P
OUICK SCROLL LINE SCROLL DELETE DELETE STOPA TAB IJSI1HI PRINT
MENU LINE + + SCREEN WORD LINE COMMANO MENU MENU

~ -. r---

A I S
D F G H J K L

REPEAT
WORD . CHAR· ~~~~R" WORD DELETE ; BACK HELP BLOCK FINDI - " +ACTER - CHAR SPACE MENU MENU RU'IJII

- -z x ;
C~ v S N M

" SCROLL LINE SCROLL INSERT , REFORM INSERT RETURN
LINE t + SCREEN ON/OFF RETURN

Figure 1. WordStar Keyboard Functions

The following are trademarks of Intel Corporation and Its affiliates and may be used only to identify Intel products: BXP. CREDIT. i, ICE. ICS. 'm, Inslte. Intel, INTEL, Intelevislon,
inteligent Identifier'· . inteligent Programmong'· . Intellonk. Intellec, IMMX, IOSP. iPDS. iRMX. iSBC. iSBX. Library Manager. MCS. MULTI MODULE. Megachassis. Micromainframe.
MULTIBUS. Multichannel. Plug-A-Bubble. PROMPT. Promware. RUPI, RMXI80. System 2000. UPI. and the combonation of ICS. iRMX. ISBC, iSBX. ICE. 12 ICE, MCS, or UPI and a
numerical suffix. Intel Corporation Assumes No Responsibility for the use of Any Circuitry Other Than CirCUitry Embodied in an Intel Product. No Other Patent Licenses are
implied .. £lINTEL CORPORATION. 1983 MAY 1983

'WordStar MailMerge and SpeliStar are trademarks of MicroPro International ORDER NUMBER:210762-002
+CP/M is a registered trademark of Digital Research Inc. 8-9

WordStar* WORD PROCESSING SOFTWARE

FEATURES

WordStar is designed to be simple for the novice to
use, ,while remaining sophisticated enough to be
appealing to even the most advanced user.

Standard typewriter keys are combined with the
"Control" key to provide a wide variety of editing
functions (Fig. 1). All cursor control is localized to the
ten keys in the "Cursor-Movement Diamond" (Fig. 2),
and the on-screen menu details the functions of the
other keys, so the user can quickly find functions
without memorizing them.

Wordwrap is a feature of WordStar that allows the
typist to entirely disregard margins. When typed
characters go beyond the right margin, WordStar
brings the last full word down to the next line auto­
matically. The only time the Return key needs to be
used is between paragraphs. Margins can be auto­
matically right and left justified both during and after
entry.

Horizontal Scrolling ,give the flexibility in creating
documents too wide to fit on the video screen. When
Wordwrap is disabled and a line is being typed
beyond normal screen width, the displayed lines are
automatically scrolledoffscreen to the left. A single
keystroke can be used to move the lines back to their
normal position. Editing functions can also use Hori­
zontal Scrolling to examine and modify any part of a
wide document.

The On-Screen Formatting feature displays the text
on the screen as it will appear when it is printed. This
allows the changing of margins, spacing, and other
format variables without requiring the use of a num­
ber of intermediate printouts.

Hyphen-Help aids in reformatting by positioning the
cursor over a word requiring hyphenation at the end
of a line, and allowing the user to select a hyphen­
ation pOint or decide not to hyphenate. Hyphens en­
tered this way are "soft", and will not be printed if the
document is reformatted and the hyphen is no longer
required. Permanent or "hard" hyphens are inserted
while typing and will always be printed.

WordStar's Find and Replace command allows the
text to be scanned for a specified character string.
Once the string is found it will be replaced quickly
with the updated information. Options with this com- ,­
mand allow the user to perform functions like finding
the "nth" occurrence, performing the operation "n"
times, replacing the string without verification by the

user each time, searching backward, or to compen­
sate for differences in upper and lower case letters
(Le., at the beginning of a sentence).

Entire blocks of text can be marked at their begin­
ning and ending, then moved to a new area as easily
as moving the cursor. Different block control com­
mands allow the duplication and deletion of blocks
as well.

Column Move assists in the creation and editing of
tables of data. With Column Move, a column can be
taken from one table and moved to another table or
to another place in the same table. Columns can also
be easily duplicated or deleted.

Over::>O Page Formatting commands enable a range
of functions from producing automatic page
headings to overriding built-in parameters for line
height and character width. Margins can be set and
number of lines typed per page can be dictated via
these very simple commands. These page com­
mands are especially useful in long documents.

Decimal Tab is a feature that assists in aligning fig­
ures into columns. When a number is entered into a
decimal tab position, it will be automatically aligned
so that its decimal point is directly below thadecimal ,
point of the number on the line above.

Files can be combined with each other to form
derivative documents. One file can be inserted at any
point of another, beginning middle or end, with equal
simplicity.

Print controls, Single letters entered while editing to
enhance the printout, permit the user of underscore,
boldface, underlining, double-strike, superscript,
subscript, overprint, and nearly any combination of
the above. This facilitates the generation of mathe­
matical formulas with subscripts and superscripts,
and allows the text to include foreign words and
phrases with accents above and below certain let­
ters. Alternate character pitch, for italics, and even
ribbon color selection can be controlled by WordStar
if these options are available on the printer in use.

Can be used with MailMerge* to generate chained
printing combining form letters with mailing lists.
Mail Merge allows names to be drawn from the ad­
dress and inserted into the text of the form letter.

SpellStar* may also be used with WordStar to check
the spelling in a document against both a 20,000-
word standard dictionary and a user-generated sup­
plemental dictionary which can be used to store
names, buzz words, or abbreviations.

8-10 AFN·01315B

WordStar* WORD PROCESSING SOFTWARE

WordStar is easily adapted to nearly any video termi­
nal and document printer, despite the wide variation
of options and communication standards used by
these devices. At installation time the user is
prompted through a series of questions which con­
figure that WordStar installation to fit the hardware
at hand.

When an existing file is edited and saved, any previ­
ous version of the file is saved under the original
filename as a .BAK extension (Le., after updating a
file entitled "LETTER" there would be two files, LET­
TER and LETTER.BAK on the diskette). When a doc­
ument is to be updated, its latest extension is
automatically used as input. Whenever a new .BAK
extension is created, the older .BAK version is
destroyed.

WordStar allows documents of almost any size to be
entered and edited. A Memory Management feature
automatically transfers text to and from mass storage
if the document is too large to be held in main
memory at one time.

There are six Main Menus (Fig. 3A-3F) and ten Help
Menus to guide even the most inexperienced user
through a WordStar editing session. The Main or

On-Screen Menus are displayed at the top of the
screen along with the text being edited. Should the
user desire to fill the entire screen with text, the menu
displays can be turned on and off as desired.

The ten Help Menus guide the user through the use
of all editing functions from Moving Text to Para­
graph Reform.

Word

A
Left

Figure 2. The Cursor Movement Diamond

A: TEST .ZXX; PAGE 1 LINE 1 CDL 1 INSERl' ON
«< MAIN MENU »>

* * CUrsor Movement * * I * Delete * I * Miscellaneous * I * Other Menus *
"'s char left "'D char right I"'G char' I "'I Tab "13 Refocn I (fran Main only)
"'A word left "'p word right IDEL chr 1£ I "'V Insert On or Off I"'J Help "'K Block
"E line up "'X line down I"T word rt I L FindiReplce again I"'Q Quick "'p Print
* * Scrolling * * I "y line I RETURN End paragraph 1"'0 Onscreen
"'z line up "'W line down I I "'N Insert a RETURN I
"'c screen up "'R screen down I I "U Stop a caxmand I
L---!---!---!---!---!---!---!---!---!---!---! R

•
Figure 3A. Main Menu: guide to the most frequently used commands. This menu
-and all other menus-can be called up at any time, or dropped to allow full-screen viewing of the text.

"J A: TEST • L'OC PAGE I LINE 1 CDL 1
«< HELP MENU

INSERT ON
> > >

H Display and set the help level
B Paragraph reform (Cl'RL B comnand)
F Flags in rightmost column of screen
D Dot commands, print ctrl(P comnand)

S Status line
R Ruler line
M Margins and tabs
P Place markers
V Hoving text

I * Other Menus *
I (from Main only)
I"J Help "K Block
I"Q Quick "p Print
1"0 Onscreen
ISpace bar returns
Iyou to Main Menu.

L---l--I--l--l---I--!---l--l---l--l---l-----R

•
Figure 3B. Help Menu: a directory of commands that control help levels and show reference information.

8-11 AFN-013158

WordStar* WORD PROCESSING SOFTWARE

"Q A:TEST.DOC PAGE I LINE I COL I INSERT ON
«< QUICK MENU »>

* * Cursor Movement * *1* Delete *1 * Miscellaneous * I * Other Menus *
S left side D right side IY line rtlF Find text in file I (from Main only)
E top of scrn X bottom scrnlDEL lin IflA Find and Replace I"J Help "K Block
R top of file C end of filel* * * *IL Find misspelling I"Q Quick "p Print
B top of block K end of block I Q Repeat coomand or I "0 Onscreen
0-9 marker Z up W down I key until space I Space bar returns
V last Find or block I bar or other key Iyou to Main Menu.
L----1---1----1--1--1--1--1--1--1--1--1-----R .

•
Figure 3e. Quick Menu: expanded cursor movement, deletion, find/replace commands, and place
marker commands ..

"K A:TEST.OOC PAGE I LINE I COL I INSERT ON
«< BLOCK MENU »>

* saving Files * 1* Block Operations *1 * File Operations *1 * Other Menus *
S Save and resume IB Begin K End IR Read P Print I (from Main only)
D save--done IH Hide / Display 10 Copy E Rename I"J Help "K Block
X Save and exit IC Copy Y DeletelJ Delete I"Q Quick "p Print
Q Abandon file IV Move W Write 1* Disk Operations *1"0 Onscreen

* Place Markers *IN Column off (ON) IL Change logged disklSpace bar returns
0-9 Set/hide # 0-91 IF Directory on (OFF) Iyou to Main Menu.
L---1---1---1---1---1---1---1---1---1---1---1 R

•
Figure 3D: Block Menu: instructions for using block and place markers, saving and printing a file, and
inserting other files.

"0 A:TEST.DOC PAGE I LINE I COL I INSERT ON
«< ONSCREEN 'MENU »>

* Margins & Tabs * 1* Line Functions *1 * More Toggles * I * Other Menus *
L Set left margin IC Center text IJ Justify off (ON) I (from Main only)
R Set right margin IS Set line spacing IV Vari-tabs off (ON) I"J Help "K Block
X Release margins I IH Hyph-help off (ON) I"Q Quick "p Print
I Set N Clear tab I * Toggles * I E Soft hyph on (OFF) 1"0 Onscreen
G Set paragraph tablW Wrd wrap off (ON) 10 Prnt disp off (ON) ISpace bar returns
F Ruler front line IT Rlr line off (ON) IP Pge break off (ON) Iyou to Main Menu.
L--- 1 ----1--! ---1---1---1---1 ---1 --1---I---1-----R

•
Figure 3E. Onscreen Menu: functions that perform onscreen document formatting (such as line spacing,
tabs, margins, justification, and wordwrap).

8·12 AFN-01315B

WordStar* WORD PROCESSING SOFTWARE

Ap A:TEST.DOC PAGE 1 LINE 1 COL 1 INSERT ON
«< PRINT MENU »>

*Special Effects*1 * Special Effects * 1* Printing Changes *1 * Other Menus *
(begin and end) I (one time each) IA Alternate pitch I (fram Main only)

B Bold D DoublelH Overprint character IN Standard pitch IAJ Help AK Block
S Underscore 10 Non-break space IC Printing pause I AQ Quick Ap Print
X Strikeout IF Phantom space IY Other ribbon color I AO Onscreen
V Subscript IG Phantom rubout I * User Patches *ISpace bar returns
T Superscript IRETURN OVerprint lineIQ(l) W(2) E(3) R(4) Iyou to Main Menu.

L---l---1--l--1---I--1---1---1----1---1----1------R

•
Figure 3F. Print Menu: special print control characters including subscripts, superscripts, boldface,
double strike, and strikeout.

BENEFITS

WordStar is an advanced word-processing program
that can turn any CP/M based personal computer
into a sophisticated yet easy to learn and use text
processor. It takes very little time for even the least­
trained user to learn to productively generate docu­
mentation with WordStar.

The simplifying features of WordStar do not detract
from its acceptance by advanced users. Menus and
other features are designed to be unobtrusive when
they are not needed. WordStar's sophistication
means that it will not run out of horsepower as the

user progresses, but will always be an appealing and
highly productive tool.

With WordStar there is no question about the appear­
ance of the printed output, since the text can be dis­
played on the screen exactly as it is to be printed.

Time savings when using WordStar will be consider­
able. Generation of new text is easier than by
handwritten/typed means. When WordStar is used
for program editing it supplies powerful features un­
available in other editors. With WordStar, both code
and documentation can be generated at the same
time within the same environment.

8·13 AFN·01315B

WordStar* WORD PROCESSING SOFTWARE

Table 1.

EDITING COMMAND INDEX

· hold CTRL key, type letter
• A cursor left word
• B reform paragraph
• C scroll up screenful
· 0 cursor right character
• E cursor up line
• F cursor right word
• G delete character right

H cursor left character · I tab
• J help PREFIX
· K editing PREFIX
• L find/replace again
• M (Same as RETURN)
• N insert hard carriage return
• 0 formatting PREFIX
• P print control PREFIX
• Q editing PREFIX

R scroll down screenful · S cursor left character · • T delete word right
, • U interrupt

V insert on/off
:W scroll down line

X cursor down line
Y delete line
Z scroll up line

JB explain reform
• JD summarize print directives
• JF explain Flags
• JH set Help level

JI command index
• JM explain tabs and Margins
• JP explain Place markers
• JR explain Ruler line
• JS explain Status line

JV explain moVing text

• KO-· K9
· KB · KC · KD · KE · KF
· KH · KJ · KK · KL · KN · KO · KP

set/hide marker 0-9
mark/hide Block beginning
Copy block
Done edit (save)
rEname file
File directory on/off

, Hide/display marked block
delete additional file
mark blocK end
change Logged disk
column mode on/off
cOpy file
Print

8-14

• KQ abandon edit
• KR Read additional file
• KS Save and reedit
• KV moVe block
• KW Write block to additional file
• KX save and eXit
• KY delete block

·
·
·
·
·

·
·
·

OC
00
OE
OF
OG
OH
01
OJ
OL
ON
OP
OR
OS
OT
OW

.
PA- PZ · PM
PO

.00- 09
OA
OB · OC

.00
OE

• OF
OK
OL · QP

.00
·OR

Center cursor line
print control display on/off
soft hyphen Entry on/off
margins & tabs from line
paraGraph tab
Hyphen-Help on/off
set tab stop
Justification on/off
set left margin
clear tab stop
Page break display on/off
set Right margin
set line Spacing
ruler display on/off
Wordwrap

enter ·A-·Z
make next line overprint
enter non-break space

cursor to marker 0-9
find and replace
cursor Block beginning
cursor end file
cursor right end line
cursor top screen
Find
cursor blocK end
find misspelling
cursor Previous position
repeat next command
cursor beginning of file
cursor left Side screen
cursor source

• OS
.OV

OW · OX · OY
'"OZ
·Odel

continuous downward scroll
cursor bottom of screen
delete to end line
continuous upward scroll
delete to beginning line

· DEL delete character left · ESCAPE error release
• LINE FEED (same as J)
: RETURN hard carriage return

TAB tab

AFN-01315B

WordStar* WORD PROCESSING SOFTWARE

Table 1. (Continued)

NO-FILE COMMANDS

D open a Document file
E rEname file
F File directory on/off
H set Help level
L change Logged disk
M run MailMerge (optional)
N open a Non-document file

SPECIFICATIONS

OPERATING ENVIRONMENT

Hardware Required

8080 or 8085 CPU
5%" or 8" Diskette drive
Printer
64K Bytes of memory
Console with absolute cursor addressing
Note: Intellec Series II and III require iMDX·511

Optional hardware

Additional mass storage

Software Required
CP/M 2.2 operating system

ORDERING INFORMATION

Description

0 cOpy file
P Print
R Run program
S run SpellStar (optional)
X eXit to operating system
Y delete file

DOCUMENTATION PACKAGE

Wordstar Training Guide
Wordstar Operator's Guide

Wordstar General Information Manual
Wordstar Reference Manual
Wordstar Installation Manual

SUPPORT

Intel offers several levels of support for this product,
depending on the system configuration in which it is
used. Please consult the price list for a detailed
description of the support options available.

Intel software license is required.

WordStar word processing software package for use under the CP/M operating system

Order Code Shipping Media

SD111 CPM80ASU A-Single-density 8/1 diskette
SD111 CPM80BSU B-Double-density 8/1 diskette
SD111 CPM80FSU F-iPDS Format 5%" diskette

8·15 AFN-01315B

•

•

•
•

•

MICROSOFT·
MULTIPLAN· SPREADSHEET

Simplifies the design and use of very • Wide array of sophisticated functions
large spreadsheets, and multiple inter· to simplify formulas
related spreadsheets • Cells and areas can be named for
Automatically updates subtotals, clarity
totals, percentages, growth curves, etc • Can reference and update several in·
Can perform multiple iterations to terrelated spreadsheets at once
solve closed· loop problems • Simple to use, intuitive commands.
Formulas automatically revised· when Single keystroke command entry
reordering rows and columns in • "Windows" allow several portions of
displays large sheets to be viewed at once
Can be used in time, monetary, and in· • Contains the features of the most
ventory budgetjng popular spreadsheet programs, as well

as its contribution of new features

Multiplan is a productivity tool designed to help the user to analyze data in spreadsheet format. As an aid
to both business and personal needs, Multiplan is an extremely powerful modeling and planning tool.

Multiplan is easy to learn and use, yet its versatility is enhanced by the skill of the user. Multiplan allows
the user to operate in as intuitive a way as possible, and its widespread capabilities allow accomplish­
ment of a variety of tasks. Advanced users are unencumbered by simplifying features, and have enough
power to satisfy their needs.

COLUMNS (1·63)

ROWS (1·255)

MENU SELECTION

COMMAND LINE

MESSAGE

LOCATION AND CONTENTS
OF ACTIVE CELL

~ .. ~== __ ~ __ ACT~~~g~~~RED
#1

1
2
3 Sales
4
5 Cost
6
7
8
9

$20000.00

Material $4000.00
Labor $7000.00

Overhead $4000.00

10 Total Costs
11

$15000.00

$5000.00

2
3 $20000.00
4

$4000.00
5
6
7
8
9

$7000.00 --------+-+-DOLLAR FORMAT
$4000.00

10
11

12
13
14
15 $5000.00
16
17
18

95% Free

STORAGE REMAINING

--f--SHEET NAME

ABSOLUTE REFERENCE

Typical Multiplan Screen Display

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products: BXP, CREDIT, i, iCE, iCS, im, Insite, Inte!, INTEL,
Intelevision, Intellink, Intellec, iMMX, iOSP, iPDS, iRMX, iSBC, iSBX, Library Manager, MCS, MULTIMODULE, Megachassis. Micromainframe, MULTI BUS, Multichannel, Plug·A·
Bubble, PROMPT, Promware, RUPI, RMXl80, System 2000, UPI, and the combination of iCS, iRMX, iSBC, iSBX, ICE, 121CE, MCS, or UPI and numerical suffix. Intel Corporation
Assumes No Responsibilitv for the use of Any Circuitry Other Than Circuitry Embodied in an Intel product. No Other Patent Licenses are implied. ,c; INTEL CORPORATION,
© INTEL CORPORATION, 1983 MAY 1983
'Microsoft & Multiplan are trademarks of Microsoft Corp. ORDER NUMBER:210767-002

8·16

MICROSOFT MULTIPLAN SPREADSHEET

FEATURES

- Names can be used to express "cells"
(worksheet elements), or groups of ce:ls. These
names, in turn, can be used as parts of· for­
mulas and commands. Named areas can be
combined in various ways for ease of use.

- A wide range of functions unique to Multiplan
is available in addition to the functions typical
to the most popular spreadsheet programs.
These functions allow the user to select win­
dows, sort data,draw from other worksheets,
and a number of other important operations.

- Expressions can be clarified by the use of
names as in "PROFIT = SALES - COSTS"
rather than "R12C1 = R1C3 - R5C12".

- Active sheets can draw data automatically
from inactive "supporting" sheets through the
use of named cells and areas. This unique
feature allows the user to streamline the pro­
cessing of data, and to generate an entire pad
full of interrelated spreadsheets.

- Multiplan offers a worksheet size of up to 255
rows by 63 columns, a broad worksheet
simulator in which words, numbers, and for­
mulas may be entered into information cells.
Added to the access of data in inactive sheets,
this large sheet size allows the user to perform
very rigorous analyses in a minimum amount of
time.

-With Multiplan the user gains the capability to
plan against several different situations to
allow comparison of one set of circumstances
against another. A good example of this would
be the generation of several sheets, one based
on steady growth versus others based on
several potential problems. This way, con­
tingency planning will become less tedious and
more effective.

- By altering a single critical number, the impact
on other dependent numbers will be auto­
matically updated to help the user observe sen­
sitivities and interdependencies. This helps the
user to plan resources efficiently, and schedule
more effectively.

8-17

- Multiplan overcomes the limitations of paper
worksheets by allowing the user to instantly
move, insert, or delete entire rows or columns
of data. The remaining rows, columns, or free
space will expand or contract automatically as
necessary, thereby eliminating the costly. and
tiresome work of typing or hand-printing the
worksheet over and over.

-All commands can be invoked by a single
keystroke and selections are menu driven.
Multiplan even offers proposed responses to
commands, to encourage its use by even the
most unskilled user. Multiplan's commands,
prompts, and messages, as well as the screen
and keyboard, communicate with each other
and the user directly and naturally to allow the
untrained user to accomplish objectives easily.

-A special edi~ area helps the user to make addi­
. tions and deletions quickly and easily.

- Up to eight windows are available to allow
users to view different parts of a very large
worksheet simultaneously. The windows can
be aligned, scrolled together, opened, or closed
at will.

-An iteration option allows the simulation of
closed-loop problems involving mutually in­
terdependant formulas. The number of itera­
tions can be chosen, or iterations can continue
until a given constraint is met.

- Formulas can be moved from one worksheet
location to another without having to be rewrit­
ten by the user.

- Reference to a particular cell need not be in
absolute terms, but can be expressed as a loca­
tion relative to other cells. A formula containing
this sort of relative reference may be copied
into other cells and will be automatically
changed to reflect its new position.

- The sheet display may be redesigned or format­
ted in various ways without affecting the data
stored in Multiplan. Thus, the same data can be
presented in different order in different reports
with a minimum of effort.

AFN·00649A

intel' MICROSOFT MULTIPLAN SPREADSHEET

Commands
The followihg is a brief list of commands available
under Multiplan. All of these commands are in­
voked by the single 'keystroke of their first letter
(Le. "C" for Copy or "F" for Format) with the ex­
ception of eXternal, which is invoked by typing an
"X."

Several of the commands offer a number of selec­
tions of operational modes, which are displayed
when the command is invoked. In order to choose
a mode, either press the TAB key until the cursor
rests over the selected mode, then hit RETURN, or
type the first letter of the selected mode, then hit
RETURN.

For more detailed descriptions of the commands,
please see the Multiplan User's Manual.

ALPHA
Replaces the contents of the active cell with a
character string. If the active cell already contains
a string, that string is the proposed response of
the command, so that it can be edited.

BLANK
Deletes contents of all specified cells. Names are
not affected; if a cell was referred to by a name
before use of this command, that name will still
apply.

COpy
Presents a choice of three ways of copying the
contents of some cells into other cells. To
duplicate one cell across several to its right,
choose Right. To duplicate one cell across several
below it, choose Down. To copy any cell or cells to
any others, choose From.

DELETE
Presents a two-way choice to delete cells. To
delete a row or rows, choose R. To delete a col­
umn or columns, choose C. To blank out the cells,
use the Blank command.

EDIT
Makes contents of the active cell available for
editing. Place the cell pointer on the cell to be
edited and press E. The cell's contents are then

placed on the command line for modification. The
edit cursor is placed at the end of the current
contents rather than highlighting the whole
command, as is done for other defaults. If the cell
contains a string, it is presented in double quotes.
After having edited the cell's contents, press
RETURN to put the changed contents back in the
cell (or press ABORT to cancel any changes).

FORMAT
Presents a choice of three kinds of format adjust­
ment. To set a specific format for a cell or group of
cells, choose Cells. To set the width of a column
or columns, choose Width. To set the default
format-the format that applies wherever a
specific format hasn't been set-choose Default.

GOTO
Presents a choice of ways to move the cell pointer
over the sheet. To display a specific row and col­
umn, choose Row-col. To display a named area,
choose Name.

HELP
Provides helpful information about Multiplan.
When help is requested, the spreadsheet is
replaced by text from the HELP file and the HELP
command menu appears on the screen. Help is
available in the areas of Applications, Com­
mands, Editing, Formulas, and the Keyboard. The
spreadsheet display is reinstated when the
RESUME subcommand is entered.

INSERT
Presents a choice of ways to insert new cells into
the sheet. To insert new rows choose Row. To
insert new columns choose Column.

LOCK
Provides two ways to lock cells in protection
against accidental change. Either individual cells
or all cells containing formulas can be moved,
deleted, formatted or sorted after having been '
locked, but their contents cannot be changed.

MOVE
Presents a choice of ways to move cells around
the sheet. To move whole rows, choose Row. To
move whole columns, choose Column.

8·18 AFN-00649B

ALPHA
BLANK
COPY DOWN
COPY FROM
COpy RIGHT
DELETE COLUMN
DELETE ROW
EDIT
FORMAT CELLS
FORMAT WIDTH
FORMAT DEFAULT

CELLS
FORMAT DEFAULT

WIDTH
FORMAT OPTIONS

COMMAS
FORMAT OPTIONS

FORMULAS
GOTO ROW-COL
GOTO NAME
GOTOWINDOW
HELP APPLICATIONS
HELP COMMANDS
HELP EDITING
HELP FORMULAS
HELP KEYBOARD
HELP NEXT
HELP PREVIOUS
HELP RESUME
HELP START
INSERT COLUMN
INSERT ROW
LOCK CELLS
LOCK FORMULAS
MOVE COLUMN
MOVE ROW
NAME
OPTIONS

PRINT FILE
PRINT MARGINS
PRINT OPTIONS
PRINT PRINTER
QUIT
SORT

TRANSFER CLEAR
TRANSFER DELETE
TRANSFER LOAD
TRANSFER OPTIONS
TRANSFER RENAME
TRANSFER SAVE
VALUE
WINDOW BORDER
WINDOW CLOSE
WINDOW LINK
WINDOW SPLIT

HORIZONTAL
WINDOW SPLIT

VERTICAL
WINDOW SPLIT

TITLES
XTERNAL COPY
XTERNAL LIST
XTERNALUSE

MICROSOFT MULTIPLAN SPREADSHEET

Table 1. Multiplan Commands

Replaces cell contents with a character string.
Clears cell contents.
Used to fill a column with identical values.
Duplicates one or a number of cells to another location.
Used to make a row of identical values.
Removes columns from the spreadsheet.
Removes rows from the spreadsheet.
Allows editing of the contents of a single cell.
Used to help align cells in a column.
Limits the width of all cells in a given column.

Sets formats for all previously unformatted cells.

Sets formats for all previously unformatted columns.

Displays numbers with commas separating every third digit.

Displays formulas instead of their values.
Moves the cell pOinter to the specified row and column.
Moves the cell pOinter to the named area.
Places the specified cell within the given window.
Illustrates solutions to a number of common problems.
Lists and describes all commands.
Describes Editing functions.
Gives Formula construction rules.
Explains special functions of the keyboard.
Gives the next screenful of HELP text.
Gives the previous screenful from HELP call.
Returns to the spreadsheet from HELP call.
Begins the HELP tutorial.
Used to add a column to an existing spreadsheet.
Used to add a row to an existing spreadsheet.
Protects the indicated cell from alteration.
Locks out alteration of all cells containing formulas or text.
Changes the order of the columns on the sheet.
Changes the order of the rows on the sheet.
Assigns a name to a cell or number of cells.
Allows the user to disallow recalculation upon every change of a cell
value, to mute the audible alarm, or to enable the Iteration option.
Outputs the spreadsheet to a diskette file.
Sets up the margins on the printed output.
Allows optional printing modes to be used.
Prints the spreadsheet on the system's printer.
Ends the Multiplan session without saving the active sheet.
Sorts a range of rows to put values in a specified column into ascending
or descending numerical order.
Clears the active sheet.
Deletes the specified file.
Loads a sheet from the disk file.
Modifies the context of the following transfer operation.
Renames the active sheet.
Saves the active sheet on diskette.
Enters a value or formula into the active cell.
Changes the border of the specified window.
Removes a window from the screen.
Sets or breaks link for synchronized scrolling between windows.

Horizontally divides a window into two windows.

Vertically divides one window into two windows.

Divides one window into two or four which scroll together.
Copies data from an inactive sheet to the active sheet.
Displays the relationships between the active sheet and the other sheets.
Sets a substitute name for a supporting sheet.

8-19
AFN-00649B

intel' MICROSOFT MULTIPLAN SPREADSHEET

Commands (Continued)
NAME
Assigns a name to a cell or area of cells. The
name defined may then be used wherever a
reference to that cell or area is needed in a com­
mand or formula.

OPTIONS
The Options command can be used to set and
reset various options provided with Multiplan.

The Recalc option controls how often Multiplan
performs formula calculations. If the option is on,
Multiplan recalculates all formulas whenever a
cell is changed. If the option is off, recalculation
is done only when the Recalc control key is
pressed or during Transfer Save.

The Recalc option has an effect on how quickly
Multiplan finishes entering a new value in a cell.
The length of time Multiplan takes to recalculate
the sheet depends on how many cells are in use,
and on the complexity of the formulas in them.
When you want to make a number of entries on a
busy sheet, turn the Recalc option off to get the
quickest response. Turn it on again when you are
interested in seeing the effect of each change.

The Mute option silences Multiplan's audible
alarm.

The Iterate option gives the user a means of solv­
ing problems which involve circular or "closed
loop" references. Whereas formulas which count
on each other's results (Le., A = B + C, B = A + C)
are disallowed in other spreadsheet programs,
Multiplan allows spreadsheets with such
references to be reiterated upon in an orderly
manner either until a maximum number of itera­
tions has been reached, or until a cell has reached
a predetermined value.

PRINT
Presents a choice of four actions related to print­
ing the active sheet. To begin printing, choose Go.
To put printable output in a disk file, choose File.
To set the margins that will be used on the printed
output, choose Margins. To fix the part of the
worksheet to be printed, or to insert a control line
at the top of the output, choose Options.

QUIT
Ends the Multiplan session without saving the ac-

tive sheet. Multiplan requests confirmation; if it is
given, Multiplan terminates, returning control to
the computer operating system. The active sheet
is lost unless it has previously been saved.

SORT
Reorders the rows on the spreadsheet so that the
data in a specified column appears in ascending
or descending numerical order. The column to be
sorted may contain numbers, text, or other values,
and if such values are mixed, they are presented
in ascending order numerically, alphabetically
and by error value, after which any blank cells
follow.

TRANSFER
Offers a choice of five commands, which affect an
entire sheet.

To load a saved sheet, replacing the active sheet,
choose Load.

To save the active sheet in a disk file, choose
Save.

To give the active sheet a new name, choose
. Rename.

8-20

To clear the active sheet, deleting all its contents,
and restoring all its default settings, choose
Clear.

To delete the disk copy of the active sheet,
choose Delete.

VALUE
This command is used to enter a formula or
number into the active cell. VALUE may either be
selected from the command menu or by typing a
numerical value, a mathematical symbol, or a left
parentheses.

WINDOW
Presents a choice of four things that can be done
with windows.

To open a new window by splitting the active win­
dow horizontally or vertically, or to open a window
used strictly for titles, choose Split.

To close a window by removing it from the screen,
choose Close.

To synchronize scrolling of windows, choose Link.

AFN-00649B

MICROSOFT MULTIPLAN SPREADSHEET

To move a window to a particular part of the sheet,
choose Home.

To copy data, or blocks of data from an inactive
spreadsheet to the active sheet, choose Copy.

To add or remove a decorative border around a
window, choose Border.

To display the relationships between the active
sheet and other sheets, showing which sheets
support (provide values for) the active one and
which sheets depend on (use values from) the
active sheet, choose List.

XTERNAL
Presents a choice of actions relating to the use of
data from other sheets in the formulas of the
active sheet. To assign a substitute name for an inactive sheet,

specify Use.

ABS
AND
ATAN
AVERAGE
COLUMN
COS
COUNT
DOLLAR
EXP
FALSE
FIXED
IF

INDEX
INT
ISERROR
ISNA
LEN
LN
LOG10
LOOKUP
MAX
MID
MIN
MOD
NA
NOT
NPV
OR
PI
REPT
ROUND
ROW
SIGN
SIN
SQRT
STDEV
SUM
TAN
TRUE
VALUE

Table 2. Multiplan Functions

Calculates the absolute value of an argument.
True if, and only if, all values are true; otherwIse returns false.
Gives the arctangent of an argument.
Returns the average of all cells referenced by up to 5 arguments.
Gives the current column number.
Calculates an argument's cosine.
Finds the number of cells fitting the referenced criteria.
Formats numbers as dollar amounts.
This is the inverse natural logarithm of the argument.
Returns the logical false value.
Rounds the first argument to the precision specified by the second.
Returns value specified after "THEN" if argument is true, or the "ELSE" specified
value if false.
Returns the value of the cell in a named area offset by an index value.
Truncates the argument's fractional part.
Returns true if, and only if, the argument is an error value.
Returns true if, and only if, the argument is an #N/A value.
Gives the number of characters in the argument's string.
Calculates the natural logarithm of its argument.
Returns the common logarithm of its argument.
Used to search for dependent variables in a lookup table.
Finds the largest numeric value in an area of cells.
Produces the middle characters of a string. .
Finds the smallest numeric value in an area of cells.
Gives the remainder of the integer division of the two arguments.
Returns the #N/A value.
Gives the logical inverse of the argument. •
Calculates the net present value of a constant annuity.
True if, and only if, any of the arguments are true; otherwise returns a false.
Returns Pi (3.14159 ...).
Forms a string consisting of a repeated substring.
Rounds the first argument to the precision specified by the second.
Gives the current row number.
Performs the Signum function on the argument.
Returns the sine of the argument.
Calculates the square root of the argument.
Calculates the standard deviation of the arguments.
Adds the sum of all cells in a specified area.
Calculates the tangent of the argument.
Returns the logical true value.
Used to extract numbers from strings.

8·21 AFN-006498

inter MICROSOFT MULTIPLAN SPREADSHEET

BENEFITS
Unlike other spreadsheet programs, Multiplan
allows the user to create and view as many as
eight different windows within the screen display
area. Complete control is allowed over each win­
dow, allowing windows without borders, and the
freezing and scrolling 01 title columns and rows.

Multiplan allows formulas to describe the con­
tents of any cell. Formulas are written in a method
similar to standard programming languages, and
are evaluated according to priority of functions, a
unique feature among spreadsheet ;:>rograms.
Parentheses are allowed to clarify the order of
calculation. Formulas can use a string of
characters as a variable name, and variables may
be either numerical data, or strings of characters
which may be manipulated to concatenate words
and phrases. These are all unusually powerful and
intuitively easy-to-learn features many of'which
are unique to Multiplan.

Multiplan gives the user an unusual amount of
flexibility in rearranging the format or layout of a
spreadsheet with its three forms of addressing:
absolute, relative, or symbolic (by name). Any of
the three can be combined in any order to produce
the exact results needed in any case.

One of the features that sets Multiplan apart from
other spreadsheet programs is the ability to name
all cells. The NAME command allows the naming
of single cells, an area of cells of any shape, or
even a list of unconnected areas of cells. That

SPECIFICATIONS
Operating Environment
REQUIRED HARDWARE:
Multiplan requires a minimum system which con­
tains at least:
- 64K bytes of RAM
- 8080/8085 CPU
- Console with absolute cursor positioning
- One Diskette drive

OPTIONAL HARDWARE:
- Line printer

REQUIRED SOFTWARE:
- CP/M * Operating System

'CP/M is a registered trademark of Digital Research, Inc,

8-22

name can then be used in functions, or even as a
response in a command. NAME also allows the
user to review all cell names in their proper posi·
tion on the screen in order to reduce confusion.

Multiplan commands can be entered by single
letters on the command lines, after which the pro­
gram will fill in the rest of the command. This
speeds the user through com'plex operations
without leaving any doubt about their functions.
Versatile commands handle not only single data
cells, rows, or columns as do other spreadsheet
programs, but these commands allow Multiplan
to move multiple rows or columns, or insert,
delete, or handle any rectangular area. All relative
references are automatically adjusted to account
for these changes.

Multiplan automatically updates all entries
affected by a change in a single cell, without re­
quiring the user to command it to do so. This
feature allows the user to fiddle with numbers and
test for sensitivities and trouble spots.

Another unique benefit of Multiplan is its ability
to employ values from one sheet in the formulas
of another. This "sheet linkage" can be used to
construct a hierarchy of worksheets, with detailed
worksheets feeding their totals to a summary
worksheet. When a detail sheet is updated and
saved on diskette, the dependent summary sheet
will be automatically updated the next time it is
loaded.

Documentation Package
Multiplan users manual

Shippi,ng Media
(Specify by Alphabetical Character when order·
ing)

A - Single density IBM 3740/1 compatible 8"
diskette

B . Double density IBM 3740/1 compatible 8"
diskette

F - iPDS™ compatible 5-1/4" diskette

AFN-00649B

MICROSOFT MULTIPLAN SPREADSHEET

ORDERING INFORMATION

Order Code Shipping Media

SD109CPM80A
SD109CPM80B
SD109CPM80F

A-Single-density 8" diskette
B-Double-density 8" diskette
F-iPDS Format 5%" diskette

SUPPORT
Intel offers several levels of support for this pro­
duct, depending on the system configuration in
which it is used. Please consult the price list for a
detailed description of the support options
available.

8-23

Product Description

Multiplan spreadsheet program
for use under CP/M· on 8080/8085
based small computers.

AFN-00649B

intJ

ALABAMA

Intel Corp.
5015 Bradford Drive
Suite 2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

Intel Corp.
11225 N. 28th Drive
Suite 2140
Phoenix 85029
Tel: (602) 869-4980

Inlel Corp.
1161 N. EI Dorado Place
Suite 30t
Tucson 85715
Tel: (602) 299-6815

CAUFORNIA

Intel Corp.
21515 Vanowerl Street
Suite 116

f:C'1818rat,4~J~gg
tntel Corp.
~~~~ ~;8Imperial Highway 

~~IS~~31064~~i610 
Intel Corp 
1510 Arden Way, Suite 101 
Sacramento 95815 
Tel: (916) 920·8096 

Intel Corp. 
4350 Executive Orive 
Suite 150 

~~~) D4~~58~20111 
Intel Corp,'
2000 East 4th Street
Suite 100
Santa Ana 92705

~?J~6.5~~~~~2
Intel Corp,'
1350 Shorebird Way
MI. View 94043

~: (4J~6.3~~89~07~6
910·338·0255

COlORADO

tntel Corp.
4445 Northpart< Drive
Sulle 100

~lor(fg3) S~~~?~2~0907
Intel Corp.'
650 S. Cherry Street
Sune 720
Denver 80222
Tel: (303) 321-8086
TWX: 910·931·2289

CONNECTICUT

~JeIM~~ain Road

fi:~(~tJ:~~1~J3°
EMC Corp.
222 Summer Street
Stamford 06901
Tel: (203) 327·2934

FLORIDA

~l~1 ~~eSlmonte Drive
Suite 105
AHamonte Springs 32714
Tel: (305) 869·5588

\~ <if~: 62nd Street
Suite 104
Fl lauderdale 33309

~)3~15~9~~~~~

DOMESTIC SALES OFFICES

FLORIDA (Conl'd) NEW JERSEY

Intel Corp.
11300 4th Streel South ~!~:ta~~a:a III
Suite 170 Raritan Center
SI. Petersburg 33702 Edison 08837
Tel: (813) 577·24t3 ~(2?116-4~~~6~~~0
GEORGIA

Intel Corp.
NEW MEXICO

3280 Pomte Parkway Intel Corp
Suite 200 8500 Menual Bouleyard N.E.
Norcross 30092 Suite B 295
Tel: (404) 449·0541 Albuquerque 87112

ILUNOIS
Tel: (505) 292·8086

NEW YORK
Intel Corp.'
2550 Gulf Road Intel Corp,'
Suite 815 300 Vanderbilt Motor Parkway

~"P3Jnl'~;~~~~0008
Hauppauge 11788

~(5J~6.l2~~il3~
INDIANA Intel Corp

Suite 28 Hollowbrook Park
Inlel Corp, 15 Myers Corners Road
8777 Purdue Road WappInger Falls 12590
Suite 125 Tel: (914) 297·616t
Indianapolis 46268 TWX: 510·248·0060
Tel: (317) 875·0623

Intel Corp,'
IOWA 211 White Spruce Boulevard

Rochester 14623
Intel Corp. Tel: (716) 424·1050

fJ30A'm~e~~d~~~inarive N.E.
TWX: 510·253·7391

Cedar Rapids 52402 ~4~~uaR~n~s Road Tel: (319) 393·5510
Syracuse 1 206

KANSAS Tel: (315) 463·8592
TWX: 710·541·0554

Intel Corp.

~3~~uapftt~ford.Victor Road
8400 W. 110th Street
Suite 170
Civerland Park 66210 VIctor 14564
Tel: (9.13) 642·8080 Tel: (7t6) 924·9101

TWX: 510·254·8542
LOUISIANA

NORTH CAROUNA
r~~sl~5~) D~~~16~stems Corp. Intel Corp.

2700 Wycliff Road
MARYLAND Suite 102

Raleigh 27607
Intel Corp,' Tel: (919) 781·8022
7321 Parkway Drive South

OHIO Suite C
Hanover 21076

Intel Corp,' Tel: (301) 796-7500
TWX: 710-862·1944 6500 Poe Avenue

Dayton 45414
Intel Corp. Tel: (513) 890-5350
7833 Walker Drive TWX: 810·450·2528
Greenbelt 20770

Intel Corp,' Tel: (301) 441·1020

~fi~1~~~:~~~2d2 ~~1~~ar~o 300
MASSACHUSETTS

Intel Corp,' Tel: (216) 464·2736
27 Industrial Avenue TWX: 810·427·9298
Chelmsford 01824

~:(6m.3~~~I:~~ OKLAHOMA

Intel Corp.
MICHIGAN 4157 S, Harvard Avenue

SUite 123
Intel Corp, Tulsa 74135
7071 Orchard lake Road Tel: (918) 749·8688
Suite 100
Wesl Bloomfield 48033 OREGON
Tel: (313) 85t·8096

Intel Corp
MINNESOTA 10700 SW. Beaverton

Hillsdale Highway
Intel Corp. Suite 22
3500 W. 80th Street Beaverton 97005
Suite 360 Tel: (503) 641·8086

~(~~~~:87~~~~2
TWX: 910-467-ll741

PENNSYLVANIA

MISSOURI Intel Corp,'
455 Pennsylvania Avenue

Intel Corp. Fort Washington 19034
4203 Earth City Expressway Tel: (215) 641·1000
Suite 131 TWX: 510·661·2077
Earth City 63045

Intel Corp.' Tel: (314) 291·1990
400 Penn Center Boulevard
Suite 6tO
Pittsburgh 15235
Tel: (412) 823-4970

PENNSYLVANIA (Conl'd)

Q.E.D. Electronics
139 Terwood Road
Willow Grove 19090
Tel: (2t5) 657·5600

TEXAS

Intel Corp,'
12300 Ford Road
Suite 380
Dallas 75234
Tel: (214) 241·8087
TWX: 910·860·5617

Intel Corp.'
7322 SW. Freeway
Suite 1490
Houston 77074
Tel: (713) 988·8086
TWX: 910·881·2490

Industrial Digital Systems Corp.
5925 Sovereign
Suite 101
Houston 77036
Tel: (713)988·9421

~n1t~1 E~r~~derson Lane
Suite 314'
Austin 78752
Tel: (512) 454·3628

UTAH

Intel Corp,
5201 Green Street
Suite 290
Salt lake City 84123
Tel: (801) 263·8051

VIRGINIA

Intel Corp,
1603 Santa Rosa Road
Suite 109
Richmond 23288
Tel: (804) 282·5668

WASHINGTON

Inlel Corp.
110 IIOth Avenue N.E.
Suite 510
Bellevue 98004
Tel: (206) 453·8086
TWX: 910-443·3002

Intel Corp.
408 N. Mullan Road
Suite 102
Spokene 99206
Tel: (509) 928·8086

WISCONSIN

Intel Corp.
450 N. Sunnyslope Road
Suite 130
Chancellory Park I
Brookfield 53005
Tel: (4t4) 784-ll087

CANADA
ONTARIO

Intel Semiconductor of Canada, Ltd.
Suite 202, Bell Mews
39 Highway 7
Nepean K2H 8R2
Tel: (6t3) 829·9714
TELEX: 053-41 t 5

Intel Semiconductor of Canada, Ltd.
190 Anwell Dnve
Suite spO
Rexdale M9W 6H8
Tel: (4t6) 675·2105
TELEX: 06983574

QUEBEC

Intel Semiconductor of Canada, Ltd.
3860 Cote Vertu Rd.
Suite 210
SI. laurent H4R lV4
Tel: (514) 334·0560
TELEX: 05·824172

'Field Application Location

